

T-SQL	Fundamentals,	Third	Edition

Itzik	Ben-Gan

PUBLISHED	BY
Microsoft	Press
A	division	of	Microsoft	Corporation
One	Microsoft	Way
Redmond,	Washington	98052-6399

Copyright	©	2016	by	Itzik	Ben-Gan

All	rights	reserved.	No	part	of	the	contents	of	this	book	may	be	reproduced	or	transmitted	in
any	form	or	by	any	means	without	the	written	permission	of	the	publisher.

Library	of	Congress	Control	Number:	2015955815
ISBN:	978-1-5093-0200-0

Printed	and	bound	in	the	United	States	of	America.

First	Printing

Microsoft	Press	books	are	available	through	booksellers	and	distributors	worldwide.	If	you
need	support	related	to	this	book,	email	Microsoft	Press	Support	at	mspinput@microsoft.com.
Please	tell	us	what	you	think	of	this	book	at	http://aka.ms/tellpress.

This	book	is	provided	“as-is”	and	expresses	the	author ’s	views	and	opinions.	The	views,
opinions	and	information	expressed	in	this	book,	including	URL	and	other	Internet	website
references,	may	change	without	notice.

Some	examples	depicted	herein	are	provided	for	illustration	only	and	are	fictitious.	No	real
association	or	connection	is	intended	or	should	be	inferred.

Microsoft	and	the	trademarks	listed	at	http://www.microsoft.com	on	the	“Trademarks”
webpage	are	trademarks	of	the	Microsoft	group	of	companies.	All	other	marks	are	property
of	their	respective	owners.

Acquisitions	Editor:	Devon	Musgrave
Developmental	Editor:	Carol	Dillingham
Project	Editor:	Carol	Dillingham
Editorial	Production:	Christian	Holdener;	S4Carlisle	Publishing	Services
Technical	Reviewer:	Bob	Beauchemin;	Technical	Review	services	provided	by	Content
Master,	a	member	of	CM	Group,	Ltd.
Copyeditor:	Roger	Leblanc
Indexer:	Maureen	Johnson,	MoJo’s	Indexing	Services
Cover:	Twist	Creative	•	Seattle	and	Joel	Panchot

mailto:mspinput@microsoft.com
http://aka.ms/tellpress
http://www.microsoft.com

To	Dato,
To	live	in	hearts	we	leave	behind,
Is	not	to	die.

—THOMAS	CAMPBELL

Contents	at	a	glance

Introduction

CHAPTER	1	Background	to	T-SQL	querying	and	programming

CHAPTER	2	Single-table	queries

CHAPTER	3	Joins

CHAPTER	4	Subqueries

CHAPTER	5	Table	expressions

CHAPTER	6	Set	operators

CHAPTER	7	Beyond	the	fundamentals	of	querying

CHAPTER	8	Data	modification

CHAPTER	9	Temporal	tables

CHAPTER	10	Transactions	and	concurrency

CHAPTER	11	Programmable	objects

Appendix:	Getting	started

Index

Contents

Introduction

Chapter	1	Background	to	T-SQL	querying	and	programming
Theoretical	background

SQL
Set	theory
Predicate	logic
The	relational	model
Types	of	database	systems

SQL	Server	architecture
The	ABCs	of	Microsoft	RDBMS	flavors
SQL	Server	instances
Databases
Schemas	and	objects

Creating	tables	and	defining	data	integrity
Creating	tables
Defining	data	integrity

Conclusion

Chapter	2	Single-table	queries
Elements	of	the	SELECT	statement

The	FROM	clause
The	WHERE	clause
The	GROUP	BY	clause
The	HAVING	clause
The	SELECT	clause
The	ORDER	BY	clause
The	TOP	and	OFFSET-FETCH	filters
A	quick	look	at	window	functions

Predicates	and	operators
CASE	expressions
NULLs
All-at-once	operations
Working	with	character	data

Data	types
Collation
Operators	and	functions
The	LIKE	predicate

Working	with	date	and	time	data
Date	and	time	data	types
Literals
Working	with	date	and	time	separately
Filtering	date	ranges
Date	and	time	functions

Querying	metadata
Catalog	views
Information	schema	views
System	stored	procedures	and	functions

Conclusion
Exercises

Exercise	1
Exercise	2
Exercise	3
Exercise	4
Exercise	5
Exercise	6
Exercise	7
Exercise	8
Exercise	9
Exercise	10

Solutions
Exercise	1
Exercise	2
Exercise	3
Exercise	4
Exercise	5
Exercise	6
Exercise	7
Exercise	8
Exercise	9

Exercise	10

Chapter	3	Joins
Cross	joins

ISO/ANSI	SQL-92	syntax
ISO/ANSI	SQL-89	syntax
Self	cross	joins
Producing	tables	of	numbers

Inner	joins
ISO/ANSI	SQL-92	syntax
ISO/ANSI	SQL-89	syntax
Inner	join	safety

More	join	examples
Composite	joins
Non-equi	joins
Multi-join	queries

Outer	joins
Fundamentals	of	outer	joins
Beyond	the	fundamentals	of	outer	joins

Conclusion
Exercises

Exercise	1-1
Exercise	1-2	(optional,	advanced)
Exercise	2
Exercise	3
Exercise	4
Exercise	5
Exercise	6
Exercise	7	(optional,	advanced)
Exercise	8	(optional,	advanced)
Exercise	9	(optional,	advanced)

Solutions
Exercise	1-1
Exercise	1-2
Exercise	2
Exercise	3

Exercise	4
Exercise	5
Exercise	6
Exercise	7
Exercise	8
Exercise	9

Chapter	4	Subqueries
Self-contained	subqueries

Self-contained	scalar	subquery	examples
Self-contained	multivalued	subquery	examples

Correlated	subqueries
The	EXISTS	predicate

Beyond	the	fundamentals	of	subqueries
Returning	previous	or	next	values
Using	running	aggregates
Dealing	with	misbehaving	subqueries

Conclusion
Exercises

Exercise	1
Exercise	2	(optional,	advanced)
Exercise	3
Exercise	4
Exercise	5
Exercise	6
Exercise	7	(optional,	advanced)
Exercise	8	(optional,	advanced)
Exercise	9
Exercise	10	(optional,	advanced)

Solutions
Exercise	1
Exercise	2
Exercise	3
Exercise	4
Exercise	5
Exercise	6

Exercise	7
Exercise	8
Exercise	9
Exercise	10

Chapter	5	Table	expressions
Derived	tables

Assigning	column	aliases
Using	arguments
Nesting
Multiple	references

Common	table	expressions
Assigning	column	aliases	in	CTEs
Using	arguments	in	CTEs
Defining	multiple	CTEs
Multiple	references	in	CTEs
Recursive	CTEs

Views
Views	and	the	ORDER	BY	clause
View	options

Inline	table-valued	functions
The	APPLY	operator
Conclusion
Exercises

Exercise	1
Exercise	2-1
Exercise	2-2
Exercise	3-1
Exercise	3-2
Exercise	4	(optional,	advanced)
Exercise	5-1
Exercise	5-2	(optional,	advanced)
Exercise	6-1
Exercise	6-2

Solutions
Exercise	1

Exercise	2-1
Exercise	2-2
Exercise	3-1
Exercise	3-2
Exercise	4
Exercise	5-1
Exercise	5-2
Exercise	6-1
Exercise	6-2

Chapter	6	Set	operators
The	UNION	operator

The	UNION	ALL	operator
The	UNION	(DISTINCT)	operator

The	INTERSECT	Operator
The	INTERSECT	(DISTINCT)	operator
The	INTERSECT	ALL	operator

The	EXCEPT	operator
The	EXCEPT	(DISTINCT)	operator
The	EXCEPT	ALL	operator

Precedence
Circumventing	unsupported	logical	phases
Conclusion
Exercises

Exercise	1
Exercise	2
Exercise	3
Exercise	4
Exercise	5
Exercise	6	(optional,	advanced)

Solutions
Exercise	1
Exercise	2
Exercise	3
Exercise	4
Exercise	5

Exercise	6

Chapter	7	Beyond	the	fundamentals	of	querying
Window	functions

Ranking	window	functions
Offset	window	functions
Aggregate	window	functions

Pivoting	data
Pivoting	with	a	grouped	query
Pivoting	with	the	PIVOT	operator

Unpivoting	data
Unpivoting	with	the	APPLY	operator
Unpivoting	with	the	UNPIVOT	operator

Grouping	sets
The	GROUPING	SETS	subclause
The	CUBE	subclause
The	ROLLUP	subclause
The	GROUPING	and	GROUPING_ID	functions

Conclusion
Exercises

Exercise	1
Exercise	2
Exercise	3
Exercise	4
Exercise	5
Exercise	6

Solutions
Exercise	1
Exercise	2
Exercise	3
Exercise	4
Exercise	5
Exercise	6

Chapter	8	Data	modification
Inserting	data

The	INSERT	VALUES	statement

The	INSERT	SELECT	statement
The	INSERT	EXEC	statement
The	SELECT	INTO	statement
The	BULK	INSERT	statement
The	identity	property	and	the	sequence	object

Deleting	data
The	DELETE	statement
The	TRUNCATE	statement
DELETE	based	on	a	join

Updating	data
The	UPDATE	statement
UPDATE	based	on	a	join
Assignment	UPDATE

Merging	data
Modifying	data	through	table	expressions
Modifications	with	TOP	and	OFFSET-FETCH
The	OUTPUT	clause
INSERT	with	OUTPUT
DELETE	with	OUTPUT
UPDATE	with	OUTPUT
MERGE	with	OUTPUT
Nested	DML

Conclusion
Exercises

Exercise	1
Exercise	2
Exercise	3
Exercise	4
Exercise	5
Exercise	6

Solutions
Exercise	1
Exercise	2
Exercise	3
Exercise	4

Exercise	5
Exercise	6

Chapter	9	Temporal	tables
Creating	tables
Modifying	data
Querying	data
Conclusion
Exercises

Exercise	1
Exercise	2
Exercise	3
Exercise	4

Solutions
Exercise	1
Exercise	2
Exercise	3
Exercise	4

Chapter	10	Transactions	and	concurrency
Transactions
Locks	and	blocking

Locks
Troubleshooting	blocking

Isolation	levels
The	READ	UNCOMMITTED	isolation	level
The	READ	COMMITTED	isolation	level
The	REPEATABLE	READ	isolation	level
The	SERIALIZABLE	isolation	level
Isolation	levels	based	on	row	versioning
Summary	of	isolation	levels

Deadlocks
Conclusion
Exercises

Exercise	1-1
Exercise	1-2
Exercise	1-3

Exercise	1-4
Exercise	1-5
Exercise	1-6
Exercise	2-1
Exercise	2-2
Exercise	2-3
Exercise	2-4
Exercise	2-5
Exercise	2-6
Exercise	3-1
Exercise	3-2
Exercise	3-3
Exercise	3-4
Exercise	3-5
Exercise	3-6
Exercise	3-7

Chapter	11	Programmable	objects
Variables
Batches

A	batch	as	a	unit	of	parsing
Batches	and	variables
Statements	that	cannot	be	combined	in	the	same	batch
A	batch	as	a	unit	of	resolution
The	GO	n	option

Flow	elements
The	IF	.	.	.	ELSE	flow	element
The	WHILE	flow	element

Cursors
Temporary	tables

Local	temporary	tables
Global	temporary	tables
Table	variables
Table	types

Dynamic	SQL
The	EXEC	command

The	sp_executesql	stored	procedure
Using	PIVOT	with	Dynamic	SQL

Routines
User-defined	functions
Stored	procedures
Triggers

Error	handling
Conclusion

Appendix:	Getting	started

Index

What	do	you	think	of	this	book?	We	want	to	hear	from	you!
Microsoft	is	interested	in	hearing	your	feedback	so	we	can	improve	our	books	and
learning	resources	for	you.	To	participate	in	a	brief	survey,	please	visit:

http://aka.ms/tellpress

http://aka.ms/tellpress

Introduction

This	book	walks	you	through	your	first	steps	in	T-SQL	(also	known	as	Transact-SQL),	which
is	the	Microsoft	SQL	Server	dialect	of	the	ISO	and	ANSI	standards	for	SQL.	You’ll	learn	the
theory	behind	T-SQL	querying	and	programming	and	how	to	develop	T-SQL	code	to	query
and	modify	data,	and	you’ll	get	an	overview	of	programmable	objects.
Although	this	book	is	intended	for	beginners,	it’s	not	merely	a	set	of	procedures	for

readers	to	follow.	It	goes	beyond	the	syntactical	elements	of	T-SQL	and	explains	the	logic
behind	the	language	and	its	elements.
Occasionally,	the	book	covers	subjects	that	might	be	considered	advanced	for	readers	who

are	new	to	T-SQL;	therefore,	you	should	consider	those	sections	to	be	optional	reading.	The
text	will	indicate	when	a	section	is	considered	more	advanced	and	is	provided	as	optional
reading.	If	you	feel	comfortable	with	the	material	discussed	in	the	book	up	to	that	point,	you
might	want	to	tackle	these	more	advanced	subjects;	otherwise,	feel	free	to	skip	those	sections
and	return	to	them	after	you	gain	more	experience.
Many	aspects	of	SQL	are	unique	to	the	language	and	very	different	from	other

programming	languages.	This	book	helps	you	adopt	the	right	state	of	mind	and	gain	a	true
understanding	of	the	language	elements.	You	learn	how	to	think	in	relational	terms	and	follow
good	SQL	programming	practices.
The	book	is	not	version	specific;	it	does,	however,	cover	language	elements	that	were

introduced	in	recent	versions	of	SQL	Server,	including	SQL	Server	2016.	When	I	discuss
language	elements	that	were	introduced	recently,	I	specify	the	version	in	which	they	were
added.
Besides	being	available	as	a	box	product,	SQL	Server	is	also	available	as	a	cloud-based

service	called	Microsoft	Azure	SQL	Database,	or	in	short,	just	SQL	Database.	The	code
samples	in	this	book	were	tested	against	both	a	box	SQL	Server	product	and	Azure	SQL
Database.	The	book’s	companion	content	(available	at	http://aka.ms/T-SQLFund3e/downloads)
provides	information	about	compatibility	issues	between	the	flavors.
To	complement	the	learning	experience,	the	book	provides	exercises	you	can	use	to

practice	what	you	learn.	The	book	occasionally	provides	optional	exercises	that	are	more
advanced.	Those	exercises	are	intended	for	readers	who	feel	comfortable	with	the	material
and	want	to	challenge	themselves	with	more	difficult	problems.	The	optional	exercises	for
advanced	readers	are	labeled	as	such.

Who	should	read	this	book
This	book	is	intended	for	T-SQL	developers,	database	administrators	(DBAs),	business
intelligence	(BI)	practitioners,	data	scientists,	report	writers,	analysts,	architects,	and	SQL
Server	power	users	who	just	started	working	with	SQL	Server	and	who	need	to	write	queries
and	develop	code	using	Transact-SQL.

http://aka.ms/T-SQLFund3e/downloads

Assumptions
To	get	the	most	out	of	this	book,	you	should	have	working	experience	with	Microsoft
Windows	and	with	applications	based	on	Windows.	You	should	also	be	familiar	with	basic
concepts	of	relational	database	management	systems.

This	book	might	not	be	for	you	if...
Not	every	book	is	aimed	at	every	possible	audience.	This	book	covers	fundamentals.	It’s
mainly	aimed	at	T-SQL	practitioners	with	little	or	no	experience.	This	book	might	not	be	for
you	if	you’re	an	advanced	T-SQL	practitioner	with	many	years	of	experience.	With	that	said,
several	readers	of	the	previous	editions	of	this	book	have	mentioned	that—even	though	they
already	had	years	of	experience—they	still	found	the	book	useful	for	filling	gaps	in	their
knowledge.

Organization	of	this	book
This	book	starts	with	a	theoretical	background	to	T-SQL	querying	and	programming	in
Chapter	1,	laying	the	foundations	for	the	rest	of	the	book,	and	basic	coverage	of	creating
tables	and	defining	data	integrity.	The	book	moves	on	to	various	aspects	of	querying	and
modifying	data	in	Chapters	2	through	9,	and	then	moves	to	a	discussion	of	concurrency	and
transactions	in	Chapter	10.	Finally,	it	provides	an	overview	of	programmable	objects	in
Chapter	11.
Here’s	a	list	of	the	chapters	along	with	a	short	description	of	the	content	in	each	chapter:

	Chapter	1,	“Background	to	T-SQL	querying	and	programming,”	provides	the
theoretical	background	for	SQL,	set	theory,	and	predicate	logic.	It	examines	the
relational	model,	describes	SQL	Server ’s	architecture,	and	explains	how	to	create	tables
and	define	data	integrity.
	Chapter	2,	“Single-table	queries,”	covers	various	aspects	of	querying	a	single	table	by
using	the	SELECT	statement.
	Chapter	3,	“Joins,”	covers	querying	multiple	tables	by	using	joins,	including	cross
joins,	inner	joins,	and	outer	joins.
	Chapter	4,	“Subqueries,”	covers	queries	within	queries,	otherwise	known	as	subqueries.
	Chapter	5,	“Table	expressions,”	covers	derived	tables,	Common	Table	Expressions
(CTEs),	views,	inline	table-valued	functions,	and	the	APPLY	operator.
	Chapter	6,	“Set	operators,”	covers	the	set	operators	UNION,	INTERSECT,	and	EXCEPT.
	Chapter	7,	“Beyond	the	fundamentals	of	querying,”	covers	window	functions,	pivoting,
unpivoting,	and	working	with	grouping	sets.
	Chapter	8,	“Data	modification,”	covers	inserting,	updating,	deleting,	and	merging	data.
	Chapter	9,	“Temporal	tables,”	covers	system-versioned	temporal	tables.
	Chapter	10,	“Transactions	and	concurrency,”	covers	concurrency	of	user	connections
that	work	with	the	same	data	simultaneously;	it	covers	transactions,	locks,	blocking,
isolation	levels,	and	deadlocks.

	Chapter	11,	“Programmable	objects,”	provides	an	overview	of	the	T-SQL	programming
capabilities	in	SQL	Server.
	The	book	also	provides	an	appendix,	“Getting	started,”	to	help	you	set	up	your
environment,	download	the	book’s	source	code,	install	the	TSQLV4	sample	database,
start	writing	code	against	SQL	Server,	and	learn	how	to	get	help	by	working	with	SQL
Server	Books	Online.

System	requirements
The	Appendix,	“Getting	started,”	explains	which	editions	of	SQL	Server	2016	you	can	use	to
work	with	the	code	samples	included	with	this	book.	Each	edition	of	SQL	Server	might	have
different	hardware	and	software	requirements,	and	those	requirements	are	well	documented	in
SQL	Server	Books	Online	under	“Hardware	and	Software	Requirements	for	Installing	SQL
Server	2016”	at	the	following	URL:	https://msdn.microsoft.com/en-us/library/ms143506.aspx.
The	Appendix	also	explains	how	to	work	with	SQL	Server	Books	Online.
If	you’re	connecting	to	Azure	SQL	Database,	hardware	and	server	software	are	handled	by

Microsoft,	so	those	requirements	are	irrelevant	in	this	case.
You	will	need	SQL	Server	Management	Studio	(SSMS)	to	run	the	code	samples	against

both	SQL	Server	2016	and	Azure	SQL	Database.	You	can	download	SSMS	and	find
information	about	the	supported	operating	systems	at	the	following	URL:
https://msdn.microsoft.com/en-us/library/mt238290.aspx.

Installing	and	using	the	source	code
Most	of	the	chapters	in	this	book	include	exercises	that	let	you	interactively	try	out	new
material	learned	in	the	main	text.	All	source	code,	including	exercises	and	solutions,	can	be
downloaded	from	the	following	webpage:

http://aka.ms/T-SQLFund3e/downloads
Follow	the	instructions	to	download	the	TSQLFundamentalsYYYYMMDD.zip	file,	where

YYYYMMDD	reflects	the	last	update	date	of	the	source	code.
Refer	to	the	Appendix,	“Getting	started,”	for	details	about	the	source	code.

Acknowledgments
A	number	of	people	contributed	to	making	this	book	a	reality,	either	directly	or	indirectly,
and	deserve	thanks	and	recognition.	It’s	certainly	possible	I	omitted	some	names
unintentionally,	and	I	apologize	for	this	ahead	of	time.
To	Lilach:	You’re	the	one	who	makes	me	want	to	be	good	at	what	I	do.	Besides	being	my

inspiration	in	life,	you	always	take	an	active	role	in	my	books,	helping	to	review	the	text	for
the	first	time.
To	my	mom,	Mila,	and	to	my	siblings,	Mickey	and	Ina:	Thank	you	for	the	constant	support

and	for	accepting	the	fact	that	I’m	away.	To	my	dad,	Gabi,	who	loved	puzzles,	logic,	and
numbers:	I	attribute	my	affinity	to	SQL	to	you;	we	all	miss	you	a	lot.
To	the	technical	reviewer	of	the	book,	Bob	Beauchemin:	You’ve	been	around	in	the	SQL

https://msdn.microsoft.com/en-us/library/ms143506.aspx
https://msdn.microsoft.com/en-us/library/mt238290.aspx
http://aka.ms/T-SQLFund3e/downloads

Server	community	for	many	years.	I	was	always	impressed	by	your	extensive	knowledge	and
was	happy	that	you	agreed	to	work	with	me	on	this	book.
To	Steve	Kass,	Dejan	Sarka,	Gianluca	Hotz,	and	Herbert	Albert:	Thanks	for	your	valuable

advice	during	the	planning	phases	of	the	book.	I	had	to	make	some	hard	decisions	in	terms	of
what	to	include	and	what	not	to	include	in	the	book,	and	your	advice	was	very	helpful.
Many	thanks	to	the	book’s	editors.	To	Devon	Musgrave,	who	played	the	acquisitions	editor

role:	You	are	the	one	who	made	this	book	a	reality	and	handled	all	the	initial	stages.	I	realize
that	this	book	is	likely	one	of	many	you	were	responsible	for,	and	I’d	like	to	thank	you	for
dedicating	the	time	and	effort	that	you	did.	To	Carol	Dillingham,	the	book’s	developmental
editor	and	project	editor,	many	thanks	for	your	excellent	handling;	I	always	enjoy	working
with	you	on	my	books.	Also	thanks	to	Roger	LeBlanc	for	his	fine	copy	edits,	and	to	Christian
Holdener	for	his	project	management.
To	SolidQ,	my	company	for	over	a	decade:	It’s	gratifying	to	be	part	of	such	a	great

company	that	evolved	into	what	it	is	today.	The	members	of	this	company	are	much	more	than
colleagues	to	me;	they	are	partners,	friends,	and	family.	To	Fernando	G.	Guerrero,	Antonio
Soto,	and	Douglas	McDowell:	thanks	for	leading	the	company.	To	my	many	colleagues:	It’s
an	honor	to	be	part	of	this	amazingly	talented	group.
To	members	of	the	Microsoft	SQL	Server	development	team,	past	and	present:	Tobias

Ternstrom,	Lubor	Kollar,	Umachandar	Jayachandran	(UC),	Boris	Baryshnikov,	Conor
Cunningham,	Kevin	Farlee,	Josde	Bruijn,	Marc	Friedman,	Drazen	Sumic,	Borko	Novakovic,
Milan	Stojic,	Milan	Ruzic,	Jovan	Popovic,	Lindsey	Allen,	Craig	Freedman,	Campbell	Fraser,
Eric	Hanson,	Mark	Souza,	Dave	Campbell,	César	Galindo-Legaria,	Pedro	Lopes,	and	I’m
sure	many	others.	Thanks	for	creating	such	a	great	product,	and	thanks	for	all	the	time	you
spent	meeting	with	me	and	responding	to	my	emails,	addressing	my	questions,	and	answering
my	requests	for	clarification.
To	members	of	the	SQL	Server	Pro	editorial	team,	Tim	Ford	and	Debra	Donston-Miller:

I’ve	been	writing	for	the	magazine	for	almost	two	decades,	and	I’m	grateful	for	the
opportunity	to	share	my	knowledge	with	the	magazine’s	readers.
To	Data	Platform	MVPs,	past	and	present:	Paul	White,	Alejandro	Mesa,	Erland

Sommarskog,	Aaron	Bertrand,	Tibor	Karaszi,	Benjamin	Nevarez,	Simon	Sabin,	Darren
Green,	Allan	Mitchell,	Tony	Rogerson,	and	many	others—and	to	the	Data	Platform	MVP	lead,
Jennifer	Moser.	This	is	a	great	program	that	I’m	grateful	for	and	proud	to	be	part	of.	The
level	of	expertise	of	this	group	is	amazing,	and	I’m	always	excited	when	we	all	get	to	meet,
both	to	share	ideas	and	just	to	catch	up	at	a	personal	level	over	beers.
Finally,	to	my	students:	Teaching	about	T-SQL	is	what	drives	me.	It’s	my	passion.	Thanks

for	allowing	me	to	fulfill	my	calling	and	for	all	the	great	questions	that	make	me	seek	more
knowledge.

Errata,	updates,	&	book	support
We’ve	made	every	effort	to	ensure	the	accuracy	of	this	book	and	its	companion	content.	You
can	access	updates	to	this	book—in	the	form	of	a	list	of	submitted	errata	and	their	related
corrections—at:

http://aka.ms/T-SQLFund3e/errata
If	you	discover	an	error	that	is	not	already	listed,	please	submit	it	to	us	at	the	same	page.
If	you	need	additional	support,	email	Microsoft	Press	Book	Support	at

mspinput@microsoft.com.
Please	note	that	product	support	for	Microsoft	software	and	hardware	is	not	offered

through	the	previous	addresses.	For	help	with	Microsoft	software	or	hardware,	go	to
http://support.microsoft.com.

Free	ebooks	from	Microsoft	Press
From	technical	overviews	to	in-depth	information	on	special	topics,	the	free	ebooks	from
Microsoft	Press	cover	a	wide	range	of	topics.	These	ebooks	are	available	in	PDF,	EPUB,	and
Mobi	for	Kindle	formats,	ready	for	you	to	download	at:

http://aka.ms/mspressfree
Check	back	often	to	see	what	is	new!

We	want	to	hear	from	you
At	Microsoft	Press,	your	satisfaction	is	our	top	priority,	and	your	feedback	our	most	valuable
asset.	Please	tell	us	what	you	think	of	this	book	at:

http://aka.ms/tellpress
We	know	you’re	busy,	so	we’ve	kept	it	short	with	just	a	few	questions.	Your	answers	go

directly	to	the	editors	at	Microsoft	Press.	(No	personal	information	will	be	requested.)	Thanks
in	advance	for	your	input!

Stay	in	touch
Let’s	keep	the	conversation	going!	We’re	on	Twitter:	http://twitter.com/MicrosoftPress.

http://aka.ms/T-SQLFund3e/errata
mailto:mspinput@microsoft.com
http://support.microsoft.com
http://aka.ms/mspressfree
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress

Chapter	1.	Background	to	T-SQL	querying	and	programming

You’re	about	to	embark	on	a	journey	to	a	land	that	is	like	no	other—a	land	that	has	its	own	set
of	laws.	If	reading	this	book	is	your	first	step	in	learning	Transact-SQL	(T-SQL),	you	should
feel	like	Alice—just	before	she	started	her	adventures	in	Wonderland.	For	me,	the	journey	has
not	ended;	instead,	it’s	an	ongoing	path	filled	with	new	discoveries.	I	envy	you;	some	of	the
most	exciting	discoveries	are	still	ahead	of	you!
I’ve	been	involved	with	T-SQL	for	many	years:	teaching,	speaking,	writing,	and	consulting

about	it.	For	me,	T-SQL	is	more	than	just	a	language—it’s	a	way	of	thinking.	In	my	first	few
books	about	T-SQL,	I’ve	written	extensively	on	advanced	topics,	and	for	years,	I	have
postponed	writing	about	fundamentals.	This	is	not	because	T-SQL	fundamentals	are	simple	or
easy—in	fact,	it’s	just	the	opposite.	The	apparent	simplicity	of	the	language	is	misleading.	I
could	explain	the	language	syntax	elements	in	a	superficial	manner	and	have	you	writing
queries	within	minutes.	But	that	approach	would	only	hold	you	back	in	the	long	run	and	make
it	harder	for	you	to	understand	the	essence	of	the	language.
Acting	as	your	guide	while	you	take	your	first	steps	in	this	realm	is	a	big	responsibility.	I

wanted	to	make	sure	that	I	spent	enough	time	and	effort	exploring	and	understanding	the
language	before	writing	about	fundamentals.	T-SQL	is	deep;	learning	the	fundamentals	the
right	way	involves	much	more	than	just	understanding	the	syntax	elements	and	coding	a	query
that	returns	the	right	output.	You	pretty	much	need	to	forget	what	you	know	about	other
programming	languages	and	start	thinking	in	terms	of	T-SQL.

Theoretical	background
SQL	stands	for	Structured	Query	Language.	SQL	is	a	standard	language	that	was	designed	to
query	and	manage	data	in	relational	database	management	systems	(RDBMSs).	An	RDBMS	is
a	database	management	system	based	on	the	relational	model	(a	semantic	model	for
representing	data),	which	in	turn	is	based	on	two	mathematical	branches:	set	theory	and
predicate	logic.	Many	other	programming	languages	and	various	aspects	of	computing
evolved	pretty	much	as	a	result	of	intuition.	In	contrast,	to	the	degree	that	SQL	is	based	on	the
relational	model,	it	is	based	on	a	firm	foundation—applied	mathematics.	T-SQL	thus	sits	on
wide	and	solid	shoulders.	Microsoft	provides	T-SQL	as	a	dialect	of,	or	extension	to,	SQL	in
Microsoft	SQL	Server	data-management	software,	its	RDBMS.
This	section	provides	a	brief	theoretical	background	about	SQL,	set	theory	and	predicate

logic,	the	relational	model,	and	types	of	database	systems.	Because	this	book	is	neither	a
mathematics	book	nor	a	design/data-modeling	book,	the	theoretical	information	provided
here	is	informal	and	by	no	means	complete.	The	goals	are	to	give	you	a	context	for	the	T-
SQL	language	and	to	deliver	the	key	points	that	are	integral	to	correctly	understanding	T-SQL
later	in	the	book.

Language	independence
The	relational	model	is	language	independent.	That	is,	you	can	apply	data	management
and	manipulation	following	the	relational	model’s	principles	with	languages	other	than
SQL—for	example,	with	C#	in	an	object	model.	Today	it	is	common	to	see	RDBMSs
that	support	languages	other	than	a	dialect	of	SQL,	such	as	the	CLR	integration	in	SQL
Server,	with	which	you	can	handle	tasks	that	historically	you	handled	mainly	with	SQL,
such	as	data	manipulation.
Also,	you	should	realize	from	the	start	that	SQL	deviates	from	the	relational	model

in	several	ways.	Some	even	say	that	a	new	language—one	that	more	closely	follows	the
relational	model—should	replace	SQL.	But	to	date,	SQL	is	the	industrial	language	used
by	all	leading	RDBMSs	in	practice.

See	Also
For	details	about	the	deviations	of	SQL	from	the	relational	model,	as	well	as	how	to	use
SQL	in	a	relational	way,	see	this	book	on	the	topic:	SQL	and	Relational	Theory:	How	to
Write	Accurate	SQL	Code,	Third	Edition	by	C.	J.	Date	(O’Reilly	Media,	2015).

SQL
SQL	is	both	an	ANSI	and	ISO	standard	language	based	on	the	relational	model,	designed	for
querying	and	managing	data	in	an	RDBMS.
In	the	early	1970s,	IBM	developed	a	language	called	SEQUEL	(short	for	Structured	English

QUEry	Language)	for	its	RDBMS	product	called	System	R.	The	name	of	the	language	was
later	changed	from	SEQUEL	to	SQL	because	of	a	trademark	dispute.	SQL	first	became	an
ANSI	standard	in	1986,	and	then	an	ISO	standard	in	1987.	Since	1986,	the	American	National
Standards	Institute	(ANSI)	and	the	International	Organization	for	Standardization	(ISO)	have
been	releasing	revisions	for	the	SQL	standard	every	few	years.	So	far,	the	following
standards	have	been	released:	SQL-86	(1986),	SQL-89	(1989),	SQL-92	(1992),	SQL:1999
(1999),	SQL:2003	(2003),	SQL:2006	(2006),	SQL:2008	(2008),	and	SQL:2011	(2011).	The
SQL	standard	is	made	of	multiple	parts.	Part	1	(Framework)	and	Part	2	(Foundation)	pertain
to	the	SQL	language,	whereas	the	other	parts	define	standard	extensions,	such	as	SQL	for
XML	and	SQL-Java	integration.
Interestingly,	SQL	resembles	English	and	is	also	very	logical.	Unlike	many	programming

languages,	which	use	an	imperative	programming	paradigm,	SQL	uses	a	declarative	one.
That	is,	SQL	requires	you	to	specify	what	you	want	to	get	and	not	how	to	get	it,	letting	the
RDBMS	figure	out	the	physical	mechanics	required	to	process	your	request.
SQL	has	several	categories	of	statements,	including	Data	Definition	Language	(DDL),	Data

Manipulation	Language	(DML),	and	Data	Control	Language	(DCL).	DDL	deals	with	object
definitions	and	includes	statements	such	as	CREATE,	ALTER,	and	DROP.	DML	allows	you	to
query	and	modify	data	and	includes	statements	such	as	SELECT,	INSERT,	UPDATE,	DELETE,
TRUNCATE,	and	MERGE.	It’s	a	common	misunderstanding	that	DML	includes	only	data-

modification	statements,	but	as	I	mentioned,	it	also	includes	SELECT.	Another	common
misunderstanding	is	that	TRUNCATE	is	a	DDL	statement,	but	in	fact	it	is	a	DML	statement.
DCL	deals	with	permissions	and	includes	statements	such	as	GRANT	and	REVOKE.	This	book
focuses	on	DML.
T-SQL	is	based	on	standard	SQL,	but	it	also	provides	some	nonstandard/proprietary

extensions.	Moreover,	T-SQL	does	not	implement	all	of	standard	SQL.	In	other	words,	T-SQL
is	both	a	subset	and	a	superset	of	SQL.	When	describing	a	language	element	for	the	first	time,
I’ll	typically	mention	whether	it	is	standard.

Set	theory
Set	theory,	which	originated	with	the	mathematician	Georg	Cantor,	is	one	of	the	mathematical
branches	on	which	the	relational	model	is	based.	Cantor ’s	definition	of	a	set	follows:

By	a	“set”	we	mean	any	collection	M	into	a	whole	of	definite,	distinct	objects	m
(which	are	called	the	“elements”	of	M)	of	our	perception	or	of	our	thought.

—Joseph	W.	Dauben	and	Georg	Cantor	(Princeton	University	Press,	1990)

Every	word	in	the	definition	has	a	deep	and	crucial	meaning.	The	definitions	of	a	set	and	set
membership	are	axioms	that	are	not	supported	by	proofs.	Each	element	belongs	to	a	universe,
and	either	is	or	is	not	a	member	of	the	set.
Let’s	start	with	the	word	whole	in	Cantor ’s	definition.	A	set	should	be	considered	a	single

entity.	Your	focus	should	be	on	the	collection	of	objects	as	opposed	to	the	individual	objects
that	make	up	the	collection.	Later	on,	when	you	write	T-SQL	queries	against	tables	in	a
database	(such	as	a	table	of	employees),	you	should	think	of	the	set	of	employees	as	a	whole
rather	than	the	individual	employees.	This	might	sound	trivial	and	simple	enough,	but
apparently	many	programmers	have	difficulty	adopting	this	way	of	thinking.
The	word	distinct	means	that	every	element	of	a	set	must	be	unique.	Jumping	ahead	to

tables	in	a	database,	you	can	enforce	the	uniqueness	of	rows	in	a	table	by	defining	key
constraints.	Without	a	key,	you	won’t	be	able	to	uniquely	identify	rows,	and	therefore	the	table
won’t	qualify	as	a	set.	Rather,	the	table	would	be	a	multiset	or	a	bag.
The	phrase	of	our	perception	or	of	our	thought	implies	that	the	definition	of	a	set	is

subjective.	Consider	a	classroom:	one	person	might	perceive	a	set	of	people,	whereas	another
might	perceive	a	set	of	students	and	a	set	of	teachers.	Therefore,	you	have	a	substantial
amount	of	freedom	in	defining	sets.	When	you	design	a	data	model	for	your	database,	the
design	process	should	carefully	consider	the	subjective	needs	of	the	application	to	determine
adequate	definitions	for	the	entities	involved.
As	for	the	word	object,	the	definition	of	a	set	is	not	restricted	to	physical	objects,	such	as

cars	or	employees,	but	rather	is	relevant	to	abstract	objects	as	well,	such	as	prime	numbers	or
lines.
What	Cantor ’s	definition	of	a	set	leaves	out	is	probably	as	important	as	what	it	includes.

Notice	that	the	definition	doesn’t	mention	any	order	among	the	set	elements.	The	order	in
which	set	elements	are	listed	is	not	important.	The	formal	notation	for	listing	set	elements
uses	curly	brackets:	{a,	b,	c}.	Because	order	has	no	relevance,	you	can	express	the	same	set	as

{b,	a,	c}	or	{b,	c,	a}.	Jumping	ahead	to	the	set	of	attributes	(called	columns	in	SQL)	that	make
up	the	heading	of	a	relation	(called	a	table	in	SQL),	an	element	is	supposed	to	be	identified	by
name—not	by	ordinal	position.
Similarly,	consider	the	set	of	tuples	(called	rows	by	SQL)	that	make	up	the	body	of	the

relation;	an	element	is	identified	by	its	key	values—not	by	position.	Many	programmers	have
a	hard	time	adapting	to	the	idea	that,	with	respect	to	querying	tables,	there	is	no	order	among
the	rows.	In	other	words,	a	query	against	a	table	can	return	table	rows	in	any	order	unless	you
explicitly	request	that	the	data	be	sorted	in	a	specific	way,	perhaps	for	presentation	purposes.

Predicate	logic
Predicate	logic,	whose	roots	reach	back	to	ancient	Greece,	is	another	branch	of	mathematics
on	which	the	relational	model	is	based.	Dr.	Edgar	F.	Codd,	in	creating	the	relational	model,
had	the	insight	to	connect	predicate	logic	to	both	the	management	and	querying	of	data.
Loosely	speaking,	a	predicate	is	a	property	or	an	expression	that	either	holds	or	doesn’t	hold
—in	other	words,	is	either	true	or	false.	The	relational	model	relies	on	predicates	to	maintain
the	logical	integrity	of	the	data	and	define	its	structure.	One	example	of	a	predicate	used	to
enforce	integrity	is	a	constraint	defined	in	a	table	called	Employees	that	allows	only
employees	with	a	salary	greater	than	zero	to	be	stored	in	the	table.	The	predicate	is	“salary
greater	than	zero”	(T-SQL	expression:	salary	>	0).
You	can	also	use	predicates	when	filtering	data	to	define	subsets,	and	more.	For	example,	if

you	need	to	query	the	Employees	table	and	return	only	rows	for	employees	from	the	sales
department,	you	use	the	predicate	“department	equals	sales”	in	your	query	filter	(T-SQL
expression:	department	=	‘sales’).
In	set	theory,	you	can	use	predicates	to	define	sets.	This	is	helpful	because	you	can’t	always

define	a	set	by	listing	all	its	elements	(for	example,	infinite	sets),	and	sometimes	for	brevity
it’s	more	convenient	to	define	a	set	based	on	a	property.	As	an	example	of	an	infinite	set
defined	with	a	predicate,	the	set	of	all	prime	numbers	can	be	defined	with	the	following
predicate:	“x	is	a	positive	integer	greater	than	1	that	is	divisible	only	by	1	and	itself.”	For	any
specified	value,	the	predicate	is	either	true	or	not	true.	The	set	of	all	prime	numbers	is	the	set
of	all	elements	for	which	the	predicate	is	true.	As	an	example	of	a	finite	set	defined	with	a
predicate,	the	set	{0,	1,	2,	3,	4,	5,	6,	7,	8,	9}	can	be	defined	as	the	set	of	all	elements	for	which
the	following	predicate	holds	true:	“x	is	an	integer	greater	than	or	equal	to	0	and	smaller	than
or	equal	to	9.”

The	relational	model
The	relational	model	is	a	semantic	model	for	data	management	and	manipulation	and	is	based
on	set	theory	and	predicate	logic.	As	mentioned	earlier,	it	was	created	by	Dr.	Edgar	F.	Codd,
and	later	explained	and	developed	by	Chris	Date,	Hugh	Darwen,	and	others.	The	first	version
of	the	relational	model	was	proposed	by	Codd	in	1969	in	an	IBM	research	report	called
“Derivability,	Redundancy,	and	Consistency	of	Relations	Stored	in	Large	Data	Banks.”	A
revised	version	was	proposed	by	Codd	in	1970	in	a	paper	called	“A	Relational	Model	of	Data
for	Large	Shared	Data	Banks,”	published	in	the	journal	Communications	of	the	ACM.
The	goal	of	the	relational	model	is	to	enable	consistent	representation	of	data	with	minimal

or	no	redundancy	and	without	sacrificing	completeness,	and	to	define	data	integrity
(enforcement	of	data	consistency)	as	part	of	the	model.	An	RDBMS	is	supposed	to	implement
the	relational	model	and	provide	the	means	to	store,	manage,	enforce	the	integrity	of,	and
query	data.	The	fact	that	the	relational	model	is	based	on	a	strong	mathematical	foundation
means	that	given	a	certain	data-model	instance	(from	which	a	physical	database	will	later	be
generated),	you	can	tell	with	certainty	when	a	design	is	flawed,	rather	than	relying	solely	on
intuition.
The	relational	model	involves	concepts	such	as	propositions,	predicates,	relations,	tuples,

attributes,	and	more.	For	nonmathematicians,	these	concepts	can	be	quite	intimidating.	The
sections	that	follow	cover	some	key	aspects	of	the	model	in	an	informal,	nonmathematical
manner	and	explain	how	they	relate	to	databases.

Propositions,	predicates,	and	relations
The	common	belief	that	the	term	relational	stems	from	relationships	between	tables	is
incorrect.	“Relational”	actually	pertains	to	the	mathematical	term	relation.	In	set	theory,	a
relation	is	a	representation	of	a	set.	In	the	relational	model,	a	relation	is	a	set	of	related
information,	with	the	counterpart	in	SQL	being	a	table—albeit	not	an	exact	counterpart.	A	key
point	in	the	relational	model	is	that	a	single	relation	should	represent	a	single	set	(for
example,	Customers).	Note	that	operations	on	relations	(based	on	relational	algebra)	result	in
a	relation	(for	example,	a	join	between	two	relations).

	Note
The	relational	model	distinguishes	between	a	relation	and	a	relation	variable,	but	to
keep	things	simple,	I	won’t	get	into	this	distinction.	Instead,	I’ll	use	the	term	relation	for
both	cases.	Also,	a	relation	is	made	of	a	heading	and	a	body.	The	heading	consists	of	a
set	of	attributes	(called	columns	in	SQL),	where	each	element	is	identified	by	an
attribute	name	and	a	type	name.	The	body	consists	of	a	set	of	tuples	(called	rows	in
SQL),	where	each	element	is	identified	by	a	key.	To	keep	things	simple,	I’ll	refer	to	a
table	as	a	set	of	rows.

When	you	design	a	data	model	for	a	database,	you	represent	all	data	with	relations	(tables).
You	start	by	identifying	propositions	that	you	will	need	to	represent	in	your	database.	A
proposition	is	an	assertion	or	a	statement	that	must	be	true	or	false.	For	example,	the
statement,	“Employee	Itzik	Ben-Gan	was	born	on	February	12,	1971,	and	works	in	the	IT
department”	is	a	proposition.	If	this	proposition	is	true,	it	will	manifest	itself	as	a	row	in	a
table	of	Employees.	A	false	proposition	simply	won’t	manifest	itself.	This	presumption	is
known	as	the	closed-world	assumption	(CWA).
The	next	step	is	to	formalize	the	propositions.	You	do	this	by	taking	out	the	actual	data	(the

body	of	the	relation)	and	defining	the	structure	(the	heading	of	the	relation)—for	example,	by
creating	predicates	out	of	propositions.	You	can	think	of	predicates	as	parameterized
propositions.	The	heading	of	a	relation	comprises	a	set	of	attributes.	Note	the	use	of	the	term

“set”;	in	the	relational	model,	attributes	are	unordered	and	distinct.	An	attribute	is	identified
by	an	attribute	name	and	a	type	name.	For	example,	the	heading	of	an	Employees	relation
might	consist	of	the	following	attributes	(expressed	as	pairs	of	attribute	names	and	type
names):	employeeid	integer,	firstname	character	string,	lastname	character	string,	birthdate
date,	and	departmentid	integer.
A	type	is	one	of	the	most	fundamental	building	blocks	for	relations.	A	type	constrains	an

attribute	to	a	certain	set	of	possible	or	valid	values.	For	example,	the	type	INT	is	the	set	of	all
integers	in	the	range	–2,147,483,648	to	2,147,483,647.	A	type	is	one	of	the	simplest	forms	of	a
predicate	in	a	database	because	it	restricts	the	attribute	values	that	are	allowed.	For	example,
the	database	would	not	accept	a	proposition	where	an	employee	birth	date	is	February	31,
1971	(not	to	mention	a	birth	date	stated	as	something	like	“abc!”).	Note	that	types	are	not
restricted	to	base	types	such	as	integers	or	character	strings;	a	type	also	can	be	an
enumeration	of	possible	values,	such	as	an	enumeration	of	possible	job	positions.	A	type	can
be	simple	or	complex.	Probably	the	best	way	to	think	of	a	type	is	as	a	class—encapsulated	data
and	the	behavior	supporting	it.	An	example	of	a	complex	type	is	a	geometry	type	that	supports
polygons.

Missing	values
One	aspect	of	the	relational	model	is	the	source	of	many	passionate	debates—whether
predicates	should	be	restricted	to	two-valued	logic.	That	is,	in	two-valued	predicate	logic,	a
predicate	is	either	true	or	false.	If	a	predicate	is	not	true,	it	must	be	false.	Use	of	two-valued
predicate	logic	follows	a	mathematical	law	called	“the	law	of	excluded	middle.”	However,
some	say	that	there’s	room	for	three-valued	(or	even	four-valued)	predicate	logic,	taking	into
account	cases	where	values	are	missing.	A	predicate	involving	a	missing	value	yields	neither
true	nor	false—it	yields	unknown.
Take,	for	example,	a	mobile	phone	attribute	of	an	Employees	relation.	Suppose	that	a

certain	employee’s	mobile	phone	number	is	missing.	How	do	you	represent	this	fact	in	the
database?	In	a	three-valued	logic	implementation,	the	mobile	phone	attribute	should	allow	the
use	of	a	special	marker	for	a	missing	value.	Then	a	predicate	comparing	the	mobile	phone
attribute	with	some	specific	number	will	yield	unknown	for	the	case	with	the	missing	value.
Three-valued	predicate	logic	refers	to	the	three	possible	logical	values	that	can	result	from	a
predicate—true,	false,	and	unknown.
Some	people	believe	that	three-valued	predicate	logic	is	nonrelational,	whereas	others

believe	that	it	is	relational.	Codd	actually	advocated	for	four-valued	predicate	logic,	saying
that	there	were	two	different	cases	of	missing	values:	missing	but	applicable	(A-Values
marker),	and	missing	but	inapplicable	(I-Values	marker).	An	example	of	“missing	but
applicable”	is	when	an	employee	has	a	mobile	phone,	but	you	don’t	know	what	the	mobile
phone	number	is.	An	example	of	“missing	but	inapplicable”	is	when	an	employee	doesn’t
have	a	mobile	phone	at	all.	According	to	Codd,	two	special	markers	should	be	used	to	support
these	two	cases	of	missing	values.	SQL	implements	three-valued	predicate	logic	by
supporting	the	NULL	marker	to	signify	the	generic	concept	of	a	missing	value.	Support	for
NULLs	and	three-valued	predicate	logic	in	SQL	is	the	source	of	a	great	deal	of	confusion	and
complexity,	though	one	can	argue	that	missing	values	are	part	of	reality.	In	addition,	the

alternative—using	only	two-valued	predicate	logic—is	no	less	problematic.

	Note
As	mentioned,	a	NULL	is	not	a	value	but	rather	a	marker	for	a	missing	value.
Therefore,	though	unfortunately	it’s	common,	the	use	of	the	terminology	“NULL
value”	is	incorrect.	The	correct	terminology	is	“NULL	marker”	or	just	“NULL.”	In	the
book,	I	chose	to	use	the	latter	because	it’s	more	common	in	the	SQL	community.

Constraints
One	of	the	greatest	benefits	of	the	relational	model	is	the	ability	to	define	data	integrity	as	part
of	the	model.	Data	integrity	is	achieved	through	rules	called	constraints	that	are	defined	in	the
data	model	and	enforced	by	the	RDBMS.	The	simplest	methods	of	enforcing	integrity	are
assigning	an	attribute	type	with	its	attendant	“nullability”	(whether	it	supports	or	doesn’t
support	NULLs).	Constraints	are	also	enforced	through	the	model	itself;	for	example,	the
relation	Orders(orderid,	orderdate,	duedate,	shipdate)	allows	three	distinct	dates	per	order,
whereas	the	relations	Employees(empid)	and	EmployeeChildren(empid,	childname)	allow	zero
to	countable	infinity	children	per	employee.
Other	examples	of	constraints	include	candidate	keys,	which	provide	entity	integrity,	and

foreign	keys,	which	provide	referential	integrity.	A	candidate	key	is	a	key	defined	on	one	or
more	attributes	that	prevents	more	than	one	occurrence	of	the	same	tuple	(row	in	SQL)	in	a
relation.	A	predicate	based	on	a	candidate	key	can	uniquely	identify	a	row	(such	as	an
employee).	You	can	define	multiple	candidate	keys	in	a	relation.	For	example,	in	an
Employees	relation,	you	can	define	candidate	keys	on	employeeid,	on	SSN	(Social	Security
number),	and	others.	Typically,	you	arbitrarily	choose	one	of	the	candidate	keys	as	the
primary	key	(for	example,	employeeid	in	the	Employees	relation)	and	use	that	as	the	preferred
way	to	identify	a	row.	All	other	candidate	keys	are	known	as	alternate	keys.
Foreign	keys	are	used	to	enforce	referential	integrity.	A	foreign	key	is	defined	on	one	or

more	attributes	of	a	relation	(known	as	the	referencing	relation)	and	references	a	candidate
key	in	another	(or	possibly	the	same)	relation.	This	constraint	restricts	the	values	in	the
referencing	relation’s	foreign-key	attributes	to	the	values	that	appear	in	the	referenced
relation’s	candidate-key	attributes.	For	example,	suppose	that	the	Employees	relation	has	a
foreign	key	defined	on	the	attribute	departmentid,	which	references	the	primary-key	attribute
departmentid	in	the	Departments	relation.	This	means	that	the	values	in
Employees.departmentid	are	restricted	to	the	values	that	appear	in	Departments.departmentid.

Normalization
The	relational	model	also	defines	normalization	rules	(also	known	as	normal	forms).
Normalization	is	a	formal	mathematical	process	to	guarantee	that	each	entity	will	be
represented	by	a	single	relation.	In	a	normalized	database,	you	avoid	anomalies	during	data
modification	and	keep	redundancy	to	a	minimum	without	sacrificing	completeness.	If	you
follow	Entity	Relationship	Modeling	(ERM),	and	represent	each	entity	and	its	attributes,	you
probably	won’t	need	normalization;	instead,	you	will	apply	normalization	only	to	reinforce
and	ensure	that	the	model	is	correct.	You	can	find	the	definition	of	ERM	in	the	following
Wikipedia	article:	https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model.
The	following	sections	briefly	cover	the	first	three	normal	forms	(1NF,	2NF,	and	3NF)

introduced	by	Codd.

1NF
The	first	normal	form	says	that	the	tuples	(rows)	in	the	relation	(table)	must	be	unique	and
attributes	should	be	atomic.	This	is	a	redundant	definition	of	a	relation;	in	other	words,	if	a
table	truly	represents	a	relation,	it	is	already	in	first	normal	form.
You	achieve	unique	rows	in	SQL	by	defining	a	unique	key	for	the	table.
You	can	operate	on	attributes	only	with	operations	that	are	defined	as	part	of	the	attribute’s

type.	Atomicity	of	attributes	is	subjective	in	the	same	way	that	the	definition	of	a	set	is
subjective.	As	an	example,	should	an	employee	name	in	an	Employees	relation	be	expressed
with	one	attribute	(fullname),	two	(firstname	and	lastname),	or	three	(firstname,	middlename,
and	lastname)?	The	answer	depends	on	the	application.	If	the	application	needs	to	manipulate
the	parts	of	the	employee’s	name	separately	(such	as	for	search	purposes),	it	makes	sense	to
break	them	apart;	otherwise,	it	doesn’t.
In	the	same	way	that	an	attribute	might	not	be	atomic	enough	based	on	the	needs	of	the

applications	that	use	it,	an	attribute	might	also	be	subatomic.	For	example,	if	an	address
attribute	is	considered	atomic	for	the	applications	that	use	it,	not	including	the	city	as	part	of
the	address	would	violate	the	first	normal	form.
This	normal	form	is	often	misunderstood.	Some	people	think	that	an	attempt	to	mimic

arrays	violates	the	first	normal	form.	An	example	would	be	defining	a	YearlySales	relation
with	the	following	attributes:	salesperson,	qty2014,	qty2015,	and	qty2016.	However,	in	this
example,	you	don’t	really	violate	the	first	normal	form;	you	simply	impose	a	constraint—
restricting	the	data	to	three	specific	years:	2014,	2015,	and	2016.

https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

2NF
The	second	normal	form	involves	two	rules.	One	rule	is	that	the	data	must	meet	the	first
normal	form.	The	other	rule	addresses	the	relationship	between	nonkey	and	candidate-key
attributes.	For	every	candidate	key,	every	nonkey	attribute	has	to	be	fully	functionally
dependent	on	the	entire	candidate	key.	In	other	words,	a	nonkey	attribute	cannot	be	fully
functionally	dependent	on	part	of	a	candidate	key.	To	put	it	more	informally,	if	you	need	to
obtain	any	nonkey	attribute	value,	you	need	to	provide	the	values	of	all	attributes	of	a
candidate	key	from	the	same	tuple.	You	can	find	any	value	of	any	attribute	of	any	tuple	if	you
know	all	the	attribute	values	of	a	candidate	key.
As	an	example	of	violating	the	second	normal	form,	suppose	that	you	define	a	relation

called	Orders	that	represents	information	about	orders	and	order	lines.	(See	Figure	1-1.)	The
Orders	relation	contains	the	following	attributes:	orderid,	productid,	orderdate,	qty,
customerid,	and	companyname.	The	primary	key	is	defined	on	orderid	and	productid.

FIGURE	1-1	Data	model	before	applying	2NF.

The	second	normal	form	is	violated	in	Figure	1-1	because	there	are	nonkey	attributes	that
depend	on	only	part	of	a	candidate	key	(the	primary	key,	in	this	example).	For	example,	you
can	find	the	orderdate	of	an	order,	as	well	as	customerid	and	companyname,	based	on	the
orderid	alone.
To	conform	to	the	second	normal	form,	you	would	need	to	split	your	original	relation	into

two	relations:	Orders	and	OrderDetails	(as	shown	in	Figure	1-2).	The	Orders	relation	would
include	the	attributes	orderid,	orderdate,	customerid,	and	companyname,	with	the	primary	key
defined	on	orderid.	The	OrderDetails	relation	would	include	the	attributes	orderid,	productid,
and	qty,	with	the	primary	key	defined	on	orderid	and	productid.

FIGURE	1-2	Data	model	after	applying	2NF	and	before	3NF.

3NF
The	third	normal	form	also	has	two	rules.	The	data	must	meet	the	second	normal	form.	Also,
all	nonkey	attributes	must	be	dependent	on	candidate	keys	nontransitively.	Informally,	this	rule
means	that	all	nonkey	attributes	must	be	mutually	independent.	In	other	words,	one	nonkey
attribute	cannot	be	dependent	on	another	nonkey	attribute.
The	Orders	and	OrderDetails	relations	described	previously	now	conform	to	the	second

normal	form.	Remember	that	the	Orders	relation	at	this	point	contains	the	attributes	orderid,
orderdate,	customerid,	and	companyname,	with	the	primary	key	defined	on	orderid.	Both
customerid	and	companyname	depend	on	the	whole	primary	key—orderid.	For	example,	you
need	the	entire	primary	key	to	find	the	customerid	representing	the	customer	who	placed	the
order.	Similarly,	you	need	the	whole	primary	key	to	find	the	company	name	of	the	customer
who	placed	the	order.	However,	customerid	and	companyname	are	also	dependent	on	each
other.	To	meet	the	third	normal	form,	you	need	to	add	a	Customers	relation	(shown	in	Figure
1-3)	with	the	attributes	customerid	(as	the	primary	key)	and	companyname.	Then	you	can
remove	the	companyname	attribute	from	the	Orders	relation.

FIGURE	1-3	Data	model	after	applying	3NF.

Informally,	2NF	and	3NF	are	commonly	summarized	with	the	sentence,	“Every	non-key
attribute	is	dependent	on	the	key,	the	whole	key,	and	nothing	but	the	key—so	help	me	Codd.”
There	are	higher	normal	forms	beyond	Codd’s	original	first	three	normal	forms	that

involve	compound	primary	keys	and	temporal	databases,	but	they	are	outside	the	scope	of	this
book.

	Note
SQL,	as	well	as	T-SQL,	permit	violating	all	the	normal	forms	in	real	tables.	It’s	the	data
modeler ’s	prerogative	and	responsibility	to	design	a	normalized	model.

Types	of	database	systems
Two	main	types	of	systems,	or	workloads,	use	SQL	Server	as	their	database	and	T-SQL	to
manage	and	manipulate	the	data:	online	transactional	processing	(OLTP)	and	data	warehouses
(DWs).	Figure	1-4	illustrates	those	systems	and	the	transformation	process	that	usually	takes
place	between	them.

FIGURE	1-4	Classes	of	database	systems.

Here’s	a	quick	description	of	what	each	acronym	represents:
	OLTP:	online	transactional	processing
	DSA:	data-staging	area
	DW:	data	warehouse
	ETL:	extract,	transform,	and	load

Online	transactional	processing
Data	is	entered	initially	into	an	online	transactional	processing	system.	The	primary	focus	of
an	OLTP	system	is	data	entry	and	not	reporting—transactions	mainly	insert,	update,	and	delete
data.	The	relational	model	is	targeted	primarily	at	OLTP	systems,	where	a	normalized	model
provides	both	good	performance	for	data	entry	and	data	consistency.	In	a	normalized
environment,	each	table	represents	a	single	entity	and	keeps	redundancy	to	a	minimum.	When
you	need	to	modify	a	fact,	you	need	to	modify	it	in	only	one	place.	This	results	in	optimized
performance	for	data	modifications	and	little	chance	for	error.
However,	an	OLTP	environment	is	not	suitable	for	reporting	purposes	because	a

normalized	model	usually	involves	many	tables	(one	for	each	entity)	with	complex
relationships.	Even	simple	reports	require	joining	many	tables,	resulting	in	complex	and
poorly	performing	queries.
You	can	implement	an	OLTP	database	in	SQL	Server	and	both	manage	it	and	query	it	with

T-SQL.

Data	warehouses
A	data	warehouse	(DW)	is	an	environment	designed	for	data-retrieval	and	reporting
purposes.	When	it	serves	an	entire	organization,	such	an	environment	is	called	a	data
warehouse;	when	it	serves	only	part	of	the	organization	(such	as	a	specific	department)	or	a
subject	matter	area	in	the	organization,	it	is	called	a	data	mart.	The	data	model	of	a	data
warehouse	is	designed	and	optimized	mainly	to	support	data-retrieval	needs.	The	model	has
intentional	redundancy,	fewer	tables,	and	simpler	relationships,	ultimately	resulting	in	simpler
and	more	efficient	queries	than	an	OLTP	environment.
The	simplest	data-warehouse	design	is	called	a	star	schema.	The	star	schema	includes

several	dimension	tables	and	a	fact	table.	Each	dimension	table	represents	a	subject	by	which
you	want	to	analyze	the	data.	For	example,	in	a	system	that	deals	with	orders	and	sales,	you
will	probably	want	to	analyze	data	by	dimensions	such	as	customers,	products,	employees,
and	time.
In	a	star	schema,	each	dimension	is	implemented	as	a	single	table	with	redundant	data.	For

example,	a	product	dimension	could	be	implemented	as	a	single	ProductDim	table	instead	of
three	normalized	tables:	Products,	ProductSubCategories,	and	ProductCategories.	If	you
normalize	a	dimension	table,	which	results	in	multiple	tables	representing	that	dimension,	you
get	what’s	known	as	a	snowflake	dimension.	A	schema	that	contains	snowflake	dimensions	is
known	as	a	snowflake	schema.	A	star	schema	is	considered	a	special	case	of	a	snowflake
schema.
The	fact	table	holds	the	facts	and	measures,	such	as	quantity	and	value,	for	each	relevant

combination	of	dimension	keys.	For	example,	for	each	relevant	combination	of	customer,
product,	employee,	and	day,	the	fact	table	would	have	a	row	containing	the	quantity	and	value.
Note	that	data	in	a	data	warehouse	is	typically	preaggregated	to	a	certain	level	of	granularity
(such	as	a	day),	unlike	data	in	an	OLTP	environment,	which	is	usually	recorded	at	the
transaction	level.
Historically,	early	versions	of	SQL	Server	mainly	targeted	OLTP	environments,	but

eventually	SQL	Server	also	started	targeting	data-warehouse	systems	and	data-analysis	needs.
You	can	implement	a	data	warehouse	as	a	SQL	Server	database	and	manage	and	query	it	with
T-SQL.
The	process	that	pulls	data	from	source	systems	(OLTP	and	others),	manipulates	it,	and

loads	it	into	the	data	warehouse	is	called	extract,	transform,	and	load,	or	ETL.	SQL	Server
provides	a	tool	called	Microsoft	SQL	Server	Integration	Services	(SSIS)	to	handle	ETL	needs.
Often	the	ETL	process	will	involve	the	use	of	a	data-staging	area	(DSA)	between	the	OLTP

and	the	DW.	The	DSA	usually	resides	in	a	relational	database,	such	as	a	SQL	Server	database,
and	is	used	as	the	data-cleansing	area.	The	DSA	is	not	open	to	end	users.

SQL	Server	architecture
This	section	will	introduce	you	to	the	SQL	Server	architecture,	the	different	RDBMS	flavors
that	Microsoft	offers,	the	entities	involved—SQL	Server	instances,	databases,	schemas,	and
database	objects—and	the	purpose	of	each	entity.

The	ABCs	of	Microsoft	RDBMS	flavors
Initially,	Microsoft	offered	mainly	one	enterprise-level	RDBMS—an	on-premises	flavor
called	Microsoft	SQL	Server.	These	days,	Microsoft	offers	an	overwhelming	plethora	of
options	as	part	of	its	data	platform,	which	constantly	keeps	evolving.	Within	its	data	platform,
Microsoft	offers	three	main	RDBMS	flavors,	which	you	can	think	of	as	the	ABC	flavors:	A	for
Appliance,	B	for	Box	(on-premises),	and	C	for	Cloud.

Box
The	box,	or	on-premises	RDBMS	flavor,	that	Microsoft	offers	is	called	Microsoft	SQL
Server,	or	just	SQL	Server.	This	is	the	traditional	flavor,	usually	installed	on	the	customer ’s
premises.	The	customer	is	responsible	for	everything—getting	the	hardware,	installing	the
software,	patching,	high	availability	and	disaster	recovery,	security,	and	everything	else.
The	customer	can	install	multiple	instances	of	the	product	on	the	same	server	(more	on	this

in	the	next	section)	and	can	write	queries	that	interact	with	multiple	databases.	It	is	also
possible	to	switch	the	connection	between	databases,	unless	one	of	them	is	a	contained
database	(defined	later).
The	querying	language	used	is	T-SQL.	You	can	run	all	the	code	samples	and	exercises	in

this	book	on	an	on-premises	SQL	Server	implementation,	if	you	want.	See	the	Appendix	for
details	about	obtaining	and	installing	an	evaluation	edition	of	SQL	Server,	as	well	as	creating
the	sample	database.

Appliance
The	idea	behind	the	appliance	flavor	is	to	provide	the	customer	a	complete	turnkey	solution
with	preconfigured	hardware	and	software.	Speed	is	achieved	by	things	being	co-located,	with
the	storage	being	close	to	the	processing.	The	appliance	is	hosted	locally	at	the	customer	site.
Microsoft	partners	with	hardware	vendors	such	as	Dell	and	HP	to	provide	the	appliance
offering.	Experts	from	Microsoft	and	the	hardware	vendor	handle	the	performance,	security,
and	availability	aspects	for	the	customer.
There	are	several	appliances	available	today,	one	of	which	is	the	Microsoft	Analytics

Platform	System	(APS),	which	focuses	on	data	warehousing	and	big	data	technologies.	This
appliance	includes	a	data-warehouse	engine	called	Parallel	Data	Warehouse	(PDW),	which
implements	massively	parallel	processing	(MPP)	technology.	It	also	includes	HDInsight,
which	is	Microsoft’s	Hadoop	distribution	(big	data	solution).	APS	also	includes	a	querying
technology	called	PolyBase,	which	allows	using	T-SQL	queries	across	relational	data	from
PDW	and	nonrelational	data	from	HDInsight.

Cloud
Cloud	computing	provides	computing	resources	on	demand	from	a	shared	pool	of	resources.
Microsoft’s	RDBMS	technologies	can	be	provided	both	as	private-cloud	and	public-cloud
services.	A	private	cloud	is	cloud	infrastructure	that	services	a	single	organization	and	usually
uses	virtualization	technology.	It’s	typically	hosted	locally	at	the	customer	site,	and	maintained
by	the	IT	group	in	the	organization.	It’s	about	self-service	agility,	allowing	the	users	to	deploy
resources	on	demand.	It	provides	standardization	and	usage	metering.	The	database	engine	is
usually	a	box	engine	(hence	the	same	T-SQL	is	used	to	manage	and	manipulate	the	data).
As	for	the	public	cloud,	the	services	are	provided	over	the	network	and	available	to	the

public.	Microsoft	provides	two	forms	of	public	RDBMS	cloud	services:	infrastructure	as	a
service	(IaaS)	and	platform	as	a	service	(PaaS).	With	IaaS,	you	provision	a	virtual	machine
(VM)	that	resides	in	Microsoft’s	cloud	infrastructure.	As	a	starting	point,	you	can	choose
between	several	preconfigured	VMs	that	already	have	a	certain	version	and	edition	of	SQL
Server	(box	engine)	installed	on	them.	The	hardware	is	maintained	by	Microsoft,	but	you’re
responsible	for	maintaining	and	patching	the	software.	It’s	essentially	like	maintaining	your
own	SQL	Server	installation—one	that	happens	to	reside	on	Microsoft’s	hardware.
With	PaaS,	Microsoft	provides	the	database	cloud	platform	as	a	service.	It’s	hosted	in

Microsoft’s	data	centers.	Hardware,	software	installation	and	maintenance,	high	availability
and	disaster	recovery,	and	patching	are	all	responsibilities	of	Microsoft.	The	customer	is	still
responsible	for	index	and	query	tuning,	however.
Microsoft	provides	a	number	of	PaaS	database	offerings.	For	OLTP	systems,	it	offers	the

Azure	SQL	Database	service.	It’s	also	referred	to	more	shortly	as	just	SQL	Database.	The
customer	can	have	multiple	databases	on	the	cloud	server	(a	conceptual	server,	of	course)	but
cannot	switch	between	databases.
Interestingly,	Microsoft	uses	the	same	code	base	for	SQL	Database	and	SQL	Server.	So

most	of	the	T-SQL	language	surface	is	exposed	(eventually)	in	both	environments	in	the	same
manner.	Therefore,	most	of	the	T-SQL	you’ll	learn	about	in	this	book	is	applicable	to	both
environments.	You	can	read	about	the	differences	that	do	exist	here:

https://azure.microsoft.com/en-us/documentation/articles/sql-database-transact-sql-
information.	You	should	also	note	that	the	update	and	deployment	rate	of	new	versions	of	SQL
Database	are	faster	than	that	of	the	on-premises	SQL	Server.	Therefore,	some	T-SQL	features
might	be	exposed	in	SQL	Database	before	they	show	up	in	the	on-premises	SQL	Server
version.
Microsoft	also	provides	a	PaaS	offering	for	data-warehouse	systems	called	Microsoft

Azure	SQL	Data	Warehouse	(also	called	Azure	SQL	Data	Warehouse	or	just	SQL	Data
Warehouse).	This	service	is	basically	PDW/APS	in	the	cloud.	Microsoft	uses	the	same	code
base	for	both	the	appliance	and	the	cloud	service.	You	manage	and	manipulate	data	in	APS	and
SQL	Data	Warehouse	with	T-SQL,	although	it’s	not	the	same	T-SQL	surface	as	in	SQL	Server
and	SQL	Database,	yet.
Microsoft	also	offers	other	cloud	data	services,	such	as	Data	Lake	for	big	data–related

services,	Azure	DocumentDB	for	NoSQL	document	database	services,	and	others.
Confused?	If	it’s	any	consolation,	you’re	not	alone.	Like	I	said,	Microsoft	provides	an

overwhelming	plethora	of	database-related	technologies.	Curiously,	the	one	thread	that	is
common	to	many	of	them	is	T-SQL.

SQL	Server	instances
In	the	box	product,	an	instance	of	SQL	Server,	as	illustrated	in	Figure	1-5,	is	an	installation	of
a	SQL	Server	database	engine	or	service.	You	can	install	multiple	instances	of	on-premises
SQL	Server	on	the	same	computer.	Each	instance	is	completely	independent	of	the	others	in
terms	of	security	and	the	data	that	it	manages,	and	in	all	other	respects.	At	the	logical	level,
two	different	instances	residing	on	the	same	computer	have	no	more	in	common	than	two
instances	residing	on	two	separate	computers.	Of	course,	same-computer	instances	do	share
the	server ’s	physical	resources,	such	as	CPU,	memory,	and	disk.

FIGURE	1-5	Multiple	instances	of	SQL	Server	on	the	same	computer.

You	can	set	up	one	of	the	multiple	instances	on	a	computer	as	the	default	instance,	whereas
all	others	must	be	named	instances.	You	determine	whether	an	instance	is	the	default	or	a
named	one	upon	installation;	you	cannot	change	that	decision	later.	To	connect	to	a	default
instance,	a	client	application	needs	to	specify	the	computer ’s	name	or	IP	address.	To	connect

https://azure.microsoft.com/en-us/documentation/articles/sql-database-transact-sql-information

to	a	named	instance,	the	client	needs	to	specify	the	computer ’s	name	or	IP	address,	followed
by	a	backslash	(\),	followed	by	the	instance	name	(as	provided	upon	installation).	For
example,	suppose	you	have	two	instances	of	SQL	Server	installed	on	a	computer	called
Server1.	One	of	these	instances	was	installed	as	the	default	instance,	and	the	other	was
installed	as	a	named	instance	called	Inst1.	To	connect	to	the	default	instance,	you	need	to
specify	only	Server1	as	the	server	name.	However,	to	connect	to	the	named	instance,	you	need
to	specify	both	the	server	and	the	instance	name:	Server1\Inst1.
There	are	various	reasons	why	you	might	want	to	install	multiple	instances	of	SQL	Server

on	the	same	computer,	but	I’ll	mention	only	a	couple	here.	One	reason	is	to	save	on	support
costs.	For	example,	to	test	the	functionality	of	features	in	response	to	support	calls	or
reproduce	errors	that	users	encounter	in	the	production	environment,	the	support	department
needs	local	installations	of	SQL	Server	that	mimic	the	user ’s	production	environment	in
terms	of	version,	edition,	and	service	pack	of	SQL	Server.	If	an	organization	has	multiple
user	environments,	the	support	department	needs	multiple	installations	of	SQL	Server.	Rather
than	having	multiple	computers,	each	hosting	a	different	installation	of	SQL	Server	that	must
be	supported	separately,	the	support	department	can	have	one	computer	with	multiple	installed
instances.	Of	course,	you	can	achieve	a	similar	result	by	using	multiple	virtual	machines.
As	another	example,	consider	people	like	me	who	teach	and	lecture	about	SQL	Server.	For

us,	it	is	convenient	to	be	able	to	install	multiple	instances	of	SQL	Server	on	the	same	laptop.
This	way,	we	can	perform	demonstrations	against	different	versions	of	the	product,	showing
differences	in	behavior	between	versions,	and	so	on.
As	a	final	example,	providers	of	database	services	sometimes	need	to	guarantee	their

customers	complete	security	separation	of	their	data	from	other	customers’	data.	At	least	in
the	past,	the	database	provider	could	have	a	very	powerful	data	center	hosting	multiple
instances	of	SQL	Server,	rather	than	needing	to	maintain	multiple	less-powerful	computers,
each	hosting	a	different	instance.	More	recently,	cloud	solutions	and	advanced	virtualization
technologies	make	it	possible	to	achieve	similar	goals.

Databases
You	can	think	of	a	database	as	a	container	of	objects	such	as	tables,	views,	stored	procedures,
and	other	objects.	Each	instance	of	SQL	Server	can	contain	multiple	databases,	as	illustrated
in	Figure	1-6.	When	you	install	an	on-premises	flavor	of	SQL	Server,	the	setup	program
creates	several	system	databases	that	hold	system	data	and	serve	internal	purposes.	After	the
installation	of	SQL	Server,	you	can	create	your	own	user	databases	that	will	hold	application
data.

FIGURE	1-6	An	example	of	multiple	databases	on	a	SQL	Server	instance.

The	system	databases	that	the	setup	program	creates	include	master,	Resource,	model,
tempdb,	and	msdb.	A	description	of	each	follows:

	master	The	master	database	holds	instance-wide	metadata	information,	the	server
configuration,	information	about	all	databases	in	the	instance,	and	initialization
information.
	Resource	The	Resource	database	is	a	hidden,	read-only	database	that	holds	the
definitions	of	all	system	objects.	When	you	query	system	objects	in	a	database,	they
appear	to	reside	in	the	sys	schema	of	the	local	database,	but	in	actuality	their	definitions
reside	in	the	Resource	database.
	model	The	model	database	is	used	as	a	template	for	new	databases.	Every	new	database
you	create	is	initially	created	as	a	copy	of	model.	So	if	you	want	certain	objects	(such	as
data	types)	to	appear	in	all	new	databases	you	create,	or	certain	database	properties	to	be
configured	in	a	certain	way	in	all	new	databases,	you	need	to	create	those	objects	and
configure	those	properties	in	the	model	database.	Note	that	changes	you	apply	to	the
model	database	will	not	affect	existing	databases—only	new	databases	you	create	in	the
future.
	tempdb	The	tempdb	database	is	where	SQL	Server	stores	temporary	data	such	as	work
tables,	sort	and	hash	table	data,	row	versioning	information,	and	so	on.	With	SQL
Server,	you	can	create	temporary	tables	for	your	own	use,	and	the	physical	location	of
those	temporary	tables	is	tempdb.	Note	that	this	database	is	destroyed	and	re-created	as	a
copy	of	the	model	database	every	time	you	restart	the	instance	of	SQL	Server.
	msdb	The	msdb	database	is	used	mainly	by	a	service	called	SQL	Server	Agent	to	store
its	data.	SQL	Server	Agent	is	in	charge	of	automation,	which	includes	entities	such	as
jobs,	schedules,	and	alerts.	SQL	Server	Agent	is	also	the	service	in	charge	of
replication.	The	msdb	database	also	holds	information	related	to	other	SQL	Server
features,	such	as	Database	Mail,	Service	Broker,	backups,	and	more.

In	an	on-premises	installation	of	SQL	Server,	you	can	connect	directly	to	the	system
databases	master,	model,	tempdb,	and	msdb.	In	SQL	Database,	you	can	connect	directly	only	to
the	system	database	master.	If	you	create	temporary	tables	or	declare	table	variables	(more	on

this	topic	in	Chapter	11,	“Programmable	objects”),	they	are	created	in	tempdb,	but	you	cannot
connect	directly	to	tempdb	and	explicitly	create	user	objects	there.
You	can	create	multiple	user	databases	(up	to	32,767)	within	an	instance.	A	user	database

holds	objects	and	data	for	an	application.
You	can	define	a	property	called	collation	at	the	database	level	that	will	determine	default

language	support,	case	sensitivity,	and	sort	order	for	character	data	in	that	database.	If	you	do
not	specify	a	collation	for	the	database	when	you	create	it,	the	new	database	will	use	the
default	collation	of	the	instance	(chosen	upon	installation).
To	run	T-SQL	code	against	a	database,	a	client	application	needs	to	connect	to	a	SQL

Server	instance	and	be	in	the	context	of,	or	use,	the	relevant	database.	The	application	can	still
access	objects	from	other	databases	by	adding	the	database	name	as	a	prefix.
In	terms	of	security,	to	be	able	to	connect	to	a	SQL	Server	instance,	the	database

administrator	(DBA)	must	create	a	login	for	you.	The	login	can	be	tied	to	your	Microsoft
Windows	credentials,	in	which	case	it	is	called	a	Windows	authenticated	login.	With	a
Windows	authenticated	login,	you	can’t	provide	login	and	password	information	when
connecting	to	SQL	Server	because	you	already	provided	those	when	you	logged	on	to
Windows.	The	login	can	be	independent	of	your	Windows	credentials,	in	which	case	it’s
called	a	SQL	Server	authenticated	login.	When	connecting	to	SQL	Server	using	a	SQL	Server
authenticated	login,	you	will	need	to	provide	both	a	login	name	and	a	password.
The	DBA	needs	to	map	your	login	to	a	database	user	in	each	database	you	are	supposed	to

have	access	to.	The	database	user	is	the	entity	that	is	granted	permissions	to	objects	in	the
database.
SQL	Server	supports	a	feature	called	contained	databases	that	breaks	the	connection

between	a	database	user	and	an	instance-level	login.	The	user	(Windows	or	SQL
authenticated)	is	fully	contained	within	the	specific	database	and	is	not	tied	to	a	login	at	the
instance	level.	When	connecting	to	SQL	Server,	the	user	needs	to	specify	the	database	he	or
she	is	connecting	to,	and	the	user	cannot	subsequently	switch	to	other	user	databases.
So	far,	I’ve	mainly	mentioned	the	logical	aspects	of	databases.	If	you’re	using	SQL

Database,	your	only	concern	is	that	logical	layer.	You	do	not	deal	with	the	physical	layout	of
the	database	data	and	log	files,	tempdb,	and	so	on.	But	if	you’re	using	a	box	version	of	SQL
Server,	you	are	responsible	for	the	physical	layer	as	well.	Figure	1-7	shows	a	diagram	of	the
physical	database	layout.

FIGURE	1-7	Database	layout.

The	database	is	made	up	of	data	files,	transaction	log	files,	and	optionally	checkpoint	files
holding	memory-optimized	data	(part	of	a	feature	called	In-Memory	OLTP,	which	I	describe
shortly).	When	you	create	a	database,	you	can	define	various	properties	for	data	and	log	files,
including	the	file	name,	location,	initial	size,	maximum	size,	and	an	autogrowth	increment.
Each	database	must	have	at	least	one	data	file	and	at	least	one	log	file	(the	default	in	SQL
Server).	The	data	files	hold	object	data,	and	the	log	files	hold	information	that	SQL	Server
needs	to	maintain	transactions.
Although	SQL	Server	can	write	to	multiple	data	files	in	parallel,	it	can	write	to	only	one

log	file	at	a	time,	in	a	sequential	manner.	Therefore,	unlike	with	data	files,	having	multiple
log	files	does	not	result	in	a	performance	benefit.	You	might	need	to	add	log	files	if	the	disk
drive	where	the	log	resides	runs	out	of	space.
Data	files	are	organized	in	logical	groups	called	filegroups.	A	filegroup	is	the	target	for

creating	an	object,	such	as	a	table	or	an	index.	The	object	data	will	be	spread	across	the	files
that	belong	to	the	target	filegroup.	Filegroups	are	your	way	of	controlling	the	physical
locations	of	your	objects.	A	database	must	have	at	least	one	filegroup	called	PRIMARY,	and	it
can	optionally	have	other	user	filegroups	as	well.	The	PRIMARY	filegroup	contains	the
primary	data	file	(which	has	an	.mdf	extension)	for	the	database,	and	the	database’s	system
catalog.	You	can	optionally	add	secondary	data	files	(which	have	an	.ndf	extension)	to
PRIMARY.	User	filegroups	contain	only	secondary	data	files.	You	can	decide	which	filegroup
is	marked	as	the	default	filegroup.	Objects	are	created	in	the	default	filegroup	when	the	object
creation	statement	does	not	explicitly	specify	a	different	target	filegroup.

File	extensions	.mdf,	.ldf,	and	.ndf
The	database	file	extensions	.mdf	and	.ldf	are	quite	straightforward.	The	extension	.mdf
stands	for	Master	Data	File	(not	to	be	confused	with	the	master	database),	and	.ldf
stands	for	Log	Data	File.	According	to	one	anecdote,	when	discussing	the	extension	for
the	secondary	data	files,	one	of	the	developers	suggested,	humorously,	using	.ndf	to
represent	“Not	Master	Data	File,”	and	the	idea	was	accepted.

The	SQL	Server	database	engine	includes	a	memory-optimized	engine	called	In-Memory
OLTP.	You	can	use	this	feature	to	integrate	memory-optimized	objects,	such	as	memory-
optimized	tables	and	natively	compiled	procedures,	into	your	database.	To	do	so,	you	need	to
create	a	filegroup	in	the	database	marked	as	containing	memory-optimized	data	and,	within	it,
at	least	one	path	to	a	folder.	SQL	Server	stores	checkpoint	files	with	memory-optimized	data
in	that	folder,	and	it	uses	those	to	recover	the	data	every	time	SQL	Server	is	restarted.

Schemas	and	objects
When	I	said	earlier	that	a	database	is	a	container	of	objects,	I	simplified	things	a	bit.	As
illustrated	in	Figure	1-8,	a	database	contains	schemas,	and	schemas	contain	objects.	You	can
think	of	a	schema	as	a	container	of	objects,	such	as	tables,	views,	stored	procedures,	and
others.

FIGURE	1-8	A	database,	schemas,	and	database	objects.

You	can	control	permissions	at	the	schema	level.	For	example,	you	can	grant	a	user
SELECT	permissions	on	a	schema,	allowing	the	user	to	query	data	from	all	objects	in	that
schema.	So	security	is	one	of	the	considerations	for	determining	how	to	arrange	objects	in
schemas.
The	schema	is	also	a	namespace—it	is	used	as	a	prefix	to	the	object	name.	For	example,

suppose	you	have	a	table	named	Orders	in	a	schema	named	Sales.	The	schema-qualified
object	name	(also	known	as	the	two-part	object	name)	is	Sales.Orders.	You	can	refer	to
objects	in	other	databases	by	adding	the	database	name	as	a	prefix	(three-part	object	name),
and	to	objects	in	other	instances	by	adding	the	instance	name	as	a	prefix	(four-part	object
name).	If	you	omit	the	schema	name	when	referring	to	an	object,	SQL	Server	will	apply	a
process	to	resolve	the	schema	name,	such	as	checking	whether	the	object	exists	in	the	user ’s

default	schema	and,	if	the	object	doesn’t	exist,	checking	whether	it	exists	in	the	dbo	schema.
Microsoft	recommends	that	when	you	refer	to	objects	in	your	code	you	always	use	the	two-
part	object	names.	There	are	some	relatively	insignificant	extra	costs	involved	in	resolving
the	schema	name	when	you	don’t	specify	it	explicitly.	But	as	insignificant	as	this	extra	cost
might	be,	why	pay	it?	Also,	if	multiple	objects	with	the	same	name	exist	in	different	schemas,
you	might	end	up	getting	a	different	object	than	the	one	you	wanted.

Creating	tables	and	defining	data	integrity
This	section	describes	the	fundamentals	of	creating	tables	and	defining	data	integrity	using	T-
SQL.	Feel	free	to	run	the	included	code	samples	in	your	environment.

	More	Info

If	you	don’t	know	yet	how	to	run	code	against	SQL	Server,	the	Appendix	will	help	you
get	started.

As	mentioned	earlier,	DML	rather	than	DDL	is	the	focus	of	this	book.	Still,	you	need	to
understand	how	to	create	tables	and	define	data	integrity.	I	won’t	go	into	the	explicit	details
here,	but	I’ll	provide	a	brief	description	of	the	essentials.
Before	you	look	at	the	code	for	creating	a	table,	remember	that	tables	reside	within

schemas,	and	schemas	reside	within	databases.	The	examples	use	the	book’s	sample	database,
TSQLV4,	and	a	schema	called	dbo.

	More	Info

See	the	Appendix	for	details	on	creating	the	sample	database.

The	examples	here	use	a	schema	named	dbo	that	is	created	automatically	in	every	database
and	is	also	used	as	the	default	schema	for	users	who	are	not	explicitly	associated	with	a
different	schema.

Creating	tables
The	following	code	creates	a	table	named	Employees	in	the	dbo	schema	in	the	TSQLV4
database:
Click	here	to	view	code	image

USE	TSQLV4;

DROP	TABLE	IF	EXISTS	dbo.Employees;

CREATE	TABLE	dbo.Employees
(
		empid					INT									NOT	NULL,
		firstname	VARCHAR(30)	NOT	NULL,
		lastname		VARCHAR(30)	NOT	NULL,

		hiredate		DATE								NOT	NULL,
		mgrid					INT									NULL,
		ssn							VARCHAR(20)	NOT	NULL,
		salary				MONEY							NOT	NULL
);

The	USE	statement	sets	the	current	database	context	to	that	of	TSQLV4.	It	is	important	to
incorporate	the	USE	statement	in	scripts	that	create	objects	to	ensure	that	SQL	Server	creates
the	objects	in	the	specified	database.	In	an	on-premises	SQL	Server	implementation,	the	USE
statement	can	actually	change	the	database	context	from	one	to	another.	In	SQL	Database,	you
cannot	switch	between	different	databases,	but	the	USE	statement	will	not	fail	as	long	as	you
are	already	connected	to	the	target	database.	So	even	in	SQL	Database,	I	recommend	having
the	USE	statement	to	ensure	that	you	are	connected	to	the	right	database	when	creating	your
objects.
The	DROP	IF	EXISTS	command	drops	the	table	if	it	already	exists.	Note	that	this	command

was	introduced	in	SQL	Server	2016.	If	you’re	using	earlier	versions	of	SQL	Server,	use	the
following	statement	instead:
Click	here	to	view	code	image

IF	OBJECT_ID(N'dbo.Employees',	N'U')	IS	NOT	NULL	DROP	TABLE	dbo.Employees;

The	IF	statement	invokes	the	OBJECT_ID	function	to	check	whether	the	Employees	table
already	exists	in	the	current	database.	The	OBJECT_ID	function	accepts	an	object	name	and
type	as	inputs.	The	type	U	represents	a	user	table.	This	function	returns	the	internal	object	ID
if	an	object	with	the	specified	input	name	and	type	exists,	and	NULL	otherwise.	If	the	function
returns	a	NULL,	you	know	that	the	object	doesn’t	exist.	In	our	case,	the	code	drops	the	table	if
it	already	exists	and	then	creates	a	new	one.	Of	course,	you	can	choose	a	different	treatment,
such	as	simply	not	creating	the	object	if	it	already	exists.
The	CREATE	TABLE	statement	is	in	charge	of	defining	what	I	referred	to	earlier	as	the

heading	of	the	relation.	Here	you	specify	the	name	of	the	table	and,	in	parentheses,	the
definition	of	its	attributes	(columns).
Notice	the	use	of	the	two-part	name	dbo.Employees	for	the	table	name,	as	recommended

earlier.	If	you	omit	the	schema	name,	for	ad-hoc	queries	SQL	Server	will	assume	the	default
schema	associated	with	the	database	user	running	the	code.	For	queries	in	stored	procedures,
SQL	Server	will	assume	the	schema	associated	with	the	procedure’s	owner.
For	each	attribute,	you	specify	the	attribute	name,	data	type,	and	whether	the	value	can	be

NULL	(which	is	called	nullability).
In	the	Employees	table,	the	attributes	empid	(employee	ID)	and	mgrid	(manager	ID)	are	each

defined	with	the	INT	(four-byte	integer)	data	type;	the	firstname,	lastname,	and	ssn	(US	Social
Security	number)	are	defined	as	VARCHAR	(variable-length	character	string	with	the	specified
maximum	supported	number	of	characters);	and	hiredate	is	defined	as	DATE	and	salary	is
defined	as	MONEY.
If	you	don’t	explicitly	specify	whether	a	column	allows	or	disallows	NULLs,	SQL	Server

will	have	to	rely	on	defaults.	Standard	SQL	dictates	that	when	a	column’s	nullability	is	not
specified,	the	assumption	should	be	NULL	(allowing	NULLs),	but	SQL	Server	has	settings	that

can	change	that	behavior.	I	recommend	that	you	be	explicit	and	not	rely	on	defaults.	Also,	I
recommend	defining	a	column	as	NOT	NULL	unless	you	have	a	compelling	reason	to	support
NULLs.	If	a	column	is	not	supposed	to	allow	NULLs	and	you	don’t	enforce	this	with	a	NOT
NULL	constraint,	you	can	rest	assured	that	NULLs	will	occur.	In	the	Employees	table,	all
columns	are	defined	as	NOT	NULL	except	for	the	mgrid	column.	A	NULL	in	the	mgrid	column
would	represent	the	fact	that	the	employee	has	no	manager,	as	in	the	case	of	the	CEO	of	the
organization.

Coding	style
You	should	be	aware	of	a	few	general	notes	regarding	coding	style,	the	use	of	white
spaces	(space,	tab,	new	line,	and	so	on),	and	semicolons.	I’m	not	aware	of	any	formal
coding	styles.	My	advice	is	that	you	use	a	style	that	you	and	your	fellow	developers	feel
comfortable	with.	What	ultimately	matters	most	is	the	consistency,	readability,	and
maintainability	of	your	code.	I	have	tried	to	reflect	these	aspects	in	my	code	throughout
the	book.
T-SQL	lets	you	use	white	spaces	quite	freely	in	your	code.	You	can	take	advantage	of

white	space	to	facilitate	readability.	For	example,	I	could	have	written	the	code	in	the
previous	section	as	a	single	line.	However,	the	code	wouldn’t	have	been	as	readable	as
when	it	is	broken	into	multiple	lines	that	use	indentation.
The	practice	of	using	a	semicolon	to	terminate	statements	is	standard	and,	in	fact,	is	a

requirement	in	several	other	database	platforms.	SQL	Server	requires	the	semicolon
only	in	particular	cases—but	in	cases	where	a	semicolon	is	not	required,	using	one
doesn’t	cause	problems.	I	recommend	that	you	adopt	the	practice	of	terminating	all
statements	with	a	semicolon.	Not	only	will	doing	this	improve	the	readability	of	your
code,	but	in	some	cases	it	can	save	you	some	grief.	(When	a	semicolon	is	required	and
is	not	specified,	the	error	message	SQL	Server	produces	is	not	always	clear.)

	Note
The	SQL	Server	documentation	indicates	that	not	terminating	T-SQL	statements	with	a
semicolon	is	a	deprecated	feature.	This	means	that	the	long-term	goal	is	to	enforce	use
of	the	semicolon	in	a	future	version	of	the	product.	That’s	one	more	reason	to	get	into
the	habit	of	terminating	all	your	statements,	even	where	it’s	currently	not	required.

Defining	data	integrity
As	mentioned	earlier,	one	of	the	great	benefits	of	the	relational	model	is	that	data	integrity	is
an	integral	part	of	it.	Data	integrity	enforced	as	part	of	the	model—namely,	as	part	of	the	table
definitions—is	considered	declarative	data	integrity.	Data	integrity	enforced	with	code—such
as	with	stored	procedures	or	triggers—is	considered	procedural	data	integrity.
Data	type	and	nullability	choices	for	attributes	and	even	the	data	model	itself	are	examples

of	declarative	data	integrity	constraints.	In	this	section,	I	will	describe	other	examples	of
declarative	constraints:	primary	key,	unique,	foreign	key,	check,	and	default	constraints.	You
can	define	such	constraints	when	creating	a	table	as	part	of	the	CREATE	TABLE	statement,	or
you	can	define	them	for	already-created	tables	by	using	an	ALTER	TABLE	statement.	All	types
of	constraints	except	for	default	constraints	can	be	defined	as	composite	constraints—that	is,
based	on	more	than	one	attribute.

Primary-key	constraints
A	primary-key	constraint	enforces	the	uniqueness	of	rows	and	also	disallows	NULLs	in	the
constraint	attributes.	Each	unique	set	of	values	in	the	constraint	attributes	can	appear	only	once
in	the	table—in	other	words,	only	in	one	row.	An	attempt	to	define	a	primary-key	constraint
on	a	column	that	allows	NULLs	will	be	rejected	by	the	RDBMS.	Each	table	can	have	only	one
primary	key.
Here’s	an	example	of	defining	a	primary-key	constraint	on	the	empid	attribute	in	the

Employees	table	that	you	created	earlier:
Click	here	to	view	code	image

ALTER	TABLE	dbo.Employees
		ADD	CONSTRAINT	PK_Employees
		PRIMARY	KEY(empid);

With	this	primary	key	in	place,	you	can	be	assured	that	all	empid	values	will	be	unique	and
known.	An	attempt	to	insert	or	update	a	row	such	that	the	constraint	would	be	violated	will	be
rejected	by	the	RDBMS	and	result	in	an	error.
To	enforce	the	uniqueness	of	the	logical	primary-key	constraint,	SQL	Server	will	create	a

unique	index	behind	the	scenes.	A	unique	index	is	a	physical	mechanism	used	by	SQL	Server
to	enforce	uniqueness.	Indexes	(not	necessarily	unique	ones)	are	also	used	to	speed	up	queries
by	avoiding	unnecessary	full	table	scans	(similar	to	indexes	in	books).

Unique	constraints
A	unique	constraint	enforces	the	uniqueness	of	rows,	allowing	you	to	implement	the	concept
of	alternate	keys	from	the	relational	model	in	your	database.	Unlike	with	primary	keys,	you
can	define	multiple	unique	constraints	within	the	same	table.	Also,	a	unique	constraint	is	not
restricted	to	columns	defined	as	NOT	NULL.
The	following	code	defines	a	unique	constraint	on	the	ssn	column	in	the	Employees	table:

Click	here	to	view	code	image

ALTER	TABLE	dbo.Employees
		ADD	CONSTRAINT	UNQ_Employees_ssn
		UNIQUE(ssn);

As	with	a	primary-key	constraint,	SQL	Server	will	create	a	unique	index	behind	the	scenes
as	the	physical	mechanism	to	enforce	the	logical	unique	constraint.
According	to	standard	SQL,	a	column	with	a	unique	constraint	is	supposed	to	allow

multiple	NULLs	(as	if	two	NULLs	were	different	from	each	other).	However,	SQL	Server ’s
implementation	rejects	duplicate	NULLs	(as	if	two	NULLs	were	equal	to	each	other).	To

emulate	the	standard	unique	constraint	in	SQL	Server	you	can	use	a	unique	filtered	index	that
filters	only	non-NULL	values.	For	example,	suppose	that	the	column	ssn	allowed	NULLs,	and
you	wanted	to	create	such	an	index	instead	of	a	unique	constraint.	You	would	have	used	the
following	code:
Click	here	to	view	code	image

CREATE	UNIQUE	INDEX	idx_ssn_notnull	ON	dbo.Employees(ssn)	WHERE	ssn	IS	NOT	NULL;

The	index	is	defined	as	a	unique	one,	and	the	filter	excludes	NULLs	from	the	index,	so
duplicate	NULLs	will	be	allowed,	whereas	duplicate	non-NULL	values	won’t	be	allowed.

Foreign-key	constraints
A	foreign-key	enforces	referential	integrity.	This	constraint	is	defined	on	one	or	more
attributes	in	what’s	called	the	referencing	table	and	points	to	candidate-key	(primary-key	or
unique-constraint)	attributes	in	what’s	called	the	referenced	table.	Note	that	the	referencing	and
referenced	tables	can	be	one	and	the	same.	The	foreign	key’s	purpose	is	to	restrict	the	values
allowed	in	the	foreign-key	columns	to	those	that	exist	in	the	referenced	columns.
The	following	code	creates	a	table	called	Orders	with	a	primary	key	defined	on	the	orderid

column:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.Orders;

CREATE	TABLE	dbo.Orders
(
		orderid			INT									NOT	NULL,
		empid					INT									NOT	NULL,
		custid				VARCHAR(10)	NOT	NULL,
		orderts			DATETIME2			NOT	NULL,
		qty							INT									NOT	NULL,
		CONSTRAINT	PK_Orders
				PRIMARY	KEY(orderid)
);

Suppose	you	want	to	enforce	an	integrity	rule	that	restricts	the	values	supported	by	the
empid	column	in	the	Orders	table	to	the	values	that	exist	in	the	empid	column	in	the	Employees
table.	You	can	achieve	this	by	defining	a	foreign-key	constraint	on	the	empid	column	in	the
Orders	table	pointing	to	the	empid	column	in	the	Employees	table,	like	the	following:
Click	here	to	view	code	image

ALTER	TABLE	dbo.Orders
		ADD	CONSTRAINT	FK_Orders_Employees
		FOREIGN	KEY(empid)
		REFERENCES	dbo.Employees(empid);

Similarly,	if	you	want	to	restrict	the	values	supported	by	the	mgrid	column	in	the	Employees
table	to	the	values	that	exist	in	the	empid	column	of	the	same	table,	you	can	do	so	by	adding
the	following	foreign	key:
Click	here	to	view	code	image

ALTER	TABLE	dbo.Employees

		ADD	CONSTRAINT	FK_Employees_Employees
		FOREIGN	KEY(mgrid)
		REFERENCES	dbo.Employees(empid);

Note	that	NULLs	are	allowed	in	the	foreign-key	columns	(mgrid	in	the	last	example)	even	if
there	are	no	NULLs	in	the	referenced	candidate-key	columns.
The	preceding	two	examples	are	basic	definitions	of	foreign	keys	that	enforce	a	referential

action	called	no	action.	No	action	means	that	attempts	to	delete	rows	from	the	referenced	table
or	update	the	referenced	candidate-key	attributes	will	be	rejected	if	related	rows	exist	in	the
referencing	table.	For	example,	if	you	try	to	delete	an	employee	row	from	the	Employees
table	when	there	are	related	orders	in	the	Orders	table,	the	RDBMS	will	reject	such	an	attempt
and	produce	an	error.
You	can	define	the	foreign	key	with	actions	that	will	compensate	for	such	attempts	(to

delete	rows	from	the	referenced	table	or	update	the	referenced	candidate-key	attributes	when
related	rows	exist	in	the	referencing	table).	You	can	define	the	options	ON	DELETE	and	ON
UPDATE	with	actions	such	as	CASCADE,	SET	DEFAULT,	and	SET	NULL	as	part	of	the
foreign-key	definition.	CASCADE	means	that	the	operation	(delete	or	update)	will	be	cascaded
to	related	rows.	For	example,	ON	DELETE	CASCADE	means	that	when	you	delete	a	row	from
the	referenced	table,	the	RDBMS	will	delete	the	related	rows	from	the	referencing	table.	SET
DEFAULT	and	SET	NULL	mean	that	the	compensating	action	will	set	the	foreign-key	attributes
of	the	related	rows	to	the	column’s	default	value	or	NULL,	respectively.	Note	that	regardless
of	which	action	you	choose,	the	referencing	table	will	have	only	orphaned	rows	in	the	case	of
the	exception	with	NULLs	that	I	mentioned	earlier.	Parents	with	no	children	are	always
allowed.

Check	constraints
You	can	use	a	check	constraint	to	define	a	predicate	that	a	row	must	meet	to	be	entered	into	the
table	or	to	be	modified.	For	example,	the	following	check	constraint	ensures	that	the	salary
column	in	the	Employees	table	will	support	only	positive	values:
Click	here	to	view	code	image

ALTER	TABLE	dbo.Employees
		ADD	CONSTRAINT	CHK_Employees_salary
		CHECK(salary	>	0.00);

An	attempt	to	insert	or	update	a	row	with	a	nonpositive	salary	value	will	be	rejected	by	the
RDBMS.	Note	that	a	check	constraint	rejects	an	attempt	to	insert	or	update	a	row	when	the
predicate	evaluates	to	FALSE.	The	modification	will	be	accepted	when	the	predicate	evaluates
to	either	TRUE	or	UNKNOWN.	For	example,	salary	–1000	will	be	rejected,	whereas	salaries
50000	and	NULL	will	both	be	accepted	(if	the	column	allowed	NULLs).	As	mentioned	earlier,
SQL	is	based	on	three-valued	logic,	which	results	in	two	actual	actions.	With	a	check
constraint,	the	row	is	either	accepted	or	rejected.
When	adding	check	and	foreign-key	constraints,	you	can	specify	an	option	called	WITH

NOCHECK	that	tells	the	RDBMS	you	want	it	to	bypass	constraint	checking	for	existing	data.
This	is	considered	a	bad	practice	because	you	cannot	be	sure	your	data	is	consistent.	You	can
also	disable	or	enable	existing	check	and	foreign-key	constraints.

Default	constraints
A	default	constraint	is	associated	with	a	particular	attribute.	It’s	an	expression	that	is	used	as
the	default	value	when	an	explicit	value	is	not	specified	for	the	attribute	when	you	insert	a	row.
For	example,	the	following	code	defines	a	default	constraint	for	the	orderts	attribute
(representing	the	order ’s	time	stamp):
Click	here	to	view	code	image

ALTER	TABLE	dbo.Orders
		ADD	CONSTRAINT	DFT_Orders_orderts
		DEFAULT(SYSDATETIME())	FOR	orderts;

The	default	expression	invokes	the	SYSDATETIME	function,	which	returns	the	current	date
and	time	value.	After	this	default	expression	is	defined,	whenever	you	insert	a	row	in	the
Orders	table	and	do	not	explicitly	specify	a	value	in	the	orderts	attribute,	SQL	Server	will	set
the	attribute	value	to	SYSDATETIME.
When	you’re	done,	run	the	following	code	for	cleanup:

Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.Orders,	dbo.Employees;

Conclusion
This	chapter	provided	a	brief	background	to	T-SQL	querying	and	programming.	It	presented
a	theoretical	background,	explaining	the	strong	foundations	that	T-SQL	is	based	on.	It	gave	an
overview	of	the	SQL	Server	architecture	and	concluded	with	sections	that	demonstrated	how
to	use	T-SQL	to	create	tables	and	define	data	integrity.	I	hope	that	by	now	you	see	that	there’s
something	special	about	SQL,	and	that	it’s	not	just	a	language	that	can	be	learned	as	an
afterthought.	This	chapter	equipped	you	with	fundamental	concepts—the	actual	journey	is	just
about	to	begin.

Chapter	2.	Single-table	queries

This	chapter	introduces	you	to	the	fundamentals	of	the	SELECT	statement,	focusing	for	now
on	queries	against	a	single	table.	The	chapter	starts	by	describing	logical	query	processing—
namely,	the	series	of	logical	phases	involved	in	producing	the	correct	result	set	of	a	particular
SELECT	query.	The	chapter	then	covers	other	aspects	of	single-table	queries,	including
predicates	and	operators,	CASE	expressions,	NULLs,	all-at-once	operations,	manipulating
character	data	and	date	and	time	data,	and	querying	metadata.	Many	of	the	code	samples	and
exercises	in	this	book	use	a	sample	database	called	TSQLV4.	You	can	find	the	instructions	for
downloading	and	installing	this	sample	database	in	the	Appendix,	“Getting	started.”

Elements	of	the	SELECT	statement
The	purpose	of	a	SELECT	statement	is	to	query	tables,	apply	some	logical	manipulation,	and
return	a	result.	In	this	section,	I	talk	about	the	phases	involved	in	logical	query	processing.	I
describe	the	logical	order	in	which	the	different	query	clauses	are	processed	and	what
happens	in	each	phase.
Note	that	by	“logical	query	processing,”	I’m	referring	to	the	conceptual	way	in	which

standard	SQL	defines	how	a	query	should	be	processed	and	the	final	result	achieved.	Don’t	be
alarmed	if	some	logical	processing	phases	that	I	describe	here	seem	inefficient.	The	database
engine	doesn’t	have	to	follow	logical	query	processing	to	the	letter;	rather,	it	is	free	to
physically	process	a	query	differently	by	rearranging	processing	phases,	as	long	as	the	final
result	would	be	the	same	as	that	dictated	by	logical	query	processing.	The	database	engine’s
query	optimizer	can—and	in	fact,	often	does—make	many	shortcuts	in	the	physical
processing	of	a	query	as	a	result	of	query	optimization.
To	describe	logical	query	processing	and	the	various	SELECT	query	clauses,	I	use	the

query	in	Listing	2-1	as	an	example.

LISTING	2-1	Sample	query

Click	here	to	view	code	image

USE	TSQLV4;

SELECT	empid,	YEAR(orderdate)	AS	orderyear,	COUNT(*)	AS	numorders
FROM	Sales.Orders
WHERE	custid	=	71
GROUP	BY	empid,	YEAR(orderdate)
HAVING	COUNT(*)	>	1
ORDER	BY	empid,	orderyear;

This	query	filters	orders	that	were	placed	by	customer	71,	groups	those	orders	by
employee	and	order	year,	and	filters	only	groups	of	employees	and	years	that	have	more	than
one	order.	For	the	remaining	groups,	the	query	presents	the	employee	ID,	order	year,	and
count	of	orders,	sorted	by	the	employee	ID	and	order	year.	For	now,	don’t	worry	about

understanding	how	this	query	does	what	it	does;	I’ll	explain	the	query	clauses	one	at	a	time
and	gradually	build	this	query.
The	code	starts	with	a	USE	statement	that	ensures	that	the	database	context	of	your	session

is	the	TSQLV4	sample	database.	If	your	session	is	already	in	the	context	of	the	database	you
need	to	query,	the	USE	statement	is	not	required.
Before	I	get	into	the	details	of	each	phase	of	the	SELECT	statement,	notice	the	order	in

which	the	query	clauses	are	logically	processed.	In	most	programming	languages,	the	lines	of
code	are	processed	in	the	order	that	they	are	written.	In	SQL,	things	are	different.	Even	though
the	SELECT	clause	appears	first	in	the	query,	it	is	logically	processed	almost	last.	The	clauses
are	logically	processed	in	the	following	order:

1.	FROM
2.	WHERE
3.	GROUP	BY
4.	HAVING
5.	SELECT
6.	ORDER	BY
So	even	though	syntactically	the	sample	query	in	Listing	2-1	starts	with	a	SELECT	clause,

logically	its	clauses	are	processed	in	the	following	order:
Click	here	to	view	code	image

FROM	Sales.Orders
WHERE	custid	=	71
GROUP	BY	empid,	YEAR(orderdate)
HAVING	COUNT(*)	>	1
SELECT	empid,	YEAR		(orderdate)	AS	orderyear,	COUNT(*)	AS	numorders
ORDER	BY	empid,	orderyear

Or,	to	present	it	in	a	more	readable	manner,	here’s	what	the	statement	does:
1.	Queries	the	rows	from	the	Sales.Orders	table
2.	Filters	only	orders	where	the	customer	ID	is	equal	to	71
3.	Groups	the	orders	by	employee	ID	and	order	year
4.	Filters	only	groups	(employee	ID	and	order	year)	having	more	than	one	order
5.	Selects	(returns)	for	each	group	the	employee	ID,	order	year,	and	number	of	orders
6.	Orders	(sorts)	the	rows	in	the	output	by	employee	ID	and	order	year
You	cannot	write	the	query	in	correct	logical	order.	You	have	to	start	with	the	SELECT

clause,	as	shown	in	Listing	2-1.	There’s	reason	behind	this	discrepancy	between	the	keyed-in
order	and	the	logical	processing	order	of	the	clauses.	The	designers	of	SQL	envisioned	a
declarative	language	with	which	you	provide	your	request	in	an	English-like	manner.
Consider	an	instruction	made	by	one	human	to	another	in	English,	such	as,	“Bring	me	the	car
keys	from	the	top-left	drawer	in	the	kitchen.”	Notice	that	you	start	the	instruction	with	the
object	and	then	indicate	the	location	where	the	object	resides.	But	if	you	were	to	express	the
same	instruction	to	a	robot,	or	a	computer	program,	you	would	have	to	start	with	the	location
before	indicating	what	can	be	obtained	from	that	location.	Your	instruction	might	have	been

something	like,	“Go	to	the	kitchen;	open	the	top-left	drawer;	grab	the	car	keys;	bring	them	to
me.”	The	keyed-in	order	of	the	query	clauses	is	similar	to	English—it	starts	with	the	SELECT
clause.	Logical	query	processing	order	is	similar	to	how	you	provide	instructions	to	a
computer	program—with	the	FROM	clause	processed	first.
Now	that	you	understand	the	order	in	which	the	query	clauses	are	logically	processed,	the

next	sections	explain	the	details	of	each	phase.
When	discussing	logical	query	processing,	I	refer	to	query	clauses	and	query	phases	(the

WHERE	clause	and	the	WHERE	phase,	for	example).	A	query	clause	is	a	syntactical
component	of	a	query,	so	when	discussing	the	syntax	of	a	query	element	I	usually	use	the	term
clause—for	example,	“In	the	WHERE	clause,	you	specify	a	predicate.”	When	discussing	the
logical	manipulation	taking	place	as	part	of	logical	query	processing,	I	usually	use	the	term
phase—for	example,	“The	WHERE	phase	returns	rows	for	which	the	predicate	evaluates	to
TRUE.”
Recall	my	recommendation	from	the	previous	chapter	regarding	the	use	of	a	semicolon	to

terminate	statements.	At	the	moment,	Microsoft	SQL	Server	doesn’t	require	you	to	terminate
all	statements	with	a	semicolon.	This	is	a	requirement	only	in	particular	cases	where	the
parsing	of	the	code	might	otherwise	be	ambiguous.	However,	I	recommend	you	terminate	all
statements	with	a	semicolon	because	it	is	standard,	it	improves	the	code	readability,	and	it	is
likely	that	SQL	Server	will	require	this	in	more—if	not	all—cases	in	the	future.	Currently,
when	a	semicolon	is	not	required,	adding	one	doesn’t	interfere.

The	FROM	clause
The	FROM	clause	is	the	very	first	query	clause	that	is	logically	processed.	In	this	clause,	you
specify	the	names	of	the	tables	you	want	to	query	and	table	operators	that	operate	on	those
tables.	This	chapter	doesn’t	get	into	table	operators;	I	describe	those	in	Chapters	3,	5,	and	7.
For	now,	you	can	just	consider	the	FROM	clause	to	be	simply	where	you	specify	the	name	of
the	table	you	want	to	query.	The	sample	query	in	Listing	2-1	queries	the	Orders	table	in	the
Sales	schema,	finding	830	rows.

FROM	Sales.Orders

Recall	the	recommendation	I	gave	in	the	previous	chapter	to	always	schema-qualify	object
names	in	your	code.	When	you	don’t	specify	the	schema	name	explicitly,	SQL	Server	must
resolve	it	implicitly	based	on	its	implicit	name-resolution	rules.	This	creates	some	minor	cost
and	can	result	in	SQL	Server	choosing	a	different	object	than	the	one	you	intended.	By	being
explicit,	your	code	is	safer	in	the	sense	you	ensure	that	you	get	the	object	you	intended	to	get.
Plus,	you	don’t	pay	any	unnecessary	penalties.
To	return	all	rows	from	a	table	with	no	special	manipulation,	all	you	need	is	a	query	with	a

FROM	clause	in	which	you	specify	the	table	you	want	to	query,	and	a	SELECT	clause	in	which
you	specify	the	attributes	you	want	to	return.	For	example,	the	following	statement	queries	all
rows	from	the	Orders	table	in	the	Sales	schema,	selecting	the	attributes	orderid,	custid,	empid,
orderdate,	and	freight.
Click	here	to	view	code	image

SELECT	orderid,	custid,	empid,	orderdate,	freight

FROM	Sales.Orders;

The	output	of	this	statement	is	shown	here	in	abbreviated	form:
Click	here	to	view	code	image

orderid					custid						empid							orderdate		freight
-----------	-----------	-----------	----------	---------------------
10248							85										5											2014-07-04	32.38
10249							79										6											2014-07-05	11.61
10250							34										4											2014-07-08	65.83
10251							84										3											2014-07-08	41.34
10252							76										4											2014-07-09	51.30
10253							34										3											2014-07-10	58.17
10254							14										5											2014-07-11	22.98
10255							68										9											2014-07-12	148.33
10256							88										3											2014-07-15	13.97
10257							35										4											2014-07-16	81.91
...

(830	row(s)	affected)

Although	it	might	seem	that	the	output	of	the	query	is	returned	in	a	particular	order,	this	is
not	guaranteed.	I’ll	elaborate	on	this	point	later	in	this	chapter,	in	the	sections	“The	SELECT
clause”	and	“The	ORDER	BY	clause.”

Delimiting	identifier	names
As	long	as	the	identifiers	in	your	query	comply	with	rules	for	the	format	of	regular
identifiers,	you	don’t	need	to	delimit	the	identifier	names	used	for	schemas,	tables,	and
columns.	The	rules	for	the	format	of	regular	identifiers	can	be	found	in	SQL	Server
Books	Online	at	the	following	URL:	http://msdn.microsoft.com/en-
us/library/ms175874.	If	an	identifier	is	irregular—for	example,	if	it	has	embedded
spaces	or	special	characters,	starts	with	a	digit,	or	is	a	reserved	keyword—you	have	to
delimit	it.	You	can	delimit	identifiers	in	SQL	Server	in	a	couple	of	ways.	The	standard
SQL	form	is	to	use	double	quotes—for	example,	“Order	Details”.	The	form	specific	to
T-SQL	is	to	use	square	brackets—for	example,	[Order	Details]—but	T-SQL	also
supports	the	standard	form.
With	identifiers	that	do	comply	with	the	rules	for	the	format	of	regular	identifiers,

delimiting	is	optional.	For	example,	a	table	called	OrderDetails	residing	in	the	Sales
schema	can	be	referred	to	as	Sales.OrderDetails	or	“Sales”.”OrderDetails”	or	[Sales].
[OrderDetails].	My	personal	preference	is	not	to	use	delimiters	when	they	are	not
required,	because	they	tend	to	clutter	the	code.	Also,	when	you’re	in	charge	of
assigning	identifiers,	I	recommend	always	using	regular	ones—for	example,
OrderDetails	instead	of	Order	Details.

http://msdn.microsoft.com/en-us/library/ms175874

The	WHERE	clause
In	the	WHERE	clause,	you	specify	a	predicate	or	logical	expression	to	filter	the	rows	returned
by	the	FROM	phase.	Only	rows	for	which	the	logical	expression	evaluates	to	TRUE	are
returned	by	the	WHERE	phase	to	the	subsequent	logical	query	processing	phase.	In	the	sample
query	in	Listing	2-1,	the	WHERE	phase	filters	only	orders	placed	by	customer	71:

FROM	Sales.Orders
WHERE	custid	=	71

Out	of	the	830	rows	returned	by	the	FROM	phase,	the	WHERE	phase	filters	only	the	31
rows	where	the	customer	ID	is	equal	to	71.	To	see	which	rows	you	get	back	after	applying	the
filter	custid	=	71,	run	the	following	query:
Click	here	to	view	code	image

SELECT	orderid,	empid,	orderdate,	freight
FROM	Sales.Orders
WHERE	custid	=	71;

This	query	generates	the	following	output:
Click	here	to	view	code	image

orderid					empid							orderdate		freight
-----------	-----------	----------	--------
10324							9											2014-10-08	214.27
10393							1											2014-12-25	126.56
10398							2											2014-12-30	89.16
10440							4											2015-02-10	86.53
10452							8											2015-02-20	140.26
10510							6											2015-04-18	367.63
10555							6											2015-06-02	252.49
10603							8											2015-07-18	48.77
10607							5											2015-07-22	200.24
10612							1											2015-07-28	544.08
10627							8											2015-08-11	107.46
10657							2											2015-09-04	352.69
10678							7											2015-09-23	388.98
10700							3											2015-10-10	65.10
10711							5											2015-10-21	52.41
10713							1											2015-10-22	167.05
10714							5											2015-10-22	24.49
10722							8											2015-10-29	74.58
10748							3											2015-11-20	232.55
10757							6											2015-11-27	8.19
10815							2											2016-01-05	14.62
10847							4											2016-01-22	487.57
10882							4											2016-02-11	23.10
10894							1											2016-02-18	116.13
10941							7											2016-03-11	400.81
10983							2											2016-03-27	657.54
10984							1											2016-03-30	211.22
11002							4											2016-04-06	141.16
11030							7											2016-04-17	830.75
11031							6											2016-04-17	227.22
11064							1											2016-05-01	30.09

(31	row(s)	affected)

The	WHERE	clause	has	significance	when	it	comes	to	query	performance.	Based	on	what
you	have	in	the	filter	expression,	SQL	Server	evaluates	the	use	of	indexes	to	access	the
required	data.	By	using	indexes,	SQL	Server	can	sometimes	get	the	required	data	with	much
less	work	compared	to	applying	full	table	scans.	Query	filters	also	reduce	the	network	traffic
created	by	returning	all	possible	rows	to	the	caller	and	filtering	on	the	client	side.
Earlier,	I	mentioned	that	only	rows	for	which	the	logical	expression	evaluates	to	TRUE	are

returned	by	the	WHERE	phase.	Always	keep	in	mind	that	T-SQL	uses	three-valued	predicate
logic,	where	logical	expressions	can	evaluate	to	TRUE,	FALSE,	or	UNKNOWN.	With	three-
valued	logic,	saying	“returns	TRUE”	is	not	the	same	as	saying	“does	not	return	FALSE.”	The
WHERE	phase	returns	rows	for	which	the	logical	expression	evaluates	to	TRUE,	and	it
doesn’t	return	rows	for	which	the	logical	expression	evaluates	to	FALSE	or	UNKNOWN.	I
elaborate	on	this	point	later	in	this	chapter	in	the	section	“NULLs.”

The	GROUP	BY	clause
You	can	use	the	GROUP	BY	phase	to	arrange	the	rows	returned	by	the	previous	logical	query
processing	phase	in	groups.	The	groups	are	determined	by	the	elements	you	specify	in	the
GROUP	BY	clause.	For	example,	the	GROUP	BY	clause	in	the	query	in	Listing	2-1	has	the
elements	empid	and	YEAR(orderdate):
Click	here	to	view	code	image

FROM	Sales.Orders
WHERE	custid	=	71
GROUP	BY	empid,	YEAR(orderdate)

This	means	that	the	GROUP	BY	phase	produces	a	group	for	each	unique	combination	of
employee-ID	and	order-year	values	that	appears	in	the	data	returned	by	the	WHERE	phase.
The	expression	YEAR(orderdate)	invokes	the	YEAR	function	to	return	only	the	year	part	from
the	orderdate	column.
The	WHERE	phase	returned	31	rows,	within	which	there	are	16	unique	combinations	of

employee-ID	and	order-year	values,	as	shown	here:
empid							YEAR(orderdate)
-----------	---------------
1											2014
1											2015
1											2016
2											2014
2											2015
2											2016
3											2015
4											2015
4											2016
5											2015
6											2015
6											2016
7											2015
7											2016
8											2015
9											2014

Thus,	the	GROUP	BY	phase	creates	16	groups	and	associates	each	of	the	31	rows	returned
from	the	WHERE	phase	with	the	relevant	group.
If	the	query	involves	grouping,	all	phases	subsequent	to	the	GROUP	BY	phase—including

HAVING,	SELECT,	and	ORDER	BY—must	operate	on	groups	as	opposed	to	operating	on
individual	rows.	Each	group	is	ultimately	represented	by	a	single	row	in	the	final	result	of	the
query.	This	implies	that	all	expressions	you	specify	in	clauses	that	are	processed	in	phases
subsequent	to	the	GROUP	BY	phase	are	required	to	guarantee	returning	a	scalar	(single	value)
per	group.
Expressions	based	on	elements	that	participate	in	the	GROUP	BY	clause	meet	the

requirement	because,	by	definition,	each	group	has	only	one	unique	occurrence	of	each
GROUP	BY	element.	For	example,	in	the	group	for	employee	ID	8	and	order	year	2015,
there’s	only	one	unique	employee-ID	value	and	only	one	unique	order-year	value.	Therefore,
you’re	allowed	to	refer	to	the	expressions	empid	and	YEAR(orderdate)	in	clauses	that	are
processed	in	phases	subsequent	to	the	GROUP	BY	phase,	such	as	the	SELECT	clause.	The
following	query,	for	example,	returns	16	rows	for	the	16	groups	of	employee-ID	and	order-
year	values:
Click	here	to	view	code	image

SELECT	empid,	YEAR(orderdate)	AS	orderyear
FROM	Sales.Orders
WHERE	custid	=	71
GROUP	BY	empid,	YEAR(orderdate);

This	query	returns	the	following	output:
empid							orderyear
-----------	-----------
1											2014
1											2015
1											2016
2											2014
2											2015
2											2016
3											2015
4											2015
4											2016
5											2015
6											2015
6											2016
7											2015
7											2016
8											2015
9											2014

(16	row(s)	affected)

Elements	that	do	not	participate	in	the	GROUP	BY	clause	are	allowed	only	as	inputs	to	an
aggregate	function	such	as	COUNT,	SUM,	AVG,	MIN,	or	MAX.	For	example,	the	following
query	returns	the	total	freight	and	number	of	orders	per	employee	and	order	year:
Click	here	to	view	code	image

SELECT

		empid,
		YEAR(orderdate)	AS	orderyear,
		SUM(freight)	AS	totalfreight,
		COUNT(*)	AS	numorders
FROM	Sales.Orders
WHERE	custid	=	71
GROUP	BY	empid,	YEAR(orderdate);

This	query	generates	the	following	output:
Click	here	to	view	code	image

empid							orderyear			totalfreight										numorders
-----------	-----------	---------------------	-----------
1											2014								126.56																1
2											2014								89.16																	1
9											2014								214.27																1
1											2015								711.13																2
2											2015								352.69																1
3											2015								297.65																2
4											2015								86.53																	1
5											2015								277.14																3
6											2015								628.31																3
7											2015								388.98																1
8											2015								371.07																4
1											2016								357.44																3
2											2016								672.16																2
4											2016								651.83																3
6											2016								227.22																1
7											2016								1231.56															2

(16	row(s)	affected)

The	expression	SUM(freight)	returns	the	sum	of	all	freight	values	in	each	group,	and	the
function	COUNT(*)	returns	the	count	of	rows	in	each	group—which	in	this	case	means	the
number	of	orders.	If	you	try	to	refer	to	an	attribute	that	does	not	participate	in	the	GROUP	BY
clause	(such	as	freight)	and	not	as	an	input	to	an	aggregate	function	in	any	clause	that	is
processed	after	the	GROUP	BY	clause,	you	get	an	error—in	such	a	case,	there’s	no	guarantee
that	the	expression	will	return	a	single	value	per	group.	For	example,	the	following	query	will
fail:
Click	here	to	view	code	image

SELECT	empid,	YEAR(orderdate)	AS	orderyear,	freight
FROM	Sales.Orders
WHERE	custid	=	71
GROUP	BY	empid,	YEAR(orderdate);

SQL	Server	produces	the	following	error:
Click	here	to	view	code	image

Msg	8120,	Level	16,	State	1,	Line	1
Column		Sales.Orders.freight'	is	invalid	in	the	select	list	because	it	is	not
contained	in
either	an	aggregate	function	or	the	GROUP	BY	clause.

Note	that	all	aggregate	functions	ignore	NULLs,	with	one	exception—COUNT(*).	For
example,	consider	a	group	of	five	rows	with	the	values	30,	10,	NULL,	10,	10	in	a	column

called	qty.	The	expression	COUNT(*)	returns	5	because	there	are	five	rows	in	the	group,
whereas	COUNT(qty)	returns	4	because	there	are	four	known	values.	If	you	want	to	handle
only	distinct	occurrences	of	known	values,	specify	the	DISTINCT	keyword	before	the	input
expression	to	the	aggregate	function.	For	example,	the	expression	COUNT(DISTINCT	qty)
returns	2,	because	there	are	two	distinct	known	values	(30	and	10).	The	DISTINCT	keyword
can	be	used	with	other	functions	as	well.	For	example,	although	the	expression	SUM(qty)
returns	60,	the	expression	SUM(DISTINCT	qty)	returns	40.	The	expression	AVG(qty)	returns
15,	whereas	the	expression	AVG(DISTINCT	qty)	returns	20.	As	an	example	of	using	the
DISTINCT	option	with	an	aggregate	function	in	a	complete	query,	the	following	code	returns
the	number	of	distinct	(unique)	customers	handled	by	each	employee	in	each	order	year:
Click	here	to	view	code	image

SELECT
		empid,
		YEAR(orderdate)	AS	orderyear,
		COUNT(DISTINCT	custid)	AS	numcusts
FROM	Sales.Orders
GROUP	BY	empid,	YEAR(orderdate);

This	query	generates	the	following	output:
Click	here	to	view	code	image

empid							orderyear			numcusts
-----------	-----------	-----------
1											2014								22
2											2014								15
3											2014								16
4											2014								26
5											2014								10
6											2014								15
7											2014								11
8											2014								19
9											2014								5
1											2015								40
2											2015								35
3											2015								46
4											2015								57
5											2015								13
6											2015								24
7											2015								30
8											2015								36
9											2015								16
1											2016								32
2											2016								34
3											2016								30
4											2016								33
5											2016								11
6											2016								17
7											2016								21
8											2016								23
9											2016								16

(27	row(s)	affected)

The	HAVING	clause
Whereas	the	WHERE	clause	is	a	row	filter,	the	HAVING	clause	is	a	group	filter.	Only	groups
for	which	the	HAVING	predicate	evaluates	to	TRUE	are	returned	by	the	HAVING	phase	to	the
next	logical	query	processing	phase.	Groups	for	which	the	predicate	evaluates	to	FALSE	or
UNKNOWN	are	discarded.
Because	the	HAVING	clause	is	processed	after	the	rows	have	been	grouped,	you	can	refer

to	aggregate	functions	in	the	logical	expression.	For	example,	in	the	query	from	Listing	2-1,
the	HAVING	clause	has	the	logical	expression	COUNT(*)	>	1,	meaning	that	the	HAVING
phase	filters	only	groups	(employee	and	order	year)	with	more	than	one	row.	The	following
fragment	of	the	Listing	2-1	query	shows	the	steps	that	have	been	processed	so	far:
Click	here	to	view	code	image

FROM	Sales.Orders
WHERE	custid	=	71
GROUP	BY	empid,	YEAR(orderdate)
HAVING	COUNT(*)	>	1

Recall	that	the	GROUP	BY	phase	created	16	groups	of	employee	ID	and	order	year.	Seven
of	those	groups	have	only	one	row,	so	after	the	HAVING	clause	is	processed,	nine	groups
remain.	Run	the	following	query	to	return	those	nine	groups:
Click	here	to	view	code	image

SELECT	empid,	YEAR(orderdate)	AS	orderyear
FROM	Sales.Orders
WHERE	custid	=	71
GROUP	BY	empid,	YEAR(orderdate)
HAVING	COUNT(*)	>	1;

This	query	returns	the	following	output:
empid							orderyear
-----------	-----------
1											2015
3											2015
5											2015
6											2015
8											2015
1											2016
2											2016
4											2016
7											2016

(9	row(s)	affected)

The	SELECT	clause
The	SELECT	clause	is	where	you	specify	the	attributes	(columns)	you	want	to	return	in	the
result	table	of	the	query.	You	can	base	the	expressions	in	the	SELECT	list	on	attributes	from
the	queried	tables,	with	or	without	further	manipulation.
For	example,	the	SELECT	list	in	Listing	2-1	has	the	following	expressions:	empid,

YEAR(orderdate),	and	COUNT(*).	If	an	expression	refers	to	an	attribute	with	no	manipulation,
such	as	empid,	the	name	of	the	target	attribute	is	the	same	as	the	name	of	the	source	attribute.

You	can	optionally	assign	your	own	name	to	the	target	attribute	by	using	the	AS	clause—for
example,	empid	AS	employee_id.	Expressions	that	do	apply	manipulation,	such	as
YEAR(orderdate),	or	that	are	not	based	on	a	source	attribute,	such	as	a	call	to	the	function
SYSDATETIME,	won’t	have	a	name	unless	you	alias	them.	T-SQL	allows	a	query	to	return
result	columns	with	no	names	in	certain	cases,	but	the	relational	model	doesn’t.	I	recommend
you	alias	such	expressions	as	YEAR(orderdate)	AS	orderyear	so	that	all	result	attributes	have
names.	In	this	respect,	the	result	table	returned	from	the	query	would	be	considered	relational.
In	addition	to	supporting	the	AS	clause,	T-SQL	supports	a	couple	of	other	forms	with	which

you	can	alias	expressions.	To	me,	the	AS	clause	seems	the	most	readable	and	intuitive	form;
therefore,	I	recommend	using	it.	I	will	cover	the	other	forms	for	the	sake	of	completeness	and
also	to	describe	an	elusive	bug	related	to	one	of	them.
In	addition	to	supporting	the	form	<expression>	AS	<alias>,	T-SQL	also	supports	the

forms	<alias>	=	<expression>	(“alias	equals	expression”)	and	<expression>	<alias>
(“expression	space	alias”).	An	example	of	the	former	is	orderyear	=	YEAR(orderdate),	and	an
example	of	the	latter	is	YEAR(orderdate)	orderyear.	I	find	the	latter	particularly	unclear	and
recommend	avoiding	it,	although	unfortunately	this	form	is	very	common	in	people’s	code.
Note	that	if	by	mistake	you	miss	a	comma	between	two	column	names	in	the	SELECT	list,

your	code	won’t	fail.	Instead,	SQL	Server	will	assume	the	second	name	is	an	alias	for	the	first
column	name.	As	an	example,	suppose	you	want	to	query	the	columns	orderid	and	orderdate
from	the	Sales.Orders	table	and	you	miss	the	comma	between	them,	as	follows:

SELECT	orderid	orderdate
FROM	Sales.Orders;

This	query	is	considered	syntactically	valid,	as	if	you	intended	to	alias	the	orderid	column
as	orderdate.	In	the	output,	you	will	get	only	one	column	holding	the	order	IDs,	with	the	alias
orderdate:

orderdate

10248
10249
10250
10251
10252
...

(830	row(s)	affected)

If	you’re	accustomed	to	using	the	syntax	with	the	space	between	an	expression	and	its	alias,
it	will	be	harder	for	you	to	detect	such	bugs.
With	the	addition	of	the	SELECT	phase,	the	following	query	clauses	from	the	query	in

Listing	2-1	have	been	processed	so	far:
Click	here	to	view	code	image

SELECT	empid,	YEAR(orderdate)	AS	orderyear,	COUNT(*)	AS	numorders

FROM	Sales.Orders
WHERE	custid	=	71
GROUP	BY	empid,	YEAR(orderdate)
HAVING	COUNT(*)	>	1

The	SELECT	clause	produces	the	result	table	of	the	query.	In	the	case	of	the	query	in	Listing
2-1,	the	heading	of	the	result	table	has	the	attributes	empid,	orderyear,	and	numorders,	and	the
body	has	nine	rows	(one	for	each	group).	Run	the	following	query	to	return	those	nine	rows:
Click	here	to	view	code	image

SELECT	empid,	YEAR(orderdate)	AS	orderyear,	COUNT(*)	AS	numorders
FROM	Sales.Orders
WHERE	custid	=	71
GROUP	BY	empid,	YEAR(orderdate)
HAVING	COUNT(*)	>	1;

This	query	generates	the	following	output:
Click	here	to	view	code	image

empid							orderyear			numorders
-----------	-----------	-----------
1											2015								2
3											2015								2
5											2015								3
6											2015								3
8											2015								4
1											2016								3
2											2016								2
4											2016								3
7											2016								2

(9	row(s)	affected)

Remember	that	the	SELECT	clause	is	processed	after	the	FROM,	WHERE,	GROUP	BY,	and
HAVING	clauses.	This	means	that	aliases	assigned	to	expressions	in	the	SELECT	clause	do	not
exist	as	far	as	clauses	that	are	processed	before	the	SELECT	clause	are	concerned.	It’s	a
typical	mistake	to	try	and	refer	to	expression	aliases	in	clauses	that	are	processed	before	the
SELECT	clause,	such	as	in	the	following	example	in	which	the	attempt	is	made	in	the	WHERE
clause:
Click	here	to	view	code	image

SELECT	orderid,	YEAR(orderdate)	AS	orderyear
FROM	Sales.Orders
WHERE	orderyear	>	2015;

At	first	glance,	this	query	might	seem	valid,	but	if	you	consider	that	the	column	aliases	are
created	in	the	SELECT	phase—which	is	processed	after	the	WHERE	phase—you	can	see	that
the	reference	to	the	orderyear	alias	in	the	WHERE	clause	is	invalid.	In	fact,	SQL	Server
produces	the	following	error:
Click	here	to	view	code	image

Msg	207,	Level	16,	State	1,	Line	3
Invalid	column	name	'orderyear'.

Amusingly,	a	lecture	attendee	once	asked	me	in	all	seriousness	when	Microsoft	is	going	to
fix	this	bug.	As	you	can	gather	from	this	chapter,	this	behavior	is	not	a	bug;	rather,	it	is	by
design.	Also,	it	was	not	defined	by	Microsoft;	rather,	it	was	defined	by	the	SQL	standard.
One	way	around	this	problem	is	to	repeat	the	expression	YEAR(orderdate)	in	both	the

WHERE	and	SELECT	clauses:
Click	here	to	view	code	image

SELECT	orderid,	YEAR(orderdate)	AS	orderyear
FROM	Sales.Orders
WHERE	YEAR(orderdate)	>	2015;

A	similar	problem	can	happen	if	you	try	to	refer	to	an	expression	alias	in	the	HAVING
clause,	which	is	also	processed	before	the	SELECT	clause:
Click	here	to	view	code	image

SELECT	empid,	YEAR(orderdate)	AS	orderyear,	COUNT(*)	AS	numorders
FROM	Sales.Orders
WHERE	custid	=	71
GROUP	BY	empid,	YEAR(orderdate)
HAVING	numorders	>	1;

This	query	fails	with	an	error	saying	that	the	column	name	numorders	is	invalid.	Just	like	in
the	previous	example,	the	workaround	here	is	to	repeat	the	expression	COUNT(*)	in	both
clauses:
Click	here	to	view	code	image

SELECT	empid,	YEAR(orderdate)	AS	orderyear,	COUNT(*)	AS	numorders
FROM	Sales.Orders
WHERE	custid	=	71
GROUP	BY	empid,	YEAR(orderdate)
HAVING	COUNT(*)	>	1;

In	the	relational	model,	operations	on	relations	are	based	on	relational	algebra	and	result	in
a	relation.	Recall	that	a	relation’s	body	is	a	set	of	tuples,	and	a	set	has	no	duplicates.	Unlike	the
relational	model,	which	is	based	on	mathematical	set	theory,	SQL	is	based	on	multiset	theory.
The	mathematical	term	multiset,	or	bag,	is	similar	in	some	aspects	to	a	set	but	does	allow
duplicates.	A	table	in	SQL	isn’t	required	to	have	a	key.	Without	a	key,	the	table	can	have
duplicate	rows	and	therefore	isn’t	relational.	Even	if	the	table	does	have	a	key,	a	SELECT
query	against	the	table	can	still	return	duplicate	rows.	SQL	query	results	do	not	have	keys.	As
an	example,	the	Orders	table	does	have	a	primary	key	defined	on	orderid	column.	Still,	the
query	in	Listing	2-2	against	the	Orders	table	returns	duplicate	rows.

