

SQL Server 2019
Administrator's
Guide – Second
Edition

A definitive guide for DBAs to implement, monitor,
and maintain enterprise database solutions

Marek Chmel

Vladimír Mužný

BIRMINGHAM—MUMBAI

SQL Server 2019 Administrator's
Guide – Second Edition
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of
brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Devika Battike
Senior Editor: Roshan Kumar
Content Development Editor: Tazeen Shaikh
Technical Editor: Sonam Pandey
Copy Editor: Safis Editing
Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Jyoti Chauhan

First published: December 2017
Second edition: September 2020

Production reference: 1110920

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-432-6

www.packt.com

http://www.packt.com

To my family, friends, colleagues, students, and readers.

– Vladimír Mužný

Thanks to my family for continuous support, and to my friends
and colleagues for their inspiring ideas and insights.

– Marek Chmel

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://www.packt.com

Contributors

About the authors
Marek Chmel is a senior cloud solutions architect at Microsoft for data and artificial
intelligence, a speaker, and a trainer with more than 15 years' experience. He's a frequent
conference speaker, focusing on SQL Server, Azure, and security topics. He has been a
Data Platform MVP since 2012. He has earned numerous certifications, including MCSE:
Data Management and Analytics, Azure Architect, Data Engineer and Data Scientist
Associate, EC Council Certified Ethical Hacker, and several eLearnSecurity certifications.
Marek earned his MSc degree in Business and Informatics from Nottingham Trent
University. He started his career as a trainer for Microsoft courses and later worked as
principal sharepoint administrator and principal database administrator.

Vladimír Mužný has been a freelance developer and consultant since 1997. He has
been a Data Platform MVP since 2017, and he has earned certifications such as MCSE:
Data Management and Analytics and MCT. His first steps with SQL Server were done
on version 6.5, and from that time on, he has worked with all following versions of SQL
Server. Now Vladimir teaches Microsoft database courses, participates in SQL Server
adoption at various companies, and collaborates on projects for production tracking
and migrations.

I would like to thank my loving and patient family for their continued
support, patience, and encouragement throughout the long process of

writing this book.

About the reviewers
Tomaž Kaštrun is an SQL Server developer and data scientist with more than 15
years of experience in the fields of business warehousing, development, ETL, database
administration, and query tuning. He also holds more than 15 years of experience in
data analysis, data mining, statistical research, and machine learning. He is a Microsoft
SQL Server MVP for Data Platform and has been working with Microsoft SQL Server
since version 2000. Tomaz is a blogger, an author of many articles, a frequent speaker at
community and Microsoft events, an avid coffee drinker, and is passionate about fixed
gear bikes.

Arjun Sivadasan has over 12 years of experience working in various data-focused roles,
developing and maintaining mission-critical applications in transactional and analytical
environments. After completing his bachelor's in computer science engineering at Kerala
University, he started his career as a full-stack developer in Bangalore and soon switched
focus to databases. He has since tried to gain expertise in all aspects of data management.
He presently works as a data architect for a global product company based in Sydney,
Australia. Arjun is passionate about Microsoft data products. He is also an avid blogger
and speaks at local user groups. In his spare time, he likes to cook meals for his wife or
explore the world on two wheels.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we
are recruiting an author for, or submit your own idea.

Table of Contents

Preface

Section 1:
Provisioning the SQL Server Environment

1
Setting Up SQL Server 2019

Overview of the Microsoft SQL
Server 2019 technology � 16
Understanding SQL Server DE � 18
SSIS � 19
SSAS � 20
SSRS � 22
Machine Learning Services � 23
SQL Server Agent � 24

Preparing the SQL Server 2019
installation on Windows � 24
Edition comparison � 25
Pre-installation tasks � 25

Installing SQL Server 2019 on

Windows � 30
Installation options � 30
Checking the completed installation � 40

Installing SQL Server 2019 on
Linux � 46
Preparing the test environment � 46
Installing SQL Server � 47
Testing connection to SQL Server on
Linux � 48

Installing SQL Server 2019 on
containers � 49
Summary � 50

2
Keeping Your SQL Server Environment Healthy

Understanding SQL Server
patching � 54
Installing updates � 56

Configuring SQL Server
environment � 58
Configuring security rights for your

ii Table of Contents

SQL Server account � 59
Configuring power settings � 61
Configuring firewall rules � 63
SQL Server post-installation

configuration � 66

Creating a performance
baseline � 74
Summary � 77

Section 2:
Server and Database Maintenance

3
Implementing Backup and Recovery

Data structures and transaction
logging � 82
How data is stored � 82

Accelerated Database Recovery � 89
SQL Server recovery models � 90
How to configure a database's
recovery model property � 90

Designing a backup strategy � 92

Backup types � 92
Advanced backup scenarios � 101

Using database and log restore � 107
Preparing for restore � 108
Executing restores � 110

Summary � 124

4
Securing Your SQL Server

Configuring SQL Server service
accounts � 126
Virtual accounts � 126
Managed service accounts � 127
gMSAs � 129
Built-in system accounts � 130
Domain user accounts and local
Windows accounts � 131

Configuring authentication and
authorization � 131
Authentication � 131

Authorization � 136
Auditing � 139
Configuring credentials � 143

Encrypting SQL Server data � 147
Transparent Data Encryption � 148
Always Encrypted � 151

Data Discovery and
Classification � 152
SQL Server vulnerability
assessment � 157

Table of Contents iii

Encrypting SQL Server
connections � 159

Summary � 164

5
Working with Disaster Recovery Options

Understanding the basics of
disaster recovery � 166
Disaster recovery exercises � 169

SQL Server options for high
availability and disaster
recovery � 170
Always On Failover Cluster � 170
Always On Availability Groups � 171
Database mirroring � 172
Log shipping � 173
Replication � 173

Configuring replication on SQL

Server � 174
Creating a Publication � 177
Configuring the subscription � 183
Replication agents � 186

Understanding database
mirroring � 186
Configuring database mirroring � 188

Configuring log shipping � 190
Switching log shipping roles � 196

Summary � 197

6
Indexing and Performance

Explaining SQL Server internals
� 200
SQL Server protocols � 201
Query processor � 203
The storage engine layer � 209

Performance monitoring
overview � 209
Tools for monitoring
performance � 211
Activity Monitor � 212
Performance monitor � 220
SQL Server Profiler and SQL Trace � 221
Extended Events � 232
Dynamic management � 239

Data collection � 246
Query Store � 251

Indexes and maintenance � 253
Types of indexes � 254
Indexing considerations � 259

Common performance issue
patterns � 260
Unacceptable slow response from SQL
Server
to a query � 261
I found the poor query; what's next? � 262
Can I want more from indexes? � 267

Summary � 272

iv Table of Contents

Section 3: High Availability and the Cloud
with SQL Server 2019

7
Planning Migration and Upgrade

The importance of keeping up
with
latest version � 276
Planning the upgrade � 277
Exploring upgrade scenarios � 280
Pre-upgrade checks � 286

Performing the upgrade � 290

Upgrading Reporting Services 2019 � 293

Migrating from other platforms
� 302
Migration example from Microsoft
Access � 304

Summary � 305

8
Automation – Using Tools to Manage and Monitor
SQL Server 2019

Using SQL Server Agent � 308
Setting up the SQL Server Agent
service � 308
Setting up SQL Server Agent Properties � 311
Setting up Database Mail � 317

Creating and editing
maintenance plans � 324
The Maintenance Plan Wizard � 325
The Maintenance Plan Design Surface � 332

Creating SQL Server Agent
objects � 334
Operators � 334

Jobs � 336
Alerts � 346

SQL Server Agent security � 349
SQL Server Agent security roles � 350
Job step security context � 350
Using SQL Server Agent proxies � 351

Summary � 356

Table of Contents v

9
Configuring Always On High Availability Features

Installing Windows Server
Failover Cluster � 361
Configuring Always On Failover
Cluster Instances � 363
Adding nodes to the SQL Server
failover cluster � 370

Initiating a failover � 372

Always On Availability Groups � 374
Configuring Always On Availability
Groups � 374

Summary � 392

10
In-Memory OLTP – Why and How to Use it

In-Memory OLTP architecture � 394
Data storage differences in In-Memory
OLTP � 395
Request processing differences in
OLTP � 397
Cooperation between the disk-based
and memory-based parts of SQL Server
� 398
In-Memory OLTP limitations � 400

Creating in-memory tables
and natively compiled stored
procedures � 401
Preparing for In-Memory OLTP � 401

Creating In-Memory OLTP objects � 404

In-Memory OLTP usage
scenarios � 411
Assignment of the user story sample � 412
Example 1 – Inserting incoming data
into in-memory tables � 412
Example 2 – Updating data in
an in-memory table � 416
Example 3 – Improving real-time
analytics � 419

Monitoring In-Memory OLTP � 420
Summary � 424

11
Combining SQL Server 2019 with Azure

Beginning with technologies in
Microsoft Azure � 426
Overview of data-related technologies
in Azure � 427
Azure SQL solutions � 430

Microsoft SQL Server 2019 and
hybrid scenarios � 446

Data files in Azure � 446
Backups in Azure � 451

Quick overview of running SQL
workloads
in Azure � 457
Licensing � 457
SLA � 458

vi Table of Contents

Disaster recovery � 459
Regular database maintenance � 461

Migrating SQL Server workloads
to Azure � 462
Using Azure Database Migration Guide � 463

Using SQL Server Migration Assistant � 464
Using Data Migration Assistant � 466
Using Azure Database Migration
Service � 467

Summary � 468

12
Taming Big Data with SQL Server

Big data overview � 472
Accessing external data with
PolyBase � 473
PolyBase use cases � 474
Installing and configuring PolyBase � 475
Using PolyBase to access external data � 479

Explaining the SQL Server Big

Data Clusters architecture and
deployment � 485
Deploying Big Data Clusters � 486

Working with a SQL Server Big
Data Clusters workload � 492
Summary � 496

Other Books You May Enjoy

Leave a review - let other
readers know what you think � 499

Index

Preface
SQL Server is one of the most popular relational database management systems developed
by Microsoft. This second edition of SQL Server Administrator's Guide will not only
teach you how to administer an enterprise database, but also help you become proficient
at managing and keeping the database available, secure, and stable.

You'll start by learning how to set up your SQL Server and configure new and existing
environments for optimal use. The book then takes you through designing aspects
and delves into performance tuning by showing you how to use indexes effectively.
You'll understand certain choices that need to be made regarding backups, implement
security policy, and discover how to keep your environment healthy. Tools available for
monitoring and managing a SQL Server database, including automating health reviews,
performance checks, and much more, will also be discussed in detail. As you advance, the
book covers essential topics such as migration, upgrading, and consolidation, along with
the techniques that will help you when things go wrong. Once you've got to grips with
integration with Azure and streamlining big data pipelines, you'll learn best practices from
industry experts for maintaining a highly reliable database solution.

Whether you are an administrator or are looking to get started with database
administration, this SQL Server book will help you develop the skills you need to
successfully create, design, and deploy database solutions.

Who this book is for
This book is for database administrators, database developers, and anyone who wants to
administer large and multiple databases single-handedly using Microsoft's SQL Server
2019. A basic awareness of database concepts and experience with previous SQL Server
versions is required.

What this book covers
Chapter 1, Setting Up SQL Server 2019, offers an overview of the SQL Server technology
stack, tooling, and several recipes on how to install technologies and features of SQL
Server the right way.

viii Preface

Chapter 2, Keeping Your SQL Server Environment Healthy, provides a plethora of follow-up
activities once SQL Server is configured, including post-installation configuration, to
follow best practices for maintenance and operations.

Chapter 3, Implementing Backup and Recovery illustrates the importance of data reliability
and accessibility as the key responsibilities of every database administrator. It also explains
all aspects of proper recovery strategies as well as all the knowledge needed to configure
backup and restore strategies properly.

Chapter 4, Securing Your SQL Server, outlines the options for securing the server from
a number of perspectives, starting with service accounts, authentication, auditing, and
other important tasks for overall security management.

Chapter 5, Working with Disaster Recovery Options, outlines the list of options available to
help overcome any disaster when operations go down.

Chapter 6, Indexing and Performance, provides an overview of performance monitoring
techniques. As a part of performance optimization, indexing is also explained here.

Chapter 7, Planning Migration and Upgrade provides practical information on how to
plan a migration and upgrade the older version of the SQL Server environment to the
current version.

Chapter 8, Automation – Using Tools to Manage and Monitor SQL Server 2019, shows how
to proactively use tools to manage SQL Server 2019 and to monitor its health, together
with an in-depth look at techniques and tools used for automation on SQL Server.

Chapter 9, Configuring Always On High-Availability Features, shows practical information
and examples of how to plan, configure, and manage Always On configuration for your
SQL Server environment and also provides information on the High Availability/Disaster
Recovery technology that is required for SQL Server.

Chapter 10, In-Memory OLTP – Why and How to Use It, illustrates the strong features
of In-Memory OLTP in terms of dramatically increasing the throughput of transactions
in SQL Server databases by describing how and in which cases to implement, use, and
monitor In-Memory OLTP.

Chapter 11, Combining SQL Server 2019 with Azure, illustrates how cloud solutions have
become common in many cases by explaining how Azure can help with several scenarios
and also provides an overview of SQL technologies offered by Azure.

Chapter 12, Taming Big Data with SQL Server, incorporates a new feature for managing
big data workloads, called big data clusters, but that's not the only option as regards how
to work with big data, and in this chapter you'll find out how to tame the monster.

Preface ix

To get the most out of this book

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit www.packtpub.
com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1.	 Log in or register at www.packt.com.

2.	 Select the Support tab.

3.	 Click on Code Downloads.

4.	 Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

•	 WinRAR/7-Zip for Windows

•	 Zipeg/iZip/UnRarX for Mac

•	 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/SQL-Server-2019-Administrator-s-Guide. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

http://www.packt.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/SQL-Server-2019-Administrator-s-Guide
https://github.com/PacktPublishing/SQL-Server-2019-Administrator-s-Guide
https://github.com/PacktPublishing/

x Preface

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packtcdn.com/
downloads/9781789954326_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "ActiveDirectory is automatically managing the account
password without any service disruption."

A block of code is set as follows:

-- bringing data back
alter table MovieRatings set (remote_data_archive (migration_
state = inbound))
go

-- leaving data in Azure
alter table MovieRatings set
(remote_data_archive = off_without_data_recovery
(migration_state = paused))
go

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

use [AdventureWorks]
exec sp_replicationdboption @dbname = N'AdventureWorks',
 @optname = N'publish',
 @value = N'true'
GO

Any command-line input or output is written as follows:

EXEC sp_configure 'backup compression default', 1
GO
RECONFIGURE
GO

https://static.packtcdn.com/downloads/9781789954326_ColorImages.pdf
https://static.packtcdn.com/downloads/9781789954326_ColorImages.pdf

Preface xi

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Once Replication is enabled for the database, you can create the publication and add
the snapshot."

Tips or important notes	
You may find many errors in the error log of your SQL Server, which will lead
you to the required TLS1.2 hotfix installation.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in, and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packtpub.com/support/errata
http://packt.com

Section 1:
Provisioning the SQL
Server Environment

The objective of this section is to walk you through the SQL Server technology stack,
its complete installation on different operating systems, and initial post-installation
configuration.

This section contains the following chapters:

•	 Chapter 1, Setting Up SQL Server 2019

•	 Chapter 2, Keeping Your SQL Server Environment Healthy

1
Setting Up SQL

Server 2019
Microsoft SQL Server is not just a database engine; over the years, it has become a very
complex and robust technology set for data management, analysis, and visualizations.
As the progress of technologies incorporated into SQL Server grows, it has become
more complicated to decide which specific technology is needed, how to prepare the
environment for its installation, and which configuration properties administrators should
be aware of. With the rising popularity of cloud services, we also have a great option to
host database services in Microsoft Azure as well. This chapter offers an introduction
to the SQL Server technology stack in on-premises environments and helps you to
accomplish its proper installation to start your work with SQL Server.

In this chapter, we will study what the SQL Server technology set contains and the
purpose of each technology. We will also get familiar with the prerequisites and
pre-installation steps, and will find out which settings are important and which post-
installation steps are recommended during the installation of Windows. Using a step-by-
step approach, we will learn to install SQL Server on Linux using Ubuntu. In this chapter,
we will also understand the process of SQL Server provisioning in containers.

16 Setting Up SQL Server 2019

In this chapter, we will cover the following topics:

•	 Overview of the Microsoft SQL Server 2019 technology

•	 Preparing the SQL Server 2019 installation on Windows

•	 Installing SQL Server 2019 on Windows

•	 Installing SQL Server 2019 on Linux

•	 Installing SQL Server 2019 on containers

Overview of the Microsoft SQL Server 2019
technology
Microsoft SQL Server offers a powerful end-to-end data processing platform. In other
words, we can gain data from an extensive set of sources, securely and reliably managed,
transformed, processed, analyzed, and visualized under an all-in-one license.

The following diagram shows what the bigger picture of the SQL Server technology set
looks like:

Fig. 1.1 – Overview of SQL Server technology set on-premises

Overview of the Microsoft SQL Server 2019 technology 17

The preceding diagram shows one of the many possible ways in which technologies within
SQL Server can cooperate. SQL Server Database Engine (DE) is depicted twice in the
diagram because it possibly plays two major roles within the data processing platform,
as follows:

•	 Line-of-Business (LOB) application contention: In the diagram, at the left
occurrence of SQL Server DE, SQL Server provides data ingestion from client
applications or other external sources of data.

•	 Business Intelligence (BI) contention: In the diagram, at the right occurrence
of SQL Server DE, the SQL Server instance manages data warehouses, that is,
databases used for Analysis Services data model processing or for reporting
purposes.

As seen in the preceding diagram, SQL Server contains many technologies used
and maintained by just one person. So, the following list shows how specific roles
use such technologies:

•	 Database Administrators (DBAs): DBAs work with SQL Server and SQL Server
Agent services, ensuring the continuity of operations, security, disaster recovery
(DR) strategies, and similar tasks.

•	 SQL developers: SQL developers are responsible for the content of databases, from
database design and transaction handling to the quality and accuracy of data stored
in databases.

•	 Extract, Transform, Load (ETL) developers: ETL developers' playground lies
mainly in SQL Server Integration Services (SSIS) services. ETL developers create
a whole ETL workflow and ensure the quality and integrity of data extracted from
sources and uploaded to targets of the ETL flow.

•	 BI developers: BI developers work mainly with reports on SQL Server Reporting
Services (SSRS) and with multidimensional data models hosted on SQL Server
Analysis Services (SSAS).

Although our attention is focused on DBAs, it is still useful to have a brief idea of other
user roles within the same huge technology set. The DBA is mainly responsible for
assisting all users.

Now, we will explain all components, including SSIS and SSRS, in more detail in the
following sections.

18 Setting Up SQL Server 2019

Understanding SQL Server DE
The core service in the SQL Server technology set is the SQL Server DE service.
This service covers the following three responsibilities, apart from storing and
manipulating data:

•	 Handling recovery: This responsibility means that after any sudden or a planned
breakdown of the service or database, the service will recover every database to its
last consistent state without any undone transactions.

•	 Handling transactions: A transaction is mentioned as a single unit of work, and
SQL Server DE guarantees that transactions will be durable and isolated and
correctly finished with COMMIT or ROLLBACK.

•	 Handling security: SQL Server DE resolves every request for authentication and
authorization and decides if a user or application is known (authenticated) and if
a user or application has permission for certain actions (authorization).

SQL Server does not provide its capabilities to end users only. Still, it's necessary to
keep in mind that SQL Server DE serves as a base service for almost every other service
in the SQL Server technology stack and note the following important points:

•	 Every BI service, such as Analysis Services or Reporting Services, is actually a client
of SQL Server DE.

•	 Some services, such as Machine Learning Services, can be installed within or
independently of SQL Server DE.

•	 SQL Server Agent (not seen in the previous diagram) plays an exceptional role in
the SQL Server ecosystem. This service exists as an indivisible part of every SQL
Server DE application. SQL Server Agent hugely helps administrators, as well as
other services or components, to automate routine tasks.

Why do we need this information? It's one of the crucial moments when planning
a SQL Server installation. For example, Analysis Services is a heavily resource-consuming
service, and its deployment along with SQL Server DE could lead to big performance
problems and user disappointment with regard to responses on their requests. From
a different perspective, installing SQL Server services on separated operating systems
leads to increased license expenses and more complex administration efforts.

The following sections will describe each SQL Server service in detail.

Overview of the Microsoft SQL Server 2019 technology 19

SSIS
SSIS is basically used as a data pump of SQL Server. SSIS is used to maintain data
movements and transformations between a wide scale of heterogeneous data sources and
destinations, as well as migrating or transforming data between several instances of SQL
Server. A very common use case of SSIS is in data warehousing to extract, transform, and
save data from online transactional processing (OLTP) databases to a data warehouse.

The working unit of this technology is the SSIS package. This is an executable unit
of integration services, and we can think of it as a simple application. Its definition
consists of two main parts: control flow and data flow. Control flow contains tasks such
as creating a temporary folder (Filesystem task), accessing a File Transfer Protocol
(FTP) site (FTP task), and many others. One of the most crucial tasks in control flow is
called the data flow task. This data flow task contains a definition of the path that data
goes through, from data source to data destination.

The integration service itself is not mandatory for SSIS package execution, but the
service is used for integration services packages management. It's installed for backward
compatibility with older versions of the SSIS packages deployment model. SSIS
packages are now commonly placed into a database called SSISDB. The database is not
often accessed directly by users or administrators; it is maintained using the Integration
Services Catalog.

From an administrator's point of view, the SSIS service installation could be omitted if all
existing SSIS packages are deployed to the Integration Services Catalog, which can be
created anytime just by a few clicks in SQL Server Management Studio (SSMS).

Integration services often cooperate with two features for data cleansing, validating, and
deduplicating. These services are called Master Data Services (MDS)and Data Quality
Services (DQS).

MDS
MDS is a technology that provides a very efficient way to manage data that has to be
maintained centrally for more applications (for instance, an organizational structure or
chart of accounts) or data that should be cleansed and validated before it is sent to other
data destinations such as a data warehouse. From an administrator's perspective, it's a
database usually called MDS, MDM, or master_data_services (the administrator can
choose the database name) and a website created on Internet Information Services (IIS).
MDS is not installed within an SQL Server installer; a graphical tool called Master Data
Services Configuration Manager is used for its installation and configuration.

20 Setting Up SQL Server 2019

Loading data into a MDS database is often done using SSIS. Then, the data is optionally
cleansed by data stewards. Clean and consolidated data could be subscribed via
subscription views. Definitions of these views are created through the management
of the IIS website and stored in the MDS database.

DQS
DQS is a technology providing you with a way to deduplicate and correct data that
originates from several sources. Actually, DQS is not a service installed within the SQL
Server installer, but it's created by an independent application.

The SSIS package has a special control flow task called the DQS cleansing task that is
used when some of the DQS knowledge base (a set of rules created by the data steward)
has to be used for data cleansing before the data is written to a target.

Developing solutions with SSIS, and optionally with MDS and DQS, needs complex
developers' expertise not primarily needed by SQL Server administrators. From the
administrator's perspective, SSIS, along with MDS and DQS, is just another database
maintained by SQL Server.

SSAS
SSAS is a very robust and scalable service that steps behind relational database limits by
pre-calculating data that has been read from a relational data source. SSAS stores the data
in multidimensional storage called a storage model.

This approach is even more efficient for further analysis and visualizations than just the
usage of relational data because the multidimensional format allows users to drill down
and pivot actions as well as advanced aggregations or period-to-date queries. From
this perspective, SSAS forms the core component of corporate as well as self-service
BI solutions.

Analysis Services can be installed within SQL Server installer, but it is not always a good
idea to have both the SQL Server DE and SSAS service installed on the same computer.
We must remember that SSAS is an extremely complicated engine with a lot of physical
input/output (I/O) operations when accessing a storage mode. A lot of memory cache is
used for data processing and data querying and entails significant central processing unit
(CPU) consumption for computations. One more important thing is that results from
SSAS are often consumed in applications such as decision support, management reports,
and so on, and it's crucial to get responses fast without waiting.

Overview of the Microsoft SQL Server 2019 technology 21

As mentioned previously, in many cases SSAS has to be installed on its own computer.
The only disadvantage is that separate installations of SQL Server services lead to separate
licensing and more complex maintenance needs. In other words, the more computers
that are used to spread SQL Server technologies across an infrastructure, the more licensing
expenses will grow.

SSAS can be installed in two distinct modes, as follows:

•	 Multidimensional mode: This mode is used for centrally created data cubes and
mining models.

•	 Tabular mode: This mode is also called in-memory mode. It's used to host
PowerPivot models.

If both modes are needed, the SQL Server installer must be executed twice, and two
instances of SSAS have to be installed.

Multidimensional mode of SSAS installation
The multidimensional mode is used for corporate BI scenarios. IT departments develop
dimensions, data cubes, and mining models.

The multidimensional mode requires regular data processing, so its approach is for
bigger centralized analysis, trend predictions, longitudinal studies, and more. The
multidimensional mode is seen as a bigger, robust, and scalable mode, but often with
data delay. (An existing storage model called Relational online analytical processing
(ROLAP) can be used for real-time analysis but has a lot of constraints. An overview of
a real-time operational analysis scenario will be described later in this book.)

Tabular mode of SSAS installation
SQL Server, as well as other Microsoft technologies, supports BI solutions created by
business users. This approach is intended for users who are subject matter experts
more than IT experts, who have simple but strong enough tools to create their own
analysis and visualizations. The toolset is known as Power BI. A part of Power BI is
the PowerPivot technology—compressed and somehow pre-calculated data used to build
data models similar to data cubes.

For the possibility of sharing our own data models with other users in a well-managed and
secured environment, the PowerPivot mode of SSAS was originated. Data models can be
deployed with almost no adjustments to the server environment and can then be accessed
by authorized users.

22 Setting Up SQL Server 2019

One big advantage of PowerPivot mode is that data models are held in memory, and
when some additional data is needed to fulfill user requests, it can be read from the
data source directly.

Although a detailed description of how analysis services work is beyond the scope of
this book, we must know that combining analysis services—no matter which installation
mode—with other SQL Server services leads to big performance problems.

SSRS
Data, either relational or multidimensional, does not have its own visible face—data is
not visual. To have a complete end-to-end data management platform, Microsoft offers
a service called SSRS as a part of the SQL Server technology set. This service is designated
to access data from a variety of sources and visualize the data to users. SSRS is a favorite
service for centralized and managed reporting.

From an architectural point of view, SSRS is a Windows (or newly Linux) service that
offers HTTP/HTTPS endpoints for human-readable as well as web service content
consuming. The human-readable endpoint is called Report Portal. It is just a web
application for report consumption and management (formerly, Report Portal was called
Report Manager).

SSRS has many useful features, including report deployment, report previews,
subscriptions, or report exports to formats such as MS Excel or PDF.

Note
SQL Server 2019 Reporting Services installation is no longer a part of the SQL
Server installer. From now, SSRS is installed and versioned separately. Linking
to the installer is accessible from the SQL Server installation center or the
setup wizard step with Feature Selection.

When SQL Server 2016 was up to date, it had two installation modes for reporting
service—Native mode and SharePoint mode. However, in SQL Server 2019, SharePoint
mode is no longer offered.

When installing SSRS, the web installer allows only installation of the service itself
without creating the ReportServer and ReportServerTempdb databases for
services metadata, as illustrated in the following screenshot:

Overview of the Microsoft SQL Server 2019 technology 23

Fig. 1.2 – Reporting Services installation step

In production environments, it is a better option to install an instance of SQL Server
DE on its own computer and then install SSRS on its own computer as well. Metadata
databases are created later by a visual configuration tool called Reporting Services
Configuration Manager.

Machine Learning Services
Predictive analysis profits from efficient and enlarged languages such as Python or R. SQL
Server 2016 was the first version of SQL Server that incorporated new features called R
Services. This feature is not seen in SQL Server 2019 installation anymore because it was
renamed as Machine Learning Services. The renaming reflects the new Python support
in SQL Server 2017. SQL Server 2019 offers Java as a third usable language in Machine
Learning Services.

Machine Learning Services can be installed via in-server mode. In this installation
mode, Java, Python, and R support is incorporated directly into SQL Server DE. When
the in-server mode is selected, developers can call the SQL Server stored procedure,
sp_execute_external_script, with an R command, a Java command, or a Python
command as a parameter.

24 Setting Up SQL Server 2019

The second possible mode of installation is the Machine Learning standalone server,
which is an independent server consuming and executing R as well as Python scripts
and visualizations.

SQL Server Agent
SQL Server Agent's installation is done along with the SQL Server DE installation. The
only exception is that SQL Server Express Edition does not allow us to use the SQL Server
Agent service.

From an administrator's point of view, SQL Server Agent is a service to plan, execute,
and monitor regular tasks (jobs). But the service is used by many other components and
services of SQL Server; for instance, SSRS uses SQL Server Agent jobs to deliver reports
to end users and more. The first approach that we could consider is the planning and
execution of regular administration tasks such as those contained in maintenance plans
(backups, reindexing, and so on). However, SQL Server and its services also need to
execute other automated actions—for example, the following:

•	 MDS jobs for the internal maintenance of the MDS database

•	 Reporting Services jobs for regular subscriptions, report snapshots, and report
cache housekeeping

•	 SQL Server replications internally represented as sets of jobs

•	 When data collection diagnostics are configured, collection jobs are created
and executed

Note
We will discuss the features of SQL Server Agent throughout this book.

In this section, we have seen the application of and the need for certain SQL Server
services and features. We have also seen why it is important to install the servers on
different operating systems. Now, let's go on to prepare our computers to start the SQL
Server 2019 installation on Windows.

Preparing the SQL Server 2019 installation
on Windows
The previous section described the whole set of services and features contained in SQL
Server. From now on, we will pay attention to on-premises SQL Server DE installed on
Windows only.

Preparing the SQL Server 2019 installation on Windows 25

In this section, we will discuss the following topics:

•	 Which edition of SQL Server to buy with respect to the features and performance
capabilities

•	 How to prepare our Windows operating system and other prerequisites

•	 Installation options such as installation wizard, Command Prompt, and the
sysprep utility

Edition comparison
Microsoft provides SQL Server in several editions. Each edition has its supported
features, and with these features, the allocation of resources will differentiate. This can
be seen in terms of performance, price, runtime, and service availability. A complete
edition comparison matrix is published at https://docs.microsoft.com/
en-us/sql/sql-server/editions-and-components-of-sql-server-
2017?view=sql-server-ver15. The core editions are as follows:

•	 Enterprise edition: Intended for big enterprise environments.

•	 Standard edition: Contains almost all services (except MDS and DQS) but has
some limited hardware resource consumption as well as some internal limits in
SQL Server DE.

•	 Developer edition: Edition containing all enterprise features, but for development
purposes only! Must not be provisioned to the production environment.

•	 Express edition: The Express edition of SQL Server is published for free but with
many limitations; for example, Analysis Services, Integration Services, and SQL
Server Agent are not contained in this edition.

Pre-installation tasks
When planning to install SQL Server 2019, there are three important points to be
considered, as follows:

•	 Amount of memory

•	 Disk set

•	 Security consequences

https://docs.microsoft.com/en-us/sql/sql-server/editions-and-components-of-sql-server-2017?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/sql-server/editions-and-components-of-sql-server-2017?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/sql-server/editions-and-components-of-sql-server-2017?view=sql-server-ver15

26 Setting Up SQL Server 2019

Planning memory
Every edition of SQL Server has its limit of maximum consumable memory. It's needed
to set up the accessible memory correctly because SQL Server consumes as much memory
as possible. Every request to SQL Server needs memory. When preparing the server for
SQL Server installation, we must consider two main memory usages, as follows:

•	 Interpreted queries: This is the traditional approach where SQL Server processes
user requests. Data is stored on disk, and when some portion of data is needed by
any query, it's cached to a memory area called the buffer cache. The buffer cache,
with many other memory portions such as the procedure cache, user connections,
and others, is a matter of memory limit given by the edition of SQL Server.

•	 In-Memory OLTP: In-memory OLTP (with original code name Hekaton, which
is still used in articles and books sometimes) is a relatively new SQL Server
DE technology that was introduced with the SQL Server 2014 Enterprise edition.
Later, in SQL Server 2016 SP 1, In-Memory OLTP has ceased to be an Enterprise
feature, and now its memory capacity depends on memory limit determined by
certain editions. For example, SQL Server Standard Edition has maximum memory
set to 128 GB, and In-Memory OLTP capacity is set to 1/4 of maximum SQL Server
memory per database, which means 32 GB of memory up to the regular limit for
each database that uses In-Memory OLTP. The In-Memory OLTP area is used for
memory-optimized tables—tabular structures for extremely fast access, especially
in conjunction with natively compiled stored procedures. If any application needs
to use In-Memory OLTP technology, be aware of this extra memory requirement.

When planning the amount of memory, we must keep in mind any concurrent service
or application that will be present on the same server.

Planning disk capacity
No simple formula exists to calculate disk capacity. We can just estimate the amount
of disk space needed from similar applications or older databases. Disk space needs
to be described on MSDN as sufficient for an empty SQL Server installation, not for the
production environment.

Preparing the SQL Server 2019 installation on Windows 27

When preparing disks, we should consider the following points:

•	 Using directly attached disks is a very common approach. The only possible
issue is that the server itself does not have a sufficient number of controllers,
so disks don't have enough space for large-scale, real-world production databases.
Directly attached disks are a good option when the server should be quickly
provisioned—for instance, in production halls where hardware lifetime is shortened
by a dusty environment.

•	 Usually, the best way is to use storage area network (SAN) storage, which has
a sufficient number of controllers and allows you to spread every database across
more disks.

•	 Let its own disk be present for the tempdb database; this database is used internally
by SQL Server as well as explicitly by developers as an optimization helper for
complicated queries (however, this is not the best practice).

•	 If the server has a low amount of memory (less than 64 GB) and more memory
is needed, especially for read-intensive OLTP databases, the administrator can set
up a buffer pool extension (BPE). This is a file supplying more memory space for
so-called clean pages. SQL Server enhances the buffer cache and stores data pages
intended to be read-only from the database to this file. A best practice is to place the
BPE on its own solid-state drive (SSD) disk.

•	 Data files and log files of databases should always be separated. SQL Server uses
write-ahead logging. This means that SQL Server caches data from data files, and,
at the same moment, describes to the transaction log file what will be done with the
data. When data and log files are not separated, overhead could occur on the disk
controller.

•	 Even if many databases consist just of two files (primary data file and transaction
log file), larger databases can be divided into more data files. As per the
performance requirements, data files can be placed to more disks. This possibly
causes the need for more physical disks. Dividing a database into more files will be
described in further chapters.

Software and other requirements
When installing SQL Server 2019 on Windows, only a 64-bit system is supported.
Supported versions of the operating system start from Windows Server 2012 and above
for non-Enterprise editions; desktop operating systems—such as Windows 8.1 or
Windows 10 (including Home edition)—are supported as well.

28 Setting Up SQL Server 2019

SQL Server uses the .NET Framework for some features. The .NET Framework of versions
2.0 and 3.5 SP 1 must be present before installation.

The easiest way to check whether everything is in place is to start the SQL Server
Installation Center. It starts automatically when installation media is added to the server,
or it can be reached from Windows Explorer by clicking on the setup.exe file. The
SQL Server Installation Center provides a central point from where to find resources
about SQL Server as well as tools needed for a standalone installation, cluster installation,
adding or removing SQL Server components, and so on. The installation center is
divided into sections, and every section contains a list of links. The first section, when
the installation center starts, is called Planning. There is a link to a tool called System
Configuration Checker (SCC). This section is shown in the following screenshot:

Fig. 1.3 – SQL Server Installation Center

Preparing the SQL Server 2019 installation on Windows 29

The SCC is a tool that checks all prerequisites needed for the successful installation of SQL
Server. The following screenshot shows how it looks when every requirement is fulfilled:

Fig. 1.4 – SCC successful result

Besides the requirements, the SCC checks the overall state of the server and other
prerequisites, such as whether the installation is running with administrator's privileges or
whether a restart is needed.

30 Setting Up SQL Server 2019

Security accounts for SQL Server
SQL Server, as well as other technologies within the SQL Server technology set, needs
to log in to the operating system. From a security point of view, it is important to set
an account for every service correctly. The general recommendation is to create a login
account with the weakest permissions for every service of SQL Server separately. As the
installation process itself is run in the administrator's security context, the installer will
set local permissions for every service account correctly during the installation. The
following are the most common scenarios:

•	 Built-in service accounts: This type of account provides less control from the
administrator's side, and it's good enough for small, standalone installations of
SQL Server. In a wider domain environment, it's not recommended at all.

•	 Dedicated domain account: This option means that the domain administrator
prepares dedicated domain accounts with regular user rights (no elevated
permissions are needed or recommended), and during installation (or after the
installation), prepared domain accounts are set. A big concern is that such domain
accounts must fulfill security policies—namely, password expiration—and SQL
Server as a machine cannot create its own password for, say, every 3 months.

•	 Managed service accounts: Managed service accounts are domain accounts similar
to regular domain accounts. Unlike domain accounts, managed service accounts
create and change their passwords without any action needed from administrators.
That's why a managed service account is usually the best approach to setting
security accounts for SQL Server and its services.

Installing SQL Server 2019 on Windows
Microsoft provides several options to install SQL Server and its technologies as simply as
possible. Almost everything is done through the SQL Server Installation Center, which
is opened via the autorun property of the installation media. The next chapter describes
typical scenarios of installation and first post-installation checks and configurations.

Installation options
The SQL Server Installation Center provides several ways to install SQL Server. The most
common method of installation is to use the wizard for a standalone installation as well as
for a cluster installation of SQL Server.

Installing SQL Server 2019 on Windows 31

For situations where more SQL Servers are propagated into the environment (for example,
new departments or sales points are often created, and every department or sales point has
its own SQL Server), SQL Server provides an option to be installed through the command
line, which is also the only installation approach possible for installations on core editions
of Windows servers, or sysprep installation.

Installation wizard
The installation wizard starts from the SQL Server Installation Center from the second
tab, called Installation. There are several wizards (shortened), as follows:

•	 New SQL Server standalone installation

•	 Install SQL Server Reporting Services (new since SQL Server 2017; the version 2016
installation of SSRS was added to SQL Server's installation wizard directly)

•	 Install SQL Server Management Tools (means SSMS; beginning in version 2016,
management and data tools are not installed within the SQL Server installation
process; they are downloaded, installed, and versioned separately)

The first option, called New SQL Server standalone installation, is the right way to install
SQL Server on a clean machine just with the operating system. When a user clicks on this
option, the wizard starts. The installation wizard consists of many steps. The way through
each step is this:

1.	 Global Rules: This is an automated installation step that checks the state of the
operating system.

2.	 Product Updates: This step is also automated and checks if any available updates
of SQL Server exist.

3.	 Install Setup Files: The runtime environment is prepared for further installation.
This step also does not need any interaction with the administrator.

4.	 Install Rules: This step checks the registry keys' consistency. It also checks if the
computer is a domain controller (installation of SQL Server is not allowed on
domain controllers), and it also checks for firewall rules. If any of the checks
fail, the setup process is corrupted, and the issues reported by Install Rules
must be corrected.

5.	 Installation Type: On this page of the setup wizard, we can decide if we want to
install a new instance of SQL Server, or add features to an existing instance of
SQL Server.

32 Setting Up SQL Server 2019

6.	 Product Key: This step asks for a license key. If we do not have the key, we can select
one of the free editions (Evaluation, Express, or Developer edition).

7.	 License Terms: We should read through and accept the end-user license
agreement (EULA).

8.	 Feature Selection: The following screenshot shows the tree of SQL Server features:

Fig. 1.5 – Setup wizard step with Feature Selection

Installing SQL Server 2019 on Windows 33

As shown in the preceding screenshot, the setup wizard offers a wide set of features to
be installed at once. For administrators who already installed previous versions of SQL
Server, the setup step writes an information message about SQL Server Reporting
Services. This service is installed separately from the SQL Server installation.

When Installing SQL Server DE, the administrator selects the following options:

•	 Database Engine Services: This is the core component, DE itself.

•	 Optionally SQL Server Replication: For the ability to set up replication scenarios.

•	 Optionally Full-Text and Semantic Extractions for Search: Full text is a strong
feature provided by SQL Server DE, and it could be very useful for users.

Note
Other options, such as Machine Learning Services (provides support to
run external scripts on SQL Server), can be installed later or in a standalone
separated setup. Features such as PolyBase are beyond the scope of this book.

In the bottom part of this setup step, the user decides where to place program files, not
data files. Lets take a look at these steps:

1.	 Instance Configuration: In this step, the administrator decides if the default
or named instance of SQL Server will be installed. SQL Server can run in
multi-instance mode. This means that more than one instance of SQL Server
could be installed on the same machine. It is a good example of a side-by-side
upgrade when it is done on the same operating system.

Another scenario for several instances could be when some application needs
its own SQL Server configuration (for instance, SharePoint Server). That's
why SQL Server provides an ability to install default instances and named
instances. The default instance has no special additional name provided by the
administrator during installation, whereas every named instance must have its
own additional name that is unique on a certain computer. When connecting
to the default instance, clients just use the computer's name or IP address (such
as MYSQLSERVER01); when connecting to a named instance, users must provide
the instance name (for example, MYSQLSERVER01\MYADDITIONALNAME).

34 Setting Up SQL Server 2019

2.	 Server Configuration: Server Configuration is divided into two tabs. Don't forget
to go through both! The first tab, Service Accounts, is to set user accounts for
SQL Server and all other installed features. The second tab is called Collation. The
following two screenshots show both tabs on this installation step:

Fig. 1.6 – Server Configuration, Service Accounts tab

The preceding screenshot shows the first Service Accounts tab of the Server
Configuration installation step. The tab is the place where accounts are selected for each
SQL Server service. The step also contains a Grant Perform Volume Maintenance Task
privilege to SQL Server Database Engine Service checkbox. If the checkbox is checked,
the service account use by SQL Server will be allowed to grow data files without the need
to fill newly obtained space in the files with zeros. This privilege speeds up the growth
operations of data files. Lets look at the Collation tab in the following screenshot:

Installing SQL Server 2019 on Windows 35

Fig. 1.7 – Server Configuration, Collation tab

The preceding screenshot shows the Collation tab. The Collation setting defines which
code page, sort rules, and case sensitivity will be used as the server's default way of
handling string characters. This server default is inherited by databases as a database
default collation, and every character column in the database has its own collation
inherited from the database default collation. On the database as well as on the column
level, the collation setting could be overridden, but it's not a good practice. It is crucial
for the proper working of SQL Server to set the server default collation correctly. It's not
simple to say which collation is the correct one. The only idea is that, if you're not sure,
a better approach is to use an American National Standards Institute (ANSI)-compatible
collation with case insensitivity in a combination of unicode SQL Server data types such
as nchar or nvarchar.

Note
Collations contain only a configuration value that cannot easily be changed
after installation! When mismatched, it leads to a reinstalling of system
databases.

36 Setting Up SQL Server 2019

The next steps could vary—their set and order depend on features selected in the Feature
Selection step. For our database administration purposes, the Database Engine
Configuration step is the most important one. In this step, all crucial configurations are
done by an administrator. As shown in the following screenshot, the step is divided into
tabs (don't forget to go through all of them!):

Fig. 1.8 – Database Engine Configuration

The preceding screenshot shows the Database Engine Configuration step of the SQL
Server installation wizard. Let's look at the different tabs present on the wizard, as follows:

•	 Server Configuration contains basic settings for SQL Server security from a client's
perspective. The first setting is Authentication Mode. It has two options, as follows:

a) �Windows authentication mode: In this mode, logins to SQL Server can be
established in a trusted way only. This means that only logins created from
Windows (domain or local accounts of groups) can connect to SQL Server.

Installing SQL Server 2019 on Windows 37

b)� Mixed mode: For cases when every user comes with its domain identity,
SQL Server can manage Standard logins or SQL logins—logins
with passwords managed directly by SQL Server. This was considered a minor
security risk, but since SQL Server 2005 (this was the first version of SQL Server
able to consume Group Policy Objects (GPOs)), this is not a problem anymore.

When the administrator selects Mixed mode, they must provide a strong password
for standard system SQL Server login called sa. This is the standard administrator
login on SQL Server.

Authentication mode is the configuration value that can be changed later during
a SQL Server instance's lifetime. Still, it needs restarting, so it's a better approach to
set it directly during installation.

In the last part of this tab is a list of sysadmin server role members of the SQL
Server instance being installed. Add yourselves to the list and add other users to the
list of principals who will have administrator access to the SQL Server.

•	 Data directories tab is important as well. It's a set of paths to the filesystem where
system databases, user databases, and backups are placed when the user does not
provide their actual paths, listed as follows:

a) �Data root directory: This is the base path to all data files (with .mdf or
.ndf extensions). All system databases are placed on this path (with the
exception of the tempdb database). It is not recommended to use the default
path to the program files, as was explained in the Planning disk capacity section;
the best practice is to have a disk prepared just for data files.

b) �User database directory: This is the default base directory for user database data
files. For certain data files, this path can be overridden.

c) �User database log directory: In this, all log files (with the .ldf extension) of
every database are placed. Never mix data and log files in the same place.

Users, as well as system databases, could be moved to different locations.
•	 TempDB pre-calculates the best configuration settings for the tempdb database.

The tempdb database has a very special position in SQL Server, as well as for
developers using it in some optimization tasks. The optimized execution of
the tempdb database roughly depends on the following:

a) Number of data files

b) Their location

c) Their symmetric growth

38 Setting Up SQL Server 2019

The number of data files is calculated from the number of CPUs. A best practice
is to have 1/4 to 1/2 data files to the number of CPUs (even logical CPUs). The best
location of data files is on a fast separate disk. In the case of tempdb failure due to
a disk failure, tempdb is regenerated every time SQL Server starts.

The symmetric growth of all data files is carried out by the SQL Server engine
automatically. Unlike the prior versions that had trace flags set in startup
parameters, this is not needed from SQL Server 2016.

•	 MaxDOP allows us to limit the maximum number of CPUs used for parallelism
at the instance level. This configuration value can be adjusted later during
the instance's lifetime, without the need to restart the service. We can leave
MaxDOP's default value as 0. Still, SQL Server tends to overutilize CPUs in highly
parallelized queries, which can lead to inaccessible CPUs for other tasks on SQL
Server (this situation is known as SOS_SCHEDULER_YIELD wait). MaxDOP
is also configurable at the database level, but this configuration is not part of the
installation process.

•	 The Memory tab is new for the SQL Server 2019 installation wizard, which is
why it is also shown in the preceding screenshot. Even if we can set minimum
and maximum memory consumption for our instance of SQL Server later, the
installation wizard helps us to estimate the right amount of maximum memory.
We can select between the following two options:

a) �Recommended: The estimation of Max. Server Memory (MB) configuration.
The max. server memory value limits the amount of memory used by SQL Server.
Using the Recommended option also allows us to adjust Min. Server Memory
(MB). This is the amount of memory that, once consumed by SQL Server, is not
brought back to the operating system.

b) �Default: If the max. server memory estimation offered by the installation wizard
is not used, max. server memory stays at the default value, which is unlimited.

•	 FILESTREAM: The FILESTREAM is a type of storage for binary data such
as documents or pictures saved in the database. If you have no idea about
saving FILESTREAM data at the moment of installation, the FILESTREAM should
remain disabled. It can be enabled and configured later, without the need to restart
SQL Server.

After the database engine configuration, additional wizard steps could occur,
depending on other features selected in Feature Selection.

Installing SQL Server 2019 on Windows 39

Note
Maybe some readers are concerned about where the SQL Server Agent
configuration is. SQL Server Agent doesn't have any special settings in the
installation process, and its installation is automatically done along with every
instance of database engine installation.

•	 Ready to install: This step of the installation wizard is basically the summary of
selected options for review before the installation begins, but this step also contains
a text field called Configuration file path. This text field contains a complete path
to the configuration file. The file is very useful as a template when more instances
of SQL Server need to be installed.

The installation wizard is almost complete now, and the setup operation starts and shows
its progress.

Installing SQL Server from the command line
Installing SQL Server directly from the command line is possible, but when searching
the Install SQL Server from the Command Prompt topic on MSDN, the user will obtain
a huge set of options that need to be added to the Command Prompt (or to the .bat file)
directly. This leads to a big risk of misspellings and other mistakes.

A better approach is to use configuration files for Command Prompt installations. This
approach contains the same options as Command Prompt, but we can find very good
working examples from any setup already run from the wizard. When the wizard setup
finishes, it leaves the setup log and configuration on disk. If SQL Server is installed in the
default location, the path is C:\Program Files\Microsoft SQL Server\150\
Setup Bootstrap\Log. In this location is a file called Summary.txt that contains
the actual path to the ConfigurationFile.ini file. The configuration file can
be copied and adjusted as needed and then run using the following command from
Command Prompt:

setup.exe /ConfigurationFile=<path to my config file>.ini /
IACCEPTLICENCETERMS

The SQL Server installation wizard allows you to prepare a configuration file without
installing. When the administrator goes through the wizard, everything is saved in the
newly created configuration file. In the summary step of the wizard, the path to the
configuration file is shown. So, the administrator can cancel the wizard without the actual
installation of SQL Server.

40 Setting Up SQL Server 2019

Note
ConfigurationFile could be edited. However, we can set different
instance names or service account names, for instance, but it is still needed to
add the /IACCEPTLICENCETERMS command parameter to the command
line.

Checking the completed installation
We have taken all the necessary steps to install a standalone instance of SQL Server DE.
The next step is to check if the installation was successful and if the instance is up and
running.

If any error occurs during installation, additional diagnostics are needed. Every single task
of the setup process is described in the setup log (in the case of the default installation
path, the log is placed on the C:\Program Files\Microsoft SQL Server\150\
Setup Bootstrap\Log path).

However, it is still a good practice to check whether everything works as expected. Those
simple post-installation checks could be done using Sql Server Configuration Manager,
as illustrated in the following screenshot:

Fig. 1.9 – Sql Server Configuration Manager

Sql Server Configuration Manager is the only visual client tool actually installed in
the SQL Server setup. Configuration Manager is a snap-in to Microsoft Management
Console and consists of two main sections, as follows:

•	 SQL Server Services: When selected in the left pane, the right detail pane shows
every SQL Server service or feature installed with its Name, State, Start Mode, and
Log On As account. These settings can be changed by right-clicking on a certain
row and selecting Properties from the pop-up menu. The Modal Properties dialog
appears, and we can go through it to correct any setting as needed.

Installing SQL Server 2019 on Windows 41

•	 SQL Server Network Configuration (32-bit): In this section, administrators
view a list of instances (the MSSQLSERVER instance name seen in the
preceding screenshot is the internal name for the default instance of SQL Server),
and when any instance on the left is clicked on, a list of network protocols appears
in the right pane.

There are also other nodes in the tree shown in the left pane of Sql Server Configuration
Manager such as SQL Native Client configuration, which provides the ability to set client
aliases for SQL Server instances (for example, when SQL Server is accessible only via its IP
address, which is almost non-readable to users). Still, the preceding two sections are the
most important ones.

SQL Server services configuration node
The administrator can call for a pop-up menu from every record shown in the right pane.
Special attention should be focused on SQL Server itself and SQL Server Agent.

SQL Server may be shown in several records because every instance has its own
configuration, so the first good thing is to select the right record. The following
screenshot shows the Properties dialog box:

Fig. 1.10 – SQL Server instance properties

42 Setting Up SQL Server 2019

As shown in the preceding screenshot, the Properties dialog box allows you to set
the following:

•	 Log On tab: The context of the Windows account that will be used by the instance
to log in to the operating system. This configuration needs restarting if changed.

•	 Service tab: The only setting enabled on this tab is Startup mode, which should be
set to Automatic.

•	 FILESTREAM tab: This tab contains FILESTREAM settings. As described
earlier, FILESTREAM is a special kind of storage for binary data such as pictures
or documents stored in relational data directly to a database. From an
administrator's point of view, FILESTREAM must be enabled for at least T-SQL
Access. When enabled, databases can contain FILESTREAM file groups, which
are actual representations of the binary storage. There's an enhancement called File
Tables for which the second two textboxes (allow for I/O... and enable remote
clients...) must be switched on.

•	 Startup Parameters tab: This tab contains three startup parameters as default,
as follows:

a) �d: The location of the primary data file of the database master (must be
reconfigured when the master database is moved).

b) �l: The location of the log file of the database master (must be reconfigured when
the master database is moved).

c) �e: The default path for error logs written by SQL Server.

d) �Additional parameters such trace flags and others can be added if needed.
•	 AlwaysOn High Availability tab: AlwaysOn is an advanced concept of data

availability and reliability built on top of Microsoft Cluster Service (MSCS). When
certain instances attend to the AlwaysOn group, it must be enabled on this tab.
MSCS must already be present before this configuration is done.

•	 Advanced tab: This tab actually has no advanced settings, just error reporting and
user feedback to Microsoft.

Installing SQL Server 2019 on Windows 43

Special attention should be given to SQL Server Agent. SQL Server Agent is installed with
every single instance of SQL Server. In other words, every instance of SQL Server has its
own SQL Server Agent instance. Immediately after installation, SQL Server Agent is set to
Manual Startup mode, which is not good enough for production environments.

That's why one of the first post-installation configurations should be to change SQL
Server Agent's startup mode to Automatic. This is because the SQL Server Agent is an
invaluable service for a lot of regular administrator tasks as well as automated tasks done
by SQL Server itself (for example, data collection, strong diagnostics tool, and collecting
performance statistics using SQL Server Agent jobs).

Understanding the SQL Server network configuration node
SQL Server communicates with clients on its own network
application protocol called Tabular Data Stream (TDS). Under this network application
layer, TCP/IP and Named Pipes (now deprecated) network protocols are supported.
The third option, called Shared Memory, is always enabled and allows communication
between server and client when the client is running locally on the same machine
as SQL Server.

SQL Server supports both 32-bit and 64-bit protocols, so configuration for both modes is
the same. Under the SQL Server Network Configuration node (even if it's the 32-bit
node), network protocols for every instance of SQL Server already installed on the
machine are placed. The administrator selects certain instances (for example, Protocols
for MSSQLSERVER, which is the default instance), and in the right pane of the Sql Server
Configuration Manager, selects the property window for certain network protocols by
right-clicking on Properties.

The most complex configuration has to be made on the TCP/IP protocol. When SQL
Server 2019 is installed, the protocol is enabled, so the administrator just checks whether
the proper TCP ports are used. The default TCP port used for SQL Server communication
is port number 1433. For additional named instances, ports starting with numbers 1450,
1451, or similar are often used. The ability and the port number have to be set for every
variant of the IP address of every network interface.

After this configuration is done, the instance of SQL Server needs to be restarted.

44 Setting Up SQL Server 2019

Testing connection to a fresh SQL Server
As mentioned earlier, SQL Server does not contain a client management toolset in its
installation. It's a good idea to install SQL Server Management Studio directly on the
server where the SQL Server service is already running because a lot of the administrator's
tasks will be done directly on the server, but for a quick check whether SQL Server is
accessible to clients, Command Prompt can be used. Its name is sqlcmd , and it's the
only client tool installed with SQL Server directly. This tool is very useful in the following
scenarios:

•	 When SQL Server Management Studio is not present or cannot be used (for
example, when restoring the master database)

•	 When the Express edition of SQL Server was installed, and SQL Server Agent
cannot be used (when planning regular tasks, it can be done by PowerShell or
by sqlcmd in conjunction with Windows Task Scheduler)

The simplest way to use sqlcmd is shown in the following code example:

sqlcmd

When running sqlcmd as shown in the preceding code example, it tries to connect the
local default instance of SQL Server using the current user's Windows account. When
successfully connected, rows in the Command Prompt window start to be numbered.

A better approach is to call sqlcmd with parameters precisely set, as follows:

sqlcmd -E -S localhost

In a domain user context or with a SQL login context, you would run the following code:

sqlcmd -U <user name> -P <password> -S localhost

Let me elaborate on each of the parameters, as follows:

•	 The E parameter (beware that all parameters of all command-line tools provided
by SQL Server are case-sensitive) says to the connection that Windows login context
of the user currently logged in the desktop will be used.

•	 The U and P parameters are used when the user wants to connect via a mixed
Authentication mode of SQL Server. Then, the user and password created on the
SQL Server are used, not the Windows identity.

•	 The S parameter is used for the name of the server. If connected locally on a default
instance of SQL Server, shortcuts such as . or (localhost) could be used.

Installing SQL Server 2019 on Windows 45

All the preceding examples start the sqlcmd tool in interactive mode. When successfully
connected, rows start numbering, and the user can start to write queries. The GO keyword
must follow every query. This keyword (sometimes called batch terminator) causes the
text written to the console to be sent to SQL Server and then processed.

Results returned back to the console are not so readable that the sqlcmd could be started
with the command parameter, o, followed by the path to the output file. The output file is
just a text file catching all results from all queries sent by the user in the session.

When the user wants to run sqlcmd in unattended mode, the i parameter followed by
the path to the input file may also be very useful. A complete example is shown in the
following snippet:

-- content of demo.sql file
use master
go
select @@version as VersionOfMySQL
go

The first piece of the snippet shows the correctly created input file (for example, demo.
sql).

The use master line establishes the correct database context in the connection, and it
is highly recommended to never commit this row because very often, the database context
is not the default database context set for login.

The third line is just an example of doing something meaningful.

When an administrator wants to run a script file like this, they can add the following
command to Command Prompt:

sqlcmd -E -S (localhost) -i "c:\demo.sql" -o "c:\demo_output.
txt"

The command will run, and it will save all results (even if an error occurs) to the file
called demo_output.txt.

There are more useful command parameters for sqlcmd , but this set, especially the first
three examples, is sufficient to test an instance's accessibility locally.

46 Setting Up SQL Server 2019

For remote testing of accessibility, a very common way is to use SQL Server
Management Studio. Common issues (followed by Error No. 40 - Network Related
Error) are as follows:

•	 SQL Server instance is not running: In Sql Server Configuration Manager, this
error is seen if the service is running or not. When it's not running, we can try to
start it up manually and diagnose additional errors.

•	 TCP/IP protocol is disabled: This issue may be corrected by Sql Server
Configuration Manager (requires restart after reconfiguring).

•	 Other than default TCP port number is used: This can be corrected
on the user's side by adding the port number after the server name (for
example, MYSQLSERVER:12345).

•	 Firewall rules are not set: This must be resolved on the firewall's side by enabling
certain ports for communication.

Installing SQL Server 2019 on Linux
Since SQL Server 2017, Microsoft decided to offer its distribution on Linux. SQL Server's
Linux distribution helps administrators to use familiar operating systems as well as install
SQL Server to containers. This section is a step-by-step walkthrough example of the
sample SQL Server installation process on Ubuntu 18.04.

Preparing the test environment
For many administrators and DBAs strongly bound to Microsoft operating systems, the
world of Linux seems very strange and confusing. That's why the first step is a preparation
of the Hyper-V virtual machine (VM). Microsoft provides a Hyper-V option called
Hyper-V Quick Create. Its usage is very simple and straightforward, as follows:

1.	 In the Start menu, find the Hyper-V Quick Create application.

2.	 In the opened window, select Ubuntu 18.04.

3.	 Click the Create Virtual Machine button.

4.	 Follow the installation instructions.

The whole installation process is almost self-managed and takes up to 15 minutes. When
your Ubuntu is ready, turn it on and connect to it using Hyper-V Manager. If everything
works, you are prepared for SQL Server 2019 installation on Linux.

Installing SQL Server 2019 on Linux 47

Installing SQL Server
The installation process of SQL Server on Linux differs from the Windows installation
because of the following three points:

•	 It uses the Linux shell.

•	 All services such as SQL Server Agent or SQL Server Integration Services are
installed separately.

•	 Not every service is supported on Linux (for instance, SSRS).

Our task is to install just the database engine of SQL Server, but the process of installation
of other services is very similar.

First of all, we need to look for the Linux shell. At the bottom-left corner of Ubuntu
PC is an icon that looks similar to the Windows Start button. When this icon is clicked,
the main screen appears, showing all installed applications. One of these applications
is Terminal. Click on it and take the following steps:

1.	 Execute the following command in Linux Terminal:

wget -qO- https://packages.microsoft.com/keys/microsoft.
asc | sudo apt-key add –

The command imports the public repository key needed for validity checks of the
downloaded build of SQL Server.

2.	 The second command registers the MS SQL Server Ubuntu repository from which
the installation will be downloaded. The following command does the registration:

sudo add-apt-repository "$(wget -qO- https://packages.
microsoft.com/config/ubuntu/18.04/mssql-server-2019.
list)"

The sudo command from the preceding code snippet says to the operating system
that the command itself will be executed with elevated permissions. So, it's possible
that you will be asked to write your password into the command line.

3.	 Once the repository is registered, the following two commands will install
SQL Server:

sudo apt-get update

sudo apt-get install -y mssql-server

48 Setting Up SQL Server 2019

4.	 After installation, you need to go through a simple configuration. You will be asked
for a password and an edition of the freshly installed instance of SQL Server. The
following command runs the configuration:

sudo /opt/mssql/bin/mssql-conf setup

5.	 The last step is to check if SQL Server runs and if a connection can be established
to it. Checking the service status can be done using the systemctl command,
as follows:

systemctl status mssql-server

6.	 The preceding command should show status Active (running). If not, execute the
following command:

systemctl start mssql-server

This command starts the SQL Server service. If anything is not correct, the result of the
command will show part of the SQL Server error log with a certain error.

Testing connection to SQL Server on Linux
We should test the connection to our fresh SQL Server installation from inside as well
as from outside of the Linux computer. The Linux distribution of the SQL Server service
does not contain client tools, or even the sqlcmd command line. So, the first step is
to install the sqlcmd command line. The process of installation is very similar to the
installation of SQL Server. The following script shows all commands leading to the
sqlcmd installation:

wget https://packages.microsoft.com/config/ubuntu/16.04/prod.
list | sudo tee /etc/apt/sources.list.d/msprod.list

sudo apt-get update

sudo apt-get install mssql-tools unixodbc-dev

echo 'export PATH="$PATH:/opt/mssql-tools/bin"' >> ~/.bashrc

source ~/.bashrc

When all the preceding commands are executed, we can call the sqlcmd command line
with the following parameters:

sqlcmd -U sa -P <strong sa password>

Installing SQL Server 2019 on containers 49

If the preceding command succeeds, lines in the Terminal window start to be numbered,
and we can try any SQL command such as SELECT @@VERSION.

If everything works from inside, we can make the same connection test from outside
of our Linux computer. During this walkthrough, we used the Hyper-V virtualization
environment, so we can install Management Studio and try to connect to the SQL Server
on Linux using both Management Studio or the sqlcmd command.

Note
When testing the connection to the virtual computer, use the IP address rather
than the computer's name.

SQL Server on Linux works the same way as on SQL Server on Windows. From this
moment, we will use SQL Server on Windows primarily, but if you wish to, enjoy your
Linux distribution of SQL Server.

Installing SQL Server 2019 on containers
Virtualization of computers hosting SQL Server is very common nowadays. Containers
provide the next level of virtualization. A container itself is a lightweight computer hosted
by the container environment. The question is: why use containers over virtual machines?
Containers provide a simple way to prepare the environment that is often destroyed or
moved between hosts. It is useful, for instance, during the development phase, when
developers need to refresh their server environment frequently.

The basis of containers adopted by Microsoft lies on a Linux-based technology called
Docker. It's also a prerequisite when we'd like to try provisioning. We need to have
Docker Engine 1.8 or higher installed on our Linux computer, or we can install Docker
for Windows as well.

Note
Installing Docker for Windows needs the Hyper-V feature of Windows
installed, because Docker itself is then running on the Linux VM.

50 Setting Up SQL Server 2019

The provisioning of SQL Server to containers is a scripting task. We can use bash or
PowerShell, depending on the hosting environment. The following walkthrough example
will provision SQL Server on Docker for Windows, so all commands are written using
PowerShell:

1.	 As a first step, the SQL Server 2019 container image is downloaded from the Docker
Hub with the following command:

docker run -e "ACCEPT-EULA=Y" -e "SA_PASSWORD=<strong
enough password>" -p 1433:1433 -d "mcr.microsoft.com/
mssql/server:2019-CU3-ubuntu-18.04"

The preceding command downloads the image to the local computer. Consider the
following facts:

a) �The SA_PASSWORD parameter must follow the SQL Server default password
policy (at least eight characters, special symbols, and numbers). Otherwise, the
installation fails.

b) �The -d command parameter allows different versions of the SQL Server image
to be selected. All images are accessible at https://hub.docker.com/_/
microsoft-mssql-server.

2.	 We can check the list of all downloaded containers using the following command:

docker ps -a

If we see our SQL Server container in the list retrieved by the preceding command, we can
connect the SQL Server instance using any of our preferred tools.

Summary
The SQL Server ecosystem provides you with a wide set of technologies. The first problem
is to know what is the responsibility of every single technology of SQL Server. In the first
section of this chapter, we cleared what is necessary to install, which helped us recognize
what we need.

https://hub.docker.com/_/microsoft-mssql-server
https://hub.docker.com/_/microsoft-mssql-server

Summary 51

In the second section, we prepared our operating system and the complete infrastructure
to install SQL Server. The most important decision before starting the installation is which
technologies to install and how many computers will be needed to distribute SQL Server
services appropriately across an infrastructure. Before installing SQL Server DE itself, we
need to ensure that a sufficient set of disk storage is in place, appropriate security accounts
are prepared, and all software prerequisites are fulfilled.

The installation described in the Installing SQL Server 2019 on Windows section of this
chapter is quite a straightforward process, but we should still consider some settings.
Even if many of the settings can be adjusted after the installation completes, the SQL
Server installation wizard helps us with the correct setting. In this section, we also
highlighted settings (namely, Collation) that cannot be changed after the installation
of the SQL Server.

After installation, it's highly recommended to check whether SQL Server is running, and,
if not, check logs in the Setup Bootstrap folder. When SQL Server is successfully
running, we need to check SQL Server's accessibility locally and remotely.

Last but not least is a check of the SQL Server Agent state because, for administrators, this
service is an invaluable helper when performing day-to-day administrative tasks. SQL
Server Agent should have the startup mode set to automatic and should be running all the
time SQL Server DE is.

It is very useful to do more configuration after installation. The next chapter talks about
these configuration settings and discusses more on how to keep SQL Server healthy.

2
Keeping Your SQL

Server Environment
Healthy

In the first chapter, we saw that SQL Server is a complex software suite consisting of many
services that work together. Based on the deployment scenario, we can have even more
instances of SQL Server services running on the same host. SQL Server Database Engine
is usually a key service in the Enterprise environment because many other applications
and tools depend on SQL Server for their primary data storage. It's a crucial task to keep
our SQL Server environment healthy, not only with proper maintenance and monitoring
but also with proper post-installation configuration. Installation, as we have seen in the
first chapter, is not just about configuring many of the settings and keeping the default
values. A default configuration might not be ideal for your production environment,
and it's important to understand the benefits of any modifications to the default values.
The goal of this chapter is to provide the basic post-installation configuration steps for
adjusting the SQL Server deployment to your needs.

54 Keeping Your SQL Server Environment Healthy

This chapter will cover the following topics:

•	 Understanding SQL Server patching

•	 Configuring SQL Server post installation

•	 Creating a performance baseline

Understanding SQL Server patching
Once you install SQL Server, you need to watch for future updates released by Microsoft.
You can confirm which updates were installed to your server by checking the build
number of the SQL Server deployment. You can find the build number in SQL Server
Management Studio (SSMS), as you can see in the following screenshot, or via
the SELECT @@VERSION command:

Fig. 2.1 – SQL Server Object Explorer (build version)

The build version of the currently installed SQL Server is 15.0.2070.41. We can parse this
version into the following portions:

•	 15–indicates we work with SQL Server 2019

•	 2070.41—4517790 Servicing Update (GDR1) for SQL Server 2019 Release to
Manufacturing (RTM)

Understanding SQL Server patching 55

Note
You can find a nice list of updates for all SQL Server versions at
http://sqlserverbuilds.blogspot.com/ where you
can identify the correct build of your SQL Server.

Based on the data available either on the Buildlist site or on the Microsoft.com site, which
publishes the latest updates for all SQL Server versions (https://docs.microsoft.
com/en-us/sql/database-engine/install-windows/latest-updates-
for-microsoft-sql-server?view=sql-server-ver15), we can see that the
latest update (at the time of writing this book) is Cumulative Update 2 for SQL Server 2019.

Historically, there were several types of updates released for SQL Server, as follows:

•	 Service packs

•	 Cumulative updates

•	 Security updates

When you work with older SQL Server installations, you can install all three types of
update for your SQL Server environment.

Service packs are usually the largest update option for your SQL Server. They frequently
include updates released by more cumulative updates and should be tested more
thoroughly regarding performance and stability of the system. It's also important to keep
your environment healthy with recent Microsoft system support service packs. Service
packs not only fix issues but often also bring new features to SQL Server. A good example
was the service pack 1 for SQL Server 2016, which enabled many features previously
available only in the Enterprise and Standard editions. This had a tremendous impact on
many smaller environments that were not utilizing the Enterprise edition, as database
administrators (DBAs) and developers were able to start using many new features that
were previously unavailable to them.

Cumulative updates are smaller compared to service packs and are released more
frequently. They usually fix many errors and include more updates, undergoing the same
comprehensive tests as service packs. As an example, we can see that SQL Server 2014
had only three service packs available, but for the first service pack, Microsoft had already
released 12 cumulative updates with additional fixes for errors, performance, and stability.
You can now install cumulative updates proactively with the same level of conf﻿idence as
you would service packs. Cumulative updates are incremental in nature, so cumulative
update 4 includes all the updates that were released in cumulative updates 1 to 3.

https://docs.microsoft.com/en-us/sql/database-engine/install-windows/latest-updates-for-microsoft-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/install-windows/latest-updates-for-microsoft-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/install-windows/latest-updates-for-microsoft-sql-server?view=sql-server-ver15

56 Keeping Your SQL Server Environment Healthy

Security updates are smaller than cumulative updates and usually fix some sort of error
or security vulnerability. These are usually released in a monthly cycle alongside the
regular Windows updates and should be evaluated for your environment. Usually, a Chief
Security Office (CSO) team or a security team in general may request you to install such
security updates in a reasonable time frame to your SQL servers, which may be a complex
task if you're managing larger environments. For patching such large environments, you
most likely won't install any of these updates manually, but you'll utilize a centralized
deployment tool such as System Center Configuration Manager (SCCM).

Note
Since SQL Server 2017, service packs are no longer used for SQL Server
updates. The servicing model has been simplified to include only cumulative
updates and security updates. However, while working with older versions of
SQL Server, it is still important to understand both concepts.

Installing updates
If you need to install an update to your SQL Server, you first need to download the
correct bits from the Microsoft site and store them locally in your SQL Server. Some
updates are downloaded as .exe files and some are available as .zip files, so you need
to extract the update.

When you first start the installation, it will automatically extract to a random folder on
one of your drives on the SQL server, as shown in the following screenshot:

Fig. 2.2 – Service pack installation

This folder will automatically get deleted once the installation is over. This might not seem
important at first glance; however, there are situations where you will need to reestablish
the original hotfix structure to apply newer patches, especially with older SQL servers due
to missing installation files on your system, as illustrated in the following screenshot:

Understanding SQL Server patching 57

Fig. 2.3 – Hotfix extraction

When you accept the license terms for the installation, you need to select the instance
from the list to which you would like to install the update. You can see the list of features
installed for each instance, and the last installation option is Shared Features. These
include Integration Services, Data Quality Services, Client Connectivity Tools, and, on
older systems, SQL Server Management Studio as well. Via the update installer, you can
also see the current build and whether the update was installed or only partially installed
due to some error.

Once you select the instance to which you'd like to install the update, you can proceed to
the installation. It's common practice to restart the server after the installation. If you're
installing more updates in a sequence, they perform system checks and one of them
is Restart Pending anyway. After the restart, you need to verify that applications can
correctly connect to the SQL server and there is no impact after the update installation.
The following screenshot shows the dialog from the SQL Server 2019 setup:

Fig. 2.4 – SQL Server installation dialog

58 Keeping Your SQL Server Environment Healthy

Note
For any high-availability (HA) solution such as failover clusters and mirroring
or availability groups, you need to take into special consideration installing
updates and following a proper sequence between primary and secondary
nodes (with respective naming for all the HA/DR options (where DR stands for
disaster recovery). For more information, consider checking books online to
find detailed procedures relating to this.

If you are deploying many SQL Servers at once or very frequently, you might consider
customizing your installation media to include the latest updates.

