

PostgreSQL 14
Administration
Cookbook

Over 175 proven recipes for database administrators
to manage enterprise databases effectively

Simon Riggs

Gianni Ciolli

BIRMINGHAM—MUMBAI

PostgreSQL 14 Administration Cookbook
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.
Publishing Product Manager: Devika Battike
Senior Editor: David Sugarman
Content Development Editor: Joseph Sunil
Technical Editor: Rahul Limbachiya
Copy Editor: Safis Editing
Project Coordinator: Aparna Nair
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Alishon Mendonca
Marketing Coordinator: Priyanka Mhatre

First published: October 2010
Second Edition: April 2015
Third Edition: April 2017
Fourth Edition: May 2018
Fifth Edition: May 2019
Sixth Edition: April 2022

Production reference: 1240222

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80324-897-4

www.packt.com

http://www.packt.com

Contributors

About the authors
Simon Riggs is a Postgres Fellow at EnterpriseDB (EDB), a member of the company's
executive management team, and a major developer of PostgreSQL for over 15 years. At
EDB, he contributes to technical strategy and works with key customers directly. Before
this, Simon was the founder and CEO of 2ndQuadrant, acquired by EDB in 2020. Simon
has contributed widely to PostgreSQL over the course of 17 years, initiating new projects,
contributing ideas, and committing many important changes. He continues his work with
the PostgreSQL community as a developer and on patch review. Simon is also a regular
speaker at PostgreSQL conferences. Simon lives happily with his wife Karen in England.

Gianni Ciolli is the Vice President for Solutions Architecture at EnterpriseDB (EDB).
As a PostgreSQL consultant, he has driven many successful enterprise deployments for
customers in every part of the globe. Gianni is respected worldwide as a popular speaker
and trainer at many PostgreSQL conferences in Europe and abroad over the last 14 years.
He has worked with free and open source software since the 1990s as an active member
of the community (the Prato Linux User Group and the Italian PostgreSQL Users Group).
Gianni has a PhD in mathematics from the University of Florence. He lives in London
with his son. His other interests include music, drama, poetry, and athletics.

About the reviewers
Marcelo Diaz is a software engineer with more than 15 years of experience, with a special
focus on PostgreSQL. He is passionate about open source software and has promoted its
application in critical and high-demand environments where he has worked as a software
developer and consultant for both private and public companies. He currently works very
happily at Cybertec and as a technical reviewer for Packt Publishing. He enjoys spending
his leisure time with his daughter, Malvina, and his wife, Romina. He also likes playing
football.

Tomas Vondra is a PostgreSQL committer and works as a principal database engineer
at EnterpriseDB. He started working with PostgreSQL in 2003, initially as a user and
developer of systems on top of PostgreSQL, learning various aspects of operating and
tuning the database. Eventually, he started to contribute patches of increasing complexity.
After some time, he was recognized as a major contributor and became a committer in
2018. At EnterpriseDB, he helps customers and users with all sorts of issues and focuses
on features related to performance, query optimizer capabilities, extended statistics, and
reliability. He's also the author of various plugins and extensions. He lives in Prague,
Czech Republic.

Preface

1
First Steps

Introducing PostgreSQL 14 2
What makes PostgreSQL different? 3

How to get PostgreSQL 8
How to do it... 8
How it works... 10
There's more… 11

Connecting to the PostgreSQL
server 11
Getting ready 11
How to do it… 11
How it works… 13
There's more… 14
See also 14

Enabling access for network/
remote users 14
How to do it… 15
How it works… 15
There's more… 17
See also 17

Using the pgAdmin4 GUI tool 17
How to do it… 17
How it works… 21

Using the OmniDB GUI tool 22
How to do it… 23
See also 27

Using the psql query and
scripting tool 27
Getting ready 28
How to do it… 28
How it works… 30
There's more… 31
See also 31

Changing your password
securely 32
How to do it… 32
How it works… 33

Avoiding hardcoding your
password 33
Getting ready 33
How to do it… 34
How it works… 34
There's more… 35

Using a connection service file 35
How to do it… 35
How it works… 36

Table of Contents

vi Table of Contents

Troubleshooting a failed
connection 36
How to do it… 36
There's more… 38

PostgreSQL in the cloud 38
Getting ready 38
How to do it… 39
How it works… 43
There's more… 44

2
Exploring the Database

What type of server is this? 46
How to do it… 47
There's more... 47

What version is the server? 47
How to do it… 48
How it works… 48
There's more… 49

What is the server uptime? 49
How to do it… 50
How it works… 50
See also 51

Locating the database server
files 51
Getting ready 51
How to do it... 51
How it works... 52
There's more… 54

Locating the database server's
message log 55
Getting ready 55
How to do it... 56
How it works... 56
There's more... 57
See also 57

Locating the database's system
identifier 57
Getting ready 58
How to do it… 58
How it works… 58

Listing databases on the
database server 59
How to do it… 59
How it works... 60
There's more... 61

How many tables are there in a
database? 63
How to do it... 63
How it works… 65
There's more… 66

How much disk space does a
database use? 66
How to do it... 66
How it works... 67

How much disk space does a
table use? 67
How to do it… 67
How it works… 68
There's more… 69