LISTING	2-2	Query	returning	duplicate	rows

Click	here	to	view	code	image

SELECT	empid,	YEAR(orderdate)	AS	orderyear
FROM	Sales.Orders
WHERE	custid	=	71;

This	query	generates	the	following	output:
empid							orderyear
-----------	-----------
9											2014
1											2014

2											2014
4											2015
8											2015
6											2015
6											2015
8											2015
5											2015
1											2015
8											2015
2											2015
7											2015
3											2015
5											2015
1											2015
5											2015
8											2015
3											2015
6											2015
2											2016
4											2016
4											2016
1											2016
7											2016
2											2016
1											2016
4											2016
7											2016
6											2016
1											2016

(31	row(s)	affected)

SQL	provides	the	means	to	remove	duplicates	using	the	DISTINCT	clause	(as	shown	in
Listing	2-3)	and,	in	this	sense,	return	a	relational	result.

LISTING	2-3	Query	with	a	DISTINCT	clause

Click	here	to	view	code	image

SELECT	DISTINCT	empid,	YEAR(orderdate)	AS	orderyear
FROM	Sales.Orders
WHERE	custid	=	71;

This	query	generates	the	following	output:
empid							orderyear
-----------	-----------
1											2014
1											2015
1											2016
2											2014
2											2015
2											2016
3											2015
4											2015
4											2016
5											2015

6											2015
6											2016
7											2015
7											2016
8											2015
9											2014

(16	row(s)	affected)

Of	the	31	rows	in	the	multiset	returned	by	the	query	in	Listing	2-2,	16	rows	are	in	the	set
returned	by	the	query	in	Listing	2-3	after	the	removal	of	duplicates.
SQL	allows	specifying	an	asterisk	(*)	in	the	SELECT	list	to	request	all	attributes	from	the

queried	tables	instead	of	listing	them	explicitly,	as	in	the	following	example:
SELECT	*
FROM	Sales.Shippers;

Such	use	of	an	asterisk	is	considered	a	bad	programming	practice	in	most	cases.	It	is
recommended	that	you	explicitly	list	all	attributes	you	need.	Unlike	with	the	relational	model,
SQL	keeps	ordinal	positions	for	columns	based	on	the	order	in	which	you	specified	them	in
the	CREATE	TABLE	statement.	By	specifying	SELECT	*,	you’re	guaranteed	to	get	the	columns
ordered	in	the	output	based	on	their	ordinal	positions.	Client	applications	can	refer	to
columns	in	the	result	by	their	ordinal	positions	(a	bad	practice	in	its	own	right)	instead	of	by
name.	Then	any	schema	changes	applied	to	the	table—such	as	adding	or	removing	columns,
rearranging	their	order,	and	so	on—might	result	in	failures	in	the	client	application	or,	even
worse,	in	application	bugs	that	will	go	unnoticed.	By	explicitly	specifying	the	attributes	you
need,	you	always	get	the	right	ones,	as	long	as	the	columns	exist	in	the	table.	If	a	column
referenced	by	the	query	was	dropped	from	the	table,	you	get	an	error	and	can	fix	your	code
accordingly.
People	often	wonder	whether	there’s	any	performance	difference	between	specifying	an

asterisk	and	explicitly	listing	column	names.	There	is	some	extra	work	involved	in	resolving
column	names	when	the	asterisk	is	used,	but	the	cost	is	negligible	compared	to	other	costs
involved	in	the	processing	of	a	query.	Because	listing	column	names	explicitly	is	the
recommended	practice	anyway,	it’s	a	win-win	situation.
Curiously,	you	are	not	allowed	to	refer	to	column	aliases	created	in	the	SELECT	clause	in

other	expressions	within	the	same	SELECT	clause.	That’s	the	case	even	if	the	expression	that
tries	to	use	the	alias	appears	to	the	right	of	the	expression	that	created	it.	For	example,	the
following	attempt	is	invalid:
Click	here	to	view	code	image

SELECT	orderid,
		YEAR(orderdate)	AS	orderyear,
		orderyear	+	1	AS	nextyear
FROM	Sales.Orders;

I’ll	explain	the	reason	for	this	restriction	later	in	this	chapter,	in	the	section,	“All-at-Once
Operations.”	As	explained	earlier	in	this	section,	one	of	the	ways	around	this	problem	is	to
repeat	the	expression:
Click	here	to	view	code	image

SELECT	orderid,
		YEAR(orderdate)	AS	orderyear,
		YEAR(orderdate)	+	1	AS	nextyear
FROM	Sales.Orders;

The	ORDER	BY	clause
You	use	the	ORDER	BY	clause	to	sort	the	rows	in	the	output	for	presentation	purposes.	In
terms	of	logical	query	processing,	ORDER	BY	is	the	very	last	clause	to	be	processed.	The
sample	query	shown	in	Listing	2-4	sorts	the	rows	in	the	output	by	employee	ID	and	order
year.

LISTING	2-4	Query	demonstrating	the	ORDER	BY	clause

Click	here	to	view	code	image

SELECT	empid,	YEAR(orderdate)	AS	orderyear,	COUNT(*)	AS	numorders
FROM	Sales.Orders
WHERE	custid	=	71
GROUP	BY	empid,	YEAR(orderdate)
HAVING	COUNT(*)	>	1
ORDER	BY	empid,	orderyear;

This	query	generates	the	following	output:
Click	here	to	view	code	image

empid							orderyear			numorders
-----------	-----------	-----------
1											2015								2
1											2016								3
2											2016								2
3											2015								2
4											2016								3
5											2015								3
6											2015								3
7											2016								2
8											2015								4

(9	row(s)	affected)

This	time,	presentation	ordering	in	the	output	is	guaranteed—unlike	with	queries	that	don’t
have	a	presentation	ORDER	BY	clause.
One	of	the	most	important	points	to	understand	about	SQL	is	that	a	table—be	it	an	existing

table	in	the	database	or	a	table	result	returned	by	a	query—has	no	guaranteed	order.	That’s
because	a	table	is	supposed	to	represent	a	set	of	rows	(or	multiset,	if	it	has	duplicates),	and	a
set	has	no	order.	This	means	that	when	you	query	a	table	without	specifying	an	ORDER	BY
clause,	SQL	Server	is	free	to	return	the	rows	in	the	output	in	any	order.	The	only	way	for	you
to	guarantee	the	presentation	order	in	the	result	is	with	an	ORDER	BY	clause.	However,	you
should	realize	that	if	you	do	specify	an	ORDER	BY	clause,	the	result	can’t	qualify	as	a	table
because	it	is	ordered.	Standard	SQL	calls	such	a	result	a	cursor.
You’re	probably	wondering	why	it	matters	whether	a	query	returns	a	table	or	a	cursor.

Some	language	elements	and	operations	in	SQL	expect	to	work	with	table	results	of	queries
and	not	with	cursors.	Examples	include	table	expressions	and	set	operators,	which	I	cover	in
detail	in	Chapter	5,	“Table	expressions,”	and	in	Chapter	6,	“Set	operators.”
Notice	in	the	query	in	Listing	2-4	that	the	ORDER	BY	clause	refers	to	the	column	alias

orderyear,	which	was	created	in	the	SELECT	phase.	The	ORDER	BY	phase	is	the	only	phase	in
which	you	can	refer	to	column	aliases	created	in	the	SELECT	phase,	because	it	is	the	only
phase	processed	after	the	SELECT	phase.	Note	that	if	you	define	a	column	alias	that	is	the
same	as	an	underlying	column	name,	as	in	1	-	col1	AS	col1,	and	refer	to	that	alias	in	the
ORDER	BY	clause,	the	new	column	is	the	one	considered	for	ordering.
When	you	want	to	sort	by	an	expression	in	ascending	order,	you	either	specify	ASC	right

after	the	expression,	as	in	orderyear	ASC,	or	don’t	specify	anything	after	the	expression,
because	ASC	is	the	default.	If	you	want	to	sort	in	descending	order,	you	need	to	specify	DESC
after	the	expression,	as	in	orderyear	DESC.
With	T-SQL,	you	can	specify	ordinal	positions	of	columns	in	the	ORDER	BY	clause,	based

on	the	order	in	which	the	columns	appear	in	the	SELECT	list.	For	example,	in	the	query	in
Listing	2-4,	instead	of	using

ORDER	BY	empid,	orderyear

you	could	use
ORDER	BY	1,	2

However,	this	is	considered	bad	programming	practice	for	a	couple	of	reasons.	First,	in	the
relational	model,	attributes	don’t	have	ordinal	positions	and	need	to	be	referred	to	by	name.
Second,	when	you	make	revisions	to	the	SELECT	clause,	you	might	forget	to	make	the
corresponding	revisions	in	the	ORDER	BY	clause.	When	you	use	column	names,	your	code	is
safe	from	this	type	of	mistake.
With	T-SQL,	you	also	can	specify	elements	in	the	ORDER	BY	clause	that	do	not	appear	in

the	SELECT	clause,	meaning	you	can	sort	by	something	you	don’t	necessarily	want	to	return.
The	big	drawback	for	this	is	that	you	can’t	check	your	sorted	results	by	looking	at	the	query
output.	For	example,	the	following	query	sorts	the	employee	rows	by	hire	date	without
returning	the	hiredate	attribute:
Click	here	to	view	code	image

SELECT	empid,	firstname,	lastname,	country
FROM	HR.Employees
ORDER	BY	hiredate;

However,	when	the	DISTINCT	clause	is	specified,	you	are	restricted	in	the	ORDER	BY	list
only	to	elements	that	appear	in	the	SELECT	list.	The	reasoning	behind	this	restriction	is	that
when	DISTINCT	is	specified,	a	single	result	row	might	represent	multiple	source	rows;
therefore,	it	might	not	be	clear	which	of	the	values	in	the	multiple	rows	should	be	used.
Consider	the	following	invalid	query:

SELECT	DISTINCT	country
FROM	HR.Employees
ORDER	BY	empid;

There	are	nine	employees	in	the	Employees	table—five	from	the	United	States	and	four
from	the	United	Kingdom.	If	you	omit	the	invalid	ORDER	BY	clause	from	this	query,	you	get
two	rows	back—one	for	each	distinct	country.	Because	each	country	appears	in	multiple	rows
in	the	source	table,	and	each	such	row	has	a	different	employee	ID,	the	meaning	of	ORDER	BY
empid	is	not	really	defined.

The	TOP	and	OFFSET-FETCH	filters
Earlier	in	this	chapter	I	covered	the	filtering	clauses	WHERE	and	HAVING,	which	are	based
on	predicates.	In	this	section	I	cover	the	filtering	clauses	TOP	and	OFFSET-FETCH,	which	are
based	on	number	of	rows	and	ordering.

The	TOP	filter
The	TOP	filter	is	a	proprietary	T-SQL	feature	you	can	use	to	limit	the	number	or	percentage
of	rows	your	query	returns.	It	relies	on	two	elements	as	part	of	its	specification:	one	is	the
number	or	percent	of	rows	to	return,	and	the	other	is	the	ordering.	For	example,	to	return
from	the	Orders	table	the	five	most	recent	orders,	you	specify	TOP	(5)	in	the	SELECT	clause
and	orderdate	DESC	in	the	ORDER	BY	clause,	as	shown	in	Listing	2-5.

LISTING	2-5	Query	demonstrating	the	TOP	filter

Click	here	to	view	code	image

SELECT	TOP	(5)	orderid,	orderdate,	custid,	empid
FROM	Sales.Orders
ORDER	BY	orderdate	DESC;

This	query	returns	the	following	output:
Click	here	to	view	code	image

orderid					orderdate		custid						empid
-----------	----------	-----------	-----------
11077							2016-05-06	65										1
11076							2016-05-06	9											4
11075							2016-05-06	68										8
11074							2016-05-06	73										7
11073							2016-05-05	58										2

(5	row(s)	affected)

Remember	that	the	ORDER	BY	clause	is	evaluated	after	the	SELECT	clause,	which	includes
the	DISTINCT	option.	The	same	is	true	with	the	TOP	filter,	which	relies	on	the	ORDER	BY
specification	to	give	it	its	filtering-related	meaning.	This	means	that	if	DISTINCT	is	specified
in	the	SELECT	clause,	the	TOP	filter	is	evaluated	after	duplicate	rows	have	been	removed.
Also	note	that	when	the	TOP	filter	is	specified,	the	ORDER	BY	clause	serves	a	dual	purpose

in	the	query.	One	purpose	is	to	define	the	presentation	ordering	for	the	rows	in	the	query
result.	Another	purpose	is	to	define	for	the	TOP	option	which	rows	to	filter.	For	example,	the
query	in	Listing	2-5	returns	the	five	rows	with	the	most	recent	orderdate	values	and	presents

the	rows	in	the	output	in	orderdate	DESC	ordering.
If	you’re	confused	about	whether	a	TOP	query	returns	a	table	result	or	a	cursor,	you	have

every	reason	to	be.	Normally,	a	query	with	an	ORDER	BY	clause	returns	a	cursor—not	a
relational	result.	But	what	if	you	need	to	filter	rows	with	the	TOP	option	based	on	some
ordering	but	still	return	a	relational	result?	Also,	what	if	you	need	to	filter	rows	with	the	TOP
option	based	on	one	order	but	present	the	output	rows	in	another	order?
To	achieve	this,	you	have	to	use	a	table	expression,	but	I’ll	save	the	discussion	about	table

expressions	for	Chapter	5.	All	I	want	to	say	for	now	is	that	if	the	design	of	the	TOP	filter
seems	confusing,	there’s	a	good	reason.	In	other	words,	it’s	not	you—it’s	the	feature’s	design.
It	would	have	been	nice	if	the	TOP	filter	had	its	own	ordering	specification	that	was	separate
from	the	presentation	ordering	specification	in	the	query.	Unfortunately,	that	ship	has	sailed
already.
You	can	use	the	TOP	option	with	the	PERCENT	keyword,	in	which	case	SQL	Server

calculates	the	number	of	rows	to	return	based	on	a	percentage	of	the	number	of	qualifying
rows,	rounded	up.	For	example,	the	following	query	requests	the	top	1	percent	of	the	most
recent	orders:
Click	here	to	view	code	image

SELECT	TOP	(1)	PERCENT	orderid,	orderdate,	custid,	empid
FROM	Sales.Orders
ORDER	BY	orderdate	DESC;

This	query	generates	the	following	output:
Click	here	to	view	code	image

orderid					orderdate		custid						empid
-----------	----------	-----------	-----------
11074							2016-05-06	73										7
11075							2016-05-06	68										8
11076							2016-05-06	9											4
11077							2016-05-06	65										1
11070							2016-05-05	44										2
11071							2016-05-05	46										1
11072							2016-05-05	20										4
11073							2016-05-05	58										2
11067							2016-05-04	17										1

(9	row(s)	affected)

The	query	returns	nine	rows	because	the	Orders	table	has	830	rows,	and	1	percent	of	830,
rounded	up,	is	9.
In	the	query	in	Listing	2-5,	you	might	have	noticed	that	the	ORDER	BY	list	is	not	unique

(because	no	primary	key	or	unique	constraint	is	defined	on	the	orderdate	column).	Multiple
rows	can	have	the	same	order	date.	In	such	a	case,	the	ordering	among	rows	with	the	same
order	date	is	undefined.	This	fact	makes	the	query	nondeterministic—more	than	one	result
can	be	considered	correct.	In	case	of	ties,	SQL	Server	filters	rows	based	on	physical	access
order.
Note	that	you	can	even	use	the	TOP	filter	in	a	query	without	an	ORDER	BY	clause.	In	such	a

case,	the	ordering	is	completely	undefined—SQL	Server	returns	whichever	n	rows	it	happens

to	physically	access	first,	where	n	is	the	requested	number	of	rows.
Notice	in	the	output	for	the	query	in	Listing	2-5	that	the	minimum	order	date	in	the	rows

returned	is	May	5,	2016,	and	one	row	in	the	output	has	that	date.	Other	rows	in	the	table	might
have	the	same	order	date,	and	with	the	existing	non-unique	ORDER	BY	list,	there	is	no
guarantee	which	one	will	be	returned.
If	you	want	the	query	to	be	deterministic,	you	need	to	make	the	ORDER	BY	list	unique;	in

other	words,	add	a	tiebreaker.	For	example,	you	can	add	orderid	DESC	to	the	ORDER	BY	list
as	shown	in	Listing	2-6	so	that,	in	case	of	ties,	the	row	with	the	greater	order	ID	value	will	be
preferred.

LISTING	2-6	Query	demonstrating	TOP	with	unique	ORDER	BY	list

Click	here	to	view	code	image

SELECT	TOP	(5)	orderid,	orderdate,	custid,	empid
FROM	Sales.Orders
ORDER	BY	orderdate	DESC,	orderid	DESC;

This	query	returns	the	following	output:
Click	here	to	view	code	image

orderid					orderdate		custid						empid
-----------	----------	-----------	-----------
11077							2016-05-06	65										1
11076							2016-05-06	9											4
11075							2016-05-06	68										8
11074							2016-05-06	73										7
11073							2016-05-05	58										2

(5	row(s)	affected)

If	you	examine	the	results	of	the	queries	from	Listings	2-5	and	2-6,	you’ll	notice	that	they
seem	to	be	the	same.	The	important	difference	is	that	the	result	shown	in	the	query	output	for
Listing	2-5	is	one	of	several	possible	valid	results	for	this	query,	whereas	the	result	shown	in
the	query	output	for	Listing	2-6	is	the	only	possible	valid	result.
Instead	of	adding	a	tiebreaker	to	the	ORDER	BY	list,	you	can	request	to	return	all	ties.	For

example,	you	can	ask	that,	in	addition	to	the	five	rows	you	get	back	from	the	query	in	Listing
2-5,	all	other	rows	from	the	table	be	returned	that	have	the	same	sort	value	(order	date,	in	this
case)	as	the	last	one	found	(May	5,	2016,	in	this	case).	You	achieve	this	by	adding	the	WITH
TIES	option,	as	shown	in	the	following	query:
Click	here	to	view	code	image

SELECT	TOP	(5)	WITH	TIES	orderid,	orderdate,	custid,	empid
FROM	Sales.Orders
ORDER	BY	orderdate	DESC;

This	query	returns	the	following	output:
Click	here	to	view	code	image

orderid					orderdate		custid						empid
-----------	----------	-----------	-----------
11077							2016-05-06	65										1
11076							2016-05-06	9											4
11075							2016-05-06	68										8
11074							2016-05-06	73										7
11073							2016-05-05	58										2
11072							2016-05-05	20										4
11071							2016-05-05	46										1
11070							2016-05-05	44										2

(8	row(s)	affected)

Notice	that	the	output	has	eight	rows,	even	though	you	specified	TOP	(5).	SQL	Server	first
returned	the	TOP	(5)	rows	based	on	orderdate	DESC	ordering,	and	it	also	returned	all	other
rows	from	the	table	that	had	the	same	orderdate	value	as	in	the	last	of	the	five	rows	that	were
accessed.	Using	the	WITH	TIES	option,	the	selection	of	rows	is	deterministic,	but	the
presentation	order	among	rows	with	the	same	order	date	isn’t.

The	OFFSET-FETCH	filter
The	TOP	filter	is	very	practical,	but	it	has	two	shortcomings—it’s	not	standard,	and	it	doesn’t
support	a	skipping	capability.	T-SQL	also	supports	a	standard,	TOP-like	filter,	called
OFFSET-FETCH,	which	does	support	a	skipping	option.	This	makes	it	very	useful	for	ad-hoc
paging	purposes.
The	OFFSET-FETCH	filter	is	considered	an	extension	to	the	ORDER	BY	clause.	With	the

OFFSET	clause	you	indicate	how	many	rows	to	skip,	and	with	the	FETCH	clause	you	indicate
how	many	rows	to	filter	after	the	skipped	rows.	As	an	example,	consider	the	following	query:
Click	here	to	view	code	image

SELECT	orderid,	orderdate,	custid,	empid
FROM	Sales.Orders
ORDER	BY	orderdate,	orderid
OFFSET	50	ROWS	FETCH	NEXT	25	ROWS	ONLY;

The	query	orders	the	rows	from	the	Orders	table	based	on	the	orderdate	and	orderid
attributes	(from	least	recent	to	most	recent,	with	orderid	as	the	tiebreaker).	Based	on	this
ordering,	the	OFFSET	clause	skips	the	first	50	rows	and	the	FETCH	clause	filters	the	next	25
rows	only.
Note	that	a	query	that	uses	OFFSET-FETCH	must	have	an	ORDER	BY	clause.	Also,	T-SQL

doesn’t	support	the	FETCH	clause	without	the	OFFSET	clause.	If	you	do	not	want	to	skip	any
rows	but	do	want	to	filter	rows	with	the	FETCH	clause,	you	must	indicate	that	by	using
OFFSET	0	ROWS.	However,	OFFSET	without	FETCH	is	allowed.	In	such	a	case,	the	query
skips	the	indicated	number	of	rows	and	returns	all	remaining	rows	in	the	result.
There	are	interesting	language	aspects	to	note	about	the	syntax	for	the	OFFSET-FETCH

filter.	The	singular	and	plural	forms	ROW	and	ROWS	are	interchangeable.	The	idea	behind
this	is	to	allow	you	to	phrase	the	filter	in	an	intuitive	English-like	manner.	For	example,
suppose	you	want	to	fetch	only	one	row;	though	it	would	be	syntactically	valid,	it	would
nevertheless	look	strange	if	you	specified	FETCH	1	ROWS.	Therefore,	you’re	allowed	to	use
the	form	FETCH	1	ROW.	The	same	principle	applies	to	the	OFFSET	clause.	Also,	if	you’re

not	skipping	any	rows	(OFFSET	0	ROWS),	you	might	find	the	term	“first”	more	suitable	than
“next.”	Hence,	the	forms	FIRST	and	NEXT	are	interchangeable.
As	you	can	see,	the	OFFSET-FETCH	filter	is	more	flexible	than	the	TOP	filter	in	the	sense

that	it	supports	a	skipping	capability.	However,	at	the	date	of	this	writing	(the	year	2016),	the
T-SQL	implementation	of	the	OFFSET-FETCH	filter	doesn’t	yet	support	the	PERCENT	and
WITH	TIES	options	that	TOP	does.	Curiously,	the	SQL	standard	specification	for	the	OFFSET-
FETCH	filter	does	support	these	options.

A	quick	look	at	window	functions
A	window	function	is	a	function	that,	for	each	row	in	the	underlying	query,	operates	on	a
window	(set)	of	rows	that	is	derived	from	the	underlying	query	result,	and	computes	a	scalar
(single)	result	value.	The	window	of	rows	is	defined	with	an	OVER	clause.	Window	functions
are	profound;	you	can	use	them	to	address	a	wide	variety	of	needs,	such	as	to	perform	data-
analysis	calculations.	T-SQL	supports	several	categories	of	window	functions,	and	each
category	has	several	functions.	Window	functions	are	a	SQL	standard,	but	T-SQL	supports	a
subset	of	the	features	from	the	standard.
At	this	point	in	the	book,	it	could	be	premature	to	get	into	too	much	detail.	For	now,	I’ll	just

provide	a	glimpse	into	the	concept	and	demonstrate	it	by	using	the	ROW_NUMBER	window
function.	Later	in	the	book	(in	Chapter	7,	“Beyond	the	fundamentals	of	querying”),	I	provide
more	details.
As	mentioned,	a	window	function	operates	on	a	set	of	rows	exposed	to	it	by	the	OVER

clause.	For	each	row	in	the	underlying	query,	the	OVER	clause	exposes	to	the	function	a
subset	of	the	rows	from	the	underlying	query’s	result	set.	The	OVER	clause	can	restrict	the
rows	in	the	window	by	using	a	window	partition	subclause	(PARTITION	BY).	It	can	define
ordering	for	the	calculation	(if	relevant)	using	a	window	order	subclause	(ORDER	BY)—not
to	be	confused	with	the	query’s	presentation	ORDER	BY	clause.
Consider	the	following	query	as	an	example:

Click	here	to	view	code	image

SELECT	orderid,	custid,	val,
		ROW_NUMBER()	OVER(PARTITION	BY	custid
																				ORDER	BY	val)	AS	rownum
FROM	Sales.OrderValues
ORDER	BY	custid,	val;

This	query	generates	the	following	output:
Click	here	to	view	code	image

orderid					custid						val																																					rownum
-----------	-----------	---------------------------------------	------------------
--
10702							1											330.00																																		1
10952							1											471.20																																		2
10643							1											814.50																																		3
10835							1											845.80																																		4
10692							1											878.00																																		5
11011							1											933.50																																		6
10308							2											88.80																																			1

10759							2											320.00																																		2
10625							2											479.75																																		3
10926							2											514.40																																		4
10682							3											375.50																																		1
...

(830	row(s)	affected)

The	ROW_NUMBER	function	assigns	unique,	sequential,	incrementing	integers	to	the	rows
in	the	result	within	the	respective	partition,	based	on	the	indicated	ordering.	The	OVER	clause
in	this	example	function	partitions	the	window	by	the	custid	attribute;	hence,	the	row	numbers
are	unique	to	each	customer.	The	OVER	clause	also	defines	ordering	in	the	window	by	the	val
attribute,	so	the	sequential	row	numbers	are	incremented	within	the	partition	based	on	the
values	in	this	attribute.
Note	that	the	ROW_NUMBER	function	must	produce	unique	values	within	each	partition.

This	means	that	even	when	the	ordering	value	doesn’t	increase,	the	row	number	still	must
increase.	Therefore,	if	the	ROW_NUMBER	function’s	ORDER	BY	list	is	non-unique,	as	in	the
preceding	example,	the	query	is	nondeterministic.	That	is,	more	than	one	correct	result	is
possible.	If	you	want	to	make	a	row	number	calculation	deterministic,	you	must	add	elements
to	the	ORDER	BY	list	to	make	it	unique.	For	example,	in	our	sample	query	you	can	achieve
this	by	adding	the	orderid	attribute	as	a	tiebreaker.
Window	ordering	should	not	be	confused	with	presentation	ordering;	it	does	not	prevent

the	result	from	being	relational.	Also,	specifying	window	ordering	in	a	window	function
doesn’t	give	you	any	presentation-ordering	guarantees.	If	you	need	to	guarantee	presentation
ordering,	you	must	add	a	presentation	ORDER	BY	clause,	as	I	did	in	the	last	query.
Note	that	expressions	in	the	SELECT	list	are	evaluated	before	the	DISTINCT	clause	(if	one

exists).	This	rule	also	applies	to	expressions	based	on	window	functions	that	appear	in	the
SELECT	list.	I	explain	the	significance	of	this	fact	in	Chapter	7.
To	put	it	all	together,	the	following	list	presents	the	logical	order	in	which	all	clauses

discussed	so	far	are	processed:
	FROM
	WHERE
	GROUP	BY
	HAVING
	SELECT
•	Expressions
•	DISTINCT
	ORDER	BY
•	TOP/OFFSET-FETCH

Predicates	and	operators
T-SQL	has	language	elements	in	which	predicates	can	be	specified—for	example,	query
filters	such	as	WHERE	and	HAVING,	CHECK	constraints,	and	others.	Remember	that
predicates	are	logical	expressions	that	evaluate	to	TRUE,	FALSE,	or	UNKNOWN.	You	can
combine	predicates	by	using	logical	operators	such	as	AND	(forming	a	combination	known
as	a	conjunction	of	predicates)	and	OR	(known	as	a	disjunction	of	predicates).	You	can	also
involve	other	types	of	operators,	such	as	comparison	operators,	in	your	expressions.
Examples	of	predicates	supported	by	T-SQL	include	IN,	BETWEEN,	and	LIKE.	You	use	the

IN	predicate	to	check	whether	a	value,	or	scalar	expression,	is	equal	to	at	least	one	of	the
elements	in	a	set.	For	example,	the	following	query	returns	orders	in	which	the	order	ID	is
equal	to	10248,	10249,	or	10250:
Click	here	to	view	code	image

SELECT	orderid,	empid,	orderdate
FROM	Sales.Orders
WHERE	orderid	IN(10248,	10249,	10250);

You	use	the	BETWEEN	predicate	to	check	whether	a	value	is	in	a	specified	range,	inclusive
of	the	two	specified	delimiters.	For	example,	the	following	query	returns	all	orders	in	the
inclusive	range	10300	through	10310:
Click	here	to	view	code	image

SELECT	orderid,	empid,	orderdate
FROM	Sales.Orders
WHERE	orderid	BETWEEN	10300	AND	10310;

With	the	LIKE	predicate,	you	can	check	whether	a	character	string	value	meets	a	specified
pattern.	For	example,	the	following	query	returns	employees	whose	last	names	start	with	the
letter	D:
Click	here	to	view	code	image

SELECT	empid,	firstname,	lastname
FROM	HR.Employees
WHERE	lastname	LIKE	N'D%';

Later	in	this	chapter,	I’ll	elaborate	on	pattern	matching	and	the	LIKE	predicate.
Notice	the	use	of	the	letter	N	to	prefix	the	string	‘D%’;	it	stands	for	National	and	is	used	to

denote	that	a	character	string	is	of	a	Unicode	data	type	(NCHAR	or	NVARCHAR),	as	opposed
to	a	regular	character	data	type	(CHAR	or	VARCHAR).	Because	the	data	type	of	the	lastname
attribute	is	NVARCHAR(40),	the	letter	N	is	used	to	prefix	the	string.	Later	in	this	chapter,	in	the
section	“Working	with	character	data,”	I	elaborate	on	the	treatment	of	character	strings.
T-SQL	supports	the	following	comparison	operators:	=,	>,	<,	>=,	<=,	<>,	!=,	!>,	!<,	of

which	the	last	three	are	not	standard.	Because	the	nonstandard	operators	have	standard
alternatives	(such	as	<>	instead	of	!=),	I	recommend	you	avoid	using	nonstandard	operators.
For	example,	the	following	query	returns	all	orders	placed	on	or	after	January	1,	2016:
Click	here	to	view	code	image

SELECT	orderid,	empid,	orderdate

FROM	Sales.Orders
WHERE	orderdate	>=	'20160101';

If	you	need	to	combine	logical	expressions,	you	can	use	the	logical	operators	OR	and	AND.
If	you	want	to	negate	an	expression,	you	can	use	the	NOT	operator.	For	example,	the
following	query	returns	orders	placed	on	or	after	January	1,	2016,	that	were	handled	by	one
of	the	employees	whose	ID	is	1,	3,	or	5:
Click	here	to	view	code	image

SELECT	orderid,	empid,	orderdate
FROM	Sales.Orders
WHERE	orderdate	>=	'20160101'
		AND	empid	IN(1,	3,	5);

T-SQL	supports	the	four	obvious	arithmetic	operators:	+,	–,	*,	and	/.	It	also	supports	the	%
operator	(modulo),	which	returns	the	remainder	of	integer	division.	For	example,	the
following	query	calculates	the	net	value	as	a	result	of	arithmetic	manipulation	of	the	quantity,
unitprice,	and	discount	attributes:
Click	here	to	view	code	image

SELECT	orderid,	productid,	qty,	unitprice,	discount,
		qty	*	unitprice	*	(1	-	discount)	AS	val
FROM	Sales.OrderDetails;

Note	that	the	data	type	of	a	scalar	expression	involving	two	operands	is	determined	in	T-
SQL	by	the	higher	of	the	two	in	terms	of	data-type	precedence.	If	both	operands	are	of	the
same	data	type,	the	result	of	the	expression	is	of	the	same	data	type	as	well.	For	example,	a
division	between	two	integers	(INT)	yields	an	integer.	The	expression	5/2	returns	the	integer	2
and	not	the	numeric	2.5.	This	is	not	a	problem	when	you	are	dealing	with	constants,	because
you	can	always	specify	the	values	as	numeric	ones	with	a	decimal	point.	But	when	you	are
dealing	with,	say,	two	integer	columns,	as	in	col1/col2,	you	need	to	cast	the	operands	to	the
appropriate	type	if	you	want	the	calculation	to	be	a	numeric	one:	CAST(col1	AS	NUMERIC(12,
2))/CAST(col2	AS	NUMERIC(12,	2)).	The	data	type	NUMERIC(12,	2)	has	a	precision	of	12
and	a	scale	of	2,	meaning	that	it	has	12	digits	in	total,	2	of	which	are	after	the	decimal	point.
If	the	two	operands	are	of	different	types,	the	one	with	the	lower	precedence	is	promoted	to

the	one	that	is	higher.	For	example,	in	the	expression	5/2.0,	the	first	operand	is	INT	and	the
second	is	NUMERIC.	Because	NUMERIC	is	considered	higher	than	INT,	the	INT	operand	5	is
implicitly	converted	to	the	NUMERIC	5.0	before	the	arithmetic	operation,	and	you	get	the
result	2.5.
You	can	find	the	precedence	order	among	types	in	SQL	Server	Books	Online	under	“Data

Type	Precedence.”
When	multiple	operators	appear	in	the	same	expression,	SQL	Server	evaluates	them	based

on	operator	precedence	rules.	The	following	list	describes	the	precedence	among	operators,
from	highest	to	lowest:

1.	()	(Parentheses)
2.	*	(Multiplication),	/	(Division),	%	(Modulo)
3.	+	(Positive),	–	(Negative),	+	(Addition),	+	(Concatenation),	–	(Subtraction)

4.	=,	>,	<,	>=,	<=,	<>,	!=,	!>,	!<	(Comparison	operators)
5.	NOT
6.	AND
7.	BETWEEN,	IN,	LIKE,	OR
8.	=	(Assignment)
For	example,	in	the	following	query,	AND	has	precedence	over	OR:

Click	here	to	view	code	image

SELECT	orderid,	custid,	empid,	orderdate
FROM	Sales.Orders
WHERE
								custid	=	1
				AND	empid	IN(1,	3,	5)
				OR		custid	=	85
				AND	empid	IN(2,	4,	6);

The	query	returns	orders	that	were	either	“placed	by	customer	1	and	handled	by	employees
1,	3,	or	5”	or	“placed	by	customer	85	and	handled	by	employees	2,	4,	or	6.”
Parentheses	have	the	highest	precedence,	so	they	give	you	full	control.	For	the	sake	of

other	people	who	need	to	review	or	maintain	your	code	and	for	readability	purposes,	it’s	a
good	practice	to	use	parentheses	even	when	they	are	not	required.	The	same	is	true	with
indentation.	For	example,	the	following	query	is	the	logical	equivalent	of	the	previous	query,
only	its	logic	is	much	clearer:
Click	here	to	view	code	image

SELECT	orderid,	custid,	empid,	orderdate
FROM	Sales.Orders
WHERE
						(custid	=	1
								AND	empid	IN(1,	3,	5))
				OR
						(custid	=	85
								AND	empid	IN(2,	4,	6));

Using	parentheses	to	force	precedence	with	logical	operators	is	similar	to	using
parentheses	with	arithmetic	operators.	For	example,	without	parentheses	in	the	following
expression,	multiplication	precedes	addition:

SELECT	10	+	2	*	3;

Therefore,	this	expression	returns	16.	You	can	use	parentheses	to	force	the	addition	to	be
calculated	first:

SELECT	(10	+	2)	*	3;

This	time,	the	expression	returns	36.

CASE	expressions
A	CASE	expression	is	a	scalar	expression	that	returns	a	value	based	on	conditional	logic.	It	is
based	on	the	SQL	standard.	Note	that	CASE	is	an	expression	and	not	a	statement;	that	is,	it
doesn’t	take	action	such	as	controlling	the	flow	of	your	code.	Instead,	it	returns	a	value.
Because	CASE	is	a	scalar	expression,	it	is	allowed	wherever	scalar	expressions	are	allowed,
such	as	in	the	SELECT,	WHERE,	HAVING,	and	ORDER	BY	clauses	and	in	CHECK	constraints.
There	are	two	forms	of	CASE	expressions:	simple	and	searched.	You	use	the	simple	form	to

compare	one	value	or	scalar	expression	with	a	list	of	possible	values	and	return	a	value	for
the	first	match.	If	no	value	in	the	list	is	equal	to	the	tested	value,	the	CASE	expression	returns
the	value	that	appears	in	the	ELSE	clause	(if	one	exists).	If	the	CASE	expression	doesn’t	have
an	ELSE	clause,	it	defaults	to	ELSE	NULL.
For	example,	the	following	query	against	the	Production.Products	table	uses	a	CASE

expression	in	the	SELECT	clause	to	produce	the	description	of	the	categoryid	column	value:
Click	here	to	view	code	image

SELECT	productid,	productname,	categoryid,
		CASE	categoryid
				WHEN	1	THEN	'Beverages'
				WHEN	2	THEN	'Condiments'
				WHEN	3	THEN	'Confections'
				WHEN	4	THEN	'Dairy	Products'
				WHEN	5	THEN	'Grains/Cereals'
				WHEN	6	THEN	'Meat/Poultry'
				WHEN	7	THEN	'Produce'
				WHEN	8	THEN	'Seafood'
				ELSE	'Unknown	Category'
		END	AS	categoryname
FROM	Production.Products;

This	query	produces	the	following	output,	shown	in	abbreviated	form:
Click	here	to	view	code	image

productid			productname				categoryid		categoryname
-----------	--------------	-----------	----------------
1											Product	HHYDP		1											Beverages
2											Product	RECZE		1											Beverages
3											Product	IMEHJ		2											Condiments
4											Product	KSBRM		2											Condiments
5											Product	EPEIM		2											Condiments
6											Product	VAIIV		2											Condiments
7											Product	HMLNI		7											Produce
8											Product	WVJFP		2											Condiments
9											Product	AOZBW		6											Meat/Poultry
10										Product	YHXGE		8											Seafood
...

(77	row(s)	affected)

Note	that	this	query	is	used	for	illustration	purposes.	Normally	you	maintain	the	product
categories	in	a	table	and	join	that	table	with	the	Products	table	when	you	need	to	get	the
category	descriptions.	In	fact,	the	TSQLV4	database	has	just	such	a	Categories	table.
The	simple	CASE	form	has	a	single	test	value	or	expression	right	after	the	CASE	keyword

that	is	compared	with	a	list	of	possible	values	in	the	WHEN	clauses.	The	searched	CASE	form
is	more	flexible	in	the	sense	you	can	specify	predicates	in	the	WHEN	clauses	rather	than	being
restricted	to	using	equality	comparisons.	The	searched	CASE	expression	returns	the	value	in
the	THEN	clause	that	is	associated	with	the	first	WHEN	predicate	that	evaluates	to	TRUE.	If
none	of	the	WHEN	predicates	evaluates	to	TRUE,	the	CASE	expression	returns	the	value	that
appears	in	the	ELSE	clause	(or	NULL	if	an	ELSE	clause	is	not	present).	For	example,	the
following	query	produces	a	value	category	description	based	on	whether	the	value	is	less	than
1,000.00,	between	1,000.00	and	3,000.00,	or	greater	than	3,000.00:
Click	here	to	view	code	image

SELECT	orderid,	custid,	val,
		CASE
				WHEN	val	<	1000.00																			THEN	'Less	than	1000'
				WHEN	val	BETWEEN	1000.00	AND	3000.00	THEN	'Between	1000	and	3000'
				WHEN	val	>	3000.00																			THEN	'More	than	3000'
				ELSE	'Unknown'
		END	AS	valuecategory
FROM	Sales.OrderValues;

This	query	generates	the	following	output:
Click	here	to	view	code	image

orderid					custid						val						valuecategory
-----------	-----------	--------	---------------------
10248							85										440.00			Less	than	1000
10249							79										1863.40		Between	1000	and	3000
10250							34										1552.60		Between	1000	and	3000
10251							84										654.06			Less	than	1000
10252							76										3597.90		More	than	3000
10253							34										1444.80		Between	1000	and	3000
10254							14										556.62			Less	than	1000
10255							68										2490.50		Between	1000	and	3000
10256							88										517.80			Less	than	1000
10257							35										1119.90		Between	1000	and	3000
...

(830	row(s)	affected)

You	can	see	that	every	simple	CASE	expression	can	be	converted	to	the	searched	CASE
form,	but	the	reverse	is	not	true.
T-SQL	supports	some	functions	you	can	consider	as	abbreviations	of	the	CASE	expression:

ISNULL,	COALESCE,	IIF,	and	CHOOSE.	Note	that	of	the	four,	only	COALESCE	is	standard.
The	ISNULL	function	accepts	two	arguments	as	input	and	returns	the	first	that	is	not	NULL,

or	NULL	if	both	are	NULL.	For	example	ISNULL(col1,	‘’)	returns	the	col1	value	if	it	isn’t
NULL	and	an	empty	string	if	it	is	NULL.	The	COALESCE	function	is	similar,	only	it	supports
two	or	more	arguments	and	returns	the	first	that	isn’t	NULL,	or	NULL	if	all	are	NULL.

See	Also
It’s	a	common	question	whether	you	should	use	ISNULL	or	COALESCE.	I	cover	the
topic	in	detail	in	my	SQL	Server	Pro	magazine	column	in	the	following	article:
http://sqlmag.com/t-sql/coalesce-vs-isnull.

The	nonstandard	IIF	and	CHOOSE	functions	were	added	to	T-SQL	to	support	easier
migrations	from	Microsoft	Access.	The	function	IIF(<logical_expression>,	<expr1>,
<expr2>)	returns	expr1	if	logical_expression	is	TRUE,	and	it	returns	expr2	otherwise.	For
example,	the	expression	IIF(col1	<>	0,	col2/col1,	NULL)	returns	the	result	of	col2/col1	if
col1	is	not	zero;	otherwise,	it	returns	a	NULL.	The	function	CHOOSE(<index>,	<expr1>,
<expr2>,	...,	<exprn>)	returns	the	expression	from	the	list	in	the	specified	index.	For
example,	the	expression	CHOOSE(3,	col1,	col2,	col3)	returns	the	value	of	col3.	Of	course,
actual	expressions	that	use	the	CHOOSE	function	tend	to	be	more	dynamic—for	example,
relying	on	user	input.
So	far,	I’ve	just	used	a	few	examples	to	familiarize	you	with	the	CASE	expression	and

related	functions.	Even	though	it	might	not	be	apparent	at	this	point	from	these	examples,	the
CASE	expression	is	an	extremely	powerful	and	useful	language	element.

NULLs
As	explained	in	Chapter	1,	“Background	to	T-SQL	querying	and	programming,”	SQL
supports	the	NULL	marker	to	represent	missing	values	and	uses	three-valued	predicate	logic,
meaning	that	predicates	can	evaluate	to	TRUE,	FALSE,	or	UNKNOWN.	T-SQL	follows	the
standard	in	this	respect.	Treatment	of	NULLs	and	UNKNOWN	in	SQL	can	be	confusing
because	intuitively	people	are	more	accustomed	to	thinking	in	terms	of	two-valued	logic
(TRUE	and	FALSE).	To	add	to	the	confusion,	different	language	elements	in	SQL	treat	NULLs
and	UNKNOWN	inconsistently.
Let’s	start	with	three-valued	predicate	logic.	A	logical	expression	involving	only	non-

NULL	values	evaluates	to	either	TRUE	or	FALSE.	When	the	logical	expression	involves	a
missing	value,	it	evaluates	to	UNKNOWN.	For	example,	consider	the	predicate	salary	>	0.
When	salary	is	equal	to	1,000,	the	expression	evaluates	to	TRUE.	When	salary	is	equal	to	–
1,000,	the	expression	evaluates	to	FALSE.	When	salary	is	NULL,	the	expression	evaluates	to
UNKNOWN.
SQL	treats	TRUE	and	FALSE	in	an	intuitive	and	probably	expected	manner.	For	example,	if

the	predicate	salary	>	0	appears	in	a	query	filter	(such	as	in	a	WHERE	or	HAVING	clause),
rows	or	groups	for	which	the	expression	evaluates	to	TRUE	are	returned,	whereas	those	for
which	the	expression	evaluates	to	FALSE	are	discarded.	Similarly,	if	the	predicate	salary	>	0
appears	in	a	CHECK	constraint	in	a	table,	INSERT	or	UPDATE	statements	for	which	the
expression	evaluates	to	TRUE	for	all	rows	are	accepted,	whereas	those	for	which	the
expression	evaluates	to	FALSE	for	any	row	are	rejected.
SQL	has	different	treatments	for	UNKNOWN	in	different	language	elements	(and	for	some

people,	not	necessarily	the	expected	treatments).	The	treatment	SQL	has	for	query	filters	is
“accept	TRUE,”	meaning	that	both	FALSE	and	UNKNOWN	are	discarded.	Conversely,	the

http://sqlmag.com/t-sql/coalesce-vs-isnull

definition	of	the	treatment	SQL	has	for	CHECK	constraints	is	“reject	FALSE,”	meaning	that
both	TRUE	and	UNKNOWN	are	accepted.	Had	SQL	used	two-valued	predicate	logic,	there
wouldn’t	have	been	a	difference	between	the	definitions	“accept	TRUE”	and	“reject	FALSE.”
But	with	three-valued	predicate	logic,	“accept	TRUE”	rejects	UNKNOWN,	whereas	“reject
FALSE”	accepts	it.	With	the	predicate	salary	>	0	from	the	previous	example,	a	NULL	salary
would	cause	the	expression	to	evaluate	to	UNKNOWN.	If	this	predicate	appears	in	a	query’s
WHERE	clause,	a	row	with	a	NULL	salary	will	be	discarded.	If	this	predicate	appears	in	a
CHECK	constraint	in	a	table,	a	row	with	a	NULL	salary	will	be	accepted.
One	of	the	tricky	aspects	of	the	logical	value	UNKNOWN	is	that	when	you	negate	it,	you

still	get	UNKNOWN.	For	example,	given	the	predicate	NOT	(salary	>	0),	when	salary	is
NULL,	salary	>	0	evaluates	to	UNKNOWN,	and	NOT	UNKNOWN	remains	UNKNOWN.
What	some	people	find	surprising	is	that	an	expression	comparing	two	NULLs	(NULL	=

NULL)	evaluates	to	UNKNOWN.	The	reasoning	for	this	from	SQL’s	perspective	is	that	a
NULL	represents	a	missing	value,	and	you	can’t	really	tell	whether	one	missing	value	is	equal
to	another.	Therefore,	SQL	provides	you	with	the	predicates	IS	NULL	and	IS	NOT	NULL,
which	you	should	use	instead	of	=	NULL	and	<>	NULL.
To	make	things	a	bit	more	tangible,	I’ll	demonstrate	the	ramifications	of	three-valued	logic

with	an	example.	The	Sales.Customers	table	has	three	attributes,	called	country,	region,	and
city,	where	the	customer ’s	location	information	is	stored.	All	locations	have	existing
countries	and	cities.	Some	have	existing	regions	(such	as	country:	USA,	region:	WA,	city:
Seattle),	yet	for	some	the	region	element	is	missing	but	inapplicable	(such	as	country:	UK,
region:	NULL,	city:	London).	Consider	the	following	query,	which	attempts	to	return	all
customers	where	the	region	is	equal	to	WA:
Click	here	to	view	code	image

SELECT	custid,	country,	region,	city
FROM	Sales.Customers
WHERE	region	=	N'WA';

This	query	generates	the	following	output:
Click	here	to	view	code	image

custid						country									region										city
-----------	---------------	---------------	---------------
43										USA													WA														Walla	Walla
82										USA													WA														Kirkland
89										USA													WA														Seattle

Out	of	the	91	rows	in	the	Customers	table,	the	query	returns	the	three	rows	where	the	region
attribute	is	equal	to	WA.	The	query	returns	neither	rows	in	which	the	value	in	the	region
attribute	is	present	and	different	than	WA	(the	predicate	evaluates	to	FALSE)	nor	those	where
the	region	attribute	is	NULL	(the	predicate	evaluates	to	UNKNOWN).	Most	people	would
consider	this	result	as	the	expected	one.
The	following	query	attempts	to	return	all	customers	for	whom	the	region	is	different	than

WA:
Click	here	to	view	code	image

SELECT	custid,	country,	region,	city
FROM	Sales.Customers
WHERE	region	<>	N'WA';

This	query	generates	the	following	output:
Click	here	to	view	code	image

custid						country									region										city
-----------	---------------	---------------	---------------
10										Canada										BC														Tsawassen
15										Brazil										SP														Sao	Paulo
21										Brazil										SP														Sao	Paulo
31										Brazil										SP														Campinas
32										USA													OR														Eugene
33										Venezuela							DF														Caracas
34										Brazil										RJ														Rio	de	Janeiro
35										Venezuela							Táchira									San	Cristóbal
36										USA													OR														Elgin
37										Ireland									Co.	Cork								Cork
38										UK														Isle	of	Wight			Cowes
42										Canada										BC														Vancouver
45										USA													CA														San	Francisco
46										Venezuela							Lara												Barquisimeto
47										Venezuela							Nueva	Esparta			I.	de	Margarita
48										USA													OR														Portland
51										Canada										Québec										Montréal
55										USA													AK														Anchorage
61										Brazil										RJ														Rio	de	Janeiro
62										Brazil										SP														Sao	Paulo
65										USA													NM														Albuquerque
67										Brazil										RJ														Rio	de	Janeiro
71										USA													ID														Boise
75										USA													WY														Lander
77										USA													OR														Portland
78										USA													MT														Butte
81										Brazil										SP														Sao	Paulo
88										Brazil										SP														Resende

(28	row(s)	affected)

If	you	expected	to	get	88	rows	back	(91	rows	in	the	table	minus	3	returned	by	the	previous
query),	you	might	find	this	result	(with	just	28	rows)	surprising.	But	remember,	a	query	filter
“accepts	TRUE,”	meaning	that	it	rejects	both	FALSE	and	UNKNOWN.	So	this	query	returned
rows	in	which	the	region	value	was	present	and	different	than	WA.	It	returned	neither	rows	in
which	the	region	value	was	equal	to	WA	nor	rows	in	which	region	was	NULL.	You	will	get	the
same	output	if	you	use	the	predicate	NOT	(region	=	N’WA’).	That’s	because	in	the	rows	where
region	is	NULL	the	expression	region	=	N’WA’	evaluates	to	UNKNOWN,	and	NOT	(region	=
N’WA’)	evaluates	to	UNKNOWN	also.
If	you	want	to	return	all	rows	for	which	region	is	NULL,	do	not	use	the	predicate	region	=

NULL,	because	the	expression	evaluates	to	UNKNOWN	in	all	rows—both	those	in	which	the
value	is	present	and	those	in	which	the	value	is	missing	(is	NULL).	The	following	query
returns	an	empty	set:
Click	here	to	view	code	image

SELECT	custid,	country,	region,	city

FROM	Sales.Customers
WHERE	region	=	NULL;

custid						country									region										city
-----------	---------------	---------------	---------------

(0	row(s)	affected)

Instead,	you	should	use	the	IS	NULL	predicate:
Click	here	to	view	code	image

SELECT	custid,	country,	region,	city
FROM	Sales.Customers
WHERE	region	IS	NULL;

This	query	generates	the	following	output,	shown	in	abbreviated	form:
Click	here	to	view	code	image

custid						country									region										city
-----------	---------------	---------------	---------------
1											Germany									NULL												Berlin
2											Mexico										NULL												México	D.F.
3											Mexico										NULL												México	D.F.
4											UK														NULL												London
5											Sweden										NULL												Luleå
6											Germany									NULL												Mannheim
7											France										NULL												Strasbourg
8											Spain											NULL												Madrid
9											France										NULL												Marseille
11										UK														NULL												London
...

(60	row(s)	affected)

If	you	want	to	return	all	rows	for	which	the	region	attribute	is	different	than	WA,	including
those	in	which	the	value	is	missing,	you	need	to	include	an	explicit	test	for	NULLs,	like	this:
Click	here	to	view	code	image

SELECT	custid,	country,	region,	city
FROM	Sales.Customers
WHERE	region	<>	N'WA'
			OR	region	IS	NULL;

This	query	generates	the	following	output,	shown	in	abbreviated	form:
Click	here	to	view	code	image

custid						country									region										city
-----------	---------------	---------------	---------------
1											Germany									NULL												Berlin
2											Mexico										NULL												México	D.F.
3											Mexico										NULL												México	D.F.
4											UK														NULL												London
5											Sweden										NULL												Luleå
6											Germany									NULL												Mannheim
7											France										NULL												Strasbourg
8											Spain											NULL												Madrid
9											France										NULL												Marseille
10										Canada										BC														Tsawassen

...

(88	row(s)	affected)

SQL	also	treats	NULLs	inconsistently	in	different	language	elements	for	comparison	and
sorting	purposes.	Some	elements	treat	two	NULLs	as	equal	to	each	other,	and	others	treat	them
as	different.
For	example,	for	grouping	and	sorting	purposes,	two	NULLs	are	considered	equal.	That	is,

the	GROUP	BY	clause	arranges	all	NULLs	in	one	group	just	like	present	values,	and	the
ORDER	BY	clause	sorts	all	NULLs	together.	Standard	SQL	leaves	it	to	the	product
implementation	to	determine	whether	NULLs	sort	before	present	values	or	after	them,	but	it
must	be	consistent	within	the	implementation.	T-SQL	sorts	NULLs	before	present	values.
As	mentioned	earlier,	query	filters	“accept	TRUE.”	An	expression	comparing	two	NULLs

yields	UNKNOWN;	therefore,	such	a	row	is	filtered	out.
For	the	purposes	of	enforcing	a	UNIQUE	constraint,	standard	SQL	treats	NULLs	as

different	from	each	other	(allowing	multiple	NULLs).	Conversely,	in	T-SQL,	a	UNIQUE
constraint	considers	two	NULLs	as	equal	(allowing	only	one	NULL).
The	complexity	in	handling	NULLs	often	results	in	logical	errors.	Therefore,	you	should

think	about	them	in	every	query	you	write.	If	the	default	treatment	is	not	what	you	want,	you
must	intervene	explicitly;	otherwise,	just	ensure	that	the	default	behavior	is,	in	fact,	what	you
want.

All-at-once	operations
SQL	supports	a	concept	called	all-at-once	operations,	which	means	that	all	expressions	that
appear	in	the	same	logical	query	processing	phase	are	evaluated	logically	at	the	same	point	in
time.	The	reason	for	this	is	that	all	expressions	that	appear	in	the	same	logical	phase	are
treated	as	a	set,	and	as	mentioned	earlier,	a	set	has	no	order	to	its	elements.
This	concept	explains	why,	for	example,	you	cannot	refer	to	column	aliases	assigned	in	the

SELECT	clause	within	the	same	SELECT	clause.	Consider	the	following	query:
Click	here	to	view	code	image

SELECT
		orderid,
		YEAR(orderdate)	AS	orderyear,
		orderyear	+	1	AS	nextyear
FROM	Sales.Orders;

The	reference	to	the	column	alias	orderyear	in	the	third	expression	in	the	SELECT	list	is
invalid,	even	though	the	referencing	expression	appears	to	the	right	of	the	one	in	which	the
alias	is	assigned.	The	reason	is	that	logically	there	is	no	order	of	evaluation	of	the
expressions	in	the	SELECT	clause—it	is	a	set	of	expressions.	Conceptually,	all	the	expressions
are	evaluated	at	the	same	point	in	time.	Therefore,	this	query	generates	the	following	error:
Click	here	to	view	code	image

Msg	207,	Level	16,	State	1,	Line	4
Invalid	column	name	'orderyear'.

Here’s	another	example	for	the	ramifications	of	all-at-once	operations:	Suppose	you	have	a
table	called	T1	with	two	integer	columns	called	col1	and	col2,	and	you	want	to	return	all	rows
for	which	col2/col1	is	greater	than	2.	Because	there	might	be	rows	in	the	table	in	which	col1	is
zero,	you	need	to	ensure	that	the	division	doesn’t	take	place	in	those	cases—otherwise,	the
query	would	fail	because	of	a	divide-by-zero	error.	So	you	write	a	query	using	the	following
format:
Click	here	to	view	code	image

SELECT	col1,	col2
FROM	dbo.T1
WHERE	col1	<>	0	AND	col2/col1	>	2;

You	might	very	well	assume	SQL	Server	evaluates	the	expressions	from	left	to	right,	and
that	if	the	expression	col1	<>	0	evaluates	to	FALSE,	SQL	Server	will	short-circuit—that	is,
that	it	won’t	bother	to	evaluate	the	expression	10/col1	>	2	because	at	this	point	it	is	known	that
the	whole	expression	is	FALSE.	So	you	might	think	that	this	query	should	never	produce	a
divide-by-zero	error.
SQL	Server	does	support	short	circuits,	but	because	of	the	all-at-once	operations	concept,	it

is	free	to	process	the	expressions	in	the	WHERE	clause	in	any	order.	SQL	Server	usually
makes	decisions	like	this	based	on	cost	estimations.	You	can	see	that	if	SQL	Server	decides	to
process	the	expression	10/col1	>	2	first,	this	query	might	fail	because	of	a	divide-by-zero
error.
You	have	several	ways	to	avoid	a	failure	here.	For	example,	the	order	in	which	the	WHEN

clauses	of	a	CASE	expression	are	evaluated	is	guaranteed.	So	you	could	revise	the	query	as
follows:
Click	here	to	view	code	image

SELECT	col1,	col2
FROM	dbo.T1
WHERE
		CASE
				WHEN	col1	=	0	THEN	'no'	--	or	'yes'	if	row	should	be	returned
				WHEN	col2/col1	>	2	THEN	'yes'
				ELSE	'no'
		END	=	'yes';

In	rows	where	col1	is	equal	to	zero,	the	first	WHEN	clause	evaluates	to	TRUE	and	the	CASE
expression	returns	the	string	‘no’.	(Replace	‘no’	with	‘yes’	if	you	want	to	return	the	row	when
col1	is	equal	to	zero.)	Only	if	the	first	CASE	expression	does	not	evaluate	to	TRUE—meaning
that	col1	is	not	0—does	the	second	WHEN	clause	check	whether	the	expression	col2/col1	>	2
evaluates	to	TRUE.	If	it	does,	the	CASE	expression	returns	the	string	‘yes.’	In	all	other	cases,
the	CASE	expression	returns	the	string	‘no.’	The	predicate	in	the	WHERE	clause	returns	TRUE
only	when	the	result	of	the	CASE	expression	is	equal	to	the	string	‘yes’.	This	means	that	there
will	never	be	an	attempt	here	to	divide	by	zero.
This	workaround	turned	out	to	be	quite	convoluted.	In	this	particular	case,	you	can	use	a

mathematical	workaround	that	avoids	division	altogether:
Click	here	to	view	code	image

SELECT	col1,	col2
FROM	dbo.T1
WHERE	(col1	>	0	AND	col2	>	2*col1)	OR	(col1	<	0	AND	col2	<	2*col1);

I	included	this	example	to	explain	the	unique	and	important	concept	of	all-at-once
operations	and	to	elaborate	on	the	fact	that	SQL	Server	guarantees	the	processing	order	of	the
WHEN	clauses	in	a	CASE	expression.

Working	with	character	data
In	this	section,	I	cover	query	manipulation	of	character	data—including	data	types,	collation,
and	operators	and	functions—and	pattern	matching.

Data	types
SQL	Server	supports	two	kinds	of	character	data	types:	regular	and	Unicode.	Regular	data
types	include	CHAR	and	VARCHAR,	and	Unicode	data	types	include	NCHAR	and	NVARCHAR.
Regular	characters	use	1	byte	of	storage	for	each	character,	whereas	Unicode	data	requires	2
bytes	per	character,	and	in	cases	in	which	a	surrogate	pair	is	needed,	4	bytes	are	required.
(For	details	on	surrogate	pairs,	see	https://msdn.microsoft.com/en-
us/library/windows/desktop/dd374069.)	If	you	choose	a	regular	character	type	for	a	column,
you	are	restricted	to	only	one	language	in	addition	to	English.	The	language	support	for	the
column	is	determined	by	the	column’s	effective	collation,	which	I’ll	describe	shortly.	With
Unicode	data	types,	multiple	languages	are	supported.	So	if	you	store	character	data	in
multiple	languages,	make	sure	that	you	use	Unicode	character	types	and	not	regular	ones.
The	two	kinds	of	character	data	types	also	differ	in	the	way	in	which	literals	are	expressed.

When	expressing	a	regular	character	literal,	you	simply	use	single	quotes:	‘This	is	a	regular
character	string	literal’.	When	expressing	a	Unicode	character	literal,	you	need	to	specify	the
character	N	(for	National)	as	a	prefix:	N’This	is	a	Unicode	character	string	literal’.
Any	data	type	without	the	VAR	element	(CHAR,	NCHAR)	in	its	name	has	a	fixed	length,

which	means	that	SQL	Server	preserves	space	in	the	row	based	on	the	column’s	defined	size
and	not	on	the	actual	number	of	characters	in	the	character	string.	For	example,	when	a
column	is	defined	as	CHAR(25),	SQL	Server	preserves	space	for	25	characters	in	the	row
regardless	of	the	length	of	the	stored	character	string.	Because	no	expansion	of	the	row	is
required	when	the	strings	are	expanded,	fixed-length	data	types	are	more	suited	for	write-
focused	systems.	But	because	storage	consumption	is	not	optimal	with	fixed-length	strings,
you	pay	more	when	reading	data.
A	data	type	with	the	VAR	element	(VARCHAR,	NVARCHAR)	in	its	name	has	a	variable

length,	which	means	that	SQL	Server	uses	as	much	storage	space	in	the	row	as	required	to
store	the	characters	that	appear	in	the	character	string,	plus	two	extra	bytes	for	offset	data.	For
example,	when	a	column	is	defined	as	VARCHAR(25),	the	maximum	number	of	characters
supported	is	25,	but	in	practice,	the	actual	number	of	characters	in	the	string	determines	the
amount	of	storage.	Because	storage	consumption	for	these	data	types	is	less	than	that	for
fixed-length	types,	read	operations	are	faster.	However,	updates	might	result	in	row
expansion,	which	might	result	in	data	movement	outside	the	current	page.	Therefore,	updates
of	data	having	variable-length	data	types	are	less	efficient	than	updates	of	data	having	fixed-

https://msdn.microsoft.com/en-us/library/windows/desktop/dd374069

length	data	types.

	Note
If	compression	is	used,	the	storage	requirements	change.	For	details	about
compression,	see	“Data	Compression”	in	SQL	Server	Books	Online	at
http://msdn.microsoft.com/en-us/library/cc280449.aspx.

You	can	also	define	the	variable-length	data	types	with	the	MAX	specifier	instead	of	a
maximum	number	of	characters.	When	the	column	is	defined	with	the	MAX	specifier,	any
value	with	a	size	up	to	a	certain	threshold	(8,000	bytes	by	default)	can	be	stored	inline	in	the
row	(as	long	as	it	can	fit	in	the	row).	Any	value	with	a	size	above	the	threshold	is	stored
external	to	the	row	as	a	large	object	(LOB).
Later	in	this	chapter,	in	the	“Querying	metadata”	section,	I	explain	how	you	can	obtain

metadata	information	about	objects	in	the	database,	including	the	data	types	of	columns.

Collation
Collation	is	a	property	of	character	data	that	encapsulates	several	aspects:	language	support,
sort	order,	case	sensitivity,	accent	sensitivity,	and	more.	To	get	the	set	of	supported	collations
and	their	descriptions,	you	can	query	the	table	function	fn_helpcollations	as	follows:

SELECT	name,	description
FROM	sys.fn_helpcollations();

For	example,	the	following	list	explains	the	collation	Latin1_General_CI_AS:
	Latin1_General	Code	page	1252	is	used.	(This	supports	English	and	German
characters,	as	well	as	characters	used	by	most	Western	European	countries.)
	Dictionary	sorting	Sorting	and	comparison	of	character	data	are	based	on	dictionary
order	(A	and	a	<	B	and	b).
You	can	tell	that	dictionary	order	is	used	because	that’s	the	default	when	no	other
ordering	is	defined	explicitly.	More	specifically,	the	element	BIN	doesn’t	explicitly
appear	in	the	collation	name.	If	the	element	BIN	appeared,	it	would	mean	that	the	sorting
and	comparison	of	character	data	was	based	on	the	binary	representation	of	characters
(A	<	B	<	a	<	b).
	CI	The	data	is	case	insensitive	(a	=	A).
	AS	The	data	is	accent	sensitive	(à	<>	ä).

In	an	on-premises	SQL	Server	implementation,	collation	can	be	defined	at	four	different
levels:	instance,	database,	column,	and	expression.	The	lowest	effective	level	is	the	one	that
should	be	used.	In	Azure	SQL	Database,	collation	can	be	defined	at	the	database,	column,	and
expression	levels.	There	are	some	specialized	aspects	of	collation	in	contained	databases.
(For	details,	see	https://msdn.microsoft.com/en-GB/library/ff929080.aspx.)
The	collation	of	the	instance	is	chosen	as	part	of	the	setup	program.	It	determines	the

http://msdn.microsoft.com/en-us/library/cc280449.aspx
https://msdn.microsoft.com/en-GB/library/ff929080.aspx

collations	of	all	system	databases	and	is	used	as	the	default	for	user	databases.
When	you	create	a	user	database,	you	can	specify	a	collation	for	the	database	by	using	the

COLLATE	clause.	If	you	don’t,	the	instance’s	collation	is	assumed	by	default.
The	database	collation	determines	the	collation	of	the	metadata	of	objects	in	the	database

and	is	used	as	the	default	for	user	table	columns.	I	want	to	emphasize	the	importance	of	the
fact	that	the	database	collation	determines	the	collation	of	the	metadata,	including	object	and
column	names.	For	example,	if	the	database	collation	is	case	insensitive,	you	can’t	create	two
tables	called	T1	and	t1	within	the	same	schema,	but	if	the	database	collation	is	case	sensitive,
you	can	do	that.	Note,	though,	that	the	collation	aspects	of	variable	and	parameter	identifiers
are	determined	by	the	instance	and	not	the	database	collation,	regardless	of	the	database	you
are	connected	to	when	declaring	them.	For	example,	if	your	instance	has	a	case-insensitive
collation	and	your	database	has	a	case-sensitive	collation,	you	won’t	be	able	to	define	two
variables	or	parameters	named	@p	and	@P	in	the	same	scope.	Such	an	attempt	will	result	in
an	error	saying	that	the	variable	name	has	already	been	declared.
You	can	explicitly	specify	a	collation	for	a	column	as	part	of	its	definition	by	using	the

COLLATE	clause.	If	you	don’t,	the	database	collation	is	assumed	by	default.
You	can	convert	the	collation	of	an	expression	by	using	the	COLLATE	clause.	For	example,

in	a	case-insensitive	environment,	the	following	query	uses	a	case-insensitive	comparison:
Click	here	to	view	code	image

SELECT	empid,	firstname,	lastname
FROM	HR.Employees
WHERE	lastname	=	N'davis';

The	query	returns	the	row	for	Sara	Davis,	even	though	the	casing	doesn’t	match,	because
the	effective	casing	is	insensitive:
Click	here	to	view	code	image

empid							firstname		lastname
-----------	----------	--------------------
1											Sara							Davis

If	you	want	to	make	the	filter	case	sensitive	even	though	the	column’s	collation	is	case
insensitive,	you	can	convert	the	collation	of	the	expression:
Click	here	to	view	code	image

SELECT	empid,	firstname,	lastname
FROM	HR.Employees
WHERE	lastname	COLLATE	Latin1_General_CS_AS	=	N'davis';

This	time	the	query	returns	an	empty	set	because	no	match	is	found	when	a	case-sensitive
comparison	is	used.

Quoted	identifiers
In	standard	SQL,	single	quotes	are	used	to	delimit	literal	character	strings	(for
example,	‘literal’)	and	double	quotes	are	used	to	delimit	irregular	identifiers	such	as
table	or	column	names	that	include	a	space	or	start	with	a	digit	(for	example,
“Irregular	Identifier”).	In	SQL	Server,	there’s	a	setting	called	QUOTED_IDENTIFIER
that	controls	the	meaning	of	double	quotes.	You	can	apply	this	setting	either	at	the
database	level	by	using	the	ALTER	DATABASE	command	or	at	the	session	level	by
using	the	SET	command.	When	the	setting	is	turned	on,	the	behavior	is	determined
according	to	standard	SQL,	meaning	that	double	quotes	are	used	to	delimit	identifiers.
When	the	setting	is	turned	off,	the	behavior	is	nonstandard,	and	double	quotes	are	used
to	delimit	literal	character	strings.	It	is	strongly	recommended	that	you	follow	best
practices	and	use	standard	behavior	(with	the	setting	on).	Most	database	interfaces,
including	OLE	DB	and	ODBC,	turn	this	setting	on	by	default.

	Tip

As	an	alternative	to	using	double	quotes	to	delimit	identifiers,	T-SQL	also	supports
square	brackets	(for	example,	[Irregular	Identifier]).

Regarding	single	quotes	that	are	used	to	delimit	literal	character	strings,	if	you	want
to	incorporate	a	single	quote	character	as	part	of	the	string,	you	need	to	specify	two
single	quotes.	For	example,	to	express	the	literal	abc’de,	specify	‘abc’‘de’.

Operators	and	functions
This	section	covers	string	concatenation	and	functions	that	operate	on	character	strings.	For
string	concatenation,	T-SQL	provides	the	plus-sign	(+)	operator	and	the	CONCAT	function.
For	other	operations	on	character	strings,	T-SQL	provides	several	functions,	including
SUBSTRING,	LEFT,	RIGHT,	LEN,	DATALENGTH,	CHARINDEX,	PATINDEX,	REPLACE,
REPLICATE,	STUFF,	UPPER,	LOWER,	RTRIM,	LTRIM,	FORMAT,	COMPRESS,
DECOMPRESS,	and	STRING_SPLIT.	In	the	following	sections,	I	describe	these	commonly
used	operators	and	functions.	Note	that	there	is	no	SQL	standard	functions	library—they	are
all	implementation-specific.

String	concatenation	(plus-sign	[+]	operator	and	CONCAT	function)
T-SQL	provides	the	plus-sign	(+)	operator	and	the	CONCAT	function	to	concatenate	strings.
For	example,	the	following	query	against	the	Employees	table	produces	the	fullname	result
column	by	concatenating	firstname,	a	space,	and	lastname:
Click	here	to	view	code	image

SELECT	empid,	firstname	+	N'	'	+	lastname	AS	fullname
FROM	HR.Employees;

This	query	produces	the	following	output:

Click	here	to	view	code	image

empid							fullname
-----------	-------------------------------
1											Sara	Davis
2											Don	Funk
3											Judy	Lew
4											Yael	Peled
5											Sven	Mortensen
6											Paul	Suurs
7											Russell	King
8											Maria	Cameron
9											Patricia	Doyle

Standard	SQL	dictates	that	a	concatenation	with	a	NULL	should	yield	a	NULL.	This	is	the
default	behavior	of	T-SQL.	For	example,	consider	the	query	against	the	Customers	table
shown	in	Listing	2-7.

LISTING	2-7	Query	demonstrating	string	concatenation

Click	here	to	view	code	image

SELECT	custid,	country,	region,	city,
		country	+	N','	+	region	+	N','	+	city	AS	location
FROM	Sales.Customers;

Some	of	the	rows	in	the	Customers	table	have	a	NULL	in	the	region	column.	For	those,	SQL
Server	returns	by	default	a	NULL	in	the	location	result	column:
Click	here	to	view	code	image

custid						country									region		city												location
-----------	---------------	-------	---------------	--------------------
1											Germany									NULL				Berlin										NULL
2											Mexico										NULL				México	D.F.					NULL
3											Mexico										NULL				México	D.F.					NULL
4											UK														NULL				London										NULL
5											Sweden										NULL				Luleå											NULL
6											Germany									NULL				Mannheim								NULL
7											France										NULL				Strasbourg						NULL
8											Spain											NULL				Madrid										NULL
9											France										NULL				Marseille							NULL
10										Canada										BC						Tsawwassen						Canada,BC,Tsawwassen
11										UK														NULL				London										NULL
12										Argentina							NULL				Buenos	Aires				NULL
13										Mexico										NULL				México	D.F.					NULL
14										Switzerland					NULL				Bern												NULL
15										Brazil										SP						Sao	Paulo							Brazil,SP,Sao	Paulo
16										UK														NULL				London										NULL
17										Germany									NULL				Aachen										NULL
18										France										NULL				Nantes										NULL
19										UK														NULL				London										NULL
20										Austria									NULL				Graz												NULL
...

(91	row(s)	affected)

To	treat	a	NULL	as	an	empty	string—or	more	accurately,	to	substitute	a	NULL	with	an
empty	string—you	can	use	the	COALESCE	function.	This	function	accepts	a	list	of	input
values	and	returns	the	first	that	is	not	NULL.	Here’s	how	you	can	revise	the	query	from
Listing	2-7	to	programmatically	substitute	NULLs	with	empty	strings:
Click	here	to	view	code	image

SELECT	custid,	country,	region,	city,
		country	+	COALESCE(N','	+	region,	N'')	+	N','	+	city	AS	location
FROM	Sales.Customers;

T-SQL	supports	a	function	called	CONCAT	that	accepts	a	list	of	inputs	for	concatenation
and	automatically	substitutes	NULLs	with	empty	strings.	For	example,	the	expression
CONCAT(‘a’,	NULL,	‘b’)	returns	the	string	‘ab’.
Here’s	how	to	use	the	CONCAT	function	to	concatenate	the	customer ’s	location	elements,

replacing	NULLs	with	empty	strings:
Click	here	to	view	code	image

SELECT	custid,	country,	region,	city,
		CONCAT(country,	N','	+	region,	N','	+	city)	AS	location
FROM	Sales.Customers;

The	SUBSTRING	function
The	SUBSTRING	function	extracts	a	substring	from	a	string.

Syntax
SUBSTRING(string,	start,	length)
This	function	operates	on	the	input	string	and	extracts	a	substring	starting	at	position	start

that	is	length	characters	long.	For	example,	the	following	code	returns	the	output	‘abc’:
Click	here	to	view	code	image

SELECT	SUBSTRING('abcde',	1,	3);

If	the	value	of	the	third	argument	exceeds	the	end	of	the	input	string,	the	function	returns
everything	until	the	end	without	raising	an	error.	This	can	be	convenient	when	you	want	to
return	everything	from	a	certain	point	until	the	end	of	the	string—you	can	simply	specify	the
maximum	length	of	the	data	type	or	a	value	representing	the	full	length	of	the	input	string.

The	LEFT	and	RIGHT	functions
The	LEFT	and	RIGHT	functions	are	abbreviations	of	the	SUBSTRING	function,	returning	a
requested	number	of	characters	from	the	left	or	right	end	of	the	input	string.

Syntax
LEFT(string,	n),	RIGHT(string,	n)
The	first	argument,	string,	is	the	string	the	function	operates	on.	The	second	argument,	n,	is

the	number	of	characters	to	extract	from	the	left	or	right	end	of	the	string.	For	example,	the
following	code	returns	the	output	‘cde’:

SELECT	RIGHT('abcde',	3);

The	LEN	and	DATALENGTH	functions
The	LEN	function	returns	the	number	of	characters	in	the	input	string.

Syntax
LEN(string)
Note	that	this	function	returns	the	number	of	characters	in	the	input	string	and	not

necessarily	the	number	of	bytes.	With	regular	characters,	both	numbers	are	the	same	because
each	character	requires	1	byte	of	storage.	With	Unicode	characters,	each	character	requires	at
least	2	bytes	of	storage	(in	most	cases,	at	least);	therefore,	the	number	of	characters	is	half	the
number	of	bytes.	To	get	the	number	of	bytes,	use	the	DATALENGTH	function	instead	of	LEN.
For	example,	the	following	code	returns	5:

SELECT	LEN(N'abcde');

The	following	code	returns	10:
SELECT	DATALENGTH(N'abcde');

Another	difference	between	LEN	and	DATALENGTH	is	that	the	former	excludes	trailing
blanks	but	the	latter	doesn’t.

The	CHARINDEX	function
The	CHARINDEX	function	returns	the	position	of	the	first	occurrence	of	a	substring	within	a
string.

Syntax
CHARINDEX(substring,	string[,	start_pos])
This	function	returns	the	position	of	the	first	argument,	substring,	within	the	second

argument,	string.	You	can	optionally	specify	a	third	argument,	start_pos,	to	tell	the	function
the	position	from	which	to	start	looking.	If	you	don’t	specify	the	third	argument,	the	function
starts	looking	from	the	first	character.	If	the	substring	is	not	found,	the	function	returns	0.	For
example,	the	following	code	returns	the	first	position	of	a	space	in	‘Itzik	Ben-Gan’,	so	it
returns	the	output	6:
Click	here	to	view	code	image

SELECT	CHARINDEX('	','Itzik	Ben-Gan');

The	PATINDEX	function
The	PATINDEX	function	returns	the	position	of	the	first	occurrence	of	a	pattern	within	a
string.

Syntax
PATINDEX(pattern,	string)
The	argument	pattern	uses	similar	patterns	to	those	used	by	the	LIKE	predicate	in	T-SQL.

I’ll	explain	patterns	and	the	LIKE	predicate	later	in	this	chapter,	in	“The	LIKE	predicate”
section.	Even	though	I	haven’t	explained	yet	how	patterns	are	expressed	in	T-SQL,	I	include
the	following	example	here	to	show	how	to	find	the	position	of	the	first	occurrence	of	a	digit
within	a	string:
Click	here	to	view	code	image

SELECT	PATINDEX('%[0-9]%',	'abcd123efgh');

This	code	returns	the	output	5.

The	REPLACE	function
The	REPLACE	function	replaces	all	occurrences	of	a	substring	with	another.

Syntax
REPLACE(string,	substring1,	substring2)
The	function	replaces	all	occurrences	of	substring1	in	string	with	substring2.	For	example,

the	following	code	substitutes	all	occurrences	of	a	dash	in	the	input	string	with	a	colon:
Click	here	to	view	code	image

SELECT	REPLACE('1-a	2-b',	'-',	':');

This	code	returns	the	output:	‘1:a	2:b’.
You	can	use	the	REPLACE	function	to	count	the	number	of	occurrences	of	a	character

within	a	string.	To	do	this,	you	replace	all	occurrences	of	the	character	with	an	empty	string
(zero	characters)	and	calculate	the	original	length	of	the	string	minus	the	new	length.	For
example,	the	following	query	returns,	for	each	employee,	the	number	of	times	the	character	e
appears	in	the	lastname	attribute:
Click	here	to	view	code	image

SELECT	empid,	lastname,
		LEN(lastname)	-	LEN(REPLACE(lastname,	'e',	''))	AS	numoccur
FROM	HR.Employees;

This	query	generates	the	following	output:
Click	here	to	view	code	image

empid							lastname													numoccur
-----------	--------------------	-----------
8											Cameron														1
1											Davis																0
9											Doyle																1
2											Funk																	0
7											King																	0
3											Lew																		1
5											Mortensen												2
4											Peled																2
6											Suurs																0

The	REPLICATE	function
The	REPLICATE	function	replicates	a	string	a	requested	number	of	times.

Syntax
REPLICATE(string,	n)
For	example,	the	following	code	replicates	the	string	‘abc’	three	times,	returning	the	string

‘abcabcabc’:
SELECT	REPLICATE('abc',	3);

The	next	example	demonstrates	the	use	of	the	REPLICATE	function,	along	with	the	RIGHT
function	and	string	concatenation.	The	following	query	against	the	Production.Suppliers	table
generates	a	10-digit	string	representation	of	the	supplier	ID	integer	with	leading	zeros:
Click	here	to	view	code	image

SELECT	supplierid,
		RIGHT(REPLICATE('0',	9)	+	CAST(supplierid	AS	VARCHAR(10)),	10)	AS	strsupplierid
FROM	Production.Suppliers;

The	expression	producing	the	result	column	strsupplierid	replicates	the	character	0	nine
times	(producing	the	string	‘000000000’)	and	concatenates	the	string	representation	of	the
supplier	ID.	The	CAST	function	converts	the	original	integer	supplier	ID	to	a	string	data	type
(VARCHAR).	Finally,	the	RIGHT	function	extracts	the	10	rightmost	characters	of	the	result
string.	Here’s	the	output	of	this	query,	shown	in	abbreviated	form:

supplierid		strsupplierid
-----------	-------------
29										0000000029
28										0000000028
4											0000000004
21										0000000021
2											0000000002
22										0000000022
14										0000000014
11										0000000011
25										0000000025
7											0000000007
...

(29	row(s)	affected)

Note	that	T-SQL	supports	a	function	called	FORMAT	that	you	can	use	to	achieve	such
formatting	needs	much	more	easily,	though	at	a	higher	cost.	I’ll	describe	it	later	in	this
section.

The	STUFF	function
You	use	the	STUFF	function	to	remove	a	substring	from	a	string	and	insert	a	new	substring
instead.

Syntax
STUFF(string,	pos,	delete_length,	insert_string)
This	function	operates	on	the	input	parameter	string.	It	deletes	as	many	characters	as	the

number	specified	in	the	delete_length	parameter,	starting	at	the	character	position	specified	in

the	pos	input	parameter.	The	function	inserts	the	string	specified	in	the	insert_string	parameter
in	position	pos.	For	example,	the	following	code	operates	on	the	string	‘xyz’,	removes	one
character	from	the	second	character,	and	inserts	the	substring	‘abc’	instead:
Click	here	to	view	code	image

SELECT	STUFF('xyz',	2,	1,	'abc');

The	output	of	this	code	is	‘xabcz’.
If	you	just	want	to	insert	a	string	and	not	delete	anything,	you	can	specify	a	length	of	0	as

the	third	argument.

The	UPPER	and	LOWER	functions
The	UPPER	and	LOWER	functions	return	the	input	string	with	all	uppercase	or	lowercase
characters,	respectively.

Syntax
UPPER(string),	LOWER(string)
For	example,	the	following	code	returns	‘ITZIK	BEN-GAN’:

Click	here	to	view	code	image

SELECT	UPPER('Itzik	Ben-Gan');

The	following	code	returns	‘itzik	ben-gan’:
Click	here	to	view	code	image

SELECT	LOWER('Itzik	Ben-Gan');

The	RTRIM	and	LTRIM	functions
The	RTRIM	and	LTRIM	functions	return	the	input	string	with	leading	or	trailing	spaces
removed.

Syntax
RTRIM(string),	LTRIM(string)
If	you	want	to	remove	both	leading	and	trailing	spaces,	use	the	result	of	one	function	as	the

input	to	the	other.	For	example,	the	following	code	removes	both	leading	and	trailing	spaces
from	the	input	string,	returning	‘abc’:
Click	here	to	view	code	image

SELECT	RTRIM(LTRIM('			abc			'));

The	FORMAT	function
You	use	the	FORMAT	function	to	format	an	input	value	as	a	character	string	based	on	a
Microsoft	.NET	format	string	and	an	optional	culture	specification.

Syntax
FORMAT(input	,	format_string,	culture)

There	are	numerous	possibilities	for	formatting	inputs	using	both	standard	and	custom
format	strings.	The	MSDN	article	at	http://go.microsoft.com/fwlink/?LinkId=211776	provides
more	information.	But	just	as	a	simple	example,	recall	the	convoluted	expression	used	earlier
to	format	a	number	as	a	10-digit	string	with	leading	zeros.	By	using	FORMAT,	you	can
achieve	the	same	task	with	either	the	custom	format	string	‘0000000000’	or	the	standard	one,
‘d10’.	As	an	example,	the	following	code	returns	‘0000001759’:
Click	here	to	view	code	image

SELECT	FORMAT(1759,	'000000000');

	Note
The	FORMAT	function	is	usually	more	expensive	than	alternative	T-SQL	functions	that
you	use	to	format	values.	You	should	generally	refrain	from	using	it	unless	you	are
willing	to	accept	the	performance	penalty.	As	an	example,	I	ran	a	query	against	a	table
with	1,000,000	rows	to	compute	the	10-digit	string	representation	of	one	of	the	integer
columns.	The	query	took	close	to	a	minute	to	complete	on	my	computer	with	the
FORMAT	function	compared	to	under	a	second	with	the	alternative	method	using	the
REPLICATE	and	RIGHT	functions.

The	COMPRESS	and	DECOMPRESS	functions
The	COMPRESS	and	DECOMPRESS	functions	use	the	GZIP	algorithm	to	compress	and
decompress	the	input,	respectively.	Both	functions	were	introduced	in	SQL	Server	2016.

Syntax
COMPRESS(string),	DECOMPRESS(string)
The	COMPRESS	function	accepts	a	character	or	binary	string	as	input	and	returns	a

compressed	VARBINARY(MAX)	typed	value.	Here’s	an	example	for	using	the	function	with	a
constant	as	input:
Click	here	to	view	code	image

SELECT	COMPRESS(N'This	is	my	cv.	Imagine	it	was	much	longer.');

The	result	is	a	binary	value	holding	the	compressed	form	of	the	input	string.
If	you	want	to	store	the	compressed	form	of	input	values	in	a	column	in	a	table,	you	need	to

apply	the	COMPRESS	function	to	the	input	value	and	store	the	result	in	the	table.	You	can	do
this	as	part	of	the	INSERT	statement	that	adds	the	row	to	the	target	table.	(For	information
about	data	modification,	see	Chapter	8.)	For	example,	suppose	you	have	a	table	called
EmployeeCVs	in	your	database,	with	columns	called	empid	and	cv.	The	column	cv	holds	the
compressed	form	of	the	employee’s	resume	and	is	defined	as	VARBINARY(MAX).	Suppose
you	have	a	stored	procedure	called	AddEmpCV	that	accepts	input	parameters	called	@empid
and	@cv.	(For	information	about	stored	procedures,	see	Chapter	11.)	The	parameter	@cv	is
the	uncompressed	form	of	the	input	employee’s	resume	and	is	defined	as	NVARCHAR(MAX).
The	procedure	is	responsible	for	inserting	a	new	row	into	the	table	with	the	compressed

http://go.microsoft.com/fwlink/?LinkId=211776

employee	resume	information.	The	INSERT	statement	within	the	stored	procedure	might	look
like	this:
Click	here	to	view	code	image

INSERT	INTO	dbo.EmployeeCVs(empid,	cv)	VALUES(@empid,	COMPRESS(@cv));

The	DECOMPRESS	function	accepts	a	binary	string	as	input	and	returns	a	decompressed
VARBINARY(MAX)	typed	value.	Note	that	if	the	value	you	originally	compressed	was	of	a
character	string	type,	you	will	need	to	explicitly	cast	the	result	of	the	DECOMPRESS	function
to	the	target	type.	As	an	example,	the	following	code	doesn’t	return	the	original	input	value;
rather,	it	returns	a	binary	value:
Click	here	to	view	code	image

SELECT	DECOMPRESS(COMPRESS(N'This	is	my	cv.	Imagine	it	was	much	longer.'));

To	get	the	original	value,	you	need	to	cast	the	result	to	the	target	character	string	type,	like
so:
Click	here	to	view	code	image

SELECT
		CAST(
				DECOMPRESS(COMPRESS(N'This	is	my	cv.	Imagine	it	was	much	longer.'))
						AS	NVARCHAR(MAX));

Consider	the	EmployeeCVs	table	from	the	earlier	example.	To	return	the	uncompressed
form	of	the	employee	resumes,	you	use	the	following	query	(don’t	run	this	code	because	this
table	doesn’t	actually	exist):
Click	here	to	view	code	image

SELECT	empid,	CAST(DECOMPRESS(cv)	AS	NVARCHAR(MAX))	AS	cv
FROM	dbo.EmployeeCVs;

The	STRING_SPLIT	function
The	STRING_SPLIT	table	function	splits	an	input	string	with	a	separated	list	of	values	into	the
individual	elements.	This	function	was	introduced	in	SQL	Server	2016.

Syntax
SELECT	value	FROM	STRING_SPLIT(string,	separator);
Unlike	the	string	functions	described	so	far,	which	are	all	scalar	functions,	the

STRING_SPLIT	function	is	a	table	function.	It	accepts	as	inputs	a	string	with	a	separated	list	of
values	plus	a	separator,	and	it	returns	a	table	result	with	a	string	column	called	val	with	the
individual	elements.	If	you	need	the	elements	to	be	returned	with	a	data	type	other	than	a
character	string,	you	will	need	to	cast	the	val	column	to	the	target	type.	For	example,	the
following	code	accepts	the	input	string	‘10248,10249,10250’	and	separator	‘,’	and	it	returns	a
table	result	with	the	individual	elements:
Click	here	to	view	code	image

SELECT	CAST(value	AS	INT)	AS	myvalue
FROM	STRING_SPLIT('10248,10249,10250',	',')	AS	S;

In	this	example,	the	input	list	contains	values	representing	order	IDs.	Because	the	IDs	are
supposed	to	be	integers,	the	query	converts	the	val	column	to	the	INT	data	type.	Here’s	the
output	of	this	code:

myvalue

10248
10249
10250

A	common	use	case	for	such	splitting	logic	is	passing	a	separated	list	of	values
representing	keys,	such	as	order	IDs,	to	a	stored	procedure	or	user-defined	function	and
returning	the	rows	from	some	table,	such	as	Orders,	that	have	the	input	keys.	This	is	achieved
by	joining	the	STRING_SPLIT	function	with	the	target	table	and	matching	the	keys	from	both
sides.

The	LIKE	predicate
T-SQL	provides	a	predicate	called	LIKE	that	you	can	use	to	check	whether	a	character	string
matches	a	specified	pattern.	Similar	patterns	are	used	by	the	PATINDEX	function	described
earlier.	The	following	section	describes	the	wildcards	supported	in	the	patterns	and
demonstrates	their	use.

The	%	(percent)	wildcard
The	percent	sign	represents	a	string	of	any	size,	including	an	empty	string.	For	example,	the
following	query	returns	employees	where	the	last	name	starts	with	D:

SELECT	empid,	lastname
FROM	HR.Employees
WHERE	lastname	LIKE	N'D%';

This	query	returns	the	following	output:
Click	here	to	view	code	image

empid							lastname
-----------	--------------------
1											Davis
9											Doyle

Note	that	often	you	can	use	functions	such	as	SUBSTRING	and	LEFT	instead	of	the	LIKE
predicate	to	represent	the	same	meaning.	But	the	LIKE	predicate	tends	to	get	optimized	better
—especially	when	the	pattern	starts	with	a	known	prefix.

The	_	(underscore)	wildcard
An	underscore	represents	a	single	character.	For	example,	the	following	query	returns
employees	where	the	second	character	in	the	last	name	is	e:

SELECT	empid,	lastname
FROM	HR.Employees
WHERE	lastname	LIKE	N'_e%';

This	query	returns	the	following	output:

Click	here	to	view	code	image

empid							lastname
-----------	--------------------
3											Lew
4											Peled

The	[<list	of	characters>]	wildcard
Square	brackets	with	a	list	of	characters	(such	as	[ABC])	represent	a	single	character	that	must
be	one	of	the	characters	specified	in	the	list.	For	example,	the	following	query	returns
employees	where	the	first	character	in	the	last	name	is	A,	B,	or	C:
Click	here	to	view	code	image

SELECT	empid,	lastname
FROM	HR.Employees
WHERE	lastname	LIKE	N'[ABC]%';

This	query	returns	the	following	output:
Click	here	to	view	code	image

empid							lastname
-----------	--------------------
8											Cameron

The	[<character>-<character>]	wildcard
Square	brackets	with	a	character	range	(such	as	[A-E])	represent	a	single	character	that	must
be	within	the	specified	range.	For	example,	the	following	query	returns	employees	where	the
first	character	in	the	last	name	is	a	letter	in	the	range	A	through	E,	inclusive,	taking	the
collation	into	account:
Click	here	to	view	code	image

SELECT	empid,	lastname
FROM	HR.Employees
WHERE	lastname	LIKE	N'[A-E]%';

This	query	returns	the	following	output:
Click	here	to	view	code	image

empid							lastname
-----------	--------------------
8											Cameron
1											Davis
9											Doyle

The	[^<character	list	or	range>]	wildcard
Square	brackets	with	a	caret	sign	(^)	followed	by	a	character	list	or	range	(such	as	[^A-E])
represent	a	single	character	that	is	not	in	the	specified	character	list	or	range.	For	example,
the	following	query	returns	employees	where	the	first	character	in	the	last	name	is	not	a	letter
in	the	range	A	through	E:
Click	here	to	view	code	image

SELECT	empid,	lastname

FROM	HR.Employees
WHERE	lastname	LIKE	N'[^A-E]%';

This	query	returns	the	following	output:
Click	here	to	view	code	image

empid							lastname
-----------	--------------------
2											Funk
7											King
3											Lew
5											Mortensen
4											Peled
6											Suurs

The	ESCAPE	character
If	you	want	to	search	for	a	character	that	is	also	used	as	a	wildcard	(such	as	%,	_,	[,	or]),	you
can	use	an	escape	character.	Specify	a	character	that	you	know	for	sure	doesn’t	appear	in	the
data	as	the	escape	character	in	front	of	the	character	you	are	looking	for,	and	specify	the
keyword	ESCAPE	followed	by	the	escape	character	right	after	the	pattern.	For	example,	to
check	whether	a	column	called	col1	contains	an	underscore,	use	col1	LIKE	‘%!_%’	ESCAPE
‘!’.
For	the	wildcards	%,	_,	and	[,	you	can	use	square	brackets	instead	of	an	escape	character.

For	example,	instead	of	col1	LIKE	‘%!_%’	ESCAPE	‘!’,	you	can	use	col1	LIKE	‘%[_]%’.

Working	with	date	and	time	data
Working	with	date	and	time	data	in	SQL	Server	is	not	trivial.	You	will	face	several	challenges
in	this	area,	such	as	expressing	literals	in	a	language-neutral	manner	and	working	with	date
and	time	separately.
In	this	section,	I	first	introduce	the	date	and	time	data	types	supported	by	SQL	Server;	then	I

explain	the	recommended	way	to	work	with	those	types;	and	finally	I	cover	date-	and	time-
related	functions.

Date	and	time	data	types
T-SQL	supports	six	date	and	time	data	types:	two	legacy	types	called	DATETIME	and
SMALLDATETIME,	and	four	later	additions	(since	SQL	Server	2008)	called	DATE,	TIME,
DATETIME2,	and	DATETIMEOFFSET.	The	legacy	types	DATETIME	and	SMALLDATETIME
include	date	and	time	components	that	are	inseparable.	The	two	types	differ	in	their	storage
requirements,	their	supported	date	range,	and	their	precision.	The	DATE	and	TIME	data	types
provide	a	separation	between	the	date	and	time	components	if	you	need	it.	The	DATETIME2
data	type	has	a	bigger	date	range	and	better	precision	than	the	legacy	types.	The
DATETIMEOFFSET	data	type	is	similar	to	DATETIME2,	but	it	also	includes	the	offset	from
UTC.
Table	2-1	lists	details	about	date	and	time	data	types,	including	storage	requirements,

supported	date	range,	precision,	and	recommended	entry	format.

TABLE	2-1	Date	and	time	data	types

The	storage	requirements	for	the	last	three	data	types	in	Table	2-1	(TIME,	DATETIME2,	and
DATETIMEOFFSET)	depend	on	the	precision	you	choose.	You	specify	a	fractional-second
precision	as	an	integer	in	the	range	0	to	7.	For	example,	TIME(0)	means	0	fractional-second
precision—in	other	words,	one-second	precision.	TIME(3)	means	one-millisecond	precision,
and	TIME(7)	means	100-nanosecond	precision.	If	you	don’t	specify	a	fractional-second
precision,	SQL	Server	assumes	7	by	default.	When	converting	a	value	to	a	data	type	with	a
lower	precision,	it	gets	rounded	to	the	closest	expressible	value	in	the	target	precision.

Literals
When	you	need	to	specify	a	literal	(constant)	of	a	date	and	time	data	type,	you	should	consider
several	things.	First,	though	it	might	sound	a	bit	strange,	T-SQL	doesn’t	provide	the	means	to
express	a	date	and	time	literal;	instead,	you	can	specify	a	literal	of	a	different	type	that	can	be
converted—explicitly	or	implicitly—to	a	date	and	time	data	type.	It	is	a	best	practice	to	use
character	strings	to	express	date	and	time	values,	as	shown	in	the	following	example:
Click	here	to	view	code	image

SELECT	orderid,	custid,	empid,	orderdate
FROM	Sales.Orders
WHERE	orderdate	=	'20160212';

SQL	Server	recognizes	the	literal	‘20160212’	as	a	character-string	literal	and	not	as	a	date
and	time	literal,	but	because	the	expression	involves	operands	of	two	different	types,	one
operand	needs	to	be	implicitly	converted	to	the	other ’s	type.	Normally,	implicit	conversion
between	types	is	based	on	what’s	called	data-type	precedence.	SQL	Server	defines	precedence
among	data	types	and	will	usually	implicitly	convert	the	operand	that	has	a	lower	data-type
precedence	to	the	one	that	has	higher	precedence.	In	this	example,	the	character-string	literal
is	converted	to	the	column’s	data	type	(DATETIME)	because	character	strings	are	considered
lower	in	terms	of	data-type	precedence	with	respect	to	date	and	time	data	types.	Implicit
conversion	rules	are	not	always	that	simple.	In	fact,	different	rules	are	applied	with	filters	and
in	other	expressions,	but	for	the	purposes	of	this	discussion,	I’ll	keep	things	simple.	For	the

complete	description	of	data-type	precedence,	see	“Data	Type	Precedence”	in	SQL	Server
Books	Online.
The	point	I’m	trying	to	make	is	that	in	the	preceding	example,	implicit	conversion	takes

place	behind	the	scenes.	This	query	is	logically	equivalent	to	the	following	one,	which
explicitly	converts	the	character	string	to	a	DATE	data	type:
Click	here	to	view	code	image

SELECT	orderid,	custid,	empid,	orderdate
FROM	Sales.Orders
WHERE	orderdate	=	CAST('20160212'	AS	DATE);

Note	that	some	character-string	formats	of	date	and	time	literals	are	language	dependent,
meaning	that	when	you	convert	them	to	a	date	and	time	data	type,	SQL	Server	might	interpret
the	value	differently	based	on	the	language	setting	in	effect	in	the	session.	Each	login	defined
by	the	database	administrator	has	a	default	language	associated	with	it,	and	unless	it	is
changed	explicitly,	that	language	becomes	the	effective	language	in	the	session.	You	can
overwrite	the	default	language	in	your	session	by	using	the	SET	LANGUAGE	command,	but
this	is	generally	not	recommended	because	some	aspects	of	the	code	might	rely	on	the	user ’s
default	language.
The	effective	language	in	the	session	sets	several	language-related	settings	behind	the

scenes.	Among	them	is	one	called	DATEFORMAT,	which	determines	how	SQL	Server
interprets	the	literals	you	enter	when	they	are	converted	from	a	character-string	type	to	a	date
and	time	type.	The	DATEFORMAT	setting	is	expressed	as	a	combination	of	the	characters	d,
m,	and	y.	For	example,	the	us_english	language	setting	sets	the	DATEFORMAT	to	mdy,
whereas	the	British	language	setting	sets	the	DATEFORMAT	to	dmy.	You	can	override	the
DATEFORMAT	setting	in	your	session	by	using	the	SET	DATEFORMAT	command,	but	as
mentioned	earlier,	changing	language-related	settings	is	generally	not	recommended.
Consider,	for	example,	the	literal	‘02/12/2016’.	SQL	Server	can	interpret	the	date	as	either

February	12,	2016	or	December	2,	2016	when	you	convert	this	literal	to	one	of	the	following
types:	DATETIME,	SMALLDATETIME,	DATE,	DATETIME2,	or	DATETIMEOFFSET.	The
effective	LANGUAGE/DATEFORMAT	setting	is	the	determining	factor.	To	demonstrate
different	interpretations	of	the	same	character-string	literal,	run	the	following	code:
Click	here	to	view	code	image

SET	LANGUAGE	British;
SELECT	CAST('02/12/2016'	AS	DATE);

SET	LANGUAGE	us_english;
SELECT	CAST('02/12/2016'	AS	DATE);

Notice	in	the	output	that	the	literal	was	interpreted	differently	in	the	two	different	language
environments:
Click	here	to	view	code	image

Changed	language	setting	to	British.

2016-12-02

Changed	language	setting	to	us_english.

2016-02-12

Note	that	the	LANGUAGE/DATEFORMAT	setting	affects	only	the	way	the	values	you	enter
are	interpreted;	these	settings	have	no	impact	on	the	format	used	in	the	output	for	presentation
purposes.	Output	format	is	determined	by	the	database	interface	used	by	the	client	tool	(such
as	ODBC)	and	not	by	the	LANGUAGE/DATEFORMAT	setting.	For	example,	OLE	DB	and
ODBC	present	DATE	values	in	the	format	‘YYYY-MM-DD’.
Because	the	code	you	write	might	end	up	being	used	by	international	users	with	different

language	settings	for	their	logins,	understanding	that	some	formats	of	literals	are	language
dependent	is	crucial.	It	is	strongly	recommended	that	you	phrase	your	literals	in	a	language-
neutral	manner.	Language-neutral	formats	are	always	interpreted	by	SQL	Server	the	same
way	and	are	not	affected	by	language-related	settings.
Table	2-2	provides	literal	formats	that	are	considered	neutral	for	each	of	the	date	and	time

types.

TABLE	2-2	Language-neutral	date	and	time	data	type	formats

Note	a	couple	of	things	about	Table	2-2.	With	all	types	that	include	both	date	and	time
components,	if	you	don’t	specify	a	time	part	in	your	literal,	SQL	Server	assumes	midnight.	If
you	don’t	specify	an	offset	from	UTC,	SQL	Server	assumes	00:00.	Also	note	that	the	formats
‘YYYY-MM-DD’	and	‘YYYY-MM-DD	hh:mm...’	are	language	dependent	when	converted	to
DATETIME	or	SMALLDATETIME	and	language	neutral	when	converted	to	DATE,
DATETIME2,	and	DATETIMEOFFSET.
For	example,	notice	in	the	following	code	that	the	language	setting	has	no	impact	on	how	a

literal	expressed	with	the	format	‘YYYYMMDD’	is	interpreted	when	it	is	converted	to	DATE:
Click	here	to	view	code	image

SET	LANGUAGE	British;
SELECT	CAST('20160212'	AS	DATE);

SET	LANGUAGE	us_english;
SELECT	CAST('20160212'	AS	DATE);

The	output	shows	that	the	literal	was	interpreted	in	both	cases	as	February	12,	2016:
Click	here	to	view	code	image

Changed	language	setting	to	British.

2016-02-12

Changed	language	setting	to	us_english.

2016-02-12

I	probably	can’t	emphasize	enough	that	using	language-neutral	formats	such	as
‘YYYYMMDD’	is	a	best	practice,	because	such	formats	are	interpreted	the	same	way
regardless	of	the	LANGUAGE/DATEFORMAT	settings.
If	you	insist	on	using	a	language-dependent	format	to	express	literals,	there	are	two	options

available	to	you.	One	is	to	use	the	CONVERT	function	to	explicitly	convert	the	character-
string	literal	to	the	requested	data	type	and,	in	the	third	argument,	specify	a	number
representing	the	style	you	used.	SQL	Server	Books	Online	has	a	table	with	all	the	style
numbers	and	the	formats	they	represent.	You	can	find	it	under	the	topic	“The	CAST	and
CONVERT	Functions.”	For	example,	if	you	want	to	specify	the	literal	‘02/12/2016’	with	the
format	MM/DD/YYYY,	use	style	number	101,	as	shown	here:
Click	here	to	view	code	image

SELECT	CONVERT(DATE,	'02/12/2016',	101);

The	literal	is	interpreted	as	February	12,	2016,	regardless	of	the	language	setting	that	is	in
effect.
If	you	want	to	use	the	format	DD/MM/YYYY,	use	style	number	103:

Click	here	to	view	code	image

SELECT	CONVERT(DATE,	'02/12/2016',	103);

This	time,	the	literal	is	interpreted	as	December	2,	2016.
Another	option	is	to	use	the	PARSE	function.	By	using	this	function,	you	can	parse	a	value

as	a	requested	type	and	indicate	the	culture.	For	example,	the	following	is	the	equivalent	of
using	CONVERT	with	style	101	(US	English):
Click	here	to	view	code	image

SELECT	PARSE('02/12/2016'	AS	DATE	USING	'en-US');

The	following	is	equivalent	to	using	CONVERT	with	style	103	(British	English):
Click	here	to	view	code	image

SELECT	PARSE('02/12/2016'	AS	DATE	USING	'en-GB');

	Note
The	PARSE	function	is	significantly	more	expensive	than	the	CONVERT	function;
therefore,	it	is	generally	recommended	you	refrain	from	using	it.

Working	with	date	and	time	separately
If	you	need	to	work	with	only	dates	or	only	times,	it’s	recommended	that	you	use	the	DATE
and	TIME	data	types,	respectively.	Adhering	to	this	guideline	can	become	challenging	if	you
need	to	restrict	yourself	to	using	only	the	legacy	types	DATETIME	and	SMALLDATETIME	for
reasons	such	as	compatibility	with	older	systems.	The	challenge	is	that	the	legacy	types
contain	both	the	date	and	time	components.	The	best	practice	in	such	a	case	says	that	when	you
want	to	work	only	with	dates,	you	store	the	date	with	a	value	of	midnight	in	the	time	part.
When	you	want	to	work	only	with	times,	you	store	the	time	with	the	base	date	January	1,	1900.
To	demonstrate	working	with	date	and	time	separately,	I’ll	use	a	table	called	Sales.Orders2,

which	has	a	column	called	orderdate	of	a	DATETIME	data	type.	Run	the	following	code	to
create	the	Sales.Orders2	table	by	copying	data	from	the	Sales.Orders	table	and	casting	the
source	orderdate	column,	which	is	of	a	DATE	type,	to	DATETIME:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	Sales.Orders2;

SELECT	orderid,	custid,	empid,	CAST(orderdate	AS	DATETIME)	AS	orderdate
INTO	Sales.Orders2
FROM	Sales.Orders;

Don’t	worry	if	you’re	not	familiar	yet	with	the	SELECT	INTO	statement.	I	describe	it	in
Chapter	8,	“Data	modifications.”
As	mentioned,	the	orderdate	column	in	the	Sales.Orders2	table	is	of	a	DATETIME	data	type,

but	because	only	the	date	component	is	actually	relevant,	all	values	contain	midnight	as	the
time.	When	you	need	to	filter	only	orders	from	a	certain	date,	you	don’t	have	to	use	a	range
filter.	Instead,	you	can	use	the	equality	operator	like	this:
Click	here	to	view	code	image

SELECT	orderid,	custid,	empid,	orderdate
FROM	Sales.Orders2
WHERE	orderdate	=	'20160212';

When	SQL	Server	converts	a	character-string	literal	that	has	only	a	date	to	DATETIME,	it
assumes	midnight	by	default.	Because	all	values	in	the	orderdate	column	contain	midnight	in
the	time	component,	all	orders	placed	on	the	requested	date	will	be	returned.	Note	that	you	can
use	a	CHECK	constraint	to	ensure	that	only	midnight	is	used	as	the	time	part:
Click	here	to	view	code	image

ALTER	TABLE	Sales.Orders2
		ADD	CONSTRAINT	CHK_Orders2_orderdate
		CHECK(CONVERT(CHAR(12),	orderdate,	114)	=	'00:00:00:000');

The	CONVERT	function	extracts	the	time-only	portion	of	the	orderdate	value	as	a	character
string	using	style	114.	The	CHECK	constraint	verifies	that	the	string	represents	midnight.
If	the	time	component	is	stored	with	nonmidnight	values,	you	can	use	a	range	filter	like

this:
Click	here	to	view	code	image

SELECT	orderid,	custid,	empid,	orderdate
FROM	Sales.Orders2
WHERE	orderdate	>=	'20160212'
		AND	orderdate	<	'20160213';

If	you	want	to	work	only	with	times	using	the	legacy	types,	you	can	store	all	values	with	the
base	date	of	January	1,	1900.	When	SQL	Server	converts	a	character-string	literal	that
contains	only	a	time	component	to	DATETIME	or	SMALLDATETIME,	SQL	Server	assumes
that	the	date	is	the	base	date.	For	example,	run	the	following	code:
Click	here	to	view	code	image

SELECT	CAST('12:30:15.123'	AS	DATETIME);

You	get	the	following	output:

1900-01-01	12:30:15.123

Suppose	you	have	a	table	with	a	column	called	tm	of	a	DATETIME	data	type	and	you	store
all	values	by	using	the	base	date.	Again,	this	can	be	enforced	with	a	CHECK	constraint.	To
return	all	rows	for	which	the	time	value	is	12:30:15.123,	you	use	the	filter	WHERE	tm	=
‘12:30:15.123’.	Because	you	did	not	specify	a	date	component,	SQL	Server	assumes	the	date
is	the	base	date	when	it	implicitly	converts	the	character	string	to	a	DATETIME	data	type.
If	you	want	to	work	only	with	dates	or	only	with	times	using	the	legacy	types,	but	the	input

values	you	get	include	both	date	and	time	components,	you	need	to	apply	some	manipulation
to	the	input	values	to	“zero”	the	irrelevant	part.	That	is,	set	the	time	component	to	midnight	if
you	want	to	work	only	with	dates,	and	set	the	date	component	to	the	base	date	if	you	want	to
work	only	with	times.	I’ll	explain	how	you	can	achieve	this	shortly,	in	the	“Date	and	Time
functions”	section.
Run	the	following	code	for	cleanup:

Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	Sales.Orders2;

Filtering	date	ranges
When	you	need	to	filter	a	range	of	dates,	such	as	a	whole	year	or	a	whole	month,	it	seems
natural	to	use	functions	such	as	YEAR	and	MONTH.	For	example,	the	following	query	returns
all	orders	placed	in	the	year	2015:
Click	here	to	view	code	image

SELECT	orderid,	custid,	empid,	orderdate
FROM	Sales.Orders
WHERE	YEAR(orderdate)	=	2015;

However,	you	should	be	aware	that	in	most	cases,	when	you	apply	manipulation	on	the
filtered	column,	SQL	Server	cannot	use	an	index	in	an	efficient	manner.	This	is	probably	hard
to	understand	without	some	background	about	indexes	and	performance,	which	are	outside
the	scope	of	this	book.	For	now,	just	keep	this	general	point	in	mind:	To	have	the	potential	to
use	an	index	efficiently,	you	shouldn’t	manipulate	the	filtered	column.	To	achieve	this,	you
can	revise	the	filter	predicate	from	the	last	query	like	this:
Click	here	to	view	code	image

SELECT	orderid,	custid,	empid,	orderdate
FROM	Sales.Orders
WHERE	orderdate	>=	'20150101'	AND	orderdate	<	'20160101';

Similarly,	instead	of	using	functions	to	filter	orders	placed	in	a	particular	month,	like	this:
Click	here	to	view	code	image

SELECT	orderid,	custid,	empid,	orderdate
FROM	Sales.Orders
WHERE	YEAR(orderdate)	=	2016	AND	MONTH(orderdate)	=	2;

use	a	range	filter,	like	the	following:
Click	here	to	view	code	image

SELECT	orderid,	custid,	empid,	orderdate
FROM	Sales.Orders
WHERE	orderdate	>=	'20160201'	AND	orderdate	<	'20160301';

Date	and	time	functions
In	this	section,	I	describe	functions	that	operate	on	date	and	time	data	types,	including
GETDATE,	CURRENT_TIMESTAMP,	GETUTCDATE,	SYSDATETIME,	SYSUTCDATETIME,
SYSDATETIMEOFFSET,	CAST,	CONVERT,	SWITCHOFFSET,	AT	TIME	ZONE,
TODATETIMEOFFSET,	DATEADD,	DATEDIFF	and	DATEDIFF_BIG,	DATEPART,	YEAR,
MONTH,	DAY,	DATENAME,	various	FROMPARTS	functions,	and	EOMONTH.

Current	date	and	time
The	following	niladic	(parameterless)	functions	return	the	current	date	and	time	values	in	the
system	where	the	SQL	Server	instance	resides:	GETDATE,	CURRENT_TIMESTAMP,
GETUTCDATE,	SYSDATETIME,	SYSUTCDATETIME,	and	SYSDATETIMEOFFSET.
Table	2-3	provides	the	description	of	these	functions.

TABLE	2-3	Functions	returning	current	date	and	time

Note	that	you	need	to	specify	empty	parentheses	with	all	functions	that	should	be	specified
without	parameters,	except	the	standard	function	CURRENT_TIMESTAMP.	Also,	because
CURRENT_TIMESTAMP	and	GETDATE	return	the	same	thing	but	only	the	former	is	standard,
it	is	recommended	that	you	use	the	former.	This	is	a	practice	I	try	to	follow	in	general—when
I	have	several	options	that	do	the	same	thing	with	no	functional	or	performance	difference,
and	one	is	standard	but	others	aren’t,	my	preference	is	to	use	the	standard	option.
The	following	code	demonstrates	using	the	current	date	and	time	functions:

Click	here	to	view	code	image

SELECT
		GETDATE()											AS	[GETDATE],
		CURRENT_TIMESTAMP			AS	[CURRENT_TIMESTAMP],
		GETUTCDATE()								AS	[GETUTCDATE],
		SYSDATETIME()							AS	[SYSDATETIME],
		SYSUTCDATETIME()				AS	[SYSUTCDATETIME],
		SYSDATETIMEOFFSET()	AS	[SYSDATETIMEOFFSET];

As	you	probably	noticed,	none	of	the	functions	return	only	the	current	system	date	or	only
the	current	system	time.	However,	you	can	get	those	easily	by	converting
CURRENT_TIMESTAMP	or	SYSDATETIME	to	DATE	or	TIME	like	this:
Click	here	to	view	code	image

SELECT
		CAST(SYSDATETIME()	AS	DATE)	AS	[current_date],
		CAST(SYSDATETIME()	AS	TIME)	AS	[current_time];

The	CAST,	CONVERT,	and	PARSE	functions	and	their	TRY_	counterparts
The	CAST,	CONVERT,	and	PARSE	functions	are	used	to	convert	an	input	value	to	some	target
type.	If	the	conversion	succeeds,	the	functions	return	the	converted	value;	otherwise,	they
cause	the	query	to	fail.	The	three	functions	have	counterparts	called	TRY_CAST,
TRY_CONVERT,	and	TRY_PARSE,	respectively.	Each	version	with	the	prefix	TRY_	accepts	the
same	input	as	its	counterpart	and	applies	the	same	conversion;	the	difference	is	that	if	the
input	isn’t	convertible	to	the	target	type,	the	function	returns	a	NULL	instead	of	failing	the
query.

Syntax
CAST(value	AS	datatype)
TRY_CAST(value	AS	datatype)
CONVERT	(datatype,	value	[,	style_number])
TRY_CONVERT	(datatype,	value	[,	style_number])
PARSE	(value	AS	datatype	[USING	culture])
TRY_PARSE	(value	AS	datatype	[USING	culture])
All	three	base	functions	convert	the	input	value	to	the	specified	target	datatype.	In	some

cases,	CONVERT	has	a	third	argument	with	which	you	can	specify	the	style	of	the	conversion.
For	example,	when	you	are	converting	from	a	character	string	to	one	of	the	date	and	time	data
types	(or	the	other	way	around),	the	style	number	indicates	the	format	of	the	string.	For
example,	style	101	indicates	‘MM/DD/YYYY’,	and	style	103	indicates	‘DD/MM/YYYY’.	You
can	find	the	full	list	of	style	numbers	and	their	meanings	in	SQL	Server	Books	Online	under
“CAST	and	CONVERT.”	Similarly,	where	applicable,	the	PARSE	function	supports	the
indication	of	a	culture—for	example,	‘en-US’	for	U.S.	English	and	‘en-GB’	for	British
English.
As	mentioned	earlier,	when	you	are	converting	from	a	character	string	to	one	of	the	date

and	time	data	types,	some	of	the	string	formats	are	language	dependent.	I	recommend	either
using	one	of	the	language-neutral	formats	or	using	the	CONVERT	function	and	explicitly
specifying	the	style	number.	This	way,	your	code	is	interpreted	the	same	way	regardless	of	the
language	of	the	login	running	it.
Note	that	CAST	is	standard	and	CONVERT	and	PARSE	aren’t,	so	unless	you	need	to	use	the

style	number	or	culture,	it	is	recommended	that	you	use	the	CAST	function.
Following	are	a	few	examples	of	using	the	CAST,	CONVERT,	and	PARSE	functions	with

date	and	time	data	types.	The	following	code	converts	the	character	string	literal	‘20160212’
to	a	DATE	data	type:
Click	here	to	view	code	image

SELECT	CAST('20160212'	AS	DATE);

The	following	code	converts	the	current	system	date	and	time	value	to	a	DATE	data	type,
practically	extracting	only	the	current	system	date:
Click	here	to	view	code	image

SELECT	CAST(SYSDATETIME()	AS	DATE);

The	following	code	converts	the	current	system	date	and	time	value	to	a	TIME	data	type,
practically	extracting	only	the	current	system	time:
Click	here	to	view	code	image

SELECT	CAST(SYSDATETIME()	AS	TIME);

As	suggested	earlier,	if	you	need	to	work	with	the	DATETIME	or	SMALLEDATETIME	types
(for	example,	to	be	compatible	with	legacy	systems)	and	want	to	represent	only	a	date	or	only
a	time,	you	can	set	the	irrelevant	part	to	a	specific	value.	To	work	only	with	dates,	you	set	the

time	to	midnight.	To	work	only	with	time,	you	set	the	date	to	the	base	date	January	1,	1900.
The	following	code	converts	the	current	date	and	time	value	to	CHAR(8)	by	using	style	112

(‘YYYYMMDD’):
Click	here	to	view	code	image

SELECT	CONVERT(CHAR(8),	CURRENT_TIMESTAMP,	112);

For	example,	if	the	current	date	is	February	12,	2016,	this	code	returns	‘20160212’.	You
then	convert	the	character	string	back	to	DATETIME	and	get	the	current	date	at	midnight:
Click	here	to	view	code	image

SELECT	CONVERT(DATETIME,	CONVERT(CHAR(8),	CURRENT_TIMESTAMP,	112),	112);

Similarly,	to	zero	the	date	portion	to	the	base	date,	you	can	first	convert	the	current	date	and
time	value	to	CHAR(12)	by	using	style	114	(‘hh:mm:ss.nnn’):
Click	here	to	view	code	image

SELECT	CONVERT(CHAR(12),	CURRENT_TIMESTAMP,	114);

When	the	code	is	converted	back	to	DATETIME,	you	get	the	current	time	on	the	base	date:
Click	here	to	view	code	image

SELECT	CONVERT(DATETIME,	CONVERT(CHAR(12),	CURRENT_TIMESTAMP,	114),	114);

As	for	using	the	PARSE	function,	here	are	a	couple	of	examples:
Click	here	to	view	code	image

SELECT	PARSE('02/12/2016'	AS	DATETIME	USING	'en-US');
SELECT	PARSE('02/12/2016'	AS	DATETIME	USING	'en-GB');

The	first	example	parses	the	input	string	by	using	a	U.S.	English	culture,	and	the	second	one
does	so	by	using	a	British	English	culture.
As	a	reminder,	the	PARSE	function	is	significantly	more	expensive	than	the	CONVERT

function;	therefore,	I	recommend	you	use	the	latter.

The	SWITCHOFFSET	function
The	SWITCHOFFSET	function	adjusts	an	input	DATETIMEOFFSET	value	to	a	specified	target
offset	from	UTC.

Syntax
SWITCHOFFSET(datetimeoffset_value,	UTC_offset)
For	example,	the	following	code	adjusts	the	current	system	datetimeoffset	value	to	offset	–

05:00.
Click	here	to	view	code	image

SELECT	SWITCHOFFSET(SYSDATETIMEOFFSET(),	'-05:00');

So	if	the	current	system	datetimeoffset	value	is	February	12,	2016	10:00:00.0000000	–08:00,
this	code	returns	the	value	February	12,	2016	13:00:00.0000000	–05:00.

The	following	code	adjusts	the	current	datetimeoffset	value	to	UTC:
Click	here	to	view	code	image

SELECT	SWITCHOFFSET(SYSDATETIMEOFFSET(),	'+00:00');

Assuming	the	aforementioned	current	datetimeoffset	value,	this	code	returns	the	value
February	12,	2016	18:00:00.0000000	+00:00.

The	TODATETIMEOFFSET	function
The	TODATETIMEOFFSET	function	constructs	a	DATETIMEOFFSET	typed	value	from	a
local	date	and	time	value	and	an	offset	from	UTC.

Syntax
TODATETIMEOFFSET(local_date_and_time_value,	UTC_offset)
This	function	is	different	from	SWITCHOFFSET	in	that	its	first	input	is	a	local	date	and

time	value	without	an	offset	component.	This	function	simply	merges	the	input	date	and	time
value	with	the	specified	offset	to	create	a	new	datetimeoffset	value.
You	will	typically	use	this	function	when	migrating	non-offset-aware	data	to	offset-aware

data.	Imagine	you	have	a	table	holding	local	date	and	time	values	in	an	attribute	called	dt	of	a
DATETIME2	or	DATETIME	data	type	and	holding	the	offset	in	an	attribute	called	theoffset.
You	then	decide	to	merge	the	two	to	one	offset-aware	attribute	called	dto.	You	alter	the	table
and	add	the	new	attribute.	Then	you	update	it	to	the	result	of	the	expression
TODATETIMEOFFSET(dt,	theoffset).	Then	you	can	drop	the	two	existing	attributes	dt	and
theoffset.

The	AT	TIME	ZONE	function
The	AT	TIME	ZONE	function	accepts	an	input	date	and	time	value	and	converts	it	to	a
datetimeoffset	value	that	corresponds	to	the	specified	target	time	zone.	This	function	was
introduced	in	SQL	Server	2016.

Syntax
dt_val	AT	TIME	ZONE	time_zone
The	input	dt_val	can	be	of	the	following	data	types:	DATETIME,	SMALLDATETIME,

DATETIME2,	and	DATETIMEOFFSET.	The	input	time_zone	can	be	any	of	the	supported
Windows	time-zone	names	as	they	appear	in	the	name	column	in	the	sys.time_zone_info	view.
Use	the	following	query	to	see	the	available	time	zones,	their	current	offset	from	UTC	and
whether	it’s	currently	Daylight	Savings	Time	(DST):
Click	here	to	view	code	image

SELECT	name,	current_utc_offset,	is_currently_dst
FROM	sys.time_zone_info;

Regarding	dt_val:	when	using	any	of	the	three	non-datetimeoffset	types	(DATETIME,
SMALLDATETIME,	and	DATETIME2),	the	AT	TIME	ZONE	function	assumes	the	input	value	is
already	in	the	target	time	zone.	As	a	result,	it	behaves	similar	to	the	TODATETIMEOFFSET

function,	except	the	offset	isn’t	necessarily	fixed.	It	depends	on	whether	DST	applies.	Take	the
time	zone	Pacific	Standard	Time	as	an	example.	When	it’s	not	DST,	the	offset	from	UTC	is	–
08:00;	when	it	is	DST,	the	offset	is	–07:00.	The	following	code	demonstrates	the	use	of	this
function	with	non-datetimeoffset	inputs:
Click	here	to	view	code	image

SELECT
		CAST('20160212	12:00:00.0000000'	AS	DATETIME2)
				AT	TIME	ZONE	'Pacific	Standard	Time'	AS	val1,
		CAST('20160812	12:00:00.0000000'	AS	DATETIME2)
				AT	TIME	ZONE	'Pacific	Standard	Time'	AS	val2;

This	code	generates	the	following	output:
Click	here	to	view	code	image

val1																															val2
----------------------------------	----------------------------------
2016-02-12	12:00:00.0000000	-08:00	2016-08-12	12:00:00.0000000	-07:00

The	first	value	happens	when	DST	doesn’t	apply;	hence,	offset	–08:00	is	assumed.	The
second	value	happens	during	DST;	hence,	offset	–07:00	is	assumed.	Here	there’s	no
ambiguity.
There	are	two	tricky	cases:	when	switching	to	DST	and	when	switching	from	DST.	For

example,	in	Pacific	Standard	Time,	when	switching	to	DST	the	clock	is	advanced	by	an	hour,
so	there’s	an	hour	that	doesn’t	exist.	If	you	specify	a	nonexisting	time	during	that	hour,	the
offset	before	the	change	(–08:00)	is	assumed.	When	switching	from	DST,	the	clock	retreats	by
an	hour,	so	there’s	an	hour	that	repeats	itself.	If	you	specify	a	time	during	that	hour,	starting	at
the	bottom	of	the	hour,	non-DST	is	assumed	(that	is,	the	offset	–08:00	is	used).
When	the	input	dt_val	is	a	datetimeoffset	value,	the	AT	TIME	ZONE	function	behaves	more

similarly	to	the	SWITCHOFFSET	function.	Again,	however,	the	target	offset	isn’t	necessarily
fixed.	T-SQL	uses	the	Windows	time-zone-conversion	rules	to	apply	the	conversion.	The
following	code	demonstrates	the	use	of	the	function	with	datetimeoffset	inputs:
Click	here	to	view	code	image

SELECT
		CAST('20160212	12:00:00.0000000	-05:00'	AS	DATETIMEOFFSET)
				AT	TIME	ZONE	'Pacific	Standard	Time'	AS	val1,
		CAST('20160812	12:00:00.0000000	-04:00'	AS	DATETIMEOFFSET)
				AT	TIME	ZONE	'Pacific	Standard	Time'	AS	val2;

The	input	values	reflect	the	time	zone	Eastern	Standard	Time.	Both	have	noon	in	the	time
component.	The	first	value	occurs	when	DST	doesn’t	apply	(offset	is	–05:00),	and	the	second
one	occurs	when	DST	does	apply	(that	is,	the	offset	is	–04:00).	Both	values	are	converted	to
the	time	zone	Pacific	Standard	Time	(the	offset	–08:00	when	DST	doesn’t	apply	and	–07:00
when	it	does).	In	both	cases,	the	time	needs	to	retreat	by	three	hours	to	9:00	AM.	You	get	the
following	output:
Click	here	to	view	code	image

val1																															val2
----------------------------------	----------------------------------

2016-02-12	09:00:00.0000000	-08:00	2016-08-12	09:00:00.0000000	-07:00

The	DATEADD	function
You	use	the	DATEADD	function	to	add	a	specified	number	of	units	of	a	specified	date	part	to
an	input	date	and	time	value.

Syntax
DATEADD(part,	n,	dt_val)
Valid	values	for	the	part	input	include	year,	quarter,	month,	dayofyear,	day,	week,	weekday,

hour,	minute,	second,	millisecond,	microsecond,	and	nanosecond.	You	can	also	specify	the	part
in	abbreviated	form,	such	as	yy	instead	of	year.	Refer	to	SQL	Server	Books	Online	for	details.
The	return	type	for	a	date	and	time	input	is	the	same	type	as	the	input’s	type.	If	this	function

is	given	a	string	literal	as	input,	the	output	is	DATETIME.
For	example,	the	following	code	adds	one	year	to	February	12,	2016:

Click	here	to	view	code	image

SELECT	DATEADD(year,	1,	'20160212');

This	code	returns	the	following	output:

2017-02-12	00:00:00.000

The	DATEDIFF	and	DATEDIFF_BIG	Functions
The	DATEDIFF	and	DATEDIFF_BIG	functions	return	the	difference	between	two	date	and
time	values	in	terms	of	a	specified	date	part.	The	former	returns	a	value	typed	as	INT	(a	4-byte
integer),	and	the	latter	returns	a	value	typed	as	BIGINT	(an	8-byte	integer).	The	function
DATEDIFF_BIG	was	introduced	in	SQL	Server	2016.

Syntax
DATEDIFF(part,	dt_val1,	dt_val2),	DATEDIFF_BIG(part,	dt_val1,	dt_val2)
For	example,	the	following	code	returns	the	difference	in	terms	of	days	between	two

values:
Click	here	to	view	code	image

SELECT	DATEDIFF(day,	'20150212',	'20160212');

This	code	returns	the	output	366.
There	are	certain	differences	that	result	in	an	integer	that	is	greater	than	the	maximum	INT

value	(2,147,483,647).	For	example,	the	difference	in	milliseconds	between	January	1,	0001
and	February	12,	2016	is	63,590,832,000,000.	You	can’t	use	the	DATEDIFF	function	to
compute	such	a	difference,	but	you	can	achieve	this	with	the	DATEDIFF_BIG	function:
Click	here	to	view	code	image

SELECT	DATEDIFF_BIG(millisecond,	'00010101',	'20160212');

If	you	need	to	compute	the	beginning	of	the	day	that	corresponds	to	an	input	date	and	time

value,	you	can	simply	cast	the	input	value	to	the	DATE	type	and	then	cast	the	result	to	the	target
type.	But	with	a	bit	more	sophisticated	use	of	the	DATEADD	and	DATEDIFF	functions,	you
can	compute	the	beginning	or	end	of	different	parts	(day,	month,	quarter,	year)	that
correspond	to	the	input	value.	For	example,	use	the	following	code	to	compute	the	beginning
of	the	day	that	corresponds	to	the	input	date	and	time	value:
Click	here	to	view	code	image

SELECT
		DATEADD(
				day,
				DATEDIFF(day,	'19000101',	SYSDATETIME()),	'19000101');

This	is	achieved	by	first	using	the	DATEDIFF	function	to	calculate	the	difference	in	terms
of	whole	days	between	an	anchor	date	at	midnight	(‘19000101’	in	this	case)	and	the	current
date	and	time	(call	that	difference	diff).	Then	the	DATEADD	function	is	used	to	add	diff	days	to
the	anchor.	You	get	the	current	system	date	at	midnight.
If	you	use	this	expression	with	a	month	part	instead	of	a	day,	and	make	sure	to	use	an

anchor	that	is	the	first	day	of	a	month	(as	in	this	example),	you	get	the	first	day	of	the	current
month:
Click	here	to	view	code	image

SELECT
		DATEADD(
				month,
				DATEDIFF(month,	'19000101',	SYSDATETIME()),	'19000101');

Similarly,	by	using	a	year	part	and	an	anchor	that	is	the	first	day	of	a	year,	you	get	back	the
first	day	of	the	current	year.
If	you	want	the	last	day	of	the	month	or	year,	simply	use	an	anchor	that	is	the	last	day	of	a

month	or	year.	For	example,	the	following	expression	returns	the	last	day	of	the	current	year:
Click	here	to	view	code	image

SELECT
		DATEADD(
				year,
				DATEDIFF(year,	'18991231',	SYSDATETIME()),	'18991231');

Using	a	similar	expression	with	the	month	part,	you	can	get	the	last	day	of	the	month,	but
it’s	much	easier	to	achieve	this	using	the	function	EOMONTH	instead.	Unfortunately,	there	are
no	similar	functions	to	get	the	end	of	quarter	and	year,	so	you	will	need	to	use	a	computation
for	those	such	as	the	one	just	shown.

The	DATEPART	function
The	DATEPART	function	returns	an	integer	representing	a	requested	part	of	a	date	and	time
value.

Syntax
DATEPART(part,	dt_val)

Valid	values	for	the	part	argument	include	year,	quarter,	month,	dayofyear,	day,	week,
weekday,	hour,	minute,	second,	millisecond,	microsecond,	nanosecond,	TZoffset,	and
ISO_WEEK.	As	mentioned,	you	can	use	abbreviations	for	the	date	and	time	parts,	such	as	yy
instead	of	year,	mm	instead	of	month,	dd	instead	of	day,	and	so	on.
For	example,	the	following	code	returns	the	month	part	of	the	input	value:

Click	here	to	view	code	image

SELECT	DATEPART(month,	'20160212');

This	code	returns	the	integer	2.

The	YEAR,	MONTH,	and	DAY	functions
The	YEAR,	MONTH,	and	DAY	functions	are	abbreviations	for	the	DATEPART	function
returning	the	integer	representation	of	the	year,	month,	and	day	parts	of	an	input	date	and	time
value.

Syntax
YEAR(dt_val)
MONTH(dt_val)
DAY(dt_val)
For	example,	the	following	code	extracts	the	day,	month,	and	year	parts	of	an	input	value:

Click	here	to	view	code	image

SELECT
		DAY('20160212')	AS	theday,
		MONTH('20160212')	AS	themonth,
		YEAR('20160212')	AS	theyear;

This	code	returns	the	following	output:
Click	here	to	view	code	image

theday						themonth				theyear
-----------	-----------	-----------
12										2											2016

The	DATENAME	function
The	DATENAME	function	returns	a	character	string	representing	a	part	of	a	date	and	time
value.

Syntax
DATENAME(dt_val,	part)
This	function	is	similar	to	DATEPART	and,	in	fact,	has	the	same	options	for	the	part	input.

However,	when	relevant,	it	returns	the	name	of	the	requested	part	rather	than	the	number.	For
example,	the	following	code	returns	the	month	name	of	the	given	input	value:
Click	here	to	view	code	image

SELECT	DATENAME(month,	'20160212');

Recall	that	DATEPART	returned	the	integer	2	for	this	input.	DATENAME	returns	the	name	of
the	month,	which	is	language	dependent.	If	your	session’s	language	is	one	of	the	English
languages	(such	as	U.S.	English	or	British	English),	you	get	back	the	value	‘February’.	If	your
session’s	language	is	Italian,	you	get	back	the	value	‘febbraio’.	If	a	part	is	requested	that	has
no	name,	and	only	a	numeric	value	(such	as	year),	the	DATENAME	function	returns	its
numeric	value	as	a	character	string.	For	example,	the	following	code	returns	‘2016’:
Click	here	to	view	code	image

SELECT	DATENAME(year,	'20160212');

The	ISDATE	function
The	ISDATE	function	accepts	a	character	string	as	input	and	returns	1	if	it	is	convertible	to	a
date	and	time	data	type	and	0	if	it	isn’t.

Syntax
ISDATE(string)
For	example,	the	following	code	returns	1:
SELECT	ISDATE('20160212');

And	the	following	code	returns	0:
SELECT	ISDATE('20160230');

The	FROMPARTS	functions
The	FROMPARTS	functions	accept	integer	inputs	representing	parts	of	a	date	and	time	value
and	construct	a	value	of	the	requested	type	from	those	parts.