In complex environments, you can integrate the installation bits of service packs and
cumulative updates in your installation source and use this modified installation to install
new SQL Servers directly with proper service packs or cumulative updates. This will speed
up your deployment, as the installation will already include the required service packs,
updates, or security updates that may be required by your security or architecture team.

Configuring SQL Server environment
Once you have installed your SQL Server and performed the patching to the current
patch level required, you need to configure basic settings on the SQL Server and also on
the Windows Server itself. There are several settings on the Windows Server that have
an impact on your SQL Server's performance and security, and these need to be updated
before you put the server into production. The following are the basic options that you
need to configure on the operating system:

•	 Configuring security rights for your SQL Server account

•	 Configuring power settings

•	 Configuring firewall rules

Configuring SQL Server environment 59

Configuring security rights for your SQL Server
account
During the installation of the SQL Server, you're choosing an account that will be
used to run all SQL Server services. There are quite a few considerations for a proper
choice but, in this chapter, we'll focus more on the follow-up configuration. Such an
account needs to have proper rights on the system. Since SQL Server 2016, you can add
one specific system right to your SQL Server account directly during installation. The
SeManageVolumePrivilege right can either be granted directly by the installer or you can
modify system settings later to customize the assignment of rights. Two other important
system rights (Lock pages in memory, Generate security audits) cannot be granted via
the SQL Server installer and you must modify the system settings manually, as described
in the following paragraph.

In the following screenshot, you can see a dialog from SQL Server 2019 Setup, where
you can configure SQL Server Service Accounts for services that you're installing. On
the same dialog, you can grant the aforementioned system rights:

Fig. 2.5 – Server configuration during SQL Server setup

60 Keeping Your SQL Server Environment Healthy

System rights can be configured via Group Policy Editor in the Computer
Configuration segment of the policy. To open up the console for the rights' configuration,
perform the following steps:

1.	 Run gpedit.msc.

2.	 Expand Computer Configuration | Windows Settings | Security Settings |
Local Policies.

3.	 Double-click on the system right that you want to edit.

4.	 Add the account or group to which you want to grant the rights.

The first one will be Perform volume maintenance tasks. This right can be granted
directly during installation of the SQL Server, but if you skip this, here's where and how
you can add this right to your SQL Server account. The reason for granting this right is
to enable Instant File Initialization, which can speed up disk operations to allocate new
space for data files on the disk. Instant File Initialization does not work for log files,
which in any case have to be zeroed out.

Instant File Initialization is used when the data file for the database is growing and
allocating new space on the disk drive and also during the restoring of the database to
create all files on the disk, before data can be copied from backup to the data files, as
illustrated in the following screenshot:

Fig. 2.6 – Windows rights' configuration

Configuring SQL Server environment 61

Another system right that we will assign as part of the post-installation configuration
will be Generate security audits. As you can see in the previous screenshot, this right
is granted to two accounts: LOCAL SERVICE and NETWORK SERVICE. Our SQL
Server is running with a different account and this account needs to be added to the list.
This right will, later on, allow our SQL Server to store audit events in the Windows Event
Log to the Security Log. This may come in handy once we see how SQL Server Audit is
working and what the options to audit are.

The last system right that we will assign is Lock pages in memory. This right will allow
SQL Server to lock the memory pages and prevent the Windows operating system from
paging out memory in the case of memory pressure on the operating system. This one has
to be taken into careful consideration, with more configuration on the SQL Server engine
and proper system monitoring. We'll talk about the SQL Server settings later.

Configuring power settings
When you install a Windows Server operating system, you need to check for power settings
that are configured on such systems. There are several options for how you can verify which
power setting plan is currently in use. If you open Command Prompt or PowerShell, you
can use the powercfg utility to see which plan is used on your server, as follows:

powercfg.exe -list

By default, you will see a Balanced plan selected, which is great for most servers and offers
a lot of power-saving features, but this plan is not usually optimal for SQL Servers. SQL
Server can put quite some load on the central processing unit (CPU), and switching
between CPU speeds may cost you precious time as well as performance issues. If you
open the Task Manager tool, you can see that your CPU is not running at the maximum
speed and may be running with a much lower value.

62 Keeping Your SQL Server Environment Healthy

As an example, you can see the following screenshot from one of the physical servers with
a 2.40 GHz CPU, which is running on 1.25 GHz due to a power-saving plan:

Fig. 2.7 – Task Manager load and CPU speed

You can verify this with tools such as CPU-Z or similar, and the best option we have
here is to update the power plan to high performance, which is common for SQL Server
workloads. To update the power plan setting, you can either use a control panel where you
can find settings for power options or you can use a command line again. When we listed
the plans on the server with the previous command, you saw in the output that they come
with name and GUID. To update the plan via the command line, we need to use the GUID
with the powercfg tool, as follows:

powercfg.exe -SETACTIVE <GUIDofThePlan>

Configuring SQL Server environment 63

The following screenshot gives an illustration of updating the plan via the command line:

Fig. 2.8 – Power plan configuration via PowerShell

Once the power plan is updated, the CPU is no longer using any power-saving mode
and runs at full speed, and possibly even turbo boot for extreme loads, while performing
complex queries on your server.

Configuring firewall rules
Each SQL Server instance running on your server is using a different port number to
listen for incoming connections, but during the installation of the SQL Server, there are
no firewall rules created on your local firewall. You can even see this during installation
of SQL Server, where the installer is presenting you with a warning that you have to
configure your firewall to include rules for SQL Server services. So, SQL Server is perfectly
accessible locally, but not from remote hosts if the local firewall is active. You can run
with a built-in firewall on the Windows Servers or have some third-party software in your
environment that requires additional configuration.

64 Keeping Your SQL Server Environment Healthy

In the following screenshot, you can see a generated warning by SQL Server Setup that
provides you information about the need to configure the firewall rules:

Fig. 2.9 – SQL Server Setup firewall warning

During the installation of the SQL Server, you had to make a choice between deploying
SQL Server as a default instance or a named instance. The SQL Server default instance is
listening on port 1433 by default, which you can verify in the SQL Server Configuration
Manager tool. This port is set as static and will not change over time. Named instances,
on the other hand, use a randomly selected port that may not be fixed and can change
after a system reboot, because named instances use dynamic ports as a default option.

Tip
It's advised to change the dynamic port to static so that the port number does
not change, and this does not have any impact for any security configuration
such as the service principal name, which we'll discuss in another chapter.

Configuring SQL Server environment 65

The following screenshot gives a good idea of the default instances:

Fig. 2.10 – SQL Server Configuration Manager port configuration

Once we know which port our SQL Server instance is listening to, we need to configure
the firewall to allow the traffic to our SQL Server service. Windows Server comes with
a built-in firewall that can be controlled via a Graphical User Interface (GUI), the
command line, and PowerShell.

We will add three different rules to the firewall with the PowerShell tool, as follows:

•	 The first rule is for the SQL Server service with the proper port number. We have seen
the port number in the configuration manager. For a default instance, this is 1433; for
a named instance, the port number would be mostly random on each system.

•	 The second rule is used for the dedicated admin connection (DAC), which is used
for troubleshooting the system. Enabling just the firewall rule does not allow you
to remotely connect to the DAC session; this also has to be turned on in the SQL
Server configuration, and we'll cover this topic later.

•	 The third rule is for a service called SQL Server Browser, which is used for
connection to the named instances.

66 Keeping Your SQL Server Environment Healthy

All three rules can be seen in the following code snippet:

New-NetFirewallRule -DisplayName "SQL Server Connection" –
Protocol TCP -Direction Inbound –LocalPort 1433 -Action allow

New-NetFirewallRule -DisplayName "SQL Server DAC Connection" –
Protocol TCP -Direction Inbound –LocalPort 1434 -Action allow

New-NetFirewallRule -DisplayName "SQL Server Browser Service" –
Protocol UDP -Direction Inbound –LocalPort 1434 -Action allow

If you're running more instances on the server or any other services such as Analysis
Services or Reporting Services, or you use any solutions for HA/DR such as mirroring
or always on, then you need to carefully examine which firewall rules are needed,
and the list may get much longer than the three basic rules we have seen. The
complete list of ports required by each service is available on the documentation
site at https://docs.microsoft.com/en-us/sql/sql-server/
install/configure-the-windows-firewall-to-allow-sql-server-
access?view=sql-server-ver15.

Also, keep in mind that two specific editions of SQL Server–Express and
Developer—restrict remote communication to the SQL Server Database Engine by
default. This can be configured on SQL Server via using a sp_configure stored
procedure, as illustrated in the following code snippet:

sp_configure 'remote access', 1
GO
RECONFIGURE

Also, in the SQL Server Configuration Manager tool, check for allowed protocols for
connection to your SQL Server. For remote connectivity, you need the TCP/IP protocol
enabled. Reconfiguring the available protocols requires a restart of your SQL Server service.

SQL Server post-installation configuration
So far, we have configured our Windows Server and we have made a few configurations
related to SQL Server, but we haven't configured any Structured Query Language
(SQL)-specific items inside SQL Server itself. For the post-installation configuration, there
are plenty of settings worth exploring, some of course with careful consideration.

https://docs.microsoft.com/en-us/sql/sql-server/install/configure-the-windows-firewall-to-allow-sql-server-access?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/sql-server/install/configure-the-windows-firewall-to-allow-sql-server-access?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/sql-server/install/configure-the-windows-firewall-to-allow-sql-server-access?view=sql-server-ver15

Configuring SQL Server environment 67

When the server is deployed, many configuration values are configured with defaults that
may be modified for your environment. We'll start with some basic configuration for the
databases. During the installation, you had to enter the paths for data, log, and backup
file locations, which you can later modify if you need to update the location of the
default files.

In the Database Settings section of the server configuration, you can again configure all
three paths, as shown in the following screenshot:

Fig. 2.11 – Path configuration

68 Keeping Your SQL Server Environment Healthy

On this same settings page, you can configure two additional important parameters.
The first one is the Compress backup option. We'll talk more about the backup settings
and methods to perform backup in a different chapter, but as part of post-installation
configuration, you can configure this setting on most servers.

Note
Bear in mind that turning on backup compression puts additional load on
the CPU while performing the backup, so this may cause higher peaks in the
performance monitor. Also, if the server is under heavy load, causing additional
load by backup compression might not be ideal in terms of response times for
users. On the other hand, compression has its benefits, combining a smaller
backup size stored on the disk and the time needed to create a backup. Actually,
there's one more important benefit, and this one is the time needed to restore,
which is also decreased with compressed backup versus an uncompressed one,
because the system gets to read a smaller file from the disk or network.

If you would like to configure these settings on just one server, you'll be fine with the GUI
of our SQL Server Management Studio, but if you are preparing a script for a post-
deployment configuration on more servers, you will most probably use an SQL script
that can perform such a configuration. Most of the configuration at the server level is
performed with a stored procedure called sp_configure.

If you just run the procedure without any parameters, it will display all basic parameters
and their values that are configured on the server, as shown in the following screenshot:

Configuring SQL Server environment 69

Fig. 2.12 - Configuration options through sp_configure

You don't need to memorize all the options as we won't configure all of these. It's just a
basic set of the items; as you can see, second from the bottom is an option called show
advanced options, which will display more of the items for configuration. Backup
compression is listed in the basic set and can be configured with the following code:

USE master
GO
EXEC sp_configure 'backup compression default',1
GO
RECONFIGURE
GO

70 Keeping Your SQL Server Environment Healthy

Some other options that we will explore are visible only when you display the advanced
features. To display all the advanced features, you can simply run sp_configure again
and you'll set the option for show advanced options, as in the previous example. With
advanced options displayed, SQL Server will let you configure 85 (on SQL Server 2019;
with other versions, this may be different) options, in contrast to 25 when you display only
the basic set.

With regard to post-installation configuration, we'll configure the memory and CPU
settings for our server too. By default, SQL Server is allowed to use as much memory
as possible and the Windows operating system won't make any larger reserve of other
applications or even for itself, so you can limit the amount of memory available to
SQL Server. You should reserve memory to the operating system so that it does not get
unresponsive under heavy load on SQL Server. The following screenshot shows how to
configure SQL Server memory from SQL Server Management Studio:

Fig. 2.13 – SQL memory configuration

Configuring SQL Server environment 71

There have been many situations when DBAs could not connect to the SQL Server
operating system because all the memory was allocated to SQL Server itself. You can limit
the memory available to the SQL Server with a setting called Maximum server memory
(in MB). This setting has to be considered carefully as you need to keep some memory
for the operating system. As a general guideline, you need to keep 1 to 2 gigabytes (GB)
for the operating system and then 1 GB for each 8 to 16 GB on the system. So, for a SQL
Server with 256 GB Random-Access Memory (RAM), you would configure the max
server memory setting to a value between 224 and 240 GB. The code to perform the
configuration is as follows (don't forget that the procedure is using megabytes (MB) as a
unit of measure):

sp_configure 'max server memory',245760

Note
SQL Server editions provide different limits to use system memory on SQL
Server. The Standard edition can use only up to 128 GB RAM for the SQL
Server buffer pool, whereas the Enterprise edition can use all the system
memory available on the server. You can find different limits for the editions
available in the online documentation. The differences in the editions are
not only about RAM, but also about CPU and core support for different SQL
Server stock keeping units (SKUs).

Another situation where configuring SQL Server memory is very important is in a
multi-instance and multi-service environment. Consider that you are running multiple
instances of SQL Server on the same host, where you would like to limit and control
how much system memory can be used by each instance. This also applies in scenarios
where you run multiple different services such as Database Engine, Analysis Services,
and Reporting Services, where you can limit the amount of memory used by Database
Engine. Not all services have the feature to limit memory usage, so you need to consider
all performance impacts that can be caused by your configuration.

There is another setting that can be very useful when you're troubleshooting your SQL
Server and it gets unresponsive—this is called DAC. By default, such a connection is not
allowed remotely, and you can only connect to DAC locally while being logged on to
the server. If the system faces performance issues and even the Windows Server won't
allow you to connect via Remote Desktop, you can connect to DAC remotely if you have
enabled this setting. To enable remote DAC, you need to run the following procedure:

sp_configure 'remote admin connections',1
GO
RECONFIGURE

72 Keeping Your SQL Server Environment Healthy

Additional items that we will configure have an effect on the performance of SQL Server
and require a deeper understanding of your workload, hardware, and requirements of
your applications. These will include configuring parallelism on your server.

There are two main configuration items that we're using to control parallelism at the
server level, and these are as follows:

•	 Max degree of parallelism (default is 0)

•	 Cost threshold for parallelism (default is 5)

The first one sets the maximum amount of threads to be used in a query when it's
processed in parallel. This does not mean that each query will be processed with multiple
threads, and, if it will be, it can be a lower amount. It's a default server setting that you can
later override on different levels, but as a general option, it's a good idea to configure this
value. What is the proper value depends greatly on several factors, and they are as follows:

•	 Your hardware: CPUs and cores

•	 Your workload: Online Transaction Processing (OLTP) versus Online Analytical
Processing (OLAP)

•	 Your environment: Physical versus virtual

In most cases, you can examine the number of CPUs and cores on your system and assign
a value that determines the number of cores on one CPU. So, for example, if you have
two eight-core CPUs used for your SQL Server, you will configure the max degree of
parallelism to the value of eight. Again, you can use SQL Server Management Studio or
the sp_configure procedure. At the same time, in the GUI, you can also update the
cost threshold for parallelism value, which is something such as the virtual cost of a query
when the query optimizer component is generating a serial or parallel plan.

If the cost is too low there might be too many parallel plans, which can increase the load
on the CPU and memory of your SQL Server. This configuration is subject to testing, but
you can start with values ranging from 20 to 50 and evaluate the load on your SQL Server
and your application performance. Let's look at the following screenshot from SQL Server
Management Studio, where we can see Server Properties – sql01:

Configuring SQL Server environment 73

Fig. 2.14 — SQL Server Management Studio — Server Properties

Once you have deployed and configured your SQL Server, you can create a
performance baseline.

74 Keeping Your SQL Server Environment Healthy

Creating a performance baseline
Baseline refers to the normal or typical state of your SQL Server and environment
performance. This baseline is very important to you for numerous reasons, and these
are as follows:

•	 When you start troubleshooting the server, you need to know how your server will
behave toward something odd.

•	 You can proactively tune the system if you find a weak spot in the baseline.

•	 When you plan to upgrade your server, you know how the load was increasing over
time, so you can plan properly.

As a matter of fact, you won't have just one single baseline, but you can create multiple
baselines depending on the variable workload. In such a case, you will have a baseline for
the following:

•	 Business hours

•	 Peak usage

•	 End of week/month/quarter due to closures; reporting

•	 Weekend

Creating a performance baseline and capturing performance information for your server
is, hence, a very crucial task and should be deployed to each of your servers. There are
numerous sources that you can use to collect useful information about your SQL Server,
and these include the following:

•	 Windows Performance Monitor

•	 SQL Server Dynamic Management Views

•	 SQL Server Catalog Views

•	 SQL Server Extended Events

With the Windows Performance Monitor, you can capture many different performance
counters that are related not only to the SQL Server but also to the operating system
counters and hardware (HW) resource counters such as CPU, disk, network, and so
on. The list of counters can be quite large, but you should select only those counters
that are important to you and keep yourself from overwhelming your data collection.
The Performance Monitor can be very useful for log correlation as you can load the
performance data to other tools such as the SQL Server Profiler or the Performance
Analysis of Logs (PAL) tool.

Creating a performance baseline 75

Some interesting counters worth capturing at the operating system level would include
the basic subsystems—memory, CPU, and disk, which can be correlated together to have a
better overview of the system's performance. These include the following:

•	 Processor: % processor time

•	 System: Processor queue length

•	 Memory: Available MB

•	 Memory: Pages/sec

•	 Physical Disk: Disk reads/sec

•	 Physical Disk: Disk writes/sec

Although there are numerous counters available, don't get overwhelmed by choosing
too many of them. One of the possible suggestions for a list of counters is Jimmy May's
list, available at https://docs.microsoft.com/en-us/archive/blogs/
jimmymay/perfmon-objects-counters-thresholds-utilities-for-
sql-server. Although this list is more than 10 years old, it still provides a good baseline
target for your SQL Server.

These counters will give you a very basic overview of the system's performance and must
be combined with more information to get any conclusion from the values. As a starting
operating system performance baseline, these are very useful and can be tracked and
stored for historical overview and troubleshooting. Of course, you need to consider many
factors such as change in the system load during business hours, after business hours,
and weekends. There may be some peaks in the values in the mornings, and during some
maintenance, backup, and so on. So, understanding what your system is doing over time is
an essential part in reading the performance baseline.

There are numerous SQL Server counters available in the Performance Monitor and
it's not necessary to include them all, so we'll again see some basic counters worth
monitoring over time to have a baseline that we can use for troubleshooting. These
would include the following:

•	 SQL Server: Buffer manager—buffer cache hit ratio

•	 SQL Server: Buffer manager—page life expectancy

•	 SQL Server: Memory manager—total server memory (KB)

•	 SQL Server: Memory manager—target server memory (KB)

•	 SQL Server: Memory manager—memory grants pending

•	 SQL Server: Access methods—full scans/sec

https://docs.microsoft.com/en-us/archive/blogs/jimmymay/perfmon-objects-counters-thresholds-utilities-for-sql-server
https://docs.microsoft.com/en-us/archive/blogs/jimmymay/perfmon-objects-counters-thresholds-utilities-for-sql-server
https://docs.microsoft.com/en-us/archive/blogs/jimmymay/perfmon-objects-counters-thresholds-utilities-for-sql-server

76 Keeping Your SQL Server Environment Healthy

•	 SQL Server: Access methods—index searches/sec

•	 SQL Server: Access methods—forwarded records/sec

•	 SQL Server: SQL statistics—SQL compilations/sec

•	 SQL Server: SQL statistics—batch requests/sec

•	 SQL Server: General statistics—user connections

•	 SQL Server: Locks—Lock Waits/sec

•	 SQL Server: Locks—Number of Deadlocks/sec

Another tool that you can use is SQL Server Dynamic Management Views (DMVs),
which can return the state of SQL Server and its objects and components. You can query
the DMVs with the SQL language as with any other table, and, most of the time, you'll
combine several of the views to have better information, as illustrated in the following
code snippet:

SELECT * FROM sys.dm_exec_requests er
JOIN sys.dm_exec_sessions es
ON er.session_id = es.session_id
-- remove all system sessions and yourself
WHERE es.session_id > 50 and es.session_id != @@SPID

This simple query as an example will combine two DMV views together to display all
user requests/sessions with all information stored in these two views, excluding all system
sessions connected to SQL Server and your query window. For a baseline, you shouldn't
use all the columns as you will store quite a lot of data, and you should limit your queries
only to important parts.

Some important DMVs worth investigating and capturing for a baseline include the
following:

•	 sys.dm_io_virtual_file_stats

•	 sys.dm_db_index_physical_stats

•	 sys.dm_db_index_usage_stats

•	 sys.dm_db_missing_index_details

•	 sys.dm_os_wait_stats

•	 sys.dm_os_sys_memory

•	 sys.dm_os_process_memory

Summary 77

Note
You can find many ready-to-use DMV queries online. An awesome
source is a list of queries compiled by Glenn Berry, which are available
on his blog, https://www.sqlskills.com/blogs/glenn/
category/dmv-queries/. Another great tool that is available for free
is WhoIsActive by Adam Machanic, available at http://whoisactive.
com/, which queries multiple DMVs at the same time to provide a current
view of system performance.

If you schedule a data collection of these values to some monitoring database with
a reasonable schedule, you can see how the performance of the system changes over
time; by combining all of these, you can have a comprehensive overview of your system.

Summary
In this chapter, we have seen how to build a healthy SQL Server environment and how to
configure not only the SQL Server but also Windows Server for a stable and secure SQL
Server workload. Keeping your server up to date, secure, and monitored is extremely
crucial for the stability of applications and your ability to perform any troubleshooting at
the SQL Server level.

In the next chapter, we will build on our healthy SQL Server and introduce backup and
recovery procedures so that you can understand how to keep your server safe and how to
recover from failures.

http://whoisactive.com/
http://whoisactive.com/

Section 2:
Server and Database

Maintenance

Every database administrator has a wide range of responsibilities. In this section, you
will understand how to keep up with such responsibilities on SQL Server. The section
contains recipes for database recovery scenarios, security best practices, and several
performance topics.

This section contains the following chapters:

•	 Chapter 3, Implementing Backup and Recovery

•	 Chapter 4, Securing Your SQL Server

•	 Chapter 5, Working with Disaster Recovery Options

•	 Chapter 6, Indexing and Performance

3
Implementing

Backup and
Recovery

One of the many responsibilities of an administrator is to keep data backed up in
case of any data failure. SQL Server helps administrators fulfill this responsibility via
sophisticated backup and restore features. In this chapter, we will learn in detail what you
need when choosing an appropriate database disaster recovery strategy in conjunction
with the database's usage and configuration, as well as how to use stored backups to
restore a database in case of failure.

82 Implementing Backup and Recovery

We will cover the following topics in this chapter:

•	 Data structures and transaction logging

•	 SQL Server recovery models

•	 Designing a backup strategy

•	 Using database and log restore

Let's get started!

Data structures and transaction logging
We usually think of a database as a physical structure consisting of tables containing
columns and rows of data and indexes. However, this is just a human point of view. From
SQL Server's perspective, a database is a set of precisely structured files described in the
form of metadata, also saved in the same database structures within the database. We
are starting this chapter with an explanation of storage internals because a conceptual
imagination of how every database works is very helpful when the database needs to be
backed up correctly.

How data is stored
Every database on SQL Server must have at least two files:

•	 The primary data file with the usual suffix, mdf

•	 The transaction log file with the usual suffix, ldf

For most databases, this minimal set of files is enough. However, when the database
contains big amounts of data or the database has big data contention, such as systems
with thousands of transactions handled in seconds, it's good practice to design more data
files. Another situation when a basic set of files is not enough can arise when documents
or pictures are saved along with relational data. However, SQL Server can still store all
our data in the basic file set, but it can lead to a performance bottleneck and management
issue. That's why we need to know about all the possible storage types that are useful
for different scenarios of deployment. A complete structure of files is depicted in the
following diagram:

Data structures and transaction logging 83

Fig. 3.1 – Database file structure

For administrators who have not focused on the database structure of SQL Server before,
this tree of objects may be unclear and confusing. To make sure there's no confusion, let's
explore every single node illustrated in the preceding diagram.

Database types
A relational database is defined as a complex data type. This complex type consists of
tables with a given number of columns. Each column has a domain, which is actually
a data type (such as an integer or a date) that's optionally complemented by some
constraints.

SQL Server takes a database as a record written in metadata containing the name
of the database, properties of the database, and the names and locations of all files
or folders representing storage for the database. This is the same for user databases,
as well as for system databases.

System databases are created automatically during SQL Server installation and they are
crucial for correctly running SQL Server. We know of five system databases. Let's take
a look at them now.

84 Implementing Backup and Recovery

The master database
The master database is the basis for correctly running the SQL Server service. Logins,
all databases and their files, instance configurations, linked server definitions, and lists
of error messages are all examples of data stored in the master database. SQL Server
finds this database at startup using two startup parameters, -d and -l, followed by the
paths to master mdf and ldf files. These parameters are very important in situations
where the administrator wants to move the master's files to a different location. Changing
their values is possible in SQL Server Configuration Manager by selecting the Startup
Parameters tab in the Properties dialog in the SQL Server service. When the master
database is not found or it is corrupted, it prevents the SQL Server instance from starting.

The msdb database
The msdb database serves as the storage for SQL Server Agent objects, Database Mail
definitions, Service Broker configurations, Integration Services objects, and so on. This
data is used mostly for SQL Server automation, such as SQL Server Agent jobs, or for
diagnostics, such as SSIS logs or database mail logs. The msdb database also stores logs
about backups and restores the events of each database. If this database is corrupted or
missing, SQL Server Agent cannot start and many other features such as Service Broker
or Database Mail won't be accessible.

The database model
The database model can be used as a template for every new database while it is being
created. During a database's creation (see the CREATE DATABASE statement on
MSDN), files are created on defined paths and all the objects, data, and properties of the
database model are created, copied, and set in the new database during its creation. This
database must always exist on the instance because when it is corrupted, the tempdb
database cannot be created at instance startup!

The tempdb database
Even if the tempdb database seems to be a regular database like many others, it plays a
very special role in every SQL Server instance. This database is used by SQL Server, as well
as developers, to save temporary data such as temporary tables, table variables, and static
cursors (although this is not the best practice). As this database is intended for the short
lifespan of all the objects stored in it (temporary data only, which can be stored during the
execution of a stored procedure or until the session is disconnected), SQL Server clears
this database by truncating all the data from it or by dropping and recreating this database
every time it's started.

Data structures and transaction logging 85

As the tempdb database will never contain durable data, it has some special internal
behavior. This is the reason why accessing data in this database is several times faster than
accessing durable data in other databases. If this database is corrupted, restart SQL Server.

The resourcedb database
The resourcedb database is the fifth in our enumeration and contains the definitions
of all the system objects of SQL Server; for example, sys.objects. This database is
hidden and read-only, and we do not need to care about it that much.

It is not configurable, and we do not use regular backup strategies for it. It is always
placed in the installation path of SQL Server (in the binn directory) and it's backed
up within the filesystem backup. In case of an accident, it is recovered as part of the
filesystem as well.

We will now explore the filegroup node.

Filegroup
Filegroup is an organizational metadata object that contains one or more data files.
Filegroup does not have its own representation in the filesystem – it's just a group of files
(or folders). When any database is created, a filegroup called primary is always created.
This primary filegroup always contains the primary data file.

Filegroups can be divided into the following:

•	 Row storage filegroups: These filegroups can contain data files (mdf or ndf).

•	 Filestream filegroups: This kind of filegroup does not contain files, but folders,
to store binary data such as scanned documents or pictures. Using filestream
filegroups for blob data brings better performance for manipulation because the
blob's byte stream is stored in a secured folder on disk, rather than on the row
storage filegroups. It facilitates better read and write operations.

•	 In-memory filegroup: Only one instance of this kind of filegroup can be created
in a database. Internally, it is a special case of a filestream filegroup and it is used
by SQL Server to persist data from in-memory tables.

86 Implementing Backup and Recovery

Every filegroup has four simple properties:

•	 Name: This is the descriptive name of the filegroup. The name must fulfill the
naming convention criteria.

•	 Default: In a set of filegroups of the same type, one of these filegroups has this
option set to on. This means that when a new table or index is created, but not
assigned a specific filegroup to store data in, the default filegroup is used. The
primary filegroup is the default filegroup. The in-memory filegroup does not
contain this property because we cannot have two or more in-memory filegroups
in one database.

•	 Read-only: Every filegroup, except the primary filegroup and in-memory filegroup,
can be set to read-only. Let's say that a filegroup is created for last year's historical
data. When data is moved from the current period to the tables created in this
historical filegroup, the filegroup could be set to read-only. Marking the filegroup
as read-only prevents users from making any changes to the data placed in the
read-only filegroup. For administrators, read-only filegroups can reduce the time
of backing up as the read-only setting ensures that the data in the filegroup cannot
be changed.

•	 Autogrow All Files: This property of row storage filegroups is new on SQL Server
2019. When more files are added to certain filegroups, SQL Server distributes data
across all files using the Proportional Fill Algorithm (PFA). This means that more
data is added to a bigger file within a set of files in the same filegroup. This behavior
can lead to the uneven distribution of data. Hence, turning on the Autogrow All
Files property ensures that SQL Server keeps the size of all the files within the
filegroup the same when an autogrow event occurs.

Tip
It is a good approach to divide the database into smaller parts, known
as filegroups. It helps to distribute data across more physical storage and makes
the database more manageable; backups can be done part by part in shorter
times, which fit better in a service window.

Data structures and transaction logging 87

Data files
Every database must have at least one data file, called a primary data file. This file
is always bound to the primary filegroup. This file stores all the metadata of the
database, such as structure descriptions (these can be seen through views such as
sys.objects, sys.columns, and others), users, and so on. If the database does not
have other data files (in the same or other filegroups), all user data is also stored in this
file, but this approach is good enough for smaller databases.

Considering how the volume of the data in the database grows over time, it is a good
practice to add more data files. These files are called secondary data files. Secondary
data files are optional and contain user data only.

Both types of data files have the same internal structure. Every file is divided into 8
KB small parts called database pages. SQL Server maintains several types of database
pages, such as data pages, index pages, Index Allocation Maps (IAMs) to locate the
data pages of tables or indexes, Global Allocation Maps (GAMs), and Shared Global
Allocation Maps (SGAMs) to address objects in the database. Regardless of the type of a
certain database page, SQL Server uses a database page as the smallest unit of logical I/O
operations in memory. Let's describe some common properties of a database page:

•	 A data page never contains the data of several objects.

•	 Data pages do not know each other (and that's why SQL Server uses IAMs
to allocate all the pages of an object).

•	 Data pages do not have any special physical ordering.

•	 A data row must always fit into a data page (this property is not completely true
as SQL Server uses row overflow data to keep data that overflows over the 8060 B
limit for records).

These properties could seem useless, but when we know about these properties, we can
use this knowledge to better optimize and manage our databases.

Did you know that a data page is the smallest storage unit that can be
restored from a backup?
As a data page is quite a small storage unit, SQL Server groups data pages
into bigger, logical units called extents. An extent is a logical allocation unit
containing eight physically coherent data pages. When SQL Server requests
data from disk, extents are read into memory. This is the reason why 64 KB
NTFS clusters are recommended to format disk volumes for data files. Extents
can be uniform or mixed. A uniform extent is a kind of extent containing data
pages belonging to one object only; on the other hand, a mixed extent contains
the data pages of several objects.

88 Implementing Backup and Recovery

Transaction log
When SQL Server processes any transaction, it works in a way called the two-phase
commit. When a client starts a transaction by sending a single Data Manipulation
Language (DML) request or by calling the BEGIN TRAN command, SQL
Server requests data pages from disk to memory through a buffer cache and makes
the requested changes in these data pages in memory. When the DML request is executed
or the COMMIT command comes from the client, the first phase of the commit is
completed, but the data pages in memory differ from their original versions in a data file
on disk. The data page in memory is in a state called dirty.

When a transaction runs, a transaction log file is used by SQL Server for a very
detailed chronological description of every single action that was done during the
transaction. This description is called write-ahead logging (WAL), and it is one of the
oldest processes known on SQL Server.

The second phase of the commit usually does not depend on the client's request and
it is an internal process called a checkpoint. A checkpoint is a periodical action that does
the following:

•	 Searches for dirty pages in the buffer cache

•	 Saves dirty pages to their original data file location

•	 Marks these data pages as clean in the buffer cache (or drops them out of memory
to free memory space)

•	 Marks the transaction as a checkpoint or inactive in the transaction log

WAL is needed for SQL Server during the recovery process. The recovery process is run
on every database every time the SQL Server service starts. When the SQL Server service
stops, some pages could remain in a dirty state and be lost from memory. This can lead to
two possible situations:

•	 The transaction is completely described in the transaction log (from BEGIN TRAN
to COMMIT), the new content of the data page is lost from memory, and the data
pages are not changed in the data file.

•	 The transaction is not completed when SQL Server stops, so the transaction is not
completely described in the transaction log. Data pages in memory are not in
a stable state (because the transaction did not finish and SQL Server cannot know
if COMMIT or ROLLBACK will occur), and the original versions of the data pages
in the data files are intact.

Accelerated Database Recovery 89

SQL Server decides these two situations when it is starting. If a transaction is complete
in the transaction log but was not marked as a checkpoint, SQL Server executes this
transaction again with both phases of COMMIT. If the transaction is not complete in
the transaction log when SQL Server stops, SQL Server will never know what the user's
intention with the transaction was, and the incomplete transaction will be erased from
the transaction log as if it had never started.

Accelerated Database Recovery
The described recovery process ensures that every database is in its last known consistent
state after SQL Server's startup. The recovery process could take a long time in some cases.
A common situation would be when SQL Server is stopped (sometimes unexpectedly)
when some long-running transaction is being executed. The recovery process takes
almost the same time as executing the transaction. It leads to unacceptable database
unavailability. SQL Server 2019 brings a new database-scoped feature that bypasses this
issue. The feature is called Accelerated Database Recovery (ADR). ADR basically keeps
track of changes in data using internal row versioning. When SQL Server stops working
and is restarted, SQL Server does not recover all the transactions from the transaction
log, but simply recovers the proper versions of the records from the in-database row
version store.

To turn on ADR, we can use the following Data Definition Language (DDL) statement:

ALTER DATABASE AdventureWorks SET ACCELERATED_DATABASE_RECOVERY
= ON

(PERSISTENT_VERSION_STORE_FILEGROUP = myPvsFG)

The preceding statement consists of two parts. The first part is just turning ON (or OFF,
if needed) ADR. The second part of the statement, enclosed in brackets, is optional.
Versions of records that have been changed during transactions are stored on a disk in
a filegroup. We can set a filegroup dedicated to row versions (which is a good practice for
performance). Row versions are stored in the filegroup called myPvsFG. When this part
of the configuration is omitted, row versions are stored in the primary filegroup.

The ADR feature is useful for workloads with long-running transactions or when the
transaction log of a certain database grows significantly.

It is important for DBAs to understand write-ahead logging when planning a backup
strategy because the restore process finishes with the recovery process as well. When
restoring the database, the administrator has to recognize if it's time to run the recovery
process or not. Now, let's learn about the different backup options that are available in
SQL Server by using a properly configured recovery model.

90 Implementing Backup and Recovery

SQL Server recovery models
Each database hosted by SQL Server contains a property called a recovery model. This
property basically affects which backup strategy can be designed. This short section briefly
explains recovery models.

How to configure a database's recovery model
property
Every database has a property called the recovery model. The recovery model determines
how transactions are logged, and for what timespan the transactions will be stored in the
transaction log. The recovery model is set by the ALTER DATABASE TSQL command:

-- setting full recovery model
ALTER DATABASE <database_name> SET RECOVERY FULL

The recovery model has three possible options:

•	 SIMPLE

•	 BULK_LOGGED

•	 FULL

We'll take a look at these now.

Using the SIMPLE recovery model
When the recovery model is set to SIMPLE, SQL Server clears transactions from the
transaction log at every checkpoint. This approach leads to a relatively small transaction
log file, which seems to be a good behavior. On the other hand, the transaction log does
not hold transaction records, so we are not able to use more sophisticated strategies
to minimize data loss.

The SIMPLE recovery model is a good option when data stored in the database is not
mission-critical, or when potential data loss is not critical for users, or for databases that
could be reloaded from other sources. As an example of a database where data is not
crucial for business, we can imagine development databases where data is sometimes
damaged intentionally.

SQL Server recovery models 91

Another example of a SIMPLE recovery model could be a database whose content
is loaded repeatedly. We can imagine a data warehouse for statistical purposes being
loaded periodically from an operational database such as accounting, order processing,
or production tracking.

Using the FULL recovery model
When the recovery model is set to SIMPLE, SQL Server keeps transaction log records
in the transaction log file up until the checkpoint only. When the recovery model is set
to FULL, SQL Server keeps the transaction log records in the transaction log file until
the BACKUP LOG statement is executed. It allows complex and sophisticated backup
strategies. With the recovery model set to FULL, SQL Server keeps all transaction records
indefinitely until the transaction log file is full; then, the database stops working and
becomes inaccessible. That is why we need to back up the transaction log regularly as
it clears the transaction log, keeps it to a manageable size, and defends the database
against it not functioning. As an advanced point, we have to say that when the recovery
model is set to FULL, we can restore the database at any point in time.

Using the BULK_LOGGED recovery model
What is the BULK_LOGGED recovery model for? This option has almost the same
behavior as a full recovery model, but bulk-logged operations (for example, BULK
INSERT of flat files into database tables) are described briefly in the transaction log file.
The BULK_LOGGED recovery model does not allow us to restore the database at any point
in time. It is used only on databases where some small data loss is allowed. One example
of its usage can be as follows:

1.	 Before periodical data load, set the recovery model to BULK_LOGGED

2.	 Load flat files, images, or other LOBs

3.	 Set the recovery model back to FULL

4.	 Back up the database

Even if this section is very short, it is very important, and we will recall information
from here throughout the rest of this chapter. We will work with the recovery model
immediately in the following section to successfully back up our databases.

92 Implementing Backup and Recovery

Designing a backup strategy
A backup can be understood as a copy of used data pages or a copy of transaction log
records. Backups should be done regularly. Backups are needed not only to restore
databases in the case of physical or logical failure but for when, for example, we want
to make a copy of the database or migrate the database to another SQL Server instance.
To have our backups proper and complete, we need to consider the following points:

•	 How to configure the database

•	 Which types of backups to combine

•	 How to use backup strategies in conjunction with database usage

Let's first look at the types of backup supported by SQL Server.

Backup types
SQL server basically supports three main types of backup:

•	 Full backup

•	 Transaction log backup

•	 Differential backup

Each of these types has several variants and we will go through each of them.

Full backup
A full backup is simply a backup of a complete database. When performing a full backup,
SQL Server stores metadata of the database (its name, creation date, all options set to
the database, paths to all files belonging to the database, and so on), the used data pages
of every data file, and also the active part of the transaction log (which means all the
transactions that are not checkpoints yet and all running transactions, even if they are
not finished).

At the end of the backup process, SQL Server stores the last Log Sequence Number (LSN)
for possible additional backups.

Note
A full backup never clears the transaction log file!

Designing a backup strategy 93

A full backup can be performed without following a recovery model set. However, the
correct option is to have a SIMPLE recovery model if we do not intend to add additional
backups to our backup strategy.

The command for a full database backup is as follows:

BACKUP DATABASE <database name> TO DISK = '<full path to
backup>'

We can write the following as an example to back up an AdventureWorks database:

BACKUP DATABASE AdventureWorks TO DISK = 'D:\myBackups\
AdventureWorks.bak'

Let's describe the preceding example in more detail. A database called
AdventureWorks must exist on the server and it must be in a consistent state;
in other words, we never can back up a database (with any kind of backup) that is
not online or that is not working normally. The second mandatory condition is that the
D:\myBackups path must exist on the filesystem. Backups are not installers; they never
create folders.

The filename for the backup is arbitrary; the .bak extension is recommended. The file
itself need not exist; it is created with the first backup. It is possible to store more backups
in one file. When we want to have more backups in one file, we must add a new option
to the backup command:

BACKUP DATABASE AdventureWorks TO DISK = 'D:\myBackups\
AdventureWorks.bak'
WITH NOINIT

When the preceding example is run for the first time and the .bak file does not exist,
it will be created. When the same command is executed a second time with the same
path and filename, the backup file will grow in volume because additional backups will
be added to it. This scenario is not useful for big database backups because of the quickly
growing size of the backup file. But since many databases are not very big, we can use
the NOINIT option to store a full backup, along with the transaction log backups of the
small database, in one backup file. Recursively, when we want to erase all the backups
from the backup file and start a new backup cycle, we can change the NOINIT option with
the INIT option. The INIT option erases all the backups from the backup file and stores
only the new backup in it.

94 Implementing Backup and Recovery

Full backups tend to have a big volume. This could lead to disk insufficiency, as well
as the backup operation being time-consuming. That is why it is highly recommended
to compress backups. There are two ways to do this. The first way is to set the server level
to default for backup compression. The command for this server setting is as follows:

EXEC sp_configure 'backup compression default', 1
GO
RECONFIGURE
GO

The sp_configure system stored procedure is used in many cases, as seen in the
preceding example. The first parameter, 'backup compression default', is the
name of the configuration property. It is quite hard to remember all the configuration
parameters by name, so we should remember that we can execute sp_configure just
as is, without parameters. This procedure will return the result set, along with a list of
parameter names and currently configured values.

The second parameter in the preceding script sample (the number 1) is a bit value
indicating that we want to switch the backup compression at the instance's level on. For
some configuration values, only bit is used; for example, when setting the maximum
degree of parallelism, the integer value indicates how many CPUs can be used for the
parallel processing of one TSQL request.

The RECONFIGURE command causes the configured property to load immediately,
without the need for a service restart.

The second way of setting compression is to simply add another option directly to
the BACKUP command:

BACKUP DATABASE AdventureWorks TO DISK = 'D:\myBackups\
AdventureWorks.bak'
WITH NOINIT, COMPRESSION

SQL Server compresses the backup file itself when it is written (no particular backup
stored in the file), so we cannot have a part of the file uncompressed and the rest of the
same file compressed. If we do not want to compress some backups, the opposite option
is NO_COMPRESSION.

Designing a backup strategy 95

Note
To use backup compression, let's take an uncompressed backup. In this
case, the INIT option of the BACKUP command is too smooth. We
need to replace the INIT option with the stronger FORMAT option.
The FORMAT option physically deletes the backup file and creates a new one.
Use the FORMAT option carefully because it will cause all your backups in
certain backup files to be lost forever.

A full backup serves as a baseline for more advanced backup strategies. It is often
combined with transaction log backups, and this dependency is driven by the last LSN
written to every backup. When an additional transaction log backup is executed, SQL
Server remembers the last LSN from the previous backup and starts the current backup
operation from the next LSN. Hence, when a full backup is executed, the last remembered
LSN is replaced with a new one and the backup strategy obtains a new baseline.

In some cases, this is undesired behavior; for example, in situations where we need
to create a copy of a certain database with a full backup, but without breaking out of the
backup sequence. For this case, one more full backup variant exists:

BACKUP DATABASE AdventureWorks TO DISK = 'D:\myBackups\
tempBackupOfAdventureWorks.bak'
WITH COPY_ONLY

The COPY_ONLY option in the preceding command causes the LSN sequence that was
tracked for backup consequences to not restart and the exceptional full backup to not
establish a new baseline for the backup strategy.

A full backup is relatively straightforward but less efficient when we need to minimalize
potential data loss. That is why we need to have a stronger mechanism, such as the
transaction log backup, to keep our data safe and sheltered against physical as well
as logical damage.

Transaction log backup
As mentioned in the previous section, a full backup establishes a baseline for more
efficient backup strategies. In other words, one full backup must be created before we can
start a backup transaction log. A transaction log backs up all transaction log records from
the last LSN, which is contained in the previous backup.

96 Implementing Backup and Recovery

In other words, a full backup is a backup of the state of the database, while a transaction
log backup is a backup of the additional changes from the last LSN that was stored by
a previous backup. Using a transaction log backup ensures that the recovery point
objective (RPO) that the database could be restored to is very close to the moment when
the database was damaged.

Another important property of transaction log backups is that this backup type erases the
inactive virtual log files (logical parts in the transaction log file) of the transaction log file.
It keeps the transaction log file at a reasonable size.

To be able to use a transaction log backup, the database's recovery model property must
be set to the BULK_LOGGED or FULL value. Remember that unlike the FULL recovery
model, the BULK_LOGGED recovery model does not allow you to restore the database
at a certain point in time.

When the recovery model is set correctly and a full backup is executed, we can start
a backup of the transaction log on a regular basis. The basic syntax for a transaction log
backup is as follows:

BACKUP LOG AdventureWorks TO DISK = 'D:\myBackups\
AdventureWorksLog.bak' WITH <additional options>

As seen in the preceding code example, the BACKUP LOG syntax is very similar to
the BACKUP DATABASE syntax. The database must already exist, and it must be in an
online state; the path to the .bak file must exist in the filesystem as well. If the .bak
file does not exist, it will be created when the BACKUP LOG statement is executed for
the first time.

The additional options are basically almost the same as the full backup statement:

•	 The INIT/NOINIT pair controls whether the content of the backup file will be
replaced.

•	 The FORMAT/NOFORMAT pair is a stronger variant for INIT/NOINIT options.

•	 The COMPRESSION/NO_COMPRESSION pair controls the backup's compression.

The meaning of these options is the same for all backup types.

Now that we have enough information about basic backup types, we can go through more
complex examples. The following code sample shows you a set of backup statements and
their sorting. The only difference in the real world is that every statement is executed
separately and that, typically, the execution is planned by SQL Server Agent.

Designing a backup strategy 97

Note
SQL Server Agent will be described later, in Chapter 9, Configuring Always
On High-Availability Features.

Let's take a look at this assignment. The AdventureWorks database is used as a typical
operational database with lots of incoming transactions. These transactions must not be
lost because the clients of the database write their data through a sales web application.
The backup cycle will be restarted every day. The AdventureWorks database is relatively
small, so all the backups can be stored in the same file. An important business need is
that the database must be recoverable to a certain point in time. How do we prepare
the AdventureWorks database for proper backups and which backup statements do we
use? The following recipe shows the complete process:

1.	 We must ensure that the database is in FULL recovery mode:

-- this statement will be run once only
-- if database is in FULL recovery model already, nothing
happens
ALTER DATABASE AdventureWorks SET RECOVERY FULL
GO

2.	 Every day at, for instance, 3 a.m., we will execute a full backup:

-- following statement will reset content of the backup
file
BACKUP DATABASE AdventureWorks TO DISK = 'D:\backups\
AdventureWorks.bak'
WITH INIT
GO

3.	 Every hour or maybe more often, if needed, we will repeat the transaction log
backup:

-- following statement will append the backup to the
backup file and clears
-- transaction log
BACKUP LOG AdventureWorks TO DISK = 'D:\backups\
AdventureWorks.bak'
WITH NOINIT
GO

98 Implementing Backup and Recovery

As seen in the previous code sample, it is not very complicated to create a simple and
strong backup strategy. The transaction log backup should be executed often to maintain
the transaction log file's size. This will improve the runtime of the backup operation,
making it fast and small, and not in conflict with regular user requests.

So far, everything has just been routine, but what if damage occurs? A very common
mistake is to think that the only kind of damage is physical damage, for example, file
corruption. However, we should keep in mind that another kind of damage is logical
damage, for example, accidental deletion of data or some structures. When such logical
damage occurs, SQL Server does not detect the problem and the database remains online.
However, for the user, the database is useless and damaged.

For either type of corruption, SQL Server provides a special transaction log backup
called a tail-log backup. The tail-log backup is a variant of the transaction log backup.
It backs up transaction log records written to the transaction log file up to the moment
of their corruption, hence why it is called a backup of the tail of the transaction log. The
tail-log backup switches the state of the database to restoring. The restoring state of the
database causes the database to be inaccessible to users. It is very important to use the
tail-log backup in case of logical corruption. It is not probable that all the data in the
database can be logically damaged at the same moment. However, we still need to stop
a user from working on the rest of the data because we know that the database is going
to be restored, and all user changes will be lost. An example syntax to execute a tail-log
backup is as follows:

BACKUP LOG AdventureWorks TO DISK = 'D:\backups\tailLog.bak'
WITH NORECOVERY

The NORECOVERY keyword is the option that forms the tail-log backup.
The preceding syntax is just enough for logical accidents such as unwanted deletes of data.
But for every backup operation, the database must be in a consistent and online state.
What if the database is in a suspect state?

The suspect state of a database is set by SQL Server in situations where the database is
somehow corrupted physically and not accessible to users. In this case, we have two
additional options that can be added to the BACKUP LOG statement:

BACKUP LOG AdventureWorks TO DISK = 'D:\backups\taillog.bak'
WITH
NORECOVERY, NO_TRUNCATE, CONTINUE_AFTER_ERROR

Let's describe these new options in more detail.

Designing a backup strategy 99

When the database is corrupted, no backup can be executed apart from
the preceding code. The CONTINUE_AFTER_ERROR option says to SQL Server
that we know about the corruption, but we want to keep all possible transaction log
records captured by the transaction log until the moment of damage. Even if the
transactions are incomplete or some of the transaction log records are not readable, the
rest of the transactions will be kept by the BACKUP LOG statement. If we do not use
the CONTINUE_AFTER_ERROR option, SQL Server assumes that the database is in
a consistent online state and the BACKUP LOG statement will fail.

The second NO_TRUNCATE option causes no maintenance to be done by SQL Server
on completion of the backup. This is the intended behavior because we know that the
database is in an unstable state and it is probable that any write operation will fail. We also
know that, after the tail-log backup's completion, we will start the restore process of the
database, so any additional maintenance is wasteful.

Differential backup
SQL Server maintains an internal structure called a differential map. This structure keeps
track of all changes made upon user requests in database extents since the last full backup.
This is very useful in cases where just a portion of a database is updated frequently. We
can use differential backups in conjunction with frequent transaction log backups to
speed up the process of restoring later when the need occurs. A differential backup has the
following characteristics:

•	 It is a kind of full backup (backs up extents changed from the last full backup and
does not maintain the transaction log).

•	 It is cumulative (backs up extents changed from the last full backup, which allows
you to skip more transaction log backups during a restore).

•	 It is faster and smaller than a full backup (does not slow down the database for
a long time and can be executed concurrently for common user work without
decisive influence on performance).

•	 It does not need any additional settings at the database or server level.

The time a differential backup takes depends on how much part of the database has
changed since the last full backup. We can use the sys.dm_db_file_space_usage
view and execute the following query to test how many extents have changed:

SELECT total_pages_count, modified_extent_page_count FROM sys.
dm_db_file_space_usage

100 Implementing Backup and Recovery

The preceding query returns two columns:

The first column, total_page_count, shows the total number of data pages in
the database.

•	 The second column, modified_extent_page_count, shows how many data
pages were modified since the last full backup was executed.

As the modified_extent_page_count value goes closer to the value of
total_pages_count, the more extents will be backed up by the differential backup
and the differential backup operation will slow down.

The syntax for a differential backup is as follows:

BACKUP DATABASE AdventureWorks TO DISK = 'D:\myBackups\
AdventureWorksDiff.bak'
WITH DIFFERENTIAL

From a syntactical point of view, a differential backup is just a database backup with
one more option. Other options such as INIT/NOINIT are also possible. If the use
of differential backups is recognized, the timeline of backups will be according to the
following table. This table describes a daily-based strategy for smaller databases, with
all the backup types stored in the same backup file:

Figure 3.2 – Daily-based strategy for smaller databases

Designing a backup strategy 101

The preceding table summarizes the flow of the database backups within a 1-day cycle.
The cycle starts every day at 3 a.m. with a full backup. The following transaction log
backups make a chain of changes made to the database's data. Differential backups are
executed at 9 a.m., 12 a.m., and, let's say, at 3 p.m. and 6 p.m., which allows us to speed
up the process of the database restore.

So far, we have explained the backup options used to maintain the recoverability of
a simple database. We will now use the same options in more complicated scenarios.

Advanced backup scenarios
Now that we have understood all three basic types of backup, we can decide how
to summarize our needs and choose the right backup strategy. It is also very important
to ensure that our backup is reliable and fast. We must also maintain backups for larger
databases composed of more files or filegroups. SQL Server provides you with a set of
features that cover all three of these needs.

Backup media
In previous chapters, we worked with backups stored on disk files. It is a very common
destination for backups because a tape, as a backup destination, must be attached directly
to the server. Due to the usual usage of backup tape devices to back up overall company
infrastructures, SQL Server does not improve tape backup possibilities and relies on
third-party backups. Another target of backups could be the blob container in Azure. We
will describe backups to Azure, as well as other scenarios involving Azure, in Chapter 11,
Combining SQL Server 2019 with Azure. That is why all the examples in this chapter will
use just disk files as their backup devices.

Note
If SQL Server databases are going to be backed up by third-party backup
devices, never mix the execution of these backups with SQL Server's
native backup!

When we need to improve the speed of the backup, we can join more backup places into
one set, called the media set. The media set is formed of one or more devices of the same
type. SQL Server spreads data across all devices in the media set evenly. We can imagine
the media set as a striped disk. The media set is created the first time the backup is
executed. The following example creates a media set:

BACKUP DATABASE <database name> TO
DISK = '<path to first file>',
DISK = '<path to second file>'

102 Implementing Backup and Recovery

WITH
MEDIANAME = '<name of the media set>'

Every backup saved to the same media set is then called a backup set. Once the media
set is created, all files in the backup set must be used together. An attempt to use one of
the files for additional backup without using the whole media set will fail. Using media
sets makes backup operations faster, but it also increases the risk of backup loss.

Let's look at the following example:

BACKUP DATABASE <database name> TO
DISK = '<path to first file>'
-- second file from previous example is not used
WITH
FORMAT

The FORMAT option causes the media set to break, and all the backups saved there are lost!
Use media sets carefully.

Backup reliability
Everything saved on disk could be somehow broken or unreadable. That is why SQL
Server provides you with two features to improve backup reliability:

•	 The first option is to use a backup with the CHECKSUM option. This option is simple
to use and causes the computation of the checksum value upon backup completion.
This value is saved in the backup and when we prepare for the restore process,
we can test the backup's readability using the CHECKSUM option:

BACKUP DATABASE <database name> TO DISK = '<path to
file>'
WITH
CHECKSUM

We can also turn on the checksum option at the instance's level using the sp_
configure system stored procedure. The following script shows how to use it:

EXEC sp_configure 'backup checksum default', 1

RECONFIGURE

Designing a backup strategy 103

•	 Another option used to distribute backups across more devices is called mirrored
backup. Mirrored backup is an enterprise feature of SQL Server, and when we use
it, two identical backups are written synchronously to two backup devices. When
we use backup mirroring, the syntax looks as follows:

BACKUP DATABASE <database name> TO
DISK = '<path to file>'
MIRROR TO DISK = '<path to file>'
WITH <additional options like CHECKSUM>

The preceding example adds a second path to the backup medium, followed by the
MIRROR TO keyword.

File or filegroup backup
One of the reasons why a database should be distributed into more files or filegroups
is better manageability. As the database's size grows from time to time, the backup size
also increases, even if backup compression is used. In this case, SQL Server provides
a very useful feature called file backup, or filegroup backup.

The following examples are being shown for filegroup backups because file
backups are almost the same except that we use the FILE keyword instead of the
FILEGROUP keyword. The syntax of the file/filegroup backup uses the logical filenames
or filegroup names in the header of the backup. First of all, let's create a database called
BiggerSystem. We can use the following script (remember that the paths to the
physical files should be set accordingly with your existing drives and folders):

CREATE DATABASE BiggerSystem

ON

(name = 'BiggerSystem_Data', filename = 'D:\SqlData\
BiggerSystem.mdf')

LOG ON

(name = 'BiggerSystem_Log', filename = 'L:\SqlLogs\
BiggerSystem.ldf')

ALTER DATABASE BiggerSystem ADD FILEGROUP OPERDATA

ALTER DATABASE BiggerSystem ADD FILEGROUP ARCHIVE2016

ALTER DATABASE BiggerSystem

ADD FILE

(name = 'BiggerSystem_Data2', filename = 'D:\SqlData\
BiggerSystem2.ndf')

104 Implementing Backup and Recovery

TO FILEGROUP OPERDATA

ALTER DATABASE BiggerSystem

ADD FILE

(name = 'BiggerSystem_Data3', filename = 'D:\SqlData\
BiggerSystem3.ndf')

TO FILEGROUP ARCHIVE2016

The preceding script creates the example database called BiggerSystem, along with the
following filegroups:

•	 PRIMARY (mandatory in every database)

•	 OPERDATA (filegroup containing hot data instantly used for transactions)

•	 ARCHIVE2016 (filegroup containing cold data without any DML operations on it)

The setting for the recovery model option for this database is set to FULL.

The filegroup backup syntax is as follows:

BACKUP DATABASE <database name>
FILEGROUP = <filegroup name>, FILEGROUP = <another filegroup
name>
TO DISK = '<file path>'
WITH
<additional options>

In the following example, we are using the BiggerSystem database and its filegroups:

-- monday 3 a. m.
BACKUP DATABASE BiggerSystem
FILEGROUP = 'PRIMARY'
TO DISK = 'L:\backups\bigsysprimary.bak'
WITH INIT, CHECKSUM, COMPRESSION
-- monday every hour
BACKUP LOG BiggerSystem TO DISK = 'L:\backups\bigsyslogs.bak'
WITH NOINIT, CHECKSUM, COMPRESSION

-- tuesday 3 a. m.
BACKUP DATABASE BiggerSystem
FILEGROUP = 'OPERDATA'
TO DISK = 'L:\backups\bigsysoper.bak'
WITH INIT, CHECKSUM, COMPRESSION
-- tuesday every hour

Designing a backup strategy 105

BACKUP LOG BiggerSystem TO DISK = 'L:\backups\bigsyslogs.bak'
WITH NOINIT, CHECKSUM, COMPRESSION

-- wednesday 3 a. m.
BACKUP DATABASE BiggerSystem
FILEGROUP = 'ARCHIVE2016'
TO DISK = 'L:\backups\bigsysarch2016.bak'
WITH INIT, CHECKSUM, COMPRESSION
-- wednesday every hour
BACKUP LOG BiggerSystem TO DISK = 'L:\backups\bigsyslogs.bak'
WITH NOINIT, CHECKSUM, COMPRESSION

-- and so on, thursday we start to backup the PRIMARY filegroup
again

As seen in the preceding example, we must not miss any filegroup out from a certain
database.

Let's assume that the filegroup called ARCHIVE2016 is not used for DML operations
and that, in such cases, its repeating backup becomes unnecessary. SQL Server provides
an enterprise feature called partial backup. This partial backup saves the primary
filegroup, all read-write filegroups, and explicitly written read-only filegroups.
That is why it is very useful to set filegroups containing historical or other read-only
data as read-only.

Let's go through one more example (for the sake of simplicity, the transaction log backups
in the following code sample have been omitted):

-- run once: set the ARCHIVE2016 filegroup as read-only
ALTER DATABASE BiggerSystem MODIFY FILEGROUP ARCHIVE2016
READONLY

-- first time backup after setting the filegroup read-only
BACKUP DATABASE BiggerSystem
READ_WRITE_FILEGROUPS, FILEGROUP = 'ARCHIVE2016'
TO DISK = 'L:\backups\bigsys.bak'
WITH INIT, CHECKSUM, COMPRESSION

-- transaction backups follow for the rest of day

-- next daily backups
BACKUP DATABASE BiggerSystem
READ_WRITE_FILEGROUPS
TO DISK = 'L:\backups\bigsysadd.bak'

106 Implementing Backup and Recovery

WITH INIT, CHECKSUM, COMPRESSION

-- transaction backups follow

The preceding SQL sample consists of three statements:

•	 The first statement sets ARCHIVE2016 filegroup to the read-only state.
It ensures that there is no way to modify data placed within ARCHIVE2016
filegroup.

•	 The second statement adds ARCHIVE2016 filegroup to backup. It is the last
backup of this filegroup.

•	 The third statement will back up all read-write filegroups; ARCHIVE2016
filegroup is not backed up from now on.

So far, we've discussed how to back up user databases. Now, let's focus on system
databases. The following sections will explain how to back up system databases properly.

Backing up system databases
In simple words, system databases need backups like user databases do. Backup strategies
for system databases are often much more straightforward than for user databases. In the
following table, you can see the common backup strategies for every system database:

Figure 3.3 – Common backup strategies

The preceding table enumerates all visible system databases and suggests how to back up
each of the system databases. As we explained in the introductory part of this chapter,
each system database plays its unique role on SQL Server. The suggested frequency
of backups reflects how many changes in the data are made within every database.

This section was quite big, wasn't it? So, let's briefly summarize the knowledge we've
gained throughout this section.

Using database and log restore 107

Backup summary
Managing our backups properly is a very important task that we must perform. As we
described in this chapter, we need to decide which types of backups to use, how often
to use them, how reliable they are, and where to store them. This decision has a strong
impact on the ability to restore data in minimal time with minimal loss. The following
table describes several types of databases and example backup strategies:

Figure 3.4 – Database types and backup strategies

The preceding table is a rough key for you to decide how to plan backup strategies.

In the next section, we will work with database backups and restore corrupted databases
in many scenarios.

Using database and log restore
The restore feature in SQL Server is used for data recovery in case of corruption and
heavily relies on how data is backed up. In this section, we will cover the following topics:

•	 Preparation steps before the restore process starts

•	 Restore scenarios, depending on backup strategies

We'll start with the preparation steps first.

108 Implementing Backup and Recovery

Preparing for restore
Before a database is restored, we must decide on the type of corruption and which backup
sets are already available for restore. If we have more backups to be restored (a full backup
combined with other backup types), we need to handle the recovery process as well.

The recovery process was described in the Transaction log section but let's recall the
recovery process one more time. SQL Server uses write-ahead logging (WAL) for very
detailed transaction actions. These transaction log records are written before the action
is actually performed against data pages in the buffer cache (transaction log records are
buffered for a short time and written in batches, but from a conceptual viewpoint, this
does not matter). At any moment, a certain transaction can be in these states:

•	 Transaction has not been committed by the user yet; transaction is running.

•	 Transaction is committed by the user, but its data pages are in a dirty state
(a different version of the data page in memory and on disk); transaction is active.

•	 Transaction is committed by the user, SQL Server executed the checkpoint, and the
data pages in memory are in a clean state (the memory version of the data page was
persisted on disk); transaction is inactive.

When SQL Server runs a backup, running and active transactions are saved within
the backup, even if they are not finished yet. Backups go one after the other; we must
remember that incomplete transactions saved in the first backup will continue in the
consequential backup. This is true mainly when transaction log backups are used in the
backup strategy. Every RESTORE statement contains a RECOVERY/NORECOVERY
option. As a part of the RESTORE statement, if either one of the options is not set
explicitly, then SQL Server will recover the restored database when the execution of
a RESTORE statement is done. It is best to prevent this from happening until the last of
the RESTORE statements are executed, because premature recovery prevents the restore
process from continuing.

Tip
The first and the most important decision to make is when to enable the
recovery process. As we'll see shortly, the recovery process is commonly
executed within the restore of the last backup in the timeline.

Using database and log restore 109

Great, but which backups do we have? Are they readable? Where were the files of my
database originally placed? These questions can be answered with the simple preparation
of RESTORE statements:

1.	 The first action is to check whether the backup files are readable. The following
statement is often placed directly after the BACKUP statement to ensure that nothing
accidental happened when the backup files were copied:

RESTORE VERIFYONLY FROM DISK = 'D:\myBackups\
AdventureWorks.bak' WITH CHECKSUM

The preceding statement tests the readability of the backup file. The CHECKSUM
option can be used only if it was also used during the backup operation. The result
of this command is just saying that the backup set on
file 1 is valid.

2.	 The second piece of information needed is the content of a certain backup file. The
following command explores a valid backup file and returns the result set with a list
of backups saved:

RESTORE HEADERONLY FROM DISK = 'D:\myBackups\
AdventureWorks.bak'

The result set contains many columns, such as LSNs, which are needed for internal
restore purposes, and database properties, such as the version of the database,
collation, and others, but from an administrator's perspective, the main columns
are as follows:

a) �BackupType: This column contains the enumeration (1–full backup,
2–transaction log backup, 4–filegroup backup, and so on).

b) �Position: This column contains the numeric ordering of backups; this value
is used in the RESTORE statement to address the correct backup to be restored.

c) �BackupStartDate: This is the date and time when the backup was started.

d) �BackupFinishDate: This is the date and time when the backup was finished.

As we go through various restore scenarios, we will use this statement to recognize
what to restore.

110 Implementing Backup and Recovery

3.	 Last, but not least, the metadata RESTORE statement is used in situations where
restoring the database recovers files to different locations. In such situations, we
need to know logical filenames to be able to reference them and set different places
on disks:

RESTORE FILELISTONLY FROM DISK = 'D:\myBackups\
AdventureWorks.bak'

The result of this statement returns more columns for internal purposes. For the
administrator, just the first three columns are interesting:

a) �LogicalName: The name of the file used as a reference

b) �PhysicalName: The full path of the file

c) �Type: D for data files, L for logs
Voila! Now, we know how to prepare for the restore process. In the following sections,
we will go through several sample scenarios and perform complete restores.

Executing restores
A backup strategy is the main criteria that determines how a database should be restored
to the most up-to-date point. In the upcoming sections, we will go through several restore
scenarios.

Using the full backup strategy
The restore process consists of several phases. The first phase is called a safety check. If
we attempt to restore a database with the same name but different files, the restore process
will be terminated. When the database does not exist on the instance of SQL Server but
some file on disk is in conflict with some filename that is going to be restored, the restore
process is terminated as well.

Tip
If restore is used for database creation, do not create an empty database
beforehand. SQL Server will do this for you using information from the backup
device.

The second phase tries to remove the rest of the corrupted database. After this phase, the
database is recreated and recovered from the backup.

Using database and log restore 111

Note
Never try to drop corrupted databases or delete their files before RESTORE.
Even if DROP DATABASE is the last action in the database's lifetime, SQL
Server assumes it is in a consistent state, so there's a high probability that
the DROP DATABASE statement will fail. The RESTORE statement is
prepared for this case and will remove the debris of the corrupted database
correctly.

Repeating full backups regularly is the best approach to a backup strategy when the
database is small, has a small amount of transactions in it, and is not so mission critical.
A crucial requirement is to have this database in the SIMPLE recovery model. We can
think of databases as being used for development or testing purposes.

In this case, we can imagine an everyday full backup. When the database is corrupted, the
only point that the database can be restored and recovered to is the time when the backup
(often the last full backup) was created. This is also the simplest restore that can be done:

RESTORE DATABASE <database name> FROM DISK = '<path to backup
file>'
WITH RECOVERY

The preceding statement attempts to restore the database with the given name, which
does not exist. All the files are placed in the original locations, but if some file with the
same name exists for a different database, the restore fails. If a database with the same
name exists already, it is not overwritten by this statement (when we want to overwrite
an existing database, we must add the REPLACE option to the RESTORE statement).
The RECOVERY option ensures that the recovery process is executed by SQL Server on
restore completion and that the database is online and consistent after RESTORE.

Note
If the database was backed up, for example, in the read-only state, it will
remain in this state after RESTORE.

If we want to skip the safety check, say, in situations where the database is completely lost
from SQL Server, but some file remained on disk, we can add the REPLACE option to the
RESTORE statement.

112 Implementing Backup and Recovery

Let's look at a database called DevDemo. This database is small and is used just for
development purposes, so the data within it is not very important; it is full of test
values created during development and testing. A backup is executed every night. The
database becomes corrupted one morning, and we need to recover it. The statement will
be as follows:

RESTORE DATABASE DevDemo FROM DISK = 'L:\backups\devdemo.bak'
WITH RECOVERY, REPLACE

The preceding statement erases wreckages of the corrupted database and restores it to an
available and consistent state.

Let's imagine that we have one devdemo.bak file that's recycled every week. In other
words, we start our backup strategy every Monday morning (for example, at 3 a.m.), so
seven backups are potentially contained in the file. The corruption occurs on Wednesday
at 10 a.m.. We need to find the last and the freshest backup from the backup file and then
use it. The complete example is as follows:

-- this statement will return result set with backups in the
file
-- our backup will have value 3 in column Position (Monday's
backup will be 1,
-- Tuesday's backup will be 2, our corruption occurred on
Wednesday)
RESTORE HEADERONLY FROM DISK = 'L:\backups\devdemo.bak'

-- we need to provide the value of desired backup to actual
RESTORE statement
RESTORE DATABASE DevDemo FROM DISK = 'L:\backups\devdemo.bak'
WITH
FILE = 3,
RECOVERY

The preceding example shows the restore process of a simple database. Pay attention to the
comments contained within the preceding and following scripts as they recall where we
are in time.

Let's look at another example. Let's move our DevDemo database to another instance
of SQL Server. On the original instance, the data file of the database is placed on disk D,
but on the new server, the data file disk is placed on disk E. We need to use the following
sequence of statements:

-- this statement will return result set with backups in the
file
-- as in previous example (remember that Wednesday = 3)

Using database and log restore 113

RESTORE HEADERONLY FROM DISK = 'L:\backups\devdemo.bak'

-- this statement will show LogicalName and physical location
of each file
-- in the database
-- for example LogicalName of .mdf file is "devdemo_Data"
-- and LogicalName of .ldf file is "devdemo_Log"
RESTORE FILELISTONLY FROM DISK = 'L:\backups\devdemo.bak'

-- we need to provide the value of desired backup to actual
RESTORE statement
-- and also we need to say where to place files
RESTORE DATABASE DevDemo FROM DISK = 'L:\backups\devdemo.bak'
WITH
FILE = 3,
MOVE 'devdemo_Data' TO 'E:\data\devdemo.mdf',
MOVE 'devdemo_Log' TO 'L:\logs\devdemo.ldf',
RECOVERY

The preceding example moves database files to their new location. The MOVE .. TO
pair is used just for files that should be moved; it is not necessary to write this option for
every file.

In this section, usage of the simplest backup/restore strategy was shown and common
options of the RESTORE statement were described. Now, let's dive deep into more
sophisticated scenarios.

Using the full and transaction log backup strategy
For this and the next backup strategies, we must consider two conditions:

•	 The BULK_LOGGED recovery model must be set on the database

•	 Correct handling with the RECOVERY/NORECOVERY pair of options

Combining full and transaction log backups in the backup strategy is the best approach
for online transaction processing (OLTP) databases with continual data contention.
This strategy also allows us to restore the database to a certain point in time. It covers
situations where there's been logical corruptions such as accidental delete statements,
failed structure updates, and so on. To be able to recover the database to some
point in time, we need to have the database's recovery model option set to FULL.

114 Implementing Backup and Recovery

The restore process usually starts with the BACKUP statement. This action might
look odd, but it is used for rescuing the latest possible transaction. Yes, this is the
tail-log backup. If the database is damaged logically, the tail-log backup sets its
state to restoring. If the database is damaged physically (and is in the suspect state so far),
the tail-log backup saves all readable transaction log records from the active portion
of the transaction log.

The following statement does a tail-log backup when logical damage occurs on
the database:

BACKUP LOG <database name> TO DISK = '<path to tail log .bak
file>'
WITH NORECOVERY

The following statement is better for physical damage of the database:

BACKUP LOG <database name> TO DISK = '<path to tail log .bak
file>'
WITH NORECOVERY, NO_TRUNCATE, CONTINUE_AFTER_ERROR

The CONTINUE_AFTER_ERROR option is crucial because, if omitted, SQL Server will fail
our tail-log backup due to inconsistency in the database.

With that, everything that could be saved has been and we can start to write
RESTORE tatements in the correct order. Every restore starts with the RESTORE
DATABASE statement, as we described in the Using the full backup strategy section. The
only important difference is that we do not want to execute the recovery process with each
RESTORE command. That is why we must use the NORECOVERY option.