Table of Contents vii

Which are my biggest tables? 69
How to do it... 69
How it works… 70

How many rows are there in a
table? 70
How to do it… 70
How it works... 71

Quickly estimating the number
of rows in a table 72
How to do it… 72
How it works… 73
There's more… 74

Listing extensions in this
database 74
How to do it… 75
How it works… 75
There's more… 76
See also 76

Understanding object
dependencies 76
Getting ready 76
How to do it… 77
How it works… 77
There's more… 78

3
Server Configuration

RTFM 80
How to do it… 80
How it works… 81
There's more… 81

Planning a new database 81
Getting ready 81
How to do it… 82
How it works… 83
There's more… 83

Setting configuration
parameters for the database
server 83
Getting ready 84
How to do it… 85
How it works… 86
There's more… 87

Setting configuration
parameters in your programs 89
How to do it… 90
How it works… 90
There's more… 91

Finding the configuration
settings for your session 92
How to do it… 92
How it works… 94

Finding parameters with
non-default settings 94
How to do it… 95
How it works... 95
There's more... 96

viii Table of Contents

Setting parameters for
particular groups of users 96
How to do it… 97
How it works… 97

A basic server configuration
checklist 98
Getting ready 98
How to do it… 98
There's more… 98

Adding an external module to
PostgreSQL 99

Getting ready 100
How to do it… 101
How it works... 103

Using an installed module/
extension 104
Getting ready 104
How to do it… 104
How it works... 104

Managing installed extensions 105
How to do it… 105
How it works… 107
There's more… 108

4
Server Control

Overview of controlling the
database server 110
Starting the database server
manually 111
Getting ready 111
How to do it… 111
How it works… 113

Stopping the server safely and
quickly 114
How to do it… 114
How it works… 115
See also 115

Stopping the server in an
emergency 116
How to do it… 116
How it works… 116

Reloading the server
configuration files 117
How to do it… 117
How it works… 118
There's more… 119

Restarting the server quickly 119
How to do it… 119
There's more… 121

Preventing new connections 121
How to do it… 121
How it works… 122

Restricting users to only one
session each 123
How to do it… 123
How it works… 123

Table of Contents ix

Pushing users off the system 124
How to do it… 124
How it works… 125

Deciding on a design for
multitenancy 126
How to do it… 127
How it works… 128

Using multiple schemas 128
Getting ready 128
How to do it… 128
How it works… 130

Giving users their own private
databases 131
Getting ready 131
How to do it… 131
How it works… 132

There's more… 132
See also 132

Running multiple servers on
one system 132
Getting ready 132
How to do it… 133
How it works… 134

Setting up a connection pool 134
Getting ready 135
How to do it… 135
How it works… 136
There's more… 137

Accessing multiple servers
using the same host and port 139
Getting ready 139
How to do it… 139
There's more… 141

5
Tables and Data

Choosing good names for
database objects 144
Getting ready 144
How to do it… 144
There's more… 145

Handling objects with quoted
names 146
Getting ready 147
How to do it... 147
How it works… 148
There's more… 148

Enforcing the same name and
definition for columns 149
Getting ready 149

How to do it... 149
How it works… 152
There's more… 152

Identifying and removing
duplicates 154
Getting ready 154
How to do it… 155
How it works… 157
There's more… 159

Preventing duplicate rows 159
Getting ready 159
How to do it… 160
How it works… 162
There's more... 163

x Table of Contents

Finding a unique key for a
set of data 165
Getting ready 166
How to do it… 166
How it works… 168

Generating test data 169
How to do it... 169
How it works… 172
There's more… 172
See also 173

Randomly sampling data 173
How to do it… 173
How it works... 174

Loading data from a
spreadsheet 176

Getting ready 176
How to do it... 177
How it works... 179
There's more... 179

Loading data from flat files 179
Getting ready 179
How to do it... 180
How it works… 182
There's more… 183

Making bulk data changes using
server-side procedures with
transactions 184
Getting ready 184
How to do it… 185
There's more… 186

6
Security

Overview of PostgreSQL
security 190
Typical user roles 191

The PostgreSQL superuser 191
How to do it… 192
How it works… 192
There's more… 192
See also 192

Revoking user access to a table 193
Getting ready 193
How to do it… 193
How it works… 195
There's more… 195

Granting user access to a table 197
Getting ready 197
How to do it… 198

How it works... 198
There's more… 199

Granting user access to specific
columns 199
Getting ready 199
How to do it… 199
How it works… 200
There's more… 200

Granting user access to specific
rows 201
Getting ready 201
How to do it… 202
How it works… 203
There's more... 204

Creating a new user 204
Getting ready 204

Table of Contents xi

How to do it... 204
How it works… 205
There's more… 205

Temporarily preventing a user
from connecting 205
Getting ready 206
How to do it… 206
How it works... 206
There's more… 206

Removing a user without
dropping their data 207
Getting ready 207
How to do it… 208
How it works… 208

Checking whether all users
have a
secure password 209
How to do it… 209
How it works… 209

Giving limited superuser
powers to specific users 210
Getting ready 210
How to do it… 211
How it works… 212
There's more… 212

Auditing database access 214
Getting ready 214
Auditing access 214
Auditing SQL 215
Auditing table access 217
Managing the audit log 218
Auditing data changes 219

Always knowing which user is
logged in 221
Getting ready 221
How to do it… 222

How it works… 222
There's more… 223

Integrating with LDAP 223
Getting ready 223
How to do it… 224
How it works… 224
There's more… 224
See also 225