Syntax
DATEFROMPARTS	(year,	month,	day)
DATETIME2FROMPARTS	(year,	month,	day,	hour,	minute,	seconds,	fractions,	precision)
DATETIMEFROMPARTS	(year,	month,	day,	hour,	minute,	seconds,	milliseconds)
DATETIMEOFFSETFROMPARTS	(year,	month,	day,	hour,	minute,	seconds,	fractions,
hour_offset,	minute_offset,	precision)
SMALLDATETIMEFROMPARTS	(year,	month,	day,	hour,	minute)
TIMEFROMPARTS	(hour,	minute,	seconds,	fractions,	precision)
These	functions	make	it	easier	for	programmers	to	construct	date	and	time	values	from	the

different	components,	and	they	also	simplify	migrating	code	from	other	environments	that
already	support	similar	functions.	The	following	code	demonstrates	the	use	of	these
functions:
Click	here	to	view	code	image

SELECT
		DATEFROMPARTS(2016,	02,	12),
		DATETIME2FROMPARTS(2016,	02,	12,	13,	30,	5,	1,	7),
		DATETIMEFROMPARTS(2016,	02,	12,	13,	30,	5,	997),

		DATETIMEOFFSETFROMPARTS(2016,	02,	12,	13,	30,	5,	1,	-8,	0,	7),
		SMALLDATETIMEFROMPARTS(2016,	02,	12,	13,	30),
		TIMEFROMPARTS(13,	30,	5,	1,	7);

The	EOMONTH	function
The	EOMONTH	function	accepts	an	input	date	and	time	value	and	returns	the	respective	end-
of-month	date	as	a	DATE	typed	value.	The	function	also	supports	an	optional	second	argument
indicating	how	many	months	to	add	(or	subtract,	if	negative).

Syntax
EOMONTH(input	[,	months_to_add])
For	example,	the	following	code	returns	the	end	of	the	current	month:

Click	here	to	view	code	image

SELECT	EOMONTH(SYSDATETIME());

The	following	query	returns	orders	placed	on	the	last	day	of	the	month:
Click	here	to	view	code	image

SELECT	orderid,	orderdate,	custid,	empid
FROM	Sales.Orders
WHERE	orderdate	=	EOMONTH(orderdate);

Querying	metadata
SQL	Server	provides	tools	for	getting	information	about	the	metadata	of	objects,	such	as
information	about	tables	in	a	database	and	columns	in	a	table.	Those	tools	include	catalog
views,	information	schema	views,	and	system	stored	procedures	and	functions.	This	area	is
documented	well	in	SQL	Server	Books	Online	in	the	“Querying	the	SQL	Server	System
Catalog”	section,	so	I	won’t	cover	it	in	great	detail	here.	I’ll	just	give	a	couple	of	examples	of
each	metadata	tool	to	give	you	a	sense	of	what’s	available	and	get	you	started.

Catalog	views
Catalog	views	provide	detailed	information	about	objects	in	the	database,	including
information	that	is	specific	to	SQL	Server.	For	example,	if	you	want	to	list	the	tables	in	a
database	along	with	their	schema	names,	you	can	query	the	sys.tables	view	as	follows:
Click	here	to	view	code	image

USE	TSQLV4;

SELECT	SCHEMA_NAME(schema_id)	AS	table_schema_name,	name	AS	table_name
FROM	sys.tables;

The	SCHEMA_NAME	function	is	used	to	convert	the	schema	ID	integer	to	its	name.	This
query	returns	the	following	output:
Click	here	to	view	code	image

table_schema_name		table_name
------------------	--------------
HR																	Employees

Production									Suppliers
Production									Categories
Production									Products
Sales														Customers
Sales														Shippers
Sales														Orders
Sales														OrderDetails
Stats														Tests
Stats														Scores
dbo																Nums

To	get	information	about	columns	in	a	table,	you	can	query	the	sys.columns	table.	For
example,	the	following	code	returns	information	about	columns	in	the	Sales.Orders	table,
including	column	names,	data	types	(with	the	system	type	ID	translated	to	a	name	by	using	the
TYPE_NAME	function),	maximum	length,	collation	name,	and	nullability:
Click	here	to	view	code	image

SELECT
		name	AS	column_name,
		TYPE_NAME(system_type_id)	AS	column_type,
		max_length,
		collation_name,
		is_nullable
FROM	sys.columns
WHERE	object_id	=	OBJECT_ID(N'Sales.Orders');

This	query	returns	the	following	output:
Click	here	to	view	code	image

column_name					column_type		max_length	collation_name								is_nullable
---------------	------------	----------	---------------------	-----------
orderid									int										4										NULL																		0
custid										int										4										NULL																		1
empid											int										4										NULL																		0
orderdate							date									3										NULL																		0
requireddate				date									3										NULL																		0
shippeddate					date									3										NULL																		1
shipperid							int										4										NULL																		0
freight									money								8										NULL																		0
shipname								nvarchar					80									Latin1_General_CI_AS		0
shipaddress					nvarchar					120								Latin1_General_CI_AS		0
shipcity								nvarchar					30									Latin1_General_CI_AS		0
shipregion						nvarchar					30									Latin1_General_CI_AS		1
shippostalcode		nvarchar					20									Latin1_General_CI_AS		1
shipcountry					nvarchar					30									Latin1_General_CI_AS		0

Information	schema	views
An	information	schema	view	is	a	set	of	views	that	resides	in	a	schema	called
INFORMATION_SCHEMA	and	provides	metadata	information	in	a	standard	manner.	That	is,
the	views	are	defined	in	the	SQL	standard,	so	naturally	they	don’t	cover	metadata	aspects	or
objects	specific	to	SQL	Server	(such	as	indexing).
For	example,	the	following	query	against	the	INFORMATION_SCHEMA.TABLES	view	lists

the	user	tables	in	the	current	database	along	with	their	schema	names:
Click	here	to	view	code	image

SELECT	TABLE_SCHEMA,	TABLE_NAME
FROM	INFORMATION_SCHEMA.TABLES
WHERE	TABLE_TYPE	=	N'BASE	TABLE';

The	following	query	against	the	INFORMATION_SCHEMA.COLUMNS	view	provides	most
of	the	available	information	about	columns	in	the	Sales.Orders	table:
Click	here	to	view	code	image

SELECT
		COLUMN_NAME,	DATA_TYPE,	CHARACTER_MAXIMUM_LENGTH,
		COLLATION_NAME,	IS_NULLABLE
FROM	INFORMATION_SCHEMA.COLUMNS
WHERE	TABLE_SCHEMA	=	N'Sales'
		AND	TABLE_NAME	=	N'Orders';

System	stored	procedures	and	functions
System	stored	procedures	and	functions	internally	query	the	system	catalog	and	give	you	back
more	“digested”	metadata	information.	Again,	you	can	find	the	full	list	of	objects	and	their
detailed	descriptions	in	SQL	Server	Books	Online,	but	here	are	a	few	examples.
The	sp_tables	stored	procedure	returns	a	list	of	objects	(such	as	tables	and	views)	that	can

be	queried	in	the	current	database:
EXEC	sys.sp_tables;

The	sp_help	procedure	accepts	an	object	name	as	input	and	returns	multiple	result	sets	with
general	information	about	the	object,	and	also	information	about	columns,	indexes,
constraints,	and	more.	For	example,	the	following	code	returns	detailed	information	about	the
Orders	table:

EXEC	sys.sp_help
		@objname	=	N'Sales.Orders';

The	sp_columns	procedure	returns	information	about	columns	in	an	object.	For	example,
the	following	code	returns	information	about	columns	in	the	Orders	table:

EXEC	sys.sp_columns
		@table_name	=	N'Orders',
		@table_owner	=	N'Sales';

The	sp_helpconstraint	procedure	returns	information	about	constraints	in	an	object.	For
example,	the	following	code	returns	information	about	constraints	in	the	Orders	table:

EXEC	sys.sp_helpconstraint
		@objname	=	N'Sales.Orders';

One	set	of	functions	returns	information	about	properties	of	entities	such	as	the	SQL	Server
instance,	database,	object,	column,	and	so	on.	The	SERVERPROPERTY	function	returns	the
requested	property	of	the	current	instance.	For	example,	the	following	code	returns	the
product	level	(such	as	RTM,	SP1,	SP2,	and	so	on)	of	the	current	instance:
Click	here	to	view	code	image

SELECT
		SERVERPROPERTY('ProductLevel');

The	DATABASEPROPERTYEX	function	returns	the	requested	property	of	the	specified
database	name.	For	example,	the	following	code	returns	the	collation	of	the	TSQLV4
database:
Click	here	to	view	code	image

SELECT
		DATABASEPROPERTYEX(N'TSQLV4',	'Collation');

The	OBJECTPROPERTY	function	returns	the	requested	property	of	the	specified	object
name.	For	example,	the	output	of	the	following	code	indicates	whether	the	Orders	table	has	a
primary	key:
Click	here	to	view	code	image

SELECT
		OBJECTPROPERTY(OBJECT_ID(N'Sales.Orders'),	'TableHasPrimaryKey');

Notice	the	nesting	of	the	function	OBJECT_ID	within	OBJECTPROPERTY.	The
OBJECTPROPERTY	function	expects	an	object	ID	and	not	a	name,	so	the	OBJECT_ID
function	is	used	to	return	the	ID	of	the	Orders	table.
The	COLUMNPROPERTY	function	returns	the	requested	property	of	a	specified	column.

For	example,	the	output	of	the	following	code	indicates	whether	the	shipcountry	column	in	the
Orders	table	is	nullable:
Click	here	to	view	code	image

SELECT
		COLUMNPROPERTY(OBJECT_ID(N'Sales.Orders'),	N'shipcountry',	'AllowsNull');

Conclusion
This	chapter	introduced	you	to	the	SELECT	statement,	logical	query	processing,	and	various
other	aspects	of	single-table	queries.	I	covered	quite	a	few	subjects	here,	including	many	new
and	unique	concepts.	If	you’re	new	to	T-SQL,	you	might	feel	overwhelmed	at	this	point.	But
remember,	this	chapter	introduces	some	of	the	most	important	points	about	SQL	that	might	be
hard	to	digest	at	the	beginning.	If	some	of	the	concepts	weren’t	completely	clear,	you	might
want	to	revisit	sections	from	this	chapter	later	on,	after	you’ve	had	a	chance	to	sleep	on	it.
For	an	opportunity	to	practice	what	you	learned	and	absorb	the	material	better,	I

recommend	going	over	the	chapter	exercises.

Exercises
This	section	provides	exercises	to	help	you	familiarize	yourself	with	the	subjects	discussed	in
Chapter	2.	Solutions	to	the	exercises	appear	in	the	section	that	follows.
You	can	find	instructions	for	downloading	and	installing	the	TSQLV4	sample	database	in

the	Appendix.

Exercise	1
Write	a	query	against	the	Sales.Orders	table	that	returns	orders	placed	in	June	2015:

	Tables	involved:	TSQLV4	database	and	the	Sales.Orders	table

	Desired	output	(abbreviated):
Click	here	to	view	code	image

orderid					orderdate		custid						empid
-----------	----------	-----------	-----------
10555							2015-06-02	71										6
10556							2015-06-03	73										2
10557							2015-06-03	44										9
10558							2015-06-04	4											1
10559							2015-06-05	7											6
10560							2015-06-06	25										8
10561							2015-06-06	24										2
10562							2015-06-09	66										1
10563							2015-06-10	67										2
10564							2015-06-10	65										4
...

(30	row(s)	affected)

Exercise	2
Write	a	query	against	the	Sales.Orders	table	that	returns	orders	placed	on	the	last	day	of	the
month:

	Tables	involved:	TSQLV4	database	and	the	Sales.Orders	table
	Desired	output	(abbreviated):

Click	here	to	view	code	image

orderid					orderdate		custid						empid
-----------	----------	-----------	-----------
10269							2014-07-31	89										5
10317							2014-09-30	48										6
10343							2014-10-31	44										4
10399							2014-12-31	83										8
10432							2015-01-31	75										3
10460							2015-02-28	24										8
10461							2015-02-28	46										1
10490							2015-03-31	35										7
10491							2015-03-31	28										8
10522							2015-04-30	44										4
...

(26	row(s)	affected)

Exercise	3
Write	a	query	against	the	HR.Employees	table	that	returns	employees	with	a	last	name
containing	the	letter	e	twice	or	more:

	Tables	involved:	TSQLV4	database	and	the	HR.Employees	table
	Desired	output:

Click	here	to	view	code	image

empid							firstname		lastname
-----------	----------	--------------------
4											Yael							Peled

5											Sven							Mortensen

(2	row(s)	affected)

Exercise	4
Write	a	query	against	the	Sales.OrderDetails	table	that	returns	orders	with	a	total	value
(quantity	*	unitprice)	greater	than	10,000,	sorted	by	total	value:

	Tables	involved:	TSQLV4	database	and	the	Sales.OrderDetails	table
	Desired	output:

Click	here	to	view	code	image

orderid					totalvalue
-----------	---------------------
10865							17250.00
11030							16321.90
10981							15810.00
10372							12281.20
10424							11493.20
10817							11490.70
10889							11380.00
10417							11283.20
10897							10835.24
10353							10741.60
10515							10588.50
10479							10495.60
10540							10191.70
10691							10164.80

(14	row(s)	affected)

Exercise	5
To	check	the	validity	of	the	data,	write	a	query	against	the	HR.Employees	table	that	returns
employees	with	a	last	name	that	starts	with	a	lowercase	English	letter	in	the	range	a	through	z.
Remember	that	the	collation	of	the	sample	database	is	case	insensitive
(Latin1_General_CI_AS):

	Tables	involved:	TSQLV4	database	and	the	HR.Employees	table
	Desired	output	is	an	empty	set:

Click	here	to	view	code	image

empid							lastname
-----------	--------------------

(0	row(s)	affected))

Exercise	6
Explain	the	difference	between	the	following	two	queries:
Click	here	to	view	code	image

--	Query	1
SELECT	empid,	COUNT(*)	AS	numorders
FROM	Sales.Orders

WHERE	orderdate	<	'20160501'
GROUP	BY	empid;

--	Query	2
SELECT	empid,	COUNT(*)	AS	numorders
FROM	Sales.Orders
GROUP	BY	empid
HAVING	MAX(orderdate)	<	'20160501';

	Tables	involved:	TSQLV4	database	and	the	Sales.Orders	table

Exercise	7
Write	a	query	against	the	Sales.Orders	table	that	returns	the	three	shipped-to	countries	with	the
highest	average	freight	in	2015:

	Tables	involved:	TSQLV4	database	and	the	Sales.Orders	table
	Desired	output:

Click	here	to	view	code	image

shipcountry					avgfreight
---------------	---------------------
Austria									178.3642
Switzerland					117.1775
Sweden										105.16

(3	row(s)	affected)

Exercise	8
Write	a	query	against	the	Sales.Orders	table	that	calculates	row	numbers	for	orders	based	on
order	date	ordering	(using	the	order	ID	as	the	tiebreaker)	for	each	customer	separately:

	Tables	involved:	TSQLV4	database	and	the	Sales.Orders	table
	Desired	output	(abbreviated):

Click	here	to	view	code	image

custid						orderdate		orderid					rownum
-----------	----------	-----------	--------------------
1											2015-08-25	10643							1
1											2015-10-03	10692							2
1											2015-10-13	10702							3
1											2016-01-15	10835							4
1											2016-03-16	10952							5
1											2016-04-09	11011							6
2											2014-09-18	10308							1
2											2015-08-08	10625							2
2											2015-11-28	10759							3
2											2016-03-04	10926							4
...

(830	row(s)	affected)

Exercise	9
Using	the	HR.Employees	table,	write	a	SELECT	statement	that	returns	for	each	employee	the
gender	based	on	the	title	of	courtesy.	For	‘Ms.’	and	‘Mrs.’	return	‘Female’;	for	‘Mr.’	return
‘Male’;	and	in	all	other	cases	(for	example,	‘Dr.‘)	return	‘Unknown’:

	Tables	involved:	TSQLV4	database	and	the	HR.Employees	table
	Desired	output:

Click	here	to	view	code	image

empid							firstname		lastname													titleofcourtesy											gender
-----------	----------	--------------------	-------------------------	-------
1											Sara							Davis																Ms.																							Female
2											Don								Funk																	Dr.																							Unknown
3											Judy							Lew																		Ms.																							Female
4											Yael							Peled																Mrs.																						Female
5											Sven							Mortensen												Mr.																							Male
6											Paul							Suurs																Mr.																							Male
7											Russell				King																	Mr.																							Male
8											Maria						Cameron														Ms.																							Female
9											Patricia			Doyle																Ms.																							Female

(9	row(s)	affected)

Exercise	10
Write	a	query	against	the	Sales.Customers	table	that	returns	for	each	customer	the	customer
ID	and	region.	Sort	the	rows	in	the	output	by	region,	having	NULLs	sort	last	(after	non-NULL
values).	Note	that	the	default	sort	behavior	for	NULLs	in	T-SQL	is	to	sort	first	(before	non-
NULL	values):

	Tables	involved:	TSQLV4	database	and	the	Sales.Customers	table
	Desired	output	(abbreviated):
custid						region
-----------	---------------
55										AK
10										BC
42										BC
45										CA
37										Co.	Cork
33										DF
71										ID
38										Isle	of	Wight
46										Lara
78										MT
...
1											NULL
2											NULL
3											NULL
4											NULL
5											NULL
6											NULL
7											NULL
8											NULL
9											NULL
11										NULL

...

(91	row(s)	affected)

Solutions
This	section	provides	the	solutions	to	the	exercises	for	this	chapter,	accompanied	by
explanations	where	needed.

Exercise	1
You	might	have	considered	using	the	YEAR	and	MONTH	functions	in	the	WHERE	clause	of
your	solution	query,	like	this:
Click	here	to	view	code	image

USE	TSQLV4;

SELECT	orderid,	orderdate,	custid,	empid
FROM	Sales.Orders
WHERE	YEAR(orderdate)	=	2015	AND	MONTH(orderdate)	=	6;

This	solution	is	valid	and	returns	the	correct	result.	However,	I	explained	that	if	you	apply
manipulation	to	the	filtered	column,	in	most	cases	SQL	Server	can’t	use	an	index	efficiently.
Therefore,	I	advise	using	a	range	filter	instead:
Click	here	to	view	code	image

SELECT	orderid,	orderdate,	custid,	empid
FROM	Sales.Orders
WHERE	orderdate	>=	'20150601'
		AND	orderdate	<	'20150701';

Exercise	2
You	can	use	the	EOMONTH	function	to	address	this	task,	like	this:
Click	here	to	view	code	image

SELECT	orderid,	orderdate,	custid,	empid
FROM	Sales.Orders
WHERE	orderdate	=	EOMONTH(orderdate);

I	also	provided	an	alternative	expression	for	computing	the	last	day	of	the	month	that
corresponds	to	the	input	date	value:
Click	here	to	view	code	image

DATEADD(month,	DATEDIFF(month,	'18991231',	date_val),	'18991231')

It	is	a	more	complex	technique,	but	it	has	the	advantage	that	you	can	use	it	to	compute	the
beginning	or	end	of	other	parts	(day,	month,	quarter,	year).
This	expression	first	calculates	the	difference	in	terms	of	whole	months	between	an	anchor

last	day	of	some	month	(December	31,	1899,	in	this	case)	and	the	specified	date.	Call	this
difference	diff.	By	adding	diff	months	to	the	anchor	date,	you	get	the	last	day	of	the	target
month.	Here’s	the	full	solution	query,	returning	only	orders	that	were	placed	on	the	last	day	of
the	month:

Click	here	to	view	code	image

SELECT	orderid,	orderdate,	custid,	empid
FROM	Sales.Orders
WHERE	orderdate	=	DATEADD(month,	DATEDIFF(month,	'18991231',	orderdate),
'18991231');

Exercise	3
This	exercise	involves	using	pattern	matching	with	the	LIKE	predicate.	Remember	that	the
percent	sign	(%)	represents	a	character	string	of	any	size,	including	an	empty	string.
Therefore,	you	can	use	the	pattern	‘%e%e%’	to	express	at	least	two	occurrences	of	the
character	e	anywhere	in	the	string.	Here’s	the	full	solution	query:
Click	here	to	view	code	image

SELECT	empid,	firstname,	lastname
FROM	HR.Employees
WHERE	lastname	LIKE	'%e%e%';

Exercise	4
This	exercise	is	quite	tricky,	and	if	you	managed	to	solve	it	correctly,	you	should	be	proud	of
yourself.	A	subtle	requirement	in	the	request	might	be	overlooked	or	interpreted	incorrectly.
Observe	that	the	request	said	“return	orders	with	total	value	greater	than	10,000”	and	not
“return	orders	with	value	greater	than	10,000.”	In	other	words,	it’s	not	the	individual	order
detail	row	that	is	supposed	to	meet	the	requirement.	Instead,	the	group	of	all	order	details
within	the	order	should	meet	the	requirement.	This	means	that	the	query	shouldn’t	have	a	filter
in	the	WHERE	clause	like	this:
Click	here	to	view	code	image

WHERE	quantity	*	unitprice	>	10000

Rather,	the	query	should	group	the	data	by	the	orderid	attribute	and	have	a	filter	in	the
HAVING	clause	like	this:
Click	here	to	view	code	image

HAVING	SUM(quantity*unitprice)	>	10000

Here’s	the	complete	solution	query:
Click	here	to	view	code	image

SELECT	orderid,	SUM(qty*unitprice)	AS	totalvalue
FROM	Sales.OrderDetails
GROUP	BY	orderid
HAVING	SUM(qty*unitprice)	>	10000
ORDER	BY	totalvalue	DESC;

Exercise	5
You	might	have	tried	addressing	the	task	using	a	query	such	as	the	following:
Click	here	to	view	code	image

SELECT	empid,	lastname
FROM	HR.Employees

WHERE	lastname	COLLATE	Latin1_General_CS_AS	LIKE	N'[a-z]%';

The	expression	in	the	WHERE	clause	uses	the	COLLATE	clause	to	convert	the	current	case-
insensitive	collation	of	the	lastname	column	to	a	case-sensitive	one.	The	LIKE	predicate	then
checks	that	the	case-sensitive	last	name	starts	with	a	letter	in	the	range	a	through	z.	The	tricky
part	here	is	that	the	specified	collation	uses	dictionary	sort	order,	in	which	the	lowercase	and
uppercase	forms	of	each	letter	appear	next	to	each	other	and	not	in	separate	groups.	The	sort
order	looks	like	this:

a
A
b
B
c
C
...
x
X
y
Y
z
Z

You	realize	that	all	the	lowercase	letters	a	through	z,	as	well	as	the	uppercase	letters	A
through	Y	(excluding	Z),	qualify.	Therefore,	if	you	run	the	preceding	query,	you	get	the
following	output:
Click	here	to	view	code	image

empid							lastname
-----------	--------------------
8											Cameron
1											Davis
9											Doyle
2											Funk
7											King
3											Lew
5											Mortensen
4											Peled
6											Suurs

To	look	only	for	the	lowercase	letters	a	through	z,	one	solution	is	to	list	them	explicitly	in
the	LIKE	pattern	like	this:
Click	here	to	view	code	image

SELECT	empid,	lastname
FROM	HR.Employees
WHERE	lastname	COLLATE	Latin1_General_CS_AS	LIKE	N'[abcdefghijklmnopqrstuvwxyz]%';

Naturally,	there	are	other	possible	solutions.
I’d	like	to	thank	Paul	White	who	enlightened	me	when	I	fell	into	this	trap	myself	in	the	past.

Exercise	6
The	WHERE	clause	is	a	row	filter,	whereas	the	HAVING	clause	is	a	group	filter.	Query	1
filters	only	orders	placed	before	May	2016,	groups	them	by	the	employee	ID,	and	returns	the
number	of	orders	each	employee	handled	among	the	filtered	ones.	In	other	words,	it
computes	how	many	orders	each	employee	handled	prior	to	May	2016.	The	query	doesn’t
include	orders	placed	in	May	2016	or	later	in	the	count.	An	employee	will	show	up	in	the
output	as	long	as	he	or	she	handled	orders	prior	to	May	2016,	regardless	of	whether	the
employee	handled	orders	since	May	2016.	Here’s	the	output	of	Query	1:

empid							numorders
-----------	-----------
9											43
3											127
6											67
7											70
1											118
4											154
5											42
2											94
8											101

Query	2	groups	all	orders	by	the	employee	ID,	and	then	filters	only	groups	having	a
maximum	date	of	activity	prior	to	May	2016.	Then	it	computes	the	order	count	in	each
employee	group.	The	query	discards	the	entire	employee	group	if	the	employee	handled	any
orders	since	May	2016.	In	a	sentence,	this	query	returns	for	employees	who	didn’t	handle	any
orders	since	May	2016	the	total	number	of	orders	they	handled.	This	query	generates	the
following	output:

empid							numorders
-----------	-----------
9											43
3											127
6											67
5											42

Take	employee	1	as	an	example.	This	employee	had	activity	both	before	and	since	May
2016.	The	first	query	result	includes	this	employee,	but	the	order	count	reflects	only	the
orders	the	employee	handled	prior	to	May	2016.	The	second	query	result	doesn’t	include	this
employee	at	all.

Exercise	7
Because	the	request	involves	activity	in	the	year	2015,	the	query	should	have	a	WHERE	clause
with	the	appropriate	date-range	filter	(orderdate	>=	‘20150101’	AND	orderdate	<
‘20160101’).	Because	the	request	involves	average	freight	values	per	shipping	country	and	the
table	can	have	multiple	rows	per	country,	the	query	should	group	the	rows	by	country	and
calculate	the	average	freight.	To	get	the	three	countries	with	the	highest	average	freights,	the
query	should	specify	TOP	(3),	based	on	the	order	of	average	freight	descending.	Here’s	the
complete	solution	query:
Click	here	to	view	code	image

SELECT	TOP	(3)	shipcountry,	AVG(freight)	AS	avgfreight
FROM	Sales.Orders
WHERE	orderdate	>=	'20150101'	AND	orderdate	<	'20160101'
GROUP	BY	shipcountry
ORDER	BY	avgfreight	DESC;

Remember	that	you	can	use	the	standard	OFFSET-FETCH	filter	instead	of	the	proprietary
TOP	filter.	Here’s	the	revised	solution	using	OFFSET-FETCH:
Click	here	to	view	code	image

SELECT	shipcountry,	AVG(freight)	AS	avgfreight
FROM	Sales.Orders
WHERE	orderdate	>=	'20150101'	AND	orderdate	<	'20160101'
GROUP	BY	shipcountry
ORDER	BY	avgfreight	DESC
OFFSET	0	ROWS	FETCH	NEXT	3	ROWS	ONLY;

Exercise	8
Because	the	exercise	requests	that	the	row	number	calculation	be	done	for	each	customer
separately,	the	expression	should	partition	the	window	by	custid	(PARTITION	BY	custid).	In
addition,	the	request	was	to	use	ordering	based	on	the	orderdate	column,	with	the	orderid
column	as	a	tiebreaker	(ORDER	BY	orderdate,	orderid).	Here’s	the	complete	solution	query:
Click	here	to	view	code	image

SELECT	custid,	orderdate,	orderid,
		ROW_NUMBER()	OVER(PARTITION	BY	custid	ORDER	BY	orderdate,	orderid)	AS	rownum
FROM	Sales.Orders
ORDER	BY	custid,	rownum;

Exercise	9
You	can	handle	the	conditional	logic	in	this	exercise	with	a	CASE	expression.	Using	the
simple	CASE	expression	form,	you	specify	the	titleofcourtesy	attribute	right	after	the	CASE
keyword;	list	each	possible	title	of	courtesy	in	a	separate	WHEN	clause	followed	by	the	THEN
clause	and	the	gender;	and	in	the	ELSE	clause,	specify	‘Unknown’.
Click	here	to	view	code	image

SELECT	empid,	firstname,	lastname,	titleofcourtesy,
		CASE	titleofcourtesy
				WHEN	'Ms.'		THEN	'Female'
				WHEN	'Mrs.'	THEN	'Female'
				WHEN	'Mr.'		THEN	'Male'
				ELSE													'Unknown'
		END	AS	gender
FROM	HR.Employees;

You	can	also	use	the	searched	CASE	form	with	two	predicates—one	to	handle	all	cases
where	the	gender	is	female	and	one	for	all	cases	where	the	gender	is	male—and	an	ELSE
clause	with	‘Unknown’.
Click	here	to	view	code	image

SELECT	empid,	firstname,	lastname,	titleofcourtesy,
		CASE

				WHEN	titleofcourtesy	IN('Ms.',	'Mrs.')	THEN	'Female'
				WHEN	titleofcourtesy	=	'Mr.'											THEN	'Male'
				ELSE																																								'Unknown'
		END	AS	gender
FROM	HR.Employees;

Exercise	10
By	default,	SQL	Server	sorts	NULLs	before	non-NULL	values.	To	get	NULLs	to	sort	last,	you
can	use	a	CASE	expression	that	returns	1	when	the	region	column	is	NULL	and	0	when	it	is	not
NULL.	Specify	this	CASE	expression	as	the	first	sort	column	and	the	region	column	as	the
second.	This	way,	non-NULLs	sort	correctly	among	themselves	first	followed	by	NULLs.
Here’s	the	complete	solution	query:
Click	here	to	view	code	image

SELECT	custid,	region
FROM	Sales.Customers
ORDER	BY
		CASE	WHEN	region	IS	NULL	THEN	1	ELSE	0	END,	region;

Chapter	3.	Joins

The	FROM	clause	of	a	query	is	the	first	clause	to	be	logically	processed,	and	within	the
FROM	clause,	table	operators	operate	on	input	tables.	T-SQL	supports	four	table	operators:
JOIN,	APPLY,	PIVOT,	and	UNPIVOT.	The	JOIN	table	operator	is	standard,	whereas	APPLY,
PIVOT,	and	UNPIVOT	are	T-SQL	extensions	to	the	standard.	Each	table	operator	acts	on	tables
provided	to	it	as	input,	applies	a	set	of	logical	query	processing	phases,	and	returns	a	table
result.	This	chapter	focuses	on	the	JOIN	table	operator.	The	APPLY	operator	will	be	covered
in	Chapter	5,	“Table	expressions,”	and	the	PIVOT	and	UNPIVOT	operators	will	be	covered	in
Chapter	7,	“Beyond	the	fundamentals	of	querying.”
A	JOIN	table	operator	operates	on	two	input	tables.	The	three	fundamental	types	of	joins

are	cross	joins,	inner	joins,	and	outer	joins.	These	three	types	of	joins	differ	in	how	they
apply	their	logical	query	processing	phases;	each	type	applies	a	different	set	of	phases.	A
cross	join	applies	only	one	phase—Cartesian	Product.	An	inner	join	applies	two	phases—
Cartesian	Product	and	Filter.	An	outer	join	applies	three	phases—Cartesian	Product,	Filter,
and	Add	Outer	Rows.	This	chapter	explains	in	detail	each	of	the	join	types	and	the	phases
involved.
Logical	query	processing	describes	a	generic	series	of	logical	steps	that	for	any	specified

query	produces	the	correct	result,	whereas	physical	query	processing	is	the	way	the	query	is
processed	by	the	RDBMS	engine	in	practice.	Some	phases	of	logical	query	processing	of
joins	might	sound	inefficient,	but	remember	that	the	query	will	be	optimized	by	the	physical
implementation.	It’s	important	to	stress	the	term	logical	in	logical	query	processing.	The	steps
in	the	process	apply	operations	to	the	input	tables	based	on	relational	algebra.	The	database
engine	does	not	have	to	follow	logical	query	processing	phases	literally,	as	long	as	it	can
guarantee	that	the	result	that	it	produces	is	the	same	as	that	dictated	by	logical	query
processing.	The	query	optimizer	often	applies	shortcuts	when	it	knows	it	can	still	produce	the
correct	result.	Even	though	this	book’s	focus	is	on	understanding	the	logical	aspects	of
querying,	I	want	to	stress	this	point	to	avoid	performance-related	concerns.

Cross	joins
The	cross	join	is	the	simplest	type	of	join.	It	implements	only	one	logical	query	processing
phase—a	Cartesian	Product.	This	phase	operates	on	the	two	tables	provided	as	inputs	and
produces	a	Cartesian	product	of	the	two.	That	is,	each	row	from	one	input	is	matched	with	all
rows	from	the	other.	So	if	you	have	m	rows	in	one	table	and	n	rows	in	the	other,	you	get	m×n
rows	in	the	result.
T-SQL	supports	two	standard	syntaxes	for	cross	joins:	the	ISO/ANSI	SQL-92	and

ISO/ANSI	SQL-89	syntaxes.	I	recommend	you	use	the	SQL	92	syntax	for	reasons	I’ll	describe
shortly.	It’s	also	the	main	syntax	I	use	throughout	the	book.	For	the	sake	of	completeness,	I
describe	both	syntaxes	in	this	section.

ISO/ANSI	SQL-92	syntax
The	following	query	applies	a	cross	join	between	the	Customers	and	Employees	tables	(using
the	SQL-92	syntax)	in	the	TSQLV4	database,	and	returns	the	custid	and	empid	attributes	in	the
result	set:
Click	here	to	view	code	image

USE	TSQLV4;

SELECT	C.custid,	E.empid
FROM	Sales.Customers	AS	C
		CROSS	JOIN	HR.Employees	AS	E;

Because	there	are	91	rows	in	the	Customers	table	and	9	rows	in	the	Employees	table,	this
query	produces	a	result	set	with	819	rows,	as	shown	here	in	abbreviated	form:

custid						empid
-----------	-----------
1											2
2											2
3											2
4											2
5											2
6											2
7											2
8											2
9											2
11										2
...

(819	row(s)	affected)

When	you	use	the	SQL-92	syntax,	you	specify	the	CROSS	JOIN	keywords	between	the	two
tables	involved	in	the	join.
Notice	that	in	the	FROM	clause	of	the	preceding	query,	I	assigned	the	aliases	C	and	E	to	the

Customers	and	Employees	tables,	respectively.	The	result	set	produced	by	the	cross	join	is	a
virtual	table	with	attributes	that	originate	from	both	sides	of	the	join.	Because	I	assigned
aliases	to	the	source	tables,	the	names	of	the	columns	in	the	virtual	table	are	prefixed	by	the
table	aliases	(for	example,	C.custid,	E.empid).	The	column	prefixes	do	not	appear	in	the	final
query	result.	If	you	do	not	assign	aliases	to	the	tables	in	the	FROM	clause,	the	names	of	the
columns	in	the	virtual	table	are	prefixed	by	the	full	source-table	names	(for	example,
Customers.custid,	Employees.empid).	The	purpose	of	the	prefixes	is	to	facilitate	the
identification	of	columns	in	an	unambiguous	manner	when	the	same	column	name	appears	in
both	tables.	The	aliases	of	the	tables	are	assigned	for	brevity.	Note	that	you	are	required	to	use
column	prefixes	only	when	referring	to	ambiguous	column	names	(column	names	that	appear
in	more	than	one	table);	in	unambiguous	cases,	column	prefixes	are	optional.	However,	it’s	a
good	practice	to	always	use	column	prefixes	for	the	sake	of	clarity.	Also	note	that	if	you
assign	an	alias	to	a	table,	it’s	invalid	to	use	the	full	table	name	as	a	column	prefix;	in
ambiguous	cases,	you	have	to	use	the	table	alias	as	a	prefix.

ISO/ANSI	SQL-89	syntax
T-SQL	also	supports	an	older	syntax	for	cross	joins	that	was	introduced	in	SQL-89.	In	this
syntax,	you	simply	specify	a	comma	between	the	table	names,	like	this:
Click	here	to	view	code	image

SELECT	C.custid,	E.empid
FROM	Sales.Customers	AS	C,	HR.Employees	AS	E;

There	is	no	logical	or	performance	difference	between	the	two	syntaxes.	Both	are	integral
parts	of	the	SQL	standard,	and	both	are	fully	supported	by	T-SQL.	I’m	not	aware	of	any	plans
to	deprecate	the	older	syntax	in	the	SQL	standard	or	in	T-SQL.	However,	I	recommend	using
the	SQL-92	syntax	for	reasons	that	will	become	clear	after	I	explain	inner	and	outer	joins.

Self	cross	joins
You	can	join	multiple	instances	of	the	same	table.	This	capability	is	known	as	a	self	join	and	is
supported	with	all	fundamental	join	types	(cross	joins,	inner	joins,	and	outer	joins).	For
example,	the	following	query	performs	a	self	cross	join	between	two	instances	of	the
Employees	table:
Click	here	to	view	code	image

SELECT
		E1.empid,	E1.firstname,	E1.lastname,
		E2.empid,	E2.firstname,	E2.lastname
FROM	HR.Employees	AS	E1
		CROSS	JOIN	HR.Employees	AS	E2;

This	query	produces	all	possible	combinations	of	pairs	of	employees.	Because	the
Employees	table	has	9	rows,	this	query	returns	81	rows,	as	shown	here	in	abbreviated	form:
Click	here	to	view	code	image

empid							firstname		lastname													empid							firstname		lastname
-----------	----------	--------------------	-----------	----------	---------------

1											Sara							Davis																1											Sara							Davis
2											Don								Funk																	1											Sara							Davis
3											Judy							Lew																		1											Sara							Davis
4											Yael							Peled																1											Sara							Davis
5											Sven							Mortensen												1											Sara							Davis
6											Paul							Suurs																1											Sara							Davis
7											Russell				King																	1											Sara							Davis
8											Maria						Cameron														1											Sara							Davis
9											Patricia			Doyle																1											Sara							Davis
1											Sara							Davis																2											Don								Funk
2											Don								Funk																	2											Don								Funk
3											Judy							Lew																		2											Don								Funk
4											Yael							Peled																2											Don								Funk
5											Sven							Mortensen												2											Don								Funk
6											Paul							Suurs																2											Don								Funk
7											Russell				King																	2											Don								Funk
8											Maria						Cameron														2											Don								Funk
9											Patricia			Doyle																2											Don								Funk
...

(81	row(s)	affected)

In	a	self	join,	aliasing	tables	is	not	optional.	Without	table	aliases,	all	column	names	in	the
result	of	the	join	would	be	ambiguous.

Producing	tables	of	numbers
One	situation	in	which	cross	joins	can	be	handy	is	when	they	are	used	to	produce	a	result	set
with	a	sequence	of	integers	(1,	2,	3,	and	so	on).	Such	a	sequence	of	numbers	is	an	extremely
powerful	tool	that	I	use	for	many	purposes.	By	using	cross	joins,	you	can	produce	the
sequence	of	integers	in	a	very	efficient	manner.
You	can	start	by	creating	a	table	called	Digits	with	a	column	called	digit,	and	populate	the

table	with	10	rows	with	the	digits	0	through	9.	Run	the	following	code	to	create	the	Digits
table	in	the	TSQLV4	database	and	populate	it	with	the	10	digits:
Click	here	to	view	code	image

USE	TSQLV4;

DROP	TABLE	IF	EXISTS	dbo.Digits;

CREATE	TABLE	dbo.Digits(digit	INT	NOT	NULL	PRIMARY	KEY);

INSERT	INTO	dbo.Digits(digit)
		VALUES	(0),(1),(2),(3),(4),(5),(6),(7),(8),(9);

SELECT	digit	FROM	dbo.Digits;

This	code	also	uses	an	INSERT	statement	to	populate	the	Digits	table.	If	you’re	not	familiar
with	the	syntax	of	the	INSERT	statement,	see	Chapter	8,	“Data	modification,”	for	details.
This	code	generates	the	following	output:
digit

0
1
2
3
4
5
6
7
8
9

Suppose	you	need	to	write	a	query	that	produces	a	sequence	of	integers	in	the	range	1
through	1,000.	You	apply	cross	joins	between	three	instances	of	the	Digits	table,	each
representing	a	different	power	of	10	(1,	10,	100).	By	multiplying	three	instances	of	the	same
table,	each	instance	with	10	rows,	you	get	a	result	set	with	1,000	rows.	To	produce	the	actual
number,	multiply	the	digit	from	each	instance	by	the	power	of	10	it	represents,	sum	the
results,	and	add	1.	Here’s	the	complete	query:
Click	here	to	view	code	image

SELECT	D3.digit	*	100	+	D2.digit	*	10	+	D1.digit	+	1	AS	n

FROM									dbo.Digits	AS	D1
		CROSS	JOIN	dbo.Digits	AS	D2
		CROSS	JOIN	dbo.Digits	AS	D3
ORDER	BY	n;

This	query	returns	the	following	output,	shown	here	in	abbreviated	form:
n

1
2
3
4
5
6
7
8
9
10
...
998
999
1000

(1000	row(s)	affected)

This	was	an	example	that	produces	a	sequence	of	1,000	integers.	If	you	need	more
numbers,	you	can	add	more	instances	of	the	Digits	table	to	the	query.	For	example,	if	you
need	to	produce	a	sequence	of	1,000,000	rows,	you	need	to	join	six	instances.

Inner	joins
An	inner	join	applies	two	logical	query	processing	phases—it	applies	a	Cartesian	product
between	the	two	input	tables	like	in	a	cross	join,	and	then	it	filters	rows	based	on	a	predicate
you	specify.	Like	cross	joins,	inner	joins	have	two	standard	syntaxes:	SQL-92	and	SQL-89.

ISO/ANSI	SQL-92	syntax
Using	the	SQL-92	syntax,	you	specify	the	INNER	JOIN	keywords	between	the	table	names.
The	INNER	keyword	is	optional,	because	an	inner	join	is	the	default.	So	you	can	specify	the
JOIN	keyword	alone.	You	specify	the	predicate	that	is	used	to	filter	rows	in	a	designated
clause	called	ON.	This	predicate	is	also	known	as	the	join	condition.
For	example,	the	following	query	performs	an	inner	join	between	the	Employees	and

Orders	tables	in	the	TSQLV4	database,	matching	employees	and	orders	based	on	the	predicate
E.empid	=	O.empid:
Click	here	to	view	code	image

USE	TSQLV4;

SELECT	E.empid,	E.firstname,	E.lastname,	O.orderid
FROM	HR.Employees	AS	E
		INNER	JOIN	Sales.Orders	AS	O
				ON	E.empid	=	O.empid;

This	query	produces	the	following	result	set,	shown	here	in	abbreviated	form:

Click	here	to	view	code	image

empid							firstname		lastname													orderid
-----------	----------	--------------------	-----------
1											Sara							Davis																10258
1											Sara							Davis																10270
1											Sara							Davis																10275
1											Sara							Davis																10285
1											Sara							Davis																10292
...
2											Don								Funk																	10265
2											Don								Funk																	10277
2											Don								Funk																	10280
2											Don								Funk																	10295
2											Don								Funk																	10300
...

(830	row(s)	affected)

For	most	people,	the	easiest	way	to	think	of	such	an	inner	join	is	as	matching	each
employee	row	with	all	order	rows	that	have	the	same	employee	ID	as	in	the	employee	row.
This	is	a	simplified	way	to	think	of	the	join.	The	more	formal	way	to	think	of	it	is	based	on
relational	algebra.	First,	the	join	performs	a	Cartesian	product	between	the	two	tables	(9
employee	rows	×	830	order	rows	=	7,470	rows).	Then,	the	join	filters	rows	based	on	the
predicate	E.empid	=	O.empid,	eventually	returning	830	rows.	As	mentioned	earlier,	that’s	just
the	logical	way	that	the	join	is	processed;	in	practice,	physical	processing	of	the	query	by	the
database	engine	can	be	different.
Recall	the	discussion	from	previous	chapters	about	the	three-valued	predicate	logic	used	by

SQL.	As	with	the	WHERE	and	HAVING	clauses,	the	ON	clause	also	returns	only	rows	for
which	the	predicate	returns	TRUE,	and	it	does	not	return	rows	for	which	the	predicate
evaluates	to	FALSE	or	UNKNOWN.
In	the	TSQLV4	database,	all	employees	have	related	orders,	so	all	employees	show	up	in	the

output.	However,	had	there	been	employees	with	no	related	orders,	they	would	have	been
discarded	by	the	filter	phase.	The	same	would	apply	to	orders	with	no	related	employees,
although	a	foreign-key	relationship	forbids	those	in	our	sample	database.

ISO/ANSI	SQL-89	syntax
Similar	to	cross	joins,	inner	joins	can	be	expressed	by	using	the	SQL-89	syntax.	You	specify	a
comma	between	the	table	names	just	as	in	a	cross	join,	and	you	specify	the	join	condition	in
the	query’s	WHERE	clause,	like	this:
Click	here	to	view	code	image

SELECT	E.empid,	E.firstname,	E.lastname,	O.orderid
FROM	HR.Employees	AS	E,	Sales.Orders	AS	O
WHERE	E.empid	=	O.empid;

Note	that	the	SQL-89	syntax	has	no	ON	clause.
Again,	both	syntaxes	are	standard,	fully	supported	by	T-SQL,	and	interpreted	in	the	same

way	by	the	database	engine,	so	you	shouldn’t	expect	any	performance	difference	between
them.	But	one	syntax	is	safer,	as	explained	in	the	next	section.

Inner	join	safety
I	strongly	recommend	that	you	stick	to	the	SQL-92	join	syntax	because	it’s	less	prone	to
errors.	Suppose	you	intend	to	write	an	inner	join	query,	and	by	mistake	you	forget	to	specify
the	join	condition.	With	the	SQL-92	syntax,	the	query	becomes	invalid,	and	the	parser
generates	an	error.	For	example,	try	to	run	the	following	code:
Click	here	to	view	code	image

SELECT	E.empid,	E.firstname,	E.lastname,	O.orderid
FROM	HR.Employees	AS	E
		INNER	JOIN	Sales.Orders	AS	O;

You	get	the	following	error:
Click	here	to	view	code	image

Msg	102,	Level	15,	State	1,	Line	74
Incorrect	syntax	near	';'.

Even	though	it	might	not	be	immediately	obvious	from	the	error	message	that	the	error
involves	a	missing	join	condition,	you	will	figure	it	out	eventually	and	fix	the	query.
However,	if	you	forget	to	specify	the	join	condition	when	you’re	using	the	SQL-89	syntax,
you	get	a	valid	query	that	performs	a	cross	join:
Click	here	to	view	code	image

SELECT	E.empid,	E.firstname,	E.lastname,	O.orderid
FROM	HR.Employees	AS	E,	Sales.Orders	AS	O;

Because	the	query	doesn’t	fail,	the	logical	error	might	go	unnoticed	for	a	while,	and	users
of	your	application	might	end	up	relying	on	incorrect	results.	It’s	unlikely	that	a	programmer
would	forget	to	specify	the	join	condition	with	such	short	and	simple	queries;	however,	most
production	queries	are	much	more	complicated	and	have	multiple	tables,	filters,	and	other
query	elements.	In	those	cases,	the	likelihood	of	forgetting	to	specify	a	join	condition
increases.
If	I’ve	convinced	you	that	it’s	important	to	use	the	SQL-92	syntax	for	inner	joins,	you	might

wonder	whether	the	recommendation	holds	for	cross	joins.	Because	no	join	condition	is
involved,	you	might	think	that	both	syntaxes	are	just	as	good	for	cross	joins.	However,	I
recommend	staying	with	the	SQL-92	syntax	with	cross	joins	for	a	couple	of	reasons—one
being	consistency.	Also,	suppose	you	do	use	the	SQL-89	syntax.	Even	if	you	intended	to	write
a	cross	join,	when	other	developers	need	to	review	or	maintain	your	code,	how	will	they
know	whether	you	intended	to	write	a	cross	join	or	intended	to	write	an	inner	join	and	forgot
to	specify	the	join	condition?

More	join	examples
This	section	covers	a	few	join	examples	that	are	known	by	specific	names:	composite	joins,
non-equi	joins,	and	multi-join	queries.

Composite	joins
A	composite	join	is	simply	a	join	where	you	need	to	match	multiple	attributes	from	each	side.
You	usually	need	such	a	join	when	a	primary	key–foreign	key	relationship	is	based	on	more
than	one	attribute.	For	example,	suppose	you	have	a	foreign	key	defined	on	dbo.Table2,
columns	col1,	col2,	referencing	dbo.Table1,	columns	col1,	col2,	and	you	need	to	write	a	query
that	joins	the	two	based	on	this	relationship.	The	FROM	clause	of	the	query	would	look	like
this:
Click	here	to	view	code	image

FROM	dbo.Table1	AS	T1
		INNER	JOIN	dbo.Table2	AS	T2
				ON	T1.col1	=	T2.col1
				AND	T1.col2	=	T2.col2

For	a	more	tangible	example,	suppose	you	need	to	audit	updates	to	column	values	against
the	OrderDetails	table	in	the	TSQLV4	database.	You	create	a	custom	auditing	table	called
OrderDetailsAudit:
Click	here	to	view	code	image

USE	TSQLV4;

DROP	TABLE	IF	EXISTS	Sales.OrderDetailsAudit;

CREATE	TABLE	Sales.OrderDetailsAudit
(
		lsn								INT	NOT	NULL	IDENTITY,
		orderid				INT	NOT	NULL,
		productid		INT	NOT	NULL,
		dt									DATETIME	NOT	NULL,
		loginname		sysname	NOT	NULL,
		columnname	sysname	NOT	NULL,
		oldval					SQL_VARIANT,
		newval					SQL_VARIANT,
		CONSTRAINT	PK_OrderDetailsAudit	PRIMARY	KEY(lsn),
		CONSTRAINT	FK_OrderDetailsAudit_OrderDetails
				FOREIGN	KEY(orderid,	productid)
				REFERENCES	Sales.OrderDetails(orderid,	productid)
);

Each	audit	row	stores	a	log	serial	number	(lsn),	the	key	of	the	modified	row	(orderid,
productid),	the	name	of	the	modified	column	(columnname),	the	old	value	(oldval),	the	new
value	(newval),	when	the	change	took	place	(dt),	and	who	made	the	change	(loginname).	The
table	has	a	foreign	key	defined	on	the	attributes	orderid,	productid,	referencing	the	primary
key	of	the	OrderDetails	table,	which	is	defined	on	the	attributes	orderid,	productid.	Assume
you	already	have	in	place	the	process	that	logs	changes	in	the	OrderDetailsAudit	table
whenever	columns	are	updated	in	the	OrderDetails	table.
You	need	to	write	a	query	against	the	OrderDetails	and	OrderDetailsAudit	tables	that

returns	information	about	all	value	changes	that	took	place	in	the	column	qty.	In	each	result
row,	you	need	to	return	the	current	value	from	the	OrderDetails	table	and	the	values	before
and	after	the	change	from	the	OrderDetailsAudit	table.	You	need	to	join	the	two	tables	based
on	a	primary	key–foreign	key	relationship,	like	this:

Click	here	to	view	code	image

SELECT	OD.orderid,	OD.productid,	OD.qty,
		ODA.dt,	ODA.loginname,	ODA.oldval,	ODA.newval
FROM	Sales.OrderDetails	AS	OD
		INNER	JOIN	Sales.OrderDetailsAudit	AS	ODA
				ON	OD.orderid	=	ODA.orderid
				AND	OD.productid	=	ODA.productid
WHERE	ODA.columnname	=	N'qty';

Because	the	relationship	is	based	on	multiple	attributes,	the	join	condition	is	composite.

Non-equi	joins
When	a	join	condition	involves	only	an	equality	operator,	the	join	is	said	to	be	an	equi	join.
When	a	join	condition	involves	any	operator	besides	equality,	the	join	is	said	to	be	a	non-equi
join.

	Note
Standard	SQL	supports	a	concept	called	natural	join,	which	represents	an	inner	join
based	on	a	match	between	columns	with	the	same	name	in	both	sides.	For	example,	T1
NATURAL	JOIN	T2	joins	the	rows	between	T1	and	T2	based	on	a	match	between	the
columns	with	the	same	names	on	both	sides.	T-SQL	doesn’t	have	an	implementation	of
a	natural	join.	A	join	that	has	an	explicit	join	predicate	that	is	based	on	a	binary
operator	(equality	or	inequality)	is	known	as	a	theta	join.	So	both	equi	joins	and	non-
equi	joins	are	types	of	theta	joins.

As	an	example	of	a	non-equi	join,	the	following	query	joins	two	instances	of	the	Employees
table	to	produce	unique	pairs	of	employees:
Click	here	to	view	code	image

SELECT
		E1.empid,	E1.firstname,	E1.lastname,
		E2.empid,	E2.firstname,	E2.lastname
FROM	HR.Employees	AS	E1
		INNER	JOIN	HR.Employees	AS	E2
				ON	E1.empid	<	E2.empid;

Notice	the	predicate	specified	in	the	ON	clause.	The	purpose	of	the	query	is	to	produce
unique	pairs	of	employees.	Had	a	cross	join	been	used,	the	result	would	have	included	self
pairs	(for	example,	1	with	1)	and	also	mirrored	pairs	(for	example,	1	with	2	and	also	2	with
1).	Using	an	inner	join	with	a	join	condition	that	says	the	key	on	the	left	side	must	be	smaller
than	the	key	on	the	right	side	eliminates	the	two	inapplicable	cases.	Self	pairs	are	eliminated
because	both	sides	are	equal.	With	mirrored	pairs,	only	one	of	the	two	cases	qualifies
because,	of	the	two	cases,	only	one	will	have	a	left	key	that	is	smaller	than	the	right	key.	In	this
example,	of	the	81	possible	pairs	of	employees	a	cross	join	would	have	returned,	this	query
returns	the	36	unique	pairs	shown	here:
Click	here	to	view	code	image

empid							firstname		lastname													empid							firstname		lastname
-----------	----------	--------------------	-----------	----------	---------------

1											Sara							Davis																2											Don								Funk
1											Sara							Davis																3											Judy							Lew
2											Don								Funk																	3											Judy							Lew
1											Sara							Davis																4											Yael							Peled
2											Don								Funk																	4											Yael							Peled
3											Judy							Lew																		4											Yael							Peled
1											Sara							Davis																5											Sven							Mortensen
2											Don								Funk																	5											Sven							Mortensen
3											Judy							Lew																		5											Sven							Mortensen
4											Yael							Peled																5											Sven							Mortensen
1											Sara							Davis																6											Paul							Suurs
2											Don								Funk																	6											Paul							Suurs
3											Judy							Lew																		6											Paul							Suurs
4											Yael							Peled																6											Paul							Suurs
5											Sven							Mortensen												6											Paul							Suurs
1											Sara							Davis																7											Russell				King
2											Don								Funk																	7											Russell				King
3											Judy							Lew																		7											Russell				King
4											Yael							Peled																7											Russell				King
5											Sven							Mortensen												7											Russell				King
6											Paul							Suurs																7											Russell				King
1											Sara							Davis																8											Maria						Cameron
2											Don								Funk																	8											Maria						Cameron
3											Judy							Lew																		8											Maria						Cameron
4											Yael							Peled																8											Maria						Cameron
5											Sven							Mortensen												8											Maria						Cameron
6											Paul							Suurs																8											Maria						Cameron
7											Russell				King																	8											Maria						Cameron
1											Sara							Davis																9											Patricia			Doyle
2											Don								Funk																	9											Patricia			Doyle
3											Judy							Lew																		9											Patricia			Doyle
4											Yael							Peled																9											Patricia			Doyle
5											Sven							Mortensen												9											Patricia			Doyle
6											Paul							Suurs																9											Patricia			Doyle
7											Russell				King																	9											Patricia			Doyle
8											Maria						Cameron														9											Patricia			Doyle

(36	row(s)	affected)

If	it’s	still	not	clear	to	you	what	this	query	does,	try	to	process	it	one	step	at	a	time	with	a
smaller	set	of	employees.	For	example,	suppose	the	Employees	table	contained	only
employees	1,	2,	and	3.	First,	produce	the	Cartesian	product	of	two	instances	of	the	table:

E1.empid						E2.empid
-------------	-------------
1													1
1													2
1													3
2													1
2													2
2													3
3													1
3													2
3													3

Next,	filter	the	rows	based	on	the	predicate	E1.empid	<	E2.empid,	and	you	are	left	with	only

three	rows:
E1.empid						E2.empid
-------------	-------------
1													2
1													3
2													3

Multi-join	queries
A	join	table	operator	operates	only	on	two	tables,	but	a	single	query	can	have	multiple	joins.
In	general,	when	more	than	one	table	operator	appears	in	the	FROM	clause,	the	table
operators	are	logically	processed	from	left	to	right.	That	is,	the	result	table	of	the	first	table
operator	is	treated	as	the	left	input	to	the	second	table	operator;	the	result	of	the	second	table
operator	is	treated	as	the	left	input	to	the	third	table	operator;	and	so	on.	So	if	there	are
multiple	joins	in	the	FROM	clause,	the	first	join	operates	on	two	base	tables,	but	all	other
joins	get	the	result	of	the	preceding	join	as	their	left	input.	With	cross	joins	and	inner	joins,
the	database	engine	can	(and	often	does)	internally	rearrange	join	ordering	for	optimization
purposes	because	it	won’t	have	an	impact	on	the	correctness	of	the	result	of	the	query.
As	an	example,	the	following	query	joins	the	Customers	and	Orders	tables	to	match

customers	with	their	orders,	and	then	it	joins	the	result	of	the	first	join	with	the	OrderDetails
table	to	match	orders	with	their	order	lines:
Click	here	to	view	code	image

SELECT
		C.custid,	C.companyname,	O.orderid,
		OD.productid,	OD.qty
FROM	Sales.Customers	AS	C
		INNER	JOIN	Sales.Orders	AS	O
				ON	C.custid	=	O.custid
		INNER	JOIN	Sales.OrderDetails	AS	OD
				ON	O.orderid	=	OD.orderid;

This	query	returns	the	following	output,	shown	here	in	abbreviated	form:
Click	here	to	view	code	image

custid						companyname							orderid					productid			qty
-----------	-----------------	-----------	-----------	------
85										Customer	ENQZT				10248							11										12
85										Customer	ENQZT				10248							42										10
85										Customer	ENQZT				10248							72										5
79										Customer	FAPSM				10249							14										9
79										Customer	FAPSM				10249							51										40
34										Customer	IBVRG				10250							41										10
34										Customer	IBVRG				10250							51										35
34										Customer	IBVRG				10250							65										15
84										Customer	NRCSK				10251							22										6
84										Customer	NRCSK				10251							57										15
...

(2155	row(s)	affected)

Outer	joins
Compared	to	the	other	types	of	joins,	outer	joins	are	usually	harder	for	people	to	grasp.	First
I	will	describe	the	fundamentals	of	outer	joins.	If	by	the	end	of	the	“Fundamentals	of	outer
joins”	section	you	feel	ready	for	more	advanced	content,	you	can	proceed	to	the	optional
section	“Beyond	the	fundamentals	of	outer	joins.”	Otherwise,	feel	free	to	skip	that	part	and
return	to	it	when	you	feel	more	comfortable	with	the	material.

Fundamentals	of	outer	joins
Outer	joins	were	introduced	in	SQL-92	and,	unlike	inner	joins	and	cross	joins,	have	only	one
standard	syntax—the	one	in	which	the	JOIN	keyword	is	specified	between	the	table	names	and
the	join	condition	is	specified	in	the	ON	clause.	Outer	joins	apply	the	two	logical	processing
phases	that	inner	joins	apply	(Cartesian	Product	and	the	ON	filter),	plus	a	third	phase	called
Adding	Outer	Rows	that	is	unique	to	this	type	of	join.
In	an	outer	join,	you	mark	a	table	as	a	“preserved”	table	by	using	the	keywords	LEFT

OUTER	JOIN,	RIGHT	OUTER	JOIN,	or	FULL	OUTER	JOIN	between	the	table	names.	The
OUTER	keyword	is	optional.	The	LEFT	keyword	means	that	the	rows	of	the	left	table	(the	one
to	the	left	of	the	JOIN	keyword)	are	preserved;	the	RIGHT	keyword	means	that	the	rows	in	the
right	table	are	preserved;	and	the	FULL	keyword	means	that	the	rows	in	both	the	left	and	right
tables	are	preserved.	The	third	logical	query	processing	phase	of	an	outer	join	identifies	the
rows	from	the	preserved	table	that	did	not	find	matches	in	the	other	table	based	on	the	ON
predicate.	This	phase	adds	those	rows	to	the	result	table	produced	by	the	first	two	phases	of
the	join,	and	it	uses	NULLs	as	placeholders	for	the	attributes	from	the	nonpreserved	side	of
the	join	in	those	outer	rows.
A	good	way	to	understand	outer	joins	is	through	an	example.	The	following	query	joins	the

Customers	and	Orders	tables,	based	on	a	match	between	the	customer ’s	customer	ID	and	the
order ’s	customer	ID,	to	return	customers	and	their	orders.	The	join	type	is	a	left	outer	join;
therefore,	the	query	also	returns	customers	who	did	not	place	any	orders:
Click	here	to	view	code	image

SELECT	C.custid,	C.companyname,	O.orderid
FROM	Sales.Customers	AS	C
		LEFT	OUTER	JOIN	Sales.Orders	AS	O
				ON	C.custid	=	O.custid;

This	query	returns	the	following	output,	shown	here	in	abbreviated	form:
Click	here	to	view	code	image

custid						companyname					orderid
-----------	---------------	-----------
1											Customer	NRZBB		10643
1											Customer	NRZBB		10692
1											Customer	NRZBB		10702
1											Customer	NRZBB		10835
1											Customer	NRZBB		10952
...
21										Customer	KIDPX		10414
21										Customer	KIDPX		10512
21										Customer	KIDPX		10581

21										Customer	KIDPX		10650
21										Customer	KIDPX		10725
22										Customer	DTDMN		NULL
23										Customer	WVFAF		10408
23										Customer	WVFAF		10480
23										Customer	WVFAF		10634
23										Customer	WVFAF		10763
23										Customer	WVFAF		10789
...
56										Customer	QNIVZ		10684
56										Customer	QNIVZ		10766
56										Customer	QNIVZ		10833
56										Customer	QNIVZ		10999
56										Customer	QNIVZ		11020
57										Customer	WVAXS		NULL
58										Customer	AHXHT		10322
58										Customer	AHXHT		10354
58										Customer	AHXHT		10474
58										Customer	AHXHT		10502
58										Customer	AHXHT		10995
...
91										Customer	CCFIZ		10792
91										Customer	CCFIZ		10870
91										Customer	CCFIZ		10906
91										Customer	CCFIZ		10998
91										Customer	CCFIZ		11044

(832	row(s)	affected)

Two	customers	in	the	Customers	table	did	not	place	any	orders.	Their	IDs	are	22	and	57.
Observe	that	in	the	output	of	the	query,	both	customers	are	returned	with	NULLs	in	the
attributes	from	the	Orders	table.	Logically,	the	rows	for	these	two	customers	were	discarded
by	the	second	phase	of	the	join	(the	filter	based	on	the	ON	predicate),	but	the	third	phase	added
those	as	outer	rows.	Had	the	join	been	an	inner	join,	these	two	rows	would	not	have	been
returned.	These	two	rows	are	added	to	preserve	all	the	rows	of	the	left	table.
It	might	help	to	think	of	the	result	of	an	outer	join	as	having	two	kinds	of	rows	with	respect

to	the	preserved	side—inner	rows	and	outer	rows.	Inner	rows	are	rows	that	have	matches	on
the	other	side	based	on	the	ON	predicate,	and	outer	rows	are	rows	that	don’t.	An	inner	join
returns	only	inner	rows,	whereas	an	outer	join	returns	both	inner	and	outer	rows.
A	common	question	about	outer	joins	that	is	the	source	of	a	lot	of	confusion	is	whether	to

specify	a	predicate	in	the	ON	or	WHERE	clause	of	a	query.	You	can	see	that	with	respect	to
rows	from	the	preserved	side	of	an	outer	join,	the	filter	based	on	the	ON	predicate	is	not	final.
In	other	words,	the	ON	predicate	does	not	determine	whether	a	row	will	show	up	in	the	output,
only	whether	it	will	be	matched	with	rows	from	the	other	side.	So	when	you	need	to	express	a
predicate	that	is	not	final—meaning	a	predicate	that	determines	which	rows	to	match	from	the
nonpreserved	side—specify	the	predicate	in	the	ON	clause.	When	you	need	a	filter	to	be
applied	after	outer	rows	are	produced,	and	you	want	the	filter	to	be	final,	specify	the	predicate
in	the	WHERE	clause.	The	WHERE	clause	is	processed	after	the	FROM	clause—specifically,
after	all	table	operators	have	been	processed	and	(in	the	case	of	outer	joins)	after	all	outer
rows	have	been	produced.	Also,	the	WHERE	clause	is	final	with	respect	to	rows	that	it	filters
out,	unlike	the	ON	clause.	To	recap,	in	the	ON	clause	you	specify	nonfinal,	or	matching,

predicates.	In	the	WHERE	clause	you	specify	final,	or	filtering,	predicates.
Suppose	you	need	to	return	only	customers	who	did	not	place	any	orders	or,	more

technically	speaking,	you	need	to	return	only	outer	rows.	You	can	use	the	previous	query	as
your	basis,	adding	a	WHERE	clause	that	filters	only	outer	rows.	Remember	that	outer	rows
are	identified	by	the	NULLs	in	the	attributes	from	the	nonpreserved	side	of	the	join.	So	you
can	filter	only	the	rows	in	which	one	of	the	attributes	on	the	nonpreserved	side	of	the	join	is
NULL,	like	this:
Click	here	to	view	code	image

SELECT	C.custid,	C.companyname
FROM	Sales.Customers	AS	C
		LEFT	OUTER	JOIN	Sales.Orders	AS	O
				ON	C.custid	=	O.custid
WHERE	O.orderid	IS	NULL;

This	query	returns	only	two	rows,	with	the	customers	22	and	57:
custid						companyname
-----------	---------------
22										Customer	DTDMN
57										Customer	WVAXS

(2	row(s)	affected)

Notice	a	couple	of	important	things	about	this	query.	Recall	the	discussions	about	NULLs
earlier	in	the	book:	When	looking	for	a	NULL,	you	should	use	the	operator	IS	NULL	and	not
an	equality	operator.	You	do	this	because	when	an	equality	operator	compares	something	with
a	NULL,	it	always	returns	UNKNOWN—even	when	it’s	comparing	two	NULLs.	Also,	the
choice	of	which	attribute	from	the	nonpreserved	side	of	the	join	to	filter	is	important.	You
should	choose	an	attribute	that	can	have	only	a	NULL	when	the	row	is	an	outer	row	and	not
otherwise	(for	example,	not	a	NULL	originating	from	the	base	table).	For	this	purpose,	three
cases	are	safe	to	consider:	a	primary	key	column,	a	join	column,	and	a	column	defined	as
NOT	NULL.	A	primary	key	column	cannot	be	NULL;	therefore,	a	NULL	in	such	a	column	can
only	mean	that	the	row	is	an	outer	row.	If	a	row	has	a	NULL	in	the	join	column,	that	row	is
filtered	out	by	the	second	phase	of	the	join,	so	a	NULL	in	such	a	column	can	only	mean	that
it’s	an	outer	row.	And	obviously,	a	NULL	in	a	column	that	is	defined	as	NOT	NULL	can	only
mean	that	the	row	is	an	outer	row.
To	practice	what	you	learned	and	get	a	better	grasp	of	outer	joins,	make	sure	you	perform

the	exercises	for	this	chapter.

Beyond	the	fundamentals	of	outer	joins
This	section	covers	more	advanced	aspects	of	outer	joins	and	is	provided	as	optional	reading
for	when	you	feel	comfortable	with	the	fundamentals	of	outer	joins.

Including	missing	values
You	can	use	outer	joins	to	identify	and	include	missing	values	when	querying	data.	For
example,	suppose	you	need	to	query	all	orders	from	the	Orders	table	in	the	TSQLV4	database.
You	need	to	ensure	that	you	get	at	least	one	row	in	the	output	for	each	date	in	the	range
January	1,	2014	through	December	31,	2016.	You	don’t	want	to	do	anything	special	with	dates
within	the	range	that	have	orders,	but	you	do	want	the	output	to	include	the	dates	with	no
orders,	with	NULLs	as	placeholders	in	the	attributes	of	the	order.
To	solve	the	problem,	you	can	first	write	a	query	that	returns	a	sequence	of	all	dates	in	the

requested	period.	You	can	then	perform	a	left	outer	join	between	that	set	and	the	Orders	table.
This	way,	the	result	also	includes	the	missing	dates.
To	produce	a	sequence	of	dates	in	a	given	range,	I	usually	use	an	auxiliary	table	of

numbers.	I	create	a	table	called	dbo.Nums	with	a	column	called	n,	and	populate	it	with	a
sequence	of	integers	(1,	2,	3,	and	so	on).	I	find	that	an	auxiliary	table	of	numbers	is	an
extremely	powerful	general-purpose	tool	I	end	up	using	to	solve	many	problems.	You	need	to
create	it	only	once	in	the	database	and	populate	it	with	as	many	numbers	as	you	might	need.
The	TSQLV4	sample	database	already	has	such	an	auxiliary	table.
As	the	first	step	in	the	solution,	you	need	to	produce	a	sequence	of	all	dates	in	the	requested

range.	You	can	achieve	this	by	querying	the	Nums	table	and	filtering	as	many	numbers	as	the
number	of	days	in	the	requested	date	range.	You	can	use	the	DATEDIFF	function	to	calculate
that	number.	By	adding	n	–	1	days	to	the	starting	point	of	the	date	range	(January	1,	2014),	you
get	the	actual	date	in	the	sequence.	Here’s	the	solution	query:
Click	here	to	view	code	image

SELECT	DATEADD(day,	n-1,	CAST('20140101'	AS	DATE))	AS	orderdate
FROM	dbo.Nums
WHERE	n	<=	DATEDIFF(day,	'20140101',	'20161231')	+	1
ORDER	BY	orderdate;

This	query	returns	a	sequence	of	all	dates	in	the	range	January	1,	2014	through	December
31,	2016,	as	shown	here	in	abbreviated	form:

orderdate

2014-01-01
2014-01-02
2014-01-03
2014-01-04
2014-01-05
...
2016-12-27
2016-12-28
2016-12-29
2016-12-30
2016-12-31

(1096	row(s)	affected)

The	next	step	is	to	extend	the	previous	query,	adding	a	left	outer	join	between	Nums	and	the
Orders	tables.	The	join	condition	compares	the	order	date	produced	from	the	Nums	table	and
the	orderdate	from	the	Orders	table	by	using	the	expression	DATEADD(day,	Nums.n	–	1,

CAST(‘20140101’	AS	DATE))	like	this:
Click	here	to	view	code	image

SELECT	DATEADD(day,	Nums.n	-	1,	CAST('20140101'	AS	DATE))	AS	orderdate,
		O.orderid,	O.custid,	O.empid
FROM	dbo.Nums
		LEFT	OUTER	JOIN	Sales.Orders	AS	O
				ON	DATEADD(day,	Nums.n	-	1,	CAST('20140101'	AS	DATE))	=	O.orderdate
WHERE	Nums.n	<=	DATEDIFF(day,	'20140101',	'20161231')	+	1
ORDER	BY	orderdate;

This	query	produces	the	following	output,	shown	here	in	abbreviated	form:
Click	here	to	view	code	image

orderdate			orderid					custid						empid
-----------	-----------	-----------	-----------
2014-01-01		NULL								NULL								NULL
2014-01-02		NULL								NULL								NULL
2014-01-03		NULL								NULL								NULL
2014-01-04		NULL								NULL								NULL
2014-01-05		NULL								NULL								NULL
...
2014-06-29		NULL								NULL								NULL
2014-06-30		NULL								NULL								NULL
2014-07-01		NULL								NULL								NULL
2014-07-02		NULL								NULL								NULL
2014-07-03		NULL								NULL								NULL
2014-07-04		10248							85										5
2014-07-05		10249							79										6
2014-07-06		NULL								NULL								NULL
2014-07-07		NULL								NULL								NULL
2014-07-08		10250							34										4
2014-07-08		10251							84										3
2014-07-09		10252							76										4
2014-07-10		10253							34										3
2014-07-11		10254							14										5
2014-07-12		10255							68										9
2014-07-13		NULL								NULL								NULL
2014-07-14		NULL								NULL								NULL
2014-07-15		10256							88										3
2014-07-16		10257							35										4
...
2008-12-2		NULL								NULL								NULL
2008-12-2		NULL								NULL								NULL
2008-12-2		NULL								NULL								NULL
2008-12-3		NULL								NULL								NULL
2008-12-3		NULL								NULL								NULL

(1446	row(s)	affected)

Dates	that	do	not	appear	as	order	dates	in	the	Orders	table	appear	in	the	output	of	the	query
with	NULLs	in	the	order	attributes.

Filtering	attributes	from	the	nonpreserved	side	of	an	outer	join
When	you	need	to	review	code	involving	outer	joins	to	look	for	logical	bugs,	one	of	the
things	you	should	examine	is	the	WHERE	clause.	If	the	predicate	in	the	WHERE	clause	refers
to	an	attribute	from	the	nonpreserved	side	of	the	join	using	an	expression	in	the	form
<attribute>	<operator>	<value>,	it’s	usually	an	indication	of	a	bug.	This	is	because
attributes	from	the	nonpreserved	side	of	the	join	are	NULLs	in	outer	rows,	and	an	expression
in	the	form	NULL	<operator>	<value>	yields	UNKNOWN	(unless	it’s	the	IS	NULL	operator
explicitly	looking	for	NULLs).	Recall	that	a	WHERE	clause	filters	UNKNOWN	out.	Such	a
predicate	in	the	WHERE	clause	causes	all	outer	rows	to	be	filtered	out,	effectively	nullifying
the	outer	join.	Effectively,	the	join	becomes	an	inner	join.	So	the	programmer	either	made	a
mistake	in	the	join	type	or	in	the	predicate.
If	this	is	not	clear	yet,	the	following	example	might	help.	Consider	the	following	query:

Click	here	to	view	code	image

SELECT	C.custid,	C.companyname,	O.orderid,	O.orderdate
FROM	Sales.Customers	AS	C
		LEFT	OUTER	JOIN	Sales.Orders	AS	O
				ON	C.custid	=	O.custid
WHERE	O.orderdate	>=	'20160101';

The	query	performs	a	left	outer	join	between	the	Customers	and	Orders	tables.	Prior	to
applying	the	WHERE	filter,	the	join	operator	returns	inner	rows	for	customers	who	placed
orders	and	outer	rows	for	customers	who	didn’t	place	orders,	with	NULLs	in	the	order
attributes.	The	predicate	O.orderdate	>=	‘20160101’	in	the	WHERE	clause	evaluates	to
UNKNOWN	for	all	outer	rows,	because	those	have	a	NULL	in	the	O.orderdate	attribute.	All
outer	rows	are	eliminated	by	the	WHERE	filter,	as	you	can	see	in	the	output	of	the	query,
shown	here	in	abbreviated	form:
Click	here	to	view	code	image

custid						companyname					orderid					orderdate
-----------	---------------	-----------	----------
1											Customer	NRZBB		10835							2016-01-15
1											Customer	NRZBB		10952							2016-03-16
1											Customer	NRZBB		11011							2016-04-09
2											Customer	MLTDN		10926							2016-03-04
3											Customer	KBUDE		10856							2016-01-28
...
90										Customer	XBBVR		10910							2016-02-26
91										Customer	CCFIZ		10906							2016-02-25
91										Customer	CCFIZ		10870							2016-02-04
91										Customer	CCFIZ		10998							2016-04-03
91										Customer	CCFIZ		11044							2016-04-23

(270	row(s)	affected)

This	means	that	the	use	of	an	outer	join	here	was	futile.	The	programmer	either	made	a
mistake	in	using	an	outer	join	or	in	specifying	the	predicate	in	the	WHERE	clause.

Using	outer	joins	in	a	multi-join	query
Recall	the	discussion	about	all-at-once	operations	in	Chapter	2,	“Single-table	queries.”	The
concept	describes	the	fact	that	all	expressions	that	appear	in	the	same	logical	query	processing
phase	are	evaluated	as	a	set,	at	the	same	point	in	time.	However,	this	concept	is	not	applicable
to	the	processing	of	table	operators	in	the	FROM	phase.	Table	operators	are	logically
evaluated	from	left	to	right.	Rearranging	the	order	in	which	outer	joins	are	processed	might
result	in	different	output,	so	you	cannot	rearrange	them	at	will.
Some	interesting	bugs	have	to	do	with	the	logical	order	in	which	outer	joins	are	processed.

For	example,	a	common	bug	could	be	considered	a	variation	of	the	bug	in	the	previous
section.	Suppose	you	write	a	multi-join	query	with	an	outer	join	between	two	tables,	followed
by	an	inner	join	with	a	third	table.	If	the	predicate	in	the	inner	join’s	ON	clause	compares	an
attribute	from	the	nonpreserved	side	of	the	outer	join	and	an	attribute	from	the	third	table,	all
outer	rows	are	discarded.	Remember	that	outer	rows	have	NULLs	in	the	attributes	from	the
nonpreserved	side	of	the	join,	and	comparing	a	NULL	with	anything	yields	UNKNOWN.
UNKNOWN	is	filtered	out	by	the	ON	filter.	In	other	words,	such	a	predicate	nullifies	the	outer
join,	effectively	turning	it	into	an	inner	join.	For	example,	consider	the	following	query:
Click	here	to	view	code	image

SELECT	C.custid,	O.orderid,	OD.productid,	OD.qty
FROM	Sales.Customers	AS	C
		LEFT	OUTER	JOIN	Sales.Orders	AS	O
				ON	C.custid	=	O.custid
		INNER	JOIN	Sales.OrderDetails	AS	OD
				ON	O.orderid	=	OD.orderid;

The	first	join	is	an	outer	join	returning	customers	and	their	orders	and	also	customers	who
did	not	place	any	orders.	The	outer	rows	representing	customers	with	no	orders	have	NULLs
in	the	order	attributes.	The	second	join	matches	order	lines	from	the	OrderDetails	table	with
rows	from	the	result	of	the	first	join,	based	on	the	predicate	O.orderid	=	OD.orderid;
however,	in	the	rows	representing	customers	with	no	orders,	the	O.orderid	attribute	is	NULL.
Therefore,	the	predicate	evaluates	to	UNKNOWN,	and	those	rows	are	discarded.	The	output
shown	here	in	abbreviated	form	doesn’t	contain	the	customers	22	and	57,	the	two	customers
who	did	not	place	orders:
Click	here	to	view	code	image

custid						orderid					productid			qty
-----------	-----------	-----------	------
85										10248							11										12
85										10248							42										10
85										10248							72										5
79										10249							14										9
79										10249							51										40
...
65										11077							64										2
65										11077							66										1
65										11077							73										2
65										11077							75										4
65										11077							77										2

(2155	row(s)	affected)

Generally,	outer	rows	are	dropped	whenever	any	kind	of	outer	join	(left,	right,	or	full)	is
followed	by	a	subsequent	inner	join	or	right	outer	join.	That’s	assuming,	of	course,	that	the
join	condition	compares	the	NULLs	from	the	left	side	with	something	from	the	right	side.
There	are	several	ways	to	get	around	the	problem	if	you	want	to	return	customers	with	no

orders	in	the	output.	One	option	is	to	use	a	left	outer	join	in	the	second	join	as	well:
Click	here	to	view	code	image

SELECT	C.custid,	O.orderid,	OD.productid,	OD.qty
FROM	Sales.Customers	AS	C
		LEFT	OUTER	JOIN	Sales.Orders	AS	O
				ON	C.custid	=	O.custid
		LEFT	OUTER	JOIN	Sales.OrderDetails	AS	OD
				ON	O.orderid	=	OD.orderid;

This	way,	the	outer	rows	produced	by	the	first	join	aren’t	filtered	out,	as	you	can	see	in	the
output	shown	here	in	abbreviated	form:
Click	here	to	view	code	image

custid						orderid					productid			qty
-----------	-----------	-----------	------
85										10248							11										12
85										10248							42										10
85										10248							72										5
79										10249							14										9
79										10249							51										40
...
65										11077							64										2
65										11077							66										1
65										11077							73										2
65										11077							75										4
65										11077							77										2
22										NULL								NULL								NULL
57										NULL								NULL								NULL

(2157	row(s)	affected)

This	solution	is	usually	not	a	good	one	because	it	preserves	all	rows	from	Orders.	What	if
there	were	rows	in	Orders	that	didn’t	have	matches	in	OrderDetails,	and	you	wanted	those
rows	to	be	discarded.	What	you	want	is	an	inner	join	between	Orders	and	OrderDetails.
A	second	option	is	to	use	an	inner	join	between	Orders	and	OrderDetails,	and	then	join	the

result	with	the	Customers	table	using	a	right	outer	join:
Click	here	to	view	code	image

SELECT	C.custid,	O.orderid,	OD.productid,	OD.qty
FROM	Sales.Orders	AS	O
		INNER	JOIN	Sales.OrderDetails	AS	OD
				ON	O.orderid	=	OD.orderid
		RIGHT	OUTER	JOIN	Sales.Customers	AS	C
					ON	O.custid	=	C.custid;

This	way,	the	outer	rows	are	produced	by	the	last	join	and	are	not	filtered	out.
A	third	option	is	to	use	parentheses	to	turn	the	inner	join	between	Orders	and	OrderDetails

into	an	independent	unit.	This	way,	you	can	apply	a	left	outer	join	between	the	Customers	table

and	that	unit.	The	query	would	look	like	this:
Click	here	to	view	code	image

SELECT	C.custid,	O.orderid,	OD.productid,	OD.qty
FROM	Sales.Customers	AS	C
		LEFT	OUTER	JOIN
						(Sales.Orders	AS	O
									INNER	JOIN	Sales.OrderDetails	AS	OD
											ON	O.orderid	=	OD.orderid)
				ON	C.custid	=	O.custid;

Using	the	COUNT	aggregate	with	outer	joins
Another	common	bug	involves	using	COUNT	with	outer	joins.	When	you	group	the	result	of
an	outer	join	and	use	the	COUNT(*)	aggregate,	the	aggregate	takes	into	consideration	both
inner	rows	and	outer	rows,	because	it	counts	rows	regardless	of	their	contents.	Usually,
you’re	not	supposed	to	take	outer	rows	into	consideration	for	the	purposes	of	counting.	For
example,	the	following	query	is	supposed	to	return	the	count	of	orders	for	each	customer:
Click	here	to	view	code	image

SELECT	C.custid,	COUNT(*)	AS	numorders
FROM	Sales.Customers	AS	C
		LEFT	OUTER	JOIN	Sales.Orders	AS	O
				ON	C.custid	=	O.custid
GROUP	BY	C.custid;

Customers	such	as	22	and	57	who	did	not	place	orders,	each	have	an	outer	row	in	the	result
of	the	join;	therefore,	they	show	up	in	the	output	with	a	count	of	1:

custid						numorders
-----------	-----------
1											6
2											4
3											7
4											13
5											18
...
22										1
...
57										1
...
87										15
88										9
89										14
90										7
91										7

(91	row(s)	affected)

The	COUNT(*)	aggregate	function	cannot	detect	whether	a	row	really	represents	an	order.
To	fix	the	problem,	you	should	use	COUNT(<column>)	instead	of	COUNT(*)	and	provide	a
column	from	the	nonpreserved	side	of	the	join.	This	way,	the	COUNT()	aggregate	ignores
outer	rows	because	they	have	a	NULL	in	that	column.	Remember	to	use	a	column	that	can	only
be	NULL	in	case	the	row	is	an	outer	row—for	example,	the	primary	key	column	orderid:
Click	here	to	view	code	image

SELECT	C.custid,	COUNT(O.orderid)	AS	numorders
FROM	Sales.Customers	AS	C
		LEFT	OUTER	JOIN	Sales.Orders	AS	O
				ON	C.custid	=	O.custid
GROUP	BY	C.custid;

Notice	in	the	output	that	the	customers	22	and	57	now	show	up	with	a	count	of	0:
custid						numorders
-----------	-----------
1											6
2											4
3											7
4											13
5											18
...
22										0
...
57										0
...
87										15
88										9
89										14
90										7
91										7

(91	row(s)	affected)

Conclusion
This	chapter	covered	the	JOIN	table	operator.	It	described	the	logical	query	processing	phases
involved	in	the	three	fundamental	types	of	joins:	cross	joins,	inner	joins,	and	outer	joins.	The
chapter	also	covered	further	join	examples,	including	composite	joins,	non-equi	joins,	and
multi-join	queries.	The	chapter	concluded	with	an	optional	reading	section	covering	more
advanced	aspects	of	outer	joins.	To	practice	what	you	learned,	go	over	the	exercises	for	this
chapter.

Exercises
This	section	provides	exercises	to	help	you	familiarize	yourself	with	the	subjects	discussed	in
this	chapter.	All	exercises	involve	querying	objects	in	the	TSQLV4	database.

Exercise	1-1
Write	a	query	that	generates	five	copies	of	each	employee	row:

	Tables	involved:	HR.Employees	and	dbo.Nums
	Desired	output:

Click	here	to	view	code	image

empid							firstname		lastname													n
-----------	----------	--------------------	-----------
1											Sara							Davis																1
2											Don								Funk																	1
3											Judy							Lew																		1
4											Yael							Peled																1

5											Sven							Mortensen												1
6											Paul							Suurs																1
7											Russell				King																	1
8											Maria						Cameron														1
9											Patricia			Doyle																1
1											Sara							Davis																2
2											Don								Funk																	2
3											Judy							Lew																		2
4											Yael							Peled																2
5											Sven							Mortensen												2
6											Paul							Suurs																2
7											Russell				King																	2
8											Maria						Cameron														2
9											Patricia			Doyle																2
1											Sara							Davis																3
2											Don								Funk																	3
3											Judy							Lew																		3
4											Yael							Peled																3
5											Sven							Mortensen												3
6											Paul							Suurs																3
7											Russell				King																	3
8											Maria						Cameron														3
9											Patricia			Doyle																3
1											Sara							Davis																4
2											Don								Funk																	4
3											Judy							Lew																		4
4											Yael							Peled																4
5											Sven							Mortensen												4
6											Paul							Suurs																4
7											Russell				King																	4
8											Maria						Cameron														4
9											Patricia			Doyle																4
1											Sara							Davis																5
2											Don								Funk																	5
3											Judy							Lew																		5
4											Yael							Peled																5
5											Sven							Mortensen												5
6											Paul							Suurs																5
7											Russell				King																	5
8											Maria						Cameron														5
9											Patricia			Doyle																5

(45	row(s)	affected)

Exercise	1-2	(optional,	advanced)
Write	a	query	that	returns	a	row	for	each	employee	and	day	in	the	range	June	12,	2016
through	June	16,	2016:

	Tables	involved:	HR.Employees	and	dbo.Nums
	Desired	output:
empid							dt
-----------	-----------
1											2016-06-12
1											2016-06-13
1											2016-06-14
1											2016-06-15
1											2016-06-16

2											2016-06-12
2											2016-06-13
2											2016-06-14
2											2016-06-15
2											2016-06-16
3											2016-06-12
3											2016-06-13
3											2016-06-14
3											2016-06-15
3											2016-06-16
4											2016-06-12
4											2016-06-13
4											2016-06-14
4											2016-06-15
4											2016-06-16
5											2016-06-12
5											2016-06-13
5											2016-06-14
5											2016-06-15
5											2016-06-16
6											2016-06-12
6											2016-06-13
6											2016-06-14
6											2016-06-15
6											2016-06-16
7											2016-06-12
7											2016-06-13
7											2016-06-14
7											2016-06-15
7											2016-06-16
8											2016-06-12
8											2016-06-13
8											2016-06-14
8											2016-06-15
8											2016-06-16
9											2016-06-12
9											2016-06-13
9											2016-06-14
9											2016-06-15
9											2016-06-16

(45	row(s)	affected)

Exercise	2
Explain	what’s	wrong	in	the	following	query,	and	provide	a	correct	alternative:
Click	here	to	view	code	image

SELECT	Customers.custid,	Customers.companyname,	Orders.orderid,	Orders.orderdate
FROM	Sales.Customers	AS	C
		INNER	JOIN	Sales.Orders	AS	O
				ON	Customers.custid	=	Orders.custid;

Exercise	3
Return	US	customers,	and	for	each	customer	return	the	total	number	of	orders	and	total
quantities:

	Tables	involved:	Sales.Customers,	Sales.Orders,	and	Sales.OrderDetails

	Desired	output:
Click	here	to	view	code	image

custid						numorders			totalqty
-----------	-----------	-----------
32										11										345
36										5											122
43										2											20
45										4											181
48										8											134
55										10										603
65										18										1383
71										31										4958
75										9											327
77										4											46
78										3											59
82										3											89
89										14										1063

(13	row(s)	affected)

Exercise	4
Return	customers	and	their	orders,	including	customers	who	placed	no	orders:

	Tables	involved:	Sales.Customers	and	Sales.Orders
	Desired	output	(abbreviated):

Click	here	to	view	code	image

custid						companyname					orderid					orderdate
-----------	---------------	-----------	-----------
85										Customer	ENQZT		10248							2014-07-04
79										Customer	FAPSM		10249							2014-07-05
34										Customer	IBVRG		10250							2014-07-08
84										Customer	NRCSK		10251							2014-07-08
...
73										Customer	JMIKW		11074							2016-05-06
68										Customer	CCKOT		11075							2016-05-06
9											Customer	RTXGC		11076							2016-05-06
65										Customer	NYUHS		11077							2016-05-06
22										Customer	DTDMN		NULL								NULL
57										Customer	WVAXS		NULL								NULL

(832	row(s)	affected)

Exercise	5
Return	customers	who	placed	no	orders:

	Tables	involved:	Sales.Customers	and	Sales.Orders
	Desired	output:
custid						companyname
-----------	---------------
22										Customer	DTDMN
57										Customer	WVAXS

(2	row(s)	affected)

Exercise	6
Return	customers	with	orders	placed	on	February	12,	2016,	along	with	their	orders:

	Tables	involved:	Sales.Customers	and	Sales.Orders
	Desired	output:

Click	here	to	view	code	image

custid						companyname					orderid					orderdate
-----------	---------------	-----------	----------
48										Customer	DVFMB		10883							2016-02-12
45										Customer	QXPPT		10884							2016-02-12
76										Customer	SFOGW		10885							2016-02-12

(3	row(s)	affected)

Exercise	7	(optional,	advanced)
Write	a	query	that	returns	all	customers	in	the	output,	but	matches	them	with	their	respective
orders	only	if	they	were	placed	on	February	12,	2016:

	Tables	involved:	Sales.Customers	and	Sales.Orders
	Desired	output	(abbreviated):

Click	here	to	view	code	image

custid						companyname					orderid					orderdate
-----------	---------------	-----------	----------
72										Customer	AHPOP		NULL								NULL
58										Customer	AHXHT		NULL								NULL
25										Customer	AZJED		NULL								NULL
18										Customer	BSVAR		NULL								NULL
91										Customer	CCFIZ		NULL								NULL
68										Customer	CCKOT		NULL								NULL
49										Customer	CQRAA		NULL								NULL
24										Customer	CYZTN		NULL								NULL
22										Customer	DTDMN		NULL								NULL
48										Customer	DVFMB		10883							2016-02-12
10										Customer	EEALV		NULL								NULL
40										Customer	EFFTC		NULL								NULL
85										Customer	ENQZT		NULL								NULL
82										Customer	EYHKM		NULL								NULL
79										Customer	FAPSM		NULL								NULL
...
51										Customer	PVDZC		NULL								NULL
52										Customer	PZNLA		NULL								NULL
56										Customer	QNIVZ		NULL								NULL
8											Customer	QUHWH		NULL								NULL
67										Customer	QVEPD		NULL								NULL
45										Customer	QXPPT		10884							2016-02-12
7											Customer	QXVLA		NULL								NULL
60										Customer	QZURI		NULL								NULL
19										Customer	RFNQC		NULL								NULL
9											Customer	RTXGC		NULL								NULL
76										Customer	SFOGW		10885							2016-02-12
69										Customer	SIUIH		NULL								NULL
86										Customer	SNXOJ		NULL								NULL
88										Customer	SRQVM		NULL								NULL
54										Customer	TDKEG		NULL								NULL

20										Customer	THHDP		NULL								NULL
...

(91	row(s)	affected)

Exercise	8	(optional,	advanced)
Explain	why	the	following	query	isn’t	a	correct	solution	query	for	Exercise	7:
Click	here	to	view	code	image

SELECT	C.custid,	C.companyname,	O.orderid,	O.orderdate
FROM	Sales.Customers	AS	C
		LEFT	OUTER	JOIN	Sales.Orders	AS	O
				ON	O.custid	=	C.custid
WHERE	O.orderdate	=	'20160212'
			OR	O.orderid	IS	NULL;

Exercise	9	(optional,	advanced)
Return	all	customers,	and	for	each	return	a	Yes/No	value	depending	on	whether	the	customer
placed	orders	on	February	12,	2016:

	Tables	involved:	Sales.Customers	and	Sales.Orders
	Desired	output	(abbreviated):

Click	here	to	view	code	image

custid						companyname					HasOrderOn20160212
-----------	---------------	------------------
...
40										Customer	EFFTC		No
41										Customer	XIIWM		No
42										Customer	IAIJK		No
43										Customer	UISOJ		No
44										Customer	OXFRU		No
45										Customer	QXPPT		Yes
46										Customer	XPNIK		No
47										Customer	PSQUZ		No
48										Customer	DVFMB		Yes
49										Customer	CQRAA		No
50										Customer	JYPSC		No
51										Customer	PVDZC		No
52										Customer	PZNLA		No
53										Customer	GCJSG		No
...

(91	row(s)	affected)

Solutions
This	section	provides	solutions	to	the	exercises	for	this	chapter.

Exercise	1-1
Producing	multiple	copies	of	rows	can	be	achieved	with	a	cross	join.	If	you	need	to	produce
five	copies	of	each	employee	row,	you	need	to	perform	a	cross	join	between	the	Employees
table	and	a	table	that	has	five	rows;	alternatively,	you	can	perform	a	cross	join	between
Employees	and	a	table	that	has	more	than	five	rows,	but	filter	only	five	from	that	table	in	the
WHERE	clause.	The	Nums	table	is	convenient	for	this	purpose.	Simply	join	Employees	and
Nums,	and	filter	from	Nums	as	many	rows	as	the	number	of	requested	copies	(five,	in	this
case).	Here’s	the	solution	query:
Click	here	to	view	code	image

SELECT	E.empid,	E.firstname,	E.lastname,	N.n
FROM	HR.Employees	AS	E
		CROSS	JOIN	dbo.Nums	AS	N
WHERE	N.n	<=	5
ORDER	BY	n,	empid;

Exercise	1-2
This	exercise	is	an	extension	of	the	previous	exercise.	Instead	of	being	asked	to	produce	a
predetermined	constant	number	of	copies	of	each	employee	row,	you	are	asked	to	produce	a
copy	for	each	day	in	a	certain	date	range.	So	here	you	need	to	calculate	the	number	of	days	in
the	requested	date	range	by	using	the	DATEDIFF	function,	and	refer	to	the	result	of	that
expression	in	the	query’s	WHERE	clause	instead	of	referring	to	a	constant.	To	produce	the
dates,	simply	add	n	–	1	days	to	the	date	that	starts	the	requested	range.	Here’s	the	solution
query:
Click	here	to	view	code	image

SELECT	E.empid,
		DATEADD(day,	D.n	-	1,	CAST('20160612'	AS	DATE))	AS	dt
FROM	HR.Employees	AS	E
		CROSS	JOIN	dbo.Nums	AS	D
WHERE	D.n	<=	DATEDIFF(day,	'20160612',	'20160616')	+	1
ORDER	BY	empid,	dt;

The	DATEDIFF	function	returns	4	because	there	is	a	four-day	difference	between	June	12,
2016	and	June	16,	2016.	Add	1	to	the	result,	and	you	get	5	for	the	five	days	in	the	range.	So	the
WHERE	clause	filters	five	rows	from	Nums	where	n	is	less	than	or	equal	to	5.	By	adding	n	–	1
days	to	June	12,	2016,	you	get	all	dates	in	the	range	June	12,	2016	through	June	16,	2016.

Exercise	2
The	first	step	in	the	processing	of	the	JOIN	table	operator	assigns	to	the	Customers	and
Orders	tables	the	shorter	aliases	C	and	O,	respectively.	The	aliasing	effectively	renames	the
tables	for	the	purposes	of	the	query.	In	all	subsequent	phases	of	logical	query	processing,	the
original	table	names	are	not	accessible,	rather	only	the	shorter	aliases	are.	You	have	two
options	to	fix	the	query.	One	is	to	avoid	aliasing	and	use	the	original	table	names	as	prefixes,
like	so:
Click	here	to	view	code	image

SELECT	Customers.custid,	Customers.companyname,	Orders.orderid,	Orders.orderdate

FROM	Sales.Customers
		INNER	JOIN	Sales.Orders
				ON	Customers.custid	=	Orders.custid;

Another	solution	is	to	keep	the	aliases,	but	to	make	sure	to	use	the	aliases	as	prefixes,	like
so:
Click	here	to	view	code	image

SELECT	C.custid,	C.companyname,	O.orderid,	O.orderdate
FROM	Sales.Customers	AS	C
		INNER	JOIN	Sales.Orders	AS	O
				ON	C.custid	=	O.custid;

Exercise	3
This	exercise	requires	you	to	write	a	query	that	joins	three	tables:	Customers,	Orders,	and
OrderDetails.	The	query	should	use	the	WHERE	clause	to	filter	only	rows	where	the
customer ’s	country	is	the	United	States.	Because	you	are	asked	to	return	aggregates	per
customer,	the	query	should	group	the	rows	by	customer	ID.	You	need	to	resolve	a	tricky	issue
here	to	return	the	right	number	of	orders	for	each	customer.	Because	of	the	join	between
Orders	and	OrderDetails,	you	don’t	get	only	one	row	per	order—you	get	one	row	per	order
line.	So	if	you	use	the	COUNT(*)	function	in	the	SELECT	list,	you	get	back	the	number	of
order	lines	for	each	customer	and	not	the	number	of	orders.
To	resolve	this	issue,	you	need	to	take	each	order	into	consideration	only	once.	You	can	do

this	by	using	COUNT(DISTINCT	O.orderid)	instead	of	COUNT(*).	The	total	quantities	don’t
create	any	special	issues	because	the	quantity	is	associated	with	the	order	line	and	not	the
order.	Here’s	the	solution	query:
Click	here	to	view	code	image

SELECT	C.custid,	COUNT(DISTINCT	O.orderid)	AS	numorders,	SUM(OD.qty)	AS	totalqty
FROM	Sales.Customers	AS	C
		INNER	JOIN	Sales.Orders	AS	O
				ON	O.custid	=	C.custid
		INNER	JOIN	Sales.OrderDetails	AS	OD
				ON	OD.orderid	=	O.orderid
WHERE	C.country	=	N'USA'
GROUP	BY	C.custid;

Exercise	4
To	get	both	customers	who	placed	orders	and	customers	who	didn’t	place	orders	in	the	result,
you	need	to	use	an	outer	join,	like	this:
Click	here	to	view	code	image

SELECT	C.custid,	C.companyname,	O.orderid,	O.orderdate
FROM	Sales.Customers	AS	C
		LEFT	OUTER	JOIN	Sales.Orders	AS	O
				ON	O.custid	=	C.custid;

This	query	returns	832	rows	(including	the	customers	22	and	57,	who	didn’t	place	orders).
An	inner	join	between	the	tables	would	return	only	830	rows,	without	those	customers.

Exercise	5
This	exercise	is	an	extension	of	the	previous	one.	To	return	only	customers	who	didn’t	place
orders,	you	need	to	add	a	WHERE	clause	to	the	query	that	filters	only	outer	rows—namely,
rows	that	represent	customers	with	no	orders.	Outer	rows	have	NULLs	in	the	attributes	from
the	nonpreserved	side	of	the	join	(Orders).	But	to	make	sure	that	the	NULL	is	a	placeholder
for	an	outer	row	and	not	a	NULL	that	originated	from	the	table,	it’s	recommended	that	you
refer	to	an	attribute	that	is	the	primary	key,	or	the	join	column,	or	one	defined	as	not	allowing
NULLs.	Here’s	the	solution	query,	which	refers	to	the	primary	key	of	the	Orders	table	in	the
WHERE	clause:
Click	here	to	view	code	image

SELECT	C.custid,	C.companyname
FROM	Sales.Customers	AS	C
		LEFT	OUTER	JOIN	Sales.Orders	AS	O
				ON	O.custid	=	C.custid
WHERE	O.orderid	IS	NULL;

This	query	returns	only	two	rows,	for	customers	22	and	57,	who	didn’t	place	orders.

Exercise	6
This	exercise	involves	writing	a	query	that	performs	an	inner	join	between	Customers	and
Orders	and	filters	only	rows	in	which	the	order	date	is	February	12,	2016:
Click	here	to	view	code	image

SELECT	C.custid,	C.companyname,	O.orderid,	O.orderdate
FROM	Sales.Customers	AS	C
		INNER	JOIN	Sales.Orders	AS	O
				ON	O.custid	=	C.custid
WHERE	O.orderdate	=	'20160212';

The	WHERE	clause	filtered	out	customers	who	didn’t	place	orders	on	February	12,	2016,
but	that	was	the	request.

Exercise	7
This	exercise	builds	on	the	previous	one.	The	trick	here	is	to	realize	two	things.	First,	you
need	an	outer	join	because	you	are	supposed	to	preserve	all	customers,	even	if	they	don’t
have	matching	orders.	Second,	the	predicate	based	on	the	order	date	is	a	nonfinal	matching
predicate;	as	such	it	must	appear	in	the	ON	clause	and	not	the	WHERE	clause.	Remember	that
the	WHERE	clause	is	a	final	filter	that	is	applied	after	outer	rows	are	added.	Your	goal	is	to
match	orders	to	customers	only	if	the	order	was	placed	by	the	customer	on	February	12,	2016.
You	still	want	to	get	customers	who	didn’t	place	orders	on	that	date	in	the	output.	Hence,	the
ON	clause	should	match	customers	and	orders	based	on	both	an	equality	between	the
customer ’s	customer	ID	and	the	order ’s	customer	ID,	and	on	the	order	date	being	February
12,	2016.	Here’s	the	solution	query:
Click	here	to	view	code	image

SELECT	C.custid,	C.companyname,	O.orderid,	O.orderdate
FROM	Sales.Customers	AS	C

		LEFT	OUTER	JOIN	Sales.Orders	AS	O
				ON	O.custid	=	C.custid
				AND	O.orderdate	=	'20160212';

Exercise	8
The	outer	join	matches	all	customers	with	their	respective	orders,	and	it	preserves	also
customers	who	didn’t	place	any	orders.	Customers	without	orders	have	NULLs	in	the	order
attributes.	Then	the	WHERE	filter	keeps	only	rows	where	the	order	date	is	February	12,	2016
or	the	order	ID	is	NULL	(a	customer	without	orders	at	all).	The	filter	discards	customers	who
didn’t	place	orders	on	February	12,	2016	but	did	place	orders	on	other	dates,	and	according	to
Exercise	7	the	query	is	supposed	to	return	all	customers.	Here’s	the	output	of	the	incorrect
query:
Click	here	to	view	code	image

custid						companyname					orderid					orderdate
-----------	---------------	-----------	----------
48										Customer	DVFMB		10883							2016-02-12
45										Customer	QXPPT		10884							2016-02-12
76										Customer	SFOGW		10885							2016-02-12
22										Customer	DTDMN		NULL								NULL
57										Customer	WVAXS		NULL								NULL

(5	row(s)	affected)

The	first	three	rows	represent	orders	that	were	placed	on	February	12,	2016.	The	last	two
rows	represent	customers	who	didn’t	place	orders	at	all.	Observe	that	many	of	the	91
customers	from	the	Customers	table	are	missing.	As	mentioned,	those	are	customers	who
didn’t	place	orders	on	February	12,	2016,	but	did	place	orders	on	other	dates.

Exercise	9
This	exercise	is	an	extension	of	Exercise	7.	Here,	instead	of	returning	matching	orders,	you
just	need	to	return	a	Yes/No	value	indicating	whether	there	is	a	matching	order.	Remember
that	in	an	outer	join,	a	nonmatch	is	identified	as	an	outer	row	with	NULLs	in	the	attributes	of
the	nonpreserved	side.	So	you	can	use	a	simple	CASE	expression	that	checks	whether	the
current	row	is	not	an	outer	one,	in	which	case	it	returns	Yes;	otherwise,	it	returns	No.	Because
technically	you	can	have	more	than	one	match	per	customer,	you	should	add	a	DISTINCT
clause	to	the	SELECT	list.	This	way,	you	get	only	one	row	back	for	each	customer.	Here’s	the
solution	query:
Click	here	to	view	code	image

SELECT	DISTINCT	C.custid,	C.companyname,
		CASE	WHEN	O.orderid	IS	NOT	NULL	THEN	'Yes'	ELSE	'No'	END	AS	HasOrderOn20160212
FROM	Sales.Customers	AS	C
		LEFT	OUTER	JOIN	Sales.Orders	AS	O
				ON	O.custid	=	C.custid
				AND	O.orderdate	=	'20160212';

Chapter	4.	Subqueries

SQL	supports	writing	queries	within	queries,	or	nesting	queries.	The	outermost	query	is	a
query	whose	result	set	is	returned	to	the	caller	and	is	known	as	the	outer	query.	The	inner
query	is	a	query	whose	result	is	used	by	the	outer	query	and	is	known	as	a	subquery.	The	inner
query	acts	in	place	of	an	expression	that	is	based	on	constants	or	variables	and	is	evaluated	at
run	time.	Unlike	the	results	of	expressions	that	use	constants,	the	result	of	a	subquery	can
change,	because	of	changes	in	the	queried	tables.	When	you	use	subqueries,	you	avoid	the
need	for	separate	steps	in	your	solutions	that	store	intermediate	query	results	in	variables.
A	subquery	can	be	either	self-contained	or	correlated.	A	self-contained	subquery	has	no

dependency	on	tables	from	the	outer	query,	whereas	a	correlated	subquery	does.	A	subquery
can	be	single-valued,	multivalued,	or	table-valued.	That	is,	a	subquery	can	return	a	single
value,	multiple	values,	or	a	whole	table	result.
This	chapter	focuses	on	subqueries	that	return	a	single	value	(scalar	subqueries)	and

subqueries	that	return	multiple	values	(multivalued	subqueries).	I’ll	cover	subqueries	that
return	whole	tables	(table	subqueries)	later	in	the	book	in	Chapter	5,	“Table	expressions.”
Both	self-contained	and	correlated	subqueries	can	return	a	scalar	or	multiple	values.	I’ll

first	describe	self-contained	subqueries	and	demonstrate	both	scalar	and	multivalued
examples.	Then	I’ll	describe	correlated	subqueries.
Again,	exercises	at	the	end	of	the	chapter	can	help	you	practice	what	you	learned.

Self-contained	subqueries
Every	subquery	has	an	outer	query	that	contains	it.	Self-contained	subqueries	are	subqueries
that	are	independent	of	the	tables	in	the	outer	query.	Self-contained	subqueries	are	convenient
to	debug,	because	you	can	always	highlight	the	inner	query,	run	it,	and	ensure	that	it	does	what
it’s	supposed	to	do.	Logically,	the	subquery	code	is	evaluated	only	once	before	the	outer
query	is	evaluated,	and	then	the	outer	query	uses	the	result	of	the	subquery.	The	following
sections	take	a	look	at	some	concrete	examples	of	self-contained	subqueries.

Self-contained	scalar	subquery	examples
A	scalar	subquery	is	a	subquery	that	returns	a	single	value.	Such	a	subquery	can	appear
anywhere	in	the	outer	query	where	a	single-valued	expression	can	appear	(such	as	WHERE	or
SELECT).
For	example,	suppose	you	need	to	query	the	Orders	table	in	the	TSQLV4	database	and	return

information	about	the	order	that	has	the	maximum	order	ID	in	the	table.	You	could
accomplish	the	task	by	using	a	variable.	The	code	could	retrieve	the	maximum	order	ID	from
the	Orders	table	and	store	the	result	in	a	variable.	Then	the	code	could	query	the	Orders	table
and	filter	the	order	where	the	order	ID	is	equal	to	the	value	stored	in	the	variable.	The
following	code	demonstrates	this	technique:
Click	here	to	view	code	image

USE	TSQLV4;

DECLARE	@maxid	AS	INT	=	(SELECT	MAX(orderid)
																									FROM	Sales.Orders);

SELECT	orderid,	orderdate,	empid,	custid
FROM	Sales.Orders
WHERE	orderid	=	@maxid;

This	query	returns	the	following	output:
Click	here	to	view	code	image

orderid						orderdate			empid								custid
------------	-----------	------------	-----------
11077								2016-05-06		1												65

You	can	substitute	the	variable	with	a	scalar	self-contained	subquery,	like	so:
Click	here	to	view	code	image

SELECT	orderid,	orderdate,	empid,	custid
FROM	Sales.Orders
WHERE	orderid	=	(SELECT	MAX(O.orderid)
																	FROM	Sales.Orders	AS	O);

For	a	scalar	subquery	to	be	valid,	it	must	return	no	more	than	one	value.	If	a	scalar
subquery	returns	more	than	one	value,	it	fails	at	run	time.	With	the	sample	data	in	the	TSQLV4
database,	the	following	query	runs	successfully:
Click	here	to	view	code	image

SELECT	orderid
FROM	Sales.Orders
WHERE	empid	=
		(SELECT	E.empid
			FROM	HR.Employees	AS	E
			WHERE	E.lastname	LIKE	N'C%');

The	purpose	of	this	query	is	to	return	orders	placed	by	employees	whose	last	name	starts
with	the	letter	C.	The	subquery	returns	employee	IDs	of	all	employees	whose	last	names	start
with	the	letter	C.	The	outer	query	returns	the	orders	where	the	employee	ID	is	equal	to	the
result	of	the	subquery.	Because	an	equality	operator	expects	scalar	operands	on	both	sides,	the
subquery	is	considered	scalar.	Because	the	subquery	can	potentially	return	more	than	one
value,	the	choice	of	using	an	equality	predicate	here	is	wrong.	If	the	subquery	returns	more
than	one	value,	the	query	fails.
This	query	happens	to	run	without	failure	because	currently	the	Employees	table	contains

only	one	employee	whose	last	name	starts	with	C	(Maria	Cameron	with	employee	ID	8).	This
query	returns	the	following	output,	shown	here	in	abbreviated	form:

orderid

10262
10268
10276
10278
10279
...

11054
11056
11065
11068
11075

(104	row(s)	affected)

If	the	subquery	returns	more	than	one	value,	the	query	fails.	For	example,	try	running	the
query	with	employees	whose	last	names	start	with	D:
Click	here	to	view	code	image

SELECT	orderid
FROM	Sales.Orders
WHERE	empid	=
		(SELECT	E.empid
			FROM	HR.Employees	AS	E
			WHERE	E.lastname	LIKE	N'D%');

Apparently,	two	employees	have	a	last	name	starting	with	D	(Sara	Davis	and	Patricia
Doyle).	Therefore,	the	query	fails	at	run	time	with	the	following	error:
Click	here	to	view	code	image

Msg	512,	Level	16,	State	1,	Line	40
Subquery	returned	more	than	1	value.	This	is	not	permitted	when	the	subquery
follows	=,	!=,	<,
<=	,	>,	>=	or	when	the	subquery	is	used	as	an	expression.

If	a	scalar	subquery	returns	no	value,	the	empty	result	is	converted	to	a	NULL.	Recall	that	a
comparison	with	a	NULL	yields	UNKNOWN	and	that	query	filters	do	not	return	a	row	for
which	the	filter	expression	evaluates	to	UNKNOWN.	For	example,	the	Employees	table
currently	has	no	employees	whose	last	names	start	with	A;	therefore,	the	following	query
returns	an	empty	set:
Click	here	to	view	code	image

SELECT	orderid
FROM	Sales.Orders
WHERE	empid	=
		(SELECT	E.empid
			FROM	HR.Employees	AS	E
			WHERE	E.lastname	LIKE	N'A%');

Self-contained	multivalued	subquery	examples
A	multivalued	subquery	is	a	subquery	that	returns	multiple	values	as	a	single	column.	Some
predicates,	such	as	the	IN	predicate,	operate	on	a	multivalued	subquery.

	Note
SQL	supports	other	predicates	that	operate	on	a	multivalued	subquery;	those	are	SOME,
ANY,	and	ALL.	They	are	rarely	used	and	therefore	not	covered	in	this	book.

The	form	of	the	IN	predicate	is
<scalar_expression>	IN	(<multivalued	subquery>)

The	predicate	evaluates	to	TRUE	if	scalar_expression	is	equal	to	any	of	the	values	returned
by	the	subquery.	Recall	the	request	in	the	previous	section—returning	orders	that	were
handled	by	employees	with	a	last	name	starting	with	a	certain	letter.	Because	more	than	one
employee	can	have	a	last	name	starting	with	the	same	letter,	this	request	should	be	handled
with	the	IN	predicate	not	with	an	equality	operator.	For	example,	the	following	query	returns
orders	placed	by	employees	with	a	last	name	starting	with	D:
Click	here	to	view	code	image

SELECT	orderid
FROM	Sales.Orders
WHERE	empid	IN
		(SELECT	E.empid
			FROM	HR.Employees	AS	E
			WHERE	E.lastname	LIKE	N'D%');

Because	this	solution	uses	the	IN	predicate,	this	query	is	valid	with	any	number	of	values
returned—none,	one,	or	more.	This	query	returns	the	following	output,	shown	here	in
abbreviated	form:

orderid

10258
10270
10275
10285
10292
...
10978
11016
11017
11022
11058

(166	row(s)	affected)

You	might	wonder	why	you	don’t	implement	this	task	by	using	a	join	instead	of	subqueries,
like	this:
Click	here	to	view	code	image

SELECT	O.orderid
FROM	HR.Employees	AS	E
		INNER	JOIN	Sales.Orders	AS	O
				ON	E.empid	=	O.empid
WHERE	E.lastname	LIKE	N'D%';

Similarly,	you’re	likely	to	stumble	into	many	other	querying	problems	you	can	solve	with
either	subqueries	or	joins.	I	don’t	know	of	a	reliable	rule	of	thumb	that	says	a	subquery	is
better	than	a	join	or	the	other	way	around.	In	some	cases	the	database	engine	optimizes	both
the	same	way,	sometimes	joins	perform	better,	and	sometimes	subqueries	perform	better.	My
approach	is	to	first	write	a	solution	query	that	is	intuitive	and	then,	if	performance	is	not

satisfactory,	try	query	revisions	among	other	tuning	methods.	Such	query	revisions	might
include	using	joins	instead	of	subqueries	or	the	other	way	around.	Also,	consider	keeping	the
different	query	rewrites;	future	changes	in	the	database	engine	or	the	data	might	result	in	a
different	query	being	faster.
As	another	example	of	using	multivalued	subqueries,	suppose	you	need	to	write	a	query

that	returns	orders	placed	by	customers	from	the	United	States.	You	can	write	a	query	against
the	Orders	table	that	returns	orders	where	the	customer	ID	is	in	the	set	of	customer	IDs	of
customers	from	the	United	States.	You	can	implement	the	last	part	in	a	self-contained,
multivalued	subquery.	Here’s	the	complete	solution	query:
Click	here	to	view	code	image

SELECT	custid,	orderid,	orderdate,	empid
FROM	Sales.Orders
WHERE	custid	IN
		(SELECT	C.custid
			FROM	Sales.Customers	AS	C
			WHERE	C.country	=	N'USA');

This	query	returns	the	following	output,	shown	here	in	abbreviated	form:
Click	here	to	view	code	image

custid						orderid					orderdate			empid
-----------	-----------	-----------	-----------
65										10262							2014-07-22		8
89										10269							2014-07-31		5
75										10271							2014-08-01		6
65										10272							2014-08-02		6
65										10294							2014-08-30		4
...
32										11040							2016-04-22		4
32										11061							2016-04-30		4
71										11064							2016-05-01		1
89										11066							2016-05-01		7
65										11077							2016-05-06		1

(122	row(s)	affected)

As	with	any	other	predicate,	you	can	negate	the	IN	predicate	with	the	NOT	operator.	For
example,	the	following	query	returns	customers	who	did	not	place	any	orders:

SELECT	custid,	companyname
FROM	Sales.Customers
WHERE	custid	NOT	IN
		(SELECT	O.custid
			FROM	Sales.Orders	AS	O);

Note	that	it’s	considered	a	best	practice	to	qualify	the	subquery	to	exclude	NULLs.	I	didn’t
do	this	here	because	I	didn’t	explain	the	reason	for	this	recommendation.	I’ll	explain	it	later	in
the	section	“NULL	trouble.”
The	subquery	returns	the	IDs	of	all	customers	that	appear	in	the	Orders	table.	In	other

words,	it	returns	only	the	IDs	of	customers	who	placed	orders.	The	outer	query	returns
customers	with	IDs	that	do	not	appear	in	the	result	of	the	subquery—in	other	words,
customers	who	did	not	place	orders.	This	query	returns	the	following	output:

custid						companyname
-----------	----------------
22										Customer	DTDMN
57										Customer	WVAXS

You	might	wonder	whether	specifying	a	DISTINCT	clause	in	the	subquery	can	help
performance,	because	the	same	customer	ID	can	occur	more	than	once	in	the	Orders	table.
The	database	engine	is	smart	enough	to	consider	removing	duplicates	without	you	asking	it	to
do	so	explicitly,	so	this	isn’t	something	you	need	to	worry	about.
The	last	example	in	this	section	demonstrates	the	use	of	multiple	self-contained	subqueries

in	the	same	query—both	single-valued	and	multivalued.	Before	I	describe	the	task,	run	the
following	code	to	create	a	table	called	dbo.Orders	in	the	TSQLV4	database,	and	populate	it
with	even-numbered	order	IDs	from	the	Sales.Orders	table:
Click	here	to	view	code	image

USE	TSQLV4;
DROP	TABLE	IF	EXISTS	dbo.Orders;
CREATE	TABLE	dbo.Orders(orderid	INT	NOT	NULL	CONSTRAINT	PK_Orders	PRIMARY	KEY);

INSERT	INTO	dbo.Orders(orderid)
		SELECT	orderid
		FROM	Sales.Orders
		WHERE	orderid	%	2	=	0;

I	describe	the	INSERT	statement	in	more	detail	in	Chapter	8,	“Data	modification,”	so	don’t
worry	if	you’re	not	familiar	with	it	yet.
You	need	to	write	a	query	that	returns	all	individual	order	IDs	that	are	missing	between	the

minimum	and	maximum	ones	in	the	table.	It	can	be	quite	complicated	to	solve	this	problem
with	a	query	without	any	helper	tables.	You	might	find	the	Nums	table	introduced	in	Chapter	3,
“Joins,”	useful	here.	Remember	that	the	Nums	table	contains	a	sequence	of	integers,	starting
with	1,	with	no	gaps.	To	return	all	missing	order	IDs,	query	the	Nums	table	and	filter	only
numbers	that	are	between	the	minimum	and	maximum	ones	in	the	dbo.Orders	table,	and	that
do	not	appear	as	order	IDs	in	the	Orders	table.	You	can	use	scalar	self-contained	subqueries	to
return	the	minimum	and	maximum	order	IDs	and	a	multivalued	self-contained	subquery	to
return	the	set	of	all	existing	order	IDs.	Here’s	the	complete	solution	query:
Click	here	to	view	code	image

SELECT	n
FROM	dbo.Nums
WHERE	n	BETWEEN	(SELECT	MIN(O.orderid)	FROM	dbo.Orders	AS	O)
												AND	(SELECT	MAX(O.orderid)	FROM	dbo.Orders	AS	O)
		AND	n	NOT	IN	(SELECT	O.orderid	FROM	dbo.Orders	AS	O);

Because	the	code	that	populated	the	dbo.Orders	table	filtered	only	even-numbered	order
IDs,	this	query	returns	all	odd-numbered	values	between	the	minimum	and	maximum	order
IDs	in	the	Orders	table.	The	output	of	this	query	is	shown	here	in	abbreviated	form:

n

10249
10251
10253

10255
10257
...
11067
11069
11071
11073
11075

(414	row(s)	affected)

When	you’re	done,	run	the	following	code	for	cleanup:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.Orders;

Correlated	subqueries
Correlated	subqueries	are	subqueries	that	refer	to	attributes	from	the	tables	that	appear	in	the
outer	query.	This	means	the	subquery	is	dependent	on	the	outer	query	and	cannot	be	invoked
independently.	Logically,	the	subquery	is	evaluated	separately	for	each	outer	row.	For
example,	the	query	in	Listing	4-1	returns	orders	with	the	maximum	order	ID	for	each
customer.

LISTING	4-1	Correlated	subquery

Click	here	to	view	code	image

USE	TSQLV4;

SELECT	custid,	orderid,	orderdate,	empid
FROM	Sales.Orders	AS	O1
WHERE	orderid	=
		(SELECT	MAX(O2.orderid)
			FROM	Sales.Orders	AS	O2
			WHERE	O2.custid	=	O1.custid);

The	outer	query	is	issued	against	an	instance	of	the	Orders	table	called	O1;	it	filters	orders
where	the	order	ID	is	equal	to	the	value	returned	by	the	subquery.	The	subquery	filters	orders
from	a	second	instance	of	the	Orders	table	called	O2,	where	the	inner	customer	ID	is	equal	to
the	outer	customer	ID,	and	returns	the	maximum	order	ID	from	those	filtered	orders.	In	other
words,	for	each	row	in	O1,	the	subquery	returns	the	maximum	order	ID	for	the	current
customer.	If	the	outer	order	ID	and	the	order	ID	returned	by	the	subquery	match,	the	query
returns	the	outer	row.	This	query	returns	the	following	output,	shown	here	in	abbreviated
form:
Click	here	to	view	code	image

custid						orderid					orderdate		empid
-----------	-----------	----------	-----------
91										11044							2016-04-23	4
90										11005							2016-04-07	2
89										11066							2016-05-01	7

88										10935							2016-03-09	4
87										11025							2016-04-15	6
...
5											10924							2016-03-04	3
4											11016							2016-04-10	9
3											10856							2016-01-28	3
2											10926							2016-03-04	4
1											11011							2016-04-09	3

(89	row(s)	affected)

Because	of	the	dependency	on	the	outer	query,	correlated	subqueries	are	usually	harder	to
figure	out	than	self-contained	subqueries.	To	simplify	things,	I	suggest	you	focus	your
attention	on	a	single	row	in	the	outer	table	and	think	about	the	logical	processing	that	takes
place	in	the	inner	query	for	that	row.	For	example,	focus	your	attention	on	the	following	row
from	the	table	in	the	outer	query,	which	has	order	ID	10248:
Click	here	to	view	code	image

custid						orderid					orderdate																			empid
-----------	-----------	---------------------------	-----------
85										10248							2014-07-04	00:00:00.000					5

When	the	subquery	is	evaluated	for	this	row,	the	correlation	to	O1.custid	means	85.	If	you
substitute	the	correlation	manually	with	85,	you	get	the	following:

SELECT	MAX(O2.orderid)
FROM	Sales.Orders	AS	O2
WHERE	O2.custid	=	85;

This	query	returns	the	order	ID	10739.	The	outer	row’s	order	ID—10248—is	compared
with	the	inner	one—10739—and	because	there’s	no	match	in	this	case,	the	outer	row	is
filtered	out.	The	subquery	returns	the	same	value	for	all	rows	in	O1	with	the	same	customer
ID,	and	only	in	one	case	is	there	a	match—when	the	outer	row’s	order	ID	is	the	maximum	for
the	current	customer.	Thinking	in	such	terms	will	make	it	easier	for	you	to	grasp	the	concept
of	correlated	subqueries.
The	fact	that	correlated	subqueries	are	dependent	on	the	outer	query	makes	it	harder	to

troubleshoot	problems	with	them	compared	to	self-contained	subqueries.	You	can’t	just
highlight	the	subquery	portion	and	run	it.	For	example,	if	you	try	to	highlight	and	run	the
subquery	portion	in	Listing	4-1,	you	get	the	following	error:
Click	here	to	view	code	image

Msg	4104,	Level	16,	State	1,	Line	119
The	multi-part	identifier	"O1.custid"	could	not	be	bound.

This	error	indicates	that	the	identifier	O1.custid	cannot	be	bound	to	an	object	in	the	query,
because	O1	is	not	defined	in	the	query.	It	is	defined	only	in	the	context	of	the	outer	query.	To
troubleshoot	correlated	subqueries,	you	need	to	substitute	the	correlation	with	a	constant,	and
after	ensuring	the	code	is	correct,	substitute	the	constant	with	the	correlation.
As	another	example,	suppose	you	need	to	query	the	Sales.OrderValues	view	and	return	for

each	order	the	percentage	of	the	current	order	value	out	of	the	customer	total.	In	Chapter	7,
“Beyond	the	fundamentals	of	querying,”	I	provide	a	solution	to	this	problem	that	uses	window

functions;	here	I’ll	explain	how	to	solve	the	problem	by	using	subqueries.	It’s	always	a	good
idea	to	try	to	come	up	with	several	solutions	to	each	problem,	because	the	different	solutions
will	usually	vary	in	complexity	and	performance.
You	can	write	an	outer	query	against	one	instance	of	the	OrderValues	view	called	O1.	In	the

SELECT	list,	divide	the	current	value	by	the	result	of	a	correlated	subquery	against	a	second
instance	of	OrderValues	called	O2	that	returns	the	current	customer ’s	total.	Here’s	the
complete	solution	query:
Click	here	to	view	code	image

SELECT	orderid,	custid,	val,
		CAST(100.	*	val	/	(SELECT	SUM(O2.val)
																					FROM	Sales.OrderValues	AS	O2
																					WHERE	O2.custid	=	O1.custid)
							AS	NUMERIC(5,2))	AS	pct
FROM	Sales.OrderValues	AS	O1
ORDER	BY	custid,	orderid;

The	CAST	function	is	used	to	convert	the	datatype	of	the	expression	to	NUMERIC	with	a
precision	of	5	(the	total	number	of	digits)	and	a	scale	of	2	(the	number	of	digits	after	the
decimal	point).
This	query	returns	the	following	output:

Click	here	to	view	code	image

orderid					custid						val								pct
-----------	-----------	----------	------
10643							1											814.50					19.06
10692							1											878.00					20.55
10702							1											330.00					7.72
10835							1											845.80					19.79
10952							1											471.20					11.03
11011							1											933.50					21.85
10308							2											88.80						6.33
10625							2											479.75					34.20
10759							2											320.00					22.81
10926							2											514.40					36.67
...

(830	row(s)	affected)

The	EXISTS	predicate
T-SQL	supports	a	predicate	called	EXISTS	that	accepts	a	subquery	as	input	and	returns	TRUE
if	the	subquery	returns	any	rows	and	FALSE	otherwise.	For	example,	the	following	query
returns	customers	from	Spain	who	placed	orders:
Click	here	to	view	code	image

SELECT	custid,	companyname
FROM	Sales.Customers	AS	C
WHERE	country	=	N'Spain'
		AND	EXISTS
				(SELECT	*	FROM	Sales.Orders	AS	O
					WHERE	O.custid	=	C.custid);

The	outer	query	against	the	Customers	table	filters	only	customers	from	Spain	for	whom
the	EXISTS	predicate	returns	TRUE.	The	EXISTS	predicate	returns	TRUE	if	the	current
customer	has	related	orders	in	the	Orders	table.
One	of	the	benefits	of	using	the	EXISTS	predicate	is	that	you	can	intuitively	phrase	queries

that	sound	like	English.	For	example,	this	query	can	be	read	just	as	you	would	say	it	in
ordinary	English:	Return	customers	from	Spain	if	they	have	any	orders	where	the	order ’s
customer	ID	is	the	same	as	the	customer ’s	customer	ID.
This	query	returns	the	following	output:
custid						companyname
-----------	----------------
8											Customer	QUHWH
29										Customer	MDLWA
30										Customer	KSLQF
69										Customer	SIUIH

As	with	other	predicates,	you	can	negate	the	EXISTS	predicate	with	the	NOT	operator.	For
example,	the	following	query	returns	customers	from	Spain	who	did	not	place	orders:
Click	here	to	view	code	image

SELECT	custid,	companyname
FROM	Sales.Customers	AS	C
WHERE	country	=	N'Spain'
		AND	NOT	EXISTS
				(SELECT	*	FROM	Sales.Orders	AS	O
					WHERE	O.custid	=	C.custid);

This	query	returns	the	following	output:
custid						companyname
-----------	----------------
22										Customer	DTDMN

Even	though	this	book’s	focus	is	on	logical	query	processing	and	not	performance,	I
thought	you	might	be	interested	to	know	that	the	EXISTS	predicate	lends	itself	to	good
optimization.	That	is,	the	database	engine	knows	that	it’s	enough	to	determine	whether	the
subquery	returns	at	least	one	row	or	none,	and	it	doesn’t	need	to	process	all	qualifying	rows.
You	can	think	of	this	capability	as	a	kind	of	short-circuit	evaluation.	The	same	applies	to	the
IN	predicate.
Even	though	in	most	cases	the	use	of	star	(*)	is	considered	a	bad	practice,	with	EXISTS	it

isn’t.	The	predicate	cares	only	about	the	existence	of	matching	rows,	regardless	of	what	you
have	in	the	SELECT	list.	The	database	engine	knows	this	and—for	example,	for	index
selection	purposes—ignores	the	subquery’s	SELECT	list.	Some	minor	extra	cost	might	be
incurred	in	the	resolution	process,	where	Microsoft	SQL	Server	expands	the	*	against
metadata	info—for	example,	to	check	that	you	have	permissions	to	query	all	columns.	But	this
cost	is	so	minor	you’ll	probably	barely	notice	it.	My	opinion	is	that	queries	should	be	natural
and	intuitive	unless	there’s	a	compelling	reason	to	sacrifice	this	aspect	of	the	code.	I	find	the
form	EXISTS(SELECT	*	FROM	.	.	.)	much	more	intuitive	than	EXISTS(SELECT	1	FROM	.	.	.).
Saving	the	minor	extra	cost	associated	with	the	resolution	of	*	is	something	that	is	not	worth
the	cost	of	sacrificing	the	readability	of	the	code.

Finally,	another	aspect	of	EXISTS	that	is	worth	mentioning	is	that,	unlike	most	predicates	in
T-SQL,	EXISTS	uses	two-valued	logic	and	not	three-valued	logic.	If	you	think	about	it,	there’s
no	situation	where	it’s	unknown	whether	a	query	returns	any	rows.

Beyond	the	fundamentals	of	subqueries
This	section	covers	aspects	of	subqueries	you	might	consider	to	be	beyond	the	fundamentals.	I
provide	it	as	optional	reading	in	case	you	feel	very	comfortable	with	the	material	covered	so
far	in	this	chapter.

Returning	previous	or	next	values
Suppose	you	need	to	query	the	Orders	table	in	the	TSQLV4	database	and	return,	for	each
order,	information	about	the	current	order	and	also	the	previous	order	ID.	The	tricky	part	is
that	the	concept	of	“previous”	implies	order,	and	rows	in	a	table	have	no	order.	One	way	to
achieve	this	objective	is	with	a	T-SQL	expression	that	means	“the	maximum	value	that	is
smaller	than	the	current	value.”	You	could	use	the	following	T-SQL	expression,	which	is
based	on	a	correlated	subquery,	for	this:
Click	here	to	view	code	image

SELECT	orderid,	orderdate,	empid,	custid,
		(SELECT	MAX(O2.orderid)
			FROM	Sales.Orders	AS	O2
			WHERE	O2.orderid	<	O1.orderid)	AS	prevorderid
FROM	Sales.Orders	AS	O1;

This	query	produces	the	following	output,	shown	here	in	abbreviated	form:
Click	here	to	view	code	image

orderid					orderdate			empid							custid						prevorderid
-----------	-----------	-----------	-----------	-----------
10248							2014-07-04		5											85										NULL
10249							2014-07-05		6											79										10248
10250							2014-07-08		4											34										10249
10251							2014-07-08		3											84										10250
10252							2014-07-09		4											76										10251
...
11073							2016-05-05		2											58										11072
11074							2016-05-06		7											73										11073
11075							2016-05-06		8											68										11074
11076							2016-05-06		4											9											11075
11077							2016-05-06		1											65										11076

(830	row(s)	affected)

Notice	that	because	there’s	no	order	before	the	first	order,	the	subquery	returned	a	NULL
for	the	first	order.
Similarly,	you	can	phrase	the	concept	of	“next”	as	“the	minimum	value	that	is	greater	than

the	current	value.”	Here’s	a	query	that	returns	for	each	order	the	next	order	ID:
Click	here	to	view	code	image

SELECT	orderid,	orderdate,	empid,	custid,
		(SELECT	MIN(O2.orderid)

			FROM	Sales.Orders	AS	O2
			WHERE	O2.orderid	>	O1.orderid)	AS	nextorderid
FROM	Sales.Orders	AS	O1;

This	query	produces	the	following	output,	shown	here	in	abbreviated	form:
Click	here	to	view	code	image

orderid					orderdate			empid							custid						nextorderid
-----------	-----------	-----------	-----------	-----------
10248							2014-07-04		5											85										10249
10249							2014-07-05		6											79										10250
10250							2014-07-08		4											34										10251
10251							2014-07-08		3											84										10252
10252							2014-07-09		4											76										10253
...
11073							2016-05-05		2											58										11074
11074							2016-05-06		7											73										11075
11075							2016-05-06		8											68										11076
11076							2016-05-06		4											9											11077
11077							2016-05-06		1											65										NULL

(830	row(s)	affected)

Notice	that	because	there’s	no	order	after	the	last	order,	the	subquery	returned	a	NULL	for
the	last	order.
Note	that	T-SQL	supports	window	functions	called	LAG	and	LEAD	that	you	use	to	obtain

elements	from	a	previous	or	next	row	much	more	easily.	I	will	cover	these	and	other	window
functions	in	Chapter	7.

Using	running	aggregates
Running	aggregates	are	aggregates	that	accumulate	values	based	on	some	order.	In	this
section,	I	use	the	Sales.OrderTotalsByYear	view	to	demonstrate	a	technique	that	calculates
those.	The	view	has	total	order	quantities	by	year.	Query	the	view	to	examine	its	contents:

SELECT	orderyear,	qty
FROM	Sales.OrderTotalsByYear;

You	get	the	following	output:
orderyear			qty
-----------	-----------
2016								16247
2014								9581
2015								25489

Suppose	you	need	to	compute	for	each	year	the	running	total	quantity	up	to	and	including
that	year ’s.	For	the	earliest	year	recorded	in	the	view	(2014),	the	running	total	is	equal	to	that
year ’s	quantity.	For	the	second	year	(2015),	the	running	total	is	the	sum	of	the	first	year	plus
the	second	year,	and	so	on.
You	query	one	instance	of	the	view	(call	it	O1)	to	return	for	each	year	the	current	year	and

quantity.	You	use	a	correlated	subquery	against	a	second	instance	of	the	view	(call	it	O2)	to
calculate	the	running-total	quantity.	The	subquery	should	filter	all	rows	in	O2	where	the	order
year	is	smaller	than	or	equal	to	the	current	year	in	O1,	and	sum	the	quantities	from	O2.	Here’s

the	solution	query:
Click	here	to	view	code	image

SELECT	orderyear,	qty,
		(SELECT	SUM(O2.qty)
			FROM	Sales.OrderTotalsByYear	AS	O2
			WHERE	O2.orderyear	<=	O1.orderyear)	AS	runqty
FROM	Sales.OrderTotalsByYear	AS	O1
ORDER	BY	orderyear;

This	query	returns	the	following	output:
Click	here	to	view	code	image

orderyear			qty									runqty
-----------	-----------	-----------
2014								9581								9581
2015								25489							35070
2016								16247							51317

Note	that	T-SQL	supports	window	aggregate	functions,	which	you	can	use	to	compute
running	totals	much	more	easily	and	efficiently.	As	mentioned,	I	will	discuss	those	in	Chapter
7.