Let's look at a database called Accounting. This database is fully backed up every
morning at 3 a.m. and then the transaction log is backed up every hour. All backups are
saved to the same file on a daily basis. The physical corruption appears at 9:30 a.m. The
following code example describes the full process of the data recovery:

-- try to save the latest user work
BACKUP LOG Accounting to DISK = 'L:\backups\taillog.bak'
WITH NORECOVERY, NO_TRUNCATE, CONTINUE_AFTER_ERROR

-- let's check out backup ability
RESTORE VERIFYONLY FROM DISK = 'L:\backups\accounting.bak' WITH
CHECKSUM

-- It's readable, what about content?
RESTORE HEADERONLY FROM DISK = 'L:\backups\accounting.bak'

Using database and log restore 115

-- now we have full backup on position 1
-- and six following trans. log backups on positions 2 - 7

-- restoring initial state of database
-- note: the FILE position need not to be written because 1 is
the default
RESTORE DATABASE Accounting FROM DISK = 'L:\backups\accounting.
bak'
WITH NORECOVERY

-- restoring incremental states from backups 2 - 7
RESTORE LOG Accounting FROM DISK = 'L:\backups\accounting.bak'
WITH
FILE = 2, -- this value changes for every additional log
backup
NORECOVERY

-- restoring the tail-log backup
RESTORE LOG Accounting FROM DISK = 'L:\backups\taillog.bak'
WITH RECOVERY -- this option recovers the database and sets
its state ONLINE

As seen in the preceding example, only the last backup that was restored has the
RECOVERY option. We can think about the NORECOVERY/RECOVERY pair as a TV
series. NORECOVERY is the restore process that will continue by restoring the next log
backup, like a cliffhanger that leads to the next episode, while RECOVERY is the happy.

As NORECOVERY is used in every RESTORE statement except the last one, it is simple to
make a mistake and use NORECOVERY in the last RESTORE. Fortunately, it is very simple
to correct this mistake; just repeat the restore of the last transaction log backup with the
correct RECOVERY option.

The full backup and transaction log backup strategy has one big advantage as it can be
used for point-in-time recovery. However, every coin has two sides and the disadvantage
of this strategy is that a relatively big number of backups needs to be maintained, readable,
and complete. In the next two sections, we will learn how to profit from this strategy's
advantage and how to handle its disadvantage.

116 Implementing Backup and Recovery

Point-in-time recovery
In most situations, the right point in time for a database restore is the most recent state
of the database before failure. Sometimes, the database becomes incorrect in a small way;
for example, when some tables or other objects are lost. When such a situation occurs,
it is recommended that you know how to recover the database. SQL Server provides very
useful mechanisms that can be used to restore a database to the desired, but not the last,
moment. The first option is to set a date and time for data recovery, while the second is
to use a transaction log mark. We will go through both options in the form of examples.

Let's look at a database called Accounting. It is the same database as in the previous
section. A full backup is executed every morning at 3 a.m.; transaction log backups are
executed every hour. The problem appears at 9:30 a.m. The following are the list of steps
that we will perform:

1.	 Obtain the current time from SQL Server.

2.	 Create a tail-log backup.

3.	 Restore the database using a regular full and transaction log backup strategy.

4.	 Stop the recovery process, not at the end of the last transaction log backup
but earlier.

In the preceding steps, we have two exceptional moments, the first one and the last one.
Obtaining the current time is very simple:

SELECT SYSDATETIME()
--or
SELECT GETDATE()

We need to consider that the time that's returned is the time when we noticed the
problem, so depending on the actual situation, we will subtract some time from the
current time (for example, 30 seconds).

The second and third steps are a regular way of working on the restore process. This
means that we will obtain the available backup files, we will explore their quality and
content, and then we will start the restore process step by step.

Using database and log restore 117

When the restore process comes closer to the moment of failure, we need to pay attention
to the correct transaction log backup that's covering the time interval with the failure.
When we touch this backup (for example, the backup executed at 9:45 a.m., so the
interval is from 9 a.m. to 9:45 a.m.), we will use the following syntax:

RESTORE LOG Accounting FROM DISK = 'L:\backups\somelog.bak'
WITH
STOPAT = '2017-08-01 9:30am', RECOVERY

The STOPAT option recovers the database exactly to this point. The RECOVERY option
is then needed because the rest of the transaction log backups (if they exist) are useless
if the time interval from 9:30 a.m. is ignored and we cannot omit part of the transactions.

If we are not sure which transaction log backup contains the desired point in time, we can
write WITH STOPAT = 'time', RECOVERY to restore each log statement. When a
certain transaction log backup ends before that time, SQL Server reports a warning and
the database will stay in the restoring state. When the time is within the transaction log
backup, the point-in-time restore is successful and the database is recovered to its online
state. If the time set in the RESTORE statement is before the current transaction log
backup is executed, the restore fails with an error.

This feature has one more option. If a transaction is risky (for example, ts has an unusual
data update), we can mark it in the transaction log. The mark for the transaction is
written as part of the BEGIN TRAN statement. The complete syntax is BEGIN TRAN
myRiskyTran WITH MARK. The text, myRiskyTran, is our transaction name. The
transaction's name could be helpful for developers as it acts as an orientation point
in source code, has no impact on SQL Server, and is not saved to the transaction log.
However, WITH MARK changes the situation completely. The name is written to the
transaction log and can be read from the transaction log backup. In this case, we can use
the transaction name to determine where to execute the recovery process. The syntax for
this is similar to the STOPAT option:

RESTORE LOG Accounting FROM DISK = 'L:\backups\somelog.bak'
WITH
STOPATMARK = 'myRiskyTran', RECOVERY

When we need to exclude the transaction from the restore, we should write the following
statement:

RESTORE LOG Accounting FROM DISK = 'L:\backups\somelog.bak'
WITH
STOPBEFOREMARK = 'myRiskyTran', RECOVERY

118 Implementing Backup and Recovery

The STOPATMARK option includes the marked transaction in the recovery process,
while STOPBEFOREMARK executes the recovery process exactly before the marked
transaction began.

The rest of the restore process is almost the same. If we are not sure in which transaction
log backup the marked transaction is, we can use the same approach as when using
STOPAT. This means we could write STOPATMARK = 'my risky tran',
RECOVERY (STOPBEFOREMARK = 'my risky tran', RECOVERY, respectively)
to every RESTORE LOG statement. The only difference is that SQL Server cannot
recognize if the desired mark is in further log backups or if the mark has been left behind.
When the mark is not present in the already restored current transaction log backup, SQL
Server never fails this backup but issues a warning and the database will not be recovered.

This procedure reports a very good value regarding the Recovery Point Objective (RPO).
It is used to measure how much data was lost (a lesser value is better). In the next section,
we will show you how to reduce the recovery time objective (RTO).

Using full, transaction log, and differential backup strategies
The only possible issue when using transaction log backups is that the number of backups
becomes quite big. It has an impact on RTO. This is a measure that determines when the
downtime will be noticed before the database is recovered.

In the previous sections, we went through a set of backups, beginning with full backups
and continuing with transaction log backups one by one. The differential backup is added
to the backup strategy for better jumps in time. As we described in the backup part
(Designing a backup strategy) of this chapter, a differential backup contains all the extents
that have been changed from the last full backup. When using this strategy, we can have
a set of backups, as shown in the following list:

1.	 3 a.m.: Daily full backup (backup position 1)

2.	 4 a.m. to 8:30 a.m.: Transaction log backed up twice an hour (backup positions
from 2 to 11)

3.	 9 a.m.: Differential backup (backup position 12)

4.	 10 a.m. to 1:30 p.m.: Transaction log backed up twice an hour (backup positions
from 13 to 20)

5.	 2 p.m.: Differential backup (backup position 21)

6.	 3 p.m. to 6:30 p.m.: Transaction log backed up twice an hour (backup positions
from 22 to 29)

Using database and log restore 119

7.	 7 p.m.: Differential backup (backup position 30)

8.	 8 p.m. to 2:30 a.m. next day: Transaction log backed up twice an hour (backup
positions 31 and so on)

Let's imagine that our Accounting database will fail at 5 p.m. The only difference
from the previous examples is that we do not need to restore every backup from our
set. The restore process consists of the first, fifth, and (partially) sixth points from
the preceding list. Let's describe the syntax (the following example will omit the
preparation steps):

-- rescue last user transactions
BACKUP LOG Accounting TO DISK = 'L:\backups\taillog.bak'
WITH NORECOVERY

-- restore initial state of the database
RESTORE DATABASE Accounting FROM DISK = 'L:\backups\accounting.
bak'
WITH NORECOVERY

-- restore the most recent differential backup created before 5
p.m.
RESTORE DATABASE Accounting FROM DISK = 'L:\backups\accounting.
bak'
WITH FILE = 21, NORECOVERY

-- restore trans. log backups between the last diff. backup and
failure point
-- this statement is repeated with changing FILE option
RESTORE LOG Accounting FROM DISK = 'L:\backups\accounting.bak'
WITH FILE = 22, -- and 23, 24 and so on until 26
NORECOVERY

-- restore tail-log backup and recover the database
RESTORE LOG Accounting FROM DISK = 'L:\backups\taillog.bak'
WITH RECOVERY

As seen in the preceding example, the restore from a differential backup is just a kind
of database restore with no extras. The only reason to use differential backups in a backup
strategy is to make the restore process shorter.

In the next section, we will take a look at partial database recovery from file or
filegroup backups.

120 Implementing Backup and Recovery

Using file or filegroup backups
As the database becomes large over time, it becomes very complicated to hold a short
maintenance window for its backups. This is one of the reasons why we use file or
filegroup backups. In this section, we will show you how to recover a certain filegroup
in the case of failure.

The task list is as follows:

1.	 Execute the tail-log backup of the database.

2.	 Restore every corrupted data file/filegroup from its last backup.

3.	 Restore transaction log backups from the oldest file/filegroup backup.

4.	 Restore the tail-log backup and recover the database.

Let's look at a database called BiggerSystem. The database consists of three
filegroups: PRIMARY, OPERDATA, and ARCHIVE2016. One filegroup is backed up every
day at 3 a.m. Each day, transaction log backups are created every hour. The backup process
is planned as follows:

1.	 Monday 3 a.m.: PRIMARY filegroup backup

2.	 Monday from 4 a.m. to Tuesday 2 a.m.: Transaction log backups

3.	 Tuesday 3 a.m.: OPERDATA filegroup backup

4.	 Tuesday from 4 a.m. to Wednesday 2 a.m.: Transaction log backups

5.	 Wednesday 3 a.m.: ARCHIVE2016 filegroup backup

The failure occurs in the OPERDATA filegroup on Wednesday at, 10:30 a.m. The process
for the restore is as follows:

-- create tail-log backup
BACKUP LOG BiggerSystem TO DISK = 'L:\backups\taillog.bak'

-- restore the damaged filegroup
RESTORE DATABASE BiggerSystem
FILEGROUP = 'OPERDATA'
FROM DISK = 'L:\backups\bigsysoper.bak'
WITH NORECOVERY

-- restore all trans. log backups from Tuesday 4 a.m. until
most recent
RESTORE LOG BiggerSystem FROM DISK = 'L:\backups\bigsyslogs.
bak'
WITH

Using database and log restore 121

FILE = x, -- where "x" is the position of backup in backup
file
NORECOVERY

-- recover the database
RESTORE LOG BiggerSystem FROM DISK = 'L:\backups\taillog.bak'
WITH RECOVERY

As seen in the preceding example, the only difference from a regular full restore
is the FILEGROUP keyword, which is being used to address the filegroup that is
to be restored. This restore procedure ensures the most recent, consistent state for all
the databases.

So far, we've restored a whole database and its most important part. In the next section,
we will turn our attention to the smallest recoverable part of the database.

Restoring data pages
SQL Server provides a feature called page restore. It allows us to shorten the restore time
to a minimum and restore just the corrupted data pages. The process of a page restore
is very similar to a file or filegroup restore. It needs a full or file/filegroup backup and
transaction log backups.

The most challenging part is how to find out which data pages are corrupted. We have two
options when it comes to detecting corrupted data pages:

•	 The first option is to monitor the msdb.dbo.suspect_pages table. SQL Server
maintains a table called suspect_pages in the msdb database. This table is used
by SQL Server to hold information about data page corruptions. Consider that the
table has up to 1,000 rows, so if it is not monitored for a long time and 1,000 rows
are returned from a query, we will never know how many corrupted data pages
we have in our database.

The most important columns in this table are as follows:

a) database_id: The ID of the database containing suspect pages

b) file_id: The ordinal position of the file containing suspect pages

c) page_id: The page identifier

122 Implementing Backup and Recovery

The file_id and page_id identifiers are used together to address the page that
needs to be recovered. If, for example, page number 12345 is corrupted in the
primary data file (the primary data file is always number 1) in database ID 13,
we can use this statement:

-- list of potentially corrupted data pages
-- result will be for example AdventureWorks, 1, 12345
SELECT DB_NAME(database_id) AS databaseName
, file_id
, page_id
FROM msdb..suspect_pages

The preceding statement is very simple and provides all the information needed
for the page restore action.

•	 The second option is to check the database's consistency regularly with the DBCC
CHECKDB() function. This function returns errors whenever any data page
corruption is detected. The following statement calls the function:

DBCC CHECKDB() WITH NO_INFOMSGS

The NO_INFOMSGS option used in the preceding example eliminates all
informational messages from the output of the function. When the function detects
some corrupted pages, one error message containing the complete data page
identification is generated for each corrupted page.

From this moment, the restore process starts using almost the same task list as
in the filegroup restore. The only exception is when identifying the part of the
database that is being restored. This is shown in the following syntax:

RESTORE DATABASE AdventureWorks
PAGE = '1:12345'
FROM DISK = 'L:\backups\aw.bak'
WITH NORECOVERY

The page identifier is provided in the form of file_id:page_id; in our example,
it is page number 12345 of the primary data file. The rest of the restore process
stays unchanged.

After restoring all the data pages, we should remove all the records from
the suspect_pages table.

So far, we've paid attention to user databases, but system databases also need some care.
This final section will show how the system database restore process differs from the user
database restore process.

Using database and log restore 123

System database restore
System databases are databases created during SQL Server installation and have special
meanings. That is why special attention must be paid when restoring them.

The simplest situation is when restoring the tempdb database. The tempdb database
is never backed up, so the restore operation is not possible. When some damage appears,
we just need to restart the SQL Server service. SQL Server recreates the tempdb database
at startup.

Restoring the msdb database is quite simple as well. It often has a (recommended) simple
recovery model, so in case of failure, we will restore msdb in the way we restore the user
database: by using the RESTORE DATABASE .. WITH RECOVERY statement.

Restoring a database model is a little more complicated. When the database model
is corrupted, the first task is to restart SQL Server with the -T3608 trace flag in the
startup parameters. Then, the restore process is the same as a simple restore process for
every user database, but with the trace flag switched on. The database model is sheltered
by SQL Server against restoring.

The last and most complicated way to complete the restore process is by restoring the
master database. When SQL Server cannot start, we must start the restore process by
rebuilding the master database from SQL Server setup. Sometimes, SQL Server can start
in single-user mode with minimal configuration. We can attempt to start SQL Server
in this mode using the proper command switches with the sqlserver.exe command.
We will use two Command Prompt windows.

In the first Command Prompt, we will start SQL Server in single-user mode with minimal
configuration:

sqlservr.exe -m -f

When SQL Server is started, we must not close this window. Then, we will use the second
Command Prompt with the sqlcmd utility:

sqlcmd.exe -E -S myServerName\instanceName

When the sqlcmd utility is started (where -E means Windows login and -S means
server name), we will just execute a regular RESTORE statement for the master database
with recovery. When the restore is successfully executed, SQL Server is stopped in the first
Command Prompt. We can then restart SQL Server normally.

124 Implementing Backup and Recovery

Summary
When working with databases, we always need to know how to recover them when
damage occurs. This chapter was intended mostly as a syntactical guide for correct backup
planning and performing for several types of databases, such as OLTP user databases, big
databases, and system databases. A GUI alternative is also possible, but using syntax is
a better approach when automating backup tasks when some corruption occurs. Syntax
is never lost in dialogs of SQL Server Management Studio.

In this chapter, we learned about internal data handling. This knowledge is an advantage
not only for backups and restores, but also for a better understanding when we cover
optimizing databases.

We also learned about the backup capabilities of on-premises SQL Server instances.
Through examples, we understood how to use backups to restore databases in many
scenarios. We also learned the impact of backup procedures already being used on restore
abilities that are measured by the RPO and RTO criteria.

Another big task is to secure SQL Server properly. This involves using the security best
practices for the service itself, as well as for the authentication and authorization of users.
We will describe this in detail in Chapter 4, Securing Your SQL Server.

4
Securing Your

SQL Server
Securing SQL Server is a crucial task, as SQL Server usually holds very important and
sensitive information in your environment. You need to apply many principles in order to
properly secure your databases. Fortunately, SQL Server offers many options to help you
with securing the data you store on it. Securing an SQL server is quite a complex task; you
need to consider that SQL Server is a client application running on the Windows server,
which is accessible via a network. In order to fully secure the environment, you need to
secure the Windows Operating System (OS) too and put proper security measures on the
network as well.

In this chapter, we will be covering the following topics:

•	 Configuring SQL Server service accounts

•	 Configuring authentication and authorization

•	 Encrypting SQL Server data

•	 Data Discovery and Classification

•	 SQL Server vulnerability assessment

•	 Encrypting SQL Server connections

126 Securing Your SQL Server

Configuring SQL Server service accounts
An important part of the configuration of your SQL Server environment is the service
accounts that are used for running your SQL Server services. Many of these can be
configured immediately during the installation of your SQL Server. There are several options
for you to select from while configuring an account for SQL Server services, as follows:

•	 Virtual accounts

•	 Managed service accounts

•	 Group managed service accounts

•	 Built-in system accounts

•	 Domain user accounts

•	 Local Windows accounts

Let's now get into each of the accounts in detail.

Virtual accounts
The default choice of any OS higher than Windows Server 2008 R2 is a virtual account.
A virtual account is a managed local account for the simple administration of your
services. One of the important benefits of virtual accounts is their auto management, so
you don't need to worry about regular password updates on your accounts like you have
to with domain and local accounts, where you're bound with your enterprise account and
password policy.

A virtual account has two forms, depending on whether the account is used for named or
default SQL Server instances.

If you are using a default instance, then the account is as follows:

•	 NT SERVICE\MSSQLSERVER for the Microsoft (MS) SQL database service

•	 NT SERVICE\SQLSERVERAGENT for the MS SQL Server Agent service

If you are using named instances, then the instance name is part of the account name. If
your instance name is SQL1, then the accounts will be as follows:

•	 NT SERVICE\MSSQL$SQL1 for the MS SQL database service

•	 NT SERVICE\SQLAGENT$SQL1 for the MS SQL Server Agent Service

Configuring SQL Server service accounts 127

If you are also running SQL Server integration services under virtual account credentials,
then the NT Service\MsDtsServer140 account is used for this service.

When you are configuring the account for SQL Server, enter the virtual account name and
supply a blank password during configuration in the SQL Server configuration manager,
as shown in the following screenshot:

Fig. 4.1 – Configuration for SQL Server service account

Managed service accounts
Another option to run SQL Server services are Managed Service Accounts (MSAs)
and group Managed Service Accounts (gMSAs).

128 Securing Your SQL Server

MSAs were introduced with Windows Server 2008 R2. A new type of such an account
called a gMSA was introduced with Windows Server 2012 and offers more options for
deployments with SQL Server, especially for High Availability (HA) scenarios.

MSAs allow you to create an account in the ActiveDirectory module and tie that
account to a specific computer. Such an account has its own complex password that is, like
a virtual account, managed automatically. As MSAs are used only for services running
on the computer, you can't use such an account for an interactive login. As this account
is tied to just one computer account in the ActiveDirectory module, one of the big
limitations of MSAs is that they can't be used together with failover cluster configuration.

To create a MSA, we need to use PowerShell with the ActiveDirectory module that is
being loaded. The code to create a MSA will be as follows:

#run this on the Domain Controller
Import-Module ActiveDirectory
New-ADServiceAccount -Name SQLService -Enabled $true
Add-ADComputerServiceAccount -Identity SQL -ServiceAccount
SQLService
#SQL will be the host here, SQLService is the name of the MSA
account

Once you run this command, we will have one account ready and tied to a SQL computer
account. Now, we need to add this account to the SQL Server so that we can use the
account for services, as follows:

#run this on the SQL Server

Import-Module ActiveDirectory

Install-ADServiceAccount -Identity SQLService

Now, we can use the account for the SQL Server services. We will update the configuration
again via the SQL Server configuration manager and we will use the name in the form of
the name\MSA$ domain name. Just as with the virtual account, you do not need to supply
the password again. The following screenshot illustrates the process:

Configuring SQL Server service accounts 129

Fig. 4.2 – MSA account as SQL Server service account

gMSAs
gMSAs provide the same functionality as MSAs, but they can be used on multiple servers.
gMSAs provide a single identity for services running on a farm, cluster, or behind a load
balancer, so they are a perfect fit for a failover cluster scenario in which the previous type
of managed service accounts couldn't be used. gMSAs have the same benefit as the older
MSAs, where ActiveDirectory module automatically manages the account password
without any service disruption.

You can create gMSAs with a similar PowerShell script, as with MSAs, as shown in the
following code snippet:

#run this on the Domain Controller

Import-Module ActiveDirectory

New-ADServiceAccount -name SQLService -DNSHostName sql.contoso.
com -PrincipalsAllowedToRetrieveManagedPassword sql.contoso.com

130 Securing Your SQL Server

Once you have created the gMSA, you need to install the account again on the server
where you would like to use the account. This time, you can install the account on
multiple servers. If you would like to use the account on more servers, you have to specify
this in the PrincipalsAllowedToRetrieveManagedPassword parameter of the
PowerShell command, where you have to specify multiple hosts or a group of hosts. These
have to be created as computer objects, and if you would like to use the group, you need to
add them to the ActiveDirectory security group, as follows:

#run this on the SQL Server
Import-Module ActiveDirectory
Install-ADServiceAccount -Identity SQLService

#test the account with
Test-ADServiceAccount SQLService

This module is available as a part of the Remote Server Administration tools, and you
can verify the availability of the module via PowerShell, as follows:

Get-Module -ListAvailable ActiveDirectory

Once you have installed the account, you can add the account via the SQL Server service
configuration manager or even specify the account directly during installation of the SQL
Server. As this account has to be created by your Active Directory administrator, you can
ask for such an account in advance and use the account for the installation.

Built-in system accounts
Mainly with installations of previous versions of SQL Server, you can encounter systems
using built-in system accounts that are not recommended for today's deployments. These
accounts are still valid and do work; however, they don't provide any isolation from other
services and provide too many rights and permissions on the operating system. These
built-in accounts include the following:

•	 NT AUTHORITY\NETWORKSERVICE

•	 NT AUTHORITY\SYSTEM

•	 NT AUTHORITY\LOCALSERVICE

Configuring authentication and authorization 131

Domain user accounts and local Windows accounts
If you would like to use a Windows account to run SQL Server services, make sure that
you're using a minimally privileged local or domain account to run your SQL Server.
Once you have designated your account to be used with the SQL Server services, SQL
Server Setup will automatically configure all the required permissions and user rights to
your service account so that SQL Server runs correctly.

To change the account, you can again use the configuration manager tool. One
disadvantage of domain or local accounts over virtual or managed accounts is the
password maintenance required. You need to supply the password to the SQL Server
services in the configuration manager and your account will adhere to the Windows
password policy.

Note
The Windows password policy is configured at
the ActiveDirectory domain level with group policy objects, which
apply to the whole ActiveDirectory domain, or with more detailed
password setting objects, which can be linked to specific accounts. By default,
passwords for domain accounts have to be updated, and if the password
expires, your SQL Server environment may stop working. You need to take
special consideration, especially in larger environments, if you're using domain
accounts with non-expiring passwords.

Configuring authentication and authorization
SQL Server security works in layers. As a first step, SQL Server will perform
authentication, whereby SQL Server determines who you are and if you can log in. If
you're successfully logged on, then SQL Server will perform authorization, determining
if you can do what you're trying to do. In the next part of the chapter, we will see how
to configure server authentication, how to work with server objects, and how to assign
server-level permissions.

Authentication
SQL Server comes with two authentication modes, as follows:

•	 SQL Server and Windows Authentication mode (frequently called Mixed mode)

•	 Windows Authentication mode

132 Securing Your SQL Server

As the names of the modes would suggest, you can always log in with some sort of
Windows credential. On top of that, SQL Server can be configured to use its own
accounting and isolated accounts stored directly on SQL Server.

You can choose the authentication mode during installation and you can always change
the mode afterward in the SQL Server configuration, which requires a service restart after
the change. The following screenshot gives a good idea of authentication options:

Fig. 4.3 – SQL authentication configuration

Configuring authentication and authorization 133

As part of the Windows Authentication mode, SQL Server can use several different
principals to evaluate your access, as follows:

•	 Local Windows account

•	 Local Windows group

•	 Domain account

•	 Domain group

Server logins
For authentication, you need to create a login on SQL Server for one of the four Windows
principals mentioned earlier, either with SQL Server Management Studio, TSQL, or with
the sqlcmd command-line tool. Having a login on the SQL Server will allow a user to
authenticate on the SQL Server if the login is enabled. Logins can be also disabled, which
would prevent authentication. Let us take a look at the command script for creating a login:

--to add a group run the command
CREATE LOGIN [SQLSERVER\DBA Team] FROM WINDOWS
--this command expects that a group DBA Team is present on the
SQL Server

--to add a single user run the command
CREATE LOGIN [SQLSERVER\Marek] FROM WINDOWS

This sample code will add a group called DBA Team as a login to our SQL Server. Any
member of such a Windows group will automatically have access to the SQL Server,
so you need to be careful on the group membership. It's a simple start for role-based
access and administration on the server. Notice that you haven't supplied any password
for the Windows login, as SQL Server will utilize the Windows system to perform the
authentication for you and does not need to have a password of the login stored anywhere.

This does not apply for SQL Server authentication mode, where you create the same type
of object—LOGIN, but this time, it's a SQL Server type of principal that is not created
anywhere in the Windows system or ActiveDirectory domain. The SQL Server login
is created only on SQL Server and is stored in the master database. Syntax to create the
SQL Server login is very similar; notice that we'll just skip the FROM WINDOWS part of the
command to create a SQL Server login, as follows:

CREATE LOGIN [Marek] WITH PASSWORD = 'P@ssw0rd'

134 Securing Your SQL Server

When creating a SQL Server type of login, you have to specify a password for the login.
SQL Server can enforce several checks on such a password and it's a good idea to use these
so that the passwords for SQL Server logins comply with the Windows password policy or
your ActiveDirectory domain password policy. To create a login with these checks,
you can use the following command:

CREATE LOGIN [Marek] WITH PASSWORD='P@ssw0rd',
CHECK_EXPIRATION=ON, CHECK_POLICY=ON

Note
Domain password policies are configured at the ActiveDirectory level
and are outside the scope of this book. Such a policy usually controls the length
of the password, maximum password age—which enforces the changes on the
password—and complexity setting to force using more character types such as
uppercase, lowercase, and numbers.

Managing login properties
Many logins could have been created without the policy and expiration checks, so if you
would like to find them all, you can use the following query to list all SQL Server types of
login, where the checks are not in place:

SELECT serverproperty('machinename') as 'Server Name', [name],
[is_policy_checked], [is_expiration_checked] FROM master.sys.
sql_logins
WHERE ([is_policy_checked] = 0 OR [is_expiration_checked] = 0
) and name not like '##MS_%'

One more option that you can select while creating a SQL Server type of login is to force
the login to change the password during the next login, which is useful when the SQL
login is utilized by a developer or administrator but not particularly useful if the login is
used by some application that just needs to log in to the SQL Server. By selecting the SQL
Server authentication, you are actually extending the options of the authentication as you
can't turn off the Windows authentication at all.

Configuring authentication and authorization 135

You can check many of the parameters of the login with the LOGINPROPERTY function,
which can list more than a dozen attributes of your login. The following sample script will
check for all SQL logins where the password has not been updated for more than 6 months:

SELECT name,loginproperty([name], 'PasswordLastSetTime')
FROM sys.sql_logins
WHERE loginproperty([name], 'PasswordLastSetTime') <
DATEADD(month,-6,GETDATE())

Note
For more information about the built-in function, refer to the Microsoft Books
Online documentation at https://docs.microsoft.com/en-us/
sql/t-sql/functions/loginproperty-transact-sql,
which lists all the parameters for the function.

Taking the preceding script into a scheduled task that can check for such logins on a
weekly or monthly basis and running such a script manually is not that big a help. It can
turn out to be very useful to run such a script automatically on a regular basis. For such
a task, you need a SQL Server Agent job with a proper schedule, and you can update the
script to send out an email with results to the database administrator (DBA) team.

This regular check on your logins is not the only one you can do on your server. If you
create a SQL Server login and you don't enforce any policies, you can actually create
the login with any password you want, despite the complexity or the length. You'll be
surprised how many logins are created with a password the same as the login name on
many systems. The following script will help you find all those logins on your machine:

SELECT SERVERPROPERTY('machinename') AS 'Server Name', name AS
'Login With Password Same As Name'
FROM master.sys.sql_logins
WHERE PWDCOMPARE(name,password_hash) = 1
ORDER by name

The worst-case scenario is that the logins with blank passwords can be found as well with
the same PWDCOMPARE function. The following code will reveal all SQL Server logins
with a blank password:

SELECT name FROM sys.sql_logins
WHERE PWDCOMPARE('', password_hash) = 1 ;

https://docs.microsoft.com/en-us/sql/t-sql/functions/loginproperty-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/functions/loginproperty-transact-sql

136 Securing Your SQL Server

Authorization
Once you have successfully logged in to SQL Server, SQL checks your access level with
each operation—in other words, if you're authorized to perform any operation. This is
controlled via the permissions that are assigned to the logins, or the server roles.

Roles are there to simplify the administration for us as they include many permissions
on the server and can speed up the securing of the server. A server role is a principal that
groups other principals such as logins together at the server level. There is a default set of
nine server roles that are configured automatically on each SQL Server installation.

Fixed server roles
There are nine predefined fixed server roles on each server that you can use as
a starting point for securing the SQL Server environment. These roles cannot be dropped;
you can only update the role membership. The roles are listed in the following screenshot:

Fig. 4.4 – Server roles

If you would like to assign a login to a role, you can update the role membership via TSQL
or SQL Server Management Studio. With SQL Server Management Studio, you can
select multiple roles at the same time via the checkboxes and then by clicking on OK, as
shown in the following screenshot:

Configuring authentication and authorization 137

Fig. 4.5 – Server role assignment

With TSQL, it's quite simple; to add a login to any role, you just enter the
following command:

ALTER SERVER ROLE [sysadmin] ADD MEMBER [Marek] --for SQL Login
type
ALTER SERVER ROLE [sysadmin] ADD MEMBER [DOMAIN\Marek] --for
Windows Login type, including the domain name

To remove a member from a role, you can use a similar command with just the DROP
MEMBER syntax, as follows:

ALTER SERVER ROLE [sysadmin] DROP MEMBER [Marek] --removes
login Marek from sysadmin server role

138 Securing Your SQL Server

Working with permissions on the server
Another option for controlling authorization at the server level is the server permissions.
Server permissions can be assigned to your logins via TSQL or SQL Server Management
Studio to allow the login to perform a specific operation. The list of permissions available
on the server is quite long, and you can find the whole list via the following query:

SELECT * FROM sys.fn_builtin_permissions('') where class_desc =
'SERVER'

Server permissions that you can grant are as follows:

Fig. 4.6 – Server permissions list

As an example, let's take Dynamic Management Views (DMVs), many of which are
restricted only to high-privileged users (members of server roles) or users who have
a VIEW SERVER STATE permission. To grant such a permission, you can run the
following SQL statement:

GRANT VIEW SERVER STATE TO [Marek]

Configuring authentication and authorization 139

This will allow one login to query most of the DMVs to troubleshoot and diagnose SQL
Server. With many of the permissions, you can use one more option, WITH GRANT
OPTION, which will allow the login to not only perform specific actions but also to grant
this action to another login. To remove the permission, we use the REVOKE keyword,
which will remove the previously granted permission to the login, as follows:

REVOKE VIEW SERVER STATE TO [Marek] AS [sa]

Bear in mind that the permission may be part of some server-wide role permission list.
Revoking the explicit permission does not necessarily prevent the user from viewing the
server state. To do that, you will need to explicitly deny the permission to the user by
running the following command:

DENY VIEW SERVER STATE TO [Marek]

To remove the DENY permission, you have to use the REVOKE command again in the
same way as we did with the GRANT permission option. As you can see, REVOKE clears
either a granted or a denied permission.

Auditing
SQL Server comes with several options that can be used for the auditing of login events
and much more. One of the options is to use basic login auditing, which can be configured
on the server properties/security page via SQL Server Management Studio. There, you
can choose what sort of login audit is performed. By default, SQL Server comes with
the Failed logins only option selected, which may not be enough for many environments
where, due to business or security requirements, you have to capture all login attempts.

This audit stores all the information to the SQL Server log, which you can review via
Management Studio or, if needed, via any text editor, as the log is a plain text file. On a
highly loaded system, this log can generate an enormous amount of information, so you
need to consider if this is really the best option to store information about login sessions.
This log is also used as an error log, so any error that is logged is then surrounded by
many noise messages about successful or failed login events.

SQL Server comes with another audit object that can be utilized. This audit object is
available for several versions already (since 2008) and can be used to audit the same
failed and successful logons and much more. A great benefit of this audit object is the
flexibility of the configuration, as the specifications for the audit can be either server-wide
or database-wide. You can choose if the audit should store the information to a text file or
directly to Windows event logs. Database-level auditing was previously available only in the
Enterprise Edition, but since SQL Server 2016 Service Pack 1, it's available in all editions.

140 Securing Your SQL Server

Configuring a server audit
Audit configuration has several components—two of them are primary audit and audit
specifications. Audit is a configuration object where you have to select how to store the
captured events, how resilient the audit will be, and so on.

The specification is another object that you have to create, and there you specify
which events should be captured, as illustrated in the following screenshot:

Fig. 4.7 – Audit configuration

Configuring authentication and authorization 141

To create the audit on the server, you can use the following TSQL code:

CREATE SERVER AUDIT [LoginAudit]
TO FILE (FILEPATH = N'E:\Audits', MAXSIZE = 1024 MB ,MAX_FILES
= 20,RESERVE_DISK_SPACE = OFF)
WITH (QUEUE_DELAY = 1000 ,ON_FAILURE = CONTINUE)

This query will create an Audit object that will store all the information to text files.
These will be located in the E:\Audits folder on your server and can use up to 20 GB
of space on your drive—a maximum of 20 files with a maximum size of 1 GB each. If
such an audit fails to store any event, all operations will continue. Until now, we have only
configured the storage for the events but we have not configured any events to capture.
This is where server audit specifications come into the picture.

Server audit specifications
Server audit specifications define which action groups (events grouped by the scope of
action) will be tracked by your audit. To configure the audit specifications, use a TSQL
scriptor a Graphical User Interface (GUI). Let us look at the following script to create a
server audit:

CREATE SERVER AUDIT SPECIFICATION [LogonAuditConfig]
FOR SERVER AUDIT [LogonAudit]
ADD (FAILED_LOGIN_GROUP),
ADD (SUCCESSFUL_LOGIN_GROUP)

With this TSQL script, we have configured the audit to collect information about
successful and failed login events to a separate file on your SQL Server. You can, of course,
add many more action groups to this audit and create more audits on your server. One
of my favorite action groups for the auditing is SERVER_ROLE_MEMBER_CHANGE_
GROUP, which tracks information about changes in your server roles. You can then see
who updated any role membership and when, by either adding or dropping a member
from the role.

142 Securing Your SQL Server

As you can see in the following screenshot from SQL Server Management Studio, there
are many other useful action groups worth considering for the audit on your server:

Fig. 4.8 – Audit specification configuration

Configuring authentication and authorization 143

Even though this audit is quite lightweight (based on Extended Events, to be discussed in
following chapters), you should not just select everything and expect no performance hits
on the server. As with everything else in SQL Server, you need to carefully consider which
events you should collect. My favorite basic set for security auditing on the server includes
just a few action groups and can be configured as follows:

CREATE SERVER AUDIT SPECIFICATION [Security audit
specifications]
FOR SERVER AUDIT [SecurityAudit]
ADD (SERVER_ROLE_MEMBER_CHANGE_GROUP),
ADD (AUDIT_CHANGE_GROUP),
ADD (SERVER_PERMISSION_CHANGE_GROUP),
ADD (SERVER_PRINCIPAL_CHANGE_GROUP),
ADD (LOGIN_CHANGE_PASSWORD_GROUP)
WITH (STATE = ON)

Such a basic set can be always modified, filtered, and tuned to fit your environment needs
and requirements. Usually, a compliance and governance team will help you in designing
the required collection in larger environments.

Configuring credentials
A credential is an object associated with authentication information required to connect
to an external resource. If you need to connect to any external resource outside of SQL
Server, you need a proper way of authenticating to the resource. This resource can be,
for example, a file share with important Extensible Markup Language (XML) files to be
processed daily on SQL Server. In such cases, a credential object can be used to connect to
this file share.

Creating a credential can be done via TSQL or SSMS; in most cases, it's a Windows account
with a proper password. The following code will create a new credential on the server:

CREATE CREDENTIAL [WindowsAcct] WITH IDENTITY = N'DOMAIN\
ServiceAcct', SECRET = N'P@ssw0rd'
--you need to specify the password for the Windows account here
as a plain text

You can map the credential to any amount of SQL Server logins so that the login has
access to external resources. One credential can be used many times, but a SQL login can
have only one credential mapped for usage. To map a credential to a SQL Server login, you
can use the following TSQL query:

ALTER LOGIN [Marek] ADD CREDENTIAL [WindowsAcct]

144 Securing Your SQL Server

Credentials and proxies in SQL Server Agent
Credentials are frequently used with SQL Server Agent jobs. When you
are configuring SQL Server Agent jobs for any automated task, you have to choose a
category for the job step. Several categories allow you to select the security context, which
will be used to run the particular part of the scheduled task. There is usually an option
visible to run the job step within the context of the SQL Server Agent account, but that is
reserved to sysadmin role members only.

If you are not a sysadmin, you need to choose a job proxy, which is in the end mapped to
the existing credential. This choice is active for most of the step types, except the TSQL
script step, which does not utilize a proxy, as illustrated in the following screenshot:

Fig. 4.9 – New SQL Server Agent job

Configuring authentication and authorization 145

We already know how to create a credential, so now we need to create an agent proxy that
will utilize the credential. We can do this via SQL Server Management Studio. In this
case, it's simpler compared to the TSQL script, where we would need to use several stored
procedures with proper parameter mappings.

In the dialog for creating a new proxy, we need to select a proper subsystem that will be
used by the proxy. With SQL Server 2019, the choices are smaller than with older versions,
and the available subsystems are as follows:

•	 Operating System (CmdExec)

•	 PowerShell

•	 SQL Server Analysis Services Query

•	 SQL Server Analysis Services Command

•	 SQL Server Integration Services Package

The following screenshot gives us a good idea of the different subsystems in SQL
Server 2019:

Fig. 4.10 – Configuration of a proxy account

146 Securing Your SQL Server

You can configure one proxy for more subsystems, as you can see in
the preceding screenshot. Once you create the proxy, you need to configure who can
utilize the proxy via the Principals tab in the proxy configuration. Yet again, only
sysadmin role members have default access to utilize the proxy for the agent jobs. You
can add the following principals to the proxy security:

•	 Server logins

•	 Server roles

•	 Roles from MSDB database

To add a new proxy account, you can use the Management Studio and SQL Server Agent
sections, where you can configure the proxies for various subsystems, as illustrated in the
following screenshot:

Fig. 4.11 – Security configuration of a proxy

Once we have added proper principals (SQL Login Marek, in this case), such a login can
utilize the proxy to run the OS commands from SQL Server Agent jobs.

Encrypting SQL Server data 147

Encrypting SQL Server data
When you are storing sensitive data on your SQL Server, you may need to encrypt the
data to protect the data from accidental misuse. Your company may have business and
technical requirements to encrypt the data, or even legal requirements to encrypt any
sensitive information.

SQL Server has many options on how to protect data with encryption, depending on the
need to protect data at rest or in transit. The whole encryption ecosystem in SQL Server is
quite complex and offers many options, as can be seen in the following diagram:

Fig. 4.12 – Encryption hierarchy for SQL Server

148 Securing Your SQL Server

Transparent Data Encryption
One of the options on how to encrypt the data in the database is Transparent Data
Encryption option. This feature has been available since SQL Server 2008 and works at
the input/output (I/O) level. Both file types—data and log—are encrypted on the disk,
and SQL Server does the encryption once the data is written to disk and the decryption
once the data is retrieved from the disk into memory. This encryption works at the page
level and does not have an effect on the size of the database.

Data encryption is totally transparent to the application, so you can turn on the
encryption for any database and any application. This encryption is symmetric using
a Database Encryption Key (DEK), which is stored in the database boot record and is
protected with either one of the following:

•	 Server certificate created in the master database

•	 Asymmetric key protected by the Extensible Key Management or EKM Module

The server certificate is then protected by the master key stored in the master database. To
turn on the transparent database encryption, you need to do the following:

1.	 Create a master key in the master database.

2.	 Create a server certificate in the master database.

3.	 Create a database encryption key protected by the certificate.

4.	 Turn on the encryption.

You can use the following code to turn on the encryption:

USE master;
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Pa$$w0rdF0rM4$t3R';
CREATE CERTIFICATE MyServerCert WITH SUBJECT = 'DEK
Certificate';

USE AdventureWorks
CREATE DATABASE ENCRYPTION KEY WITH ALGORITHM = AES_128
ENCRYPTION BY SERVER CERTIFICATE MyServerCert;
ALTER DATABASE AdventureWorks SET ENCRYPTION ON;

Encrypting SQL Server data 149

Database encryption can also be managed via the GUI, where, in the Tasks/Manage
Database Encryption option of the database, you can choose to turn the encryption on
and off and configure which certificate should be used to protect the database encryption
key and which key length should be used for the database encryption key, as illustrated in
the following screenshot:

Fig. 4.13 – Database encryption management

Turning on database encryption may be a complex task that requires a lot of time. During
the transition stage of your database when the database is getting encrypted, you can use
the database for your application, with some limitations. You can't modify the database
configuration, back up the database, work with snapshots, and so on. To monitor the
progress of the encryption, you can use one of the DMVs named sys.dm_database_
encryption_keys, as illustrated in the following code snippet:

SELECT database_id, encryption_state, key_algorithm, key_
length, percent_complete
FROM sys.dm_database_encryption_keys

150 Securing Your SQL Server

The result from such a query may be similar to this one on your server:

Fig. 4.14 – Encrypted databases

There are two databases with enabled encryption on this server; one of them is
the AdventureWorks database for which we did turn on the encryption, and the other
one is a TempDB system database that is encrypted automatically. You can monitor the
progress with the last column, named percent_complete. When the database has
been encrypted, the column value will be 0 and encryption_state will change to 3.

A very important part of the transparent database encryption is also the certificate
management. Once you encrypt the database, you may get a warning that the certificate
has not yet been backed up. This is very important for any disaster recovery (DR)
situations; otherwise, you'll not be able to restore the database. Not only are the database
files on the server encrypted, but backups also use the same encryption. If you need to
restore the database to another server or you lose your master database and you need to
rebuild your server, you won't be able to restore the encrypted database without having a
certificate on the server. To back up your certificate, you can use the following code:

USE master
BACKUP CERTIFICATE MyServerCert TO FILE = 'C:\Certificate\
MyServerCert.cer'
WITH PRIVATE KEY (FILE = 'C:\Certificate\MyServerCert.pfx',
ENCRYPTION BY PASSWORD = 'Str0ngP@ssw0rd')

To create a certificate from these two files, you can use the CREATE
CERTIFICATE command with proper parameters, as follows:

USE master
CREATE CERTIFICATE MyServerCert FROM FILE = 'C:\Certificate\
MyServerCert.cer'
WITH PRIVATE KEY (FILE = 'C:\Certificate\MyServerCert.pfx',
DECRYPTION BY PASSWORD = 'Str0ngP@ssw0rd')

Encrypting SQL Server data 151

Always Encrypted
SQL Server 2016 has introduced a new way to encrypt the data on SQL Server, which
allows the application to encrypt the data and never reveal the encryption keys to the
database engine. In this way, not even a sysadmin of SQL Server can read the decrypted
values stored in your tables. Unlike the transparent data encryption, which works at
the database level, Always Encrypted works at the column level. Unlike the regular
column-level encryption, Always Encrypted allows more types of queries on the data
such as equality comparisons, joins, group by queries, and so on. Its structure can be
seen in the following diagram:

Fig. 4.15 – Always Encrypted structure

Always Encrypted comes with two flavors of encryption, as follows:

•	 Randomized

•	 Deterministic

Deterministic encryption always generates the same ciphertext for a given value, whereas
Randomized does not and is less predictable. This has an impact on the usage of the
encrypted data. With Randomized encryption, you can't use joins, group by, indexing, or
any equality searches.

To encrypt the data with Always Encrypted, we go by the following steps:

1.	 Right-click on the database and go to Tasks/Encrypt columns.

2.	 Choose the table/column you want to encrypt.

3.	 Select the encryption type from Randomized/Deterministic.

4.	 Configure the Master Key Configuration option.

152 Securing Your SQL Server

The Master Key Configuration option allows you to select the column master key and
the key store. You can store the keys in a Windows certificate store or an Azure Key
Vault service. If you're using the Windows certificate store, you can configure whether
to use the local user or local computer store for the certificate, as illustrated in the
following screenshot:

Fig. 4.16 – Master Key Configuration for Always Encrypted

Once this is turned on, it will automatically encrypt the content of the selected columns,
which will be encrypted with the selected keys.

Data Discovery and Classification
Whenever you need to discover and report any sensitive data in your database, you can
use a new feature called Data Discovery and Classification . When you are discovering
the data, you must also classify and label any data found that fits your classification needs.
There are several use cases for this feature, as follows:

•	 Meeting data privacy standards (for example, General Data Protection Regulation
(GDPR); Payment Card Industry Data Security Standard (PCI DSS); Sarbanes-
Oxley (SOX); Health Insurance Portability and Accountability Act (HIPAA))

Data Discovery and Classification 153

•	 Controlling access to highly sensitive data (for example, personally identifiable
information (PII))

Note
This feature is available for SQL Server 2012 and newer and was introduced
with SQL Server Management Studio 17.5; however, it's recommended to use
the latest version of SQL Server Management Studio.

While you are connected to the SQL Server, you can run classification on your database
with the following steps:

1.	 Right-click the database on which you would like to classify data.

2.	 Choose Tasks.

3.	 Select Data Discovery and Classification.

4.	 Click on Classify data.

In the following screenshot, you can see the classification task on the
WideWorldImporters database:

Fig. 4.17 – Classifying data in the database

154 Securing Your SQL Server

The data classification task automatically detects columns possibly containing sensitive
data. This is based on the column names, so if your database is using cryptic column
names or non-English column names, the automatic suggestion won't find much.

You can, however, add your own classifications via the Add Classification button. In the
following screenshot, you can see how to configure a data classification manually for a
selected column:

Fig. 4.18 – Adding a classification

There are several information types and sensitivity labels to choose from. As an available
Information Type, you can use the following:

•	 Networking

•	 Contact Info

•	 Credentials

•	 Credit Card

•	 Banking

Data Discovery and Classification 155

•	 Financial

•	 Other

•	 Name

•	 National ID

•	 SSN

•	 Health

•	 Date of Birth

And you can add the following labels to such info:

•	 Public

•	 General

•	 Confidential

•	 Confidential – GDPR

•	 Highly Confidential

•	 Highly Confidential – GDPR

•	 N/A

Once you have classified your data (and saved your choice with the Save button), you can
generate a report of your data in the database based on their labels and information types
by following these steps:

1.	 Right-click the database on which you would like to generate a report.

2.	 Choose Tasks.

3.	 Select Data Discovery and Classification.

4.	 Click on Generate Report.

156 Securing Your SQL Server

In the following screenshot, you can see a sample of a generated report for the
WideWorldImporters sample database:

Fig. 4.19 – Data classification report

Not only you can use the Management Studio GUI for data classification—you can also
use TSQL code to add sensitivity labels to your data.

The following is a sample of code that will add a Highly Confidential label and
information type of Financial:

ADD SENSITIVITY CLASSIFICATION TO

 Purchasing.Suppliers.BankAccountNumber

 WITH (LABEL = 'Highly Confidential', INFORMATION_TYPE ='
Financial')

Not only can you use built-in classification, which is included in SQL Server
Management Studio, but you can also customize the information policy and import
this policy to your system. This policy is stored outside of SQL Server and is used by
Management Studio. The format of the policy is a .json file, which includes labels,
information types, and keywords that enable SSMS to detect the possible candidates for
information protection.

SQL Server vulnerability assessment 157

SQL Server vulnerability assessment
SQL Server Management Studio 17.4 was released with a very handy feature—scanning
for vulnerabilities on your databases. It's always better to run with the latest version of
SQL Server Management Studio (screenshots in this book are based on the 18.4 and 18.5
versions). This vulnerability assessment is supported on any SQL Server with version 2012
and higher and checks for a predefined set of vulnerabilities.

To create a new scan, you have to do the following:

1.	 Right-click your database.

2.	 Choose Tasks.

3.	 Select Vulnerability Assessment.

4.	 Click on Scan for Vulnerabilities.

Once the scan is complete, you will be presented with a result view in your SSMS
application, with a summary about failed and passed checks.

In the following screenshot, you can see a sample scan with several categories of
findings—high, medium, and low risk:

Fig. 4.20 – Vulnerability assessment report

158 Securing Your SQL Server

For the failed checks, you are presented with detailed description, impact, and
remediation steps. In some environments, the checks can generate false positives, so you
have an option to Approve as Baseline setting for any checks that you're failing due to the
enterprise policies of your environment.

For larger environments, it's rather impractical to use SQL Server Management
Studio to run these vulnerability assessments. If you need to scan more servers,
you can utilize the SqlServer PowerShell module for this task with the
Invoke-SqlVulnerabilityAssessmentScan command.

In the following screenshot, you can see the output of the scan in PowerShell:

Fig. 4.21 – PowerShell vulnerability assessment scan

Let's now see how to encrypt SQL Server connections.

Encrypting SQL Server connections 159

Encrypting SQL Server connections
Connection to the SQL Server is by default not encrypted, until you configure your
server and client otherwise. When you're connecting to the SQL Server with SQL Server
Management Studio, you can choose to encrypt your connection to the server. In the
following screenshot, we can see how the server connection is configured and how
Management Studio responds to such a connection attempt:

Fig. 4.22 – Encrypted connection to SQL Server

160 Securing Your SQL Server

Let's see how SQL Server responds to such a connection request in the
following screenshot:

Fig. 4.23 – Failed login due to untrusted certificate

As you can see, the connection was not established due to a server certificate that
is not trusted. If the SQL Server is not configured to use any certificate, it will
automatically generate a self-signed one during the instance startup, as illustrated
in the following screenshot:

Encrypting SQL Server connections 161

Fig. 4.24 – Log snippet with certificate creation event

What you would actually like to do is to utilize a certificate created by a Certification
Authority (CA) for your SQL Server.

Note
Obtaining a certificate is a complex task that is heavily dependent on your
infrastructure and business needs. You can use either an internal or external
CA to get the proper certificate for your server. With HA deployments,
certificate management gets more complex since you have to consider either
a SQL Server Virtual Network Name (SQL VNN) for AlwaysOn Failover
Cluster Instances or a Availability Group Listener name for AlwaysOn
Availability Groups deployment.

Providing you have obtained your certificate for SQL Server, you can use SQL Server
Configuration Manager to select or import (which is new for SQL Server 2019) the
certificate for Transport Layer Security (TLS) connection encryption. The following are
the steps required to install a certificate for a SQL Server instance:

1.	 Open SQL Server Configuration Manager.

2.	 Navigate to SQL Server Network Configuration.

3.	 Right-click Protocols for MSSQLSERVER (or your instance name).

4.	 Choose the Certificate tab and either locate the certificate via the drop-down menu
if the certificate is already installed or choose Import to install a new certificate.

5.	 Select Next and Next again to finish the import task.

162 Securing Your SQL Server

In the following screenshot, you can see the import of the certificate:

Fig. 4.25 – Importing a certificate for SQL Server

Once the certificate is imported, you need to restart your SQL Server service for the
changes to take effect. In today's networks, you would like to utilize encryption based on
the TLS1.2 protocol; however, if you check your operation system's registry, you may be
quite surprised about default installations. In the following screenshot, you can see the
registry setting from the default installation of Windows Server 2019:

Encrypting SQL Server connections 163

Fig. 4.26 – Encryption protocol configuration

To configure your server to use modern TLS1.2 protocol encryption, you have to do
the following:

1.	 Open Registry Editor.

2.	 Navigate to HKLM\SYSTEM\CurrentControlSet\Control\
SecurityProviders\SCHANNEL\Protocols hive.

3.	 Create appropriate TLS1.2 entries.

The required TLS1.2 entries are as follows:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\
SecurityProviders\SCHANNEL\Protocols\TLS 1.2]

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\
SecurityProviders\SCHANNEL\Protocols\TLS 1.2\Client]
"DisabledByDefault"=dword:00000000 "Enabled"=dword:00000001

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\
SecurityProviders\SCHANNEL\Protocols\TLS 1.2\Server]
"DisabledByDefault"=dword:00000000 "Enabled"=dword:00000001

Once all components of the configuration are in place, you can connect to your SQL
Server with encrypted communication and verify that your connection is encrypted. You
will need the following to check that your connection is encrpted:

•	 Proper SQL Server build

•	 Installed and trusted certificate

•	 Configured OS registry

164 Securing Your SQL Server

In the following screenshot, you can see SQL Server Management Studio working with
encrypted connection (little padlock icon):

Fig. 4.27 – Encrypted connection to SQL Server

Using encryption for the SQL Server connections adds another security layer to your
configuration and provides protection from several possible network attacks.

Summary
Security is a very important part of your SQL Server deployment, and in this chapter, we
have seen many options that you can use to secure your SQL Server environment. You
are making important choices already during the setup of your environment, whereby
you configure the service accounts and authentication. Once you have SQL Server up and
running, you have to configure SQL Server logins for your groups and accounts, which
provide them proper access to the SQL Server.

It's important to understand the difference between authentication and authorization.
Just because you can log in to the SQL Server does not give you the rights to change
configuration, access data, or perform any data changes. There are many configuration
items that require sysadmin role membership and there's a frequent push from application
teams and application DBAs to be part of this restricted server role, but you should
limit the members of the sysadmin role as much as possible. The same can be said for
the security admin role, which has very high privileges on the system.

In the next chapter, we will look into the backup and restore operations for SQL Server,
which are an important part of the whole DR strategy.

5
Working with

Disaster Recovery
Options

High availability (HA) and disaster recovery (DR) are important solutions for an
enterprise strategy concerned with data availability. SQL Server has several different
features available for implementing HA and DR scenarios. These will help you increase the
availability metric of your SQL Server environment and the applications that are using the
data stored on SQL Server.

High availability and disaster recovery are frequently mixed up as many people think
they are the same; however, they are not. HA helps you eliminate a single point of failure
and provides features and services to keep your environment online, even in case of
an incident. DR, on the other hand, is a process you would use to recover from larger
accidents. Even if you have a solution for HA in place, this does not mean that you can
recover from a disaster or that you have a DR plan.

In this chapter, we'll explore the disaster recovery basics to understand the common terms
in relation to HA and DR, and we will also discuss what SQL Server has to offer regarding
HA/DR options.

166 Working with Disaster Recovery Options

The following topics will be covered in this chapter:

•	 Understanding the basics of disaster recovery

•	 SQL Server options for high availability and disaster recovery

•	 Configuring replication on SQL Server

•	 Configuring database mirroring

•	 Configuring log shipping

Let's get started!

Understanding the basics of disaster recovery
Disaster recovery is a set of tools, policies, and procedures that help us while recovering
our systems after a disastrous event. DR is just a subset of a more complex discipline
called business continuity planning, where more variables come into place and you
expect more sophisticated plans on how to recover the business operations. With careful
planning, you can minimize the effects of the disaster – however, you must keep in mind
that it's nearly impossible to completely avoid disasters. Such a set of tools, policies, and
procedures would be used, for example, during natural disasters when your data center or
site of operations is compromised. Another great example that's very relevant today is all
kinds of cyberattack, where your infrastructure may be compromised.

The main goal of a DR plan is to minimize the downtime of our service and to minimize
data loss. To measure these objectives, we use special metrics: Recovery Point and Time
Objectives.

The Recovery Time Objective (RTO) is the maximum time that you can use to recover
the system. This time includes your efforts to fix the problem without starting the DR
procedures, the recovery itself, proper testing after DR, and communicating with the
stakeholders. Once a disaster strikes, clocks are started to measure the DR actions, and
the Recovery Time Actual (RTA) metric is calculated. If you manage to recover the
system within the RTO, which means that RTA < RTO, then you have met the metrics
with a proper combination of the plan and your ability to restore the system. If the policy
requires you to bring your SQL Server back to operation after disaster within 8 hours
(that's your RTO) and you manage to do this in 6 hours, (that's your RTA) then you have
met your Service-Level Agreements (SLAs) for DR.

Understanding the basics of disaster recovery 167

The Recovery Point Objective (RPO) is the maximum tolerable period for acceptable
data loss. This defines how much data can be lost due to disaster. This closely relates to
our backups, which were discussed in Chapter 3, Implementing Backup and Recovery. The
RPO has an impact on your implementation of backups because you plan for a recovery
strategy that has specific requirements for your backups. If you can avoid losing 1 day of
work, you can properly plan your backup types and the frequency of the backups that you
need to take.

The following diagram shows the very concepts that we discussed in the preceding
paragraph:

Fig. 5.1 – Business continuity planning

When we talk about system availability, we usually use a percentage of the availability
time. This availability is the calculated uptime in a given year or month (any date metric
that you need) and is usually compared to the table of 9s shown in the following figure.

168 Working with Disaster Recovery Options

Availability also expresses a tolerable downtime in a given time frame so that the system
still meets the availability metric. The following table shows some basic availability
options, along with tolerable downtime per year and downtime per day:

Fig. 5.2 – High availability "niners"

This tolerable downtime consists of unplanned downtime, which can be caused by
many factors:

•	 Natural disasters

•	 Hardware failures

•	 Human errors (accidental deletes, code breakdowns, and so on)

•	 Security breaches

•	 Malware

For these, we can put a mitigation plan in place that will help us reduce the downtime to
a tolerable range. We usually deploy a combination of HA solutions and DR solutions so
that we can quickly restore the operations. On the other hand, there's a reasonable set of
events that require downtime on your service due to maintenance and regular operations,
but these do not affect the availability on your system. These can include the following:

•	 New releases of the software

•	 Operating system patching

•	 SQL Server patching

•	 Database maintenance and upgrades

Understanding the basics of disaster recovery 169

Our goal is to have the database online as much as possible, but there will be times when
the database will be offline. From the perspective of management and operations, we're
talking about several keywords such as uptime, downtime, time to repair, and time
between failure, as shown in the following diagram:

Fig. 5.3 – DR metrics

Disaster recovery exercises
It's critical not only to have a plan for DR, but also to practice for DR itself. Many
companies follow the procedure of a proper DR plan by testing with different types of
exercises, where each and every aspect of the DR is carefully evaluated by teams who are
familiar with the tools and procedures for a real disaster event. These exercises may have
different scopes and frequencies, as listed here:

•	 Tabletop exercises usually involve only a small number of people and focus on a
specific aspect of the DR plan. This would be a DBA team drill to recover a single
SQL Server or a small set of servers with simulated outage.

•	 Medium-sized exercises will involve several teams to practice team communication
and interaction.

•	 Complex exercises usually simulate larger events such as data center loss, where a
new virtual data center is built and all the new servers and services are provisioned
by the involved teams.

170 Working with Disaster Recovery Options

Such exercises should be run on a periodic basis so that all the teams and team personnel
are up to speed with the DR plans. On top of verifying the procedures, you'll also discover
whether the backups you have available are consistent and can be used for the recovery
process. This should, however, be part of the backup routine, to verify the backups. You
need to realize that RPO and RTO are restoration procedure metrics; however, someone
needs to make a quick decision regarding what procedures to follow. Proper training will
help your team better understand all possible recovery procedures and plans.

Now, we'll move on and look at the specific features of SQL Server for DR configuration.

SQL Server options for high availability and
disaster recovery
SQL Server has many features that you can put in place to implement a HA/DR solution
that will fit your needs. These features include the following:

•	 Always On Failover Cluster (FCI)

•	 Always On Availability Groups

•	 Database mirroring

•	 Log shipping

•	 Replication

In many cases, you will combine one or more of these features together since your HA and
DR needs will overlap. HA/DR does not have to be limited to just one single feature. In
complex scenarios, you'll plan for a primary HA solution and secondary HA solution that
will work as your DR solution at the same time.

Always On Failover Cluster
An Always On Failover Cluster (FCI) is an instance-level protection mechanism that is
based on the Windows Server Failover Cluster (WSFC) feature. A SQL Server instance
will be installed across multiple WSFC nodes, where it will appear in the network as a
single computer.

SQL Server options for high availability and disaster recovery 171

All the resources that belong to one SQL Server instance (disk, network, names, and
so on) can be owned by one node of the cluster. During any planned or unplanned
event, such as the failure of any server component, these can be moved to another
node in the cluster to preserve operations and minimize downtime, as shown in the
following diagram:

Fig. 5.4 – Failover cluster

In the next section, we'll dive into Availability Groups, which use WSFC too, but usually
with different storage deployment options.

Always On Availability Groups
Always On Availability Groups were introduced with SQL Server 2012 to bring database-
level protection to SQL Server. As with the FCI, Availability Groups utilize the Windows
Failover Cluster feature, but in this case, a single SQL Server is not installed as a clustered
instance but runs independently on several nodes. These nodes can be configured as
Always On Availability Group nodes to host a database, which will be synchronized
among the hosts. The replica can be either synchronous or asynchronous, so Always
On Availability Groups are a good fit either as a solution for one data center or even
distant data centers to keep your data safe. With new SQL Server versions, Always On
Availability Groups were enhanced and provide many features for database HA and DR
scenarios.

172 Working with Disaster Recovery Options

New features of SQL Server 2019 for Always On Availability Groups include the
following:

•	 Up to five synchronous replicas, where the previous version of SQL Server 2017
was able to utilize only three

•	 Secondary to Primary replica connection redirection

•	 Software assurance HA/DR benefits

You can refer to the following diagram for a better understanding of the architecture:

Fig. 5.5 – Always On Availability Groups

Next, we'll look at technologies such as database mirroring, log shipping, and
replication, which do not require the WSFC feature.

Database mirroring
Database mirroring is an older HA/DR feature available in SQL Server that provides
database-level protection. Mirroring allows us to synchronize our databases between two
servers, where you can include one more servers as witness servers for failover quorum.

SQL Server options for high availability and disaster recovery 173

Unlike the previous two features, database mirroring does not require any special setup
such as failover clustering, and the configuration can be achieved via SSMS using a
wizard available via database properties. Once a transaction occurs on the primary node,
it's copied to the secondary node of the mirrored database. With proper configuration,
database mirroring can provide failover options for HA with automatic client redirection.

Database mirroring is not a preferred solution for HA/DR since it's marked as
a deprecated feature from SQL Server 2012 and has been replaced by Basic Availability
Groups on current versions. More details on Always On Availability Groups, including
Basic Availability Groups, will be provided in Chapter 9, Configuring Always On
High-Availability Features.

Log shipping
Log shipping configuration, as the name suggests, is a mechanism used to keep
a database in sync by copying the available logs to the remote server. Log shipping, unlike
mirroring, does not copy each single transaction, but copies the transactions in batches
via a transaction log backup on the primary node and a log restore on the secondary
node. Unlike all the previously mentioned features, log shipping does not provide an
automatic failover option, so it's considered more of a DR option than a HA one.

Log shipping operates on regular intervals where the following three jobs run
independently or may run on the same or different frequency (if required):

•	 A backup job to back up the transaction log on the primary system

•	 A copy job to copy the backups to the secondary system

•	 A restore job to restore the transaction log backup on the secondary system

Log shipping supports multiple standby databases, which is quite an advantage compared
to database mirroring. One more advantage is the standby configuration for log shipping,
which allows read-only access to the secondary database. This is mainly used for many
reporting scenarios, where the reporting applications use read-only access and such
configuration allows performance offload to the secondary system.

Replication
Replication is a feature used for moving data from one server to another and allows
for many different scenarios and topologies.

174 Working with Disaster Recovery Options

Note:
Replication uses a Publisher/Subscriber model, where the Publisher is the
server offering the content via a replication article and the Subscribers are
getting the data.

The configuration is more complex compared to mirroring and log shipping but allows
much more variety in terms of configuring security, performance, and topology.

Replication has many benefits, and a few of them are as follows:

•	 Works at the object level (whereas other features work at the database or instance
level)

•	 Allows merger replication, where more servers synchronize data between
each other

•	 Allows bi-directional synchronization of data

•	 Allows more than one SQL Server partner (Oracle, for example)

There's several different replication types that can be used with SQL Server. You can
choose them based on your needs for HA/DR and the data availability requirements on
the secondary servers. These options include the following:

•	 Snapshot replication

•	 Transactional replication

•	 Peer-to-peer replication

•	 Merge replication

In the next section, we will look at SQL Server replication in detail.

Configuring replication on SQL Server
In this section, we will focus on SQL Server replication in detail and we'll learn how
to configure replication for a database between different servers. Like with many other
features, the configuration can be done with SQL Server Management Studio (SSMS)
or with Transaction-SQL (T-SQL) code, which sometimes provides greater flexibility. Be
aware that replication is one of the features that you can configure immediately during
installation so that it's available on your system. If you haven't installed the feature, you
can always add replication to your existing SQL Server instance, as follows:

Configuring replication on SQL Server 175

Fig. 5.6 – SQL Server Replication setup

The replication topology includes several roles for servers and offers various scenarios.
The primary roles we will be working with are as follows:

•	 The Publisher: The Publisher is the primary server in the replication topology
and hosts the source data. On the Publisher server, we need to create a
replication publication, which is a unit for replication containing one or more
articles that are distributed to the Subscriber servers.

•	 The Subscriber: The Subscriber is the server that stores the replica and receives
updates from the original data. Between the Subscriber and Publisher, there's one
more role called the Distributor.

•	 The Distributor: The Distributor server is usually collocated with the Publisher,
but in more complex scenarios, this can be a standalone server for performance
and scalability reasons. The Distributor utilizes a database that appears among the
system databases in the SSMS, which is usually called the Distribution, but this can
be altered during the configuration. We can start with the Distributor configuration
and then choose if SQL Server will do one of the following:

a) Act as its own Distributor.

b) Utilize another SQL Server as a Distributor.

176 Working with Disaster Recovery Options

In the following screenshot, you can see the distributor configuration, which can either be
collocated with a Publisher or be standalone, where the Distributor role is dedicated to a
separate SQL server:

Fig. 5.7 – Distributor configuration

Once you've finished the configuration, you will have configured the following:

•	 The Distributor database

•	 Replication snapshot folder

•	 Distribution profile

•	 Assigned a distributor for your Publisher

You can then check the Distributor properties for your SQL Server by
right-clicking on Replication and choosing Distributor Properties, as shown
in the following screenshot:

Fig. 5.8 – Distribution databases configuration

Configuring replication on SQL Server 177

Now that we have configured our Distribution databases, we will learn how to create a
Publication, configure the Subscription, and replicate agents in the following sections.

Creating a Publication
A Publication is a unit for data replication. You can create a Publication via SSMS if you
go to the replication/local Publications menu item and right-click on Local Publication.
Here, you can select a New Publication item, which will start a wizard for you. This
wizard will guide you through the whole Publication configuration. The first choice
that you have to make is what sort of replication publication you want to create. You can
choose from the following:

•	 Snapshot

•	 Transactional

•	 Peer-to-peer

•	 Merge

In the following screenshot, you can actually see the type of publications you can create
with SQL Server:

Fig. 5.9 – Creating a Replication publication

178 Working with Disaster Recovery Options

Let's read a little about each type of publication:

•	 A Snapshot publication will create a snapshot of your data, which will be
periodically transferred to the subscribing servers. The snapshot will include the
data that's present on the Publisher at the time of the snapshot's creation. Until you
create a new snapshot and distribute the snapshot to the subscribing servers again,
they will not receive any updates by default.

•	 Transactional replication is based on the Snapshot publication (it can be also
based on the backup in more complex types of setup), and after the snapshot is
applied to the subscribing servers, each transaction will be copied to keep the
subscribing servers in sync.

•	 Peer-to-peer replication allows multi-master data synchronization, where all the
nodes in the Replication can update the data and distribute the changes. This type
of replication is available only in the Enterprise Edition and is more complex to
maintain due to there being a higher chance of conflict regarding the data updates.

•	 Merge replication is based on the snapshot publication, which is distributed
to the subscribing servers, and after the snapshot is applied, the Subscriber
and Publisher can both update the data and merge the changes between each other.

Once you choose the type of Publication you wish to use, you need to configure
the Articles.

Articles consist of the replicated objects, which can be any of the following:

•	 Tables

•	 Views

•	 Indexed views

•	 Stored procedures

•	 User-defined functions

What you might be missing here is the option to replicate user-defined types, which can
be replicated either via pre-snapshot scripts or by the Article Properties where user-
defined data types would be converted into base data types.

Configuring replication on SQL Server 179

When you are configuring Articles, you can use both horizontal and vertical filtering,
which means that you can choose which columns on a table to view and which rows
should be replicated.

As shown in the following screenshot, if you don't use any filters, all the table columns and
rows will be added to the Publication for Replication by default:

Fig. 5.10 – Configuring Replication Articles

Once you have selected the objects that you would like to publish, you have to configure
the schedule for the snapshot's creation. You have two options:

•	 Create the snapshot immediately

•	 Schedule the snapshot's creation

180 Working with Disaster Recovery Options

If you are working with a small database or a small number of objects to publish, you
can create the snapshot immediately because if it's small, it won't put much load on your
server. However, if you're planning to create a snapshot for a large database with a large
amount of objects, you may need to postpone the snapshot's creation until after business
hours or in a time window when your server is less loaded. This is recommended due to
the load on the I/O subsystem caused by generating the snapshot.

In the following screenshot, you can see the configuration settings for Snapshot Agent,
which are used either to run the agent immediately or schedule the snapshot's creation.
Scheduling will be used to optimize the server load and postpone the snapshot's creation
until after business hours:

Fig. 5.11 – Snapshot Agent configuration

Configuring replication on SQL Server 181

After you've configured the schedule, you have to configure Snapshot Agent Security,
where you need to set up credentials for Snapshot Agent and configure how the agent
will connect to the Publisher to get the data for the snapshot. You can either use the SQL
Server Agent account or configure your own account for the connection and
agent credentials:

Fig. 5.12 – Replication Agent Security configuration

182 Working with Disaster Recovery Options

If you would like to use the T-SQL scripts to create the publication for
snapshot Replication, you can use the following code, assuming that you have
the AdventureWorks database available on your SQL Server:

Note:
You can download sample databases for the MS SQL Server at https://
github.com/Microsoft/sql-server-samples/
tree/master/samples/databases/adventure-
works, where you can find the AdventureWorks database,
the WideWorldImporters database, and samples for analysis, reporting,
and integration services. There are also specific databases for data warehouse
scenarios, which may be helpful for your learning purposes. Such databases
should be deployed only to test/dev servers and it's a good practice never to put
those on production systems.

1.	 The following code can be used to enable Replication:

use [AdventureWorks]
exec sp_replicationdboption @dbname = N'AdventureWorks',
 @optname = N'publish',
 @value = N'true'
GO

2.	 Once Replication has been enabled for the database, you can create the publication
and add the snapshot:

exec sp_addpublication @publication = N'AWorks - Test',
 @description = N'Snapshot publication of database
 ''AdventureWorks'' from Publisher ''SQL''.',
 @sync_method = N'native',
 @snapshot_in_defaultfolder = N'true',
 @repl_freq = N'snapshot',
 @status = N'active',
 @independent_agent = N'true'
GO

exec sp_addpublication_snapshot @publication = N'AWorks -
Employee', @frequency_type = 1

https://github.com/Microsoft/sql-server-samples/tree/master/samples/databases/adventure-works
https://github.com/Microsoft/sql-server-samples/tree/master/samples/databases/adventure-works

Configuring replication on SQL Server 183

Finally, you have to add some articles to the publication – in this case, one table from the
HumanResources schema called Employee:

use [AdventureWorks]
exec sp_addarticle @publication = N'AWorks - Employee',
 @article = N'Employee',
 @source_owner = N'HumanResources',
 @source_object = N'Employee',
 @destination_table = N'Employee',
 @destination_owner = N'HumanResources',
 @schema_option = 0x000000000803509D
GO

In this way, we have created a snapshot for one single table from
the AdventureWorks database named HumanResources.Employee, which is now
available as a publication. Once we have the publication in place, we can configure the
subscription.