Connecting using encryption
(SSL/GSSAPI) 225
Getting ready 225
How to do it… 225
How it works… 226
There's more… 226

Using SSL certificates to
authenticate 228
Getting ready 228
How to do it… 229
How it works… 229
There's more… 230
See also 231

Mapping external usernames to
database roles 232
Getting ready 232
How to do it… 232
How it works… 233
There's more… 233

Using column-level encryption 234
Getting ready 234
How to do it… 235
How it works… 237
There's more… 238
See also 239

xii Table of Contents

Setting up cloud security using
predefined roles 239
Getting ready 239

How to do it… 240
How it works… 240
There's more… 242

7
Database Administration

Writing a script that either
succeeds entirely or fails
entirely 245
How to do it… 245
How it works… 246
There's more… 248

Writing a psql script that exits
on the first error 249
Getting ready 250
How to do it… 250
How it works… 251
There's more… 251

Using psql variables 251
Getting ready 251
How to do it… 252
How it works… 252
There's more… 252

Placing query output into psql
variables 253
Getting ready 253
How to do it… 253
How it works… 254
There's more… 254

Writing a conditional psql script 254
Getting ready 254
How to do it… 255
How it works… 255
There's more… 256

Investigating a psql error 256
Getting ready 257
How to do it… 257
There's more… 258

Setting the psql prompt with
useful information 258
Getting ready 258
How to do it… 258
How it works… 259

Using pgAdmin for DBA tasks 260
Getting ready 260
How to do it… 260
How it works... 264
There's more… 264

Scheduling jobs for regular
background execution 265
Getting ready 265
How to do it… 265
How it works… 266
There's more… 267

Performing actions on
many tables 267
Getting ready 268
How to do it… 268
How it works… 270
There's more… 271

Table of Contents xiii

Adding/removing columns
on a table 273
How to do it… 273
How it works… 274
There's more… 275

Changing the data type
of a column 276
Getting ready 276
How to do it… 277
How it works… 278
There's more… 279

Changing the definition of an
enum data type 281
Getting ready 281
How to do it… 281
How it works… 282
There's more… 284

Adding a constraint
concurrently 284
Getting ready 285
How to do it… 286
How it works… 287
There's more… 288

Adding/removing schemas 288
How to do it… 288
There's more… 290

Moving objects between
schemas 290
How to do it… 291
How it works… 291
There's more… 291

Adding/removing tablespaces 291
Getting ready 292
How to do it… 292
How it works… 294
There's more… 295

Moving objects between
tablespaces 297
Getting ready 297
How to do it… 297
How it works… 297
There's more… 298

Accessing objects in other
PostgreSQL databases 300
Getting ready 300
How to do it… 301
How it works… 303
There's more… 304

Accessing objects in other
foreign databases 305
Getting ready 306
How to do it… 306
How it works… 307
There's more… 307

Making views updatable 308
Getting ready 308
How to do it… 310
How it works… 315
There's more… 317

Using materialized views 318
Getting ready 318
How to do it… 319
How it works… 320
There's more… 320

xiv Table of Contents

Using GENERATED data columns 321
How to do it… 321
How it works… 322
There's more… 322

Using data compression 323
Getting ready 323
How to do it… 323
How it works… 324
There's more… 325

8
Monitoring and Diagnosis

Overview of PostgreSQL
monitoring 328
Cloud-native monitoring 329
Providing PostgreSQL
information to monitoring tools 331
Finding more information about
generic
monitoring tools 332

Real-time viewing using
pgAdmin 333
Getting ready 333
How to do it… 334

Checking whether a user
is connected 335
Getting ready 335
How to do it… 335
How it works… 335
There's more… 335

Checking whether a
computer is connected 335
How to do it… 336
There's more… 336

Repeatedly executing a
query in psql 336
How to do it… 336
There's more… 337

Checking which queries
are running 337
Getting ready 337
How to do it… 337
How it works… 338
There's more… 338
See also 340

Monitoring the progress of
commands 340
Getting ready 340
How to do it… 341
How it works… 342
There's more… 342

Checking which queries are
active or blocked 342
Getting ready 342
How to do it… 343
How it works… 343
There's more… 343

Knowing who is blocking
a query 344
Getting ready 344
How to do it… 345
How it works… 345

Table of Contents xv

Killing a specific session 345
How to do it… 346
How it works… 346
There's more… 346

Detecting an in-doubt prepared
transaction 348
How to do it… 348

Knowing whether anybody is
using a specific table 348
Getting ready 348
How to do it… 349
How it works… 349
There's more... 349

Knowing when a table was last
used 350
Getting ready 350
How to do it… 350
How it works... 352
There's more… 352

Usage of disk space by
temporary data 352

Getting ready 353
How to do it… 353
How it works… 355
There's more… 355

Understanding why queries
slow down 356
Getting ready 356
How to do it… 357
How it works… 357
There's more… 358
See also 360

Analyzing the real-time
performance of your queries 360
Getting ready 360
How to do it… 361
How it works… 361
There's more… 361

Investigating and reporting
a bug 362
Getting ready 362
How to do it… 362
How it works… 363

9
Regular Maintenance

Controlling automatic database
maintenance 366
Getting ready 367
How to do it… 367
How it works… 369
There's more… 373
See also 374