Dealing	with	misbehaving	subqueries
This	section	introduces	cases	in	which	the	use	of	subqueries	involves	bugs,	and	it	provides
best	practices	that	can	help	you	avoid	those	bugs.

NULL	trouble
Remember	that	T-SQL	uses	three-valued	logic	because	of	its	support	for	NULLs.	In	this
section,	I	discuss	problems	that	can	evolve	when	you	forget	about	NULLs	and	the	three-valued
logic.
Consider	the	following	query,	which	is	supposed	to	return	customers	who	did	not	place

orders:
Click	here	to	view	code	image

SELECT	custid,	companyname
FROM	Sales.Customers
WHERE	custid	NOT	IN(SELECT	O.custid
																				FROM	Sales.Orders	AS	O);

With	the	current	sample	data	in	the	Orders	table,	the	query	seems	to	work	the	way	you
expect	it	to,	and	indeed,	it	returns	the	following	two	customers:

custid						companyname
-----------	----------------
22										Customer	DTDMN
57										Customer	WVAXS

Next,	run	the	following	code	to	insert	a	new	order	into	the	Orders	table	with	a	NULL
customer	ID:
Click	here	to	view	code	image

INSERT	INTO	Sales.Orders
		(custid,	empid,	orderdate,	requireddate,	shippeddate,	shipperid,
			freight,	shipname,	shipaddress,	shipcity,	shipregion,
			shippostalcode,	shipcountry)
		VALUES(NULL,	1,	'20160212',	'20160212',
									'20160212',	1,	123.00,	N'abc',	N'abc',	N'abc',
									N'abc',	N'abc',	N'abc');

Next,	run	the	previous	query	again:
Click	here	to	view	code	image

SELECT	custid,	companyname
FROM	Sales.Customers
WHERE	custid	NOT	IN(SELECT	O.custid
																				FROM	Sales.Orders	AS	O);

This	time,	the	query	returns	an	empty	set.	Keeping	in	mind	what	you	read	in	the	section
about	NULLs	in	Chapter	2,	“Single-table	queries,”	try	to	explain	why	this	query	returns	an
empty	set.	Also	try	to	think	of	ways	to	get	customers	22	and	57	in	the	output.
Obviously,	the	culprit	here	is	the	NULL	customer	ID	you	added	to	the	Orders	table.	The

NULL	is	one	of	the	elements	returned	by	the	subquery.
Let’s	start	with	the	part	that	does	behave	like	you	expect	it	to.	The	IN	predicate	returns

TRUE	for	a	customer	who	placed	orders	(for	example,	customer	85),	because	such	a
customer	is	returned	by	the	subquery.	The	NOT	operator	negates	the	IN	predicate;	hence,	the
NOT	TRUE	becomes	FALSE,	and	the	customer	is	discarded.	The	expected	behavior	here	is	that
if	a	customer	ID	is	known	to	appear	in	the	Orders	table,	you	know	with	certainty	that	you	do
not	want	to	return	it.	However	(take	a	deep	breath),	if	a	customer	ID	from	Customers	doesn’t
appear	in	the	set	of	non-NULL	customer	IDs	in	Orders,	and	there’s	also	a	NULL	customer	ID
in	Orders,	you	can’t	tell	with	certainty	that	the	customer	is	there—and	similarly	you	can’t	tell
with	certainty	that	it’s	not	there.	Confused?	I	hope	I	can	clarify	this	explanation	with	an
example.
The	IN	predicate	returns	UNKNOWN	for	a	customer	such	as	22	that	does	not	appear	in	the

set	of	known	customer	IDs	in	Orders.	That’s	because	when	you	compare	it	with	known
customer	IDs	you	get	FALSE,	and	when	you	compare	it	with	a	NULL	you	get	UNKNOWN.
FALSE	OR	UNKNOWN	yields	UNKNOWN.	Consider	the	expression	22	NOT	IN	(1,	2,	<other
non-22	values>,	NULL).	This	expression	can	be	rephrased	as	NOT	22	IN	(1,	2,	...,	NULL).	You
can	expand	this	expression	to	NOT	(22	=	1	OR	22	=	2	OR	...	OR	22	=	NULL).	Evaluate	each
individual	expression	in	the	parentheses	to	its	truth	value	and	you	get	NOT	(FALSE	OR	FALSE
OR	...	OR	UNKNOWN),	which	translates	to	NOT	UNKNOWN,	which	evaluates	to	UNKNOWN.
The	logical	meaning	of	UNKNOWN	here,	before	you	apply	the	NOT	operator,	is	that	it

can’t	be	determined	whether	the	customer	ID	appears	in	the	set,	because	the	NULL	could
represent	that	customer	ID.	The	tricky	part	here	is	that	negating	the	UNKNOWN	with	the	NOT
operator	still	yields	UNKNOWN.	This	means	that	in	a	case	where	it	is	unknown	whether	a
customer	ID	appears	in	a	set,	it	is	also	unknown	whether	it	doesn’t	appear	in	the	set.
Remember	that	a	query	filter	discards	rows	that	get	UNKNOWN	in	the	result	of	the	predicate.
In	short,	when	you	use	the	NOT	IN	predicate	against	a	subquery	that	returns	at	least	one

NULL,	the	query	always	returns	an	empty	set.	So,	what	practices	can	you	follow	to	avoid	such

trouble?	First,	when	a	column	is	not	supposed	to	allow	NULLs,	be	sure	to	define	it	as	NOT
NULL.	Second,	in	all	queries	you	write,	you	should	consider	NULLs	and	the	three-valued
logic.	Think	explicitly	about	whether	the	query	might	process	NULLs,	and	if	so,	whether
SQL’s	treatment	of	NULLs	is	correct	for	you.	When	it	isn’t,	you	need	to	intervene.	For
example,	our	query	returns	an	empty	set	because	of	the	comparison	with	the	NULL.	If	you
want	to	check	whether	a	customer	ID	appears	only	in	the	set	of	known	values,	you	should
exclude	the	NULLs—either	explicitly	or	implicitly.	To	exclude	them	explicitly,	add	the
predicate	O.custid	IS	NOT	NULL	to	the	subquery,	like	this:
Click	here	to	view	code	image

SELECT	custid,	companyname
FROM	Sales.Customers
WHERE	custid	NOT	IN(SELECT	O.custid
																				FROM	Sales.Orders	AS	O
																				WHERE	O.custid	IS	NOT	NULL);

You	can	also	exclude	the	NULLs	implicitly	by	using	the	NOT	EXISTS	predicate	instead	of
NOT	IN,	like	this:
Click	here	to	view	code	image

SELECT	custid,	companyname
FROM	Sales.Customers	AS	C
WHERE	NOT	EXISTS
		(SELECT	*
			FROM	Sales.Orders	AS	O
			WHERE	O.custid	=	C.custid);

Recall	that	unlike	IN,	EXISTS	uses	two-valued	predicate	logic.	EXISTS	always	returns	TRUE
or	FALSE	and	never	UNKNOWN.	When	the	subquery	stumbles	into	a	NULL	in	O.custid,	the
expression	evaluates	to	UNKNOWN	and	the	row	is	filtered	out.	As	far	as	the	EXISTS	predicate
is	concerned,	the	NULL	cases	are	eliminated	naturally,	as	though	they	weren’t	there.	So
EXISTS	ends	up	handling	only	known	customer	IDs.	Therefore,	it’s	safer	to	use	NOT	EXISTS
than	NOT	IN.
When	you’re	done,	run	the	following	code	for	cleanup:

Click	here	to	view	code	image

DELETE	FROM	Sales.Orders	WHERE	custid	IS	NULL;

Substitution	errors	in	subquery	column	names
Logical	bugs	in	your	code	can	sometimes	be	elusive.	In	this	section,	I	cover	a	bug	related	to
an	innocent	substitution	error	in	a	subquery	column	name.	After	explaining	the	bug,	I	provide
best	practices	that	can	help	you	avoid	it.
The	examples	in	this	section	query	a	table	called	MyShippers	in	the	Sales	schema.	Run	the

following	code	to	create	and	populate	this	table:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	Sales.MyShippers;

CREATE	TABLE	Sales.MyShippers
(

		shipper_id		INT										NOT	NULL,
		companyname	NVARCHAR(40)	NOT	NULL,
		phone							NVARCHAR(24)	NOT	NULL,
		CONSTRAINT	PK_MyShippers	PRIMARY	KEY(shipper_id)
);

INSERT	INTO	Sales.MyShippers(shipper_id,	companyname,	phone)
		VALUES(1,	N'Shipper	GVSUA',	N'(503)	555-0137'),
								(2,	N'Shipper	ETYNR',	N'(425)	555-0136'),
								(3,	N'Shipper	ZHISN',	N'(415)	555-0138');

Consider	the	following	query,	which	is	supposed	to	return	shippers	who	shipped	orders	to
customer	43:
Click	here	to	view	code	image

SELECT	shipper_id,	companyname
FROM	Sales.MyShippers
WHERE	shipper_id	IN
		(SELECT	shipper_id
			FROM	Sales.Orders
			WHERE	custid	=	43);

This	query	produces	the	following	output:
shipper_id		companyname
-----------	---------------
1											Shipper	GVSUA
2											Shipper	ETYNR
3											Shipper	ZHISN

Only	shippers	2	and	3	shipped	orders	to	customer	43,	but	for	some	reason	this	query
returned	all	shippers	from	the	MyShippers	table.	Examine	the	query	carefully	and	also	the
schemas	of	the	tables	involved,	and	see	if	you	can	explain	what’s	going	on.
It	turns	out	that	the	column	name	in	the	Orders	table	holding	the	shipper	ID	is	not	called

shipper_id,	rather	shipperid	(no	underscore).	The	column	in	the	MyShippers	table	is	called
shipper_id	with	an	underscore.	The	resolution,	or	binding,	of	nonprefixed	column	names
works	in	the	context	of	a	subquery	from	the	inner	scope	outward.	In	our	example,	SQL	Server
first	looks	for	the	column	shipper_id	in	the	table	in	the	inner	query,	Orders.	Such	a	column	is
not	found	there,	so	SQL	Server	looks	for	it	in	the	table	in	the	outer	query,	MyShippers.	Such	a
column	is	found	in	MyShippers,	so	that	is	the	one	used.
You	can	see	that	what	was	supposed	to	be	a	self-contained	subquery	unintentionally	became

a	correlated	subquery.	As	long	as	the	Orders	table	has	at	least	one	row,	all	rows	from	the
MyShippers	table	find	a	match	when	comparing	the	outer	shipper	ID	with	the	very	same
shipper	ID.
Some	argue	that	this	behavior	is	a	bug	in	SQL	Server.	It	is	not.	This	behavior	is	by	design

in	the	SQL	standard,	and	Microsoft	just	followed	the	standard	here.	The	thinking	in	the
standard	is	to	allow	you	to	refer	to	column	names	from	the	outer	table	without	a	prefix	as
long	as	they	are	unambiguous	(that	is,	as	long	as	they	appear	only	in	one	of	the	tables).
This	problem	is	more	common	in	environments	that	do	not	use	consistent	attribute	names

across	tables.	Sometimes	the	names	are	only	slightly	different,	as	in	this	case—shipperid	in
one	table	and	shipper_id	in	another.	That’s	enough	for	the	bug	to	manifest	itself.

You	can	follow	a	couple	of	best	practices	to	avoid	such	problems:
	Use	consistent	attribute	names	across	tables.
	Prefix	column	names	in	subqueries	with	the	source	table	name	or	alias	(if	you	assigned
one).

This	way,	the	resolution	process	looks	for	the	column	only	in	the	specified	table.	If	it
doesn’t	exist	there,	you	get	a	resolution	error.	For	example,	try	running	the	following	code:
Click	here	to	view	code	image

SELECT	shipper_id,	companyname
FROM	Sales.MyShippers
WHERE	shipper_id	IN
		(SELECT	O.shipper_id
			FROM	Sales.Orders	AS	O
			WHERE	O.custid	=	43);

You	get	the	following	resolution	error:
Click	here	to	view	code	image

Msg	207,	Level	16,	State	1,	Line	274
Invalid	column	name	'shipper_id'.

After	getting	this	error,	you	identify	the	problem	and	correct	the	query:
Click	here	to	view	code	image

SELECT	shipper_id,	companyname
FROM	Sales.MyShippers
WHERE	shipper_id	IN
		(SELECT	O.shipperid
			FROM	Sales.Orders	AS	O
			WHERE	O.custid	=	43);

This	time,	the	query	returns	the	expected	result:
shipper_id		companyname
-----------	---------------
2											Shipper	ETYNR
3											Shipper	ZHISN

When	you’re	done,	run	the	following	code	for	cleanup:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	Sales.MyShippers;

Conclusion
This	chapter	covered	subqueries.	It	discussed	self-contained	subqueries,	which	are
independent	of	their	outer	queries,	and	correlated	subqueries,	which	are	dependent	on	their
outer	queries.	Regarding	the	results	of	subqueries,	I	discussed	scalar	and	multivalued
subqueries.	I	also	provided	a	more	advanced	section	as	optional	reading,	in	which	I	covered
returning	previous	and	next	values,	using	running	aggregates,	and	dealing	with	misbehaving
subqueries.	Remember	to	always	think	about	the	three-valued	logic	and	the	importance	of
prefixing	column	names	in	subqueries	with	the	source	table	alias.

The	next	chapter	focuses	on	table	subqueries,	also	known	as	table	expressions.

Exercises
This	section	provides	exercises	to	help	you	familiarize	yourself	with	the	subjects	discussed	in
this	chapter.	The	sample	database	TSQLV4	is	used	in	all	exercises	in	this	chapter.

Exercise	1
Write	a	query	that	returns	all	orders	placed	on	the	last	day	of	activity	that	can	be	found	in	the
Orders	table:

	Table	involved:	Sales.Orders
	Desired	output:

Click	here	to	view	code	image

orderid					orderdate			custid						empid
-----------	-----------	-----------	-----------
11077							2016-05-06		65										1
11076							2016-05-06		9											4
11075							2016-05-06		68										8
11074							2016-05-06		73										7

Exercise	2	(optional,	advanced)
Write	a	query	that	returns	all	orders	placed	by	the	customer(s)	who	placed	the	highest	number
of	orders.	Note	that	more	than	one	customer	might	have	the	same	number	of	orders:

	Table	involved:	Sales.Orders
	Desired	output:

Click	here	to	view	code	image

custid						orderid					orderdate		empid
-----------	-----------	----------	-----------
71										10324							2014-10-08	9
71										10393							2014-12-25	1
71										10398							2014-12-30	2
71										10440							2015-02-10	4
71										10452							2015-02-20	8
71										10510							2015-04-18	6
71										10555							2015-06-02	6
71										10603							2015-07-18	8
71										10607							2015-07-22	5
71										10612							2015-07-28	1
71										10627							2015-08-11	8
71										10657							2015-09-04	2
71										10678							2015-09-23	7
71										10700							2015-10-10	3
71										10711							2015-10-21	5
71										10713							2015-10-22	1
71										10714							2015-10-22	5
71										10722							2015-10-29	8
71										10748							2015-11-20	3
71										10757							2015-11-27	6
71										10815							2016-01-05	2
71										10847							2016-01-22	4

71										10882							2016-02-11	4
71										10894							2016-02-18	1
71										10941							2016-03-11	7
71										10983							2016-03-27	2
71										10984							2016-03-30	1
71										11002							2016-04-06	4
71										11030							2016-04-17	7
71										11031							2016-04-17	6
71										11064							2016-05-01	1

(31	row(s)	affected)

Exercise	3
Write	a	query	that	returns	employees	who	did	not	place	orders	on	or	after	May	1,	2016:

	Tables	involved:	HR.Employees	and	Sales.Orders
	Desired	output:

Click	here	to	view	code	image

empid							FirstName		lastname
-----------	----------	--------------------
3											Judy							Lew
5											Sven							Mortensen
6											Paul							Suurs
9											Patricia			Doyle

Exercise	4
Write	a	query	that	returns	countries	where	there	are	customers	but	not	employees:

	Tables	involved:	Sales.Customers	and	HR.Employees
	Desired	output:
country

Argentina
Austria
Belgium
Brazil
Canada
Denmark
Finland
France
Germany
Ireland
Italy
Mexico
Norway
Poland
Portugal
Spain
Sweden
Switzerland
Venezuela

(19	row(s)	affected)

Exercise	5
Write	a	query	that	returns	for	each	customer	all	orders	placed	on	the	customer ’s	last	day	of
activity:

	Table	involved:	Sales.Orders
	Desired	output:

Click	here	to	view	code	image

custid						orderid					orderdate			empid
-----------	-----------	-----------	-----------
1											11011							2016-04-09		3
2											10926							2016-03-04		4
3											10856							2016-01-28		3
4											11016							2016-04-10		9
5											10924							2016-03-04		3
...
87										11025							2016-04-15		6
88										10935							2016-03-09		4
89										11066							2016-05-01		7
90										11005							2016-04-07		2
91										11044							2016-04-23		4

(90	row(s)	affected)

Exercise	6
Write	a	query	that	returns	customers	who	placed	orders	in	2015	but	not	in	2016:

	Tables	involved:	Sales.Customers	and	Sales.Orders
	Desired	output:
custid						companyname
-----------	----------------
21										Customer	KIDPX
23										Customer	WVFAF
33										Customer	FVXPQ
36										Customer	LVJSO
43										Customer	UISOJ
51										Customer	PVDZC
85										Customer	ENQZT

(7	row(s)	affected)

Exercise	7	(optional,	advanced)
Write	a	query	that	returns	customers	who	ordered	product	12:

	Tables	involved:	Sales.Customers,	Sales.Orders,	and	Sales.OrderDetails
	Desired	output:
custid						companyname
-----------	----------------
48										Customer	DVFMB
39										Customer	GLLAG
71										Customer	LCOUJ
65										Customer	NYUHS

44										Customer	OXFRU
51										Customer	PVDZC
86										Customer	SNXOJ
20										Customer	THHDP
90										Customer	XBBVR
46										Customer	XPNIK
31										Customer	YJCBX
87										Customer	ZHYOS

(12	row(s)	affected)

Exercise	8	(optional,	advanced)
Write	a	query	that	calculates	a	running-total	quantity	for	each	customer	and	month:

	Table	involved:	Sales.CustOrders
	Desired	output:

Click	here	to	view	code	image

custid						ordermonth		qty									runqty
-----------	-----------	-----------	-----------
1											2015-08-01		38										38
1											2015-10-01		41										79
1											2016-01-01		17										96
1											2016-03-01		18										114
1											2016-04-01		60										174
2											2014-09-01		6											6
2											2015-08-01		18										24
2											2015-11-01		10										34
2											2016-03-01		29										63
3											2014-11-01		24										24
3											2015-04-01		30										54
3											2015-05-01		80										134
3											2015-06-01		83										217
3											2015-09-01		102									319
3											2016-01-01		40										359
...

(636	row(s)	affected)

Exercise	9
Explain	the	difference	between	IN	and	EXISTS.

Exercise	10	(optional,	advanced)
Write	a	query	that	returns	for	each	order	the	number	of	days	that	passed	since	the	same
customer ’s	previous	order.	To	determine	recency	among	orders,	use	orderdate	as	the	primary
sort	element	and	orderid	as	the	tiebreaker:

	Table	involved:	Sales.Orders
	Desired	output:

Click	here	to	view	code	image

custid						orderdate		orderid					diff
-----------	----------	-----------	-----------
1											2015-08-25	10643							NULL

1											2015-10-03	10692							39
1											2015-10-13	10702							10
1											2016-01-15	10835							94
1											2016-03-16	10952							61
1											2016-04-09	11011							24
2											2014-09-18	10308							NULL
2											2015-08-08	10625							324
2											2015-11-28	10759							112
2											2016-03-04	10926							97
...

(830	row(s)	affected)

Solutions
This	section	provides	solutions	to	the	exercises	in	the	preceding	section.

Exercise	1
You	can	write	a	self-contained	subquery	that	returns	the	maximum	order	date	from	the	Orders
table.	You	can	refer	to	the	subquery	in	the	WHERE	clause	of	the	outer	query	to	return	all
orders	that	were	placed	on	the	last	day	of	activity.	Here’s	the	solution	query:
Click	here	to	view	code	image

USE	TSQLV4;

SELECT	orderid,	orderdate,	custid,	empid
FROM	Sales.Orders
WHERE	orderdate	=
		(SELECT	MAX(O.orderdate)	FROM	Sales.Orders	AS	O);

Exercise	2
This	problem	is	best	solved	in	multiple	steps.	First,	you	can	write	a	query	that	returns	the
customer	or	customers	who	placed	the	highest	number	of	orders.	You	can	achieve	this	by
grouping	the	orders	by	customer,	ordering	the	customers	by	COUNT(*)	descending,	and
using	the	TOP	(1)	WITH	TIES	option	to	return	the	IDs	of	the	customers	who	placed	the	highest
number	of	orders.	If	you	don’t	remember	how	to	use	the	TOP	option,	refer	to	Chapter	2.
Here’s	the	query	that	solves	the	first	step:
Click	here	to	view	code	image

SELECT	TOP	(1)	WITH	TIES	O.custid
FROM	Sales.Orders	AS	O
GROUP	BY	O.custid
ORDER	BY	COUNT(*)	DESC;

This	query	returns	customer	ID	71,	which	is	the	ID	of	the	customer	who	placed	the	highest
number	of	orders,	31.	With	the	sample	data	stored	in	the	Orders	table,	only	one	customer
placed	the	maximum	number	of	orders.	But	the	query	uses	the	WITH	TIES	option	to	return	all
IDs	of	customers	who	placed	the	maximum	number	of	orders,	in	case	there	is	more	than	one.
The	next	step	is	to	write	a	query	against	the	Orders	table,	returning	all	orders	where	the

customer	ID	appears	in	the	result	of	the	subquery:
Click	here	to	view	code	image

SELECT	custid,	orderid,	orderdate,	empid
FROM	Sales.Orders
WHERE	custid	IN
		(SELECT	TOP	(1)	WITH	TIES	O.custid
			FROM	Sales.Orders	AS	O
			GROUP	BY	O.custid
			ORDER	BY	COUNT(*)	DESC);

Exercise	3
You	can	write	a	self-contained	subquery	against	the	Orders	table	that	filters	orders	placed	on
or	after	May	1,	2016,	and	returns	only	the	employee	IDs	from	those	orders.	Write	an	outer
query	against	the	Employees	table	returning	employees	whose	IDs	do	not	appear	in	the	result
of	the	subquery.	Here’s	the	complete	solution	query:
Click	here	to	view	code	image

SELECT	empid,	FirstName,	lastname
FROM	HR.Employees
WHERE	empid	NOT	IN
		(SELECT	O.empid
			FROM	Sales.Orders	AS	O
			WHERE	O.orderdate	>=	'20160501');

Exercise	4
You	can	write	a	self-contained	subquery	against	the	Employees	table,	returning	the	country
column.	Write	an	outer	query	against	the	Customers	table	that	filters	only	customers	with	a
country	that	does	not	appear	in	the	result	of	the	subquery.	In	the	SELECT	list	of	the	outer
query,	specify	DISTINCT	country	to	remove	duplicates.	Here’s	the	complete	solution	query:
Click	here	to	view	code	image

SELECT	DISTINCT	country
FROM	Sales.Customers
WHERE	country	NOT	IN
		(SELECT	E.country	FROM	HR.Employees	AS	E);

Exercise	5
This	exercise	is	similar	to	Exercise	1,	except	that	in	that	exercise,	you	were	asked	to	return
orders	placed	on	the	last	day	of	activity	in	general;	in	this	exercise,	you	were	asked	to	return
orders	placed	on	the	last	day	of	activity	for	the	customer.	The	solutions	for	both	exercises	are
similar,	but	here	you	need	to	correlate	the	subquery	to	match	the	inner	customer	ID	with	the
outer	customer	ID,	like	this:
Click	here	to	view	code	image

SELECT	custid,	orderid,	orderdate,	empid
FROM	Sales.Orders	AS	O1
WHERE	orderdate	=
		(SELECT	MAX(O2.orderdate)
			FROM	Sales.Orders	AS	O2
			WHERE	O2.custid	=	O1.custid)
ORDER	BY	custid;

You’re	not	comparing	the	outer	row’s	order	date	with	the	general	maximum	order	date;

instead,	you’re	comparing	it	with	the	maximum	order	date	for	the	current	customer.

Exercise	6
You	can	solve	this	problem	by	querying	the	Customers	table	and	using	EXISTS	and	NOT
EXISTS	predicates	with	correlated	subqueries.	The	EXISTS	predicate	returns	TRUE	if	orders
were	placed	by	the	current	customer	in	2015.	The	NOT	EXISTS	predicate	returns	TRUE	only	if
no	orders	were	placed	by	the	current	customer	in	2016.	Here’s	the	complete	solution	query:
Click	here	to	view	code	image

SELECT	custid,	companyname
FROM	Sales.Customers	AS	C
WHERE	EXISTS
		(SELECT	*
			FROM	Sales.Orders	AS	O
			WHERE	O.custid	=	C.custid
					AND	O.orderdate	>=	'20150101'
					AND	O.orderdate	<	'20160101')
		AND	NOT	EXISTS
		(SELECT	*
			FROM	Sales.Orders	AS	O
			WHERE	O.custid	=	C.custid
					AND	O.orderdate	>=	'20160101'
					AND	O.orderdate	<	'20170101');

Exercise	7
You	can	solve	this	exercise	by	nesting	EXISTS	predicates	with	correlated	subqueries.	You
write	the	outermost	query	against	the	Customers	table.	In	the	WHERE	clause	of	the	outer
query,	you	can	use	the	EXISTS	predicate	with	a	correlated	subquery	against	the	Orders	table	to
filter	only	the	current	customer ’s	orders.	In	the	filter	of	the	subquery	against	the	Orders	table,
you	can	use	a	nested	EXISTS	predicate	with	a	subquery	against	the	OrderDetails	table	that
filters	only	order	details	with	product	ID	12.	This	way,	only	customers	who	placed	orders	that
contain	product	12	in	their	order	details	are	returned.	Here’s	the	complete	solution	query:
Click	here	to	view	code	image

SELECT	custid,	companyname
FROM	Sales.Customers	AS	C
WHERE	EXISTS
		(SELECT	*
			FROM	Sales.Orders	AS	O
			WHERE	O.custid	=	C.custid
					AND	EXISTS
							(SELECT	*
								FROM	Sales.OrderDetails	AS	OD
								WHERE	OD.orderid	=	O.orderid
										AND	OD.ProductID	=	12));

Exercise	8
You	can	handle	this	task	with	a	correlated	subquery.	Use	the	outer	query	against	CustOrders
(aliased	as	O1)	to	return	the	current	customer,	month,	and	quantity	information.	Use	the
correlated	subquery	against	a	second	instance	of	CustOrders	(aliased	as	O2).	Aggregate	all
quantities	from	O2	for	the	current	customer	in	O1	where	the	month	from	O2	is	on	or	before
the	current	month	in	O1.	Here’s	the	complete	solution	query:
Click	here	to	view	code	image

SELECT	custid,	ordermonth,	qty,
		(SELECT	SUM(O2.qty)
			FROM	Sales.CustOrders	AS	O2
			WHERE	O2.custid	=	O1.custid
					AND	O2.ordermonth	<=	O1.ordermonth)	AS	runqty
FROM	Sales.CustOrders	AS	O1
ORDER	BY	custid,	ordermonth;

Exercise	9
Whereas	the	IN	predicate	uses	three-valued	logic,	the	EXISTS	predicate	uses	two-valued	logic.
When	no	NULLs	are	involved	in	the	data,	IN	and	EXISTS	give	you	the	same	meaning	in	both
their	positive	and	negative	forms	(with	NOT).	When	NULLs	are	involved,	IN	and	EXISTS	give
you	the	same	meaning	in	their	positive	form	but	not	in	their	negative	form.	In	the	positive
form,	when	looking	for	a	value	that	appears	in	the	set	of	known	values	in	the	subquery,	both
return	TRUE,	and	when	looking	for	a	value	that	doesn’t	appear	in	the	set	of	known	values,
both	return	FALSE.	In	the	negative	forms	(with	NOT),	when	looking	for	a	value	that	appears	in
the	set	of	known	values,	both	return	FALSE;	however,	when	looking	for	a	value	that	doesn’t
appear	in	the	set	of	known	values,	NOT	IN	returns	UNKNOWN	(outer	row	is	discarded),
whereas	NOT	EXISTS	returns	TRUE	(outer	row	returned).
This	is	best	understood	through	an	example.	See	the	section	“NULL	trouble”	earlier	in	this

chapter	for	a	good	example.

Exercise	10
You	can	handle	the	task	in	two	steps:

1.	Write	a	query	that	computes	the	date	of	the	customer ’s	previous	order.
2.	Compute	the	difference	between	the	date	returned	by	the	first	step	and	the	current	order
date.

Here’s	the	solution	query	that	handles	the	first	step:
Click	here	to	view	code	image

SELECT	custid,	orderdate,	orderid,
		(SELECT	TOP	(1)	O2.orderdate
			FROM	Sales.Orders	AS	O2
			WHERE	O2.custid	=	O1.custid
					AND	(O2.orderdate	=	O1.orderdate	AND	O2.orderid	<	O1.orderid
											OR	O2.orderdate	<	O1.orderdate)
			ORDER	BY	O2.orderdate	DESC,	O2.orderid	DESC)	AS	prevdate
FROM	Sales.Orders	AS	O1
ORDER	BY	custid,	orderdate,	orderid;

To	get	a	previous	order	date,	the	solution	uses	a	correlated	subquery	with	the	TOP	filter.
The	subquery	filters	only	orders	where	the	inner	customer	ID	is	equal	to	the	outer	customer
ID.	It	also	filters	only	orders	where	either	“the	inner	order	date	is	equal	to	the	outer	order	date
and	the	inner	order	ID	is	smaller	than	the	outer	order	ID,”	or	“the	inner	order	date	is	earlier
than	the	outer	order	date.”	The	remaining	orders	are	the	ones	considered	earlier	than	the
current	customer ’s	order.	Using	the	TOP	(1)	filter	based	on	the	ordering	of	orderdate	DESC,
orderid	DESC,	you	get	the	date	of	the	customer ’s	previous	order.	This	step	returns	the
following	output:
Click	here	to	view	code	image

custid						orderdate		orderid					prevdate
-----------	----------	-----------	----------
1											2015-08-25	10643							NULL
1											2015-10-03	10692							2015-08-25
1											2015-10-13	10702							2015-10-03
1											2016-01-15	10835							2015-10-13
1											2016-03-16	10952							2016-01-15
1											2016-04-09	11011							2016-03-16
2											2014-09-18	10308							NULL
2											2015-08-08	10625							2014-09-18
2											2015-11-28	10759							2015-08-08
2											2016-03-04	10926							2015-11-28
...

(830	row(s)	affected)

If	you’re	wondering	why	you	don’t	rely	on	only	orderid	ordering,	the	reason	is	that
companies	typically	support	a	concept	of	late	arrivals.	That’s	when	an	order	was	placed	in	the
past	but	registered	in	the	system	at	a	later	point.	When	the	order	is	added	to	the	system,	it	gets
the	highest	order	ID	at	that	point	but	it	doesn’t	have	the	most	recent	order	date.	So	recency	is
determined	first	based	on	order-date	ordering,	and	then	order	ID	is	used	as	the	tiebreaker.
That’s	why	the	subquery’s	WHERE	clause	is	so	complex,	and	why	the	TOP	filter ’s	ordering	is
based	on	orderdate	DESC,	orderid	DESC	and	not	just	orderid	DESC.
As	the	second	step,	use	the	DATEDIFF	function	to	compute	the	difference	in	terms	of	days

between	the	previous	order	date	returned	by	the	subquery	and	the	current	order	date.	Here’s
the	complete	solution	query:
Click	here	to	view	code	image

SELECT	custid,	orderdate,	orderid,
		DATEDIFF(day,
				(SELECT	TOP	(1)	O2.orderdate
					FROM	Sales.Orders	AS	O2
					WHERE	O2.custid	=	O1.custid
							AND	(O2.orderdate	=	O1.orderdate	AND	O2.orderid	<	O1.orderid
													OR	O2.orderdate	<	O1.orderdate)
					ORDER	BY	O2.orderdate	DESC,	O2.orderid	DESC),
				orderdate)	AS	diff
FROM	Sales.Orders	AS	O1
ORDER	BY	custid,	orderdate,	orderid;

Chapter	5.	Table	expressions

A	table	expression	is	a	named	query	expression	that	represents	a	valid	relational	table.	You
can	use	table	expressions	in	data-manipulation	statements	much	like	you	use	other	tables.	T-
SQL	supports	four	types	of	table	expressions:	derived	tables,	common	table	expressions
(CTEs),	views,	and	inline	table-valued	functions	(inline	TVFs).	The	focus	of	this	chapter	is	on
using	SELECT	queries	against	table	expressions;	Chapter	8,	“Data	modification,”	covers
modifications	against	table	expressions.
Table	expressions	are	not	physically	materialized	anywhere—they	are	virtual.	When	you

query	a	table	expression,	the	inner	query	gets	unnested.	In	other	words,	the	outer	query	and
the	inner	query	are	merged	into	one	query	directly	against	the	underlying	objects.	The
benefits	of	using	table	expressions	are	typically	related	to	logical	aspects	of	your	code	and
not	to	performance.	For	example,	you	can	use	table	expressions	to	simplify	your	solutions	by
using	a	modular	approach.	Table	expressions	also	help	you	circumvent	certain	restrictions	in
the	language,	such	as	the	inability	to	refer	to	column	aliases	assigned	in	the	SELECT	clause	in
query	clauses	that	are	logically	processed	before	the	SELECT	clause.
This	chapter	also	introduces	the	APPLY	table	operator	as	it	is	used	in	conjunction	with	a

table	expression.	I	explain	how	to	use	this	operator	to	apply	a	table	expression	to	each	row	of
another	table.

Derived	tables
Derived	tables	(also	known	as	table	subqueries)	are	defined	in	the	FROM	clause	of	an	outer
query.	Their	scope	of	existence	is	the	outer	query.	As	soon	as	the	outer	query	is	finished,	the
derived	table	is	gone.
You	specify	the	query	that	defines	the	derived	table	within	parentheses,	followed	by	the	AS

clause	and	the	derived	table	name.	For	example,	the	following	code	defines	a	derived	table
called	USACusts	based	on	a	query	that	returns	all	customers	from	the	United	States,	and	the
outer	query	selects	all	rows	from	the	derived	table:
Click	here	to	view	code	image

USE	TSQLV4;

SELECT	*
FROM	(SELECT	custid,	companyname
						FROM	Sales.Customers
						WHERE	country	=	N'USA')	AS	USACusts;

In	this	particular	case,	which	is	a	simple	example	of	the	basic	syntax,	a	derived	table	is	not
needed	because	the	outer	query	doesn’t	apply	any	manipulation.
The	code	in	this	basic	example	returns	the	following	output:
custid						companyname
-----------	---------------
32										Customer	YSIQX
36										Customer	LVJSO
43										Customer	UISOJ

45										Customer	QXPPT
48										Customer	DVFMB
55										Customer	KZQZT
65										Customer	NYUHS
71										Customer	LCOUJ
75										Customer	XOJYP
77										Customer	LCYBZ
78										Customer	NLTYP
82										Customer	EYHKM
89										Customer	YBQTI

With	all	types	of	table	expressions,	a	query	must	meet	three	requirements	to	be	a	valid	inner
query	in	a	table-expression	definition:

	Order	is	not	guaranteed.	A	table	expression	is	supposed	to	represent	a	relational	table,
and	the	rows	in	a	relational	table	have	no	guaranteed	order.	Recall	that	this	aspect	of	a
relation	stems	from	set	theory.	For	this	reason,	standard	SQL	disallows	an	ORDER	BY
clause	in	queries	that	are	used	to	define	table	expressions,	unless	the	ORDER	BY	serves	a
purpose	other	than	presentation.	An	example	for	such	an	exception	is	when	the	query
uses	the	OFFSET-FETCH	filter.	T-SQL	enforces	similar	restrictions,	with	similar
exceptions—when	TOP	or	OFFSET-FETCH	is	also	specified.	In	the	context	of	a	query
with	the	TOP	or	OFFSET-FETCH	filter,	the	ORDER	BY	clause	serves	as	part	of	the
specification	of	the	filter.	If	you	use	a	query	with	TOP	or	OFFSET-FETCH	and	ORDER
BY	to	define	a	table	expression,	ORDER	BY	is	guaranteed	to	serve	only	the	filtering-
related	purpose	and	not	the	usual	presentation	purpose.	If	the	outer	query	against	the
table	expression	does	not	have	a	presentation	ORDER	BY,	the	output	is	not	guaranteed	to
be	returned	in	any	particular	order.	See	the	“Views	and	the	ORDER	BY	clause”	section
later	in	this	chapter	for	more	detail	on	this	item	(which	applies	to	all	types	of	table
expressions).
	All	columns	must	have	names.	All	columns	in	a	table	must	have	names;	therefore,	you
must	assign	column	aliases	to	all	expressions	in	the	SELECT	list	of	the	query	that	is	used
to	define	a	table	expression.
	All	column	names	must	be	unique.	All	column	names	in	a	table	must	be	unique;
therefore,	a	table	expression	that	has	multiple	columns	with	the	same	name	is	invalid.
Having	multiple	columns	with	the	same	name	might	happen	when	the	query	defining	the
table	expression	joins	two	tables	that	have	a	column	with	the	same	name.	If	you	need	to
incorporate	both	columns	in	your	table	expression,	they	must	have	different	column
names.	You	can	resolve	this	issue	by	assigning	different	column	aliases	to	the	two
columns.

All	three	requirements	are	related	to	the	fact	that	the	table	expression	is	supposed	to
represent	a	relation.	All	relation	attributes	must	have	names;	all	attribute	names	must	be
unique;	and,	because	the	relation’s	body	is	a	set	of	tuples,	there’s	no	order.

Assigning	column	aliases
One	of	the	benefits	of	using	table	expressions	is	that,	in	any	clause	of	the	outer	query,	you	can
refer	to	column	aliases	that	were	assigned	in	the	SELECT	clause	of	the	inner	query.	This
behavior	helps	you	get	around	the	fact	that	you	can’t	refer	to	column	aliases	assigned	in	the
SELECT	clause	in	query	clauses	that	are	logically	processed	prior	to	the	SELECT	clause	(for
example,	WHERE	or	GROUP	BY).
For	example,	suppose	you	need	to	write	a	query	against	the	Sales.Orders	table	and	return

the	number	of	distinct	customers	handled	in	each	order	year.	The	following	attempt	is	invalid
because	the	GROUP	BY	clause	refers	to	a	column	alias	that	was	assigned	in	the	SELECT
clause,	and	the	GROUP	BY	clause	is	logically	processed	prior	to	the	SELECT	clause:
Click	here	to	view	code	image

SELECT
		YEAR(orderdate)	AS	orderyear,
		COUNT(DISTINCT	custid)	AS	numcusts
FROM	Sales.Orders
GROUP	BY	orderyear;

If	you	try	running	this	query,	you	get	the	following	error:
Click	here	to	view	code	image

Msg	207,	Level	16,	State	1,	Line	5
Invalid	column	name	'orderyear'.

You	can	solve	the	problem	by	referring	to	the	expression	YEAR(orderdate)	in	both	the
GROUP	BY	and	SELECT	clauses,	but	this	is	an	example	with	a	short	expression.	What	if	the
expression	was	much	longer	and	you	wanted	to	avoid	the	repetition	of	the	code?	You	can
achieve	this	with	a	table	expression	like	the	one	shown	in	Listing	5-1.

LISTING	5-1	Query	with	a	derived	table	using	inline	aliasing	form

Click	here	to	view	code	image

SELECT	orderyear,	COUNT(DISTINCT	custid)	AS	numcusts
FROM	(SELECT	YEAR(orderdate)	AS	orderyear,	custid
						FROM	Sales.Orders)	AS	D
GROUP	BY	orderyear;

This	query	returns	the	following	output:
orderyear			numcusts
-----------	-----------
2014								67
2015								86
2016								81

This	code	defines	a	derived	table	called	D	based	on	a	query	against	the	Orders	table	that
returns	the	order	year	and	customer	ID	from	all	rows.	The	SELECT	list	of	the	inner	query
uses	the	inline	aliasing	form	to	assign	the	alias	orderyear	to	the	expression	YEAR(orderdate).
The	outer	query	can	refer	to	the	orderyear	column	alias	in	both	the	GROUP	BY	and	SELECT

clauses,	because	as	far	as	the	outer	query	is	concerned,	it	queries	a	table	called	D	with
columns	called	orderyear	and	custid.
As	I	mentioned	earlier,	Microsoft	SQL	Server	expands	the	definition	of	the	table	expression

and	accesses	the	underlying	objects	directly.	After	expansion,	the	query	in	Listing	5-1	looks
like	the	following:
Click	here	to	view	code	image

SELECT	YEAR(orderdate)	AS	orderyear,	COUNT(DISTINCT	custid)	AS	numcusts
FROM	Sales.Orders
GROUP	BY	YEAR(orderdate);

I	present	this	example	just	to	emphasize	that	you	usually	use	table	expressions	for	logical
(not	performance-related)	reasons.	Generally	speaking,	table	expressions	have	neither	a
positive	nor	negative	impact	on	performance	when	compared	to	the	expanded	query	without
the	table	expression.
Listing	5-1	uses	the	inline	aliasing	form	to	assign	column	aliases	to	expressions.	The

syntax	for	inline	aliasing	is	<expression>	[AS]	<alias>.	Note	that	the	word	AS	is	optional	in
the	syntax	for	inline	aliasing;	however,	I	find	that	it	helps	the	readability	of	the	code	and
recommend	using	it.
In	some	cases,	you	might	prefer	to	use	a	second	aliasing	form,	which	you	can	think	of	as

external	aliasing.	With	this	form,	you	do	not	assign	column	aliases	following	the	expressions
in	the	SELECT	list—you	specify	all	target	column	names	in	parentheses	following	the	table
expression’s	name,	like	so:
Click	here	to	view	code	image

SELECT	orderyear,	COUNT(DISTINCT	custid)	AS	numcusts
FROM	(SELECT	YEAR(orderdate),	custid
						FROM	Sales.Orders)	AS	D(orderyear,	custid)
GROUP	BY	orderyear;

Each	form	has	its	advantages.	I’ll	start	with	the	advantages	of	inline	aliasing.	If	you	need	to
debug	the	code	when	using	the	inline	form,	when	you	highlight	the	query	defining	the	table
expression	and	run	it,	the	columns	in	the	result	appear	with	the	aliases	you	assigned.	With	the
external	form,	you	cannot	include	the	target	column	names	when	you	highlight	the	table
expression	query,	so	the	result	appears	with	no	column	names	in	the	case	of	the	unnamed
expressions.	Also,	when	the	table	expression	query	is	lengthy,	using	the	external	form	can
make	it	quite	difficult	to	figure	out	which	column	alias	belongs	to	which	expression.
Then	again,	the	external	aliasing	form	has	its	advantages—for	example,	when	the	query

defining	the	table	expression	won’t	undergo	any	further	revisions	and	you	want	to	treat	it	like
a	“black	box.”	You	want	to	focus	your	attention	on	the	table-expression	name	followed	by	the
target-column	list	when	you	look	at	the	outer	query.	To	use	terminology	from	traditional
programming,	you	can	use	external	aliasing	to	specify	a	contract	interface	between	the	outer
query	and	the	table	expression.

Using	arguments
In	the	query	that	defines	a	derived	table,	you	can	refer	to	arguments.	The	arguments	can	be
local	variables	and	input	parameters	to	a	routine,	such	as	a	stored	procedure	or	function.	For
example,	the	following	code	declares	and	initializes	a	variable	called	@empid,	and	the	query
in	the	derived	table	D	refers	to	that	variable	in	the	WHERE	clause:
Click	here	to	view	code	image

DECLARE	@empid	AS	INT	=	3;

SELECT	orderyear,	COUNT(DISTINCT	custid)	AS	numcusts
FROM	(SELECT	YEAR(orderdate)	AS	orderyear,	custid
						FROM	Sales.Orders
						WHERE	empid	=	@empid)	AS	D
GROUP	BY	orderyear;

This	query	returns	the	number	of	distinct	customers	per	year	whose	orders	were	handled
by	the	input	employee	(the	employee	whose	ID	is	stored	in	the	variable	@empid).	Here’s	the
output	of	this	query:

orderyear			numcusts
-----------	-----------
2014								16
2015								46
2016								30

Nesting
If	you	need	to	define	a	derived	table	based	on	a	query	that	itself	is	based	on	a	derived	table,
you	can	nest	those.	Nesting	tends	to	complicate	the	code	and	reduces	its	readability.
As	an	example,	Listing	5-2	returns	order	years	and	the	number	of	customers	handled	in

each	year	only	for	years	in	which	more	than	70	customers	were	handled.

LISTING	5-2	Query	with	nested	derived	tables

Click	here	to	view	code	image

SELECT	orderyear,	numcusts
FROM	(SELECT	orderyear,	COUNT(DISTINCT	custid)	AS	numcusts
						FROM	(SELECT	YEAR(orderdate)	AS	orderyear,	custid
												FROM	Sales.Orders)	AS	D1
						GROUP	BY	orderyear)	AS	D2
WHERE	numcusts	>	70;

This	code	returns	the	following	output:
orderyear			numcusts
-----------	-----------
2015								86
2016								81

The	purpose	of	the	innermost	derived	table,	D1,	is	to	assign	the	column	alias	orderyear	to
the	expression	YEAR(orderdate).	The	query	against	D1	refers	to	orderyear	in	both	the	GROUP

BY	and	SELECT	clauses	and	assigns	the	column	alias	numcusts	to	the	expression
COUNT(DISTINCT	custid).	The	query	against	D1	is	used	to	define	the	derived	table	D2.	The
query	against	D2	refers	to	numcusts	in	the	WHERE	clause	to	filter	order	years	in	which	more
than	70	customers	were	handled.
The	whole	purpose	of	using	table	expressions	here	is	to	simplify	the	code	by	reusing

column	aliases.	However,	with	the	complexity	added	by	the	nesting,	I’m	not	sure	this	solution
is	really	simpler	than	the	alternative	without	table	expressions:
Click	here	to	view	code	image

SELECT	YEAR(orderdate)	AS	orderyear,	COUNT(DISTINCT	custid)	AS	numcusts
FROM	Sales.Orders
GROUP	BY	YEAR(orderdate)
HAVING	COUNT(DISTINCT	custid)	>	70;

Multiple	references
Another	problematic	aspect	of	derived	tables	is	related	to	cases	where	you	need	to	join
multiple	instances	of	the	same	one.	A	join	treats	its	two	inputs	as	a	set	and,	as	you	know,	a	set
has	no	order	to	its	elements.	This	means	that	if	you	define	a	derived	table	and	alias	it	as	one
input	of	the	join,	you	can’t	refer	to	the	same	alias	in	the	other	input	of	the	join.	The	query	in
Listing	5-3	illustrates	this	point.

LISTING	5-3	Multiple	derived	tables	based	on	the	same	query

Click	here	to	view	code	image

SELECT	Cur.orderyear,
		Cur.numcusts	AS	curnumcusts,	Prv.numcusts	AS	prvnumcusts,
		Cur.numcusts	-	Prv.numcusts	AS	growth
FROM	(SELECT	YEAR(orderdate)	AS	orderyear,
								COUNT(DISTINCT	custid)	AS	numcusts
						FROM	Sales.Orders
						GROUP	BY	YEAR(orderdate))	AS	Cur
		LEFT	OUTER	JOIN
					(SELECT	YEAR(orderdate)	AS	orderyear,
								COUNT(DISTINCT	custid)	AS	numcusts
						FROM	Sales.Orders
						GROUP	BY	YEAR(orderdate))	AS	Prv
				ON	Cur.orderyear	=	Prv.orderyear	+	1;

This	query	joins	two	derived	tables	that	are	based	on	the	same	query.	The	first	derived
table,	Cur,	represents	current	years,	and	the	second	derived	table,	Prv,	represents	previous
years.	The	join	condition	Cur.orderyear	=	Prv.orderyear	+	1	ensures	that	each	year	from	the
first	derived	table	matches	the	previous	year	of	the	second.	Because	the	code	uses	a	left	outer
join,	all	left	years	are	preserved,	including	the	first,	which	has	no	previous	year.	The	SELECT
clause	of	the	outer	query	calculates	the	difference	between	the	number	of	customers	handled
in	the	current	and	previous	years.
Listing	5-3	produces	the	following	output:

Click	here	to	view	code	image

orderyear			curnumcusts	prvnumcusts	growth
-----------	-----------	-----------	-----------
2014								67										NULL								NULL
2015								86										67										19
2016								81										86										–5

The	fact	that	you	cannot	refer	to	multiple	instances	of	the	same	derived	table	in	the	same
join	forces	you	to	maintain	multiple	copies	of	the	same	query	definition.	This	leads	to	lengthy
code	that	is	hard	to	maintain	and	prone	to	errors.

Common	table	expressions
Common	table	expressions	(CTEs)	are	another	standard	form	of	table	expression	similar	to
derived	tables,	yet	with	a	couple	of	important	advantages.
CTEs	are	defined	by	using	a	WITH	statement	and	have	the	following	general	form:

Click	here	to	view	code	image

WITH	<CTE_Name>[(<target_column_list>)]
AS
(
		<inner_query_defining_CTE>
)
<outer_query_against_CTE>;

The	inner	query	defining	the	CTE	must	follow	all	requirements	mentioned	earlier	to	be
valid	to	define	a	table	expression.	As	a	simple	example,	the	following	code	defines	a	CTE
called	USACusts	based	on	a	query	that	returns	all	customers	from	the	United	States,	and	the
outer	query	selects	all	rows	from	the	CTE:

WITH	USACusts	AS
(
		SELECT	custid,	companyname
		FROM	Sales.Customers
		WHERE	country	=	N'USA'
)
SELECT	*	FROM	USACusts;

As	with	derived	tables,	as	soon	as	the	outer	query	finishes,	the	CTE	goes	out	of	scope.

	Note
The	WITH	clause	is	used	in	T-SQL	for	several	purposes.	For	example,	it’s	used	to
define	a	table	hint	in	a	query	to	force	a	certain	optimization	option	or	isolation	level.
To	avoid	ambiguity,	when	the	WITH	clause	is	used	to	define	a	CTE,	the	preceding
statement	in	the	same	batch—if	one	exists—must	be	terminated	with	a	semicolon.	And
oddly	enough,	the	semicolon	for	the	entire	CTE	is	not	required,	though	I	still
recommend	specifying	it—as	I	do	to	terminate	all	T-SQL	statements.

Assigning	column	aliases	in	CTEs
CTEs	also	support	two	forms	of	column	aliasing:	inline	and	external.	For	the	inline	form,
specify	<expression>	AS	<column_alias>;	for	the	external	form,	specify	the	target	column
list	in	parentheses	immediately	after	the	CTE	name.
Here’s	an	example	of	the	inline	form:

Click	here	to	view	code	image

WITH	C	AS
(
		SELECT	YEAR(orderdate)	AS	orderyear,	custid
		FROM	Sales.Orders
)
SELECT	orderyear,	COUNT(DISTINCT	custid)	AS	numcusts
FROM	C
GROUP	BY	orderyear;

And	here’s	an	example	of	the	external	form:
Click	here	to	view	code	image

WITH	C(orderyear,	custid)	AS
(
		SELECT	YEAR(orderdate),	custid
		FROM	Sales.Orders
)
SELECT	orderyear,	COUNT(DISTINCT	custid)	AS	numcusts
FROM	C
GROUP	BY	orderyear;

The	motivations	for	using	one	form	or	the	other	are	similar	to	those	described	for	derived
tables.

Using	arguments	in	CTEs
As	with	derived	tables,	you	also	can	use	arguments	in	the	inner	query	used	to	define	a	CTE.
Here’s	an	example:
Click	here	to	view	code	image

DECLARE	@empid	AS	INT	=	3;

WITH	C	AS
(
		SELECT	YEAR(orderdate)	AS	orderyear,	custid
		FROM	Sales.Orders
		WHERE	empid	=	@empid
)
SELECT	orderyear,	COUNT(DISTINCT	custid)	AS	numcusts
FROM	C
GROUP	BY	orderyear;

Defining	multiple	CTEs
On	the	surface,	the	difference	between	derived	tables	and	CTEs	might	seem	to	be	merely
semantic.	However,	the	fact	that	you	first	name	and	define	a	CTE	and	then	use	it	gives	it
several	important	advantages	over	derived	tables.	One	advantage	is	that	if	you	need	to	refer	to
one	CTE	from	another,	you	don’t	nest	them;	rather,	you	separate	them	by	commas.	Each	CTE
can	refer	to	all	previously	defined	CTEs,	and	the	outer	query	can	refer	to	all	CTEs.	For
example,	the	following	code	is	the	CTE	alternative	to	the	nested	derived	tables	approach	in
Listing	5-2:
Click	here	to	view	code	image

WITH	C1	AS
(
		SELECT	YEAR(orderdate)	AS	orderyear,	custid
		FROM	Sales.Orders
),
C2	AS
(
		SELECT	orderyear,	COUNT(DISTINCT	custid)	AS	numcusts
		FROM	C1
		GROUP	BY	orderyear
)
SELECT	orderyear,	numcusts
FROM	C2
WHERE	numcusts	>	70;

This	modular	approach	substantially	improves	the	readability	and	maintainability	of	the
code	compared	to	the	nested	derived-table	approach.
Note	that	even	if	you	want	to,	you	cannot	nest	CTEs,	nor	can	you	define	a	CTE	within	the

parentheses	of	a	derived	table.	I	think	of	this	restriction	as	a	good	thing.

Multiple	references	in	CTEs
The	fact	that	a	CTE	is	named	and	defined	first	and	then	queried	has	another	advantage:	as	far
as	the	FROM	clause	of	the	outer	query	is	concerned,	the	CTE	already	exists;	therefore,	you
can	refer	to	multiple	instances	of	the	same	CTE	in	table	operators	like	joins.	For	example,	the
following	code	is	the	CTE	alternative	to	the	solution	shown	earlier	in	Listing	5-3	with	derived
tables:
Click	here	to	view	code	image

WITH	YearlyCount	AS
(
		SELECT	YEAR(orderdate)	AS	orderyear,
				COUNT(DISTINCT	custid)	AS	numcusts
		FROM	Sales.Orders
		GROUP	BY	YEAR(orderdate)
)
SELECT	Cur.orderyear,
		Cur.numcusts	AS	curnumcusts,	Prv.numcusts	AS	prvnumcusts,
		Cur.numcusts	-	Prv.numcusts	AS	growth
FROM	YearlyCount	AS	Cur
		LEFT	OUTER	JOIN	YearlyCount	AS	Prv
				ON	Cur.orderyear	=	Prv.orderyear	+	1;

As	you	can	see,	the	CTE	YearlyCount	is	defined	only	once	and	accessed	twice	in	the	FROM
clause	of	the	outer	query—once	as	Cur	and	once	as	Prv.	You	need	to	maintain	only	one	copy
of	the	inner	query	(the	code	inside	the	CTE).	The	solution	is	clearer	and	less	prone	to	errors.
If	you’re	curious	about	performance,	recall	that	earlier	I	mentioned	that	table	expressions

typically	have	no	impact	on	performance	because	they’re	not	physically	materialized
anywhere.	Both	references	to	the	CTE	in	the	previous	query	are	going	to	be	expanded.
Internally,	this	query	has	a	self	join	between	two	instances	of	the	Orders	table,	each	of	which
involves	scanning	the	table	data	and	aggregating	it	before	the	join—the	same	physical
processing	that	takes	place	with	the	derived-table	approach.	If	you	want	to	avoid	the	repetition
of	the	work	done	here,	you	should	persist	the	inner	query’s	result	in	a	temporary	table	or	a
table	variable.	My	focus	in	this	discussion	is	on	coding	aspects	and	not	performance,	and
clearly	the	ability	to	specify	the	inner	query	only	once	is	a	great	benefit.

Recursive	CTEs
This	section	is	provided	as	optional	reading.	It	covers	subjects	that	are	beyond	the
fundamentals.
CTEs	are	unique	among	table	expressions	in	the	sense	that	they	support	recursion.

Recursive	CTEs,	like	nonrecursive	ones,	are	defined	by	the	SQL	standard.	A	recursive	CTE	is
defined	by	at	least	two	queries	(more	are	possible)—at	least	one	query	known	as	the	anchor
member	and	at	least	one	query	known	as	the	recursive	member.	The	general	form	of	a	basic
recursive	CTE	looks	like	the	following:
Click	here	to	view	code	image

WITH	<CTE_Name>[(<target_column_list>)]
AS
(
		<anchor_member>
		UNION	ALL
		<recursive_member>
)
<outer_query_against_CTE>;

The	anchor	member	is	a	query	that	returns	a	valid	relational	result	table—like	a	query	that
is	used	to	define	a	nonrecursive	table	expression.	The	anchor	member	query	is	invoked	only
once.
The	recursive	member	is	a	query	that	has	a	reference	to	the	CTE	name	and	is	invoked

repeatedly	until	it	returns	an	empty	set.	The	reference	to	the	CTE	name	represents	the
previous	result	set.	The	first	time	that	the	recursive	member	is	invoked,	the	previous	result	set
represents	whatever	the	anchor	member	returned.	In	each	subsequent	invocation	of	the
recursive	member,	the	reference	to	the	CTE	name	represents	the	result	set	returned	by	the
previous	invocation	of	the	recursive	member.	Both	queries	must	be	compatible	in	terms	of	the
number	of	columns	they	return	and	the	data	types	of	the	corresponding	columns.	The
reference	to	the	CTE	name	in	the	outer	query	represents	the	unified	result	sets	of	the
invocation	of	the	anchor	member	and	all	invocations	of	the	recursive	member.
If	this	is	your	first	encounter	with	recursive	CTEs,	you	might	find	this	explanation	hard	to

understand.	They	are	best	explained	with	an	example.	The	following	code	demonstrates	how

to	return	information	about	an	employee	(Don	Funk,	employee	ID	2)	and	all	the	employee’s
subordinates	at	all	levels	(direct	or	indirect):
Click	here	to	view	code	image

WITH	EmpsCTE	AS
(
		SELECT	empid,	mgrid,	firstname,	lastname
		FROM	HR.Employees
		WHERE	empid	=	2

		UNION	ALL

		SELECT	C.empid,	C.mgrid,	C.firstname,	C.lastname
		FROM	EmpsCTE	AS	P
				INNER	JOIN	HR.Employees	AS	C
						ON	C.mgrid	=	P.empid
)
SELECT	empid,	mgrid,	firstname,	lastname
FROM	EmpsCTE;

The	anchor	member	queries	the	HR.Employees	table	and	simply	returns	the	row	for
employee	2:
Click	here	to	view	code	image

		SELECT	empid,	mgrid,	firstname,	lastname
		FROM	HR.Employees
		WHERE	empid	=	2

The	recursive	member	joins	the	CTE—representing	the	previous	result	set—with	the
Employees	table	to	return	the	direct	subordinates	of	the	employees	returned	in	the	previous
result	set:
Click	here	to	view	code	image

		SELECT	C.empid,	C.mgrid,	C.firstname,	C.lastname
		FROM	EmpsCTE	AS	P
				INNER	JOIN	HR.Employees	AS	C
						ON	C.mgrid	=	P.empid

In	other	words,	the	recursive	member	is	invoked	repeatedly,	and	in	each	invocation	it
returns	the	next	level	of	subordinates.	The	first	time	the	recursive	member	is	invoked,	it
returns	the	direct	subordinates	of	employee	2—employees	3	and	5.	The	second	time	the
recursive	member	is	invoked,	it	returns	the	direct	subordinates	of	employees	3	and	5—
employees	4,	6,	7,	8,	and	9.	The	third	time	the	recursive	member	is	invoked,	there	are	no
more	subordinates;	the	recursive	member	returns	an	empty	set,	and	therefore	recursion	stops.
The	reference	to	the	CTE	name	in	the	outer	query	represents	the	unioned	result	sets—in

other	words,	employee	2	and	all	the	employee’s	subordinates.
Here’s	the	output	of	this	code:

Click	here	to	view	code	image

empid							mgrid							firstname		lastname
-----------	-----------	----------	--------------------
2											1											Don								Funk
3											2											Judy							Lew

5											2											Sven							Mortensen
6											5											Paul							Suurs
7											5											Russell				King
9											5											Patricia			Doyle
4											3											Yael							Peled
8											3											Maria						Cameron

In	the	event	of	a	logical	error	in	the	join	predicate	in	the	recursive	member,	or	if	there	are
problems	with	the	data	that	result	in	cycles,	the	recursive	member	potentially	can	be	invoked
an	infinite	number	of	times.	As	a	safety	measure,	SQL	Server	restricts	the	number	of	times	the
recursive	member	can	be	invoked	to	100	by	default.	The	code	will	fail	if	the	recursive
member	is	invoked	more	than	100	times.	You	can	change	the	default	maximum	recursion
limit	(that	is,	the	number	of	times	the	recursive	member	can	be	invoked)	by	specifying	the
hint	OPTION(MAXRECURSION	n)	at	the	end	of	the	outer	query,	where	n	is	an	integer	in	the
range	0	through	32,767.	If	you	want	to	remove	the	restriction	altogether,	specify
MAXRECURSION	0.	Note	that	SQL	Server	stores	the	intermediate	result	sets	returned	by	the
anchor	and	recursive	members	in	a	work	table	in	tempdb;	if	you	remove	the	restriction	and
have	a	runaway	query,	the	work	table	will	quickly	get	very	large,	and	the	query	will	never
finish.

Views
Derived	tables	and	CTEs	have	a	single-statement	scope,	which	means	they	are	not	reusable.
Views	and	inline	table-valued	functions	(inline	TVFs)	are	two	types	of	table	expressions
whose	definitions	are	stored	as	permanent	objects	in	the	database,	making	them	reusable.	In
most	other	respects,	views	and	inline	TVFs	are	treated	like	derived	tables	and	CTEs.	For
example,	when	querying	a	view	or	an	inline	TVF,	SQL	Server	expands	the	definition	of	the
table	expression	and	queries	the	underlying	objects	directly,	as	with	derived	tables	and	CTEs.
In	this	section,	I	describe	views;	in	the	next	section,	I	describe	inline	TVFs.
As	an	example,	the	following	code	creates	a	view	called	USACusts	in	the	Sales	schema	in

the	TSQLV4	database,	representing	all	customers	from	the	United	States:
Click	here	to	view	code	image

DROP	VIEW	IF	EXISTS	Sales.USACusts;
GO
CREATE	VIEW	Sales.USACusts
AS

SELECT
		custid,	companyname,	contactname,	contacttitle,	address,
		city,	region,	postalcode,	country,	phone,	fax
FROM	Sales.Customers
WHERE	country	=	N'USA';
GO

Note	that	just	as	with	derived	tables	and	CTEs,	instead	of	using	inline	column	aliasing	as
shown	in	the	preceding	code,	you	can	use	external	column	aliasing	by	specifying	the	target
column	names	in	parentheses	immediately	after	the	view	name.
After	you	create	this	view,	you	can	query	it	much	like	you	query	other	tables	in	the

database:

SELECT	custid,	companyname
FROM	Sales.USACusts;

Because	a	view	is	an	object	in	the	database,	you	can	manage	access	permissions	similar	to
the	way	you	do	for	tables.	(These	permissions	include	SELECT,	INSERT,	UPDATE,	and
DELETE.)	You	can	even	deny	direct	access	to	the	underlying	objects	while	granting	access	to
the	view.
Note	that	the	general	recommendation	to	avoid	using	SELECT	*	has	specific	relevance	in

the	context	of	views.	The	columns	are	enumerated	in	the	compiled	form	of	the	view,	and	new
table	columns	will	not	be	automatically	added	to	the	view.	For	example,	suppose	you	define	a
view	based	on	the	query	SELECT	*	FROM	dbo.T1,	and	at	the	view	creation	time	the	table	T1
has	the	columns	col1	and	col2.	SQL	Server	stores	information	only	on	those	two	columns	in
the	view’s	metadata.	If	you	alter	the	definition	of	the	table	to	add	new	columns,	those	new
columns	will	not	be	added	to	the	view.	You	can	refresh	the	view’s	metadata	by	using	the	stored
procedure	sp_refreshview	or	sp_refreshsqlmodule,	but	to	avoid	confusion,	the	best	practice	is
to	explicitly	list	the	column	names	you	need	in	the	definition	of	the	view.	If	columns	are	added
to	the	underlying	tables	and	you	need	them	in	the	view,	use	the	ALTER	VIEW	statement	to
revise	the	view	definition	accordingly.

Views	and	the	ORDER	BY	clause
The	query	you	use	to	define	a	view	must	meet	all	requirements	mentioned	earlier	with	respect
to	the	inner	query	in	the	other	types	of	table	expressions.	The	view	should	not	guarantee	any
order	to	the	rows,	all	view	columns	must	have	names,	and	all	column	names	must	be	unique.
In	this	section,	I	elaborate	a	bit	about	the	ordering	issue,	which	is	a	fundamental	point	that	is
crucial	to	understand.
Remember	that	a	presentation	ORDER	BY	clause	is	not	allowed	in	the	query	defining	a	table

expression	because	a	relation	isn’t	ordered.	If	you	need	to	return	rows	from	a	view	sorted	for
presentation	purposes,	you	should	specify	a	presentation	ORDER	BY	clause	in	the	outer	query
against	the	view,	like	this:
Click	here	to	view	code	image

SELECT	custid,	companyname,	region
FROM	Sales.USACusts
ORDER	BY	region;

Try	running	the	following	code	to	create	a	view	with	a	presentation	ORDER	BY	clause:
Click	here	to	view	code	image

ALTER	VIEW	Sales.USACusts
AS

SELECT
		custid,	companyname,	contactname,	contacttitle,	address,
		city,	region,	postalcode,	country,	phone,	fax
FROM	Sales.Customers
WHERE	country	=	N'USA'
ORDER	BY	region;
GO

This	attempt	fails,	and	you	get	the	following	error:
Click	here	to	view	code	image

Msg	1033,	Level	15,	State	1,	Procedure	USACusts,	Line	249
The	ORDER	BY	clause	is	invalid	in	views,	inline	functions,	derived	tables,
subqueries,	and
common	table	expressions,	unless	TOP,	OFFSET	or	FOR	XML	is	also	specified.

The	error	message	indicates	that	T-SQL	allows	the	ORDER	BY	clause	only	in	exceptional
cases—when	the	TOP,	OFFSET-FETCH,	or	FOR	XML	option	is	used.	In	those	cases,	the
ORDER	BY	clause	serves	a	purpose	other	than	its	usual	presentation	purpose.	Even	standard
SQL	has	a	similar	restriction,	with	a	similar	exception	when	the	OFFSET-FETCH	option	is
used.
Because	T-SQL	allows	an	ORDER	BY	clause	in	a	view	when	TOP	or	OFFSET-FETCH	is

also	specified,	some	people	think	they	can	create	“ordered	views.”	One	of	the	ways	people	try
to	achieve	this	is	by	using	TOP	(100)	PERCENT,	like	the	following:
Click	here	to	view	code	image

ALTER	VIEW	Sales.USACusts
AS

SELECT	TOP	(100)	PERCENT
		custid,	companyname,	contactname,	contacttitle,	address,
		city,	region,	postalcode,	country,	phone,	fax
FROM	Sales.Customers
WHERE	country	=	N'USA'
ORDER	BY	region;
GO

Even	though	the	code	is	technically	valid	and	the	view	is	created,	you	should	be	aware	that
if	an	outer	query	against	the	view	doesn’t	have	an	ORDER	BY	clause,	presentation	order	is	not
guaranteed.	For	example,	run	the	following	query	against	the	view:
Click	here	to	view	code	image

SELECT	custid,	companyname,	region
FROM	Sales.USACusts;

Here’s	the	output	from	one	of	my	executions,	showing	that	the	rows	are	not	sorted	by
region:
Click	here	to	view	code	image

custid						companyname													region
-----------	-----------------------	---------------
32										Customer	YSIQX										OR
36										Customer	LVJSO										OR
43										Customer	UISOJ										WA
45										Customer	QXPPT										CA
48										Customer	DVFMB										OR
55										Customer	KZQZT										AK
65										Customer	NYUHS										NM
71										Customer	LCOUJ										ID
75										Customer	XOJYP										WY
77										Customer	LCYBZ										OR
78										Customer	NLTYP										MT

82										Customer	EYHKM										WA
89										Customer	YBQTI										WA

If	the	outer	query	doesn’t	have	an	ORDER	BY	clause	but	the	result	seems	to	be	ordered,	it
could	be	because	of	certain	physical	conditions	and	optimization	choices,	but	those	things	are
not	guaranteed	to	be	repeatable.	The	only	way	to	guarantee	presentation	order	is	to	have	an
ORDER	BY	clause	in	the	outer	query.	Nothing	else	counts.
In	old	versions	of	SQL	Server	when	the	inner	query	had	the	combination	of	TOP	(100)

PERCENT	and	ORDER	BY	and	the	outer	query	didn’t	have	an	ORDER	BY	clause,	you	got	the
rows	ordered.	It	wasn’t	a	guaranteed	behavior,	but	it	happened	to	be	the	result	of	the	way	the
optimizer	handled	things.	At	some	point,	Microsoft	added	smarter	optimization	that	optimizes
out	this	meaningless	combination.	Unfortunately,	the	optimizer	doesn’t	yet	optimize	out	the
combination	when	the	inner	query	uses	the	OFFSET	clause	with	0	ROWS,	and	without	a
FETCH	clause,	like	the	following:
Click	here	to	view	code	image

ALTER	VIEW	Sales.USACusts
AS

SELECT
		custid,	companyname,	contactname,	contacttitle,	address,
		city,	region,	postalcode,	country,	phone,	fax
FROM	Sales.Customers
WHERE	country	=	N'USA'
ORDER	BY	region
OFFSET	0	ROWS;
GO

At	the	moment,	when	I	query	the	view	and	don’t	indicate	an	ORDER	BY	clause	in	the	outer
query,	the	result	rows	happen	to	be	sorted	by	region.	But	I	stress—do	not	assume	that’s
guaranteed.	It	happens	to	be	the	case	because	of	the	current	optimization.	If	you	need	a
guarantee	that	the	rows	will	be	returned	sorted,	you	need	an	ORDER	BY	clause	in	the	outer
query.
Do	not	confuse	the	behavior	of	a	query	that	is	used	to	define	a	table	expression	with	an

outer	query.	An	outer	query	with	an	ORDER	BY	clause	and	a	TOP	or	OFFSET-FETCH	option
does	guarantee	presentation	order.	The	simple	rule	is	that	if	the	outer	query	has	an	ORDER	BY
clause,	you	have	a	presentation	ordering	guarantee,	regardless	of	whether	that	ORDER	BY
clause	also	serves	another	purpose.

View	options
When	you	create	or	alter	a	view,	you	can	specify	view	attributes	and	options	as	part	of	the
view	definition.	In	the	header	of	the	view,	under	the	WITH	clause,	you	can	specify	attributes
such	as	ENCRYPTION	and	SCHEMABINDING,	and	at	the	end	of	the	query	you	can	specify
WITH	CHECK	OPTION.	The	following	sections	describe	the	purpose	of	these	options.

The	ENCRYPTION	option
The	ENCRYPTION	option	is	available	when	you	create	or	alter	views,	stored	procedures,
triggers,	and	user-defined	functions	(UDFs).	The	ENCRYPTION	option	indicates	that	SQL
Server	will	internally	store	the	text	with	the	definition	of	the	object	in	an	obfuscated	format.
The	obfuscated	text	is	not	directly	visible	to	users	through	any	of	the	catalog	objects—only	to
privileged	users	through	special	means.
Before	you	look	at	the	ENCRYPTION	option,	run	the	following	code	to	alter	the	definition

of	the	USACusts	view	to	its	original	version:
Click	here	to	view	code	image

ALTER	VIEW	Sales.USACusts
AS

SELECT
		custid,	companyname,	contactname,	contacttitle,	address,
		city,	region,	postalcode,	country,	phone,	fax
FROM	Sales.Customers
WHERE	country	=	N'USA';
GO

To	get	the	definition	of	the	view,	invoke	the	OBJECT_DEFINITION	function	like	this:
Click	here	to	view	code	image

SELECT	OBJECT_DEFINITION(OBJECT_ID('Sales.USACusts'));

The	text	with	the	definition	of	the	view	is	available	because	the	view	was	created	without	the
ENCRYPTION	option.	You	get	the	following	output:
Click	here	to	view	code	image

CREATE	VIEW	Sales.USACusts
AS

SELECT
		custid,	companyname,	contactname,	contacttitle,	address,
		city,	region,	postalcode,	country,	phone,	fax
FROM	Sales.Customers
WHERE	country	=	N'USA';

Next,	alter	the	view	definition—only	this	time,	include	the	ENCRYPTION	option:
Click	here	to	view	code	image

ALTER	VIEW	Sales.USACusts	WITH	ENCRYPTION
AS

SELECT
		custid,	companyname,	contactname,	contacttitle,	address,
		city,	region,	postalcode,	country,	phone,	fax
FROM	Sales.Customers
WHERE	country	=	N'USA';
GO

	Note
When	you	alter	a	view,	if	you	want	to	keep	options	you	specified	when	you	created	it,
you	need	to	repeat	those	as	part	of	the	ALTER	VIEW	command;	otherwise,	the	view	will
be	created	without	them.	Altering	a	view	does	retain	existing	permissions,	so	you	do
not	need	to	reassign	those.

Try	again	to	get	the	text	with	the	definition	of	the	view:
Click	here	to	view	code	image

SELECT	OBJECT_DEFINITION(OBJECT_ID('Sales.USACusts'));

This	time	you	get	a	NULL	back.
As	an	alternative	to	the	OBJECT_DEFINITION	function,	you	can	use	the	sp_helptext	stored

procedure	to	get	object	definitions.	For	example,	the	following	code	requests	the	object
definition	of	the	USACusts	view:
Click	here	to	view	code	image

EXEC	sp_helptext	'Sales.USACusts';

Because	in	our	case	the	view	was	created	with	the	ENCRYPTION	option,	you	will	not	get
the	object	definition	back;	instead,	you’ll	get	the	following	message:
Click	here	to	view	code	image

The	text	for	object	'Sales.USACusts'	is	encrypted.

The	SCHEMABINDING	option
The	SCHEMABINDING	option	is	available	to	views	and	UDFs;	it	binds	the	schema	of
referenced	objects	and	columns	to	the	schema	of	the	referencing	object.	It	indicates	that
referenced	objects	cannot	be	dropped	and	that	referenced	columns	cannot	be	dropped	or
altered.
For	example,	alter	the	USACusts	view	with	the	SCHEMABINDING	option:

Click	here	to	view	code	image

ALTER	VIEW	Sales.USACusts	WITH	SCHEMABINDING
AS

SELECT
		custid,	companyname,	contactname,	contacttitle,	address,
		city,	region,	postalcode,	country,	phone,	fax
FROM	Sales.Customers
WHERE	country	=	N'USA';
GO

Now	try	to	drop	the	address	column	from	the	Customers	table:
Click	here	to	view	code	image

ALTER	TABLE	Sales.Customers	DROP	COLUMN	address;

You	get	the	following	error:
Click	here	to	view	code	image

Msg	5074,	Level	16,	State	1,	Line	346
The	object	'USACusts'	is	dependent	on	column	'address'.
Msg	4922,	Level	16,	State	9,	Line	346
ALTER	TABLE	DROP	COLUMN	address	failed	because	one	or	more	objects	access	this
column.

Without	the	SCHEMABINDING	option,	you	would	have	been	allowed	to	make	such	a
schema	change,	as	well	as	drop	the	Customers	table	altogether.	This	can	lead	to	errors	at	run
time	when	you	try	to	query	the	view	and	referenced	objects	or	columns	do	not	exist.	If	you
create	the	view	with	the	SCHEMABINDING	option,	you	can	avoid	these	errors.
To	support	the	SCHEMABINDING	option,	the	object	definition	must	meet	a	couple	of

requirements.	The	query	is	not	allowed	to	use	*	in	the	SELECT	clause;	instead,	you	have	to
explicitly	list	column	names.	Also,	you	must	use	schema-qualified	two-part	names	when
referring	to	objects.	Both	requirements	are	actually	good	practices	in	general.
As	you	can	imagine,	creating	your	objects	with	the	SCHEMABINDING	option	is	a	good

practice.

The	CHECK	OPTION	option
The	purpose	of	CHECK	OPTION	is	to	prevent	modifications	through	the	view	that	conflict
with	the	view’s	filter.
The	query	defining	the	view	USACusts	filters	customers	from	the	United	States.	The	view	is

currently	defined	without	CHECK	OPTION.	This	means	you	can	currently	insert	through	the
view	customers	from	other	countries,	and	you	can	update	the	country	of	existing	customers
through	the	view	to	one	other	than	the	United	States.	For	example,	the	following	code
successfully	inserts	a	customer	from	the	United	Kingdom	through	the	view:
Click	here	to	view	code	image

INSERT	INTO	Sales.USACusts(
		companyname,	contactname,	contacttitle,	address,
		city,	region,	postalcode,	country,	phone,	fax)
VALUES(
		N'Customer	ABCDE',	N'Contact	ABCDE',	N'Title	ABCDE',	N'Address	ABCDE',
		N'London',	NULL,	N'12345',	N'UK',	N'012-3456789',	N'012-3456789');

The	row	was	inserted	through	the	view	into	the	Customers	table.	However,	because	the	view
filters	only	customers	from	the	United	States,	if	you	query	the	view	looking	for	the	new
customer,	you	get	an	empty	set	back:
Click	here	to	view	code	image

SELECT	custid,	companyname,	country
FROM	Sales.USACusts
WHERE	companyname	=	N'Customer	ABCDE';

Query	the	Customers	table	directly	to	look	for	the	new	customer:
Click	here	to	view	code	image

SELECT	custid,	companyname,	country

FROM	Sales.Customers
WHERE	companyname	=	N'Customer	ABCDE';

You	get	the	customer	in	the	output,	because	the	new	row	made	it	to	the	Customers	table:
Click	here	to	view	code	image

custid						companyname								country
-----------	------------------	---------------
92										Customer	ABCDE					UK

Similarly,	if	you	update	a	customer	row	through	the	view,	changing	the	country	attribute	to
a	country	other	than	the	United	States,	the	update	succeeds.	But	that	customer	information
doesn’t	show	up	anymore	in	the	view	because	it	doesn’t	satisfy	the	view’s	query	filter.
If	you	want	to	prevent	modifications	that	conflict	with	the	view’s	filter,	add	WITH	CHECK

OPTION	at	the	end	of	the	query	defining	the	view:
Click	here	to	view	code	image

ALTER	VIEW	Sales.USACusts	WITH	SCHEMABINDING
AS

SELECT
		custid,	companyname,	contactname,	contacttitle,	address,
		city,	region,	postalcode,	country,	phone,	fax
FROM	Sales.Customers
WHERE	country	=	N'USA'
WITH	CHECK	OPTION;
GO

Now	try	to	insert	a	row	that	conflicts	with	the	view’s	filter:
Click	here	to	view	code	image

INSERT	INTO	Sales.USACusts(
		companyname,	contactname,	contacttitle,	address,
		city,	region,	postalcode,	country,	phone,	fax)
VALUES(
		N'Customer	FGHIJ',	N'Contact	FGHIJ',	N'Title	FGHIJ',	N'Address	FGHIJ',
		N'London',	NULL,	N'12345',	N'UK',	N'012-3456789',	N'012-3456789');

You	get	the	following	error:
Click	here	to	view	code	image

Msg	550,	Level	16,	State	1,	Line	387
The	attempted	insert	or	update	failed	because	the	target	view	either	specifies
WITH	CHECK
OPTION	or	spans	a	view	that	specifies	WITH	CHECK	OPTION	and	one	or	more	rows
resulting	from	the
operation	did	not	qualify	under	the	CHECK	OPTION	constraint.
The	statement	has	been	terminated.

When	you’re	done,	run	the	following	code	for	cleanup:
Click	here	to	view	code	image

DELETE	FROM	Sales.Customers
WHERE	custid	>	91;

DROP	VIEW	IF	EXISTS	Sales.USACusts;

Inline	table-valued	functions
Inline	TVFs	are	reusable	table	expressions	that	support	input	parameters.	In	most	respects,
except	for	the	support	for	input	parameters,	inline	TVFs	are	similar	to	views.	For	this	reason,
I	like	to	think	of	inline	TVFs	as	parameterized	views,	even	though	they	are	not	formally
referred	to	this	way.
T-SQL	supports	another	type	of	table	function	called	multi-statement	TVF,	which	populates

and	returns	a	table	variable.	This	type	isn’t	considered	a	table	expression	because	it’s	not
based	on	a	query.
For	example,	the	following	code	creates	an	inline	TVF	called	GetCustOrders	in	the

TSQLV4	database:
Click	here	to	view	code	image

USE	TSQLV4;
DROP	FUNCTION	IF	EXISTS	dbo.GetCustOrders;
GO
CREATE	FUNCTION	dbo.GetCustOrders
		(@cid	AS	INT)	RETURNS	TABLE
AS
RETURN
		SELECT	orderid,	custid,	empid,	orderdate,	requireddate,
				shippeddate,	shipperid,	freight,	shipname,	shipaddress,	shipcity,
				shipregion,	shippostalcode,	shipcountry
		FROM	Sales.Orders
		WHERE	custid	=	@cid;
GO

This	inline	TVF	accepts	an	input	parameter	called	@cid,	representing	a	customer	ID,	and
returns	all	orders	placed	by	the	input	customer.	You	query	inline	TVFs	by	using	DML
statements,	which	is	the	same	way	you	query	other	tables.	If	the	function	accepts	input
parameters,	you	specify	those	in	parentheses	following	the	function’s	name.	Also,	make	sure
you	provide	an	alias	for	the	table	expression.	Providing	a	table	expression	with	an	alias	is	not
always	a	requirement,	but	it	is	a	good	practice	because	it	makes	your	code	more	readable	and
less	prone	to	errors.	For	example,	the	following	code	queries	the	function	to	request	all
orders	that	were	placed	by	customer	1:
Click	here	to	view	code	image

SELECT	orderid,	custid
FROM	dbo.GetCustOrders(1)	AS	O;

This	code	returns	the	following	output:
orderid					custid
-----------	-----------
10643							1
10692							1
10702							1
10835							1
10952							1
11011							1

As	with	tables,	you	can	refer	to	an	inline	TVF	as	part	of	a	join.	For	example,	the	following
query	joins	the	inline	TVF	returning	customer	1’s	orders	with	the	Sales.OrderDetails	table,

matching	the	orders	with	their	respective	order	lines:
Click	here	to	view	code	image

SELECT	O.orderid,	O.custid,	OD.productid,	OD.qty
FROM	dbo.GetCustOrders(1)	AS	O
		INNER	JOIN	Sales.OrderDetails	AS	OD
				ON	O.orderid	=	OD.orderid;

This	code	returns	the	following	output:
Click	here	to	view	code	image

orderid					custid						productid			qty
-----------	-----------	-----------	------
10643							1											28										15
10643							1											39										21
10643							1											46											2
10692							1											63										20
10702							1												3											6
10702							1											76										15
10835							1											59										15
10835							1											77											2
10952							1												6										16
10952							1											28											2
11011							1											58										40
11011							1											71										20

When	you’re	done,	run	the	following	code	for	cleanup:
Click	here	to	view	code	image

DROP	FUNCTION	IF	EXISTS	dbo.GetCustOrders;

The	APPLY	operator
The	APPLY	operator	is	a	powerful	table	operator.	Like	all	table	operators,	APPLY	is	used	in
the	FROM	clause	of	a	query.	There	are	two	supported	types	of	APPLY:	CROSS	APPLY	and
OUTER	APPLY.	Like	the	JOIN	table	operator,	APPLY	performs	its	work	in	logical-query
phases.	CROSS	APPLY	implements	only	one	logical-query	processing	phase,	whereas	OUTER
APPLY	implements	two.

	Note
APPLY	isn’t	standard;	the	standard	counterpart	is	called	LATERAL,	but	the	standard
form	wasn’t	implemented	in	SQL	Server.

The	APPLY	operator	operates	on	two	input	tables;	I’ll	refer	to	them	as	the	“left”	and	“right”
tables.	The	right	table	is	typically	a	derived	table	or	a	TVF.	The	CROSS	APPLY	operator
implements	one	logical-query	processing	phase—it	applies	the	right	table	to	each	row	from
the	left	table	and	produces	a	result	table	with	the	unified	result	sets.
It	might	sound	like	the	CROSS	APPLY	operator	is	similar	to	a	cross	join,	and	in	a	sense

that’s	true.	For	example,	the	following	two	queries	return	the	same	result	sets:

Click	here	to	view	code	image

SELECT	S.shipperid,	E.empid
FROM	Sales.Shippers	AS	S
		CROSS	JOIN	HR.Employees	AS	E;

SELECT	S.shipperid,	E.empid
FROM	Sales.Shippers	AS	S
		CROSS	APPLY	HR.Employees	AS	E;

Remember	that	a	join	treats	its	two	inputs	as	a	set,	and	therefore	there’s	no	order	between
them.	This	means	you	cannot	refer	on	one	side	to	elements	from	the	other.	With	APPLY,	the
left	side	is	evaluated	first,	and	the	right	side	is	evaluated	per	row	from	the	left.	So	the	right
side	can	have	references	to	elements	from	the	left.	For	example,	the	following	code	uses	the
CROSS	APPLY	operator	to	return	the	three	most	recent	orders	for	each	customer:
Click	here	to	view	code	image

SELECT	C.custid,	A.orderid,	A.orderdate
FROM	Sales.Customers	AS	C
		CROSS	APPLY
				(SELECT	TOP	(3)	orderid,	empid,	orderdate,	requireddate
					FROM	Sales.Orders	AS	O
					WHERE	O.custid	=	C.custid
					ORDER	BY	orderdate	DESC,	orderid	DESC)	AS	A;

You	can	think	of	the	table	expression	A	as	a	correlated	derived	table.	In	terms	of	logical-
query	processing,	the	right	table	expression	(a	derived	table,	in	this	case)	is	applied	to	each
row	from	the	Customers	table.	Notice	in	the	inner	query’s	filter	the	reference	to	the	attribute
C.custid	from	the	left	table.	The	derived	table	returns	the	three	most	recent	orders	for	the
current	customer	from	the	left	row.	Because	the	derived	table	is	applied	to	each	left	row,	the
CROSS	APPLY	operator	returns	the	three	most	recent	orders	for	each	customer.
Here’s	the	output	of	this	query,	shown	in	abbreviated	form:

Click	here	to	view	code	image

custid						orderid					orderdate
-----------	-----------	-----------
1											11011							2016-04-09
1											10952							2016-03-16
1											10835							2016-01-15
2											10926							2016-03-04
2											10759							2015-11-28
2											10625							2015-08-08
3											10856							2016-01-28
3											10682							2015-09-25
3											10677							2015-09-22
...

(263	row(s)	affected)

Remember	that	you	can	use	the	standard	OFFSET-FETCH	option	instead	of	TOP,	like	this:
Click	here	to	view	code	image

SELECT	C.custid,	A.orderid,	A.orderdate
FROM	Sales.Customers	AS	C
		CROSS	APPLY

				(SELECT	orderid,	empid,	orderdate,	requireddate
					FROM	Sales.Orders	AS	O
					WHERE	O.custid	=	C.custid
					ORDER	BY	orderdate	DESC,	orderid	DESC
					OFFSET	0	ROWS	FETCH	NEXT	3	ROWS	ONLY)	AS	A;

If	the	right	table	expression	returns	an	empty	set,	the	CROSS	APPLY	operator	does	not
return	the	corresponding	left	row.	For	example,	customers	22	and	57	did	not	place	orders.	In
both	cases,	the	derived	table	is	an	empty	set;	therefore,	those	customers	are	not	returned	in	the
output.	If	you	want	to	return	rows	from	the	left	side	even	if	there	are	no	matches	on	the	right
side,	use	OUTER	APPLY.	This	operator	has	a	second	logical	phase	that	preserves	all	left	rows.
It	keeps	the	rows	from	the	left	side	for	which	there	are	no	matches	on	the	right	side,	and	it
uses	NULLs	as	placeholders	on	the	right	side.	You	probably	noticed	that,	in	the	sense	that
OUTER	APPLY	preserves	all	left	rows,	it’s	similar	to	a	LEFT	OUTER	JOIN.	Because	of	the
way	APPLY	works,	there’s	no	APPLY	equivalent	of	a	RIGHT	OUTER	JOIN.
For	example,	run	the	following	code	to	return	the	three	most	recent	orders	for	each

customer	and	include	in	the	output	customers	who	did	not	place	orders:
Click	here	to	view	code	image

SELECT	C.custid,	A.orderid,	A.orderdate
FROM	Sales.Customers	AS	C
		OUTER	APPLY
				(SELECT	TOP	(3)	orderid,	empid,	orderdate,	requireddate
					FROM	Sales.Orders	AS	O
					WHERE	O.custid	=	C.custid
					ORDER	BY	orderdate	DESC,	orderid	DESC)	AS	A;

This	time,	customers	22	and	57	are	included	in	the	output,	which	is	shown	here	in
abbreviated	form:
Click	here	to	view	code	image

custid						orderid					orderdate
-----------	-----------	-----------
1											11011							2016-04-09
1											10952							2016-03-16
1											10835							2016-01-15
2											10926							2016-03-04
2											10759							2015-11-28
2											10625							2015-08-08
3											10856							2016-01-28
3											10682							2015-09-25
3											10677							2015-09-22
...
22										NULL								NULL
...
57										NULL								NULL
...

(265	row(s)	affected)

You	might	find	it	more	convenient	to	work	with	inline	TVFs	instead	of	derived	tables.	This
way,	your	code	will	be	simpler	to	follow	and	maintain.	For	example,	the	following	code
creates	an	inline	TVF	called	TopOrders	that	accepts	as	inputs	a	customer	ID	(@custid)	and	a
number	(@n),	and	returns	the	@n	most	recent	orders	for	customer	@custid:

Click	here	to	view	code	image

DROP	FUNCTION	IF	EXISTS	dbo.TopOrders;
GO
CREATE	FUNCTION	dbo.TopOrders
		(@custid	AS	INT,	@n	AS	INT)
		RETURNS	TABLE
AS
RETURN
		SELECT	TOP	(@n)	orderid,	empid,	orderdate,	requireddate
		FROM	Sales.Orders
		WHERE	custid	=	@custid
		ORDER	BY	orderdate	DESC,	orderid	DESC;
GO

You	can	now	substitute	the	use	of	the	derived	table	from	the	previous	examples	with	the
new	function:
Click	here	to	view	code	image

SELECT
		C.custid,	C.companyname,
		A.orderid,	A.empid,	A.orderdate,	A.requireddate
FROM	Sales.Customers	AS	C
		CROSS	APPLY	dbo.TopOrders(C.custid,	3)	AS	A;

In	terms	of	physical	processing,	nothing	really	changed	because,	as	I	stated	earlier,	the
definition	of	table	expressions	is	expanded,	and	SQL	Server	will	in	any	case	end	up	querying
the	underlying	objects	directly.

Conclusion
Table	expressions	can	help	you	simplify	your	code,	improve	its	maintainability,	and
encapsulate	querying	logic.	When	you	need	to	use	table	expressions	and	are	not	planning	to
reuse	their	definitions,	use	derived	tables	or	CTEs.	CTEs	have	a	couple	of	advantages	over
derived	tables;	they	are	easier	to	maintain	because	you	do	not	nest	them	like	you	do	derived
tables.	Also,	you	can	refer	to	multiple	instances	of	the	same	CTE,	which	you	cannot	do	with
derived	tables.
When	you	need	to	define	reusable	table	expressions,	use	views	or	inline	TVFs.	When	you

do	not	need	to	support	input	parameters,	use	views;	otherwise,	use	inline	TVFs.
Use	the	APPLY	operator	when	you	want	to	apply	a	correlated	table	expression	to	each	row

from	a	source	table	and	unify	all	result	sets	into	one	result	table.

Exercises
This	section	provides	exercises	to	help	you	familiarize	yourself	with	the	subjects	discussed	in
this	chapter.	All	the	exercises	in	this	chapter	require	your	session	to	be	connected	to	the
TSQLV4	database.

Exercise	1
The	following	query	attempts	to	filter	orders	that	were	not	placed	on	the	last	day	of	the	year.
It’s	supposed	to	return	the	order	ID,	order	date,	customer	ID,	employee	ID,	and	respective
end-of-year	date	for	each	order:
Click	here	to	view	code	image

SELECT	orderid,	orderdate,	custid,	empid,
		DATEFROMPARTS(YEAR(orderdate),	12,	31)	AS	endofyear
FROM	Sales.Orders
WHERE	orderdate	<>	endofyear;

When	you	try	to	run	this	query,	you	get	the	following	error:
Click	here	to	view	code	image

Msg	207,	Level	16,	State	1,	Line	233
Invalid	column	name	'endofyear'.

Explain	what	the	problem	is,	and	suggest	a	valid	solution.

Exercise	2-1
Write	a	query	that	returns	the	maximum	value	in	the	orderdate	column	for	each	employee:

	Table	involved:	TSQLV4	database,	Sales.Orders	table
	Desired	output:
empid							maxorderdate
-----------	-------------
3											2016-04-30
6											2016-04-23
9											2016-04-29
7											2016-05-06
1											2016-05-06
4											2016-05-06
2											2016-05-05
5											2016-04-22
8											2016-05-06

(9	row(s)	affected)

Exercise	2-2
Encapsulate	the	query	from	Exercise	2-1	in	a	derived	table.	Write	a	join	query	between	the
derived	table	and	the	Orders	table	to	return	the	orders	with	the	maximum	order	date	for	each
employee:

	Table	involved:	Sales.Orders
	Desired	output:

Click	here	to	view	code	image

empid							orderdate			orderid					custid
-----------	-----------	-----------	-----------
9											2016-04-29		11058							6
8											2016-05-06		11075							68
7											2016-05-06		11074							73

6											2016-04-23		11045							10
5											2016-04-22		11043							74
4											2016-05-06		11076							9
3											2016-04-30		11063							37
2											2016-05-05		11073							58
2											2016-05-05		11070							44
1											2016-05-06		11077							65

(10	row(s)	affected)

Exercise	3-1
Write	a	query	that	calculates	a	row	number	for	each	order	based	on	orderdate,	orderid
ordering:

	Table	involved:	Sales.Orders
	Desired	output	(abbreviated):

Click	here	to	view	code	image

orderid					orderdate			custid						empid							rownum
-----------	-----------	-----------	-----------	-------
10248							2014-07-04		85										5											1
10249							2014-07-05		79										6											2
10250							2014-07-08		34										4											3
10251							2014-07-08		84										3											4
10252							2014-07-09		76										4											5
10253							2014-07-10		34										3											6
10254							2014-07-11		14										5											7
10255							2014-07-12		68										9											8
10256							2014-07-15		88										3											9
10257							2014-07-16		35										4											10
...

(830	row(s)	affected)

Exercise	3-2
Write	a	query	that	returns	rows	with	row	numbers	11	through	20	based	on	the	row-number
definition	in	Exercise	3-1.	Use	a	CTE	to	encapsulate	the	code	from	Exercise	3-1:

	Table	involved:	Sales.Orders
	Desired	output:

Click	here	to	view	code	image

orderid					orderdate			custid						empid							rownum
-----------	-----------	-----------	-----------	-------
10258							2014-07-17		20										1											11
10259							2014-07-18		13										4											12
10260							2014-07-19		56										4											13
10261							2014-07-19		61										4											14
10262							2014-07-22		65										8											15
10263							2014-07-23		20										9											16
10264							2014-07-24		24										6											17
10265							2014-07-25		7											2											18
10266							2014-07-26		87										3											19
10267							2014-07-29		25										4											20

(10	row(s)	affected)

Exercise	4	(optional,	advanced)
Write	a	solution	using	a	recursive	CTE	that	returns	the	management	chain	leading	to	Patricia
Doyle	(employee	ID	9):

	Table	involved:	HR.Employees
	Desired	output:

Click	here	to	view	code	image

empid							mgrid							firstname		lastname
-----------	-----------	----------	--------------------
9											5											Patricia			Doyle
5											2											Sven							Mortensen
2											1											Don								Funk
1											NULL								Sara							Davis

(4	row(s)	affected)

Exercise	5-1
Create	a	view	that	returns	the	total	quantity	for	each	employee	and	year:

	Tables	involved:	Sales.Orders	and	Sales.OrderDetails
	When	running	the	following	code:

Click	here	to	view	code	image

SELECT	*	FROM	Sales.VEmpOrders	ORDER	BY	empid,	orderyear;

	Desired	output:
Click	here	to	view	code	image

empid							orderyear			qty
-----------	-----------	-----------
1											2014								1620
1											2015								3877
1											2016								2315
2											2014								1085
2											2015								2604
2											2016								2366
3											2014								940
3											2015								4436
3											2016								2476
4											2014								2212
4											2015								5273
4											2016								2313
5											2014								778
5											2015								1471
5											2016								787
6											2014								963
6											2015								1738
6											2016								826
7											2014								485
7											2015								2292
7											2016								1877
8											2014								923

8											2015								2843
8											2016								2147
9											2014								575
9											2015								955
9											2016								1140

(27	row(s)	affected)

Exercise	5-2	(optional,	advanced)
Write	a	query	against	Sales.VEmpOrders	that	returns	the	running	total	quantity	for	each
employee	and	year:

	Table	involved:	Sales.VEmpOrders	view
	Desired	output:

Click	here	to	view	code	image

empid							orderyear			qty									runqty
-----------	-----------	-----------	-----------
1											2014								1620								1620
1											2015								3877								5497
1											2016								2315								7812
2											2014								1085								1085
2											2015								2604								3689
2											2016								2366								6055
3											2014								940									940
3											2015								4436								5376
3											2016								2476								7852
4											2014								2212								2212
4											2015								5273								7485
4											2016								2313								9798
5											2014								778									778
5											2015								1471								2249
5											2016								787									3036
6											2014								963									963
6											2015								1738								2701
6											2016								826									3527
7											2014								485									485
7											2015								2292								2777
7											2016								1877								4654
8											2014								923									923
8											2015								2843								3766
8											2016								2147								5913
9											2014								575									575
9											2015								955									1530
9											2016								1140								2670

(27	row(s)	affected)

Exercise	6-1
Create	an	inline	TVF	that	accepts	as	inputs	a	supplier	ID	(@supid	AS	INT)	and	a	requested
number	of	products	(@n	AS	INT).	The	function	should	return	@n	products	with	the	highest
unit	prices	that	are	supplied	by	the	specified	supplier	ID:

	Table	involved:	Production.Products
	When	issuing	the	following	query:

Click	here	to	view	code	image

SELECT	*	FROM	Production.TopProducts(5,	2);

	Desired	output:
Click	here	to	view	code	image

productid			productname								unitprice
-----------	------------------	---------------
12										Product	OSFNS						38.00
11										Product	QMVUN						21.00

(2	row(s)	affected)

Exercise	6-2
Using	the	CROSS	APPLY	operator	and	the	function	you	created	in	Exercise	6-1,	return	the	two
most	expensive	products	for	each	supplier:

	Table	involved:	Production.Suppliers
	Desired	output	(shown	here	in	abbreviated	form):

Click	here	to	view	code	image

supplierid		companyname							productid			productname					unitprice
-----------	-----------------	-----------	---------------	----------
8											Supplier	BWGYE				20										Product	QHFFP			81.00
8											Supplier	BWGYE				68										Product	TBTBL			12.50
20										Supplier	CIYNM				43										Product	ZZZHR			46.00
20										Supplier	CIYNM				44										Product	VJIEO			19.45
23										Supplier	ELCRN				49										Product	FPYPN			20.00
23										Supplier	ELCRN				76										Product	JYGFE			18.00
5											Supplier	EQPNC				12										Product	OSFNS			38.00
5											Supplier	EQPNC				11										Product	QMVUN			21.00
...

(55	row(s)	affected)

	When	you’re	done,	run	the	following	code	for	cleanup:
Click	here	to	view	code	image

DROP	VIEW	IF	EXISTS	Sales.VEmpOrders;
DROP	FUNCTION	IF	EXISTS	Production.TopProducts;

Solutions
This	section	provides	solutions	to	the	exercises	in	the	preceding	section.

Exercise	1
The	problem	is	that	in	terms	of	logical-query	processing,	the	SELECT	clause	is	evaluated
after	the	WHERE	clause.	This	means	you’re	not	allowed	to	refer	to	an	alias	you	create	in	the
SELECT	clause	within	the	WHERE	clause.	One	solution	that	doesn’t	require	you	to	repeat
lengthy	expressions	is	to	define	a	table	expression	such	as	a	CTE	based	on	a	query	that
defines	the	alias,	and	then	refer	to	the	alias	multiple	times	in	the	outer	query.	In	our	case,	the
solution	looks	like	this:

Click	here	to	view	code	image

WITH	C	AS
(
		SELECT	*,
				DATEFROMPARTS(YEAR(orderdate),	12,	31)	AS	endofyear
		FROM	Sales.Orders
)
SELECT	orderid,	orderdate,	custid,	empid,	endofyear
FROM	C
WHERE	orderdate	<>	endofyear;

Exercise	2-1
This	exercise	is	just	a	preliminary	step	required	for	the	next	exercise.	This	step	involves
writing	a	query	that	returns	the	maximum	order	date	for	each	employee:
Click	here	to	view	code	image

USE	TSQLV4;

SELECT	empid,	MAX(orderdate)	AS	maxorderdate
FROM	Sales.Orders
GROUP	BY	empid;

Exercise	2-2
This	exercise	requires	you	to	use	the	query	from	the	previous	step	to	define	a	derived	table
and	join	this	derived	table	with	the	Orders	table	to	return	the	orders	with	the	maximum	order
date	for	each	employee,	like	the	following:
Click	here	to	view	code	image

SELECT	O.empid,	O.orderdate,	O.orderid,	O.custid
FROM	Sales.Orders	AS	O
		INNER	JOIN	(SELECT	empid,	MAX(orderdate)	AS	maxorderdate
														FROM	Sales.Orders
														GROUP	BY	empid)	AS	D
				ON	O.empid	=	D.empid
				AND	O.orderdate	=	D.maxorderdate;

Exercise	3-1
This	exercise	is	a	preliminary	step	for	the	next	exercise.	It	requires	you	to	query	the	Orders
table	and	calculate	row	numbers	based	on	orderdate,	orderid	ordering,	like	the	following:
Click	here	to	view	code	image

SELECT	orderid,	orderdate,	custid,	empid,
		ROW_NUMBER()	OVER(ORDER	BY	orderdate,	orderid)	AS	rownum
FROM	Sales.Orders;

Exercise	3-2
This	exercise	requires	you	to	define	a	CTE	based	on	the	query	from	the	previous	step	and
filter	only	rows	with	row	numbers	in	the	range	11	through	20	from	the	CTE,	like	the
following:
Click	here	to	view	code	image

WITH	OrdersRN	AS
(
		SELECT	orderid,	orderdate,	custid,	empid,
				ROW_NUMBER()	OVER(ORDER	BY	orderdate,	orderid)	AS	rownum
		FROM	Sales.Orders
)
SELECT	*	FROM	OrdersRN	WHERE	rownum	BETWEEN	11	AND	20;

You	might	wonder	why	you	need	a	table	expression	here.	Window	functions	(such	as	the
ROW_NUMBER	function)	are	allowed	only	in	the	SELECT	and	ORDER	BY	clauses	of	a	query,
and	not	directly	in	the	WHERE	clause.	By	using	a	table	expression,	you	can	invoke	the
ROW_NUMBER	function	in	the	SELECT	clause,	assign	an	alias	to	the	result	column,	and	refer
to	that	alias	in	the	WHERE	clause	of	the	outer	query.

Exercise	4
You	can	think	of	this	exercise	as	the	inverse	of	the	request	to	return	an	employee	and	all
subordinates	in	all	levels.	Here,	the	anchor	member	is	a	query	that	returns	the	row	for
employee	9.	The	recursive	member	joins	the	CTE	(call	it	C)—representing	the
subordinate/child	from	the	previous	level—with	the	Employees	table	(call	it	P)—representing
the	manager/parent	in	the	next	level.	This	way,	each	invocation	of	the	recursive	member
returns	the	manager	from	the	next	level,	until	no	next-level	manager	is	found	(in	the	case	of
the	CEO).
Here’s	the	complete	solution	query:

Click	here	to	view	code	image

WITH	EmpsCTE	AS
(
		SELECT	empid,	mgrid,	firstname,	lastname
		FROM	HR.Employees
		WHERE	empid	=	9

		UNION	ALL

		SELECT	P.empid,	P.mgrid,	P.firstname,	P.lastname
		FROM	EmpsCTE	AS	C
				INNER	JOIN	HR.Employees	AS	P
						ON	C.mgrid	=	P.empid
)
SELECT	empid,	mgrid,	firstname,	lastname
FROM	EmpsCTE;

Exercise	5-1
This	exercise	is	a	preliminary	step	for	the	next	exercise.	Here	you	are	required	to	define	a
view	based	on	a	query	that	joins	the	Orders	and	OrderDetails	tables,	group	the	rows	by
employee	ID	and	order	year,	and	return	the	total	quantity	for	each	group.	The	view	definition
should	look	like	the	following:
Click	here	to	view	code	image

USE	TSQLV4;
DROP	VIEW	IF	EXISTS	Sales.VEmpOrders;
GO

CREATE	VIEW		Sales.VEmpOrders
AS

SELECT
		empid,
		YEAR(orderdate)	AS	orderyear,
		SUM(qty)	AS	qty
FROM	Sales.Orders	AS	O
		INNER	JOIN	Sales.OrderDetails	AS	OD
				ON	O.orderid	=	OD.orderid
GROUP	BY
		empid,
		YEAR(orderdate);
GO

Exercise	5-2
In	this	exercise,	you	query	the	VEmpOrders	view	and	return	the	running	total	quantity	for	each
employee	and	order	year.	To	achieve	this,	you	can	write	a	query	against	the	VEmpOrders	view
(calling	it	V1)	that	returns	from	each	row	the	employee	ID,	order	year,	and	quantity.	In	the
SELECT	list,	you	can	incorporate	a	subquery	against	a	second	instance	of	VEmpOrders
(calling	it	V2),	that	returns	the	sum	of	all	quantities	from	the	rows	where	the	employee	ID	is
equal	to	the	one	in	V1,	and	the	order	year	is	smaller	than	or	equal	to	the	one	in	V1.	The
complete	solution	query	looks	like	the	following:
Click	here	to	view	code	image

SELECT	empid,	orderyear,	qty,
		(SELECT	SUM(qty)
			FROM		Sales.VEmpOrders	AS	V2
			WHERE	V2.empid	=	V1.empid
					AND	V2.orderyear	<=	V1.orderyear)	AS	runqty
FROM		Sales.VEmpOrders	AS	V1
ORDER	BY	empid,	orderyear;

Note	that	in	Chapter	7,	“Beyond	the	fundamentals	of	querying,”	you’ll	learn	techniques	to
compute	running	totals	by	using	window	functions.

Exercise	6-1
This	exercise	requires	you	to	define	an	inline	TVF	called	TopProducts	that	accepts	a	supplier
ID	(@supid)	and	a	number	(@n)	and	is	supposed	to	return	the	@n	most	expensive	products
supplied	by	the	input	supplier	ID.	Here’s	how	the	function	definition	should	look:
Click	here	to	view	code	image

USE	TSQLV4;
DROP	FUNCTION	IF	EXISTS	Production.TopProducts;
GO
CREATE	FUNCTION	Production.TopProducts
		(@supid	AS	INT,	@n	AS	INT)
		RETURNS	TABLE
AS
RETURN
		SELECT	TOP	(@n)	productid,	productname,	unitprice
		FROM	Production.Products
		WHERE	supplierid	=	@supid

		ORDER	BY	unitprice	DESC;
GO

Alternatively,	you	can	use	the	OFFSET-FETCH	filter.	You	replace	the	inner	query	in	the
function	with	the	following	one:
Click	here	to	view	code	image

		SELECT	productid,	productname,	unitprice
		FROM	Production.Products
		WHERE	supplierid	=	@supid
		ORDER	BY	unitprice	DESC
		OFFSET	0	ROWS	FETCH	NEXT	@n	ROWS	ONLY;

Exercise	6-2
In	this	exercise,	you	write	a	query	against	the	Production.Suppliers	table	and	use	the	CROSS
APPLY	operator	to	apply	the	function	you	defined	in	the	previous	step	to	each	supplier.	Your
query	is	supposed	to	return	the	two	most	expensive	products	for	each	supplier.	Here’s	the
solution	query:
Click	here	to	view	code	image

SELECT	S.supplierid,	S.companyname,	P.productid,	P.productname,	P.unitprice
FROM	Production.Suppliers	AS	S
		CROSS	APPLY	Production.TopProducts(S.supplierid,	2)	AS	P;

Chapter	6.	Set	operators

Set	operators	are	operators	that	combine	rows	from	two	query	result	sets	(or	multisets).	Some
of	the	operators	remove	duplicates	from	the	result,	and	hence	return	a	set,	whereas	others
don’t,	and	hence	return	a	multiset.	T-SQL	supports	the	following	operators:	UNION,	UNION
ALL,	INTERSECT,	and	EXCEPT.	In	this	chapter,	I	first	introduce	the	general	form	and
requirements	of	these	operators,	and	then	I	describe	each	operator	in	detail.
The	general	form	of	a	query	with	a	set	operator	is	as	follows:
Input	Query1
<set_operator>
Input	Query2
[ORDER	BY	...];

A	set	operator	compares	complete	rows	between	the	results	of	the	two	input	queries
involved.	Whether	a	row	will	be	returned	in	the	result	of	the	operator	depends	on	the	outcome
of	the	comparison	and	the	operator	used.	Because	a	set	operator	expects	multisets	as	inputs,
the	two	queries	involved	cannot	have	ORDER	BY	clauses.	Remember	that	a	query	with	an
ORDER	BY	clause	does	not	return	a	multiset—it	returns	a	cursor.	However,	although	the
queries	involved	cannot	have	ORDER	BY	clauses,	you	can	optionally	add	an	ORDER	BY
clause	to	the	result	of	the	operator.	If	you’re	wondering	how	you	apply	a	set	operator	to
queries	with	TOP	and	OFFSET-FETCH	filters,	I’ll	get	to	this	later	in	the	chapter	in	the	section
“Circumventing	unsupported	logical	phases.”
In	terms	of	logical-query	processing,	each	of	the	individual	queries	can	have	all	logical-

query	processing	phases	except	for	a	presentation	ORDER	BY,	as	I	just	explained.	The
operator	is	applied	to	the	results	of	the	two	queries,	and	the	outer	ORDER	BY	clause	(if	one
exists)	is	applied	to	the	result	of	the	operator.
The	two	input	queries	must	produce	results	with	the	same	number	of	columns,	and

corresponding	columns	must	have	compatible	data	types.	By	compatible	data	types,	I	mean
that	the	data	type	that	is	lower	in	terms	of	data-type	precedence	must	be	implicitly	convertible
to	the	higher	data	type.	Of	course,	you	also	can	explicitly	convert	the	data	type	of	a	column	in
one	query	to	the	data	type	of	the	corresponding	column	in	the	other	query	using	the	CAST	or
CONVERT	function.
The	names	of	the	columns	in	the	result	are	determined	by	the	first	query;	therefore,	if	you

need	to	assign	aliases	to	result	columns,	you	should	assign	those	in	the	first	query.
Interestingly,	when	a	set	operator	compares	rows	between	the	two	inputs,	it	doesn’t	use	an

equality	operator;	rather,	it	uses	a	so-called	distinct	predicate.	This	predicate	produces	a
TRUE	when	comparing	two	NULLs.	I’ll	demonstrate	the	importance	of	this	point	later	in	the
chapter.
Standard	SQL	supports	two	“flavors”	of	each	operator—DISTINCT	(the	default)	and	ALL.

The	DISTINCT	flavor	eliminates	duplicates	and	returns	a	set.	ALL	doesn’t	attempt	to	remove
duplicates	and	therefore	returns	a	multiset.	All	three	operators	in	T-SQL	support	an	implicit
distinct	version,	but	only	the	UNION	operator	supports	the	ALL	version.	In	terms	of	syntax,	T-

SQL	doesn’t	allow	you	to	specify	the	DISTINCT	clause	explicitly.	Instead,	it’s	implied	when
you	don’t	specify	ALL.	I’ll	provide	alternatives	to	the	missing	INTERSECT	ALL	and	EXCEPT
ALL	operators	in	the	“The	INTERSECT	ALL	operator”	and	“The	EXCEPT	ALL	operator”
sections	later	in	this	chapter.

The	UNION	operator
The	UNION	operator	unifies	the	results	of	two	input	queries.	If	a	row	appears	in	any	of	the
input	sets,	it	will	appear	in	the	result	of	the	UNION	operator.	T-SQL	supports	both	the	UNION
ALL	and	UNION	(implicit	DISTINCT)	flavors	of	the	UNION	operator.
Figure	6-1	illustrates	the	UNION	operator.	The	shaded	area	represents	the	result	of	the

operator.	The	nonshaded	areas	reflect	the	fact	that	the	operator	doesn’t	have	to	include	all
attributes	of	the	original	relations.

FIGURE	6-1	The	UNION	operator.

The	UNION	ALL	operator
The	UNION	ALL	operator	unifies	the	two	input	query	results	without	attempting	to	remove
duplicates	from	the	result.	Assuming	that	Query1	returns	m	rows	and	Query2	returns	n	rows,
Query1	UNION	ALL	Query2	returns	m	+	n	rows.
For	example,	the	following	code	uses	the	UNION	ALL	operator	to	unify	employee

locations	and	customer	locations:
Click	here	to	view	code	image

USE	TSQLV4;

SELECT	country,	region,	city	FROM	HR.Employees
UNION	ALL
SELECT	country,	region,	city	FROM	Sales.Customers;

The	result	has	100	rows—9	from	the	Employees	table	and	91	from	the	Customers	table—
and	is	shown	here	in	abbreviated	form:
Click	here	to	view	code	image

country									region										city

---------------	---------------	---------------
USA													WA														Seattle
USA													WA														Tacoma
USA													WA														Kirkland
USA													WA														Redmond
UK														NULL												London
UK														NULL												London
UK														NULL												London
...
Finland									NULL												Oulu
Brazil										SP														Resende
USA													WA														Seattle
Finland									NULL												Helsinki
Poland										NULL												Warszawa

(100	row(s)	affected)

Because	UNION	ALL	doesn’t	eliminate	duplicates,	the	result	is	a	multiset	and	not	a	set.	The
same	row	can	appear	multiple	times	in	the	result,	as	is	the	case	with	(UK,	NULL,	London)	in
the	result	of	this	query.

The	UNION	(DISTINCT)	operator
The	UNION	(implicit	DISTINCT)	operator	unifies	the	results	of	the	two	queries	and	eliminates
duplicates.	Note	that	if	a	row	appears	in	both	input	sets,	it	will	appear	only	once	in	the	result;
in	other	words,	the	result	is	a	set	and	not	a	multiset.
For	example,	the	following	code	returns	distinct	locations	that	are	either	employee

locations	or	customer	locations:
Click	here	to	view	code	image

SELECT	country,	region,	city	FROM	HR.Employees
UNION
SELECT	country,	region,	city	FROM	Sales.Customers;

This	code	returns	71	distinct	rows	(unlike	the	100	rows	in	the	result	with	the	duplicates),	as
shown	here	in	abbreviated	form:
Click	here	to	view	code	image

country									region										city
---------------	---------------	---------------
Argentina							NULL												Buenos	Aires
Austria									NULL												Graz
Austria									NULL												Salzburg
Belgium									NULL												Bruxelles
Belgium									NULL												Charleroi
...
USA													WY														Lander
Venezuela							DF														Caracas
Venezuela							Lara												Barquisimeto
Venezuela							Nueva	Esparta			I.	de	Margarita
Venezuela							Táchira									San	Cristóbal

(71	row(s)	affected)

So	when	should	you	use	UNION	ALL	and	when	should	you	use	UNION?	If	duplicates	are

possible	in	the	unified	result	and	you	do	not	need	to	return	them,	use	UNION.	Otherwise,	use
UNION	ALL.	If	duplicates	cannot	exist	when	unifying	the	inputs,	UNION	and	UNION	ALL	will
return	the	same	result.	However,	in	such	a	case	I	recommend	you	use	UNION	ALL	so	that	you
don’t	pay	the	unnecessary	performance	penalty	related	to	checking	for	duplicates.

The	INTERSECT	Operator
The	INTERSECT	operator	returns	only	the	rows	that	are	common	to	the	results	of	the	two
input	queries.	Figure	6-2	illustrates	this	operator.

FIGURE	6-2	The	INTERSECT	operator.

The	INTERSECT	(DISTINCT)	operator
The	INTERSECT	operator	(implied	DISTINCT)	returns	only	distinct	rows	that	appear	in	both
input	query	results.	As	long	as	a	row	appears	at	least	once	in	both	query	results,	it’s	returned
only	once	in	the	operator ’s	result.
For	example,	the	following	code	returns	distinct	locations	that	are	both	employee	locations

and	customer	locations:
Click	here	to	view	code	image

SELECT	country,	region,	city	FROM	HR.Employees
INTERSECT
SELECT	country,	region,	city	FROM	Sales.Customers;

This	query	returns	the	following	output:
Click	here	to	view	code	image

country									region										city
---------------	---------------	---------------
UK														NULL												London
USA													WA														Kirkland
USA													WA														Seattle

I	mentioned	earlier	that	when	these	operators	compare	rows,	they	use	an	implied	distinct
predicate,	which	returns	a	TRUE	when	comparing	two	NULLs.	For	example,	observe	that	the
location	(UK,	NULL,	London)	appears	in	the	result	of	the	intersection.	If	instead	of	using	the

INTERSECT	operator	you	use	an	alternative	tool	like	an	inner	join	or	a	correlated	subquery,
you	need	to	add	special	treatment	for	NULLs—for	example,	assuming	the	alias	E	for
Employees	and	C	for	Customers,	using	the	predicate	E.region	=	C.region	OR	(E.region	IS
NULL	AND	C.region	IS	NULL).	Using	the	INTERSECT	operator,	the	solution	is	much	simpler
—you	don’t	need	to	explicitly	compare	corresponding	attributes,	and	you	don’t	need	to	add
special	treatment	for	NULLs.

The	INTERSECT	ALL	operator
I	provide	this	section	as	optional	reading	for	those	who	feel	comfortable	with	the	material
covered	so	far	in	this	chapter.	Standard	SQL	supports	an	ALL	flavor	of	the	INTERSECT
operator,	but	this	flavor	has	not	been	implemented	in	T-SQL.	However,	you	can	write	your
own	logical	equivalent	with	T-SQL.
Remember	the	meaning	of	the	ALL	keyword	in	the	UNION	ALL	operator:	it	returns	all

duplicate	rows.	Similarly,	the	keyword	ALL	in	the	INTERSECT	ALL	operator	means	that
duplicate	intersections	will	not	be	removed.	INTERSECT	ALL	returns	the	number	of	duplicate
rows	matching	the	lower	of	the	counts	in	both	input	multisets.	It’s	as	if	this	operator	looks	for
matches	for	each	occurrence	of	each	row.	If	there	are	x	occurrences	of	a	row	R	in	the	first
input	multiset	and	y	occurrences	of	R	in	the	second,	R	appears	minimum(x,	y)	times	in	the
result.	For	example,	the	location	(UK,	NULL,	London)	appears	four	times	in	Employees	and
six	times	in	Customers;	hence,	INTERSECT	ALL	returns	four	occurrences	in	the	output.
Even	though	T-SQL	does	not	support	a	built-in	INTERSECT	ALL	operator,	you	can	write

your	own	alternative	solution	that	produces	the	same	result.	You	can	use	the	ROW_NUMBER
function	to	number	the	occurrences	of	each	row	in	each	input	query.	To	achieve	this,	specify
all	participating	attributes	in	the	PARTITION	BY	clause	of	the	function,	and	use	(SELECT
<constant>)	in	the	ORDER	BY	clause	of	the	function	to	indicate	that	order	doesn’t	matter.
Window	functions,	including	the	ROW_NUMBER	function,	are	covered	in	Chapter	7,	“Beyond
the	fundamentals	of	querying.”

	Tip

A	window	order	clause	is	mandatory	in	window	ranking	functions	like
ROW_NUMBER.	As	a	trick,	when	you	don’t	care	about	ordering,	use	ORDER	BY
(SELECT	<constant>)	as	the	window	order	clause.	Microsoft	SQL	Server	realizes	in
such	a	case	that	order	doesn’t	matter.

Then	apply	the	INTERSECT	operator	between	the	two	queries	with	the	ROW_NUMBER
function.	Because	the	occurrences	of	the	rows	are	numbered,	the	intersection	is	based	on	the
row	numbers	in	addition	to	the	original	attributes.	For	example,	in	the	Employees	table	the
four	occurrences	of	the	location	(UK,	NULL,	London)	are	numbered	1	through	4.	In	the
Customers	table	the	six	occurrences	of	the	same	row	are	numbered	1	through	6.	Occurrences
1	through	4	intersect	between	the	two.
Here’s	the	complete	solution	code:

Click	here	to	view	code	image

SELECT
		ROW_NUMBER()
				OVER(PARTITION	BY	country,	region,	city
									ORDER					BY	(SELECT	0))	AS	rownum,
		country,	region,	city
FROM	HR.Employees

INTERSECT

SELECT
		ROW_NUMBER()
				OVER(PARTITION	BY	country,	region,	city
									ORDER					BY	(SELECT	0)),
		country,	region,	city
FROM	Sales.Customers;

This	code	produces	the	following	output.
Click	here	to	view	code	image

rownum															country									region										city
--------------------	---------------	---------------	---------------
1																				UK														NULL												London
1																				USA													WA														Kirkland
1																				USA													WA														Seattle
2																				UK														NULL												London
3																				UK														NULL												London
4																				UK														NULL												London

The	standard	INTERSECT	ALL	operator	is	not	supposed	to	return	any	row	numbers.	To
exclude	those	from	the	output,	define	a	table	expression	based	on	this	query,	and	in	the	outer
query	select	only	the	attributes	you	want	to	return.	Here’s	the	complete	solution	code:
Click	here	to	view	code	image

WITH	INTERSECT_ALL
AS
(
		SELECT
				ROW_NUMBER()
						OVER(PARTITION	BY	country,	region,	city
											ORDER					BY	(SELECT	0))	AS	rownum,
				country,	region,	city
		FROM	HR.Employees

		INTERSECT

		SELECT
				ROW_NUMBER()
						OVER(PARTITION	BY	country,	region,	city
											ORDER					BY	(SELECT	0)),
				country,	region,	city
		FROM	Sales.Customers
)
SELECT	country,	region,	city
FROM	INTERSECT_ALL;

This	code	generates	the	following	output:

Click	here	to	view	code	image

country									region										city
---------------	---------------	---------------
UK														NULL												London
USA													WA														Kirkland
USA													WA														Seattle
UK														NULL												London
UK														NULL												London
UK														NULL												London

The	EXCEPT	operator
The	EXCEPT	operator	implements	set	differences.	It	operates	on	the	results	of	two	input
queries	and	returns	rows	that	appear	in	the	first	input	but	not	the	second.	Figure	6-3	illustrates
this	operator.

FIGURE	6-3	The	EXCEPT	operator.

The	EXCEPT	(DISTINCT)	operator
The	EXCEPT	operator	(implied	DISTINCT)	returns	only	distinct	rows	that	appear	in	the	first
set	but	not	the	second.	In	other	words,	a	row	is	returned	once	in	the	output	as	long	as	it
appears	at	least	once	in	the	first	input	multiset	and	zero	times	in	the	second.	Note	that	unlike
UNION	and	INTERSECT,	EXCEPT	is	noncummutative;	that	is,	the	order	in	which	you	specify
the	two	input	queries	matters.
For	example,	the	following	code	returns	distinct	locations	that	are	employee	locations	but

not	customer	locations:
Click	here	to	view	code	image

SELECT	country,	region,	city	FROM	HR.Employees
EXCEPT
SELECT	country,	region,	city	FROM	Sales.Customers;

This	query	returns	the	following	two	locations:
Click	here	to	view	code	image

country									region										city

---------------	---------------	---------------
USA													WA														Redmond
USA													WA														Tacoma

The	following	query	returns	distinct	locations	that	are	customer	locations	but	not	employee
locations:
Click	here	to	view	code	image

SELECT	country,	region,	city	FROM	Sales.Customers
EXCEPT
SELECT	country,	region,	city	FROM	HR.Employees;

This	query	returns	66	locations,	shown	here	in	abbreviated	form:
Click	here	to	view	code	image

country									region										city
---------------	---------------	---------------
Argentina							NULL												Buenos	Aires
Austria									NULL												Graz
Austria									NULL												Salzburg
Belgium									NULL												Bruxelles
Belgium									NULL												Charleroi
...
USA													WY														Lander
Venezuela							DF														Caracas
Venezuela							Lara												Barquisimeto
Venezuela							Nueva	Esparta			I.	de	Margarita
Venezuela							Táchira									San	Cristóbal

(66	row(s)	affected)

Naturally,	there	are	alternatives	to	the	EXCEPT	operator.	One	is	an	outer	join	that	filters
only	outer	rows,	and	another	is	to	use	the	NOT	EXISTS	predicate.	However,	recall	that	with	set
operators	the	comparison	between	corresponding	columns	is	implied,	and	also	when
comparing	two	NULLs	you	get	a	TRUE.	With	joins	and	subqueries,	you	need	to	be	explicit
about	comparisons	and	you	also	need	to	explicitly	add	special	treatment	for	NULLs.

The	EXCEPT	ALL	operator
The	EXCEPT	ALL	operator	is	similar	to	the	EXCEPT	operator,	but	it	also	takes	into	account
the	number	of	occurrences	of	each	row.	If	a	row	R	appears	x	times	in	the	first	multiset	and	y
times	in	the	second,	and	x	>	y,	R	will	appear	x	–	y	times	in	Query1	EXCEPT	ALL	Query2.	In
other	words,	EXCEPT	ALL	returns	only	occurrences	of	a	row	from	the	first	multiset	that	do
not	have	a	corresponding	occurrence	in	the	second.
T-SQL	does	not	provide	a	built-in	EXCEPT	ALL	operator,	but	you	can	provide	an

alternative	of	your	own	similar	to	how	you	handled	INTERSECT	ALL.	Namely,	add	a
ROW_NUMBER	calculation	to	each	of	the	input	queries	to	number	the	occurrences	of	the
rows,	and	use	the	EXCEPT	operator	between	the	two	input	queries.	Only	occurrences	that
don’t	have	matches	will	be	returned.
The	following	code	returns	occurrences	of	employee	locations	that	have	no	corresponding

occurrences	of	customer	locations:
Click	here	to	view	code	image

WITH	EXCEPT_ALL
AS
(
		SELECT
				ROW_NUMBER()
						OVER(PARTITION	BY	country,	region,	city
											ORDER					BY	(SELECT	0))	AS	rownum,
				country,	region,	city
				FROM	HR.Employees

		EXCEPT

		SELECT
				ROW_NUMBER()
						OVER(PARTITION	BY	country,	region,	city
											ORDER					BY	(SELECT	0)),
				country,	region,	city
		FROM	Sales.Customers
)
SELECT	country,	region,	city
FROM	EXCEPT_ALL;

This	query	returns	the	following	output:
Click	here	to	view	code	image

country									region										city
---------------	---------------	---------------
USA													WA														Redmond
USA													WA														Tacoma
USA													WA														Seattle

Precedence
SQL	defines	precedence	among	set	operators.	The	INTERSECT	operator	precedes	UNION	and
EXCEPT,	and	UNION	and	EXCEPT	are	evaluated	in	order	of	appearance.	Using	the	ALL
variant	doesn’t	change	the	precedence.	In	a	query	that	contains	multiple	set	operators,	first
INTERSECT	operators	are	evaluated,	and	then	operators	with	the	same	precedence	are
evaluated	based	on	their	order	of	appearance.
Consider	the	following	code:

Click	here	to	view	code	image

SELECT	country,	region,	city	FROM	Production.Suppliers
EXCEPT
SELECT	country,	region,	city	FROM	HR.Employees
INTERSECT
SELECT	country,	region,	city	FROM	Sales.Customers;

Because	INTERSECT	precedes	EXCEPT,	the	INTERSECT	operator	is	evaluated	first,	even
though	it	appears	second	in	the	code.	The	meaning	of	this	query	is,	“locations	that	are
supplier	locations,	but	not	(locations	that	are	both	employee	and	customer	locations).”
This	query	returns	the	following	output:

Click	here	to	view	code	image

country									region										city
---------------	---------------	---------------

Australia							NSW													Sydney
Australia							Victoria								Melbourne
Brazil										NULL												Sao	Paulo
Canada										Québec										Montréal
Canada										Québec										Ste-Hyacinthe
Denmark									NULL												Lyngby
Finland									NULL												Lappeenranta
France										NULL												Annecy
France										NULL												Montceau
France										NULL												Paris
Germany									NULL												Berlin
Germany									NULL												Cuxhaven
Germany									NULL												Frankfurt
Italy											NULL												Ravenna
Italy											NULL												Salerno
Japan											NULL												Osaka
Japan											NULL												Tokyo
Netherlands					NULL												Zaandam
Norway										NULL												Sandvika
Singapore							NULL												Singapore
Spain											Asturias								Oviedo
Sweden										NULL												Göteborg
Sweden										NULL												Stockholm
UK														NULL												Manchester
USA													LA														New	Orleans
USA													MA														Boston
USA													MI														Ann	Arbor
USA													OR														Bend

(28	row(s)	affected)

To	control	the	order	of	evaluation	of	set	operators,	use	parentheses,	because	they	have	the
highest	precedence.	Also,	using	parentheses	increases	the	readability,	thus	reducing	the	chance
for	errors.	For	example,	if	you	want	to	return	“(locations	that	are	supplier	locations	but	not
employee	locations)	and	that	are	also	customer	locations,”	use	the	following	code:
Click	here	to	view	code	image

(SELECT	country,	region,	city	FROM	Production.Suppliers
	EXCEPT
	SELECT	country,	region,	city	FROM	HR.Employees)
INTERSECT
SELECT	country,	region,	city	FROM	Sales.Customers;

This	query	returns	the	following	output:
Click	here	to	view	code	image

country									region										city
---------------	---------------	---------------
Canada										Québec										Montréal
France										NULL												Paris
Germany									NULL												Berlin

Circumventing	unsupported	logical	phases
This	section	can	be	considered	advanced	for	the	book’s	target	audience	and	is	provided	here
as	optional	reading.	The	individual	queries	that	are	used	as	inputs	to	a	set	operator	support	all
logical-query	processing	phases	(such	as	table	operators,	WHERE,	GROUP	BY,	and	HAVING)
except	for	ORDER	BY.	However,	only	the	ORDER	BY	phase	is	allowed	on	the	result	of	the
operator.
What	if	you	need	to	apply	other	logical	phases	besides	ORDER	BY	to	the	result	of	the

operator?	This	is	not	supported	directly	as	part	of	the	query	that	applies	the	operator,	but	you
can	easily	circumvent	this	restriction	by	using	table	expressions.	Define	a	table	expression
based	on	a	query	with	a	set	operator,	and	apply	any	logical-query	processing	phases	you	want
in	the	outer	query.	For	example,	the	following	query	returns	the	number	of	distinct	locations
that	are	either	employee	or	customer	locations	in	each	country:
Click	here	to	view	code	image

SELECT	country,	COUNT(*)	AS	numlocations
FROM	(SELECT	country,	region,	city	FROM	HR.Employees
						UNION
						SELECT	country,	region,	city	FROM	Sales.Customers)	AS	U
GROUP	BY	country;

This	query	returns	the	following	output:
country									numlocations
---------------	------------
Argentina							1
Austria									2
Belgium									2
Brazil										4
Canada										3
Denmark									2
Finland									2
France										9
Germany									11
Ireland									1
Italy											3
Mexico										1
Norway										1
Poland										1
Portugal								1
Spain											3
Sweden										2
Switzerland					2
UK														2
USA													14
Venezuela							4

(21	row(s)	affected)

This	query	demonstrates	how	to	group	the	result	of	a	UNION	operator;	similarly,	you	can,
of	course,	apply	other	logical-query	phases	in	the	outer	query.
Remember	that	the	ORDER	BY	clause	is	not	allowed	in	the	input	queries.	What	if	you	need

to	restrict	the	number	of	rows	in	those	queries	with	the	TOP	or	OFFSET-FETCH	filter?
Again,	you	can	resolve	this	problem	with	table	expressions.	Recall	that	an	ORDER	BY	clause

is	allowed	in	an	inner	query	with	TOP	or	OFFSET-FETCH.	In	such	a	case,	the	ORDER	BY
clause	serves	only	the	filtering-related	purpose	and	has	no	presentation	meaning.	For
example,	the	following	code	uses	TOP	queries	to	return	the	two	most	recent	orders	for
employees	3	and	5:
Click	here	to	view	code	image

SELECT	empid,	orderid,	orderdate
FROM	(SELECT	TOP	(2)	empid,	orderid,	orderdate
						FROM	Sales.Orders
						WHERE	empid	=	3
						ORDER	BY	orderdate	DESC,	orderid	DESC)	AS	D1

UNION	ALL

SELECT	empid,	orderid,	orderdate
FROM	(SELECT	TOP	(2)	empid,	orderid,	orderdate
						FROM	Sales.Orders
						WHERE	empid	=	5
						ORDER	BY	orderdate	DESC,	orderid	DESC)	AS	D2;

This	query	returns	the	following	output:
Click	here	to	view	code	image

empid							orderid					orderdate
-----------	-----------	-----------
3											11063							2016-04-30
3											11057							2016-04-29
5											11043							2016-04-22
5											10954							2016-03-17

Conclusion
In	this	chapter,	I	covered	the	operators	UNION,	UNION	ALL,	EXCEPT,	and	INTERSECT.	I
explained	that	standard	SQL	also	supports	operators	called	INTERSECT	ALL	and	EXCEPT
ALL	and	explained	how	to	achieve	similar	functionality	in	T-SQL.	Finally,	I	introduced
precedence	among	set	operators,	and	I	explained	how	to	circumvent	unsupported	logical-
query	processing	phases	by	using	table	expressions.

Exercises
This	section	provides	exercises	to	help	you	familiarize	yourself	with	the	subjects	discussed	in
Chapter	6.	All	exercises	require	you	to	be	connected	to	the	sample	database	TSQLV4.

Exercise	1
Explain	the	difference	between	the	UNION	ALL	and	UNION	operators.	In	what	cases	are	the
two	equivalent?	When	they	are	equivalent,	which	one	should	you	use?