Configuring the subscription
We can subscribe to existing publications again via the GUI or T-SQL scripts. You need
to know the server name where you're hosting your publications so that you can connect
to the proper Publisher. Once you are connected to the Publisher, you can select the
Publication that you want to subscribe to, as shown in the following screenshot:

Fig. 5.13 – Subscription configuration

184 Working with Disaster Recovery Options

Subscriptions can be configured in two ways:

•	 Push subscription

•	 Pull subscription

The difference between these two is where the Distributor agent will run. With push
subscription, the Distributor agent will run on the Distributor server (usually collocated
with the Publisher), whereas the pull subscription configuration uses Subscribers to
run the agents. This has a performance impact for larger environments, but for simple
configurations, it's fine to run the distribution agents on the Distributor server. For
higher loads, I would recommend having isolated distributor or agents running on the
Subscriber with pull subscriptions. Once you have selected the Publication, you need
to configure the Subscribers, mainly the server names and the subscription databases.
Subscription databases may already exist and the Publication will add data to the existing
database, or the dialog will let you create a new database for your subscription:

Fig. 5.14 – Subscriber database configuration

Last but not least, you have to configure the security profiles for your Distribution
Agent security and, as with Snapshot Agent, you can use a separate account or
impersonate the account used by the SQL Server Agent service:

Configuring replication on SQL Server 185

Fig. 5.15 – Distribution Agent Security configuration

Once you've finished the configuration dialog, you will have an active subscription for
your publication with snapshot replication.

186 Working with Disaster Recovery Options

Replication agents
So far, we have seen a Snapshot Agent, which we configured for snapshot replication. The
Snapshot Agent runs a binary named snapshot.exe, which usually runs on
the Distributor server. In many cases, the Distributor and Publisher are the same. This
agent is not only used for snapshot replication, but also for any other replication types
as they rely on snapshot in the beginning. The Snapshot Agent stores the data in the
configured snapshot folder and captures important information about synchronization in
the distribution database.

Another important agent is the Log Reader Agent, which is used to configure the
Replication as transactional. The Log Reader Agent runs a binary named logread.
exe, which is used to check all the databases that are configured for transactional
replication. The Log Reader Agent scans the transaction log of a published database for
any new transactions. Once new transactions are found, they are put into the distribution
database and marked for replication. The distribution agent is then responsible for
distributing the transactions to the subscribers.

Both snapshot and transactional replications also use a distribution agent. This agent
runs a binary named distrib.exe, which is responsible for moving snapshots and
transactions from the distribution database to Subscribers. If the replication is configured
as a push replication, then the agent will run on the Distributor server; in the case of pull,
it will run on the Subscribers.

More complex scenarios for transactional replication utilize a Queue Reader agent, which
is used in situations where transactions are not applied immediately to the Subscribers.
Merge replication uses its own type of agent, called a Merge agent.

With that, we have finished the replication configuration and we're ready to move on to
another HA/DR technology.

Understanding database mirroring
Database mirroring is a technology used for both HA and DR, which allows for rich
configuration. Mirroring is largely replaced by other features of MS SQL Server, mainly
Always On Availability Groups. Mirroring should not be considered a primary HA/
DR option for new deployments; however, it's still important to understand mirroring,
especially because of migrations from older SQL Server installations, which may still use
mirroring for HA/DR.

Understanding database mirroring 187

Mirroring uses up to three server roles:

•	 Principal

•	 Mirror

•	 Witness

The principal server holds the database that is mirrored. This database has to be
configured with the Full Recovery model in order to participate in the mirroring
configuration. The mirror server holds a mirrored copy of the database, but unlike
replication or log shipping, this database is not available for user access. The witness
server can be configured in case you would like to utilize automatic failover of the
mirrored database between the principal and mirror server due to unavailability of
the principal.

Database mirroring operates in three modes. Each mode has its advantages and
disadvantages, and it's important to understand these in order to choose the right mode
for your setup. These modes are as follows:

•	 High performance

•	 High safety without automatic failover

•	 High safety with automatic failover

High performance mode requires the Enterprise Edition of SQL Server, whereas the
other two modes can work with the Standard Edition as well. High performance mode
uses asynchronous processing, which means that a transaction is committed on the
principal server first and then on the mirror without any delays. The other two modes use
synchronous processing, so the transaction has to be committed on the mirror and the
principal in order for the application to continue. Due to the two commits – one on the
principal server and one on the mirror server – high safety modes are not used on slower
networks because they can cause slower application performance.

Automatic failover can only occur with witness server configuration. The witness server
is connected to both partners – the principal and mirror servers – and can operate with
minimum resources and lower editions, such as Express.

To prepare for mirroring, you need to have the database on both servers. To do this, you
need to take a database backup and a log backup and restore both to the mirror server.
You can use GUI or T-SQL scripts to perform the backups and restore the database to its
operational state using the recovery option.

188 Working with Disaster Recovery Options

Configuring database mirroring
To configure mirroring, you need to perform several steps. A lot of important
information about mirroring your database can be found in the mirroring item in the
database properties.

First, you need to configure your security options, where you will define your principal,
witness, and mirror servers, including their port numbers. These port numbers will be
used for creating endpoints on each SQL Server, which will be used for mirroring sessions,
as shown in the following screenshot:

Fig. 5.16 – Principal Server Instance configuration for mirroring

Once you have configured the security aspects, you can start the mirroring process for the
selected database via the Start Mirroring button in the dialog:

Understanding database mirroring 189

Fig. 5.17 – Mirroring settings in the Database Properties window

As you can see, the High safety with automatic failover (synchronous) option is not
available as the configuration for the witness server was skipped. Once mirroring is
operational, you can use the Failover button to switch the roles of the mirror and
principal servers.

190 Working with Disaster Recovery Options

Mirroring is usually not used on new deployments and runs mostly on legacy
environments as it's a deprecated feature since SQL Server 2012. Today, mirroring is
largely replaced by Availability Groups, which offer more flexibility, monitoring options,
and performance.

With that, we have finished this section about mirroring and we're ready to start looking
at log shipping, which is a pure DR technology.

Configuring log shipping
Log shipping is a DR technology as there is no automatic failover available with this
solution. With a database configured for log shipping, there are several automated jobs
that periodically back up the transaction log and restore the log to a different server. This
server can be used for many scenarios, such as the following:

•	 Warm standby for Disaster Recovery

•	 Reporting offloads

DR configuration is mainly used for a warm standby server. This server has data in
near sync – which is not 100% the same as the primary server. One of the advantages of
such a warm standby is that you have the option to bring up the server quickly during
a disaster. Log shipping has quite a simple architecture, where you have only two main
server roles – primary and secondary. With log shipping, you can configure more
secondary servers that will host the database for DR scenarios for warm standby or
reporting. The same configuration can be achieved with replication, where you can have
multiple Subscribers for the published database.

To start with the log shipping configuration, you have to open Database Properties and
go to the menu item for Transaction Log Shipping, as shown in the following screenshot:

Configuring log shipping 191

Fig. 5.18 – Transaction Log Shipping configuration page

You need to enable the primary database in the Transaction Log Shipping configuration
and configure the backup job. This backup job requires configuration for the following:

•	 Network path where the backups will be stored

•	 Job schedule – frequency of the backups

•	 Backup file retention – how long to keep the backups

•	 Compression settings

•	 Alert threshold to notify the DBA if backups don't run

192 Working with Disaster Recovery Options

In the following screenshot, you can see that you can use the backup setting configuration
for log shipping, which requires several items to be entered. This also defines the
frequency of the backups for one of the log shipping jobs:

Fig. 5.19 – Configuring log shipping backups

Once you have configured the job, you can add the instances that will be used as
secondary servers to the log shipping configuration. You can configure the initial database
load option, which will take a fresh backup of the database and restore the database to the
secondary server.

Configuring log shipping 193

If you have done all the initialization steps manually, you can skip this option using the
Initialize Secondary Database setting. On the Copy Files tab, you have to configure the
copy job settings, mainly how often the copy job copies the backups from the primary
server to the secondary server. The third tab will allow you to choose the restore options
for the database. There are two restoring options that you can choose from:

•	 No recovery mode

•	 Standby mode

No recovery mode will keep your database in restoring mode and will not be accessible
to your users. The database will only be used by the log shipping feature on the secondary
server to restore the logs periodically. If you would like to work with the database on the
secondary server, then you need to use Standby mode, which allows read-only access
to the databases. This is particularly useful for any offloading for reporting applications,
which mostly use read-only access to data.

The following screenshot shows the option for choosing between these choices:

Fig. 5.20 – Log shipping configuration – restore options

194 Working with Disaster Recovery Options

Once the configuration has been completed, the database will be placed into the
proper mode on the secondary server based on the configuration, as shown in the
following screenshot:

Fig. 5.21 – Log shipping configuration

In the following screenshot, you can see two databases, where one is set to no recovery
mode the other is set to standby mode. When set to standby mode, the database allows
read-only access to the data, which can be very useful for reporting purposes and
offloading the read-only workload from the primary server:

Configuring log shipping 195

Fig. 5.22 – Databases on the secondary server

You can also use T-SQL for configuring log shipping. For such a task, there's a bunch of
stored procedures you can use. The steps for configuring log shipping via T-SQL would be
as follows:

1.	 Initiate the database on the secondary server using backups.

2.	 On the primary server, use sp_add_log_shipping_primary_database.

3.	 On the primary server, use sp_add_jobschedule to add a schedule for the log
shipping backup job.

4.	 Enable the backup job since the job is automatically disabled.

5.	 On the secondary server, use the sp_add_logshipping_secondary_
primary procedure to supply details about the primary server.

6.	 On the secondary server, use sp_add_jobschedule to add a schedule to the
copy and restore jobs.

7.	 On the primary server, use the sp_add_logshipping_primary_secondary
procedure to update the primary server with information about the secondary
instance.

196 Working with Disaster Recovery Options

Switching log shipping roles
Servers in the log shipping configuration can be utilized for DR, but this process is mostly
manual. Let's begin!

1.	 To switch the primary and secondary servers, you need to copy all the available
backups to the secondary server. If this is a planned role switch, then you need to
take a tail-log backup on the primary database, as follows:

USE master
GO
BACKUP LOG DW TO DISK = 'c:\backups\DW.trn' WITH
NORECOVERY

2.	 Once you have finished the tail-log backup, you have to copy the backup to the
secondary server and restore the backup using the following script:

RESTORE LOG DW FROM DISK = 'c:\backups\DW.trn' WITH
RECOVERY

As you have taken a tail-log backup on the primary server, this has left the
database in restoring mode, which allows you to quickly configure the log shipping
again and make the primary server the secondary server.

3.	 If the primary server is not accessible and you can't take the tail-log backup
anymore, you need to make sure that all the copied transaction log backups
have already been restored, and then just make the database available with the
following command:

RESTORE DATABASE DW WITH RECOVERY

This command will bring the database online, but due to the unavailability of
the tail-log backup, you'll be introducing some data loss to the environment,
depending on the schedule for your backups and the volume of the data changes
on the primary server.

Summary 197

In the following table, you can see a matrix comparing the solutions in terms of automatic
failover and RPO/RTO:

Fig. 5.23 – HADR feature comparison

Summary
In this chapter, we introduced you to the DR discipline and the big picture of business
continuity on SQL Server. DR is not only about having backups, but about the ability to
bring the service back so that it can perform operations after severe failures.

We have looked at several options that can be used to implement part of DR on SQL
Server, such as log shipping, replication, and mirroring. An HA/DR configuration is an
essential step in most SQL Server deployments. All three features we discussed in this
chapter are still in use today, although mirroring has been retired in many environments
and is being replaced with the more flexible Availability Groups, which will be discussed
in Chapter 9, Configuring Always On High Availability Features. Throughout this chapter,
you have seen the configuration options for all three features, which can help you deploy
them in to your environments.

In the next chapter, we'll focus on indexing strategies and introduce various index types
that you can use to optimize the performance of your SQL Server environment.

6
Indexing and
Performance

Maintaining and troubleshooting Microsoft SQL Server's performance entails a very
wide set of tasks that depend on several factors, all of which are handled by administrators
and developers, sometimes independently and sometimes in conjunction. There's a strong
need for the cooperation of these two roles when working with SQL Server, which is
why even if this book is taking SQL Server topics from an administrator's point of view,
we will go through some development tips and tricks briefly to show some cases of
performance lag.

In this chapter, we will understand what performance is and enumerate the prerequisites
required for successful monitoring and tuning. We will also provide a top-level overview
of monitoring procedures. We will learn how use the tools required, as well as how to read
and interpret results measured by the tools. For developers, we will look at the usage of
different kinds of indexes and how they work. From an administrator's perspective, we
will find out how to diagnose the usefulness and health of indexes. Finally, with the help
of examples, we will see how typical issues with performance occur, how to identify them,
and how to resolve such issues.

200 Indexing and Performance

All this will be covered under the following topics:

•	 Explaining SQL Server internals

•	 SQL Server protocols

•	 Performance monitoring overview

•	 Tools for monitoring performance

•	 Indexes and maintenance

•	 Common performance issue patterns

Let's get started!

Explaining SQL Server internals
Your SQL Server workload and environment may not run with the performance you
expect or require, and you'll need to troubleshoot SQL Server. For a good troubleshooting
approach, you need to have a basic understanding of the SQL Server architecture and
internals since SQL Server is a very complex software. There are four main components
of the SQL Server architecture:

•	 SQLOS

•	 Storage engine

•	 Query processor

•	 Protocol layer

In the following image, you can see all these components and their relationship:

Fig. 6.1 – SQL Server architecture components and relationships

We'll look at the protocols first.

SQL Server protocols 201

SQL Server protocols
Any application that requires a connection to our SQL Server needs to communicate
either over a network or locally on the same server via a protocol layer. SQL Server
communication is based on tabular data stream packets, which are encapsulated into
a common communication protocol. There are several options available for you, which
you can configure in the SQL Server Configuration Manager tool. If you expand SQL
Server Network Configuration, you'll see the network configuration for your instance:

Fig. 6.2 – SQL Server Network Configuration for your instance

The available protocols are as follows:

•	 TCP/IP: This is the most common choice for SQL Server deployments.

•	 Shared Memory: This is the simplest protocol and can only be used locally, and not
for remote connections.

•	 Named Pipes: This is a protocol developed for LAN connections. It can work
remotely.

For most deployments, we need to properly configure the instance TCP/IP settings
with regards to the available port numbers, which, on the default instance, are set
to TCP/1433. However, on named instances, these are selected randomly. These random
port numbers can cause issues with the Service Principal Name (SPN) registration. The
SPN is a unique identifier of a SQL Server instance used by Kerberos authentication. To
check the registered SPNs, you can use the following command. Here, <account> is the
service account used to run your SQL Server services:

setspn -l <account>

202 Indexing and Performance

There can be two types of SPNs registered for your SQL Server, which are MSSQLSvc for
your SQL Server database engine and MSOLAPDisco.3 for the analysis services. To
register the SPN for a named instance, you'll need to know the name of the instance and
the port on which the instance is running. Considering that our SQL Server will run with
the CONTOSO\sqlService account, we can use the following code to register the SPNs:

setspn -S MSSQLSvc/sql.contoso.com sqlService
setspn -S MSSQLSvc/sql.contoso.com:1433 sqlService

There will be two SPN records registered in Active Directory – one for the default instance
name and one for the default port number, 1433. With a named instance, you'll also need
to enter the instance name on the first record.

Through SQL Server Configuration Manager, you can also configure additional
properties for the network configuration. You can configure the certificate for your SQL
Server, force the encryption, and hide the instance so that the instance is not visible in the
local or remote servers in SQL Server Management Studio.

To start using SSL/TLS – that is, TLS1.2 – for your SQL Server, you will have to provide a
proper certificate via the configuration manager, as shown in the following screenshot:

Fig. 6.3 – Certificate

SQL Server protocols 203

Once you've selected the certificate, you must modify the Windows OS registry to enable
the TLS1.2 transport protocol encryption. To turn on TLS1.2 support on the Windows
OS, you'll have to modify the following registry entries:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\
SecurityProviders\SCHANNEL\Protocols\TLS 1.2]

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\
SecurityProviders\SCHANNEL\Protocols\TLS 1.2\Client]
"DisabledByDefault"=dword:00000000 "Enabled"=dword:00000001

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\
SecurityProviders\SCHANNEL\Protocols\TLS 1.2\Server]
"DisabledByDefault"=dword:00000000 "Enabled"=dword:00000001

SQL Server 2017 and newer versions do support TLS1.2 without any problems,
but versions older than 2017 require specific updates to be installed. If you
enforce TLS1.2 via the OS registry before you have a proper update in place, your SQL
Server may stop working and won't start.

Important
You may find many errors in the error log of your SQL Server, which will lead
you to the required TLS1.2 hotfix installation. The common errors that you
may find look as follows:

a) �The server was unable to initialize encryption because of a problem with
a security library.

b) �The security library may be missing. Verify that security.dll exists on
the system.

c) �TDSSNIClient initialization failed with error 0x139f, status code 0x80.
Reason: Unable to initialize SSL support.

d) �The group or resource is not in the correct state to perform the requested
operation.

Query processor
The query processor is a crucial part of the architecture and includes more internal
components. We can split them between query optimization and query execution. Query
processor works with the query tree (which is basically an internal representation of
a query written in T-SQL) and determines the possible ways of optimization. Many of
the complex commands can be optimized with more approaches, and the optimizer can
find those, especially for typical DML commands: SELECT, INSERT, UPDATE, DELETE,
and MERGE.

204 Indexing and Performance

The query optimizer is based on the following two main inputs:

•	 Cost: This indicates the cost of the plan. The cost is an internally calculated value
containing the estimated CPU time and I/O effort needed to process the query.

•	 Cardinality: This indicates the number of rows being processed. The cardinality
estimation is mostly based on predicates seen in the query (the WHERE clause),
and SQL Server tries to estimate how many records will be processed by the query.
Index and column statistics are used for this estimation.

The cardinality metric is used as an input to the cost metric, so the better the cardinality
estimation is, the better the whole cost of the plan is. The cardinality, if it can be
determined, is based on histograms of the statistics and index information. Since SQL
Server 2014, a new cardinality estimator is available, which can be controlled via the
following:

•	 Database compatibility level

•	 Trace flags

•	 Database-scoped configuration

•	 Hints

With the latest SQL Server versions, we can use Database Scoped Configuration,
which is available for each individual database. When you click on any database and
select Properties/Options, you will find a scoped configuration like this one:

Fig. 6.4 – Database scoped configuration

In this configuration, you can control interesting behavior for your database, where the
first two options are related to the cardinality estimator. As you can see, by default, the
legacy estimator is off, and secondary replicas from the availability groups use the same
setting as the primary replica.

SQL Server protocols 205

The same settings are also available for three other very important configurations, which
previously had to be configured on the server level, instead of the database level. These
are as follows:

•	 Max DOP: Maximum degree of parallelism. This property limits the number of
CPUs that can be utilized during one query. Generally, the more the database serves
as a data warehouse (OLAP database), the more CPUs will be allowed to be used for
one query. This is because data warehouses are intended to process queries with big
scan operations and batch data loads. Also, OLTP databases typically process many
seek operations and small transactions from multiple user connections, so every
connection needs at least one CPU for its requests.

•	 Parameter Sniffing: Parameter sniffing can occur when the execution plan is
compiled for a certain value of some parameter. Say the value is used in the
WHERE clause and limits the number of records that are processed by the query to
several tens of records. But then, the same plan is used with a different parameter
value, which does not limit the number of records so strongly. In other words, the
cardinality of the query significantly changes, but the plan remains the same and
performs poorly because it is cached. As per the Parameter Sniffing property, the
plan should be reviewed each time it is executed.

•	 Query Optimizer Fixes: This property allows SQL Server to automatically apply all
query optimizer fixes that are delivered as a part of any cumulative updates (CUs)
that are installed on it.

The query optimizer is constantly being improved by new updates on SQL Server 2019,
called cumulative updates. Any time a new update is installed, by default, you won't see
any fixes for the query optimizer being used by your SQL Server, unless you turn this
on for individual databases or globally by using the T4199 trace flag. Trace flags can be
configured via SQL Server Configuration Manager on the properties of your instance.
If you go to the Startup Parameters tab, you can add your trace flags to the list.

The other major part of the query processor is the query execution engine. This engine
uses the plans generated by the query optimizer and runs them. Running the plan or
executing the query can involve many operations on the storage engine and in memory
to return the entire required dataset. To see the query plan, you can use the SQL Server
Management Studio (SSMS) and use one of the following options:

•	 Include the actual execution plan (Ctrl + M)

•	 Include live query statistics

•	 Display the estimated execution plan (Ctrl + L)

206 Indexing and Performance

There's a considerable difference between the estimated and actual execution plans. The
estimated plan is created without executing the query, whereas the actual plan is, in fact,
the workflow that's used to perform the query operations. These two plans can differ
either in the structure and operators that are used or in the estimates on the row counts
and the size of data being pulled through the plan. Let's look at some common plan
operators that you can see in the plans.

When we need to pull the data from the tables, we can see several common operators:

•	 Table scan: This retrieves all the rows from a table that does not have a clustered
index (heap structure).

•	 Clustered index scan: This retrieves all the rows from a table that has a clustered
index.

•	 Columnstore index scan: This retrieves all the rows from a columnstore index.

•	 Clustered index seek: This retrieves only the rows based on a seek predicate from
a clustered index.

•	 Non-clustered index seek: This retrieves only the rows based on a seek predicate
from a non-clustered index.

The following are the typical plan operator icons, in the same order that we just
listed them:

Fig. 6.5 – Operator icons

When you capture a query plan, you will see such an operator being used, as shown in
the following screenshot:

Fig. 6.6 – Operator usage in a query plan

SQL Server protocols 207

With such a query, you can see that the columnstore index was used to retrieve all the data
required by the query. When looking at the execution plan, you can move your mouse
over any operator to display details about the operator – the cost of the I/O and CPU, the
number of rows, and other information. The important attributes for us to watch during
any troubleshooting action are as follows:

•	 The actual number of rows versus the estimated number of rows

•	 The number of executions

•	 Whether parallelism is used

•	 Whether any warnings are displayed

The following screenshot shows Columnstore Index Scan (Clustered):

Fig. 6.7 – Columnstore Index Scan (Clustered)

208 Indexing and Performance

The displayed plans can be much more complex, and an object by object revision of the
whole plan is important to spot any issues and warnings. If any warning is automatically
detected by the SQL Server engine, it is displayed on the operator with a small yellow
warning sign, as shown in the following image. If you then hover your mouse over the
operator, you can find the entire warning:

Fig. 6.8 – Warning sign displayed on the operator

Let's move on to the other category of operators, which are usually displayed with a nested
lookup join:

•	 Key lookup: This is a lookup on a table with a clustered index.

•	 RID lookup: This is a lookup on a heap.

For join operators, SQL Server uses three types of physical operators:

•	 Nested loop: This join is used for many join operations, where for a row in the
outer table the SQL looks for rows in the inner table and returns them. This
operator is used mostly when the outer input contains many rows while the
lookup table is small.

•	 Merge join: This algorithm is the most efficient way of joining two very large sets of
data, which are both sorted on the join key.

•	 Hash match: This type of operator is used when the scenario doesn't fit any of the
other join types. Hash match is often used when the tables are not properly sorted
or if there are no indexes.

In this section, we saw that the graphical representation of the execution plan is
comfortable to read and analyze. Since the internal format of the execution plan is also
available in the XML file format, we can right-click anywhere on the graphical plan and
save it as an XML file. This feature allows us to send and share the plan with colleagues so
that we can analyze it together.

Note
The full operator reference can be found at https://docs.microsoft.
com/en-us/sql/relational-databases/showplan-
logical-and-physical-operators-reference. It lists all the
logical and physical operators alphabetically.

https://docs.microsoft.com/en-us/sql/relational-databases/showplan-logical-and-physical-operators-reference
https://docs.microsoft.com/en-us/sql/relational-databases/showplan-logical-and-physical-operators-reference
https://docs.microsoft.com/en-us/sql/relational-databases/showplan-logical-and-physical-operators-reference

Performance monitoring overview 209

The storage engine layer
The storage engine layer is responsible for accessing the data stored in the database and
has two major components:

•	 Access methods

•	 Transaction and locking

Access methods are used to get the data out of the data and index pages. This is delivered
as a resultant set of your SQL Server operation. The access methods then split deeper
between operations on rows and indexes, which are responsible for maintaining the data
in the row and index pages. There are several types of pages available within SQL Server.
The user data is stored in the data pages, row-overflow pages, or LOB pages (used for
large objects). If any indexes have been used, the index rows are stored on the index pages
(and on the row-overflow and LOB pages too). Then, SQL Server uses several allocation
maps to keep track of the used/free space in the data files. These pages are as follows:

•	 Page Free Space (PFS): This page keeps a bitmap of the usage of the pages in the
data file.

•	 Global Allocation Map (GAM): The GAM page keeps track of the extents that have
been allocated for uniform extents.

•	 Shared Global Allocation Map (SGAM): The SGAM keeps track of the extents that
are used as mixed extents.

A space in the database is managed by objects called extents, which are made up of eight
contiguous pages. Uniform extents are used by a single object, so all eight pages that form
the extent are used for the same object. Here, the mixed extents can be shared by several
different objects.

Performance monitoring overview
How can we define performance? We could say that it is the response time of a request.
This means that we recognize which query, database, or whole instance of SQL Server is
performing poorly while the response time (from the moment the request was sent by the
session until the response information was received by the session) becomes unacceptable
by the client. It can be caused by many factors, such as poor query syntax, missing
indexes, or even network misconfiguration.

210 Indexing and Performance

While monitoring and tuning the performance, we must not just measure the response
times but also many factors affecting the performance. What's more, we need to find out
the root cause for why the system slows down. Based on previous experience, it is good
to consider the following points:

•	 Number of requests: Just a benchmark value that affects the level of concurrency
on data and CPUs used by requests.

•	 Space affected by the request: How much data is moved between hard disk
and memory? Is this amount of data necessary for request fulfillment or can
it be reduced?

•	 Request types: Is the instance of SQL Server being asked for a lot of smaller
random I/O operations, or is it being asked for long scanning operations such
as aggregation queries?

•	 Request difficulty: Are certain requests simple (just reading data from one table)
or are they complex (many JOIN operators, complicated conditions, and so on)?

As an extra consideration, we should know whether other concurrent services, such as
reporting services or antivirus programs, share the server's resources with a monitored
SQL Server instance.

When monitoring and troubleshooting performance, we have two perspectives on how
to do it. The first and mostly recommended approach is to know the normal behavior of
the OS and SQL Server. Having such knowledge, we can detect anomalies and address the
reason behind them. By doing this, we could find a proper solution for the issue. The first
approach to monitoring is to establish a performance baseline.

Note
The performance baseline is a set of measures showing the normal
performance behavior of the system in certain areas, such as CPU or memory
utilization, as well as changes to this behavior over time. When any sudden
issue occurs, the performance baseline helps us address the problem quickly
and accurately. Using a performance baseline is a proactive approach to
performance monitoring because we can prevent serious performance issues
before they occur.

We can establish the performance baseline on our own using tools, such as Performance
Monitor or Extended Events, but a very good and effective tool is Data Collection. All
these tools will be described in the following sections.

Tools for monitoring performance 211

The second perspective is to react to situations where SQL Server stops responding in
meaningful ways. This approach is reactive; the OS and SQL Server are not monitored on
a regular basis, and the administrator just reacts to sudden failures or unacceptable delays
in response to issues reported by users. This way of working seems to be ineffective, but
we need to know how to start performance troubleshooting in such sudden situations.

We will also consider which role the person who monitors performance plays. In our
book, we're paying attention to the administrator's point of view, but developers also
have to tune their physical data structures and query performance. From a developer's
perspective, we could talk about the bottom-up way of monitoring. As a developer, you
start to create physical database schema consisting of tables, constraints, and indexes
(we will discuss more about indexes in the Indexes and maintenance section). You then
continue to write procedural objects such as views or stored procedures. All those
procedural objects and ad hoc queries should be tuned before they are published
to production.

Now, from an administrator's perspective, we could talk about top-down monitoring
and performance tuning, because, as we described in Chapter 1, Setting Up SQL Server,
and Chapter 2, Keeping Your SQL Server Environment Healthy, efficient working with SQL
Server starts with proper OS preparation for SQL Server's installation and continues with
correct installation and configuration on a SQL Server instance. Instance provisioning
is not the last action taken by administrators, but this is the point where DBA starts to
maintain SQL Server, as well as monitor and troubleshoot SQL Server's performance.

In the next section, we will go through the tools that are used for monitoring SQL Server's
performance mostly by taking the up-to-bottom approach.

Tools for monitoring performance
SQL Server's toolset is very rich and when monitoring, we need to know which tool
or tools we must use to address performance issues and how to interpret the results
measured by any certain tool. In this section, we will go through all native SQL Server
tools that help us monitor the performance of SQL Server.

212 Indexing and Performance

Activity Monitor
Activity Monitor is a fast and relatively simple tool incorporated within SQL Server
Management Studio. It could be used for a fast overview of current activities running
on the instance. As shown in the following screenshot, Activity Monitor is accessible
from the pop-up menu that can be called by right-clicking in Object Explorer at the
instance level:

Fig. 6.9 – The Activity Monitor window

In the preceding screenshot, Activity Monitor is already open and has been divided into
six sections:

•	 Overview

•	 Processes

•	 Resource Waits

•	 Data File I/O

•	 Recent Expensive Queries

•	 Active Expensive Queries

Let's take a look at these six sections in more detail.

Tools for monitoring performance 213

Overview
The Overview section provides quick information about the current CPU effort that's
being consumed by the instance of SQL Server, the current numbers of tasks waiting
for any resource, the total amount of current physical data movement between the
physical disk and buffer cache, and, as shown in the preceding screenshot, the current
number of new requests coming to the instance. These diagrams are refreshed every 10
seconds by default, but it is possible to right-click on any diagram and change the refresh
interval. Information provided by the Overview section of Activity Monitor is just
about the current state of the instance; it does not provide comprehensive and detailed
monitoring data.

Processes
Let 's take a look at the next section, called Processes. As shown in the following
screenshot, this section provides a grid containing all the sessions that have currently
been established against the instance of SQL Server, as well as their current state:

Fig. 6.10 – Process window

Let's describe the columns in the preceding grid. When opening the Processes section,
the columns are shrunk but we can spread them.

For better orientation, the positions of these columns are also added:

•	 Session ID: This is the unique identifier of the session, also known as SPID. We can
use the SPID when using the kill statement to interrupt the session when needed.

•	 User process flag: In Activity Monitor, it is prefiltered to 1 – only user sessions are
shown. By clicking on the column name, filters can be added or changed on every
column. It is very similar to filters, for example, in Microsoft Excel.

214 Indexing and Performance

•	 Login name: This is the login context of a given session.

•	 Database: This is the database context of the session.

•	 Task state: The task state could be any of the following:

a) �Empty: The session exists but has no actual request to the instance.

b) �RUNNING: The session's request is currently processed by SQL Server (in the
preceding screenshot, the only running request is for SPID 64, which is Activity
Monitor itself).

c) �SUSPENDED: Task is waiting for some resources blocked by another session; for
example, we can see session 58 suspended.

•	 Current type of command: This is not a command text itself but just the type of the
command, such as SELECT, ROLLBACK, and so on.

•	 Application: The application name is optionally written in connection strings. SQL
Server and its services and applications always provide the application name, but in
many third-party applications, the application name is not provided.

•	 Wait time: This is the time in milliseconds spent by the blocked session when
waiting for the blocked resource. It is anything other than zero in rows with blocked
sessions (SPID 58, in our case).

•	 Wait type: SQL Server needs to protect its resources as it needs to control
concurrency between sessions. When a resource is protected by a certain type of
protection, a wait occurs. In our example, the LCK_M_IS wait is set on the SPID
58. This is the wait for an incompatible lock that's held by another session.

•	 Wait resource: This is the description of the object on which the incompatible lock
is set by another session.

•	 Blocked by: This is probably one of the most important columns. It says which
session is the blocker of the current session. As shown in the preceding screenshot,
we can see that SPID 58 is blocked by SPID 60.

•	 Head blocker: This column contains bit flag 1 when the session holds resources
while it is not waiting for another blockers. In the preceding screenshot, we can see
that the blocking SPID 60 is not blocked by any other session, hence it is the head
blocker. When the blocking time becomes unacceptable for the user, we can resolve
the blocking conflict by killing the head blocker process.

Tools for monitoring performance 215

•	 Memory usage: This shows how much memory, in KB, is currently being consumed
by the session.

•	 Host name: This is the name of the SQL Server instance.

•	 Workload group: SQL Server supports a fair usage policy feature called Resource
Governor. Resource Governor sets workload groups – named resource pools.
Every session is assigned to the workload group and the name can be seen in
the Processes section. (Resource Governor is beyond the scope of this book.)

Tip
When the user moves their mouse pointer over a column header in every
section of Activity Monitor, a tooltip appears that provides information about
the source DMV for the column.

With this section, we can do more than just look at what is working now. When you
right-click on a certain session, a pop-up menu appears with these options:

•	 Details: This shows a dialog with command text (last executed or currently
running).

•	 Show Live Execution Plan: This shows the execution plan of the query currently
running (more about execution plans later in this chapter).

•	 Kill Process: When some process is being the head blocker, it can be disconnected
by this option (or the kill statement can be executed; for example, kill 60).

•	 Trace Process in SQL Server Profiler: The SQL Server Profiler tool is opened
and traces every activity of the session (there's more about SQL Server Profiler
later in this chapter).

Tip
SQL Server does not resolve unacceptable blocking waits between sessions:
the kill statement is the only hand-made way to resolve the conflict by
an administrator. Always take a look at the process details before you kill
the process. You do not want to be a murderer of some mission-critical
business task.

216 Indexing and Performance

Resource Waits
As noticed in the previous section, SQL Server needs to handle concurrency on resources
between sessions. In this section, we will look at the statistics for the most frequent waits
in time. This session does not provide any additional actions but shows what kind of
resources sessions wait for:

Fig. 6.11 – Resource waits statistics

In the preceding screenshot, a list of the most often recorded wait types issued by SQL
Server instance is being displayed. The numbers in the columns are self-descriptive, but
the first column, called Wait Category, needs some explanation. SQL Server recognizes
several hundreds of wait types, and not all of them are well documented. We should know
of several base categories that are common for routine operations of SQL Server.

Note
The wait itself is never good or bad. It is just waiting for some resource
that's been blocked by another session. But when a wait starts to cause
performance issues, we need to address the subsystem or the scenario where
too many waits occur.

Tools for monitoring performance 217

The following table describes the most common wait type categories and probable reasons
of these waits:

Fig. 6.12 – Common wait type categories

218 Indexing and Performance

Not every wait automatically causes performance problems. It is very usual that
unacceptable waits are a symptom of another problem, which should be found
and resolved.

Data File I/O
The Data File I/O section shows the current flow of data back and forth from every file
of every database. The section is depicted in the following screenshot:

Fig. 6.13 – Flow of data

We can check the amount of data and discover how big the data contention of every
database is, as well as the amount of time spent by SQL Server waiting for data movement
completion. We can also compare the amount of data that's moved from and to files of
a certain database. This helps us see if the contention is distributed evenly across more
files when they are added to the database.

Recent Expensive Queries and Active Expensive Queries
The last two sections of Activity Monitor are very similar to each other and both show
a list of the most expensive queries, along with statistical information. The Recent
Expensive Queries section shows statistics about finished queries, while the Active
Expensive Queries section shows queries actually running.

Tools for monitoring performance 219

Both sections are depicted in the following screenshot:

Fig. 6.14 – Recent Expensive Queries and Active Expensive Queries

The Recent Expensive Queries section shows the following:

•	 Number of executions per minute: How many times the query was executed
during a minute.

•	 Number of milliseconds spent by the query on CPUs per second: Ratio of time
spent on the CPU every minute.

•	 Physical reads per second: Amount of data page reads from a physical disk.

•	 Logical reads per second: Amount of logical read operations, which means that the
data page is placed into the buffer cache and is used by the CPU.

•	 Logical writes per seconds: Similar to logical reads, logical writes are operations
that make modifications to a data page in the buffer cache.

•	 Average duration of the query: Average amount of time needed for the number
of executions.

•	 Plan count: Number of plan versions cached into the procedure cache.

•	 Database name: Database context of the query.

220 Indexing and Performance

Data shown by the Active Expensive Queries section is similar to the Recent Expensive
Queries section, which shows the most expensive queries in last 30 seconds, but some
extra values are provided:

•	 Session ID: The SPID of the requester of the query. This could give context to
the Processes section.

•	 Elapsed time: Total time needed for all completed executions of the query.

•	 Row count: Number of rows processed by the query execution.

•	 Allocated memory: Granted memory for the query execution.

•	 Requested memory: Memory requested by the query; if this value is less than the
allocated memory, it could mean memory insufficiency.

•	 Used memory: Memory actually used by the query.

In both sections, it is possible to right-click a certain query and, from the pop-up menu,
obtain query text, as well as the execution plan of the query.

Even though Activity Monitor serves as a quick and brief diagnostic tool, it
provides a very useful set of information about SQL Server's current state and data
contention. The only consideration that we must keep in mind is that all sections,
except Overview and Processes, show statistical data that's erased with every restart
of the data engine.

In the next section, we will explore some useful performance counters.

Performance monitor
Performance monitor is a commonly known tool that's delivered with Windows OS.
It can show performance metrics from almost every part of the OS and from services
running on it. We can see live data in the form of a chart, or we can grab the data by
using so-called data collection sets. Data collection sets save values of counters selected
by an administrator to a file. The file is then used for offline analysis or for correlation with
trace data.

SQL Server and its services install their own performance counters. These counters can
be correlated with common OS counters. These describe the current performance of
subsystems, such as physical disks or memory.

Tools for monitoring performance 221

Tip
The SQL Server service has many counters installed. A complete list of SQL
Server's performance counters can be obtained by using the
select distinct object_name, counter_name from
sys.dm_os_performance_counters query.

A detailed list of common performance counters was mentioned in Chapter 2, Keeping
Your SQL Server Environment Healthy.

When data is collected by the data collection set, it can be analyzed together with SQL
Trace events. This extremely useful feature will be described in the next section.

SQL Server Profiler and SQL Trace
SQL Server Profiler is a GUI tool used to create and execute SQL Traces – SQL Server's
proprietary server-side event providing feature. In this section, we will show you how to
use SQL Server Profiler, SQL Trace, and data collection sets together.

SQL Server Profiler
SQL Server Profiler is a client tool used to create and execute traces. Trace is a set of
events of certain types that the DBA, developer, and any other role is interested in.
Through SQL Server Profiler, traces could be seen in the form of live data or saved to files
or database tables.

Note
Even though SQL Server Profiler was announced as a deprecated tool (XE
should be a successor to SQL Server Profiler), there is no replacement to open,
view, and correlate traced events with performance monitor data.

SQL Profiler can be opened from SQL Server Management Studio by going to
the Tools menu and clicking on the SQL Server Profiler option. When SQL Server
Profiler is opened from SQL Server Management Studio, the login dialog will appear.

The second way you can access SQL Server Profiler is from the Start menu of Windows.
Using this method causes SQL Server Profiler to open empty, and the user must use
the New Trace button to start configuring the trace.

222 Indexing and Performance

After DBA has been logged into a running instance of SQL Server, the following
configuration dialog will appear:

Fig. 6.15 – Trace properties configuration dialog

In one instance of SQL Server Profiler, more traces can be defined, which means
that the trace can be named in the Trace name textbox for better orientation. Trace
provider name is the name of the SQL Server instance on which the trace will be
defined, while Trace provider type is the version description and version number of the
connected instance.

SQL Server Profiler has several predefined templates that offer a simpler choice of
events. We can also create custom templates or save a defined trace as a custom template
for simple reuse. The drop-down control labeled Use the template shows all templates
(predefined and custom together) and we can select one of them. We can also select
the Blank template and then define our own set of events from scratch.

Tools for monitoring performance 223

The Save to file and Save to table checkboxes are both optional. If we only need short-
time monitoring, we will see live data and when we stop the monitoring process, data will
be lost. We can switch on both channels together.

When saving to files, more files are often created. This is thanks to the Enable file
rollover checkbox, which causes new file creation every time the actual file reaches the
size limit set in the Set maximum file size (MB) textbox.

When the Save to table option enabled, a new login dialog appears, asking us to log into
the instance of SQL Server where the data will be saved. An advantage of saving data to
a table is in the ability to query the table by using regular SQL queries.

Tip
When saving trace data to a database table, use a SQL Server instance
other than the monitored one to avoid circular contention. Files
can also be queried through a function called sys.fn_trace_
gettable('c:\myTraces\', 3), where the first parameter is a folder
containing trc files and the second is the number of files for reading.

The last but very useful setting on the General tab for trace configuration is the option to
stop trace automatically. SQL Server Profiler is a very resource-consuming tool, and it is
a very common mistake to start tracing by using SQL Server Profiler and then leaving the
session unattended for a long time.

SQL Server Profiler will consume all available memory and, in extreme cases, could
cause server crash. That's why it is a very good practice to enable the Enable trace stop
time checkbox and set up a time for the trace to stop.

Note
Even though the stop time is set, never use SQL Server Profiler for long-term
monitoring. The threshold time is a couple of hours.

224 Indexing and Performance

Once the General tab has been configured, we need to get a step ahead and configure
any events that we are interested in. This can be done on the second tab, called Events
Selection:

Fig. 6.16 – Events selection

As shown in the preceding screenshot, events are divided into categories for better
orientation. Common examples of event categories are as follows:

•	 Databases: Contains events to monitor; for example, file growth operations

•	 Errors and Warnings: Contains events about many kinds of warnings or errors

•	 Locks: Events about different locking situations, such as deadlocks or lock
escalations

•	 Performance: Events providing, for example, execution plans in several
formats, including XML format used for graphical execution plan rendering in
Management Studio

•	 Stored Procedures: Events showing stored procedures execution

•	 TSQL: Events showing the execution of ad hoc queries

Tools for monitoring performance 225

When a certain event category is collapsed, events appear, and we can select the ones
we are interested in by clicking the checkbox on the left-hand side of the event. In the
preceding screenshot, the Deadlock Graph event has been selected as an example. The
grid of events on the Event Selection tab shows all the possible columns for all possible
events listed in alphabetical order. However, not every event provides the same data.

As shown in our Deadlock Graph example, almost none of the columns can be selected
because this event type provides quite a small set of information. The most important
column, in this case, is TextData; it contains the graph of SPIDs attending the deadlock,
SPID rolled back by SQL Server as a deadlock victim, and resources cross-locked by the
attending SPIDs.

Let's take a look at another event type, called SQL:StmtCompleted. This event type
belongs to the category called TSQL and shows useful performance data, besides the
ad hoc query text that was captured by the event. The most interesting columns are
as follows:

•	 TextData: The text of the query.

•	 Duration: The overall response time.

•	 CPU time: The time spent on CPUs. This time could be bigger than the duration
due to parallelism.

•	 Reads: The number of logical data page reads.

•	 Writes: The number of physical data page writes. When the query is SELECT, this
indicates that the SELECT statement is too difficult to be processed and that SQL
Server needs to save any intermediate results in the tempdb database. Such a query
is a candidate for optimization.

Every event contains many columns, but it is a good thing to select only those columns
that are needed for diagnostics. In many cases, for example, the user context or database
name could be useless, especially when only one user's events are filtered in a certain
database. Selecting only the required columns helps maintain saved event data.

In the bottom-right corner, there's two checkboxes called Show all events and Show
all columns. Both are used to filter the event grid to show selected events and columns
only. When events and cells are selected, it is very important to filter events just for the
needed ones.

226 Indexing and Performance

The Column Filters button opens a new dialog window where filters are configured:

Fig. 6.17 – Configuring filters in Trace Properties

The preceding screenshot shows the filter dialog open. The column that must be filtered
is selected in the left list, and any possible comparisons appear in the tree on the
right0hand side of the dialog. The preceding screenshot shows that DatabaseName
has to contain the demo value that was added by the user.

When everything has been configured correctly and precisely, the Run button closes
the configuration dialog and SQL Server Profiler performs several actions behind the
scenes. Typically, it generates a SQL Trace definition script and executes the script on the
monitored instance of SQL Server. SQL Trace on the server side starts event capturing and
sends the captured data back to SQL Server Profiler. SQL Server Profiler then opens a
trace window to show live data and shows the events that had been obtained from SQL
Trace. When an awaited event is raised, it is shown in the trace window, and it is also
saved to the configured storage:

Tools for monitoring performance 227

Fig. 6.18 – Deadlock graph caught in SQL Profiler

As shown in the preceding screenshot, the trace window is divided into two parts. The
upper part is a grid showing captured events, along with the columns that were selected
during configuration. The bottom part shows details of a selected event from the grid. For
text events such as TSQL:StmtCompleted, the text of the query is shown; our example
shows an event called Deadlock graph. This event type describes sessions that have
been in conflict, resources that have been locked by incompatible locks, and finally the
session that was selected by SQL Server as a deadlock victim, whose transaction was rolled
back with Error 1205 and sent back to the client.

228 Indexing and Performance

Data captured by SQL Profiler can be synchronized with data that's been collected by the
performance monitor. This is possible when both data sources – performance monitor
counters and SQL Trace data – are saved into files. If the data was captured by SQL
Profiler and the trace was stopped, close and reopen the file. When you do this, a new
menu option, called Import Performance Data, is enabled. This menu option is depicted
in the following screenshot:

Fig. 6.19 – Import performance data

This menu option opens the Open File dialog. Here, you need to find the file that
has a .blg extension. This is the file that's used by performance monitor to capture
performance data.

Both data sources – that is, trace data and performance data – are synchronized by SQL
Profiler. Once again, the trace window is divided to show a grid and detailed information
from the trace in the top part, and then performance monitor diagrams in the bottom
part, as shown in the following screenshot:

Tools for monitoring performance 229

Fig. 6.20 – Performance data correlated with caught events in SQL Profile

Both SQL Trace data and Performance Monitor data are drawn together, and both parts
are time-synchronized. When clicking on a certain event in the grid, the vertical red line
in the chart part moves back and forth synchronously to show the moment in time with
the current values from performance monitor.

The same synchronous movement occurs when you click on some place in the chart; the
cursor in the grid moves onto the row that is close to the selected moment. This helps
identify poorly performing queries in correlation with data captured by performance
monitor.

SQL Profiler is a well-known tool that has two disadvantages. The first concerns huge
resource consumption. The second problem is that SQL Profiler has been marked by
Microsoft as deprecated since SQL Server 2012; hence, new events for newer features of
SQL Server won't be added to SQL Profiler/SQL Trace.

When you need to monitor incoming events, you do not need to run SQL Profiler every
time, but SQL Profiler does help you generate a script for more efficient server-side
traditional monitoring through SQL Trace. In the next section, we will explore SQL Trace
in more detail.

230 Indexing and Performance

SQL Trace
SQL Trace is a non-visual server-side tracing feature of SQL Server. SQL Profiler,
described in the previous section, serves as a client-side viewer of data that's
been captured and provided by SQL Trace. A SQL Trace session is defined by a set of
system-stored procedures. Writing a new trace from scratch is very difficult or almost
impossible, which is why SQL Profiler provides a script option. When a new trace is
defined in SQL Profiler, it can be scripted from the File menu. The exact procedure is
as follows:

1.	 Define and run a new trace in SQL Profiler.

2.	 From the File menu, choose the Export | Script trace definition option, and
then For SQL Server 2005 - 2017.

3.	 The Save as dialog will appear, where you you can give a name to your script and
save the file.

The trace definition script looks like this (this example has been shortened for the sake
of simplicity):

-- Create a Queue
declare @rc int
declare @TraceID int
declare @maxfilesize bigint
set @maxfilesize = 5

-- Please replace the text InsertFileNameHere, with an
appropriate
-- ... the description continues

exec @rc = sp_trace_create @TraceID output, 0, N'C:\myTraces\
myTrace.trc', @maxfilesize, NULL
if (@rc != 0) goto error

-- Client side File and Table cannot be scripted

-- Set the events
declare @on bit
set @on = 1
exec sp_trace_setevent @TraceID, 24, 1, @on
exec sp_trace_setevent @TraceID, 24, 9, @on
exec sp_trace_setevent @TraceID, 24, 2, @on

-- ... many sp_trace_setevent procedure calls were erased here

Tools for monitoring performance 231

exec sp_trace_setevent @TraceID, 40, 61, @on
exec sp_trace_setevent @TraceID, 40, 64, @on
exec sp_trace_setevent @TraceID, 40, 66, @on

-- Set the Filters
declare @intfilter int
declare @bigintfilter bigint

exec sp_trace_setfilter @TraceID, 35, 0, 6, N'demo'
-- Set the trace status to start
exec sp_trace_setstatus @TraceID, 1

-- display trace id for future references
select TraceID=@TraceID
goto finish

error:
select ErrorCode=@rc

finish:
go

When the trace definition script is saved, it can be used anytime and on every instance of
SQL Server. As shown at the end of the script, the script selects a new TraceID number.
This is an integer that identifies the running trace. When the trace is no longer needed,
simply call EXEC sp_trace_setstatus <the trace id is placed here>,
0, which stops the trace. If TraceID is missed, it can be obtained from the sys.
traces system view. The command for this is as follows:

select * from sys.traces

SQL Trace saves the server's resources because the only data provider available when it
is running is the so-called file provider. On the other hand, when using SQL Profiler,
trace's memory data provider is used to push data back to SQL Profiler, which is a much
more memory-consuming approach.

In the next section, we will pay attention to the successor of SQL Trace and SQL Server
Profiler, called Extended Events (also called xEvents or simply XE).

232 Indexing and Performance

Extended Events
Extended Events, intended for event monitoring, is a feature developed as a successor of
SQL Profiler. It works similar to how SQL Server Profiler works, but XE is a modern tool
that uses the native events provided by SQL Server's features. The difference between the
two is that far fewer resources than SQL Server Profiler, which inevitably makes it the
preferred way to work. The other reason XE is now preferred is because SQL Profiler is
marked for deprecation.

Frugality is not the only advantage of XE. Unlike SQL Server Profiler, XE can capture
events provided by new features such as columnstore indexes, In-Memory OLTP, Machine
Learning Services, and so on.

The third big advantage of XE is that the session definitions are saved in SQL Server's
metadata, so the configuration of an XE session made by a DBA is not done repeatedly.
Once the XE session has been created, the session can be started and stopped on demand
from SQL Server Management Studio. Take look at the following screenshot:

Fig. 6.21 – New Session Wizard in Object Explorer

Tools for monitoring performance 233

Extended Events definitions are placed in Management Studio, under Management
node in Object Explorer. Some system sessions are created during SQL Server
installation and can be started and stopped when needed.

When we want to create our own XE session definition, we can do so via the wizard, but
for better control over preciseness and granularity, it's better to use the second option,
New Session…, in the pop-up menu. When the New Session... menu option is selected, a
dialog window for the session's creation will appear, as shown in the following screenshot:

Fig. 6.22 – New session creation window

The first tab of the window is the General tab. The session must be named in the Session
name text field, and a template can also be selected from the Template dropdown. Unlike
SQL Server Profiler, XE provides more templates. Other controls can be edited later. A
session can start every time the SQL Server instance is started if needed. This option is
useful for server-level monitoring for later analysis.

234 Indexing and Performance

When Start the event session immediately after session creation is selected, the session
is saved and started. When the same option is left off, the session is just saved but does not
start to monitor selected events. When the session is started, live data can be displayed.
This option causes the window to open within Management Studio so that DBA can view
how the events are coming in. The session can run in unattended mode, even if the live
data window is closed.

The second, and probably the most important, tab in the session creation window
is Events. It is shown in the following screenshot:

Fig. 6.23 – Event selection in the Extended Events window

The left list in the preceding screenshot contains every event that can be monitored. It
provides a huge set of possibilities, so the empty text field above the list is extremely
useful – we can type part of the event name in here (for example, sql) and the list will be
filtered. Another option is to filter events by Category or by Channel. Once the event has
been found, it can be moved to the right list by either double-clicking on it or by using the
arrow buttons placed between both lists.

Tools for monitoring performance 235

It is very important to refine the configuration of every selected event. An event is
selected in the right list and the Configure button is enabled and should be used. The
appearance of the Events tab changes and the new view is provided, as shown in the
following screenshot:

Fig. 6.24 – Events tab new look

A big difference, when comparing XE to SQL Server Profiler, is that the event fields are
not selected by default. However, these fields should be selected by an administrator.
Fields are divided into common Global fields or Actions (the first tab in the preceding
screenshot), while proprietary fields hidden in the Event fields tab. It is typical for these
event fields to intersect global fields, so decide what fields you wish to capture carefully.

236 Indexing and Performance

The middle tab, called Filter (Predicate), is intended for filter definitions. Unlike SQL
Server Profiler, every selected event type is filtered separately. This may seem confusing,
but it gives DBA more control over what to filter. The Filters tab is shown in the following
screenshot:

Fig. 6.25 – Filters tab

Filter configuration is quite simple – filter rows are added when the Click here to
add a clause text box is clicked. Then, a filter attribute is selected from the dropdown
when the Field textbox is clicked. We continue to fill in the rest of textboxes; that is,
Operator and Value.

As events are configured, they can be viewed in the form of live data, but they can
also be saved. The following screenshot shows the Data Storage tab, which is used for
storage configuration:

Tools for monitoring performance 237

Fig. 6.26 – Data storage tab

Session data can be stored in more providers. The expanded dropdown shows all the
available options, but the most typical storage targets are as follows:

•	 event_file: A standalone file for event capture.

•	 pair_matching: This storage type allows you to define the starting and ending
event that establishes the pair of events. The starting event is shown when it occurs
and when the matching end event is shown, both events are paired and erased.

•	 ring_buffer: Live data shown to DBA.

238 Indexing and Performance

The following screenshot shows the Advanced tab:

Fig. 6.27 – Advanced tab

The Advanced tab is used to set a limit on how many events can be lost without a
session failure; how many seconds XE can hold data before it's sent to the target, such
as live data or event file; and whether we can divide memory into partitions according
to NUMA nodes for event capturing. In the preceding screenshot, the settings have been
left as their default values.

When everything has been configured, the session is saved, and it's shown in
the Sessions folder, under the Extended Events node in Object Explorer. By
right-clicking (see Fig. 6.21 in this section), the session can be started or stopped,
exported, or live data can be opened and explored. The live data window is shown in
the following screenshot:

Tools for monitoring performance 239

Fig. 6.28 – Live data window

XE is a very efficient tool for monitoring a wide range of events repeatedly. Sometimes, it
looks confusing, but with some practice, it becomes a very good helper when monitoring
SQL Server's performance.

So far, we have worked mostly with visual monitoring tools. In the next section, we will
explore some source objects that provide data to these tools, as well as our needs.

Dynamic management
Dynamic management consists of a set of system views and table-valued functions
intended for the querying. Many dynamic management objects are used by other tools,
such as Management Studio reports or Activity Monitor, but we can use them to explore
SQL Server ourselves. Let's take a look at some very simple naming conventions:

•	 Every dynamic management object is placed in the sys schema.

•	 Every dynamic management object starts with the dm_ prefix.

•	 Every dynamic management object also has a second (or sometimes a third) prefix
defining subsystem monitored by this object; for example, sys.dm_db_ or sys.
dm_exec_.

240 Indexing and Performance

•	 Dynamic management objects that have the _stats suffix show data that's been
captured from SQL Server's last startup. This is erased every time SQL Server is
restarted.

The only property that can't be seen in the object's name is the type of the
object – is it a view or a function? In this way, we can profit from Management
Studio IntelliSense. IntelliSense is basically a dropdown that provides naming suggestions
that appear when we start typing a query into Management Studio. When a dynamic
management object's name is written and the object is a function, IntelliSense suggests
brackets with parameters.

One more advantage is that dynamic management objects have quite long, but self-
descriptive, names. When we start typing, for example, select * from sys.
coun, which means nothing itself, IntelliSense will advise that we use the sys.dm_os_
performance_counters view.

Tip
Do not try to remember all the names of dynamic management objects. Be
guided by IntelliSense; it is more comfortable and the risk of typos is reduced.

Dynamic management objects are divided by subsystems. We've summarize some of them
in the following table:

Fig. 6.29 – Dynamic management objects

Tools for monitoring performance 241

There are many other dynamic management objects that have been defined. The full
list can be found on MSDN (https://docs.microsoft.com/en-us/sql/
relational-databases/system-dynamic-management-views/system-
dynamic-management-views?view=sql-server-ver15), but it's not possible
to create a list of all of them in this book. For detailed insights, we can use Object
Browser to explore all these objects. Views are kept in every database, under
the <database name> | Views | System Views node, while functions are placed in the
master database. You can find these by going to master | Programmability | Functions |
System Functions | Table-Valued Functions in Object Explorer.

Dynamic management provides very detailed information about any subsystem on SQL
Server. Often, we need to join more objects to add readability to the results of DMV query.
The next section will show an example of how to combine more system objects so that we
can see what happens on the SQL Server.

How to use dynamic management
Sometimes, it is hard to combine system objects, especially dynamic management,
together. No simple and unified instructions exist for it, but the following example shows
a way to think about system queries.

One of the most common performance issues is frequent recompilations of execution
plans. We want to have an overview of plan cache content. We want to know which plans
are cached and how they are reused. The simplest information is provided by the sys.
dm_exec_cached_plans view. Let's execute the following script:

select * from sys.dm_exec_cached_plans

We will see the following result:

Fig. 6.30 – Overview of plan cache content

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views?view=sql-server-ver15

242 Indexing and Performance

Such a result is full of almost unreadable and hence useless numbers. Some columns make
sense to us, namely the following:

•	 usecounts: How many times the plan was reused.

•	 size_in_bytes: This is the size of the plan in memory (bigger plans are
scratched later than smaller plans).

•	 objtype: Describes the origin of the plan, such as stored procedures (Proc) or
ad hoc query call (AdHoc).

The most important column is plan_handle. It is the unique identifier of the plan
that's kept in the plan cache. To uncover the actual query that's hidden under this terrible
number, we should use the sys.dm_exec_sql_text function. This function consumes
plan_handle as a parameter and returns the SQL definition of the query.

Let's execute the following query:

select
 cp.usecounts
 , cp.size_in_bytes
 , cp.objtype
 , sqltext.dbid
 , sqltext.objectid
 , sqltext.text
from sys.dm_exec_cached_plans as cp
 cross apply sys.dm_exec_sql_text(cp.plan_handle) as sqltext

The cross apply operator substitutes a JOIN operator when classical JOIN can't
be used due to the missing join criteria on the function's result set. This join is done
through the parameter of the function. The result of the preceding query is much more
readable now:

Tools for monitoring performance 243

Fig. 6.31 – plan_handle query results

As shown in the preceding screenshot, the column set was reduced in the SELECT clause
to provide more readability, which means it is now much more useful. The new columns
that came from the sys.dm_exec_sql_text function are as follows:

•	 dbid: ID of the database in which the query was executed (pay attention to
ID 32767 – it is the resource database).

•	 objectid: ID of the object saving the query definition (for example, stored
procedure). Ad hoc queries do not have objectid.

•	 text: The text of the cached plan itself.

We want the information to be a little easier to read. We want to filter the database context
through the monitored one, and we also want to see the database name, as well as object
name. Let's adjust the query one more time:

select
 cp.usecounts
 , cp.size_in_bytes
 , cp.objtype
 , db_name(sqltext.dbid) as dbname
 , sqltext.objectid
 , s.name as schemaname

244 Indexing and Performance

 , o.name as objname
 , sqltext.text
from sys.dm_exec_cached_plans as cp
 cross apply sys.dm_exec_sql_text(cp.plan_handle) as sqltext
 left join sys.objects as o on o.object_id = sqltext.objectid
 left join sys.schemas as s on s.schema_id = o.schema_id
where sqltext.dbid = db_id('demo')

Some new functions and joins were added to the query. Let's describe them:

•	 db_name(): The metadata function used in the SELECT clause. It translates the
database ID into a name.

•	 Joining the sys.objects view: We can use the object_name() function. It
translates the object ID into its name but without the schema name. That's why
the sys.objects view (not the dynamic view, just the catalog view) is added to
the SELECT statement.

•	 Joining the sys.schemas view: Its purpose is the same as when joining sys.
objects – we want to know the full object's identifier within the database in the
form of <schema>.<object>.

•	 Instead of joining the sys.objects and sys.schemas catalogs, we can use
OBJECT_NAME() and OBJECT_SCHEMA_NAME() functions. The OBJECT_
SCHEMA_NAME() function accepts the object_id parameter and returns the
name of the object's schema in the database.

Ad hoc queries are not saved objects. That's why LEFT JOIN operators are used to see
ad hoc query plans and object plans together.

Do we want more? We always want more, and the preceding information is extremely
useful when it comes to analyzing query performance and adding a query plan. A
query plan is a tree containing a set of operators that are needed by SQL Server to fulfill
the user's request. A query plan is very desirable for developers who work on query
optimization; for now, let's just capture it. The last dynamic management object we used
in our example was a function called sys.dm_exec_query_plan. This function
returns the plan in XML format. A situation can arise where the query plan can be NULL.
This is typically caused when the batch or stored procedure contains a statement that has
not been compiled by SQL Server (that is, OPTION RECOMPILE is used in one or more
statements in the batch).

Tools for monitoring performance 245

This query is shown in the following example:

select
 cp.usecounts
 , cp.size_in_bytes
 , cp.objtype
 , db_name(sqltext.dbid) as dbname
 , sqltext.objectid
 , s.name as schemaname
 , o.name as objname
 , sqltext.text
 , qplan.query_plan
from sys.dm_exec_cached_plans as cp
 cross apply sys.dm_exec_sql_text(cp.plan_handle) as sqltext
 cross apply sys.dm_exec_query_plan(cp.plan_handle) as qplan
 left join sys.objects as o on o.object_id = sqltext.objectid
 left join sys.schemas as s on s.schema_id = o.schema_id
where sqltext.dbid = db_id('demo')

One more cross apply operator is added to join the new function to the query, and
a column called query_plan is added to the SELECT clause. The result is depicted in
the following screenshot:

Fig. 6.32 – query_plan column

The right-most column contains links to the XML representation of the query plan. When
clicked, the graphical query plan is opened in a separate window in Management Studio.
This plan is shown in the following screenshot:

Fig. 6.33 – Graphical query plan

246 Indexing and Performance

The query plan in the preceding screenshot is very simple. It shows a full scan of the table
(recall that the table is heap). From the scan result, the result of the query is formatted and
sent back to the client.

So far, we have been working with several complicated tools to monitor and analyze SQL
Server's performance from different viewpoints. It is really difficult to join and correlate
monitoring results with such wide monitoring tools. However, it is very good to know
these techniques as they are the base for the next monitoring approach we'll be looking at,
called data collection.

Data collection
Detailed observations of SQL Server's performance are needed when the given instance
gets into trouble. It is not possible to monitor more than a few instances in this way. That
is why Microsoft offers a tool for centralized monitoring of more SQL Servers. This tool
is also very useful for proactive monitoring and performance baselining. This section is
dedicated to data collection. Data collection consists of the following objects:

•	 A relational database called Management Data Warehouse (MDW) hosted on
a SQL Server instance

•	 Jobs reading data from XE and dynamic management objects

•	 SSIS packages pushing captured data into the MDW

•	 Reports showing information about several aspects of contention and performance
over time

The MDW database can be centralized. In big environments, it is a good practice to
place the MDW database on a dedicated SQL Server instance. When working with data
collection, we need to do three tasks:

•	 Set up the MDW

•	 Set up data collection jobs and packages

•	 Read reports regularly

The first two tasks are done by short wizards in Management Studio; the reports are
placed within Management Studio as well. Let's go through these tasks.

Tools for monitoring performance 247

Setting up the MDW
Working with Data Collection is quite easy. The following screenshot shows where to find
configuration tools for Data Collection:

Fig. 6.34 – Data Collection configuration tools

Data Collection can be found in Object Explorer, under the Management node.
Right-clicking this opens a popup menu showing the Tasks option. The first option
under Tasks is Configure Management Data Warehouse. This option should be selected
when the MDW database is going to be created. Using this option opens a wizard, and the
first step (the Welcome step is omitted) has two settings:

•	 Server name: The name of the server that the MDW database will be hosted on.

•	 Database name: When a new MDW is going to be created, the New button (on the
right-hand side of the drop-down) is clicked to open the database creation window.

248 Indexing and Performance

The wizard is shown in the following screenshot:

Fig. 6.35 – Configure Management Data Warehouse Wizard

The next step of the wizard is about security. Logins are mapped to the MDW database roles.
This enables users without administrative privileges to write data to the MDW database or
read it:

Fig. 6.36 – Mapping logins and users

Tools for monitoring performance 249

When the wizard is finished, the MDW database is created and logins are mapped to users
and database roles.

This task establishes a centralized point for data collection. In the next section, we will
enable monitoring for the same instance of SQL Server.

Collecting performance data
Setting up data collection from a certain instance of SQL Server is done via the Configure
Data Collection Wizard option, which can be called from the Tasks popup. When
this option is used, the wizard is opened and in the first step, the wizard asks for
Server name (the instance hosting MDW) and Database name (actual name of MDW).
It also asks for a temporary Cache directory. Data is saved to files and then pushed to
the MDW database. The first step is shown in the following screenshot:

Fig. 6.37 – Data collection – first step

When all these questions have been answered, the wizard finishes and creates SQL Agent
jobs that perform data capturing.

When this task is finished, you will have to wait at least an hour before you get to see
the first results in the reports. However, if you want to find out more about SQL Server's
behavior, you should wait at least 2 to 3 days.

250 Indexing and Performance

Viewing Data Collection reports
The main purpose of Data Collection is to show overall resource consumption,
as well as long-term query statistics. This information is shown in a very readable
graphical form. Reports can be invoked from Object Explorer by right-clicking on
the MDW database in the Databases node. The complete path to Reports is shown in the
following screenshot:

Fig. 6.38 -- Reports

This option opens a report showing a list of all the instances of SQL Server being
monitored by MDW:

Fig. 6.39 – List of MDW monitored instances

Tools for monitoring performance 251

As shown in the preceding screenshot, the overview enables you to click through
three sections:

•	 Server Activity: Shows detailed information about disk, memory, CPU, and
network usage

•	 Query Statistics: Operational statistics about queries

•	 Disk Usage: Amount of space consumed by every database file for every database

All three detailed reports offer time play control – the ability to set a time range for
monitoring. All three reports are very self-descriptive and intuitive, so the best practice
is to set up Data Collection and review these reports on your own.

Data Collection has one big advantage over tools such as Dynamic Management. Data
in MDW is stored for up to 2 years and not cleared when SQL Server restarts. This allows
DBAs to establish the performance baseline over a long time. This baseline then allows
us to detect anomalies or metric changes over time. As a benefit of this, the monitoring
outputs are very readable. They do not force the DBA to grab metrics manually using
DMVs or XE. However, data collection mainly provides server metrics. A similar tool on
the database scope is called Query Store. In the next section, we will set it up.

Query Store
Query Store was introduced with SQL Server 2016 because many DBAs and developers
missed long-term monitoring for certain database performance. All tools, except for data
collection, that have been mentioned in this chapter were able to provide data until the
SQL Server instance was restarted. Query Store provides durable storage that's created
by requests in the database where such monitoring is desired. Query Store captures and
saves data asynchronously so that the query's performance, from the user's perspective,
is not affected.

252 Indexing and Performance

When configuring Query Store, navigate to Database Properties (right-click on a certain
database in Object Explorer and choose Properties from the pop-up menu), as shown in
the following screenshot:

Fig. 6.40 – Configuring Query Store | Properties

The preceding screenshot shows all the settings already filled in with the
defaults. When switching Query Store on, we must change the Operation Mode
(Requested) property to Read Write. Other options include Off (data is not captured
and cannot be explored) and Read Only (data is not captured but can still be explored).
The Monitoring section of the properties shows how often data will be saved from the
cache into the database (the default value is 15 minutes) and how often data will be
aggregated for analysis (the default is 1 hour).

Indexes and maintenance 253

The last section, labeled Query Store Retention, allows us to set how big Query Store will
be and for what amount of time data will be kept before it will be erased in a first-in-first-
out manner. Once set up, Query Store starts to collect data about queries, including costs,
statistics, execution plan, and connection settings.

From DBA's perspective, a new node, called Query Store, will appear under the database
node in Object Explorer. The Query Store node offers several windows showing query
statistics and enables the DBA to analyze performance issues at the query level. One of its
features is called Force Plan. This button can be found in the Regressed Queries window,
under the Query Store node. If, under certain circumstances, something goes wrong and
a query's performance becomes poor, the Force Plan option serves as a workaround until
the root cause of the performance issue is addressed and corrected.

Query Store helps DBAs, as well as developers, easily find the most resource-consuming
queries and correct their performance. Similar to data collection, as explained in previous
sections, Query Store collects and stores information about queries, their execution plans,
and statistics such as CPU times or I/O operations to the database where it is configured.
This collected information is very easy to read because it is mostly graphical.

As versions of SQL Server change, query optimization metrics and algorithms are
enhanced by Microsoft. Sometimes, this causes the queries that were tuned well in the
previous version of SQL Server to become slow. Query Store can help address such
queries very efficiently because it compares different execution plans for the same query.

This section has provided an overview of performance monitoring tools and some
performance monitoring techniques. The next section will talk about how physical data
structures affect performance.

Indexes and maintenance
Indexes are sometimes seen as some magic objects that resolve all performance problems
in the world of relational databases. Nothing could be further from the truth. In this
section, we will look at the index types offered by SQL Server, and then discuss how
indexes work. Finally, we will summarize some guidelines for using indexes.

254 Indexing and Performance

Types of indexes
Sorting in relational databases makes no sense. Even though this statement sounds
strange, it comes from the set theory, which forms a theoretical base of relational
databases. However, sorting is still needed when the database engine must find proper
records from a table efficiently. When no sorting structure is present, the engine needs to
scan all the records to recognize which of them are candidates for the result of a certain
query. An index is a type of object that brings sorting and seeking possibilities over
unsorted relational data.

SQL Server provides several types of indexes. The most traditional are B-tree indexes,
while columnstore indexes were introduced in SQL Server 2012 and enhanced with every
new version of SQL Server. Besides relational indexes, indexes for several not-really-
relational data types are present on SQL Server. Their usage is often straightforward, so we
will pay the most attention to B-trees.

Heap
A heap is an unsorted table that has no clustered index. Keep in mind that primary key
or unique constraints are implemented by B-tree indexes internally, so a pure heap is
a very rare form of relational data table.

Data pages in the heap do not have any particular order; they are not connected by offsets
to each other and records can be placed anywhere in the heap. When SQL Server executes
tasks over the heap, it always scans all the data pages to retrieve the desired ones and work
with them.

When SQL Server inserts a new record into the heap, it finds the first data page with
sufficient space for the new record and places the inserted record there.

When SQL Server updates an existing record, two situations can occur:

•	 The record fits the size of the original data pages and nothing special happens.

•	 The record grows after the update and it does not fit into the original page, so the
record is deleted from the previous data page and is moved to any data page with
sufficient space. The original record version is marked as a ghost record; SQL Server
does not actually erase records.

When a record is deleted from the heap, it is marked as a ghost record. Fragmentation
of data occurs rarely, and it depends on several ghost records.

The heap is not a complicated structure, but it is useless for tables bigger than several
rows. As an additional disadvantage, we must say that a table with no constraints is not
actually a relational table. That's why at least one index is often present.

Indexes and maintenance 255

Non-clustered B-tree index
The B-tree is sometimes interpreted as a binary tree, which is not correct. The letter B
means balanced tree. A balanced tree is a tree consisting of root (this is the virtual root
page in B-tree indexes) and intermediate nodes (if needed) that help us to navigate down
to leaf nodes that contain sorted copies of indexed column(s). Balanced means that the
leaf information is accessed with the same level of depth in every section of the tree.

SQL Server enables the creation of up to 499 non-clustered indexes on one table, but
this is a theoretical limit in most cases. Each index can have up to 16 columns with sum
of byte lengths of up to 900 bytes. A record that's saved in the index structure is called
an index key.

B-tree indexes can be unique (values or combination of values in the index key must
never repeat) or duplicated. Unique indexes are often created behind the scenes of unique
constraint creation.

Data pages on the same level in an index tree are interconnected by an offset as double-
linked lists. In other words, every index page knows its predecessor and successor. This
helps SQL Server skip to the next index page quickly and efficiently according to the
sorting rule defined by the index.

When a non-clustered index is built on top of a heap, leaf records are created as copies
of values from indexed column(s). These point to data pages in the heap to address
the record that they come from. SQL Server uses internal 8-byte row identifiers for
addressing.