Avoiding auto-freezing and
page corruptions 374
How to do it… 374

Removing issues that cause
bloat 376
Getting ready 376
How to do it… 377
How it works… 377
There's more… 377

Removing old prepared
transactions 378
Getting ready 378
How to do it… 379

xvi Table of Contents

How it works… 379
There's more… 379

Actions for heavy users of
temporary tables 380
How to do it… 380
How it works… 381

Identifying and fixing bloated
tables and indexes 382
Getting ready 383
How to do it… 383
How it works… 385
There's more… 388

Monitoring and tuning a
vacuum 389
Getting ready 389
How to do it… 389
How it works… 390
There's more… 393

Maintaining indexes 394
Getting ready 394
How to do it… 395
How it works… 396
There's more… 397

Finding unused indexes 397
How to do it… 397
How it works… 398

Carefully removing unwanted
indexes 399
Getting ready 399
How to do it… 400
How it works… 400

Planning maintenance 401
How to do it… 401
How it works… 402
There's more… 403

10
Performance and Concurrency

Finding slow SQL statements 406
Getting ready 407
How to do it… 407
How it works… 409
There's more… 410

Finding out what makes
SQL slow 410
Getting ready 411
How to do it… 411
There's more… 414
See also 415

Reducing the number of
rows returned 415
How to do it… 416

There's more… 417

Simplifying complex SQL
queries 419
Getting ready 419
How to do it… 420
There's more… 424

Speeding up queries without
rewriting them 427
How to do it… 427
There's more… 430

Discovering why a query is not
using an index 431
Getting ready 431

Table of Contents xvii

How to do it… 431
How it works… 432
There's more… 433

Forcing a query to use an index 433
Getting ready 434
How to do it… 434
There's more… 436

Using parallel query 436
How to do it… 437
How it works… 438

Creating time-series tables
using partitioning 439

How to do it… 440
How it works… 441
There's more… 442

Using optimistic locking to
avoid long lock waits 443
How to do it… 443
How it works… 444
There's more… 444

Reporting performance
problems 446
How to do it… 446
There's more… 446

11
Backup and Recovery

Understanding and controlling
crash recovery 449
How to do it… 449
How it works… 451
There's more… 451

Planning your backups 451
How to do it… 452
There's more… 454

Hot logical backups of
one database 454
How to do it… 454
How it works… 455
There's more… 457
See also 457

Hot logical backups of
all databases 457
How to do it… 458
How it works… 458
See also 458

Backups of database object
definitions 458
How to do it… 459
There's more… 459

A standalone hot physical
backup 460
Getting ready 460
How to do it… 460
How it works… 461
There's more… 462

Hot physical backups with
Barman 463
Getting ready 464
How to do it… 466
How it works… 470
There's more… 471

Recovery of all databases 473
Getting ready 474
How to do it… 474

xviii Table of Contents

How it works… 478
There's more… 479

Recovery to a point in time 480
Getting ready 480
How to do it… 481
How it works… 482
There's more… 482
See also 484

Recovery of a dropped/
damaged table 484
How to do it… 484
How it works… 487
See also 488

Recovery of a dropped/
damaged database 488
How to do it… 488

Extracting a logical backup
from a physical one 489
Getting ready 490

How to do it… 490
There's more… 490

Improving performance of
logical backup/recovery 490
Getting ready 490
How to do it… 491
How it works… 492
There's more… 492

Improving performance of
physical backup/recovery 492
Getting ready 493
How to do it... 493
How it works… 494
There's more… 494
See also 495

Validating backups 495
Getting ready 495
How to do it… 495
How it works… 497
There's more… 497

12
Replication and Upgrades

Replication concepts 501
Topics 501
Basic concepts 502
History and scope 502
Practical aspects 504
Data loss 505
Single-master replication 505
Multinode architectures 506
Multi-master replication 506
Other approaches to replication 507

Replication best practices 507
Getting ready 507
How to do it… 508
There's more… 509

Setting up streaming replication 510
Getting ready 510
How to do it… 510
How it works… 511
There's more… 512

Table of Contents xix

Setting up streaming
replication security 514
Getting ready 515
How to do it… 515
How it works… 515
There's more… 516

Hot Standby and read
scalability 516
Getting ready 517
How to do it… 517
How it works… 520

Managing streaming replication 520
Getting ready 520
How to do it… 520
There's more… 521
See also 522

Using repmgr 523
Getting ready 523
How to do it… 523
How it works… 525
There's more… 525

Using replication slots 526
Getting ready 526
How to do it… 527
There's more… 527
See also 528

Monitoring replication 528
Getting ready 528
How to do it… 529
There's more… 532

Performance and sync rep 533
Getting ready 533
How to do it... 534
How it works… 536
There's more… 536

Delaying, pausing, and
synchronizing replication 537
Getting ready 537
How to do it… 537
There's more… 538
See also 539

Logical replication 540
Getting ready 541
How to do it… 541
How it works… 543
There's more… 544

BDR 545
Getting ready 545
How to do it… 546
How it works... 548
There's more… 549

Archiving transaction log data 549
Getting ready 549
How to do it… 550
There's more... 551
See also 552

Upgrading minor releases 552
Getting ready 552
How to do it… 552
How it works… 553
There's more… 553

xx Table of Contents

Major upgrades in-place 554
Getting ready 554
How to do it… 555
How it works… 555

Major upgrades online 556
How to do it… 556
How it works... 557

Index
Other Books You May Enjoy

Preface
PostgreSQL is a powerful, open source database management system with an enviable
reputation for high performance and stability. With many new features in its arsenal,
PostgreSQL 14 allows you to scale up your PostgreSQL infrastructure. With this book,
you'll take a step-by-step, recipe-based approach to effective PostgreSQL administration.