Exercise	2
Write	a	query	that	generates	a	virtual	auxiliary	table	of	10	numbers	in	the	range	1	through	10
without	using	a	looping	construct.	You	do	not	need	to	guarantee	any	order	of	the	rows	in	the
output	of	your	solution:

	Tables	involved:	None
	Desired	output:
n

1
2
3
4
5
6
7
8
9
10

(10	row(s)	affected)

Exercise	3
Write	a	query	that	returns	customer	and	employee	pairs	that	had	order	activity	in	January
2016	but	not	in	February	2016:

	Table	involved:	Sales.Orders	table
	Desired	output:
custid						empid
-----------	-----------
1											1
3											3
5											8
5											9
6											9
7											6
9											1
12										2
16										7
17										1
20										7
24										8
25										1
26										3
32										4
38										9
39										3
40										2
41										2
42										2
44										8
47										3
47										4
47										8
49										7
55										2
55										3
56										6
59										8
63										8

64										9
65										3
65										8
66										5
67										5
70										3
71										2
75										1
76										2
76										5
80										1
81										1
81										3
81										4
82										6
84										1
84										3
84										4
88										7
89										4

(50	row(s)	affected)

Exercise	4
Write	a	query	that	returns	customer	and	employee	pairs	that	had	order	activity	in	both	January
2016	and	February	2016:

	Table	involved:	Sales.Orders
	Desired	output:
custid						empid
-----------	-----------
20										3
39										9
46										5
67										1
71										4

(5	row(s)	affected)

Exercise	5
Write	a	query	that	returns	customer	and	employee	pairs	that	had	order	activity	in	both	January
2016	and	February	2016	but	not	in	2015:

	Table	involved:	Sales.Orders
	Desired	output:
custid						empid
-----------	-----------
67										1
46										5

(2	row(s)	affected)

Exercise	6	(optional,	advanced)
You	are	given	the	following	query:

SELECT	country,	region,	city
FROM	HR.Employees

UNION	ALL

SELECT	country,	region,	city
FROM	Production.Suppliers;

You	are	asked	to	add	logic	to	the	query	so	that	it	guarantees	that	the	rows	from	Employees
are	returned	in	the	output	before	the	rows	from	Suppliers.	Also,	within	each	segment,	the
rows	should	be	sorted	by	country,	region,	and	city:

	Tables	involved:	HR.Employees	and	Production.Suppliers
	Desired	output:

Click	here	to	view	code	image

country									region										city
---------------	---------------	---------------
UK														NULL												London
UK														NULL												London
UK														NULL												London
UK														NULL												London
USA													WA														Kirkland
USA													WA														Redmond
USA													WA														Seattle
USA													WA														Seattle
USA													WA														Tacoma
Australia							NSW													Sydney
Australia							Victoria								Melbourne
Brazil										NULL												Sao	Paulo
Canada										Québec										Montréal
Canada										Québec										Ste-Hyacinthe
Denmark									NULL												Lyngby
Finland									NULL												Lappeenranta
France										NULL												Annecy
France										NULL												Montceau
France										NULL												Paris
Germany									NULL												Berlin
Germany									NULL												Cuxhaven
Germany									NULL												Frankfurt
Italy											NULL												Ravenna
Italy											NULL												Salerno
Japan											NULL												Osaka
Japan											NULL												Tokyo
Netherlands					NULL												Zaandam
Norway										NULL												Sandvika
Singapore							NULL												Singapore
Spain											Asturias								Oviedo
Sweden										NULL												Göteborg
Sweden										NULL												Stockholm
UK														NULL												London
UK														NULL												Manchester
USA													LA														New	Orleans
USA													MA														Boston

USA													MI														Ann	Arbor
USA													OR														Bend

(38	row(s)	affected)

Solutions
This	section	provides	solutions	to	the	Chapter	6	exercises.

Exercise	1
The	UNION	ALL	operator	unifies	the	two	input	query	result	sets	and	doesn’t	remove
duplicates	from	the	result.	The	UNION	operator	(implied	DISTINCT)	also	unifies	the	two
input	query	result	sets,	but	it	does	remove	duplicates	from	the	result.
The	two	have	different	meanings	when	the	result	can	potentially	have	duplicates.	They	have

an	equivalent	meaning	when	the	result	can’t	have	duplicates,	such	as	when	you’re	unifying
disjoint	sets	(for	example,	sales	2015	with	sales	2016).
When	they	do	have	the	same	meaning,	you	need	to	use	UNION	ALL	by	default.	That’s	to

avoid	paying	unnecessary	performance	penalties	for	the	work	involved	in	removing
duplicates	when	they	don’t	exist.

Exercise	2
T-SQL	supports	a	SELECT	statement	based	on	constants	with	no	FROM	clause.	Such	a
SELECT	statement	returns	a	table	with	a	single	row.	For	example,	the	following	statement
returns	a	row	with	a	single	column	called	n	with	the	value	1:
SELECT	1	AS	n;
Here’s	the	output	of	this	statement:
n

1

(1	row(s)	affected)

By	using	the	UNION	ALL	operator,	you	can	unify	the	result	sets	of	multiple	statements	like
the	one	just	mentioned,	each	returning	a	row	with	a	different	number	in	the	range	1	through
10,	like	the	following:

SELECT	1	AS	n
UNION	ALL	SELECT	2
UNION	ALL	SELECT	3
UNION	ALL	SELECT	4
UNION	ALL	SELECT	5
UNION	ALL	SELECT	6
UNION	ALL	SELECT	7
UNION	ALL	SELECT	8
UNION	ALL	SELECT	9
UNION	ALL	SELECT	10;

	Tip

SQL	Server	supports	an	enhanced	VALUES	clause	you	might	be	familiar	with	in	the
context	of	the	INSERT	statement.	The	VALUES	clause	is	not	restricted	to	representing	a
single	row;	it	can	represent	multiple	rows.	Also,	the	VALUES	clause	is	not	restricted	to
INSERT	statements	but	can	be	used	to	define	a	table	expression	with	rows	based	on
constants.
As	an	example,	here’s	how	you	can	use	the	VALUES	clause	to	provide	a	solution	to	this
exercise	instead	of	using	the	UNION	ALL	operator:

Click	here	to	view	code	image

SELECT	n
FROM	(VALUES(1),(2),(3),(4),(5),(6),(7),(8),(9),(10))	AS	Nums(n);

I’ll	provide	details	about	the	VALUES	clause	and	such	table	value	constructors	in
Chapter	8,	“Data	modification,”	as	part	of	the	discussion	of	the	INSERT	statement.

Exercise	3
You	can	solve	this	exercise	by	using	the	EXCEPT	set	operator.	The	left	input	is	a	query	that
returns	customer	and	employee	pairs	that	had	order	activity	in	January	2016.	The	right	input
is	a	query	that	returns	customer	and	employee	pairs	that	had	order	activity	in	February	2016.
Here’s	the	solution	query:
Click	here	to	view	code	image

USE	TSQLV4;

SELECT	custid,	empid
FROM	Sales.Orders
WHERE	orderdate	>=	'20160101'	AND	orderdate	<	'20160201'

EXCEPT

SELECT	custid,	empid
FROM	Sales.Orders
WHERE	orderdate	>=	'20160201'	AND	orderdate	<	'20160301';

Exercise	4
Whereas	Exercise	2	requested	customer	and	employee	pairs	that	had	activity	in	one	period	but
not	another,	this	exercise	concerns	customer	and	employee	pairs	that	had	activity	in	both
periods.	So	this	time,	instead	of	using	the	EXCEPT	operator,	you	need	to	use	the	INTERSECT
operator,	like	this:
Click	here	to	view	code	image

SELECT	custid,	empid
FROM	Sales.Orders
WHERE	orderdate	>=	'20160101'	AND	orderdate	<	'20160201'

INTERSECT

SELECT	custid,	empid
FROM	Sales.Orders
WHERE	orderdate	>=	'20160201'	AND	orderdate	<	'20160301';

Exercise	5
This	exercise	requires	you	to	combine	set	operators.	To	return	customer	and	employee	pairs
that	had	order	activity	in	both	January	2016	and	February	2016,	you	need	to	use	the
INTERSECT	operator,	as	in	Exercise	4.	To	exclude	customer	and	employee	pairs	that	had
order	activity	in	2015	from	the	result,	you	need	to	use	the	EXCEPT	operator	between	the
result	and	a	third	query.	The	solution	query	looks	like	this:
Click	here	to	view	code	image

SELECT	custid,	empid
FROM	Sales.Orders
WHERE	orderdate	>=	'20160101'	AND	orderdate	<	'20160201'

INTERSECT

SELECT	custid,	empid
FROM	Sales.Orders
WHERE	orderdate	>=	'20160201'	AND	orderdate	<	'20160301'

EXCEPT

SELECT	custid,	empid
FROM	Sales.Orders
WHERE	orderdate	>=	'20150101'	AND	orderdate	<	'20160101';

Keep	in	mind	that	the	INTERSECT	operator	precedes	EXCEPT.	In	this	case,	the	default
precedence	is	also	the	precedence	you	want,	so	you	don’t	need	to	intervene	by	using
parentheses.	But	you	might	prefer	to	add	them	for	clarity,	as	shown	here:
Click	here	to	view	code	image

(SELECT	custid,	empid
	FROM	Sales.Orders
	WHERE	orderdate	>=	'20160101'	AND	orderdate	<	'20160201'

	INTERSECT

	SELECT	custid,	empid
	FROM	Sales.Orders
	WHERE	orderdate	>=	'20160201'	AND	orderdate	<	'20160301')

EXCEPT

SELECT	custid,	empid
FROM	Sales.Orders
WHERE	orderdate	>=	'20150101'	AND	orderdate	<	'20160101';

Exercise	6
The	problem	here	is	that	the	individual	queries	are	not	allowed	to	have	ORDER	BY	clauses,
and	for	a	good	reason.	You	can	solve	the	problem	by	adding	a	result	column	based	on	a
constant	to	each	of	the	queries	involved	in	the	operator	(call	it	sortcol).	In	the	query	against
Employees,	specify	a	smaller	constant	than	the	one	you	specify	in	the	query	against	Suppliers.
Define	a	table	expression	based	on	the	query	with	the	operator,	and	in	the	ORDER	BY	clause
of	the	outer	query,	specify	sortcol	as	the	first	sort	column,	followed	by	country,	region,	and
city.	Here’s	the	complete	solution	query:
Click	here	to	view	code	image

SELECT	country,	region,	city
FROM	(SELECT	1	AS	sortcol,	country,	region,	city
						FROM	HR.Employees

						UNION	ALL

						SELECT	2,	country,	region,	city
						FROM	Production.Suppliers)	AS	D
ORDER	BY	sortcol,	country,	region,	city;

Chapter	7.	Beyond	the	fundamentals	of	querying

This	chapter	covers	querying	topics	that	go	beyond	the	fundamentals	and	is	provided	as
optional	reading.	It	starts	with	the	powerful	window	functions,	which	you	can	use	to	apply
data-analysis	calculations	in	a	flexible	and	efficient	manner.	The	chapter	continues	with
techniques	for	pivoting	and	unpivoting	data.	Pivoting	rotates	data	from	a	state	of	rows	to
columns,	and	unpivoting	rotates	data	from	columns	to	rows,	similar	to	pivot	tables	in	Excel.
The	chapter	finishes	with	a	discussion	about	grouping	sets,	which	are	the	sets	of	expressions
that	you	group	the	data	by.	It	covers	techniques	for	defining	multiple	grouping	sets	in	the
same	query.
What’s	common	to	the	features	covered	in	this	chapter,	beyond	being	more	advanced	than

other	features	in	this	book,	is	that	they’re	mostly	used	for	analytical	purposes.	If	you	need
more	details	about	these	features	beyond	what’s	covered	in	this	chapter,	you	can	find	them	in
the	books:	T-SQL	Querying	(Microsoft	Press,	2015)	and	Microsoft	SQL	Server	2012	High-
Performance	T-SQL	Using	Window	Functions	(Microsoft	Press,	2012).

Window	functions
A	window	function	is	a	function	that,	for	each	row,	computes	a	scalar	result	value	based	on	a
calculation	against	a	subset	of	the	rows	from	the	underlying	query.	The	subset	of	rows	is
known	as	a	window	and	is	based	on	a	window	descriptor	that	relates	to	the	current	row.	The
syntax	for	window	functions	uses	a	clause	called	OVER,	in	which	you	provide	the	window
specification.
If	this	sounds	too	technical,	simply	think	of	the	need	to	perform	a	calculation	against	a	set

and	return	a	single	value.	A	classic	example	is	aggregate	calculations—such	as	SUM,	COUNT,
and	AVG—but	there	are	others	as	well,	such	as	ranking	and	offset	functions.	You’re	familiar
already	with	a	couple	of	ways	to	apply	aggregate	calculations—one	is	by	using	grouped
queries,	and	another	is	by	using	subqueries.	However,	both	options	have	shortcomings	that
window	functions	elegantly	resolve.

	Note
If	the	upcoming	explanations	about	the	design	of	window	functions	seem	a	bit
overwhelming,	bear	with	me	until	I	show	code	samples,	which	should	help	clarify
things.	After	you	see	a	couple	of	code	samples,	you	might	want	to	reread	the	next
several	paragraphs.

Grouped	queries	do	provide	insights	into	new	information	in	the	form	of	aggregates,	but
they	also	cause	you	to	lose	something—the	detail.	After	you	group	the	rows,	all	computations
in	the	query	have	to	be	done	in	the	context	of	the	defined	groups.	Often,	you	need	to	perform
calculations	that	involve	both	detail	and	aggregate	elements.	Window	functions	are	not	limited
in	the	same	way.	A	window	function	is	evaluated	per	detailed	row,	and	it’s	applied	to	a	subset

of	rows	that	is	derived	from	the	underlying	query	result	set.	The	result	of	the	window	function
is	a	scalar	value,	which	is	added	as	another	column	to	the	query	result.	In	other	words,	unlike
grouped	functions,	window	functions	don’t	cause	you	to	lose	the	detail.	For	example,	suppose
you	want	to	query	order	values	and	return	the	current	order	value	and	the	percent	it	constitutes
out	of	the	customer	total.	If	you	group	by	the	customer,	you	can	get	only	the	customer	total.
With	a	window	function,	you	can	return	the	customer	total	in	addition	to	the	detail	order
value,	and	you	can	even	compute	the	percent	of	the	current	order	value	out	of	the	customer
total.	I’ll	demonstrate	the	code	to	achieve	this	later	in	the	chapter.
As	for	subqueries,	you	can	use	them	to	apply	a	scalar	aggregate	calculation	against	a	set,

but	their	starting	point	is	a	fresh	view	of	the	data	rather	than	the	underlying	query	result	set.
Suppose	the	underlying	query	has	table	operators,	filters,	and	other	query	elements;	those	do
not	affect	what	a	subquery	sees	as	its	starting	point.	If	you	need	the	subquery	to	apply	to	the
underlying	query	result	set	as	its	starting	point,	you	need	to	repeat	all	the	underlying	query
logic	in	the	subquery.	In	contrast,	a	window	function	is	applied	to	a	subset	of	rows	from	the
underlying	query’s	result	set—not	a	fresh	view	of	the	data.	Therefore,	anything	you	add	to	the
underlying	query	is	automatically	applicable	to	all	window	functions	used	in	the	query.	If	you
want,	you	can	further	restrict	the	window.
Another	benefit	of	using	window	functions	is	that	you	gain	the	ability	to	define	order,	when

applicable,	as	part	of	the	specification	of	the	calculation.	This	does	not	conflict	with	relational
aspects	of	the	result.	That	is,	order	is	defined	for	the	calculation	and	not	confused	with
presentation	ordering.	The	ordering	specification	for	the	window	function,	if	applicable,	is
different	from	the	ordering	specification	for	presentation.	If	you	don’t	include	a	presentation
ORDER	BY	clause,	you	have	no	assurances	that	the	result	will	be	returned	in	a	particular
order.	If	you	do	decide	to	force	a	certain	presentation	ordering,	the	resulting	ordering	can	be
different	than	the	ordering	for	the	window	function.
Following	is	an	example	of	a	query	against	the	Sales.EmpOrders	view	in	the	TSQLV4

database	that	uses	a	window	aggregate	function	to	compute	the	running-total	values	for	each
employee	and	month:
Click	here	to	view	code	image

USE	TSQLV4;

SELECT	empid,	ordermonth,	val,
		SUM(val)	OVER(PARTITION	BY	empid
																ORDER	BY	ordermonth
																ROWS	BETWEEN	UNBOUNDED	PRECEDING
																									AND	CURRENT	ROW)	AS	runval
FROM	Sales.EmpOrders;

Here’s	the	output	of	this	query,	shown	in	abbreviated	form:
Click	here	to	view	code	image

empid		ordermonth		val						runval
------	-----------	--------	----------
1						2014-07-01		1614.88		1614.88
1						2014-08-01		5555.90		7170.78
1						2014-09-01		6651.00		13821.78
1						2014-10-01		3933.18		17754.96

1						2014-11-01		9562.65		27317.61
...
2						2014-07-01		1176.00		1176.00
2						2014-08-01		1814.00		2990.00
2						2014-09-01		2950.80		5940.80
2						2014-10-01		5164.00		11104.80
2						2014-11-01		4614.58		15719.38
...

(192	row(s)	affected)

There	are	up	to	three	parts	in	the	definition	of	a	window	function,	which	you	specify	in	a
clause	called	OVER:	the	window-partition	clause,	window-order	clause,	and	window-frame
clause.	An	empty	OVER()	clause	represents	the	entire	underlying	query’s	result	set.	Then
anything	you	add	to	the	window	specification	essentially	restricts	the	window.
The	window-partition	clause	(PARTITION	BY)	restricts	the	window	to	the	subset	of	rows

that	have	the	same	values	in	the	partitioning	columns	as	in	the	current	row.	In	the	last	query,
the	window	is	partitioned	by	empid.	For	an	underlying	row	with	employee	ID	1,	the	window
exposed	to	the	function	filters	only	the	rows	where	the	employee	ID	is	1.
The	window-order	clause	(ORDER	BY)	defines	ordering,	but	don’t	confuse	this	with

presentation	ordering.	In	a	window	aggregate	function,	window	ordering	supports	a	frame
specification.	In	a	window	ranking	function,	window	ordering	gives	meaning	to	the	rank.	In
our	example,	the	window	ordering	is	based	on	ordermonth.
A	window-frame	clause	(ROWS	BETWEEN	<top	delimiter>	AND	<bottom	delimiter>)

filters	a	frame,	or	a	subset,	of	rows	from	the	window	partition	between	the	two	specified
delimiters.	In	this	example,	the	frame	is	defined	with	no	low	boundary	point	(UNBOUNDED
PRECEDING)	and	extends	until	the	current	row	(CURRENT	ROW).	In	addition	to	the	window-
frame	unit	ROWS,	there’s	another	unit	called	RANGE,	but	it’s	implemented	in	T-SQL	in	a
limited	capacity.
Putting	all	these	together,	you	get	the	running-total	values	for	each	employee	and	month

from	the	function	in	the	example.
Note	that	because	the	starting	point	of	a	window	function	is	the	underlying	query’s	result

set,	and	the	underlying	query’s	result	set	is	generated	only	when	you	reach	the	SELECT	phase,
window	functions	are	allowed	only	in	the	SELECT	and	ORDER	BY	clauses	of	a	query.	Mostly,
you’ll	use	window	functions	in	the	SELECT	clause.	If	you	need	to	refer	to	a	window	function
in	an	earlier	logical-query	processing	phase	(such	as	WHERE),	you	need	to	use	a	table
expression.	You	specify	the	window	function	in	the	SELECT	list	of	the	inner	query	and	assign
it	with	an	alias.	Then,	in	the	outer	query,	you	can	refer	to	that	alias	anywhere	you	like.
The	windowing	concept	can	take	some	getting	used	to,	but	when	you’re	comfortable	with	it,

you’ll	realize	it’s	immensely	powerful.	Beyond	being	used	for	the	obvious	data-analysis
calculations,	window	functions	can	be	used	to	perform	a	variety	of	tasks,	typically	more
elegantly	and	more	efficiently	than	with	alternative	methods.
The	following	sections	cover	ranking,	offset,	and	aggregate	window	functions.	Because

this	book	is	about	fundamentals,	I	will	not	get	into	certain	topics	here.	Those	topics	include
the	optimization	of	window	functions,	distribution	functions,	and	the	RANGE	window	frame

unit.	For	details	about	those	items,	see	my	book	on	the	topic,	Microsoft	SQL	Server	2012
High-Performance	T-SQL	Using	Window	Functions	(Microsoft	Press,	2012).

Ranking	window	functions
You	use	ranking	window	functions	to	rank	each	row	with	respect	to	others	in	the	window.	T-
SQL	supports	four	ranking	functions:	ROW_NUMBER,	RANK,	DENSE_RANK,	and	NTILE.
The	following	query	demonstrates	the	use	of	these	functions:
Click	here	to	view	code	image

SELECT	orderid,	custid,	val,
		ROW_NUMBER()	OVER(ORDER	BY	val)	AS	rownum,
		RANK()							OVER(ORDER	BY	val)	AS	rank,
		DENSE_RANK()	OVER(ORDER	BY	val)	AS	dense_rank,
		NTILE(100)			OVER(ORDER	BY	val)	AS	ntile
FROM	Sales.OrderValues
ORDER	BY	val;

This	query	generates	the	following	output,	shown	here	in	abbreviated	form:
Click	here	to	view	code	image

orderid					custid						val							rownum		rank				dense_rank	ntile
-----------	-----------	---------	-------	-------	----------	-----
10782							12										12.50					1							1							1										1
10807							27										18.40					2							2							2										1
10586							66										23.80					3							3							3										1
10767							76										28.00					4							4							4										1
10898							54										30.00					5							5							5										1
10900							88										33.75					6							6							6										1
10883							48										36.00					7							7							7										1
11051							41										36.00					8							7							7										1
10815							71										40.00					9							9							8										1
10674							38										45.00					10						10						9										1
...
10691							63										10164.80		821					821					786								10
10540							63										10191.70		822					822					787								10
10479							65										10495.60		823					823					788								10
10897							37										10835.24		824					824					789								10
10817							39										10952.85		825					825					790								10
10417							73										11188.40		826					826					791								10
10889							65										11380.00		827					827					792								10
11030							71										12615.05		828					828					793								10
10981							34										15810.00		829					829					794								10
10865							63										16387.50		830					830					795								10

(830	row(s)	affected)

The	ROW_NUMBER	function	assigns	incremental	sequential	integers	to	the	rows	in	the
query	result	based	on	the	mandatory	window	ordering.	In	the	sample	query,	the	ordering	is
based	on	the	val	column;	therefore,	you	can	see	in	the	output	that	when	the	value	increases,	the
row	number	increases	as	well.	However,	even	when	the	ordering	value	doesn’t	increase,	the
row	number	still	must	increase.	Therefore,	if	the	ROW_NUMBER	function’s	ORDER	BY	list	is
not	unique,	as	in	the	preceding	example,	the	query	is	nondeterministic—that	is,	more	than	one
correct	result	is	possible.	For	example,	observe	that	two	rows	with	the	value	36.00	got	the	row
numbers	7	and	8.	Any	arrangement	of	these	row	numbers	would	be	considered	correct.	If	you

want	to	make	a	row	number	calculation	deterministic,	you	need	to	add	a	tiebreaker	to	the
ORDER	BY	list	to	make	it	unique.	For	example,	you	can	add	the	orderid	column.
As	mentioned,	the	ROW_NUMBER	function	must	produce	unique	values	even	when	there

are	ties	in	the	ordering	values,	making	it	nondeterministic	when	there	are	ties.	If	you	want	to
produce	the	same	rank	value	given	the	same	ordering	value,	use	the	RANK	or	DENSE_RANK
function	instead.	The	difference	between	the	two	is	that	RANK	reflects	the	count	of	rows	that
have	a	lower	ordering	value	than	the	current	row	(plus	1),	whereas	DENSE_RANK	reflects	the
count	of	distinct	ordering	values	that	are	lower	than	the	current	row	(plus	1).	For	example,	in
the	sample	query,	a	rank	of	9	indicates	eight	rows	have	lower	values.	In	the	same	row,	a	dense
rank	of	8	indicates	seven	rows	that	have	distinct	lower	values.
You	use	the	NTILE	function	to	associate	the	rows	in	the	result	with	tiles	(equally	sized

groups	of	rows)	by	assigning	a	tile	number	to	each	row.	You	specify	the	number	of	tiles	you
are	after	and	window	ordering.	The	sample	query	has	830	rows	and	the	request	was	for	10
tiles;	therefore,	the	tile	size	is	83	(830	divided	by	10).	Window	ordering	is	based	on	the	val
column.	This	means	that	the	83	rows	with	the	lowest	values	are	assigned	tile	number	1,	the
next	83	are	assigned	tile	number	2,	the	next	83	are	assigned	tile	number	3,	and	so	on.	If	the
number	of	rows	can’t	be	evenly	divided	by	the	number	of	tiles,	an	extra	row	is	added	to	each
of	the	first	tiles	from	the	remainder.	For	example,	if	102	rows	and	five	tiles	were	requested,
the	first	two	tiles	would	have	21	rows	instead	of	20.
Like	all	window	functions,	ranking	functions	support	a	window	partition	clause.	Remember

that	window	partitioning	restricts	the	window	to	only	those	rows	that	have	the	same	values	in
the	partitioning	attributes	as	in	the	current	row.	For	example,	the	expression	ROW_NUMBER()
OVER(PARTITION	BY	custid	ORDER	BY	val)	assigns	row	numbers	independently	for	each
customer.	Here’s	the	expression	in	a	query:
Click	here	to	view	code	image

SELECT	orderid,	custid,	val,
		ROW_NUMBER()	OVER(PARTITION	BY	custid
																				ORDER	BY	val)	AS	rownum
FROM	Sales.OrderValues
ORDER	BY	custid,	val;

This	query	generates	the	following	output,	shown	here	in	abbreviated	form:
Click	here	to	view	code	image

orderid					custid						val										rownum
-----------	-----------	------------	-------
10702							1											330.00							1
10952							1											471.20							2
10643							1											814.50							3
10835							1											845.80							4
10692							1											878.00							5
11011							1											933.50							6
10308							2											88.80								1
10759							2											320.00							2
10625							2											479.75							3
10926							2											514.40							4
10682							3											375.50							1
...

(830	row(s)	affected)

Remember	that	window	ordering	has	nothing	to	do	with	presentation	ordering	and	does	not
change	the	nature	of	the	result	from	being	relational.	If	you	need	to	guarantee	presentation
ordering,	you	have	to	add	a	presentation	ORDER	BY	clause,	as	I	did	in	the	last	two.
Window	functions	are	logically	evaluated	as	part	of	the	SELECT	list,	before	the	DISTINCT

clause	is	evaluated.	If	you’re	wondering	why	it	matters,	I’ll	explain	this	with	an	example.
Currently,	the	OrderValues	view	has	830	rows	with	795	distinct	values	in	the	val	column.
Consider	the	following	query	and	its	output,	shown	here	in	abbreviated	form:
Click	here	to	view	code	image

SELECT	DISTINCT	val,	ROW_NUMBER()	OVER(ORDER	BY	val)	AS	rownum
FROM	Sales.OrderValues;

val								rownum
----------	-------
12.50						1
18.40						2
23.80						3
28.00						4
30.00						5
33.75						6
36.00						7
36.00						8
40.00						9
45.00						10
...
12615.05			828
15810.00			829
16387.50			830

(830	row(s)	affected)

The	ROW_NUMBER	function	is	processed	before	the	DISTINCT	clause.	First,	unique	row
numbers	are	assigned	to	the	830	rows	from	the	OrderValues	view.	Then	the	DISTINCT	clause
is	processed—but	there	are	no	duplicate	rows	to	remove.	The	DISTINCT	clause	has	no	effect
here.	If	you	want	to	assign	row	numbers	to	the	795	unique	values,	you	need	to	come	up	with	a
different	solution.	For	example,	because	the	GROUP	BY	phase	is	processed	before	the
SELECT	phase,	you	can	use	the	following	query:
Click	here	to	view	code	image

SELECT	val,	ROW_NUMBER()	OVER(ORDER	BY	val)	AS	rownum
FROM	Sales.OrderValues
GROUP	BY	val;

This	query	generates	the	following	output,	shown	here	in	abbreviated	form:
val							rownum
---------	-------
12.50					1
18.40					2
23.80					3
28.00					4
30.00					5
33.75					6

36.00					7
40.00					8
45.00					9
48.00					10
...
12615.05		793
15810.00		794
16387.50		795

(795	row(s)	affected)

Here,	the	GROUP	BY	phase	produces	795	groups	for	the	795	distinct	values,	and	then	the
SELECT	phase	produces	a	row	for	each	group,	with	val	and	a	row	number	based	on	val	order.
You’ll	get	to	work	on	an	alternative	solution	in	this	chapter ’s	exercises.

Offset	window	functions
You	use	offset	window	functions	to	return	an	element	from	a	row	that	is	at	a	certain	offset
from	the	current	row	or	at	the	beginning	or	end	of	a	window	frame.	T-SQL	supports	two	pairs
of	offset	functions:	LAG	and	LEAD,	and	FIRST_VALUE	and	LAST_VALUE.
The	LAG	and	LEAD	functions	support	window	partitions	and	window	order	clauses.

There’s	no	relevance	to	window	framing	here.	You	use	these	functions	to	obtain	an	element
from	a	row	that	is	at	a	certain	offset	from	the	current	row	within	the	partition,	based	on	the
indicated	ordering.	The	LAG	function	looks	before	the	current	row,	and	the	LEAD	function
looks	ahead.	The	first	argument	to	the	functions	(which	is	mandatory)	is	the	element	you	want
to	return;	the	second	argument	(optional)	is	the	offset	(1	if	not	specified);	the	third	argument
(optional)	is	the	default	value	to	return	if	there	is	no	row	at	the	requested	offset	(which	is
NULL	if	not	specified	otherwise).
As	an	example,	the	following	query	returns	order	information	from	the	OrderValues	view.

For	each	customer	order,	the	query	uses	the	LAG	function	to	return	the	value	of	the	previous
customer ’s	order	and	the	LEAD	function	to	return	the	value	of	the	next	customer ’s	order:
Click	here	to	view	code	image

SELECT	custid,	orderid,	val,
		LAG(val)		OVER(PARTITION	BY	custid
																	ORDER	BY	orderdate,	orderid)	AS	prevval,
		LEAD(val)	OVER(PARTITION	BY	custid
																	ORDER	BY	orderdate,	orderid)	AS	nextval
FROM	Sales.OrderValues
ORDER	BY	custid,	orderdate,	orderid;

Here’s	the	output	of	this	query	in	abbreviated	form:
Click	here	to	view	code	image

custid		orderid		val						prevval		nextval
-------	--------	--------	--------	--------
1							10643				814.50			NULL					878.00
1							10692				878.00			814.50			330.00
1							10702				330.00			878.00			845.80
1							10835				845.80			330.00			471.20
1							10952				471.20			845.80			933.50
1							11011				933.50			471.20			NULL
2							10308				88.80				NULL					479.75

2							10625				479.75			88.80				320.00
2							10759				320.00			479.75			514.40
2							10926				514.40			320.00			NULL
3							10365				403.20			NULL					749.06
3							10507				749.06			403.20			1940.85
3							10535				1940.85		749.06			2082.00
3							10573				2082.00		1940.85		813.37
3							10677				813.37			2082.00		375.50
3							10682				375.50			813.37			660.00
3							10856				660.00			375.50			NULL
...

(830	row(s)	affected)

Because	you	didn’t	indicate	the	offset,	the	functions	assumed	1	by	default.	LAG	obtained	the
value	of	the	immediately	previous	customer ’s	order,	and	LEAD	obtained	it	from	the	next
order.	Also,	because	you	didn’t	specify	a	third	argument,	NULL	was	assumed	by	default	when
there	was	no	previous	or	next	row.	The	expression	LAG(val,	3,	0)	obtains	the	value	from	three
rows	back	and	returns	0	if	a	row	wasn’t	found.
In	this	example,	I	just	returned	the	values	from	the	previous	and	next	orders,	but	normally

you	compute	something	based	on	the	returned	values.	For	example,	you	can	compute	the
difference	between	the	values	of	the	current	and	previous	customers’	orders	using	val	–
LAG(val)	OVER(...).	Or	you	can	compute	the	difference	between	the	current	and	next
customers’	orders	using	val	–	LEAD(val)	OVER(...).
You	use	the	FIRST_VALUE	and	LAST_VALUE	functions	to	return	an	element	from	the	first

and	last	rows	in	the	window	frame,	respectively.	Therefore,	these	functions	support	window-
partition,	window-order,	and	window-frame	clauses.	If	you	want	the	element	from	the	first
row	in	the	window	partition,	use	FIRST_VALUE	with	the	window	frame	extent	ROWS
BETWEEN	UNBOUNDED	PRECEDING	AND	CURRENT	ROW.	If	you	want	the	element	from
the	last	row	in	the	window	partition,	use	LAST_VALUE	with	the	window	frame	extent	ROWS
BETWEEN	CURRENT	ROW	AND	UNBOUNDED	FOLLOWING.	Note	that	if	you	specify
ORDER	BY	without	a	window-frame	unit	(such	as	ROWS),	the	bottom	delimiter	will	by	default
be	CURRENT	ROW,	and	clearly	that’s	not	what	you	want	with	LAST_VALUE.	Also,	for
performance-related	reasons	that	are	beyond	the	scope	of	this	book,	you	should	be	explicit
about	the	window-frame	extent	even	for	FIRST_VALUE.
As	an	example,	the	following	query	uses	the	FIRST_VALUE	function	to	return	the	value	of

the	first	customer ’s	order	and	the	LAST_VALUE	function	to	return	the	value	of	the	last
customer ’s	order:
Click	here	to	view	code	image

SELECT	custid,	orderid,	val,
		FIRST_VALUE(val)	OVER(PARTITION	BY	custid
																								ORDER	BY	orderdate,	orderid
																								ROWS	BETWEEN	UNBOUNDED	PRECEDING
																																	AND	CURRENT	ROW)	AS	firstval,
		LAST_VALUE(val)		OVER(PARTITION	BY	custid
																								ORDER	BY	orderdate,	orderid
																								ROWS	BETWEEN	CURRENT	ROW
																																	AND	UNBOUNDED	FOLLOWING)	AS	lastval
FROM	Sales.OrderValues

ORDER	BY	custid,	orderdate,	orderid;

This	query	generates	the	following	output,	shown	here	in	abbreviated	form:
Click	here	to	view	code	image

custid		orderid		val						firstval		lastval
-------	--------	--------	---------	--------
1							10643				814.50			814.50				933.50
1							10692				878.00			814.50				933.50
1							10702				330.00			814.50				933.50
1							10835				845.80			814.50				933.50
1							10952				471.20			814.50				933.50
1							11011				933.50			814.50				933.50
2							10308				88.80				88.80					514.40
2							10625				479.75			88.80					514.40
2							10759				320.00			88.80					514.40
2							10926				514.40			88.80					514.40
3							10365				403.20			403.20				660.00
3							10507				749.06			403.20				660.00
3							10535				1940.85		403.20				660.00
3							10573				2082.00		403.20				660.00
3							10677				813.37			403.20				660.00
3							10682				375.50			403.20				660.00
3							10856				660.00			403.20				660.00
...

(830	row(s)	affected)

As	with	LAG	and	LEAD,	normally	you	compute	something	based	on	the	returned	values.
For	example,	you	can	compute	the	difference	between	the	current	and	the	first	customer ’s
order	values:	val	–	FIRST_VALUE(val)	OVER(...).	Or	you	can	compute	the	difference	between
the	current	and	last	customer ’s	order	values:	val	–	LAST_VALUE(val)	OVER(...).

Aggregate	window	functions
You	use	aggregate	window	functions	to	aggregate	the	rows	in	the	defined	window.	They
support	window-partition,	window-order,	and	window-frame	clauses.
I’ll	start	with	an	example	that	doesn’t	involve	ordering	and	framing.	Recall	that	using	an

OVER	clause	with	empty	parentheses	exposes	a	window	of	all	rows	from	the	underlying
query’s	result	set	to	the	function.	For	example,	SUM(val)	OVER()	returns	the	grand	total	of	all
values.	If	you	do	add	a	window-partition	clause,	you	expose	a	restricted	window	to	the
function,	with	only	those	rows	from	the	underlying	query’s	result	set	that	share	the	same
values	in	the	partitioning	elements	as	in	the	current	row.	For	example,	SUM(val)
OVER(PARTITION	BY	custid)	returns	the	total	values	for	the	current	customer.
Here’s	a	query	against	OrderValues	that	returns,	along	with	each	order,	the	grand	total	of	all

order	values,	as	well	as	the	customer	total:
Click	here	to	view	code	image

SELECT	orderid,	custid,	val,
		SUM(val)	OVER()	AS	totalvalue,
		SUM(val)	OVER(PARTITION	BY	custid)	AS	custtotalvalue
FROM	Sales.OrderValues;

This	query	returns	the	following	output,	shown	here	in	abbreviated	form:
Click	here	to	view	code	image

orderid					custid						val										totalvalue							custtotalvalue
-----------	-----------	------------	----------------	---------------
10643							1											814.50							1265793.22							4273.00
10692							1											878.00							1265793.22							4273.00
10702							1											330.00							1265793.22							4273.00
10835							1											845.80							1265793.22							4273.00
10952							1											471.20							1265793.22							4273.00
11011							1											933.50							1265793.22							4273.00
10926							2											514.40							1265793.22							1402.95
10759							2											320.00							1265793.22							1402.95
10625							2											479.75							1265793.22							1402.95
10308							2											88.80								1265793.22							1402.95
10365							3											403.20							1265793.22							7023.98
...

(830	row(s)	affected)

The	totalvalue	column	shows,	for	each	row,	the	grand	total	of	all	values.	The	column
custtotalvalue	has	the	total	values	for	the	current	customer.

	Important

As	mentioned	at	the	beginning	of	the	chapter,	one	of	the	great	advantages	of	window
functions	is	that	they	don’t	hide	the	detail.	This	means	you	can	write	expressions	that
mix	detail	and	aggregates.	The	next	example	demonstrates	this.

As	an	example	of	mixing	detail	and	aggregates,	the	following	query	calculates	for	each
row	the	percentage	of	the	current	value	out	of	the	grand	total,	as	well	as	out	of	the	customer
total:
Click	here	to	view	code	image

SELECT	orderid,	custid,	val,
		100.	*	val	/	SUM(val)	OVER()	AS	pctall,
		100.	*	val	/	SUM(val)	OVER(PARTITION	BY	custid)	AS	pctcust
FROM	Sales.OrderValues;

This	query	returns	the	following	output,	shown	here	in	abbreviated	form:
Click	here	to	view	code	image

orderid						custid	val									pctall																								pctcust
------------	------	-----------	-----------------------------	--------------------

10643								1						814.50						0.0643470029014691672941						19.0615492628130119354083
10692								1						878.00						0.0693636200705830925528						20.5476246197051252047741
10702								1						330.00						0.0260706089103558320528						7.7229113035338169904048
10835								1						845.80						0.0668197606556938265161						19.7940556985724315469225
10952								1						471.20						0.0372256694501808123130						11.0273812309852562602387
11011								1						933.50						0.0737482224782338461253						21.8464778843903580622513
10926								2						514.40						0.0406385491620819394181						36.6655974910011048148544
10759								2						320.00						0.0252805904585268674452						22.8090808653195053280587
10625								2						479.75						0.0379011352264945770526						34.1958017035532271285505

10308								2						88.80							0.0070153638522412057160						6.3295199401261627285362
10365								3						403.20						0.0318535439777438529809						5.7403352515240647040566
...

(830	row(s)	affected)

Aggregate	window	functions	also	support	a	window	frame.	The	frame	allows	for	more
sophisticated	calculations,	such	as	running	and	moving	aggregates,	YTD	and	MTD
calculations,	and	others.	Let’s	re-examine	the	query	I	used	in	the	introduction	to	the	section
about	window	functions:
Click	here	to	view	code	image

SELECT	empid,	ordermonth,	val,
		SUM(val)	OVER(PARTITION	BY	empid
																ORDER	BY	ordermonth
																ROWS	BETWEEN	UNBOUNDED	PRECEDING
																									AND	CURRENT	ROW)	AS	runval
FROM	Sales.EmpOrders;

This	query	generates	the	following	output	(abbreviated):
Click	here	to	view	code	image

empid		ordermonth		val						runval
------	-----------	--------	----------
1						2014-07-01		1614.88		1614.88
1						2014-08-01		5555.90		7170.78
1						2014-09-01		6651.00		13821.78
1						2014-10-01		3933.18		17754.96
1						2014-11-01		9562.65		27317.61
...
2						2014-07-01		1176.00		1176.00
2						2014-08-01		1814.00		2990.00
2						2014-09-01		2950.80		5940.80
2						2014-10-01		5164.00		11104.80
2						2014-11-01		4614.58		15719.38
...

(192	row(s)	affected)

Each	row	in	the	EmpOrders	view	holds	information	about	the	order	activity	for	an
employee	and	month.	The	query	returns	for	each	employee	and	month	the	monthly	value,	plus
the	running-total	values	from	the	beginning	of	the	employee’s	activity	until	the	current	month.
To	apply	the	calculation	to	each	employee	independently,	you	partition	the	window	by	empid.
Then	you	define	ordering	based	on	ordermonth,	giving	meaning	to	the	window	frame:	ROWS
BETWEEN	UNBOUNDED	PRECEDING	AND	CURRENT	ROW.	This	frame	means	“all	activity
from	the	beginning	of	the	partition	until	the	current	month.”
T-SQL	supports	other	delimiters	for	the	ROWS	window-frame	unit.	You	can	indicate	an

offset	back	from	the	current	row	as	well	as	an	offset	forward.	For	example,	to	capture	all
rows	from	two	rows	before	the	current	row	until	one	row	ahead,	you	use	ROWS	BETWEEN	2
PRECEDING	AND	1	FOLLOWING.	Also,	if	you	do	not	want	an	upper	bound,	you	can	use
UNBOUNDED	FOLLOWING.
Because	window	functions	are	so	profound	and	have	so	many	practical	uses,	I	urge	you	to

invest	the	time	and	effort	to	get	to	know	the	concept	well.

Pivoting	data
Pivoting	data	involves	rotating	data	from	a	state	of	rows	to	a	state	of	columns,	possibly
aggregating	values	along	the	way.	In	many	cases,	the	pivoting	of	data	is	handled	by	the
presentation	layer	for	purposes	such	as	reporting.	This	section	teaches	you	how	to	handle
pivoting	with	T-SQL	for	cases	you	do	decide	to	handle	in	the	database.
For	the	rest	of	the	topics	in	this	chapter,	I	use	a	sample	table	called	dbo.Orders	that	you

create	and	populate	in	the	TSQLV4	database	by	running	Listing	7-1.

LISTING	7-1	Code	to	create	and	populate	the	dbo.Orders	table

Click	here	to	view	code	image

USE	TSQLV4;

DROP	TABLE	IF	EXISTS	dbo.Orders;

CREATE	TABLE	dbo.Orders
(
		orderid			INT								NOT	NULL,
		orderdate	DATE							NOT	NULL,
		empid					INT								NOT	NULL,
		custid				VARCHAR(5)	NOT	NULL,
		qty							INT								NOT	NULL,
		CONSTRAINT	PK_Orders	PRIMARY	KEY(orderid)
);

INSERT	INTO	dbo.Orders(orderid,	orderdate,	empid,	custid,	qty)
VALUES
		(30001,	'20140802',	3,	'A',	10),
		(10001,	'20141224',	2,	'A',	12),
		(10005,	'20141224',	1,	'B',	20),
		(40001,	'20150109',	2,	'A',	40),
		(10006,	'20150118',	1,	'C',	14),
		(20001,	'20150212',	2,	'B',	12),
		(40005,	'20160212',	3,	'A',	10),
		(20002,	'20160216',	1,	'C',	20),
		(30003,	'20160418',	2,	'B',	15),
		(30004,	'20140418',	3,	'C',	22),
		(30007,	'20160907',	3,	'D',	30);

SELECT	*	FROM	dbo.Orders;

The	query	at	the	end	of	Listing	7-1	produces	the	following	output:
Click	here	to	view	code	image

orderid					orderdate			empid										custid				qty
-----------	-----------	--------------	---------	-----------
10001							2014-12-24		2														A									12
10005							2014-12-24		1														B									20
10006							2015-01-18		1														C									14
20001							2015-02-12		2														B									12
20002							2016-02-16		1														C									20
30001							2014-08-02		3														A									10
30003							2016-04-18		2														B									15

30004							2014-04-18		3														C									22
30007							2016-09-07		3														D									30
40001							2015-01-09		2														A									40
40005							2016-02-12		3														A									10

Suppose	you	need	to	query	this	table	and	return	the	total	order	quantity	for	each	employee
and	customer.	The	following	grouped	query	achieves	this	task:
Click	here	to	view	code	image

SELECT	empid,	custid,	SUM(qty)	AS	sumqty
FROM	dbo.Orders
GROUP	BY	empid,	custid;

This	query	generates	the	following	output:
Click	here	to	view	code	image

empid							custid				sumqty
-----------	---------	-----------
2											A									52
3											A									20
1											B									20
2											B									27
1											C									34
3											C									22
3											D									30

Suppose,	however,	you	have	a	requirement	to	produce	the	output	in	the	form	shown	in
Table	7-1.

TABLE	7-1	Pivoted	view	of	total	quantity	per	employee	(on	rows)	and	customer	(on
columns)

What	you	see	in	Table	7-1	is	an	aggregated	and	pivoted	view	of	the	data;	the	technique	for
generating	this	view	is	called	pivoting.
Every	pivoting	request	involves	three	logical	processing	phases,	each	with	associated

elements:
1.	A	grouping	phase	with	an	associated	grouping	or	on	rows	element
2.	A	spreading	phase	with	an	associated	spreading	or	on	cols	element
3.	An	aggregation	phase	with	an	associated	aggregation	element	and	aggregate	function
In	this	example,	you	need	to	produce	a	single	row	in	the	result	for	each	unique	employee

ID.	This	means	the	rows	from	the	dbo.Orders	table	need	to	be	grouped	by	the	empid	attribute
(the	grouping	element).
The	dbo.Orders	table	has	a	single	column	that	holds	all	customer	ID	values	and	a	single

column	that	holds	their	ordered	quantities.	The	pivoting	task	requires	you	to	produce	a
different	result	column	for	each	unique	customer	ID,	holding	the	aggregated	quantities	for

that	customer.	You	can	think	of	this	process	as	“spreading”	the	quantities	by	customer	ID.	The
spreading	element	in	this	case	is	the	custid	attribute.
Finally,	because	pivoting	involves	grouping,	you	need	to	aggregate	data	to	produce	the

result	values	in	the	“intersection”	of	the	grouping	(employee)	and	spreading	(customer)
elements.	You	need	to	identify	the	aggregate	function	(SUM,	in	this	case)	and	the	aggregation
element	(the	qty	attribute,	in	this	case).
To	recap,	pivoting	involves	grouping,	spreading,	and	aggregating.	In	this	example,	you

group	by	empid,	spread	(quantities)	by	custid,	and	aggregate	with	SUM(qty).	After	you
identify	the	elements	involved	in	pivoting,	the	rest	is	just	a	matter	of	incorporating	those
elements	in	the	right	places	in	a	generic	query	template	for	pivoting.
This	chapter	presents	two	solutions	for	pivoting—one	based	on	an	explicit	grouped	query

and	another	with	a	table	operator	called	PIVOT.

Pivoting	with	a	grouped	query
The	solution	using	a	grouped	query	handles	all	three	phases	in	an	explicit	and	straightforward
manner.
The	grouping	phase	is	achieved	with	a	GROUP	BY	clause—in	this	case,	GROUP	BY	empid.
The	spreading	phase	is	achieved	in	the	SELECT	clause	with	a	CASE	expression	for	each

target	column.	You	need	to	know	the	spreading	element	values	ahead	of	time	and	specify	a
separate	expression	for	each.	Because	in	this	case	you	need	to	“spread”	the	quantities	of	four
customers	(A,	B,	C,	and	D),	there	are	four	CASE	expressions.	For	example,	here’s	the	CASE
expression	for	customer	A:
Click	here	to	view	code	image

CASE	WHEN	custid	=	'A'	THEN	qty	END

This	expression	returns	the	quantity	from	the	current	row	only	when	the	current	row
represents	an	order	for	customer	A;	otherwise,	the	expression	returns	a	NULL.	Remember
that	if	an	ELSE	clause	is	not	specified	in	a	CASE	expression,	the	implied	default	is	ELSE
NULL.	This	means	that	in	the	target	column	for	customer	A,	only	quantities	associated	with
customer	A	appear	as	column	values,	and	in	all	other	cases	the	column	values	are	NULL.
If	you	don’t	know	the	spreading	values	ahead	of	time	(the	distinct	customer	IDs	in	this

case),	you	need	to	query	them	from	the	data,	construct	the	query	string	yourself	by	using	an
aggregate	string	concatenation	method,	and	use	dynamic	SQL	to	execute	it.	I’ll	demonstrate
how	to	achieve	this	in	Chapter	11,	“Programmable	objects.”
Finally,	the	aggregation	phase	is	achieved	by	applying	the	relevant	aggregate	function

(SUM,	in	this	case)	to	the	result	of	each	CASE	expression.	For	example,	here’s	the	expression
that	produces	the	result	column	for	customer	A:
Click	here	to	view	code	image

SUM(CASE	WHEN	custid	=	'A'	THEN	qty	END)	AS	A

Of	course,	depending	on	the	request,	you	might	need	to	use	another	aggregate	function
(such	as	MAX,	MIN,	or	COUNT).

Here’s	the	complete	solution	query	that	pivots	order	data,	returning	the	total	quantity	for
each	employee	(on	rows)	and	customer	(on	columns):
Click	here	to	view	code	image

SELECT	empid,
		SUM(CASE	WHEN	custid	=	'A'	THEN	qty	END)	AS	A,
		SUM(CASE	WHEN	custid	=	'B'	THEN	qty	END)	AS	B,
		SUM(CASE	WHEN	custid	=	'C'	THEN	qty	END)	AS	C,
		SUM(CASE	WHEN	custid	=	'D'	THEN	qty	END)	AS	D
FROM	dbo.Orders
GROUP	BY	empid;

This	query	produces	the	output	shown	earlier	in	Table	7-1.	SQL	Server	also	generates	the
following	warning	in	the	Messages	pane	of	SSMS:
Click	here	to	view	code	image

Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

The	warning	notifies	you	that	NULLs	are	ignored	by	an	aggregate	function,	as	we	discussed
earlier.

Pivoting	with	the	PIVOT	operator
The	solution	for	pivoting	based	on	an	explicit	grouped	query	is	standard.	T-SQL	also
supports	a	proprietary	table	operator	called	PIVOT	that	you	can	use	to	achieve	pivoting	in	a
more	concise	manner.	As	a	table	operator,	PIVOT	operates	in	the	context	of	the	FROM	clause
like	any	other	table	operator	(for	example,	JOIN).	It	operates	on	the	source	table	or	table
expression	provided	to	it	as	its	left	input,	pivots	the	data,	and	returns	a	result	table.	The	PIVOT
operator	involves	the	same	logical	processing	phases	as	described	earlier	(grouping,
spreading,	and	aggregating),	only	it	requires	less	code	than	the	previous	solution.
The	general	form	of	a	query	with	the	PIVOT	operator	is	shown	here:

Click	here	to	view	code	image

SELECT	...
FROM	<input_table>
		PIVOT(<agg_function>(<aggregation_element>)
										FOR	<spreading_element>	IN	(<list_of_target_columns>))	AS
<result_table_alias>
WHERE	...;

In	the	parentheses	of	the	PIVOT	operator,	you	specify	the	aggregate	function	(SUM,	in	this
example),	aggregation	element	(qty),	spreading	element	(custid),	and	the	list	of	target	column
names	(A,	B,	C,	D).	Following	the	parentheses	of	the	PIVOT	operator,	you	specify	an	alias	for
the	result	table.
Note	that	with	the	PIVOT	operator,	you	do	not	explicitly	specify	the	grouping	elements,

removing	the	need	for	GROUP	BY	in	the	query.	The	PIVOT	operator	figures	out	the	grouping
elements	implicitly	by	elimination.	The	grouping	elements	are	all	attributes	from	the	source
table	that	were	not	specified	as	either	the	spreading	element	or	the	aggregation	element.	You
must	ensure	that	the	source	table	for	the	PIVOT	operator	has	no	attributes	other	than	the
grouping,	spreading,	and	aggregation	elements	so	that	the	implied	selection	of	the	grouping

elements	will	be	what	you	want.	You	achieve	this	by	using	a	table	expression	that	includes
only	the	attributes	you	need	as	the	input	of	the	operator.	For	example,	here’s	the	solution
query	to	the	original	pivoting	request,	using	the	PIVOT	operator:
Click	here	to	view	code	image

SELECT	empid,	A,	B,	C,	D
FROM	(SELECT	empid,	custid,	qty
						FROM	dbo.Orders)	AS	D
		PIVOT(SUM(qty)	FOR	custid	IN(A,	B,	C,	D))	AS	P;

Instead	of	operating	directly	on	the	dbo.Orders	table,	the	PIVOT	operator	operates	on	a
derived	table	called	D	that	includes	only	the	pivoting	elements	empid,	custid,	and	qty.	When
you	account	for	the	spreading	element,	which	is	custid,	and	the	aggregation	element,	which	is
qty,	what’s	left	is	the	implied	grouping	element	empid.
This	query	returns	the	output	shown	earlier	in	Table	7-1.
To	understand	why	you’re	required	to	use	a	table	expression	here,	consider	the	following

query	that	applies	the	PIVOT	operator	directly	to	the	dbo.Orders	table:
Click	here	to	view	code	image

SELECT	empid,	A,	B,	C,	D
FROM	dbo.Orders
		PIVOT(SUM(qty)	FOR	custid	IN(A,	B,	C,	D))	AS	P;

The	dbo.Orders	table	contains	the	attributes	orderid,	orderdate,	empid,	custid,	and	qty.
Because	the	query	specifies	custid	as	the	spreading	element	and	qty	as	the	aggregation
element,	the	remaining	attributes	(orderid,	orderdate,	and	empid)	are	all	considered	the
grouping	elements.	This	query,	therefore,	returns	the	following	output:
Click	here	to	view	code	image

empid							A											B											C											D
-----------	-----------	-----------	-----------	-----------
2											12										NULL								NULL								NULL
1											NULL								20										NULL								NULL
1											NULL								NULL								14										NULL
2											NULL								12										NULL								NULL
1											NULL								NULL								20										NULL
3											10										NULL								NULL								NULL
2											NULL								15										NULL								NULL
3											NULL								NULL								22										NULL
3											NULL								NULL								NULL								30
2											40										NULL								NULL								NULL
3											10										NULL								NULL								NULL

(11	row(s)	affected)

Because	orderid	is	part	of	the	grouping	elements,	you	get	a	row	for	each	order	instead	of	a
row	for	each	employee.	The	logical	equivalent	of	this	query	that	uses	the	standard	solution
for	pivoting	has	orderid,	orderdate,	and	empid	listed	in	the	GROUP	BY	list	as	follows:
Click	here	to	view	code	image

SELECT	empid,
		SUM(CASE	WHEN	custid	=	'A'	THEN	qty	END)	AS	A,
		SUM(CASE	WHEN	custid	=	'B'	THEN	qty	END)	AS	B,

		SUM(CASE	WHEN	custid	=	'C'	THEN	qty	END)	AS	C,
		SUM(CASE	WHEN	custid	=	'D'	THEN	qty	END)	AS	D
FROM	dbo.Orders
GROUP	BY	orderid,	orderdate,	empid;

As	a	best	practice	with	the	PIVOT	operator,	you	should	always	work	with	a	table	expression
and	not	query	the	underlying	table	directly.	Even	if	currently	the	table	contains	only	the
columns	that	are	supposed	to	take	part	in	pivoting,	you	might	add	columns	to	the	table	in	the
future,	rendering	your	queries	incorrect.	It	is	also	important	to	enumerate	the	columns	both	in
the	table	expression’s	inner	query	and	in	the	outer	query.
As	another	example	of	a	pivoting	request,	suppose	that	instead	of	returning	employees	on

rows	and	customers	on	columns,	you	want	it	the	other	way	around:	the	grouping	element	is
custid,	the	spreading	element	is	empid,	and	the	aggregation	element	and	aggregate	function
remain	SUM(qty).	After	you	learn	the	“template”	for	a	pivoting	solution	(with	the	grouped
query	or	with	the	PIVOT	operator),	it’s	just	a	matter	of	fitting	those	elements	in	the	right
places.	The	following	solution	query	uses	the	PIVOT	operator	to	achieve	the	result:
Click	here	to	view	code	image

SELECT	custid,	[1],	[2],	[3]
FROM	(SELECT	empid,	custid,	qty
						FROM	dbo.Orders)	AS	D
		PIVOT(SUM(qty)	FOR	empid	IN([1],	[2],	[3]))	AS	P;

The	employee	IDs	1,	2,	and	3	are	values	in	the	empid	column	in	the	source	table,	but	in
terms	of	the	result,	these	values	become	target	column	names.	You	must	refer	to	them	as
identifiers	in	the	IN	clause.	When	identifiers	are	irregular	(for	example,	when	they	start	with	a
digit),	you	need	to	delimit	them—hence,	the	use	of	square	brackets.
This	query	returns	the	following	output:

Click	here	to	view	code	image

custid				1											2											3
---------	-----------	-----------	-----------
A									NULL								52										20
B									20										27										NULL
C									34										NULL								22
D									NULL								NULL								30

Unpivoting	data
Unpivoting	is	a	technique	that	rotates	data	from	a	state	of	columns	to	a	state	of	rows.	Usually,
it	involves	querying	a	pivoted	state	of	the	data	and	producing	from	each	source	row	multiple
result	rows,	each	with	a	different	source	column	value.	A	common	use	case	is	to	unpivot	data
you	imported	from	a	spreadsheet	into	the	database	for	easier	manipulation.
Run	the	following	code	to	create	and	populate	a	table	called	EmpCustOrders	in	the	TSQLV4

sample	database.	I’ll	use	this	table	to	demonstrate	unpivoting	techniques:
Click	here	to	view	code	image

USE	TSQLV4;

DROP	TABLE	IF	EXISTS	dbo.EmpCustOrders;

CREATE	TABLE	dbo.EmpCustOrders
(
		empid	INT	NOT	NULL
				CONSTRAINT	PK_EmpCustOrders	PRIMARY	KEY,
		A	VARCHAR(5)	NULL,
		B	VARCHAR(5)	NULL,
		C	VARCHAR(5)	NULL,
		D	VARCHAR(5)	NULL
);

INSERT	INTO	dbo.EmpCustOrders(empid,	A,	B,	C,	D)
		SELECT	empid,	A,	B,	C,	D
		FROM	(SELECT	empid,	custid,	qty
								FROM	dbo.Orders)	AS	D
				PIVOT(SUM(qty)	FOR	custid	IN(A,	B,	C,	D))	AS	P;

SELECT	*	FROM	dbo.EmpCustOrders;

Here’s	the	output	of	the	query	against	EmpCustOrders	showing	its	contents:
Click	here	to	view	code	image

empid							A											B											C											D
-----------	-----------	-----------	-----------	-----------
1											NULL								20										34										NULL
2											52										27										NULL								NULL
3											20										NULL								22										30

The	table	has	a	row	for	each	employee;	a	column	for	each	of	the	four	customers	A,	B,	C,
and	D;	and	the	order	quantity	for	each	employee	and	customer.	Notice	that	irrelevant
intersections	(employee-customer	combinations	that	had	no	intersecting	order	activity)	are
represented	by	NULLs.	Suppose	you	get	a	request	to	unpivot	the	data,	requiring	you	to	return
a	row	for	each	employee	and	customer,	along	with	the	order	quantity.	The	result	should	look
like	this:
Click	here	to	view	code	image

empid							custid				qty
-----------	---------	-----------
1											B									20
1											C									34
2											A									52
2											B									27
3											A									20
3											C									22
3											D									30

In	the	following	sections,	I’ll	discuss	two	techniques	for	solving	this	problem—one	using
the	APPLY	operator	and	another	using	the	UNPIVOT	operator.

Unpivoting	with	the	APPLY	operator
Unpivoting	involves	three	logical	processing	phases:	producing	copies,	extracting	values,	and
eliminating	irrelevant	rows.
The	first	step	in	the	solution	involves	producing	multiple	copies	of	each	source	row—one

for	each	column	you	need	to	unpivot.	In	this	case,	you	need	to	produce	a	copy	for	each	of	the
columns	A,	B,	C,	and	D,	which	represent	customer	IDs.	You	can	achieve	this	step	by	applying

a	cross	join	between	the	EmpCustOrders	table	and	a	table	that	has	a	row	for	each	customer.
If	you	already	have	a	table	of	customers	in	your	database,	you	can	use	that	table	in	the	cross

join.	If	you	don’t	have	a	table	of	customers,	you	can	build	a	virtual	one	on	the	fly	using	a
table-value	constructor	based	on	the	VALUES	clause.	Here’s	the	code	that	implements	this	step:
Click	here	to	view	code	image

SELECT	*
FROM	dbo.EmpCustOrders
		CROSS	JOIN	(VALUES('A'),('B'),('C'),('D'))	AS	C(custid);

The	VALUES	clause	defines	a	set	of	four	rows,	each	with	a	single	customer	ID	value.	The
code	defines	a	derived	table	called	C	based	on	this	clause	and	names	the	only	column	in	it
custid.	The	code	then	applies	a	cross	join	between	EmpCustOrders	and	C.

	Note
If	you’re	not	familiar	yet	with	the	VALUES	clause,	it’s	described	in	detail	in	Chapter	8,
“Data	modification.”

In	this	example,	the	query	that	implements	the	first	step	in	the	solution	returns	the	following
output:
Click	here	to	view	code	image

empid							A											B											C											D											custid
-----------	-----------	-----------	-----------	-----------	------
1											NULL								20										34										NULL								A
1											NULL								20										34										NULL								B
1											NULL								20										34										NULL								C
1											NULL								20										34										NULL								D
2											52										27										NULL								NULL								A
2											52										27										NULL								NULL								B
2											52										27										NULL								NULL								C
2											52										27										NULL								NULL								D
3											20										NULL								22										30										A
3											20										NULL								22										30										B
3											20										NULL								22										30										C
3											20										NULL								22										30										D

As	you	can	see,	four	copies	were	produced	for	each	source	row—one	each	for	customers
A,	B,	C,	and	D.
The	second	step	in	the	solution	is	to	extract	a	value	from	one	of	the	original	customer

quantity	columns	(A,	B,	C,	or	D)	to	return	a	single	value	column	(call	it	qty	in	our	case).	You
need	to	extract	the	value	from	the	column	that	corresponds	to	the	current	custid	value.	If
custid	is	‘A’,	the	qty	column	should	return	the	value	from	column	A,	if	custid	is	‘B’,	qty
should	return	the	value	from	column	B,	and	so	on.	To	achieve	this	step,	you	might	think	you
can	simply	add	the	qty	column	as	a	second	column	to	each	row	in	the	table	value	constructor
(the	VALUES	clause),	like	this:
Click	here	to	view	code	image

SELECT	empid,	custid,	qty
FROM	dbo.EmpCustOrders
		CROSS	JOIN	(VALUES('A',	A),('B',	B),('C',	C),('D',	D))	AS	C(custid,	qty);

However,	remember	that	a	join	treats	its	two	inputs	as	a	set;	hence,	there’s	no	order	between
those	inputs.	You	can’t	refer	to	the	elements	of	either	of	the	inputs	when	constructing	the
other.	In	our	case,	the	table-value	constructor	on	the	right	side	of	the	join	has	references	to	the
columns	A,	B,	C,	and	D	from	the	left	side	of	the	join	(EmpCustOrders).	Consequently,	when
you	try	to	run	this	code,	you	get	the	following	errors:
Click	here	to	view	code	image

Msg	207,	Level	16,	State	1,	Line	222
Invalid	column	name	'A'.
Msg	207,	Level	16,	State	1,	Line	222
Invalid	column	name	'B'.
Msg	207,	Level	16,	State	1,	Line	222
Invalid	column	name	'C'.
Msg	207,	Level	16,	State	1,	Line	222
Invalid	column	name	'D'.

The	solution	is	to	use	the	CROSS	APPLY	operator	instead	of	the	CROSS	JOIN	operator.
They	are	similar,	but	the	former	evaluates	the	left	side	first	and	then	applies	the	right	side	to
each	left	row,	making	the	left	side’s	elements	accessible	to	the	right	side.	Here’s	the	code
implementing	this	step	with	the	CROSS	APPLY	operator:
Click	here	to	view	code	image

SELECT	empid,	custid,	qty
FROM	dbo.EmpCustOrders
		CROSS	APPLY	(VALUES('A',	A),('B',	B),('C',	C),('D',	D))	AS	C(custid,	qty);

This	query	runs	successfully,	returning	the	following	output:
Click	here	to	view	code	image

empid							custid				qty
-----------	---------	-----------
1											A									NULL
1											B									20
1											C									34
1											D									NULL
2											A									52
2											B									27
2											C									NULL
2											D									NULL
3											A									20
3											B									NULL
3											C									22
3											D									30

Recall	that	in	the	original	table	NULLs	represent	irrelevant	intersections.	In	the	result,
there’s	typically	no	reason	to	keep	irrelevant	rows	where	qty	is	NULL.	The	nice	thing	in	our
case	is	that	the	CROSS	APPLY	operator,	which	created	the	column	qty,	was	processed	in	the
FROM	clause,	and	the	FROM	clause	is	evaluated	before	the	WHERE	clause.	This	means	that
the	qty	column	is	accessible	to	expressions	in	the	WHERE	clause.	To	remove	irrelevant	rows,
add	a	filter	in	the	WHERE	clause	that	discards	rows	with	a	NULL	in	the	qty	column,	like	this:

Click	here	to	view	code	image

SELECT	empid,	custid,	qty
FROM	dbo.EmpCustOrders
		CROSS	APPLY	(VALUES('A',	A),('B',	B),('C',	C),('D',	D))	AS	C(custid,	qty)
WHERE	qty	IS	NOT	NULL;

This	query	returns	the	following	output:
Click	here	to	view	code	image

empid							custid				qty
-----------	---------	-----------
1											B									20
1											C									34
2											A									52
2											B									27
3											A									20
3											C									22
3											D									30

Unpivoting	with	the	UNPIVOT	operator
Unpivoting	data	involves	producing	two	result	columns	from	any	number	of	source	columns
—one	to	hold	the	source	column	names	as	strings	and	another	to	hold	the	source	column
values.	In	this	example,	you	need	to	unpivot	the	source	columns	A,	B,	C,	and	D,	producing	the
result	names	column	custid	and	values	column	qty.	Similar	to	the	PIVOT	operator,	T-SQL	also
supports	the	UNPIVOT	operator	to	enable	you	to	unpivot	data.	The	general	form	of	a	query
with	the	UNPIVOT	operator	is	as	follows:
Click	here	to	view	code	image

SELECT	...
FROM	<input_table>
		UNPIVOT(<values_column>	FOR	<names_column>	IN(<source_columns>))	AS
<result_table_alias>
WHERE	...;

Like	the	PIVOT	operator,	UNPIVOT	was	also	implemented	as	a	table	operator	in	the	context
of	the	FROM	clause.	It	operates	on	a	source	table	or	table	expression	(EmpCustOrders	in	this
case).	Within	the	parentheses	of	the	UNPIVOT	operator,	you	specify	the	name	you	want	to
assign	to	the	column	that	will	hold	the	source-column	values	(qty	here),	the	name	you	want	to
assign	to	the	column	that	will	hold	the	source-column	names	(custid),	and	the	list	of	source-
column	names	(A,	B,	C,	and	D).	Following	the	parentheses,	you	provide	an	alias	to	the	table
resulting	from	the	table	operator.
Here’s	the	query	that	uses	the	UNPIVOT	operator	to	handle	our	unpivoting	task:

Click	here	to	view	code	image

SELECT	empid,	custid,	qty
FROM	dbo.EmpCustOrders
		UNPIVOT(qty	FOR	custid	IN(A,	B,	C,	D))	AS	U;

Note	that	the	UNPIVOT	operator	implements	the	same	logical-processing	phases	described
earlier—generating	copies,	extracting	elements,	and	eliminating	NULL	intersections.
However,	the	last	phase	is	not	optional	as	in	the	solution	with	the	APPLY	operator.	When	you

need	to	apply	the	third	phase,	it’s	convenient	to	use	the	solution	with	the	UNPIVOT	operator
because	it’s	more	concise.	When	you	need	to	keep	the	rows	with	the	NULLs,	use	the	solution
with	the	APPLY	operator.
When	you’re	done,	run	the	following	code	for	cleanup:

Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.EmpCustOrders;

Grouping	sets
This	section	describes	what	a	grouping	set	is	and	the	features	in	T-SQL	that	support	grouping
sets.
A	grouping	set	is	a	set	of	expressions	you	group	the	data	by	in	a	grouped	query	(a	query

with	a	GROUP	BY	clause).	The	reason	for	using	the	term	“set”	here	is	that	there’s	no
significance	to	the	order	in	which	you	specify	the	expressions	in	the	GROUP	BY	clause.
Traditionally	in	SQL,	a	single	grouped	query	defines	a	single	grouping	set.	For	example,
each	of	the	following	four	queries	defines	a	single	grouping	set:
Click	here	to	view	code	image

SELECT	empid,	custid,	SUM(qty)	AS	sumqty
FROM	dbo.Orders
GROUP	BY	empid,	custid;

SELECT	empid,	SUM(qty)	AS	sumqty
FROM	dbo.Orders
GROUP	BY	empid;

SELECT	custid,	SUM(qty)	AS	sumqty
FROM	dbo.Orders
GROUP	BY	custid;

SELECT	SUM(qty)	AS	sumqty
FROM	dbo.Orders;

The	first	query	defines	the	grouping	set	(empid,	custid);	the	second	(empid),	the	third
(custid),	and	the	last	query	defines	what’s	known	as	the	empty	grouping	set,	().	This	code
returns	four	result	sets—one	for	each	of	the	four	queries.
Suppose,	for	reporting	purposes,	that	instead	of	wanting	four	separate	result	sets	returned,

you	want	a	single	unified	result	set.	You	can	achieve	this	by	using	the	UNION	ALL	operator
between	the	queries,	after	planting	NULLs	as	placeholders	for	columns	that	appear	in	one
query	but	not	others.	Here’s	what	the	code	looks	like:
Click	here	to	view	code	image

SELECT	empid,	custid,	SUM(qty)	AS	sumqty
FROM	dbo.Orders
GROUP	BY	empid,	custid

UNION	ALL

SELECT	empid,	NULL,	SUM(qty)	AS	sumqty
FROM	dbo.Orders
GROUP	BY	empid

UNION	ALL

SELECT	NULL,	custid,	SUM(qty)	AS	sumqty
FROM	dbo.Orders
GROUP	BY	custid

UNION	ALL

SELECT	NULL,	NULL,	SUM(qty)	AS	sumqty
FROM	dbo.Orders;

This	code	generates	a	single	result	set	with	the	aggregates	for	all	four	groupings:
Click	here	to	view	code	image

empid							custid				sumqty
-----------	---------	-----------
2											A									52
3											A									20
1											B									20
2											B									27
1											C									34
3											C									22
3											D									30
1											NULL						54
2											NULL						79
3											NULL						72
NULL								A									72
NULL								B									47
NULL								C									56
NULL								D									30
NULL								NULL						205

(15	row(s)	affected)

Even	though	you	managed	to	get	what	you	were	after,	this	solution	has	two	main	problems
—the	length	of	the	code	and	performance.	It’s	long	because	you	have	a	separate	query	for
each	grouping	set.	Also,	SQL	Server	needs	to	apply	a	separate	scanning	of	the	data	for	each
query.
T-SQL	supports	standard	features	you	can	use	to	define	multiple	grouping	sets	in	the	same

query.	Those	are	the	GROUPING	SETS,	CUBE,	and	ROLLUP	subclauses	of	the	GROUP	BY
clause,	and	the	GROUPING	and	GROUPING_ID	functions.	The	main	use	cases	are	reporting
and	data	analysis.	These	features	usually	need	the	presentation	layer	to	use	more	sophisticated
GUI	controls	to	display	the	data	than	the	typical	grid	control	with	its	columns	and	rows.	But
this	book’s	focus	is	the	T-SQL	code	in	the	database	and	not	the	presentation	layer.

The	GROUPING	SETS	subclause
The	GROUPING	SETS	subclause	is	a	powerful	enhancement	to	the	GROUP	BY	clause.	You
can	use	it	to	define	multiple	grouping	sets	in	the	same	query.	Simply	list	the	grouping	sets	you
want,	separated	by	commas	within	the	parentheses	of	the	GROUPING	SETS	subclause,	and	for
each	grouping	set	list	the	members,	separated	by	commas,	within	parentheses.	For	example,
the	following	query	defines	four	grouping	sets:	(empid,	custid),	(empid),	(custid),	and	():

Click	here	to	view	code	image

SELECT	empid,	custid,	SUM(qty)	AS	sumqty
FROM	dbo.Orders
GROUP	BY
		GROUPING	SETS
		(
				(empid,	custid),
				(empid),
				(custid),
				()
);

The	last	grouping	set	is	the	empty	grouping	set	representing	the	grand	total.	This	query	is	a
logical	equivalent	of	the	previous	solution	that	unified	the	result	sets	of	four	aggregate
queries.	Only	this	one	is	much	shorter,	plus	it	gets	optimized	better.	SQL	Server	typically
needs	fewer	scans	of	the	data	than	the	number	of	grouping	sets	because	it	can	roll	up
aggregates	internally.

The	CUBE	subclause
The	CUBE	subclause	of	the	GROUP	BY	clause	provides	an	abbreviated	way	to	define	multiple
grouping	sets.	In	the	parentheses	of	the	CUBE	subclause,	you	provide	a	set	of	members
separated	by	commas,	and	you	get	all	possible	grouping	sets	that	can	be	defined	based	on	the
input	members.	For	example,	CUBE(a,	b,	c)	is	equivalent	to	GROUPING	SETS((a,	b,	c),	(a,
b),	(a,	c),	(b,	c),	(a),	(b),	(c),	()).	In	set	theory,	the	set	of	all	subsets	of	elements	that	can	be
produced	from	a	particular	set	is	called	the	power	set.	You	can	think	of	the	CUBE	subclause	as
producing	the	power	set	of	grouping	sets	that	can	be	formed	from	the	given	set	of	elements.
Instead	of	using	the	GROUPING	SETS	subclause	in	the	previous	query	to	define	the	four

grouping	sets	(empid,	custid),	(empid),	(custid),	and	(),	you	can	simply	use	CUBE(empid,
custid).	Here’s	the	complete	query:
Click	here	to	view	code	image

SELECT	empid,	custid,	SUM(qty)	AS	sumqty
FROM	dbo.Orders
GROUP	BY	CUBE(empid,	custid);

The	ROLLUP	subclause
The	ROLLUP	subclause	of	the	GROUP	BY	clause	also	provides	an	abbreviated	way	to	define
multiple	grouping	sets.	However,	unlike	the	CUBE	subclause,	ROLLUP	doesn’t	produce	all
possible	grouping	sets.	ROLLUP	assumes	a	hierarchy	among	the	input	members	and	produces
only	grouping	sets	that	form	leading	combinations	of	the	input	members.	For	example,
whereas	CUBE(a,	b,	c)	produces	all	eight	possible	grouping	sets,	ROLLUP(a,	b,	c)	produces
only	four	based	on	the	hierarchy	a>b>c.	It	is	the	equivalent	of	specifying	GROUPING	SETS(
(a,	b,	c),	(a,	b),	(a),	()).
For	example,	suppose	you	want	to	return	total	quantities	for	all	grouping	sets	that	can	be

defined	based	on	the	time	hierarchy	of	order	year,	order	month,	order	day.	You	can	use	the
GROUPING	SETS	subclause	and	explicitly	list	all	four	possible	grouping	sets:
Click	here	to	view	code	image

GROUPING	SETS(
		(YEAR(orderdate),	MONTH(orderdate),	DAY(orderdate)),
		(YEAR(orderdate),	MONTH(orderdate)),
		(YEAR(orderdate)),
		())

The	logical	equivalent	that	uses	the	ROLLUP	subclause	is	much	more	concise:
Click	here	to	view	code	image

ROLLUP(YEAR(orderdate),	MONTH(orderdate),	DAY(orderdate))

Here’s	the	complete	query	you	need	to	run:
Click	here	to	view	code	image

SELECT
		YEAR(orderdate)	AS	orderyear,
		MONTH(orderdate)	AS	ordermonth,
		DAY(orderdate)	AS	orderday,
		SUM(qty)	AS	sumqty
FROM	dbo.Orders
GROUP	BY	ROLLUP(YEAR(orderdate),	MONTH(orderdate),	DAY(orderdate));

This	query	produces	the	following	output:
Click	here	to	view	code	image

orderyear			ordermonth					orderday				sumqty
-----------	--------------	-----------	-----------
2014								4														18										22
2014								4														NULL								22
2014								8														2											10
2014								8														NULL								10
2014								12													24										32
2014								12													NULL								32
2014								NULL											NULL								64
2015								1														9											40
2015								1														18										14
2015								1														NULL								54
2015								2														12										12
2015								2														NULL								12
2015								NULL											NULL								66
2016								2														12										10
2016								2														16										20
2016								2														NULL								30
2016								4														18										15
2016								4														NULL								15
2016								9														7											30
2016								9														NULL								30
2016								NULL											NULL								75
NULL								NULL											NULL								205

The	GROUPING	and	GROUPING_ID	functions
When	you	have	a	single	query	that	defines	multiple	grouping	sets,	you	might	need	to
associate	result	rows	and	grouping	sets.	As	long	as	all	grouping	elements	are	defined	as	NOT
NULL,	this	is	easy.	For	example,	consider	the	following	query:
Click	here	to	view	code	image

SELECT	empid,	custid,	SUM(qty)	AS	sumqty
FROM	dbo.Orders
GROUP	BY	CUBE(empid,	custid);

This	query	produces	the	following	output:
Click	here	to	view	code	image

empid							custid				sumqty
-----------	---------	-----------
2											A									52
3											A									20
NULL								A									72
1											B									20
2											B									27
NULL								B									47
1											C									34
3											C									22
NULL								C									56
3											D									30
NULL								D									30
NULL								NULL						205
1											NULL						54
2											NULL						79
3											NULL						72

Because	both	the	empid	and	custid	columns	were	defined	in	the	dbo.Orders	table	as	NOT
NULL,	a	NULL	in	those	columns	can	only	represent	a	placeholder,	indicating	that	the	column
did	not	participate	in	the	current	grouping	set.	For	example,	all	rows	in	which	empid	is	not
NULL	and	custid	is	not	NULL	are	associated	with	the	grouping	set	(empid,	custid).	All	rows	in
which	empid	is	not	NULL	and	custid	is	NULL	are	associated	with	the	grouping	set	(empid),
and	so	on.
However,	if	a	grouping	column	allows	NULLs	in	the	table,	you	cannot	tell	for	sure	whether

a	NULL	in	the	result	set	originated	from	the	data	or	is	a	placeholder	for	a	nonparticipating
member	in	a	grouping	set.	One	way	to	solve	this	problem	is	to	use	the	GROUPING	function.
This	function	accepts	a	name	of	a	column	and	returns	0	if	it	is	a	member	of	the	current
grouping	set	(a	detail	element)	and	1	otherwise	(an	aggregate	element).

	Note
I	find	it	counterintuitive	that	the	GROUPING	function	returns	1	when	the	element	isn’t
part	of	the	grouping	set	and	0	when	it	is.	To	me,	it	would	make	more	sense	to	return	1
when	the	element	is	part	of	the	grouping	set	and	0	otherwise.	The	current	perspective	is
to	use	1	to	indicate	the	element	is	an	aggregate	element	and	0	when	it’s	a	detail	element.
You	just	need	to	make	sure	you	realize	this	fact.

For	example,	the	following	query	invokes	the	GROUPING	function	for	each	of	the
grouping	elements:
Click	here	to	view	code	image

SELECT

		GROUPING(empid)	AS	grpemp,
		GROUPING(custid)	AS	grpcust,
		empid,	custid,	SUM(qty)	AS	sumqty
FROM	dbo.Orders
GROUP	BY	CUBE(empid,	custid);

This	query	returns	the	following	output:
Click	here	to	view	code	image

grpemp				grpcust				empid							custid				sumqty
---------	----------	-----------	---------	-----------
0									0										2											A									52
0									0										3											A									20
1									0										NULL								A									72
0									0										1											B									20
0									0										2											B									27
1									0										NULL								B									47
0									0										1											C									34
0									0										3											C									22
1									0										NULL								C									56
0									0										3											D									30
1									0										NULL								D									30
1									1										NULL								NULL						205
0									1										1											NULL						54
0									1										2											NULL						79
0									1										3											NULL						72

(15	row(s)	affected)

Now	you	don’t	need	to	rely	on	the	NULLs	anymore	to	figure	out	the	association	between
result	rows	and	grouping	sets.	For	example,	all	rows	in	which	grpemp	is	0	and	grpcust	is	0
are	associated	with	the	grouping	set	(empid,	custid).	All	rows	in	which	grpemp	is	0	and
grpcust	is	1	are	associated	with	the	grouping	set	(empid),	and	so	on.
T-SQL	supports	another	function,	called	GROUPING_ID,	that	can	further	simplify	the

process	of	associating	result	rows	and	grouping	sets.	You	provide	the	function	with	all
elements	that	participate	in	any	grouping	set	as	inputs—for	example,	GROUPING_ID(a,	b,	c,
d)—and	the	function	returns	an	integer	bitmap	in	which	each	bit	represents	a	different	input
element—the	rightmost	element	represented	by	the	rightmost	bit.	For	example,	the	grouping
set	(a,	b,	c,	d)	is	represented	by	the	integer	0	(0×8	+	0×4	+	0×2	+	0×1).	The	grouping	set	(a,	c)
is	represented	by	the	integer	5	(0×8	+	1×4	+	0×2	+	1×1),	and	so	on.
Instead	of	calling	the	GROUPING	function	for	each	grouping	element	as	in	the	previous

query,	you	can	call	the	GROUPING_ID	function	once	and	provide	it	with	all	grouping
elements	as	input,	as	shown	here:
Click	here	to	view	code	image

SELECT
		GROUPING_ID(empid,	custid)	AS	groupingset,
		empid,	custid,	SUM(qty)	AS	sumqty
FROM	dbo.Orders
GROUP	BY	CUBE(empid,	custid);

This	query	produces	the	following	output:
Click	here	to	view	code	image

groupingset				empid							custid				sumqty
--------------	-----------	---------	-----------
0														2											A									52
0														3											A									20
2														NULL								A									72
0														1											B									20
0														2											B									27
2														NULL								B									47
0														1											C									34
0														3											C									22
2														NULL								C									56
0														3											D									30
2														NULL								D									30
3														NULL								NULL						205
1														1											NULL						54
1														2											NULL						79
1														3											NULL						72

Now	you	can	easily	figure	out	which	grouping	set	each	row	is	associated	with.	The	integer
0	(binary	00)	represents	the	grouping	set	(empid,	custid);	the	integer	1	(binary	01)	represents
(empid);	the	integer	2	(binary	10)	represents	(custid);	and	the	integer	3	(binary	11)	represents
().

Conclusion
This	chapter	covered	window	functions,	pivoting	and	unpivoting	data,	and	features	related	to
grouping	sets.
You	use	window	functions	to	perform	data-analysis	calculations	in	a	more	flexible	and

efficient	manner	than	you	can	when	using	alternative	methods.	Window	functions	have
numerous	practical	uses,	so	it’s	worth	your	time	to	get	to	know	them	well.
I	covered	two	techniques	to	handle	pivoting:	one	using	a	standard	grouped	query	and

another	using	the	more	concise	yet	proprietary	PIVOT	operator.	I	also	covered	two	methods
to	handle	unpivoting:	one	using	the	APPLY	operator,	which	allows	you	to	control	whether	to
remove	rows	with	NULLs,	and	another	using	the	UNPIVOT	operator,	which	is	more	concise
but	removes	rows	with	NULLs	as	a	mandatory	step.
T-SQL	supports	features	that	make	the	handling	of	grouping	sets	flexible	and	efficient:	the

GROUPING	SETS,	CUBE,	and	ROLLUP	subclauses	and	the	GROUPING	and	GROUPING_ID
functions.

Exercises
This	section	provides	exercises	to	help	you	familiarize	yourself	with	the	subjects	discussed	in
Chapter	7.	All	exercises	for	this	chapter	involve	querying	the	dbo.Orders	table	in	the	TSQLV4
database	that	you	created	and	populated	earlier	in	this	chapter	by	running	the	code	in	Listing
7-1.

Exercise	1
Write	a	query	against	the	dbo.Orders	table	that	computes	both	a	rank	and	a	dense	rank	for	each
customer	order,	partitioned	by	custid	and	ordered	by	qty:

	Table	involved:	TSQLV4	database,	dbo.Orders	table
	Desired	output:

Click	here	to	view	code	image

custid	orderid					qty									rnk																		drnk
------	-----------	-----------	--------------------	--------------------
A						30001							10										1																				1
A						40005							10										1																				1
A						10001							12										3																				2
A						40001							40										4																				3
B						20001							12										1																				1
B						30003							15										2																				2
B						10005							20										3																				3
C						10006							14										1																				1
C						20002							20										2																				2
C						30004							22										3																				3
D						30007							30										1																				1

Exercise	2
Earlier	in	the	chapter	in	the	section	“Ranking	window	functions,”	I	provided	the	following
query	against	the	Sales.OrderValues	view	to	return	distinct	values	and	their	associated	row
numbers:
Click	here	to	view	code	image

SELECT	val,	ROW_NUMBER()	OVER(ORDER	BY	val)	AS	rownum
FROM	Sales.OrderValues
GROUP	BY	val;

Can	you	think	of	an	alternative	way	to	achieve	the	same	task?
	Table	involved:	TSQLV4	database,	Sales.OrderValues	view
	Desired	output:

val							rownum
---------	-------
12.50					1
18.40					2
23.80					3
28.00					4
30.00					5
33.75					6
36.00					7
40.00					8
45.00					9
48.00					10
...
12615.05		793
15810.00		794
16387.50		795

(795	row(s)	affected)

Exercise	3
Write	a	query	against	the	dbo.Orders	table	that	computes	for	each	customer	order	both	the
difference	between	the	current	order	quantity	and	the	customer ’s	previous	order	quantity	and
the	difference	between	the	current	order	quantity	and	the	customer ’s	next	order	quantity:

	Table	involved:	TSQLV4	database,	dbo.Orders	table
	Desired	output:

Click	here	to	view	code	image

custid	orderid					qty									diffprev				diffnext
------	-----------	-----------	-----------	-----------
A						30001							10										NULL								-2
A						10001							12										2											-28
A						40001							40										28										30
A						40005							10										-30									NULL
B						10005							20										NULL								8
B						20001							12										-8										-3
B						30003							15										3											NULL
C						30004							22										NULL								8
C						10006							14										-8										-6
C						20002							20										6											NULL
D						30007							30										NULL								NULL

Exercise	4
Write	a	query	against	the	dbo.Orders	table	that	returns	a	row	for	each	employee,	a	column	for
each	order	year,	and	the	count	of	orders	for	each	employee	and	order	year:

	Table	involved:	TSQLV4	database,	dbo.Orders	table
	Desired	output:

Click	here	to	view	code	image

empid							cnt2014					cnt2015					cnt2016
-----------	-----------	-----------	-----------
1											1											1											1
2											1											2											1
3											2											0											2

Exercise	5
Run	the	following	code	to	create	and	populate	the	EmpYearOrders	table:
Click	here	to	view	code	image

USE	TSQLV4;

DROP	TABLE	IF	EXISTS	dbo.EmpYearOrders;

CREATE	TABLE	dbo.EmpYearOrders
(
		empid	INT	NOT	NULL
				CONSTRAINT	PK_EmpYearOrders	PRIMARY	KEY,
		cnt2014	INT	NULL,
		cnt2015	INT	NULL,
		cnt2016	INT	NULL
);

INSERT	INTO	dbo.EmpYearOrders(empid,	cnt2014,	cnt2015,	cnt2016)
		SELECT	empid,	[2014]	AS	cnt2014,	[2015]	AS	cnt2015,	[2016]	AS	cnt2016
		FROM	(SELECT	empid,	YEAR(orderdate)	AS	orderyear
								FROM	dbo.Orders)	AS	D
				PIVOT(COUNT(orderyear)
										FOR	orderyear	IN([2014],	[2015],	[2016]))	AS	P;

SELECT	*	FROM	dbo.EmpYearOrders;

Here’s	the	output	for	the	query:
Click	here	to	view	code	image

empid							cnt2014					cnt2015					cnt2016
-----------	-----------	-----------	-----------
1											1											1											1
2											1											2											1
3											2											0											2

Write	a	query	against	the	EmpYearOrders	table	that	unpivots	the	data,	returning	a	row	for
each	employee	and	order	year	with	the	number	of	orders.	Exclude	rows	in	which	the	number
of	orders	is	0	(in	this	example,	employee	3	in	the	year	2015).

	Desired	output:
Click	here	to	view	code	image

empid							orderyear			numorders
-----------	-----------	-----------
1											2014								1
1											2015								1
1											2016								1
2											2014								1
2											2015								2
2											2016								1
3											2014								2
3											2016								2

Exercise	6
Write	a	query	against	the	dbo.Orders	table	that	returns	the	total	quantities	for	each	of	the
following:	(employee,	customer,	and	order	year),	(employee	and	order	year),	and	(customer
and	order	year).	Include	a	result	column	in	the	output	that	uniquely	identifies	the	grouping	set
with	which	the	current	row	is	associated:

	Table	involved:	TSQLV4	database,	dbo.Orders	table
	Desired	output:

Click	here	to	view	code	image

groupingset				empid							custid				orderyear			sumqty
--------------	-----------	---------	-----------	-----------
0														2											A									2014								12
0														3											A									2014								10
4														NULL								A									2014								22
0														2											A									2015								40
4														NULL								A									2015								40
0														3											A									2016								10
4														NULL								A									2016								10

0														1											B									2014								20
4														NULL								B									2014								20
0														2											B									2015								12
4														NULL								B									2015								12
0														2											B									2016								15
4														NULL								B									2016								15
0														3											C									2014								22
4														NULL								C									2014								22
0														1											C									2015								14
4														NULL								C									2015								14
0														1											C									2016								20
4														NULL								C									2016								20
0														3											D									2016								30
4														NULL								D									2016								30
2														1											NULL						2014								20
2														2											NULL						2014								12
2														3											NULL						2014								32
2														1											NULL						2015								14
2														2											NULL						2015								52
2														1											NULL						2016								20
2														2											NULL						2016								15
2														3											NULL						2016								40

(29	row(s)	affected)

When	you’re	done	with	the	exercises	in	this	chapter,	run	the	following	code	for	cleanup:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.Orders;

Solutions
This	section	provides	solutions	to	the	Chapter	7	exercises.

Exercise	1
This	exercise	is	very	technical.	Figuring	it	out	is	just	a	matter	of	being	familiar	with	the
syntax	for	window-ranking	functions.	Here’s	the	solution	query,	returning	for	each	order	both
the	rank	and	the	dense	rank,	partitioned	by	custid	and	ordered	by	qty:
Click	here	to	view	code	image

SELECT	custid,	orderid,	qty,
		RANK()	OVER(PARTITION	BY	custid	ORDER	BY	qty)	AS	rnk,
		DENSE_RANK()	OVER(PARTITION	BY	custid	ORDER	BY	qty)	AS	drnk
FROM	dbo.Orders;

Exercise	2
Another	way	to	handle	this	task	is	to	write	a	query	that	returns	distinct	values	without	a	row
number	computation,	define	a	table	expression	based	on	this	query,	and	then	compute	row
numbers	in	the	outer	query	against	the	table	expression.	Here’s	the	solution	query:
Click	here	to	view	code	image

WITH	C	AS
(
		SELECT	DISTINCT	val

		FROM	Sales.OrderValues
)
SELECT	val,	ROW_NUMBER()	OVER(ORDER	BY	val)	AS	rownum
FROM	C;

Exercise	3
You	use	the	window	offset	functions	LAG	and	LEAD	to	return	an	element	from	the	previous
row	and	the	next	row,	respectively,	based	on	the	indicated	partitioning	and	ordering
specification.	In	this	exercise,	you	need	to	perform	the	calculations	within	each	customer ’s
orders;	hence,	the	window	partitioning	should	be	based	on	custid.	As	for	ordering,	use
orderdate	as	the	first	ordering	column	and	orderid	as	the	tiebreaker.	Here’s	the	complete
solution	query:
Click	here	to	view	code	image

SELECT	custid,	orderid,	qty,
		qty	-	LAG(qty)	OVER(PARTITION	BY	custid
																						ORDER	BY	orderdate,	orderid)	AS	diffprev,
		qty	-	LEAD(qty)	OVER(PARTITION	BY	custid
																							ORDER	BY	orderdate,	orderid)	AS	diffnext
FROM	dbo.Orders;

This	query	is	a	good	example	that	shows	you	can	mix	detail	elements	from	the	row	with
window	functions	in	the	same	expression.

Exercise	4
Solving	a	pivoting	problem	is	all	about	identifying	the	elements	involved:	the	grouping
element,	spreading	element,	aggregation	element,	and	aggregate	function.	After	you	identify
those,	you	simply	fit	them	into	the	“template”	query	for	pivoting—whether	it’s	the	solution
with	the	grouped	query	or	the	solution	using	the	PIVOT	operator.
In	this	exercise,	the	grouping	element	is	the	employee	(empid),	the	spreading	element	is

order	year	(YEAR(orderdate)),	and	the	aggregate	function	is	COUNT;	however,	identifying	the
aggregation	element	is	not	that	straightforward.	You	want	the	COUNT	aggregate	function	to
count	matching	rows—you	don’t	really	care	which	attribute	it	counts.	In	other	words,	you	can
use	any	attribute	you	want,	as	long	as	the	attribute	does	not	allow	NULLs,	because	aggregate
functions	ignore	NULLs.
If	it	doesn’t	really	matter	which	attribute	you	use	as	the	input	to	the	COUNT	aggregate,	why

not	use	the	same	attribute	you	already	use	as	the	spreading	element?	In	this	case,	you	can	use
the	order	year	as	both	the	spreading	element	and	aggregation	element.
Now	that	you’ve	identified	all	pivoting	elements,	you’re	ready	to	write	the	complete

solution.	Here’s	the	solution	query	without	using	the	PIVOT	operator:
Click	here	to	view	code	image

USE	TSQLV4;

SELECT	empid,
		COUNT(CASE	WHEN	orderyear	=	2014	THEN	orderyear	END)	AS	cnt2014,
		COUNT(CASE	WHEN	orderyear	=	2015	THEN	orderyear	END)	AS	cnt2015,
		COUNT(CASE	WHEN	orderyear	=	2016	THEN	orderyear	END)	AS	cnt2016

FROM	(SELECT	empid,	YEAR(orderdate)	AS	orderyear
						FROM	dbo.Orders)	AS	D
GROUP	BY	empid;

Recall	that	if	you	do	not	specify	an	ELSE	clause	in	a	CASE	expression,	an	implicit	ELSE
NULL	is	assumed.	Thus,	the	CASE	expression	produces	non-NULLs	only	for	matching	orders
(orders	placed	by	the	current	employee	in	the	current	order	year),	and	only	those	matching
orders	are	taken	into	consideration	by	the	COUNT	aggregate.
Notice	that	even	though	this	solution	does	not	require	you	to	use	a	table	expression,	I	used

one	here	to	alias	the	YEAR(orderdate)	expression	as	orderyear	to	avoid	repeating	the
expression.
Here’s	the	solution	query	that	uses	the	PIVOT	operator:

Click	here	to	view	code	image

SELECT	empid,	[2014]	AS	cnt2014,	[2015]	AS	cnt2015,	[2016]	AS	cnt2016
FROM	(SELECT	empid,	YEAR(orderdate)	AS	orderyear
						FROM	dbo.Orders)	AS	D
		PIVOT(COUNT(orderyear)
								FOR	orderyear	IN([2014],	[2015],	[2016]))	AS	P;

As	you	can	see,	it’s	just	a	matter	of	fitting	the	pivoting	elements	in	the	right	places.
If	you	prefer	to	use	your	own	target	column	names	and	not	the	ones	based	on	the	actual

data,	you	can	provide	your	own	aliases	in	the	SELECT	list.	In	this	query,	I	aliased	the	result
columns	[2014],	[2015],	and	[2016]	as	cnt2014,	cnt2015,	and	cnt2016,	respectively.

Exercise	5
This	exercise	involves	a	request	to	unpivot	the	source	columns	cnt2014,	cnt2015,	and	cnt2016
to	two	target	columns—orderyear	to	hold	the	year	that	the	source	column	name	represents
and	numorders	to	hold	the	source-column	value.	You	can	use	the	solutions	I	showed	in	the
chapter	as	the	basis	for	solving	this	exercise	with	a	couple	of	small	revisions.
In	the	examples	I	used	in	the	chapter,	NULLs	in	the	table	represented	irrelevant	column

values.	The	unpivoting	solutions	I	presented	filtered	out	rows	with	NULLs.	The
EmpYearOrders	table	has	no	NULLs,	but	it	does	have	zeros	in	some	cases,	and	the	request	is	to
filter	out	rows	with	0	number	of	orders.	With	the	solution	that	is	based	on	the	APPLY
operator,	simply	use	the	predicate	numorders	<>	0	instead	of	using	IS	NOT	NULL,	like	this:
Click	here	to	view	code	image

SELECT	empid,	orderyear,	numorders
FROM	dbo.EmpYearOrders
		CROSS	APPLY	(VALUES(2014,	cnt2014),
																					(2015,	cnt2015),
																					(2016,	cnt2016))	AS	A(orderyear,	numorders)
WHERE	numorders	<>	0;

As	for	the	solution	that	uses	the	UNPIVOT	operator,	remember	that	it	eliminates	NULLs	as
an	integral	part	of	its	logic.	However,	it	does	not	eliminate	zeros—you	have	to	take	care	of
eliminating	zeros	yourself	by	adding	a	WHERE	clause,	like	this:
Click	here	to	view	code	image

SELECT	empid,	CAST(RIGHT(orderyear,	4)	AS	INT)	AS	orderyear,	numorders
FROM	dbo.EmpYearOrders
		UNPIVOT(numorders	FOR	orderyear	IN(cnt2014,	cnt2015,	cnt2016))	AS	U
WHERE	numorders	<>	0;

Notice	the	expression	used	in	the	SELECT	list	to	produce	the	orderyear	result	column:
CAST(RIGHT(orderyear,	4)	AS	INT).	The	original	column	names	that	the	query	unpivots	are
cnt2014,	cnt2015,	and	cnt2016.	These	column	names	become	the	values	‘cnt2014’,	‘cnt2015’,
and	‘cnt2016’,	respectively,	in	the	orderyear	column	in	the	result	of	the	UNPIVOT	operator.
The	purpose	of	this	expression	is	to	extract	the	four	rightmost	characters	representing	the
order	year	and	convert	the	value	to	an	integer.	This	manipulation	was	not	required	in	the
standard	solution	because	the	constants	used	to	construct	the	table	expression	A	were	specified
explicitly.

Exercise	6
You	can	use	the	GROUPING	SETS	subclause	to	list	the	requested	grouping	sets	and	the
GROUPING_ID	function	to	produce	a	unique	identifier	for	the	grouping	sets.	Here’s	the
complete	solution	query:
Click	here	to	view	code	image

SELECT
		GROUPING_ID(empid,	custid,	YEAR(Orderdate))	AS	groupingset,
		empid,	custid,	YEAR(Orderdate)	AS	orderyear,	SUM(qty)	AS	sumqty
FROM	dbo.Orders
GROUP	BY
		GROUPING	SETS
		(
				(empid,	custid,	YEAR(orderdate)),
				(empid,	YEAR(orderdate)),
				(custid,	YEAR(orderdate))
);

The	requested	grouping	sets	are	neither	a	power	set	nor	a	rollup	of	some	set	of	attributes.
Therefore,	you	cannot	use	either	the	CUBE	or	ROLLUP	subclause	to	further	abbreviate	the
code.

Chapter	8.	Data	modification

SQL	has	a	set	of	statements	known	as	Data	Manipulation	Language	(DML)	that	deals	with	data
manipulation.	Some	people	think	that	DML	involves	only	data	modification,	but	it	also
involves	data	retrieval.	DML	includes	the	statements	SELECT,	INSERT,	UPDATE,	DELETE,
TRUNCATE,	and	MERGE.	So	far	I’ve	focused	on	the	SELECT	statement.	This	chapter	focuses
on	data-modification	statements.	In	addition	to	covering	standard	aspects	of	data	modification,
I’ll	also	cover	aspects	specific	to	T-SQL.
To	avoid	changing	existing	data	in	your	sample	database,	most	of	the	examples	in	this

chapter	create	and	populate	new	tables	in	the	dbo	schema	in	the	TSQLV4	database.

Inserting	data
T-SQL	provides	several	statements	for	inserting	data	into	tables:	INSERT	VALUES,	INSERT
SELECT,	INSERT	EXEC,	SELECT	INTO,	and	BULK	INSERT.	I’ll	first	describe	those
statements,	and	then	I’ll	talk	about	tools	for	generating	keys,	such	as	the	identity	property	and
the	sequence	object.

The	INSERT	VALUES	statement
You	use	the	standard	INSERT	VALUES	statement	to	insert	rows	into	a	table	based	on	specified
values.	To	practice	using	this	statement	and	others,	you	will	work	with	a	table	called	Orders	in
the	dbo	schema	in	the	TSQLV4	database.	Run	the	following	code	to	create	the	Orders	table:
Click	here	to	view	code	image

USE	TSQLV4;

DROP	TABLE	IF	EXISTS	dbo.Orders;

CREATE	TABLE	dbo.Orders
(
		orderid			INT									NOT	NULL
				CONSTRAINT	PK_Orders	PRIMARY	KEY,
		orderdate	DATE								NOT	NULL
				CONSTRAINT	DFT_orderdate	DEFAULT(SYSDATETIME()),
		empid					INT									NOT	NULL,
		custid				VARCHAR(10)	NOT	NULL
);

The	following	example	demonstrates	how	to	use	the	INSERT	VALUES	statement	to	insert	a
single	row	into	the	Orders	table:
Click	here	to	view	code	image

INSERT	INTO	dbo.Orders(orderid,	orderdate,	empid,	custid)
		VALUES(10001,	'20160212',	3,	'A');

Specifying	the	target	column	names	right	after	the	table	name	is	optional,	but	by	doing	so,
you	control	the	value-column	associations	instead	of	relying	on	the	order	of	the	columns	in
the	CREATE	TABLE	statement.	In	T-SQL,	specifying	the	INTO	clause	is	optional.

If	you	don’t	specify	a	value	for	a	column,	Microsoft	SQL	Server	will	use	a	default	value	if
one	was	defined	for	the	column.	If	a	default	value	isn’t	defined	and	the	column	allows	NULLs,
a	NULL	will	be	used.	If	no	default	is	defined	and	the	column	does	not	allow	NULLs	and	does
not	somehow	get	its	value	automatically,	your	INSERT	statement	will	fail.	The	following
statement	doesn’t	specify	a	value	for	the	orderdate	column;	rather,	it	relies	on	its	default
(SYSDATETIME):
Click	here	to	view	code	image

INSERT	INTO	dbo.Orders(orderid,	empid,	custid)
		VALUES(10002,	5,	'B');

T-SQL	supports	an	enhanced	standard	VALUES	clause	you	can	use	to	specify	multiple	rows
separated	by	commas.	For	example,	the	following	statement	inserts	four	rows	into	the	Orders
table:
Click	here	to	view	code	image

INSERT	INTO	dbo.Orders
		(orderid,	orderdate,	empid,	custid)
VALUES
		(10003,	'20160213',	4,	'B'),
		(10004,	'20160214',	1,	'A'),
		(10005,	'20160213',	1,	'C'),
		(10006,	'20160215',	3,	'C');

This	statement	is	processed	as	a	transaction,	meaning	that	if	any	row	fails	to	enter	the	table,
none	of	the	rows	in	the	statement	enters	the	table.
There’s	more	to	this	enhanced	VALUES	clause.	You	can	use	it	as	a	table-value	constructor

to	construct	a	derived	table.	Here’s	an	example:
Click	here	to	view	code	image

SELECT	*
FROM	(VALUES
									(10003,	'20160213',	4,	'B'),
									(10004,	'20160214',	1,	'A'),
									(10005,	'20160213',	1,	'C'),
									(10006,	'20160215',	3,	'C'))
					AS	O(orderid,	orderdate,	empid,	custid);

Following	the	parentheses	that	contain	the	table	value	constructor,	you	assign	an	alias	to	the
table	(O	in	this	case),	and	following	the	table	alias,	you	assign	aliases	to	the	target	columns	in
parentheses.	This	query	generates	the	following	output:
Click	here	to	view	code	image

orderid					orderdate			empid							custid
-----------	-----------	-----------	------
10003							20160213				4											B
10004							20160214				1											A
10005							20160213				1											C
10006							20160215				3											C

The	INSERT	SELECT	statement
The	standard	INSERT	SELECT	statement	inserts	a	set	of	rows	returned	by	a	SELECT	query
into	a	target	table.	The	syntax	is	similar	to	that	of	an	INSERT	VALUES	statement,	but	instead	of
using	the	VALUES	clause,	you	specify	a	SELECT	query.	For	example,	the	following	code
inserts	into	the	dbo.Orders	table	the	result	of	a	query	against	the	Sales.Orders	table	and	returns
orders	that	were	shipped	to	the	United	Kingdom:
Click	here	to	view	code	image

INSERT	INTO	dbo.Orders(orderid,	orderdate,	empid,	custid)
		SELECT	orderid,	orderdate,	empid,	custid
		FROM	Sales.Orders
		WHERE	shipcountry	=	N'UK';

You	can	also	use	the	INSERT	SELECT	statement	to	specify	the	target	column	names,	and	the
recommendation	I	gave	earlier	regarding	specifying	those	names	remains	the	same.	The
behavior	in	terms	of	relying	on	a	default	constraint	or	column	nullability	is	also	the	same	as
with	the	INSERT	VALUES	statement.	The	INSERT	SELECT	statement	is	performed	as	a
transaction,	so	if	any	row	fails	to	enter	the	target	table,	none	of	the	rows	enters	the	table.

	Note
If	you	include	a	system	function	such	as	SYSDATETIME	in	the	inserted	query,	the
function	gets	invoked	only	once	for	the	entire	query	and	not	once	per	row.	The
exception	to	this	rule	is	if	you	generate	globally	unique	identifiers	(GUIDs)	using	the
NEWID	function,	which	gets	invoked	per	row.

The	INSERT	EXEC	statement
You	use	the	INSERT	EXEC	statement	to	insert	a	result	set	returned	from	a	stored	procedure	or
a	dynamic	SQL	batch	into	a	target	table.	You’ll	find	information	about	stored	procedures,
batches,	and	dynamic	SQL	in	Chapter	11,	“Programmable	objects.”	The	INSERT	EXEC
statement	is	similar	in	syntax	and	concept	to	the	INSERT	SELECT	statement,	but	instead	of
using	a	SELECT	statement,	you	specify	an	EXEC	statement.
For	example,	the	following	code	creates	a	stored	procedure	called	Sales.GetOrders,	and	it

returns	orders	that	were	shipped	to	a	specified	input	country	(with	the	@country	parameter):
Click	here	to	view	code	image

DROP	PROC	IF	EXISTS	Sales.GetOrders;
GO

CREATE	PROC	Sales.GetOrders
		@country	AS	NVARCHAR(40)
AS

SELECT	orderid,	orderdate,	empid,	custid
FROM	Sales.Orders
WHERE	shipcountry	=	@country;
GO

To	test	the	stored	procedure,	execute	it	with	the	input	country	France:
Click	here	to	view	code	image

EXEC	Sales.GetOrders	@country	=	N'France';

You	get	the	following	output:
Click	here	to	view	code	image

orderid					orderdate			empid							custid
-----------	-----------	-----------	-----------
10248							2014-07-04		5											85
10251							2014-07-08		3											84
10265							2014-07-25		2											7
10274							2014-08-06		6											85
10295							2014-09-02		2											85
10297							2014-09-04		5											7
10311							2014-09-20		1											18
10331							2014-10-16		9											9
10334							2014-10-21		8											84
10340							2014-10-29		1											9
...

(77	row(s)	affected)

By	using	an	INSERT	EXEC	statement,	you	can	insert	the	result	set	returned	from	the
procedure	into	the	dbo.Orders	table:
Click	here	to	view	code	image

INSERT	INTO	dbo.Orders(orderid,	orderdate,	empid,	custid)
		EXEC	Sales.GetOrders	@country	=	N'France';

The	SELECT	INTO	statement
The	SELECT	INTO	statement	is	a	nonstandard	T-SQL	statement	that	creates	a	target	table	and
populates	it	with	the	result	set	of	a	query.	By	“nonstandard,”	I	mean	that	it’s	not	part	of	the	ISO
and	ANSI	SQL	standards.	You	cannot	use	this	statement	to	insert	data	into	an	existing	table.	In
terms	of	syntax,	simply	add	INTO	<target_table_name>	right	before	the	FROM	clause	of	the
SELECT	query	you	want	to	use	to	produce	the	result	set.	For	example,	the	following	code
creates	a	table	called	dbo.Orders	and	populates	it	with	all	rows	from	the	Sales.Orders	table:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.Orders;

SELECT	orderid,	orderdate,	empid,	custid
INTO	dbo.Orders
FROM	Sales.Orders;

The	target	table’s	structure	and	data	are	based	on	the	source	table.	The	SELECT	INTO
statement	copies	from	the	source	the	base	structure	(such	as	column	names,	types,	nullability,
and	identity	property)	and	the	data.	It	does	not	copy	from	the	source	constraints,	indexes,
triggers,	column	properties	such	as	SPARSE	and	FILESTREAM,	and	permissions.	If	you	need
those	in	the	target,	you’ll	need	to	create	them	yourself.
One	of	the	benefits	of	the	SELECT	INTO	statement	is	its	efficiency.	As	long	as	a	database

property	called	Recovery	Model	is	not	set	to	FULL,	this	statement	uses	an	optimized	mode	that
applies	minimal	logging.	This	translates	to	a	very	fast	operation	compared	to	a	fully	logged
one.	Note	that	the	INSERT	SELECT	statement	also	can	benefit	from	minimal	logging,	but	the
list	of	requirements	it	needs	to	meet	is	longer.	For	details,	see	“Prerequisites	for	Minimal
Logging	in	Bulk	Import”	in	SQL	Server	Books	Online	at	the	following	URL:
http://msdn.microsoft.com/en-us/library/ms190422.aspx.
If	you	need	to	use	a	SELECT	INTO	statement	with	set	operations,	you	specify	the	INTO

clause	right	in	front	of	the	FROM	clause	of	the	first	query.	For	example,	the	following
SELECT	INTO	statement	creates	a	table	called	Locations	and	populates	it	with	the	result	of	an
EXCEPT	set	operation,	returning	locations	that	are	customer	locations	but	not	employee
locations:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.Locations;

SELECT	country,	region,	city
INTO	dbo.Locations
FROM	Sales.Customers

EXCEPT

SELECT	country,	region,	city
FROM	HR.Employees;

The	BULK	INSERT	statement
You	use	the	BULK	INSERT	statement	to	insert	into	an	existing	table	data	originating	from	a
file.	In	the	statement,	you	specify	the	target	table,	the	source	file,	and	options.	You	can	specify
many	options,	including	the	data	file	type	(for	example,	char	or	native),	the	field	terminator,
the	row	terminator,	and	others—all	of	which	are	fully	documented.
For	example,	the	following	code	bulk	inserts	the	contents	of	the	file	c:\temp\orders.txt	into

the	table	dbo.Orders,	specifying	that	the	data	file	type	is	char,	the	field	terminator	is	a	comma,
and	the	row	terminator	is	the	newline	character:
Click	here	to	view	code	image

BULK	INSERT	dbo.Orders	FROM	'c:\temp\orders.txt'
		WITH
				(
							DATAFILETYPE				=	'char',
							FIELDTERMINATOR	=	',',
							ROWTERMINATOR			=	'\n'
);

Note	that	if	you	want	to	actually	run	this	statement,	you	need	to	place	the	orders.txt	file
provided	along	with	the	source	code	for	this	book	into	the	c:\temp	folder.
You	can	run	the	BULK	INSERT	statement	in	a	fast,	minimally	logged	mode	in	certain

scenarios	as	long	as	certain	requirements	are	met.	For	details,	see	“Prerequisites	for	Minimal
Logging	in	Bulk	Import”	in	SQL	Server	Books	Online.

http://msdn.microsoft.com/en-us/library/ms190422.aspx

The	identity	property	and	the	sequence	object
SQL	Server	supports	two	built-in	solutions	to	automatically	generate	numeric	keys:	the
identity	column	property	and	the	sequence	object.	The	identity	property	works	well	for	some
scenarios,	but	it	also	has	many	limitations.	The	sequence	object	resolves	many	of	the	identity
property’s	limitations.	I’ll	start	with	identity.

Identity
Identity	is	a	standard	column	property.	You	can	define	this	property	for	a	column	with	any
numeric	type	with	a	scale	of	zero	(no	fraction).	When	defining	the	property,	you	can
optionally	specify	a	seed	(the	first	value)	and	an	increment	(a	step	value).	If	you	don’t	provide
those,	the	default	is	1	for	both.	You	typically	use	this	property	to	generate	surrogate	keys,
which	are	keys	that	are	produced	by	the	system	and	are	not	derived	from	the	application	data.
For	example,	the	following	code	creates	a	table	called	dbo.T1:

Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.T1;

CREATE	TABLE	dbo.T1
(
		keycol		INT									NOT	NULL	IDENTITY(1,	1)
				CONSTRAINT	PK_T1	PRIMARY	KEY,
		datacol	VARCHAR(10)	NOT	NULL
				CONSTRAINT	CHK_T1_datacol	CHECK(datacol	LIKE	'[ABCDEFGHIJKLMNOPQRSTUVWXYZ]%')
);

The	table	contains	a	column	called	keycol	that	is	defined	with	an	identity	property	using	1
as	the	seed	and	1	as	the	increment.	The	table	also	contains	a	character	string	column	called
datacol,	whose	data	is	restricted	with	a	CHECK	constraint	to	strings	starting	with	an
alphabetical	character.
In	your	INSERT	statements,	you	must	completely	ignore	the	identity	column.	For	example,

the	following	code	inserts	three	rows	into	the	table,	specifying	values	only	for	the	column
datacol:
Click	here	to	view	code	image

INSERT	INTO	dbo.T1(datacol)	VALUES('AAAAA'),('CCCCC'),('BBBBB');

SQL	Server	produced	the	values	for	keycol	automatically.	Query	the	table	to	see	the	values
that	were	generated:

SELECT	*	FROM	dbo.T1;

You	get	the	following	output:
keycol						datacol
-----------	----------
1											AAAAA
2											CCCCC
3											BBBBB

When	you	query	the	table,	naturally	you	can	refer	to	the	identity	column	by	its	name	(keycol

in	this	case).	SQL	Server	also	provides	a	way	to	refer	to	the	identity	column	by	using	the
more	generic	form	$identity.
For	example,	the	following	query	selects	the	identity	column	from	T1	by	using	the	generic

form:
SELECT	$identity	FROM	dbo.T1;

This	query	returns	the	following	output:
keycol

1
2
3

When	you	insert	a	new	row	into	the	table,	SQL	Server	generates	a	new	identity	value	based
on	the	current	identity	value	in	the	table	and	the	increment.	If	you	need	to	obtain	the	newly
generated	identity	value—for	example,	to	insert	child	rows	into	a	referencing	table—you
query	one	of	two	functions,	called	@@identity	and	SCOPE_IDENTITY.
The	@@identity	function	returns	the	last	identity	value	generated	by	the	session,	regardless

of	scope	(for	example,	a	procedure	issuing	an	INSERT	statement,	and	a	trigger	fired	by	that
statement	are	in	different	scopes).	SCOPE_IDENTITY	returns	the	last	identity	value	generated
by	the	current	scope	(for	example,	the	same	procedure).	Except	in	the	rare	cases	when	you
don’t	really	care	about	scope,	you	should	use	the	SCOPE_IDENTITY	function.
For	example,	the	following	code	inserts	a	new	row	into	the	table	T1,	obtains	the	newly

generated	identity	value	and	places	it	into	a	variable	by	querying	the	SCOPE_IDENTITY
function,	and	queries	the	variable:
Click	here	to	view	code	image

DECLARE	@new_key	AS	INT;

INSERT	INTO	dbo.T1(datacol)	VALUES('AAAAA');

SET	@new_key	=	SCOPE_IDENTITY();

SELECT	@new_key	AS	new_key

If	you	ran	all	previous	code	samples	provided	in	this	section,	this	code	returns	the
following	output:

new_key

4

Remember	that	both	@@identity	and	SCOPE_IDENTITY	return	the	last	identity	value
produced	by	the	current	session.	Neither	is	affected	by	inserts	issued	by	other	sessions.
However,	if	you	want	to	know	the	current	identity	value	in	a	table	(the	last	value	produced)
regardless	of	session,	you	should	use	the	IDENT_CURRENT	function	and	provide	the	table
name	as	input.	For	example,	run	the	following	code	from	a	new	session	(not	the	one	from
which	you	ran	the	previous	INSERT	statements):
Click	here	to	view	code	image

SELECT
		SCOPE_IDENTITY()	AS	[SCOPE_IDENTITY],
		@@identity	AS	[@@identity],
		IDENT_CURRENT(N'dbo.T1')	AS	[IDENT_CURRENT];

You	get	the	following	output:
Click	here	to	view	code	image

SCOPE_IDENTITY			@@identity			IDENT_CURRENT
----------------	------------	-------------
NULL													NULL									4

Both	@@identity	and	SCOPE_IDENTITY	returned	NULLs	because	no	identity	values	were
created	in	the	session	in	which	this	query	ran.	IDENT_CURRENT	returned	the	value	4	because
it	returns	the	current	identity	value	in	the	table,	regardless	of	the	session	in	which	it	was
produced.
There’s	a	certain	part	of	the	design	of	the	identity	property	that	comes	as	a	surprise	to

some.	The	change	to	the	current	identity	value	in	a	table	is	not	undone	if	the	INSERT	that
generated	the	change	fails	or	the	transaction	in	which	the	statement	runs	is	rolled	back.	For
example,	run	the	following	INSERT	statement,	which	conflicts	with	the	CHECK	constraint
defined	in	the	table:
Click	here	to	view	code	image

INSERT	INTO	dbo.T1(datacol)	VALUES('12345');

The	insert	fails,	and	you	get	the	following	error:
Click	here	to	view	code	image

Msg	547,	Level	16,	State	0,	Line	159
The	INSERT	statement	conflicted	with	the	CHECK	constraint	"CHK_T1_datacol".	The
conflict
occurred	in	database	"TSQLV4",	table	"dbo.T1",	column	'datacol'.
The	statement	has	been	terminated.

Even	though	the	insert	failed,	the	current	identity	value	in	the	table	changed	from	4	to	5,	and
this	change	was	not	undone	because	of	the	failure.	This	means	that	the	next	insert	will	produce
the	value	6:
Click	here	to	view	code	image

INSERT	INTO	dbo.T1(datacol)	VALUES('EEEEE');

Query	the	table:
SELECT	*	FROM	dbo.T1;

Notice	a	gap	between	the	values	4	and	6	in	the	output:
keycol						datacol
-----------	----------
1											AAAAA
2											CCCCC
3											BBBBB
4											AAAAA
6											EEEEE

Also,	SQL	Server	uses	a	performance	cache	feature	for	the	identity	property,	which	can
result	in	gaps	between	the	keys	when	there’s	an	unclean	termination	of	the	SQL	Server
process—for	example,	because	of	a	power	failure.	As	you	might	realize,	you	should	use	the
identity	property	only	if	you	can	allow	gaps	between	the	keys.	Otherwise,	you	should
implement	your	own	mechanism	to	generate	keys.
One	of	the	shortcomings	of	the	identity	property	is	that	you	cannot	add	it	to	an	existing

column	or	remove	it	from	an	existing	column.	If	you	need	to	make	such	a	change,	it’s	an
expensive	and	cumbersome	offline	operation.
With	SQL	Server,	you	can	specify	your	own	explicit	values	for	the	identity	column	when

you	insert	rows,	as	long	as	you	enable	a	session	option	called	IDENTITY_INSERT	against	the
table	involved.	There’s	no	option	you	can	use	to	update	an	identity	column,	though.
For	example,	the	following	code	demonstrates	how	to	insert	a	row	into	T1	with	the	explicit

value	5	in	keycol:
Click	here	to	view	code	image

SET	IDENTITY_INSERT	dbo.T1	ON;
INSERT	INTO	dbo.T1(keycol,	datacol)	VALUES(5,	'FFFFF');
SET	IDENTITY_INSERT	dbo.T1	OFF;

Interestingly,	when	you	turn	off	the	IDENTITY_INSERT	option,	SQL	Server	changes	the
current	identity	value	in	the	table	only	if	the	explicit	value	you	provided	is	greater	than	the
current	identity	value.	Because	the	current	identity	value	in	the	table	prior	to	running	the
preceding	code	was	6,	and	the	INSERT	statement	in	this	code	used	the	lower	explicit	value	5,
the	current	identity	value	in	the	table	did	not	change.	So	if	at	this	point	you	query	the
IDENT_CURRENT	function	for	this	table,	you	will	get	6	and	not	5.	This	way,	the	next	INSERT
statement	against	the	table	will	produce	the	value	7:
Click	here	to	view	code	image

INSERT	INTO	dbo.T1(datacol)	VALUES('GGGGG');

Query	the	current	contents	of	the	table	T1:
SELECT	*	FROM	dbo.T1;

You	get	the	following	output:
keycol						datacol
-----------	----------
1											AAAAA
2											CCCCC
3											BBBBB
4											AAAAA
5											FFFFF
6											EEEEE
7											GGGGG

You	need	to	understand	that	the	identity	property	itself	does	not	enforce	uniqueness	in	the
column.	I	already	explained	that	you	can	provide	your	own	explicit	values	after	setting	the
IDENTITY_INSERT	option	to	ON,	and	those	values	can	be	ones	that	already	exist	in	rows	in
the	table.	Also,	you	can	reseed	the	current	identity	value	in	the	table	by	using	the	DBCC

CHECKIDENT	command—for	syntax,	see	“DBCC	CHECKIDENT	(Transact-SQL)”	in	SQL
Server	Books	Online	at	the	following	URL:	https://msdn.microsoft.com/en-
us/library/ms176057.aspx.	If	you	need	to	guarantee	uniqueness	in	an	identity	column,	make
sure	you	also	define	a	primary	key	or	a	unique	constraint	on	that	column.

Sequence
T-SQL	supports	the	standard	sequence	object	as	an	alternative	key-generating	mechanism	for
identity.	The	sequence	object	is	more	flexible	than	identity	in	many	ways,	making	it	the
preferred	choice	in	many	cases.
One	of	the	advantages	of	the	sequence	object	is	that,	unlike	identity,	it’s	not	tied	to	a

particular	column	in	a	particular	table;	rather,	it’s	an	independent	object	in	the	database.
Whenever	you	need	to	generate	a	new	value,	you	invoke	a	function	against	the	object	and	use
the	returned	value	wherever	you	like.	For	example,	if	you	have	such	a	use	case,	you	can	use
one	sequence	object	that	will	help	you	maintain	keys	that	will	not	conflict	across	multiple
tables.
To	create	a	sequence	object,	use	the	CREATE	SEQUENCE	command.	The	minimum

required	information	is	just	the	sequence	name,	but	note	that	the	defaults	for	the	various
properties	in	such	a	case	might	not	be	what	you	want.	If	you	don’t	indicate	the	data	type,	SQL
Server	will	use	BIGINT	by	default.	If	you	want	a	different	type,	indicate	AS	<type>.	The	type
can	be	any	numeric	type	with	a	scale	of	zero.	For	example,	if	you	need	your	sequence	to	be	of
an	INT	type,	indicate	AS	INT.
Unlike	the	identity	property,	the	sequence	object	supports	the	specification	of	a	minimum

value	(MINVALUE	<val>)	and	a	maximum	value	(MAXVALUE	<val>)	within	the	type.	If	you
don’t	indicate	what	the	minimum	and	maximum	values	are,	the	sequence	object	will	assume
the	minimum	and	maximum	values	supported	by	the	type.	For	example,	for	an	INT	type,	those
would	be	–2,147,483,648	and	2,147,483,647,	respectively.
Also,	unlike	identity,	the	sequence	object	supports	cycling.	Note,	though,	that	the	default	is

NO	CYCLE.	If	you	want	the	sequence	object	to	cycle,	you	need	to	be	explicit	about	it	by	using
the	CYCLE	option.
Like	identity,	the	sequence	object	allows	you	to	specify	the	starting	value	(START	WITH

<val>)	and	the	increment	(INCREMENT	BY	<val>).	If	you	don’t	indicate	the	starting	value,
the	default	will	be	the	same	as	the	minimum	value	(MINVALUE).	If	you	don’t	indicate	the
increment	value,	it	will	be	1	by	default.
For	example,	suppose	you	want	to	create	a	sequence	that	will	help	you	generate	order	IDs.

You	want	it	to	be	of	an	INT	type,	have	a	minimum	value	of	1	and	a	maximum	value	that	is	the
maximum	supported	by	the	type,	start	with	1,	increment	by	1,	and	allow	cycling.	Here’s	the
CREATE	SEQUENCE	command	you	would	use	to	create	such	a	sequence:
Click	here	to	view	code	image

CREATE	SEQUENCE	dbo.SeqOrderIDs	AS	INT
		MINVALUE	1
		CYCLE;

You	had	to	be	explicit	about	the	type,	minimum	value,	and	cycling	option	because	they	are

https://msdn.microsoft.com/en-us/library/ms176057.aspx

different	than	the	defaults.	You	didn’t	need	to	indicate	the	maximum,	start	with,	and	increment
values	because	you	wanted	the	defaults.
The	sequence	object	also	supports	a	caching	option	(CACHE	<val>	|	NO	CACHE)	that	tells

SQL	Server	how	often	to	write	the	recoverable	value	to	disk.	For	example,	if	you	specify	a
cache	value	of	10,000,	SQL	Server	will	write	to	disk	every	10,000	requests,	and	in	between
disk	writes,	it	will	maintain	the	current	value	and	how	many	values	are	left	in	memory.	If	you
write	less	frequently	to	disk,	you’ll	get	better	performance	when	generating	a	value	(on
average),	but	you’ll	risk	losing	more	values	in	case	of	an	unexpected	termination	of	the	SQL
Server	process,	such	as	in	a	power	failure.	SQL	Server	has	a	default	cache	value	of	50,
although	this	number	is	not	officially	documented	because	Microsoft	wants	to	be	able	to
change	it.
You	can	change	any	of	the	sequence	properties	except	the	data	type	with	the	ALTER

SEQUENCE	command	(MINVAL	<val>,	MAXVAL	<val>,	RESTART	WITH	<val>,
INCREMENT	BY	<val>,	CYCLE	|	NO	CYCLE,	or	CACHE	<val>	|	NO	CACHE).	For	example,
suppose	you	want	to	prevent	the	sequence	dbo.SeqOrderIDs	from	cycling.	You	can	change	the
current	sequence	definition	with	the	following	ALTER	SEQUENCE	command:
Click	here	to	view	code	image

ALTER	SEQUENCE	dbo.SeqOrderIDs
		NO	CYCLE;

To	generate	a	new	sequence	value,	you	need	to	invoke	the	standard	function	NEXT	VALUE
FOR	<sequence	name>.	Here’s	an	example	of	invoking	the	function:
Click	here	to	view	code	image

SELECT	NEXT	VALUE	FOR	dbo.SeqOrderIDs;

This	code	generates	the	following	output:

1

Notice	that,	unlike	with	identity,	you	didn’t	need	to	insert	a	row	into	a	table	in	order	to
generate	a	new	value.	Some	applications	need	to	generate	the	new	value	before	using	it.	With
sequences,	you	can	store	the	result	of	the	function	in	a	variable	and	use	it	later	in	the	code.	To
demonstrate	this,	first	create	a	table	called	T1	with	the	following	code:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.T1;

CREATE	TABLE	dbo.T1
(
		keycol		INT									NOT	NULL
				CONSTRAINT	PK_T1	PRIMARY	KEY,
		datacol	VARCHAR(10)	NOT	NULL
);

The	following	code	generates	a	new	sequence	value,	stores	it	in	a	variable,	and	then	uses
the	variable	in	an	INSERT	statement	to	insert	a	row	into	the	table:
Click	here	to	view	code	image

DECLARE	@neworderid	AS	INT	=	NEXT	VALUE	FOR	dbo.SeqOrderIDs;
INSERT	INTO	dbo.T1(keycol,	datacol)	VALUES(@neworderid,	'a');

SELECT	*	FROM	dbo.T1;

This	code	returns	the	following	output:
keycol						datacol
-----------	----------
2											a

If	you	need	to	use	the	new	key	in	related	rows	that	you	add	to	another	table,	you	can	use	the
variable	when	you	insert	those	rows.
If	you	don’t	need	to	generate	the	new	sequence	value	before	using	it,	you	can	specify	the

NEXT	VALUE	FOR	function	directly	as	part	of	your	INSERT	statement,	like	this:
Click	here	to	view	code	image

INSERT	INTO	dbo.T1(keycol,	datacol)
		VALUES(NEXT	VALUE	FOR	dbo.SeqOrderIDs,	'b');

SELECT	*	FROM	dbo.T1;

This	code	returns	the	following	output:
keycol						datacol
-----------	----------
2											a
3											b

Unlike	with	identity,	you	can	generate	new	sequence	values	in	an	UPDATE	statement,	like
this:
Click	here	to	view	code	image

UPDATE	dbo.T1
		SET	keycol	=	NEXT	VALUE	FOR	dbo.SeqOrderIDs;

SELECT	*	FROM	dbo.T1;

This	code	returns	the	following	output:
keycol						datacol
-----------	----------
4											a
5											b

To	get	information	about	your	sequences,	query	a	view	called	sys.sequences.	For	example,
to	find	the	current	sequence	value	in	the	SeqOrderIDs	sequence,	you	use	the	following	code:
Click	here	to	view	code	image

SELECT	current_value
FROM	sys.sequences
WHERE	OBJECT_ID	=	OBJECT_ID(N'dbo.SeqOrderIDs');

This	code	generates	the	following	output:
current_value

5

SQL	Server	extends	its	support	for	the	sequence	option	with	capabilities	beyond	what	the
competitors	and	the	standard	currently	support.	One	of	the	extensions	enables	you	to	control
the	order	of	the	assigned	sequence	values	in	a	multirow	insert	by	using	an	OVER	clause.
Here’s	an	example:
Click	here	to	view	code	image

INSERT	INTO	dbo.T1(keycol,	datacol)
		SELECT
				NEXT	VALUE	FOR	dbo.SeqOrderIDs	OVER(ORDER	BY	hiredate),
				LEFT(firstname,	1)	+	LEFT(lastname,	1)
		FROM	HR.Employees;

SELECT	*	FROM	dbo.T1;

This	code	returns	the	following	output:
keycol						datacol
-----------	----------
4											a
5											b
6											JL
7											SD
8											DF
9											YP
10										SM
11										PS
12										RK
13										MC
14										PD

Another	extension	to	the	standard	allows	the	use	of	the	NEXT	VALUE	FOR	function	in	a
default	constraint.	Here’s	an	example:
Click	here	to	view	code	image

ALTER	TABLE	dbo.T1
		ADD	CONSTRAINT	DFT_T1_keycol
				DEFAULT	(NEXT	VALUE	FOR	dbo.SeqOrderIDs)
				FOR	keycol;

Now	when	you	insert	rows	into	the	table,	you	don’t	have	to	indicate	a	value	for	keycol:
Click	here	to	view	code	image

INSERT	INTO	dbo.T1(datacol)	VALUES('c');

SELECT	*	FROM	dbo.T1;

This	code	returns	the	following	output:
keycol						datacol
-----------	----------
4											a
5											b
6											JL
7											SD
8											DF

9											YP
10										SM
11										PS
12										RK
13										MC
14										PD
15										c

Unlike	with	identity,	which	you	cannot	add	to	or	remove	from	an	existing	column,	you	can
add	or	remove	a	default	constraint.	The	preceding	example	showed	how	to	add	a	default
constraint	to	a	table	and	associate	it	with	a	column.	To	remove	a	constraint,	use	the	syntax:
ALTER	TABLE	<table_name>	DROP	CONSTRAINT	<constraint_name>.
There’s	another	extension	to	the	standard	you	can	use	to	allocate	a	whole	range	of	sequence

values	at	once	by	using	a	stored	procedure	called	sp_sequence_get_range.	The	idea	is	that	if
the	application	needs	to	assign	a	range	of	sequence	values,	it’s	efficient	to	update	the	sequence
only	once,	incrementing	it	by	the	size	of	the	range.	You	call	the	procedure,	indicate	the	size	of
the	range	you	want,	and	collect	the	first	value	in	the	range,	as	well	as	other	information,	by
using	output	parameters.	Here’s	an	example	of	calling	the	procedure	and	asking	for	a	range
of	1,000,000	sequence	values:
Click	here	to	view	code	image

DECLARE	@first	AS	SQL_VARIANT;

EXEC	sys.sp_sequence_get_range
		@sequence_name					=	N'dbo.SeqOrderIDs',
		@range_size								=	1000000,
		@range_first_value	=	@first	OUTPUT	;

SELECT	@first;

	Note
SQL_VARIANT	is	a	generic	data	type	that	can	hold	within	it	various	base	data	types.	The
sp_sequence_get_range	procedure	uses	this	type	for	several	of	its	parameters,
including	the	output	parameter	@range_first_value.	For	details	about	this	data	type,	see
SQL	Server	Books	Online	at	the	following	URL:	https://msdn.microsoft.com/en-
us/library/ms173829.aspx.