Let's describe the operations that are performed by SQL Server when a non-clustered
index is built on a heap. When a read operation is executed, SQL Server resolves if the
index is useful for the query. There are two general conditions of index usefulness:

•	 The first column in the index is used in the WHERE clause of the query; this causes
SQL Server to not scan all over the heap but to invoke the index seek operation.
This decision is made upon statistics and cardinality estimation. The index seek
operation is a road from virtual root navigating to proper intermediate index pages
(often, it's about the index's depth) and from intermediate pages to the leaf page
containing the key value mentioned in the query.

•	 The WHERE clause is selective, which means that the ratio of records fulfilling the
filter versus amount of records in the table is small. This selectivity is recognized by
cardinality estimation, which is a formula that computes the estimated number of
rows returned by the query. The base of query estimation is index statistics.

256 Indexing and Performance

When executing a SELECT query containing only columns present in a non-clustered
index, SQL Server uses just the leaf level of the index, even if no WHERE clause is
contained within the query. When no additional columns are needed for the query result,
SQL Server scans (or seeks) just the leaf level of the index.

The index scan operation is usually very efficient because less data I/O operations must be
performed. We're mentioning these indexes because they completely cover query needs.
Covering indexes are preferred because they save many I/O operations.

SQL Server follows pointers from leaf pages of found index. These pointers point to
the locations in the heap where records are stored. the rest of the records (columns not
included in the index key) which will form the result of the query.

On the other hand, SQL Server seeks proper index keys. So, SQL Server follows pointers
from leaf pages of found index. These pointers point to the locations in the heap where
records are stored. This operation is needed to retrieve the rest of records (columns not
included in the index key) which will form the result of the query. When we want to
enhance the covering ability of a non-clustered index, we can add included columns.
Included columns are not indexed; their values are just added with an index key, though
the index key itself is still small.

A new record that's inserted into the heap with a non-clustered column is placed
anywhere in the heap, but the index key of the new record has to be placed in the correct
index page. This can lead to some internal non-clustered index maintenance, mainly page
split. Page split is an operation that causes the index page to break into two new ones. This
frees up space for a new index record when the original index page is too full.

When a record is updated, almost the same two situations can occur:

•	 The new version of the updated record fits back in the original data page, so nothing
special happens.

•	 The new version of the updated record is bigger and does not fit into the original
data page, so the record is moved to a data page with more free space. However, a
little navigation object, called a forwarding pointer, is created for the original page
because it's cheaper for SQL Server than to update the index key.

When a record is deleted, it is marked as a ghost record and the pointer from the index
key is invalidated.

When many forwarding pointers and ghost records are created over time, the table
becomes fragmented and must be defragmented. The same occurs on indexes as index
pages are split and reduced. That's why regular maintenance is needed to keep these
structures less fragmented.

Indexes and maintenance 257

Clustered B-tree index
The clustered B-tree index seems to be very similar to non-clustered indexes, but there's
one big difference. The index key is not copied to its separate storage, but the table itself
forms the leaf level of the index. It's obvious that only one clustered index can be created
by a table. When a clustered index is created, the records in the table are sorted according
to the index definition, and the data pages are ordered in a double-linked list. This sorting
operation becomes very complex and expensive when a large composite clustered index is
being created.

When SQL Server performs a read on a clustered index, it can use these operations:

•	 Clustered index scan: This is executed when the SELECT statement is issued. The
entire table is retrieved.

•	 Clustered index seek: The WHERE condition of the query contains a predicate for
the clustered index key.

When SQL Server performs an insert operation on the clustered index, the new record
must be placed in the correct position within the index. This can cause more index
splitting operations.

When SQL Server updates a record in a clustered index, the following situations
might occur:

•	 The column that is not a clustered index key is updated and the record is not grown
beyond the data page free space. Nothing special occurs.

•	 The column that is not a clustered index key is updated but the record is grown
beyond the data page free space. The record must still be placed in the same place,
a new data page is needed, and an index split occurs.

•	 The column that is a clustered index key is updated. The whole record must be
moved to the new position to continue sorting; an index split may occur.

When SQL Server deletes a record from a clustered index, the record is marked as
a ghost record.

Non-clustered and clustered index cooperation
It's typical for a table to have more than just one index, and often, a combination of
indexes are used. When a clustered index exists, leaf pages of non-clustered indexes
do not point to data pages addressing their records, but every non-clustered index key
keeps association with a proper clustered index key.

258 Indexing and Performance

In other words, when a non-clustered index is used in a query that needs, for example,
all the columns of selected records, non-clustered index key values are found. Then,
SQL Server iterates through those values and searches the rest of the records over the
clustered index.

This operation is known as key lookup and it works as a loop. Any keys that are found
in a non-clustered index are searched one by one in a clustered index. When several
records are retrieved, this operation is correct and should not be a performance issue,
but when SQL Server reuses the same execution plan with other parameter values
in the WHERE clause of the query, this may lead to poor performance. This situation
is sometimes called parameter sniffing. We can help reduce occurrences of key lookup
in several ways, but usually, it's recommended to cooperate with the developer.

Columnstore indexes
Columnstore indexes were introduced in SQL Server 2012 with many limitations. Most
of them are gone now, which is why columnstore indexes became very popular in data
warehouse applications. Columnstore indexes use segments as a store unit rather than
data pages. Columnstore indexes can be both clustered and non-clustered.

When a columnstore index is created, a table is divided into row groups – sections
containing approximately a million records. Every row group is divided into segments.
A segment is a storage unit containing the data of one column in one row group. Data in
segments is strongly compressed. This is a very good approach when many aggregation
queries are issued; for example, for reporting purposes or data cube processing.

When creating a non-clustered columnstore index, we create just one. The index cannot
contain columns of big data types such as nvarchar(max) or special data types such
as XML or geography. When a non-clustered columnstore is created, it does not affect
data contention flow, because SQL Server executes columnstore index maintenance
asynchronously, so no locks are requested.

The clustered columnstore index has the same limitation for data types. Since all columns
are obligatory in columnstore, the presence of these data types can be a roadblock.

The clustered columnstore index can cooperate with non-clustered B-tree indexes, and
this cooperation is usually very efficient.

Indexes and maintenance 259

Other index types
B-tree, as well as columnstore, indexes are heavily used in conjunction with classical
relational data. However, modern databases often handle bigger and more complicated
data types. For some of them, SQL Server offers special indexes:

•	 XML indexes for XML data type: XML indexes are divided into the following:

a) Primary XML index: This forms the internal structure of all nodes from
the XML column. These nodes are associated with a unique clustered index value in
the same table.

b) Secondary XML indexes: These are index structures that sort the paths,
values, or attributes of the XML nodes that are stored in the primary XML index.
Secondary XML indexes are always built on top of the primary XML index.

•	 Spatial indexes for geometry and geography data types: Spatial index structures
zoom-in on the spatial value three times in the form of grids. This approach helps
to simplify resolving queries such as do spatial objects intersect with one another?
However, spatial indexes cannot completely cover all the task types that are executed
on spatial data.

Indexing considerations
No exact recipe exists for indexing, but some considerations and best practices have
been created:

•	 A poorly normalized database design cannot be saved by indexes. This is a big
mistake that many developers make.

•	 The best candidate column for a clustered B-tree index is the one that contains
a simple value, such as an integer. The value grows with every new record.

•	 When a primary key constraint is created with defaults, a clustered unique index
is created behind the scenes. This is a good approach when integers (especially
with the IDENTITY property set) are used. However, this is a very bad approach
when uniqueidentifier is used as a data type for the primary key because it
is an expensive operation.

•	 It's better not to have a clustered index than to have a bad one.

•	 In OLTP databases, non-clustered indexes with fewer columns are often better.

•	 As the database resolves, more data warehouse tasks such as aggregated queries
and more composed B-tree indexes or columnstore indexes are useful.

260 Indexing and Performance

•	 Use sys.dm_db_index_usage_stats to check whether your indexes
are useful.

•	 Use sys.dm_db_index_physical_stats to check the level of fragmentation.

•	 Check the accuracy of statistics using the DBCC SHOW_STATISTICS function.

Indexing is a big discipline in terms of SQL Server optimization. To design efficient
indexes, you need to know about data contention; you also need to monitor databases
regularly and often consult the design with a supplier of the database, if possible. It is
also good to keep in mind that indexing is just a small part of optimization; not every
performance issue can be resolved using indexes. If indexing is used in excess, it causes
over-indexing. Over-indexing arises when too many indexes are created on one table. The
result is that with every DML request, not just a data in the table, but also related data
in all indexes must be changed. This leads to many waits and data fragmentation. This
means we still need to consider the trade-off between index efficiency in reads against its
expenses during writes. In the next section, we will look at some of the most common
performance issues and how to detect them.

Common performance issue patterns
So far, we've seen how SQL Server works internally and which tools we can use for
monitoring. We will find many areas that can be optimized on SQL Server. We can work
with memory, physical disks, or CPUs, but we should always start our performance tuning
work with the most basic thing – query response times. This section provides a real-life
example that shows us how to explore response issues, as well as how to save system
resources with just a couple of simple steps.

No real-time scenario has just one potential cause. Hence, there is not just one way to
resolve an issue. In many cases, administrators try to resolve every issue with more system
resources, but this approach is very expensive, and we do not have a bottomless pool of
system resources (and, by the way, most performance bottlenecks are NOT caused by
insufficient resources). That is why we should find the root cause of the performance
issue and try to resolve it using resource savings, along with proper configuration or
appropriate indexing strategies. Sometimes, performance issues are caused by poorly
written client applications. Even if the DBA tries their best to resolve poorly performing
queries, the DBA usually does not have control over poorly written queries. When this
situation occurs, it is time to call for support from the developer's site.

In the following sections, we will combine various tools and techniques to identify
performance bottlenecks and explain how to resolve them.

Common performance issue patterns 261

Unacceptable slow response from SQL Server
to a query
Almost every administrator has experienced the following situation: the overall
performance of the instance of SQL Server is good, but some queries are constantly slow,
or they have unpredictable response times. How can we identify such queries? We can use
an on-demand solution, which means that we will react to emails or tickets that are sent
by disappointed users or we can monitor poorly performing queries proactively.

Which monitoring tools can we use for proactive monitoring? The following list shows the
available tools:

•	 Activity Monitor in SQL Server Management Studio: This window, and especially
its Recent Expensive Queries and Active Expensive Queries sections, is good for
provided a quick overview when a query goes wrong suddenly. But this tool cannot
serve for constant monitoring as it just shows the current situation on the SQL
Server instance.

•	 Reports in Management Studio: SQL Server Management Studio contains a
set of reports. We can consider using instance-level reports such as Performance
Dashboard or reports whose names begin with "Performance". Reports take data
from dynamic management objects, which gives us valuable insight into a behavior
of SQL Server (and we can also use dynamic management objects directly). A
common property of dynamic management objects is that they are cleansed with
every restart of the SQL Server instance.

•	 Data Collection: Data Collection allows us to monitor SQL Server behavior at the
instance level. Data Collection also contains a section called Server Activity, which
stores and shows the operational statistics of the most expensive queries.

•	 Query Store: Another very useful feature, but unlike Data Collection, which is
configured at the database level, is Query Store. It is intended for query monitoring
so that we can explore poorly running queries and have all our operational statistics
(that is, the number of reads or writes, CPU time, and so on), as well as a query
plan, in XML format at our disposal. Query Store also allows us to compare all the
execution plan alternatives that are generated by SQL Server for the same query.

262 Indexing and Performance

I found the poor query; what's next?
When a slow query is identified, we should explore why the query is executed so poorly.
We should concentrate on the following options in the graphical plan:

•	 Plan warnings: We can see small exclamation marks in operators shown in the
graphical plan.

•	 Number of reads and writes made by query: We can compare the amount of data
pages that have been processed with an operator with the amount of data pages used
by one table or index.

•	 Parallel operators within the execution plan: When a stamp with two arrows is
placed on an operator in the query plan, such an operator is executed in parallel.
This is not good or bad by itself, but in connection with extensive CXPACKET
waits (see Resource Waits in the Activity Monitor section), this could be an index for
overutilized CPUs.

•	 Situations when the query waits for some resource: Wait times are not typically
seen in execution plans, so we will use Extended Events for it.

Typically, we will take a graphical execution plan and explore it. Let's explain how to read
the execution plan accordingly while taking the preceding bulleted points into account.

This example requires that we perform some preparation tasks. We will use data
from the AdventureWorks database, which you can access for free at https://
docs.microsoft.com/en-us/sql/samples/adventureworks-install-
configure?view=sql-server-ver15.

We can use the AdventureWorks2016.bak or AdventureWorks2017.bak backup
files for our purposes. When the database backup is restored (you can learn how to restore
a database by rereading Chapter 3, Implementing Backup and Recovery), we will create
a new table as a copy of the existing table called Sales.SalesOrderHeader. The
reason we're doing this is so that we start with a table with no indexes on it:

use AdventureWorks

go

select * into Sales.SalesOrderHeaderCopy

from Sales.SalesOrderHeader

go

alter table Sales.SalesOrderHeaderCopy

add constraint pk_SalesOrderHeaderCopy primary key clustered

https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15

Common performance issue patterns 263

(SalesOrderId)

go

The preceding script creates a copy of the Sales.SalesOrderHeader table to
a new table called Sales.SalesOrderHeaderCopy and adds a clustered primary
key (which is the only index in the new table) to it.

The following statement turns on so-called statistics – textual messages that are returned
besides a query result as additional information about how many I/O operations were
done during the query's execution:

set statistics io on

Now, we can start to identify the reasons why the query is being executed so slowly. The
following query was executed by a business user to show how big the subtotal of orders
was. These were received by the Adventure Works company in 2012 and 2013. Before
executing this query in Management Studio, remember to use the Ctrl + M keyboard
shortcut. This turns on the actual execution plan. The execution plan will be received
alongside any necessary I/O statistics and the query result itself:

select

year(OrderDate) as OrderYear

, sum(SubTotal) as YearlySubtotal

from Sales.SalesOrderHeaderCopy

where SubTotal > 100 and YEAR(OrderDate) in (2012, 2013)		
	

group by year(OrderDate)

Now that we've executed this query, we'll explore the result itself, as well as the I/O
statistics and the execution plan. When you look at the Messages tab of the results pane in
the query window, you will see a message very similar to the following:

(2 rows affected)

Table 'Worktable'. Scan count 0, logical reads 0, physical
reads 0, read-ahead reads 0, lob logical reads 0, lob physical
reads 0, lob read-ahead reads 0.

Table 'Workfile'. Scan count 0, logical reads 0, physical reads
0, read-ahead reads 0, lob logical reads 0, lob physical reads
0, lob read-ahead reads 0.

Table 'SalesOrderHeaderCopy'. Scan count 1, logical reads 784,
physical reads 0, read-ahead reads 0, lob logical reads 0, lob
physical reads 0, lob read-ahead reads 0.

264 Indexing and Performance

(1 row affected)

The most important row in the preceding message is the one that begins with Table
'SalesOrderHeaderCopy'. There are several numbers there, but here, we are
concerned with the number of logical reads and the number of physical reads. The logical
reads metric shows how many data pages were accessed in the buffer cache by SQL Server
during query processing. The physical reads metric, on the other hand, shows how many
data pages were moved from physical disk to the buffer cache.

In our case, all the data pages were placed in the buffer cache, which is a good thing for
us (this is because the table is freshly created and if your environment doesn't have low
memory, the data pages have not been saved to a physical disk yet). But the number of
logical reads shows that all the data pages were accessed during the query's execution,
even if we have a WHERE predicate in the query (and we guess that records should be
filtered). That is why we need to do some more investigation using the graphical query
plan. The graphical query plan looks as follows:

Fig. 6.41 – Graphical query plan

Here, we can see that the query scanned the whole table using the Clustered Index
Scan operator (because our table contains clustered primary key) and that it was also
the most expensive operator during the query's execution (see its relative cost, which
is approximately 83%). We can also see that the graphical plan contains a green line in
its header. This green line marks that some index is missing, and it also suggests how to
design the missing index.

Tip
If you want to explore all the missing indexes in a certain database, you can do
so by querying the sys.dm_db_missing_index_details DMV. We
should use this DMV carefully because the final decision about the new index
is up to the DBA.

Common performance issue patterns 265

If we right-click on the green line, a pop-up menu will appear with an option called
Missing Index Details. When this option is used, Management Studio opens the script
template of the suggested index in a new query window. The result is shown in the
following script:

/*

USE [AdventureWorks]

GO

CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]

ON [Sales].[SalesOrderHeaderCopy] ([SubTotal])

INCLUDE ([OrderDate])

GO

*/

The script template is commented out because it needs two revisions. The first thing we
need to do is review the index definition, because missing index detail never suggests
modifications to existing indexes. A very similar index may already exist on the table, in
which case we should redesign the existing index instead of creating the suggested index.
Our example also has one potentially strange thing: the query filters the record using the
OrderDate column, but the column is not the index key, while it should be. Hence, we
need to go back to the query definition and analyze why the column is not a candidate for
the index key. Let's recall the WHERE clause of the query:

where SubTotal > 100 and YEAR(OrderDate) in (2012, 2013)

The preceding script is not executable; however, it shows that a whole condition has been
placed on the WHERE clause. This condition is composed from two predicates. The first
predicate filters out orders with a small subtotal value makes it easy to take and can be
read by SQL Server. However, the second predicate is called Non-SARGable predicate
(SARG is a shortcut for the term Search ARGument), which means that SQL Server's
cardinality estimator cannot use values from the OrderDate columns. This is because
the column is not added to the predicate on its own and is instead covered by the
YEAR() function.

266 Indexing and Performance

The cardinality estimator does not evaluate results during the optimization of the query,
so the cardinality estimator does not know the raw values of the YEAR(OrderDate)
expression. That is why the OrderDate column is added just as an included column
to the index suggestion, not as the key column of the index. To make the query more
efficient, we should avoid Non-SARGable predicates wherever possible. As we can see,
the optimal execution of queries begins at the query design phase. Let's review the
rewritten query:

select

year(OrderDate) as OrderYear

, sum(SubTotal) as YearlySubtotal

from Sales.SalesOrderHeaderCopy

where SubTotal > 100 and OrderDate between '20120101' and
'20131231'	

group by year(OrderDate)

In the preceding query, we changed the definition of the Non-SARGable predicate to
a SARGable predicate with the same meaning. Now, we can review the missing index
suggestion, as shown in following script:

/*

USE [AdventureWorks]

GO

CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]

ON [Sales].[SalesOrderHeaderCopy] ([OrderDate],[SubTotal])

GO

*/

Now, the index design is much more meaningful as it uses both columns from the WHERE
clause of the analyzed query as the index key columns. Let's create the index using the
following command:

CREATE NONCLUSTERED INDEX ix_SalesOrderHeaderCopy_Agg

ON [Sales].[SalesOrderHeaderCopy] ([OrderDate],[SubTotal])

Common performance issue patterns 267

When the index is created using the preceding script, we can review changes in the
amount of I/O operations, as well as the resulting execution plan. The new look of the
execution plan is shown in the following screenshot:

Fig. 6.42 – I/O operation execution plan

The preceding screenshot of the actual plan shows that two things were changed: the
missing index line disappeared, and the Clustered Index Scan operator was
replaced with the Index Seek operator. The Index Seek operator is much cheaper
than Clustered Index Scan. We can also observe messages and see that the number
of logical reads was reduced from approximately 780 reads to roughly 60 reads. Even if the
sample table is very small, we made an approximate 90% saving in one simple query with
two simple steps.

Can I want more from indexes?
The simple answer to this is: Sure! We must want more! For instance, business analysts
explore the sales order data to get good insights. They will use different grouping columns
or more columns within their queries because they need to see different categories in their
query results.

Let's say that the TerritoryID column will be used as a categorical column in the same
query, and that the issue we've resolved so far is repeated because the TerritoryID
column is not indexed at all. We can continue with other columns in the table as well
since this is a very typical scenario. We could resolve the repeating issue with more and
more indexes, similar to what we have with the already created index. However, this
would be counterproductive because every index will cause more waits for locks and
latches during transactions, and we're assuming that sales orders come into the table
constantly. Fortunately, we have columnstore indexes for such cases. Unlike suffering with
many B-tree indexes, which are used to cover analytical query needs, the design of the
columnstore index is very straightforward and SQL Server uses it very efficiently.

268 Indexing and Performance

Let's see how it works. We will drop the unnecessary B-tree index we've created so far and
then create a new, non-clustered columnstore index containing all the columns that will
be used by our analytical queries. The following commands will do this for us:

DROP INDEX ix_SalesOrderHeaderCopy_Agg ON Sales.
SalesOrderHeaderCopy

CREATE COLUMNSTORE INDEX ncs_SalesOrderHeaderCopy_Agg ON Sales.
SalesOrderHeaderCopy

(

[RevisionNumber]

, [OrderDate]

, [DueDate]

, [ShipDate]

, [Status]

, [OnlineOrderFlag]

, [SalesOrderNumber]

, [PurchaseOrderNumber]

, [AccountNumber]

, [CustomerID]

, [SalesPersonID]

, [TerritoryID]

, [BillToAddressID]

, [ShipToAddressID]

, [ShipMethodID]

, [CreditCardID]

, [CreditCardApprovalCode]

, [CurrencyRateID]

, [SubTotal]

, [TaxAmt]

, [Freight]

, [TotalDue]

)

Common performance issue patterns 269

The preceding script drops the index we created previously to help the aggregate query.
With this, the new columnstore index is created. Now, let's test the result. We will use
two queries. The first query is the original query we analyzed throughout this example,
while the second query is very similar, but uses the TerritoryID column as a grouping
criterion. We will execute the following queries and then explore their I/O statistics and
execution plans:

select

year(OrderDate) as OrderYear

, sum(SubTotal) as YearlySubtotal

from Sales.SalesOrderHeaderCopy

where SubTotal > 100

	 and OrderDate between '20120101' and '20131231'		
	

group by year(OrderDate)

select

TerritoryID

, sum(SubTotal) as YearlySubtotal

from Sales.SalesOrderHeaderCopy

where SubTotal > 100

	 and OrderDate between '20120101' and '20131231'		
	

group by TerritoryID

The I/O statistics for the preceding queries look like this:

Table 'SalesOrderHeaderCopy'. Scan count 2, logical reads 0,
physical reads 0, read-ahead reads 0, lob logical reads 73, lob
physical reads 1, lob read-ahead reads 98.

Table 'SalesOrderHeaderCopy'. Segment reads 1, segment skipped
0.

(1 row affected)

(10 rows affected)

Table 'SalesOrderHeaderCopy'. Scan count 2, logical reads 0,
physical reads 0, read-ahead reads 0, lob logical reads 39, lob
physical reads 0, lob read-ahead reads 0.

270 Indexing and Performance

Table 'SalesOrderHeaderCopy'. Segment reads 1, segment skipped
0.

(1 row affected)

As we can see, the I/O metrics do not show how many data pages were processed, but
how many segments were used by the query. Unlike data pages, segments do not have a
strictly defined size. A segment is a storage unit that contains a portion of the data from
one column only. This means that the data in the columnstore index is divided into groups
of rows (the ideal size is 1,048,576 rows in one row group), and then the row group is
divided into columns. The one part that contains the data values in one column is the
segment. Finally, the segment is compressed so that every scan operation is very efficient.
SQL Server only uses segments for certain queries, so SQL Server does not need to work
with whole records when it uses B-trees or heap.

Note
That is why we describe heaps and B-trees as row storage (SQL Server needs to
use a whole row, even if just one column's value is needed for query purposes),
while the previously explained storage is described as a column store (SQL
Server works just with columns needed by a certain query).

The preceding queries have the following execution plans:

Fig. 6.43 – Execution plans

Common performance issue patterns 271

Since the queries were executed together, the preceding screenshot shows both execution
plans, which makes it easy to compare them. Both execution plans are almost the same.
The important operator is Columnstore Index Scan. It says that the index will be
used, even if there is no B-tree index on the OrderDate or TerritoryID columns.
The Columnstore Index Scan operator is very efficient because it redirects big read
requests to separate storage structure, but it also works in BATCH processing mode. This
means that unlike in B-trees or heaps, values are used in batches; up to 900 values are
processed together. This example uses a very small amount of data, but on huge tables, the
processing time of analytical queries is reduced approximately to 1% of the time needed
by SQL Server when the B-tree approach is used.

Finally, you should know about the Compute Scalar operator, which is the only
operator present in the first execution plan. This is because the first query uses not just
raw values from the OrderDate column, but the YEAR(OrderDate) expression,
which must be calculated during query execution. Also, the calculation is executed by the
Compute Scalar operator.

The last but very important benefit when using non-clustered columnstore indexes is that
they hugely reduce waits when data is updated in the original table. This reduction is due
to the following:

•	 SQL Server uses optimistic row versioning transaction isolation for data
modifications in columnstore. This is a lock-free approach to data modification,
so the columnstore does not increase the number of locks requested during
transactions.

•	 B-tree indexes that are created to cover analytical query needs can be dropped so
that the original table has less storage space. This also reduces locking.

This example showed that making small changes to the query and indexes can bring
about big I/O savings. In other words, before we rush to the shop for a new server with a
bunch of memory, we should play around with our data structures. This will save system
resources, as well as our money. In this example, we also combined the role of DBAs (how
to design and create indexes and how to measure their efficiency) with the role of SQL
developers (non-SARGable predicates). Also, it is good to know that even if the developer
and DBA roles differ, both roles should cooperate to make SQL Server perform well and
satisfy users.

272 Indexing and Performance

Summary
Monitoring performance and resolving performance issues could take up a book on their
own, but any information is useful information.

First, we described several approaches that are typically used in performance monitoring;
that is, the top-down approach and proactive monitoring.

A lot of information was covered in the Tools for monitoring performance section.
Microsoft provides a wide set of tools and techniques we can use to monitor and
troubleshoot SQL Server. Most of them are graphical, but it is also recommended to
have a brief knowledge of non-visual objects such as DMV and functions.

The Indexing and maintenance section demystified typical index types, their usage by SQL
Server in common situations, and provided some guidance regarding indexing.

In the last part of this chapter, we look at some real-life use cases for performance
troubleshooting on SQL Server.

In the next chapter, we will show you what to do when things go wrong. We will use some
similar techniques to what we covered in this chapter to detect the causes of problems and
find solutions to them.

Section 3: High Availability
and the Cloud with

SQL Server 2019

In this section, you will be introduced to several advanced topics, such as hybrid or cloud
deployments of SQL Server, including migration to the cloud and the automation of
a database administrator's work. You will also find several more topics on improving
the reliability and performance of the deployed SQL Server.

This section contains the following chapters:

•	 Chapter 7, Planning Migration and Upgrade

•	 Chapter 8, Automation – Using Tools to Manage and Monitor SQL Server 2019

•	 Chapter 9, Configuring Always On High Availability Features

•	 Chapter 10, In-Memory OLTP – Why and How to Use It

•	 Chapter 11, Combining SQL Server 2019 with Azure

•	 Chapter 12, Taming Big Data with SQL Server

7
Planning Migration

and Upgrade
Although this book is about SQL Server 2019, you will not always be working with the
latest versions and editions of SQL Server. You may be surprised how many diverse
versions of SQL Server are still in production. Quite frequently, you'll face a task of
upgrading and migrating the server configuration and content to the new server running
the latest version of SQL Server. Each new version of SQL Server brings out many new
features that are not available in older versions, and those features may be very useful for
your environment to bring better performance, stability, and many other factors to your
application. In this chapter, we'll explore the upgrade options for SQL Server and what
you have to actually think about during the planning phase of the upgrade. This
information will help you in upgrading your SQL Server systems to the latest version
in a real environment.

Note
Migration of SQL Server is also usually bound to new hardware for the server
or a virtual machine (VM) with the latest operating system using new features,
so you can actually upgrade the whole platform and not just SQL Server.

276 Planning Migration and Upgrade

We will be covering the following topics in the chapter:

•	 The importance of keeping up with latest version

•	 Planning the upgrade

•	 Performing the upgrade

•	 Migrating from other platforms

The importance of keeping up with
latest version
An important reason to upgrade is to continue to obtain the latest support for SQL Server.
Once the mainstream support for SQL Server ends, there will be no more service packs or
cumulative updates bringing fixes and updates to your current version of SQL Server.

As you can see from the following table, just three SQL Server versions are supported as
of now (summer 2020) and those are SQL Server 2016, SQL Server 2017, and the current
SQL Server 2019:

Fig. 7.1 – SQL version support end dates

Planning the upgrade 277

Although many of the older versions are not supported anymore, this does not mean they
are not used in production environments. The preceding table does not list all the SQL
Server versions. There are even older systems that can be used today, but those fell out of
support a long time ago. Also, note that SQL Server 2008 and SQL Server 2008 R2 share
an end date for mainstream support, although those two are separate products released in
different years.

In the following table, you can find support dates for the operating system, where the
common Windows Server 2012 and Windows Server 2012 R2 have already reached the
end of the mainstream support provided, with Windows Server 2016's end date coming
up in 2022:

Fig. 7.2 – Windows Server support end dates

Upgrading your SQL Server version and the operating system can bring you many
new features that can work together to achieve better performance and availability for
your environment.

Planning the upgrade
Upgrading a complex infrastructure is not an easy task and should not be executed
without any preparation. Careful planning of the required steps will help you eliminate
possible issues to the minimum, and the upgrade will run smoothly. Throughout the
versions of SQL Server there have been many changes, so it's worth exploring your options
when planning the new installation, also from the perspective of the available edition.

278 Planning Migration and Upgrade

While upgrading SQL Server from older versions, you also have to understand changes
in the licensing for SQL Server, whereby SQL Server versions 2008 R2 and older used
the per-processor licensing model or used a client access license (CAL) licensing model.
Starting with SQL Server 2012, Microsoft has moved to core-based licensing, where
you need to have a license for each central processing unit (CPU) core used on your
operating system.

Note
SQL Server licensing is a very complex topic that goes beyond the scope of
the book. There are many minor details that have an influence on SQL Server
licensing, starting with the platform—be it a physical server or a virtual
one—and much more. For more information about licensing, you can visit the
Microsoft website at https://www.microsoft.com/en-us/sql-
server/sql-server-2019-pricing where you can find the SQL
Server licensing datasheet, which will be a great start for you.

From the edition perspective, there are two very important aspects you need to consider
during upgrade—hardware limits and feature limits. SQL Server is usually deployed
with two major editions—Standard and Enterprise. Enterprise has more features and
offers more scalability, high availability (HA), security, and so on. With SQL Server
2016 Service Pack 1 (SP1), many Enterprise features were made available also for the
Standard Edition, which may allow you to upgrade to a lower edition while keeping the
application working with all the required features. For the choice of edition, you also
have to consider the hardware limits of the CPU/cores and memory, which have a huge
impact on the overall server performance. You always have to consider upgrade rules
that will force you to use a specific edition during the upgrade. You can visit
https://docs.microsoft.com/en-us/sql/database-engine/install-
windows/supported-version-and-edition-upgrades-version-
15?view=sql-server-ver15 for more information.

SQL Server Standard Edition supports up to 128 GB random-access memory (RAM) (for
SQL Server 2016, 2017, and 2019; older versions had lower limits) and can use up to four
CPU slots and 24 cores. This is mainly important with current servers, which can have
many more CPU cores than the Standard Edition limit, and those can't be used for the
SQL Server workload.

https://www.microsoft.com/en-us/sql-server/sql-server-2019-pricing
https://www.microsoft.com/en-us/sql-server/sql-server-2019-pricing
https://docs.microsoft.com/en-us/sql/database-engine/install-windows/supported-version-and-edition-upgrades-version-15?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/install-windows/supported-version-and-edition-upgrades-version-15?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/install-windows/supported-version-and-edition-upgrades-version-15?view=sql-server-ver15

Planning the upgrade 279

Note:
All the differences between editions are outlined in the online documentation
available at https://docs.microsoft.com/en-us/sql/
sql-server/editions-and-components-of-sql-
server-version-15?view=sql-server-ver15#Cross-
BoxScaleLimits.

The following is a list of features that are now available in the Standard Edition:

•	 Change data capture

•	 Database snapshot

•	 Columnstore index

•	 Partitioning

•	 Data compression

•	 In-Memory OLTP

•	 Always encrypted

•	 PolyBase

•	 Fine-grained auditing

A standard practice is to have a production and development server for an application,
and we must aim to have those two so that we're not surprised in production after
deploying the new code. Since SQL Server 2014 we can use the SQL Server Developer
Edition for free, which is an ideal candidate for development/test servers.

Note
The only limitation of the Developer Edition is that it can't be used in
production. You have to keep in mind that the Developer Edition is similar to
the Enterprise Edition. So, if your production environment is based on the SQL
Server Standard Edition, you need to watch closely which features to use so
that they can be used in the Standard Edition.

https://docs.microsoft.com/en-us/sql/sql-server/editions-and-components-of-sql-server-version-15?view=sql-server-ver15#Cross-BoxScaleLimits
https://docs.microsoft.com/en-us/sql/sql-server/editions-and-components-of-sql-server-version-15?view=sql-server-ver15#Cross-BoxScaleLimits
https://docs.microsoft.com/en-us/sql/sql-server/editions-and-components-of-sql-server-version-15?view=sql-server-ver15#Cross-BoxScaleLimits
https://docs.microsoft.com/en-us/sql/sql-server/editions-and-components-of-sql-server-version-15?view=sql-server-ver15#Cross-BoxScaleLimits

280 Planning Migration and Upgrade

Exploring upgrade scenarios
As a part of the planning phase, you have to carefully consider the upgrade path for your
environment. The following are the three main types of upgrades you can choose from:

•	 SQL Server in-place upgrade

•	 Side-by-side migration

•	 Rolling upgrade

SQL Server in-place upgrade
In this scenario, the SQL Server setup upgrades your existing SQL Server installation. If
you have more SQL Server instances on the same server, you have to choose a specific
instance to upgrade. There are advantages and disadvantages to this upgrade path.

The main advantages are these:

•	 It's easy and fast.

•	 It does not require new hardware or a new VM.

•	 It does not require extra storage.

•	 The operating system is not upgraded.

The disadvantages are these:

•	 It requires a longer downtime compared to a side-by-side type of upgrade.

•	 It may require a complex rollback.

•	 It does not support all scenarios of deployed SQL Server services.

An in-place upgrade is mostly used for non-production systems, where some downtime is
acceptable. During the upgrade there will be a limited time when the SQL Server services
will be stopped and upgraded to a newer version, during which they are unavailable to
end users.

You can use the in-place upgrade for SQL Server 2012 to 2017 to directly upgrade to SQL
Server 2019. To upgrade, simply choose Upgrade from a previous version of SQL Server,
as you can see in the following screenshot:

Planning the upgrade 281

Fig. 7.3 – SQL Server Installation Center

If the in-place upgrade is not a feasible option, you still can perform side-by-side
migration of your SQL Server environment.

Side-by-side migration
The side-by-side upgrade path is more complex compared to the in-place upgrade type,
but it offers you more control over the overall process. In this type of upgrade, you will
have two SQL Servers running and you will move the objects from one server to another.
This will allow you a lot of space for testing, where two SQL Servers—the original and the
new/upgraded one—can be evaluated from the application teams to resolve any possible
issues. The original server will be intact, and you will need to install a fresh new SQL
Server with many choices, such as the following:

•	 New hardware

•	 New VM

•	 New SQL Server instance (least recommended option)

282 Planning Migration and Upgrade

With new hardware or a new VM, you have the benefit of installing the SQL Server on
the latest operating system, which is not covered by the in-place upgrade. The in-place
upgrade is only to upgrade the SQL Server version, so the Windows operating system has
to be handled usually by the Windows admin team of your company. Having the option of
using the latest Windows operating system and new hardware or VM can give you many
performance benefits with newer and faster CPUs, more RAM, different storage options,
and much more.

When you are using the side-by-side migration option, you have to consider that many
objects won't be part of the databases that you will eventually restore to the new system.
There are many system objects stored in master or MSDB databases that require special
attention; otherwise, your new SQL Server won't work as you may expect. Those objects
include the following:

•	 SQL Server logins

•	 SQL Server certificates

•	 SQL Server principals

•	 Linked servers

•	 SQL Server jobs and other Structured Query Language (SQL) agent-related objects
(proxies, operators, alerts)

•	 SQL Server server-level triggers

•	 SQL Server Integration Services (SSIS) packages stored in MSDB

Login information is essential so that your database administrator (DBA) team,
application team, and the application itself can log in to the SQL Server. These logins
are stored in the master database and can be copied to the new version of SQL Server
in several ways. One of them would be the use of the sp_help_revlogin stored
procedure.

Tip
The sp_help_revlogin stored procedure is an old procedure available
from Microsoft, which is not installed to the SQL Server by default. The source
code is available at http://bit.ly/2m5pwUY. You can grab the code
from the site, run the code on your SQL Server version, and then use the
procedure to generate the required Transact-SQL (T-SQL) code for recreating
logins from scratch on the new system.

http://bit.ly/2m5pwUY

Planning the upgrade 283

To export the logins via this stored procedure, simply run the following T-SQL code after
you have successfully created all the required objects:

EXEC sp_help_revlogin

This stored procedure will generate the T-SQL code needed to recreate all the logins
that exist on the current SQL Server. The output also includes specific system logins and
certificates, service accounts, and much more, which you may skip in order to focus only
on the logins required for the application team. The output may look like this:

-- Login: SQL\SQLAdmins
CREATE LOGIN [SQL\SQLAdmins] FROM WINDOWS WITH DEFAULT_DATABASE
= [master]

-- Login: WebAppAcct
CREATE LOGIN [WebAppAcct] WITH PASSWORD =
0x0200FB0844C8CE6803535BB339EC378F40AF5AD003D64EF3748D3568AE49
CA2D3436C102B5F7EA44729F6ED16D3CF16DF1F4BA74C6D47D0789AEF
2915C6773B677E7FB0AC6DC HASHED,
 SID = 0x968A6D6212D4634D9CF7C3E10FFAEC84,
 DEFAULT_DATABASE = [master],
 CHECK_POLICY = ON,
 CHECK_EXPIRATION = ON

In the preceding example output, you can see two types of logins—Windows login
and SQL login. SQL logins use passwords that are not provided in cleartext but with
hash values; they also come with a security identifier (SID), which is important for the
server login to database user mapping in your databases. In this way, database users will
be correctly mapped to the SQL Server login once you bring the databases from the old
server to the new one.

Tip
Another option would be the use of PowerShell, where you can find a module
named dbatools at https://dbatools.io/download/.
This PowerShell module is not a default module in SQL Server but offers
various interesting commands to use with your SQL Server environment
not only for migration but also for common operations. The Export-
DbaLogin command will generate a similar output to the sp_help_
revlogin stored procedure, but with a little bit more information and code
control blocks.

https://dbatools.io/download/

284 Planning Migration and Upgrade

For more complex projects, you can use SQL Server Data Tools for Visual Studio, or
SSDT for short. SSDT provides you with a development platform for your database and
business intelligence (BI) development. The most important projects for SSDT are listed
as follows:

•	 Integration Services package project

•	 Analysis Services project

•	 Reporting Services report project

To transfer logins from one server to another, you can use the Integration Services
package and use one of the tasks named Transfer Login Task Editor. You need to enter
the following configuration items for the task:

•	 Source server

•	 Destination server

•	 Login list to migrate

•	 Whether to copy SIDs

Once you define the task parameters you can run the package, and it will copy the
required logins from the old server to the new server, as the following screenshot shows:

Fig. 7.4 – SSIS transfer login task

Planning the upgrade 285

Using SSIS can be very useful for larger scenarios, because there are more types of
objects that can be transferred with the side-by-side upgrade path. As we mentioned
earlier, there are more system-specific objects that you will need to copy from the old
server to the new one and many of these can be handled by SSIS, as can be seen from
the following screenshot:

Fig. 7.5 – SSIS migration tasks

As you can see in the preceding screenshot, you can transfer many objects from the
MSDB database, such as jobs and error messages, master stored procedures, or even whole
databases. Using SSIS is one possible method to transfer databases from an old server to a
new one.

Other possible ways include the following:

•	 Restoring the database from the backup

•	 Using attach/detach methods

•	 Using any disaster recovery (DR) option—replication, mirroring, log shipping,
availability groups

The option chosen to bring the database to the new server will be dependent on many
factors and those are mainly the size of the database, the requirement to keep the new and
old server in sync, and the availability of the storage.

Rolling upgrade
The rolling upgrade method is used on the SQL Server environment, whereby you need
to keep the upgrade between multiple servers and instances in the correct order. This
approach is used mainly with HA or DR solutions, such as the following:

•	 Always-On availability failover cluster

•	 Always-On availability groups

•	 Mirroring

286 Planning Migration and Upgrade

•	 Log shipping

•	 Replication

The rolling upgrade method is also used with several services such as SQL Server
Reporting Services (SSRS) if scale-out deployment for HA and load balancing is used.

Upgrading the SQL Server version if more servers are used for HA and DR usually starts
with the passive node of the installed solution. Depending on the solution, you will
have to perform manual failover and then continue with the not yet upgraded node of
the solution. The only part where SQL Server automatically determines if the failover
should occur is the upgrade of the failover cluster. If more than half of the nodes were
upgraded to the new version, SQL Server will automatically fail over the SQL services to
an upgraded node.

Note
The full upgrade scenario for HA/DR solutions is out of the scope of this book,
but you can find more information on availability groups at https://
docs.microsoft.com/en-us/sql/database-engine/
availability-groups/windows/upgrading-always-on-
availability-group-replica-instances.

Pre-upgrade checks
Regardless of the chosen upgrade path, in-place or side-by-side, you need to check if
your database can be upgraded to a new version. SQL Server 2019 comes with a Data
Migration Assistant tool that can be used to verify if there are any blockers to your
upgrade and verify whether any of the databases include features that would prevent
migration to the new SQL Server 2019 version.

Data Migration Assistant
Let's see what the Data Migration Assistant tool looks like. The welcome page is shown
in the following screenshot:

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/upgrading-always-on-availability-group-replica-instances
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/upgrading-always-on-availability-group-replica-instances
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/upgrading-always-on-availability-group-replica-instances
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/upgrading-always-on-availability-group-replica-instances

Planning the upgrade 287

Fig. 7.6 – Data Migration Assistant

The Data Migration Assistant tool has to be configured to connect to your SQL Server
instance, and you'll need to select the databases for evaluation. This evaluation will
examine the objects in the databases, their compatibility levels, and other parameters for
SQL Server 2019 and will produce a report for you.

Data Migration Assistant can be used to evaluate migration toward the following:

•	 A new SQL Server

•	 An Azure SQL database

•	 Azure SQL Server on a VM

The discovered issues are split into the following categories, based on the impact of your
application during the upgrade:

•	 Breaking changes

•	 Behavior changes

•	 Deprecated features

288 Planning Migration and Upgrade

You can also use the Discover New Features option, which will evaluate the existing
database and recommend new features based on the difference between the source
SQL Server version and SQL Server 2019. These recommendations will be split into the
following categories:

•	 Performance—In-Memory OLTP and Columnstore Index

•	 Security—Always encrypted, transparent data encryption, dynamic data masking,
and so on

•	 Storage

We can see in the following screenshot what Discover New Features looks like:

Fig. 7.7 – Data Migration Assistant assessment view

As you can see in the preceding screenshot, the evaluation of the existing databases
was okay, but the Data Migration Assistant tool was able to detect several deprecated
features and behavior changes that you should carefully examine before you proceed
with the upgrade. These can have performance, security, and stability impacts on your
environment.

The Data Migration Assistant tool can be used not only to perform assessment but
also for the migration itself. In that case, you would have to create a different type of
project and configure which databases and logins you would like to migrate to the new
environment, as seen in the following screenshot:

Planning the upgrade 289

Fig. 7.8 – Data Migration Assistant new project

Data Migration Assistant can also be used from the command line, but currently, only
Assessment mode is available. To run the assessment against the local SQL Server, use the
following command:

DmaCmd.exe /AssessmentName="MigrationAssessment" /
AssessmentDatabases="Server=SQL;Initial
Catalog=AdventureWorks2016;Integrated Security=true"
/AssessmentEvaluateCompatibilityIssues /
AssessmentOverwriteResult /AssessmentResultJson="C:\
MigrationAssessments\AWReport.json"

This command will run the assessment named SQL with SQL Server for a database called
AdventureWorks2016 and store the output in a local file.

SQL Server System Configuration Checker
The SQL Server setup uses the System Configuration Checker (SCC) to perform basic
checks if there are any blockers for your upgrade. You can either run the SCC as
a standalone task from the installation media or it will run automatically as part of the
SQL Server installation, once you install a new instance or upgrade an existing one.

290 Planning Migration and Upgrade

The SQL server setup looks like this:

Fig. 7.9 – SQL Server setup

We just went through the options for an upgrade and all the considerations you have to
make for such a task. Let's see how to perform the upgrade.

Performing the upgrade
Once you have finished the planning phase and all the preparations are done, it's time to
perform the upgrade/migration of your SQL Server environment. For the scenario used
in this chapter, we'll upgrade an existing SQL Server 2016 version to the latest version.
One thing you also need to carefully consider is the edition upgrade path that you need to
follow.

Performing the upgrade 291

Note
We will be upgrading to the Enterprise Edition, and the edition will stay the
same after the upgrade. You can, however, upgrade between editions. You can
find the whole edition and version upgrade matrix on Microsoft's website
at https://docs.microsoft.com/en-us/sql/database-
engine/install-windows/supported-version-and-
edition-upgrades where you can see which versions and editions can
be upgraded.

In the next steps, we will consider the in-place upgrade of the SQL Server environment
first. Once we have started the SQL Server setup, the setup program has to check the
system and prerequisites so that we can continue with upgrading the SQL Server
environment. If you have more instances, you will be presented with a choice of which
instance to upgrade. One of the choices is to upgrade just the shared features, and those
include the following:

•	 SSIS

•	 Master Data Services

•	 SQL Server Management Studio (SSMS). Although SSMS is a separate download,
it's still listed as a shared feature.

•	 In the following screenshot, you can see the choice of existing instances to upgrade:

Fig. 7.10 – SQL Server upgrade

https://docs.microsoft.com/en-us/sql/database-engine/install-windows/supported-version-and-edition-upgrades
https://docs.microsoft.com/en-us/sql/database-engine/install-windows/supported-version-and-edition-upgrades
https://docs.microsoft.com/en-us/sql/database-engine/install-windows/supported-version-and-edition-upgrades

292 Planning Migration and Upgrade

One of the services that was formerly included in the SQL Server installation—SSRS—is
now a separate download, and during the upgrade it will be uninstalled. What you need to
do is outlined in the setup window, as follows:

•	 Back up your report server databases.

•	 Back up your report server encryption key.

•	 Install new reporting services.

•	 Migrate the reports.

Once you go through all the remaining pages of the setup dialog, then the setup program
will start the upgrade of your SQL Server environment. It's then just a measure of time,
depending on the performance of your system and how long it will take to finish the
upgrade. After the upgrade, you need to verify the services and connectivity to your SQL
Server. If all the services are running correctly and you can connect to the SQL Server, you
need to also check all the applications using your SQL Server environment to verify that
the upgrade went fine.

You can also check the log file that is generated during the upgrade for
any possible issues if any of the services do not upgrade correctly.

In the following screenshot, you can see a finished setup with a link to the setup log file:

Fig. 7.11 – Upgrade summary

Performing the upgrade 293

Once you start SSMS on the upgraded SQL Server environment, it will check for the
upgrade and let you install the latest version of SSMS, which is now a separate tool, from
the SQL Server installation.

To finish the upgrade, you will need to perform several additional steps, as follows:

1.	 You need to check your maintenance plans and take backups of your databases.

2.	 You should check the integrity of the databases with the DBCC command.

3.	 Evaluate the compatibility level of the databases and raise to the highest level with
performance checks in mind.

4.	 Install the latest updates that were not included in the installation media
(cumulative updates).

5.	 Rebuild indexes and update statistics.

6.	 Repopulate full-text catalogs.

Let's dig deeper into the upgrade process for SSRS. This service is commonly deployed
for numerous Microsoft products or third-party applications. Since SQL Server 2017, this
service is a separate download and is no longer included in the installation media of SQL
Server.

Upgrading Reporting Services 2019
During the upgrade (following Fig. 7.8), we have seen that the Reporting Services service
will be uninstalled, and we need to install a brand-new instance of SSRS, which is now a
separate install and download. Before we can start with that, you need to back up your
databases and the key to be able to migrate your reports.

294 Planning Migration and Upgrade

Databases are on your SQL Server environment and if you're not sure about the names,
in the case of multiple Reporting Services instances, you can check the database server
name and database names from the Reporting Services Configuration Manager tool,
where you can click on the Database configuration page, as can be seen in the following
screenshot:

Fig. 7.12 – SSRS database configuration

To back up the key, you need to switch to the Encryption Keys page of the configuration
to find several buttons available to you. The most important one for us in this step is
the Backup button, which is used to back up the key. This Reporting Services key is used
to encrypt sensitive data in your datasets, connections, and subscriptions.

If this key is lost, you can wipe out all sensitive information by clicking the Delete button,
and all connections will need to be reconfigured. In the following screenshot, you can see
the configuration page for SSRS encryption keys:

Performing the upgrade 295

Fig. 7.13 – SSRS encryption key management

While you're performing the backup of the key, you need to provide the location to store
the key on the filesystem, and also the password to protect the key.

You need to keep this password safe and available to be able to restore the key in the
future. In the following screenshot, you can see the dialog box for encryption key backup,
including the password for the key:

Fig. 7.14 – SSRS backup encryption key dialog

296 Planning Migration and Upgrade

You can also use the command line to back up the key to have a scheduled task that
can back up the key on a regular basis. This command will back up the key from the
default Reporting Services instance and protect the key with the P@ssw0rd value, as
illustrated here:

rskeymgmt -e -f c:\backup\ssrskey.snk -p P@ssw0rd

When you have the full backup of the databases and your keys, you can click Install SQL
Server Reporting Services. The installation files are not present directly on the SQL
Server 2017 installation but there's a link provided in the setup tool, which opens a web
page where you can download the binaries needed to install the new reporting services.
The following screenshot illustrates this:

Fig. 7.15 – SQL Server Installation Center

Performing the upgrade 297

Once you start the installation, you'll be presented with several dialog choices. The first
one is Install Server Reporting Services. In the next one, you need to select the edition
that you're about to install. Developer, Express, and Evaluation do not require any
serial number, but the remaining editions do. Once you select the location to install the
SSRS, you can just hit the Install Reporting Services button, as shown in the following
screenshot, and the installation will start:

Fig. 7.16 – SSRS installation

When installing SSRS, you need to choose the proper edition that matches the SQL Server
edition you purchased.

298 Planning Migration and Upgrade

In the following screenshot, you can see how to choose the edition:

Fig. 7.17 – SSRS edition choices

Once SSRS is installed, you need to perform the configuration of the server. Just hit
the Configure report server button and the Reporting Services Configuration
Manager tool will open, similar to the one where we performed the key backup. This time,
it's for the SQL Server 2017 version.

Performing the upgrade 299

For the configuration, we will focus only on key aspects needed for a successful upgrade,
and not the full SSRS configuration. This is illustrated in the following screenshot:

Fig. 7.18 – SSRS finished setup: configuration

You need to configure the following items in SSRS:

•	 Web Service URL

•	 Web Portal URL

•	 Database

•	 Encryption Keys

We have backed up the databases on the old system, so you need to restore the backups
to your new SQL Server. When you configure the databases, you will use the Change
Database button to open a dialog to attach the existing databases from your SQL Server.

300 Planning Migration and Upgrade

You need to select the correct database name to attach, as you can see in the following
screenshot:

Fig. 7.19 – SSRS Database Configuration Wizard

Once you have the database available, you need to configure two Uniform Resource
Locators (URLs) used for the web service and the web portal. If you don't want to
make any customization to the configuration, you can navigate to the correct pages in
the Reporting Services Configuration Manager tool and just hit the Apply button on
those two configuration pages—Web Service URL and Web Portal URL—as seen in the
following screenshot:

Performing the upgrade 301

Fig. 7.20 – SSRS web service configuration

If both URLs have been configured, the last item remaining is to restore the key from
the backup. I hope you have the password available, since you'll need to provide the
password used during the backup of the key. On the Encryption Keys page, you can
use the Restore button and provide the file with the key and password. If all these items
are configured, you can navigate to the URL of the web portal, which you will find on
the Web Portal URL page.

302 Planning Migration and Upgrade

The new web page will be opened in your browser and you will see the new SSRS portal
available for use, as you can see in the following screenshot:

Fig. 7.21 – SSRS report browser

We have seen how to plan and execute the upgrade of SQL Server from older versions to
the current one. Let's explore the options for migration from other database systems to
SQL Server.

Migrating from other platforms
SQL Server migration projects don't necessarily only include SQL Server as a primary
data source, but there are many other platforms where you may choose to upgrade to
SQL Server. You can use SQL Server Migration Assistant (SSMA), which is available for
several Database Management System (DBMS) systems, as follows:

•	 SSMA for Access

•	 SSMA for DB2

•	 SSMA for Oracle

•	 SSMA for SAP Adaptive Server Enterprise (SAP ASE)

•	 SSMA for MySQL

Migrating from other platforms 303

SSMA is able to create a project for a number of target versions of SQL Server, where SQL
Server 2017 is included with both platforms—Linux and Windows operating systems. The
other targets available are listed as follows:

•	 SQL Server 2008/2008 R2

•	 SQL Server 2012

•	 SQL Server 2014

•	 SQL Server 2016

•	 SQL Server 2017 Windows/Linux

•	 Azure SQL Database

•	 Azure SQL Data Warehouse

If you would like to use the migration tool, you need to have drivers for correct DBMS
systems in place. For Access migration, you need Microsoft Access Runtime, which you
can download from Microsoft's website. The tool can open the download link for you. The
migration wizard can be seen in the following screenshot:

Fig. 7.22 – Database Migration Assistant

304 Planning Migration and Upgrade

There's a lot of planning and testing required for platform migration due to type
conversions, query differences, performance objects, and many other possible issues.
SSMA can be a useful start for such analysis, where you can evaluate possible migration
blockers and start resolving them one by one.

Migration example from Microsoft Access
We can use SSMA for Microsoft Access to convert data stored in the Access database
to the SQL Server, and there are several possible options for us. With SSMA, you can
evaluate all existing objects in the Access database, configure the type mapping between
SQL Server and Microsoft Access, and migrate the content of Access to a new SQL
Server database, as illustrated in the following screenshot:

Fig. 7.23 – SSMA for Microsoft Access

You can use the Add Database button to open the Access database file and explore
existing objects—tables, views, queries, and so on. To connect to your SQL Server, use
the Connect to SQL Server button and enter your instance and database name at the
location where you want to import the data. Access Metadata Explorer is shown in the
following screenshot:

Fig. 7.24 – Access Metadata Explorer

Summary 305

Once you have connected to all the systems, you can evaluate the data and use any of the
possible tasks, as follows:

•	 Convert, load, and migrate

•	 Create report

•	 Convert schema

•	 Migrate data

With Access, you have an option to use linked tables, which will allow your application
to connect to Access, and the data will already be stored in SQL Server when you
finish all the migration steps, including the configuration of the application connection
information.

Summary
Upgrade and migration are important phases in the SQL Server operation life cycle. Each
path has its own advantages and disadvantages. As we went through the chapter, you saw
that careful planning of such a task is crucial, since there are numerous considerations for
the new platform.

In-place upgrades offer you the option to utilize the current hardware of the virtual
environment, allowing you to quickly upgrade your SQL Server to new versions. However,
this option has more complex rollback if your upgrade fails. With side-by-side migration,
you can really use the benefits of the new hardware platform, modern CPUs, and the latest
operating system, which will allow you to build the SQL Server again, and then you just
need to migrate the data between the old and new SQL Server. There are again numerous
options for you, the most common being backup and attach/detach methods. There are
many tools that can be used to plan the upgrade—especially SQL Server Data Migration
Assistant and SSMA.

SSMA is used to migrate not only to the latest SQL Server 2019 version but also to older
SQL Server platforms and Azure SQL Database, since this tool is used for migration from
other supported DBMS systems.

In the following chapter, we will explore SQL Server automation capabilities. Automation
is very important today since the size of the environments we manage is growing, and
you may want to eliminate the manual steps in repeated tasks. These components for
automation can also be used for SQL Server monitoring, so we'll explore the alerting
system and other monitoring capabilities of SQL Server.

8
Automation – Using

Tools to Manage and
Monitor SQL Server

2019
A lot of administrator tasks are executed regularly and it's inconceivable to run these
tasks manually. SQL Server offers a dedicated service called SQL Server Agent, helping
us to automate many common tasks. Along with this service, a very helpful tool called
the maintenance plan was developed to support regular tasks that should be run against
each database.

In this chapter, we will learn what SQL Server Agent is and how to set up this service
from reliability and security perspectives. We will also set up Database Mail to keep
a tab on things if they go wrong. We will also look at Maintenance Plans. A maintenance
plan is a powerful tool that helps administrators decide on the tasks that are required
to maintain healthy databases and protect databases from data loss and performance
degradation. It has a relatively simple wizard that covers very complicated tasks.

308 Automation – Using Tools to Manage and Monitor SQL Server 2019

SQL Server Agent holds definitions for jobs, operators, and alerts; we will see the benefits
of their usage and how to create them. We will also learn how to work with SQL Server
Agent's security objects.

In this chapter, we will cover the following topics:

•	 Using SQL Server Agent

•	 Creating and editing maintenance plans

•	 Creating SQL Server Agent objects

•	 SQL Server Agent security

Using SQL Server Agent
SQL Server Agent is a Windows service that serves mainly as a provider for
the automation of regular tasks. Tasks that can be automated are not only administrative
ones but also other tasks supporting the operation of information systems – for example,
data movements such as ETL processes, migration tasks, and integration package
runs. Having SQL Server Agent running full time is also a prerequisite for some features
offered by other SQL Server services – for example, data collection or reporting services,
unattended report execution or subscriptions.

The SQL Server Agent service is installed within the SQL Server setup without an option
to skip its installation. Every edition except the Express Edition of SQL Server has SQL
Server Agent installed.

In order to start using SQL Server Agent, there are a couple of simple tasks that need to
be performed. These will be described in the following sections.

Setting up the SQL Server Agent service
The first setup task is to check the service startup mode of SQL Server Agent after
installation. The check is done in SQL Server Configuration Manager. The procedure is
very easy and it is described in a step-by-step manner with screenshots showing what to
find and where to find it:

1.	 Start Sql Server Configuration Manager and in the left pane, click on SQL
Server Services.

2.	 In the right pane, a list of installed services will appear, as shown in the
following screenshot:

Using SQL Server Agent 309

Figure 8.1 – List of installed services

3.	 In the right pane, right-click on the SQL Server Agent row (the instance name is
SQL Server (MSSQLSERVER) in our screenshot) and select Properties. A modal
dialog (depicted in the following screenshot) will open for us to go through:

Figure 8.2 – Log On tab

4.	 In the Log On tab, we can change the service login and password. The choice of
the right login depends on several factors and will be described immediately after
these steps.

310 Automation – Using Tools to Manage and Monitor SQL Server 2019

5.	 The most important tab is the Service tab. In this tab, we must ensure that SQL
Server Agent has Automatic set as the start mode:

Figure 8.3 – Selecting mode - Automatic

6.	 When this setting is checked, click on OK and close SQL Server Configuration
Manager.

The security context of SQL Server Agent is crucial for the correct execution of all jobs.
There are three options that you can choose from:

•	 The first option, which is not recommended, is to use the local system built-in
account. This account is not manageable by the administrator and this account
also contains too many permissions for the operating system.

•	 The second option is to use a regular domain account with start-as-a-service
permission, but we must consider the group policy object and the possible need
to regularly change the password.

Using SQL Server Agent 311

•	 The third option, recommended by Microsoft as the best practice, is to use
Managed Service Accounts. This option is available on Windows Server 2012
until the latest 2019 version. Managed Service Accounts behave the same way as
any other common user account, but Windows Server ensures an internal regular
password change. It has two consequences:

a) Users, even DBAs, do not know the password for SQL Server Agent.

b) The password does not compromise password policies.
The account that is used should not have any elevated permissions. When set up during
installation, SQL Server setup sets necessary permissions on it; otherwise, we could suffer
problems while running SQL Server Agent. More information about security is provided
in Chapter 4, Securing Your SQL Server.

Setting up SQL Server Agent Properties
Next, setup tasks are done in Management Studio in the Properties window of the SQL
Server Agent service:

1.	 Open Management Studio and connect to the SQL Server instance.

2.	 In Object Explorer is a node called SQL Server Agent. Right-click on it and
choose Properties:

Figure 8.4 – Object Explorer - Properties

312 Automation – Using Tools to Manage and Monitor SQL Server 2019

3.	 When the Properties window is open, we have to go through six pages. On the
first page, called General, we should tick off the checkboxes as shown in the
following screenshot:

Figure 8.5 – The General page

4.	 Switching on these two options ensures that SQL Server Agent will attempt to start
when it is stopped. It was very rarely noticed, but previously, SQL Server Agent
resolved job conflicts by restarting itself.

5.	 The Advanced page has two independent parts. The upper part is sometimes
used for the centralized management of SQL servers. It is called SQL Server event
forwarding.

Using SQL Server Agent 313

Note
Event forwarding is a feature that provides the ability to forward error messages
from certain SQL Server instances to another server to establish a central point
of diagnostics. A positive aspect of this feature is the ability to make one clear
and comfortable place for SQL Server management, but we must consider
moments when the central server collecting error log data is inaccessible.
However, jobs and other tasks will not be affected by the inaccessibility.

6.	 The lower part of the Advanced settings is used to determine what it means when
SQL Server's CPU is idle. As seen in the following screenshot, by default, the CPU
is idle when it gets below 10 percent of utilization for at least 10 minutes. However,
we can adjust these settings as needed – for example, when some concurrent service
runs on the same server and we know that the CPU's effort never goes under 20
percent. The Define idle CPU condition checkbox needs to be ticked first, and then
we can adjust the rest of the settings. Without ticking the checkbox, the On CPU
Idle schedule will never be executed. The Advanced page is shown in the following
screenshot:

Figure 8.6 – The Advanced page

314 Automation – Using Tools to Manage and Monitor SQL Server 2019

7.	 The Alert System page in the SQL Server Agent Properties window is seen in
the next screenshot. It has more parts, but for common administration purposes,
just the two parts marked in red are important. The big part in the middle of the
window is obsolete as pagers are used less and less:

Figure 8.7 – Alert system page

Using SQL Server Agent 315

It is very useful and also recommended to use an alerting system. It greatly helps
administrators to stay informed about everything that might happen on SQL
Server (for example, more serious errors, failed jobs, and so on). For the correct
settings of Alert System, we need to configure the Database Mail profile for SQL
Server Agent first, which will be described in the next section. When the Database
Mail profile has been created, it should be used in the first setting of the preceding
screen. The Enable mail profile checkbox is enabled, the Mail system drop down
is filled with the Database Mail value (it's now the only possible value; the second
value called SQL Mail was marked as deprecated several versions of SQL Server ago
and now it's gone), and if some Mail profile were already configured, their names
appear in the dropdown called Mail profile.

8.	 The second red box is Fail-safe operator. The fail-safe operator is a regular
operator defined in SQL Server Agent (see the Operators section), but it
has one extra behavior. When SQL Server Agent is started, the Fail-safe
operator definition is cached to be ready in case the regular operator is not
accessible, for example, due to some serious problem with the msdb database. To
set the fail-safe operator, the first step is to create a regular operator. Then, when
the Enable fail-safe operator checkbox is switched on, operator names are seen in
the Operator dropdown.

9.	 The last interesting tab in the SQL Server Agent Properties window is the tab to set
job history retention. Every step of every job writes its result in the msdb database.
The history table has, by default, a maximum of 1000 records in total and a
maximum of 100 records per job. When the 1000 limit is reached, the maximum
records per job is reduced.

316 Automation – Using Tools to Manage and Monitor SQL Server 2019

This default setting can be changed, as shown in the following screenshot
(the screenshot shows default values):

Figure 8.8 – The History page

If both checkboxes are turned off, the history will last in the msdb database up to its
limit. We can also keep the history measured by the number of rows. A relatively new
but very useful option is to turn off the Limit size of job history log checkbox but
switch on Remove agent history and set up the time limit. By default, the retention
period is 4 weeks. It is quite enough because it covers job histories for a month of
regular automation.

The job history serves as a source of diagnostic information, typically error messages.
When some job step, that is, a T-SQL job step containing a BACKUP DATABASE
statement, fails, it is guided with an error message, which is written to the history. But
reviewing the history also helps to give an insight into the additional workload added by
SQL Server Agent jobs to the resource utilization of the SQL Server instance, because all
records written to the history contain execution times as well as start and finish times.

Using SQL Server Agent 317

Setting up Database Mail
Database Mail is a component of SQL Server that provides email features for any desired
task. The main purpose is to be informed by SQL Server or SQL Server Agent when
anything happens that needs the administrator's attention. When Database Mail is set up,
administrators could be notified in the form of an email when jobs fail, alerts occur, and
so on:

1.	 To set up as well as make changes to the Database Mail configuration, a wizard
incorporated into Management Studio is used. This section is a walkthrough of
this wizard. It is accessible from Management Studio, specifically the Management
node, as shown in the following screenshot:

Figure 8.9 – Selecting Configure Database Mail

2.	 When the Configure Database Mail option is chosen, the wizard starts and guides
us through the configuration process.

318 Automation – Using Tools to Manage and Monitor SQL Server 2019

3.	 The first step after the welcome page is a signpost for what to do next. When the
wizard is running for the first time, the first option is selected as follows:

Figure 8.10 – Configuring Database Mail
When the wizard is started, additional options on the first step are enabled to skip
directly to the step with the desired configuration. When passing through the
wizard, we will visit all of them.

4.	 When the Next button is clicked during the first pass through the wizard, The
Database Mail feature is not available. Would you like to enable this feature? will
appear. This is because Database Mail is one of the features disabled at the instance
level by default, and by answering Yes to this question, the email configuration can
continue. If the feature was enabled previously by calling exec sp_configure
'Database Mail XPs', 1 for some reason, then the question in the wizard
will not be shown.

Using SQL Server Agent 319

Note
Database Mail uses profiles. A profile is a secure container for one or more
SMTP accounts. When Database Mail is used for more purposes than for
SQL Server Agent emailing, it's good practice to create separate Database
Mail profiles for such tasks due to security isolation. More email accounts
assigned to one profile provide an enhanced level of reliability.

5.	 When the first email account in a certain profile does not work for any reason, the
second email account is used for repeated attempts to send emails and so on. In
the wizard's step in the following screenshot, the profile is named and some SMTP
accounts are created:

Figure 8.11 – Setting a new profile

320 Automation – Using Tools to Manage and Monitor SQL Server 2019

6.	 Profile name should be filled with any descriptive name (SQL Agent Profile is
given as an example, it's not a default). Then, click on the Add button and a dialog
window appears for SMTP configuration:

Figure 8.12 – SMTP configuration
As seen in the preceding screenshot, the SMTP account settings are quite simple.
They're very similar to the email settings in any other email client. Which fields will
be filled with values depends on the actual email server used. Let's go through the
mandatory fields and options:

•	 Account name: Any descriptive name of an account (for example, mydomain.com
agent email).

•	 E-mail address: The email address used within this profile as a sender's address (for
example, agent@mydomain.com).

•	 Server name: A valid name of an SMTP server (for example, smtp.mydomain.com).

•	 This server requires a secure connection (SSL): If needed, communication could
be secured.

•	 Port number: Often TCP port 25 or, if SSL is used, 995.

Using SQL Server Agent 321

•	 SMTP Authentication options:

a) Windows Authentication using Database Engine service credentials

b) Basic authentication (user and password checked by the email server itself)

c) Anonymous authentication

7.	 After adding all the required information to the email account settings dialog, click
on OK. If needed, additional accounts could be added in the same way. When more
accounts are defined, they can be prioritized by clicking on the Move up and Move
down buttons in the wizard. When an email profile is defined and its account's
definition is done, we can continue to the next step, which is used to define profile
security.

8.	 Every profile can either be a public or private profile. When a profile is private, it is
set for the SQL Server principal that the profile serves. When the profile is public,
every user who has sufficient permissions can send an email by the sp_send_
dbmail procedure stored in the msdb database. When a profile is signed as a
default profile, it is used when no explicit profile name is defined as a parameter of
the sp_send_dbmail procedure.

The wizard step for the profile settings is shown in the following screenshot:

Figure 8.13 – Configuring Databse Mail profile

322 Automation – Using Tools to Manage and Monitor SQL Server 2019

9.	 The next and last step in Database Mail Configuration Wizard is used to configure
the system parameters. System parameters are common parameters of Database
Mail and consist of these options:

•	 Account Retry Attempts: The number of times SQL Server tries to send an email
when the sending fails. The default value is 1.

•	 Account Retry Delay (seconds): The period of time that SQL Server waits before
it tries to send an email again (only more than one retry attempt is set). The default
value is 60 seconds.

•	 Maximum File Size (Bytes): It is not so usual when using Database Mail for SQL
Server Agent, but in some user mailing scenarios, an attachment can be a part of
the sent email. This setting restricts the maximum attachment size. The default
value is 1,000,000 bytes.

•	 Prohibited Attachment File Extensions: This setting restricts file extensions
for attachments. The default values are .exe, .vbs, .dll, and .js, but they
could be enhanced by other potentially dangerous extensions, such as .com, .bat,
and .ps1.

•	 Database Mail Executable Minimum Lifetime (seconds): When the first email is
sent to the queue, the service is started. This setting says how long it will be running
(potentially in an idle state) before it sleeps. The default value is 600 seconds.

•	 Logging Level: This setting says how many messages will be written to
the msdb database. The default value is Extended (errors and warnings are
captured), but it can be changed to Normal (errors only) or Verbose (errors,
warnings, and information messages).

A very common practice is to have the listed settings stay unchanged.

When the wizard is finished, the first email profile is created. We can run the wizard
more times to add profiles or reconfigure existing ones, as well as to reconfigure all
other settings. When the profile, which is intended to send an email from SQL Server
Agent, is created, we can go back to the SQL Server Agent Properties window and
set the Database Mail profile as described in Chapter 4, Securing Your SQL Server.

Now, when Database Mail is configured correctly, we can start to set up the automation
of our regular tasks. In the next section, we will find a very good starting point for
automated administration.

Using SQL Server Agent 323

Sending emails from SQL Server
To test our Database Mail definition or for any user purposes, we can send emails
directly from SQL Server using a stored procedure, sp_send_dbmail. This procedure
is defined in the msdb database. The procedure has many parameters, but for basic needs,
we can list these:

•	 @profile_name: If not set, the default public profile is used to send an email.

•	 @recipients: A list of email addresses (separated by a semicolon (;)).

•	 @subject: Some text, as in a regular email.

•	 @body: Some text; it's the same as when writing any email. It can be formatted as
plain text or an HTML document.

•	 @query: Any query returning a result set (for example, a SELECT statement). The
result of the query will be sent to recipients.

An important question is this: who is authorized to call the procedure?
Administrators are authorized for this, but when we need to authorize regular
users without administrator privileges, SQL Server prepares a special database role
called DatabaseMailUserRole for the msdb database. Users added to this role
have permission to call the procedure.

Let's explore how to execute the stored procedure itself:

exec msdb..sp_send_dbmail
 @recipients = 'administrator@example.com'
 , @subject = 'Test'
 , @body = 'Hello world'

The first thing that we have to consider is that even if the procedure has the sp_ prefix,
it is not defined in the master database but in the msdb database; hence, we need to add
a database prefix, as seen in the preceding script. Our call used the default public mail
profile so the @profile_name parameter is not needed. The rest of the script is obvious
and self-descriptive. The only parameter value that needs to be changed in the preceding
example is the @recipients parameter.

324 Automation – Using Tools to Manage and Monitor SQL Server 2019

What is the result of the execution? It is an informational message, that is, Mail (Id:
2) queued. It says that the send operation itself is executed asynchronously and does
not affect the user's waiting for the actual result of the send attempt. If we want to see
the result of the sending itself, we can go to the sysmail_sentitems and sysmail_
faileditems tables, respectively:

select * from msdb..sysmail_sentitems
select * from msdb..sysmail_faileditems

The two simple select statements show all items queued on user requests and
also errors that occurred during email delivery. Both tables have the same column,
called mailitem_id, as a joining key. There are more tables with the sysmail_ prefix
in the msdb database but, for testing purposes, the two listed here are sufficient.

The last thing that we have to consider is a mail retention policy. Just as common email
clients such as Outlook do not remove emails automatically, so it is with Database
Mail. We can find a stored procedure called sysmail_delete_mailitems_sp in
the msdb database with the @sent_before parameter and an optional parameter, @
sent_status.