This book will get you up and running with all the latest features of PostgreSQL 14 while
helping you explore the entire database ecosystem. You'll learn how to tackle a variety
of problems and pain points you may face as a database administrator, such as creating
tables, managing views, improving performance, and securing your database. As you
make progress, the book will draw attention to important topics such as monitoring
roles, validating backups, regular maintenance, and recovery of your PostgreSQL 14
database. This will help you understand roles, ensuring high availability, concurrency, and
replication. Along with updated recipes, this book touches upon important areas such
as using generated columns, TOAST compression, PostgreSQL on the cloud, and much
more.

By the end of this PostgreSQL book, you'll have gained the knowledge you need to
manage your PostgreSQL 14 database efficiently, both in the cloud and on-premises.

Who this book is for
This Postgres 14 book is for database administrators, data architects, database developers,
and anyone with an interest in planning and running live production databases using
PostgreSQL 14. Those looking for hands-on solutions to any problem associated with
PostgreSQL 14 administration will also find this book useful. Some experience with
handling PostgreSQL databases will help you to make the most out of this book, however,
it is a useful resource even if you are just beginning your Postgres journey.

xxii Preface

What this book covers
Chapter 1, First Steps, introduces you to PostgreSQL 14; it explains how to download and
install PostgreSQL 14, connect to a PostgreSQL server, enable server access to the network
or remote users, use graphical administration tools, use PSQL query and scripting tools,
change your password securely, avoid hardcoding your password, use a connection
service file, and troubleshoot a failed connection. This chapter also covers how to access
PostgreSQL in the cloud.

Chapter 2, Exploring the Database, demonstrates how to identify the version of the
database server you are using, as well as the server uptime. It helps you locate the database
server files, the database server message log, and the database's system identifier. It
explains how to list a database on the database server, and it contains recipes that let you
know the number of tables in your database, how much disk space is used by the database
and tables, what the biggest tables are, how many rows a table has, how to estimate rows in
a table, and how to understand object dependencies.

Chapter 3, Server Configuration, explains topics such as Reading the Fine Manual (RTFM),
how to plan a new database, how to change the parameters in your programs, the current
configuration settings, the parameters that are at non-default settings, how to update
the parameter file, how to set parameters for particular groups of users, the basic server
configuration checklist, how to add an external module into the PostgreSQL server, and
how to run the server in power-saving mode.

Chapter 4, Server Control, provides information about starting the database server
manually, stopping the server quickly and safely, stopping the server in an emergency,
reloading the server configuration files, restarting the server quickly, preventing new
connections, restricting users to just one session each, and pushing users off the system.
It contains recipes that help you choose a design for multi-tenancy, as well as recipes that
explain how to use multiple schemas, give users their own private database, run multiple
database servers on one system, and set up a connection pool.

Chapter 5, Tables and Data, guides you through the process of choosing good names
for database objects. Additionally, it explains how to handle objects with quoted names,
enforce the same name, maintain the same definition for columns, identify and remove
duplicate rows, prevent duplicate rows, find a unique key for a set of data, generate test
data, randomly sample data, load data from a spreadsheet, and load data from flat files.

Preface xxiii

Chapter 6, Security, provides recipes on revoking user access to a table, granting user
access to a table, creating a new user, temporarily preventing a user from connecting,
removing a user without dropping their data, checking whether all users have a secure
password, giving limited superuser powers to specific users, auditing DDL changes,
auditing data changes, integrating with LDAP, connecting using SSL, and encrypting
sensitive data.

Chapter 7, Database Administration, provides recipes on useful topics such as writing
a script where all either succeed or fail, writing a psql script that exits on the first error,
performing actions on many tables, adding and removing columns in tables, changing the
data type of a column, adding and removing schemas, moving objects between schemas,
adding and removing tablespaces, moving objects between tablespaces, accessing objects
in other PostgreSQL databases, and enabling views to be updated.

Chapter 8, Monitoring and Diagnosis, provides recipes that answer questions such as
whether the user is connected, what they are running, whether they are active or blocked,
who they are being blocked by, whether anybody is using a specific table, when the table
was last used, how much disk space is being used by temporary data, and why your
queries could be slowing down. It also demonstrates how to investigate and report a bug,
produce a daily summary report of log file errors, kill a specific session, and resolve an
in-doubt prepared transaction.

Chapter 9, Regular Maintenance, provides useful recipes on how to control automatic
database maintenance, avoid auto-freezing and page corruptions, avoid transaction
wraparound, remove old prepared transactions, offer solutions for heavy users of
temporary tables, identify and fix bloated tables and indexes, maintain indexes, find
unused indexes, carefully remove unwanted indexes, and plan maintenance.