If	you	run	the	code	twice,	you	will	find	that	the	returned	first	value	in	the	second	call	is
greater	than	the	first	by	1,000,000.
Note	that	like	with	identity,	the	sequence	object	does	not	guarantee	you	will	have	no	gaps.	If

a	new	sequence	value	was	generated	by	a	transaction	that	failed	or	intentionally	rolled	back,
the	sequence	change	is	not	undone.	Also,	as	mentioned	earlier	with	identity,	sequence	objects
support	a	performance	cache	feature,	which	can	result	in	gaps	when	there’s	an	unclean
termination	of	the	SQL	Server	process.
When	you’re	done,	run	the	following	code	for	cleanup:

Click	here	to	view	code	image

https://msdn.microsoft.com/en-us/library/ms173829.aspx

DROP	TABLE	IF	EXISTS	dbo.T1;
DROP	SEQUENCE	IF	EXISTS	dbo.SeqOrderIDs;

Deleting	data
T-SQL	provides	two	statements	for	deleting	rows	from	a	table:	DELETE	and	TRUNCATE.
This	section	describes	those	statements.	The	examples	I	provide	in	this	section	are	applied
against	copies	of	the	Customers	and	Orders	tables	from	the	Sales	schema	created	in	the	dbo
schema.	Run	the	following	code	to	create	and	populate	those	tables:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.Orders,	dbo.Customers;

CREATE	TABLE	dbo.Customers
(
		custid							INT										NOT	NULL,
		companyname		NVARCHAR(40)	NOT	NULL,
		contactname		NVARCHAR(30)	NOT	NULL,
		contacttitle	NVARCHAR(30)	NOT	NULL,
		address						NVARCHAR(60)	NOT	NULL,
		city									NVARCHAR(15)	NOT	NULL,
		region							NVARCHAR(15)	NULL,
		postalcode			NVARCHAR(10)	NULL,
		country						NVARCHAR(15)	NOT	NULL,
		phone								NVARCHAR(24)	NOT	NULL,
		fax										NVARCHAR(24)	NULL,
		CONSTRAINT	PK_Customers	PRIMARY	KEY(custid)
);

CREATE	TABLE	dbo.Orders
(
		orderid								INT										NOT	NULL,
		custid									INT										NULL,
		empid										INT										NOT	NULL,
		orderdate						DATE									NOT	NULL,
		requireddate			DATE									NOT	NULL,
		shippeddate				DATE									NULL,
		shipperid						INT										NOT	NULL,
		freight								MONEY								NOT	NULL
				CONSTRAINT	DFT_Orders_freight	DEFAULT(0),
		shipname							NVARCHAR(40)	NOT	NULL,
		shipaddress				NVARCHAR(60)	NOT	NULL,
		shipcity							NVARCHAR(15)	NOT	NULL,
		shipregion					NVARCHAR(15)	NULL,
		shippostalcode	NVARCHAR(10)	NULL,
		shipcountry				NVARCHAR(15)	NOT	NULL,
		CONSTRAINT	PK_Orders	PRIMARY	KEY(orderid),
		CONSTRAINT	FK_Orders_Customers	FOREIGN	KEY(custid)
				REFERENCES	dbo.Customers(custid)
);
GO

INSERT	INTO	dbo.Customers	SELECT	*	FROM	Sales.Customers;
INSERT	INTO	dbo.Orders	SELECT	*	FROM	Sales.Orders;

The	DELETE	statement
The	DELETE	statement	is	a	standard	statement	used	to	delete	data	from	a	table	based	on	an
optional	filter	predicate.	The	standard	statement	has	only	two	clauses—the	FROM	clause,	in
which	you	specify	the	target	table	name,	and	a	WHERE	clause,	in	which	you	specify	a
predicate.	Only	the	subset	of	rows	for	which	the	predicate	evaluates	to	TRUE	will	be	deleted.
For	example,	the	following	statement	deletes,	from	the	dbo.Orders	table,	all	orders	that

were	placed	prior	to	2015:
Click	here	to	view	code	image

DELETE	FROM	dbo.Orders
WHERE	orderdate	<	'20150101';

Run	this	statement.	SQL	Server	will	report	that	it	deleted	152	rows:
(152	row(s)	affected)

Note	that	you	can	suppress	returning	the	message	that	indicates	the	number	of	rows	affected
by	turning	on	the	session	option	NOCOUNT.	As	you	probably	noticed,	this	option	is	off	by
default.
The	DELETE	statement	tends	to	be	expensive	when	you	delete	a	large	number	of	rows,

mainly	because	it’s	a	fully	logged	operation.

The	TRUNCATE	statement
The	standard	TRUNCATE	statement	deletes	all	rows	from	a	table.	Unlike	the	DELETE
statement,	TRUNCATE	has	no	filter.	For	example,	to	delete	all	rows	from	a	table	called
dbo.T1,	you	run	the	following	code:

TRUNCATE	TABLE	dbo.T1;

The	advantage	that	TRUNCATE	has	over	DELETE	is	that	the	former	is	minimally	logged,
whereas	the	latter	is	fully	logged,	resulting	in	significant	performance	differences.	For
example,	if	you	use	the	TRUNCATE	statement	to	delete	all	rows	from	a	table	with	millions	of
rows,	the	operation	will	finish	in	a	matter	of	seconds.	If	you	use	the	DELETE	statement,	the
operation	can	take	many	minutes.	Note	that	I	said	TRUNCATE	is	minimally	logged,	as	opposed
to	not	being	logged	at	all.	SQL	Server	records	which	blocks	of	data	were	deallocated	by	the
operation	so	that	it	can	reclaim	those	in	case	the	transaction	needs	to	be	undone.	Both
DELETE	and	TRUNCATE	are	transactional.
TRUNCATE	and	DELETE	also	have	a	functional	difference	when	the	table	has	an	identity

column.	TRUNCATE	resets	the	identity	value	back	to	the	original	seed,	but	DELETE	doesn’t—
even	when	used	without	a	filter.	Interestingly,	the	standard	defines	an	identity	column	restart
option	for	the	TRUNCATE	statement,	which	you	use	to	control	whether	to	restart	or	continue
the	identity	value,	but	unfortunately	T-SQL	doesn’t	support	this	option.
The	TRUNCATE	statement	is	not	allowed	when	the	target	table	is	referenced	by	a	foreign-

key	constraint,	even	if	the	referencing	table	is	empty	and	even	if	the	foreign	key	is	disabled.
The	only	way	to	allow	a	TRUNCATE	statement	is	to	drop	all	foreign	keys	referencing	the
table	with	the	ALTER	TABLE	DROP	CONSTRAINT	command.	You	can	then	re-create	the

foreign	keys	after	truncating	the	table	with	the	ALTER	TABLE	ADD	CONSTRAINT	command.
Accidents	such	as	truncating	or	dropping	the	incorrect	table	can	happen.	For	example,	let’s

say	you	have	connections	open	against	both	the	production	and	the	development
environments,	and	you	submit	your	code	in	the	wrong	connection.	Both	the	TRUNCATE	and
DROP	statements	are	so	fast	that	the	transaction	is	committed	before	you	realize	your	mistake.
To	prevent	such	accidents,	you	can	protect	a	production	table	by	simply	creating	a	dummy
table	with	a	foreign	key	pointing	to	that	table.	You	can	even	disable	the	foreign	key	so	that	it
won’t	have	any	impact	on	performance.	As	I	mentioned	earlier,	even	when	disabled,	this
foreign	key	prevents	you	from	truncating	or	dropping	the	referenced	table.
In	case	you	have	partitioned	tables	in	your	database,	SQL	Server	2016	enhances	the

TRUNCATE	statement	by	supporting	the	truncation	of	individual	partitions.	You	can	specify	a
list	of	partitions	and	partition	ranges	(with	the	keyword	TO	between	the	range	delimiters).	As
an	example,	suppose	you	had	a	partitioned	table	called	T1	and	you	wanted	to	truncate
partitions	1,	3,	5,	and	7	through	10.	You	would	use	the	following	code	to	achieve	this:
Click	here	to	view	code	image

TRUNCATE	TABLE	dbo.T1	WITH	(PARTITIONS(1,	3,	5,	7	TO	10));

	Note
Table	partitioning	is	about	dividing	your	table	into	multiple	units	called	partitions,
mainly	for	manageability	purposes.	This	allows	handling	processes	like	importing	data
into	the	table	and	purging	historic	data	to	be	handled	more	efficiently.	You	can	find
details	on	the	topic	in	SQL	Server	Books	Online	at	the	following	URL:
https://msdn.microsoft.com/en-us/library/ms190787.aspx.

DELETE	based	on	a	join
T-SQL	supports	a	nonstandard	DELETE	syntax	based	on	joins.	The	join	serves	a	filtering
purpose	and	also	gives	you	access	to	the	attributes	of	the	related	rows	from	the	joined	tables.
This	means	you	can	delete	rows	from	one	table	based	on	a	filter	against	attributes	in	related
rows	from	another	table.
For	example,	the	following	statement	deletes	orders	placed	by	customers	from	the	United

States:
Click	here	to	view	code	image

DELETE	FROM	O
FROM	dbo.Orders	AS	O
		INNER	JOIN	dbo.Customers	AS	C
				ON	O.custid	=	C.custid
WHERE	C.country	=	N'USA';

Much	like	in	a	SELECT	statement,	the	first	clause	that	is	logically	processed	in	a	DELETE
statement	is	the	FROM	clause	(the	second	one	that	appears	in	this	statement).	Then	the	WHERE
clause	is	processed,	and	finally	the	DELETE	clause.	In	our	case,	the	statement	first	joins	the

https://msdn.microsoft.com/en-us/library/ms190787.aspx

Orders	table	(aliased	as	O)	with	the	Customers	table	(aliased	as	C)	based	on	a	match	between
the	order ’s	customer	ID	and	the	customer ’s	customer	ID.	It	then	filters	only	orders	placed	by
customers	from	the	United	States.	Finally,	the	statement	deletes	all	qualifying	rows	from	O
(the	alias	representing	the	Orders	table).
The	two	FROM	clauses	in	a	DELETE	statement	based	on	a	join	might	be	confusing.	But

when	you	develop	the	code,	develop	it	as	if	it	were	a	SELECT	statement	with	a	join.	That	is,
start	with	the	FROM	clause	with	the	joins,	move	on	to	the	WHERE	clause,	and	finally—instead
of	specifying	a	SELECT	clause—specify	a	DELETE	clause	with	the	alias	of	the	side	of	the	join
that	is	supposed	to	be	the	target	for	the	deletion.	Note	that	the	first	FROM	clause	is	optional.	In
our	example,	you	can	specify	DELETE	O	instead	of	DELETE	FROM	O.
As	I	mentioned	earlier,	a	DELETE	statement	based	on	a	join	is	nonstandard.	If	you	want	to

stick	to	standard	code,	you	can	use	subqueries	instead	of	joins.	For	example,	the	following
DELETE	statement	uses	a	subquery	to	achieve	the	same	task:
Click	here	to	view	code	image

DELETE	FROM	dbo.Orders
WHERE	EXISTS
		(SELECT	*
			FROM	dbo.Customers	AS	C
			WHERE	Orders.custid	=	C.custid
					AND	C.country	=	N'USA');

This	code	deletes	all	rows	from	the	Orders	table	for	which	a	related	customer	from	the
United	States	exists	in	the	Customers	table.
SQL	Server	processes	the	two	queries	the	same	way	(using	the	same	query	execution	plan);

therefore,	you	shouldn’t	expect	any	performance	difference	between	them.	I	usually
recommend	sticking	to	the	standard	as	much	as	possible	unless	you	have	a	compelling	reason
to	do	otherwise—for	example,	in	the	case	of	a	performance	difference.
When	you’re	done,	run	the	following	code	for	cleanup:

Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.Orders,	dbo.Customers;

Updating	data
T-SQL	supports	a	standard	UPDATE	statement	you	can	use	to	update	rows	in	a	table.	T-SQL
also	supports	nonstandard	forms	of	the	UPDATE	statement	with	joins	and	with	variables.	This
section	describes	the	different	forms	of	the	statement.
The	examples	I	provide	in	this	section	are	against	copies	of	the	Orders	and	OrderDetails

tables	from	the	Sales	schema	created	in	the	dbo	schema.	Run	the	following	code	to	create	and
populate	those	tables:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.OrderDetails,	dbo.Orders;

CREATE	TABLE	dbo.Orders
(
		orderid								INT										NOT	NULL,

		custid									INT										NULL,
		empid										INT										NOT	NULL,
		orderdate						DATE									NOT	NULL,
		requireddate			DATE									NOT	NULL,
		shippeddate				DATE									NULL,
		shipperid						INT										NOT	NULL,
		freight								MONEY								NOT	NULL
				CONSTRAINT	DFT_Orders_freight	DEFAULT(0),
		shipname							NVARCHAR(40)	NOT	NULL,
		shipaddress				NVARCHAR(60)	NOT	NULL,
		shipcity							NVARCHAR(15)	NOT	NULL,
		shipregion					NVARCHAR(15)	NULL,
		shippostalcode	NVARCHAR(10)	NULL,
		shipcountry				NVARCHAR(15)	NOT	NULL,
		CONSTRAINT	PK_Orders	PRIMARY	KEY(orderid)
);

CREATE	TABLE	dbo.OrderDetails
(
		orderid			INT											NOT	NULL,
		productid	INT											NOT	NULL,
		unitprice	MONEY									NOT	NULL
				CONSTRAINT	DFT_OrderDetails_unitprice	DEFAULT(0),
		qty							SMALLINT						NOT	NULL
				CONSTRAINT	DFT_OrderDetails_qty	DEFAULT(1),
		discount		NUMERIC(4,	3)	NOT	NULL
				CONSTRAINT	DFT_OrderDetails_discount	DEFAULT(0),
		CONSTRAINT	PK_OrderDetails	PRIMARY	KEY(orderid,	productid),
		CONSTRAINT	FK_OrderDetails_Orders	FOREIGN	KEY(orderid)
				REFERENCES	dbo.Orders(orderid),
		CONSTRAINT	CHK_discount		CHECK	(discount	BETWEEN	0	AND	1),
		CONSTRAINT	CHK_qty		CHECK	(qty	>	0),
		CONSTRAINT	CHK_unitprice	CHECK	(unitprice	>=	0)
);
GO

INSERT	INTO	dbo.Orders	SELECT	*	FROM	Sales.Orders;
INSERT	INTO	dbo.OrderDetails	SELECT	*	FROM	Sales.OrderDetails;

The	UPDATE	statement
The	UPDATE	statement	is	a	standard	statement	you	can	use	to	update	a	subset	of	rows	in	a
table.	To	identify	the	subset	of	rows	you	need	to	update,	you	specify	a	predicate	in	a	WHERE
clause.	You	specify	the	assignment	of	values	to	columns	in	a	SET	clause,	separated	by
commas.
For	example,	the	following	UPDATE	statement	increases	the	discount	of	all	order	details

for	product	51	by	5	percent:
Click	here	to	view	code	image

UPDATE	dbo.OrderDetails
		SET	discount	=	discount	+	0.05
WHERE	productid	=	51;

Of	course,	you	can	run	a	SELECT	statement	with	the	same	filter	before	and	after	the	update
to	see	the	changes.	Later	in	this	chapter,	I’ll	show	you	another	way	to	see	the	changes,	by
using	a	clause	called	OUTPUT	that	you	can	add	to	modification	statements.

T-SQL	supports	compound	assignment	operators:	+=	(plus	equal),	–=	(minus	equal),	*=
(multiplication	equal),	/=	(division	equal),	%=	(modulo	equal),	and	others.	You	can	use	these
operators	to	shorten	assignment	expressions	such	as	the	one	in	the	preceding	query.	Instead	of
the	expression	discount	=	discount	+	0.05,	you	can	use	this	expression:	discount	+=	0.05.	The
full	UPDATE	statement	looks	like	this:

UPDATE	dbo.OrderDetails
		SET	discount	+=	0.05
WHERE	productid	=	51;

All-at-once	operations	are	an	important	aspect	of	SQL	you	should	keep	in	mind	when
writing	UPDATE	statements.	I	explained	the	concept	in	Chapter	2,	“Single-table	queries,”	in
the	context	of	SELECT	statements,	but	it’s	just	as	applicable	with	UPDATE	statements.
Remember	that	all	expressions	that	appear	in	the	same	logical	phase	are	evaluated	as	a	set,
logically	at	the	same	point	in	time.	Consider	the	following	UPDATE	statement:
Click	here	to	view	code	image

UPDATE	dbo.T1
		SET	col1	=	col1	+	10,	col2	=	col1	+	10;

Suppose	one	row	in	the	table	has	the	value	100	in	col1	prior	to	the	update.	Can	you
determine	the	values	of	col1	and	col2	in	that	row	after	the	update?
If	you	do	not	consider	the	all-at-once	concept,	you	would	think	that	col1	will	be	set	to	110

and	col2	to	120,	as	if	the	assignments	were	performed	from	left	to	right.	However,	the
assignments	take	place	all	at	once,	meaning	that	both	assignments	use	the	same	value	of	col1
—the	value	before	the	update.	The	result	of	this	update	is	that	both	col1	and	col2	will	end	up
with	the	value	110.
With	the	concept	of	all-at-once	in	mind,	can	you	figure	out	how	to	write	an	UPDATE

statement	that	swaps	the	values	in	the	columns	col1	and	col2?	In	most	programming
languages	where	expressions	and	assignments	are	evaluated	in	some	order	(typically	left	to
right),	you	need	a	temporary	variable.	However,	because	in	SQL	all	assignments	take	place	as
if	they	happen	at	the	same	point	in	time,	the	solution	is	simple:
Click	here	to	view	code	image

UPDATE	dbo.T1
		SET	col1	=	col2,	col2	=	col1;

In	both	assignments,	the	source	column	values	used	are	those	prior	to	the	update,	so	you
don’t	need	a	temporary	variable.

UPDATE	based	on	a	join
Similar	to	the	DELETE	statement,	the	UPDATE	statement	also	supports	a	nonstandard	form
based	on	joins.	As	with	DELETE	statements,	the	join	serves	a	filtering	purpose	as	well	as
giving	you	access	to	attributes	from	the	joined	tables.
The	syntax	is	similar	to	a	SELECT	statement	based	on	a	join;	that	is,	the	FROM	and	WHERE

clauses	are	the	same,	but	instead	of	the	SELECT	clause,	you	specify	an	UPDATE	clause.	The
UPDATE	keyword	is	followed	by	the	alias	of	the	table	that	is	the	target	of	the	update	(you

can’t	update	more	than	one	table	in	the	same	statement),	followed	by	the	SET	clause	with	the
column	assignments.
For	example,	the	UPDATE	statement	in	Listing	8-1	increases	the	discount	of	all	order

details	of	orders	placed	by	customer	1	by	5	percent.

LISTING	8-1	UPDATE	based	on	a	join

UPDATE	OD
		SET	discount	+=	0.05
FROM	dbo.OrderDetails	AS	OD
		INNER	JOIN	dbo.Orders	AS	O
				ON	OD.orderid	=	O.orderid
WHERE	O.custid	=	1;

In	terms	of	logical	processing,	you	start	with	the	FROM	clause,	move	on	to	the	WHERE
clause,	and	finally	go	to	the	UPDATE	clause.	The	query	joins	the	OrderDetails	table	(aliased
as	OD)	with	the	Orders	table	(aliased	as	O)	based	on	a	match	between	the	order	detail’s	order
ID	and	the	order ’s	order	ID.	The	query	then	filters	only	the	rows	where	the	order ’s	customer
ID	is	1.	The	query	then	specifies	in	the	UPDATE	clause	that	OD	(the	alias	of	the	OrderDetails
table)	is	the	target	of	the	update,	and	it	increases	the	discount	by	5	percent.	You	can	also
specify	the	full	table	name	in	the	UPDATE	clause	if	you	like.
If	you	want	to	achieve	the	same	task	by	using	standard	code,	you	can	use	a	subquery	instead

of	a	join,	like	this:
Click	here	to	view	code	image

UPDATE	dbo.OrderDetails
		SET	discount	+=	0.05
WHERE	EXISTS
		(SELECT	*	FROM	dbo.Orders	AS	O
			WHERE	O.orderid	=	OrderDetails.orderid
					AND	O.custid	=	1);

The	query’s	WHERE	clause	filters	only	order	details	in	which	a	related	order	is	placed	by
customer	1.	With	this	particular	task,	SQL	Server	processes	both	versions	the	same	way
(using	the	same	query	plan);	therefore,	you	shouldn’t	expect	performance	differences
between	the	two.	As	I	mentioned	earlier,	I	recommend	sticking	to	standard	code	unless	you
have	a	compelling	reason	to	do	otherwise.
There	are	cases	where	the	join	version	has	advantages.	In	addition	to	filtering,	the	join	also

gives	you	access	to	attributes	from	other	tables	you	can	use	in	the	column	assignments	in	the
SET	clause.	The	same	access	to	the	joined	table	is	used	for	both	filtering	and	assignment
purposes.	However,	with	the	subquery	approach,	you	need	separate	subqueries	for	filtering
and	assignments;	plus,	you	need	a	separate	subquery	for	each	assignment.	In	SQL	Server,	each
subquery	involves	separate	access	to	the	other	table.
For	example,	consider	the	following	nonstandard	UPDATE	statement	based	on	a	join:
UPDATE	T1
		SET	col1	=	T2.col1,

						col2	=	T2.col2,
						col3	=	T2.col3
FROM	dbo.T1	JOIN	dbo.T2
		ON	T2.keycol	=	T1.keycol
WHERE	T2.col4	=	'ABC';

This	statement	joins	the	tables	T1	and	T2	based	on	a	match	between	T1.keycol	and	T2.keycol.
The	WHERE	clause	filters	only	rows	where	T2.col4	is	equal	to	‘ABC’.	The	UPDATE	statement
marks	the	T1	table	as	the	target	for	the	UPDATE,	and	the	SET	clause	sets	the	values	of	the
columns	col1,	col2,	and	col3	in	T1	to	the	values	of	the	corresponding	columns	from	T2.
An	attempt	to	express	this	task	by	using	standard	code	with	subqueries	yields	the	following

lengthy	query:
Click	here	to	view	code	image

UPDATE	dbo.T1
		SET	col1	=	(SELECT	col1
														FROM	dbo.T2
														WHERE	T2.keycol	=	T1.keycol),

						col2	=	(SELECT	col2
														FROM	dbo.T2
														WHERE	T2.keycol	=	T1.keycol),

						col3	=	(SELECT	col3
														FROM	dbo.T2
														WHERE	T2.keycol	=	T1.keycol)
WHERE	EXISTS
		(SELECT	*
			FROM	dbo.T2
			WHERE	T2.keycol	=	T1.keycol
					AND	T2.col4	=	'ABC');

Not	only	is	this	version	convoluted,	but	each	subquery	involves	separate	access	to	table	T2.
So	this	version	is	less	efficient	than	the	join	version.
Standard	SQL	has	support	for	row	constructors	(also	known	as	vector	expressions)	that

were	only	implemented	partially	in	T-SQL.	As	of	SQL	Server	2016,	many	aspects	of	row
constructors	have	not	yet	been	implemented,	including	the	ability	to	use	them	in	the	SET
clause	of	an	UPDATE	statement	like	this:
Click	here	to	view	code	image

UPDATE	dbo.T1

		SET	(col1,	col2,	col3)	=

						(SELECT	col1,	col2,	col3
							FROM	dbo.T2
							WHERE	T2.keycol	=	T1.keycol)

WHERE	EXISTS
		(SELECT	*
			FROM	dbo.T2
			WHERE	T2.keycol	=	T1.keycol
					AND	T2.col4	=	'ABC');

But	as	you	can	see,	this	version	would	still	be	more	complicated	than	the	join	version,

because	it	requires	separate	subqueries	for	the	filtering	part	and	for	obtaining	the	attributes
from	the	other	table	for	the	assignments.

Assignment	UPDATE
T-SQL	supports	a	proprietary	UPDATE	syntax	that	both	updates	data	in	a	table	and	assigns
values	to	variables	at	the	same	time.	This	syntax	saves	you	the	need	to	use	separate	UPDATE
and	SELECT	statements	to	achieve	the	same	task.
One	of	the	common	cases	for	which	you	can	use	this	syntax	is	in	maintaining	a	custom

sequence/autonumbering	mechanism	when	the	identity	column	property	and	the	sequence
object	don’t	work	for	you.	One	example	is	when	you	need	to	guarantee	that	there	are	no	gaps
between	the	values.	To	achieve	this,	you	keep	the	last-used	value	in	a	table,	and	whenever	you
need	a	new	value,	you	use	the	special	UPDATE	syntax	to	both	increment	the	value	in	the	table
and	assign	it	to	a	variable.
Run	the	following	code	to	first	create	the	MySequences	table	with	the	column	val,	and	then

populate	it	with	a	single	row	with	the	value	0—one	less	than	the	first	value	you	want	to	use:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.MySequences;

CREATE	TABLE	dbo.MySequences
(
		id	VARCHAR(10)	NOT	NULL
				CONSTRAINT	PK_MySequences	PRIMARY	KEY(id),
		val	INT	NOT	NULL
);
INSERT	INTO	dbo.MySequences	VALUES('SEQ1',	0);

Now,	whenever	you	need	to	obtain	a	new	sequence	value,	use	the	following	code:
DECLARE	@nextval	AS	INT;

UPDATE	dbo.MySequences
		SET	@nextval	=	val	+=	1
WHERE	id	=	'SEQ1';

SELECT	@nextval;

The	code	declares	a	local	variable	called	@nextval.	Then	it	uses	the	special	UPDATE	syntax
to	increment	the	column	value	by	1	and	assigns	the	new	value	to	a	variable.	The	code	then
presents	the	value	in	the	variable.	First	val	is	set	to	val	+	1,	and	then	the	result	(val	+	1)	is	set	to
the	variable	@nextval.
The	specialized	UPDATE	syntax	is	run	as	a	transaction,	and	it’s	more	efficient	than	using

separate	UPDATE	and	SELECT	statements	because	it	accesses	the	data	only	once.	Note	that
variable	assignment	isn’t	transactional,	though.
When	you’re	done,	run	the	following	code	for	cleanup:

Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.MySequences;

Merging	data
T-SQL	supports	a	statement	called	MERGE	you	can	use	to	merge	data	from	a	source	into	a
target,	applying	different	actions	(INSERT,	UPDATE,	and	DELETE)	based	on	conditional
logic.	The	MERGE	statement	is	part	of	the	SQL	standard,	although	the	T-SQL	version	adds	a
few	nonstandard	extensions.
A	task	achieved	by	a	single	MERGE	statement	typically	translates	to	a	combination	of

several	other	DML	statements	(INSERT,	UPDATE,	and	DELETE)	without	MERGE.
To	demonstrate	the	MERGE	statement,	I’ll	use	tables	called	dbo.Customers	and

dbo.CustomersStage.	Run	Listing	8-2	to	create	those	tables	and	populate	them	with	sample
data.

LISTING	8-2	Code	that	creates	and	populates	Customers	and	CustomersStage

Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.Customers,	dbo.CustomersStage;
GO

CREATE	TABLE	dbo.Customers
(
		custid						INT									NOT	NULL,
		companyname	VARCHAR(25)	NOT	NULL,
		phone							VARCHAR(20)	NOT	NULL,
		address					VARCHAR(50)	NOT	NULL,
		CONSTRAINT	PK_Customers	PRIMARY	KEY(custid)
);

INSERT	INTO	dbo.Customers(custid,	companyname,	phone,	address)
VALUES
		(1,	'cust	1',	'(111)	111-1111',	'address	1'),
		(2,	'cust	2',	'(222)	222-2222',	'address	2'),
		(3,	'cust	3',	'(333)	333-3333',	'address	3'),
		(4,	'cust	4',	'(444)	444-4444',	'address	4'),
		(5,	'cust	5',	'(555)	555-5555',	'address	5');

CREATE	TABLE	dbo.CustomersStage
(
		custid						INT									NOT	NULL,
		companyname	VARCHAR(25)	NOT	NULL,
		phone							VARCHAR(20)	NOT	NULL,
		address					VARCHAR(50)	NOT	NULL,
		CONSTRAINT	PK_CustomersStage	PRIMARY	KEY(custid)
);

INSERT	INTO	dbo.CustomersStage(custid,	companyname,	phone,	address)
VALUES
		(2,	'AAAAA',	'(222)	222-2222',	'address	2'),
		(3,	'cust	3',	'(333)	333-3333',	'address	3'),
		(5,	'BBBBB',	'CCCCC',	'DDDDD'),
		(6,	'cust	6	(new)',	'(666)	666-6666',	'address	6'),
		(7,	'cust	7	(new)',	'(777)	777-7777',	'address	7');

Run	the	following	query	to	examine	the	contents	of	the	Customers	table:
SELECT	*	FROM	dbo.Customers;

This	query	returns	the	following	output:
Click	here	to	view	code	image

custid						companyname						phone																address
-----------	----------------	--------------------	------------
1											cust	1											(111)	111-1111							address	1
2											cust	2											(222)	222-2222							address	2
3											cust	3											(333)	333-3333							address	3
4											cust	4											(444)	444-4444							address	4
5											cust	5											(555)	555-5555							address	5

Run	the	following	query	to	examine	the	contents	of	the	CustomersStage	table:
Click	here	to	view	code	image

SELECT	*	FROM	dbo.CustomersStage;

This	query	returns	the	following	output:
Click	here	to	view	code	image

custid						companyname						phone																address
-----------	----------------	--------------------	------------
2											AAAAA												(222)	222-2222							address	2
3											cust	3											(333)	333-3333							address	3
5											BBBBB												CCCCC																DDDDD
6											cust	6	(new)					(666)	666-6666							address	6
7											cust	7	(new)					(777)	777-7777							address	7

Suppose	you	need	to	merge	the	contents	of	the	CustomersStage	table	(the	source)	into	the
Customers	table	(the	target).	More	specifically,	you	need	to	add	customers	that	do	not	exist
and	update	the	customers	that	do	exist.
If	you	already	feel	comfortable	with	deletions	and	updates	based	on	joins,	you	should	feel

quite	comfortable	with	MERGE	because	it’s	based	on	join	semantics.	You	specify	the	target
table	name	in	the	MERGE	clause	and	the	source	table	name	in	the	USING	clause.	You	define	a
merge	condition	by	specifying	a	predicate	in	the	ON	clause.	The	merge	condition	defines
which	rows	in	the	source	table	have	matches	in	the	target	and	which	don’t.	You	define	the
action	to	take	when	a	match	is	found	in	a	clause	called	WHEN	MATCHED	THEN,	and	the
action	to	take	when	a	match	is	not	found	in	the	WHEN	NOT	MATCHED	THEN	clause.
Here’s	the	first	example	for	the	MERGE	statement.	It	adds	nonexistent	customers	and

updates	existing	ones:
Click	here	to	view	code	image

MERGE	INTO	dbo.Customers	AS	TGT
USING	dbo.CustomersStage	AS	SRC
		ON	TGT.custid	=	SRC.custid
WHEN	MATCHED	THEN
		UPDATE	SET
				TGT.companyname	=	SRC.companyname,
				TGT.phone	=	SRC.phone,
				TGT.address	=	SRC.address
WHEN	NOT	MATCHED	THEN

		INSERT	(custid,	companyname,	phone,	address)
		VALUES	(SRC.custid,	SRC.companyname,	SRC.phone,	SRC.address);

	Note
It’s	mandatory	to	terminate	the	MERGE	statement	with	a	semicolon,	whereas	in	most
other	statements	in	T-SQL,	this	is	optional.	As	mentioned,	it’s	a	best	practice	to
terminate	all	statements	even	when	you’re	not	required	to.

This	MERGE	statement	defines	the	Customers	table	as	the	target	(in	the	MERGE	clause)	and
the	CustomersStage	table	as	the	source	(in	the	USING	clause).	Notice	that	you	can	assign
aliases	to	the	target	and	source	tables	for	brevity	(TGT	and	SRC	in	this	case).	The	predicate
TGT.custid	=	SRC.custid	is	used	to	define	what	is	considered	a	match	and	what	is	considered	a
nonmatch.	In	this	case,	if	a	customer	ID	that	exists	in	the	source	also	exists	in	the	target,	that’s
a	match.	If	a	customer	ID	in	the	source	does	not	exist	in	the	target,	that’s	a	nonmatch.
This	MERGE	statement	defines	an	UPDATE	action	when	a	match	is	found,	setting	the	target

companyname,	phone,	and	address	values	to	those	of	the	corresponding	row	from	the	source.
Notice	that	the	syntax	of	the	UPDATE	action	is	similar	to	a	normal	UPDATE	statement,	except
that	you	don’t	need	to	provide	the	name	of	the	table	that	is	the	target	of	the	update	because	it
was	already	defined	in	the	MERGE	INTO	clause.
This	MERGE	statement	defines	an	INSERT	action	when	a	match	is	not	found,	inserting	the

row	from	the	source	to	the	target.	Again,	the	syntax	of	the	INSERT	action	is	similar	to	a
normal	INSERT	statement,	except	that	you	don’t	need	to	provide	the	name	of	the	target	table
because	it	was	already	defined	in	the	MERGE	INTO	clause.
The	MERGE	statement	reports	that	five	rows	were	modified:
(5	row(s)	affected)

This	includes	three	rows	that	were	updated	(customers	2,	3,	and	5)	and	two	that	were
inserted	(customers	6	and	7).	Query	the	Customers	table	to	get	the	new	contents:

SELECT	*	FROM	dbo.Customers;

This	query	returns	the	following	output:
Click	here	to	view	code	image

custid						companyname									phone																address
-----------	-------------------	--------------------	----------
1											cust	1														(111)	111-1111							address	1
2											AAAAA															(222)	222-2222							address	2
3											cust	3														(333)	333-3333							address	3
4											cust	4														(444)	444-4444							address	4
5											BBBBB															CCCCC																DDDDD
6											cust	6	(new)								(666)	666-6666							address	6
7											cust	7	(new)								(777)	777-7777							address	7

The	WHEN	MATCHED	clause	defines	what	action	to	take	against	the	target	when	a	source
row	is	matched	by	a	target	row.	The	WHEN	NOT	MATCHED	clause	defines	what	action	to	take

against	the	target	when	a	source	row	is	not	matched	by	a	target	row.	T-SQL	also	supports	a
third	clause	that	defines	what	action	to	take	when	a	target	row	is	not	matched	by	a	source	row;
this	clause	is	called	WHEN	NOT	MATCHED	BY	SOURCE.	For	example,	suppose	you	want	to
add	logic	to	the	MERGE	example	to	delete	rows	from	the	target	when	there’s	no	matching
source	row.	To	achieve	this,	add	the	WHEN	NOT	MATCHED	BY	SOURCE	clause	with	a
DELETE	action,	like	this:
Click	here	to	view	code	image

MERGE	dbo.Customers	AS	TGT
USING	dbo.CustomersStage	AS	SRC
		ON	TGT.custid	=	SRC.custid
WHEN	MATCHED	THEN
		UPDATE	SET
				TGT.companyname	=	SRC.companyname,
				TGT.phone	=	SRC.phone,
				TGT.address	=	SRC.address
WHEN	NOT	MATCHED	THEN
		INSERT	(custid,	companyname,	phone,	address)
		VALUES	(SRC.custid,	SRC.companyname,	SRC.phone,	SRC.address)
WHEN	NOT	MATCHED	BY	SOURCE	THEN
		DELETE;

Query	the	Customers	table	to	see	the	result	of	this	MERGE	statement:
SELECT	*	FROM	dbo.Customers;

This	query	returns	the	following	output,	showing	that	customers	1	and	4	were	deleted:
Click	here	to	view	code	image

custid						companyname									phone																address
-----------	-------------------	--------------------	----------
2											AAAAA															(222)	222-2222							address	2
3											cust	3														(333)	333-3333							address	3
5											BBBBB															CCCCC																DDDDD
6											cust	6	(new)								(666)	666-6666							address	6
7											cust	7	(new)								(777)	777-7777							address	7

Going	back	to	the	first	MERGE	example,	which	updates	existing	customers	and	adds
nonexistent	ones,	you	can	see	that	it	doesn’t	check	whether	column	values	are	actually
different	before	applying	an	update.	This	means	that	a	customer	row	is	modified	even	when
the	source	and	target	rows	are	identical.	If	you	want	to	apply	the	update	only	if	at	least	one
column	value	is	different,	there	is	a	way	to	achieve	this.
The	MERGE	statement	supports	adding	a	predicate	to	the	different	action	clauses	by	using

the	AND	option;	the	action	will	take	place	only	if	the	additional	predicate	evaluates	to	TRUE.
In	this	case,	you	need	to	add	a	predicate	under	the	WHEN	MATCHED	AND	clause	that	checks
that	at	least	one	of	the	column	values	is	different	to	justify	the	UPDATE	action.	The	complete
MERGE	statement	looks	like	this:
Click	here	to	view	code	image

MERGE	dbo.Customers	AS	TGT
USING	dbo.CustomersStage	AS	SRC
		ON	TGT.custid	=	SRC.custid
WHEN	MATCHED	AND

							(TGT.companyname	<>	SRC.companyname
								OR	TGT.phone							<>	SRC.phone
								OR	TGT.address					<>	SRC.address)	THEN
		UPDATE	SET
				TGT.companyname	=	SRC.companyname,
				TGT.phone	=	SRC.phone,
				TGT.address	=	SRC.address
WHEN	NOT	MATCHED	THEN
		INSERT	(custid,	companyname,	phone,	address)
		VALUES	(SRC.custid,	SRC.companyname,	SRC.phone,	SRC.address);

As	you	can	see,	the	MERGE	statement	is	powerful,	allowing	you	to	express	complex
modification	logic	in	a	single	statement.

Modifying	data	through	table	expressions
T-SQL	doesn’t	limit	the	actions	against	table	expressions	to	SELECT	only;	it	also	allows	other
DML	statements	(INSERT,	UPDATE,	DELETE,	and	MERGE)	against	those.	Think	about	it:	as
explained	in	Chapter	5,	a	table	expression	doesn’t	really	contain	data—it’s	a	reflection	of	data
in	underlying	tables.	With	this	in	mind,	think	of	a	modification	against	a	table	expression	as
modifying	the	data	in	the	underlying	tables	through	the	table	expression.	Just	as	with	a
SELECT	statement	against	a	table	expression,	a	modification	statement	against	a	table
expression	also	gets	expanded,	so	in	practice	the	activity	is	done	against	the	underlying	tables.
Modifying	data	through	table	expressions	has	a	few	restrictions:

	If	the	query	defining	the	table	expression	joins	tables,	you’re	allowed	to	affect	only	one
of	the	sides	of	the	join,	not	both,	in	the	same	modification	statement.
	You	cannot	update	a	column	that	is	a	result	of	a	calculation;	SQL	Server	doesn’t	try	to
reverse-engineer	the	values.
	INSERT	statements	must	specify	values	for	any	columns	in	the	underlying	table	that	do
not	get	their	values	implicitly.	Examples	for	cases	where	a	column	can	get	a	value
implicitly	include	a	column	that	allows	NULLs,	has	a	default	value,	has	an	identity
property,	or	is	typed	as	ROWVERSION.

You	can	find	other	requirements	in	SQL	Server	Books	Online.
One	use	case	for	modifying	data	through	table	expressions	is	for	better	debugging	and

troubleshooting	capabilities.	For	example,	Listing	8-1	contained	the	following	UPDATE
statement:

UPDATE	OD
		SET	discount	+=	0.05
FROM	dbo.OrderDetails	AS	OD
		INNER	JOIN	dbo.Orders	AS	O
				ON	OD.orderid	=	O.orderid
WHERE	O.custid	=	1;

Suppose,	for	troubleshooting	purposes,	you	first	want	to	see	which	rows	would	be
modified	by	this	statement	without	actually	modifying	them.	One	option	is	to	revise	the	code
to	a	SELECT	statement,	and	after	troubleshooting	the	code,	change	it	back	to	an	UPDATE
statement.	But	instead	of	needing	to	make	such	revisions,	you	define	a	table	expression	based
on	a	SELECT	statement	with	the	join	query	and	issue	an	UPDATE	statement	against	the	table

expression.	The	following	example	uses	a	CTE:
Click	here	to	view	code	image

WITH	C	AS
(
		SELECT	custid,	OD.orderid,
				productid,	discount,	discount	+	0.05	AS	newdiscount
		FROM	dbo.OrderDetails	AS	OD
				INNER	JOIN	dbo.Orders	AS	O
						ON	OD.orderid	=	O.orderid
		WHERE	O.custid	=	1
)
UPDATE	C
		SET	discount	=	newdiscount;

And	here’s	an	example	using	a	derived	table:
Click	here	to	view	code	image

UPDATE	D
		SET	discount	=	newdiscount
FROM	(SELECT	custid,	OD.orderid,
									productid,	discount,	discount	+	0.05	AS	newdiscount
							FROM	dbo.OrderDetails	AS	OD
									INNER	JOIN	dbo.Orders	AS	O
											ON	OD.orderid	=	O.orderid
							WHERE	O.custid	=	1)	AS	D;

With	the	table	expression,	troubleshooting	is	simpler	because	you	can	always	highlight	just
the	inner	SELECT	statement	and	run	it	without	making	any	data	changes.	With	this	example,
the	use	of	table	expressions	is	for	convenience.	However,	in	some	cases	using	a	table
expression	is	the	only	option.	To	demonstrate	such	a	case,	I’ll	use	a	table	called	T1	that	you
create	and	populate	by	running	the	following	code:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.T1;
CREATE	TABLE	dbo.T1(col1	INT,	col2	INT);
GO

INSERT	INTO	dbo.T1(col1)	VALUES(20),(10),(30);

SELECT	*	FROM	dbo.T1;

This	code	generates	the	following	output:
col1								col2
-----------	-----------
20										NULL
10										NULL
30										NULL

Suppose	you	want	to	update	the	table,	setting	col2	to	the	result	of	an	expression	with	the
ROW_NUMBER	function.	The	problem	is	that	the	ROW_NUMBER	function	is	not	allowed	in
the	SET	clause	of	an	UPDATE	statement.	Try	running	the	following	code:
Click	here	to	view	code	image

UPDATE	dbo.T1

		SET	col2	=	ROW_NUMBER()	OVER(ORDER	BY	col1);

You	get	the	following	error:
Click	here	to	view	code	image

Msg	4108,	Level	15,	State	1,	Line	672
Windowed	functions	can	only	appear	in	the	SELECT	or	ORDER	BY	clauses.

To	get	around	this	problem,	define	a	table	expression	that	returns	both	the	column	you	need
to	update	(col2)	and	a	result	column	based	on	an	expression	with	the	ROW_NUMBER	function
(call	it	rownum).	Use	an	UPDATE	statement	against	the	table	expression	to	set	col2	to	rownum.
Here’s	how	the	code	looks	when	using	a	CTE:
Click	here	to	view	code	image

WITH	C	AS
(
		SELECT	col1,	col2,	ROW_NUMBER()	OVER(ORDER	BY	col1)	AS	rownum
		FROM	dbo.T1
)
UPDATE	C
		SET	col2	=	rownum;

Query	the	table	to	see	the	result	of	the	update:
SELECT	*	FROM	dbo.T1;

You	get	the	following	output:
col1								col2
-----------	-----------
20										2
10										1
30										3

Modifications	with	TOP	and	OFFSET-FETCH
T-SQL	supports	using	the	TOP	option	directly	in	INSERT,	UPDATE,	DELETE,	and	MERGE
statements.	When	you	use	the	TOP	option	with	such	statements,	SQL	Server	stops	processing
the	modification	as	soon	as	the	specified	number	or	percentage	of	rows	is	processed.
Unfortunately,	unlike	with	the	SELECT	statement,	you	cannot	specify	an	ORDER	BY	clause	for
the	TOP	filter	in	modification	statements.	Essentially,	whichever	rows	SQL	Server	happens	to
access	first	will	be	modified.
The	OFFSET-FETCH	filter	is	not	allowed	directly	in	modifications	because	this	filter

requires	an	ORDER	BY	clause	and	modification	statements	don’t	support	one.
An	example	for	a	typical	usage	scenario	for	modifications	with	TOP	is	when	you	have	a

large	modification,	such	as	a	large	deletion	operation,	and	you	want	to	split	it	into	multiple
smaller	chunks.
I’ll	demonstrate	modifications	with	TOP	by	using	a	table	called	dbo.Orders	that	you	create

and	populate	by	running	the	following	code:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.OrderDetails,	dbo.Orders;

CREATE	TABLE	dbo.Orders
(
		orderid								INT										NOT	NULL,
		custid									INT										NULL,
		empid										INT										NOT	NULL,
		orderdate						DATE									NOT	NULL,
		requireddate			DATE									NOT	NULL,
		shippeddate				DATE									NULL,
		shipperid						INT										NOT	NULL,
		freight								MONEY								NOT	NULL
				CONSTRAINT	DFT_Orders_freight	DEFAULT(0),
		shipname							NVARCHAR(40)	NOT	NULL,
		shipaddress				NVARCHAR(60)	NOT	NULL,
		shipcity							NVARCHAR(15)	NOT	NULL,
		shipregion					NVARCHAR(15)	NULL,
		shippostalcode	NVARCHAR(10)	NULL,
		shipcountry				NVARCHAR(15)	NOT	NULL,
		CONSTRAINT	PK_Orders	PRIMARY	KEY(orderid)
);
GO

INSERT	INTO	dbo.Orders	SELECT	*	FROM	Sales.Orders;

The	following	example	demonstrates	the	use	of	a	DELETE	statement	with	the	TOP	option	to
delete	50	rows	from	the	Orders	table:
Click	here	to	view	code	image

DELETE	TOP(50)	FROM	dbo.Orders;

Because	the	statement	doesn’t	have	an	ORDER	BY	clause,	it	deletes	whichever	50	rows	it
stumbles	into	first.	Which	rows	get	chosen	is	a	result	of	physical	data	layout	and	optimization
choices.
Similarly,	you	can	use	the	TOP	option	with	UPDATE	and	INSERT	statements,	but	again,	an

ORDER	BY	is	not	allowed.	As	an	example	of	an	UPDATE	statement	with	TOP,	the	following
code	updates	50	rows	from	the	Orders	table,	increasing	their	freight	values	by	10:

UPDATE	TOP(50)	dbo.Orders
		SET	freight	+=	10.00;

Again,	you	cannot	control	which	50	rows	will	be	updated;	they	are	the	50	rows	that	SQL
Server	happens	to	access	first.
In	practice,	you	typically	do	care	which	rows	are	affected.	To	control	this,	you	can	rely	on

the	ability	to	modify	data	through	table	expressions.	You	define	a	table	expression	based	on	a
SELECT	query	with	the	TOP	filter	and	an	ORDER	BY	clause.	You	then	issue	the	modification
statement	against	the	table	expression.
For	example,	the	following	code	deletes	the	50	orders	with	the	lowest	order	ID	values:
WITH	C	AS
(
		SELECT	TOP	(50)	*
		FROM	dbo.Orders
		ORDER	BY	orderid
)

DELETE	FROM	C;

Similarly,	the	following	code	updates	the	50	orders	with	the	highest	order	ID	values,
increasing	their	freight	values	by	10:

WITH	C	AS
(
		SELECT	TOP	(50)	*
		FROM	dbo.Orders
		ORDER	BY	orderid	DESC
)
UPDATE	C
		SET	freight	+=	10.00;

Alternatively,	you	can	use	the	OFFSET-FETCH	option	instead	of	TOP,	like	this:
Click	here	to	view	code	image

WITH	C	AS
(
		SELECT	*
		FROM	dbo.Orders
		ORDER	BY	orderid
		OFFSET	0	ROWS	FETCH	NEXT	50	ROWS	ONLY
)
DELETE	FROM	C;

And	here’s	the	revised	UPDATE	example:
Click	here	to	view	code	image

WITH	C	AS
(
		SELECT	*
		FROM	dbo.Orders
		ORDER	BY	orderid	DESC
		OFFSET	0	ROWS	FETCH	NEXT	50	ROWS	ONLY
)
UPDATE	C
		SET	freight	+=	10.00;

The	OUTPUT	clause
Normally,	a	modification	statement	just	modifies	data.	However,	sometimes	you	might	find	it
useful	to	return	information	from	the	modified	rows	for	troubleshooting,	auditing,	and
archiving.	T-SQL	supports	this	capability	via	a	clause	called	OUTPUT	that	you	add	to	the
modification	statement.	In	this	clause,	you	specify	attributes	you	want	to	return	from	the
modified	rows.
The	OUTPUT	clause	is	designed	similarly	to	the	SELECT	clause,	only	you	need	to	prefix

the	attributes	with	either	the	inserted	or	deleted	keyword.	In	an	INSERT	statement,	you	refer	to
inserted;	in	a	DELETE	statement,	you	refer	to	deleted;	and	in	an	UPDATE	statement,	you	refer
to	deleted	for	the	old	state	of	the	row	and	inserted	for	the	new	state.
The	OUTPUT	clause	returns	a	result	set,	much	like	a	SELECT	statement	does.	If	you	want	to

direct	the	result	set	to	a	table,	add	an	INTO	clause	with	the	target	table	name.	If	you	want	to
return	modified	rows	back	to	the	caller	and	also	direct	a	copy	to	a	table,	specify	two	OUTPUT

clauses:	one	with	the	INTO	clause	and	one	without	it.
The	following	sections	provide	examples	of	using	the	OUTPUT	clause	with	the	different

modification	statements.

INSERT	with	OUTPUT
An	example	for	a	use	case	of	the	OUTPUT	clause	with	an	INSERT	statement	is	when	you	need
to	insert	a	row	set	into	a	table	with	an	identity	column,	and	you	need	to	get	back	all	identity
values	that	were	generated.	The	SCOPE_IDENTITY	function	returns	only	the	very	last	identity
value	that	was	generated—not	all	those	generated	by	the	statement.	The	OUTPUT	clause
makes	the	task	simple.	I’ll	use	a	table	called	T1	to	demonstrate	the	technique.	Run	the
following	code	to	create	the	table	T1	with	an	identity	column	called	keycol	and	another
column	called	datacol:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.T1;

CREATE	TABLE	dbo.T1
(
		keycol		INT										NOT	NULL	IDENTITY(1,	1)	CONSTRAINT	PK_T1	PRIMARY	KEY,
		datacol	NVARCHAR(40)	NOT	NULL
);

Suppose	you	want	to	insert	into	T1	the	result	of	a	query	against	the	HR.Employees	table	and
return	all	newly	generated	identity	values.	To	achieve	this,	add	the	OUTPUT	clause	to	the
INSERT	statement	and	specify	the	attributes	you	want	to	return:
Click	here	to	view	code	image

INSERT	INTO	dbo.T1(datacol)
		OUTPUT	inserted.keycol,	inserted.datacol
				SELECT	lastname
				FROM	HR.Employees
				WHERE	country	=	N'USA';

This	statement	returns	the	following	result	set:
keycol						datacol
-----------	---------
1											Davis
2											Funk
3											Lew
4											Peled
5											Cameron

(5	row(s)	affected)

As	you	can	guess,	you	can	use	a	similar	technique	to	return	sequence	values	generated	for
an	INSERT	statement	by	the	NEXT	VALUE	FOR	function	(either	directly	or	in	a	default
constraint).
As	mentioned,	you	can	also	direct	the	result	set	into	a	table.	The	table	can	be	a	real	table,

temporary	table,	or	table	variable.	When	the	result	set	is	stored	in	the	target	table,	you	can
manipulate	the	data	by	querying	that	table.	For	example,	the	following	code	declares	a	table

variable	called	@NewRows,	inserts	another	result	set	into	T1,	and	directs	the	result	set
returned	by	the	OUTPUT	clause	into	the	table	variable.	The	code	then	queries	the	table
variable	just	to	show	the	data	that	was	stored	in	it:
Click	here	to	view	code	image

DECLARE	@NewRows	TABLE(keycol	INT,	datacol	NVARCHAR(40));

INSERT	INTO	dbo.T1(datacol)
		OUTPUT	inserted.keycol,	inserted.datacol
		INTO	@NewRows(keycol,	datacol)
				SELECT	lastname
				FROM	HR.Employees
				WHERE	country	=	N'UK';

SELECT	*	FROM	@NewRows;

This	code	returns	the	following	output	showing	the	contents	of	the	table	variable:
keycol						datacol
-----------	-------------
6											Mortensen
7											Suurs
8											King
9											Doyle

(4	row(s)	affected)

DELETE	with	OUTPUT
The	next	example	demonstrates	the	use	of	the	OUTPUT	clause	with	a	DELETE	statement.	First,
run	the	following	code	to	create	a	copy	of	the	Orders	table	from	the	Sales	schema	in	the	dbo
schema:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.Orders;

CREATE	TABLE	dbo.Orders
(
		orderid								INT										NOT	NULL,
		custid									INT										NULL,
		empid										INT										NOT	NULL,
		orderdate						DATE									NOT	NULL,
		requireddate			DATE									NOT	NULL,
		shippeddate				DATE									NULL,
		shipperid						INT										NOT	NULL,
		freight								MONEY								NOT	NULL
				CONSTRAINT	DFT_Orders_freight	DEFAULT(0),
		shipname							NVARCHAR(40)	NOT	NULL,
		shipaddress				NVARCHAR(60)	NOT	NULL,
		shipcity							NVARCHAR(15)	NOT	NULL,
		shipregion					NVARCHAR(15)	NULL,
		shippostalcode	NVARCHAR(10)	NULL,
		shipcountry				NVARCHAR(15)	NOT	NULL,
		CONSTRAINT	PK_Orders	PRIMARY	KEY(orderid)
);
GO

INSERT	INTO	dbo.Orders	SELECT	*	FROM	Sales.Orders;

The	following	code	deletes	all	orders	that	were	placed	prior	to	2016	and,	using	the
OUTPUT	clause,	returns	attributes	from	the	deleted	rows:

DELETE	FROM	dbo.Orders
		OUTPUT
				deleted.orderid,
				deleted.orderdate,
				deleted.empid,
				deleted.custid
WHERE	orderdate	<	'20160101';

This	DELETE	statement	returns	the	following	result	set:
Click	here	to	view	code	image

orderid					orderdate		empid							custid
-----------	----------	-----------	-----------
10248							2014-07-04	5											85
10249							2014-07-05	6											79
10250							2014-07-08	4											34
10251							2014-07-08	3											84
...
10803							2015-12-30	4											88
10804							2015-12-30	6											72
10805							2015-12-30	2											77
10806							2015-12-31	3											84
10807							2015-12-31	4											27

(560	row(s)	affected)

If	you	want	to	archive	the	rows	that	are	deleted,	add	an	INTO	clause	and	specify	the	archive
table	name	as	the	target.

UPDATE	with	OUTPUT
By	using	the	OUTPUT	clause	with	an	UPDATE	statement,	you	can	refer	to	both	the	state	of	the
modified	row	before	the	change	(by	prefixing	the	attribute	names	with	the	deleted	keyword)
and	to	the	state	after	the	change	(by	prefixing	the	attribute	names	with	the	inserted	keyword).
This	way,	you	can	return	both	old	and	new	states	of	the	updated	attributes.
Before	I	demonstrate	how	to	use	the	OUTPUT	clause	in	an	UPDATE	statement,	you	should

first	run	the	following	code	to	create	a	copy	of	the	Sales.OrderDetails	table	from	the	Sales
schema	in	the	dbo	schema:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.OrderDetails;

CREATE	TABLE	dbo.OrderDetails
(
		orderid			INT											NOT	NULL,
		productid	INT											NOT	NULL,
		unitprice	MONEY									NOT	NULL
				CONSTRAINT	DFT_OrderDetails_unitprice	DEFAULT(0),
		qty							SMALLINT						NOT	NULL
				CONSTRAINT	DFT_OrderDetails_qty	DEFAULT(1),

		discount		NUMERIC(4,	3)	NOT	NULL
				CONSTRAINT	DFT_OrderDetails_discount	DEFAULT(0),
		CONSTRAINT	PK_OrderDetails	PRIMARY	KEY(orderid,	productid),
		CONSTRAINT	CHK_discount		CHECK	(discount	BETWEEN	0	AND	1),
		CONSTRAINT	CHK_qty		CHECK	(qty	>	0),
		CONSTRAINT	CHK_unitprice	CHECK	(unitprice	>=	0)
);
GO

INSERT	INTO	dbo.OrderDetails	SELECT	*	FROM	Sales.OrderDetails;

The	following	UPDATE	statement	increases	the	discount	of	all	order	details	for	product	51
by	5	percent	and	uses	the	OUTPUT	clause	to	return	the	product	ID,	old	discount,	and	new
discount	from	the	modified	rows:
Click	here	to	view	code	image

UPDATE	dbo.OrderDetails
		SET	discount	+=	0.05
OUTPUT
		inserted.orderid,
		inserted.productid,
		deleted.discount	AS	olddiscount,
		inserted.discount	AS	newdiscount
WHERE	productid	=	51;

This	statement	returns	the	following	output:
Click	here	to	view	code	image

orderid					productid			olddiscount		newdiscount
-----------	-----------	------------	------------
10249							51										0.000								0.050
10250							51										0.150								0.200
10291							51										0.100								0.150
10335							51										0.200								0.250
10362							51										0.000								0.050
10397							51										0.150								0.200
10472							51										0.000								0.050
10484							51										0.000								0.050
10486							51										0.000								0.050
10537							51										0.000								0.050
...

(39	row(s)	affected)

MERGE	with	OUTPUT
You	can	also	use	the	OUTPUT	clause	with	the	MERGE	statement,	but	remember	that	a	single
MERGE	statement	can	invoke	multiple	different	DML	actions.	To	identify	which	DML	action
produced	each	output	row,	you	can	invoke	a	function	called	$action	in	the	OUTPUT	clause,
which	will	return	a	string	representing	the	action	(INSERT,	UPDATE,	or	DELETE).
To	demonstrate	MERGE	with	OUTPUT,	I’ll	use	the	tables	you	created	earlier	in	the	section

“Merging	data”	by	running	Listing	8-2.	(Rerun	that	code	listing	to	follow	the	example.)	The
following	code	merges	the	contents	of	CustomersStage	into	Customers,	updating	the	attributes
of	customers	who	already	exist	in	the	target	and	adding	customers	who	don’t:
Click	here	to	view	code	image

MERGE	INTO	dbo.Customers	AS	TGT
USING	dbo.CustomersStage	AS	SRC
		ON	TGT.custid	=	SRC.custid
WHEN	MATCHED	THEN
		UPDATE	SET
				TGT.companyname	=	SRC.companyname,
				TGT.phone	=	SRC.phone,
				TGT.address	=	SRC.address
WHEN	NOT	MATCHED	THEN
		INSERT	(custid,	companyname,	phone,	address)
		VALUES	(SRC.custid,	SRC.companyname,	SRC.phone,	SRC.address)
OUTPUT	$action	AS	theaction,	inserted.custid,
		deleted.companyname	AS	oldcompanyname,
		inserted.companyname	AS	newcompanyname,
		deleted.phone	AS	oldphone,
		inserted.phone	AS	newphone,
		deleted.address	AS	oldaddress,
		inserted.address	AS	newaddress;

This	MERGE	statement	uses	the	OUTPUT	clause	to	return	the	old	and	new	values	of	the
modified	rows.	Of	course,	with	INSERT	actions,	there	are	no	old	values,	so	all	references	to
deleted	attributes	return	NULLs.	The	$action	function	tells	you	whether	an	UPDATE	action	or
an	INSERT	action	produced	the	output	row.	Here’s	the	output	of	this	MERGE	statement:
Click	here	to	view	code	image

theaction	custid	oldcompanyname	newcompanyname
---------	------	--------------	--------------
UPDATE				2						cust	2									AAAAA
UPDATE				3						cust	3									cust	3
UPDATE				5						cust	5									BBBBB
INSERT				6						NULL											cust	6	(new)
INSERT				7						NULL											cust	7	(new)

theaction	custid	oldphone							newphone							oldaddress	newaddress
---------	------	--------------	--------------	----------	----------
UPDATE				2						(222)	222-2222	(222)	222-2222	address	2		address	2
UPDATE				3						(333)	333-3333	(333)	333-3333	address	3		address	3
UPDATE				5						(555)	555-5555	CCCCC										address	5		DDDDD
INSERT				6						NULL											(666)	666-6666	NULL							address	6
INSERT				7						NULL											(777)	777-7777	NULL							address	7

(5	row(s)	affected)

Nested	DML
The	OUTPUT	clause	returns	an	output	row	for	every	modified	row.	But	what	if	you	need	to
direct	only	a	subset	of	the	modified	rows	to	a	table,	perhaps	for	auditing	purposes?	T-SQL
supports	a	feature	called	nested	DML	you	can	use	to	directly	insert	into	the	final	target	table
only	the	subset	of	rows	you	need	from	the	full	set	of	modified	rows.
To	demonstrate	this	capability,	first	create	a	copy	of	the	Products	table	from	the	Production

schema	in	the	dbo	schema,	as	well	as	the	dbo.ProductsAudit	table,	by	running	the	following
code:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.ProductsAudit,	dbo.Products;

CREATE	TABLE	dbo.Products
(
		productid				INT										NOT	NULL,
		productname		NVARCHAR(40)	NOT	NULL,
		supplierid			INT										NOT	NULL,
		categoryid			INT										NOT	NULL,
		unitprice				MONEY								NOT	NULL
				CONSTRAINT	DFT_Products_unitprice	DEFAULT(0),
		discontinued	BIT										NOT	NULL
				CONSTRAINT	DFT_Products_discontinued	DEFAULT(0),
		CONSTRAINT	PK_Products	PRIMARY	KEY(productid),
		CONSTRAINT	CHK_Products_unitprice	CHECK(unitprice	>=	0)
);

INSERT	INTO	dbo.Products	SELECT	*	FROM	Production.Products;

CREATE	TABLE	dbo.ProductsAudit
(
		LSN	INT	NOT	NULL	IDENTITY	PRIMARY	KEY,
		TS	DATETIME2	NOT	NULL	DEFAULT(SYSDATETIME()),
		productid	INT	NOT	NULL,
		colname	SYSNAME	NOT	NULL,
		oldval	SQL_VARIANT	NOT	NULL,
		newval	SQL_VARIANT	NOT	NULL
);

Suppose	you	now	need	to	update	all	products	supplied	by	supplier	1,	increasing	their	price
by	15	percent.	You	also	need	to	audit	the	old	and	new	values	of	updated	products,	but	only
those	with	an	old	price	that	was	less	than	20	and	a	new	price	that	is	greater	than	or	equal	to	20.
You	can	achieve	this	by	using	nested	DML.	You	write	an	UPDATE	statement	with	an

OUTPUT	clause	and	define	a	derived	table	based	on	the	UPDATE	statement.	You	write	an
INSERT	SELECT	statement	that	queries	the	derived	table,	filtering	only	the	subset	of	rows	that
is	needed.	Here’s	the	complete	solution	code:
Click	here	to	view	code	image

INSERT	INTO	dbo.ProductsAudit(productid,	colname,	oldval,	newval)
		SELECT	productid,	N'unitprice',	oldval,	newval
		FROM	(UPDATE	dbo.Products
										SET	unitprice	*=	1.15
								OUTPUT
										inserted.productid,
										deleted.unitprice	AS	oldval,
										inserted.unitprice	AS	newval
								WHERE	supplierid	=	1)	AS	D
		WHERE	oldval	<	20.0	AND	newval	>=	20.0;

Recall	earlier	discussions	in	the	book	about	table	expressions—the	result	of	one	query	can
be	used	as	input	to	another.	Here,	the	result	of	the	statement	with	the	OUTPUT	clause	is	used	as
the	input	for	the	outer	INSERT	SELECT	statement.
Run	the	following	code	to	query	the	ProductsAudit	table:

Click	here	to	view	code	image

SELECT	*	FROM	dbo.ProductsAudit;

You	get	the	following	output:
Click	here	to	view	code	image

LSN	TS																								ProductID			ColName					OldVal			NewVal
---	-------------------------	-----------	-----------	--------	------
1			2016-02-12	18:56:04.793			1											unitprice			18.00				20.70
2			2016-02-12	18:56:04.793			2											unitprice			19.00				21.85

Three	products	were	updated,	but	only	two	were	filtered	by	the	outer	query;	therefore,	only
those	two	were	written	to	the	audit	table.
When	you’re	done,	run	the	following	code	for	cleanup:

Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.OrderDetails,	dbo.ProductsAudit,	dbo.Products,
		dbo.Orders,	dbo.Customers,	dbo.T1,	dbo.MySequences,	dbo.CustomersStage;

Conclusion
In	this	chapter,	I	covered	various	aspects	of	data	modification.	I	described	inserting,	updating,
deleting,	and	merging	data.	I	also	discussed	identity	and	sequence,	modifying	data	through
table	expressions,	using	TOP	(and	indirectly	OFFSET-FETCH)	with	modification	statements,
and	returning	information	from	modified	rows	using	the	OUTPUT	clause.

Exercises
This	section	provides	exercises	so	that	you	can	practice	the	subjects	discussed	in	this	chapter.
The	database	assumed	in	the	exercise	is	TSQLV4.

Exercise	1
Run	the	following	code	to	create	the	dbo.Customers	table	in	the	TSQLV4	database:
Click	here	to	view	code	image

USE	TSQLV4;

DROP	TABLE	IF	EXISTS	dbo.Customers;

CREATE	TABLE	dbo.Customers
(
		custid						INT										NOT	NULL	PRIMARY	KEY,
		companyname	NVARCHAR(40)	NOT	NULL,
		country					NVARCHAR(15)	NOT	NULL,
		region						NVARCHAR(15)	NULL,
		city								NVARCHAR(15)	NOT	NULL
);

Exercise	1-1
Insert	into	the	dbo.Customers	table	a	row	with	the	following	information:

	custid:	100
	companyname:	Coho	Winery
	country:	USA

	region:	WA
	city:	Redmond

Exercise	1-2
Insert	into	the	dbo.Customers	table	all	customers	from	Sales.Customers	who	placed	orders.

Exercise	1-3
Use	a	SELECT	INTO	statement	to	create	and	populate	the	dbo.Orders	table	with	orders	from
the	Sales.Orders	table	that	were	placed	in	the	years	2014	through	2016.

Exercise	2
Delete	from	the	dbo.Orders	table	orders	that	were	placed	before	August	2014.	Use	the
OUTPUT	clause	to	return	the	orderid	and	orderdate	values	of	the	deleted	orders:

	Desired	output:
orderid					orderdate
-----------	-----------
10248							2014-07-04
10249							2014-07-05
10250							2014-07-08
10251							2014-07-08
10252							2014-07-09
10253							2014-07-10
10254							2014-07-11
10255							2014-07-12
10256							2014-07-15
10257							2014-07-16
10258							2014-07-17
10259							2014-07-18
10260							2014-07-19
10261							2014-07-19
10262							2014-07-22
10263							2014-07-23
10264							2014-07-24
10265							2014-07-25
10266							2014-07-26
10267							2014-07-29
10268							2014-07-30
10269							2014-07-31

(22	row(s)	affected)

Exercise	3
Delete	from	the	dbo.Orders	table	orders	placed	by	customers	from	Brazil.

Exercise	4
Run	the	following	query	against	dbo.Customers,	and	notice	that	some	rows	have	a	NULL	in
the	region	column:

SELECT	*	FROM	dbo.Customers;

The	output	from	this	query	is	as	follows:
Click	here	to	view	code	image

custid						companyname						country									region					city
-----------	----------------	---------------	----------	---------------
1											Customer	NRZBB			Germany									NULL							Berlin
2											Customer	MLTDN			Mexico										NULL							México	D.F.
3											Customer	KBUDE			Mexico										NULL							México	D.F.
4											Customer	HFBZG			UK														NULL							London
5											Customer	HGVLZ			Sweden										NULL							Luleå
6											Customer	XHXJV			Germany									NULL							Mannheim
7											Customer	QXVLA			France										NULL							Strasbourg
8											Customer	QUHWH			Spain											NULL							Madrid
9											Customer	RTXGC			France										NULL							Marseille
10										Customer	EEALV			Canada										BC									Tsawassen
...

(90	row(s)	affected)

Update	the	dbo.Customers	table,	and	change	all	NULL	region	values	to	<None>.	Use	the
OUTPUT	clause	to	show	the	custid,	oldregion,	and	newregion:

	Desired	output:
Click	here	to	view	code	image

custid						oldregion							newregion
-----------	---------------	---------------
1											NULL												<None>
2											NULL												<None>
3											NULL												<None>
4											NULL												<None>
5											NULL												<None>
6											NULL												<None>
7											NULL												<None>
8											NULL												<None>
9											NULL												<None>
11										NULL												<None>
12										NULL												<None>
13										NULL												<None>
14										NULL												<None>
16										NULL												<None>
17										NULL												<None>
18										NULL												<None>
19										NULL												<None>
20										NULL												<None>
23										NULL												<None>
24										NULL												<None>
25										NULL												<None>
26										NULL												<None>
27										NULL												<None>
28										NULL												<None>
29										NULL												<None>
30										NULL												<None>
39										NULL												<None>
40										NULL												<None>
41										NULL												<None>
44										NULL												<None>
49										NULL												<None>
50										NULL												<None>

52										NULL												<None>
53										NULL												<None>
54										NULL												<None>
56										NULL												<None>
58										NULL												<None>
59										NULL												<None>
60										NULL												<None>
63										NULL												<None>
64										NULL												<None>
66										NULL												<None>
68										NULL												<None>
69										NULL												<None>
70										NULL												<None>
72										NULL												<None>
73										NULL												<None>
74										NULL												<None>
76										NULL												<None>
79										NULL												<None>
80										NULL												<None>
83										NULL												<None>
84										NULL												<None>
85										NULL												<None>
86										NULL												<None>
87										NULL												<None>
90										NULL												<None>
91										NULL												<None>

(58	row(s)	affected)

Exercise	5
Update	all	orders	in	the	dbo.Orders	table	that	were	placed	by	United	Kingdom	customers,	and
set	their	shipcountry,	shipregion,	and	shipcity	values	to	the	country,	region,	and	city	values	of
the	corresponding	customers.

Exercise	6
Run	the	following	code	to	create	the	tables	Orders	and	OrderDetails	and	populate	them	with
data:
Click	here	to	view	code	image

USE	TSQLV4;

DROP	TABLE	IF	EXISTS	dbo.OrderDetails,	dbo.Orders;

CREATE	TABLE	dbo.Orders
(
		orderid								INT										NOT	NULL,
		custid									INT										NULL,
		empid										INT										NOT	NULL,
		orderdate						DATE									NOT	NULL,
		requireddate			DATE									NOT	NULL,
		shippeddate				DATE									NULL,
		shipperid						INT										NOT	NULL,
		freight								MONEY								NOT	NULL
				CONSTRAINT	DFT_Orders_freight	DEFAULT(0),
		shipname							NVARCHAR(40)	NOT	NULL,
		shipaddress				NVARCHAR(60)	NOT	NULL,

		shipcity							NVARCHAR(15)	NOT	NULL,
		shipregion					NVARCHAR(15)	NULL,
		shippostalcode	NVARCHAR(10)	NULL,
		shipcountry				NVARCHAR(15)	NOT	NULL,
		CONSTRAINT	PK_Orders	PRIMARY	KEY(orderid)
);

CREATE	TABLE	dbo.OrderDetails
(
		orderid			INT											NOT	NULL,
		productid	INT											NOT	NULL,
		unitprice	MONEY									NOT	NULL
				CONSTRAINT	DFT_OrderDetails_unitprice	DEFAULT(0),
		qty							SMALLINT						NOT	NULL
				CONSTRAINT	DFT_OrderDetails_qty	DEFAULT(1),
		discount		NUMERIC(4,	3)	NOT	NULL
				CONSTRAINT	DFT_OrderDetails_discount	DEFAULT(0),
		CONSTRAINT	PK_OrderDetails	PRIMARY	KEY(orderid,	productid),
		CONSTRAINT	FK_OrderDetails_Orders	FOREIGN	KEY(orderid)
				REFERENCES	dbo.Orders(orderid),
		CONSTRAINT	CHK_discount		CHECK	(discount	BETWEEN	0	AND	1),
		CONSTRAINT	CHK_qty		CHECK	(qty	>	0),
		CONSTRAINT	CHK_unitprice	CHECK	(unitprice	>=	0)
);
GO

INSERT	INTO	dbo.Orders	SELECT	*	FROM	Sales.Orders;
INSERT	INTO	dbo.OrderDetails	SELECT	*	FROM	Sales.OrderDetails;

Write	and	test	the	T-SQL	code	that	is	required	to	truncate	both	tables,	and	make	sure	your
code	runs	successfully.
When	you’re	done,	run	the	following	code	for	cleanup:

Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.OrderDetails,	dbo.Orders,	dbo.Customers;

Solutions
This	section	provides	solutions	to	the	preceding	exercises.

Exercise	1
This	exercise	is	split	into	three	parts.	The	following	sections	provide	the	solutions	to	those
parts.

Exercise	1-1
Make	sure	you	are	connected	to	the	TSQLV4	database:

USE	TSQLV4;

Use	the	following	INSERT	VALUES	statement	to	insert	a	row	into	the	Customers	table	with
the	values	provided	in	the	exercise:
Click	here	to	view	code	image

INSERT	INTO	dbo.Customers(custid,	companyname,	country,	region,	city)

		VALUES(100,	N'Coho	Winery',	N'USA',	N'WA',	N'Redmond');

Exercise	1-2
One	way	to	identify	customers	who	placed	orders	is	to	use	the	EXISTS	predicate,	as	the
following	query	shows:
Click	here	to	view	code	image

		SELECT	custid,	companyname,	country,	region,	city
		FROM	Sales.Customers	AS	C
		WHERE	EXISTS
				(SELECT	*	FROM	Sales.Orders	AS	O
					WHERE	O.custid	=	C.custid);

To	insert	the	rows	returned	from	this	query	into	the	dbo.Customers	table,	you	can	use	an
INSERT	SELECT	statement	as	follows:
Click	here	to	view	code	image

INSERT	INTO	dbo.Customers(custid,	companyname,	country,	region,	city)
		SELECT	custid,	companyname,	country,	region,	city
		FROM	Sales.Customers	AS	C
		WHERE	EXISTS
				(SELECT	*	FROM	Sales.Orders	AS	O
					WHERE	O.custid	=	C.custid);

Exercise	1-3
The	following	code	first	ensures	that	the	session	is	connected	to	the	TSQLV4	database,	and
then	it	drops	the	dbo.Orders	table	if	it	already	exists.	Finally,	it	uses	the	SELECT	INTO
statement	to	create	a	new	dbo.Orders	table	and	populate	it	with	orders	from	the	Sales.Orders
table	placed	in	the	years	2014	through	2016:
Click	here	to	view	code	image

USE	TSQLV4;

DROP	TABLE	IF	EXISTS	dbo.Orders;

SELECT	*
INTO	dbo.Orders
FROM	Sales.Orders
WHERE	orderdate	>=	'20140101'
		AND	orderdate	<	'20170101';

Exercise	2
To	delete	orders	placed	before	August	2014,	you	need	a	DELETE	statement	with	a	filter	based
on	the	predicate	orderdate	<	‘20140801’.	As	requested,	use	the	OUTPUT	clause	to	return
attributes	from	the	deleted	rows:
Click	here	to	view	code	image

DELETE	FROM	dbo.Orders
		OUTPUT	deleted.orderid,	deleted.orderdate
WHERE	orderdate	<	'20140801';

Exercise	3
This	exercise	requires	you	to	write	a	DELETE	statement	that	deletes	rows	from	one	table
(dbo.Orders)	based	on	the	existence	of	a	matching	row	in	another	table	(dbo.Customers).	One
way	to	handle	the	task	is	to	use	a	standard	DELETE	statement	with	an	EXISTS	predicate	in	the
WHERE	clause,	like	this:
Click	here	to	view	code	image

DELETE	FROM	dbo.Orders
WHERE	EXISTS
		(SELECT	*
			FROM	dbo.Customers	AS	C
			WHERE	Orders.custid	=	C.custid
					AND	C.country	=	N'Brazil');

This	DELETE	statement	deletes	the	rows	from	the	dbo.Orders	table	for	which	a	related	row
exists	in	the	dbo.Customers	table	with	the	same	customer	ID	as	the	order ’s	customer	ID	and
the	customer ’s	country	is	Brazil.
Another	way	to	handle	this	task	is	to	use	the	T-SQL–specific	DELETE	syntax	based	on	a

join,	like	this:
Click	here	to	view	code	image

DELETE	FROM	O
FROM	dbo.Orders	AS	O
		INNER	JOIN	dbo.Customers	AS	C
				ON	O.custid	=	C.custid
WHERE	country	=	N'Brazil';

The	join	between	the	dbo.Orders	and	dbo.Customers	tables	serves	a	filtering	purpose.	The
join	matches	each	order	with	the	customer	who	placed	the	order.	The	WHERE	clause	filters
only	rows	for	which	the	customer ’s	country	is	Brazil.	The	DELETE	FROM	clause	refers	to
the	alias	O	representing	the	table	Orders,	indicating	that	Orders	is	the	target	of	the	DELETE
operation.
As	a	standard	alternative,	you	can	use	the	MERGE	statement	to	handle	this	task.	Even	though

you	normally	think	of	using	MERGE	when	you	need	to	apply	different	actions	based	on
conditional	logic,	you	also	can	use	it	when	you	need	to	apply	only	one	action.	In	our	case,	you
can	use	the	MERGE	statement	with	the	WHEN	MATCHED	clause	alone;	you	don’t	need	to	have
a	WHEN	NOT	MATCHED	clause	as	well.	The	following	MERGE	statement	handles	the	request
in	the	exercise:
Click	here	to	view	code	image

MERGE	INTO	dbo.Orders	AS	O
USING	(SELECT	*	FROM	dbo.Customers	WHERE	country	=	N'Brazil')	AS	C
		ON	O.custid	=	C.custid
WHEN	MATCHED	THEN	DELETE;

This	MERGE	statement	defines	the	dbo.Orders	table	as	the	target.	It	defines	a	table
expression	with	customers	from	the	dbo.Customers	table	that	are	from	Brazil	as	the	source.
An	order	is	deleted	from	the	target	(dbo.Orders)	when	a	matching	row	is	found	in	the	source
(dbo.Customers)	with	the	same	customer	ID.

Exercise	4
This	exercise	involves	writing	an	UPDATE	statement	that	filters	only	rows	for	which	the
region	attribute	is	NULL.	Make	sure	you	use	the	IS	NULL	predicate	and	not	an	equality
operator	when	looking	for	NULLs.	Use	the	OUTPUT	clause	to	return	the	requested
information.	Here’s	the	complete	UPDATE	statement:
Click	here	to	view	code	image

UPDATE	dbo.Customers
		SET	region	=	'<None>'
OUTPUT
		deleted.custid,
		deleted.region	AS	oldregion,
		inserted.region	AS	newregion
WHERE	region	IS	NULL;

Exercise	5
One	way	to	solve	this	exercise	is	to	use	the	T-SQL–specific	UPDATE	syntax	based	on	a	join.
You	can	join	dbo.Orders	and	dbo.Customers	based	on	a	match	between	the	order ’s	customer
ID	and	the	customer ’s	customer	ID.	In	the	WHERE	clause,	you	can	filter	only	the	rows	where
the	customer ’s	country	is	the	United	Kingdom.	In	the	UPDATE	clause,	specify	the	alias	you
assigned	to	the	dbo.Orders	table	to	indicate	that	it’s	the	target	of	the	modification.	In	the	SET
clause,	assign	the	values	of	the	shipping	location	attributes	of	the	order	to	the	location
attributes	of	the	corresponding	customer.	Here’s	the	complete	UPDATE	statement:
Click	here	to	view	code	image

UPDATE	O
		SET	shipcountry	=	C.country,
						shipregion	=	C.region,
						shipcity	=	C.city
FROM	dbo.Orders	AS	O
		INNER	JOIN	dbo.Customers	AS	C
				ON	O.custid	=	C.custid
WHERE	C.country	=	N'UK';

Another	solution	is	to	define	a	CTE	based	on	a	SELECT	query	that	joins	dbo.Orders	and
dbo.Customers	and	returns	both	the	target	location	attributes	from	dbo.Orders	and	the	source
location	attributes	from	dbo.Customers.	The	outer	query	would	then	be	an	UPDATE	statement
modifying	the	target	attributes	with	the	values	of	the	source	attributes.	Here’s	the	complete
solution	statement:
Click	here	to	view	code	image

WITH	CTE_UPD	AS
(
		SELECT
				O.shipcountry	AS	ocountry,	C.country	AS	ccountry,
				O.shipregion		AS	oregion,		C.region		AS	cregion,
				O.shipcity				AS	ocity,				C.city				AS	ccity
		FROM	dbo.Orders	AS	O
				INNER	JOIN	dbo.Customers	AS	C
						ON	O.custid	=	C.custid
		WHERE	C.country	=	N'UK'
)

UPDATE	CTE_UPD
		SET	ocountry	=	ccountry,	oregion	=	cregion,	ocity	=	ccity;

You	can	also	use	the	MERGE	statement	to	achieve	this	task.	As	explained	earlier,	even
though	in	a	MERGE	statement	you	usually	want	to	specify	both	the	WHEN	MATCHED	and
WHEN	NOT	MATCHED	clauses,	the	statement	supports	specifying	only	one	of	the	clauses.
Using	only	a	WHEN	MATCHED	clause	with	an	UPDATE	action,	you	can	write	a	solution	that
is	logically	equivalent	to	the	last	two	solutions.	Here’s	the	complete	solution	statement:
Click	here	to	view	code	image

MERGE	INTO	dbo.Orders	AS	O
USING	(SELECT	*	FROM	dbo.Customers	WHERE	country	=	N'UK')	AS	C
		ON	O.custid	=	C.custid
WHEN	MATCHED	THEN
		UPDATE	SET	shipcountry	=	C.country,
													shipregion	=	C.region,
													shipcity	=	C.city;

Exercise	6
There’s	a	foreign-key	relationship	between	OrderDetails	and	Orders.	In	such	a	case,	you’re
allowed	to	truncate	the	referencing	table,	but	not	the	referenced	table,	even	if	there	are	no
related	rows	in	the	referencing	table.	You	will	need	to	drop	the	foreign-key	constraint,
truncate	the	tables,	and	then	re-create	the	constraint,	like	this:
Click	here	to	view	code	image

ALTER	TABLE	dbo.OrderDetails	DROP	CONSTRAINT	FK_OrderDetails_Orders;

TRUNCATE	TABLE	dbo.OrderDetails;
TRUNCATE	TABLE	dbo.Orders;

ALTER	TABLE	dbo.OrderDetails	ADD	CONSTRAINT	FK_OrderDetails_Orders
		FOREIGN	KEY(orderid)	REFERENCES	dbo.Orders(orderid);

When	you’re	done,	run	the	following	code	for	cleanup:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.OrderDetails,	dbo.Orders,	dbo.Customers;

Chapter	9.	Temporal	tables

When	you	modify	data	in	tables,	normally	you	lose	any	trace	of	the	premodified	state	of	the
rows.	You	can	access	only	the	current	state.	What	if	you	need	to	be	able	to	access	historical
states	of	the	data?	Perhaps	you	need	these	states	for	auditing,	point-in-time	analysis,
comparing	current	states	with	older	states,	slowly	changing	dimensions	(details	of	which	you
can	find	in	the	Wikipedia	article	at	https://en.wikipedia.org/wiki/Slowly_changing_dimension),
restoring	an	older	state	of	rows	because	of	accidental	deletion	or	updating,	and	so	on.	You
could	roll	your	own	customized	solution	based	on	triggers.	Better	yet,	starting	with	Microsoft
SQL	Server	2016,	you	can	use	a	built-in	feature	called	system-versioned	temporal	tables.	This
built-in	feature	provides	a	solution	that	is	both	simpler	and	more	efficient	than	a	customized
one	can	be.
A	system-versioned	temporal	table	has	two	columns	representing	the	validity	period	of	the

row,	plus	a	linked	history	table	with	a	mirrored	schema	holding	older	states	of	modified
rows.	When	you	need	to	modify	data,	you	interact	with	the	current	table,	issuing	normal	data-
modification	statements.	SQL	Server	automatically	updates	the	period	columns	and	moves
older	versions	of	rows	to	the	history	table.	When	you	need	to	query	data,	if	you	want	the
current	state,	you	simply	query	the	current	table	as	usual.	If	you	need	access	to	older	states,
you	still	query	the	current	table,	but	you	add	a	clause	indicating	that	you	want	to	see	an	older
state	or	period	of	time.	SQL	Server	queries	the	current	and	history	tables	behind	the	scenes	as
needed.
The	SQL	standard	supports	three	types	of	temporal	tables:

	System-versioned	temporal	tables	rely	on	the	system	transaction	time	to	define	the
validity	period	of	a	row.
	Application-time	period	tables	rely	on	the	application’s	definition	of	the	validity	period
of	a	row.	This	means	you	can	define	a	validity	period	that	will	become	effective	in	the
future.
	Bitemporal	combines	the	two	types	just	mentioned	(transaction	and	valid	time).

SQL	Server	2016	supports	only	system-versioned	temporal	tables.	I	hope	Microsoft	will
add	support	for	application-time	period	tables	and	bitemporal	tables	to	future	versions	of
SQL	Server.
This	chapter	covers	system-versioned	temporal	tables	in	three	sections:	creating	tables,

modifying	data,	and	querying	data.

Creating	tables
When	you	create	a	system-versioned	temporal	table,	you	need	to	make	sure	the	table
definition	has	all	the	following	elements:

	A	primary	key
	Two	columns	defined	as	DATETIME2	with	any	precision,	which	are	non-nullable	and
represent	the	start	and	end	of	the	row’s	validity	period	in	the	UTC	time	zone

https://en.wikipedia.org/wiki/Slowly_changing_dimension

	A	start	column	that	should	be	marked	with	the	option	GENERATED	ALWAYS	AS	ROW
START
	An	end	column	that	should	be	marked	with	the	option	GENERATED	ALWAYS	AS	ROW
END
	A	designation	of	the	period	columns	with	the	option	PERIOD	FOR	SYSTEM_TIME
(<startcol>,	<endcol>)
	The	table	option	SYSTEM_VERSIONING,	which	should	be	set	to	ON
	A	linked	history	table	(which	SQL	Server	can	create	for	you)	to	hold	the	past	states	of
modified	rows

Optionally,	you	can	mark	the	period	columns	as	hidden	so	that	when	you’re	querying	the
table	with	SELECT	*	they	won’t	be	returned	and	when	you’re	inserting	data	they’ll	be	ignored.
Run	the	following	code	to	create	a	system-versioned	temporal	table	called	Employees	and	a

linked	history	table	called	EmployeesHistory:
Click	here	to	view	code	image

USE	TSQLV4;

--	Create	Employees	table
CREATE	TABLE	dbo.Employees
(
		empid						INT																									NOT	NULL
				CONSTRAINT	PK_Employees	PRIMARY	KEY	NONCLUSTERED,
		empname				VARCHAR(25)																	NOT	NULL,
		department	VARCHAR(50)																	NOT	NULL,
		salary					NUMERIC(10,	2)														NOT	NULL,
		sysstart			DATETIME2(0)
				GENERATED	ALWAYS	AS	ROW	START	HIDDEN	NOT	NULL,
		sysend					DATETIME2(0)
				GENERATED	ALWAYS	AS	ROW	END			HIDDEN	NOT	NULL,
		PERIOD	FOR	SYSTEM_TIME	(sysstart,	sysend),
		INDEX	ix_Employees	CLUSTERED(empid,	sysstart,	sysend)
)
WITH	(SYSTEM_VERSIONING	=	ON	(HISTORY_TABLE	=	dbo.EmployeesHistory));

Review	the	list	of	required	elements,	and	make	sure	you	identify	them	in	the	code.
Assuming	the	history	table	doesn’t	exist	when	you	run	this	code,	SQL	Server	creates	it	for

you.	If	you	do	not	specify	a	name	for	the	table,	SQL	Server	assigns	one	for	you	using	the
form	MSSQL_TemporalHistoryFor_<object_id>,	where	object_id	is	the	object	ID	of	the
current	table.	SQL	Server	creates	the	history	table	with	a	mirrored	schema	of	the	current
table,	but	with	the	following	differences:

	No	primary	key
	A	clustered	index	on	(<endcol>,	<startcol>),	with	page	compression	if	possible
	Period	columns	that	are	not	marked	with	any	special	options,	like	GENERATED
ALWAYS	AS	ROW	START/END	or	HIDDEN
	No	designation	of	the	period	columns	with	the	option	PERIOD	FOR	SYSTEM_TIME
	The	history	table	is	not	marked	with	the	option	SYSTEM_VERSIONING

If	the	history	table	already	exists	when	you	create	the	current	table,	SQL	Server	validates
the	consistency	of	both	the	schema	(as	just	described)	and	the	data	(with	no	overlapping
periods).	If	the	history	table	doesn’t	pass	the	consistency	checks,	SQL	Server	will	produce	an
error	at	DDL	time	and	won’t	create	the	current	table.	You	can	optionally	indicate	you	do	not
want	SQL	Server	to	perform	the	data-consistency	check.
If	you	browse	the	object	tree	in	Object	Explorer	in	SQL	Server	Management	Studio

(SSMS),	you’ll	find	the	Employees	table	marked	as	(System-Versioned)	and	below	it	the
linked	EmployeesHistory	table	marked	as	(History),	as	shown	in	Figure	9-1.

FIGURE	9-1	Temporal	table	and	associated	history	table	in	SSMS.

You	can	also	turn	an	existing	nontemporal	table	that	already	has	data	into	a	temporal	one.
For	example,	suppose	you	have	a	table	called	Employees	in	your	database	and	you	want	to
turn	it	into	a	temporal	table.	You	first	alter	the	table,	adding	the	period	columns	and
designating	them	as	such	using	the	following	code	(but	don’t	actually	run	the	code	because
our	Employees	table	is	already	temporal):
Click	here	to	view	code	image

ALTER	TABLE	dbo.Employees	ADD
		sysstart	DATETIME2(0)	GENERATED	ALWAYS	AS	ROW	START	HIDDEN	NOT	NULL

				CONSTRAINT	DFT_Employees_sysstart	DEFAULT('19000101'),
		sysend	DATETIME2(0)	GENERATED	ALWAYS	AS	ROW	END	HIDDEN	NOT	NULL
				CONSTRAINT	DFT_Employees_sysend	DEFAULT('99991231	23:59:59'),
		PERIOD	FOR	SYSTEM_TIME	(sysstart,	sysend);

Notice	the	defaults	that	set	the	validity	period	for	the	existing	rows.	You	decide	what	you
want	the	start	time	of	the	validity	period	to	be,	as	long	as	it’s	not	in	the	future.	The	end	has	to
be	the	maximum	supported	value	in	the	type.
You	then	alter	the	table	to	enable	system	versioning	and	to	link	it	to	a	history	table	using	the

following	code	(again,	don’t	actually	run	this	code	in	our	case):
Click	here	to	view	code	image

ALTER	TABLE	dbo.Employees
		SET	(SYSTEM_VERSIONING	=	ON	(HISTORY_TABLE	=	dbo.EmployeesHistory));

Remember	that	if	you	marked	the	period	columns	as	hidden,	when	you	query	the	table	with
SELECT	*	SQL	Server	won’t	return	them.	Try	this	with	our	Employees	table	by	running	the
following	code:

SELECT	*
FROM	dbo.Employees;

You	get	the	following	output:
Click	here	to	view	code	image

empid		empname		department		salary
------	--------	-----------	---------

If	you	do	want	to	return	the	period	columns,	mention	them	explicitly	in	the	SELECT	list,
like	so:
Click	here	to	view	code	image

SELECT	empid,	empname,	department,	salary,	sysstart,	sysend
FROM	dbo.Employees;

You	get	the	following	output:
Click	here	to	view	code	image

empid		empname		department		salary				sysstart													sysend
------	--------	-----------	---------	--------------------	--------------------

SQL	Server	supports	making	schema	changes	to	a	temporal	table	without	needing	to
disable	system	versioning	first.	You	issue	the	schema	change	to	the	current	table,	and	SQL
Server	applies	it	to	both	the	current	and	history	tables.	Naturally,	if	you	want	to	add	a	non-
nullable	column,	you’ll	need	to	add	it	with	a	default	constraint.	For	example,	suppose	you
want	to	add	a	non-nullable	column	called	hiredate	to	our	Employees	table	and	use	the	date
January	1st,	1900	as	the	default.	You	do	so	by	running	the	following	code:
Click	here	to	view	code	image

ALTER	TABLE	dbo.Employees
		ADD	hiredate	DATE	NOT	NULL
				CONSTRAINT	DFT_Employees_hiredate	DEFAULT('19000101');

You	can	then	update	the	hire	date	of	existing	employees	as	needed.
Query	the	Employees	table	after	adding	the	hiredate	column:
SELECT	*
FROM	dbo.Employees;

You	get	the	following	output:
Click	here	to	view	code	image

empid		empname		department		salary				hiredate
------	--------	-----------	---------	----------

Query	the	EmployeesHistory	table:
SELECT	*
FROM	dbo.EmployeesHistory;

Notice	the	output	has	the	hiredate	column	in	this	table	as	well:
Click	here	to	view	code	image

empid		empname		department		salary				sysstart													sysend															hiredate
------	--------	-----------	---------	--------------------	--------------------	--

SQL	Server	added	the	hiredate	column	to	both	tables,	but	the	default	constraint	was	added
only	in	the	current	table.	Still,	if	there	had	been	any	rows	in	the	history	table,	SQL	Server
would	have	assigned	the	default	value	to	the	hiredate	column	in	those	rows.
Suppose	you	want	to	drop	the	hiredate	column	from	both	tables.	First	you	drop	the	default

constraint	from	the	current	table	by	running	the	following	code:
Click	here	to	view	code	image

ALTER	TABLE	dbo.Employees
		DROP	CONSTRAINT	DFT_Employees_hiredate;

Second,	you	drop	the	column	from	the	current	table	by	running	the	following	code:
ALTER	TABLE	dbo.Employees
		DROP	COLUMN	hiredate;

SQL	Server	drops	the	column	from	both	tables.

Modifying	data
Modifying	temporal	tables	is	similar	to	modifying	regular	tables.	You	modify	only	the
current	table	with	INSERT,	UPDATE,	DELETE,	and	MERGE	statements.	(There’s	no	support
for	TRUNCATE	in	SQL	Server	2016	temporal	tables.)	Behind	the	scenes,	SQL	Server	updates
the	period	columns	and	moves	rows	to	the	history	table	as	needed.	Remember	that	the	period
columns	reflect	the	validity	period	of	the	row	in	the	UTC	time	zone.
If	you	defined	the	period	columns	as	hidden,	like	in	our	case,	you	simply	ignore	them	in

INSERT	statements.	If	you	didn’t	define	them	as	hidden,	as	long	as	you	follow	best	practices
and	explicitly	mention	the	target	column	names,	you	can	still	ignore	them.	If	you	didn’t	define
them	as	hidden	and	you	do	not	mention	the	target	column	names,	you’ll	need	to	specify	the

keyword	DEFAULT	as	the	value	for	them.
In	the	following	examples,	I’ll	demonstrate	modifications	against	the	Employees	table	and

mention	the	point	in	time	in	the	UTC	time	zone	at	which	I	apply	them.	Naturally,	the
modification	times	will	be	different	for	you	when	you	run	the	code	samples,	so	it	might	be	a
good	idea	for	you	to	make	a	note	of	those	times	when	you	submit	them.	You	can	query	the
SYSUTCDATETIME	function	to	get	this	information.
Run	the	following	code	to	add	a	few	rows	to	the	Employees	table	(the	time	was	2016-02-16

17:08:41	when	I	ran	it):
Click	here	to	view	code	image

INSERT	INTO	dbo.Employees(empid,	empname,	department,	salary)
		VALUES(1,	'Sara',	'IT'							,	50000.00),
								(2,	'Don'	,	'HR'							,	45000.00),
								(3,	'Judy',	'Sales'				,	55000.00),
								(4,	'Yael',	'Marketing',	55000.00),
								(5,	'Sven',	'IT'							,	45000.00),
								(6,	'Paul',	'Sales'				,	40000.00);

Query	the	data	in	both	the	current	and	history	tables	to	see	what	SQL	Server	did	behind	the
scenes:
Click	here	to	view	code	image

SELECT	empid,	empname,	department,	salary,	sysstart,	sysend
FROM	dbo.Employees;

SELECT	empid,	empname,	department,	salary,	sysstart,	sysend
FROM	dbo.EmployeesHistory;

The	current	table	has	the	six	new	rows,	with	the	sysstart	column	reflecting	the	modification
time	and	sysend	holding	the	maximum	possible	value	in	the	type	with	the	chosen	precision:
Click	here	to	view	code	image

empid		empname		department		salary				sysstart													sysend
------	--------	-----------	---------	--------------------	--------------------
1						Sara					IT										50000.00		2016-02-16	17:08:41		9999-12-31	23:59:59
2						Don						HR										45000.00		2016-02-16	17:08:41		9999-12-31	23:59:59
3						Judy					Sales							55000.00		2016-02-16	17:08:41		9999-12-31	23:59:59
4						Yael					Marketing			55000.00		2016-02-16	17:08:41		9999-12-31	23:59:59
5						Sven					IT										45000.00		2016-02-16	17:08:41		9999-12-31	23:59:59
6						Paul					Sales							40000.00		2016-02-16	17:08:41		9999-12-31	23:59:59

The	validity	period	indicates	that	the	rows	are	considered	valid	since	the	time	they	were
inserted	and	with	no	end	limit.
The	history	table	is	empty	at	this	point:

Click	here	to	view	code	image

empid		empname		department		salary				sysstart													sysend
------	--------	-----------	---------	--------------------	--------------------

Run	the	following	code	to	delete	the	row	where	the	employee	ID	is	6	(the	time	was	2016-
02-16	17:15:26	when	I	ran	it):

DELETE	FROM	dbo.Employees

WHERE	empid	=	6;

SQL	Server	moves	the	deleted	row	to	the	history	table,	setting	its	sysend	value	to	the
deletion	time.	Following	is	the	content	of	the	current	table	at	this	point:
Click	here	to	view	code	image

empid		empname		department		salary				sysstart													sysend
------	--------	-----------	---------	--------------------	--------------------
1						Sara					IT										50000.00		2016-02-16	17:08:41		9999-12-31	23:59:59
2						Don						HR										45000.00		2016-02-16	17:08:41		9999-12-31	23:59:59
3						Judy					Sales							55000.00		2016-02-16	17:08:41		9999-12-31	23:59:59
4						Yael					Marketing			55000.00		2016-02-16	17:08:41		9999-12-31	23:59:59
5						Sven					IT										45000.00		2016-02-16	17:08:41		9999-12-31	23:59:59

Following	is	the	content	of	the	history	table:
Click	here	to	view	code	image

empid		empname		department		salary				sysstart													sysend
------	--------	-----------	---------	--------------------	--------------------
6						Paul					Sales							40000.00		2016-02-16	17:08:41		2016-02-16	17:15:26

An	update	of	a	row	is	treated	as	a	delete	plus	an	insert.	SQL	Server	moves	the	old	version
of	the	row	to	the	history	table	with	the	transaction	time	as	the	period	end	time,	and	it	keeps	the
current	version	of	the	row	in	the	current	table	with	the	transaction	time	as	the	period	start	time
and	the	maximum	value	in	the	type	as	the	period	end	time.	For	example,	run	the	following
update	to	increase	the	salary	of	all	IT	employees	by	5	percent	(the	time	was	2016-02-16
17:20:02	when	I	ran	it):

UPDATE	dbo.Employees
		SET	salary	*=	1.05
WHERE	department	=	'IT';

Following	is	the	content	of	the	current	table	after	the	update:
Click	here	to	view	code	image

empid		empname		department		salary				sysstart													sysend
------	--------	-----------	---------	--------------------	--------------------
1						Sara					IT										52500.00		2016-02-16	17:20:02		9999-12-31	23:59:59
2						Don						HR										45000.00		2016-02-16	17:08:41		9999-12-31	23:59:59
3						Judy					Sales							55000.00		2016-02-16	17:08:41		9999-12-31	23:59:59
4						Yael					Marketing			55000.00		2016-02-16	17:08:41		9999-12-31	23:59:59
5						Sven					IT										47250.00		2016-02-16	17:20:02		9999-12-31	23:59:59

Notice	the	values	in	the	salary	and	period	columns	for	the	IT	employees.
Following	is	the	content	of	the	history	table:

Click	here	to	view	code	image

empid		empname		department		salary				sysstart													sysend
------	--------	-----------	---------	--------------------	--------------------
6						Paul					Sales							40000.00		2016-02-16	17:08:41		2016-02-16	17:15:26
1						Sara					IT										50000.00		2016-02-16	17:08:41		2016-02-16	17:20:02
5						Sven					IT										45000.00		2016-02-16	17:08:41		2016-02-16	17:20:02

The	modification	times	that	SQL	Server	records	in	the	period	columns	reflect	the
transaction	start	time.	If	you	have	a	long-running	transaction	that	started	at	point	in	time	T1

and	ended	at	T2,	SQL	Server	will	record	T1	as	the	modification	time	for	all	statements.	For
example,	run	this	code	to	open	an	explicit	transaction	and	change	the	department	of	employee
5	to	Sales	(the	time	was	2016-02-16	17:28:10	when	I	ran	it):

BEGIN	TRAN;

UPDATE	dbo.Employees
		SET	department	=	'Sales'
WHERE	empid	=	5;

Wait	a	few	seconds,	and	then	run	the	following	code	to	change	the	department	of	employee
3	to	IT	(the	time	was	2016-02-16	17:29:22	when	I	ran	it):

UPDATE	dbo.Employees
		SET	department	=	'IT'
WHERE	empid	=	3;

COMMIT	TRAN;

Following	is	the	content	of	the	current	table	after	running	this	transaction:
Click	here	to	view	code	image

empid		empname		department		salary				sysstart													sysend
------	--------	-----------	---------	--------------------	--------------------
1						Sara					IT										52500.00		2016-02-16	17:20:02		9999-12-31	23:59:59
2						Don						HR										45000.00		2016-02-16	17:08:41		9999-12-31	23:59:59
3						Judy					IT										55000.00		2016-02-16	17:28:10		9999-12-31	23:59:59
4						Yael					Marketing			55000.00		2016-02-16	17:08:41		9999-12-31	23:59:59
5						Sven					Sales							47250.00		2016-02-16	17:28:10		9999-12-31	23:59:59

Following	is	the	content	of	the	history	table	at	this	point:
Click	here	to	view	code	image

empid		empname		department		salary				sysstart													sysend
------	--------	-----------	---------	--------------------	--------------------
6						Paul					Sales							40000.00		2016-02-16	17:08:41		2016-02-16	17:15:26
1						Sara					IT										50000.00		2016-02-16	17:08:41		2016-02-16	17:20:02
5						Sven					IT										45000.00		2016-02-16	17:08:41		2016-02-16	17:20:02
3						Judy					Sales							55000.00		2016-02-16	17:08:41		2016-02-16	17:28:10
5						Sven					IT										47250.00		2016-02-16	17:20:02		2016-02-16	17:28:10

Observe	that	for	all	modified	rows,	the	modification	time	(sysstart	for	current	rows	and
sysend	for	history	rows)	reflects	the	transaction	start	time.

Querying	data
Querying	data	in	temporal	tables	is	simple	and	elegant.	If	you	want	to	query	the	current	state
of	the	data,	you	simply	query	the	current	table	as	you	would	query	a	normal	table.	If	you	want
to	query	a	past	state	of	the	data,	you	still	query	the	current	table,	but	you	add	a	clause	called
FOR	SYSTEM_TIME	and	a	subclause	that	indicates	the	validity	point	or	period	of	time	you’re
interested	in.
Before	examining	the	specifics	of	querying	temporal	tables,	run	the	following	code	to	re-

create	the	Employees	and	EmployeesHistory	tables	and	to	populate	them	with	the	same	sample
data	as	in	my	environment,	including	the	values	in	the	period	columns:

Click	here	to	view	code	image

USE	TSQLV4;

--	Drop	tables	if	exist
IF	OBJECT_ID(N'dbo.Employees',	N'U')	IS	NOT	NULL
BEGIN
		IF	OBJECTPROPERTY(OBJECT_ID(N'dbo.Employees',	N'U'),	N'TableTemporalType')	=	2
				ALTER	TABLE	dbo.Employees	SET	(SYSTEM_VERSIONING	=	OFF);
		DROP	TABLE	IF	EXISTS	dbo.EmployeesHistory,	dbo.Employees;
END;
GO

--	Create	and	populate	Employees	table
CREATE	TABLE	dbo.Employees
(
		empid						INT												NOT	NULL
				CONSTRAINT	PK_Employees	PRIMARY	KEY	NONCLUSTERED,
		empname				VARCHAR(25)				NOT	NULL,
		department	VARCHAR(50)				NOT	NULL,
		salary					NUMERIC(10,	2)	NOT	NULL,
		sysstart			DATETIME2(0)			NOT	NULL,
		sysend					DATETIME2(0)			NOT	NULL,
		INDEX	ix_Employees	CLUSTERED(empid,	sysstart,	sysend)
);

INSERT	INTO	dbo.Employees(empid,	empname,	department,	salary,	sysstart,	sysend)
VALUES
		(1	,	'Sara',	'IT'							,	52500.00,	'2016-02-16	17:20:02',	'9999-12-31
23:59:59'),
		(2	,	'Don'	,	'HR'							,	45000.00,	'2016-02-16	17:08:41',	'9999-12-31
23:59:59'),
		(3	,	'Judy',	'IT'							,	55000.00,	'2016-02-16	17:28:10',	'9999-12-31
23:59:59'),
		(4	,	'Yael',	'Marketing',	55000.00,	'2016-02-16	17:08:41',	'9999-12-31
23:59:59'),
		(5	,	'Sven',	'Sales'				,	47250.00,	'2016-02-16	17:28:10',	'9999-12-31
23:59:59');

--	Create	and	populate	EmployeesHistory	table
CREATE	TABLE	dbo.EmployeesHistory
(
		empid						INT												NOT	NULL,
		empname				VARCHAR(25)				NOT	NULL,
		department	VARCHAR(50)				NOT	NULL,
		salary					NUMERIC(10,	2)	NOT	NULL,
		sysstart			DATETIME2(0)			NOT	NULL,
		sysend					DATETIME2(0)			NOT	NULL,
		INDEX	ix_EmployeesHistory	CLUSTERED(sysend,	sysstart)
				WITH	(DATA_COMPRESSION	=	PAGE)
);

INSERT	INTO	dbo.EmployeesHistory(empid,	empname,	department,	salary,	sysstart,
sysend)	VALUES
		(6	,	'Paul',	'Sales'	,	40000.00,	'2016-02-16	17:08:41',	'2016-02-16	17:15:26'),
		(1	,	'Sara',	'IT'				,	50000.00,	'2016-02-16	17:08:41',	'2016-02-16	17:20:02'),
		(5	,	'Sven',	'IT'				,	45000.00,	'2016-02-16	17:08:41',	'2016-02-16	17:20:02'),
		(3	,	'Judy',	'Sales'	,	55000.00,	'2016-02-16	17:08:41',	'2016-02-16	17:28:10'),
		(5	,	'Sven',	'IT'				,	47250.00,	'2016-02-16	17:20:02',	'2016-02-16	17:28:10');

--	Enable	system	versioning
ALTER	TABLE	dbo.Employees	ADD	PERIOD	FOR	SYSTEM_TIME	(sysstart,	sysend);

ALTER	TABLE	dbo.Employees	ALTER	COLUMN	sysstart	ADD	HIDDEN;
ALTER	TABLE	dbo.Employees	ALTER	COLUMN	sysend	ADD	HIDDEN;

ALTER	TABLE	dbo.Employees
		SET	(SYSTEM_VERSIONING	=	ON	(HISTORY_TABLE	=	dbo.EmployeesHistory));

This	way,	the	outputs	of	the	queries	in	your	environment	will	be	the	same	as	in	the	book.
Just	remember	that	when	a	query	has	no	ORDER	BY	cause,	there’s	no	guarantee	for	any
specific	presentation	order	in	the	output.	So	it	is	possible	that	the	order	of	the	rows	you’ll	get
when	you	run	the	queries	will	be	different	than	in	the	book.
As	mentioned,	if	you	want	to	query	the	current	state	of	the	rows,	simply	query	the	current

table:
SELECT	*
FROM	dbo.Employees;

This	query	generates	the	following	output:
Click	here	to	view	code	image

empid		empname		department		salary
------	--------	-----------	---------
1						Sara					IT										52500.00
2						Don						HR										45000.00
3						Judy					IT										55000.00
4						Yael					Marketing			55000.00
5						Sven					Sales							47250.00

Remember	that	because	the	period	columns	are	defined	as	hidden,	a	SELECT	*	query
doesn’t	return	them.	Here	I	use	SELECT	*	for	illustration	purposes,	but	I	remind	you	that	the
best	practice	is	to	be	explicit	about	the	column	list	in	production	code.	The	same	applies	to
INSERT	statements.	If	you	do	follow	best	practices,	whether	the	period	columns	were	defined
as	hidden	or	not	shouldn’t	really	matter	to	you.
If	you	want	to	see	a	past	state	of	the	data,	correct	to	a	certain	point	or	period	of	time,	you

query	the	current	table	followed	by	the	FOR	SYSTEM_TIME	clause,	plus	a	subclause	that
indicates	more	specifics.	SQL	Server	will	retrieve	the	data	from	both	the	current	and	history
tables	as	needed.	Conveniently,	you	can	specify	the	FOR	SYSTEM_TIME	clause	when
querying	views,	and	the	clause	definition	is	propagated	to	underlying	objects.
Following	is	the	syntax	for	using	the	FOR	SYSTEM_TIME	clause:

Click	here	to	view	code	image

SELECT	...	FROM	<table_or_view>	FOR	SYSTEM_TIME	<subclause>	AS	<alias>;

Of	the	five	subclauses	that	the	SYSTEM_TIME	clause	supports,	you’ll	probably	use	the	AS
OF	subclause	most	often.	You	use	it	to	request	to	see	the	data	correct	to	a	specific	point	in
time	you	specify.	The	syntax	of	this	subclause	is	FOR	SYSTEM_TIME	AS	OF	<datetime2
value>.	The	input	can	be	either	a	constant,	variable,	or	parameter.	Say	the	input	is	a	variable
called	@datetime.	You’ll	get	back	the	rows	where	@datetime	is	on	or	after	sysstart	and	before
sysend.	In	other	words,	the	validity	period	starts	on	or	before	@datetime	and	ends	after

@datetime.	The	following	predicate	identifies	the	qualifying	rows:
Click	here	to	view	code	image

sysstart	<=	@datetime	AND	sysend	>	@datetime

Run	the	following	code	to	return	the	employee	rows	correct	to	the	point	in	time	2016-02-16
17:00:00:
Click	here	to	view	code	image

SELECT	*
FROM	dbo.Employees	FOR	SYSTEM_TIME	AS	OF	'2016-02-16	17:00:00';

You’ll	get	an	empty	result	because	the	first	insert	you	issued	against	the	table	happened	at
2016-02-16	17:08:41:
Click	here	to	view	code	image

empid		empname		department		salary
------	--------	-----------	---------

Query	the	table	again,	this	time	as	of	2016-02-16	17:10:00:
Click	here	to	view	code	image

SELECT	*
FROM	dbo.Employees	FOR	SYSTEM_TIME	AS	OF	'2016-02-16	17:10:00';

You	get	the	following	output:
Click	here	to	view	code	image

empid		empname		department		salary
------	--------	-----------	---------
2						Don						HR										45000.00
4						Yael					Marketing			55000.00
6						Paul					Sales							40000.00
1						Sara					IT										50000.00
5						Sven					IT										45000.00
3						Judy					Sales							55000.00

You	can	also	query	multiple	instances	of	the	same	table,	comparing	different	states	of	the
data	at	different	points	in	time.	For	example,	the	following	query	returns	the	percentage	of
increase	of	salary	of	employees	who	had	a	salary	increase	between	two	different	points	in
time:
Click	here	to	view	code	image

SELECT	T2.empid,	T2.empname,
		CAST((T2.salary	/	T1.salary	-	1.0)	*	100.0	AS	NUMERIC(10,	2))	AS	pct
FROM	dbo.Employees	FOR	SYSTEM_TIME	AS	OF	'2016-02-16	17:10:00'	AS	T1
		INNER	JOIN	dbo.Employees	FOR	SYSTEM_TIME	AS	OF	'2016-02-16	17:25:00'	AS	T2
				ON	T1.empid	=	T2.empid
			AND	T2.salary	>	T1.salary;

This	code	generates	the	following	output:
empid		empname		pct
------	--------	-----
1						Sara					5.00

5						Sven					5.00

The	subclause	FROM	@start	TO	@end	returns	the	rows	that	satisfy	the	predicate	sysstart	<
@end	AND	sysend	>	@start.	In	other	words,	it	returns	the	rows	with	a	validity	period	that
starts	before	the	input	interval	ends	and	that	ends	after	the	input	interval	starts.	The	following
query	demonstrates	using	this	subclause:
Click	here	to	view	code	image

SELECT	empid,	empname,	department,	salary,	sysstart,	sysend
FROM	dbo.Employees
		FOR	SYSTEM_TIME	FROM	'2016-02-16	17:15:26'	TO	'2016-02-16	17:20:02';

This	query	generates	the	following	output:
Click	here	to	view	code	image

empid		empname		department		salary				sysstart													sysend
------	--------	-----------	---------	--------------------	--------------------
2						Don						HR										45000.00		2016-02-16	17:08:41		9999-12-31	23:59:59
4						Yael					Marketing			55000.00		2016-02-16	17:08:41		9999-12-31	23:59:59
1						Sara					IT										50000.00		2016-02-16	17:08:41		2016-02-16	17:20:02
5						Sven					IT										45000.00		2016-02-16	17:08:41		2016-02-16	17:20:02
3						Judy					Sales							55000.00		2016-02-16	17:08:41		2016-02-16	17:28:10

Notice	that	rows	with	a	sysstart	value	of	2016-02-16	17:20:02	are	not	included	in	the	output.
If	you	need	the	input	@end	value	to	be	inclusive,	use	the	BETWEEN	subclause	instead	of	the
FROM	subclause.	The	syntax	of	the	BETWEEN	subclause	is	BETWEEN	@start	AND	@end,
and	it	returns	the	rows	that	satisfy	the	predicate	sysstart	<=	@end	AND	sysend	>	@start.	It
returns	the	rows	with	a	validity	period	that	starts	on	or	before	the	input	interval	ends	and	that
ends	after	the	input	interval	starts.	The	following	query	demonstrates	using	this	subclause	with
the	same	input	values	as	in	the	previous	query:
Click	here	to	view	code	image

SELECT	empid,	empname,	department,	salary,	sysstart,	sysend
FROM	dbo.Employees
		FOR	SYSTEM_TIME	BETWEEN	'2016-02-16	17:15:26'	AND	'2016-02-16	17:20:02';

You	get	the	following	output,	this	time	including	rows	with	a	sysstart	value	of	2016-02-16
17:20:02:
Click	here	to	view	code	image

empid		empname		department		salary				sysstart													sysend
------	--------	-----------	---------	--------------------	--------------------
1						Sara					IT										52500.00		2016-02-16	17:20:02		9999-12-31	23:59:59
2						Don						HR										45000.00		2016-02-16	17:08:41		9999-12-31	23:59:59
4						Yael					Marketing			55000.00		2016-02-16	17:08:41		9999-12-31	23:59:59
1						Sara					IT										50000.00		2016-02-16	17:08:41		2016-02-16	17:20:02
5						Sven					IT										45000.00		2016-02-16	17:08:41		2016-02-16	17:20:02
3						Judy					Sales							55000.00		2016-02-16	17:08:41		2016-02-16	17:28:10
5						Sven					IT										47250.00		2016-02-16	17:20:02		2016-02-16	17:28:10

The	subclause	FOR	SYSTEM_TIME	CONTAINED	IN(@start,	@end)	returns	the	rows	that
satisfy	the	predicate	sysstart	>=	@start	AND	sysend	<=	@end.	It	returns	the	rows	with	a
validity	period	that	starts	on	or	after	the	input	interval	starts	and	that	ends	on	or	before	the

input	interval	ends.	In	other	words,	the	validity	period	needs	to	be	completely	contained	in	the
input	period.
Here’s	an	example	demonstrating	the	use	of	this	clause:

Click	here	to	view	code	image

SELECT	empid,	empname,	department,	salary,	sysstart,	sysend
FROM	dbo.Employees
		FOR	SYSTEM_TIME	CONTAINED	IN('2016-02-16	17:00:00',	'2016-02-16	18:00:00');

This	query	generates	the	following	output:
Click	here	to	view	code	image

empid		empname		department		salary				sysstart													sysend
------	--------	-----------	---------	--------------------	--------------------
6						Paul					Sales							40000.00		2016-02-16	17:08:41		2016-02-16	17:15:26
1						Sara					IT										50000.00		2016-02-16	17:08:41		2016-02-16	17:20:02
5						Sven					IT										45000.00		2016-02-16	17:08:41		2016-02-16	17:20:02
3						Judy					Sales							55000.00		2016-02-16	17:08:41		2016-02-16	17:28:10
5						Sven					IT										47250.00		2016-02-16	17:20:02		2016-02-16	17:28:10

Table	9-1	summarizes	the	aforementioned	subclauses	and	the	predicates	that	represent	the
qualifying	rows.

TABLE	9-1	Qualifying	rows	for	FOR	SYSTEM_TIME	subclauses

Figure	9-2	has	a	similar	summary	of	the	subclauses,	with	a	graphical	depiction	of	the
predicates	and	qualifying	rows.

FIGURE	9-2	Illustrations	of	FOR	SYSTEM_TIME	subclauses.

T-SQL	also	supports	the	ALL	subclause,	which	simply	returns	all	rows	from	both	tables.
The	following	query	demonstrates	the	use	of	this	subclause:
Click	here	to	view	code	image

SELECT	empid,	empname,	department,	salary,	sysstart,	sysend
FROM	dbo.Employees	FOR	SYSTEM_TIME	ALL;

This	query	generates	the	following	output:
Click	here	to	view	code	image

empid		empname		department		salary				sysstart													sysend
------	--------	-----------	---------	--------------------	--------------------
1						Sara					IT										52500.00		2016-02-16	17:20:02		9999-12-31	23:59:59
2						Don						HR										45000.00		2016-02-16	17:08:41		9999-12-31	23:59:59
3						Judy					IT										55000.00		2016-02-16	17:28:10		9999-12-31	23:59:59
4						Yael					Marketing			55000.00		2016-02-16	17:08:41		9999-12-31	23:59:59
5						Sven					Sales							47250.00		2016-02-16	17:28:10		9999-12-31	23:59:59
6						Paul					Sales							40000.00		2016-02-16	17:08:41		2016-02-16	17:15:26
1						Sara					IT										50000.00		2016-02-16	17:08:41		2016-02-16	17:20:02
5						Sven					IT										45000.00		2016-02-16	17:08:41		2016-02-16	17:20:02
3						Judy					Sales							55000.00		2016-02-16	17:08:41		2016-02-16	17:28:10
5						Sven					IT										47250.00		2016-02-16	17:20:02		2016-02-16	17:28:10

Remember	that	the	period	columns	reflect	the	validity	period	of	the	row	as	datetime2
values	in	the	UTC	time	zone.	If	you	want	to	return	those	as	datetimeoffset	values	in	a	desired
time	zone,	you	can	use	the	AT	TIME	ZONE	function.	You’ll	need	to	use	the	function	twice.
Once	to	convert	the	input	to	datetimeoffset,	indicating	that	it’s	in	the	UTC	time	zone,	and
another	to	convert	the	value	to	the	target	time	zone—for	example,	sysstart	AT	TIME	ZONE
‘UTC’	AT	TIME	ZONE	‘Pacific	Standard	Time’.	If	you	use	only	one	conversion	straight	to	the
target	time	zone,	the	function	will	assume	that	the	source	value	is	already	in	the	target	time
zone	and	won’t	perform	the	desired	switching.

Another	thing	to	consider	is	that	for	the	sysend	column,	if	the	value	is	the	maximum	in	the
type,	you’ll	just	want	to	consider	it	as	using	the	UTC	time	zone.	Otherwise,	you’ll	want	to
convert	it	to	the	target	time	zone	as	with	the	sysstart	column.	You	can	use	a	CASE	expression
to	apply	this	logic.
As	an	example,	the	following	query	returns	all	rows	and	presents	the	period	columns	in	the

time	zone	Pacific	Standard	Time:
Click	here	to	view	code	image

SELECT	empid,	empname,	department,	salary,
		sysstart	AT	TIME	ZONE	'UTC'	AT	TIME	ZONE	'Pacific	Standard	Time'	AS	sysstart,
		CASE
				WHEN	sysend	=	'9999-12-31	23:59:59'
						THEN	sysend	AT	TIME	ZONE	'UTC'
				ELSE	sysend	AT	TIME	ZONE	'UTC'	AT	TIME	ZONE	'Pacific	Standard	Time'
		END	AS	sysend
FROM	dbo.Employees	FOR	SYSTEM_TIME	ALL;

This	query	generates	the	following	output:
Click	here	to	view	code	image

empid		empname		department		salary				sysstart																				sysend
------	--------	-----------	---------	---------------------------	----------------

1						Sara					IT										52500.00		2016-02-16	09:20:02	-08:00		9999-12-31
23:59:59	+00:00
2						Don						HR										45000.00		2016-02-16	09:08:41	-08:00		9999-12-31
23:59:59	+00:00
3						Judy					IT										55000.00		2016-02-16	09:28:10	-08:00		9999-12-31
23:59:59	+00:00
4						Yael					Marketing			55000.00		2016-02-16	09:08:41	-08:00		9999-12-31
23:59:59	+00:00
5						Sven					Sales							47250.00		2016-02-16	09:28:10	-08:00		9999-12-31
23:59:59	+00:00
6						Paul					Sales							40000.00		2016-02-16	09:08:41	-08:00		2016-02-16
09:15:26	-08:00
1						Sara					IT										50000.00		2016-02-16	09:08:41	-08:00		2016-02-16
09:20:02	-08:00
5						Sven					IT										45000.00		2016-02-16	09:08:41	-08:00		2016-02-16
09:20:02	-08:00
3						Judy					Sales							55000.00		2016-02-16	09:08:41	-08:00		2016-02-16
09:28:10	-08:00
5						Sven					IT										47250.00		2016-02-16	09:20:02	-08:00		2016-02-16
09:28:10	-08:00

When	you’re	done	experimenting	with	the	data,	run	the	following	code	for	cleanup:
Click	here	to	view	code	image

IF	OBJECT_ID(N'dbo.Employees',	N'U')	IS	NOT	NULL
BEGIN
		IF	OBJECTPROPERTY(OBJECT_ID(N'dbo.Employees',	N'U'),	N'TableTemporalType')	=	2
				ALTER	TABLE	dbo.Employees	SET	(SYSTEM_VERSIONING	=	OFF);
		DROP	TABLE	IF	EXISTS	dbo.EmployeesHistory,	dbo.Employees;
END;

Conclusion
SQL	Server ’s	support	for	system-versioned	temporal	tables	is	very	powerful.	In	the	past,
many	systems	implemented	their	own	customized	solutions	to	address	the	same	need.	With
built-in	support,	the	solutions	are	much	simpler	and	more	efficient.	This	chapter	explained
how	to	create,	modify,	and	query	temporal	tables.	Remember	that	with	system-version
temporal	tables	the	system	transaction	time	determines	the	validity	period	of	the	row.	I	hope
that	in	the	future	we’ll	see	support	in	SQL	Server	for	application-time	period	tables	where	the
application	can	define	the	validity	period,	including	setting	it	to	a	future	one,	plus	bitemporal
support,	which	combines	the	two	types.

Exercises
This	section	provides	exercises	to	help	you	familiarize	yourself	with	the	subjects	discussed	in
Chapter	9.

Exercise	1
In	this	exercise,	you	create	a	system-versioned	temporal	table	and	identify	it	in	SSMS.

Exercise	1-1
Create	a	system-versioned	temporal	table	called	Departments	with	an	associated	history	table
called	DepartmentsHistory	in	the	database	TSQLV4.	The	table	should	have	the	following
columns:	deptid	INT,	deptname	VARCHAR(25),	and	mgrid	INT,	all	disallowing	NULLs.	Also
include	columns	called	validfrom	and	validto	that	define	the	validity	period	of	the	row.	Define
those	with	precision	zero	(1	second),	and	make	them	hidden.

Exercise	1-2
Browse	the	object	tree	in	Object	Explorer	in	SSMS,	and	identify	the	Departments	table	and	its
associated	history	table.

Exercise	2
In	this	exercise,	you’ll	modify	data	in	the	table	Departments.	Note	the	point	in	time	in	UTC
when	you	submit	each	statement,	and	mark	those	as	P1,	P2,	and	so	on.	You	can	do	so	by
invoking	the	SYSUTCDATETIME	function	in	the	same	batch	in	which	you	submit	the
modification.	Another	option	is	to	query	the	Departments	table	and	its	associated	history	table
and	to	obtain	the	point	in	time	from	the	validfrom	and	validto	columns.

Exercise	2-1
Insert	four	rows	to	the	table	Departments	with	the	following	details,	and	note	the	time	when
you	apply	this	insert	(call	it	P1):

	deptid:	1,	deptname:	HR,	mgrid:	7
	deptid:	2,	deptname:	IT,	mgrid:	5
	deptid:	3,	deptname:	Sales,	mgrid:	11
	deptid:	4,	deptname:	Marketing,	mgrid:	13

Exercise	2-2
In	one	transaction,	update	the	name	of	department	3	to	Sales	and	Marketing	and	delete
department	4.	Call	the	point	in	time	when	the	transaction	starts	P2.

Exercise	2-3
Update	the	manager	ID	of	department	3	to	13.	Call	the	point	in	time	when	you	apply	this
update	P2.

Exercise	3
In	this	exercise,	you’ll	query	data	from	the	table	Departments.

Exercise	3-1
Query	the	current	state	of	the	table	Departments:

	Desired	output:
Click	here	to	view	code	image

deptid						deptname																		mgrid
-----------	-------------------------	-----------
1											HR																								7
2											IT																								5
3											Sales	and	Marketing							13

Exercise	3-2
Query	the	state	of	the	table	Departments	at	a	point	in	time	after	P2	and	before	P3:

	Desired	output:
Click	here	to	view	code	image

deptid						deptname																		mgrid
-----------	-------------------------	-----------
1											HR																								7
2											IT																								5
3											Sales	and	Marketing							11

Exercise	3-3
Query	the	state	of	the	table	Departments	in	the	period	between	P2	and	P3.	Be	explicit	about	the
column	names	in	the	SELECT	list,	and	include	the	validfrom	and	validto	columns:

	Desired	output	(with	validfrom	and	validto	reflecting	your	modification	times):
Click	here	to	view	code	image

deptid		deptname													mgrid		validfrom												validto
-------	--------------------	------	--------------------	--------------------
1							HR																			7						2016-02-18	10:26:07		9999-12-31	23:59:59
2							IT																			5						2016-02-18	10:26:07		9999-12-31	23:59:59
3							Sales	and	Marketing		13					2016-02-18	10:30:40		9999-12-31	23:59:59
3							Sales	and	Marketing		11					2016-02-18	10:28:27		2016-02-18	10:30:40

Exercise	4
Drop	the	table	Departments	and	its	associated	history	table.

Solutions
This	section	provides	solutions	to	the	Chapter	9	exercises.

Exercise	1
This	exercise	is	split	into	two	parts.	The	following	sections	provide	the	solutions	to	those
parts.

Exercise	1-1
The	following	code	creates	the	Departments	table	as	a	system-versioned	temporal	table	with
an	associated	history	table	called	DepartmentsHistory:
Click	here	to	view	code	image

USE	TSQLV4;

CREATE	TABLE	dbo.Departments
(
		deptid				INT																										NOT	NULL
				CONSTRAINT	PK_Departments	PRIMARY	KEY,
		deptname		VARCHAR(25)																		NOT	NULL,
		mgrid	INT																														NOT	NULL,
		validfrom	DATETIME2(0)
				GENERATED	ALWAYS	AS	ROW	START	HIDDEN	NOT	NULL,
		validto			DATETIME2(0)
				GENERATED	ALWAYS	AS	ROW	END			HIDDEN	NOT	NULL,
		PERIOD	FOR	SYSTEM_TIME	(validfrom,	validto)
)
WITH	(SYSTEM_VERSIONING	=	ON	(HISTORY_TABLE	=	dbo.DepartmentsHistory));

Following	are	the	requirements	for	creating	a	system-versioned	temporal	table	as	they	are
applied	to	the	Departments	table:

	A	primary	key:	defined	based	on	the	deptid	column.
	The	table	option	SYSTEM_VERSIONING	set	to	ON.
	Two	non-nullable	DATETIME2	columns,	with	any	precision	(in	our	case	0),
representing	the	start	and	end	of	the	row’s	validity	period;	in	our	table,	the	columns	are
named	validfrom	and	validto.
	The	start	column	(validfrom)	marked	with	the	option	GENERATED	ALWAYS	AS	ROW
START.
	The	end	column	(validto)	marked	with	the	option	GENERATED	ALWAYS	AS	ROW	END.
	A	designation	of	the	period	columns:	PERIOD	FOR	SYSTEM_TIME	(validfrom,	validto)
	A	linked	history	table	called	DepartmentsHistory	(which	SQL	Server	creates	for	you)	to
hold	the	past	states	of	modified	rows

Exercise	1-2
In	Object	Explorer,	navigate	to	Databases,	then	to	the	TSQLV4	database,	and	then	to	Tables.
Below	Tables,	you’ll	find	the	Departments	table	marked	as	System-Versioned	and,	below	it,
the	DepartmentsHistory	table	marked	as	History,	as	shown	in	Figure	9-3.

FIGURE	9-3	The	Departments	temporal	table	and	associated	history	table	in	SSMS.

Exercise	2
This	exercise	is	split	into	three	parts.	The	following	sections	provide	the	solutions	to	those
parts.

Exercise	2-1
The	following	code	identifies	the	current	point	in	time	as	P1	and	adds	the	four	requested
rows:
Click	here	to	view	code	image

SELECT	CAST(SYSUTCDATETIME()	AS	DATETIME2(0))	AS	P1;

INSERT	INTO	dbo.Departments(deptid,	deptname,	mgrid)
		VALUES(1,	'HR'							,	7),

								(2,	'IT'							,	5),
								(3,	'Sales'				,	11),
								(4,	'marketing',	13);

When	I	ran	this	code,	I	got	the	following	output:
P1

2016-02-18	10:26:07

Make	a	note	of	P1	in	your	execution,	which	will	be	different	than	in	mine.

Exercise	2-2
The	following	codes	identifies	the	current	point	in	time	as	P2	and	applies	the	two	requested
updates	in	a	transaction:
Click	here	to	view	code	image

SELECT	CAST(SYSUTCDATETIME()	AS	DATETIME2(0))	AS	P2;

BEGIN	TRAN;

UPDATE	dbo.Departments
		SET	deptname	=	'Sales	and	Marketing'
WHERE	deptid	=	3;

DELETE	FROM	dbo.Departments
WHERE	deptid	=	4;

COMMIT	TRAN;

I	got	the	following	output	when	I	ran	this	code:
P2

2016-02-18	10:28:27

Again,	make	a	note	of	P2	in	your	execution.

Exercise	2-3
The	following	codes	identifies	the	current	point	in	time	as	P3	and	applies	the	requested
update:
Click	here	to	view	code	image

SELECT	CAST(SYSUTCDATETIME()	AS	DATETIME2(0))	AS	P3;

UPDATE	dbo.Departments
		SET	mgrid	=	13
WHERE	deptid	=	3;

I	got	the	following	output	when	I	ran	this	code:
P3

2016-02-18	10:30:40

Make	a	note	of	P3	in	your	execution.

At	this	point,	I	recommend	you	query	both	tables,	with	an	explicit	reference	to	the	validfrom
and	validto	columns.	Make	sure	you	understand	why	the	values	in	those	columns	are	what	they
are.

Exercise	3
This	exercise	is	split	into	three	parts.	The	following	sections	provide	the	solutions	to	those
parts.

Exercise	3-1
Run	the	following	code	to	query	the	current	state	of	the	table	Departments,	without	explicitly
referring	to	the	validfrom	and	validto	columns	(using	*):

SELECT	*
FROM	dbo.Departments;

You	get	the	following	output:
Click	here	to	view	code	image

deptid						deptname																		mgrid
-----------	-------------------------	-----------
1											HR																								7
2											IT																								5
3											Sales	and	Marketing							13

Exercise	3-2
Run	the	following	code	to	query	the	state	of	the	table	Departments	at	a	point	in	time	after	P2
and	before	P3	(replace	the	point	in	time	in	this	code	with	one	that	appears	before	P2	and	P3
that	you	recorded):
Click	here	to	view	code	image

SELECT	*
FROM	dbo.Departments
		FOR	SYSTEM_TIME	AS	OF	'2016-02-18	10:29:00';	--	replace	this	with	your	time

You	get	the	following	output:
Click	here	to	view	code	image

deptid						deptname																		mgrid
-----------	-------------------------	-----------
1											HR																								7
2											IT																								5
3											Sales	and	Marketing							11

Notice	that	the	name	of	department	3	is	the	new	name	Sales	and	Marketing,	which	was
updated	at	P2.	However,	the	manager	ID	of	department	3	is	still	11,	because	the	change	to	13
happened	at	P3.

Exercise	3-3
Run	the	following	code	to	query	the	state	of	the	table	Departments	in	the	period	between	P2
and	P3	(replace	the	points	in	time	in	this	code	with	P2	and	P3	that	you	recorded):

Click	here	to	view	code	image

SELECT	deptid,	deptname,	mgrid,	validfrom,	validto
FROM	dbo.Departments
		FOR	SYSTEM_TIME	BETWEEN	'2016-02-18	10:28:27'		--	replace	this	with	your	P2
																						AND	'2016-02-18	10:30:40';	--	replace	this	with	your	P3

You	get	the	following	output	(with	validfrom	and	validto	reflecting	your	modification
times):
Click	here	to	view	code	image

deptid		deptname													mgrid		validfrom												validto
-------	--------------------	------	--------------------	--------------------
1							HR																			7						2016-02-18	10:26:07		9999-12-31	23:59:59
2							IT																			5						2016-02-18	10:26:07		9999-12-31	23:59:59
3							Sales	and	Marketing		13					2016-02-18	10:30:40		9999-12-31	23:59:59
3							Sales	and	Marketing		11					2016-02-18	10:28:27		2016-02-18	10:30:40

This	output	shows	rows	that	where	valid	during	the	period	in	which	validfrom	is	on	or
before	P3	and	validto	is	after	P2.

Exercise	4
You	cannot	drop	tables	that	take	part	in	an	enabled	system-versioning	relationship.	You’ll
need	to	disable	system	versioning	first.	Here’s	the	code	to	achieve	this	with	the	tables	in	our
exercises:
Click	here	to	view	code	image

ALTER	TABLE	dbo.Departments	SET	(SYSTEM_VERSIONING	=	OFF);
DROP	TABLE	dbo.DepartmentsHistory,	dbo.Departments;

Chapter	10.	Transactions	and	concurrency

This	chapter	covers	transactions	and	their	properties	and	describes	how	Microsoft	SQL
Server	handles	users	who	are	concurrently	trying	to	access	the	same	data.	I	explain	how	SQL
Server	uses	locks	to	isolate	inconsistent	data,	how	you	can	troubleshoot	blocking	situations,
and	how	you	can	control	the	level	of	consistency	when	you’re	querying	data	with	isolation
levels.	This	chapter	also	covers	deadlocks	and	ways	to	mitigate	their	occurrence.
Because	this	is	a	book	about	fundamentals,	this	chapter	focuses	on	concurrency	aspects	of

traditional	data	representation	in	disk-based	tables.	SQL	Server	supports	a	memory-optimized
database	engine	called	In-Memory	OLTP,	which	holds	the	data	in	memory	optimized	tables.
The	handling	of	concurrency	for	memory-optimized	tables	is	very	different	than	with	disk-
based	tables.	Because	this	feature	is	an	advanced	performance-centric	feature,	it’s	outside	the
scope	of	this	book.	When	you’re	ready	for	more	advanced	aspects	of	T-SQL	with	a
performance-centric	focus,	you	can	find	those	in	the	book	T-SQL	Querying	(Microsoft	Press,
2015).	You	can	also	find	coverage	of	the	In-Memory	OLTP	feature	in	SQL	Server	Books
Online	using	the	following	URL:	https://msdn.microsoft.com/en-us/library/dn133186.aspx.