We can plan a job that runs, for example, once a week to delete old messages. An example
script for this action looks like this:

declare @newestDate date = dateadd(week, -4, getdate())
exec msdb..[sysmail_delete_mailitems_sp] @sent_before = @
newestDate

The preceding script computes the date 4 weeks before, saves the result into a variable
called @newestDate, and then the variable is used as a parameter for the stored
procedure. If needed, this code could be copied and pasted as a job definition and
used as-is.

Creating and editing maintenance plans
For DBAs who are not so familiar with SQL Server, the best starting point is a tool called
a maintenance plan. We can think of the tool as a set of typical regular tasks that should
be executed on every database hosted on our SQL Server instance. The maintenance
plan itself can be created manually using the Maintenance Plan Design Surface or the
Maintenance Plan Wizard, which is very good for ensuring that all the basic tasks needed
to keep our database healthy are not missed.

Creating and editing maintenance plans 325

The Maintenance plans node allows you to create one big sequence of many tasks
scheduled together, but that is not desirable for most scenarios. For example, planning
full backups and transaction log backups to be executed at the same time makes no
sense. That is why a more common approach is to create one maintenance plan divided
into subplans – units of work containing fewer tasks grouped together by their meaning.
Subplans also have separate schedules.

The focus of the next two sections will be as follows:

•	 Creating a maintenance plan prototype using the Maintenance Plan Wizard

•	 Editing the prototype using the Maintenance Plan Design Surface

The Maintenance Plan Wizard
The creation and maintenance of Maintenance Plans is fully covered in Management
Studio. Object Explorer in Management Studio contains a Management node, and under
this node is a sub-node called Maintenance Plans. This is the point where all previously
created maintenance plans are saved and can be edited or executed. For diagnostic
purposes also, maintenance plan histories are enabled here:

1.	 To create a new plan, the Maintenance Plan Wizard is opened from the Object
Explorer window in Management Studio, as shown in the following screenshot:

Figure 8.14 – Maintenance Plan Wizard

326 Automation – Using Tools to Manage and Monitor SQL Server 2019

2.	 When the wizard is started and the welcome screen is skipped, the first meaningful
step appears. In this step, we need to decide the following:

•	 Name: Some meaningful name, for example, BiggerSystem maintenance.

•	 Run as: The user context under which the plan will run.

•	 Schedule distribution: This option leads to resolution if every task has its own
schedule or the entire plan will be executed at once:

a) Separate schedules for each task

b) Single schedule for the entire plan or no schedule
•	 Schedule settings: When separate schedules are chosen in the previous option,

this setting is disabled because a schedule will be set within every task chosen later
during the wizard

The first step is seen in the following screenshot:

Figure 8.15 – Selecting Plan Properties

Creating and editing maintenance plans 327

3.	 The second step of the wizard contains a list of all typical tasks that need to be
executed regularly against every database. This is probably the most important step
because this is the point where the DBA will become aware of everything important.
The wizard step is shown in the following screenshot and we will explain every task
type briefly:

Figure 8.16 – Selecting Maintenance Tasks

Let's now go through each task briefly.

328 Automation – Using Tools to Manage and Monitor SQL Server 2019

Check Database Integrity
This task uses the DBCC CHECKDB() function. There are more Database Consistency
Checker (DBCC) functions on SQL Server – for example, DBCC SHOW_
STATISTICS() to explore index or column statistics, DBCC SHRINKFILE() to
return free space from database file back to the operating system, and so on. The DBCC
CHECKDB() function checks the consistency and readability of the database from three
perspectives, calling three other DBCCs:

•	 DBCC CHECKTABLE(): This function tests the readability of table data pages.

•	 DBCC CHECKCATALOG(): This function tests the readability of metadata objects.

•	 DBCC CHECKALLOC(): This function tests the logical consistency of allocation
units.

The DBCC CHECKDB() function can find inconsistent places in the database. When such
a situation occurs, an error is raised, and the task is failed due to the error. The error could
then be seen in the maintenance plan history. When DBCC CHECKDB() fails, the DBA
needs to immediately resolve the problem from backup. If no suitable backup is available,
there is only one action possible, but data loss is highly probable. DBCC CHECKDB() has
two options to resolve inconsistencies. The first is shown in the following script:

DBCC CHECKDB(<database_name>, REPAIR_REBUILD)

This option tries to repair inconsistent data pages, but if they are seriously broken, SQL
Server cannot repair the lost data.

The second option is to call a more aggressive variant:

DBCC CHECKDB(<database_name>, REPAIR_ALLOW_DATA_LOSS)

When using this option, corrupted data pages are removed from the database forever.
Hence, the robust backup strategy is strongly preferred.

The Shrink Database task
This task serves to return free space in data files back to the filesystem. Internally,
this task is executed as the DBCC SHRINKDATABASE() function. In production, this
task is almost useless because when the database has some free space, it is better for
performance and fewer growth operations occur.

Creating and editing maintenance plans 329

Note
The only situation to use the Shrink Database task is when some bigger data is
loaded once to some staging tables to the database, then the data is processed
to final structures, and staging tables are dropped. Maybe then the shrink
would be executed. However, we can say that daily shrinking is useless and is a
disk-intensive operation that should be used rarely.

The Reorganize Index task
Data stored in the database tables changes when inserting new records or updating or
deleting existing ones. It leads to a situation where data pages are not full and also not in
a logical order within extents. We can talk about internal (data pages not full) and external
(data pages in extents not in logical order) fragmentation. This state of data leads to
decreased performance over time.

An IO controller has its throughput. In a given amount of time, some finite number of
data pages can be transferred through the controller. In an optimized case, every data page
will be almost full of records, but when internally fragmented, the same amount of data
pages will bring much fewer records.

In an ideal situation, index pages containing table or index data are ordered as a double-
linked list. When SQL Server scans those data pages, it can be brought into a logical
order and adjusted according to the physical order on disk. When external fragmentation
occurs, SQL Server is forced to skip back and forth between data pages to follow pointers
from one data page to another, because the logical order differs from the physical order of
data pages.

As the examples described so far show, it is very important, for performance reasons, to
maintain indexes as well as heaps in a somewhat defragmented state.

The index reorganization compacts just leaf-level of indexes. It is not a long-running
process and issues fewer locks; that's why it's more suitable for day-to-day maintenance.
The reorganize index task calls the following statement for every chosen index or table:

ALTER INDEX index_name ON table_name WITH REORGANIZE

330 Automation – Using Tools to Manage and Monitor SQL Server 2019

The Rebuild Index task
As described in the previous section, fragmentation causes more data handling and it can
lead to the degradation of performance. When fragmentation occurs heavily (typically
for more indexed tables with big data contention), we need to rebuild entire indexes on
such tables. When comparing REBUILD with REORGANIZE, we have to consider that
more effort is needed for an index rebuild. If the SQL Server instance is not an Enterprise
edition, exclusive table locks are issued when rebuilding an index.

The statement executed internally by the rebuild index task is as follows:

ALTER INDEX index_name ON table_name WITH REBUILD

Rebuilding is also possible for heaps. The statement then looks like this:

ALTER TABLE some_table_without_clustered_index WITH REBUILD

The Update Statistics task
For every index and for some columns, statistics are created automatically or manually.
Statistics provide a very important description of data density and distribution for SQL
Server's cardinality estimation when optimizing and compiling queries. A statistic, when
it is created within an index creation, contains a histogram of values from the leading
column in the created index only. SQL Server can create additional column statistics
automatically during query time. Additional statistics contain histograms of the
second, third, and up to fourth columns in the same index. Every statistic's histogram
contains up to 200 buckets. Statistics, unlike indexes, are not refreshed with every
query-modified data. That is why statistics get out of date, even if SQL Server has an
auto-update statistics feature.

Maintaining up-to-date statistics is the DBA's responsibility. The simplest way to achieve it
is to use the Update Statistics task in the Maintenance Plans. This task calls two different
statements depending on its setting. When update all statistics is set, the system sp_
updatestats stored procedure is executed. If statistics (or objects) are selected during
task configuration, the following statement is called for every selected object:

UPDATE STATISTICS statistics_name

Note
When rebuilding an index, SQL Server drops and recreates the index entirely.
Also, statistics are recreated, and updating them makes no sense in this case.

Creating and editing maintenance plans 331

The Clean Up History task
This is quite a straightforward task. It just deletes records from historical tables
in the msdb database. The previous histories, such as backup and restore history,
maintenance plan history, and so on, are cleaned.

Execute SQL Server Agent job
This is an empty task prepared to execute manually prepared jobs that cannot be known
by SQL Server as a regular administrative task. For example, some ETL processes or the
refreshing of some test database from a production database backup can be used here.

Backup tasks
Backup tasks in Maintenance Plans cover Full, Differential, and Transaction Log
backup types. All these tasks are described in detail in Chapter 3, Implementing Backup
and Recovery. Let's remember that various scenarios combining different types of backup
operations can be established. These backup tasks in Maintenance Plans are a typical
example of the need for several subplans in one plan.

The Maintenance Cleanup Task
This task clears all files created during the execution of a maintenance plan.

All right, now we know which tasks we have to execute regularly; but what about their
combination?

As an example, for an OLTP database, we can create combinations given in the
following table:

Figure 8.17 – OLTP database task combination

332 Automation – Using Tools to Manage and Monitor SQL Server 2019

As mentioned at the start of this section, the wizard is a very good starting point for
working with maintenance plans. When executed, a maintenance plan is saved and can
be edited later by the designer. The manual work will be described in the next section.

The Maintenance Plan Design Surface
The Maintenance Plan Wizard hides one very interesting thing: a maintenance plan is
actually a kind of Integration Services package. The creation of a new plan, as well as
an edit feature for existing plans, is available.

The main surface is depicted in the following screenshot, and we will go over almost every
control to describe how to work with it:

Figure 8.18 – The Maintenance Plan Design Surface

As seen in the preceding screenshot, we can divide the design surface into three
main components:

•	 Toolbox: The left dockable window with tasks, which can be moved into the
design surface

•	 Designer header: The upper part of the designer, for subplans and their schedule
definition

•	 Surface: The graphical part containing icons of certain tasks joined by arrows

Creating and editing maintenance plans 333

Every maintenance plan has at least one subplan. Every subplan contains a set of tasks that
can be executed sequentially or in parallel.

An administrator's first task in the design surface is to create proper subplans and define
their schedules. A new subplan is created by clicking on the Add subplan button. A new
subplan is added to the list of subplans. The sorting of the subplans in the list does not
matter because every subplan has its own schedule. A subplan can be empty, but that is
not so useful. So, we need to add some tasks.

The administrator's second task is to define the subplan's content. It is necessary
to select the subplan that we want to edit in the list of subplans. Certain tasks are
then painted onto the surface from the toolbox. If the toolbox is not visible, we can
call the Toolbox option from the View menu in Management Studio (Ctrl + Alt + X also
exists, but do we remember that?). When the task is dropped onto the surface, it needs
some configuration according to its purpose. If the task is not properly configured, a big
red sign (an X mark) is visible on it (in the preceding screenshot, we can see it in the
notify operator task). Task properties are available by double-clicking on a task.

Tasks need to be executed in some logical order. The logical order of tasks is controlled
with arrows pointing from the preceding task to its successor. That is why we can see a
green arrow hanging from every task. The arrow is called a precedence constraint. We
have to connect tasks using the arrows by clicking an arrow and pulling it to the next task.
The colors of the arrows matters. A green arrow says that the next task will be executed
only when the preceding task ends successfully. Red means that the consequent task will
be executed when its predecessor fails, and black means that the next task will be executed
no matter how its predecessor finishes. To change the precedence constraint's behavior, we
have to right-click a certain arrow and, in the pop-up menu, select the Success, Failure,
or Completion option.

The last task is to create the subplan's schedules. It can be reached by clicking on
the Calendar button in the Schedule column of the subplan list. A very intuitive dialog
appears, and we can select the most appropriate time interval to execute the subplan.

When using Maintenance Plans, a big advantage is that all the basic regular maintenance
operations are encapsulated in one big and very well-arranged object. We don't
need to explore hundreds of jobs and schedules created one by one. Let's consider
that a maintenance plan is just a base, not an advanced technique for full database
administration. To refine our maintenance needs, we need to handle smaller objects, such
as operators, jobs, and alerts. In the next chapter, we will describe features covered under
these three object types.

334 Automation – Using Tools to Manage and Monitor SQL Server 2019

Creating SQL Server Agent objects
In the previous sections, we described how to configure an environment for automation.
Maintenance plans were also discussed in detail in the previous section. However, what is
working behind the scenes? How do we automate some specific tasks? In this section, we
will take a look at three types of objects that actually participate in automation:

•	 Operators

•	 Jobs

•	 Alerts

Operators
One of the first tasks when setting up an automation environment is the enabling
of Database Mail and mail profile creation. Although mail profiles can be used for regular
emailing, their main purpose is to use emails for administrators' notifications about job
results or when some alert is raised. SQL Server Agent does not notify directly to an
email address; it uses a special object called an operator. The operator is a named address
defining where to send notifications mainly about job results.

The address of the operator may be as follows:

•	 Email address: A person, some people, or a distribution group can be set as
an email.

•	 Pager email: Pagers were signed as deprecated on SQL Server 2014, but when
needed, they are still possible to use. This chapter will not pay attention to pagers.

Many administrators ask for SMS notifications, but SQL Server does not support cellular
phone text messages. If a mobile provider supports some SMS gateway for its customers,
the user is usually informed by SMS when a new email comes. This mobile operator's
email can be a way to get notified by SMS, because SQL Server just needs any valid email
address, no matter what email provider and domain is used. Just add the email address
bound to some mobile phone number to the operator's definition and enable SMS
notification in your phone provider's email profile.

Creating SQL Server Agent objects 335

Operator definition
Defining a new operator or editing an existing one is quite simple. Management Studio
keeps all definitions operators in Object Explorer in a folder called Operators under
the SQL Server Agent node. By right-clicking on this folder, a pop-up menu appears, and
the first option is New operator.... A dialog will open as seen in the following screenshot:

Figure 8.19 – New Operator

336 Automation – Using Tools to Manage and Monitor SQL Server 2019

An operator's definition consists of three fields:

•	 Name: Any descriptive name (for example, sample admins).

•	 Email name: Any valid email address or address list. When more email addresses
are used, they are separated by a semicolon (;) as in a regular email client.

•	 Enabled: This checkbox is turned on by default but if needed, the operator could
disable it without erasing it completely.

The second tab, not seen in the screenshot, is called Notifications. It is a read-only list of
jobs and alerts about which the operator is notified. The list is maintained automatically
when the operator is assigned to some job or alert.

Jobs
A job is an executive object maintained by SQL Server Agent. A job itself is a definition
covering one or more job steps and usually one or more schedules. The operator can be
notified about the whole job result optionally. Let's go through parts of a job's definition
in detail.

Job definition
Starting to create a new job is very similar to creating a new operator. In Object Explorer
under the SQL Server Agent node is a folder called Jobs. A pop-up menu appears when
you right-click on it, and four interesting options are presented to us:

•	 New Job...: This option will open a window to create a new job.

•	 Manage Schedules: Schedules can be defined within a job definition, but they
can also be managed separately as shared schedules. If some shared schedules are
created from this option, they are just assigned to job definitions.

•	 Manage Job Categories: Jobs can be categorized for better orientation (but job
categories are not seen anywhere in Management Studio). If used, the category
must be defined before it is used in the job definition.

•	 View History: This option opens the Job History window to monitor and
troubleshoot jobs.

Creating SQL Server Agent objects 337

The Job History window will be described later in this chapter. Schedules and job
categories are obvious and straightforward, so let's skip directly to a new job definition.
The window used to create a new job is depicted here:

Figure 8.20 – New job

The job definition itself is quite simple. A job has to have a name (for example, Erase
mail history), it may be categorized, it has an optional description (the description
was usually omitted in previous examples but experience says that in this case,
a description is highly welcome), and it can be enabled or disabled. The only tricky field
in the dialog is Owner. The Owner value determines the user context of the job when it is
running. There is an internal rule setting to the context:

•	 When the owner is a member of the sysadmin server role, the job is executed in the
user context of the SQL Server Agent service.

•	 When the owner is not a member of the sysadmin server role, the job
is executed within the actual user context.

338 Automation – Using Tools to Manage and Monitor SQL Server 2019

Even if many jobs are used for administrative purposes, we can also see jobs created by
other technologies, such as SQL Server Reporting Services. Sometimes, some need
for application jobs (for example, data load called by end users directly from business
applications) will also appear. Then, it's a good practice to think about the actual user
context of the job.

A job needs to have at least one step defined because, without it, it is something doing
nothing. In the next section, we will define some steps.

Job steps definition
The job properties window has several tabs. Let's reveal the first one:

Figure 8.21 – Steps tab

Defining a new job step starts with clicking the New... button. A new dialog appears, and
the job step definition is done in the new dialog. This original one then shows a list of
steps created within the job. Job steps can be edited, deleted, and sorted by clicking other
buttons in this tab.

Creating SQL Server Agent objects 339

The job step definition window is seen in the following screenshot:

Figure 8.22 – Job step definition window

Every job step must have a unique name within the job definition. The second value to be
set is Type. It is a dropdown containing these values:

•	 Operating system: Used for command-line calls (such as bcp.exe or any
third-party command line)

•	 PowerShell: Used for PowerShell scripts, if needed. PowerShell 5.0 or higher is
supported.

•	 SQL Server Analysis Services command: Used for data cube maintenance (for
example, XMLA calls processing partitions in a cube).

340 Automation – Using Tools to Manage and Monitor SQL Server 2019

•	 SQL Server Analysis Services query: Used for Multidimensional Expressions
(MDX) queries.

•	 SQL Server Integration Services package: Used to schedule SSIS package
execution.

•	 Transact-SQL script: Used in most cases to define tasks such as backing up the
database or other tasks.

In our example, the script in the job step definition window is used to maintain
the Database Mail retention period.

Note
As discussed in the Creating and editing maintenance plans section, subplans
are SSIS packages. When subplans are created, take a look at the job steps;
they are of the SQL Server Integration Services package type.

The Run as field may be used for all job step types except the T-SQL type. This property
sets the execution context for certain steps more granularly. To set the context, SQL
Agent Proxy must be defined before it can be used. SQL Agent Proxy is a pointer to
some defined credential objects (credentials are described in Chapter 4, Securing Your
SQL Server).

Depending on the job step type, the rest of the dialog changes. For our T-SQL type, the
database context has to be set in the Database dropdown, and the SQL script has to be
written to the Command field.

Note
If you are writing a command for the job step, write it in a proper tool such
as Management Studio, and then copy and paste it into the Command field
because the field does not completely test the accuracy of your script.

Alright, the job step has been created and we can continue creating additional steps
when needed. When more steps are added, SQL Server Agent executes them one by one
in the order that they were sorted while being created. By default, when some job fails,
the whole job fails as well. We can add some very trivial logic to this behavior by resorting
to the job steps or setting success and failure actions in the Advanced tab of the job step
definition window.

When job steps are defined, we can start scheduling job execution. However, it's an
optional part of the job definition.

Creating SQL Server Agent objects 341

Schedule definition
One job definition can contain anything from zero to many schedules. Creating
a schedule is a very simple task. Let's take a look at the dialog to create a new schedule
definition.

When the Schedules tab is selected in the job definition window, a list of schedules is
shown, and we have two buttons:

•	 New...: This button is used to open the window for the new schedule defined within
the job.

•	 Pick...: This button is used to open the window with shared schedules already
defined.

When a new schedule is created, the following dialog window is opened (and it is the
same everywhere when a schedule is created, for example, in Maintenance Plans):

Figure 8.23 – New job schedule window

342 Automation – Using Tools to Manage and Monitor SQL Server 2019

As usual, every schedule has its name and can be enabled or disabled in the Schedule type
tab. The schedule type can be the following:

•	 Recurring

•	 Start automatically when SQL Server Agent starts

•	 Start whenever the CPUs become idle

•	 One time

In our example, the Recurring option is selected. Then, we can set Frequency. The
schedule can be set to start as follows:

•	 Weekly

•	 Daily

•	 Monthly

The rest of the fields are self-explanatory.

Note
While troubleshooting why a certain job is not running, always check
the Enabled field in two places--at the job level and at the schedule level.
Sometimes it may happen, especially with shared schedules, that the schedule is
disabled. In this case, even if the job is enabled, it will not be executed because
the schedule is disabled.

Notification definition
When a job is finished, some notification(s) may be issued by SQL Server Agent. SQL
Server Agent never informs us about its progress, just about the result of a job.

We can set more notification channels. Let's look at the Notifications tab:

Creating SQL Server Agent objects 343

Figure 8.24 – The Notifications tab

An administrator can choose which channel of notification will be used
– E-mail or Page operators and Windows application log can be set. One extra option
is also possible – the Automatically delete job option – which is quite dangerous
because when a job is deleted, its history is also deleted, and diagnostics are not possible
in this case.

For every selected notification channel, one more decision has to be taken. It is the
condition when the notification is issued by SQL Server Agent's alert system. It is selected
by the rightmost drop down beside each notification channel. Options are as follows:

•	 When the job fails

•	 When the job succeeds

•	 When the job completes

Now the job is defined completely and should start doing its task. In a real instance
of SQL Server, many jobs are created and executed, so a tool to monitor and troubleshoot
is needed. In the next section, we will describe how to diagnose job execution.

344 Automation – Using Tools to Manage and Monitor SQL Server 2019

Monitoring and troubleshooting jobs
We need to check the correctness of our job's execution and troubleshoot it when things
are going wrong. The first approach when jobs are failing is to be informed by email.
However, we need to have an overview of all the jobs because it is hard to remember the
schedule expiration of every single job.

A good entry point for automation monitoring is the window called Job Activity
Monitor. This window is accessible from a shortcut placed directly under the SQL Server
Agent node in Management Studio's Object Explorer. When used, a window with a list of
all jobs is opened, as follows:

Figure 8.25 – Job Activity Monitor

The red rectangle in Object Explorer shows from where to open Job Activity Monitor.
The biggest area is Job Activity Monitor itself. All jobs defined in a certain SQL
Server Agent instance are seen as a list. Every record in the list provides the following
information:

•	 Name of the job

•	 Current status (running, idle)

•	 Last run date and time

Creating SQL Server Agent objects 345

•	 Next run date and time

•	 If the job is enabled and if it's scheduled

•	 Last run result (success, failed)

Job Activity Monitor is not just a report. We can refresh its content manually or
automatically. A manual refresh can be done by clicking the Refresh button in the
toolbox; automatic refreshes must be set from the View Refresh Settings link in the
left side of the window. Another feature is the ability to work with a certain job. When
a DBA right-clicks on the record in Job Activity Monitor, a popup appears. It enables
them to start the job, enable or disable it, refresh its status, and edit the job through
the Properties option.

An important diagnostic option is View History. Although the history of jobs can be
accessed from several places (from the Jobs folder in Object Explorer or from a certain
job directly), it will always open in the same Log File Viewer window:

Figure 8.26 – Log File Viewer window

346 Automation – Using Tools to Manage and Monitor SQL Server 2019

The Log File Viewer window shows every run of the job with its results. Every run
consists of the overall result and when expanded (runs are collapsed by default), detailed
job step results are shown. In the preceding screenshot, two executions were executed
– the first was successful but the second failed (job executions are sorted by the time of
execution in descending order).

To recognize the error, we need to expand the wanted record and click on the failed
record for details. The actual error message is shown in the bottom part of the window. In
our example, a syntactic error was raised when executing the job step, erasing the email
history. Now, we have to go back to the step definition and correct the problem (it was a
typo, in this case – the.exe keyword was used instead of exec).

Until this moment, we automated regular administrative tasks, usually in a timely fashion.
We also need to react to situations that are not raised every night or every week. A helpful
type of object maintained by SQL Server is Alerts. In our last section, we will explore what
Alerts are for.

Alerts
Alerts is an object that is defined to react to a certain event. The event can be, for example,
some error that is raised in SQL Server. When such a situation occurs, the alert itself
just remembers the occurrence in the form of a counter (how many times the error was
noticed) and the last time of the occurrence. The benefit of using Alerts lies in the ability
to set some response action. A response action could be an operator notification, a job
execution, or both.

We have three alert types:

•	 SQL Server event alert: This type of alert looks for SQL Server errors logged to the
error log.

•	 SQL Server performance condition alert: These alerts can check the value change
of a certain performance condition counter provided by SQL Server (performance
counters installed with the operating system are not included in the selection of
counters).

•	 WMI event alert: This type of alert is defined by a Windows Management
Instrumentation (WMI) query and alerts of this type are raised by non-empty
results for a query.

When we want to create an alert, we start by right-clicking on the Alerts folder under
the SQL Server Agent node in Object Explorer. The alert definition window is depicted
in the following screenshot:

Creating SQL Server Agent objects 347

Figure 8.27 – The alert definition window

Every alert must have a name and can be enabled or disabled. The critical setting is
the Type option. It determines the type of the alert. In the preceding screenshot, the SQL
Server event alert type is selected. It means that the correct error number must be written
in the Error number field or the severity level of the error has to be selected.

SQL Server has more than 13,000 error messages (for a complete set of them, the sys.
messages view is present on SQL Server). These messages are divided into categories by
their gravity, called severity levels. SQL Server has severity levels from 0 to 25. The bigger
the number, the more serious the error. Errors contained in severity level 17 and higher
are automatically logged into the SQL Server error log. These errors can be monitored by
alerts. Sometimes, it is a better approach to monitor the whole severity level than a single
error number because of the huge amount of errors in severity levels.

When defining an alert responding to an error message, we work using the reactive
approach to SQL Server monitoring. Sometimes, it is quite easy to be reactive, preventing
errors before they occur. For such situations, it is very useful to create SQL Server
performance condition alerts.

348 Automation – Using Tools to Manage and Monitor SQL Server 2019

The following screenshot shows an example of how to monitor the usage of the
transaction log file:

Figure 8.28 – Monitoring transaction log file usage

When the Type dropdown is switched to the SQL Server performance condition
alert option, the screen changes its look. Now we need to find the correct Object
(Databases, in our example), Counter (Percent log used: this counter measures the ratio
of log space used/log file space allocated), and the Instance of the counter if needed (and
it's needed in our example because _Total says nothing about actual log usage). Now, we
must set Alert if counter according to the value requirement. The counter can be set to
rises above, be equal, or fall below some value.

The value is written in the Value field. In our example, in the preceding screenshot,
when 85% of the transaction log file of the BiggerSystem database (created in Chapter 3,
Implementing Backup and Recovery) is used up, the alert is executed. It is not proactive yet;
we have to set up some response action.

SQL Server Agent security 349

The Response tab of the alert creation window is the place where responses to alerts are
set. As seen in the following screenshot, we can switch on the job execution (and also
select a job from the list of already existing ones, or create a new one) and switch on the
ability to notify some operator:

Figure 8.29 – The Response tab

From this moment, every time the transaction log of our BiggerSystem database
becomes full, a transaction log backup is executed along with the regular scheduled
execution.

SQL Server Agent security
As was discussed at the beginning of this chapter, SQL Server Agent is a service that logs
itself into the host operating system. However, we should also take into consideration two
more things about security – who is allowed to create jobs and what the user context of
the executed job steps is. The following paragraphs explain how to properly secure SQL
Server Agent.

350 Automation – Using Tools to Manage and Monitor SQL Server 2019

SQL Server Agent security roles
SQL Server Agent is almost useless without jobs. As jobs execute a bunch of repetitive
administrative tasks, such as backups, database consistency checks, and more, we should
carefully control who is allowed to define jobs. Most jobs created in real-life scenarios are
created by members of the sysadmin group, but sometimes the DBA is asked to allow job
creation for users who are not DBAs. In this case, the job creation and execution rights
are pre-defined in the msdb database with the following database roles, sorted from the
weakest role to the strongest role:

•	 SQLAgentUserRole: This role is the least privileged role. Members of this
role can create local jobs and schedules and will be the owners of created objects.
Members of SQLAgentUserRole never can change the ownership of jobs. This
is very important, because SQLAgentUserRole members cannot take the jobs
of other owners. The second most important consideration is that job ownership
affects the security context used by job steps during their execution.

•	 SQLAgentReaderRole: Members of this role have the same permissions as
members of SQLAgentUserRole, but they also can view a list of jobs created by
other owners. Even if members of SQLAgentReaderRole can view a list of jobs,
they can start only those jobs that they own.

•	 SQLAgentOperatorRole: Now, SQLAgentOperatorRole is the strongest
role. Members of this role have all permissions of both the previous roles, but unlike
members of previous roles, they can also execute jobs owned by other users.

In the preceding bulleted list, I have briefly explained who is authorized to define jobs. The
job ownership affects the user context that will be used by SQL Server Agent during the
execution of each step defined within the job. We will see this in detail in the next section.

Job step security context
Each job step has a type assigned to it. The type could be a T-SQL job step or another job
step type such as the exec command or PowerShell. The job step type in conjunction
with job ownership determines the effectiveness of the user context used for the job
step execution. The rules governing how SQL Server Agent sets the execution context
differ for T-SQL job step types and all other job step types.

When the job owner is a member of the sysadmin server role, T-SQL job steps are
executed in the context of the SQL Server Agent's service account. When the job has an
owner who is not a member of the sysadmin role, the job step is executed in the context
of the owner's user account.

SQL Server Agent security 351

Let me explain with a simple example. The user is asked to create a job with just one
step. The step will execute a stored procedure, checking some business rules in the
AdventureWorks database. The user who creates the job is not a member of the
sysadmin server role. This leads to the following configuration being required for
successful job execution:

•	 The user must be at least a member of SQLAgentUserRole in the msdb database.
This is needed to allow the user to create a job.

•	 The user must also be added as a user of the AdventureWorks database. This is
needed to allow the user access to the AdventureWorks database.

•	 The user must have execute permissions to the stored procedure (or its covering
schema) in the AdventureWorks database.

But what if the user, who is not a sysadmin member, wants to execute something
other than T-SQL, that is, PowerShell or exec commands, as a job step? For sysadmin
members, SQL Server Agent applies a similar rule; a job step other than a T-SQL job step
is executed in SQL Server Agent's security context. For all other job owners, a SQL Server
Agent proxy must be created first. Let's see what a SQL Server Agent proxy is.

Using SQL Server Agent proxies
A SQL Server Agent proxy can be thought of as a placeholder identity used as a security
context for job steps other than T-SQL job steps. We need a proxy in situations when a
job is owned by a user who is not a member of the sysadmin server role. Also, proxies
are used when a SQL Server Agent service account does not have permissions to access
system resources such as file shares.

The proxy itself links to another identity object called a credential, which is defined
within the SQL Server instance. At first, this linking from one SQL Server object to
another may be confusing to the user, but it has its justification.

SQL Server uses credentials for more purposes. Credentials are defined on SQL Server as
Windows (or domain) users that can be used for impersonation by other logins. In other
words, SQL Server acts as a source of named identities for SQL Server Agent. When we
are working with proxies, we must start with the creation of a credential object in SQL
Server. Now we will walk through the creation of a local Windows user, a credential
object, and finally a job owned by a non-administrator's SQL login. Then, we will test the
whole thing.

352 Automation – Using Tools to Manage and Monitor SQL Server 2019

Preparing a Windows user with PowerShell
Let's begin by preparing a Windows user with PowerShell:

1.	 First, we will prepare a local Windows user without elevated permissions using
simple PowerShell commands (remember to run PowerShell as an administrator).
The password will be set to Pa$$w0rd:

$password = Read-Host -AsSecureString

New-LocalUser -Name "Bob" -Password $password

Add-LocalGroupMember -Group "Users" -Member "Bob"

2.	 Then, we will skip to Management Studio and write the following statement, which
creates new credentials:

create credential Bob

with identity = '<computer_name>\Bob'

, secret = 'Pa$$w0rd'

Now we are ready to create a SQL Server Agent proxy.

Creating a SQL Server Agent proxy
The easiest option to create a SQL Server Agent proxy is to use dialogs in Management
Studio:

1.	 In Object Explorer, expand SQL Server Agent, right-click on the Proxies node,
and select the New Proxy… option as shown here:

Figure 8.30 – Proxies node

SQL Server Agent security 353

2.	 In the opened dialog, fill in Proxy name (Bob), select Credential name (it will
be Bob as that credential name was created previously), and select Subsystem
Operating system (CmdExec):

Figure 8.31 – New Proxy Account

3.	 Click OK and your proxy is ready to use.

Now, let's learn what Subsystem means. The proxy itself does not have permissions to an
operating system and its subsystems. We must set proper permissions at the Windows
user's level and we may also need to configure granulated permissions. This leads to more
proxies being created for a particular task type. Subsystem helps to maintain granularity.
In our example, the proxy with the name Bob will be allowed to execute operating system
commands such as exe or bat files, but it will not be allowed to execute PowerShell
commands. One proxy can be assigned to multiple subsystems.

354 Automation – Using Tools to Manage and Monitor SQL Server 2019

Testing a SQL Server Agent proxy
When all the security objects are created, we can test the solution as follows:

1.	 First, let's create a non-administrative login who will be the owner of a newly
created job. The following statement creates a login with the name Tom:

create login Tom with password = 'Pa$$w0rd', check_policy
= off

2.	 Now we will create a new job using the proper dialog in Management Studio. The
following screenshot shows the filled General page of the dialog. Remember that
the owner of the job was changed to Tom:

Figure 8.32 – New Job setup

SQL Server Agent security 355

3.	 Now we will create one job step as shown in the following screenshot. Remember
that the Run as field points to SQL Server Agent Service Account, but if you
create the job step and the job itself (two clicks on the OK button), no error or even
warning will be shown to you:

Figure 8.33 – Creating new job step

4.	 Now, let's find the newly created Proxy test job in Object Explorer and let's execute
it. The job will fail and the message in the job history will be displayed as follows:

Non-SysAdmins have been denied permission to run CmdExec
job steps without a proxy account. The step failed.

356 Automation – Using Tools to Manage and Monitor SQL Server 2019

5.	 Because the job owner is not a member of the sysadmin server role, the job owner
is not allowed to impersonate the SQL Server Agent service identity, as this is
expected behavior. Now we will allow the Tom login to use the proxy called Bob:

exec sp_grant_login_to_proxy @login_name = 'Tom', @proxy_
name = 'Bob'

6.	 Now we can change the Run as field in the job step's definition to the name of the
proxy. If you followed the names in this example, the name of the proxy is Bob.

7.	 Let's execute the job again. The result in the job history is very similar to the
following:

Executed as user: DESKTOP-234uhVJ\Bob. The step did not
generate any output. Process Exit Code 0. The step
succeeded.

8.	 We can also explore the filesystem of our computer to see that a new folder called
mydir is created on drive C.

The preceding walk-through showed all the security objects needed to create a SQL
Server Agent proxy. Then, we created a simple job with a non-sysadmin owner and a
CmdExec job step. When the context of the user executing the job step was improperly
configured, the job failed. Then, we used our proxy and the job succeeded.

The security of SQL Server Agent is a very important part of SQL Server administration.
Without good knowledge, we will run into troubles with failed jobs, or we will make our
instance of SQL Server very vulnerable.

Summary
To imagine an administrator's world without automation is almost impossible. SQL
Server provides a very comprehensive set of tools and techniques to use to achieve
comfortable regular administration and reduce administration to non-regular monitoring
or troubleshooting actions.

In the first part of this chapter, we went through Database Mail and SQL Server Agent
setup. The main point here is to have Database Mail configured and SQL Server Agent
running all the time when SQL Server runs.

Summary 357

In the second part, we looked at Maintenance Plans, a useful tool to create a basis for
automatic SQL Server administration. We realized that Maintenance Plans are divisible
into smaller subplans, which can be executed on their own schedules.

The third part of the chapter was dedicated to showing, by example, all the traditional
objects maintained by SQL Server Agent – jobs, alerts, and operators.

The last part explained the security model of a job execution security context. We
explained objects such as credentials and SQL Server Agent proxies, which ensure proper
security settings for each job step.

We can say that most administrative tasks and responsibilities end up as planned jobs on
SQL Server Agent.

Using SQL Server Agent makes a DBA's life easier as it allows the scheduling of regular
tasks. But the prevention possibilities of SQL Server Agent against serious outages are
limited. The next chapter will provide knowledge about the high-availability features of
SQL Server to make a DBA's life even easier.

9
Configuring Always

On High Availability
Features

SQL Server high availability includes two main components called Always On Failover
Cluster Instances and Always On Availability Groups. In this chapter, we will look at
these two in depth and explore possible configurations for the SQL Server environment.
Both features use Windows Server Failover Cluster (WSFC) functionality but have
different methods of deployment.

WSFC is a server feature available on Windows Server, which allows the grouping
of computers into a fault-tolerant cluster. In a case where one or more nodes fail, others
will keep the service or application available.

360 Configuring Always On High Availability Features

Each Windows Server version brings new features to the WSFC feature and many of those
can be beneficial for SQL Server deployment. Windows Server 2012 and 2012 R2 have
brought many new enhancements and new features to WSFC, with a strong emphasis on
the Hyper-V role used for virtualization. The main new features and improvements for
these two versions of Windows Server in regard to WSFC include the following:

•	 Shared Virtual Hard Disks (VHDs)

•	 Virtual Machine (VM) drain on shutdown

•	 VM Network Health Detection

•	 Cluster Shared Volume (CSV) improvements

•	 Active Directory (AD)-detached clusters

•	 Dynamic witness

•	 The cluster dashboard

•	 Support for Scale-Out File Server (SoFS)

•	 Cluster-Aware Updating

•	 Integration of the Task Scheduler

Windows Server 2016 brings even more new functionalities to the Failover Clustering
feature, enabling better management, scalability, and performance for the solution.
Again, there are many features used by the Hyper-V role that are used for virtualization,
including the following:

•	 VM load balancing

•	 VM start order

•	 Cluster OS system rolling upgrade

Other important features of Windows Server 2016 used in WSFC include the following:

•	 Cloud Witness: A new type of quorum that uses Microsoft Azure. Like any other
quorum, Cloud Witness has a vote and takes part in quorum calculations. Cloud
Witness uses Microsoft Azure Blob Storage, which can be configured for multiple
clusters as a very cost-effective solution.

Installing Windows Server Failover Cluster 361

With Windows Server 2019, there are even more new features for Failover Clustering,
which include the following:

•	 Cluster sets: This is a feature that allows you to increase the node count in
a data center.

•	 Azure-aware clusters: WSFC is able to detect whether the systems are running in
Azure as IaaS VMs and simplify the configuration by removing the need to add
Azure Load Balancer to the deployment.

•	 Cross-domain cluster migration: You can now migrate WSFC between domains
for easier consolidation.

•	 USB witness: Instead of a node or disk witness, you can use just a simple USB stick,
ideally attached to a network switch.

•	 Cluster hardening: Communication between cluster nodes over SMB uses
certificates for authentication.

•	 Kerberos and certificate-based authentication: Allows clusters running
in infrastructures that have disabled the NTLM authentication protocol for
enhanced security.

In this chapter, we will cover the following topics:

•	 Installing Windows Server Failover Cluster

•	 Configuring Always On Failover Cluster instances

•	 Configuring Always On Availability Groups

Installing Windows Server Failover Cluster
Like any other server role feature, WSFC requires careful planning before you begin the
installation. There are many things you need to consider, including the following:

•	 The number of host nodes

•	 Network configuration

•	 Storage configuration

•	 Application requirements

362 Configuring Always On High Availability Features

WSFC is a server feature that can be added via the Server Manager GUI or via
the command line. This feature will allow you to add several sub-features such as a
PowerShell module, remote server admin tools for Failover Clustering, and so on. To
install the WSFC feature via Server Manager, navigate to the Add Roles and Features
Wizard and select the Failover Clustering feature as shown here:

Fig. 9.1 – Installing the WSFC feature

Another option would be a PowerShell command line, where you can run the following
code to install the Failover Clustering feature:

Install-WindowsFeature " Failover-Clustering","RSAT-Clustering"
-IncludeAllSubFeature

Configuring Always On Failover Cluster Instances 363

Once you finish the installation with PowerShell, you will see whether or not the
installation was successful and whether a restart is required. In this installation, we have
just added the Failover Clustering feature to the server and there's no cluster configured
yet. That's very important to realize. You can deploy the feature with PowerShell using the
following scripts:

Fig. 9.2 – Adding the WSFC feature via PowerShell

Both the Server Manager GUI and PowerShell can deploy this feature to multiple nodes
at the same time. The maximum number of nodes that can form a cluster is 64, but
usually, SQL Server clusters don't have that many nodes. There is also a big difference
between SQL Server editions in regard to the cluster size supported. SQL Server Standard
edition supports only two-node clusters, whereas Enterprise Edition supports the
maximum number of nodes available in the OS.

Configuring Always On Failover
Cluster Instances
When SQL Server is installed as a Failover Cluster Instance (FCI), it leverages the WSFC
feature for high availability and disaster recovery. An FCI is made up of a set of physical
servers that have a similar hardware configuration, operating system, patch level, SQL
Server version, and components. They also share the instance name.

364 Configuring Always On High Availability Features

Once you have planned your Windows Server configuration, you can start the SQL Server
installation process. In FCI installation, you have several choices, including installation
via the setup GUI wizard, available in the installation media, installing with advanced
options, or installing as an unattended setup via the command line. Here, we will use the
GUI wizard to start the installation. To start the FCI installation, simply click on New SQL
Server failover cluster installation, which will bring up the wizard to install the SQL
Server cluster, as shown in the following screenshot:

Fig. 9.3 – SQL Server Installation Center

The setup program goes through an extensive validation process in terms of your
environment and also examines the cluster and the validation of the cluster. You will
need to select the features and instance name and configure the service accounts as with
a regular installation. What you will need to configure differently will be cluster-specific
information, such as the following:

•	 SQL Server Network Name

•	 Cluster Resource Group

•	 Cluster Disk Selection

•	 Cluster Network Configuration

Configuring Always On Failover Cluster Instances 365

The SQL Server Network Name is a Virtual Network Name (VNN) that is used
as a connection point to your FCI. Connection to a VNN works regardless of the
active node, and the IP address of the VNN always points to the active cluster node
hosting the SQL Server services. The configuration can get a little complex if the cluster
nodes are in different network subnets. If a failover occurs, the VNN is then updated
with the virtual IP of the respective subnet for the active cluster node, as shown in the
following screenshot:

Fig. 9.4 – SQL Cluster Network Name configuration

366 Configuring Always On High Availability Features

The SQL Server Cluster Resource Group will be used to host SQL Server services that are
installed on the failover cluster. You can either create the group in advance as an empty
role in Failover Cluster Manager or the setup program will create a new one for you
during the installation, as follows:

Fig. 9.5 – SQL Cluster Resource Group configuration

On the next page, you need to assign the disks to your SQL Server cluster, which can have
a variety of configurations on Windows Server 2016 or 2019, such as the following:

•	 Cluster volume

•	 Cluster shared volume

•	 Storage spaces direct

Configuring Always On Failover Cluster Instances 367

The full disk configuration will usually be prepared by your Windows Server
administrator based on your requirements. Based on the disks available, you will need
to configure the critical folders for your SQL Server deployment, including the following:

•	 Root files

•	 Data files

•	 Log files

•	 Backups

As with standalone installation, you should follow the best practices for SQL Server
storage, such as isolating the data and logging and backing up files. During the
performance evaluation and requirement verification, you may end up creating more
disks for the SQL Server deployment, such as data drives, log drives, backup drives,
tempDB drives, and more. In such cases, you'll see more disks available for the cluster
deployment:

Fig. 9.6 – SQL Cluster Disk configuration

368 Configuring Always On High Availability Features

The Cluster Network Configuration page allows you to select the IP address for your
SQL Server's virtual name. You can either choose to use Dynamic Host Configuration
Protocol (DHCP) or assign a fixed IP address, as you can see in the following screenshot:

Fig. 9.7 – SQL Cluster Network Configuration

On the Server Configuration page, you will need to configure the SQL Server accounts.
These accounts were discussed in Chapter 4, Securing Your SQL Server. Favorable choices
for the cluster would be a domain account or a group managed service account. With
SQL Server 2016 and 2019, you can also select the Grant Perform Volume Maintenance
Task privilege to SQL Server Database Engine Service checkbox, which is important for
the Instant File Initialization feature of SQL Server. This feature may have a performance
impact on your SQL Server disk operations if not enabled. The screenshot for the Server
Configuration page is as follows:

Configuring Always On Failover Cluster Instances 369

Fig. 9.8 – SQL Cluster Service Account configuration

On the Database Engine Configuration page, you will configure important server
settings including the following:

•	 Server Configuration: Mixed mode or Windows mode

•	 Data Directories: Data files, log files, and backup folder

•	 TempDB configuration: Amount of files and their size

•	 FILESTREAM configuration

Once you get to the Ready to Install page of the setup program, you're set to start the
installation. This installation will deploy the FCI to one of the cluster nodes.

370 Configuring Always On High Availability Features

Adding nodes to the SQL Server failover cluster
On the other node, you will start the installation with Add node to a SQL Server failover
cluster as follows:

Fig. 9.9 – SQL Server Installation Center

The installation begins as in the regular SQL Server setup, but on the Cluster Node
Configuration page, you can select the instance name and node to add to the failover
cluster. On the next page, you will need to configure the networking settings and
Service Accounts settings:

Configuring Always On Failover Cluster Instances 371

Fig. 9.10 – Adding a node to an existing cluster

Once you have prepared the installation, you can run the setup to add the node to the
cluster that will install the SQL Server instance on this node. The SQL Server services
will be configured to start manually on both nodes and their startup will be controlled by
the Failover Cluster Manager tool.

372 Configuring Always On High Availability Features

Once the installation is finished, you can connect to your virtual SQL Server name, which
you configured in the first cluster node installation, as shown in the following screenshot.
You can then start working with your database server:

Fig. 9.11 – Connecting to SQL cluster

Now, the next step is to initiate a failover.

Initiating a failover
Once we have the SQL Server instance up and running with the failover cluster, it's
protected by the WSFC feature and will automatically start on another cluster node upon
failure. You can perform this failover manually via the Failover Cluster Manager tool.

Configuring Always On Failover Cluster Instances 373

You can use the WSFC console to move the role of your SQL Server to another node:

Fig. 9.12 – WSFC Console Failover initiation

Once you choose a node and where to move the role, the failover will reassign the
resources from the currently active node to the other node. It will move disks, assign
names, register IPs, and finally start the SQL Server services. In FCI, the services for
a selected instance run only on one node and the other node or nodes are stopped. Only
after a failover is moved to a newly selected active node are the services started on that
node and stopped on all other nodes.

Note
This configuration is frequently referred to as an active/passive cluster,
where one node is active (hosting the running services) and the other node
is up, but all SQL Server services are stopped. Another configuration may be
referred to as active/active, where both nodes are hosting SQL Server services
that are started, but in this deployment, the two nodes are hosting two different
instances. One instance is active on the first node, and the other instance
is active on the other node, making both nodes the hosts and running SQL
Server services.

374 Configuring Always On High Availability Features

Always On Failover Cluster Instances do require shared storage and are available with the
Standard edition of SQL Server 2019. Let's now explore a different deployment option for
Always On Availability Groups.

Always On Availability Groups
Always On Availability Groups is a high availability and disaster recovery feature that
was introduced in SQL Server 2012. This feature, similar to Always On Failover Cluster
Instance, requires WSFC to be configured on the nodes running on SQL Server.
Availability Groups (AGs) work at a database level, where the FCI protects the
whole instance.

We won't focus on WSFC anymore and will just use the common platform to deploy the
SQL Server Always On Availability Groups in the following scenarios in the chapter. The
WSFC configuration for AGs is simpler when compared to the FCI infrastructure since
AGs don't require any shared storage and the storage solution depends on the node type.
To utilize AGs, install the standalone SQL Server on the cluster nodes, but use the basic
SQL Server installation, since the instances in AGs don't share the SQL Server VNN and
IP, and are independent of each other.

Configuring Always On Availability Groups
Before we start configuring the AGs, we need to make sure all the prerequisites are met on
the server, instance, and database levels. Databases for AGs need to do the following:

•	 Be user databases (no system DBs are allowed)

•	 Use a full recovery model

•	 Be read/write databases

•	 Be multi-user databases

•	 Have at least one full backup

There are several key terms that we need to define to be able to work with AGs. AGs
itself is a set of user databases, which is considered a unit for high availability. These
databases (or the AGs) fail over to other nodes of WSFC if there is an issue detected
either at the server level or the database level. Availability Replicas is an instance of an
AG hosted by an SQL Server instance. The replica maintains a copy of the databases that
belong to the AG. The replica can be either a Primary replica or a Secondary replica.
Different versions of SQL Server support a variety of secondary replicas.

Always On Availability Groups 375

Currently, up to eight secondary replicas can be created. The secondary replica can be
a local SQL Server running in the same data center, a distant data center, or in Microsoft
Azure (an Azure replica). The primary replica is the read-write instance of the availability
database. The secondary replicas host a copy of the database, which may be configured for
read-only access if required by the design.

To start the Always On Availability Groups configuration, you first have to verify that your
SQL Server instances are properly configured to use WSFC for Availability Groups. To
check the configuration, you can use the SQL Server Configuration Manager tool and
check the properties of your SQL Server instance as shown in the screenshot:

Fig. 9.13 – Configuration Manager Enable AlwaysOn Availability Group

Once you select the Enable AlwaysOn Availability Groups checkbox, you will need
to restart your SQL Server service to see the effect of such a setting. The main expectation
is to have a fully configured WSFC service. All nodes in such a cluster should run the
same SQL Server version and edition and should use the same collation.

376 Configuring Always On High Availability Features

Creating an Availability Group
An AGs is a collection of databases you would like to host on the Availability Replicas.
You cannot add any of the system databases to the AGs, so this works only for the user
databases. The AGs can be created from SQL Server Management Studio (SSMS), where
you can also script out the whole configuration T-SQL script for future reference or larger
deployments. In SSMS, navigate to Always On High Availability and start the wizard.
Then, on the Specify Options page of the wizard, you have to enter the Availability group
name as shown in the following screenshot. Remember that the group name can't be
longer than 128 characters and should describe the group you are creating:

Fig. 9.14 – Creating an Availability Group

There are then three choices available for you when selecting a cluster type:

•	 Windows Server Failover Cluster: This type is used when SQL Server AGs are
hosted on WSFC, a common solution for high availability and disaster recovery.

Always On Availability Groups 377

•	 External: This type is used when the AGs are managed by external cluster
technology such as AGs on Linux with Pacemaker.

•	 None: This type is used when there's no cluster technology used for managing AGs.

Two more checkboxes are available for you to configure and we'll mostly focus
on Database Level Health Detection. This option enables the failover of the availability
group when the database status is no longer online. This health detection is applied to the
whole availability group. So even if one database has issues, the whole group will fail over
to another node in the cluster.

On the next page, Select Databases, you will select the databases you would like to
add to the AGs. The wizard will perform several checks to verify whether the selected
databases can be added to the group. If any of those checks fail, you'll see
a warning describing what is required as shown in the following screenshot:

Fig. 9.15 – Selecting the Availability Group database

378 Configuring Always On High Availability Features

If your database or databases meet all the prerequisites, you can move on to the next page,
called Specify Replicas. Here, you will configure all your nodes that are participating in
hosting the availability group and configure additional features and options:

Fig. 9.16 – Configuring Availability Group replicas

Always On Availability Groups 379

You can see what server instances you have added to the configuration and their
initial roles. You can configure one primary and up to eight secondary replicas for
the database availability group. Next to Initial Role, you can see an important
checkbox, which is used to select which instances take part in Automatic Failover
configuration. Out of all the instances, you can select up to five that can be configured
for Automatic Failover.

When you are choosing the Availability Mode option, you can choose between
synchronous and asynchronous commit:

•	 Synchronous Commit: Synchronous Commit is a setting where the primary
replica will wait to commit the transactions until they have been hardened on the
secondary replicas. Synchronous Commit is required for the Automatic Failover
option. Usually, Synchronous Commit will be the choice for servers or replicas that
reside in the same data center and it is used as a high-availability option.

•	 Asynchronous Commit: Asynchronous Commit is generally used for servers in
remote data centers for disaster recovery scenarios and for high-load systems, where
the Synchronous Commit mode would be too slow. Asynchronous Commit does
not have to wait and commits the transaction immediately.

The last column, Readable Secondary, is also very important. There are three options that
you need to select from:

•	 Yes

•	 No

•	 Read-intent only

If Yes is selected, you can access the secondary replica for read-only and use the database
for reporting purposes or any other read-only access. With the Read-intent only type
of configuration, the replica is available only if the application specifies the Application
Intent property with ReadOnly in the connection string.

380 Configuring Always On High Availability Features

In the next section, called Endpoints, you have to configure the TCP endpoints, which
will be used for synchronization between replicas. The SQL Server Service accounts will
be granted permission to connect to such endpoints. Notice that the Port Number is the
same as the default Mirroring port 5022. Using the Encrypt Data checkbox, you can also
configure the encryption for the traffic between the nodes:

Fig. 9.17 – Availability Groups endpoint configuration

Once you have configured the endpoints, you can set up the Backup Preferences in the
next section. Here, you can configure the preferences for the backup, and you have, again,
several options to choose from:

•	 Prefer Secondary

•	 Secondary only

•	 Primary

•	 Any Replica

Always On Availability Groups 381

The following is a screenshot of specifying the replicas:

Fig. 9.18 – Availability Group backup configuration

When using Prefer Secondary, backups for the AG will occur on an available secondary
replica. If there are more secondary replicas available, the replica for backup is chosen
based on priority. Only if no secondary replica is available will the backup occur on the
primary replica. Backups for large databases can consume a lot of system resources and
having a backup on a secondary replica can offload this task from the primary node.

382 Configuring Always On High Availability Features

In the next section, you can configure a Listener. An Availability group Listener is an
object that provides a set of resources to direct the client connection to the appropriate
replica. This replica does not have to be the only primary one but can also be the
secondary replica if the read intent is configured by the application connection string.
This Listener works like a VNN, which we have already seen in FCI configuration. As
such, the Listener can connect the client to the proper replica, without any need to know
the server name. After any failover, you don't have to modify the connection properties in
the application, since the Listener will point the client requests to the active replica:

Fig. 9.19 – Availability Group listener configuration

To configure the Listener, you need to provide the DNS name, which has to be unique,
and the network configuration consisting of the IP address and the port. The IP address
can be configured as either Static or DHCP configured. The port number can be entered
to configure the Listener to listen on a specific port, which then has to be configured in
the application. If you want to use the default port 1433, ensure that there are no other
services using the port, except the default SQL Server instance so it can be shared with
the Availability Group Listener.

Always On Availability Groups 383

Once the Listener is configured, it will become a resource in the WSFC service, together
with the VNN and IP address used for the connection to the listener:

Fig. 9.20 – Cluster resource view for Availability Groups

The last section can be used to configure Read-Only Routing. With this feature enabled,
each replica will have a routing URL and list configured. Both the URL and list are
configured on a per replica basis and each secondary replica has its own routing URL
and routing list. The configuration can be performed either directly via the GUI or later
on with the T-SQL script. Read-Only Routing works on a round-robin basis to distribute
the read-only load among the secondary replicas.

Once you have configured all the replica options, you have to configure Data
Synchronization. This configuration section has many options and you can choose from
the following:

•	 Automatic seeding

•	 Full database and log backup

•	 Join only

•	 Skip initial data synchronization

384 Configuring Always On High Availability Features

The Automatic seeding option will create the database on all replicas and synchronize
the databases between the primary and secondary replicas. There is, however, one strict
requirement for Automatic seeding—database and log file paths have to be the same on
all SQL Server instances that are configured as replicas in the New Availability Group:

Fig. 9.21 – Availability Group data synchronization

Once you have entered all the options, you are ready to finish the configuration. The
wizard will then create all required logins, endpoints, listeners, and databases on the
replicas, initiate Automatic seeding, and join the nodes to the availability group. If
the configuration is successful, you will have a working AG configured for your databases.

Always On Availability Groups 385

Failover and monitoring
During the configuration of each replica, there will be a new Extended Session event
created and started to monitor the AGs. Information from these sessions is then used
on the Dashboard, which you can open to view the basic information about your AGs,
databases, and replicas:

Fig. 9.22 – Health Dashboard for Availability Groups

You can check whether or not the databases are synchronized or if there are any issues
detected. When displaying the health events, you can dig deeper into the state of the
availability group.

386 Configuring Always On High Availability Features

To fail over between replicas, you should use the failover wizard available on
the Dashboard or the menu item in SSMS. You can right-click the availability group
in the Always On High Availability / Availability Groups section in Object Explorer:

Fig. 9.23 – Failover initialization

Once you click Failover…, a new window will open where you can select a new primary
replica based on the available replicas in your environment.

You can see which replicas are available and whether the databases are synchronized with
those replicas:

Fig. 9.24 – Choosing a replica for manual failover

Always On Availability Groups 387

When you select your new replica for failover, the wizard will initiate the failover and
follow the required steps to swap the replica roles. In our scenario, we have only two
roles, so the primary replica will become the secondary and the secondary will become
the primary:

Fig. 9.25 – Failover results

On the dashboard, you can then see that the primary instance has changed to your
selected replica, which you chose in the failover dialog window.

388 Configuring Always On High Availability Features

You can add more databases or more replicas to the existing AG. In SSMS, simply
right-click Availability Databases in the Availability Groups section of SSMS as you can
see in the following screenshot:

Fig. 9.26 – Add a database to Availability Group

Any database will be subject to checks as if you were creating brand-new AGs. In the
following screenshot, you can see that one database is already a member of one of
the AGs and several databases cannot be added until the prerequisites are met:

Fig. 9.27 – Checking prerequisites for a new database

Always On Availability Groups 389

After connecting to the replica(s) and choosing the data synchronization, the database will
be added to one of the AGs as you can see in the following screenshot:

Fig. 9.28 – Adding a database to an Availability Group

This step can be achieved either with SSMS, T-SQL, or PowerShell, depending on your
needs and the complexity of the environment.

If you decide to use PowerShell, the code for the task will be as follows:

Add-SqlAvailabilityDatabase -Path SQLSERVER:\SQL\SQLNODE01\
DEFAULT\AvailabilityGroups\wwi-ag -Database AGDB2

Let's now move onto basic availability groups, which were introduced in SQL
Server 2016.

Basic Availability Group
Basic Availability Group are available in SQL Server 2016 and 2019 as a replacement
for Database Mirroring, which has been deprecated since SQL Server 2012. Although
Mirroring is deprecated, it's still available and is still being deployed in Enterprise
environments. Basic Availability Group can offer you similar options to
Database Mirroring.

390 Configuring Always On High Availability Features

A database can maintain a single replica in synchronous or asynchronous commit mode.
The secondary replica is inactive and not accessible to users until there is a failover.
The failover just swaps the primary and secondary roles between servers, causing the
secondary replica to become the primary replica. Basic availability groups can even span
the environment and you can configure hybrid scenarios with Azure.

There are several limitations to basic availability groups:

•	 Only one secondary replica.

•	 There is no read access on secondary replicas.

•	 There are no backups on secondary replicas.

•	 There are no integrity checks on secondary replicas.

•	 There is no support for adding or removing a replica to an existing basic
availability group.

•	 Supports one availability database.

•	 Only Standard edition servers support the basic availability group.

•	 The basic availability group is not a part of a distributed availability group.

When you are configuring basic availability group, you need to select the Basic
Availability Group checkbox. This checkbox is available only in the Standard edition
and not in the Enterprise or Evaluation edition of SQL Server:

Fig. 9.29 – Creating a Basic Availability Group

Let's now move on to distributed availability groups.

Always On Availability Groups 391

Distributed Availability Groups
Distributed availability Groups are similar to the basic availability group and are
a new feature in SQL Server 2016; they are also available in SQL Server 2019. Distributed
availability groups are a new type of availability group that can span over two separate
AGs. Those separate underlying AGs are configured on different server clusters (WSFC).
These distributed availability groups are not configured within a cluster and do not
configure anything in the underlying WSFC. There is a requirement that the underlying
AGs must have a Listener configured.

This Listener will be configured as an endpoint URL for the distributed availability
groups. The distributed availability groups have synchronous and asynchronous
commit modes. However, the data movement is a little bit more complex, since only one
database in distributed availability groups can accept the updates. There is a new role
named Forwarder, which is a primary replica in a secondary availability group. The
Forwarder receives transactions from a primary replica in a primary availability group
and forwards transactions to the secondary replicas in the secondary availability group:

Fig. 9.30 – Distributed Availability Groups

The distributed availability groups are just SQL Server level configurations and they need
to share the SQL Server version with the underlying AGs. However, the version of the OS
for the two WSFC clusters can be different. So, one WSFC can run on Windows Server
2016 and the other can utilize the previous version of Windows Server 2012 R2. This is
particularly useful when the two clusters are in different data centers and have different
OS-level upgrade policies.

392 Configuring Always On High Availability Features

Summary
In this chapter, we have looked at two main features for high availability which can be
used with SQL Server 2019. As both Always On Availability Groups and Always On
Failover Cluster Instances are dependent on the WSFC feature, we went through the initial
configuration of the failover cluster. As the failover cluster topic itself is quite complex, we
have deployed a simple cluster with basic options. Usually, in large-scale environments,
there will be a dedicated team to fully deploy and configure the cluster for the database
administrator.

The FCI is an older approach, based on shared storage; it requires more complex cluster
configuration. In business continuity planning, you need to consider your options for high
availability at the storage and network level, too, since from an SQL Server and cluster
perspective, shared storage can become a single point of failure. The deployment of FCI
and AGs is different, so you need to plan carefully regarding which option you would like
to manage in your environment. Each has different requirements for licensing. Availability
Groups (except the basic option for one database) require the Enterprise edition of SQL
Server in which a FCI can be hosted on SQL Server Standard edition.

In the next chapter, we will focus on in-memory OLTP technology and the performance
improvements that in-memory OLTP technology can bring to your application.

10
In-Memory

OLTP – Why and
How to Use it

Performance is crucial for every system's success and it's the same for SQL Server.
However, as data contention grows all over the world, the traditional method of
continuous algorithm tuning and improving from version to version becomes an
insufficient approach. Since 2010, Microsoft has been working on a completely new
approach to data processing called Hekaton. The first version was present on SQL Server
2014 as the In-Memory OnLine Transactional Processing (OLTP) feature. It offers new
frontiers for developers and administrators to design and maintain speedy applications
and also break many limits of traditional disk-based data processing.

394 In-Memory OLTP – Why and How to Use it

In this chapter, we will have a top-level overview of how the In-Memory OLTP
architecture works and the requirements for its successful implementation. We will also
look at how to create in-memory tables and how to enhance their performance with
natively compiled stored procedures. Along with this, we will also explore some useful
scenarios. As a database administrator (DBA), we need to have detailed knowledge about
In-Memory OLTP behavior. So, we will also learn a few simple techniques to monitor the
memory-optimized part of our database. All of this will be covered in the following topics:

•	 In-Memory OLTP architecture

•	 Creating in-memory tables and natively compiled stored procedures

•	 In-Memory OLTP usage scenarios

•	 Monitoring In-Memory OLTP

In-Memory OLTP architecture
In-Memory OLTP is a feature of SQL Server that offers the option to create memory-
optimized tables and natively compiled modules just like stored procedures. In-Memory
OLTP utilizes a portion of memory up to a limit set by the given edition of SQL Server
(for example, Enterprise Edition). The data of the memory-optimized tables is placed in
memory. Transactions working with data in memory-optimized tables are controlled in
optimistic row-versioning mode. Both properties – the memory utilization and optimistic
transaction control – lead to a throughput in the database of up to 30 times greater.
The adoption of In-Memory OLTP is quite easy from a developers's perspective as the
development effort is not increased with new syntax. The traditional T-SQL approach has
been kept by Microsoft to ease the adoption of the feature. Besides the simplicity of the
development effort, In-Memory OLTP brings great performance benefits to the database.

The architecture of In-Memory OLTP on SQL Server is completely different from
everything we have seen before on SQL Server. The authors of the solution proceeded
from the assumption that everything that could be done on the disk-based part of the
data engine was just an evolution of the data processing optimization, so some kind of
revolution was needed. In this chapter, we will explain what In-Memory OLTP is, we will
describe the top-level architecture, and then jump deeper into the details of In-Memory
OLTP.

To see the benefits gained when using In-Memory OLTP, we need to consider the
differences between two areas of work: data storage architecture and user request
processing phases.

In-Memory OLTP architecture 395

Data storage differences in In-Memory OLTP
Disk-based data is stored in classic files (.mdf or .ndf) and divided into small 8 KB parts
called data pages. Those data pages are registered within other data pages called Index
Allocation Maps (IAMs). Other types of data pages are used for identifying things, such
as, for example, which data pages have free space, and so on.

SQL Server uses all data page types to find out if the portions of data needed by SQL
Server to fullfil user requests are already located in buffer cache. If data pages containing
data used to process a query are not in the buffer cache, SQL Server moves the data pages
to the buffer cache from the physical disk and then processes the buffered data pages as
needed according to the user's request. Basically, we can experience two major issues:

•	 The first issue is the back-and-forth movement of data pages between the physical
disk and the buffer cache, which incurs significant overhead.

•	 The second big issue occurs when data pages have to be protected against accidental
reading or changing by concurrent sessions. Session isolation and protection
invokes locking as a protective mechanism used by SQL Server to avoid situations
such as non-repeatable reads, dirty reads, or phantom reads.

In-memory tables, on the other hand, use neither data nor locking architecture. Structures
of in-memory tables are internally C-structures like application objects in other
environments, and they are held in memory all the time when SQL Server is running. This
omits the need for reading data from the disk when the data is required by a user request.

Even if it seems that in-memory tables are somehow similar to structured memory
buffers, in-memory tables can be persisted on physical disks but in the form of sequential
data saved into a dedicated filestream filegroup, also called a memory-optimized
filegroup. The persisting is done by SQL Server outside of regular user request processing,
so the performance from the user's perspective is not affected by it. SQL Server has two
ways of handling the data durability of in-memory tables:

•	 Full durable in-memory tables: These tables are Atomicity, Consistency,
Isolation, Durability (ACID) compliant, and when SQL Server is restarted, the
table content is reconstructed from the memory-optimized filegroup.

•	 Non-durable in-memory tables: The content of such tables is lost when SQL Server
is restarted. That's why this type of in-memory table is not ACID compliant.

396 In-Memory OLTP – Why and How to Use it

Both types of in-memory tables have their purposes—some scenarios are mentioned
in the In-Memory OLTP usage scenarios section of this chapter.

Note
ACID is an acronym of the four basic transaction properties: Atomicity,
Consistency, Isolation, and Durability. This last property is broken when
we use non-durable in-memory tables.

Another big difference is the mode of concurrency control. Records, or group of records,
of in-memory tables are not locked. SQL Server uses row versioning for concurrency
control. This means that every record in a certain in-memory table has two hidden
columns called Begin Timestamp (BTS) and End Timestamp (ETS). When a record is
inserted, the first version of the record is held with BTS containing the record time and
ETS containing the special infinity symbol.

When the record is updated, SQL Server creates new version of the same record. The
old version has the infinity symbol in ETS replaced by the transaction timestamp value,
and the same transaction timestamp value is used in the BTS of the new record version.
When the transaction is committed, the transaction timestamp is replaced by the actual
timestamp value in both the old and new version of the record. The old version has ETS
filled with the actual timestamp of the end validity, and at the same time the new version
remains valid, with ETS set to infinity.

Old versions of records are removed asynchronously by the garbage collector, so row
versioning does not invoke memory consumption growth.

We can summarize the comparison as shown in the following table:

Figure 10.1 – Comparison of disk-based and in-memory data processing

When the approaches from the preceding table are compared, In-Memory OLTP improves
the performance of data storage and concurrency control up to ten times greater than that
with disk-based processing. However, data storage and concurrency are not the only areas
of improvement. Another area of improvement is request processing and we will explore
that in the next section.

In-Memory OLTP architecture 397

Request processing differences in OLTP
User requests processed in traditional disk-based processing are received by the data
engine and then several steps are carried out before a result of the request is sent back to
the session's output buffer:

1.	 Parsing: Parsing is a syntactical check of the request validity. The result of the parse
phase is a syntactical tree.

2.	 Binding: Binding checks for existence, user permissions, and valid usage of
objects used in the query. During this phase, the data engine reads the metadata
of used objects.

3.	 Algebrizing: This process detects and substitutes logical operators that
represent certain actions declared in the request (for example, WHERE predicates
or JOIN operators). The result of this phase is called an algebrizer tree. The
algebrizer tree is a prerequisite for the creation of the execution tree.

4.	 Optimizing: The optimization phase is probably the most complicated phase of
request processing. SQL Server uses known metadata such as data types, indexes,
statistics, and relative costs of operators used in algebrizer trees, and builds the
execution tree. The optimization is highly affected by the state of the database,
especially the timeliness of statistics.

5.	 Compilation and execution: When the query tree is optimized enough, SQL
Server compiles the tree as an execution tree. The execution tree contains physical
operators that are interpreted during execution by functions developed inside
SQL Server's core. The execution tree is often cached into a memory section called
the procedure cache so it can be reused.

This summary of user request processing was mentioned because we can now think of
places where some performance enhancements can be done. From the preceding listed
points, two areas are possible—optimizing and execution:

•	 When SQL Server optimizes a query, it uses more than 90 different factors or
measures to recognize and create a good enough execution tree. The weights of
those measures change slightly as versions of SQL Server are released and optimized
algorithms adjusted. Nowadays, it can increase performance by a tenth of a percent.

•	 The second area of enhancement is the execution part of query processing. The
optimization of functions interpreting physical operations over data has probably
the same minor benefit as the optimization adjustments themselves.

398 In-Memory OLTP – Why and How to Use it

In SQL Server 2014, natively compiled stored procedures were introduced. This first
attempt covered stored procedures but in later versions the set of objects programmable in
a natively compiled manner was expanded to include scalar functions and triggers. Yet, we
still speak about natively compiled stored procedures.

A natively compiled stored procedure has some particularities and limitations because
it is not interpreted as a traditional SQL statement, even though it is still written using
the T-SQL language. When a natively compiled stored procedure is created, it's actually
compiled into a set of C instructions and then, when called by a user, it's executed directly
by the CPU without any additional overhead resulting from the necessity of optimization
and compilation.

Comparing these two approaches of request processing—natively compiled versus
traditional objects—we can see that using the natively compiled approach gives a
performance improvement of up to twenty times greater than using the traditional
approach.

As written in this and the previous sections, SQL Server has not one but two data
processing engines now. The following section describes how those two parts of the
data engine work together.

Cooperation between the disk-based and memory-
based parts of SQL Server
In-Memory OLTP was incorporated into SQL Server as a second hidden engine, but from
the client's perspective, nothing has to be changed. Let's explore the architecture depicted
in the following diagram:

Figure 10.2 – In-Memory architecture

In-Memory OLTP architecture 399

As seen in the preceding diagram, the top layer is called User connections and covers the
rest of the engine, so users are connected in the same way. When a user sends a request,
the InterOp component serves as a signpost for in-memory or disk-based processing.
When the request is disk based, it's taken by the Relational Engine for parsing, binding,
and optimizing. Then it's sent to the Storage Engine, which resolves the execution in
cooperation with SQL OS. Data is persisted in traditional data files and transactions are
logged in the transaction log file or trans. log file.

The InterOp component resolves parts of interpreted SQL requests using in-memory
tables. When a user calls the natively compiled stored procedure, InterOp sends the
request completely to the in-memory part and the request is processed in the way it
was described in the previous section. Data is read by the natively compiled stored
procedure. When the transaction is executed, SQL Server uses the same transaction log
file for transaction logging. This feature covers transactional consistency across both the
in-memory and disk-based parts of the database.

Both engines must share the same memory given the limits of the edition of SQL Server
installed. For Enterprise Edition, the memory limit for In-Memory OLTP is 2 TB. For
other editions, the In-Memory OLTP limit is computed as 1/4 of the memory limit of the
other editions of SQL Server.

For example, let's look at the Standard Edition. Its memory limit is set to 128 GB, so the
In-Memory OLTP could occupy an additional 32 GB of memory in each database where
In-Memory OLTP is used. Make sure that sufficient memory is present on the OS because
In-Memory OLTP is quite aggressive in its resource consumption. The following diagram
shows what will happen when the memory of the OS becomes low:

Figure 10.3 – How In-Memory OLTP impacts on memory consumption

400 In-Memory OLTP – Why and How to Use it

When we look at the preceding diagram from the left to the right, we see how the memory
consumption changes when In-Memory OLTP is used. We can see how the growing
In-Memory part of memory steals memory from paged memory pools, and eventually, the
In-Memory allocation could occupy almost all the memory dedicated to SQL Server.