Chapter 10, Performance and Concurrency, covers topics such as how to find slow SQL
statements, collect regular statistics from pg_stat* views, discover what makes SQL
slow, reduce the number of rows returned, simplify complex SQL, speed up queries
without rewriting them, understand why some queries are not using an index, force a
query to use an index, use optimistic locking, and report performance problems. And,
of course, you'll learn about the new parallel query features, tablesample, and time-series
partitioning.

xxiv Preface

Chapter 11, Backup and Recovery, explains that backups are essential, although this
topic is only covered very briefly. So, this chapter provides useful information about the
backup and recovery of your PostgreSQL database through recipes on how to understand
and control crash recovery and how to plan backups. Additionally, you will learn about
the hot logical backup of one database, the hot logical backup of all databases, the hot
logical backup of all tables in a tablespace, the backup of database object definitions,
the standalone hot physical database backup, the hot physical backup, and continuous
archiving. It also includes topics such as the recovery of all databases, recovery to a
point in time, the recovery of a dropped or damaged table, the recovery of a dropped or
damaged database, the recovery of a dropped or damaged tablespace, how to improve the
performance of backup/recovery, and incremental/differential backup and restore.

Chapter 12, Replication and Upgrades, explains that replication isn't magic, although it
can be pretty cool. It's even cooler when it works, and that's what this chapter is all about.
This chapter covers replication concepts, replication best practices, how to set up file-
based log shipping replication, how to set up streaming log replication, how to manage
log shipping replication, how to manage hot standby, synchronous replication, how to
upgrade to a new minor release, in-place major upgrades, major upgrades online, and
logical replication and Postgres-BDR.

To get the most out of this book
In order for this book to be useful, you need access to a PostgreSQL client that is allowed
to execute queries on a server. Ideally, you'll also be the server administrator. Full client
and server packages for PostgreSQL are available for most popular operating systems at
http://www.postgresql.org/download/. All the examples here are executed at
the Command Prompt, usually running the psql program. This makes them applicable to
most platforms. It's straightforward to do most of these operations by using a GUI tool for
PostgreSQL, such as pgAdmin or OmniDB:

• pgAdmin: https://www.pgadmin.org/download/

• OmniDB: https://github.com/OmniDB/OmniDB

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/PostgreSQL-14-Administration-
Cookbook. If there's an update to the code, it will be updated on the existing GitHub
repository.

http://www.postgresql.org/download/
https://www.pgadmin.org/download/
https://github.com/OmniDB/OmniDB
https://github.com/PacktPublishing/PostgreSQL-14-Administration-Cookbook
https://github.com/PacktPublishing/PostgreSQL-14-Administration-Cookbook
https://github.com/PacktPublishing/PostgreSQL-14-Administration-Cookbook

Preface xxv

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781803248974_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Many experienced PostgreSQL DBAs will prefer to execute their
own VACUUM commands."

A block of code is set as follows:

autovacuum = on
track_counts = on

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

$ ln -sf autovacuum.conf.night autovacuum.conf
$ pg_ctl reload

Any command-line input or output is written as follows:

VACUUM (DISABLE_PAGE_SKIPPING);

Tips or important notes
Appear like this.

https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781803248974_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781803248974_ColorImages.pdf

xxvi Preface

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to
do it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make you
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

http://www.packtpub.com/support/errata

Preface xxvii

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

Share Your Thoughts
Once you've read PostgreSQL 14 Adminstration Cookbook, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page
for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com
https://packt.link/r/1-803-24897-1

1
First Steps

PostgreSQL is a feature-rich, general-purpose database-management system. It's a
complex piece of software, but every journey begins with the first step.

We'll start with your first connection. Many people fall at the first hurdle, so we'll try not
to skip past that too swiftly. We'll quickly move on to enabling remote users, and from
there, we will move on to getting access through GUI administration tools.

We will also introduce the psql query tool, which is the tool used to load our sample
database, as well as many other examples in the book.

For additional help, we've included a few useful recipes that you may need for reference.

In this chapter, we will cover the following recipes:

• Introducing PostgreSQL

• How to get PostgreSQL

• Connecting to the PostgreSQL server

• Enabling access for network/remote users

• Using the pgAdmin GUI tool

• Using the OmniDB GUI tool

2 First Steps

• Using the psql query and scripting tool

• Changing your password securely

• Avoiding hardcoding your password

• Using a connection service file

• Troubleshooting a failed connection

• PostgreSQL in the cloud

Introducing PostgreSQL 14
PostgreSQL is an advanced SQL database server, available on a wide range of platforms.
One of the clearest benefits of PostgreSQL is that it is open source, meaning that you have
a very permissive license to install, use, and distribute PostgreSQL, without paying anyone
any fees or royalties. On top of that, PostgreSQL is known as a database that stays up for
long periods and requires little or no maintenance, in most cases. Overall, PostgreSQL
provides a very low total cost of ownership.

PostgreSQL is also known for its huge range of advanced features, developed over the
course of more than 30 years of continuous development and enhancement. Originally
developed by the Database Research Group at the University of California, Berkeley,
PostgreSQL is now developed and maintained by a huge army of developers and
contributors. Many of these contributors have full-time jobs related to PostgreSQL,
working as designers, developers, database administrators, and trainers. Some, but not
many, of these contributors work for companies that specialize in support for PostgreSQL.
No single company owns PostgreSQL, nor are you required (or even encouraged) to
register your usage.

PostgreSQL has the following main features:

• Excellent SQL standards compliance, up to SQL:2016.

• Client-server architecture.