Transactions
A	transaction	is	a	unit	of	work	that	might	include	multiple	activities	that	query	and	modify
data	and	that	can	also	change	the	data	definition.
You	can	define	transaction	boundaries	either	explicitly	or	implicitly.	You	define	the

beginning	of	a	transaction	explicitly	with	a	BEGIN	TRAN	(or	BEGIN	TRANSACTION)
statement.	You	define	the	end	of	a	transaction	explicitly	with	a	COMMIT	TRAN	statement	if
you	want	to	commit	it	and	with	a	ROLLBACK	TRAN	(or	ROLLBACK	TRANSACTION)
statement	if	you	want	to	undo	its	changes.	Here’s	an	example	of	marking	the	boundaries	of	a
transaction	with	two	INSERT	statements:
Click	here	to	view	code	image

BEGIN	TRAN;
		INSERT	INTO	dbo.T1(keycol,	col1,	col2)	VALUES(4,	101,	'C');
		INSERT	INTO	dbo.T2(keycol,	col1,	col2)	VALUES(4,	201,	'X');
COMMIT	TRAN;

If	you	do	not	mark	the	boundaries	of	a	transaction	explicitly,	by	default,	SQL	Server	treats
each	individual	statement	as	a	transaction;	in	other	words,	by	default,	SQL	Server
automatically	commits	the	transaction	at	the	end	of	each	statement.	You	can	change	the	way
SQL	Server	handles	implicit	transactions	with	a	session	option	called
IMPLICIT_TRANSACTIONS.	This	option	is	turned	off	by	default.	When	this	option	is	turned
on,	you	do	not	have	to	specify	the	BEGIN	TRAN	statement	to	mark	the	beginning	of	a
transaction,	but	you	have	to	mark	the	transaction’s	end	with	a	COMMIT	TRAN	or	ROLLBACK
TRAN	statement.
After	one	transaction	commits	or	rolls	back,	unless	you	open	another	explicit	transaction,

the	next	statement	executed	implicitly	begins	another	transaction.

https://msdn.microsoft.com/en-us/library/dn133186.aspx

Transactions	have	four	properties—atomicity,	consistency,	isolation,	and	durability—
abbreviated	with	the	acronym	ACID:

	Atomicity	A	transaction	is	an	atomic	unit	of	work.	Either	all	changes	in	the	transaction
take	place	or	none	do.	If	the	system	fails	before	a	transaction	is	completed	(before	the
commit	instruction	is	recorded	in	the	transaction	log),	upon	restart,	SQL	Server	undoes
the	changes	that	took	place.	Also,	if	errors	are	encountered	during	the	transaction	and
the	error	is	considered	severe	enough,	such	as	the	target	filegroup	being	full	when	you
try	to	insert	data,	SQL	Server	automatically	rolls	back	the	transaction.	Some	errors,
such	as	primary-key	violations	and	lock-expiration	timeouts	(discussed	later	in	this
chapter,	in	the	“Troubleshooting	blocking”	section),	are	not	considered	severe	enough
to	justify	an	automatic	rollback	of	the	transaction.	If	you	want	all	errors	to	abort
execution	and	cause	any	open	transaction	to	roll	back,	you	can	enable	a	session	option
called	XACT_ABORT.	You	can	use	error-handling	code	to	capture	such	errors	and	apply
some	course	of	action	(for	example,	log	the	error	and	roll	back	the	transaction).
Chapter	11,	“Programmable	objects,”	provides	an	overview	of	error	handling.

	Tip

At	any	point	in	your	code,	you	can	tell	programmatically	whether	you’re	in	an	open
transaction	by	querying	a	function	called	@@TRANCOUNT.	This	function	returns	0	if
you’re	not	in	an	open	transaction	and	returns	a	value	greater	than	0	if	you	are.

	Consistency	The	term	consistency	refers	to	the	state	of	the	data	that	the	relational
database	management	system	(RDBMS)	gives	you	access	to	as	concurrent	transactions
modify	and	query	it.	As	you	can	probably	imagine,	consistency	is	a	subjective	term,
which	depends	on	your	application’s	needs.	The	“Isolation	levels”	section	later	in	this
chapter	explains	the	level	of	consistency	that	SQL	Server	provides	by	default	and	how
you	can	control	it	if	the	default	behavior	is	not	suitable	for	your	application.
Consistency	also	refers	to	the	fact	that	the	database	must	adhere	to	all	integrity	rules	that
have	been	defined	within	it	by	constraints	(such	as	primary	keys,	unique	constraints,	and
foreign	keys).	The	transaction	transitions	the	database	from	one	consistent	state	to
another.
	Isolation	Isolation	ensures	that	transactions	access	only	consistent	data.	You	control
what	consistency	means	to	your	transactions	through	a	mechanism	called	isolation
levels.	With	disk-based	tables,	SQL	Server	supports	two	different	models	to	handle
isolation:	one	based	purely	on	locking,	and	another	based	on	a	combination	of	locking
and	row	versioning.	For	simplicity,	I’ll	refer	to	the	latter	as	just	row	versioning.	The
model	based	on	locking	is	the	default	in	a	box	product.	In	this	model,	readers	require
shared	locks.	If	the	current	state	of	the	data	is	inconsistent,	readers	are	blocked	until	the
state	of	the	data	becomes	consistent.	The	model	based	on	row	versioning	is	the	default
in	Azure	SQL	Database.	In	this	model,	readers	don’t	take	shared	locks	and	don’t	need	to
wait.	If	the	current	state	of	the	data	is	inconsistent,	the	reader	gets	an	older	consistent
state.	The	“Isolation	levels”	section	later	in	this	chapter	provides	more	details	about	both

ways	of	handling	isolation.
	Durability	Data	changes	are	always	written	to	the	database’s	transaction	log	on	disk
before	they	are	written	to	the	data	portion	of	the	database	on	disk.	After	the	commit
instruction	is	recorded	in	the	transaction	log	on	disk,	the	transaction	is	considered
durable	even	if	the	change	hasn’t	yet	made	it	to	the	data	portion	on	disk.	When	the
system	starts,	either	normally	or	after	a	system	failure,	SQL	Server	inspects	the
transaction	log	of	each	database	and	runs	a	recovery	process	with	two	phases:	redo	and
undo.	The	redo	phase	involves	rolling	forward	(replaying)	all	the	changes	from	any
transaction	whose	commit	instruction	is	written	to	the	log	but	whose	changes	haven’t	yet
made	it	to	the	data	portion.	The	undo	phase	involves	rolling	back	(undoing)	the	changes
from	any	transaction	whose	commit	instruction	was	not	recorded	in	the	log.

For	example,	the	following	code	defines	a	transaction	that	records	information	about	a	new
order	in	the	TSQLV4	database:
Click	here	to	view	code	image

USE	TSQLV4;

--	Start	a	new	transaction
BEGIN	TRAN;

		--	Declare	a	variable
		DECLARE	@neworderid	AS	INT;

		--	Insert	a	new	order	into	the	Sales.Orders	table
		INSERT	INTO	Sales.Orders
						(custid,	empid,	orderdate,	requireddate,	shippeddate,
							shipperid,	freight,	shipname,	shipaddress,	shipcity,
							shippostalcode,	shipcountry)
				VALUES
						(85,	5,	'20090212',	'20090301',	'20090216',
							3,	32.38,	N'Ship	to	85-B',	N'6789	rue	de	l''Abbaye',	N'Reims',
							N'10345',	N'France');

		--	Save	the	new	order	ID	in	a	variable
		SET	@neworderid	=	SCOPE_IDENTITY();

		--	Return	the	new	order	ID
		SELECT	@neworderid	AS	neworderid;

		--	Insert	order	lines	for	the	new	order	into	Sales.OrderDetails
		INSERT	INTO	Sales.OrderDetails
						(orderid,	productid,	unitprice,	qty,	discount)
				VALUES(@neworderid,	11,	14.00,	12,	0.000),
										(@neworderid,	42,	9.80,	10,	0.000),
										(@neworderid,	72,	34.80,	5,	0.000);

--	Commit	the	transaction
COMMIT	TRAN;

The	transaction’s	code	inserts	a	row	with	the	order	header	information	into	the
Sales.Orders	table	and	a	few	rows	with	the	order	lines	information	into	the	Sales.OrderDetails
table.	The	new	order	ID	is	produced	automatically	by	SQL	Server	because	the	orderid	column
has	an	identity	property.	Immediately	after	the	code	inserts	the	new	row	into	the	Sales.Orders

table,	it	stores	the	newly	generated	order	ID	in	a	local	variable,	and	then	it	uses	that	local
variable	when	inserting	rows	into	the	Sales.OrderDetails	table.	For	test	purposes,	I	added	a
SELECT	statement	that	returns	the	order	ID	of	the	newly	generated	order.	Here’s	the	output
from	the	SELECT	statement	after	the	code	runs:

neworderid

11078

Note	that	this	example	has	no	error	handling	and	does	not	make	any	provision	for	a
ROLLBACK	in	case	of	an	error.	To	handle	errors,	you	can	enclose	a	transaction	in	a
TRY/CATCH	construct.	You	can	find	an	overview	of	error	handling	in	Chapter	11.
When	you’re	done,	run	the	following	code	for	cleanup:

Click	here	to	view	code	image

DELETE	FROM	Sales.OrderDetails
WHERE	orderid	>	11077;

DELETE	FROM	Sales.Orders
WHERE	orderid	>	11077;

Locks	and	blocking
By	default,	a	SQL	Server	box	product	uses	a	pure	locking	model	to	enforce	the	isolation
property	of	transactions.	The	following	sections	provide	details	about	locking	and	explain
how	to	troubleshoot	blocking	situations	that	are	caused	by	conflicting	lock	requests.
As	mentioned,	Azure	SQL	Database	uses	the	row-versioning	model	by	default.	If	you’re

testing	the	code	in	this	chapter	on	Azure	SQL	Database,	you	need	to	turn	off	the	database
property	READ_COMMITTED_SNAPSHOT	to	switch	to	the	locking	model	as	the	default.	Use
the	following	code	to	achieve	this:
Click	here	to	view	code	image

ALTER	DATABASE	TSQLV4	SET	READ_COMMITTED_SNAPSHOT	OFF;

If	you’re	connected	to	the	TSQLV4	database,	you	can	alternatively	use	the	keyword
CURRENT	instead	of	the	database	name.	Also,	by	default,	connections	to	Azure	SQL	Database
time	out	quite	quickly.	So	if	a	demo	you’re	running	doesn’t	work	as	expected,	it	could	be	that
a	connection	involved	in	that	demo	timed	out.

Locks
Locks	are	control	resources	obtained	by	a	transaction	to	guard	data	resources,	preventing
conflicting	or	incompatible	access	by	other	transactions.	I’ll	first	cover	the	important	lock
modes	supported	by	SQL	Server	and	their	compatibility,	and	then	I’ll	describe	the	lockable
resource	types.

Lock	modes	and	compatibility
As	you	start	learning	about	transactions	and	concurrency,	you	should	first	familiarize
yourself	with	two	main	lock	modes:	exclusive	and	shared.

When	you	try	to	modify	data,	your	transaction	requests	an	exclusive	lock	on	the	data
resource,	regardless	of	your	isolation	level.	(You’ll	learn	more	about	isolation	levels	later	in
this	chapter.)	If	granted,	the	exclusive	lock	is	held	until	the	end	of	the	transaction.	For	single-
statement	transactions,	this	means	that	the	lock	is	held	until	the	statement	completes.	For
multistatement	transactions,	this	means	that	the	lock	is	held	until	all	statements	complete	and
the	transaction	is	ended	by	a	COMMIT	TRAN	or	ROLLBACK	TRAN	command.
Exclusive	locks	are	called	“exclusive”	because	you	cannot	obtain	an	exclusive	lock	on	a

resource	if	another	transaction	is	holding	any	lock	mode	on	the	resource,	and	no	lock	mode
can	be	obtained	on	a	resource	if	another	transaction	is	holding	an	exclusive	lock	on	the
resource.	This	is	the	way	modifications	behave	by	default,	and	this	default	behavior	cannot	be
changed—not	in	terms	of	the	lock	mode	required	to	modify	a	data	resource	(exclusive)	and
not	in	terms	of	the	duration	of	the	lock	(until	the	end	of	the	transaction).	In	practical	terms,
this	means	that	if	one	transaction	modifies	rows,	until	the	transaction	is	completed,	another
transaction	cannot	modify	the	same	rows.	However,	whether	another	transaction	can	read	the
same	rows	or	not	depends	on	its	isolation	level.
As	for	reading	data,	the	defaults	are	different	for	a	SQL	Server	box	product	and	Azure	SQL

Database.	In	SQL	Server,	the	default	isolation	level	is	called	READ	COMMITTED.	In	this
isolation,	when	you	try	to	read	data,	by	default	your	transaction	requests	a	shared	lock	on	the
data	resource	and	releases	the	lock	as	soon	as	the	read	statement	is	done	with	that	resource.
This	lock	mode	is	called	“shared”	because	multiple	transactions	can	hold	shared	locks	on	the
same	data	resource	simultaneously.	Although	you	cannot	change	the	lock	mode	and	duration
required	when	you’re	modifying	data,	you	can	control	the	way	locking	is	handled	when
you’re	reading	data	by	changing	your	isolation	level.	As	mentioned,	I	will	elaborate	on	this
later	in	this	chapter.
In	Azure	SQL	Database,	the	default	isolation	level	is	called	READ	COMMITTED

SNAPSHOT.	Instead	of	relying	only	on	locking,	this	isolation	level	relies	on	a	combination	of
locking	and	row	versioning.	Under	this	isolation	level,	readers	do	not	require	shared	locks,
and	therefore	they	never	wait;	they	rely	on	the	row-versioning	technology	to	provide	the
expected	isolation.	In	practical	terms,	this	means	that	under	the	READ	COMMITTED	isolation
level,	if	a	transaction	modifies	rows,	until	the	transaction	completes,	another	transaction	can’t
read	the	same	rows.	This	approach	to	concurrency	control	is	known	as	the	pessimistic
concurrency	approach.	Under	the	READ	COMMITTED	SNAPSHOT	isolation	level,	if	a
transaction	modifies	rows,	another	transaction	trying	to	read	the	data	will	get	the	last
committed	state	of	the	rows	that	was	available	when	the	statement	started.	This	approach	to
concurrency	control	is	known	as	the	optimistic	concurrency	approach.
This	lock	interaction	between	transactions	is	known	as	lock	compatibility.	Table	10-1	shows

the	lock	compatibility	of	exclusive	and	shared	locks	(when	you’re	working	with	an	isolation
level	that	generates	these	locks).	The	columns	represent	granted	lock	modes,	and	the	rows
represent	requested	lock	modes.

TABLE	10-1	Lock	compatibility	of	exclusive	and	shared	locks

A	“No”	in	the	intersection	means	that	the	locks	are	incompatible	and	the	requested	mode	is
denied;	the	requester	must	wait.	A	“Yes”	in	the	intersection	means	that	the	locks	are
compatible	and	the	requested	mode	is	accepted.
The	following	summarizes	lock	interaction	between	transactions	in	simple	terms:	data	that

was	modified	by	one	transaction	can	neither	be	modified	nor	read	(at	least	by	default	in	a	SQL
Server	box	product)	by	another	transaction	until	the	first	transaction	finishes.	And	while	data
is	being	read	by	one	transaction,	it	cannot	be	modified	by	another	(at	least	by	default	in	a	SQL
Server	box	product).

Lockable	resource	types
SQL	Server	can	lock	different	types	of	resources.	Those	include	rows	(RID	in	a	heap,	key	in
an	index)	pages,	objects	(for	example,	tables),	databases,	and	others.	Rows	reside	within
pages,	and	pages	are	the	physical	data	blocks	that	contain	table	or	index	data.	You	should	first
familiarize	yourself	with	these	resource	types,	and	at	a	more	advanced	stage,	you	might	want
to	familiarize	yourself	with	other	lockable	resource	types	such	as	extents,	allocation	units,
and	heaps	or	B-trees.
To	obtain	a	lock	on	a	certain	resource	type,	your	transaction	must	first	obtain	intent	locks

of	the	same	mode	on	higher	levels	of	granularity.	For	example,	to	get	an	exclusive	lock	on	a
row,	your	transaction	must	first	acquire	intent	exclusive	locks	on	the	table	and	the	page	where
the	row	resides.	Similarly,	to	get	a	shared	lock	on	a	certain	level	of	granularity,	your
transaction	first	needs	to	acquire	intent	shared	locks	on	higher	levels	of	granularity.	The
purpose	of	intent	locks	is	to	efficiently	detect	incompatible	lock	requests	on	higher	levels	of
granularity	and	prevent	the	granting	of	those.	For	example,	if	one	transaction	holds	a	lock	on
a	row	and	another	asks	for	an	incompatible	lock	mode	on	the	whole	page	or	table	where	that
row	resides,	it’s	easy	for	SQL	Server	to	identify	the	conflict	because	of	the	intent	locks	that
the	first	transaction	acquired	on	the	page	and	table.	Intent	locks	do	not	interfere	with	requests
for	locks	on	lower	levels	of	granularity.	For	example,	an	intent	lock	on	a	page	doesn’t
prevent	other	transactions	from	acquiring	incompatible	lock	modes	on	rows	within	the	page.
Table	10-2	expands	on	the	lock	compatibility	table	shown	in	Table	10-1,	adding	intent
exclusive	and	intent	shared	locks.

TABLE	10-2	Lock	compatibility	including	intent	locks

SQL	Server	determines	dynamically	which	resource	types	to	lock.	Naturally,	for	ideal
concurrency,	it’s	best	to	lock	only	what	needs	to	be	locked—namely,	only	the	affected	rows.
However,	locks	require	memory	resources	and	internal	management	overhead.	So	SQL
Server	considers	both	concurrency	and	system	resources	when	it’s	choosing	which	resource
types	to	lock.	When	SQL	Server	estimates	that	a	transaction	will	interact	with	a	small	number
of	rows,	it	tends	to	use	row	locks.	With	larger	numbers	of	rows,	SQL	Server	tends	to	use	page
locks.
SQL	Server	might	first	acquire	fine-grained	locks	(such	as	row	or	page	locks)	and,	in

certain	circumstances,	try	to	escalate	the	fine-grained	locks	to	a	table	lock	to	preserve
memory.	For	example,	lock	escalation	is	triggered	when	a	single	statement	acquires	at	least
5,000	locks	against	the	same	object,	and	then	for	every	1,250	new	locks,	if	previous	attempts
at	lock	escalation	were	unsuccessful.
You	can	set	a	table	option	called	LOCK_ESCALATION	by	using	the	ALTER	TABLE

statement	to	control	the	way	lock	escalation	behaves.	You	can	disable	lock	escalation	if	you
like,	or	you	can	determine	whether	escalation	takes	place	at	a	table	level	(default)	or	a
partition	level.	(A	table	can	be	physically	organized	into	multiple	smaller	units	called
partitions.)

Troubleshooting	blocking
When	one	transaction	holds	a	lock	on	a	data	resource	and	another	transaction	requests	an
incompatible	lock	on	the	same	resource,	the	request	is	blocked	and	the	requester	enters	a	wait
state.	By	default,	the	blocked	request	keeps	waiting	until	the	blocker	releases	the	interfering
lock.	Later	in	this	section,	I’ll	explain	how	you	can	define	a	lock	expiration	time-out	in	your
session	if	you	want	to	restrict	the	amount	of	time	that	a	blocked	request	waits	before	it	times
out.
Blocking	is	normal	in	a	system	as	long	as	requests	are	satisfied	within	a	reasonable	amount

of	time.	However,	if	some	requests	end	up	waiting	too	long,	you	might	need	to	troubleshoot
the	blocking	situation	and	see	whether	you	can	do	something	to	prevent	such	long	latencies.
For	example,	long-running	transactions	result	in	locks	being	held	for	long	periods.	You	can
try	to	shorten	such	transactions,	moving	activities	that	are	not	supposed	to	be	part	of	the	unit
of	work	outside	the	transaction.	A	bug	in	the	application	might	result	in	a	transaction	that
remains	open	in	certain	circumstances.	If	you	identify	such	a	bug,	you	can	fix	it	and	ensure
that	the	transaction	is	closed	in	all	circumstances.
The	next	example	demonstrates	a	blocking	situation	and	how	to	troubleshoot	it.	I’m

assuming	that	you’re	running	under	the	isolation	level	READ	COMMITTED.	Open	three
separate	query	windows	in	SQL	Server	Management	Studio.	(For	this	example,	I’ll	refer	to
them	as	Connection	1,	Connection	2,	and	Connection	3.)	Make	sure	that	in	all	of	them	you	are
connected	to	the	sample	database	TSQLV4:

USE	TSQLV4;

Run	the	following	code	in	Connection	1	to	update	a	row	in	the	Production.Products	table,
adding	1.00	to	the	current	unit	price	of	19.00	for	product	2:

BEGIN	TRAN;

		UPDATE	Production.Products
				SET	unitprice	+=	1.00
		WHERE	productid	=	2;

To	update	the	row,	your	session	had	to	acquire	an	exclusive	lock,	and	if	the	update	was
successful,	SQL	Server	granted	your	session	the	lock.	Recall	that	exclusive	locks	are	kept
until	the	end	of	the	transaction,	and	because	the	transaction	remains	open,	the	lock	is	still	held.
Run	the	following	code	in	Connection	2	to	try	to	query	the	same	row:
SELECT	productid,	unitprice
FROM	Production.Products
WHERE	productid	=	2;

Your	session	needs	a	shared	lock	to	read	the	data,	but	because	the	row	is	exclusively	locked
by	the	other	session,	and	a	shared	lock	is	incompatible	with	an	exclusive	lock,	your	session	is
blocked	and	has	to	wait.
Assuming	that	such	a	blocking	situation	happens	in	your	system,	and	the	blocked	session

ends	up	waiting	for	a	long	time,	you	probably	want	to	troubleshoot	the	situation.	The	rest	of
this	section	provides	queries	against	dynamic	management	objects	(objects	providing
dynamic	information	about	various	aspects	of	your	system),	including	views	and	functions,
that	you	should	run	from	Connection	3	when	you	troubleshoot	the	blocking	situation.
To	get	lock	information,	including	both	locks	that	are	currently	granted	to	sessions	and

locks	that	sessions	are	waiting	for,	query	the	dynamic	management	view	(DMV)
sys.dm_tran_locks	in	Connection	3:
Click	here	to	view	code	image

SELECT	--	use	*	to	explore	other	available	attributes
		request_session_id												AS	sid,
		resource_type																	AS	restype,
		resource_database_id										AS	dbid,
		DB_NAME(resource_database_id)	AS	dbname,
		resource_description										AS	res,
		resource_associated_entity_id	AS	resid,
		request_mode																		AS	mode,
		request_status																AS	status
FROM	sys.dm_tran_locks;

When	I	run	this	code	in	my	system	(with	no	other	query	window	open),	I	get	the	following
output:
Click	here	to	view	code	image

sid		restype		dbid	dbname																res												resid													mode
status
----	--------	----	---------------------	--------------	-----------------	----	---

53			DATABASE
8				TSQLV4																															0																	S				GRANT
52			DATABASE
8				TSQLV4																															0																	S				GRANT
51			DATABASE
8				TSQLV4																															0																	S				GRANT
54			DATABASE

8				TSQLV4																															0																	S				GRANT
53			PAGE					8				TSQLV4																1:127										72057594038845440
IS			GRANT
52			PAGE					8				TSQLV4																1:127										72057594038845440
IX			GRANT
53			OBJECT			8				TSQLV4																															133575514									IS			GRANT
52			OBJECT			8				TSQLV4																															133575514									IX			GRANT
52			KEY						8				TSQLV4																(020068e8b274)	72057594038845440
X				GRANT
53			KEY						8				TSQLV4																(020068e8b274)	72057594038845440
S				WAIT

Each	session	is	identified	by	a	unique	session	ID.	You	can	determine	your	session’s	ID	by
querying	the	function	@@SPID.	If	you’re	working	with	SQL	Server	Management	Studio,
you’ll	find	the	session	ID	in	parentheses	to	the	right	of	the	login	name	in	the	status	bar	at	the
bottom	of	the	query	window	that	has	the	focus,	and	also	in	the	caption	of	the	connected	query
window.	For	example,	Figure	10-1	shows	a	screenshot	of	SQL	Server	Management	Studio
(SSMS),	where	the	session	ID	52	appears	to	the	right	of	the	login	name	MERU\Gandalf.

FIGURE	10-1	The	session	ID	shown	in	SQL	Server	Management	Studio.

As	you	can	see	in	the	output	of	the	query	against	sys.dm_tran_locks,	four	sessions	(51,	52,
53,	and	54)	are	currently	holding	locks.	You	can	see	the	following:

	The	resource	type	that	is	locked	(for	example,	KEY	for	a	row	in	an	index)

	The	ID	of	the	database	in	which	it	is	locked,	which	you	can	translate	to	the	database
name	by	using	the	DB_NAME	function
	The	resource	and	resource	ID
	The	lock	mode
	Whether	the	lock	was	granted	or	the	session	is	waiting	for	it

Note	that	this	is	only	a	subset	of	the	view’s	attributes;	I	recommend	that	you	explore	the
other	attributes	of	the	view	to	learn	what	other	information	about	locks	is	available.
In	the	output	from	my	query,	you	can	observe	that	session	53	is	waiting	for	a	shared	lock

on	a	row	in	the	sample	database	TSQLV4.	(The	database	name	is	obtained	with	the	DB_NAME
function.)	Notice	that	session	52	is	holding	an	exclusive	lock	on	the	same	row.	You	can
determine	this	by	observing	that	both	sessions	lock	a	row	with	the	same	res	and	resid	values.
You	can	figure	out	which	table	is	involved	by	moving	upward	in	the	lock	hierarchy	for	either
session	52	or	53	and	inspecting	the	intent	locks	on	the	object	(table)	where	the	row	resides.
You	can	use	the	OBJECT_NAME	function	to	translate	the	object	ID	(133575514	in	this
example)	that	appears	under	the	resid	attribute	in	the	object	lock.	You	will	find	that	the	table
involved	is	Production.Product.
The	sys.dm_tran_locks	view	gives	you	information	about	the	IDs	of	the	sessions	involved

in	the	blocking	chain.	A	blocking	chain	is	a	chain	of	two	or	more	sessions	that	are	involved	in
the	blocking	situation.	You	could	have	session	x	blocking	session	y,	session	y	blocking
session	z,	and	so	on—hence	the	use	of	the	term	chain.	To	get	information	about	the
connections	associated	with	those	session	IDs,	query	a	view	called	sys.dm_exec_connections
and	filter	only	the	session	IDs	that	are	involved:

SELECT	--	use	*	to	explore
		session_id	AS	sid,
		connect_time,
		last_read,
		last_write,
		most_recent_sql_handle
FROM	sys.dm_exec_connections
WHERE	session_id	IN(52,	53);

Note	that	the	session	IDs	that	were	involved	in	the	blocking	chain	in	my	system	were	52	and
53.	Depending	on	what	else	you’re	doing	in	your	system,	you	might	get	different	ones.	When
you	run	the	queries	that	I	demonstrate	here	in	your	system,	make	sure	that	you	substitute	the
session	IDs	with	those	you	find	involved	in	your	blocking	chain.
This	query	returns	the	following	output	(split	into	several	parts	for	display	purposes	here):

Click	here	to	view	code	image

sid				connect_time														last_read
------	-------------------------	-----------------------
52					2016-06-25	15:20:03.360			2016-06-25	15:20:15.750
53					2016-06-25	15:20:07.300			2016-06-25	15:20:20.950

sid				last_write																most_recent_sql_handle
------	-------------------------	---
-
52					2016-06-25

15:20:15.817			0x01000800DE2DB71FB0936F05000000000000000000000000
53					2016-06-25
15:20:07.327			0x0200000063FC7D052E09844778CDD615CFE7A2D1FB411802

The	information	that	this	query	gives	you	about	the	connections	includes
	The	time	they	connected.
	The	time	of	their	last	read	and	write.
	A	binary	value	holding	a	handle	to	the	most	recent	SQL	batch	run	by	the	connection.
You	provide	this	handle	as	an	input	parameter	to	a	table	function	called
sys.dm_exec_sql_text,	and	the	function	returns	the	batch	of	code	represented	by	the
handle.	You	can	query	the	table	function	passing	the	binary	handle	explicitly,	but	you’ll
probably	find	it	more	convenient	to	use	the	APPLY	table	operator	described	in	Chapter
5,	“Table	expressions,”	to	apply	the	table	function	to	each	connection	row	like	this	(run
in	Connection	3):

Click	here	to	view	code	image

SELECT	session_id,	text
FROM	sys.dm_exec_connections
		CROSS	APPLY	sys.dm_exec_sql_text(most_recent_sql_handle)	AS	ST
WHERE	session_id	IN(52,	53);

When	I	run	this	query,	I	get	the	following	output,	showing	the	last	batch	of	code	invoked	by
each	connection	involved	in	the	blocking	chain:
Click	here	to	view	code	image

session_id		text
-----------	-------------------------------------
52										BEGIN	TRAN;

														UPDATE	Production.Products
																SET	unitprice	+=	1.00
														WHERE	productid	=	2;

53										(@1	tinyint)
												SELECT	[productid],[unitprice]
												FROM	[Production].[Products]
												WHERE	[productid]=@1

The	blocked	session—53—shows	the	query	that	is	waiting	because	that’s	the	last	thing	the
session	ran.	As	for	the	blocker,	in	this	example,	you	can	see	the	statement	that	caused	the
problem,	but	keep	in	mind	that	the	blocker	might	continue	working	and	that	the	last	thing	you
see	in	the	code	isn’t	necessarily	the	statement	that	caused	the	trouble.
In	SQL	Server	2016,	you	can	use	the	function	sys.dm_exec_input_buffer	instead	of

sys.dm_exec_sql_text	to	get	the	code	that	the	sessions	of	interest	submitted	last.	The	function
accepts	a	session	ID	and	request	ID	(from	sys.dm_exec_requests,	which	is	described	shortly),
or	a	NULL	instead	of	a	request	ID	if	the	ID	is	not	relevant.	Here’s	the	code	to	replace	the	last
example	using	the	new	function:
Click	here	to	view	code	image

SELECT	session_id,	event_info
FROM	sys.dm_exec_connections

		CROSS	APPLY	sys.dm_exec_input_buffer(session_id,	NULL)	AS	IB
WHERE	session_id	IN(52,	53);

You	can	also	find	a	lot	of	useful	information	about	the	sessions	involved	in	a	blocking
situation	in	the	DMV	sys.dm_exec_sessions.	The	following	query	returns	only	a	small	subset
of	the	attributes	available	about	those	sessions:

SELECT	--	use	*	to	explore
		session_id	AS	sid,
		login_time,
		host_name,
		program_name,
		login_name,
		nt_user_name,
		last_request_start_time,
		last_request_end_time
FROM	sys.dm_exec_sessions
WHERE	session_id	IN(52,	53);

This	query	returns	the	following	output	in	this	example,	split	here	into	several	parts:
Click	here	to	view	code	image

sid		login_time																host_name
----	-------------------------	---------
52			2016-06-25	15:20:03.407			K2
53			2016-06-25	15:20:07.303			K2

sid				program_name																																					login_name
------	--	---------------
52					Microsoft	SQL	Server	Management	Studio	-	Query			K2\Gandalf
53					Microsoft	SQL	Server	Management	Studio	-	Query			K2\Gandalf

sid				nt_user_name			last_request_start_time			last_request_end_time
------	--------------	-------------------------	-----------------------
52					Gandalf								2016-06-25	15:20:15.703			2016-06-25	15:20:15.750
53					Gandalf								2016-06-25	15:20:20.693			2016-06-25	15:20:07.320

This	output	contains	information	such	as	the	session’s	logon	time,	the	host	name,	the
program	name,	the	login	name,	the	Windows	user	name	(the	nt_user_name	column),	the	time
that	the	last	request	started,	and	the	time	that	the	last	request	ended.	This	kind	of	information
gives	you	a	good	idea	of	what	those	sessions	are	doing.
Another	DMV	you’ll	probably	find	useful	for	troubleshooting	blocking	situations	is

sys.dm_exec_requests.	This	view	has	a	row	for	each	active	request,	including	blocked
requests.	In	fact,	you	can	easily	isolate	blocked	requests	because	the	attribute
blocking_session_id	is	greater	than	zero.	For	example,	the	following	query	filters	only
blocked	requests:
Click	here	to	view	code	image

SELECT	--	use	*	to	explore
		session_id	AS	sid,
		blocking_session_id,
		command,
		sql_handle,
		database_id,
		wait_type,

		wait_time,
		wait_resource
FROM	sys.dm_exec_requests
WHERE	blocking_session_id	>	0;

This	query	returns	the	following	output,	split	across	several	lines:
Click	here	to	view	code	image

sid				blocking_session_id			command
------	---------------------	-------
53					52																				SELECT

sid				sql_handle																																											database_id
------	--	-----------
53					0x0200000063FC7D052E09844778CDD615CFE7A2D1FB411802			8

sid				wait_type			wait_time			wait_resource
------	-----------	-----------	---------------------------------------
53					LCK_M_S					1383760					KEY:	8:72057594038845440	(020068e8b274)

You	can	easily	identify	the	sessions	that	participate	in	the	blocking	chain,	the	resource	in
dispute,	how	long	the	blocked	session	is	waiting	in	milliseconds,	and	more.
Alternatively,	you	can	query	a	DMV	called	sys.dm_os_waiting_tasks,	which	has	only	tasks

that	are	currently	waiting.	It	also	has	an	attribute	called	blocking_session_id,	and	to
troubleshoot	blocking	you’ll	filter	only	the	waiting	tasks	where	this	attribute	is	greater	than
zero.	Some	information	in	this	view	overlaps	with	that	in	the	sys.dm_exec_requests	view,	but	it
does	provide	a	few	attributes	that	are	unique	to	it	with	some	more	information,	like	the
resource	description	that	is	in	conflict.
If	you	need	to	terminate	the	blocker—for	example,	if	you	realize	that	as	a	result	of	a	bug	in

the	application	the	transaction	remained	open	and	nothing	in	the	application	can	close	it—you
can	do	so	by	using	the	KILL	<session_id>	command.	(Don’t	do	so	yet.)
Earlier,	I	mentioned	that	by	default	the	session	has	no	lock	timeout	set.	If	you	want	to

restrict	the	amount	of	time	your	session	waits	for	a	lock,	you	can	set	a	session	option	called
LOCK_TIMEOUT.	You	specify	a	value	in	milliseconds—such	as	5000	for	5	seconds,	0	for	an
immediate	timeout,	and	–1	for	no	timeout	(which	is	the	default).	To	see	how	this	option
works,	first	stop	the	query	in	Connection	2	by	choosing	Cancel	Executing	Query	from	the
Query	menu	(or	by	pressing	Alt+Break).	Note	that	if	you	had	an	explicit	transaction	open,
canceling	the	executing	query	wouldn’t	cancel	the	transaction	automatically.	Run	the
following	code	to	set	the	lock	timeout	to	five	seconds,	and	run	the	query	again:

SET	LOCK_TIMEOUT	5000;

SELECT	productid,	unitprice
FROM	Production.Products
WHERE	productid	=	2;

The	query	is	still	blocked	because	Connection	1	hasn’t	yet	ended	the	update	transaction,	but
if	after	5	seconds	the	lock	request	is	not	satisfied,	SQL	Server	terminates	the	query	and	you
get	the	following	error:
Click	here	to	view	code	image

Msg	1222,	Level	16,	State	51,	Line	3
Lock	request	time	out	period	exceeded.

Note	that	lock	timeouts	do	not	roll	back	transactions.
To	remove	the	lock	timeout	value,	set	it	back	to	the	default	(no	timeout),	issue	the	query

again,	and	run	the	following	code	in	Connection	2:
SET	LOCK_TIMEOUT	-1;

SELECT	productid,	unitprice
FROM	Production.Products
WHERE	productid	=	2;

To	terminate	the	update	transaction	in	Connection	1,	run	the	following	code	from
Connection	3:

KILL	52;

This	statement	causes	a	rollback	of	the	transaction	in	Connection	1,	meaning	that	the	price
change	of	product	2	from	19.00	to	20.00	is	undone,	and	the	exclusive	lock	is	released.	Go	to
Connection	2.	The	query	that	was	blocked	until	now	is	able	to	acquire	the	lock,	and	you	get
the	data	after	the	change	is	undone—namely,	before	the	price	change:
Click	here	to	view	code	image

productid			unitprice
-----------	---------------------
2											19.00

	Note
If	you	try	to	close	a	query	window	while	a	transaction	is	still	open,	SSMS	will	prompt
you	to	choose	between	committing	or	rolling	back	the	open	transaction.

Isolation	levels
Isolation	levels	determine	the	level	of	consistency	you	get	when	you	interact	with	data.	In	the
default	isolation	level	in	a	box	product,	a	reader	uses	shared	locks	on	the	target	resources	and
a	writer	uses	exclusive	locks.	You	cannot	control	the	way	writers	behave	in	terms	of	the	locks
they	acquire	and	the	duration	of	the	locks,	but	you	can	control	the	way	readers	behave.	Also,
as	a	result	of	controlling	the	behavior	of	readers,	you	can	have	an	implicit	influence	on	the
behavior	of	writers.	You	do	so	by	setting	the	isolation	level,	either	at	the	session	level	with	a
session	option	or	at	the	query	level	with	a	table	hint.
SQL	Server	supports	four	isolation	levels	that	are	based	on	the	pure	locking	model:	READ

UNCOMMITTED,	READ	COMMITTED	(the	default	in	a	SQL	Server	box	product),
REPEATABLE	READ,	and	SERIALIZABLE.	SQL	Server	also	supports	two	isolation	levels	that
are	based	on	a	combination	of	locking	and	row	versioning:	SNAPSHOT	and	READ
COMMITTED	SNAPSHOT	(the	default	in	Azure	SQL	Database).	SNAPSHOT	and	READ
COMMITTED	SNAPSHOT	are	in	a	sense	the	row-versioning	counterparts	of	READ

COMMITTED	and	SERIALIZABLE,	respectively.
Some	texts	refer	to	READ	COMMITTED	and	READ	COMMITTED	SNAPSHOT	as	one

isolation	level	with	two	different	semantic	treatments.
You	can	set	the	isolation	level	of	the	whole	session	by	using	the	following	command:

Click	here	to	view	code	image

SET	TRANSACTION	ISOLATION	LEVEL	<isolation	name>;

You	can	use	a	table	hint	to	set	the	isolation	level	of	a	query:
Click	here	to	view	code	image

SELECT	...	FROM	<table>	WITH	(<isolationname>);

	Note
You	cannot	explicitly	set	the	isolation	level	name	READ	COMMITTED	SNAPSHOT	as	a
session	or	query	option.	To	use	this	isolation	level,	you	need	a	database	flag	to	be
enabled.	I	provide	details	on	this	later	in	the	chapter	in	the	section	“Isolation	levels
based	on	row	versioning.”

With	the	session	option,	you	specify	a	space	between	the	words	in	case	the	name	of	the
isolation	level	is	made	of	more	than	one	word,	such	as	REPEATABLE	READ.	With	the	query
hint,	you	don’t	specify	a	space	between	the	words—for	example,	WITH	(REPEATABLEREAD).
Also,	some	isolation-level	names	used	as	table	hints	have	synonyms.	For	example,	NOLOCK
is	the	equivalent	of	specifying	READUNCOMMITTED,	and	HOLDLOCK	is	the	equivalent	of
specifying	SERIALIZABLE.
The	default	isolation	level	in	a	SQL	Server	box	product	instance	is	READ	COMMITTED

(based	on	locking).	The	default	in	Azure	SQL	Database	is	READ	COMMITTED	SNAPSHOT
(based	on	locking	and	row	versioning).	By	changing	the	isolation	level,	you	affect	both	the
concurrency	of	the	database	users	and	the	consistency	they	get	from	the	data.
With	the	first	four	isolation	levels,	the	higher	the	isolation	level,	the	stricter	the	locks	are

that	readers	request	and	the	longer	their	duration	is;	therefore,	the	higher	the	isolation	level
is,	the	higher	the	consistency	is	and	the	lower	the	concurrency	is.
With	the	two	rows-versioning-based	isolation	levels,	SQL	Server	is	able	to	store	previous

committed	versions	of	rows	in	tempdb.	Readers	do	not	request	shared	locks;	instead,	if	the
current	version	of	the	rows	is	not	what	they	are	supposed	to	see,	SQL	Server	provides	them
with	an	older	version.
The	following	sections	describe	each	of	the	six	supported	isolation	levels	and	demonstrate

their	behavior.

The	READ	UNCOMMITTED	isolation	level
READ	UNCOMMITTED	is	the	lowest	available	isolation	level.	In	this	isolation	level,	a	reader
doesn’t	ask	for	a	shared	lock.	A	reader	that	doesn’t	ask	for	a	shared	lock	can	never	be	in
conflict	with	a	writer	that	is	holding	an	exclusive	lock.	This	means	that	the	reader	can	read
uncommitted	changes	(also	known	as	dirty	reads).	It	also	means	the	reader	won’t	interfere
with	a	writer	that	asks	for	an	exclusive	lock.	In	other	words,	a	writer	can	change	data	while	a
reader	that	is	running	under	the	READ	UNCOMMITTED	isolation	level	reads	data.
To	see	how	an	uncommitted	read	(dirty	read)	works,	open	two	query	windows.	(I’ll	refer	to

them	as	Connection	1	and	Connection	2.)	Make	sure	that	in	all	connections	your	database
context	is	that	of	the	sample	database	TSQLV4.	To	avoid	confusion,	make	sure	that	this	is	the
only	activity	in	the	instance.
Run	the	following	code	in	Connection	1	to	open	a	transaction,	update	the	unit	price	of

product	2	by	adding	1.00	to	its	current	price	(19.00),	and	then	query	the	product’s	row:
BEGIN	TRAN;

		UPDATE	Production.Products
				SET	unitprice	+=	1.00
		WHERE	productid	=	2;

		SELECT	productid,	unitprice
		FROM	Production.Products
		WHERE	productid	=	2;

Note	that	the	transaction	remains	open,	meaning	that	the	product’s	row	is	locked
exclusively	by	Connection	1.	The	code	in	Connection	1	returns	the	following	output	showing
the	product’s	new	price:
Click	here	to	view	code	image

productid			unitprice
-----------	---------------------
2											20.00

In	Connection	2,	run	the	following	code	to	set	the	isolation	level	to	READ	UNCOMMITTED
and	query	the	row	for	product	2:
Click	here	to	view	code	image

SET	TRANSACTION	ISOLATION	LEVEL	READ	UNCOMMITTED;

SELECT	productid,	unitprice
FROM	Production.Products
WHERE	productid	=	2;

Because	the	query	did	not	request	a	shared	lock,	it	was	not	in	conflict	with	the	other
transaction.	This	query	returned	the	state	of	the	row	after	the	change,	even	though	the	change
was	not	committed:
Click	here	to	view	code	image

productid			unitprice
-----------	---------------------
2											20.00

Keep	in	mind	that	Connection	1	might	apply	further	changes	to	the	row	later	in	the
transaction	or	even	roll	back	at	some	point.	For	example,	run	the	following	code	in
Connection	1	to	roll	back	the	transaction:

ROLLBACK	TRAN;

This	rollback	undoes	the	update	of	product	2,	changing	its	price	back	to	19.00.	The	value
20.00	that	the	reader	got	was	never	committed.	That’s	an	example	of	a	dirty	read.

The	READ	COMMITTED	isolation	level
If	you	want	to	prevent	readers	from	reading	uncommitted	changes,	you	need	to	use	a	stronger
isolation	level.	The	lowest	isolation	level	that	prevents	dirty	reads	is	READ	COMMITTED,
which	is	also	the	default	isolation	level	in	SQL	Server	(the	box	product).	As	the	name
indicates,	this	isolation	level	allows	readers	to	read	only	committed	changes.	It	prevents
uncommitted	reads	by	requiring	a	reader	to	obtain	a	shared	lock.	This	means	that	if	a	writer	is
holding	an	exclusive	lock,	the	reader ’s	shared	lock	request	will	be	in	conflict	with	the	writer,
and	it	has	to	wait.	As	soon	as	the	writer	commits	the	transaction,	the	reader	can	get	its	shared
lock,	but	what	it	reads	are	necessarily	only	committed	changes.
The	following	example	demonstrates	that,	in	this	isolation	level,	a	reader	can	read	only

committed	changes.
Run	the	following	code	in	Connection	1	to	open	a	transaction,	update	the	price	of	product

2,	and	query	the	row	to	show	the	new	price:
Click	here	to	view	code	image

BEGIN	TRAN;

		UPDATE	Production.Products
				SET	unitprice	+=	1.00
		WHERE	productid	=	2;

		SELECT	productid,	unitprice
		FROM	Production.Products
		WHERE	productid	=	2;

This	code	returns	the	following	output:
Click	here	to	view	code	image

productid			unitprice
-----------	---------------------
2											20.00

Connection	1	now	locks	the	row	for	product	2	exclusively.
Run	the	following	code	in	Connection	2	to	set	the	session’s	isolation	level	to	READ

COMMITTED	and	query	the	row	for	product	2:
Click	here	to	view	code	image

SET	TRANSACTION	ISOLATION	LEVEL	READ	COMMITTED;

SELECT	productid,	unitprice
FROM	Production.Products

WHERE	productid	=	2;

Keep	in	mind	that	this	isolation	level	is	the	default,	so	unless	you	previously	changed	the
session’s	isolation	level,	you	don’t	need	to	set	it	explicitly.	The	SELECT	statement	is	currently
blocked	because	it	needs	a	shared	lock	to	be	able	to	read	the	row,	and	this	shared	lock	request
is	in	conflict	with	the	exclusive	lock	held	by	the	writer	in	Connection	1.
Next,	run	the	following	code	in	Connection	1	to	commit	the	transaction:
COMMIT	TRAN;

Now	go	to	Connection	2	and	notice	that	you	get	the	following	output:
Click	here	to	view	code	image

productid			unitprice
-----------	---------------------
2											20.00

Unlike	in	READ	UNCOMMITTED,	in	the	READ	COMMITTED	isolation	level,	you	don’t	get
dirty	reads.	Instead,	you	can	read	only	committed	changes.
In	terms	of	the	duration	of	locks,	in	the	READ	COMMITTED	isolation	level,	a	reader	holds

the	shared	lock	only	until	it’s	done	with	the	resource.	It	doesn’t	keep	the	lock	until	the	end	of
the	transaction;	in	fact,	it	doesn’t	even	keep	the	lock	until	the	end	of	the	statement.	This	means
that	in	between	two	reads	of	the	same	data	resource	in	the	same	transaction,	no	lock	is	held	on
the	resource.	Therefore,	another	transaction	can	modify	the	resource	in	between	those	two
reads,	and	the	reader	might	get	different	values	in	each	read.	This	phenomenon	is	called
nonrepeatable	reads	or	inconsistent	analysis.	For	many	applications,	this	phenomenon	is
acceptable,	but	for	some	it	isn’t.
When	you’re	done,	run	the	following	code	for	cleanup	in	any	of	the	open	connections:
UPDATE	Production.Products
		SET	unitprice	=	19.00
WHERE	productid	=	2;

Also,	ensure	any	open	transactions	in	all	windows	are	closed.

The	REPEATABLE	READ	isolation	level
If	you	want	to	ensure	that	no	one	can	change	values	in	between	reads	that	take	place	in	the
same	transaction,	you	need	to	move	up	in	the	isolation	levels	to	REPEATABLE	READ.	In	this
isolation	level,	not	only	does	a	reader	need	a	shared	lock	to	be	able	to	read,	but	it	also	holds
the	lock	until	the	end	of	the	transaction.	This	means	that	as	soon	as	the	reader	acquires	a
shared	lock	on	a	data	resource	to	read	it,	no	one	can	obtain	an	exclusive	lock	to	modify	that
resource	until	the	reader	ends	the	transaction.	This	way,	you’re	guaranteed	to	get	repeatable
reads,	or	consistent	analysis.
The	following	example	demonstrates	getting	repeatable	reads.	Run	the	following	code	in

Connection	1	to	set	the	session’s	isolation	level	to	REPEATABLE	READ,	open	a	transaction,
and	read	the	row	for	product	2:
Click	here	to	view	code	image

SET	TRANSACTION	ISOLATION	LEVEL	REPEATABLE	READ;

BEGIN	TRAN;

		SELECT	productid,	unitprice
		FROM	Production.Products
		WHERE	productid	=	2;

This	code	returns	the	following	output	showing	the	current	price	of	product	2:
Click	here	to	view	code	image

productid			unitprice
-----------	---------------------
2											19.00

Connection	1	still	holds	a	shared	lock	on	the	row	for	product	2	because	in	REPEATABLE
READ,	shared	locks	are	held	until	the	end	of	the	transaction.	Run	the	following	code	from
Connection	2	to	try	to	modify	the	row	for	product	2:

UPDATE	Production.Products
		SET	unitprice	+=	1.00
WHERE	productid	=	2;

Notice	that	the	attempt	is	blocked	because	the	modifier ’s	request	for	an	exclusive	lock	is	in
conflict	with	the	reader ’s	granted	shared	lock.	If	the	reader	was	running	under	the	READ
UNCOMMITTED	or	READ	COMMITTED	isolation	level,	it	wouldn’t	hold	the	shared	lock	at
this	point,	and	the	attempt	to	modify	the	row	would	be	successful.
Back	in	Connection	1,	run	the	following	code	to	read	the	row	for	product	2	a	second	time

and	commit	the	transaction:
Click	here	to	view	code	image

		SELECT	productid,	unitprice
		FROM	Production.Products
		WHERE	productid	=	2;

COMMIT	TRAN;

This	code	returns	the	following	output:
Click	here	to	view	code	image

productid			unitprice
-----------	---------------------
2											19.00

Notice	that	the	second	read	got	the	same	unit	price	for	product	2	as	the	first	read.	Now	that
the	reader ’s	transaction	has	been	committed	and	the	shared	lock	is	released,	the	modifier	in
Connection	2	can	obtain	the	exclusive	lock	it	was	waiting	for	and	update	the	row.
Another	phenomenon	prevented	by	REPEATABLE	READ	but	not	by	lower	isolation	levels	is

called	a	lost	update.	A	lost	update	happens	when	two	transactions	read	a	value,	make
calculations	based	on	what	they	read,	and	then	update	the	value.	Because	in	isolation	levels
lower	than	REPEATABLE	READ	no	lock	is	held	on	the	resource	after	the	read,	both
transactions	can	update	the	value,	and	whichever	transaction	updates	the	value	last	“wins,”
overwriting	the	other	transaction’s	update.	In	REPEATABLE	READ,	both	sides	keep	their

shared	locks	after	the	first	read,	so	neither	can	acquire	an	exclusive	lock	later	in	order	to
update.	The	situation	results	in	a	deadlock,	and	the	update	conflict	is	prevented.	I’ll	provide
more	details	on	deadlocks	later	in	this	chapter,	in	the	“Deadlocks”	section.
When	you’re	done,	run	the	following	code	for	cleanup:
UPDATE	Production.Products
		SET	unitprice	=	19.00
WHERE	productid	=	2;

The	SERIALIZABLE	isolation	level
Running	under	the	REPEATABLE	READ	isolation	level,	readers	keep	shared	locks	until	the
end	of	the	transaction.	Therefore,	you’re	guaranteed	to	get	a	repeatable	read	of	the	rows	that
you	read	the	first	time	in	the	transaction.	However,	your	transaction	locks	only	resources	(for
example,	rows)	that	the	query	found	the	first	time	it	ran,	not	rows	that	weren’t	there	when	the
query	ran.	Therefore,	a	second	read	in	the	same	transaction	might	return	new	rows	as	well.
Those	new	rows	are	called	phantoms,	and	such	reads	are	called	phantom	reads.	This	happens
if,	in	between	the	reads,	another	transaction	inserts	new	rows	that	satisfy	the	reader ’s	query
filter.
To	prevent	phantom	reads,	you	need	to	move	up	in	the	isolation	levels	to	SERIALIZABLE.

For	the	most	part,	the	SERIALIZABLE	isolation	level	behaves	similarly	to	REPEATABLE
READ:	namely,	it	requires	a	reader	to	obtain	a	shared	lock	to	be	able	to	read,	and	it	keeps	the
lock	until	the	end	of	the	transaction.	But	the	SERIALIZABLE	isolation	level	adds	another	facet
—logically,	this	isolation	level	causes	a	reader	to	lock	the	whole	range	of	keys	that	qualify
for	the	query’s	filter.	This	means	that	the	reader	locks	not	only	the	existing	rows	that	qualify
for	the	query’s	filter,	but	also	future	ones.	Or,	more	accurately,	it	blocks	attempts	made	by
other	transactions	to	add	rows	that	qualify	for	the	reader ’s	query	filter.
The	following	example	demonstrates	that	the	SERIALIZABLE	isolation	level	prevents

phantom	reads.	Run	the	following	code	in	Connection	1	to	set	the	transaction	isolation	level	to
SERIALIZABLE,	open	a	transaction,	and	query	all	products	with	category	1:
Click	here	to	view	code	image

SET	TRANSACTION	ISOLATION	LEVEL	SERIALIZABLE;

BEGIN	TRAN

		SELECT	productid,	productname,	categoryid,	unitprice
		FROM	Production.Products
		WHERE	categoryid	=	1;

You	get	the	following	output,	showing	12	products	in	category	1:
Click	here	to	view	code	image

productid					productname						categoryid				unitprice
-----------			--------------			-----------			---------------------
1													Product	HHYDP				1													18.00
2													Product	RECZE				1													19.00
24												Product	QOGNU				1													4.50
34												Product	SWNJY				1													14.00
35												Product	NEVTJ				1													18.00

38												Product	QDOMO				1													263.50
39												Product	LSOFL				1													18.00
43												Product	ZZZHR				1													46.00
67												Product	XLXQF				1													14.00
70												Product	TOONT				1													15.00
75												Product	BWRLG				1													7.75
76												Product	JYGFE				1													18.00

(12	row(s)	affected)

From	Connection	2,	run	the	following	code	in	an	attempt	to	insert	a	new	product	with
category	1:
Click	here	to	view	code	image

INSERT	INTO	Production.Products
				(productname,	supplierid,	categoryid,
					unitprice,	discontinued)
		VALUES('Product	ABCDE',	1,	1,	20.00,	0);

In	all	isolation	levels	that	are	lower	than	SERIALIZABLE,	such	an	attempt	would	be
successful.	In	the	SERIALIZABLE	isolation	level,	the	attempt	is	blocked.
Back	in	Connection	1,	run	the	following	code	to	query	products	with	category	1	a	second

time	and	commit	the	transaction:
Click	here	to	view	code	image

		SELECT	productid,	productname,	categoryid,	unitprice
		FROM	Production.Products
		WHERE	categoryid	=	1;

COMMIT	TRAN;

You	get	the	same	output	as	before,	with	no	phantoms.	Now	that	the	reader ’s	transaction	is
committed	and	the	shared	key-range	lock	is	released,	the	modifier	in	Connection	2	can	obtain
the	exclusive	lock	it	was	waiting	for	and	insert	the	row.
When	you’re	done,	run	the	following	code	for	cleanup:

Click	here	to	view	code	image

DELETE	FROM	Production.Products
WHERE	productid	>	77;

Run	the	following	code	in	all	open	connections	to	set	the	isolation	level	back	to	the	default:
Click	here	to	view	code	image

SET	TRANSACTION	ISOLATION	LEVEL	READ	COMMITTED;

Isolation	levels	based	on	row	versioning
With	the	row-versioning	technology,	SQL	Server	can	store	previous	versions	of	committed
rows	in	tempdb.	SQL	Server	supports	two	isolation	levels,	called	SNAPSHOT	and	READ
COMMITTED	SNAPSHOT,	that	are	based	on	this	row-versioning	technology.	The	SNAPSHOT
isolation	level	is	logically	similar	to	the	SERIALIZABLE	isolation	level	in	terms	of	the	types
of	consistency	problems	that	can	or	cannot	happen;	the	READ	COMMITTED	SNAPSHOT
isolation	level	is	similar	to	the	READ	COMMITTED	isolation	level.	However,	readers	using
isolation	levels	based	on	row	versioning	do	not	acquire	shared	locks,	so	they	don’t	wait	when
the	requested	data	is	exclusively	locked.	In	other	words,	readers	don’t	block	writers	and
writers	don’t	block	readers.	Readers	still	get	levels	of	consistency	similar	to	SERIALIZABLE
and	READ	COMMITTED.	SQL	Server	provides	readers	with	an	older	version	of	the	row	if	the
current	version	is	not	the	one	they	are	supposed	to	see.
Note	that	if	you	enable	any	of	the	row-versioning-based	isolation	levels	(which	are	enabled

in	Azure	SQL	Database	by	default),	the	DELETE	and	UPDATE	statements	need	to	copy	the
version	of	the	row	before	the	change	to	tempdb;	INSERT	statements	don’t	need	to	be
versioned	in	tempdb	because	no	earlier	version	of	the	row	exists.	But	it’s	important	to	be
aware	that	enabling	any	of	the	isolation	levels	that	are	based	on	row	versioning	might	have	a
negative	impact	on	the	performance	of	updates	and	deletes.	The	performance	of	readers
usually	improves,	sometimes	dramatically,	because	they	do	not	acquire	shared	locks	and
don’t	need	to	wait	when	data	is	exclusively	locked	or	its	version	is	not	the	expected	one.

The	SNAPSHOT	isolation	level
Under	the	SNAPSHOT	isolation	level,	when	the	reader	is	reading	data,	it’s	guaranteed	to	get
the	last	committed	version	of	the	row	that	was	available	when	the	transaction	started.	This
means	you’re	guaranteed	to	get	committed	reads	and	repeatable	reads,	and	you’re	also
guaranteed	not	to	get	phantom	reads—just	as	in	the	SERIALIZABLE	isolation	level.	But
instead	of	using	shared	locks,	this	isolation	level	relies	on	row	versioning.
As	mentioned,	row	versioning	incurs	a	performance	penalty,	mainly	when	updating	and

deleting	data,	regardless	of	whether	or	not	the	modification	is	executed	from	a	session
running	under	one	of	the	row-versioning-based	isolation	levels.	For	this	reason,	to	allow
your	transactions	to	work	with	the	SNAPSHOT	isolation	level	in	a	SQL	Server	box	product
instance	(a	behavior	that	is	enabled	by	default	in	Azure	SQL	Database),	you	need	to	first
enable	the	option	at	the	database	level	by	running	the	following	code	in	any	open	query
window:
Click	here	to	view	code	image

ALTER	DATABASE	TSQLV4	SET	ALLOW_SNAPSHOT_ISOLATION	ON;

The	following	example	demonstrates	the	behavior	of	the	SNAPSHOT	isolation	level.	Run
the	following	code	from	Connection	1	to	open	a	transaction,	update	the	price	of	product	2	by
adding	1.00	to	its	current	price	of	19.00,	and	query	the	product’s	row	to	show	the	new	price:

BEGIN	TRAN;

		UPDATE	Production.Products

				SET	unitprice	+=	1.00
		WHERE	productid	=	2;

		SELECT	productid,	unitprice
		FROM	Production.Products
		WHERE	productid	=	2;

Here	the	output	of	this	code	shows	that	the	product’s	price	was	updated	to	20.00:
Click	here	to	view	code	image

productid			unitprice
-----------	---------------------
2											20.00

Note	that	even	if	the	transaction	in	Connection	1	runs	under	the	READ	COMMITTED
isolation	level,	SQL	Server	has	to	copy	the	version	of	the	row	before	the	update	(with	the
price	of	19.00)	to	tempdb.	That’s	because	the	SNAPSHOT	isolation	level	is	enabled	at	the
database	level.	If	someone	begins	a	transaction	using	the	SNAPSHOT	isolation	level,	that
session	can	request	the	version	before	the	update.	For	example,	run	the	following	code	from
Connection	2	to	set	the	isolation	level	to	SNAPSHOT,	open	a	transaction,	and	query	the	row
for	product	2:
Click	here	to	view	code	image

SET	TRANSACTION	ISOLATION	LEVEL	SNAPSHOT;

BEGIN	TRAN;
		FROM	Production.Products

		SELECT	productid,	unitprice
		WHERE	productid	=	2;

If	your	transaction	was	under	the	SERIALIZABLE	isolation	level,	the	query	would	be
blocked.	But	because	it’s	running	under	SNAPSHOT,	you	get	the	last	committed	version	of	the
row	that	was	available	when	the	transaction	started.	That	version	(with	the	price	of	19.00)	is
not	the	current	version	(with	the	price	of	20.00),	so	SQL	Server	pulls	the	appropriate	version
from	the	version	store,	and	the	code	returns	the	following	output:
Click	here	to	view	code	image

productid			unitprice
-----------	---------------------
2											19.00

Go	back	to	Connection	1,	and	commit	the	transaction	that	modified	the	row:
COMMIT	TRAN;

At	this	point,	the	current	version	of	the	row	with	the	price	of	20.00	is	a	committed	version.
However,	if	you	read	the	data	again	in	Connection	2,	you	should	still	get	the	last	committed
version	of	the	row	that	was	available	when	the	transaction	started	(with	a	price	of	19.00).	Run
the	following	code	in	Connection	2	to	read	the	data	again,	and	then	commit	the	transaction:
Click	here	to	view	code	image

		SELECT	productid,	unitprice
		FROM	Production.Products

		WHERE	productid	=	2;

COMMIT	TRAN;

As	expected,	you	get	the	following	output	with	a	price	of	19.00:
Click	here	to	view	code	image

productid			unitprice
-----------	---------------------
2											19.00

Run	the	following	code	in	Connection	2	to	open	a	new	transaction,	query	the	data,	and
commit	the	transaction:
Click	here	to	view	code	image

BEGIN	TRAN

		SELECT	productid,	unitprice
		FROM	Production.Products
		WHERE	productid	=	2;

COMMIT	TRAN;

This	time,	the	last	committed	version	of	the	row	that	was	available	when	the	transaction
started	is	the	one	with	a	price	of	20.00.	Therefore,	you	get	the	following	output:
Click	here	to	view	code	image

productid			unitprice
-----------	---------------------
2											20.00

Now	that	no	transaction	needs	the	version	of	the	row	with	the	price	of	19.00,	a	cleanup
thread	that	runs	once	a	minute	can	remove	it	from	tempdb	the	next	time	it	runs.	As	you	can
imagine,	very	long	transactions	prevent	SQL	Server	from	being	able	to	clean	up	row
versions,	and	can	cause	tempdb	to	fill	up.
When	you’re	done,	run	the	following	code	for	cleanup:
UPDATE	Production.Products
		SET	unitprice	=	19.00
WHERE	productid	=	2;

Conflict	detection
The	SNAPSHOT	isolation	level	prevents	update	conflicts,	but	unlike	the	REPEATABLE	READ
and	SERIALIZABLE	isolation	levels	that	do	so	by	generating	a	deadlock,	the	SNAPSHOT
isolation	level	fails	the	transaction,	indicating	that	an	update	conflict	was	detected.	The
SNAPSHOT	isolation	level	can	detect	update	conflicts	by	examining	the	version	store.	It	can
figure	out	whether	another	transaction	modified	the	data	between	a	read	and	a	write	that	took
place	in	your	transaction.
The	following	example	demonstrates	a	scenario	with	no	update	conflict,	followed	by	an

example	of	a	scenario	with	an	update	conflict.
Run	the	following	code	in	Connection	1	to	set	the	transaction	isolation	level	to	SNAPSHOT,

open	a	transaction,	and	read	the	row	for	product	2:
Click	here	to	view	code	image

SET	TRANSACTION	ISOLATION	LEVEL	SNAPSHOT;

BEGIN	TRAN;

		SELECT	productid,	unitprice
		FROM	Production.Products
		WHERE	productid	=	2;

You	get	the	following	output:
Click	here	to	view	code	image

productid			unitprice
-----------	---------------------
2											19.00

Assuming	you	made	some	calculations	based	on	what	you	read,	run	the	following	code
while	still	in	Connection	1	to	update	the	price	of	the	product	you	queried	previously	to	20.00,
and	commit	the	transaction:

		UPDATE	Production.Products
				SET	unitprice	=	20.00
		WHERE	productid	=	2;

COMMIT	TRAN;

No	other	transaction	modified	the	row	between	your	read,	calculation,	and	write;	therefore,
there	was	no	update	conflict	and	SQL	Server	allowed	the	update	to	take	place.
Run	the	following	code	to	modify	the	price	of	product	2	back	to	19.00:
UPDATE	Production.Products
		SET	unitprice	=	19.00
WHERE	productid	=	2;

Next,	run	the	following	code	in	Connection	1,	again,	to	open	a	transaction,	and	read	the
row	for	product	2:
Click	here	to	view	code	image

BEGIN	TRAN;

		SELECT	productid,	unitprice
		FROM	Production.Products
		WHERE	productid	=	2;

You	get	the	following	output,	indicating	that	the	price	of	the	product	is	19.00:
Click	here	to	view	code	image

productid			unitprice
-----------	---------------------
2											19.00

This	time,	run	the	following	code	in	Connection	2	to	update	the	price	of	product	2	to	25.00:
UPDATE	Production.Products

		SET	unitprice	=	25.00
WHERE	productid	=	2;

Assume	you	made	calculations	in	Connection	1	based	on	the	price	of	19.00	that	you	read.
Based	on	your	calculations,	try	to	update	the	price	of	the	product	to	20.00	in	Connection	1:

		UPDATE	Production.Products
				SET	unitprice	=	20.00
		WHERE	productid	=	2;

SQL	Server	detected	that	this	time	another	transaction	modified	the	data	between	your	read
and	write;	therefore,	it	fails	your	transaction	with	the	following	error:
Click	here	to	view	code	image

Msg	3960,	Level	16,	State	2,	Line	1
Snapshot	isolation	transaction	aborted	due	to	update	conflict.	You	cannot	use
snapshot	isolation
to	access	table	'Production.Products'	directly	or	indirectly	in	database	'TSQLV4'
to	update,
delete,	or	insert	the	row	that	has	been	modified	or	deleted	by	another
transaction.	Retry	the
transaction	or	change	the	isolation	level	for	the	update/delete	statement.

Of	course,	you	can	use	error-handling	code	to	retry	the	whole	transaction	when	an	update
conflict	is	detected.
When	you’re	done,	run	the	following	code	for	cleanup:
UPDATE	Production.Products
		SET	unitprice	=	19.00
WHERE	productid	=	2;

Close	all	connections.	Note	that	if	all	connections	aren’t	closed,	your	example	results	might
not	match	those	in	the	chapter	examples.

The	READ	COMMITTED	SNAPSHOT	isolation	level
The	READ	COMMITTED	SNAPSHOT	isolation	level	is	also	based	on	row	versioning.	It
differs	from	the	SNAPSHOT	isolation	level	in	that	instead	of	providing	a	reader	with	a
transaction-level	consistent	view	of	the	data,	it	provides	the	reader	with	a	statement-level
consistent	view	of	the	data.	The	READ	COMMITTED	SNAPSHOT	isolation	level	also	does	not
detect	update	conflicts.	This	results	in	logical	behavior	similar	to	the	READ	COMMITTED
isolation	level,	except	that	readers	do	not	acquire	shared	locks	and	do	not	wait	when	the
requested	resource	is	exclusively	locked.	If	under	READ	COMMITTED	SNAPSHOT	you	want
a	reader	to	acquire	a	shared	lock,	you	need	to	add	a	table	hint	called
READCOMMITTEDLOCK	to	your	SELECT	statements,	as	in	SELECT	*	FROM	dbo.T1	WITH
(READCOMMITTEDLOCK).
To	enable	the	use	of	the	READ	COMMITTED	SNAPSHOT	isolation	level	in	a	SQL	Server

box	product	(a	behavior	that	is	enabled	by	default	in	Azure	SQL	Database),	you	need	to	turn
on	a	database	option	called	READ_COMMITTED_SNAPSHOT.	Run	to	following	code	to
enable	this	option	in	the	TSQLV4	database:
Click	here	to	view	code	image

ALTER	DATABASE	TSQLV4	SET	READ_COMMITTED_SNAPSHOT	ON;

Note	that	for	this	code	to	run	successfully,	you	need	exclusive	access	to	the	TSQLV4
database.
An	interesting	aspect	of	enabling	this	database	flag	is	that,	unlike	with	the	SNAPSHOT

isolation	level,	this	flag	actually	changes	the	meaning,	or	semantics,	of	the	READ
COMMITTED	isolation	level	to	READ	COMMITTED	SNAPSHOT.	This	means	that	when	this
database	flag	is	turned	on,	unless	you	explicitly	change	the	session’s	isolation	level,	READ
COMMITTED	SNAPSHOT	is	the	default.
For	a	demonstration	of	using	the	READ	COMMITTED	SNAPSHOT	isolation	level,	open

two	connections.	Run	the	following	code	in	Connection	1	to	open	a	transaction,	update	the
row	for	product	2,	and	read	the	row,	leaving	the	transaction	open:

USE	TSQLV4;

BEGIN	TRAN;

		UPDATE	Production.Products
				SET	unitprice	+=	1.00
		WHERE	productid	=	2;

		SELECT	productid,	unitprice
		FROM	Production.Products
		WHERE	productid	=	2;

You	get	the	following	output,	indicating	that	the	product’s	price	was	changed	to	20.00:
Click	here	to	view	code	image

productid			unitprice
-----------	---------------------
2											20.00

In	Connection	2,	open	a	transaction	and	read	the	row	for	product	2,	leaving	the	transaction
open:
Click	here	to	view	code	image

BEGIN	TRAN;

		SELECT	productid,	unitprice
		FROM	Production.Products
		WHERE	productid	=	2;

You	get	the	last	committed	version	of	the	row	that	was	available	when	the	statement	started
(19.00):
Click	here	to	view	code	image

productid			unitprice
-----------	---------------------
2											19.00

Run	the	following	code	in	Connection	1	to	commit	the	transaction:
COMMIT	TRAN;

Now	run	the	code	in	Connection	2	to	read	the	row	for	product	2	again,	and	commit	the
transaction:
Click	here	to	view	code	image

		SELECT	productid,	unitprice
		FROM	Production.Products
		WHERE	productid	=	2;

COMMIT	TRAN;

If	this	code	was	running	under	the	SNAPSHOT	isolation	level,	you	would	get	a	price	of
19.00;	however,	because	the	code	is	running	under	the	READ	COMMITTED	SNAPSHOT
isolation	level,	you	get	the	last	committed	version	of	the	row	that	was	available	when	the
statement	started	(20.00)	and	not	when	the	transaction	started	(19.00):
Click	here	to	view	code	image

productid			unitprice
-----------	---------------------
2											20.00

Recall	that	this	phenomenon	is	called	a	nonrepeatable	read,	or	inconsistent	analysis.
When	you’re	done,	run	the	following	code	for	cleanup:
UPDATE	Production.Products
		SET	unitprice	=	19.00
WHERE	productid	=	2;

Close	all	connections.	Open	a	new	connection,	and	run	the	following	code	to	disable	the
isolation	levels	that	are	based	on	row	versioning	in	the	TSQLV4	database:
Click	here	to	view	code	image

ALTER	DATABASE	TSQLV4	SET	ALLOW_SNAPSHOT_ISOLATION	OFF;
ALTER	DATABASE	TSQLV4	SET	READ_COMMITTED_SNAPSHOT	OFF;

Summary	of	isolation	levels
Table	10-3	provides	a	summary	of	the	logical	consistency	problems	that	can	or	cannot	happen
in	each	isolation	level,	and	it	indicates	whether	the	isolation	level	detects	update	conflicts	for
you	and	whether	the	isolation	level	uses	row	versioning.

TABLE	10-3	Summary	of	isolation	levels

Deadlocks
A	deadlock	is	a	situation	in	which	two	or	more	sessions	block	each	other.	An	example	of	a
two-session	deadlock	is	when	session	A	blocks	session	B	and	session	B	blocks	session	A.	An
example	of	a	deadlock	involving	more	than	two	sessions	is	when	session	A	blocks	session	B,
session	B	blocks	session	C,	and	session	C	blocks	session	A.	In	any	of	these	cases,	SQL	Server
detects	the	deadlock	and	intervenes	by	terminating	one	of	the	transactions.	If	SQL	Server	did
not	intervene,	the	sessions	involved	would	remain	deadlocked	forever.
Unless	otherwise	specified,	SQL	Server	chooses	to	terminate	the	transaction	that	did	the

least	work	(based	on	the	activity	written	to	the	transaction	log),	because	rolling	that
transaction’s	work	back	is	the	cheapest	option.	However,	with	SQL	Server	you	can	set	a
session	option	called	DEADLOCK_PRIORITY	to	one	of	21	values	in	the	range	–10	through
10.	The	session	with	the	lowest	deadlock	priority	is	chosen	as	the	deadlock	“victim”
regardless	of	how	much	work	is	done;	in	the	event	of	a	tie,	the	amount	of	work	is	used	as	a
tiebreaker.	If	the	same	amount	of	work	is	estimated	for	all	sessions	involved,	a	coin	toss	is
used	as	the	final	tiebreaker.
The	following	example	demonstrates	a	simple	deadlock.	After	presenting	the	example,	I’ll

explain	how	you	can	mitigate	deadlock	occurrences	in	the	system.
Open	two	connections,	and	make	sure	you’re	connected	to	the	TSQLV4	database	in	both.

Run	the	following	code	in	Connection	1	to	open	a	new	transaction,	update	a	row	in	the
Production.Products	table	for	product	2,	and	leave	the	transaction	open:

USE	TSQLV4;

BEGIN	TRAN;

		UPDATE	Production.Products
				SET	unitprice	+=	1.00
		WHERE	productid	=	2;

Run	the	following	code	in	Connection	2	to	open	a	new	transaction,	update	a	row	in	the
Sales.OrderDetails	table	for	product	2,	and	leave	the	transaction	open:

BEGIN	TRAN;

		UPDATE	Sales.OrderDetails
				SET	unitprice	+=	1.00
		WHERE	productid	=	2;

At	this	point,	the	transaction	in	Connection	1	is	holding	an	exclusive	lock	on	the	row	for
product	2	in	the	Production.Products	table,	and	the	transaction	in	Connection	2	is	now	holding
locks	on	the	rows	for	product	2	in	the	Sales.OrderDetails	table.	Both	queries	succeed,	and	no
blocking	has	occurred	yet.
Run	the	following	code	in	Connection	1	to	attempt	to	query	the	rows	for	product	2	in	the

Sales.OrderDetails	table,	and	commit	the	transaction:
Click	here	to	view	code	image

		SELECT	orderid,	productid,	unitprice
		FROM	Sales.OrderDetails
		WHERE	productid	=	2;

COMMIT	TRAN;

The	transaction	in	Connection	1	needs	a	shared	lock	to	be	able	to	perform	its	read.	Because
the	other	transaction	holds	an	exclusive	lock	on	the	same	resource,	the	transaction	in
Connection	1	is	blocked.	At	this	point,	you	have	a	blocking	situation,	not	yet	a	deadlock.	Of
course,	a	chance	remains	that	Connection	2	will	end	the	transaction,	releasing	all	locks	and
allowing	the	transaction	in	Connection	1	to	get	the	requested	locks.
Next,	run	the	following	code	in	Connection	2	to	attempt	to	query	the	row	for	product	2	in

the	Product.Production	table	and	commit	the	transaction:
Click	here	to	view	code	image

		SELECT	productid,	unitprice
		FROM	Production.Products
		WHERE	productid	=	2;

COMMIT	TRAN;

To	be	able	to	perform	its	read,	the	transaction	in	Connection	2	needs	a	shared	lock	on	the
row	for	product	2	in	the	Product.Production	table,	so	this	request	is	now	in	conflict	with	the
exclusive	lock	held	on	the	same	resource	by	Connection	1.	Each	of	the	sessions	blocks	the
other—you	have	a	deadlock.	SQL	Server	identifies	the	deadlock	(typically	within	a	few
seconds),	chooses	one	of	the	sessions	involved	as	the	deadlock	victim,	and	terminates	its
transaction	with	the	following	error:
Click	here	to	view	code	image

Msg	1205,	Level	13,	State	51,	Line	1
Transaction	(Process	ID	52)	was	deadlocked	on	lock	resources	with	another	process
and	has	been
chosen	as	the	deadlock	victim.	Rerun	the	transaction.

In	this	example,	SQL	Server	chose	to	terminate	the	transaction	in	Connection	1	(shown	here
as	process	ID	52).	Because	you	didn’t	set	a	deadlock	priority	and	both	transactions	did	a
similar	amount	of	work,	either	transaction	could	have	been	terminated.
Deadlocks	are	expensive	because	they	involve	undoing	work	that	has	already	been	done

and	then,	usually	with	some	error-handling	logic,	redoing	the	work.	You	can	follow	a	few
practices	to	mitigate	deadlock	occurrences	in	your	system.
Obviously,	the	longer	the	transactions	are,	the	longer	locks	are	kept,	increasing	the

probability	of	deadlocks.	You	should	try	to	keep	transactions	as	short	as	possible,	taking
activities	out	of	the	transaction	that	aren’t	logically	supposed	to	be	part	of	the	same	unit	of
work.	For	example,	don’t	use	transactions	that	require	user	input	to	finish!
One	typical	deadlock,	also	called	a	deadly	embrace	deadlock,	happens	when	transactions

access	resources	in	inverse	order.	In	the	example	just	given,	Connection	1	first	accessed	a	row
in	Production.Products	and	then	accessed	a	row	in	Sales.OrderDetails,	whereas	Connection	2
first	accessed	a	row	in	Sales.OrderDetails	and	then	accessed	a	row	in	Production.Products.
This	type	of	deadlock	can’t	happen	if	both	transactions	access	resources	in	the	same	order.	By
swapping	the	order	in	one	of	the	transactions,	you	can	prevent	this	type	of	deadlock	from
happening—assuming	that	it	makes	no	logical	difference	to	your	application.
The	deadlock	example	has	a	real	logical	conflict	because	both	sides	try	to	access	the	same

rows.	However,	deadlocks	often	happen	when	there	is	no	real	logical	conflict,	because	of	a
lack	of	good	indexing	to	support	query	filters.	For	example,	suppose	both	statements	in	the
transaction	in	Connection	2	filtered	product	5.	Now	that	the	statements	in	Connection	1	handle
product	2	and	the	statements	in	Connection	2	handle	product	5,	there	shouldn’t	be	any	conflict.
However,	if	you	don’t	have	indexes	defined	on	the	productid	column	in	the	tables	to	support
the	filter,	SQL	Server	has	to	scan	(and	lock)	all	rows	in	the	table.	This,	of	course,	can	lead	to	a
deadlock.	In	short,	good	index	design	can	help	mitigate	the	occurrences	of	deadlocks	that
have	no	real	logical	conflict.
Another	option	to	consider	to	mitigate	deadlock	occurrences	is	the	choice	of	isolation

level.	The	SELECT	statements	in	the	example	needed	shared	locks	because	they	ran	under	the
READ	COMMITTED	isolation	level.	If	you	use	the	READ	COMMITTED	SNAPSHOT	isolation
level,	readers	will	not	need	shared	locks,	and	deadlocks	that	evolve	because	of	the
involvement	of	shared	locks	can	be	eliminated.
When	you’re	done,	run	the	following	code	for	cleanup	in	any	connection:
UPDATE	Production.Products
		SET	unitprice	=	19.00
WHERE	productid	=	2;

UPDATE	Sales.OrderDetails
		SET	unitprice	=	19.00
WHERE	productid	=	2
		AND	orderid	>=	10500;

UPDATE	Sales.OrderDetails
		SET	unitprice	=	15.20
WHERE	productid	=	2
		AND	orderid	<	10500;

Conclusion
This	chapter	introduced	you	to	transactions	and	concurrency.	I	described	what	transactions	are
and	how	SQL	Server	manages	them.	I	explained	how	SQL	Server	isolates	data	accessed	by
one	transaction	from	inconsistent	use	by	other	transactions,	and	how	to	troubleshoot	blocking
scenarios.	I	described	how	you	can	control	the	level	of	consistency	you	get	from	the	data	by
choosing	an	isolation	level,	and	the	impact	your	choice	has	on	concurrency.	I	described	four
isolation	levels	that	do	not	rely	on	row	versioning	and	two	that	do.	Finally,	I	covered
deadlocks	and	explained	practices	you	can	follow	to	reduce	the	frequency	of	their	occurrence.
To	practice	what	you	learned,	perform	the	following	exercises.

Exercises
This	section	provides	exercises	to	help	you	familiarize	yourself	with	the	subjects	discussed	in
this	chapter.	The	exercises	for	most	of	the	previous	chapters	involve	requests	for	which	you
have	to	figure	out	a	solution	in	the	form	of	a	T-SQL	query	or	statement.	The	exercises	for	this
chapter	are	different.	You’ll	be	provided	with	instructions	to	follow	to	troubleshoot	blocking
and	deadlock	situations,	and	to	observe	the	behavior	of	different	isolation	levels.	Therefore,
this	chapter ’s	exercises	have	no	separate	“Solutions”	section	as	in	other	chapters.	Exercises	1,
2,	and	3	are	independent	of	each	other.
For	all	exercises	in	this	chapter,	make	sure	you’re	connected	to	the	TSQLV4	sample

database	by	running	the	following	code:
USE	TSQLV4;

Exercises	1-1	through	1-6	deal	with	blocking.	They	assume	you’re	using	the	isolation	level
READ	COMMITTED	(locking).	Remember	that	this	is	the	default	isolation	level	in	a	SQL
Server	box	product.	To	perform	these	exercises	on	Azure	SQL	Database,	you	need	to	turn
versioning	off.

Exercise	1-1
Open	three	connections	in	SQL	Server	Management	Studio.	(The	exercises	will	refer	to	them
as	Connection	1,	Connection	2,	and	Connection	3.)	Run	the	following	code	in	Connection	1	to
update	rows	in	Sales.OrderDetails:

BEGIN	TRAN;

		UPDATE	Sales.OrderDetails
				SET	discount	=	0.05
		WHERE	orderid	=	10249;

Exercise	1-2
Run	the	following	code	in	Connection	2	to	query	Sales.OrderDetails;	Connection	2	will	be
blocked:
Click	here	to	view	code	image

SELECT	orderid,	productid,	unitprice,	qty,	discount
FROM	Sales.OrderDetails

WHERE	orderid	=	10249;

Exercise	1-3
Run	the	following	code	in	Connection	3,	and	identify	the	locks	and	session	IDs	involved	in	the
blocking	chain:
Click	here	to	view	code	image

SELECT	--	use	*	to	explore
		request_session_id												AS	sid,
		resource_type																	AS	restype,
		resource_database_id										AS	dbid,
		resource_description										AS	res,
		resource_associated_entity_id	AS	resid,
		request_mode																		AS	mode,
		request_status																AS	status
FROM	sys.dm_tran_locks;

Exercise	1-4
Replace	the	session	IDs	52	and	53	with	the	ones	you	found	to	be	involved	in	the	blocking
chain	in	the	previous	exercise.	Run	the	following	code	to	obtain	connection,	session,	and
blocking	information	about	the	processes	involved	in	the	blocking	chain:
Click	here	to	view	code	image

--	Connection	info:
SELECT	--	use	*	to	explore
		session_id	AS	sid,
		connect_time,
		last_read,
		last_write,
		most_recent_sql_handle
FROM	sys.dm_exec_connections
WHERE	session_id	IN(52,	53);

--	Session	info
SELECT	--	use	*	to	explore
		session_id	AS	sid,
		login_time,
		host_name,
		program_name,
		login_name,
		nt_user_name,
		last_request_start_time,
		last_request_end_time
FROM	sys.dm_exec_sessions
WHERE	session_id	IN(52,	53);

--	Blocking
SELECT	--	use	*	to	explore
		session_id	AS	sid,
		blocking_session_id,
		command,
		sql_handle,
		database_id,
		wait_type,
		wait_time,

		wait_resource
FROM	sys.dm_exec_requests
WHERE	blocking_session_id	>	0;

Exercise	1-5
Run	the	following	code	to	obtain	the	SQL	text	of	the	connections	involved	in	the	blocking
chain:
Click	here	to	view	code	image

SELECT	session_id,	text
FROM	sys.dm_exec_connections
		CROSS	APPLY	sys.dm_exec_sql_text(most_recent_sql_handle)	AS	ST
WHERE	session_id	IN(52,	53);

Exercise	1-6
Run	the	following	code	in	Connection	1	to	roll	back	the	transaction:

ROLLBACK	TRAN;

Observe	in	Connection	2	that	the	SELECT	query	returned	the	two	order	detail	rows,	and	that
those	rows	were	not	modified.
Remember	that	if	you	need	to	terminate	the	blocker ’s	transaction,	you	can	use	the	KILL

command.	Close	all	connections.
Exercises	2-1	through	2-6	deal	with	isolation	levels.

Exercise	2-1
In	this	exercise,	you’ll	practice	using	the	READ	UNCOMMITTED	isolation	level.

Exercise	2-1a
Open	two	new	connections.	(This	exercise	will	refer	to	them	as	Connection	1	and	Connection
2.)

Exercise	2-1b
Run	the	following	code	in	Connection	1	to	update	rows	in	Sales.OrderDetails	and	query	it:
Click	here	to	view	code	image

BEGIN	TRAN;

		UPDATE	Sales.OrderDetails
				SET	discount	+=	0.05
		WHERE	orderid	=	10249;

		SELECT	orderid,	productid,	unitprice,	qty,	discount
		FROM	Sales.OrderDetails
		WHERE	orderid	=	10249;

Exercise	2-1c
Run	the	following	code	in	Connection	2	to	set	the	isolation	level	to	READ	UNCOMMITTED
and	query	Sales.OrderDetails:
Click	here	to	view	code	image

SET	TRANSACTION	ISOLATION	LEVEL	READ	UNCOMMITTED;

SELECT	orderid,	productid,	unitprice,	qty,	discount
FROM	Sales.OrderDetails
WHERE	orderid	=	10249;

Notice	that	you	get	the	modified,	uncommitted	version	of	the	rows.

Exercise	2-1d
Run	the	following	code	in	Connection	1	to	roll	back	the	transaction:

ROLLBACK	TRAN;

Exercise	2-2
In	this	exercise,	you’ll	practice	using	the	READ	COMMITTED	isolation	level.

Exercise	2-2a
Run	the	following	code	in	Connection	1	to	update	rows	in	Sales.OrderDetails	and	query	it:
Click	here	to	view	code	image

BEGIN	TRAN;

		UPDATE	Sales.OrderDetails
				SET	discount	+=	0.05
		WHERE	orderid	=	10249;

		SELECT	orderid,	productid,	unitprice,	qty,	discount
		FROM	Sales.OrderDetails
		WHERE	orderid	=	10249;

Exercise	2-2b
Run	the	following	code	in	Connection	2	to	set	the	isolation	level	to	READ	COMMITTED	and
query	Sales.OrderDetails:
Click	here	to	view	code	image

SET	TRANSACTION	ISOLATION	LEVEL	READ	COMMITTED;

SELECT	orderid,	productid,	unitprice,	qty,	discount
FROM	Sales.OrderDetails
WHERE	orderid	=	10249;

Notice	that	you’re	now	blocked.

Exercise	2-2c
Run	the	following	code	in	Connection	1	to	commit	the	transaction:

COMMIT	TRAN;

Exercise	2-2d
Go	to	Connection	2,	and	notice	that	you	get	the	modified,	committed	version	of	the	rows.

Exercise	2-2e
Run	the	following	code	for	cleanup:

UPDATE	Sales.OrderDetails
		SET	discount	=	0.00
WHERE	orderid	=	10249;

Exercise	2-3
In	this	exercise,	you’ll	practice	using	the	REPEATABLE	READ	isolation	level.

Exercise	2-3a
Run	the	following	code	in	Connection	1	to	set	the	isolation	level	to	REPEATABLE	READ,
open	a	transaction,	and	read	data	from	Sales.OrderDetails:
Click	here	to	view	code	image

SET	TRANSACTION	ISOLATION	LEVEL	REPEATABLE	READ;

BEGIN	TRAN;

		SELECT	orderid,	productid,	unitprice,	qty,	discount
		FROM	Sales.OrderDetails
		WHERE	orderid	=	10249;

You	get	two	rows	with	discount	values	of	0.00.

Exercise	2-3b
Run	the	following	code	in	Connection	2,	and	notice	that	you’re	blocked:

UPDATE	Sales.OrderDetails
		SET	discount	+=	0.05
WHERE	orderid	=	10249;

Exercise	2-3c
Run	the	following	code	in	Connection	1	to	read	the	data	again	and	commit	the	transaction:
Click	here	to	view	code	image

		SELECT	orderid,	productid,	unitprice,	qty,	discount
		FROM	Sales.OrderDetails
		WHERE	orderid	=	10249;

COMMIT	TRAN;

You	get	the	two	rows	with	discount	values	of	0.00	again,	giving	you	repeatable	reads.	Note
that	if	your	code	was	running	under	a	lower	isolation	level	(such	as	READ	UNCOMMITTED
or	READ	COMMITTED),	the	UPDATE	statement	wouldn’t	be	blocked,	and	you	would	get
nonrepeatable	reads.

Exercise	2-3d
Go	to	Connection	2,	and	notice	that	the	update	has	finished.

Exercise	2-3e
Run	the	following	code	for	cleanup:

UPDATE	Sales.OrderDetails
		SET	discount	=	0.00
WHERE	orderid	=	10249;

Exercise	2-4
In	this	exercise,	you’ll	practice	using	the	SERIALIZABLE	isolation	level.

Exercise	2-4a
Run	the	following	code	in	Connection	1	to	set	the	isolation	level	to	SERIALIZABLE	and	query
Sales.OrderDetails:
Click	here	to	view	code	image

SET	TRANSACTION	ISOLATION	LEVEL	SERIALIZABLE;

BEGIN	TRAN;

		SELECT	orderid,	productid,	unitprice,	qty,	discount
		FROM	Sales.OrderDetails
		WHERE	orderid	=	10249;

Exercise	2-4b
Run	the	following	code	in	Connection	2	to	attempt	to	insert	a	row	to	Sales.OrderDetails	with
the	same	order	ID	that	is	filtered	by	the	previous	query,	and	notice	that	you’re	blocked:
Click	here	to	view	code	image

INSERT	INTO	Sales.OrderDetails
				(orderid,	productid,	unitprice,	qty,	discount)
		VALUES(10249,	2,	19.00,	10,	0.00);

Note	that	in	lower	isolation	levels	(such	as	READ	UNCOMMITTED,	READ	COMMITTED,
or	REPEATABLE	READ),	this	INSERT	statement	wouldn’t	be	blocked.

Exercise	2-4c
Run	the	following	code	in	Connection	1	to	query	Sales.OrderDetails	again	and	commit	the
transaction:
Click	here	to	view	code	image

		SELECT	orderid,	productid,	unitprice,	qty,	discount
		FROM	Sales.OrderDetails
		WHERE	orderid	=	10249;

COMMIT	TRAN;

You	get	the	same	result	set	you	got	from	the	previous	query	in	the	same	transaction,	and

because	the	INSERT	statement	was	blocked,	you	get	no	phantom	reads.

Exercise	2-4d
Go	back	to	Connection	2,	and	notice	that	the	INSERT	statement	has	finished.

Exercise	2-4e
Run	the	following	code	for	cleanup:
Click	here	to	view	code	image

DELETE	FROM	Sales.OrderDetails
WHERE	orderid	=	10249
		AND	productid	=	2;

Exercise	2-4f
Run	the	following	code	in	both	Connection	1	and	Connection	2	to	set	the	isolation	level	to	the
default:
Click	here	to	view	code	image

SET	TRANSACTION	ISOLATION	LEVEL	READ	COMMITTED;

Exercise	2-5
In	this	exercise,	you’ll	practice	using	the	SNAPSHOT	isolation	level.

Exercise	2-5a
Run	the	following	code	to	allow	the	SNAPSHOT	isolation	level	in	the	TSQLV4	database:
Click	here	to	view	code	image

ALTER	DATABASE	TSQLV4	SET	ALLOW_SNAPSHOT_ISOLATION	ON;

Exercise	2-5b
Run	the	following	code	in	Connection	1	to	open	a	transaction,	update	rows	in
Sales.OrderDetails,	and	query	it:
Click	here	to	view	code	image

BEGIN	TRAN;

		UPDATE	Sales.OrderDetails
				SET	discount	+=	0.05
		WHERE	orderid	=	10249;

		SELECT	orderid,	productid,	unitprice,	qty,	discount
		FROM	Sales.OrderDetails
		WHERE	orderid	=	10249;

Exercise	2-5c
Run	the	following	code	in	Connection	2	to	set	the	isolation	level	to	SNAPSHOT	and	query
Sales.OrderDetails.	Notice	that	you’re	not	blocked—instead,	you	get	an	earlier,	consistent
version	of	the	data	that	was	available	when	the	transaction	started	(with	discount	values	of
0.00):
Click	here	to	view	code	image

SET	TRANSACTION	ISOLATION	LEVEL	SNAPSHOT;

BEGIN	TRAN;

		SELECT	orderid,	productid,	unitprice,	qty,	discount
		FROM	Sales.OrderDetails
		WHERE	orderid	=	10249;

Exercise	2-5d
Go	to	Connection	1	and	commit	the	transaction:

COMMIT	TRAN;

Exercise	2-5e
Go	to	Connection	2	and	query	the	data	again;	notice	that	you	still	get	discount	values	of	0.00:
Click	here	to	view	code	image

		SELECT	orderid,	productid,	unitprice,	qty,	discount
		FROM	Sales.OrderDetails
		WHERE	orderid	=	10249;

Exercise	2-5f
In	Connection	2,	commit	the	transaction	and	query	the	data	again;	notice	that	now	you	get
discount	values	of	0.05:
Click	here	to	view	code	image

COMMIT	TRAN;

SELECT	orderid,	productid,	unitprice,	qty,	discount
FROM	Sales.OrderDetails
WHERE	orderid	=	10249;

Exercise	2-5g
Run	the	following	code	for	cleanup:

UPDATE	Sales.OrderDetails
		SET	discount	=	0.00
WHERE	orderid	=	10249;

Close	all	connections.

Exercise	2-6
In	this	exercise,	you’ll	practice	using	the	READ	COMMITTED	SNAPSHOT	isolation	level.

Exercise	2-6a
Turn	on	READ_COMMITTED_SNAPSHOT	in	the	TSQLV4	database:
Click	here	to	view	code	image

ALTER	DATABASE	TSQLV4	SET	READ_COMMITTED_SNAPSHOT	ON;

Exercise	2-6b
Open	two	new	connections.	(This	exercise	will	refer	to	them	as	Connection	1	and	Connection
2.)

Exercise	2-6c
Run	the	following	code	in	Connection	1	to	open	a	transaction,	update	rows	in
Sales.OrderDetails,	and	query	it:
Click	here	to	view	code	image

BEGIN	TRAN;

		UPDATE	Sales.OrderDetails
				SET	discount	+=	0.05
		WHERE	orderid	=	10249;

		SELECT	orderid,	productid,	unitprice,	qty,	discount
		FROM	Sales.OrderDetails
		WHERE	orderid	=	10249;

Exercise	2-6d
Run	the	following	code	in	Connection	2,	which	is	now	running	under	the	READ
COMMITTED	SNAPSHOT	isolation	level	because	the	database	flag
READ_COMMITTED_SNAPSHOT	is	turned	on.	Notice	that	you’re	not	blocked—instead,	you
get	an	earlier,	consistent	version	of	the	data	that	was	available	when	the	statement	started	(with
discount	values	of	0.00):
Click	here	to	view	code	image

BEGIN	TRAN;

		SELECT	orderid,	productid,	unitprice,	qty,	discount
		FROM	Sales.OrderDetails
		WHERE	orderid	=	10249;

Exercise	2-6e
Go	to	Connection	1	and	commit	the	transaction:

COMMIT	TRAN;

Exercise	2-6f
Go	to	Connection	2,	query	the	data	again,	and	commit	the	transaction.	Notice	that	you	get	the
new	discount	values	of	0.05:
Click	here	to	view	code	image

		SELECT	orderid,	productid,	unitprice,	qty,	discount
		FROM	Sales.OrderDetails
		WHERE	orderid	=	10249;

COMMIT	TRAN;

Exercise	2-6g
Run	the	following	code	for	cleanup:

UPDATE	Sales.OrderDetails
		SET	discount	=	0.00
WHERE	orderid	=	10249;

Close	all	connections.

Exercise	2-6h
Change	the	database	flags	back	to	the	defaults	in	a	box	product,	disabling	isolation	levels
based	on	row	versioning:
Click	here	to	view	code	image

ALTER	DATABASE	TSQLV4	SET	ALLOW_SNAPSHOT_ISOLATION	OFF;
ALTER	DATABASE	TSQLV4	SET	READ_COMMITTED_SNAPSHOT	OFF;

Note	that	if	you	want	to	change	these	settings	back	to	the	defaults	in	Azure	SQL	Database,
you’ll	need	to	set	both	to	ON.
Exercise	3	(steps	1	through	7)	deals	with	deadlocks.	It	assumes	that	versioning	is	turned	off.

Exercise	3-1
Open	two	new	connections.	(This	exercise	will	refer	to	them	as	Connection	1	and	Connection
2.)

Exercise	3-2
Run	the	following	code	in	Connection	1	to	open	a	transaction	and	update	the	row	for	product
2	in	Production.Products:

BEGIN	TRAN;

		UPDATE	Production.Products
				SET	unitprice	+=	1.00
		WHERE	productid	=	2;

Exercise	3-3
Run	the	following	code	in	Connection	2	to	open	a	transaction	and	update	the	row	for	product
3	in	Production.Products:

BEGIN	TRAN;

		UPDATE	Production.Products
				SET	unitprice	+=	1.00
		WHERE	productid	=	3;

Exercise	3-4
Run	the	following	code	in	Connection	1	to	query	product	3.	You	will	be	blocked.
Click	here	to	view	code	image

		SELECT	productid,	unitprice
		FROM	Production.Products
		WHERE	productid	=	3;

COMMIT	TRAN;

Exercise	3-5
Run	the	following	code	in	Connection	2	to	query	product	2.	You	will	be	blocked,	and	a
deadlock	error	will	be	generated	either	in	Connection	1	or	Connection	2:
Click	here	to	view	code	image

		SELECT	productid,	unitprice
		FROM	Production.Products
		WHERE	productid	=	2;

COMMIT	TRAN;

Exercise	3-6
Can	you	suggest	a	way	to	prevent	this	deadlock?	Hint:	Refer	back	to	what	you	read	in	the
“Deadlocks”	section.

Exercise	3-7
Run	the	following	code	for	cleanup:

UPDATE	Production.Products
		SET	unitprice	=	19.00
WHERE	productid	=	2;

UPDATE	Production.Products
		SET	unitprice	=	10.00
WHERE	productid	=	3;

Chapter	11.	Programmable	objects

This	chapter	provides	a	brief	overview	of	programmable	objects	to	familiarize	you	with	the
capabilities	of	T-SQL	in	this	area	and	with	the	concepts	involved.	The	chapter	covers
variables;	batches;	flow	elements;	cursors;	temporary	tables;	routines	such	as	user-defined
functions,	stored	procedures,	and	triggers;	and	dynamic	SQL.

Variables
You	use	variables	to	temporarily	store	data	values	for	later	use	in	the	same	batch	in	which
they	were	declared.	I	describe	batches	later	in	this	chapter,	but	for	now,	the	important	thing	for
you	to	know	is	that	a	batch	is	one	T-SQL	statement	or	more	sent	to	Microsoft	SQL	Server	for
execution	as	a	single	unit.
Use	a	DECLARE	statement	to	declare	one	or	more	variables,	and	use	a	SET	statement	to

assign	a	value	to	a	single	variable.	For	example,	the	following	code	declares	a	variable	called
@i	of	an	INT	data	type	and	assigns	it	the	value	10:

DECLARE	@i	AS	INT;
SET	@i	=	10;

Alternatively,	you	can	declare	and	initialize	a	variable	in	the	same	statement,	like	this:
DECLARE	@i	AS	INT	=	10;

When	you	assign	a	value	to	a	scalar	variable,	the	value	must	be	the	result	of	a	scalar
expression.	The	expression	can	be	a	scalar	subquery.	For	example,	the	following	code
declares	a	variable	called	@empname	and	assigns	it	the	result	of	a	scalar	subquery	that	returns
the	full	name	of	the	employee	with	an	ID	of	3:
Click	here	to	view	code	image

USE	TSQLV4;

DECLARE	@empname	AS	NVARCHAR(61);

SET	@empname	=	(SELECT	firstname	+	N'	'	+	lastname
																FROM	HR.Employees
																WHERE	empid	=	3);

SELECT	@empname	AS	empname;

This	code	returns	the	following	output:
empname

Judy	Lew

The	SET	statement	can	operate	on	only	one	variable	at	a	time,	so	if	you	need	to	assign
values	to	multiple	variables,	you	need	to	use	multiple	SET	statements.	This	approach	can
involve	unnecessary	overhead	when	you	need	to	pull	multiple	attribute	values	from	the	same
row.	For	example,	the	following	code	uses	two	separate	SET	statements	to	pull	both	the	first

and	last	names	of	the	employee	with	the	ID	of	3	to	two	separate	variables:
Click	here	to	view	code	image

DECLARE	@firstname	AS	NVARCHAR(20),	@lastname	AS	NVARCHAR(40);

SET	@firstname	=	(SELECT	firstname
																		FROM	HR.Employees
																		WHERE	empid	=	3);
SET	@lastname	=	(SELECT	lastname
																	FROM	HR.Employees
																	WHERE	empid	=	3);

SELECT	@firstname	AS	firstname,	@lastname	AS	lastname;

This	code	returns	the	following	output:
firstname		lastname
----------	---------
Judy							Lew

T-SQL	also	supports	a	nonstandard	assignment	SELECT	statement,	which	you	use	to	query
data	and	assign	multiple	values	obtained	from	the	same	row	to	multiple	variables	by	using	a
single	statement.	Here’s	an	example:
Click	here	to	view	code	image

DECLARE	@firstname	AS	NVARCHAR(20),	@lastname	AS	NVARCHAR(40);

SELECT
		@firstname	=	firstname,
		@lastname		=	lastname
FROM	HR.Employees
WHERE	empid	=	3;

SELECT	@firstname	AS	firstname,	@lastname	AS	lastname;

The	assignment	SELECT	has	predictable	behavior	when	exactly	one	row	qualifies.
However,	note	that	if	the	query	has	more	than	one	qualifying	row,	the	code	doesn’t	fail.	The
assignments	take	place	per	qualifying	row,	and	with	each	row	accessed,	the	values	from	the
current	row	overwrite	the	existing	values	in	the	variables.	When	the	assignment	SELECT
finishes,	the	values	in	the	variables	are	those	from	the	last	row	that	SQL	Server	happened	to
access.	For	example,	the	following	assignment	SELECT	has	two	qualifying	rows:
Click	here	to	view	code	image

DECLARE	@empname	AS	NVARCHAR(61);

SELECT	@empname	=	firstname	+	N'	'	+	lastname
FROM	HR.Employees
WHERE	mgrid	=	2;

SELECT	@empname	AS	empname;

The	employee	information	that	ends	up	in	the	variable	after	the	assignment	SELECT
finishes	depends	on	the	order	in	which	SQL	Server	happens	to	access	those	rows—and	you
have	no	control	over	this	order.	When	I	ran	this	code,	I	got	the	following	output:

empname

Sven	Mortensen

The	SET	statement	is	safer	than	the	assignment	SELECT	because	it	requires	you	to	use	a
scalar	subquery	to	pull	data	from	a	table.	Remember	that	a	scalar	subquery	fails	at	run	time	if
it	returns	more	than	one	value.	For	example,	the	following	code	fails:
Click	here	to	view	code	image

DECLARE	@empname	AS	NVARCHAR(61);

SET	@empname	=	(SELECT	firstname	+	N'	'	+	lastname
																FROM	HR.Employees
																WHERE	mgrid	=	2);

SELECT	@empname	AS	empname;

Because	the	variable	was	not	assigned	a	value,	it	remains	NULL,	which	is	the	default	for
variables	that	were	not	initialized.	This	code	returns	the	following	output:
Click	here	to	view	code	image

Msg	512,	Level	16,	State	1,	Line	71
Subquery	returned	more	than	1	value.	This	is	not	permitted	when	the	subquery
follows	=,	!=,	<,
<=	,	>,	>=	or	when	the	subquery	is	used	as	an	expression.
empname

NULL

Batches
A	batch	is	one	or	more	T-SQL	statements	sent	by	a	client	application	to	SQL	Server	for
execution	as	a	single	unit.	The	batch	undergoes	parsing	(syntax	checking),	resolution/binding
(checking	the	existence	of	referenced	objects	and	columns,	permissions	checking),	and
optimization	as	a	unit.
Don’t	confuse	transactions	and	batches.	A	transaction	is	an	atomic	unit	of	work.	A	batch

can	have	multiple	transactions,	and	a	transaction	can	be	submitted	in	parts	as	multiple	batches.
When	a	transaction	is	canceled	or	rolled	back,	SQL	Server	undoes	the	partial	activity	that	has
taken	place	since	the	beginning	of	the	transaction,	regardless	of	where	the	batch	began.
Client	application	programming	interfaces	(APIs)	such	as	ADO.NET	provide	you	with

methods	for	submitting	a	batch	of	code	to	SQL	Server	for	execution.	SQL	Server	utilities
such	as	SQL	Server	Management	Studio	(SSMS),	SQLCMD,	and	OSQL	provide	a	client	tool
command	called	GO	that	signals	the	end	of	a	batch.	Note	that	the	GO	command	is	a	client	tool
command	and	not	a	T-SQL	server	command.

A	batch	as	a	unit	of	parsing
A	batch	is	a	set	of	commands	that	are	parsed	and	executed	as	a	unit.	If	the	parsing	is
successful,	SQL	Server	then	attempts	to	execute	the	batch.	In	the	event	of	a	syntax	error	in	the
batch,	the	whole	batch	is	not	submitted	to	SQL	Server	for	execution.	For	example,	the
following	code	has	three	batches,	the	second	of	which	has	a	syntax	error	(FOM	instead	of
FROM	in	the	second	query):
Click	here	to	view	code	image

--	Valid	batch
PRINT	'First	batch';
USE	TSQLV4;
GO
--	Invalid	batch
PRINT	'Second	batch';
SELECT	custid	FROM	Sales.Customers;
SELECT	orderid	FOM	Sales.Orders;
GO
--	Valid	batch
PRINT	'Third	batch';
SELECT	empid	FROM	HR.Employees;

Because	the	second	batch	has	a	syntax	error,	the	whole	batch	is	not	submitted	to	SQL	Server
for	execution.	The	first	and	third	batches	pass	syntax	validation	and	therefore	are	submitted
for	execution.	This	code	produces	the	following	output	showing	that	the	whole	second	batch
was	not	executed:
Click	here	to	view	code	image

First	batch
Msg	102,	Level	15,	State	1,	Line	91
Incorrect	syntax	near	'Sales'.
Third	batch
empid

2
7
1
5
6
8
3
9
4

(9	row(s)	affected)

Batches	and	variables
A	variable	is	local	to	the	batch	in	which	it’s	defined.	If	you	refer	to	a	variable	that	was	defined
in	another	batch,	you’ll	get	an	error	saying	that	the	variable	was	not	defined.	For	example,	the
following	code	declares	a	variable	and	prints	its	content	in	one	batch,	and	then	it	tries	to	print
its	content	from	another	batch:

DECLARE	@i	AS	INT;
SET	@i	=	10;

--	Succeeds
PRINT	@i;
GO

--	Fails
PRINT	@i;

The	reference	to	the	variable	in	the	first	PRINT	statement	is	valid	because	it	appears	in	the
same	batch	where	the	variable	was	declared,	but	the	second	reference	is	invalid.	Therefore,
the	first	PRINT	statement	returns	the	variable’s	value	(10),	whereas	the	second	fails.	Here’s	the
output	returned	from	this	code:
Click	here	to	view	code	image

10
Msg	137,	Level	15,	State	2,	Line	106
Must	declare	the	scalar	variable	"@i".

Statements	that	cannot	be	combined	in	the	same	batch
The	following	statements	cannot	be	combined	with	other	statements	in	the	same	batch:
CREATE	DEFAULT,	CREATE	FUNCTION,	CREATE	PROCEDURE,	CREATE	RULE,	CREATE
SCHEMA,	CREATE	TRIGGER,	and	CREATE	VIEW.	For	example,	the	following	code	has	a
DROP	statement	followed	by	a	CREATE	VIEW	statement	in	the	same	batch	and	therefore	is
invalid:
Click	here	to	view	code	image

DROP	VIEW	IF	EXISTS	Sales.MyView;

CREATE	VIEW	Sales.MyView
AS

SELECT	YEAR(orderdate)	AS	orderyear,	COUNT(*)	AS	numorders
FROM	Sales.Orders
GROUP	BY	YEAR(orderdate);
GO

An	attempt	to	run	this	code	generates	the	following	error:
Click	here	to	view	code	image

Msg	111,	Level	15,	State	1,	Line	113
'CREATE	VIEW'	must	be	the	first	statement	in	a	query	batch.

To	get	around	the	problem,	separate	the	DROP	VIEW	and	CREATE	VIEW	statements	into
different	batches	by	adding	a	GO	command	after	the	DROP	VIEW	statement.

A	batch	as	a	unit	of	resolution
A	batch	is	a	unit	of	resolution	(also	known	as	binding).	This	means	that	checking	the	existence
of	objects	and	columns	happens	at	the	batch	level.	Keep	this	fact	in	mind	when	you’re
designing	batch	boundaries.	When	you	apply	schema	changes	to	an	object	and	try	to
manipulate	the	object	data	in	the	same	batch,	SQL	Server	might	not	be	aware	of	the	schema
changes	yet	and	fail	the	data-manipulation	statement	with	a	resolution	error.	I’ll	demonstrate
the	problem	through	an	example	and	then	recommend	best	practices.

Run	the	following	code	to	create	a	table	called	T1	in	the	current	database,	with	one	column
called	col1:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.T1;
CREATE	TABLE	dbo.T1(col1	INT);

Next,	try	to	add	a	column	called	col2	to	T1	and	query	the	new	column	in	the	same	batch:
Click	here	to	view	code	image

ALTER	TABLE	dbo.T1	ADD	col2	INT;
SELECT	col1,	col2	FROM	dbo.T1;

Even	though	the	code	might	seem	to	be	perfectly	valid,	the	batch	fails	during	the	resolution
phase	with	the	following	error:
Click	here	to	view	code	image

Msg	207,	Level	16,	State	1,	Line	130
Invalid	column	name	'col2'.

At	the	time	the	SELECT	statement	was	resolved,	T1	had	only	one	column,	and	the	reference
to	the	col2	column	caused	the	error.	One	best	practice	you	can	follow	to	avoid	such	problems
is	to	separate	data-definition	language	(DDL)	and	Data-Manipulation	Language	(DML)
statements	into	different	batches,	as	in	the	following	example:
Click	here	to	view	code	image

ALTER	TABLE	dbo.T1	ADD	col2	INT;
GO
SELECT	col1,	col2	FROM	dbo.T1;

The	GO	n	option
The	GO	command	is	not	really	a	T-SQL	command;	it’s	actually	a	command	used	by	SQL
Server ’s	client	tools,	such	as	SSMS,	to	denote	the	end	of	a	batch.	This	command	supports	an
argument	indicating	how	many	times	you	want	to	execute	the	batch.	To	see	how	the	GO
command	with	the	argument	works,	first	create	the	table	T1	by	using	the	following	code:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.T1;
CREATE	TABLE	dbo.T1(col1	INT	IDENTITY);

The	col1	column	gets	its	values	automatically	from	an	identity	property.	Note	that	the	demo
works	just	as	well	if	you	use	a	default	constraint	to	generate	values	from	a	sequence	object.
Next,	run	the	following	code	to	suppress	the	default	output	produced	by	DML	statements	that
indicates	how	many	rows	were	affected:

SET	NOCOUNT	ON;

Finally,	run	the	following	code	to	define	a	batch	with	an	INSERT	DEFAULT	VALUES
statement	and	to	execute	the	batch	100	times:
Click	here	to	view	code	image

INSERT	INTO	dbo.T1	DEFAULT	VALUES;

GO	100

SELECT	*	FROM	dbo.T1;

The	query	returns	100	rows	with	the	values	1	through	100	in	col1.

Flow	elements
You	use	flow	elements	to	control	the	flow	of	your	code.	T-SQL	provides	basic	forms	of
control	with	flow	elements,	including	the	IF	.	.	.	ELSE	element	and	the	WHILE	element.

The	IF	.	.	.	ELSE	flow	element
You	use	the	IF	.	.	.	ELSE	element	to	control	the	flow	of	your	code	based	on	the	result	of	a
predicate.	You	specify	a	statement	or	statement	block	that	is	executed	if	the	predicate	is	TRUE,
and	optionally	a	statement	or	statement	block	that	is	executed	if	the	predicate	is	FALSE	or
UNKNOWN.
For	example,	the	following	code	checks	whether	today	is	the	last	day	of	the	year	(in	other

words,	whether	today’s	year	is	different	than	tomorrow’s	year).	If	this	is	true,	the	code	prints	a
message	saying	that	today	is	the	last	day	of	the	year;	if	it’s	not	true	(“else”),	the	code	prints	a
message	saying	that	today	is	not	the	last	day	of	the	year:
Click	here	to	view	code	image

IF	YEAR(SYSDATETIME())	<>	YEAR(DATEADD(day,	1,	SYSDATETIME()))
		PRINT	'Today	is	the	last	day	of	the	year.';
ELSE
		PRINT	'Today	is	not	the	last	day	of	the	year.';

In	this	example,	I	use	PRINT	statements	to	demonstrate	which	parts	of	the	code	were
executed	and	which	weren’t,	but	of	course	you	can	specify	other	statements	as	well.
Keep	in	mind	that	T-SQL	uses	three-valued	logic	and	that	the	ELSE	block	is	activated	when

the	predicate	is	either	FALSE	or	UNKNOWN.	In	cases	for	which	both	FALSE	and	UNKNOWN
are	possible	outcomes	of	the	predicate	(for	example,	when	NULLs	are	involved)	and	you	need
different	treatment	for	each	case,	make	sure	you	have	an	explicit	test	for	NULLs	with	the	IS
NULL	predicate.
If	the	flow	you	need	to	control	involves	more	than	two	cases,	you	can	nest	IF	.	.	.	ELSE

elements.	For	example,	the	next	code	I’ll	show	you	handles	the	following	three	cases
differently:

	Today	is	the	last	day	of	the	year.
	Today	is	the	last	day	of	the	month	but	not	the	last	day	of	the	year.
	Today	is	not	the	last	day	of	the	month.

Click	here	to	view	code	image

IF	YEAR(SYSDATETIME())	<>	YEAR(DATEADD(day,	1,	SYSDATETIME()))
		PRINT	'Today	is	the	last	day	of	the	year.';
ELSE
		IF	MONTH(SYSDATETIME())	<>	MONTH(DATEADD(day,	1,	SYSDATETIME()))
				PRINT	'Today	is	the	last	day	of	the	month	but	not	the	last	day	of	the	year.';
		ELSE

				PRINT	'Today	is	not	the	last	day	of	the	month.';

If	you	need	to	run	more	than	one	statement	in	the	IF	or	ELSE	sections,	you	need	to	use	a
statement	block.	You	mark	the	boundaries	of	a	statement	block	with	the	BEGIN	and	END
keywords.	For	example,	the	following	code	shows	how	to	run	one	type	of	process	if	it’s	the
first	day	of	the	month	and	another	type	of	process	if	it	isn’t:
Click	here	to	view	code	image

IF	DAY(SYSDATETIME())	=	1
BEGIN
		PRINT	'Today	is	the	first	day	of	the	month.';
		PRINT	'Starting	first-of-month-day	process.';
		/*	...	process	code	goes	here	...	*/
		PRINT	'Finished	first-of-month-day	database	process.';
END;
ELSE
BEGIN
		PRINT	'Today	is	not	the	first	day	of	the	month.';
		PRINT	'Starting	non-first-of-month-day	process.';
		/*	...	process	code	goes	here	...	*/
		PRINT	'Finished	non-first-of-month-day	process.';
END;

The	WHILE	flow	element
T-SQL	provides	the	WHILE	element,	which	you	can	use	to	execute	code	in	a	loop.	The	WHILE
element	executes	a	statement	or	statement	block	repeatedly	while	the	predicate	you	specify
after	the	WHILE	keyword	is	TRUE.	When	the	predicate	is	FALSE	or	UNKNOWN,	the	loop
terminates.
T-SQL	doesn’t	provide	a	built-in	looping	element	that	executes	a	predetermined	number	of

times,	but	it’s	easy	to	mimic	such	an	element	with	a	WHILE	loop	and	a	variable.	For	example,
the	following	code	demonstrates	how	to	write	a	loop	that	iterates	10	times:

DECLARE	@i	AS	INT	=	1;
WHILE	@i	<=	10
BEGIN
		PRINT	@i;
		SET	@i	=	@i	+	1;
END;

The	code	declares	an	integer	variable	called	@i	that	serves	as	the	loop	counter	and
initializes	it	with	the	value	1.	The	code	then	enters	a	loop	that	iterates	while	the	variable	is
smaller	than	or	equal	to	10.	In	each	iteration,	the	code	in	the	loop’s	body	prints	the	current
value	of	@i	and	then	increments	it	by	1.	This	code	returns	the	following	output	showing	that
the	loop	iterated	10	times:

1
2
3
4
5
6
7
8

9
10

If	at	some	point	in	the	loop’s	body	you	want	to	break	out	of	the	current	loop	and	proceed	to
execute	the	statement	that	appears	after	the	loop’s	body,	use	the	BREAK	command.	For
example,	the	following	code	breaks	from	the	loop	if	the	value	of	@i	is	equal	to	6:

DECLARE	@i	AS	INT	=	1;
WHILE	@i	<=	10
BEGIN
		IF	@i	=	6	BREAK;
		PRINT	@i;
		SET	@i	=	@i	+	1;
END;

This	code	produces	the	following	output	showing	that	the	loop	iterated	five	times	and
terminated	at	the	beginning	of	the	sixth	iteration:

1
2
3
4
5

Of	course,	this	code	is	not	very	sensible;	if	you	want	the	loop	to	iterate	only	five	times,	you
should	simply	specify	the	predicate	@i	<=	5.	Here	I	just	wanted	to	demonstrate	the	use	of	the
BREAK	command	with	a	simple	example.
If	at	some	point	in	the	loop’s	body	you	want	to	skip	the	rest	of	the	activity	in	the	current

iteration	and	evaluate	the	loop’s	predicate	again,	use	the	CONTINUE	command.	For	example,
the	following	code	demonstrates	how	to	skip	the	activity	of	the	sixth	iteration	of	the	loop
from	the	point	where	the	IF	statement	appears	and	until	the	end	of	the	loop’s	body:

DECLARE	@i	AS	INT	=	0;
WHILE	@i	<	10
BEGIN
		SET	@i	=	@i	+	1;
		IF	@i	=	6	CONTINUE;
		PRINT	@i;
END;

The	output	of	this	code	shows	that	the	value	of	@i	was	printed	in	all	iterations	except	the
sixth:

1
2
3
4
5
7
8
9
10

As	another	example	of	using	a	WHILE	loop,	the	following	code	creates	a	table	called
dbo.Numbers	and	populates	it	with	1,000	rows	with	the	values	1	through	1,000	in	the	column

n:
Click	here	to	view	code	image

SET	NOCOUNT	ON;
DROP	TABLE	IF	EXISTS	dbo.Numbers;
CREATE	TABLE	dbo.Numbers(n	INT	NOT	NULL	PRIMARY	KEY);
GO

DECLARE	@i	AS	INT	=	1;
WHILE	@i	<=	1000
BEGIN
		INSERT	INTO	dbo.Numbers(n)	VALUES(@i);
		SET	@i	=	@i	+	1;
END;

Cursors
In	Chapter	2,	“Single-table	queries,”	I	explained	that	a	query	without	an	ORDER	BY	clause
returns	a	set	(or	a	multiset),	whereas	a	query	with	an	ORDER	BY	clause	returns	what	standard
SQL	calls	a	cursor—a	nonrelational	result	with	order	guaranteed	among	rows.	In	the	context
of	the	discussion	in	Chapter	2,	the	use	of	the	term	“cursor”	was	conceptual.	SQL	and	T-SQL
also	supports	an	object	called	cursor	you	can	use	to	process	rows	from	a	result	of	a	query	one
at	a	time	and	in	a	requested	order.	This	is	in	contrast	to	using	set-based	queries—normal
queries	without	a	cursor	for	which	you	manipulate	the	set	or	multiset	as	a	whole	and	cannot
rely	on	order.
I	want	to	stress	that	your	default	choice	should	be	to	use	set-based	queries;	only	when	you

have	a	compelling	reason	to	do	otherwise	should	you	consider	using	cursors.	This
recommendation	is	based	on	several	factors,	including	the	following:

	First	and	foremost,	when	you	use	cursors	you	pretty	much	go	against	the	relational
model,	which	is	based	on	set	theory.
	The	record-by-record	manipulation	done	by	the	cursor	has	overhead.	A	certain	extra
cost	is	associated	with	each	record	manipulation	by	the	cursor	compared	to	set-based
manipulation.	Given	a	set-based	query	and	cursor	code	that	do	similar	physical
processing	behind	the	scenes,	the	cursor	code	is	usually	many	times	slower	than	the	set-
based	code.
	With	cursors,	you	write	imperative	solutions—in	other	words,	you’re	responsible	for
defining	how	to	process	the	data	(declaring	the	cursor,	opening	it,	looping	through	the
cursor	records,	closing	the	cursor,	and	deallocating	the	cursor).	With	set-based
solutions,	you	write	declarative	code	where	you	mainly	focus	on	the	logical	aspects	of
the	solution—in	other	words,	on	what	to	get	instead	of	on	how	to	get	it.	Therefore,
cursor	solutions	tend	to	be	longer,	less	readable,	and	harder	to	maintain	than	set-based
solutions.

For	most	people,	it’s	not	simple	to	think	in	relational	terms	immediately	when	they	start
learning	SQL.	It’s	more	intuitive	for	most	people	to	think	in	terms	of	cursors—processing
one	record	at	a	time	in	a	certain	order.	As	a	result,	cursors	are	widely	used,	and	in	most	cases
they	are	misused;	that	is,	they	are	used	even	when	much	better	set-based	solutions	exist.	Make
a	conscious	effort	to	adopt	the	set-based	state	of	mind	and	to	truly	think	in	terms	of	sets.	It	can

take	time—in	some	cases	years—but	as	long	as	you’re	working	with	a	language	that	is	based
on	the	relational	model,	that’s	the	right	way	to	think.
Every	rule	has	exceptions.	One	example	is	when	you	need	to	apply	a	certain	task	to	each

row	from	some	table	or	view.	For	example,	you	might	need	to	execute	some	administrative
task	for	each	index	or	table	in	your	database.	In	such	a	case,	it	makes	sense	to	use	a	cursor	to
iterate	through	the	index	or	table	names	one	at	a	time	and	execute	the	relevant	task	for	each	of
those.
Another	example	of	when	you	should	consider	cursors	is	when	your	set-based	solution

performs	badly	and	you	exhaust	your	tuning	efforts	using	the	set-based	approach.	As
mentioned,	set-based	solutions	tend	to	be	much	faster,	but	in	some	exceptional	cases	the
cursor	solution	is	faster.	One	such	example	is	computing	running	aggregates	using	T-SQL
code	that	is	compatible	with	legacy	versions	of	SQL	Server	that	don’t	support	the	frame
option	in	window	functions.	Relational	solutions	to	running	aggregates	using	joins	or
subqueries	are	extremely	slow.	An	iterative	solution,	such	as	one	based	on	a	cursor,	is	usually
the	optimal	one.	If	there	are	no	compatibility	restrictions,	using	a	relational	solution	with
window	functions	is	the	optimal	way	to	compute	running	totals.
Working	with	a	cursor	generally	involves	the	following	steps:
1.	Declare	the	cursor	based	on	a	query.
2.	Open	the	cursor.
3.	Fetch	attribute	values	from	the	first	cursor	record	into	variables.
4.	As	long	as	you	haven’t	reached	the	end	of	the	cursor	(while	the	value	of	a	function
called
@@FETCH_STATUS	is	0),	loop	through	the	cursor	records;	in	each	iteration	of	the
loop,	perform	the	processing	needed	for	the	current	row,	and	then	fetch	the	attribute
values	from	the	next	row	into	the	variables.

5.	Close	the	cursor.
6.	Deallocate	the	cursor.
The	following	example	with	cursor	code	calculates	the	running	total	quantity	for	each

customer	and	month	from	the	Sales.CustOrders	view:
Click	here	to	view	code	image

SET	NOCOUNT	ON;

DECLARE	@Result	AS	TABLE
(
		custid					INT,
		ordermonth	DATE,
		qty								INT,
		runqty					INT,
		PRIMARY	KEY(custid,	ordermonth)
);

DECLARE
		@custid					AS	INT,
		@prvcustid		AS	INT,
		@ordermonth	AS	DATE,

		@qty								AS	INT,
		@runqty					AS	INT;

DECLARE	C	CURSOR	FAST_FORWARD	/*	read	only,	forward	only	*/	FOR
		SELECT	custid,	ordermonth,	qty
		FROM	Sales.CustOrders
		ORDER	BY	custid,	ordermonth;

OPEN	C;

FETCH	NEXT	FROM	C	INTO	@custid,	@ordermonth,	@qty;

SELECT	@prvcustid	=	@custid,	@runqty	=	0;

WHILE	@@FETCH_STATUS	=	0
BEGIN
		IF	@custid	<>	@prvcustid
				SELECT	@prvcustid	=	@custid,	@runqty	=	0;

		SET	@runqty	=	@runqty	+	@qty;

		INSERT	INTO	@Result	VALUES(@custid,	@ordermonth,	@qty,	@runqty);

		FETCH	NEXT	FROM	C	INTO	@custid,	@ordermonth,	@qty;
END;

CLOSE	C;

DEALLOCATE	C;

SELECT
		custid,
		CONVERT(VARCHAR(7),	ordermonth,	121)	AS	ordermonth,
		qty,
		runqty
FROM	@Result
ORDER	BY	custid,	ordermonth;

The	code	declares	a	cursor	based	on	a	query	that	returns	the	rows	from	the	CustOrders
view	ordered	by	customer	ID	and	order	month,	and	it	iterates	through	the	records	one	at	a
time.	The	code	keeps	track	of	the	current	running-total	quantity	in	a	variable	called	@runqty
that	is	reset	every	time	a	new	customer	is	found.	For	each	row,	the	code	calculates	the	current
running	total	by	adding	the	current	month’s	quantity	(@qty)	to	@runqty,	and	it	inserts	a	row
with	the	customer	ID,	order	month,	current	month’s	quantity,	and	running	quantity	into	a	table
variable	called	@Result.	When	the	code	is	done	processing	all	cursor	records,	it	queries	the
table	variable	to	present	the	running	aggregates.
Here’s	the	output	returned	by	this	code,	shown	in	abbreviated	form:

Click	here	to	view	code	image

custid						ordermonth	qty									runqty
-----------	----------	-----------	-----------
1											2015-08				38										38
1											2015-10				41										79
1											2016-01				17										96
1											2016-03				18										114
1											2016-04				60										174

2											2014-09				6											6
2											2015-08				18										24
2											2015-11				10										34
2											2016-03				29										63
3											2014-11				24										24
3											2015-04				30										54
3											2015-05				80										134
3											2015-06				83										217
3											2015-09				102									319
3											2016-01				40										359
...
89										2014-07				80										80
89										2014-11				105									185
89										2015-03				142									327
89										2015-04				59										386
89										2015-07				59										445
89										2015-10				164									609
89										2015-11				94										703
89										2016-01				140									843
89										2016-02				50										893
89										2016-04				90										983
89										2016-05				80										1063
90										2015-07				5											5
90										2015-09				15										20
90										2015-10				34										54
90										2016-02				82										136
90										2016-04				12										148
91										2014-12				45										45
91										2015-07				31										76
91										2015-12				28										104
91										2016-02				20										124
91										2016-04				81										205

(636	row(s)	affected)

As	explained	in	Chapter	7,	“Beyond	the	fundamentals	of	querying,”	T-SQL	supports
window	functions	you	can	use	to	provide	elegant	and	highly	efficient	solutions	to	running
aggregates,	freeing	you	from	needing	to	use	cursors.	Here’s	how	you	address	the	same	task
with	a	window	function:
Click	here	to	view	code	image

SELECT	custid,	ordermonth,	qty,
		SUM(qty)	OVER(PARTITION	BY	custid
																ORDER	BY	ordermonth
																ROWS	UNBOUNDED	PRECEDING)	AS	runqty
FROM	Sales.CustOrders
ORDER	BY	custid,	ordermonth;

Temporary	tables
When	you	need	to	temporarily	store	data	in	tables,	in	certain	cases	you	might	prefer	not	to
work	with	permanent	tables.	Suppose	you	need	the	data	to	be	visible	only	to	the	current
session,	or	even	only	to	the	current	batch.	As	an	example,	suppose	you	need	to	store
temporary	data	during	data	processing,	as	in	the	cursor	example	in	the	previous	section.
Another	case	where	people	use	temporary	tables	is	when	they	don’t	have	permissions	to
create	permanent	tables	in	a	user	database.

SQL	Server	supports	three	kinds	of	temporary	tables	you	might	find	more	convenient	to
work	with	than	permanent	tables	in	such	cases:	local	temporary	tables,	global	temporary
tables,	and	table	variables.	The	following	sections	describe	the	three	kinds	and	demonstrate
their	use	with	code	samples.

Local	temporary	tables
You	create	a	local	temporary	table	by	naming	it	with	a	single	pound	sign	as	a	prefix,	such	as
#T1.	All	three	kinds	of	temporary	tables	are	created	in	the	tempdb	database.
A	local	temporary	table	is	visible	only	to	the	session	that	created	it,	in	the	creating	level	and

all	inner	levels	in	the	call	stack	(inner	procedures,	triggers,	and	dynamic	batches).	A	local
temporary	table	is	destroyed	automatically	by	SQL	Server	when	the	creating	level	in	the	call
stack	goes	out	of	scope.	For	example,	suppose	a	stored	procedure	called	Proc1	calls	a
procedure	called	Proc2,	which	in	turn	calls	a	procedure	called	Proc3,	which	in	turn	calls	a
procedure	called	Proc4.	Proc2	creates	a	temporary	table	called	#T1	before	calling	Proc3.	The
table	#T1	is	visible	to	Proc2,	Proc3,	and	Proc4	but	not	to	Proc1,	and	it’s	destroyed
automatically	by	SQL	Server	when	Proc2	finishes.	If	the	temporary	table	is	created	in	an	ad-
hoc	batch	in	the	outermost	nesting	level	of	the	session	(in	other	words,	when	the	value	of	the
@@NESTLEVEL	function	is	0),	it’s	visible	to	all	subsequent	batches	as	well	and	is	destroyed
by	SQL	Server	automatically	only	when	the	creating	session	disconnects.
You	might	wonder	how	SQL	Server	prevents	name	conflicts	when	two	sessions	create	local

temporary	tables	with	the	same	name.	SQL	Server	internally	adds	a	suffix	to	the	table	name
that	makes	it	unique	in	tempdb.	As	a	developer,	you	shouldn’t	care—you	refer	to	the	table
using	the	name	you	provided	without	the	internal	suffix,	and	only	your	session	has	access	to
your	table.
One	obvious	scenario	for	which	local	temporary	tables	are	useful	is	when	you	have	a

process	that	needs	to	store	intermediate	results	temporarily—such	as	during	a	loop—and	later
query	the	data.
Another	scenario	is	when	you	need	to	access	the	result	of	some	expensive	processing

multiple	times.	For	example,	suppose	you	need	to	join	the	Sales.Orders	and
Sales.OrderDetails	tables,	aggregate	order	quantities	by	order	year,	and	join	two	instances	of
the	aggregated	data	to	compare	each	year ’s	total	quantity	with	the	previous	year.	The	Orders
and	OrderDetails	tables	in	the	sample	database	are	very	small,	but	in	real-life	situations	such
tables	can	have	millions	of	rows.	One	option	is	to	use	table	expressions,	but	remember	that
table	expressions	are	virtual.	The	expensive	work	involving	scanning	all	the	data,	joining	the
Orders	and	OrderDetails	tables,	and	aggregating	the	data	would	have	to	happen	twice	with
table	expressions.	Instead,	it	makes	sense	to	do	all	the	expensive	work	only	once—storing	the
result	in	a	local	temporary	table—and	then	join	two	instances	of	the	temporary	table,
especially	because	the	result	of	the	expensive	work	is	a	tiny	set	with	only	one	row	per	order
year.
The	following	code	illustrates	this	scenario	using	a	local	temporary	table:

Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	#MyOrderTotalsByYear;

GO

CREATE	TABLE	#MyOrderTotalsByYear
(
		orderyear	INT	NOT	NULL	PRIMARY	KEY,
		qty							INT	NOT	NULL
);

INSERT	INTO	#MyOrderTotalsByYear(orderyear,	qty)
		SELECT
				YEAR(O.orderdate)	AS	orderyear,
				SUM(OD.qty)	AS	qty
		FROM	Sales.Orders	AS	O
				INNER	JOIN	Sales.OrderDetails	AS	OD
						ON	OD.orderid	=	O.orderid
		GROUP	BY	YEAR(orderdate);

SELECT	Cur.orderyear,	Cur.qty	AS	curyearqty,	Prv.qty	AS	prvyearqty
FROM	#MyOrderTotalsByYear	AS	Cur
		LEFT	OUTER	JOIN	#MyOrderTotalsByYear	AS	Prv
				ON	Cur.orderyear	=	Prv.orderyear	+	1;

This	code	produces	the	following	output:
Click	here	to	view	code	image

orderyear			curyearqty		prvyearqty
-----------	-----------	-----------
2014								9581								NULL
2015								25489							9581
2016								16247							25489

To	verify	that	the	local	temporary	table	is	visible	only	to	the	creating	session,	try	accessing
it	from	another	session:
Click	here	to	view	code	image

SELECT	orderyear,	qty	FROM	#MyOrderTotalsByYear;

You	get	the	following	error:
Click	here	to	view	code	image

Msg	208,	Level	16,	State	0,	Line	1
Invalid	object	name	'#MyOrderTotalsByYear'.

When	you’re	done,	go	back	to	the	original	session	and	drop	the	temporary	table:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	#MyOrderTotalsByYear;

It’s	generally	recommended	that	you	clean	up	resources	as	soon	as	you’re	done	working
with	them.