In-Memory OLTP limitations
As explained in the previous section, in-memory tables have limits for memory usage
determined by the given edition of SQL Server. But this isn't the only limit we have to
keep in mind. There are many more limitations, and they are as follows:

•	 In-memory tables cannot have data types such as XML, geography, or geometry.

•	 In-memory tables cannot be indexed by full-text indexes.

•	 In-memory tables cannot be used in replications.

•	 In-memory tables cannot refer to disk-based tables by foreign key constraints.

•	 In-memory tables cannot use computed columns.

•	 In-memory tables are always bound to the memory-optimized filegroup, hence they
cannot be placed into partition schemas.

•	 In-memory tables cannot be filetables.

Natively compiled stored procedures also have limitations. The biggest limitation of the
natively compiled stored procedures is that they can only handle in-memory data, yet
traditional SQL queries, stored procedures, or other objects can use both disk-based and
in-memory data. Other limitations include the following:

•	 Transactions cannot be controlled – everything is closed to the atomic block.

•	 A lot of syntactical limitations are present, for example, common table expressions,
cursors, temporary tables, the SELECT..INTO construct, and so on.

All these limitations have to be considered when we want to migrate some functionality of
our databases to In-Memory OLTP.

At this moment, we know that In-Memory OLTP consists of tables intended for fast data
contention, held in memory, and using the optimistic concurrency approach. We also
know that natively compiled stored procedures, triggers, and scalar functions can handle
data in in-memory tables. Taken together, both in-memory tables and natively compiled
objects maintain very fast data access in situations when classic disk-based tables and
T-SQL procedural objects reach their performance limits. In the next section, we will go
through the procedure for setting up In-Memory OLTP on the server and the database.

Creating in-memory tables and natively compiled stored procedures 401

Creating in-memory tables and natively
compiled stored procedures
The previous section was about the top-level architecture of In-Memory OLTP.
Knowing the architecture will help us get familiar with all the steps needed to set up the
environment for In-Memory OLTP applications and to create objects within it.

In this section, we will create memory-optimized filegroups and then we will create some
tables, indexes, and natively compiled stored procedures. All these tasks will be described
in the form of walkthrough examples.

Preparing for In-Memory OLTP
The first step is to create a memory-optimized filegroup. The following screenshot shows
you how to use the Properties dialog for the database, opened by a right-click on the
database in Object Explorer:

Figure 10.4 – Filegroups page of Database Properties window in SSMS

402 In-Memory OLTP – Why and How to Use it

As seen in the preceding screenshot, the Filegroups tab is divided into three lists. The
last list, labeled MEMORY OPTIMIZED DATA, is dedicated to creating the memory-
optimized filegroup.

Every database can contain only one memory-optimized filegroup. So, when the filegroup
is created by the Add Filegroup button, the button is disabled and no additional memory-
optimized filegroups can be created. The second option we can use to create memory-
optimized filegroups is to use a simple script as follows:

ALTER DATABASE [demo] ADD FILEGROUP [INMEM] CONTAINS MEMORY_
OPTIMIZED_DATA
GO

In the preceding script, [demo] is the name of the database to which we want to add the
filegroup and [INMEM] is the name of the newly created filegroup.

Every filestream's filegroup must have at least one folder. So, the second step is to add
a folder to the filegroup. The following screenshot shows the Properties dialog one
more time:

Figure 10.5 – Files page of Database Properties window in SSMS

Creating in-memory tables and natively compiled stored procedures 403

In the preceding screenshot, the Files section is selected. By clicking the Add button,
a new row is added to the Database files list and we have to fill in the following columns:

•	 Logical name: The logical name used for administrative purposes such as backup.

•	 File Type: This could be rows, a log, or a filestream. The last choice is the most
suitable one.

•	 Filegroup: The name of the memory-optimized filegroup from the dropdown.

•	 Path (not visible on the screenshot): The path to an existing folder that will contain
data persisted from the in-memory tables.

The second option is the following script:

ALTER DATABASE [demo]
ADD FILE
(
 NAME = N'inmem_file',
 FILENAME = N'F:\DATA\inmem'
)
TO FILEGROUP [INMEM]
GO

Here are some short explanations about the preceding script:

•	 [demo] is the name of the sample database.

•	 inmem_file is the logical name of the folder added to the filegroup.

•	 F:\DATA\inmem is the path to the folder containing the data.

•	 [INMEM] is the name of the memory-optimized filegroup.

After performing the steps described in this section, the environment is prepared, and we
can start to create objects.

Note
Unlike other filegroups in the database, SQL Server does not support the
removal of memory-optimized filegroups. For all of our experiments with In-
Memory OLTP, consider creating a sample database first, because the only way
to stop working with In-Memory OLTP completely is to drop the database.

404 In-Memory OLTP – Why and How to Use it

Creating In-Memory OLTP objects
Two types of objects are created within In-Memory OLTP—tables with indexes and
natively compiled stored procedures. Now we'll go through their creation.

Creating tables with indexes
The basic syntax for creating memory optimized tables is almost the same as when we
are going to create disk-based tables, but we have to consider some extras:

•	 The index is created as part of the table creation.

•	 Clustered indexes are allowed.

In other words, we create indexes with CREATE TABLE or ALTER TABLE statements.

Note
In earlier versions of SQL Server, the ALTER TABLE statement was not
allowed in an In-Memory OLTP environment. It was introduced in SQL Server
2016.

The syntax for creating a table is as follows:

create table Ratings_InMem

(

id int not null identity primary key

nonclustered hash with (bucket_count=1048576)

, UserId int not null
, MovieId int not null
, Rating tinyint not null
, Index ix_Users (UserId)

)

with

(

memory_optimized = on, durability = schema_and_data

)

Creating in-memory tables and natively compiled stored procedures 405

As seen in the preceding script example, the base syntax is very similar to disk-based table
creation. The exceptions are as follows:

•	 In-memory tables do not support clustered indexes. That's why the primary key is
marked as nonclustered.

•	 Indexes are a part of an in-memory table; they are not created separately by
the CREATE INDEX statement. The last row in the table structure shows us how
to create the index. When indexes have to be changed, the ALTER TABLE
statement is used.

•	 The ON keyword is used for placing a new disk-based table or disk-based index into
the right filegroup and is prohibited from creating in-memory tables.

•	 The WITH keyword says that the table will be in memory. Its definition consists
of the following:

a) A memory_optimized option set to on.

b) �A durability configuration option. This option sets whether the table will be
fully durable (this is the value schema_and_data as seen in the script; it's also
a default value) or a non-durable table (the value is schema_only in that case).

Tables can be accessed via traditional interpreted T-SQL statements; otherwise,
in-memory tables will stay separate from the rest of the database. Indexes in In-Memory
OLTP are used completely the same way as in disk-based tables, but the index structures
are different. Let's explain in-memory indexes in deeper detail in the following paragraph.

In-Memory OLTP indexing
In In-Memory OLTP, we work with three types of indexes:

•	 Hash indexes

•	 Range (or BW-Tree) indexes

•	 Columnstore indexes

Each of these preceding indexes plays a different role in In-Memory OLTP. In the
following sections, we will learn about these three In-Memory OLTP indexes in detail.

406 In-Memory OLTP – Why and How to Use it

Using hash indexes
Creating a hash index might be a point of confusion for developers or DBAs who are
not familiar with the concept of hash indexes. A hash index itself is a sorted list of hash
values. The list has a fixed capacity of hash buckets. The capacity must be declared during
index creation and must not be changed later. The number of hash buckets should be
greater than the estimated number of distinct key values stored in the table in the future.
Hence, a good practice is to use the number 220 (1,048,576) as a basis for the estimation.
In the CREATE TABLE statement, in the Creating tables with indexes section, we estimate
that the number of records will not be greater than approximately 1 million. If we expect
more than 1 million records, a good practice is to multiply by 220. One hash bucket can
contain just one hashed value. When the number of hash buckets is underestimated, hash
collision occurs, and the performance of the index decreases.

When a new record is being inserted into a table with a hash index, SQL Server calculates
the hash value of the index key and places the hashed value to the proper position in
the index. Because the index key values are hashed, this index serves the best for WHERE
conditions with equality operator. That is why the hash index is usually preferred as the
right index for the primary key. But we often need to search for ranges of records. For
such cases, the range index works best. The following paragraph describes the usage of
range indexes.

Using range indexes
Range indexes, sometimes also referred to as BW-trees, are very similar to the B-tree
indexes we know from the disk-based parts of databases. A BW-tree has its own internal
differences compared to B-trees, but we use BW-trees the same way as non-clustered
B-trees designed on disk-based tables. As we can see in the CREATE TABLE example,
the ix_Users index is just one more index without any additional properties. The ix_
Users index is a BW-tree. BW-trees serve common WHERE conditions using relational
operators such as greater than or for range seeks. Range indexes are very simple to create
and very useful for many search predicates. But it does not solve big range scans nor
aggregates. For analytically oriented queries, the columnstore index is the right option.
Let's go ahead and examine it in the context of the In-Memory OLTP environment.

Using columnstore indexes
The third type of In-Memory OLTP index is the columnstore index. A columnstore index
created on an In-Memory OLTP table is always a clustered index. Everything else works
completely the same way as in disk-based tables. Columnstore indexes were described in
Chapter 6, Indexing and Performance.

Creating in-memory tables and natively compiled stored procedures 407

For some operations, using in-memory tables is very good to enhance performance when
using natively compiled stored procedures. The next section shows you how to write such
a procedure.

Natively compiled stored procedures
Natively compiled stored procedures are written in T-SQL. When such a procedure is
created, it's saved into metadata and compiled into C. It makes natively compiled stored
procedures very efficient, but the C compilation also causes a lot of limitations. Let's take
a look at the following example:

create proc procNativeModification
 (@Id int
 , @UserId int
 , @MoveiId int
 , @Rating int)
with native_compilation, schemabinding, execute as caller
as
begin atomic with (transaction isolation level = snapshot,
language = N'English')
 if @id is null
 insert dbo.Ratings_InMem (UserId, MovieId, Rating)
 values (@UserId, @MoveiId, @Rating)
 else
 update dbo.Ratings_InMem
 set UserId = @UserId, MovieId = @MoveiId, Rating = @Rating
 where Id = @Id
end
go

This procedure does a very simple thing; when a record does not yet exist in the
Ratings_InMem table, it's inserted. Otherwise, it's updated according to the key value
provided in the @Id parameter.

Let's explore this as it differs from the regular stored procedures. The first syntax
requirements for every natively compiled procedure are in the header. This declares that
the procedure is natively compiled (the native_compilation keyword), and the
procedure is also schema bound (the schemabinding keyword). The schema binding
forces the writer of the procedure to use two phase names – Ratings_InMem (as a table
name) and dbo.Ratings_InMem – inside the procedure. Also, a security context of the
stored procedure's execution must be explicitly declared (the execute as keyword).

408 In-Memory OLTP – Why and How to Use it

The body of the natively compiled stored procedure must be enclosed in an atomic
block. As seen in the preceding code, it's traditionally the begin .. end block but
it's marked by the atomic keyword. The atomic block has additional properties such
as language and transaction isolation level. The language property
affects which language will be used to translate any error messages that are raised. We can
set the language to any of the languages supported by SQL Server. The transaction
isolation level is always set to snapshot because it means that updates will be
row versioned.

Natively compiled stored procedures cannot access disk-based tables, so when
creating them we must keep in mind this limitation. If we still want to profit from the
efficiency of these procedures, we have to migrate all tables used in transactions to the
in-memory area.

Natively compiled stored procedures offer big performance gains and are suitable for cases
when new transactions arrive frequently (for example, thousands of transactions every
second) and when transactions are executed from many concurrent sessions.

At this moment, we know how in-memory tables and natively compiled stored procedures
work together. In the next section, we will briefly describe how to monitor data contention
in an In-Memory OLTP environment.

Migrating disk-based objects to In-Memory OLTP
Lots of systems were built a long time before In-Memory OLTP was born. As the data
contention is growing, such systems enhance their performance but the traditional
method of optimization, such as more indexes or hardware upgrade, fail. For these
cases, Microsoft offers reports and wizards that help with the migration of tables
and stored procedures to the in-memory environment.

The first question is which tables are suitable to be migrated to the In-Memory OLTP
environment to improve performance. The second question is how expensive the
migration could be. The migration of tables and stored procedures to the In-Memory
OLTP environment has to be transparent to the applications using it; otherwise, significant
effort will be needed to remake some part of the client applications due to the need for
physical design changes on the database side. As was mentioned in the In-Memory OLTP
limitations section, not all data types or constraint types are supported and sometimes it's
hard to consider all of the limitations.

Both of these questions are answered by a report called the Transaction Analysis
Performance Overview. This report is reachable via SSMS by right-clicking the database
in Object Explorer and selecting this report from the list of reports. When opened, the
report provides a signpost to any problems, as seen in the following screenshot:

Creating in-memory tables and natively compiled stored procedures 409

Figure 10.6 – Transaction Performance Analysis Overview report

When we want to inspect tables that are candidates for migration, we will click through
the left option, labeled Table Analysis, and for migration candidates that are stored
procedures, we will use the right link labeled Stored Procedure Analysis.

When using the Table Analysis link, a report called Recommended Tables by Usage will
be opened as follows:

Figure 10.7 – Recommended tables for migration to In-Memory OLTP

410 In-Memory OLTP – Why and How to Use it

The preceding report shows a selected number of tables that are probably good candidates
for migration to the in-memory environment. The left table with numbers allows us
to select how tables will be seen in the diagram on the right side. The diagram shows
tables as blue points. At the point when a certain table moves to the top-right corner, the
migration of the table is considered useful from a performance perspective and the effort
needed for migration is relatively small. If tables are shown in the top-left corner, they are
still heavy-loaded, and the migration effort will be substantial. Tables in the bottom half
of the diagram are not good candidates for migration at all, because the migration effort
tends to be big while the performance benefit is disputable.

When we need more detailed information about migration blockers, we can click
certain tables in the diagram and a new report appears:

Figure 10.8 – Details of table usage

The preceding screenshot shows the details for the Details for Table Name report. It
summarizes the actual wait statistics, which are good criteria for making decisions about
migration (when more waits have been issued, it's a better idea to migrate the table)
and it also summarizes existing indexes and the total number of potential migration
issues. Unfortunately, this report does not show which issues have to be resolved prior
to migration. We can try to find all the issues on our own. In this example, the three
problems are as follows:

•	 A clustered index created by the primary key constraint: We have to create a
non-clustered primary key.

In-Memory OLTP usage scenarios 411

•	 A foreign key referring to another table: Here, we have to decide whether we will
migrate the parent table as well, or whether we'll drop the foreign key constraint.

•	 A column of the xml data type: This is the most serious issue because we must
drop the column and save the data to another disk-based table; this action means
effort for all client applications using this table.

The following screenshot shows the structure of the table in the Object Explorer:

Figure 10.9 – HumanResources.JobCandidate table structure preview

Once all roadblocks are removed, we can start the migration itself. It can be done by using
a simple wizard. The wizard is accessed this way:

1.	 In the Object Explorer, spread the Tables node under your database.

2.	 Right-click on the desired table and from the popup menu, select Memory
Optimization Advisor.

3.	 The wizard is open, so follow its steps.

The reports described in this section help us recognize which tables could benefit from
being moved to the In-Memory OLTP.

At this point, we've got a firm grounding in the concepts, functionality, and operation
of In-Memory OLTP has been explained. In the next section, we will explore some useful
use cases.

In-Memory OLTP usage scenarios
The upcoming sections are going to show you some useful scenarios for In-Memory
OLTP usage. The following sections are intended as walkthrough examples. We will work
with a large amount of data in In-Memory OLTP, then we will change the scope to heavily
updated data, and in the next exercise, we will add a system versioning feature. In the last
example, we will merge OLTP and Online Analytical Processing (OLAP) workloads, two
highly different areas of data manipulation, using In-Memory OLTP to make them work
together efficiently.

412 In-Memory OLTP – Why and How to Use it

Assignment of the user story sample
To provide a consistent use case, we will use an imaginary water management company.
Such companies have geographically distributed networks delivering water across a whole
region. The network has to be monitored constantly because the company has to be
informed about every abnormality or disorder as soon as possible.

That's why there's approximately 100,000 sensors measuring the amount of water flowing
through the network. Every sensor sends records with its own identification and measures
the flow rate every 5 seconds. This means 20,000 simple transactions per second. This
scenario is typical for In-Memory OLTP applications as the amount of transactions
processed in regular disk-based OLTP increases the risk of locking conflicts.

The company also requested reports showing trends, history, and statistics about water
flow rates over time:

1.	 Our first example will resolve the amount of transactions by capturing all new
information sent by the sensors using INSERT statements only, so it will work
as a log.

2.	 The second example will do the same task using INSERT or UPDATE statements.

3.	 The third example will add the functionality to be able to show real-time
information about the current state of the network.

As an ancient Chinese idiom says, even the longest journey begins with the first step.
Let's start our journey with the first example now.

Example 1 – Inserting incoming data into
in-memory tables
This first sample shows probably the most traditional method of data capture for
production tracking or monitoring systems. It originates from traditional disk-based
data processing. What we need is a table living in the in-memory environment and also
a very simple natively compiled stored procedure to achieve the best possible
performance. Let's begin!

1.	 Our first code sample shows the table creation. We have to keep in mind that the
database prepared for such tables must have a memory-optimized filegroup:

use Demo

go

create table SensorData

(

In-Memory OLTP usage scenarios 413

Id bigint not null identity primary key nonclustered
, SensorId uniqueidentifier not null
, RecordTime datetime2 not null default(sysdatetime())
, WaterFlowRate decimal(7, 2) not null
)
with
(
memory_optimized = on
)

go

The previous code sample shows the creation of a very simple table without indexes,
except the primary key. For data handling, we need to develop a natively compiled
stored procedure.

2.	 The creation script is shown in the following code block:

create procedure procAddSensorData
(
 @sensorId uniqueidentifier
 , @waterFlowRate dec(7, 2)
)
with native_compilation, schemabinding
as
begin atomic with (transaction isolation level =
snapshot, language = 'English')
insert dbo.SensorData (SensorId, WaterFlowRate) values (@
sensorId, @waterFlowRate)
end
go

As seen in the preceding code block, the procedure does only one action—it inserts
a new record.

The first example seems to be ready to go live, but that's not true. We must consider
the limitations of In-Memory OLTP with regards to the given edition of SQL Server,
and we have to decide how much memory will be dedicated to in-memory tasks.
That's why one more requirement needs to be fulfilled – we have to develop
a retention policy.

414 In-Memory OLTP – Why and How to Use it

3.	 The retention policy is simply the action of moving data from an in-memory table
to a disk-based table. It could be done as in the following script:

use Demo

go
create table SensorDataHistory
(
 Id bigint not null primary key
, SensorId uniqueidentifier not null
, RecordTime datetime2 not null
, WaterFlowRate decimal(7, 2) not null
) on [primary]
go

create proc procMoveSensorData
 @recordsBefore datetime2
as
begin try
 begin tran
 insert SensorDataHistory (Id, SensorId, RecordTime,
WaterFlowRate)
 select Id, SensorId, RecordTime, WaterFlowRate
 from SensorData
 where RecordTime <= @recordsBefore

 delete SensorData where RecordTime <= @recordsBefore
 commit
end try
begin catch
 rollback;
 throw;
end catch
go

The previous script consists of two steps:

a) �In the first step, a table called SensorDataHistory is created. This table will
contain all historical data.

b) �The second step is the creation of a stored procedure called
procMoveSensorData. The procedure invokes regular explicit
transactions controlled by the try..catch block.

In-Memory OLTP usage scenarios 415

The transaction takes data intended for deletion from an in-memory table and
inserts it into a classic disk-based table, and then deletes the original records from
the in-memory table. If any errors occur, all the action taken is rolled back correctly.

Tip
The procMoveSensorData procedure works with both in-memory
and disk based-data; that's why it cannot be written as natively compiled. For
better performance, the procedure could be rewritten into two procedures.
The first one would copy the data to a disk-based table, with the second stored
procedure nested into the first one—it could be natively compiled and could
just delete data from the in-memory table. Transaction consistency will be kept
by the first procedure.

4.	 The last step is to schedule the calling of the procedure, for example, every day.
It's just two rows of code to be written into a job step. Let's look at the script:

declare @timeBefore date = getdate() - 1
exec procMoveSensorData @timeBefore

As seen in the preceding script, deletion time is computed as the current date and
time minus one day. Then the procedure is executed. This example will move all the
data inserted before yesterday.

Let's summarize how the assignment was satisfied:

•	 Data was stored in a fast, lock-free structure so no conflicts nor waits were expected.

•	 Data was moved from the in-memory environment to the disk to keep the
environment healthy, but we made some extra effort to manage the retention policy.

•	 Statistical reports were selected against the disk-based table with no attention paid
to the constantly incoming data (data delays would then occur if not).

•	 Real-time analytics were were queried from an in-memory table.

Given the third point, we have to find a better solution, and this solution will be provided
in the next section.

416 In-Memory OLTP – Why and How to Use it

Example 2 – Updating data in an in-memory table
The previous sample involved big data contention with the need for a regular retention
policy. This sample is going to start at almost the same point as the previous one:

1.	 Let's create an in-memory table similar to the previous one, as follows:

create table SensorData2
(
SensorId uniqueidentifier not null primary key
nonclustered
, RecordTime datetime2 not null default(sysdatetime())
, WaterFlowRate decimal(7, 2) not null
)
with
(
memory_optimized = on
)
go

As seen in the preceding script, the table does not need an extra Id column as a
surrogate key (compared to the table from the first example) as every sensor is
registered once. The rest of the table definition remains the same.

2.	 Bigger changes have to be done in the stored procedure's definition, as follows:

create procedure procUpdateSensorData
(
 @sensorId uniqueidentifier
 , @waterFlowRate dec(7, 2)
)
with native_compilation, schemabinding
as
begin atomic with (transaction isolation level =
snapshot, language = 'English')
 update dbo.SensorData2 set
 WaterFlowRate = @waterFlowRate
 , RecordTime = default
 where SensorId = @sensorId
 if @@rowcount = 0
 insert dbo.SensorData2 (SensorId, WaterFlowRate)
values (@sensorId, @waterFlowRate)
end
go

In-Memory OLTP usage scenarios 417

The preceding script creates new stored procedure called
procUpdateSensorData. This stored procedure tries to update a record
according to the parameters provided. If the record does not exist (a new sensor was
installed), then a new record is inserted. This conditional insert ensures that the
new sensor's data will be saved correctly.

This design does not cover the requirement for statistical reports as it overwrites
data time after time. Fortunately, SQL Server provides a feature called temporal
tables. The idea of temporal tables is to catch every data change done in a table
and save the changes to a separate table with the same structure. Aside from this
functionality, the T-SQL language provides the required syntax for querying the
original table with the possibility of time shifts as needed.

3.	 The following script shows you how to modify the table structure to start the
change capture:

alter table SensorData2
add
StartDate datetime2 generated always as row start,
EndDate datetime2 generated always as row end,
period for system_time (StartDate, EndDate)

alter table SensorData2
set
(system_versioning = on (HISTORY_TABLE = dbo.
SensorData2History))

The preceding script has two steps:

a) �The first step adds two new columns that will set a range for record version
validity. Those columns must be of the datetime2 data type and both columns
must have the generated always... adjective. Also, the period for
... is mandatory. Even though the first step modifies the structure of the
table, this kind of change is transparent to other database objects and client
applications, but the table is not a temporal table yet.

b) The second step is the moment when the data change capture is turned on.

Tip
The history table could be created as a standalone table with the same structure
as the original table and bound to the temporal table feature later. It's good
when a lot of changes are made because we can create the history table more
precisely, for example, to other filegroup or even to a partition schema.

418 In-Memory OLTP – Why and How to Use it

From now on, we can write simple queries against the in-memory table itself to
retrieve current values, for example, to select SensorId, RecordTime,
WaterFlowRate from SensorData2, or we can continue to write queries
against the in-memory table but returning a state from the history table.

An example of such a query is shown in the following script:

select SensorId, RecordTime, WaterFlowRate
from SensorData2 for system_time as of '2017-02-11 00:00'

The preceding script will move us back to the time provided in the system_time as
of clause. If we want to obtain a set of record versions for a given time range, we can use
a similar query with a slightly different system_time clause.

An example of the query looks like this:

select SensorId, RecordTime, WaterFlowRate
from
SensorData2 for system_time between '2017-02-11 00:00' and
'2017-02-11 01:00am'

Temporal tables offer very comfortable ways of exploring changes in data over time.

Let's summarize this example:

•	 The data was stored in fast, lock-free structures so no conflicts nor waits were
expected.

•	 The quantity of data was relatively small because the insertion of new records was
dramatically reduced.

•	 We didn't need to manage the data retention policy.

•	 Statistical reports were selected using the system_time clause in the select
statements so no data delay would occur.

•	 Real-time analytics were selected against in-memory tables.

This sample took us one step higher because of less memory consumption and natively
created historization, so all points of assignment are fulfilled now. But the real-time
analytics still are subject to improvement. The last example exercise will show you how to
ultimately improve performance.

In-Memory OLTP usage scenarios 419

Example 3 – Improving real-time analytics
The previous examples relied on the performance ensured by memory storage. But if the
degree of data contention is huge, it's a good idea to improve the read load and at the
same time not let it affect the write load. In this example, we will just enhance the solution
described in the previous section.

When we think of real-time analytics, we can imagine some kind of aggregation queries
frequently issued by a client. As an example, we can use a regularly (and often) refreshed
dashboard. Such dashboards or any other aggregate queries requested can often profit
from columnstore indexes. SQL Server enables us to create columnstore indexes
over an in-memory structure. The sample script looks like this:

alter table SensorData2 add index cs_SensorData2 clustered
columnstore

The only action we need to take is to improve is the querying of in-memory tables.
The columnstore index is described briefly in Chapter 6, Indexing and Performance,
as an object, which is very useful for analytical queries with long, full, and range scans.

As in the previous examples, we will summarize what was done:

•	 The data was stored in fast, lock-free structures so no conflicts nor waits were
expected.

•	 The data was relatively small because the insertion of new records was dramatically
reduced.

•	 We didn't need to manage the data retention policy.

•	 Statistical reports were selected using the system_time clause in the select
statements so no data delay would occur.

•	 Real-time analytics were selected against in-memory columnstore indexes.

This third example showed us the complete functionality that we can use to create efficient
and extremely powerful solutions.

The In-Memory OLTP feature brings great performance benefits to us, but the increased
performance it delivers has its price. When working with In-Memory OLTP, we need
to know how memory is consumed. The following section shows how to monitor
In-Memory OLTP.

420 In-Memory OLTP – Why and How to Use it

Monitoring In-Memory OLTP
As mentioned in the Cooperation of disk-based and memory-based parts of SQL
Server section, memory consumption of the in-memory part of the database can be huge
and aggressive. That is why it is necessary to monitor the amounts of memory occupied
by in-memory objects regularly. The simplest way to obtain an overview of the memory
usage of the in-memory environment is to use reports in Management Studio:

1.	 Right-click on a database in Management Studio and select Reports from the
pop-up menu that appears.

2.	 Under the Standard Reports option, select Memory Usage By Memory Optimized
Objects from the list of reports.

The report shown by this option is depicted in the following screenshot:

Figure 10.10 – Memory consumption report

Monitoring In-Memory OLTP 421

The first row shows the total amount of memory consumed by objects created by
the user. The diagram shows several sections of in-memory allocation such as tables
and indexes. The table at the bottom of the report shows the size of each in-memory
table within the indexes.

There are also internal objects used by SQL Server for internal purposes. For a
better overview of the complete contents of the in-memory environment, we can
use a Dynamic Management View (DMV) called sys.dm_db_xtp_memory_
consumers. This DMV shows the parts of memory allocated to and used by
objects.

3.	 To compare the result of query from sys.dm_dm_xtp_memory_consumers
with the report mentioned in preceding image, we can write the query as follows:

select sum(allocated_bytes) / 1024 / 1024. as
TotalObjectsMemoryInMB
from sys.dm_db_xtp_memory_consumers
where object_id > 0

This query returns exactly the same number as in the Total Memory Allocated to
Memory Optimized Objects field in the first part of the previous report.

4.	 In the same way, we can try to compute the numbers in the rest of the report.
The following code is provided as an example:

select object_name(xtp.object_id) as ObjectName
 , iif(grouping_id(object_name(xtp.object_id), xtp.
memory_consumer_desc) > 0
 , 'TOTAL'
 , xtp.memory_consumer_desc) as MemoryConsumerDesc
 , sum(xtp.used_bytes) / 1024 / 1024. as
UsedMemoryByObjectInMB
 , sum(xtp.allocated_bytes) / 1024 / 1024. as
AllocatedMemoryByObjectInMB
from sys.dm_db_xtp_memory_consumers as xtp
group by grouping sets
(
 (object_name(xtp.object_id), xtp.memory_consumer_
desc)
 , ()
)
having sum(xtp.used_bytes) / 1024 / 1024. > 0

422 In-Memory OLTP – Why and How to Use it

Let's explain the preceding code:

•	 It uses the same sys.dm_db_xtp_memory_consumers DMV.
The select clause of this statement contains several columns.

•	 The first column is just object_id translated to the object name by the
built-in object_name function.

•	 The second column consists of two nested functions:

i) �The first function used is iif. This built-in function is used here for the
creation of a summary row description of the result set. The first parameter of
the iif function tests the level of grouping. It uses the grouping_id function.

ii) �This second function, grouping_id, is very useful when an aggregate query
is written with more combinations of grouping criteria, as seen in the group
by clause. When the lowest level of grouping is computed on a certain record, the
function returns zero.

When a grouping column is omitted by SQL Server, in other words, when a higher
level of aggregation is computed on a certain row, the function returns an integer
value bigger than 0. In our case, the grouping_id function returns 3 when the
total row is computed, otherwise it returns 0. The second parameter, called the true
block, returns the word TOTAL when the grouping level is the higher one. The third
parameter returns the memory_consumer_desc column when the grouping_
id returns zero. Simply put, the second column shows the concrete memory
consumer description or the word TOTAL.

•	 The third and fourth columns are the results of the aggregation. The third
column shows the actual memory usage, in MB, used by all memory consumers
individually, and the fourth column shows the memory allocated by the consumers.

Monitoring In-Memory OLTP 423

The results of the query look like this:

Figure 10.11 – Result from sys.dm_db_xtp_memory_consumers view

As seen in the preceding screenshot, SQL Server allocates and uses more memory
objects than just tables and indexes. The actual memory consumed by the in-memory
functionality of SQL Server is in a surrogate record with the TOTAL in the memory
consumer description (MemConsumerDesc) column, and in the fourth column
labeled ObjectAllocatedMemoryInMB. Its value is approximately double the Total
Memory Allocated to Memory Optimized column of the Memory Usage By Memory
Optimized Objects report.

Note
If you want to compare the values shown on the report with
the values received by querying the DMV, add all values from
ObjectAllovatedMemoryInMB for ObjectName to the Ratings_
InMem value. You will obtain a value of 34.9375, which, when rounded up, is
34.94 MB. Now add on all the values from the bottom table of the report. You
will get 34.94 MB. This means that the DMV calculates exactly the same data
as the report shows, but in the report, memory consumers are limited to user
objects.

424 In-Memory OLTP – Why and How to Use it

Summary
This chapter provided a detailed overview of a very valuable part of SQL Server, called
In-Memory OLTP. The biggest advantage is the in-memory nature of the solution; the
biggest risk we need to consider is the memory consumption.

In the first section, we went through an architectural overview. We also compared
different approaches to transaction handling for disk-based and in-memory data.

In the second section, we learned how to implement tasks that have to be done before
implementing In-Memory OLTP, and then we created objects hosted by the In-Memory
OLTP part of SQL Server.

In the third section, we saw how to apply In-Memory OLTP in real-world use cases.
In this section, we went through the step-by-step usage of in-memory samples.

In the last and most important section, we saw how to monitor In-Memory OLTP. If we
follow the techniques mentioned in the discussion on the topic of monitoring, we should
never run out of memory.

As a conclusion, we can say that In-Memory OLTP makes significant advances in the
performance of SQL workloads where the traditional approach of disk-based data
processing reaches its performance limits. The In-Memory OLTP implementation is not
difficult, so we can experiment with this feature easily.

The next chapter will explain another set of advanced scenarios, and the cooperation of an
on-premises SQL Server with Microsoft Azure.

11
Combining

SQL Server 2019
with Azure

Microsoft Azure, as well as other cloud technologies, have been growing over the last
couple of years and nowadays, they can cover every global, technical, or business need
without compromise. When it comes to Microsoft SQL Server, we can provision it
on-premises, but SQL Server can also be completely hosted in cloud environments.
Nowadays, we see more hosting alternatives for SQL Server in Azure, and this sometimes
leads to a point of confusion for on-premises DBAs. In this chapter, we will describe
a set of server and serverless technologies offered by Azure for database hosting. We will
also take an end-to-end and step-by-step look at some samples of several features, such as
data files in Azure, backing up to URL, and managing backups to Azure. We will provide
an overview of what's possible in Azure when manipulating data, and then we will go
through some hybrid scenarios where we'll be combining on-premise instances of SQL
Server with Azure.

426 Combining SQL Server 2019 with Azure

In this chapter, we will cover the following topics:

•	 Beginning with technologies in Microsoft Azure

•	 Microsoft SQL Server 2019 and hybrid scenarios

•	 Quick overview of running SQL workloads in Azure

•	 Migrating SQL Server workloads to Azure

Let's get started!

Beginning with technologies in Microsoft
Azure
Cloud technologies profit from the so-called all independent concept. This means many
computers, disk arrays, server network switches, and many other elements (collectively
called nodes) work in cooperation.

For example, when a node is not available, the rest of the nodes fully cover its absence.
When this occurs, the whole system must be stable; otherwise, it could go down.

Building such an environment in-house leads to high expenses. Years ago, big players
offered to provide fully supported services using the cloud concept. This has helped to
reduce the expense of IT solutions because hardware and software are now maintained
by the provider; the customer only pays for the operations of the feature itself, the
performance level they need for the feature, and for the high availability level of
the feature.

One of the most basic properties of most of the tenancies in Azure is the pay-as-you-go
charging mode, which allows you to pause, stop, or completely remove features or
technologies that are not needed. When new web applications, storage, whole Windows
servers, or any other service is needed, it's usually just a few clicks away from the tenant.
This pay-as-you-go concept supports the very good predictability of expenses of IT.

Microsoft also started to offer a huge cloud-based technology called Microsoft Azure.
Nowadays, Azure covers all IT needs and also offers new technologies such as AI, IoT,
data science tools, and so on. It's very hard to list all the technology offered by Microsoft,
but a few include SharePoint servers, Active Directory in the cloud, and virtual servers
with many operating systems and services on it. Last but not least, there is Office 365,
which is perhaps the most popular cloud environment now. In addition, the scale of
products and technology offered by Microsoft continues to grow, and every technology
found in Azure continues to improve.

Beginning with technologies in Microsoft Azure 427

In the following sections, we will focus on data-related technologies such as Cosmos DB,
Azure Data Factory, Azure SQL Database, Azure SQL Server, and Azure Synapse. In every
section, a short example of these technologies will be provided. If you want to try them
out for yourself, remember that you'll need an Azure account. If you don't have one, it's
easy to create a trial account at https://azure.microsoft.com/en-us/free/.

Overview of data-related technologies in Azure
Microsoft Azure offers many options for storing data, depending on the format of the
data (structured or non-structured), the source of the data (that is, LOB applications or
IoT devices), the amount of data, and the speed of the data contention. The way data
is processed is also very important to consider when the data engineer goes to select
the right option or combination of options of data-related technologies in Azure. The
following short paragraphs will help provide you with an introduction to the technologies
hosted by Azure.

Storage Account
Storage Account is mostly intended to store unstructured data; that is, text files or images
with no option to query the data directly. Storage Account is just a cover name for four
types of containers:

•	 Blobs

•	 File shares

•	 Tables

•	 Queues

The most frequently used container types from the preceding list are blobs and file shares.
Blob containers offer storage for unstructured files in something called a flat namespace.
The flat namespace means that the blob containers do not support folders. A typical
use case for blob containers is to store large amounts of data, such as text files, JSON
documents, images, and so on. The blob container serves as cheap storage for data that
will be processed in the future by other Azure resources.

Note
We will also use the storage account in the following section for backups and
data file placement.

https://azure.microsoft.com/en-us/free/

428 Combining SQL Server 2019 with Azure

File shares are similar to blob containers. The main benefit of file shares is that they
support the Server Message Block (SMB) protocol. This means we can use file shares as
mapped drives in local devices.

At the time of writing, tables and queues are rarely used because new technologies,
especially Cosmos DB, tend to be their successors.

Cosmos DB
Cosmos DB is defined by Microsoft as a multi-API, globally replicated NoSQL database
with the multi-write option. But what does this definition mean for us?

Cosmos DB is a cover name for several NoSQL database types. These database types are
listed here:

•	 MongoDB API: MongoDB is a document-based database. It works with JSON
documents and it allows us to store semi-structured, possibly nested or
recursive, data.

•	 SQL API (formerly known as DocumentDB): The SQL API is a competitor of
MongoDB. Unlike MongoDB, the SQL API was developed by Microsoft for
Azure only.

•	 Cassandra API: The Cassandra API is a columnar database. It stores data in a
format comparable to columnstore indexes. It allows super-fast scan operations to
be performed on open data stored in the Cassandra API.

•	 Gremlin API: The Gremlin API stores and maintains graph data. It allows us to
define nodes and edges in any graph-based data.

•	 Table API: The Table API is quite similar to relational databases since it works
with structures very similar to tables. Unlike relational databases, this API is still a
NoSQL database, which provides more freedom to the developer. Like every other
API in Cosmos DB, the Table API profits from the global scalability and super high
throughput that is common to all Cosmos DB APIs.

Such NoSQL databases are used to store and manipulate JSON documents stored in
collections. Typical use cases for such databases are online gaming, IoT data arriving in
JSON format from many concurrent connections, or hot storage for data from mobile
applications. Aside from Mongo DB and the Core API, Cosmos DB is also the host for the
Gremlin API for graph processing and the Cassandra API for column-based databases.

Beginning with technologies in Microsoft Azure 429

Global replication with the multi-write option is a common feature of all the APIs hosted
within Cosmos DB. This option allows us to configure more locations to which the
same database is replicated natively by Azure. In other words, we are free of replication
configuration as it's ensured by Microsoft. Hence, secondary replicas, as well as primary
replicas, can be writeable. This follows two goals: high availability and improved responses
from the database to distant connections.

Now, what about NoSQL shortcut? NoSQL shortcut or Not-only-SQL means that besides
the client API, the Core API of Cosmos DB offers the SQL-lite querying language for
manipulating data. Unlike SQL databases, NoSQL databases are not so widely known
by developers, so the Azure portal offers you the option to download SDKs for .NET,
Node.JS, and others with quick-start samples.

With that, we've seen that Azure is not limited to SQL solutions, but that we also need
to move and transform data between data sources and destinations. For such purposes,
Azure Data Factory is the right technology to use.

Azure Data Factory
Unlike blob storages and NoSQL databases (and the following SQL solutions), in Azure,
Azure Data Factory (ADF) is an environment not for storing data, but for orchestrating
Extract-Transform-Load (ETL) and Extract-Load-Transform (ELT) processes.
Orchestration is a term used to describe the automated configuration, coordination, and
management of data movements and transformations. In on-premises environments,
we usually use SQL Server Integration Services (SSIS) or third-party tools such as
WhereScape to define workflows or pipelines to coordinate which data, in which route,
from which sources, to which destinations, and in which order should be moved
and transformed.

For data movements and transformations, we can use the ETL or ELT approach. The
ETL approach extracts data from one or more sources and then makes all the required
transformations on the data before it is loaded into its destination. This approach is very
common in traditional data warehousing projects. The ELT approach, on the other hand,
extracts the data first but loads the extracted data into the destination before transforming
it. The ELT approach allows you to fully utilize the capabilities of destination technologies
such as Azure Synapse and Databricks.

Basically, ADF hosts an environment for pipelines. A pipeline can be compared to
executable processes; it can be scheduled for execution, monitored, and troubleshooted,
if needed. Each pipeline contains at least one activity. This activity could be a copy
activity, which loads data from one connected service, such as SQL Database, to another
connected service, such as a blob container, as a flat file. However, ADF contains many
more activities.

430 Combining SQL Server 2019 with Azure

Typically, we need to transform data; that is, aggregate it somehow, normalize the data,
and so on. ADF has a set of activities dedicated to executing an executable script or object
in the target data source. As an example, we can provide a stored procedure activity
or an Azure Databricks notebook activity. In other words, ADF commonly utilizes the
computation resources of other data-related technologies.

With that, we have understood some of the commonly used data-related technologies
in Azure. However, as DBAs, our interest lies in SQL solutions. So, let's look at SQL
databases in more detail.

Azure SQL solutions
In this section, we will go through some commonly used SQL technologies hosted within
Microsoft Azure. Even if we are oriented mostly toward SQL technologies, the following
section can also be used to prepare DBAs to become more familiar with the Azure portal,
so this knowledge can be used when you're working with all the all the resources offered
by Azure.

Understanding Azure SQL Database
In simple terms, Azure SQL Database is a typical relational database that behaves like a
database without a SQL Server instance. However, this isn't the case, because the database
is hosted in a SQL Server cloud environment in the form of a partially contained database.

This database containment can be used on-premises as well. The partially contained
database is a SQL Server database that has some server level properties inherited by
itself. That's why such databases are also called self-contained databases. Using
self-contained databases on on-premise SQL Server instances enables DBAs to create
users with passwords. This bypasses traditional authentication and authorization models,
as described in Chapter 4, Securing Your SQL Server.

The user with the password is the kind of user that is not authenticated by a SQL Server
instance, but is authenticated directly by a certain database. This could be very useful for
scenarios such as hosting web databases or having some database often being migrated
between more server instances.

Beginning with technologies in Microsoft Azure 431

Starting with the Azure portal
Everything in Azure is done through a web application called the Azure portal. It can be
found at https://portal.azure.com. We will visit it often throughout the next few
sections. If you have never used Microsoft's web technologies before, you'll need to create
a new LiveID account. By doing this, you will be signed in with your LiveID or with an
organizational account. Azure portal provides an initial dashboard, and this is where the
work starts. The following screenshot shows how to get oriented in the Azure portal:

Fig. 11.1 – A selection of new resources in the Azure portal

When the Azure portal is accessed, it shows a dashboard in the main area and a set of
the most popular features that can be requested. When you click on the New link in the
top-left corner, a screen with a more complex set of features and technologies appears.

These sets can be filtered by categories, but sometimes, it's easier to just type the feature
name into the search box at the top of the screen.

https://portal.azure.com

432 Combining SQL Server 2019 with Azure

For example, let's write the word database in the search box. Several options will be
shown, such as Azure Database for PostgreSQL or Azure Database for MySQL, but the
SQL Database label will also appear. When SQL Database is selected, the previous screen
will disappear and be replaced by a screen for Azure SQL Database creation. The following
screenshot shows this screen:

Fig. 11.2 – The Basics blade of Azure SQL Database creation

From here, we can fill in all the property information for the database being created.
In the next section, we will learn how to create a complete and ready-to-go-live Azure
SQL database.

Beginning with technologies in Microsoft Azure 433

Creating an Azure SQL database
In the previous section, we focused on basic orientation in the Azure portal. Now, we are
going to continue with creating an Azure SQL database. The creation of an Azure SQL
database starts with the screen shown in the preceding screenshot.

Let's describe the fields shown on this screen one by one:

•	 Subscription: A subscription is an account for payments and invoicing. One login
can have more than one subscription.

•	 Resource group: This is an organizational unit, not a SQL Server! One resource
group can hold all the resources that belong to the same solution or application.

•	 Database name: You just need to enter the name of the new database here.

•	 Server: The server property is not about creating a new instance of SQL Server.
Instead, it provides the following:

a) �The first part of the name, which is used as a server name when connecting
to Azure SQL database. The link is always in the selectedservername.
database.windows.net form. This name must be unique within all of
Azure. If the name already exists, a red exclamation mark will be shown;
otherwise; a green tick will be shown.

b) �The geographical location of the newly created database (for example, Western
Europe, West Central US, and so on). Select this property with care; a database
created in a location that's a long distance away slows down the response time
dramatically due to network latency.

c) �Admin login and password: It's not sa login actually; when comparing with
on-premises SQL Server, the login to Azure SQL Database behaves more like a
dbo user.

•	 Want to use SQL elastic pool?: When the answer is Yes, we can set fixed pricing for
a group of databases that are created within the same elastic pool. This helps when
each of the databases in the same elastic pool has its peak hours at a different time.
The pricing unit in elastic pools is elastic DTUs (eDTUs). If we want to control
pricing for just one database (or the database has more or less constant load), the
answer to the question is No.

434 Combining SQL Server 2019 with Azure

•	 Compute + Storage: We have to pay according to the type of database we need.
Nowadays, we have two pricing/performance options: Database Transaction Units
(DTUs) and vCores. When the pricing tier is set to DTU, we are going to consume
DTUs; the unit is composed of memory consumption, CPU consumption, reads
and writes, and the maximum storage amount. For example, the cheapest database
has five DTUs with 2 GB maximum storage and is about $5 per month. The most
expensive database is 1,000 DTUs with 1 TB maximum storage, but it's more than
$800 per month. This property can be changed at any time. So, if you are not sure
how expensive the database should be, start with cheaper settings and when needed,
add more resources, DTUs, storage, or a combination.

DTUs are hard to estimate properly. That's why the second option, called vCore,
is also available. When DBAs come from on-premise environments, they are used
to think in numbers of CPUs and the amount of memory. vCore is a unit that is
basically the maximum number of virtual CPUs used for a certain database. Unlike
in on-premise environments, in Azure, the number of vCores we are going to utilize
is going to be two or three times smaller.

•	 Additional Settings: The following fields are present on the Additional
Settings tab:

a) Data source: This drop-down list offers three values:

i) None: New blank database prepared for content provision.

ii) �Sample (AdventureWorksLT): Database containing sample data about
a non-existing company called Adventure Works.

iii) �Backup: Database recreated from the existing backup of the same or other
Azure SQL database.

b) �Collation: Default database collation. This property is the same as in
on-premises databases.

When all the properties have been filled in, we can check the Pin to dashboard checkbox.
This pins the database on the dashboard and is useful for providing an overview or
stating when the database settings are visited. The last action could either be Create, for
immediate creation of the database, or the Automation option link. The Automation
option link generates a full JSON description of the newly created database. This helps
when resources are created or configured in Azure by using Azure Resource Manager
for provisioning the automation of different resources. Clicking the Create button starts
the database creation process. It lasts a couple of minutes and then a new screen appears,
showing an overview of the database. This overview is shown in the following screenshot:

Beginning with technologies in Microsoft Azure 435

Fig. 11.3 – Overview blade of an existing Azure SQL database

There are a lot of options that can be configured here, but going into them is beyond the
scope of this book.

When connecting, a user must provide their server name and database name since they
are not going to connect to a real SQL Server, but an alias created for them. The database
name is needed so that Azure knows which database will authenticate the user. We can
find this information on the Overview blade, as shown in the preceding screenshot.

Nowadays, Azure SQL databases provide almost the same feature set as on-premise
databases for basic SQL operations but with one important exception. Even if they are
hosted on the same server (and let's keep in mind that the term server means the alias
of a whole group of SQL servers maintained by Microsoft), they are the accessible points
for connections. That's why it's not possible to combine more databases in one connection.
In other words, the USE database_name command is not allowed against Azure
SQL databases, and statements can only be executed against the database that the user is
already connected to.

As we start working with Azure SQL Database, we will experience more limitations in this
database compared to an on-premises SQL Server. For up to 100% compatibility, Azure
offers an alternative to Azure SQL Database called Azure SQL Managed Instance. In the
next section, we will look at the main differences between Azure SQL Database and Azure
SQL Managed Instance.

436 Combining SQL Server 2019 with Azure

Comparing Azure SQL Database and Azure SQL Managed Instance
As we explained in the previous section, Azure SQL Database is the best option for a
standalone database with OLTP data contention; that is, a database serving as data storage
for a simple e-shop. But in many cases, we have information systems with more databases
being used together. Here, we can use Service Broker or speed up data contention using
In-Memory OLTP.

Azure SQL Managed Instance is a SQL solution that allows us to work with the complete
SQL Server feature in cloud without the need to maintain the underlying operating
system and the instance of SQL Server itself. Azure SQL Managed Instance can be taken
as a group of related databases, containing a full set of system databases such as msdb,
that removes all the limitations that are experienced in Azure SQL Database. Azure SQL
Managed Instance combines all the known features from on-premises SQL Server with
the instance configurations fully maintained by Microsoft.

The decision of using Azure SQL Database or Azure SQL Managed Instance is often
confusing and painful for newbies, so let's explore a few of the limitations and use cases
for these two resources with the help of the following table:

Fig. 11.4 – Azure SQL Database and Azure SQL Managed Instance limitations and use cases

Beginning with technologies in Microsoft Azure 437

The preceding table does not contain all the differences, but it will help you decide which
resource to utilize in different cases. Simply put, if we just need a basic T-SQL workload,
such as a small database for storing the data of a web or desktop application, Azure SQL
Database tends to be the strong enough but still cheap solution. On the other hand, when
we need several cooperating databases maintaining data for more complex information
systems, possibly with asynchronous data processing (Service Broker), super-fast
telemetry data processing (In-Memory OLTP), or other, more sophisticated, features,
Azure SQL Managed Instance will ultimately cover our needs since most of our instance's
configuration details will be fully maintained by Microsoft.

Even if we have the option to provision Azure SQL Managed Instance, we still want to
easily migrate our on-premises SQL Server environment to the cloud. That's why, in the
next section, we will focus more on Azure SQL Server.

Understanding Azure SQL Server
Azure SQL Server hosts databases in the cloud in a completely different way. It is a regular
virtual machine that has SQL Server installed on it. A good point to note here is that
administrators are completely aware of the high availability of the machine itself. On the
other hand, we have one more SQL Server instance and it's completely up to the DBA to
maintain it correctly in the form of database checks, rebuilding indexes, or configuring
security, as described in Chapter 6, Indexing and Performance, and Chapter 8, Automation
– Using Tools to Manage and Monitor SQL Server 2019.

Azure SQL Server breaks the limitations of Azure SQL database because it's a regular
instance of SQL Server. Let's consider some other properties of Azure SQL Server:

•	 Azure SQL Server could be incorporated into an Active Directory when the
Active Directory has to be hosted in Azure as well.

•	 Azure SQL Server is a better option than Azure SQL database when we need
a highly available machine with more databases for Line-of-Business
(LOB) applications.

•	 The performance of the machine can be set through its price level.

•	 Azure SQL Server can serve as a secondary replica for AlwaysOn. This is really
good because we can spread our availability groups outside organizations in case of
physical disaster.

In the next section, we will create a sample Azure SQL Server.

438 Combining SQL Server 2019 with Azure

Creating a sample Azure SQL Server
The creation of Azure SQL Server starts in the Azure portal in the same way that we
described in the previous section. When it comes to finding the correct option, we need
to use SQL Server 2019 as our search term, because SQL Server 2016 and SQL Server 2017
are already offered. Azure portal will show a list of many options, but basically, we need to
decide between three editions of SQL Server:

•	 Enterprise

•	 Standard

•	 Web

When we've made a choice, we will be asked for the deployment model. The deployment
model decides whether we will create a resource (a virtual machine, in our case) that
exists independently of other resources or whether we wish to group more resources
together logically. The deployment model can be either of the following:

•	 Classic: The newly created resource is independent.

•	 Resource Manager: Resources can be grouped together. This is useful when
provisioning some solution using more resources, such as SQL Server, web
applications, and other resources together. This is a newer option and one of the
enhancements it brings is the possibility of using an SSD disk for storage.

The process of creating an Azure SQL Server consists of several steps. The first step for
virtual machine creation is shown in the following screenshot:

Beginning with technologies in Microsoft Azure 439

Fig. 11.5 – Azure SQL Server creation

Let's describe some of the properties in the Basic tab:

•	 Subscription: This field is used to configure from which subscription the virtual
machine will be charged by Microsoft.

•	 Resource group: The server can be added to an existing resource group or it can
occupy its own.

•	 Virtual Machine Name: This is just the name of the newly created virtual machine.

•	 Region: Geographic location of the new server.

•	 Availability options: We can configure a redundancy for our newly created virtual
machine to keep it more available in case of failure.

•	 Image: This option allows us to select the type of the underlying operating system.

440 Combining SQL Server 2019 with Azure

Apart from the properties explained in the preceding list, we must also set up the
following important properties placed on the Basic tab (not visible in the screenshot):

•	 User name: The name of the administrator of the server who will be able to connect
the server through a remote desktop.

•	 Password and Confirm password: The password of the administrator user. It must
be at least 12 characters long.

Even if we can use all the other properties with their default values, it is recommended to
go through all the tabs.

After doing this, we're provided with a summary and need to confirm all the properties
we set during the previous steps. Then, the creation process starts, and we just have to wait
a couple of minutes until it's finished. During the creation process (and this is true for all
newly created resources), we can leave the portal running and return to it later.

When the server is created, we can start to use it. In the next section, we'll learn how to
use Azure SQL Server.

Using Azure SQL Server
Once the virtual machine has been created, a dashboard is shown in the Azure portal,
as follows:

Fig. 11.6 – Overview blade of Azure SQL Server in the Azure portal

Beginning with technologies in Microsoft Azure 441

The dashboard contains a set of configuration properties on the top part and diagrams
showing CPU or network utilization, as well as disk utilization on the bottom part. There
are two main controls on the dashboard. The first is the Connect button on the top
toolbar. When it's clicked, an RDP configuration file is downloaded, and we can access
the virtual server over our remote desktop using the username and password we set in the
first step of the creation process. When we are connected to the server, we can configure
the operating system and SQL Server services. The remote desktop does not contain
Management Studio, but we can install it.

The second control can be in the right-hand column of the configuration properties
and it is the Public IP address of the server. This is useful for accessing SQL Server
via Management Studio from outside the virtual machine.

Note
Azure SQL Server comes installed with a full feature set and with default
settings at the instance level. After provisioning in the Azure portal is finished,
review the Service Manager services and instance properties in Management
Studio first, as we mentioned in Chapter 1, Setting Up SQL Server 2019.

Azure SQL Server is a good option for larger LOB applications as a secondary replica in
AlwaysOn groups, and it can also serve for reporting or traditional analysis via Analysis
Services. But for data warehouses with really big contention, Microsoft prepared a special
resource called Azure Synapse. We'll look at this in more detail in the next section.

Azure Synapse
Data warehouse workload means a very big database with a lot of range or full scans.
Against it, everything must be subject to the response time. Azure Synapse, formerly
known as Azure SQL Data Warehouse, fulfills these requirements through its
complex design.

442 Combining SQL Server 2019 with Azure

The following screenshot shows the architecture of Azure Synapse:

Fig. 11.7 – Azure Synapse high-level architecture

The only point of contact with Azure Synapse is a SQL Server instance called Control
Node. Control Node responds to user requests and also receives incoming data during
ETL executions. The Control Node itself plays the main role in the distribution of load
between compute nodes. Every compute node is a SQL Server instance holding part
of the data that was loaded into Azure SQL Data Warehouse. The amount of compute
nodes could be up to 60 SQL Servers; that's why everything is done via massively parallel
processing (MPP). The MPP engine is Polybase.

Polybase is a technology with two usage purposes:

•	 It controls MPP processing.

•	 It enables a connection to be made between relational databases and Hadoop
applications such as HDInsight (also present in Azure).

•	 The second generation contains a fully integrated Apache Spark environment.

The Polybase topology can be installed in on-premise as part of SQL Server Enterprise
Edition, but this is beyond the scope of this book.

The last part of every node in Azure Synapse is Data Movement Service (DMS). This
feature starts to work when data that's used in the same query is not stored together in
one node.

Beginning with technologies in Microsoft Azure 443

Creating an Azure Synapse instance
The creation of Azure Synapse is also done through Azure portal. The best search term
to use when creating a new resource is Azure Synapse. Once found, the resource type's
creation by an administrator is started, and a screen with several properties appears, as
shown in the following screenshot:

Fig. 11.8 – Azure Synapse Analytics creation blade

444 Combining SQL Server 2019 with Azure

All the properties shown in the preceding screenshot, such as Database name and
Resource group, are self-descriptive. The Select source property, which can be found
on the Additional settings page, enables the creation of a blank database that's been
prepared for a new schema and ETL data load, a sample database, or a database from
(Azure) backup. The Performance level option in data warehouse units (DWU) is quite
complicated and consists of three parts:

•	 Search/aggregation: I/O-intensive and CPU-intensive types of operations.

•	 Read: I/O-intensive types of operations.

•	 CTAS: This shortcut creates a table via select I/O-intensive operations and provides
us with a way to load data into the data warehouse from non-relational data sources.
It also shows us how to archive a data warehouse data from the relational database
in a non-relational destination.

The computation formula, when using the preceding factors, is not publicly documented.
But as the number of DWUs we need grows, the more expensive the Azure Synapse
service will become. The expense of Azure Synapse is probably its biggest and
only disadvantage!

When the Azure Synapse instance has been created, an overview is shown, along with
a summary of the basic properties. Now, we can connect to the Azure Synapse instance
using any common tool, such as SQL Server Management Studio, or we can use the
quick start options that have been placed in the left navigation menu, as shown in the
following screenshot:

Fig. 11.9 – Navigation options for Azure Synapse

As seen in the preceding screenshot, there's a lot of possibilities with Azure Synapse, such
as starting to load data, access to built-in monitor, or connect to it using Power BI.

When using Azure Synapse, a few more things need to be considered. This information is
summarized in the next section.

Beginning with technologies in Microsoft Azure 445

Using Azure Synapse
Azure SQL Data Warehouse was designed to support a huge amount of big read
operations and full scans. That's why the physical design of tables has three extra
differences compared to common SQL Server databases:

•	 Storage: Storage means the internal structure of each table. Basically, the
storage could be a columnstore, a clustered B-tree index, or a heap index.

a) �By default, every table stored in Azure Synapse is a clustered columnstore
index.

b) �Clustered B-tree indexes are also supported and must be explicitly defined upon
table creation.

c) �Heap indexes are also supported and must be explicitly defined upon table
creation.

•	 Table geometries: As a massively parallel technology, every table is distributed
across all compute nodes. This distribution can be solved in three modes:

a) �Round-robin: Default mode of distribution. The control node distributes data
randomly and evenly across all compute nodes.

b) �Hash: The non-default mode of distribution based on a user-defined hash key.
This mode of distribution can lead to so-called data skewness (data is not spread
across all nodes evenly).

c) �Replicated: Replicated table topology is good for small tables. Each table is
placed in every storage node of the Azure Synapse instance.

•	 Statistics: Azure Synapse does not support auto create and auto update statistics.

We must also consider not using defaults in several cases:

•	 Small tables: These should be heaps or clustered B-tree indexes (Microsoft thinks of
small tables stored in Azure Synapse when they have less than 100,000,000 records).

•	 Dimension tables with selective random searches: These tables should be
clustered B-tree indexes.

446 Combining SQL Server 2019 with Azure

•	 Tables joined often together: When these tables are distributed randomly in round-
robin mode or are not distributed by the same hash key, the data movement service
is forced to move data from one instance of the compute node to another to put the
data of joined tables together. We should minimize the work of the data movement
service. This is why hash distribution is the best practice in these circumstances.

In addition to the issues listed here, an ETL developer has to know that Azure Synapse
does not create and update column statistics automatically. When a table is loaded,
column statistics must be created or updated manually using the CREATE STATISTICS
or UPDATE STATISTICS command.

In this section, we learned about Azure SQL technologies and other data-related
technologies, such as Data Factories and serverless Cosmos DB storage. Now, let's move
back to on-premises environments and learn how to utilize hybrid SQL Server scenarios.

Microsoft SQL Server 2019 and hybrid
scenarios
While the previous section showed several clear Azure deployments of SQL Server,
SQL Server is traditionally hosted on-premises. As data contention grows over time,
administrators face the challenge of handling the increased storage space needed for
data or for backups, as well as Recovery Time Objectives (RTO) and Recovery Point
Objectives (RPO).

Migration to an Azure environment is not always easy or possible. That's why Microsoft
incorporated many enhancements in SQL Server to help DBAs succeed when facing these
situations. In the following sections, we will go through these enhancements and show
you how to use them. Every section contains appropriate situations for using them and
also a detailed description of their implementation.

In the next section, we will explore the first hybrid scenario: data files in Azure.

Data files in Azure
Data files in Azure is a topology in which SQL Server runs on-premise or as an Azure
VM. The metadata of user databases is stored in its master database, but the files of these
user databases are hosted in Azure blob storage. This feature is useful in scenarios where
a database is often migrated between instances or we want to divide the instance and
the data. This topology also benefits from the ability of snapshot backups, which will be
mentioned at the end of this section.

Microsoft SQL Server 2019 and hybrid scenarios 447

First of all, an Azure Storage account has to be created. This can be done in the Azure
portal, as shown in the following screenshot:

Fig. 11.10 – New Azure Storage account creation in the Azure portal

We must fill in several properties, such as name and placement, for the Storage account
option. After doing this, the Storage account will be prepared and empty.

Now, we have to go into the Storage account and create a container. A container is
a physical place for placing files; we can think of it as a folder. The following screenshot
shows how to do this:

Fig. 11.11 – How to create new container within Azure Storage

448 Combining SQL Server 2019 with Azure

The container has a name and a Public access level property. This should be set to private,
as shown in the previous screenshot. Once the container has been created, an access
policy should be created for it with at least Read, Write, and List permissions. Delete
permissions are preferred if you will be dropping a database later. The access policy is
created in the Azure portal, at the container level.

In the previous steps, the cloud storage was prepared automatically. In the next few steps,
we will prepare other security prerequisites for using data files in Azure. SQL Server needs
to be authenticated against certain containers. This is done by a server credential. This
credential needs to have a secret created for the container in Azure.

Azure portal does not help to correctly create the secret. Fortunately, a free and often
used tool called Microsoft Azure Storage Explorer solves this issue in the Azure portal.
Microsoft Azure Storage Explorer is a desktop application and is shown in the
following screenshot:

Fig. 11.12 – Where to find Shared Access Signature

Microsoft SQL Server 2019 and hybrid scenarios 449

As shown in the preceding screenshot, once connected, Microsoft Azure Storage
Explorer shows all the storage types that can be created within the Azure subscription.
However, let's stay focused on the highlighted places. They have been numbered for
better orientation:

1.	 After the connection, we have to expand the Storage accounts node – a certain
storage account (sqladminguidedb, in our example) – to Blob Containers, and
then we'll see a container being created in the Azure portal (its name is sql in
our example). Alternatively, we can create one by right-clicking on the Blob
Containers node.

2.	 When the sql container is selected, the bottom part appears with two tabs:
Properties and Actions. The Properties tab is shown by default. The Actions
tab contains a set of links for certain actions. Here, we have to click Get Shared
Access Signature.

3.	 When the Get Shared Access Signature (SAS) link is clicked, a dialog is opened
for SAS creation. In this dialog, we have to select the access policy we created for
the container in Azure portal.

4.	 When the access policy is selected and the Create button is clicked, the dialog
window is changed and shows the newly generated SAS.

This new dialog is shown in the following screenshot:

Fig. 11.13 – SAS in Storage Explorer

450 Combining SQL Server 2019 with Azure

The field shown in the red rectangle contains the complete SAS that will be used in
the next step. Your query string will differ from the one highlighted in the preceding
screenshot. You must also copy the whole string, even if just a portion of it is shown in
the highlighted field. We have to copy it before closing the dialog.

Note
The Azure portal also contains an SAS link, but on the Storage account level
only. It's too high level and when used for credentials, it does not work! An SAS
on the container level must be created.

Once the SAS has been created, we can switch to Management Studio and create the
credential. It's not a database scoped credential; it's created in the master database. The
script for this is as follows:

use master
go

create credential [https://sqladminguidedb.blob.core.windows.
net/sql]
with
identity='SHARED ACCESS SIGNATURE',
secret = 'sv=2017-04-17&si=sql-15F986BEFBE&sr=c&sig=4d*********
************3D'
go

Let's dive deeper into the preceding script:

•	 The credential's name has to be a complete link to the container. In our example, the
base link to the Storage account is https://sqladminguidedb.blob.core.
windows.net and the container's name is just sql.

•	 The identity property, along with the SHARED ACCESS SIGNATURE value,
constantly informs SQL Server that this is the credential that's used for Azure
container access.

•	 The secret property contains the query string that was generated in the previous
step. Keep in mind that the leading question mark must not be there.

Microsoft SQL Server 2019 and hybrid scenarios 451

Now that all the prerequisites have been completed, the last thing we need to do is create
the database. The script for database creation is identical to any other database creation
script. The following script creates a database with files placed in Azure:

create database FilesInAzure
on
(
name = 'FilesInAzureData',
filename = 'https://sqladminguidedb.blob.core.windows.net/sql/
masterfile.mdf'
)
log on
(
name = 'FilesInAzureLog',
filename = 'https://sqladminguidedb.blob.core.windows.net/sql
/logfile.ldf'
)
go

Once the database has been created, we can go back to Microsoft Azure Storage
Explorer or to the Azure portal and we will see that the necessary files have been created
in the container.

Creating databases with files placed in Azure Blob storage is the same for on-premise
and Azure virtual machines. From on-premise instances, a worse response time could
be issued when the internet connection being used is not capable enough, but when
combining an Azure SQL Server VM with data files in Azure, the response is very good.
The only limitation is that such a database cannot be bigger than 1 TB.

Using data files in Azure offers a very good feature called snapshot backup. In the next
section, we will learn about all the hybrid backup types, as well as about the snapshot
backup. Keep reading!

Backups in Azure
In this section, we will learn how backup operations can be executed and place backup
files directly in Azure. Using this approach provides several advantages:

•	 Backup files are stored reliably due to native Azure data redundancy.

•	 Backup files are highly accessible from around the world. This helps with
database migrations.

452 Combining SQL Server 2019 with Azure

•	 The cost of on-premise storage is always higher than Azure Blob storage.

•	 Depending on the backup scenario, restoration can be done extremely quickly.

Managed backup to Azure
Managed backup to Azure is probably the first feature of SQL Server that profits from
cloud technologies. However, we can back up databases locally and plan backup strategies
by jobs created on SQL Server Agent. Managed backup to Azure offers an automated way
of performing regular backups to Azure blob storage. It is a very good option for backups
because we don't need to maintain local storage. We only have to pay for the amount of
space consumed in Azure. Managed backup to Azure was introduced in SQL Server 2012
as a fully automated way of doing backups. Since then, managed backup to Azure has been
enhanced. Nowadays, we can set our own time schedule for backups or we can back up on
demand whenever we need to.

When using managed backup to Azure, the following prerequisites must be fulfilled:

•	 An Azure blob container must be created.

•	 An SAS must be generated for the container.

•	 Credentials must be created in SQL Server.

All three prerequisites were described in the previous section, so here, we will create
a managed backup to Azure. The following screenshot shows Object Explorer in
Management Studio:

Fig. 11.14 – Stored procedures involved when maintaining managed backups

Microsoft SQL Server 2019 and hybrid scenarios 453

The preceding screenshot shows some of the stored procedures that are created in
the msdb database in the managed_backup schema. A full description of all stored
procedures is available at https://docs.microsoft.com/en-us/sql/
relational-databases/system-stored-procedures/managed-backup-
stored-procedures-transact-sql?view=sql-server-ver15, but for now,
let's look at a simple example. We'll use the demo database and the Azure Blob storage
container from https://sqladminguidedb.blob.core.windows.net/bck
here. We want to back up the database demo with a default schedule and we also want to
keep backup retention for 7 days. The following script shows the solution to this:

-- credential has to be created
create credential [https://sqladminguidedb.blob.core.windows.
net/bck]
with
identity='SHARED ACCESS SIGNATURE',
secret = 'sv=2017-04-17&si=bck-15F9EE******************Fdw%3D'
go

-- procedure managed_backup.sp_backup_config_basic is executed
to setup and start backups
exec msdb.managed_backup.sp_backup_config_basic
 @database_name = 'demo'
 , @enable_backup = 1
 , @container_url = 'https://sqladminguidedb.blob.core.
windows.net/bck'
 , @retention_days = 7
go

The preceding script shows the credential's creation, and then the managed_backup.
sp_backup_config_basic procedure is executed. Let's explore the parameters of
this procedure:

•	 @database_name: Basically, this is the name of a certain database. This can be set
to NULL, and it means that all the databases, including system databases (except the
tempdb database), will be backed up.

•	 @enable_backup: This parameter is just switched; when it's set to 1, the backup
process starts, while when it's set back to 0, the managed backups are stopped.

•	 @container_url: The URL to the Azure Blob storage container.

•	 @retention_days: The number of days that backups will be kept for in the
Azure Blob container. The default (and the longest retention) is 30 days.

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/managed-backup-stored-procedures-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/managed-backup-stored-procedures-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/managed-backup-stored-procedures-transact-sql?view=sql-server-ver15

454 Combining SQL Server 2019 with Azure

When we want to stop all managed backups to Azure, there's another procedure we can
use. The following code shows how to stop all managed backups to Azure at once:

exec msdb.managed_backup.sp_backup_master_switch @new_state = 0
go

Restoring a database from a managed backup to Azure is done in the same way we
described in Chapter 3, Implementing Backup and Recovery. When the database is in a
simple recovery model, just one full backup is used to restore and recover the database.
When the database is in at least a bulk-logged recovery model, the database can be
restored and recovered to its most recent state.

Managed backup is mostly an automated mode of database backup. Another option is to
use backup to a URL, which will be described in the next section.

Backup to a URL
Compared to managed backup to Azure, backup to a URL is just a regular backup. It's
exactly the same as every other regular backup, as described in Chapter 3, Implementing
Backup and Recovery. The only exception is that we don't use DISK, but URL, as a backup
device. Also, we need the credentials for access to the Azure blob storage. Let's use
a database called SimpleDemo, which we want to back up using Azure blobs as
backup storage.

First, we need to create some credentials with a shared access policy for the container.
The same procedure was described in the previous section. Then, we need to write the
following statement:

backup database SimpleDemo to url = 'https://sqladminguidedb.
blob.core.windows.net/bck/simpledemo.bak'
with init

With backup to URL, we can establish any backup strategy using any backup types
according to our backup needs.

When restoring the database, the restore procedure and statements are exactly the same.
Again, the only exception is the device type. The following script shows how to restore the
SimpleDemo database from a URL:

restore database SimpleDemo from url = 'https://
sqladminguidedb.blob.core.windows.net/bck/simpledemo.bak'
with recovery

Microsoft SQL Server 2019 and hybrid scenarios 455

As shown in the preceding script, as we already mentioned, the only difference between
the restores described in Chapter 3, Implementing Backup and Recovery, is that the
RESTORE statement is restore... from url = 'https://...' instead of
restore ... from disk = 'L:\...'.

In the next section, we will explore how to use the backups and restores of database files
that are already stored in Azure Blob storage.

Snapshot backups
In Chapter 3, Implementing Backup and Recovery, we described the process of point-in-
time recovery for a database. It contains the restore in sequence, from the full backup to
the differential backup (if it exists), and then from all transaction log backups in sequence.
This process is time-consuming and affects the RTO negatively.

When we want to ensure the best possible RTO, we can use backups with file snapshots.
This type of backup is possible for databases whose files have been placed in Azure Blob
storage. Backups, when executed, create pointers to snapshots of files. This is very fast and
efficient. Backups must also be placed in Azure blob storage. From a DBA's perspective,
backups are backups to URLs, as we described in the previous section.

Using backups with file snapshots allows us to recover a database to a certain point in
time by using just two backups. That's why there's no need to go through all the regular
processes we described in Chapter 3, Implementing Backup and Recovery.

From a DBA's perspective, a snapshot backup is a regular backup to a URL. The only
prerequisites are as follows:

•	 To have credentials for access to Azure blob storage

•	 To have the files of the database placed in Azure blob storage

•	 To have a database in a full recovery model

Let's use a database called FilesInAzure. This database has its files in Azure blob
storage and the database has set a full recovery model. We want to use file snapshots for
our backup. The first backup has to be a full database backup. The sample script for this is
as follows:

backup database FilesInAzure to url = 'https://sqladminguidedb.
blob.core.windows.net/bck/FilesInAzureFull.bak'
with file_snapshot

456 Combining SQL Server 2019 with Azure

The file_snapshot backup option shown in the preceding script makes all the
difference between regular backups and snapshot backups in Azure.