• It has a highly concurrent design, where readers and writers don't block each other.

• It is highly configurable and extensible for many types of applications.

• It has excellent scalability and performance, with extensive tuning features.

• It offers support for many kinds of data models, such as relational, post-relational
(arrays and nested relations via record types), document (JSON and XML), and
key/value.

Introducing PostgreSQL 14 3

What makes PostgreSQL different?
The PostgreSQL project focuses on the following objectives:

• Robust, high-quality software with maintainable, well-commented code

• Low-maintenance administration for both embedded and enterprise use

• Standards-compliant SQL, interoperability, and compatibility

• Performance, security, and high availability

What surprises many people is that PostgreSQL's feature set is more similar to Oracle or
SQL Server than it is to MySQL. The only connection between MySQL and PostgreSQL is
that these two projects are open source; apart from that, the features and philosophies are
almost totally different.

One of the key features of Oracle, since Oracle 7, has been snapshot isolation, where
readers don't block writers and writers don't block readers. You may be surprised to
learn that PostgreSQL was the first database to be designed with this feature, and it
offers a complete implementation. In PostgreSQL, this feature is called Multiversion
Concurrency Control (MVCC), and we will discuss this in more detail later in the book.

PostgreSQL is a general-purpose database management system. You define the database
that you want to manage with it. PostgreSQL offers you many ways in which to work. You
can either use a normalized database model, augmented with features such as arrays and
record subtypes, or use a fully dynamic schema with the help of JSONB and an extension
named hstore. PostgreSQL also allows you to create your own server-side functions in
any of a dozen different languages.

PostgreSQL is highly extensible, so you can add your own data types, operators, index
types, and functional languages. You can even override different parts of the system, using
plugins to alter the execution of commands, or add a new query optimizer.

All of these features offer a huge range of implementation options to software architects.
There are many ways out of trouble when building applications and maintaining them
over long periods of time. Regrettably, we simply don't have space in this book for all the
cool features for developers; this book is about administration, maintenance, and backup.

In the early days, when PostgreSQL was still a research database, the focus was solely
on the cool new features. Over the last 20 years, enormous amounts of code have been
rewritten and improved, giving us one of the largest and most stable software servers
available for operational use.

4 First Steps

Who is using PostgreSQL? Prominent users include Apple, BASF, Genentech, Heroku,
IMDB, Skype, McAfee, NTT, the UK Met Office, and the US National Weather
Service. Early in 2010, PostgreSQL received well in excess of 1,000,000 downloads
per year, according to data submitted to the European Commission, which concluded
that "PostgreSQL is considered by many database users to be a credible alternative."
PostgreSQL has gone on from there to be even more popular.

We need to mention one last thing: when PostgreSQL was first developed,
it was named Postgres, and therefore, many aspects of the project still refer to the
word Postgres – for example, the default database is named postgres, and the software
is frequently installed using the Postgres user ID. As a result, people shorten the name
PostgreSQL to simply Postgres and, in many cases, use the two names interchangeably.

PostgreSQL is pronounced post-grez-q-l. Postgres is pronounced post-grez.

Some people get confused and refer to it as Postgre, which is hard to say and likely to
confuse people. Two names are enough, so don't use a third one!

The following sections explain the key areas in more detail.

Robustness
PostgreSQL is robust, high-quality software, supported by testing for both features
and concurrency. By default, the database provides strong disk-write guarantees, and
developers take the risk of data loss very seriously in everything they do. Options to trade
robustness for performance exist, though they are not enabled by default.

All actions on the database are performed within transactions, protected by a transaction
log that will perform automatic crash recovery in case of software failure.

Databases may optionally be created with data block checksums to help
diagnose hardware faults. Multiple backup mechanisms exist, with full and detailed Point-
in-Time Recovery (PITR) if you need a detailed recovery. A variety of diagnostic tools
are available as well.

Database replication is supported natively. Synchronous replication can provide greater
than 5 nines (99.999%) of availability and data protection, if properly configured and
managed, or even higher with appropriate redundancy.

Security
Access to PostgreSQL is controllable via host-based access rules. Authentication is flexible
and pluggable, allowing for easy integration with any external security architecture. The
latest Salted Challenge Response Authentication Mechanism (SCRAM) provides full
256-bit protection.

Introducing PostgreSQL 14 5

Full SSL-encrypted access is supported natively for both user access and replication. A
full-featured cryptographic function library is available for database users.

PostgreSQL provides role-based access privileges to access data, by command type.
PostgreSQL also provides Row-Level Security (RLS) for privacy, medical, and
military-grade security.

Functions can execute with the permissions of the definer, while views may be defined
with security barriers to ensure that security is enforced ahead of other processing.

All aspects of PostgreSQL are assessed by an active security team, while known exploits
are categorized and reported at http://www.postgresql.org/support/
security/.

Ease of use
Clear, full, and accurate documentation exists as a result of a development process where
documentation changes are required. Hundreds of small changes occur with each release,
which smooth off any rough edges of usage, supplied directly by knowledgeable users.

PostgreSQL works on small and large systems in the same way, and across
operating systems.

Client access and drivers exist for every language and environment, so there is no
restriction on what type of development environment is chosen now or in the future.

The SQL standard is followed very closely; there is no weird behavior, such as silent
truncation of data.