Global	temporary	tables

	Note

At	the	date	of	this	writing,	global	temporary	tables	are	not	supported	by	Azure	SQL
Database.	If	you	want	to	run	the	code	samples	from	this	section,	you	need	to	connect	to
a	SQL	Server	box	product.

When	you	create	a	global	temporary	table,	it’s	visible	to	all	other	sessions.	Global
temporary	tables	are	destroyed	automatically	by	SQL	Server	when	the	creating	session
disconnects	and	there	are	no	active	references	to	the	table.	You	create	a	global	temporary
table	by	naming	it	with	two	pound	signs	as	a	prefix,	such	as	##T1.
Global	temporary	tables	are	useful	when	you	want	to	share	temporary	data	with	everyone.

No	special	permissions	are	required,	and	everyone	has	full	DDL	and	DML	access.	Of	course,
the	fact	that	everyone	has	full	access	means	that	anyone	can	change	or	even	drop	the	table,	so
consider	the	alternatives	carefully.
For	example,	the	following	code	creates	a	global	temporary	table	called	##Globals	with

columns	called	id	and	val:
Click	here	to	view	code	image

CREATE	TABLE	##Globals
(
		id		sysname					NOT	NULL	PRIMARY	KEY,
		val	SQL_VARIANT	NOT	NULL
);

The	table	in	this	example	is	intended	to	mimic	global	variables,	which	are	not	supported	in
T-SQL.	The	id	column	is	of	a	sysname	data	type	(the	type	that	SQL	Server	uses	internally	to
represent	identifiers),	and	the	val	column	is	of	a	SQL_VARIANT	data	type	(a	generic	type	that
can	store	within	it	a	value	of	almost	any	base	type).
Anyone	can	insert	rows	into	the	table.	For	example,	run	the	following	code	to	insert	a	row

representing	a	variable	called	i	and	initialize	it	with	the	integer	value	10:
Click	here	to	view	code	image

INSERT	INTO	##Globals(id,	val)	VALUES(N'i',	CAST(10	AS	INT));

Anyone	can	modify	and	retrieve	data	from	the	table.	For	example,	run	the	following	code
from	any	session	to	query	the	current	value	of	the	variable	i:
Click	here	to	view	code	image

SELECT	val	FROM	##Globals	WHERE	id	=	N'i';

This	code	returns	the	following	output:
val

10

	Note
Keep	in	mind	that	as	soon	as	the	session	that	created	the	global	temporary	table
disconnects	and	there	are	no	active	references	to	the	table,	SQL	Server	automatically
destroys	the	table.

If	you	want	a	global	temporary	table	to	be	created	every	time	SQL	Server	starts,	and	you
don’t	want	SQL	Server	to	try	to	destroy	it	automatically,	you	need	to	create	the	table	from	a
stored	procedure	that	is	marked	as	a	startup	procedure.	(For	details,	see	“sp_procoption”	in
SQL	Server	Books	Online	at	the	following	URL:	http://msdn.microsoft.com/en-
us/library/ms181720.aspx.)
Run	the	following	code	from	any	session	to	explicitly	destroy	the	global	temporary	table:

Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	##Globals;

Table	variables
Table	variables	are	similar	to	local	temporary	tables	in	some	ways	and	different	in	others.
You	declare	table	variables	much	like	you	declare	other	variables,	by	using	the	DECLARE
statement.
As	with	local	temporary	tables,	table	variables	have	a	physical	presence	as	a	table	in	the

tempdb	database,	contrary	to	the	common	misconception	that	they	exist	only	in	memory.	Like
local	temporary	tables,	table	variables	are	visible	only	to	the	creating	session,	but	because
they	are	variables	they	have	a	more	limited	scope:	only	the	current	batch.	Table	variables	are
visible	neither	to	inner	batches	in	the	call	stack	nor	to	subsequent	batches	in	the	session.
If	an	explicit	transaction	is	rolled	back,	changes	made	to	temporary	tables	in	that

transaction	are	rolled	back	as	well;	however,	changes	made	to	table	variables	by	statements
that	completed	in	the	transaction	aren’t	rolled	back.	Only	changes	made	by	the	active
statement	that	failed	or	that	was	terminated	before	completion	are	undone.
Temporary	tables	and	table	variables	also	have	optimization	differences,	but	those	topics

are	outside	the	scope	of	this	book.	For	now,	I’ll	just	say	that	in	terms	of	performance,	usually
it	makes	more	sense	to	use	table	variables	with	small	volumes	of	data	(only	a	few	rows)	and
to	use	local	temporary	tables	otherwise.
For	example,	the	following	code	uses	a	table	variable	instead	of	a	local	temporary	table	to

compare	total	order	quantities	of	each	order	year	with	the	year	before:
Click	here	to	view	code	image

DECLARE	@MyOrderTotalsByYear	TABLE
(
		orderyear	INT	NOT	NULL	PRIMARY	KEY,
		qty							INT	NOT	NULL
);

INSERT	INTO	@MyOrderTotalsByYear(orderyear,	qty)

http://msdn.microsoft.com/en-us/library/ms181720.aspx

		SELECT
				YEAR(O.orderdate)	AS	orderyear,
				SUM(OD.qty)	AS	qty
		FROM	Sales.Orders	AS	O
				INNER	JOIN	Sales.OrderDetails	AS	OD
						ON	OD.orderid	=	O.orderid
		GROUP	BY	YEAR(orderdate);

SELECT	Cur.orderyear,	Cur.qty	AS	curyearqty,	Prv.qty	AS	prvyearqty
FROM	@MyOrderTotalsByYear	AS	Cur
		LEFT	OUTER	JOIN	@MyOrderTotalsByYear	AS	Prv
				ON	Cur.orderyear	=	Prv.orderyear	+	1;

This	code	returns	the	following	output:
Click	here	to	view	code	image

orderyear			curyearqty		prvyearqty
-----------	-----------	-----------
2014								9581								NULL
2015								25489							9581
2016								16247							25489

Note	that	instead	of	using	a	table	variable	or	a	temporary	table	and	a	self-join	here,	this
particular	task	can	be	handled	alternatively	with	the	LAG	function,	like	this:
Click	here	to	view	code	image

SELECT
		YEAR(O.orderdate)	AS	orderyear,
		SUM(OD.qty)	AS	curyearqty,
		LAG(SUM(OD.qty))	OVER(ORDER	BY	YEAR(orderdate))	AS	prvyearqty
FROM	Sales.Orders	AS	O
		INNER	JOIN	Sales.OrderDetails	AS	OD
				ON	OD.orderid	=	O.orderid
GROUP	BY	YEAR(orderdate);

Table	types
You	can	use	a	table	type	to	preserve	a	table	definition	as	an	object	in	the	database.	Later	you
can	reuse	it	as	the	table	definition	of	table	variables	and	input	parameters	of	stored	procedures
and	user-defined	functions.	Table	types	are	required	for	table-valued	parameters	(TVPs).
For	example,	the	following	code	creates	a	table	type	called	dbo.OrderTotalsByYear	in	the

current	database:
Click	here	to	view	code	image

DROP	TYPE	IF	EXISTS	dbo.OrderTotalsByYear;

CREATE	TYPE	dbo.OrderTotalsByYear	AS	TABLE
(
		orderyear	INT	NOT	NULL	PRIMARY	KEY,
		qty							INT	NOT	NULL
);

After	the	table	type	is	created,	whenever	you	need	to	declare	a	table	variable	based	on	the
table	type’s	definition,	you	won’t	need	to	repeat	the	code—instead,	you	can	simply	specify
dbo.OrderTotalsByYear	as	the	variable’s	type,	like	this:

Click	here	to	view	code	image

DECLARE	@MyOrderTotalsByYear	AS	dbo.OrderTotalsByYear;

As	a	more	complete	example,	the	following	code	declares	a	variable	called
@MyOrderTotalsByYear	of	the	new	table	type,	queries	the	Orders	and	OrderDetails	tables	to
calculate	total	order	quantities	by	order	year,	stores	the	result	of	the	query	in	the	table
variable,	and	queries	the	variable	to	present	its	contents:
Click	here	to	view	code	image

DECLARE	@MyOrderTotalsByYear	AS	dbo.OrderTotalsByYear;

INSERT	INTO	@MyOrderTotalsByYear(orderyear,	qty)
		SELECT
				YEAR(O.orderdate)	AS	orderyear,
				SUM(OD.qty)	AS	qty
		FROM	Sales.Orders	AS	O
				INNER	JOIN	Sales.OrderDetails	AS	OD
						ON	OD.orderid	=	O.orderid
		GROUP	BY	YEAR(orderdate);

SELECT	orderyear,	qty	FROM	@MyOrderTotalsByYear;

This	code	returns	the	following	output:
orderyear			qty
-----------	-----------
2014								9581
2015								25489
2016								16247

The	benefit	of	the	table	type	feature	extends	beyond	just	helping	you	shorten	your	code.	As
I	mentioned,	you	can	use	it	as	the	type	of	input	parameters	of	stored	procedures	and	functions,
which	is	a	useful	capability.

Dynamic	SQL
With	SQL	Server,	you	can	construct	a	batch	of	T-SQL	code	as	a	character	string	and	then
execute	that	batch.	This	capability	is	called	dynamic	SQL.	SQL	Server	provides	two	ways	of
executing	dynamic	SQL:	using	the	EXEC	(short	for	EXECUTE)	command,	and	using	the
sp_executesql	stored	procedure.	I	will	explain	the	difference	between	the	two	and	provide
examples	for	using	each.
Dynamic	SQL	is	useful	for	several	purposes,	including	the	following	ones:

	Automating	administrative	tasks	For	example,	querying	metadata	and	constructing
and	executing	a	BACKUP	DATABASE	statement	for	each	database	in	the	instance
	Improving	performance	of	certain	tasks	For	example,	constructing	parameterized	ad-
hoc	queries	that	can	reuse	previously	cached	execution	plans	(more	on	this	later)
	Constructing	elements	of	the	code	based	on	querying	the	actual	data	For	example,
constructing	a	PIVOT	query	dynamically	when	you	don’t	know	ahead	of	time	which
elements	should	appear	in	the	IN	clause	of	the	PIVOT	operator

	Note
Be	extremely	careful	when	concatenating	user	input	as	part	of	your	code.	Hackers	can
attempt	to	inject	code	you	did	not	intend	to	run.	The	best	measure	you	can	take	against
SQL	injection	is	to	avoid	concatenating	user	input	as	part	of	your	code	(for	example,
by	using	parameters).	If	you	do	concatenate	user	input	as	part	of	your	code,	make	sure
you	thoroughly	inspect	the	input	and	look	for	SQL	injection	attempts.	You	can	find	an
article	on	the	subject	in	SQL	Server	Books	Online	using	the	following	URL:
https://technet.microsoft.com/en-us/library/ms161953(v=sql.105).aspx.

The	EXEC	command
The	EXEC	command	accepts	a	character	string	in	parentheses	as	input	and	executes	the	batch
of	code	within	the	character	string.	EXEC	supports	both	regular	and	Unicode	character	strings
as	input.	This	command	can	also	be	used	to	execute	a	stored	procedure,	as	I	will	demonstrate
later	in	the	chapter.
The	following	example	stores	a	character	string	with	a	PRINT	statement	in	the	variable

@sql	and	then	uses	the	EXEC	command	to	invoke	the	batch	of	code	stored	within	the	variable:
Click	here	to	view	code	image

DECLARE	@sql	AS	VARCHAR(100);
SET	@sql	=	'PRINT	''This	message	was	printed	by	a	dynamic	SQL	batch.'';';
EXEC(@sql);

Notice	the	use	of	two	single	quotes	to	represent	one	single	quote	in	a	string	within	a	string.
This	code	returns	the	following	output:
Click	here	to	view	code	image

This	message	was	printed	by	a	dynamic	SQL	batch.

The	sp_executesql	stored	procedure
The	sp_executesql	stored	procedure	is	an	alternative	tool	to	the	EXEC	command	for	executing
dynamic	SQL	code.	It’s	more	secure	and	more	flexible	in	the	sense	that	it	has	an	interface;	that
is,	it	supports	input	and	output	parameters.	Note	that	unlike	EXEC,	sp_executesql	supports
only	Unicode	character	strings	as	the	input	batch	of	code.
The	fact	that	you	can	use	input	and	output	parameters	in	your	dynamic	SQL	code	can	help

you	write	more	secure	and	more	efficient	code.	In	terms	of	security,	parameters	that	appear	in
the	code	cannot	be	considered	part	of	the	code—they	can	only	be	considered	operands	in
expressions.	So,	by	using	parameters,	you	can	eliminate	your	exposure	to	SQL	injection.
The	sp_executesql	stored	procedure	can	perform	better	than	EXEC	because	its

parameterization	aids	in	reusing	cached	execution	plans.	An	execution	plan	is	the	physical
processing	plan	SQL	Server	produces	for	a	query,	with	the	set	of	instructions	describing
which	objects	to	access,	in	what	order,	which	indexes	to	use,	how	to	access	them,	which	join
algorithms	to	use,	and	so	on.	One	of	the	requirements	for	reusing	a	previously	cached	plan	is

https://technet.microsoft.com/en-us/library/ms161953(v=sql.105).aspx

that	the	query	string	be	the	same	as	the	one	for	which	the	cached	plan	was	created.	The	best
way	to	efficiently	reuse	query	execution	plans	is	to	use	stored	procedures	with	parameters.
This	way,	even	when	parameter	values	change,	the	query	string	remains	the	same.	But	if	you
decide	to	use	ad-hoc	code	instead	of	stored	procedures,	at	least	you	can	still	work	with
parameters	if	you	use	sp_executesql	and	therefore	increase	the	chances	for	plan	reuse.
The	sp_executesql	procedure	has	two	input	parameters	and	an	assignments	section.	You

specify	the	Unicode	character	string	holding	the	batch	of	code	you	want	to	run	in	the	first
parameter,	which	is	called	@stmt.	You	provide	a	Unicode	character	string	holding	the
declarations	of	input	and	output	parameters	in	the	second	input	parameter,	which	is	called
@params.	Then	you	specify	the	assignments	of	input	and	output	parameters	separated	by
commas.
The	following	example	constructs	a	batch	of	code	with	a	query	against	the	Sales.Orders

table.	The	example	uses	an	input	parameter	called	@orderid	in	the	query’s	filter:
Click	here	to	view	code	image

DECLARE	@sql	AS	NVARCHAR(100);

SET	@sql	=	N'SELECT	orderid,	custid,	empid,	orderdate
FROM	Sales.Orders
WHERE	orderid	=	@orderid;';

EXEC	sp_executesql
		@stmt	=	@sql,
		@params	=	N'@orderid	AS	INT',
		@orderid	=	10248;

This	code	generates	the	following	output:
Click	here	to	view	code	image

orderid					custid						empid							orderdate
-----------	-----------	-----------	-----------
10248							85										5											2014-07-04

This	code	assigns	the	value	10248	to	the	input	parameter,	but	even	if	you	run	it	again	with	a
different	value,	the	code	string	remains	the	same.	This	way,	you	increase	the	chances	for
reusing	a	previously	cached	plan.

Using	PIVOT	with	Dynamic	SQL
This	section	is	advanced	and	optional,	and	it’s	intended	for	readers	who	feel	very	comfortable
with	pivoting	techniques	and	dynamic	SQL.	In	Chapter	7,	I	explained	how	to	use	the	PIVOT
operator	to	pivot	data.	I	mentioned	that	in	a	static	query,	you	have	to	know	ahead	of	time
which	values	to	specify	in	the	IN	clause	of	the	PIVOT	operator.	Following	is	an	example	of	a
static	query	with	the	PIVOT	operator:
Click	here	to	view	code	image

SELECT	*
FROM	(SELECT	shipperid,	YEAR(orderdate)	AS	orderyear,	freight
						FROM	Sales.Orders)	AS	D
		PIVOT(SUM(freight)	FOR	orderyear	IN([2014],[2015],[2016]))	AS	P;

This	example	queries	the	Sales.Orders	table	and	pivots	the	data	so	that	it	returns	shipper	IDs
in	the	rows,	order	years	in	the	columns,	and	the	total	freight	in	the	intersection	of	each
shipper	and	order	year.	This	code	returns	the	following	output:
Click	here	to	view	code	image

shipperid			2014									2015										2016
-----------	------------	-------------	-------------
3											4233.78						11413.35						4865.38
1											2297.42						8681.38							5206.53
2											3748.67						12374.04						12122.14

With	the	static	query,	you	have	to	know	ahead	of	time	which	values	(order	years	in	this
case)	to	specify	in	the	IN	clause	of	the	PIVOT	operator.	This	means	you	need	to	revise	the
code	every	year.	Instead,	you	can	query	the	distinct	order	years	from	the	data,	construct	a
batch	of	dynamic	SQL	code	based	on	the	years	you	queried,	and	execute	the	dynamic	SQL
batch	like	this:
Click	here	to	view	code	image

DECLARE
		@sql							AS	NVARCHAR(1000),
		@orderyear	AS	INT,
		@first					AS	INT;

DECLARE	C	CURSOR	FAST_FORWARD	FOR
		SELECT	DISTINCT(YEAR(orderdate))	AS	orderyear
		FROM	Sales.Orders
		ORDER	BY	orderyear;

SET	@first	=	1;

SET	@sql	=	N'SELECT	*
FROM	(SELECT	shipperid,	YEAR(orderdate)	AS	orderyear,	freight
						FROM	Sales.Orders)	AS	D
		PIVOT(SUM(freight)	FOR	orderyear	IN(';

OPEN	C;

FETCH	NEXT	FROM	C	INTO	@orderyear;

WHILE	@@fetch_status	=	0
BEGIN
		IF	@first	=	0
				SET	@sql	+=	N','
		ELSE
				SET	@first	=	0;

		SET	@sql	+=	QUOTENAME(@orderyear);

		FETCH	NEXT	FROM	C	INTO	@orderyear;
END;

CLOSE	C;

DEALLOCATE	C;

SET	@sql	+=	N'))	AS	P;';

EXEC	sp_executesql	@stmt	=	@sql;

	Note
There	are	more	efficient	ways	to	concatenate	strings	than	using	a	cursor,	such	as	using
Common	Language	Runtime	(CLR)	aggregates	and	the	FOR	XML	PATH	option,	but
they	are	more	advanced	and	are	beyond	the	scope	of	this	book.

Routines
Routines	are	programmable	objects	that	encapsulate	code	to	calculate	a	result	or	to	execute
activity.	SQL	Server	supports	three	types	of	routines:	user-defined	functions,	stored
procedures,	and	triggers.
With	SQL	Server,	you	can	choose	whether	to	develop	a	routine	with	T-SQL	or	with

Microsoft	.NET	code	based	on	the	CLR	integration	in	the	product.	Because	this	book’s	focus
is	T-SQL,	the	examples	here	use	T-SQL.	When	the	task	at	hand	mainly	involves	data
manipulation,	T-SQL	is	usually	a	better	choice.	When	the	task	is	more	about	iterative	logic,
string	manipulation,	or	computationally	intensive	operations,	.NET	code	is	usually	a	better
choice.

User-defined	functions
The	purpose	of	a	user-defined	function	(UDF)	is	to	encapsulate	logic	that	calculates
something,	possibly	based	on	input	parameters,	and	return	a	result.
SQL	Server	supports	scalar	and	table-valued	UDFs.	Scalar	UDFs	return	a	single	value;

table-valued	UDFs	return	a	table.	One	benefit	of	using	UDFs	is	that	you	can	incorporate	them
into	queries.	Scalar	UDFs	can	appear	anywhere	in	the	query	where	an	expression	that	returns
a	single	value	can	appear	(for	example,	in	the	SELECT	list).	Table	UDFs	can	appear	in	the
FROM	clause	of	a	query.	The	example	in	this	section	is	a	scalar	UDF.
UDFs	are	not	allowed	to	have	any	side	effects.	This	obviously	means	UDFs	are	not	allowed

to	apply	any	schema	or	data	changes	in	the	database.	But	other	ways	of	causing	side	effects
are	less	obvious.
For	example,	invoking	the	RAND	function	to	return	a	random	value	or	the	NEWID	function

to	return	a	globally	unique	identifier	(GUID)	have	side	effects.	Whenever	you	invoke	the
RAND	function	without	specifying	a	seed,	SQL	Server	generates	a	random	seed	that	is	based
on	the	previous	invocation	of	RAND.	For	this	reason,	SQL	Server	needs	to	store	information
internally	whenever	you	invoke	the	RAND	function.	Similarly,	whenever	you	invoke	the
NEWID	function,	the	system	needs	to	set	some	information	aside	to	be	taken	into
consideration	in	the	next	invocation	of	NEWID.	Because	RAND	and	NEWID	have	side	effects,
you’re	not	allowed	to	use	them	in	your	UDFs.
For	example,	the	following	code	creates	a	UDF	called	dbo.GetAge	that	returns	the	age	of	a

person	with	a	specified	birth	date	(@birthdate	argument)	at	a	specified	event	date	(@eventdate
argument):

Click	here	to	view	code	image

DROP	FUNCTION	IF	EXISTS	dbo.GetAge;
GO

CREATE	FUNCTION	dbo.GetAge
(
		@birthdate	AS	DATE,
		@eventdate	AS	DATE
)
RETURNS	INT
AS
BEGIN
		RETURN
				DATEDIFF(year,	@birthdate,	@eventdate)
				-	CASE	WHEN	100	*	MONTH(@eventdate)	+	DAY(@eventdate)
														<	100	*	MONTH(@birthdate)	+	DAY(@birthdate)
											THEN	1	ELSE	0
						END;
END;
GO

The	function	calculates	the	age	as	the	difference,	in	terms	of	years,	between	the	birth	year
and	the	event	year,	minus	1	year	in	cases	where	the	event	month	and	day	are	smaller	than	the
birth	month	and	day.	The	expression	100	*	month	+	day	is	simply	a	trick	to	concatenate	the
month	and	day.	For	example,	for	the	twelfth	day	in	the	month	of	February,	the	expression
yields	the	integer	212.
Note	that	a	function	can	have	more	than	just	a	RETURN	clause	in	its	body.	It	can	have	code

with	flow	elements,	calculations,	and	more.	But	the	function	must	have	a	RETURN	clause	that
returns	a	value.
To	demonstrate	using	a	UDF	in	a	query,	the	following	code	queries	the	HR.Employees	table

and	invokes	the	GetAge	function	in	the	SELECT	list	to	calculate	the	age	of	each	employee
today:
Click	here	to	view	code	image

SELECT
		empid,	firstname,	lastname,	birthdate,
		dbo.GetAge(birthdate,	SYSDATETIME())	AS	age
FROM	HR.Employees;

For	example,	if	you	were	to	run	this	query	on	February	12,	2016,	you	would	get	the
following	output:
Click	here	to	view	code	image

empid							firstname		lastname													birthdate		age
-----------	----------	--------------------	----------	-----------
1											Sara							Davis																1968-12-08	47
2											Don								Funk																	1972-02-19	43
3											Judy							Lew																		1983-08-30	32
4											Yael							Peled																1957-09-19	58
5											Sven							Mortensen												1975-03-04	40
6											Paul							Suurs																1983-07-02	32
7											Russell				King																	1980-05-29	35
8											Maria						Cameron														1978-01-09	38
9											Patricia			Doyle																1986-01-27	30

(9	row(s)	affected)

Note	that	if	you	run	the	query	in	your	system,	the	values	you	get	in	the	age	column	depend
on	the	date	on	which	you	run	the	query.

Stored	procedures
Stored	procedures	are	routines	that	encapsulate	code.	They	can	have	input	and	output
parameters,	they	can	return	result	sets	of	queries,	and	they	are	allowed	to	have	side	effects.
Not	only	can	you	modify	data	through	stored	procedures,	you	can	also	apply	schema	changes
through	them.
Compared	to	using	ad-hoc	code,	the	use	of	stored	procedures	gives	you	many	benefits:

	Stored	procedures	encapsulate	logic.	If	you	need	to	change	the	implementation	of	a
stored	procedure,	you	apply	the	change	in	one	place	using	the	ALTER	PROC	command,
and	all	users	of	the	procedure	will	use	the	new	version	from	that	point.
	Stored	procedures	give	you	better	control	of	security.	You	can	grant	a	user
permissions	to	execute	the	procedure	without	granting	the	user	direct	permissions	to
perform	the	underlying	activities.	For	example,	suppose	you	want	to	allow	certain	users
to	delete	a	customer	from	the	database,	but	you	don’t	want	to	grant	them	direct
permissions	to	delete	rows	from	the	Customers	table.	You	want	to	ensure	that	requests	to
delete	a	customer	are	validated—for	example,	by	checking	whether	the	customer	has
open	orders	or	open	debts—and	you	might	also	want	to	audit	the	requests.	By	not
granting	direct	permissions	to	delete	rows	from	the	Customers	table	but	instead	granting
permissions	to	execute	a	procedure	that	handles	the	task,	you	ensure	that	all	the	required
validations	and	auditing	always	take	place.	In	addition,	stored	procedures	with
parameters	can	help	prevent	SQL	injection,	especially	when	they	replace	ad-hoc	SQL
submitted	from	the	client	application.
	You	can	incorporate	all	error-handling	code	within	a	procedure,	silently	taking
corrective	action	where	relevant.	I	discuss	error	handling	later	in	this	chapter.
	Stored	procedures	give	you	performance	benefits.	Earlier	I	talked	about	reuse	of
previously	cached	execution	plans.	Queries	in	stored	procedure	are	usually
parameterized	and	therefore	have	a	high	likelihood	to	reuse	previously	cached	plans.
Another	performance	benefit	of	using	stored	procedures	is	a	reduction	in	network
traffic.	The	client	application	needs	to	submit	only	the	procedure	name	and	its
arguments	to	SQL	Server.	The	server	processes	all	the	procedure’s	code	and	returns
only	the	output	back	to	the	caller.	No	back-and-forth	traffic	is	associated	with
intermediate	steps	of	the	procedure.

As	a	simple	example,	the	following	code	creates	a	stored	procedure	called
Sales.GetCustomerOrders.	The	procedure	accepts	a	customer	ID	(@custid)	and	a	date	range
(@fromdate	and	@todate)	as	inputs.	The	procedure	returns	rows	from	the	Sales.Orders	table
representing	orders	placed	by	the	requested	customer	in	the	requested	date	range	as	a	result
set,	and	the	number	of	affected	rows	as	an	output	parameter	(@numrows):
Click	here	to	view	code	image

DROP	PROC	IF	EXISTS	Sales.GetCustomerOrders;
GO

CREATE	PROC	Sales.GetCustomerOrders
		@custid			AS	INT,
		@fromdate	AS	DATETIME	=	'19000101',
		@todate			AS	DATETIME	=	'99991231',
		@numrows		AS	INT	OUTPUT
AS
SET	NOCOUNT	ON;

SELECT	orderid,	custid,	empid,	orderdate
FROM	Sales.Orders
WHERE	custid	=	@custid
		AND	orderdate	>=	@fromdate
		AND	orderdate	<	@todate;

SET	@numrows	=	@@rowcount;
GO

When	executing	the	procedure,	if	you	don’t	specify	a	value	in	the	@fromdate	parameter,	the
procedure	will	use	the	default	19000101,	and	if	you	don’t	specify	a	value	in	the	@todate
parameter,	the	procedure	will	use	the	default	99991231.	Notice	the	use	of	the	keyword
OUTPUT	to	indicate	that	the	parameter	@numrows	is	an	output	parameter.	The	SET
NOCOUNT	ON	command	is	used	to	suppress	messages	indicating	how	many	rows	were
affected	by	DML	statements,	such	as	the	SELECT	statement	within	the	procedure.
Here’s	an	example	of	executing	the	procedure,	requesting	information	about	orders	placed

by	the	customer	with	the	ID	of	1	in	the	year	2015.	The	code	absorbs	the	value	of	the	output
parameter	@numrows	in	the	local	variable	@rc	and	returns	it	to	show	how	many	rows	were
affected	by	the	query:

DECLARE	@rc	AS	INT;

EXEC	Sales.GetCustomerOrders
		@custid			=	1,
		@fromdate	=	'20150101',
		@todate			=	'20160101',
		@numrows		=	@rc	OUTPUT;

SELECT	@rc	AS	numrows;

The	code	returns	the	following	output	showing	three	qualifying	orders:
Click	here	to	view	code	image

orderid					custid						empid							orderdate
-----------	-----------	-----------	-----------
10643							1											6											2015-08-25
10692							1											4											2015-10-03
10702							1											4											2015-10-13

numrows

3

Run	the	code	again,	providing	a	customer	ID	that	doesn’t	exist	in	the	Orders	table	(for

example,	customer	ID	100).	You	get	the	following	output	indicating	that	there	are	zero
qualifying	orders:
Click	here	to	view	code	image

orderid					custid						empid							orderdate
-----------	-----------	-----------	-----------------------

numrows

0

Triggers
A	trigger	is	a	special	kind	of	stored	procedure—one	that	cannot	be	executed	explicitly.
Instead,	it’s	attached	to	an	event.	Whenever	the	event	takes	place,	the	trigger	fires	and	the
trigger ’s	code	runs.	SQL	Server	supports	the	association	of	triggers	with	two	kinds	of	events:
data	manipulation	events	(DML	triggers)	such	as	INSERT,	and	data	definition	events	(DDL
triggers)	such	as	CREATE	TABLE.
You	can	use	triggers	for	many	purposes,	including	auditing,	enforcing	integrity	rules	that

cannot	be	enforced	with	constraints,	and	enforcing	policies.
A	trigger	is	considered	part	of	the	transaction	that	includes	the	event	that	caused	the	trigger

to	fire.	Issuing	a	ROLLBACK	TRAN	command	within	the	trigger ’s	code	causes	a	rollback	of
all	changes	that	took	place	in	the	trigger,	and	also	of	all	changes	that	took	place	in	the
transaction	associated	with	the	trigger.
Triggers	in	SQL	Server	fire	per	statement	and	not	per	modified	row.

DML	triggers
SQL	Server	supports	two	kinds	of	DML	triggers:	after	and	instead	of.	An	after	trigger	fires
after	the	event	it’s	associated	with	finishes	and	can	be	defined	only	on	permanent	tables.	An
instead	of	trigger	fires	instead	of	the	event	it’s	associated	with	and	can	be	defined	on
permanent	tables	and	views.
In	the	trigger ’s	code,	you	can	access	pseudo	tables	called	inserted	and	deleted	that	contain

the	rows	that	were	affected	by	the	modification	that	caused	the	trigger	to	fire.	The	inserted
table	holds	the	new	image	of	the	affected	rows	in	the	case	of	INSERT	and	UPDATE	actions.
The	deleted	table	holds	the	old	image	of	the	affected	rows	in	the	case	of	DELETE	and
UPDATE	actions.	Remember	that	INSERT,	UPDATE,	and	DELETE	actions	can	be	invoked	by
the	INSERT,	UPDATE,	and	DELETE	statements,	as	well	as	by	the	MERGE	statement.	In	the
case	of	instead	of	triggers,	the	inserted	and	deleted	tables	contain	the	rows	that	were	supposed
to	be	affected	by	the	modification	that	caused	the	trigger	to	fire.
The	following	simple	example	of	an	after	trigger	audits	inserts	to	a	table.	Run	the

following	code	to	create	a	table	called	dbo.T1	in	the	current	database,	and	another	table	called
dbo.T1_Audit	that	holds	audit	information	for	insertions	to	T1:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.T1_Audit,	dbo.T1;

CREATE	TABLE	dbo.T1

(
		keycol		INT									NOT	NULL	PRIMARY	KEY,
		datacol	VARCHAR(10)	NOT	NULL
);

CREATE	TABLE	dbo.T1_Audit
(
		audit_lsn		INT										NOT	NULL	IDENTITY	PRIMARY	KEY,
		dt									DATETIME2(3)	NOT	NULL	DEFAULT(SYSDATETIME()),
		login_name	sysname						NOT	NULL	DEFAULT(ORIGINAL_LOGIN()),
		keycol					INT										NOT	NULL,
		datacol				VARCHAR(10)		NOT	NULL
);

In	the	audit	table,	the	audit_lsn	column	has	an	identity	property	and	represents	an	audit	log
serial	number.	The	dt	column	represents	the	date	and	time	of	the	insertion,	using	the	default
expression	SYSDATETIME().	The	login_name	column	represents	the	name	of	the	login	that
performed	the	insertion,	using	the	default	expression	ORIGINAL_LOGIN().
Next,	run	the	following	code	to	create	the	AFTER	INSERT	trigger	trg_T1_insert_audit	on

the	T1	table	to	audit	insertions:
Click	here	to	view	code	image

CREATE	TRIGGER	trg_T1_insert_audit	ON	dbo.T1	AFTER	INSERT
AS
SET	NOCOUNT	ON;

INSERT	INTO	dbo.T1_Audit(keycol,	datacol)
		SELECT	keycol,	datacol	FROM	inserted;
GO

As	you	can	see,	the	trigger	simply	inserts	into	the	audit	table	the	result	of	a	query	against
the	inserted	table.	The	values	of	the	columns	in	the	audit	table	that	are	not	listed	explicitly	in
the	INSERT	statement	are	generated	by	the	default	expressions	described	earlier.	To	test	the
trigger,	run	the	following	code:
Click	here	to	view	code	image

INSERT	INTO	dbo.T1(keycol,	datacol)	VALUES(10,	'a');
INSERT	INTO	dbo.T1(keycol,	datacol)	VALUES(30,	'x');
INSERT	INTO	dbo.T1(keycol,	datacol)	VALUES(20,	'g');

The	trigger	fires	after	each	statement.	Next,	query	the	audit	table:
Click	here	to	view	code	image

SELECT	audit_lsn,	dt,	login_name,	keycol,	datacol
FROM	dbo.T1_Audit;

You	get	the	following	output,	only	with	dt	and	login_name	values	that	reflect	the	date	and
time	when	you	ran	the	inserts,	and	the	login	you	used	to	connect	to	SQL	Server:
Click	here	to	view	code	image

audit_lsn			dt																						login_name							keycol						datacol
-----------	-----------------------	----------------	-----------	----------
1											2016-02-12	09:04:27.713	K2\Gandalf							10										a
2											2016-02-12	09:04:27.733	K2\Gandalf							30										x
3											2016-02-12	09:04:27.733	K2\Gandalf							20										g

When	you’re	done,	run	the	following	code	for	cleanup:
Click	here	to	view	code	image

DROP	TABLE	dbo.T1_Audit,	dbo.T1;

DDL	triggers
SQL	Server	supports	DDL	triggers,	which	can	be	used	for	purposes	such	as	auditing,	policy
enforcement,	and	change	management.	SQL	Server	box	product	supports	the	creation	of	DDL
triggers	at	two	scopes,	the	database	scope	and	the	server	scope,	depending	on	the	scope	of	the
event.	Azure	SQL	Database	currently	supports	only	database	triggers.
You	create	a	database	trigger	for	events	with	a	database	scope,	such	as	CREATE	TABLE.

You	create	an	all	server	trigger	for	events	with	a	server	scope,	such	as	CREATE	DATABASE.
SQL	Server	supports	only	after	DDL	triggers;	it	doesn’t	support	instead	of	DDL	triggers.
Within	the	trigger,	you	obtain	information	about	the	event	that	caused	the	trigger	to	fire	by

querying	a	function	called	EVENTDATA,	which	returns	the	event	information	as	an	XML
instance.	You	can	use	XQuery	expressions	to	extract	event	attributes	such	as	post	time,	event
type,	and	login	name	from	the	XML	instance.
The	following	code	creates	the	dbo.AuditDDLEvents	table,	which	holds	the	audit

information:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.AuditDDLEvents;

CREATE	TABLE	dbo.AuditDDLEvents
(
		audit_lsn								INT										NOT	NULL	IDENTITY,
		posttime									DATETIME2(3)	NOT	NULL,
		eventtype								sysname						NOT	NULL,
		loginname								sysname						NOT	NULL,
		schemaname							sysname						NOT	NULL,
		objectname							sysname						NOT	NULL,
		targetobjectname	sysname						NULL,
		eventdata								XML										NOT	NULL,
		CONSTRAINT	PK_AuditDDLEvents	PRIMARY	KEY(audit_lsn)
);

Notice	that	the	table	has	a	column	called	eventdata	that	has	an	XML	data	type.	In	addition	to
the	individual	attributes	that	the	trigger	extracts	from	the	event	information	and	stores	in
individual	attributes,	it	also	stores	the	full	event	information	in	the	eventdata	column.
Run	the	following	code	to	create	the	trg_audit_ddl_events	audit	trigger	on	the	database	by

using	the	event	group	DDL_DATABASE_LEVEL_EVENTS,	which	represents	all	DDL	events	at
the	database	level:
Click	here	to	view	code	image

CREATE	TRIGGER	trg_audit_ddl_events
		ON	DATABASE	FOR	DDL_DATABASE_LEVEL_EVENTS
AS
SET	NOCOUNT	ON;

DECLARE	@eventdata	AS	XML	=	eventdata();

INSERT	INTO	dbo.AuditDDLEvents(
		posttime,	eventtype,	loginname,	schemaname,
		objectname,	targetobjectname,	eventdata)
		VALUES(
				@eventdata.value('(/EVENT_INSTANCE/PostTime)[1]',									'VARCHAR(23)'),
				@eventdata.value('(/EVENT_INSTANCE/EventType)[1]',								'sysname'),
				@eventdata.value('(/EVENT_INSTANCE/LoginName)[1]',								'sysname'),
				@eventdata.value('(/EVENT_INSTANCE/SchemaName)[1]',							'sysname'),
				@eventdata.value('(/EVENT_INSTANCE/ObjectName)[1]',							'sysname'),
				@eventdata.value('(/EVENT_INSTANCE/TargetObjectName)[1]',	'sysname'),
				@eventdata);
GO

The	trigger ’s	code	first	stores	the	event	information	obtained	from	the	EVENTDATA
function	in	the	@eventdata	variable.	The	code	then	inserts	a	row	into	the	audit	table	with	the
attributes	extracted	by	using	XQuery	expressions	by	the	.value	method	from	the	event
information,	plus	the	XML	instance	with	the	full	event	information.	(For	details	about	the
XQuery	language,	see	the	following	Wikipedia	article:	https://en.wikipedia.org/wiki/XQuery.)
To	test	the	trigger,	run	the	following	code,	which	contains	a	few	DDL	statements:

Click	here	to	view	code	image

CREATE	TABLE	dbo.T1(col1	INT	NOT	NULL	PRIMARY	KEY);
ALTER	TABLE	dbo.T1	ADD	col2	INT	NULL;
ALTER	TABLE	dbo.T1	ALTER	COLUMN	col2	INT	NOT	NULL;
CREATE	NONCLUSTERED	INDEX	idx1	ON	dbo.T1(col2);

Next,	run	the	following	code	to	query	the	audit	table:
Click	here	to	view	code	image

SELECT	*	FROM	dbo.AuditDDLEvents;

You	get	the	following	output	(split	here	into	two	sections	for	display	purposes),	but	with
values	in	the	posttime	and	loginname	attributes	that	reflect	the	post	time	and	logon	name	in
your	environment:
Click	here	to	view	code	image

audit_lsn	posttime																		eventtype						loginname
---------	-------------------------	--------------	----------------
1									2016-02-12	09:06:18.293			CREATE_TABLE			K2\Gandalf
2									2016-02-12	09:06:18.413			ALTER_TABLE				K2\Gandalf
3									2016-02-12	09:06:18.423			ALTER_TABLE				K2\Gandalf
4									2016-02-12	09:06:18.423			CREATE_INDEX			K2\Gandalf

audit_lsn			schemaname				objectname				targetobjectname		eventdata
-----------	-------------	-------------	-----------------	-------------------
1											dbo											T1												NULL														<EVENT_INSTANCE>...
2											dbo											T1												NULL														<EVENT_INSTANCE>...
3											dbo											T1												NULL														<EVENT_INSTANCE>...
4											dbo											idx1										T1																<EVENT_INSTANCE>...

When	you’re	done,	run	the	following	code	for	cleanup:
Click	here	to	view	code	image

DROP	TRIGGER	IF	EXISTS	trg_audit_ddl_events	ON	DATABASE;

https://en.wikipedia.org/wiki/XQuery

DROP	TABLE	IF	EXISTS	dbo.AuditDDLEvents;

Error	handling
SQL	Server	provides	you	with	tools	to	handle	errors	in	your	T-SQL	code.	The	main	tool	used
for	error	handling	is	a	construct	called	TRY.	.	.CATCH.	SQL	Server	also	provides	a	set	of
functions	you	can	invoke	to	get	information	about	the	error.	I’ll	start	with	a	basic	example
demonstrating	the	use	of	TRY.	.	.CATCH,	followed	by	a	more	detailed	example	demonstrating
the	use	of	the	error	functions.
You	work	with	the	TRY.	.	.CATCH	construct	by	placing	the	usual	T-SQL	code	in	a	TRY	block

(between	the	BEGIN	TRY	and	END	TRY	keywords)	and	placing	all	the	error-handling	code	in
the	adjacent	CATCH	block	(between	the	BEGIN	CATCH	and	END	CATCH	keywords).	If	the
TRY	block	has	no	error,	the	CATCH	block	is	simply	skipped.	If	the	TRY	block	has	an	error,
control	is	passed	to	the	corresponding	CATCH	block.	Note	that	if	a	TRY.	.	.CATCH	block
captures	and	handles	an	error,	as	far	as	the	caller	is	concerned,	there	was	no	error.
Run	the	following	code	to	demonstrate	a	case	with	no	error	in	the	TRY	block:
BEGIN	TRY
		PRINT	10/2;
		PRINT	'No	error';
END	TRY
BEGIN	CATCH
		PRINT	'Error';
END	CATCH;

All	code	in	the	TRY	block	completed	successfully;	therefore,	the	CATCH	block	was	skipped.
This	code	generates	the	following	output:

5
No	error

Next,	run	similar	code,	but	this	time	divide	by	zero.	An	error	occurs:
BEGIN	TRY
		PRINT	10/0;
		PRINT	'No	error';
END	TRY
BEGIN	CATCH
		PRINT	'Error';
END	CATCH;

When	the	divide	by	zero	error	happened	in	the	first	PRINT	statement	in	the	TRY	block,
control	was	passed	to	the	corresponding	CATCH	block.	The	second	PRINT	statement	in	the
TRY	block	was	not	executed.	Therefore,	this	code	generates	the	following	output:

Error

Typically,	error	handling	involves	some	work	in	the	CATCH	block	investigating	the	cause
of	the	error	and	taking	a	course	of	action.	SQL	Server	gives	you	information	about	the	error
via	a	set	of	functions.	The	ERROR_NUMBER	function	returns	an	integer	with	the	number	of
the	error.	The	CATCH	block	usually	includes	flow	code	that	inspects	the	error	number	to
determine	what	course	of	action	to	take.	The	ERROR_MESSAGE	function	returns	error-

message	text.	To	get	the	list	of	error	numbers	and	messages,	query	the	sys.messages	catalog
view.	The	ERROR_SEVERITY	and	ERROR_STATE	functions	return	the	error	severity	and	state.
The	ERROR_LINE	function	returns	the	line	number	in	the	code	where	the	error	happened.
Finally,	the	ERROR_PROCEDURE	function	returns	the	name	of	the	procedure	in	which	the
error	happened	and	returns	NULL	if	the	error	did	not	happen	within	a	procedure.
To	demonstrate	a	more	detailed	error-handling	example	including	the	use	of	the	error

functions,	first	run	the	following	code,	which	creates	a	table	called	dbo.Employees	in	the
current	database:
Click	here	to	view	code	image

DROP	TABLE	IF	EXISTS	dbo.Employees;

CREATE	TABLE	dbo.Employees
(
		empid			INT									NOT	NULL,
		empname	VARCHAR(25)	NOT	NULL,
		mgrid			INT									NULL,
		CONSTRAINT	PK_Employees	PRIMARY	KEY(empid),
		CONSTRAINT	CHK_Employees_empid	CHECK(empid	>	0),
		CONSTRAINT	FK_Employees_Employees
				FOREIGN	KEY(mgrid)	REFERENCES	dbo.Employees(empid)
);

The	following	code	inserts	a	new	row	into	the	Employees	table	in	a	TRY	block,	and	if	an
error	occurs,	shows	how	to	identify	the	error	by	inspecting	the	ERROR_NUMBER	function	in
the	CATCH	block.	The	code	uses	flow	control	to	identify	and	handle	errors	you	want	to	deal
with	in	the	CATCH	block,	and	it	re-throws	the	error	otherwise.
The	code	also	prints	the	values	of	the	other	error	functions	simply	to	show	what

information	is	available	to	you	when	an	error	occurs:
Click	here	to	view	code	image

BEGIN	TRY

		INSERT	INTO	dbo.Employees(empid,	empname,	mgrid)
				VALUES(1,	'Emp1',	NULL);
		--	Also	try	with	empid	=	0,	'A',	NULL

END	TRY
BEGIN	CATCH

		IF	ERROR_NUMBER()	=	2627
		BEGIN
				PRINT	'				Handling	PK	violation...';
		END;
		ELSE	IF	ERROR_NUMBER()	=	547
		BEGIN
				PRINT	'				Handling	CHECK/FK	constraint	violation...';
		END;
		ELSE	IF	ERROR_NUMBER()	=	515
		BEGIN
				PRINT	'				Handling	NULL	violation...';
		END;
		ELSE	IF	ERROR_NUMBER()	=	245
		BEGIN

				PRINT	'				Handling	conversion	error...';
		END;
		ELSE
		BEGIN
				PRINT	'Re-throwing	error...';
				THROW;
		END;

		PRINT	'				Error	Number		:	'	+	CAST(ERROR_NUMBER()	AS	VARCHAR(10));
		PRINT	'				Error	Message	:	'	+	ERROR_MESSAGE();
		PRINT	'				Error	Severity:	'	+	CAST(ERROR_SEVERITY()	AS	VARCHAR(10));
		PRINT	'				Error	State			:	'	+	CAST(ERROR_STATE()	AS	VARCHAR(10));
		PRINT	'				Error	Line				:	'	+	CAST(ERROR_LINE()	AS	VARCHAR(10));
		PRINT	'				Error	Proc				:	'	+	COALESCE(ERROR_PROCEDURE(),	'Not	within	proc');

END	CATCH;

When	you	run	this	code	for	the	first	time,	the	new	row	is	inserted	into	the	Employees	table
successfully,	and	therefore	the	CATCH	block	is	skipped.	You	get	the	following	output:

(1	row(s)	affected)

When	you	run	the	same	code	a	second	time,	the	INSERT	statement	fails,	control	is	passed	to
the	CATCH	block,	and	a	primary-key-violation	error	is	identified.	You	get	the	following
output:
Click	here	to	view	code	image

Handling	PK	violation...
Error	Number		:	2627
Error	Message	:	Violation	of	PRIMARY	KEY	constraint	'PK_Employees'.	Cannot	insert
duplicate	key
in	object	'dbo.Employees'.
Error	Severity:	14
Error	State			:	1
Error	Line				:	3
Error	Proc				:	Not	within	proc

To	see	other	errors,	run	the	code	with	the	values	0,	‘A’,	and	NULL	as	the	employee	ID.
Here,	for	demonstration	purposes,	I	used	PRINT	statements	as	the	actions	when	an	error

was	identified.	Of	course,	error	handling	usually	involves	more	than	just	printing	a	message
indicating	that	the	error	was	identified.
Note	that	you	can	create	a	stored	procedure	that	encapsulates	reusable	error-handling	code

like	this:
Click	here	to	view	code	image

DROP	PROC	IF	EXISTS	dbo.ErrInsertHandler;
GO

CREATE	PROC	dbo.ErrInsertHandler
AS
SET	NOCOUNT	ON;

IF	ERROR_NUMBER()	=	2627
BEGIN
		PRINT	'Handling	PK	violation...';
END;

ELSE	IF	ERROR_NUMBER()	=	547
BEGIN
		PRINT	'Handling	CHECK/FK	constraint	violation...';
END;
ELSE	IF	ERROR_NUMBER()	=	515
BEGIN
		PRINT	'Handling	NULL	violation...';
END;
ELSE	IF	ERROR_NUMBER()	=	245
BEGIN
		PRINT	'Handling	conversion	error...';
END;

PRINT	'Error	Number		:	'	+	CAST(ERROR_NUMBER()	AS	VARCHAR(10));
PRINT	'Error	Message	:	'	+	ERROR_MESSAGE();
PRINT	'Error	Severity:	'	+	CAST(ERROR_SEVERITY()	AS	VARCHAR(10));
PRINT	'Error	State			:	'	+	CAST(ERROR_STATE()	AS	VARCHAR(10));
PRINT	'Error	Line				:	'	+	CAST(ERROR_LINE()	AS	VARCHAR(10));
PRINT	'Error	Proc				:	'	+	COALESCE(ERROR_PROCEDURE(),	'Not	within	proc');
GO

In	your	CATCH	block,	you	check	whether	the	error	number	is	one	of	those	you	want	to	deal
with	locally.	If	it	is,	you	simply	execute	the	stored	procedure;	otherwise,	you	re-throw	the
error:
Click	here	to	view	code	image

BEGIN	TRY

		INSERT	INTO	dbo.Employees(empid,	empname,	mgrid)
				VALUES(1,	'Emp1',	NULL);

END	TRY
BEGIN	CATCH

		IF	ERROR_NUMBER()	IN	(2627,	547,	515,	245)
				EXEC	dbo.ErrInsertHandler;
		ELSE
				THROW;

END	CATCH;

This	way,	you	can	maintain	the	reusable	error-handling	code	in	one	place.

Conclusion
This	chapter	provided	a	high-level	overview	of	programmable	objects	and,	as	such,	doesn’t
include	an	exercises	section.	Its	goal	is	to	make	you	aware	of	SQL	Server ’s	programmability
capabilities.	This	chapter	covered	variables,	batches,	flow	elements,	cursors,	temporary
tables,	dynamic	SQL,	user-defined	functions,	stored	procedures,	triggers,	and	error	handling
—quite	a	few	subjects.	This	chapter	also	concludes	the	book.	When	you’re	ready	to	tackle
more	advanced	T-SQL	topics	including	query-tuning	coverage,	the	next	natural	step	is	to	read
my	book	T-SQL	Querying	(Microsoft	Press,	2015).

Appendix:	Getting	started

The	purpose	of	this	appendix	is	to	help	you	get	started	and	set	up	your	environment	so	that
you	have	everything	you	need	to	get	the	most	out	of	this	book.
You	can	run	all	code	samples	in	this	book	on	a	Microsoft	SQL	Server	box	product,	and

most	of	the	examples	can	be	run	on	Microsoft	Azure	SQL	Database.	For	details	about	the
differences	between	the	flavors,	see	the	section	“The	ABCs	of	Microsoft	RDBMS	flavors”	in
Chapter	1,	“Background	to	T-SQL	querying	and	programming.”
The	first	section,	“Getting	started	with	Azure	SQL	Database,”	provides	a	link	to	the	website

where	you	can	find	the	information	you	need	to	get	started	with	Azure	SQL	Database.
The	second	section,	“Installing	a	SQL	Server	box	product,”	assumes	you	want	to	connect	to

a	SQL	Server	box	product	instance	to	run	the	code	samples	in	this	book,	and	that	you	don’t
have	an	instance	to	connect	to	already.	This	section	walks	you	through	the	installation	process
for	a	SQL	Server	2016	instance.	If	you	already	have	an	instance	of	SQL	Server	to	connect	to,
feel	free	to	skip	this	section.
The	third	section,	“Downloading	and	installing	SQL	Server	Management	Studio,”	provides

instructions	to	download	and	install	SQL	Server	Management	Studio	(SSMS).
The	fourth	section,	“Downloading	source	code	and	installing	the	sample	database,”	points

you	to	the	website	where	you	can	get	the	downloadable	source	code	for	the	book	and	provides
instructions	for	installing	the	book’s	sample	database	on	both	a	SQL	Server	box	product	and
Azure	SQL	Database.
The	fifth	section,	“Working	with	SQL	Server	Management	Studio,”	explains	how	to

develop	and	execute	T-SQL	code	in	SQL	Server	by	using	SSMS.
The	last	section,	“Working	with	SQL	Server	Books	Online,”	describes	SQL	Server	Books

Online	and	explains	its	importance	in	helping	you	get	information	about	T-SQL.

Getting	started	with	Azure	SQL	Database
If	you	want	to	run	the	code	samples	in	this	book	on	Azure	SQL	Database,	you	need	access	to
an	Azure	SQL	Database	server,	with	an	account	that	has	privileges	to	create	a	new	database
(or	ask	an	administrator	to	create	the	sample	database	for	you).	If	you	don’t	already	have
access	to	Azure	SQL	Database,	you	can	find	useful	information	on	how	to	get	started	on	the
Microsoft	Azure	main	page	at	https://azure.microsoft.com.
You	need	a	Microsoft	account	to	create	a	Microsoft	Azure	subscription.	If	you	don’t

already	have	an	account,	you	can	create	one	at	https://signup.live.com.	When	you	have	a
Microsoft	Azure	subscription,	you	can	connect	to	the	Microsoft	Azure	Portal	at
https://portal.azure.com,	from	which	you	can	manage	your	Azure	SQL	Database	servers	and
databases.
The	Microsoft	Azure	main	page	offers	different	options	for	getting	started	(by	buying	a

subscription	or	getting	a	free	trial),	and	it	provides	access	to	resources	such	as	the
management	portal,	community,	and	support.

https://azure.microsoft.com
https://signup.live.com
https://portal.azure.com

When	you	have	access	to	Azure	SQL	Database,	proceed	to	the	instructions	on	how	to
download	the	source	code	and	install	the	sample	database	later	in	this	appendix.

Installing	a	SQL	Server	box	product
This	section	is	relevant	for	those	who	want	to	run	the	code	samples	in	this	book	and	practice
the	exercises	against	a	SQL	Server	box	product	and	don’t	already	have	access	to	one.	You	can
use	any	edition	of	SQL	Server	2016	or	later.	Assuming	you	don’t	already	have	an	instance	of
SQL	Server	to	connect	to,	the	following	sections	describe	where	you	can	obtain	SQL	Server
and	how	to	install	it.

1.	Obtain	SQL	Server
As	I	mentioned,	you	can	use	any	edition	of	SQL	Server	2016	or	later	to	practice	the	materials
in	this	book.	If	you	have	a	subscription	to	the	Microsoft	Developer	Network	(MSDN),	you	can
use	the	SQL	Server	2016	Developer	edition	for	learning	purposes.	You	can	download	it	from
https://msdn.microsoft.com/subscriptions/downloads.	The	SQL	Server	Developer	edition	is
also	available	for	free	for	Visual	Studio	Dev	Essentials	members.	For	details,	see
https://blogs.technet.microsoft.com/dataplatforminsider/2016/03/31/microsoft-sql-server-
developer-edition-is-now-free.	Another	option	is	to	use	the	free	trial	software	of	SQL	Server
2016,	which	you	can	download	from	https://www.microsoft.com/sql.	In	this	appendix,	I
demonstrate	the	installation	of	the	SQL	Server	2016	Evaluation	edition.

2.	Install	the	database	engine
Assuming	you	have	the	SQL	Server	installation	software	available,	you	can	proceed	to
installing	the	product.

To	install	the	database	engine
1.	Start	the	setup.exe	program	from	the	SQL	Server	installation	folder.	You	should	see	the
SQL	Server	Installation	Center	dialog	box	shown	in	Figure	A-1.

https://msdn.microsoft.com/subscriptions/downloads
https://blogs.technet.microsoft.com/dataplatforminsider/2016/03/31/microsoft-sql-server-developer-edition-is-now-free
https://www.microsoft.com/sql

FIGURE	A-1	SQL	Server	Installation	Center.

2.	In	the	left	pane,	choose	Installation.	Note	that	the	screen	changes.
3.	In	the	right	pane,	choose	New	SQL	Server	Stand-Alone	Installation	Or	Add	Features	To
An	Existing	Installation.	The	Product	Key	dialog	box	appears,	as	shown	in	Figure	A-2.

FIGURE	A-2	The	Product	Key	dialog	box.

4.	Make	sure	that	Evaluation	is	selected	in	the	Specify	A	Free	Edition	list	box,	and	click
Next	to	continue.	The	License	Terms	dialog	box	appears.

5.	Confirm	that	you	accept	the	license	terms,	and	click	Next	to	continue.	The	Microsoft
Update	dialog	box	appears.

6.	Confirm	that	you	want	to	use	Microsoft	Update	to	check	for	updates	(recommended),
and	click	Next	to	continue.	The	Install	Rules	dialog	box	appears.

7.	Ensure	that	no	problems	are	indicated.	Click	Next	to	continue.	The	Feature	Selection
dialog	box	appears.	Select	the	features	to	install,	as	shown	in	Figure	A-3.

FIGURE	A-3	The	Feature	Selection	dialog	box.

8.	Select	the	Database	Engine	Services	feature.	For	the	purposes	of	this	book,	you	don’t
need	any	of	the	other	features.

9.	When	you’re	done,	click	Next	to	continue.	The	Instance	Configuration	dialog	box
appears,	as	shown	in	Figure	A-4.

FIGURE	A-4	The	Instance	Configuration	dialog	box.

If	you’re	not	familiar	with	the	concept	of	SQL	Server	instances,	you	can	find	details	in
Chapter	1,	in	the	“SQL	Server	architecture”	section.

10.	If	a	default	instance	of	SQL	Server	is	not	installed	on	your	computer	and	you	would
like	to	configure	the	new	instance	as	the	default,	simply	confirm	that	the	Default	Instance
option	is	selected.	If	you	want	to	configure	the	new	instance	as	a	named	instance,	make
sure	the	Named	Instance	option	is	selected	and	that	you	specify	a	name	for	the	new
instance	(for	example,	SQL2016).	When	you	later	connect	to	SQL	Server,	you’ll	specify
only	the	computer	name	for	a	default	instance	(for	example,	MERU),	and	the	computer
name\instance	name	for	a	named	instance	(for	example,	MERU\SQL2016).

11.	When	you’re	done,	click	Next	to	continue.	The	Server	Configuration	dialog	box
appears.
For	the	purposes	of	this	book,	you	do	not	need	to	change	the	default	choices	in	the
Service	Accounts	and	Collation	dialog	boxes.	If	you	want	to	know	more	about	collation,
you	can	find	details	in	Chapter	2,	“Single-table	queries,”	in	the	“Working	with	character
data”	section.

12.	Click	Next	to	continue.	The	Database	Engine	Configuration	dialog	box	appears.
13.	On	the	Server	Configuration	tab,	ensure	that	under	Authentication	Mode	the	Windows

Authentication	Mode	option	is	selected.	Under	Specify	SQL	Server	Administrators,
click	Add	Current	User	to	assign	the	current	logged-on	user	with	the	System
Administrator	(sysadmin)	server	role,	as	shown	in	Figure	A-5.	SQL	Server
administrators	have	unrestricted	access	to	the	SQL	Server	database	engine.

FIGURE	A-5	The	Database	Engine	Configuration	dialog	box.

Of	course,	in	your	case,	your	current	user	name	will	appear	instead	of	MERU\Gandalf.
If	you	want	to	change	the	setup	program’s	defaults	in	terms	of	data	directories,	you	can
do	so	on	the	Data	Directories	tab.	For	the	purposes	of	the	book,	you	don’t	need	to
configure	anything	on	the	TempDB	and	FILESTREAM	tabs.

14.	Click	Next	to	continue.	The	Ready	To	Install	dialog	box	appears	with	a	summary	of	the
installation	choices.

15.	Ensure	that	the	summary	indicates	your	choices	correctly,	and	click	Install	to	start	the
actual	installation	process.	The	Installation	Progress	dialog	box	appears	and	remains
open	throughout	the	remainder	of	the	installation	process.	This	dialog	box	provides	a
general	progress	bar	as	well	as	indicating	the	status	of	each	feature	that	is	being
installed.	(See	Figure	A-6.)

FIGURE	A-6	The	Installation	Progress	dialog	box.

16.	When	the	installation	is	complete,	the	Complete	dialog	box	appears,	as	shown	in	Figure
A-7.

FIGURE	A-7	The	Complete	dialog	box.

This	dialog	box	should	indicate	the	successful	completion	of	the	installation.
17.	Click	Close	to	finish.

Downloading	and	installing	SQL	Server	Management	Studio
Whether	you	plan	to	work	with	SQL	Server	or	Azure	SQL	Database	as	the	database	engine,
you	need	to	download	and	install	SQL	Server	Management	Studio	(SSMS)—the	client	tool
you	use	to	develop	and	execute	your	T-SQL	code	against	the	database	engine.	You	can
download	the	installation	software	from	https://msdn.microsoft.com/en-
us/library/mt238290.aspx.	Once	the	download	completes,	run	the	setup	program.	No	user
input	is	required	other	than	clicking	the	Install	button	to	initiate	the	installation	and	the	Close
button	when	it’s	done.

Downloading	source	code	and	installing	the	sample	database
To	download	the	source	code,	visit	the	book’s	companion	website	here:
http://tsql.solidq.com/books/tf3.	This	page	has	a	link	to	download	a	single	compressed	file
with	the	book’s	source	code,	as	well	as	a	script	file	called	TSQLV4.sql	that	creates	the	sample
database.	Decompress	the	files	to	a	local	folder	(for	example,	C:\TSQLFundamentals).

https://msdn.microsoft.com/en-us/library/mt238290.aspx
http://tsql.solidq.com/books/tf3

You’ll	find	up	to	three	.sql	script	files	associated	with	each	chapter	of	the	book:
	One	file	contains	the	source	code	for	the	corresponding	chapter.	It’s	provided	for	your
convenience,	in	case	you	don’t	want	to	type	the	code	that	appears	in	the	book.	The	name
of	this	file	matches	the	title	of	the	corresponding	chapter.
	A	second	file	contains	the	exercises	for	the	chapter.	The	name	of	this	file	also	matches
the	title	of	the	corresponding	chapter	but	includes	the	suffix	“Exercises.”
	A	third	file	contains	the	solutions	to	the	chapter ’s	exercises.	The	name	of	this	file
matches	the	title	of	the	corresponding	chapter	but	includes	the	suffix	“Solutions.”

You	use	SSMS	to	open	the	files	and	run	the	code	they	contain.	If	you	don’t	have	SSMS
installed	already,	make	sure	you	install	it	first	by	following	the	instructions	in	the	section
“Downloading	and	installing	SQL	Server	Management	Studio.”	The	next	section	explains	how
to	work	with	SSMS.
You’ll	also	find	a	text	file	called	orders.txt,	which	you	can	use	when	practicing	the

materials	from	Chapter	8,	“Data	modification.”	Also	included	is	a	script	file	called
TSQLV4.sql,	which	creates	the	book’s	sample	database,	TSQLV4.
To	create	the	sample	database	in	an	instance	of	a	SQL	Server	box	product,	you	simply	need

to	run	this	script	file	while	you’re	connected	to	the	target	SQL	Server	instance.	If	you	aren’t
familiar	with	running	script	files	in	SQL	Server,	you	can	follow	these	steps	to	complete	the
database	creation.

To	create	and	populate	the	sample	database	in	a	SQL	Server	box	product
1.	Double-click	the	TSQLV4.sql	file	name	in	File	Explorer	to	open	the	file	in	SSMS.	The
Connect	To	Database	Engine	dialog	box	appears.

2.	In	the	Server	Name	box,	ensure	that	the	name	of	the	instance	you	want	to	connect	to
appears.	For	example,	you	would	type	the	name	MERU	if	your	instance	was	installed	as
the	default	instance	in	a	computer	called	MERU,	or	MERU\SQL2016	if	your	instance
was	installed	as	a	named	instance	called	SQL2016	in	a	computer	called	MERU.

3.	In	the	Authentication	box,	make	sure	Windows	Authentication	is	selected.	Click
Connect.

4.	When	you’re	connected	to	SQL	Server,	press	F5	to	run	the	script.	When	the	execution	is
done,	the	Command(s)	Completed	Successfully	message	should	appear	in	the	Messages
pane.	You	should	see	the	TSQLV4	database	in	the	Available	Databases	box.

5.	When	you’re	done,	you	can	close	SSMS.

To	create	and	populate	the	sample	database	in	Azure	SQL	Database
1.	Double-click	the	file	name	in	File	Explorer	to	open	the	file	in	SSMS.	The	Connect	To
Database	Engine	dialog	box	appears.

2.	In	the	Server	Name	box,	ensure	that	the	name	of	the	Azure	SQL	Database	server	you
want	to	connect	to	appears—for	example,	myserver.database.windows.net.

3.	In	the	Authentication	box,	make	sure	SQL	Authentication	is	selected	and	the	correct
logon	name	and	password	are	entered.	Click	Options.

4.	On	the	Connection	Properties	tab,	type	master	in	the	Connect	To	Database	text	box,	and
then	click	Connect.

5.	Skip	the	instructions	under	Section	A	in	the	script	(for	a	SQL	Server	box	product),	and
follow	the	instructions	under	Section	B	in	the	script	(for	Azure	SQL	Database).	The
most	important	instruction	is	the	one	telling	you	to	run	the	following	command	to
create	the	TSQLV4	database:
CREATE	DATABASE	TSQLV4;

6.	Right-click	any	empty	area	in	the	query	pane,	and	choose	Connection	|	Change
Connection.	The	Connect	To	Database	Engine	dialog	box	appears.	Specify	TSQLV4	as
the	database	to	connect	to,	and	click	Connect.	You	should	see	the	TSQLV4	database	in	the
Available	Databases	box.
As	an	alternative,	you	can	simply	select	the	TSQLV4	database	from	the	Available
Databases	box.

7.	Highlight	the	code	in	Section	C	(beginning	with	Create	Schemas	and	continuing	all	the
way	to	the	end	of	the	script	file).	Press	F5	to	run	the	script.	When	the	execution	is	done,
the	Command(s)	Completed	Successfully	message	should	appear	in	the	Messages	pane.
Note	that	on	slow	connections	it	might	take	the	code	a	few	minutes	to	complete.

8.	When	you’re	done,	you	can	close	SSMS.
The	data	model	of	the	TSQLV4	database	is	provided	in	Figure	A-8	for	your	convenience.

FIGURE	A-8	The	data	model	of	the	TSQLV4	database.

Working	with	SQL	Server	Management	Studio
SQL	Server	Management	Studio	(SSMS)	is	the	client	tool	you	use	to	develop	and	execute	T-
SQL	code	against	SQL	Server.	The	purpose	of	this	section	is	not	to	provide	a	complete	guide
to	working	with	SSMS,	but	rather	just	to	help	you	get	started.

	Note
SSMS	is	updated	periodically,	so	your	experience	might	vary	from	the	screenshots	in
this	appendix.

To	start	working	with	SSMS
1.	Start	SSMS	from	the	Microsoft	SQL	Server	program	group.
2.	If	this	is	the	first	time	you	have	run	SSMS,	I	recommend	specifying	the	startup	options
so	that	the	environment	is	set	up	the	way	you	want	it.
a.	If	a	Connect	To	Server	dialog	box	appears,	click	Cancel	for	now.
b.	Choose	the	Tools	|	Options	menu	item	to	open	the	Options	dialog	box.	Under

Environment	|	Startup,	set	the	At	Startup	option	to	Open	Object	Explorer	And	Query
Window.	This	choice	tells	SSMS	that	whenever	it	starts,	it	should	open	the	Object
Explorer	and	a	new	query	window.
The	Object	Explorer	is	the	tool	you	use	to	manage	SQL	Server	and	graphically
inspect	object	definitions,	and	a	query	window	is	where	you	develop	and	execute	T-
SQL	code	against	SQL	Server.	Feel	free	to	navigate	the	tree	to	explore	the	options
you	can	set,	but	few	of	them	are	likely	to	mean	much	at	this	point.	After	you	gain
some	experience	with	SSMS,	you’ll	find	many	of	the	options	more	meaningful	and
probably	want	to	change	some	of	them.

c.	When	you’re	done	exploring	the	Options	dialog	box,	click	OK	to	confirm	your
choices.

3.	Close	SSMS	and	start	it	again	to	verify	that	it	actually	opens	the	Object	Explorer	and	a
new	query	window.	You	should	see	the	Connect	To	Server	dialog	box,	as	shown	in
Figure	A-9.

FIGURE	A-9	The	Connect	To	Server	dialog	box.

4.	In	this	dialog	box,	you	specify	the	details	of	the	SQL	Server	instance	you	want	to
connect	to.

5.	Type	the	name	of	the	server	you	want	to	connect	to	in	the	Server	Name	box,	or	select	it
from	the	list	if	you’ve	already	connected	to	it	successfully	in	the	past.	For	Azure	SQL
Database	you	will	need	to	specify	the	full	DNS	server	name	in	the	form
yourserver.database.windows.net	(replacing	yourserver	with	your	server	name).

6.	Choose	the	authentication	mode	in	the	Authentication	list	box	according	to	the	type	of
login	you	are	connecting	with	(Windows	Authentication	or	SQL	Server	Authentication).
If	you	use	the	former	(recommended),	you	don’t	need	to	specify	the	login	name	and
password.	If	you	use	the	latter,	specify	the	SQL	authenticated	login	name	and	password
information.	For	Azure	SQL	Database,	also	click	Options	and	specify	TSQLV4	in	the
Connect	To	Dataset	box	in	the	Connection	Properties	dialog	box.

7.	Click	Connect.	SSMS	should	start,	as	shown	in	Figure	A-10.

FIGURE	A-10	The	opening	screen	of	SSMS.

The	Object	Explorer	window	appears	on	the	left,	the	query	window	appears	to	the	right
of	Object	Explorer,	and	the	Properties	window	is	to	the	right	of	the	query	window.	You
can	hide	the	Properties	window	by	clicking	the	Auto	Hide	button	(in	the	upper-right
corner	of	the	window,	to	the	left	of	the	X).	Adjust	the	sizes	of	the	Object	Explorer	dialog
box	and	the	query	window	as	convenient	to	you.	Although	the	focus	of	this	book	is	on
developing	T-SQL	code	and	not	SQL	Server	management,	I	urge	you	to	explore	the
Object	Explorer	by	navigating	the	tree	and	by	right-clicking	the	various	nodes.	You’ll
find	the	Object	Explorer	to	be	a	convenient	tool	for	graphically	inspecting	your
databases	and	database	objects,	as	shown	in	Figure	A-11.
Note	that	you	can	drag	items	from	the	Object	Explorer	to	the	query	window.

	Tip

If	you	drag	the	Columns	folder	of	a	table	from	the	Object	Explorer	to	the	query
window,	SQL	Server	will	list	all	table	columns	separated	by	commas.

FIGURE	A-11	The	Object	Explorer.

In	the	query	window,	you	develop	and	execute	T-SQL	code.	The	code	you	run	is
executed	against	the	database	you’re	connected	to.	You	can	choose	the	database	you	want
to	connect	to	from	the	Available	Databases	combo	box,	as	shown	in	Figure	A-12.

FIGURE	A-12	The	Available	Databases	combo	box.

8.	Make	sure	you’re	currently	connected	to	the	TSQLV4	sample	database.
Note	that,	at	any	point,	you	can	change	the	server	and	database	you’re	connected	to	by
right-clicking	an	empty	area	in	the	query	window	and	then	choosing	Connection	|
Change	Connection.

9.	You’re	now	ready	to	start	developing	T-SQL	code.	Type	the	following	code	into	the
query	window:

Click	here	to	view	code	image

SELECT	orderid,	orderdate	FROM	Sales.Orders;

10.	Press	F5	to	execute	the	code.	Alternatively,	you	can	click	Execute	(the	icon	with	the	red
exclamation	point).	You’ll	get	the	output	of	the	code	in	the	Results	pane,	as	shown	in
Figure	A-13.

FIGURE	A-13	Executing	the	first	query.

You	can	control	the	target	of	the	results	from	the	Query	|	Results	To	menu	item	or	by
clicking	the	corresponding	icons	in	the	SQL	Editor	toolbar.	You	have	the	following
options:	Results	To	Grid	(default),	Results	To	Text,	and	Results	To	File.
Note	that	if	some	of	the	code	is	highlighted,	as	shown	in	Figure	A-14,	when	you	execute
the	code,	SQL	Server	executes	only	the	selected	part.	SQL	Server	executes	all	code	in
the	script	only	if	no	code	is	highlighted.

FIGURE	A-14	Executing	only	selected	code.

	Tip

If	you	press	and	hold	the	Alt	button	before	you	start	highlighting	code,	you	can
highlight	a	rectangular	block	that	doesn’t	necessarily	start	at	the	beginning	of	the	lines
of	code,	for	purposes	of	copying	or	executing,	as	shown	in	Figure	A-15.	Pressing	Tab
or	Shift+Tab	will	shift	the	whole	rectangle	forward	or	backward,	respectively.	If	at	this
point	you	start	typing	something,	what	you	type	gets	repeated	in	all	highlighted	lines.
Try	it!

FIGURE	A-15	Highlighting	a	rectangular	block.

Finally,	before	I	leave	you	to	your	own	explorations,	I’d	like	to	remind	you	that	all	the
source	code	for	the	book	is	available	for	download	from	the	book’s	website.	The	previous
section	in	this	appendix,	“Downloading	source	code	and	installing	the	sample	database,”
provides	the	details.	Assuming	you	downloaded	the	source	code	and	extracted	the	compressed
files	to	a	local	folder,	you	can	open	the	script	file	you	want	to	work	with	from	File	|	Open	|
File	or	by	clicking	the	Open	File	icon	on	the	standard	toolbar.	Alternatively,	you	can	double-
click	the	script	file’s	name	in	File	Explorer	to	open	the	script	file	within	SSMS.

Working	with	SQL	Server	Books	Online
Microsoft	SQL	Server	Books	Online	is	the	online	documentation	that	Microsoft	provides	for
SQL	Server.	It	contains	a	huge	amount	of	useful	information.	When	you’re	developing	T-SQL
code,	think	of	Books	Online	as	your	best	friend—besides	this	T-SQL	fundamentals	book,	of
course.
You	can	access	Books	Online	from	the	Help	menu	in	SSMS	by	clicking	View	Help.	By

default,	SSMS	goes	to	the	Internet	to	get	help	content.	You	can	also	install	and	access	help
locally	from	the	Help	Viewer,	which	you	start	by	choosing	Add	and	Remove	Help	Content
from	the	Help	menu,	or	by	clicking	Ctrl+Alt+F1.	Install	new	content	from	the	Manage	Content

tab.	I	installed	all	the	items	with	SQL	in	their	name.
Learning	to	use	Books	Online	is	not	rocket	science,	and	I	don’t	want	to	insult	anyone’s

intelligence	by	explaining	the	obvious.	Dedicating	a	section	to	Books	Online	in	the	“Getting
started”	appendix	is	more	about	making	you	aware	of	its	existence	and	emphasizing	its
importance	rather	than	explaining	how	to	use	it.	Too	often,	people	ask	others	for	help	about	a
topic	related	to	SQL	Server	when	they	can	easily	find	the	answer	if	they	only	put	a	little	effort
into	searching	for	it	in	Books	Online.
I’ll	explain	a	few	of	the	ways	to	get	information	from	Books	Online.	One	of	the	windows	I

use	most	in	Help	Viewer	to	search	for	information	is	the	Index	tab,	shown	in	Figure	A-16.
Type	what	you’re	looking	for	in	the	search	box.	As	you	type	the	letters	of	the	subject

you’re	looking	for	(for	example,	window	function),	Help	Viewer	places	the	first	qualifying
item	at	the	top	of	the	sorted	list	of	subjects.	You	can	type	T-SQL	keywords	for	which	you	need
syntax	information,	for	example,	or	any	other	subject	of	interest.

FIGURE	A-16	The	Help	Viewer	Index	window.

You	can	add	the	topic	to	the	Help	Favorites	by	clicking	the	Add	To	Favorites	button	from
the	toolbar,	making	it	easy	to	get	back	to	later.	You	can	also	sync	the	current	help	item	with	the
respective	topic	on	the	Content	tab	by	clicking	the	Show	Topic	In	Contents	button.
You	can	also	look	for	an	item	through	the	Contents	tab	by	navigating	the	tree	of	topics,	as

shown	in	Figure	A-17.

FIGURE	A-17	The	Help	Viewer	Contents	window.

If	you	just	want	to	explore	what’s	available	in	T-SQL,	navigate	the	Transact-SQL	Reference
folder	tree,	which	can	be	found	under	the	SQL	Shared	Language	Reference	folder.
Another	useful	tool	is	the	Help	Viewer ’s	Search	window,	which	is	shown	in	Figure	A-18.

FIGURE	A-18	The	Help	Viewer	Search	window.

You	use	the	search	box	when	looking	for	articles	that	contain	words	you’re	looking	for.
This	search	is	more	abstract	than	a	search	on	the	Index	tab—somewhat	similar	to	a	search
performed	by	an	Internet	search	engine.	Note	that	if	you	want	to	find	a	certain	word	in	an
open	article,	click	the	Find	In	Topic	button	on	the	toolbar	or	press	Ctrl+F	to	activate	the	Find
bar.

	Tip

Finally,	let	me	add	a	last	tip.	If	you	need	help	with	a	syntax	element	while	writing	code
in	SQL	Server	Management	Studio,	make	sure	your	cursor	is	positioned	somewhere	in
that	code	element	and	then	press	F1.	This	will	load	Books	Online	and	open	the	syntax
page	for	that	element,	assuming	that	such	a	Help	item	exists.

Index

Symbols	and	Numbers
-	(negative),	51–52
-	(subtraction),	51–52
%	(percent)	wildcard,	71–72
(),	parentheses,	51–52
*	(asterisk),	SELECT	clauses	and,	41
*	(multiplication),	51–52
,	,	=	(comparison	operators),	51–52
.ldf	(Log	Data	File),	18
.mdf	(Master	Data	File),	18
.ndf	(Not	Master	Data	File),	18
@@	identity,	255–257
_	(underscore)	wildcard,	72
+	(addition),	51–52
+	(concatenation),	51–52
+	(positive),	51–52
=	(assignment),	51–52
[^character	list	or	range]	wildcard,	73
[character-character]	wildcard,	72–73
[list	of	characters]	wildcard,	72
1NF,	8
2NF,	8–10
3NF,	9–10

A
ABC	flavors	(Appliance,	Box,	Cloud),	12–14
accent	sensitivity,	character	data,	61
ACID	(automaticity,	consistency,	isolation,	and	durability),	320–322
addition	(+),	51–52
administrative	tasks,	dynamic	SQL	and,	379–383
aggregate	functions.	See	also	COUNT;	also	pivoting	data;	also	window	functions
aggregate	window	functions,	221–224
NULLs	and,	33–35
running	aggregates,	subqueries	and,	144–145

aliases
common	table	expressions	(CTEs),	assigning	in,	167–168

cross	joins	and,	104
derived	tables	and,	162–164
derived	tables,	nesting	and,	165–166
inline	table-valued	functions	(TVFs),	179
ORDER	BY	clause	and,	42
SELECT	clauses	and,	36–41
self	joins	and,	106

ALL,	duplicates	and,	194
all-at-once	operations,	58–59
ALTER	DATABASE,	quoted	identifiers,	62–63
ALTER	PROC,	385
ALTER	SEQUENCE,	259
ALTER	TABLE
defining	data	integrity,	22–25
sequence	objects	and,	261–262

ALTER	TABLE	ADD	CONSTRAINT,	264–266
ALTER	TABLE	DROP	CONSTRAINT,	264–266
ALTER	VIEW,	172
American	National	Standards	Institute	(ANSI),	2
AND
MERGE	and,	275
precedence,	51–52
predicates	and,	49
use	of,	50

ANSI	(American	National	Standards	Institute),	2
Appliance,	Box,	Cloud	(ABC	flavors),	12–14
application-time	period	tables,	297.	See	also	temporal	tables
APPLY
table	expressions,	overview,	180–183
unpivoting	data,	231–233

arguments,	derived	table	queries	and,	164–165
arithmetic	operators,	50–52
AS	clause,	36–41
derived	tables	and,	161–162

assignment	(=),	51–52
asterisk	(*),	SELECT	clauses	and,	41
AT	TIME	ZONE,	84–85
temporal	table	queries,	310

attributes
filtering	in	outer	joins,	118–119

normalization	forms,	7–10
propositions,	predicates,	and	relations,	5–6

auditing,	DDL	triggers	(data	definition	events),	388–390.	See	also	temporal	tables
automaticity,	transactions,	320–322
automating	administrative	tasks,	dynamic	SQL	and,	379–383
autonumbering
assignment	UPDATE	and,	270–271

AVG,	33–35.	See	also	window	functions
Azure	SQL	Data	Warehouse,	14
Azure	SQL	Database
ABC	flavors	(Appliance,	Box,	Cloud),	13–14
global	temporary	tables,	376
isolation,	overview,	332–333
locks	and	blocking,	322–323
READ	COMMITTED	SNAPSHOT,	343
row-versioning-based	isolation,	339
source	code,	downloading	of,	402–404
website	link	and	access	information,	395–396

B
bag,	3
batches
as	unit	of	parsing,	364
as	unit	of	resolution,	366
dynamic	SQL,	379–383
overview	of,	363–364
variables	and,	361,	365
vs.	transactions,	363

BEGIN,	368
BEGIN	TRAN	(TRANSACTION),	319–322
BETWEEN
precedence,	51–52
temporal	table	queries,	308
use	of,	49

binding,	batches	and,	366
bitemporal,	297.	See	also	temporal	tables
blocking.	See	isolation,	transactions;	locks
blocking	chain,	328
blocking_session_id,	330–331
BULK	INSERT,	253

C
CACHE,	sequence	objects	and,	258–259
Cancel	Executing	Query,	331–332
candidate	keys.	See	also	constraints
normalization	forms,	8–9
overview	of,	7

Cantor,	Georg,	3
CASCADE,	24
CASE	expressions
overview	of,	52–54
pivoting	with	grouped	queries,	226–227

case	sensitivity,	character	data,	61
CAST
correlated	subqueries	and,	141
date	and	time	functions,	81–83
date	and	time	literals,	77–78

catalog	views,	metadata	queries,	89–91
CATCH,	error	handling,	390–394
change	management,	DDL	triggers	(data	definition	events),	388–390
CHAR,	50,	60–61
character	data
collation,	61–63
data	types,	overview,	60–61
quoted	identifiers,	62–63

CHARINDEX,	66
CHECK
CASE	expressions,	overview	of,	52–54
working	with	date	and	time	separately,	78–79

CHECK	OPTION,	views	and,	177–178
CHOOSE,	CASE	expressions,	54
closed-world	assumption,	5
cloud	computing,	ABC	flavors	(Appliance,	Box,	Cloud),	13–14
COALESCE,	CASE	expressions,	54
Codd,	Edgar	F.,	4–5
code	samples,	resources	for	getting	started
Azures	SQL	Database,	getting	started,	395–396
source	code,	downloading	of,	402–404
SQL	Server	Books	Online,	410–413
SQL	Server	installation,	396–401

SQL	Server	Management	Studio,	working	with,	404–410
coding	style,	T-SQL,	21–22
COLLATE,	61–62
collation,	16,	61–63
column	names
aliases,	assigning	in	common	table	expressions	(CTEs),	167–168
derived	tables	and,	162
identifier	names,	30
subquery	substitution	errors,	147–149

COLUMNPROPERTY,	92
COMMIT	TRAN
lock	modes	and	compatibility,	322–324
transactions,	overview	of,	319–322

common	table	expressions	(CTEs)
arguments,	using,	167–168
column	aliases,	assigning,	167–168
defining	multiple	CTEs,	168–169
exercises,	183–188
exercises,	solutions	for,	188–192
multiple	references	in,	169
overview	of,	167
recursive	CTEs,	169–171

comparison	operators,	50–52
composite	joins,	110–111
exercises,	123–128
exercises,	solutions	for,	129–132

COMPRESS,	70
compression,	character	data	and,	60–61
CONCAT,	63–65
concatenation	(+),	51–52
concurrency,	transactions	overview,	319–322
conflict	detection,	SNAPSHOT	and,	341–343
consistency,	transactions,	320–322.	See	also	isolation,	transactions
CONSTRAINT,	264–266
constraints
check	constraints,	defining,	24–25
default	constraints,	defining,	25
foreign-key	constraints,	defining,	23–24
overview	of,	7
primary-key	constraints,	defining,	22

unique	constraints,	defining,	23
contained	databases,	SQL	Server	architecture,	17
CONTINUE,	369–370
CONVERT
date	and	time	functions,	81–83
date	and	time	literals,	77–78
working	with	date	and	time	separately,	79

correlated	subqueries.	See	also	subqueries
EXISTS	and,	141–143
overview	of,	139–141

COUNT.	See	also	window	functions
GROUP	BY	and,	33–35
outer	joins,	use	with,	121–123

CREATE	DATABASE,	DDL	triggers	(data	definition	events),	388–390
CREATE	DEFAULT,	365
CREATE	FUNCTION,	365
CREATE	PROCEDURE,	365
CREATE	RULE,	365
CREATE	SCHEMA,	365
CREATE	SEQUENCE,	258–259
CREATE	TABLE
DDL	triggers	(data	definition	events),	388–390
defining	data	integrity,	22–25
use	of,	20

CREATE	TRIGGER,	365
CREATE	VIEW,	365
CROSS	APPLY
JOIN	and,	180
overview	of,	180–183
unpivoting	data,	232–233

cross-joins
CROSS	APPLY	and,	180
exercises,	123–128
exercises,	solutions	for,	129–132
overview	of,	103–107

CUBE,	235–236
CURRENT_TIMESTAMP,	80–81
cursors,	42
as	programmable	objects,	370–373

custom	sequence,	assignment	UPDATE	and,	270–271

CYCLE,	sequence	objects	and,	258–259

D
Darwen,	Hugh,	4–5
data	definition	events	(DDL	triggers),	387–390
data	definition	language	(DDL),	batches	and,	366
data	integrity
constraints	and,	7
defining,	22–25

Data	Lake,	14
data	manipulation	events	(DML	triggers),	387–388
Data	Manipulation	Language	(DML),	249
batches	and,	366
nested	DML,	285–287

data	marts,	overview	of,	11–12
data	types
character	data,	60–61
N	prefix,	use	of,	50
operands,	precedence	of,	50–52

data	warehouses	(DWs),	10–12
database	system	types,	10–12
database	user,	SQL	Server	logins,	17
DATABASEPROPERTYEX,	92
databases,	SQL	Server
architecture	overview,	15–18
file	extensions	(.mdf,	.ldf,	.ndf),	18
schemas	and	objects,	18–19

DATALENGTH,	65–66
DATE
data	types,	73–74
literals,	74–78
working	with	date	and	time	separately,	78–79

date	and	time	data
aggregate	window	functions,	223–224
AT	TIME	ZONE,	84–85
CAST,	CONVERT,	and	PARSE,	81–83
current	date	and	time	functions,	80–81
DATEADD,	85
DATEDIFF	and	DATEDIFF_BIG,	86–87
DATENAME,	88

DATEPART,	87
EOMONTH,	89
filtering	date	ranges,	79–80
FROMPARTS,	88–89
ISDATE,	88
literals,	74–78
missing	values,	in	outer	joins,	116–118
SWITCHOFFSET,	83
types	of,	73–74
working	with	separately,	78–79
YEAR,	MONTH,	and	DAY,	87–88

Date,	Chris,	4–5
DATEADD,	85
DATEDIFF	and	DATEDIFF_BIG,	86–87
DATEFORMAT,	75
DATENAME,	88
DATEPART,	87
DATETIME
data	types,	73–74
literals,	74–78
working	with	date	and	time	separately,	78–79

DATETIME2
data	types,	73–74
literals,	74–78
temporal	tables,	creating,	298–301

DATETIMEOFFSET
data	types,	73–74
literals,	74–78
SWITCHOFFSET	and,	83

DAY,	87–88
DBCC	CHECKIDENT,	257
DDL	triggers	(data	definition	events),	387–390
DEADLOCK_PRIORITY,	345
deadlocks,	337,	345–348
deadly	embrace	deadlock,	347
declarative	data	integrity,	22–25
DECLARE
temporary	table	variables,	377–378
variables	and,	361

DECOMPRESS,	70

default	constraints,	defining,	25
DELETE
DML	triggers	(data	manipulation	events),	387–388
exercises,	287–291
exercises,	solutions	for,	291–295
joins	and,	265–266
OUTPUT	and,	282–283
overview	of,	262–266
row-versioning	isolation	and,	339
table	expressions,	modifying	data	with,	276–278
views	and,	172

DENSE_RANK,	window	function	ranking,	216–219
derived	tables
arguments,	use	of,	164–165
column	aliases,	assigning,	163–164
exercises,	183–188
exercises,	solutions	for,	188–192
multiple	references,	166
nesting,	165–166
overview	of,	161–162

DESC,	43
dictionary	sorting,	character	data,	61
dirty	reads.	See	isolation,	transactions
DISTINCT
aggregate	functions	and,	34–35
duplicates	and,	39–41,	194
EXCEPT	(DISTINCT),	199–200
INTERSECT	(DISTINCT),	196–197
multivalued	subqueries	and,	138
ORDER	BY	clause	and,	43
UNION	(DISTINCT),	194–196
window	functions,	ranking	of,	218–219

distinct,	defined,	3
DML.	See	Data	Manipulation	Language	(DML)
DML	triggers	(data	manipulation	events),	387–388
DROP	CONSTRAINT,	sequence	objects	and,	261–262
DROP	IF	EXISTS,	table	creation,	20
duplicates,	DISTINCT	and,	39–41,	194
durability,	transactions,	320–322
DWs	(data	warehouses),	10–12

dynamic	SQL,	379–383

E
ELSE
CASE	expressions,	overview	of,	52–54
IF	.	.	.	ELSE	flow	element,	367–368

ELSE	NULL,	CASE	expressions,	52–54
ENCRYPTION,	views	and,	175–176
END,	368
Entity	Relationship	Modeling	(ERM),	7
EOMONTH,	89
equi	and	non-equi	joins,	111–112
exercises,	123–128
exercises,	solutions	for,	129–132

error	handling
deadlocks	and,	347–348
programmable	objects	and,	390–394
stored	procedures	and,	385
transactions,	overview	of,	320–322

ERROR_LINE,	391
ERROR_MESSAGE,	391
ERROR_NUMBER,	391
ERROR_PROCEDURE,	391
ERROR_SEVERITY,	391
ERROR_STATE,	391
ESCAPE	character,	73
ETL	(extract,	transform,	and	load),	12
EVENTDATA,	DDL	triggers	(data	definition	events),	388–390
EXCEPT
exercises,	204–208
exercises,	solutions	for,	208–211
precedence	and,	201–202
use	of,	199–201

EXCEPT	(DISTINCT),	199–200
EXCEPT	ALL,	199–201
exclusive	locks,	322–324
EXEC
dynamic	SQL,	379–381
INSERT	EXEC,	251–252

execution	plan,	SQL	server,	380–381

exercises
DELETE,	287–291
DELETE,	solutions	for,	291–295
grouping	set,	241–244
grouping	set,	solutions	for,	245–248
INSERT,	287–291
INSERT,	solutions	for,	291–295
JOIN,	123–128
JOIN,	solutions	for,	129–132
MERGE,	287–291
MERGE,	solutions	for,	291–295
OFFSET-FETCH,	287–291
OFFSET-FETCH,	solutions	for,	291–295
OUTPUT,	287–291
OUTPUT,	solutions	for,	291–295
pivoting	and	unpivoting	data,	241–244
pivoting	and	unpivoting	data,	solutions	for,	245–248
SELECT	statements,	93–97
SELECT	statements,	solutions	for,	97–102
subqueries,	150–154
subqueries,	solutions	for,	154–159
table	expressions,	183–188,	287–291
table	expressions,	solutions	for,	188–192,	291–295
temporal	tables,	311–313
temporal	tables,	solutions	for,	313–317
TOP,	287–291
TOP,	solutions	for,	291–295
transactions,	isolation	and	locks,	348–359
UPDATE,	287–291
UPDATE,	solutions	for,	291–295
windows	functions,	241–244
windows	functions,	solutions	for,	245–248

exercises,	resources	for	getting	started
Azures	SQL	Database,	getting	started,	395–396
source	code,	downloading	of,	402–404
SQL	Server	Books	Online,	410–413
SQL	Server	installation,	396–401
SQL	Server	Management	Studio,	working	with,	404–410

EXISTS
correlated	subqueries	and,	141–143

subqueries,	NULL	trouble	and,	147
extract,	transform,	and	load	(ETL),	12

F
FALSE
check	constraints	and,	24–25
IF	.	.	.	ELSE	flow	element,	367–368
NULLs,	overview	of,	54–58
subqueries,	NULL	trouble	and,	146–147
WHERE	and,	32
WHILE	flow	element,	368–370

filters.	See	also	subqueries
date	ranges,	79–80
deadlocks,	avoiding,	347
HAVING,	overview	of,	35–36
OFFSET-FETCH,	overview	of,	46–47
predicate	logic,	overview	of,	4
TOP	filters,	overview	of,	44–46
WHERE,	overview	of,	31–32
WITH	TIES	and,	46

FIRST_VALUE,	offset	window	functions,	219–221
flow	elements,	367–370
IF	.	.	.	ELSE	flow	element,	367–368
WHILE	flow	element,	368–370

fn_helpcollations,	61–63
FOR	SYSTEM_TIME	CONTAINED	IN,	308–310
FOR	SYSTEM_TIME,	temporal	table	queries,	304–310
FOR	XML,	views	and	ORDER	BY	clause,	173–174
foreign-key	constraints.	See	also	constraints
data	integrity,	defining,	23–24
overview	of,	7

FORMAT,	69
FROM.	See	also	JOIN
derived	tables	and,	161–162
logical	query	processing	order,	28
overview	of,	29–30

FROMPARTS,	88–89
functions
CHARINDEX,	66
COMPRESS	and	DECOMPRESS,	70

CONCAT,	string	concatenation,	63–65
date	and	time	functions,	80–89
FORMAT,	69
LEFT	and	RIGHT,	65
LEN	and	DATALENGTH,	65–66
PATINDEX,	66
REPLACE,	66–67
REPLICATE,	67–68
RTRIM	and	LTRIM,	69
STRING_SPLIT,	71
STUFF,	68
SUBSTRING,	65
UPPER	and	LOWER,	68–69

G
generate	globally	unique	identifiers	(GUIDs),	INSERT	SELECT	and,	251
GENERATED	ALWAYS	AS	ROW	END,	298–301
GENERATED	ALWAYS	AS	ROW	START,	298–301
GETDATE,	80–81
GETUTCDATE,	80–81
global	temporary	tables,	376–377
GO,	363–367
GROUP	BY.	See	also	grouping	sets
CUBE,	236
derived	tables,	assigning	aliases,	163–164
GROUPING	SETS,	235–236
HAVING	and,	35–36
logical	query	processing	order,	28
overview	of,	32–35
pivoting	with	grouped	queries,	226–227
ROLLUP,	236–237

GROUPING,	235,	238–240
grouping	sets.	See	also	GROUP	BY
CUBE,	236
exercises,	241–244
exercises,	solutions	for,	245–248
GROUPING	and	GROUPING_ID	functions,	238–240
GROUPING	SETS	subclause,	235–236
overview,	234–235
ROLLUP,	236–237

GROUPING	SETS,	235–236
GROUPING_ID,	235,	238–240
GZIP	algorithm,	70

H
HAVING
CASE	expressions,	overview	of,	52–54
GROUP	BY	and,	33
logical	query	processing	order,	28
overview	of,	35–36

HDInsight,	13
historical	data.	See	temporal	tables
HOLDLOCK,	332

I
IaaS	(infrastructure	as	a	service)
ABC	flavors	(Appliance,	Box,	Cloud),	13–14

IDENT_CURRENT,	255–257
identifier	names
delimiting	of,	30
quoted	identifiers,	62–63

identity	property,	254–257
IDENTITY_INSERT,	256–257
IF	.	.	.	ELSE	flow	element,	367–368
IIF,	CASE	expressions,	54
IMPLICIT_TRANSACTIONS,	319–320
IN
multivalued	subquery	examples,	136–139
precedence,	51–52
subqueries,	NULL	trouble	and,	146–147
use	of,	49

inconsistent	analysis,	335,	344–345
INCREMENT	BY,	sequence	objects	and,	258–259
information	schema	views,	metadata	queries,	91
INFORMATION_SCHEMA,	91
infrastructure	as	a	service	(Iaas),	13–14
inline	table-valued	functions	(TVFs)
exercises,	183–188
exercises,	solutions	for,	188–192
overview	of,	171–172,	178–180

In-Memory	OLTP,	18
inner	joins,	107–109
exercises,	123–128
exercises,	solutions	for,	129–132

INSERT
DML	triggers	(data	manipulation	events),	387–388
exercises,	287–291
exercises,	solutions	for,	291–295
identity	property	and,	254–257
MERGE	and,	274
OUTPUT	and,	280–282
row-versioning	isolation	and,	339
table	expressions,	modifying	data	with,	276–278
views	and,	172

INSERT	EXEC,	251–252
INSERT	SELECT,	251
INSERT	VALUES,	249–251
INT,	51
integer	sequences,	cross	joins	and,	106–107
International	Organization	for	Standardization	(ISO),	2
INTERSECT
exercises,	204–208
exercises,	solutions	for,	208–211
precedence	and,	201–202
use	of,	196–199

INTERSECT	(DISTINCT),	196–197
INTERSECT	ALL,	196–199
INTO,	SELECT	INTO,	252–253
IS	NOT	NULL,	55–58
IS	NULL
CASE	expressions	and,	54
overview	of,	55–58

ISDATE,	88
ISO	(International	Organization	for	Standardization),	2
ISO/ANSI	SQL-89	syntax
cross	joins,	105
inner	joins,	108–109

ISO/ANSI	SQL-92	syntax
cross	joins,	104
inner	joins,	107–108

isolation,	transactions,	320–322
deadlocks,	345–348
exercises,	348–359
overview	of,	332–333
READ	COMMITTED,	334–337
READ	COMMITTED	SNAPSHOT,	343–345
READ	UNCOMMITTED,	333–334
REPEATABLE	READ,	335–337
SERIALIZALBE,	337–338
SNAPSHOT,	339–343
SNAPSHOT,	conflict	detection,	341–343

J
JOIN
composite	joins,	110–111
CROSS	APPLY	and,	180
cross-joins,	103–107
DELETE	and,	265–266
derived	tables,	multiple	references,	166
exercises,	123–128
exercises,	solutions	for,	129–132
inner	joins,	107–109
multi-join	queries,	113
natural	joins,	111
non-equi	joins,	111–112
OUTER	APPLY	and,	181
outer	joins
COUNT	aggregate,	use	of,	121–123
filtering	attributes	from	nonpreserved	side,	118–119
fundamentals	of,	113–116
in	multi-join	queries,	119–121
missing	values,	inclusion	of,	116–118

overview	of,	103
self	joins,	105–106
UPDATE	and,	268–270
vs.	subqueries,	137

K
keys,	SQL	queries	and,	39–41

L
LAG,	378
offset	window	functions,	219–221

language	independence,	2
language	standards	organizations,	2
LANGUAGE/DATEFORMAT,	75–76
LAST_VALUE,	offset	window	functions,	219–221
LEAD,	offset	window	functions,	219–221
LEFT,	65
LEN,	65–66
LIKE
precedence,	51–52
use	of,	50,	71–73

linked	history	tables,	298–301
literals,	date	and	time	data,	74–78
local	temporary	tables,	374–375
LOCK_ESCALATION,	325
LOCK_TIMEOUT,	331–332
locks.	See	also	isolation,	transactions
deadlocks,	337,	345–348
exercises,	348–359
lockable	resource	types,	324–325
modes	and	compatibility,	322–324
troubleshooting,	325–332

logical	operators,	50
login,	SQL	Server	databases,	17
loops,	WHILE	element	and,	368–370
LOWER,	68–69
LTRIM,	69

M
massively	parallel	processing	(MPP),	13
master	database,	SQL	Server	architecture,	16–18
MAX,	33–35,	61
MAXVALUE,	sequence	objects	and,	258–259
MERGE
DML	triggers	(data	manipulation	events),	387–388
exercises,	287–291
exercises,	solutions	for,	291–295

merging	data	overview,	271–275
OUTPUT	and,	284–285
table	expressions,	modifying	data	with,	276–278

metadata,	querying	of,	89–92
Microsoft	Analytics	Platform	System	(APS),	13–14
Microsoft	Azure	SQL	Data	Warehouse,	14
Microsoft	Azure	SQL	Database.	See	Azure	SQL	Database
Microsoft	SQL	Server.	See	SQL	Server
MIN,	33–35
MINVALUE,	sequence	objects	and,	258–259
missing	values,	6–7
in	outer	joins,	116–118

model	database,	SQL	Server	architecture,	16–18
MONTH,	79–80,	87–88
msdb	database,	SQL	Server	architecture,	16–18
MTD,	aggregate	window	functions,	223–224
multi-join	queries
exercises,	123–128
exercises,	solutions	for,	129–132
outer	joins	in,	119–121
use	of,	113

multiplication	(*),	51–52
multiset,	3
multi-statement	table-valued	function	(TVF),	178
multivalued	subqueries
defined,	133
self-contained	subquery	examples,	136–139

N
N	(National),	data	type	prefix,	50,	60–61
names,	schemas	and	objects,	18–19.	See	also	aliases
natural	joins,	111
NCHAR,	50,	60–61
negative	(-),	51–52
nested	DML,	285–287
nested	queries,	133
derived	tables	and,	165–166

NEWID,	251,	383
NEXT	VALUE	FOR,	259–262
next	values,	subquery	returns,	143–144

no	action,	foreign-key	constraints,	24
NOLOCK,	332
non-equi	joins.	See	equi	and	non-equi	joins
nonkey	attributes,	normalization	forms,	8–10
nonrepeatable	reads,	335,	344–345
normal	forms.	See	normalization
normalization,	overview,	7–10
NOT
combining	logical	expressions,	50
multivalued	subqueries	and,	137
precedence,	51–52
subqueries,	NULL	trouble	and,	146–147

NOT	EXISTS,	NULL	trouble	and,	147
NOT	IN,	NULL	trouble	and,	146–147
NOT	NULL,	grouping	and,	238–240
NTILE,	window	function	ranking,	216–219
NULL
aggregate	functions	and,	34–35
CASE	expressions	and,	226
data	integrity	and,	22–25
DISTINCT	and	duplicates,	194
GROUPING	and	GROUPING_ID	functions	and,	238–240
IF	.	.	.	ELSE	flow	element,	367–368
INSERT	VALUES	and,	250
INTERSECT	and,	197
missing	values,	overview,	6–7
multivalued	subqueries	and,	137
outer	joins,	filtering	attributes,	118–119
outer	joins,	fundamentals	of,	115–116
outer	joins,	in	multi-join	queries,	119–121
overview	of,	54–58
scalar	subqueries	and,	135
SET	NULL	and,	24
string	concatenation	and,	63–65
subqueries,	troubles	with,	145–147
tables,	creating,	21
variable	values	and,	363

NUMERIC,	51
NVARCHAR,	50,	60–61

O
object	names,	schema	qualifying	of,	29
object,	defined,	3
OBJECT_ID,	table	creation,	20
OBJECTPROPERTY,	92
objects,	SQL	Server	architecture,	18–19.	See	also	programmable	objects
offset	window	functions,	219–221
OFFSET-FETCH
data	modification	with,	278–280
derived	tables	and,	162
exercises,	287–291
exercises,	solutions	for,	291–295
overview	of,	46–47
views	and	ORDER	BY	clause,	173–174

OLTP	(online	transactional	processing)	databases,	10–12
ON
outer	joins,	fundamentals	of,	115–116
outer	joins,	in	multi-join	queries,	119–121

ON	DELETE	CASCADE,	24
online	transactional	processing	(OLTP)	databases,	overview,	10–12
operators.	See	also	APPLY;	also	JOIN;	also	PIVOT;	also	UNPIVOT
compound	operators,	UPDATE	and,	267–268
overview	of,	49–52
precedence	rules,	51–52
string	concatenation,	63–65

OR
combining	logical	expressions,	50
precedence,	51–52
predicates	and,	49

ORDER	BY
CASE	expressions,	overview	of,	52–54
circumventing	unsupported	logical	phrases,	203–204
derived	tables	and,	162
GROUP	BY	and,	33
INTERSECT	ALL	and,	197–199
logical	query	processing	order,	28
offset	window	functions	and,	220–221
OFFSET-FETCH,	overview	of,	46–47
overview	of,	41–43

set	operators	and,	193
TOP	filters	and,	45–46
views,	table	expressions,	172–174
window	functions,	overview	of,	47–49,	214–215

ordinal	positions,	ORDER	BY	clause	and,	43
OUTER	APPLY
JOIN	and,	181
overview	of,	180–183

outer	joins
COUNT	aggregate,	use	of,	121–123
exercises,	123–128
exercises,	solutions	for,	129–132
filtering	attributes	from	nonpreserved	side,	118–119
fundamentals	of,	113–116
in	multi-join	queries,	119–121
missing	values,	inclusion	of,	116–118

outer	queries,	133.	See	also	subqueries;	also	table	expressions
OUTPUT
DELETE	and,	282–283
exercises,	287–291
exercises,	solutions	for,	291–295
INSERT	and,	280–282
MERGE	and,	284–285
nested	DML,	285–287
overview	of,	280
UPDATE	and,	283–284

OVER
empty	parens	()	and,	221–222
sequence	objects	and,	260–262
window	functions,	overview	of,	47–49,	213–216

P
PaaS	(platform	as	a	service)
ABC	flavors	(Appliance,	Box,	Cloud),	13–14

Parallel	Data	Warehouse	(PDW),	13
parentheses,	(),	51–52
PARSE
date	and	time	functions,	81–83
date	and	time	literals,	77–78

parsing,	batches	and,	364

PARTITION	BY
INTERSECT	ALL	and,	197–199
window	functions,	overview	of,	47–49,	215

partitions,	offset	window	functions,	219–221
PATINDEX,	66
percent	(%)	wildcard,	71–72
PERCENT,	TOP	filters	and,	45
performance
dynamic	SQL	and,	379–383
object	names,	schema	qualifying,	29
query	filters	and,	32
row-versioning	isolation	and,	339
sp_executesql	stored	procedure,	380–381
SQL	Server	architecture,	physical	layout,	17–18
stored	procedures	and,	385

PERIOD	FOR	SYSTEM_TIME,	temporal	table	creation,	298–301
permissions,	database	schemas	and	objects,	18–19
phantom	reads,	337–338
SNAPSHOT	and,	339

PIVOT
dynamic	SQL	and,	379,	381–383
pivoting	data,	overview,	227–229

pivoting	data
exercises,	241–244
exercises,	solutions	for,	245–248
overview	of,	224–226
unpivoting	data,	230–234
with	PIVOT	operator,	227–229
within	grouped	queries,	226–227

platform	as	a	service	(PaaS),	13–14
point-in-time	analysis.	See	temporal	tables
policy	enforcement,	DDL	triggers	(data	definition	events),	388–390
PolyBase,	13
positive	(+),	51–52
predicates.	See	also	specific	predicate	names
LIKE	predicate,	71–73
NULLs,	overview	of,	54–58
overview	of,	49–52
predicate	logic,	4
relational	model,	overview,	5–6

previous	table	versions.	See	temporal	tables
previous	values,	subquery	returns,	143–144
primary-key	constraints,	data	integrity,	22
private	cloud,	ABC	flavors	(Appliance,	Box,	Cloud),	13–14
procedural	data	integrity,	22–25
programmable	objects
batches	and,	363–367
cursors,	370–373
dynamic	SQL,	379–383
error	handling,	390–394
flow	element,	367–370
routines,	383
stored	procedures,	385–386
triggers,	387–390
user-defined	functions,	383–384

temporary	tables,	374–379
variables,	361–363

propositions,	relational	model	overview,	5–6
public	cloud,	ABC	flavors	(Appliance,	Box,	Cloud),	13–14

Q
queries.	See	also	SELECT	statement;	also	subqueries;	also	table	expressions
aliases,	use	of,	36–41
all-at-once	operations,	58–59
CASE	expressions,	overview	of,	52–54
character	data,	working	with,	60–63
date	and	time	data,	working	with,	73–89
exercises,	93–97
exercises,	solutions	for,	97–102
FROM	clauses,	overview	of,	29–30
GROUP	BY	clause,	overview	of,	32–35
HAVING	clause,	overview	of,	35–36
identifier	names,	delimiting	of,	30
in	temporal	tables,	304–310
LIKE	predicate,	71–73
logical	query	processing,	overview,	27–29
nested	and	outer	queries,	defined,	133
NULLs,	overview	of,	54–58
of	metadata,	89–92
OFFSET-FETCH	filter,	overview	of,	46–47

operators	and	functions,	overview	of,	63–73
ORDER	BY	clause,	overview	of,	41–43
predicates	and	operators,	overview	of,	49–52
query	clause,	defined,	29
query	phrase,	defined,	29
scalar	subqueries,	133
SELECT	clause,	overview	of,	36–41
TOP	filters,	overview	of,	44–46
WHERE	clause,	overview	of,	31–32
window	functions,	overview	of,	47–49

quoted	identifiers,	62–63

R
RAND,	383
RANK,	window	function	ranking,	216–219
RDBMSs	(relational	database	management	systems)
ABC	flavors	(Appliance,	Box,	Cloud),	12–14
defined,	1
language	independence,	2
relational	model,	overview,	4–10

READ	COMMITTED
conflict	detection,	SNAPSHOT,	341–343
default	isolation	levels,	323
isolation,	overview	of,	332–337,	345
SNAPSHOT	and,	340,	343

READ	COMMITTED	LOCKS,	343
READ	COMMITTED	SNAPSHOT
conflict	detection,	SNAPSHOT,	341–343
default	isolation	levels,	323,	332–333
isolation,	overview,	339,	343–345

READ	UNCOMMITTED,	isolation	overview,	332–334,	345
referenced	table,	foreign-key	constraints,	23–24
referencing	table,	foreign-key	constraints,	23–24
relation	variable,	use	of	term,	5
relational	database	management	systems	(RDBMSs)
ABC	flavors	(Appliance,	Box,	Cloud),	12–14
defined,	1
language	independence,	2
relational	model,	overview,	4–10

relational	model

constraints,	7
missing	values,	6–7
normalization,	7–10
overview	of,	4–10
propositions,	predicates,	and	relations,	5–6

REPEATABLE	READ,	332–333,	335–337,	345
REPLACE,	66–67
REPLICATE,	67–68
resolution,	batches	and,	366
Resource	database,	SQL	Server	architecture,	16
resource	types,	locking	of,	324–325
RESTART	WITH,	sequence	objects	and,	259
restoring	tables.	See	temporal	tables
RIGHT,	65
ROLLBACK	TRAN	(TRANSACTION)
lock	modes	and	compatibility,	322–324
overview	of,	319–322
triggers	and,	387

ROLLUP,	235–237
routines
overview	of,	383
stored	procedures,	385–386
triggers,	387–390
user-defined	functions,	383–384

row	constructors,	270
row	versioning
isolation	and,	320–321
READ	COMMITTED	SNAPSHOT,	343–345
SNAPSHOT,	339–343

ROW_NUMBER
EXCEPT	ALL	and,	200–201
INTERSECT	ALL	and,	197–199
window	functions,	overview	of,	47–49
window	functions,	ranking	of,	216–219

rows,	4
ROWS	BETWEEN
offset	window	functions,	220–221
window	functions,	overview	of,	215

RTRIM,	69
running	aggregates,	subqueries	and,	144–145

S
scalar	subqueries
defined,	133
scalar	variables	and,	361–363
self-contained	subquery	examples,	134–135

scalar	UDFs	(user-defined	functions),	383–384
scalar	variables,	361–363
SCHEMABINDING,	views	and,	176–177
schemas
dbo-schema,	20
identifier	names,	30
information	schema	views,	metadata	queries,	91
object	names,	qualifying	of,	29
SQL	Server	architecture,	18–19

SCOPE_IDENTITY,	255–257
searched	CASE	expressions,	52–54
security
database	schemas	and	objects,	SQL	Server,	18–19
stored	procedures,	385

SELECT
INSERT	SELECT,	251
pivoting	with	grouped	queries,	226–227
variables	and,	362–363
window	functions,	overview	of,	215–216
window	functions,	ranking	of,	218–219

SELECT	*	FROM,	views	and,	172
SELECT	*,	views	and,	172
SELECT	INTO,	252–253
SELECT	statement.	See	also	table	expressions
all-at-once	operations,	58–59
CASE	expressions,	overview	of,	52–54
character	data,	working	with,	60–63
date	and	time	data,	working	with,	73–89
derived	tables,	assigning	aliases,	163–164
elements	of,	27–29
exercises,	93–97
exercises,	solutions	for,	97–102
FROM,	overview,	29–30
GROUP	BY,	overview	of,	32–35

HAVING,	overview	of,	35–36
LIKE	predicate,	71–73
logical	query	processing	order,	28
metadata,	querying	of,	89–92
NULLs,	overview	of,	54–58
OFFSET-FETCH	filter,	overview	of,	46–47
operators	and	functions,	overview	of,	63–71
ORDER	BY,	overview	of,	41–43
predicates	and	operators,	overview	of,	49–52
SELECT,	overview	of,	36–41
TOP	filters,	overview	of,	44–46
views	and,	172
WHERE,	overview	of,	31–32
window	functions,	overview	of,	47–49

self	joins,	105–106
self-contained	subqueries
defined,	133
multivalued	subquery	examples,	136–139
scalar	subquery	examples,	134–135

semicolon,	use	in	statements,	29
SEQUEL	(Structured	English	QUEry	Language),	2
sequence	object,	258–262
SERIALIZALBE
isolation,	overview,	332–333,	337–338,	345
SNAPSHOT	and,	340

SERVERPROPERTY,	92
session	ID,	troubleshooting	blocks,	326–332
SET
quoted	identifiers,	62–63
UPDATE	and,	267–268
variables	and,	361–363

set	attributes
normalization	forms,	7–10
propositions,	predicates,	and	relations,	5–6
use	of	term,	5

SET	DEFAULT,	24
SET	NOCOUNT	ON,	386
SET	NULL,	24
set	operators
EXCEPT,	199–201

exercises,	204–208
exercises,	solutions	for,	208–211
INTERSECT,	196–199
overview	of,	193–194
precedence	and,	201–202
UNION,	194–196
unsupported	logical	phrases,	circumventing,	203–204

set	theory
overview	of,	3
predicate	logic	and,	4

simple	CASE	expressions,	52–54
skipping	option,	OFFSET-FETCH,	46–47
SMALLDATETIME
data	types,	73–74
literals,	74–78
working	with	date	and	time	separately,	78–79

SNAPSHOT
conflict	detection,	341–343
isolation,	overview	of,	339–343,	345
READ	COMMITTED	SNAPSHOT,	343–345

snowflake	dimension,	11
solutions.	See	exercises
sorting,	ORDER	BY	clause	and,	41–43
sp_columns,	92
sp_executesql	stored	procedure,	380–381
sp_help,	91–92
sp_helpconstraint,	92
sp_tables,	91
SQL	(Structured	Query	Language),	overview	of,	1–3
database	system	types,	10–12
history	and	use	of,	2–3
predicate	logic,	4
relational	model,	overview	of,	4–10
constraints,	7
missing	values,	6–7

normalization,	7–10
propositions,	predicates,	and	relations,	5–6

relational	models,	language	independence,	2
set	theory,	overview	of,	3
standards	for	use,	2

statement	termination,	semicolons,	29
SQL	Data	Warehouse,	14
SQL	Server
architecture	overview,	12–19
ABC	flavors	(Appliance,	Box,	Cloud),	12–14
databases,	15–18
instances,	14–15
physical	layout,	17–18
schemas	and	objects,	18–19

box	product	installation,	396–401
database	engine	installation,	396–401
file	extensions,	18
operator	precedence	rules,	51–52
source	code,	downloading	of,	402–404
SQL	Server	Books	Online,	410–413
unique	index,	22–23

SQL	Server	authenticated	login,	17
SQL	Server	Management	Studio	(SSMS)
download	and	installation	of,	402
getting	started	with,	404–410
session	ID,	troubleshooting	blocks,	326–332
temporal	tables,	creating,	299

SQL_VARIANT,	262
star	schema,	overview	of,	11–12
START	WITH,	sequence	objects	and,	258–259
storage,	character	data	and,	60–61
stored	procedures,	385–386
triggers,	387–390

string	concatenation,	63–65
STRING_SPLIT,	71
Structured	Query	Language	(SQL),	overview	of,	1–3
STUFF,	68
subqueries.	See	also	table	expressions
column	names,	substitution	errors,	147–149
correlated	subqueries
EXISTS	and,	141–143
overview	of,	139–141

exercises,	150–154
exercises,	solutions	for,	154–159
multivalued	subqueries,	defined,	133

NULL	trouble,	145–147
overview	of,	133
previous	or	next	values,	returning,	143–144
running	aggregates	and,	144–145
scalar	subqueries,	defined,	133
self-contained
defined,	133
multivalued	subquery	examples,	136–139
scalar	subquery	examples,	134–135

table	subqueries,	defined,	133
vs.	joins,	137
window	functions,	overview	of,	214

SUBSTRING,	65
subtraction	(-),	51–52
SUM,	33–35.	See	also	window	functions
surrogate	keys,	identity	property	and,	254–257
SWITCHOFFSET,	83
syntax
batch	as	unit	of	parsing,	364
cross	joins,	104–105
inner	joins,	107–109

sys.dm_as_waiting_tasks,	330–331
sys.dm_exec_connections,	328
sys.dm_exec_input_buffer,	329
sys.dm_exec_requests,	330–331
sys.dm_exec_sessions,	329
sys.dm_exec_sql_text,	328
sys.dm_tran_locks,	328
SYSDATETIME
current	date	and	time	functions,	80–81
default	constraints,	defining,	25
INSERT	SELECT	and,	251

SYSDATETIMEOFFSET,	80–81
system	versioned	temporal	tables.	See	temporal	tables
SYSTEM_TIME,	temporal	table	queries,	304–310
SYSTEM_VERSIONING,	temporal	table	creation,	298–301
SYSUTCDATETIME,	80–81

T
table	expressions

APPLY	operator,	180–183
common	table	expressions	(CTEs)
arguments,	using,	167–168
column	aliases,	assigning,	167–168
defining	multiple	CTEs,	168–169
multiple	references	in,	169
overview,	167
recursive	CTEs,	169–171

derived	tables
arguments,	use	of,	164–165
column	aliases,	assigning,	163–164
multiple	references,	166
nesting,	165–166
overview	of,	161–162

exercises,	183–188,	287–291
exercises,	solutions	for,	188–192,	291–295
inline	table-valued	functions	(TVFs),	overview	of,	171–172,	178–180
modifying	data	with,	276–278
overview	of,	161
views
CHECK	OPTION,	177–178
ENCRYPTION,	175–176
ORDER	BY,	172–174
overview	of,	171–172
SCHEMABINDING,	176–177

table	subqueries,	defined,	133.	See	also	table	expressions
tables
check	constraints,	defining,	24–25
creating	tables,	19–22
defining	data	integrity,	22–25
foreign-key	constraints,	defining,	23–24
identifier	names,	30
primary-key	constraints,	defining,	23
unique	key	constraints,	defining,	23

table-valued	functions	(TVFs),	inline,	171–172
table-valued	parameters	(TVPs),	378–379
table-valued	UDFs	(user-defined	functions),	383–384
tempdb,	SQL	Server
architecture	overview,	16–18
local	temporary	tables,	374–375

SNAPSHOT,	339–343
temporary	table	variables,	377–378

temporal	tables
creating,	298–301
exercises,	311–313
exercises,	solutions	for,	313–317
modifying	data,	301–304
overview	of,	297
querying	data,	304–310

temporary	tables
global	temporary	tables,	376–377
local	temporary	tables,	374–375
overview	of,	374
table	types,	378–379
table	variables,	377–378

THEN,	CASE	expressions,	53–54
tiebreakers,	ORDER	BY	clause	and,	45–46
TIME
data	types,	73–74
literals,	74–78
working	with	date	and	time	separately,	78–79

time	data
aggregate	window	functions,	223–224
AT	TIME	ZONE,	84–85
CAST,	CONVERT,	and	PARSE,	81–83
current	date	and	time	functions,	80–81
DATEADD,	85
DATEDIFF	and	DATEDIFF_BIG,	86–87
DATENAME,	88
DATEPART,	87
EOMONTH,	89
FROMPARTS,	88–89
ISDATE,	88
literals,	74–78
missing	values,	in	outer	joins,	116–118
SWITCHOFFSET,	83
types	of,	73–74
working	with	date	and	time	separately,	78–79
YEAR,	MONTH,	and	DAY,	87–88

TODATETIMEOFFSET,	83–84

TOP	(100)	PERCENT,	views	and,	173–174
TOP	filters
data	modification	with,	278–280
derived	tables	and,	162
exercises,	287–291
exercises,	solutions	for,	291–295
overview	of,	44–46
views	and	ORDER	BY	clause,	173–174

transaction	log,	durability	and,	321
transactions
deadlocks,	345–348
exercises,	348–359
isolation
overview	of,	332–333
READ	COMMITTED,	334–337
READ	COMMITTED	SNAPSHOT,	343–345
READ	UNCOMMITTED,	333–334
REPEATABLE	READ,	335–337
SERIALIZALBE,	337–338
SNAPSHOT,	339–343
SNAPSHOT,	conflict	detection,	341–343
summary	of,	345

locks	and	blocking,	322–325
locks	and	blocking,	troubleshooting,	325–332
overview	of,	319–322
vs.	batches,	363

triggers,	387–390
troubleshooting
locks	and	blocking,	325–332
OUTPUT,	use	of,	280
table	expressions,	modifying	data	with,	276–278

TRUE
check	constraints	and,	24–25
IF	.	.	.	ELSE	flow	element,	367–368
meaning	of,	32
NULLs,	overview	of,	54–58
WHILE	flow	element,	368–370

TRUNCATE,	262–266
TRY	.	.	.	CATCH,	error	handling,	390–394
TRY_,	date	and	time	functions,	81–83

T-SQL
coding	style,	21–22
database	system	types,	10–12
language	independence,	2
predicate	logic,	4
relational	model,	overview	of,	4–10
constraints,	7
missing	values,	6–7
normalization,	7–10
propositions,	predicates,	and	relations,	5–6

set	theory,	3–4
SQL	standards	and,	3
SQL,	background	information,	1–3
whole,	use	of,	3

tuples,	4–5
type;	propositions,	predicates,	and	relations,	6

U
UDF	(user-defined	functions),	routines,	383–384
uncommitted	reads,	333–334
underscore	(_)	wildcard,	72
Unicode	data	types,	50
character	data,	60–61

UNION
exercises,	204–208
exercises,	solutions	for,	208–211
precedence	and,	201–202
use	of,	194–196

UNION	(DISTINCT),	194–196
UNION	ALL,	194–195
unique	constraint,	data	integrity,	23
unique	index,	SQL	Server
primary-key	constraints	and,	22
unique	constraints,	defining,	23

UNIQUE,	NULLs	and,	58
UNKNOWN
check	constraints	and,	24–25
IF	.	.	.	ELSE	flow	element,	367–368
meaning	of,	32
NULLs,	overview	of,	54–58

outer	joins,	filtering	attributes,	118–119
outer	joins,	in	multi-join	queries,	119–121
scalar	subqueries	and,	135
subqueries,	NULL	trouble	and,	146–147
WHILE	flow	element,	368–370

unknown,	missing	values,	6–7
UNPIVOT,	233–234
unpivoting	data,	230–234
exercises,	241–244
with	APPLY,	231–233
with	UNPIVOT,	233–234

UPDATE
assignment	UPDATE,	270–271
based	on	a	join,	268–270
DML	triggers	(data	manipulation	events),	387–388
exercises,	287–291
exercises,	solutions	for,	291–295
MERGE	and,	274
OUTPUT	and,	283–284
overview	of,	266–268
row-versioning	isolation	and,	339
table	expressions,	modifying	data	with,	276–278
views	and,	172

UPPER,	68–69
USE,	table	creation,	20
user-defined	functions	(UDF),	routines,	383–384

V
VALUES,	250–251
VAR	element,	60–61
VARCHAR,	21,	50,	60–61
variables,	as	programmable	objects
batches	and,	365
overview	of,	361–363
temporary	table	variables,	377–378

vector	expressions,	270
views,	table	expressions
CHECK	OPTION,	177–178
ENCRYPTION,	175–176
exercises,	183–188

exercises,	solutions	for,	188–192
ORDER	BY	and,	172–174
overview	of,	171–172
SCHEMABINDING,	176–177

virtual	machine	(VM),	ABC	flavors	(Appliance,	Box,	Cloud),	13–14

W
WHEN	MATCHED	THEN,	273–275
WHEN	NOT	MATCHED	THEN,	273–275
WHEN,	CASE	expressions,	53–54
WHERE
CASE	expressions,	overview	of,	52–54
derived	tables,	arguments,	164–165
derived	tables,	assigning	aliases,	163
logical	query	processing	order,	28
outer	joins,	filtering	attributes,	118–119
outer	joins,	fundamentals	of,	115–116
overview	of,	31–32
UPDATE	and,	267–268
UPDATE	based	on	a	join,	268–270

WHILE	flow	element,	368–370
whole,	defined,	3
wildcards
%	(percent)	wildcard,	71–72
_	(underscore)	wildcard,	72
[^character	list	or	range]	wildcard,	73
[character-character]	wildcard,	72–73
[list	of	characters]	wildcard,	72
LIKE	predicate	and,	71–73

window	functions
aggregate	window	functions,	221–224
exercises,	241–244
exercises,	solutions	for,	245–248
offset	functions,	219–221
overview	of,	47–49,	213–216
ranking	of,	216–219

Windows	authenticated	login,	SQL	Server	databases,	17
WITH	NOCHECK,	25
WITH	TIES,	ORDER	BY	clause	and,	45–46
WITH,	common	table	expressions	(CTEs),	167

X
XACT_ABORT,	320

Y
YEAR,	87–88
filtering	date	ranges,	79–80

YTD,	aggregate	window	functions,	223–224

About	the	author

ITZIK	BEN-GAN	is	a	mentor	with	and	co-founder	of	SolidQ.	A	Microsoft	Data	Platform	MVP
since	1999,	Itzik	has	taught	numerous	training	events	around	the	world	focused	on	T-SQL
querying,	query	tuning,	and	programming.	Itzik	is	the	author	of	several	books	about	T-SQL.
He	has	written	many	articles	for	SQL	Server	Pro	as	well	as	articles	and	white	papers	for
MSDN	and	The	SolidQ	Journal.	Itzik’s	speaking	engagements	include	Tech-Ed,	SQL	PASS,
SQL	Server	Connections,	presentations	to	various	SQL	Server	user	groups,	and	SolidQ
events.
Itzik	is	a	subject-matter	expert	within	SolidQ	for	its	T-SQL	related	activities.	He	authored

SolidQ’s	Advanced	T-SQL	and	T-SQL	Fundamentals	courses	and	delivers	them	regularly
worldwide.	You	can	learn	more	about	Itzik	at	http://tsql.solidq.com/.

http://tsql.solidq.com/

Code	Snippets

Many	titles	include	programming	code	or	configuration	examples.	To	optimize	the
presentation	of	these	elements,	view	the	eBook	in	single-column,	landscape	mode	and	adjust
the	font	size	to	the	smallest	setting.	In	addition	to	presenting	code	and	configurations	in	the
reflowable	text	format,	we	have	included	images	of	the	code	that	mimic	the	presentation
found	in	the	print	book;	therefore,	where	the	reflowable	format	may	compromise	the
presentation	of	the	code	listing,	you	will	see	a	“Click	here	to	view	code	image”	link.	Click	the
link	to	view	the	print-fidelity	code	image.	To	return	to	the	previous	page	viewed,	click	the
Back	button	on	your	device	or	app.

	Title Page
	Copyright Page
	Dedication Page
	Contents at a glance
	Contents
	Introduction
	Who should read this book
	Assumptions

	This book might not be for you if...
	Organization of this book
	System requirements
	Installing and using the source code
	Acknowledgments
	Errata, updates, & book support
	Free ebooks from Microsoft Press
	We want to hear from you
	Stay in touch

	Chapter 1. Background to T-SQL querying and programming
	Theoretical background
	SQL
	Set theory
	Predicate logic
	The relational model
	Types of database systems

	SQL Server architecture
	The ABCs of Microsoft RDBMS flavors
	SQL Server instances
	Databases
	Schemas and objects

	Creating tables and defining data integrity
	Creating tables
	Defining data integrity

	Conclusion

	Chapter 2. Single-table queries
	Elements of the SELECT statement
	The FROM clause
	The WHERE clause
	The GROUP BY clause
	The HAVING clause
	The SELECT clause
	The ORDER BY clause
	The TOP and OFFSET-FETCH filters
	A quick look at window functions

	Predicates and operators
	CASE expressions
	NULLs
	All-at-once operations
	Working with character data
	Data types
	Collation
	Operators and functions
	The LIKE predicate

	Working with date and time data
	Date and time data types
	Literals
	Working with date and time separately
	Filtering date ranges
	Date and time functions

	Querying metadata
	Catalog views
	Information schema views
	System stored procedures and functions

	Conclusion
	Exercises
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7
	Exercise 8
	Exercise 9
	Exercise 10

	Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7
	Exercise 8
	Exercise 9
	Exercise 10

	Chapter 3. Joins
	Cross joins
	ISO/ANSI SQL-92 syntax
	ISO/ANSI SQL-89 syntax
	Self cross joins
	Producing tables of numbers

	Inner joins
	ISO/ANSI SQL-92 syntax
	ISO/ANSI SQL-89 syntax
	Inner join safety

	More join examples
	Composite joins
	Non-equi joins
	Multi-join queries

	Outer joins
	Fundamentals of outer joins
	Beyond the fundamentals of outer joins

	Conclusion
	Exercises
	Exercise 1-1
	Exercise 1-2 (optional, advanced)
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7 (optional, advanced)
	Exercise 8 (optional, advanced)
	Exercise 9 (optional, advanced)

	Solutions
	Exercise 1-1
	Exercise 1-2
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7
	Exercise 8
	Exercise 9

	Chapter 4. Subqueries
	Self-contained subqueries
	Self-contained scalar subquery examples
	Self-contained multivalued subquery examples

	Correlated subqueries
	The EXISTS predicate

	Beyond the fundamentals of subqueries
	Returning previous or next values
	Using running aggregates
	Dealing with misbehaving subqueries

	Conclusion
	Exercises
	Exercise 1
	Exercise 2 (optional, advanced)
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7 (optional, advanced)
	Exercise 8 (optional, advanced)
	Exercise 9
	Exercise 10 (optional, advanced)

	Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7
	Exercise 8
	Exercise 9
	Exercise 10

	Chapter 5. Table expressions
	Derived tables
	Assigning column aliases
	Using arguments
	Nesting
	Multiple references

	Common table expressions
	Assigning column aliases in CTEs
	Using arguments in CTEs
	Defining multiple CTEs
	Multiple references in CTEs
	Recursive CTEs

	Views
	Views and the ORDER BY clause
	View options

	Inline table-valued functions
	The APPLY operator
	Conclusion
	Exercises
	Exercise 1
	Exercise 2-1
	Exercise 2-2
	Exercise 3-1
	Exercise 3-2
	Exercise 4 (optional, advanced)
	Exercise 5-1
	Exercise 5-2 (optional, advanced)
	Exercise 6-1
	Exercise 6-2

	Solutions
	Exercise 1
	Exercise 2-1
	Exercise 2-2
	Exercise 3-1
	Exercise 3-2
	Exercise 4
	Exercise 5-1
	Exercise 5-2
	Exercise 6-1
	Exercise 6-2

	Chapter 6. Set operators
	The UNION operator
	The UNION ALL operator
	The UNION (DISTINCT) operator

	The INTERSECT Operator
	The INTERSECT (DISTINCT) operator
	The INTERSECT ALL operator

	The EXCEPT operator
	The EXCEPT (DISTINCT) operator
	The EXCEPT ALL operator

	Precedence
	Circumventing unsupported logical phases
	Conclusion
	Exercises
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6 (optional, advanced)

	Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6

	Chapter 7. Beyond the fundamentals of querying
	Window functions
	Ranking window functions
	Offset window functions
	Aggregate window functions

	Pivoting data
	Pivoting with a grouped query
	Pivoting with the PIVOT operator

	Unpivoting data
	Unpivoting with the APPLY operator
	Unpivoting with the UNPIVOT operator

	Grouping sets
	The GROUPING SETS subclause
	The CUBE subclause
	The ROLLUP subclause
	The GROUPING and GROUPING_ID functions

	Conclusion
	Exercises
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6

	Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6

	Chapter 8. Data modification
	Inserting data
	The INSERT VALUES statement
	The INSERT SELECT statement
	The INSERT EXEC statement
	The SELECT INTO statement
	The BULK INSERT statement
	The identity property and the sequence object

	Deleting data
	The DELETE statement
	The TRUNCATE statement
	DELETE based on a join

	Updating data
	The UPDATE statement
	UPDATE based on a join
	Assignment UPDATE

	Merging data
	Modifying data through table expressions
	Modifications with TOP and OFFSET-FETCH
	The OUTPUT clause
	INSERT with OUTPUT
	DELETE with OUTPUT
	UPDATE with OUTPUT
	MERGE with OUTPUT
	Nested DML

	Conclusion
	Exercises
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6

	Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6

	Chapter 9. Temporal tables
	Creating tables
	Modifying data
	Querying data
	Conclusion
	Exercises
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Chapter 10. Transactions and concurrency
	Transactions
	Locks and blocking
	Locks
	Troubleshooting blocking

	Isolation levels
	The READ UNCOMMITTED isolation level
	The READ COMMITTED isolation level
	The REPEATABLE READ isolation level
	The SERIALIZABLE isolation level
	Isolation levels based on row versioning
	Summary of isolation levels

	Deadlocks
	Conclusion
	Exercises
	Exercise 1-1
	Exercise 1-2
	Exercise 1-3
	Exercise 1-4
	Exercise 1-5
	Exercise 1-6
	Exercise 2-1
	Exercise 2-2
	Exercise 2-3
	Exercise 2-4
	Exercise 2-5
	Exercise 2-6
	Exercise 3-1
	Exercise 3-2
	Exercise 3-3
	Exercise 3-4
	Exercise 3-5
	Exercise 3-6
	Exercise 3-7

	Chapter 11. Programmable objects
	Variables
	Batches
	A batch as a unit of parsing
	Batches and variables
	Statements that cannot be combined in the same batch
	A batch as a unit of resolution
	The GO n option

	Flow elements
	The IF . . . ELSE flow element
	The WHILE flow element

	Cursors
	Temporary tables
	Local temporary tables
	Global temporary tables
	Table variables
	Table types

	Dynamic SQL
	The EXEC command
	The sp_executesql stored procedure
	Using PIVOT with Dynamic SQL

	Routines
	User-defined functions
	Stored procedures
	Triggers

	Error handling
	Conclusion

	Appendix: Getting started
	Getting started with Azure SQL Database
	Installing a SQL Server box product
	1. Obtain SQL Server
	2. Install the database engine

	Downloading and installing SQL Server Management Studio
	Downloading source code and installing the sample database
	Working with SQL Server Management Studio
	Working with SQL Server Books Online

	Index
	About the author
	Visit us today at
	Hear about it first
	Free ebooks
	Survey
	Code Snippets