The same option is used in a transaction log backup statement. Let's look at the
following script:

declare @url nvarchar(255) = 'https://sqladminguidedb.blob.
core.windows.net/bck/FilesInAzureLog_'
set @url = @url + convert(sysdatetime, 'yyyyMMddhhmm') + '.bak'
backup log FilesInAzure to url = @url
with file_snapshot

The preceding script has one extra feature: it computes a filename for consequential log
backup files to keep each log backup in its own file. The declare statement in this script
is just a variable declaration and initiation with a constant part of the device path. The
set statement adds a date and time as a formatted string, and a file extension is also
added to the @url variable.

When we need to perform a database restore, we need to have three backups:

•	 The full backup

•	 The last transaction log backup for when we want to restore the database to the
most recent point in time

•	 The first transaction log backup after the time of failure

Let's consider the FilesInAzure database. This database has files in Azure blob storage
and it is also regularly backed up to a URL. Let's say we need to restore the database
because we have encountered an error in data. The following script shows the process of
recovering from this:

restore database FilesInAzure from url = 'https://
sqladminguidedb.blob.core.windows.net/sql/FilesInAzureFull.bak'
with norecovery, replace

restore log FilesInAzure from url = 'https://sqladminguidedb.
blob.core.windows.net/sql/FilesInAzureLog_201711082300.bak'
with recovery, stopat = '2017-11-07 03:00pm'

From the preceding script, SQL Server recognizes which backups must be restored.
The restore and recovery process is then very fast, and the database has minimal
possible downtime.

Quick overview of running SQL workloads in Azure 457

Quick overview of running SQL workloads
in Azure
In the world of growing cloud solutions, we shouldn't consider that this is the end of a
DBA's job; rather, we should be prepared to adopt the cloud in the future. This section
highlights several considerations that are useful for further cloud adoption. We will
explain the differences between three aspects of SQL workloads regarding on-premises
and Azure environments. We will talk about licensing, SLA, disaster recovery, and regular
database maintenance in detail.

Licensing
Every software product needs to be licensed properly, and this is completely true for SQL
Server as well. In on-premises environments, we need to know how SQL Server will be
provisioned as a standalone instance on virtual machines, or in an active-passive versus
active-active failover cluster.

In the cloud, licensing has different rules. The most important aspect is the type of
resource hosting to be used. As you may recall, we have three options for resource
provisioning in the cloud:

•	 IaaS: Infrastructure as a service. A typical case for IaaS is a virtual machine with a
SQL Server instance installed on it.

•	 PaaS: Platform as a Service. As an example, we can show Azure SQL Database or
Azure SQL Managed Instance.

•	 SaaS: Software as a Service. This resource hosting type is not typically used for data
processing technologies, but as an example of a technology that tightly cooperates
with a data platform. Azure Stream Analytics is an Azure resource that is used
to read stream messages from Event Hubs or IoT Hubs (which are actually other
SaaS resources transform the data, and finally store the data in a target storage such
as blobs, Cosmos DB, or even SQL databases. The definition of the Azure Stream
Analytics job is just one SQL (called ASA SQL) query. The query processor and
other components are all maintained by Microsoft.

The preceding list is very important to determine shared responsibility. Every resource,
every service or application, is developed, deployed, and maintained throughout its
lifetime. In on-premises environments, the responsibility for each phase of the resource
life cycle is completely on local developers, network administrators, security experts,
but also on DBAs. In cloud environments, the responsibility is shared between the cloud
provider and the customer. As the resource hosting type is growing from IaaS to SaaS, the
portion of responsibility is moved from customers to the cloud provider site.

458 Combining SQL Server 2019 with Azure

But what does this mean for SQL workloads in Azure? When SQL databases are hosted
within a virtual machine in Azure, the license of the underlying operating system, as well
as the license of the SQL Server, is up to the customer. By the way, when a new SQL Server
virtual machine is provisioned as a new resource in Azure, the blade in the Azure portal
contains a configuration where a license key can be added, if the customer has one. This
saves approximately 33% of operational expenses in the future.

On the other hand, with PaaS hosting, we do not care about license keys because we are
not hosting a whole instance of SQL Server –just a database or a group of databases.

So, how can we conclude this paragraph? It is not difficult to recognize that even if IaaS
hosting is quite easy, the first step in cloud adoption is to move the workload to PaaS
hosting as soon as possible. This is because it moves the licensing part of the responsibility
to Microsoft.

Shared responsibility also affects another criterion – the Service License Agreement (SLA).

SLA
The SLA promises the availability of resources in a timely manner to users. Usually, we
describe the SLA level in terms of a percentage. In common information systems, we will
have 1-day outages (planned or unplanned) in a year. Here, the SLA can be calculated as 1
– 1/365. The result of this formula is approximately 99.73 % availability of the information
system during the year. In Azure, every resource has its SLA determined by Microsoft.
The SLA of each resource can be increased or decreased using built-in features. For Azure
SQL databases, the SLA starts at 99.9 %, depending on the pricing level, zone redundancy,
and geo-replication. Details of the SLA for Azure SQL databases can change over time,
so the best way to ensure you have what is needed for the desired SLA level is to follow
this link: https://azure.microsoft.com/en-us/support/legal/sla/
sql-database/v1_4/.

The whole SLA is calculated from partial SLAs of all the resources that form the
information system. The availability formula is quite simple. It multiplies all the partial
availabilities, and the result is the overall availability of the information system.

The availability of a database ensures that the service will be accessible to users. Even if
the service is still running, data could be corrupted. In the next section, we will see the
options for recovering corrupted data.

https://azure.microsoft.com/en-us/support/legal/sla/sql-database/v1_4/
https://azure.microsoft.com/en-us/support/legal/sla/sql-database/v1_4/

Quick overview of running SQL workloads in Azure 459

Disaster recovery
Except Azure SQL Server, which is an IaaS resource, Azure offers automated backups.
The configuration process for automated backups is simple. The following screenshot
shows the Manage Backups blade in the Azure portal:

Fig. 11.15 – How to configure automated backups using the Azure portal

On the blade shown in the preceding screenshot, we can select one or more databases.
Using the Configure retention button, we can configure how many days the automated
backup will be available for. The time range is between 7 and 35 days. We can also
configure the Available Long-Term Retention backups option. The LTR backup can
be used to restore a database to a certain state (that is, the first day in a month).

460 Combining SQL Server 2019 with Azure

Restoring a database is a very simple task using the Azure portal. When we recognize that
the database needs to be restored, we can simply visit the database in Azure portal and use
the Restore button, as shown in the following screenshot:

Fig. 11.16 – Starting a database restore using the Azure portal

The preceding screenshot shows a part of the Overview blade of the AdventureWorksLT
sample database. When the Restore button is clicked, the Create SQL Database – Restore
database blade is opened. This blade allows the DBA to select which backup will be used
for recovery. The following screenshot shows this blade:

Fig. 11.17 – The Restore database blade in the Azure portal

Quick overview of running SQL workloads in Azure 461

As shown in the preceding screenshot, the database can be recovered to a certain
point in time or it can use an LTR backup when it is selected with the Select source
drop-down control.

By comparing on-premises and PaaS Azure disaster recovery tasks, we can see that using
PaaS database hosting makes a DBA's life easier. Disaster recovery is not only a task – we
must also maintain the content of the database. In the next section, we will learn how to
keep data defragmented, how to check for the consistency of data, and how to perform
other common tasks.

Regular database maintenance
The common myth is that when PaaS database hosting is utilized, many common issues
simply go away. Unfortunately, this is not true. Let's recall the common tasks that should
be maintained by a DBA:

•	 Index defragmentation

•	 Statistics recompute

•	 Consistency checks

•	 Performance monitoring and tuning

For all these tasks, we can go back to Chapter 8, Automation – Using Tools to Manage and
Monitor SQL Server 2019; everything from this chapter will work in Azure SQL database,
as well as in Azure SQL Managed Instance. There is no difference between the two. Also,
monitoring tools such as Extended Events or dynamic management objects are almost
the same. Compared to on-premise environments, we can use the Automatic tuning
feature in Azure.

462 Combining SQL Server 2019 with Azure

Automatic tuning is based on pretrained machine learning models, which are used to
estimate index creation or removal, as well as the option to force a plan if the same query
has had two or more execution plans generated for it and some of the plans are not
optimal. In the Azure portal, we can visit the database where we would like Automatic
tuning to be turned on. Here, we will see the blade that's shown in the following
screenshot:

Fig. 11.18 – How to turn on the Automatic tuning feature in Azure portal

As shown in the preceding screenshot, we can turn on three parts of Automatic tuning
– Force plan, Create index, and Drop index. Automatic tuning simplifies performance
tuning in many cases and is very helpful for customers who are not experienced with
performance monitoring and tuning. Even if we utilize the Automatic tuning feature in
Azure when the database or client applications are not designed well, Automatic tuning
will yield performance problems and it will not resolve them completely.

In this section, we explored many aspects of SQL databases already hosted in Azure.
However, many organizations have their databases hosted in on-premises environments as
well. In the next section, we will look at the basics of migrating databases to Azure.

Migrating SQL Server workloads to Azure
Every migration project is very complex, and this is the same for migrating our
on-premises resources to the cloud. We can combine many techniques and recipes, but we
will only pay attention to three resources and tools for database migration. Basically, we
need to ask questions such as, where should we start the migration? How can we prepare
for the migration in terms of pre-migration steps? The following sections will answer
these questions, and more.

Migrating SQL Server workloads to Azure 463

Using Azure Database Migration Guide
Azure Database Migration Guide is a website that contains detailed wizards for the
whole migration process, from the preparation steps until the final check for the quality of
the migrated data. The site can be found at https://datamigration.microsoft.
com/. On the home page, as shown in the following screenshot, we are shown many
possible data sources that can be migrated to Azure:

Fig. 11.19 – Home page of Azure Database Migration Guide

In the preceding screenshot, we can see that the migration supported by Microsoft is not
only from SQL Servers to the cloud, but that Microsoft also supports many other data
sources that can possibly be migrated to the cloud. Each tile in the preceding screenshot
contains popup menus showing different ways to migrate. In the preceding screenshot, we
can see that SQL Server workloads can be migrated to Azure SQL Database, Azure SQL
MI, and so on. Clicking the right destination for the migration redirects Azure Database
Migration Guide to the specified topic and provides a step-by-step recipe that will help us
succeed with the migration. Besides the required network configuration, we can use the
following tools for migration:

•	 SQL Server Migration Assistant

•	 Data Migration Assistant

•	 Azure Database Migration Service

We will look at these tools in the following sections.

https://datamigration.microsoft.com/
https://datamigration.microsoft.com/

464 Combining SQL Server 2019 with Azure

Using SQL Server Migration Assistant
SQL Server Migration Assistant (SSMA) is a tool that is offered by Microsoft for free. A
typical scenario for SSMA is when we have a heterogenous database environment and we
are going to decommission a data processing workload from another database engine to
SQL Server. This is why the SSMA can be downloaded as the following alternatives:

•	 SSMA for Access

•	 SSMA for DB2

•	 SSMA for MySQL

•	 SSMA for Oracle

•	 SSMA for SAP ASE

Before migration, we should know what the type of the source data is. We will
download and install the proper alternative of SSMA from this URL: https://
docs.microsoft.com/en-us/sql/ssma/sql-server-migration-
assistant?view=sql-server-ver15. SSMA maintains migration projects. After
installation, we need to create a new project using the File – New Project option from the
upper application menu. The dialog for this will look as follows:

Fig. 11.20 – Creating a new migration project in SSMA for Oracle

https://docs.microsoft.com/en-us/sql/ssma/sql-server-migration-assistant?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssma/sql-server-migration-assistant?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssma/sql-server-migration-assistant?view=sql-server-ver15

Migrating SQL Server workloads to Azure 465

The preceding screenshot was taken from SSMA for Oracle and it shows all the possible
target SQL alternatives. As we can see, the SSMA allows us to migrate data to SQL
Server (or Azure SQL databases), but it does not allow us to migrate databases to any
database engine.

Once the project has been created, we will follow the upper toolbox, as shown in the
following screenshot:

Fig. 11.21 – Using the SSMA toolbox

Let's go from the left to the right of the preceding toolbox. We will connect to the
Oracle schema and then we will connect to the empty target SQL database. When both
connections are successful, we can generate a report showing all the differences between
Oracle and SQL Server objects and source code; that is, non-migratable Oracle stored
procedures and so on. When an object, typically stored procedures, or functions cannot be
migrated, the SSMA estimates the effort needed to rewrite the object's code. This is a very
useful feature of SSMA because it helps to plan the time and expenses needed to migrate a
certain Oracle schema to SQL Server.

The table structures can be migrated using the Convert Schema button. This feature will
generate a migration script that can be executed on the target SQL Server. Last, but not
least, when the schema is created on the target machine, we can execute data migration.

SSMA can be used in both on-premise to on-premise migration and for on-premise to
Azure migration. When we have smaller databases already hosted by an on-premise SQL
Server and we want to migrate them to Azure, we can use a helpful migration tool called
Data Migration Assistant.

466 Combining SQL Server 2019 with Azure

Using Data Migration Assistant
Data Migration Assistant (DMA) is another useful tool and can be downloaded from
https://www.microsoft.com/en-us/download/details.aspx?id=53595.
Unlike SSMA, DMA can be used just for migrations between SQL Server and Azure SQL
data solutions. When the DMA is started, the following screen will appear:

Fig. 11.22 – Home screen for DMA

As shown in the preceding screenshot, we will create a named project with Assessment or
Migration. While Assessment just assesses the compatibility between the selected source
and target, Migration actually moves data from the source to the target.

Once the project has been created, the rest of the migration process is a wizard that works
in the following manner:

1.	 Configure source connection.

2.	 Configure target connection.

3.	 Select objects from the source database.

https://www.microsoft.com/en-us/download/details.aspx?id=53595

Migrating SQL Server workloads to Azure 467

4.	 Generate migration script.

5.	 Deploy the schema.

6.	 Migrate data to the schema.

The preceding recipe allows us to migrate the database in parts. We do not need to
migrate the database as a whole. This is very useful for scenarios where we have the
migration planned as more phases or we can just test the migration.

DMA is used mostly for one-time migrations, but if we want to migrate data
incrementally and if we want to automate the migration tasks, we can use one more tool
that's fully managed by Azure. This tool is Azure Database Migration Service. Let's see
what it entails.

Using Azure Database Migration Service
Unlike the other tools we've described so far, Azure Database Migration Service (DMS)
can't be installed; instead, it is an Azure resource. It intends to fully maintain repeatable
migration of on-premises data to the cloud. The following screenshot shows how to create
a DMS instance:

Fig. 11.23 – Creating a DMS instance using the Azure portal

468 Combining SQL Server 2019 with Azure

As shown in the preceding screenshot, the creation process is very straightforward. The
tricky part is that the DMS is not open to the internet. This means it can only connect to
a dedicated VPN or ExpressRoute (see https://docs.microsoft.com/en-us/
azure/expressroute/expressroute-introduction). Hence, we need to ask
our network administrator to establish the connection between our Azure subscription
and on-premises data center. In other words, the DMS will not work.

While the DMS instance is being created, we can start to define the migration tasks using
the Azure portal. We will work in a similar way to how we worked when using DMA. We
will create a new project and then define the activities containing the source, the target,
and the portions of the source database to be migrated. Once we've done this, we can
execute partial migrations and monitor their behavior.

All these data processing disciplines are still evolving, and we must change our mindset
and prepare for new challenges brought to us by the cloud. Moreover, there are other
great resources in Azure we can discuss, but for now, we will continue focusing on the
SQL solutions available to us. However, with cloud technologies here to stay, we should
be prepared for more technologies being used in more scenarios for streams of data, data
generated globally, and so on.

Summary
Microsoft offers a complete yet ever-growing cloud ecosystem for data processing
in Azure. In this chapter, we explored all the possible SQL Server and SQL database
scenarios. Although there are other technologies, such as Data Factory for ETL processes,
machine learning for building predictive models and analytics, and so on, these
technologies and features are beyond the scope of this book.

In this chapter, we summarized various scenarios for a data platform that had been placed
in the cloud. The first of them, Azure SQL database, is provided as a service for hosting
isolated databases. The second option we looked at was Azure SQL Managed Instance,
which ensures 100% compatibility with an on-premise SQL Server. The last option
we looked at was the very powerful Azure Synapse service, which is used to maintain
and load balance a massively parallel data warehouse to fulfil the most demanding
performance requirements.

https://docs.microsoft.com/en-us/azure/expressroute/expressroute-introduction
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-introduction

Summary 469

After this, we looked at different hybrid scenarios that combine on-premises instances of
SQL Server with Azure technologies. At the start of this section, we created an on-premise
database and placed its files in Azure blob storage. The sub-sections following this
described several backup and recovery scenarios that profit from the almost bottomless
storage capacity provided by Azure.

Finally, we provided a brief overview of how to maintain Azure SQL solutions, as
well as how to migrate SQL databases to Azure to profit from what's on offer from
Microsoft Azure.

In the next chapter, Chapter 12, Taming Big Data with SQL Server, we will dive into
the principles of how to combine big data with the traditional SQL approach of
data manipulation.

12
Taming Big Data
with SQL Server

In this last chapter, we will work with data outside of SQL Server. We will introduce
technologies that can be used to access external data that also have capabilities that are
used for big data processing. One of the newest features of SQL Server 2019 is known
as Big Data Clusters, which combines the workload of SQL Server, scalable storage
filesystems, and the Spark engine using containers managed by Kubernetes. This will take
us away from the common relational data approach we are used to in SQL Server.

In this chapter, we will cover the following main topics:

•	 Big data overview

•	 Accessing external data with PolyBase

•	 Explaining the SQL Server Big Data Clusters architecture and deployment

•	 Working with a SQL Server Big Data Clusters workload

Let's get started!

472 Taming Big Data with SQL Server

Big data overview
Big data has garnered an immense following in the data industry and with SQL Server's
entry, it is a new ball game altogether! In this chapter, we will explore the big data
phenomenon, along with the part SQL Server plays in it.

Big data processing brings several challenges. The 5Vs of big data present those challenges:

•	 Volume: This represents the quantity of the data. Just imagine that, during 2020,
the digital universe is expected to reach the size of 40 ZB (zettabytes). The challenge
here is to store, replicate, and consume such a huge volume. The next year, the
volume will be larger again.

•	 Veracity: This represents the quality of the data, which can vary greatly. Not
every information system or source of data produces the same quality data. Data
can be incomplete and have missing information or it can be inconsistent, and
while processing such datasets, you must implement the data cleansing process to
overcome such challenges.

•	 Variety: This represents the nature of the data – text, images, video, or audio. The
days of simple text data organized as a relational table are long gone. With the
release of machine learning and AI, you can easily analyze image, text, audio, and
video to get metadata from such sources. This data can be used for further analysis.
The challenge here is to process the nature of the data correctly.

•	 Velocity: This represents the speed of the data generation process, which is also
related to real-time data. Although the datasets can be small, the influx of data
generated by IoT devices and sensors can be very fast, which represents another
challenge for such data processing.

•	 Value: This represents the information that can be extracted from the data. The
fact that we have access to data does not necessarily mean we can extract valuable
information. This overlaps with veracity, where the data quality is not sufficient.

As there are numerous challenges when it comes to big data processing, and there is no
easy approach to building a system for ingesting and analyzing big data. We'll dive into
several topics to discover how SQL Server can help with big data processing.

Accessing external data with PolyBase 473

Each year, businesses are being challenged to ingest, store, and analyze more data than
ever before. Such large datasets require scaled storage that's ready for such workloads
and a proper processing infrastructure capable of delivering the results in a fast-paced
world. With the increase of computing power, electronic devices, and accessibility to the
internet, more data than ever is being produced, collected, and transmitted.​ Organizations
have recognized the power of data analysis but are struggling to manage the massive
amounts of information they have. There are numerous industries facing such challenges,
including, but not limited to, the following:

•	 Finance

•	 Healthcare

•	 Manufacturing

•	 Retail

Next, we'll look at how to access external data with PolyBase.

Accessing external data with PolyBase
PolyBase has been available in SQL Server since SQL Server 2016, where it introduced
the concept of data virtualization. With SQL Server 2019, PolyBase has been greatly
enhanced with numerous features and provides support for more data sources, including
the following:

•	 SQL Server

•	 Oracle

•	 HDFS

•	 MongoDB and others

Outside the common SQL Server deployments, the actual first release of PolyBase was
available with Parallel Data Warehouse (a SQL Server workload available as Analytical
Appliance) and Azure Synapse Analytics (formerly known as Azure SQL Data
Warehouse).

PolyBase is a technology that helps you deliver data virtualization. Simultaneously, data
virtualization allows you to access data from the original location without any need for
data movement. Instead of moving the data from the source and importing the data into
a central location for analysis, the data is simply retrieved through a query.

474 Taming Big Data with SQL Server

In the following diagram, you can see what data sources can be accessed with PolyBase.
Many of these data sources don't require any specific libraries or drivers to work, although
there may be exceptions, such as SAP HANA, that do require proper ODBC drivers to be
installed on the system:

Fig. 12.1 – PolyBase data virtualization access

Now, let's look at the use cases for PolyBase.

PolyBase use cases
There are numerous cases for PolyBase usage, as follows:

•	 Loading: PolyBase can be used for data loads, which omits its data virtualization
capability, where the data can be loaded into SQL Server from various data sources.
You can use external systems such as Hadoop to perform Extract-Transform-Load
(ETL) to cleanse the data before it's loaded into the database or data warehouse.

•	 Interactive Query: If the data stays in the original data source, you can use
Interactive Query to access external relational or semi-structured data for
processing.

•	 Data aging: If the data is getting old and you would like to move the data to cold
storage for storage optimization purposes, you can leverage the Hadoop distributed
filesystem (HDFS). With PolyBase, the data remains accessible for querying while
it's being moved to cold storage.

With PolyBase, data is exposed as an external table. This is based on a file format (it could
be any of csv, gzip, parquet, and so on) with a proper data source. In the following
sections, we'll learn how to install PolyBase and create external tables for it.

Accessing external data with PolyBase 475

Installing and configuring PolyBase
The PolyBase feature can be installed as an additional feature for your SQL Server
instance. You can select not only PolyBase, but also Java connector for HDFS data
sources. With HDFS, there's the option to use pushdown functionality, which improves
the performance of external data access. For such instances, PolyBase uses MapReduce,
which must also be available on the Hadoop cluster, together with Yet Another Resource
Negotiator or YARN (a resource management and job scheduling daemon). If Java is
already installed on the system with a proper version, SQL Server will detect it and won't
install a new JRE. As a matter of fact, PolyBase can only be installed on a single instance of
your SQL Server.

In the following screenshot, you can see the PolyBase feature, with PolyBase Query
Service for External Data and Java connector for HDFS data sources being selected for
the installation:

Fig. 12.2 – Installing PolyBase

476 Taming Big Data with SQL Server

If you do choose to install the PolyBase feature, you will need to configure PolyBase as
another step of the installation wizard. Here, you have to choose whether PolyBase should
be installed as a standalone or scale-out group, as shown in the following screenshot:

Fig. 12.3 – PolyBase scale-out group configuration

PolyBase scale-out groups are used to overcome performance bottlenecks on single-node
systems dealing with massive datasets. Usually, data is stored in Azure Blob Storage, a
Data Lake storage account, or Hadoop. A scale-out group is an option if you wish to
create a cluster of SQL Servers running the PolyBase feature for increased throughput and
performance by scaling out and parallelizing the workload.

In the following diagram, you can see the architecture of a PolyBase scale-out group
configuration with multiple servers:

Accessing external data with PolyBase 477

Fig. 12.4 – PolyBase scale-out groups

In such a configuration, we have two different PolyBase nodes running with SQL Server
2019 – a Head node and a Compute node. The Head node is used for user interaction
and receives submitted queries. Compute nodes then assist in query processing the
external data stored in the Data node. While there's always only one Head node, you can
have multiple Compute nodes in your PolyBase scale-out group. Each Compute node
runs a PolyBase Data Movement Service (DMS), which is responsible for two data
flows – between the Compute node and the Head node and between various Compute
nodes and HDFS. When you use a PolyBase scale-out group, all the nodes need to follow
a set of rules:

•	 All nodes must be members of the same domain.

•	 All nodes must use the same service account for PolyBase installation.

•	 All nodes need to run the same version of SQL Server.

•	 Network connectivity is open between the nodes for the selected ports for the
scale-out group.

478 Taming Big Data with SQL Server

As shown in the following screenshot, you must provide an Account Name for the SQL
Server PolyBase Engine and SQL Server PolyBase Data Movement services. If you're
using scale-out groups, this account needs to be the same on all nodes:

Fig. 12.5 – PolyBase service account configuration

Once the setup is finished, firewall rules are automatically created for the PolyBase engine
based on the configuration – a single node or scale-out group. These rules are only
created if the Windows Firewall is running. If the firewall service is stopped, no rules
will be created. If your environment is using a third-party firewall solution, you have to
implement the firewall rules yourself. From the range of ports provided in the PolyBase
configuration setup dialog, PolyBase uses the first six available ports.

Once PolyBase has been installed, you also have to enable PolyBase with T-SQL. In
SQL Server Management Studio, you will need to run the following script to enable
this feature:

exec sp_configure 'polybase enabled', 1
GO
RECONFIGURE

Accessing external data with PolyBase 479

Using PolyBase to access external data
Accessing external data using PolyBase enables you to query data in various data sources
outside of SQL Server. Based on the external data source, you have to configure your
PolyBase instance so that it uses the proper connectivity type. This can be achieved with
T-SQL, as shown in the following example:

sp_configure 'hadoop connectivity', 7
GO
RECONFIGURE
GO

There are several connectivity type values you can choose from:

•	 0: Disable Hadoop connectivity

•	 1: Hortonworks HDP 1.3 on Windows Server

•	 1: Azure blob storage (WASB[S])

•	 2: Hortonworks HDP 1.3 on Linux

•	 3: Cloudera CDH 4.3 on Linux

•	 4: Hortonworks HDP 2.0 on Windows Server

•	 4: Azure blob storage (WASB[S])

•	 5: Hortonworks HDP 2.0 on Linux

•	 6: Cloudera 5.1, 5.2, 5.3, 5.4, 5.5, 5.9, 5.10, 5.11, 5.12, and 5.13 on Linux

•	 7: Hortonworks 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 3.0 on Linux

•	 7: Hortonworks 2.1, 2.2, and 2.3 on Windows Server

•	 7: Azure blob storage (WASB[S])

Once this connectivity has been configured, you must create two security objects – a
master key and a database scoped credential. MASTER KEY is used to encrypt the
credential secrets. If there's no master key in the database, you can create one with the
following T-SQL:

CREATE MASTER KEY ENCRYPTION BY PASSWORD = '<strong password>'

480 Taming Big Data with SQL Server

Once the master key has been created, you can configure DATABASE SCOPED
CREDENTIAL, which is used for authenticating to the external data source. The database
scoped credential is only available in the database where it was created. If you want to
access the external resources from another database, you'll need to create the scoped
credentials again.

We will use the following script to create the database scoped credential for accessing the
Azure Blob Storage account. With Azure Blob Storage, the WITH IDENTITY field is not
used for authentication, which means you can put any value in this field:

CREATE DATABASE SCOPED CREDENTIAL AzureStorageCredential
WITH IDENTITY = 'user', Secret = '<azure_storage_account_key>'

Once the database scoped credential has been used, two more objects are required – the
file format and the data source. These can be found in SQL Server Management Studio,
as shown in the following screenshot:

Fig. 12.6 – External Resources

Accessing external data with PolyBase 481

There are three constructs required for accessing external data via PolyBase, as follows:

•	 External File Formats

•	 External Data Sources

•	 External Tables

External File Formats are used to define the structure of the data. In this example, we will
use a CSV file stored in Azure Blob Storage. We will use External File Formats to define
the formatting. There are several file type options available:

•	 Delimited Text

•	 Hive ORC

•	 Hive RCFile

•	 Parquet

•	 JSON (this file format is only available with an Azure SQL Edge deployment)

The external file format also defines the delimiter text for delimited files, the date format if
there's a date stored, and so on.

Let's create an external file format for our example with the following T-SQL code:

CREATE EXTERNAL FILE FORMAT TextFileFormat
WITH (
 FORMAT_TYPE = DELIMITEDTEXT,
 FORMAT_OPTIONS (FIELD_TERMINATOR ='|', USE_TYPE_DEFAULT =
TRUE)
)

The preceding code creates a file format for a delimited text file (CSV file) where the
columns (called fields in the definition) are split by the | character. Other very common
options for termination are space ' ', tabulator \t, and many others.

Based on the file type, you can also use compression. For text delimited files, you can use
GZIP compression, but for the compression and data retrieval process to work properly,
the file needs to have a .gz extension.

482 Taming Big Data with SQL Server

Once the file format has been defined, we also need to configure the data source. For
the data source definition, we will need the credential that was created in the previous
sample code. With Azure Blob Storage, we have to provide a proper address that includes
the name of the storage account – in this example, it is polybasedemo2019. Also, in
the storage account, you need to create a container to store the blobs – in this example,
the name of the container is data. There are several locations available that have proper
location prefixes based on the external data source. The most common are as follows:

•	 wasbs: For Azure Blob Storage

•	 hdfs: For Cloudera or Hortonworks platforms

•	 sqlserver: For SQL Server

•	 odbc: For any generic connection with a proper driver installed

You can find the documentation for creating the external data source at the following
link. It also provides the full list of location prefixes: https://docs.microsoft.
com/en-us/sql/t-sql/statements/create-external-data-source-
transact-sql?view=sql-server-ver15.

We will use the following code to define the external data source with the previously
created credential. The location of the files will be based on your available storage account:

CREATE EXTERNAL DATA SOURCE AzureStorage with (
 TYPE = HADOOP,
 LOCATION ='wasbs://data@polybasedemo2019.blob.core.
windows.net',
 CREDENTIAL = AzureStorageCredential
);

Once all the external resources have been defined, we can finally create the external table.
An external table is the definition of the data stored in the external data source; no data is
stored in SQL Server, just metadata. An external table is mapped to the external data store
definition for the real location of the data.

Let's see what the data looks like in the Azure Storage Account. In the following
screenshot, you can see one text file formatted as a CSV file. We will query this by using a
combination of an external table, a file format, and a data source:

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-data-source-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-data-source-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-data-source-transact-sql?view=sql-server-ver15

Accessing external data with PolyBase 483

Fig. 12.7 – File structure in Azure Storage Account

To create an external table, use the following T-SQL script:

CREATE EXTERNAL TABLE dbo.FactResellerSalesArchiveExternal (
 [ProductKey] [int] NOT NULL,
 [OrderDateKey] [int] NOT NULL,
 [DueDateKey] [int] NOT NULL,
 [ShipDateKey] [int] NOT NULL,
 [ResellerKey] [int] NOT NULL,
 [EmployeeKey] [int] NOT NULL,
 [PromotionKey] [int] NOT NULL,
 [CurrencyKey] [int] NOT NULL,
 [SalesTerritoryKey] [int] NOT NULL,
 [SalesOrderNumber] [nvarchar](20) NOT NULL,
 [SalesOrderLineNumber] [tinyint] NOT NULL,
 [RevisionNumber] [tinyint] NULL,
 [OrderQuantity] [smallint] NULL,
 [UnitPrice] [money] NULL,
 [ExtendedAmount] [money] NULL,

484 Taming Big Data with SQL Server

 [UnitPriceDiscountPct] [float] NULL,
 [DiscountAmount] [float] NULL,
 [ProductStandardCost] [money] NULL,
 [TotalProductCost] [money] NULL,
 [SalesAmount] [money] NULL,
 [TaxAmt] [money] NULL,
 [Freight] [money] NULL,
 [CarrierTrackingNumber] [nvarchar](25) NULL,
 [CustomerPONumber] [nvarchar](25) NULL,
 [OrderDate] [datetime] NULL,
 [DueDate] [datetime] NULL,
 [ShipDate] [datetime] NULL
)
WITH (
 LOCATION='/',
 DATA_SOURCE=AzureStorage,
 FILE_FORMAT=TextFile
);

The way we create the external table is nearly the same as creating a regular table in the
database. The major difference here is the addition of the location, data source, and file
format. The LOCATION parameter is used for defining the folder structure in the proper
container on your Azure Storage Account. In this case, this container is your external
filesystem.

To query this external table, you can use the regular SELECT statement. The following
T-SQL code will retrieve all the rows and a filtered set of rows:

SELECT * FROM dbo.FactResellerSalesArchiveExternal -- returns
all rows from CSV file

SELECT * FROM dbo.FactResellerSalesArchiveExternal -- returns
filtered set of rows

WHERE SalesAmount > 1000;

Although the table is external, it can be used with all the tables in the database with
operations such as JOIN. This provides you with a great opportunity to combine your
relational data with semi-structured data stored in external files.

Explaining the SQL Server Big Data Clusters architecture and deployment 485

While working with an external table, you can also create statistics on the table columns
for better optimization, such as pushdown operations. Pushdown operations work with
Hadoop data sources, where SQL Server can initialize the MapReduce job to retrieve
the rows that match the filter predicate in the query. This can save significant time for
performing operations on large datasets with proper filters. Pushdown operations can be
used with the following:

•	 A subset of rows

•	 A subset of columns

To enable pushdown operations with Hadoop storage, you need to edit the yarn-site.
xml file in the installation path of your SQL Server. To do this, go to the SQL Server 2019
path, C:\Program Files\Microsoft SQL Server\MSSQL15.MSSQLSERVER\
MSSQL\Binn\PolyBase\Hadoop\conf, and edit the yarn.application.
classpath property.

Information
More information about the pushdown configuration can be found on the
Microsoft documentation website at https://docs.microsoft.com/
en-us/sql/relational-databases/polybase/polybase-
configure-hadoop?view=sql-server-ver15#pushdown.

Explaining the SQL Server Big Data Clusters
architecture and deployment
SQL Server Big Data Clusters (BDC) is a piece of technology – a combination of three
distinct services – available in the latest release of SQL Server. The BDC combine SQL
Server, Apache Spark, and the HDFS filesystem to store data. All three components run
in the Kubernetes environment. These three components run side-by-side to provide
you with the capability to process and analyze big data, as well as combine a relational
workload with a big data workload.

The BDC heavily rely on numerous open source technologies, which are used together for
deploying, maintaining, and monitoring the solution.

https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-configure-hadoop?view=sql-server-ver15#pushdown
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-configure-hadoop?view=sql-server-ver15#pushdown
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-configure-hadoop?view=sql-server-ver15#pushdown

486 Taming Big Data with SQL Server

BDC deployment is based on a full installation of SQL Server 2019 running in a container
based on a Linux OS image, orchestrated via the Kubernetes engine. You can use various
Kubernetes environments, such as the following:

•	 Azure Kubernetes Service (AKS)

•	 Azure Red Hat OpenShift (ARO)

•	 Red Hat OpenShift

•	 Multiple machines

Once Kubernetes has been configured, you can deploy BDC with the azdata utility. The
great benefit of deploying via Azure Data Studio or the Python deployment script available
with BDC is the automatic configuration of your Kubernetes environment. You're only
responsible for choosing the virtual machine sizes for your node pool. However, you can
have Kubernetes (K8s for short) deployed and configured in advance, though the full
deployment and configuration of K8s is outside the scope of this book.

In the following diagram, you can see the three components of BDC running as a
Kubernetes pod:

Fig. 12.8 – Big Data Clusters components

SQL Server BDC can leverage the PolyBase feature to access external data without any
need for data movement. This enables you to fully utilize the data virtualization feature.

Deploying Big Data Clusters
There are several ways to deploy BDC. Let's explore the UI-based method with Azure
Data Studio. Azure Data Studio is a cross-platform utility used to manage Azure Data
Solutions such as Azure SQL Database, Azure Synapse Analytics, and SQL BDC. You can
also manage on-premises SQL Servers; however, SQL Server Management Studio offers
a more feature-rich experience for management. At the time of writing this book, Azure
Data Studio 1.19.0 is the latest version. Keep in mind that Azure Data Studio is updated
monthly, so your experience may be different.

Explaining the SQL Server Big Data Clusters architecture and deployment 487

In the following screenshot, you can see the welcome page for Azure Data Studio, along
with the option to deploy a server. This deployment can be used to deploy the following:

•	 SQL Server on Windows

•	 SQL Server container image

•	 SQL Server Big Data Cluster

Fig. 12.9 – Azure Data Studio

488 Taming Big Data with SQL Server

To deploy BDC, you will need additional tools such as kubectl, Azure CLI, and
azdata, all of which Azure Data Studio can detect. If these tools are not installed,
Azure Data Studio can automate the installation by clicking on Install tools. In the
following screenshot, you can see the installation process for the tools required for
BDC deployment:

Fig. 12.10 – Installing tools for BDC deployment

Once all tools have been installed, you can choose the target for your deployment. You can
deploy BDC to any of the following options:

•	 New Azure Kubernetes Service Cluster

•	 Existing Azure Kubernetes Service Cluster

•	 Existing Kubernetes Cluster (kubeadm)

The only version of SQL Server you can choose for deployment is the 2019 version.
However, if you are deploying SQL Server on Windows, you can deploy SQL Server 2017.
When you're deploying BDC, Azure Data Studio allows you to choose a deployment
profile. There are two default profiles available – dev-test and dev-test-ha – that provide
high availability on the SQL Server Master node, as shown in the following screenshot:

Explaining the SQL Server Big Data Clusters architecture and deployment 489

Fig. 12.11 – Azure Data Studio AKS BDC profiles

once you've selected a profile you need to enter some details about your Azure
subscription, such as the following:

•	 Subscription id

•	 New resource group name

•	 Location

•	 AKS cluster name

•	 VM count and VM size for your node pool

490 Taming Big Data with SQL Server

These options can be seen in the following screenshot:

Fig. 12.12 – Azure Settings for BDC deployment

Once you have entered these Azure settings, you need to enter the settings for the cluster,
as shown in the following screenshot:

Fig. 12.13 – BDC cluster settings

Once the BDC cluster settings have been entered, you have to provide the required
Service settings, which would include scaling, port numbers, and storage classed for each
of the components of the BDC deployment, as shown in the following screenshot:

Explaining the SQL Server Big Data Clusters architecture and deployment 491

Fig. 12.14 – Azure Data Studio Service settings

The individual components under the Storage settings section are part of the architecture
of BDC. Let's learn a little more about them:

•	 Controller is a service (control plane) used to manage BDC. During the
deployment, once the azdata tool has created the controller, it takes control and
deploys the remaining parts of the BDC.

•	 Storage pool (HDFS) is used for reading data from HDFS storage for various file
types, such as parquet, CSV, and so on.

•	 Data pool uses Kubernetes pods for data caching. It is used to ingest data from
Spark jobs and SQL queries.

•	 SQL Server Master is a SQL Server instance in the BDC architecture that provides
numerous services, such as the following:

a) Connectivity

b) Query Management

c) Metadata and user database

d) Machine Learning Services

492 Taming Big Data with SQL Server

In the final dialog of Azure Data Studio, you can generate a notebook that can be
executed on your local machine. The notebook contains all the commands required to
build the BDC in Azure, as per your configuration. Once all the steps in the notebook
have been completed, BDC is deployed to the Azure Kubernetes Service, as shown in the
following screenshot from Azure Data Studio:

Fig. 12.15 – Notebook used to deploy BDC

You will also be presented with numerous endpoints that were created during the
deployment phase. You'll need those endpoints to perform operations and manage your
BDC infrastructure.

Working with a SQL Server Big Data Clusters
workload
While working with BDC, you can combine two types of data — data stored in
relational databases that's hosted by SQL Server and data stored in HDFS that's hosted
by data nodes.

Working with a SQL Server Big Data Clusters workload 493

The BDC team has provided a sample script that will load data into your BDC
deployment, both for your SQL Server workload and HDFS. You can use this script to
populate your environment with usable sample data for experiments.

One of the possible approaches to this is to directly query the data stored in the Data
node with the external table approach, as shown in the Using PolyBase to access external
data section. The major difference here is that the external data source can be hosted on
the Storage pool. To configure such a data source, use the following query:

CREATE EXTERNAL DATA SOURCE SqlStoragePool

 WITH (LOCATION = 'sqlhdfs://controller-svc/default')

Considering we have a CSV file stored in the Storage pool, as shown in the following
screenshot, we can create the external table and query the data:

Fig. 12.16 – HDFS explorer with Big Data Clusters

One of the great features of Azure Data Studio is the HDFS node, which allows you to
explore the data stored within your BDC deployment on the HDFS filesystem on the
Storage pool. You can not only explore, but also upload, manage, and preview the content
of the data on the HDFS node.

Let's create an external table that we can query later:

CREATE EXTERNAL TABLE [clickstream_data_table_csv]

(

 "NumberID" BIGINT ,

 "Name" Varchar(120) ,

 "Name2" Varchar(120),

494 Taming Big Data with SQL Server

 "Price" Decimal ,

 "Discount" Decimal ,

 "Money" Decimal,

 "Money2" Decimal,

 "Company" Varchar(120),

 "Type" Varchar(120),

 "Space" Varchar(120)

)

WITH

(

 DATA_SOURCE = SqlStoragePool,

 LOCATION = '/tmp/clickstream_data',

 FILE_FORMAT = csv_file

)

The very same data can be accessed programmatically. Let's explore one more option we
have in Azure Data Studio for such an approach. We can create notebooks for working
with data. This notebook can use various languages based on your needs, experience, and
the data you're working with. You can directly analyze the file stored in HDFS by right-
clicking the file and choosing Analyze in Notebook, shown in the following screenshot:

Fig. 12.17 – Azure Data Studio notebooks

Working with a SQL Server Big Data Clusters workload 495

Once you've clicked on Analyze in Notebook, a new notebook will be created, and you
can choose the kernel and the connection to use. The following kernels can be used to
work with the notebook:

•	 SQL

•	 PySpark

•	 Scala

•	 R

•	 Python

•	 PowerShell

Once the notebook is connected to your controller instance, you can run your code and
get proper results from the CSV file, as shown in the following screenshot:

Fig. 12.18 – Using PySpark to access CSV files

Using such a kernel requires that you install the proper libraries on the workstation where
you're using Azure Data Studio. Luckily, Azure Data Studio can install all the required
dependencies.

In this sample, PySpark was used, which is a Python API for Spark that's used for
exploratory data analysis, machine learning, and ETL for big data processing. You can also
use PySpark with another great tool for big data processing called Azure Databricks.

496 Taming Big Data with SQL Server

You can use code to further enrich the data with machine learning as there are numerous
packages available, as well as numerous other Azure services for machine learning and
artificial intelligence.

Summary
With this chapter, we have concluded our journey of the SQL Server 2019 Administrator's
Guide. We began this journey by looking at planning and installation before moving on to
security, backup, and high availability. After that, we looked at more advanced topics such
as Azure and BDC deployment.

Through this journey, we have learned how to install and upgrade SQL Server, gained the
required knowledge to secure our server in terms of principals, permissions, and various
encryption types, and also learned how to plan and implement High Availability and
Disaster Recovery technologies such as AlwaysOn Availability Groups, AlwaysOn Failover
Cluster Instances, Log Shipping, and many others. Apart from this, we have also learned
how to plan a restore strategy and plan our backup routine accordingly. After this, we
learned how to use various tools to troubleshoot the performance of the server, as well as
how to use advanced features to improve the performance and scalability of the system
using in-memory technology and column store indexes. Moreover, we are now aware of
how to leverage Azure for SQL Server workloads and how to deploy BDC.

Finally, with this chapter, we have achieved our aim of covering all the aspects of SQL
Server 2019 from an administrative point of view.

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Introducing Microsoft SQL Server 2019

Kellyn Gorman, Allan Hirt, Dave Noderer, Mitchell Pearson, James Rowland-Jones,
Dustin Ryan, Arun Sirpal, Gregory Woody

ISBN: 978-1-83882-621-5

•	 Build a custom container image with a Dockerfile

•	 Deploy and run the SQL Server 2019 container image

•	 Understand how to use SQL server on Linux

•	 Migrate existing paginated reports to Power BI Report Server

•	 Learn to query Hadoop Distributed File System (HDFS) data using Azure
Data Studio

•	 Understand the benefits of In-Memory OLTP

https://www.packtpub.com/product/introducing-microsoft-sql-server-2019/9781838826215

498 Other Books You May Enjoy

Mastering Azure Machine Learning

Christoph Körner, Kaijisse Waaijer

ISBN: 978-1-78980-755-4

•	 Setup your Azure Machine Learning workspace for data experimentation and
visualization

•	 Perform ETL, data preparation, and feature extraction using Azure best practices

•	 Implement advanced feature extraction using NLP and word embeddings

•	 Train gradient boosted tree-ensembles, recommendation engines and deep neural
networks on Azure Machine Learning

•	 Use hyperparameter tuning and Azure Automated Machine Learning to optimize
your ML models

•	 Employ distributed ML on GPU clusters using Horovod in Azure Machine Learning

•	 Deploy, operate and manage your ML models at scale

•	 Automate your end-to-end ML process as CI/CD pipelines for MLOps

https://www.packtpub.com/product/mastering-azure-machine-learning/9781789807554

Leave a review - let other readers know what you think 499

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Accelerated Database Recovery (ADR) 89
active-active failover cluster 457
active cluster 373
active-passive failover cluster 457
Activity Monitor, SQL Server

performance monitoring tools
Active Expensive Queries 218-220
Data File I/O 218
Overview 213
Processes 213-215
Recent Expensive Queries 218-220
Resource Waits 216-218

advanced backup scenarios
about 101
backup media 101, 102
backup reliability 102, 103
file or filegroup backup 103-106
system databases, backing up 106

alert
about 346-349
types 346

Always Encrypted 151, 152
Always On Availability Groups

about 171, 172
features 172

AlwaysOn Availability Groups
about 161, 171, 172
features 172

AlwaysOn Failover Cluster (FCI) 171
AlwaysOn Failover Cluster Instances 161
American National Standards

Institute (ANSI) 35
Analysis Services 71
Apache Spark 442, 485
Application Intent property 379
auditing, SQL Server

about 139
server audit, configuring 140, 141
server audit specifications 141, 143

authentication, SQL Server
about 131, 133
login properties, managing 134, 135
server logins 133, 134

authorization, SQL Server
about 136
fixed server roles 136, 137
server permissions, working

with 138, 139
automated backups 459
automation of regular tasks 308
Availability Group Listener 161

502 Index

Availability Groups (AGs)
about 437
Basic Availability Group, creating 389
configuring 374, 375
creating 376-384
Distributed Availability

Group, creating 391
failover 385-389
monitoring 385-389

Azure
backups 451
managed backup 452-454
snapshot backup 455, 456
SQL Server workloads, migrating to 462
SQL workloads, overview 457
URL backup 454, 455

Azure CLI 488
Azure Database Migration Guide

about 463
reference link 463
using 463

Azure Database Migration Service (DMS)
about 467, 468
using 467, 468

Azure Data Factory (ADF) 429, 430
Azure Kubernetes Service (AKS) 486
Azure portal

about 431, 432
URL 431

Azure Red Hat OpenShift (ARO) 486
Azure SQL database

about 430
creating 433, 434, 435
versus Azure SQL Managed

Instance 436, 437
Azure SQL Data Warehouse 441, 473
Azure SQL Managed Instance

versus Azure SQL database 436, 437
Azure SQL Server

about 437
creating 438-440
properties 437
using 440, 441

Azure SQL solutions 430
Azure Stream Analytics 457
Azure Stream Analytics SQL

(ASA SQL) 457
Azure Synapse

about 429, 441, 442
instance, creating 443, 444
using 445, 446

B
backup media 101, 102
backup reliability 102, 103
backup set 102
backup strategy

designing 92
backup summary 107
backup types

about 92
differential backup 99, 101
full backup 92-95
transaction log backup 95-99

balanced tree 255
bash 50
Basic Availability Group

about 173
creating 389
limitations 390

batch terminator 45
BI developers 17
bi-directional synchronization 174

Index 503

big data
challenges 472
overview 472, 473

Big Data Clusters (BDC) 485
blobs 427
buffer cache 88
buffer pool extension (BPE) 27
built-in service accounts 30
BULK_LOGGED recovery model

using 91
business continuity planning 166
Business Intelligence (BI) 284
Business Intelligence (BI) contention 17

C
cardinality estimation 330
central processing unit (CPU) 20, 61, 278
Certification Authority (CA) 161
checkpoint 88
Chief Security Office (CSO) 56
client access license (CAL) 278
clustered B-tree index 257
clustered index scan 257
clustered index seek 257
columnar database 428
columnstore indexes

about 258, 428
using 406

components, Maintenance
Plan Design Surface

designer header 332
surface 332
toolbox 332

compute node 442
container 447

containers
used, for installing Microsoft

SQL Server 2019 49, 50
control flow 19
Control Node 442
copy activity 429
Cosmos DB

about 428, 429
database types 428

CPU-Z 62
credential 351
cumulative updates (CUs) 205

D
data

storage 82
database

file structure 82
restore, preparing 108-110

database administrator
(DBA) 17, 55, 135, 282

Database Consistency Checker
(DBCC) 328

Database Encryption Key (DEK) 148
Database Engine 71
Database Mail 84
database mail logs 84
database master 84
database mirroring

about 173
configuring 186-189
server roles 187

database model 84
database page

about 87
properties 87

504 Index

database restore
using 107

Database Transaction Units (DTUs) 434
database types

about 83
Cassandra API 428
Gremlin API 428
MongoDB API 428
SQL API 428
Table API 428

Databricks 429
data classification 152-156
Data Collection

about 210, 246, 308
MDW, setting up 247-249
performance data, collecting 249
reports, viewing 250, 251

data collection sets 220
data cube maintenance 339
Data Definition Language (DDL) 89
data discovery 152-156
data files

about 87
in Azure 446-451

data flow 19
data flow task 19
Data Manipulation Language (DML) 88
Data Migration Assistant (DMA)

about 286-289, 466, 467
reference link 466
using 466, 467

Data Movement Service (DMS) 442
Data Quality Services (DQS) 19, 20
data-related technologies, Microsoft Azure

Azure Data Factory (ADF) 429
Cosmos DB 428, 429
Storage Account 427, 428

data structures 82

data type 83
data warehouse units (DWU)

about 444
CTAS 444
read 444
search/aggregation 444

dedicated admin connection
(DAC) 65, 71

dedicated domain accounts 30
deduplicate 20
default instances 33
deployment model 438
differential backup 99, 101
differential map 99
dimension tables

with selective random searches 445
dirty state 88
disaster recovery (DR)

about 17, 58, 150, 285, 459-461
basics 166-169
Complex exercises 169
exercises 169, 170
Medium-sized exercises 169
Tabletop exercises 169

disk-based objects
migrating, to In-Memory OLTP 408-411

Distributed Availability Group
about 390
creating 391

DMV queries
reference link 77

Docker 49
Docker Engine 1.8 49
DocumentDB 428
downtime 169
DQS cleansing task 20
dynamic management

about 239-241

Index 505

using 241-246
dynamic management objects 461

reference link 241
Dynamic Management View

(DMV) 76, 138, 421

E
edition comparison matrix

reference link 25
edition comparison, Microsoft

SQL Server 2019
about 25
developer edition 25
enterprise edition 25
express edition 25
standard edition 25

elastic DTUs (eDTUs) 433
emails

sending, from SQL Server 323, 324
end-user license agreement (EULA) 32
Enterprise edition 71, 278
ETL processes 308
Event Hubs 457
ExpressRoute

reference link 468
Extended Events (xEvents)

143, 210, 231-239
Extensible Key Management

(EKM Module) 148
Extensible Markup Language (XML) 143
extents 87, 209
external data

accessing, with PolyBase 473-485
Extract-Load-Transform (ELT) 429
Extract-Transform-Load (ETL) 429

Extract-Transform-Load
(ETL) developers 17

F
Failover Cluster Instance (FCI)

about 363, 364
configuring 363-369
initiating 372, 373

feature limits 278
file backup 103
filegroup

about 85
properties 86

filegroup backup 103
file provider 231
file shares 427
filestream filegroups 85
File Transfer Protocol (FTP) 19
flat file 429
flat namespace 427
full backup 92-95
full operator

reference link 208
Full Recovery model

about 187
using 91

G
General Data Protection

Regulation (GDPR) 152
Global Allocation Map (GAM) 87, 209
Graphical User Interface (GUI) 65, 141
group Managed Service Accounts

(gMSA) 128-130
Group Policy Objects (GPOs) 37, 310

506 Index

H
Hadoop distributed filesystem

(HDFS) 474
hardware (HW) 74
hardware limits 278
hash 445
hash indexes

using 406
HDInsight 442
Health Insurance Portability and

Accountability Act (HIPAA) 153
heap 254
High Availability (HA) 58, 128, 278
hybrid scenario

about 446
Azure, backups 451
data files, in Azure 446-451

Hyper-V Quick Create 46
Hyper-V virtual machine (VM) 46

I
included columns 256
in-database row version 89
Index Allocation Maps (IAM) 87
indexes

about 253
considerations 259, 260
maintenance 253

indexes, types
about 254
clustered B-tree index 257
clustered index cooperation 257, 258
columnstore indexes 258
heap 254
non-clustered B-tree index 255, 256
non-clustered index cooperation 258

special indexes 259
index key 255
Infrastructure as a service (IaaS) 457
in-memory filegroup 85
in-memory mode 21
in-Memory OLTP

about 26, 436
cooperation between,

disk-based and memory-based
parts of SQL Server 400

disk-based objects, migrating to 408-411
indexing 405
limitations 400
monitoring 420-423
natively compiled stored procedures,

creating 401, 407, 408
objects, creating 404
preparing 401-403
tables, creating 401
tables, creating with indexes 404, 405
usage scenarios 411

In-Memory OLTP, indexing
columnstore indexes, using 406
hash indexes, using 406
range indexes, using 406

In-Memory OLTP, usage scenarios
examples 412-419
user story sample, assignment 412

input/output (I/O) operations 20, 148
in-server mode 23
Instant File Initialization 368
integration package runs 308
integration services

DQS 20
MDS 19

Integration Services Catalog 19
Integration Services objects 84
IntelliSense 240

Index 507

internal row versioning 89
Internet Information Services (IIS) 19
interpreted queries 26
IoT Hubs 457

J
job

about 336
defining 336-338
monitoring 344-346
notification, defining 342, 343
schedule, defining 341, 342
troubleshooting 344-346

job steps
about 336
defining 338-340

joined tables 446
join operators, SQL Server

Hash match 208
Merge join 208
Nested loop 208

K
key lookup 258
kubectl 488
Kubernetes (K8s) 486
Kubernetes pod 486

L
licensing 457
Line-of-Business (LOB) 437
Line-of-Business (LOB) application

contention 17
Linux

Microsoft SQL Server 2019,

connection testing 48
used, for installing Microsoft

SQL Server 2019 46
log restore

using 107
Log Sequence Number (LSN) 92
log shipping

about 173
configuring 190-195
roles, switching 196, 197

M
Machine Learning Services 23
mail retention policy 324
Maintenance Plan

creating 324, 325
editing 324, 325

Maintenance Plan Design
Surface 324, 332, 333

maintenance plan history 328
Maintenance Plan Wizard

about 325-327
backup tasks 331
Check Database Integrity 328
Clean Up History task 331
cleanup tasks 331, 332
Rebuild Index task 330
Reorganize Index task 329
Shrink Database task 328
SQL Server Agent job, executing 331

managed backup 452-454
Managed Service Accounts

(MSA) 30, 128, 311
Management Data Warehouse

(MDW) 246
Management Studio 441
MapReduce 475

508 Index

massively parallel processing (MPP) 442
Master Data Services Configuration

Manager 20
Master Data Services (MDS) 19
media set 101
megabytes (MB) 71
merger replication 174
metadata 82
Microsoft Azure

cloud technologies 426
data-related technologies, overview 427

Microsoft (MS) 126
Microsoft SQL Server 2019

about 446
connection, testing on Linux 48
installation process 47, 48
installing, on containers 49, 50
installing, on Linux 46
installing, on Windows 24, 30
technology, overview 16, 17
test environment, preparing 46

Microsoft SQL Server 2019,
installation checking

about 40
SQL Server, connection

testing 44, 45, 46
SQL Server network,

configuration node 43
SQL Server services, configuration

node 41, 42
Microsoft SQL Server 2019,

installation options
installation wizard 31-39
SQL Server, installing from

command line 39
migration tasks 308
mirrored backup 103
msdb database 84

MS SQL Server, databases
download link 182

multi-API 428
Multidimensional Expressions

(MDX) 340
multidimensional mode

about 21
of SSAS installation 21

multi-instance environment 71
multi-service environment 71
multi-write option 428

N
named instances 33, 64
natively compiled stored procedures

creating 407, 408
nested data 428
node

about 171, 426
adding, to SQL Server Failover

Cluster 370, 371
non-clustered B-tree index 255, 256
Non-SARGable predicate 265
NoSQL database 428
NoSQL shortcut 429

O
objects type, SQL Server Agent

alert 346-349
job 336
operator 334

Online Analytical Processing
(OLAP) 72, 411

Online Transaction Processing
(OLTP) 19, 72, 113

Index 509

operator
about 334
defining 335, 336

Orchestration 429

P
Page Free Space (PFS) 209
page restore 121
page split 256
parameter sniffing 258
partial backup 105
partially contained database 430
passive cluster 373
Payment Card Industry Data Security

Standard (PCI DSS) 153
Performance Analysis of Logs (PAL) 75
performance baseline 210
Performance Monitor 210
personally identifiable

information (PII) 153
Platform as a Service (PaaS) 457
PolyBase

about 442
configuring 475-478
installing 475-478
use cases 474
used, for accessing external

data 473-485
PolyBase Data Movement

Service (DMS) 477
Power BI 21
PowerPivot 21
PowerShell

about 50
used, for preparing Windows user 352

precedence constraint 333

pre-installation tasks, Microsoft
SQL Server 2019

about 25
disk capacity, planning 26, 27
memory, planning 26
software and other requisites 27, 29
SQL Server, security accounts 30

primary data file 82, 87
primary filegroup 85
Primary XML 259
private profile 321
profile security 321
Proportional Fill Algorithm (PFA) 86
public profile 321
pull subscription 184
push subscription 184

Q
query optimizer, inputs

cardinality 204
cost 204

query processor 203-208
Query Store 251-253

R
random-access memory (RAM) 71, 278
range indexes

using 406
recovery model 90
recovery model property, of database

configuring 90
configuring, with BULK_LOGGED

recovery model 91
configuring, with FULL

recovery model 91

510 Index

configuring, with SIMPLE
recovery model 90

Recovery Point Objective
(RPO) 96, 118, 167, 446

recovery process 88
Recovery Time Actual (RTA) 166
Recovery Time Objective

(RTO) 118, 166, 446
recursive data 428
regular database maintenance 461, 462
relational database 83, 428
Relational online analytical

processing (ROLAP) 21
Release to Manufacturing (RTM) 54
Remote Desktop 71
Remote Server Administration 130
replicated 445
replication

about 173
benefits 174

reporting services 71, 308
Report Manager 22
Report Portal 22
resourcedb database 85
Resource Governor 215
resource type, in cloud

Infrastructure as a service (IaaS) 457
Platform as a Service (PaaS) 457
Software as a Service (SaaS) 457

restore scenarios, executing
about 110
data pages, restoring 121, 122
file or filegroup backups, using 120
full and transaction log backup
strategy, using 113-115
full and transaction log, differential

backup strategies 118, 119
full backup strategy, using 110-112

point-in-time recovery 116, 118
system database restore 123

rolling upgrade method 285, 286
round-robin 445
row group 258
row overflow data 87
row storage filegroups 85
R Services 23

S
safety check 110
SAP Adaptive Server Enterprise

(SAP ASE) 302
Sarbanes-Oxley (SOX) 153
schedule distribution 326
schedule settings 326
SDKs 429
Search ARGument (SARG) 265
secondary data files 87
Secondary XML 259
security identifier (SID) 283
segment 258
self-contained database 430
semi-structured data 428
server audit specifications 141
Server Message Block (SMB) 428
Server Virtual Network Name

(SQL VNN) 161
Service Broker 84, 436
Service Broker configurations 84
Service-Level Agreements (SLAs) 166
Service License Agreement (SLA) 458
Service Pack 1 (SP1) 278
Service Principal Name (SPN) 201
Shared Global Allocation Map

(SGAM) 87, 209
side-by-side migration 281-285

Index 511

SIMPLE recovery model
using 90

SLA, for Azure SQL Database
reference link 458

small tables 445
SMTP accounts 319
snapshot backup 451, 455, 456
Software as a Service (SaaS) 457
solid-state drive (SSD) 27
spatial indexes

for geometry and geography
data types 259

SPID 213
SQL Agent Proxy 340
SQL developers 17
SQL-lite querying language 429
SQL login 37, 283
SQL Server

authentication, configuring 131
authorization, configuring 131
built-in system accounts 130
connection, testing 44-46
credentials, configuring 143
disk-based and memory-based parts,

cooperation between 400
domain user accounts 131
group Managed Service Accounts

(gMSA) 129, 130
indexes 267-271
local Windows accounts 131
migrating example, from

Microsoft Access 304, 305
migrating, from other

platforms 302, 304
patching 54, 55
performance baseline, creating 74-76
performance issue patterns 260
performance monitoring,

overview 209, 211
principals 133
query response 262-267
Reporting Services 2019,

upgrading 293-302
response, to query 261
service accounts, creating 126
service accounts, managing 127, 128
sources 74
types 55
updates, installing 56-58
upgrade, performing 290-293
upgrade, planning 277-279
version, updating 276, 277
virtual account 126, 127

SQL Server Agent
about 17, 18, 24
credentials 144-146
Database Mail, setting up 317-322
operator, defining 335, 336
properties, setting up 311-316
proxies 144-146
service, setting up 308-311
using 308

SQL Server Agent jobs 84
SQL Server Agent objects

about 84
creating 334

SQL Server Agent proxy
creating 352, 353
testing 354-356
using 351
Windows user, preparing

with PowerShell 352
SQL Server Agent security

about 349
job step security context 350, 351
roles 350

512 Index

SQL Server Analysis Services (SSAS)
about 17, 20, 21
multidimensional mode 21
tabular mode 21

SQL Server automation 84
SQL Server Big Data Clusters,

architecture and deployment
explaining 485, 486
deploying 486-492

SQL Server Big Data Clusters workload
working with 492-496

SQL Server connection
encrypting 159-164

SQL Server data
Always Encrypted 151, 152
encrypting 147
Transparent Data Encryption 148-150

SQL Server database
statistics 445
storage 445
table geometries 445

SQL Server Database Engine (DE)
about 17, 18
BI contention 17
handling recovery 18
handling security 18
handling transactions 18
LOB application contention 17

SQL Server Data Tools for Visual
Studio (SSDT) 284

SQL Server, editions
Developer 66
Express 66

SQL Server environment
configuring 58
firewall rules, configuring 63-66
post-installation, configuring 66-73

power settings, configuring 61, 63
security rights, configuring for

SQL Server account 59-61
SQL Server Failover Cluster

nodes, adding to 370, 372
SQL Server features

AlwaysOn Availability Groups 171, 172
AlwaysOn Failover Cluster
(FCI) 170, 171
database mirroring 172
for disaster recovery (DR) 170
for High Availability (HA) (HA) 170
log shipping 173
replication 173

SQL Server image
reference link 50

SQL Server in-place upgrade
about 280, 281
advantages 280
disadvantages 280

SQL Server Integration Services
(SSIS) 17, 19, 282, 429

SQL Server internals
explaining 200

SQL Server Management Studio
(SSMS) 19, 54, 205, 291

SQL Server Migration Assistant (SSMA)
about 302, 464, 465
reference link 464
using 464, 465

SQL Server network
configuration node 43

SQL Server, performance monitoring tools
about 211
Activity Monitor 212
data collection 246
dynamic management 239-241
Extended Events (xEvents) 232-239

Index 513

Performance Monitor 220
Query Store 251-253
SQL Server Profiler 221-229
SQL Trace 230, 231

SQL Server, pre-upgrade checks
about 286
Data Migration Assistant 286-289
System Configuration Checker

(SCC) 289, 290
SQL Server Profiler 74, 221, 222, 229
SQL Server protocols

about 201-203
query processor 203-208
storage engine layer 209

SQL Server recovery models 90
SQL Server Replication

agents 186
configuring 174-177
Publication, creating 177-183
subscription, configuring 183-185

SQL Server Reporting Services
(SSRS) 17, 22, 23, 286

SQL Server service
configuration node 41-43
SSAS 20, 21
SSIS 19
SSRS 22, 23

SQL Server technologies
BI developers 17
Database Administrators (DBAs) 17
ETL developers 17
SQL developers 17

SQL Server, upgrade scenarios
exploring 280
rolling upgrade method 285, 286
side-by-side migration 281-285
SQL Server in-place upgrade 280

SQL Server versions

reference link 55
SQL Server vulnerability

assessment 157, 158
SQL Server workloads

Azure Database Migration
Guide, using 463

Azure Database Migration
Service (DMS), using 467

Data Migration Assistant
(DMA), using 466-468

migrating, to Azure 462
SQL Server Migration Assistant

(SSMA), using 464, 465
SQL Trace 229-231
SQL workloads

disaster recovery 459-461
licensing 457
overview, in Azure 457
regular database maintenance 461, 462
Service License Agreement (SLA) 458

SSISDB 19
SSIS logs 84
standard administrator (sa) 37
Standard edition

about 71, 278
features 279

Standard logins 37
stock keeping units (SKUs) 71
Storage Account

about 427, 428
container types 427

storage area network (SAN) 27
storage engine layer

about 209
access methods 209
transaction and locking 209

storage internals 82
storage model 20

514 Index

stored procedure activity 430
Structured Query Language (SQL) 66, 282
subplans 325
subscription views 20
System Center Configuration

Manager (SCCM) 56
System Configuration Checker

(SCC) 28, 289, 290
system databases

about 83
backing up 106

T
Tabular Data Stream (TDS) 43
tabular mode

about 21, 22
of SSAS installation 21, 22

tail-log backup 98
tempdb database 84
temporal tables 417
time between failure 169
time to repair 169
trace 221
transaction log 88
transaction log backup 95-99
transaction log file 82
transaction logging 82
Transaction-SQL (T-SQL) code 174
Transact-SQL

reference link 135
Transact-SQL (T-SQL) 282
Transparent Data Encryption 148-150
Transport Layer Security (TLS) 161
two-phase commit 88

U
Uniform Resource Locators (URLs) 300
uptime 169
URL backup 454, 455
user databases 83

V
vCores 434
virtual account 126
virtual network name (VNN) 365
VPN 468

W
WhereScape tools 429
Windows

used, for installing Microsoft
SQL Server 2019 24, 30

Windows Firewall 478
Windows Firewall, configuring

to access SQL Server
reference link 66

Windows login 283
Windows Management

Instrumentation (WMI) 346
Windows Server Failover Cluster

installing 361-363
Windows Server Failover

Cluster (WSFC) 170
Windows service 308
Windows user

preparing, with PowerShell 352
write-ahead logging (WAL) 88, 108

Index 515

X
XMLA 339
XML indexes

for XML data type 259

Y
Yet Another Resource Negotiator

(YARN) 475

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1:
Provisioning the SQL Server Environment
	Chapter 1: Setting Up SQL Server 2019
	Overview of the Microsoft SQL Server 2019 technology
	Understanding SQL Server DE
	SSIS
	SSAS
	SSRS
	Machine Learning Services
	SQL Server Agent

	Preparing the SQL Server 2019 installation on Windows
	Edition comparison
	Pre-installation tasks

	Installing SQL Server 2019 on Windows
	Installation options
	Checking the completed installation

	Installing SQL Server 2019 on Linux
	Preparing the test environment
	Installing SQL Server
	Testing connection to SQL Server on Linux

	Installing SQL Server 2019 on containers
	Summary

	Chapter 2: Keeping Your SQL Server Environment Healthy
	Understanding SQL Server patching
	Installing updates

	Configuring SQL Server environment
	Configuring security rights for your SQL Server account
	Configuring power settings
	Configuring firewall rules
	SQL Server post-installation configuration

	Creating a performance baseline
	Summary

	Section 2:
Server and Database Maintenance
	Chapter 3: Implementing Backup and Recovery
	Data structures and transaction logging
	How data is stored

	Accelerated Database Recovery
	SQL Server recovery models
	How to configure a database's recovery model property

	Designing a backup strategy
	Backup types
	Advanced backup scenarios

	Using database and log restore
	Preparing for restore
	Executing restores

	Summary

	Chapter 4: Securing Your
SQL Server
	Configuring SQL Server service accounts
	Virtual accounts
	Managed service accounts
	gMSAs
	Built-in system accounts
	Domain user accounts and local Windows accounts

	Configuring authentication and authorization
	Authentication
	Authorization
	Auditing
	Configuring credentials

	Encrypting SQL Server data
	Transparent Data Encryption
	Always Encrypted

	Data Discovery and Classification
	SQL Server vulnerability assessment
	Encrypting SQL Server connections
	Summary

	Chapter 5: Working with Disaster Recovery Options
	Understanding the basics of disaster recovery
	Disaster recovery exercises

	SQL Server options for high availability and disaster recovery
	Always On Failover Cluster
	Always On Availability Groups
	Database mirroring
	Log shipping
	Replication

	Configuring replication on SQL Server
	Creating a Publication
	Configuring the subscription
	Replication agents

	Understanding database mirroring
	Configuring database mirroring

	Configuring log shipping
	Switching log shipping roles

	Summary

	Chapter 6: Indexing and Performance
	Explaining SQL Server internals
	SQL Server protocols
	Query processor
	The storage engine layer

	Performance monitoring overview
	Tools for monitoring performance
	Activity Monitor
	Performance monitor
	SQL Server Profiler and SQL Trace
	Extended Events
	Dynamic management
	Data collection
	Query Store

	Indexes and maintenance
	Types of indexes
	Indexing considerations

	Common performance issue patterns
	Unacceptable slow response from SQL Server
to a query
	I found the poor query; what's next?
	Can I want more from indexes?

	Summary

	Section 3: High Availability and the Cloud with
SQL Server 2019
	Chapter 7: Planning Migration and Upgrade
	The importance of keeping up with
latest version
	Planning the upgrade
	Exploring upgrade scenarios
	Pre-upgrade checks

	Performing the upgrade
	Upgrading Reporting Services 2019

	Migrating from other platforms
	Migration example from Microsoft Access

	Summary

	Chapter 8: Automation – Using Tools to Manage and Monitor SQL Server 2019
	Using SQL Server Agent
	Setting up the SQL Server Agent service
	Setting up SQL Server Agent Properties
	Setting up Database Mail

	Creating and editing maintenance plans
	The Maintenance Plan Wizard
	The Maintenance Plan Design Surface

	Creating SQL Server Agent objects
	Operators
	Jobs
	Alerts

	SQL Server Agent security
	SQL Server Agent security roles
	Job step security context
	Using SQL Server Agent proxies

	Summary

	Chapter 9: Configuring Always On High Availability Features
	Installing Windows Server Failover Cluster
	Configuring Always On Failover Cluster Instances
	Adding nodes to the SQL Server failover cluster
	Initiating a failover

	Always On Availability Groups
	Configuring Always On Availability Groups

	Summary

	Chapter 10: In-Memory
OLTP – Why and
How to Use it
	In-Memory OLTP architecture
	Data storage differences in In-Memory OLTP
	Request processing differences in OLTP
	Cooperation between the disk-based and memory-based parts of SQL Server
	In-Memory OLTP limitations

	Creating in-memory tables and natively compiled stored procedures
	Preparing for In-Memory OLTP
	Creating In-Memory OLTP objects

	In-Memory OLTP usage scenarios
	Assignment of the user story sample
	Example 1 – Inserting incoming data into
in-memory tables
	Example 2 – Updating data in an in-memory table
	Example 3 – Improving real-time analytics

	Monitoring In-Memory OLTP
	Summary

	Chapter 11: Combining
SQL Server 2019
with Azure
	Beginning with technologies in Microsoft Azure
	Overview of data-related technologies in Azure
	Azure SQL solutions

	Microsoft SQL Server 2019 and hybrid scenarios
	Data files in Azure
	Backups in Azure

	Quick overview of running SQL workloads
in Azure
	Licensing
	SLA
	Disaster recovery
	Regular database maintenance

	Migrating SQL Server workloads to Azure
	Using Azure Database Migration Guide
	Using SQL Server Migration Assistant
	Using Data Migration Assistant
	Using Azure Database Migration Service

	Summary

	Chapter 12: Taming Big Data with SQL Server
	Big data overview
	Accessing external data with PolyBase
	PolyBase use cases
	Installing and configuring PolyBase
	Using PolyBase to access external data

	Explaining the SQL Server Big Data Clusters architecture and deployment
	Deploying Big Data Clusters

	Working with a SQL Server Big Data Clusters workload
	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

	Index