Text data is supported via a single data type that allows the storage of anything from 1 byte
to 1 gigabyte. This storage is optimized in multiple ways, so 1 byte is stored efficiently, and
much larger values are automatically managed and compressed.

PostgreSQL has a clear policy of minimizing the number of configuration parameters, and
with each release, we work out ways to auto-tune the settings.

Extensibility
PostgreSQL is designed to be highly extensible. Database extensions can be easily loaded
by using CREATE EXTENSION, which automates version checks, dependencies, and
other aspects of configuration.

PostgreSQL supports user-defined data types, operators, indexes, functions,
and languages.

http://www.postgresql.org/support/security/
http://www.postgresql.org/support/security/

6 First Steps

Many extensions are available for PostgreSQL, including the PostGIS extension, which
provides world-class Geographical Information System (GIS) features.

Performance and concurrency
PostgreSQL 14 can achieve significantly more than 1,000,000 reads per second on a
4-socket server, and it benchmarks at more than 30,000 write transactions per second with
full durability, depending upon your hardware. With advanced hardware, even higher
levels of performance are possible.

PostgreSQL has an advanced optimizer that considers a variety of join types, utilizing user
data statistics to guide its choices. PostgreSQL provides the widest range of index types of
any commonly available database server, fully supporting all data types.

PostgreSQL provides MVCC, which enables readers and writers to avoid blocking
each other.

Taken together, the performance features of PostgreSQL allow a mixed workload of
transactional systems and complex search and analytical tasks. This is important because
it means we don't always need to unload our data from production systems and reload it
into analytical data stores just to execute a few ad hoc queries. PostgreSQL's capabilities
make it the database of choice for new systems, as well as the correct long-term choice in
almost every case.

Scalability
PostgreSQL 14 scales well on a single node with upto four CPU sockets. PostgreSQL
efficiently runs up to hundreds of active sessions and thousands of connected
sessions when using a session pool. Further scalability is achieved in each annual release.

PostgreSQL provides multi-node read scalability using the hot standby feature.
Multi-node write scalability is under active development. The starting point for this
is Bi-directional replication (discussed in Chapter 12, Replication and Upgrades).

SQL and NoSQL data models
PostgreSQL follows the SQL standard very closely. SQL itself does not force any particular
type of model to be used, so PostgreSQL can easily be used for many types of models at
the same time, in the same database.

With PostgreSQL acting as a relational database, we can utilize any level of
denormalization, from the full Third Normal Form (3NF), to the more normalized star
schema models. PostgreSQL extends the relational model to provide arrays, row types,
and range types.

Introducing PostgreSQL 14 7

A document-centric database is also possible using PostgreSQL's text, XML, and binary
JSON (JSONB) data types, supported by indexes optimized for documents and by full-text
search capabilities.

Key/value stores are supported using the hstore extension.

Popularity
When MySQL was taken over by a commercial database vendor some years back, it
was agreed in the EU monopoly investigation that followed that PostgreSQL was a
viable competitor. That's certainly been true, with the PostgreSQL user base expanding
consistently for more than a decade.

Various polls have indicated that PostgreSQL is the favorite database for building new,
enterprise-class applications. The PostgreSQL feature set attracts serious users who have
serious applications. Financial services companies may be PostgreSQL's largest user group,
although governments, telecommunication companies, and many other segments are
strong users as well. This popularity extends across the world; Japan, Ecuador, Argentina,
and Russia have very large user groups, as do the US, Europe, and Australasia.

Amazon Web Services' chief technology officer, Dr. Werner Vogels, described PostgreSQL
as "an amazing database," going on to say that "PostgreSQL has become the preferred open
source relational database for many enterprise developers and start-ups, powering leading
geospatial and mobile applications." More recently, AWS has revealed that PostgreSQL is
their fastest-growing service.

Commercial support
Many people have commented that strong commercial support is what enterprises need
before they can invest in open source technology. Strong support is available worldwide
from a number of companies.

The authors of this book, Gianni and Simon, work for EnterpriseDB (EDB), the largest
company providing commercial support for open source PostgreSQL, offering 24/7
support in English with bug-fix resolution times.

Many other companies provide strong and knowledgeable support to specific geographic
regions, vertical markets, and specialized technology stacks.

PostgreSQL is also available as a hosted or cloud solution from a variety of companies,
since it runs very well in cloud environments.

A full list of companies is kept up to date at http://www.postgresql.org/
support/professional_support/.

http://www.postgresql.org/support/professional_support/
http://www.postgresql.org/support/professional_support/

8 First Steps

Research and development funding
PostgreSQL was originally developed as a research project at the University of California,
Berkeley, in the late 1980s and early 1990s. Further work was carried out by volunteers
until the late 1990s. Then, the first professional developer became involved. Over time,
more and more companies and research groups became involved, supporting many
professional contributors. Further funding for research and development was provided by
the NSF. The project also received funding from the EU FP7 Programme, in the form of
the 4CaaST project for cloud computing and the AXLE project for scalable data analytics.
AXLE deserves a special mention because it was a three-year project aimed at enhancing
PostgreSQL's business-intelligence capabilities, specifically for very large databases. The
project covered security, privacy, integration with data mining, and visualization tools and
interfaces for new hardware.

Further details about the AXLE project are available at https://axleproject.eu/.
Other funding for PostgreSQL development comes from users who directly sponsor
features and companies that sell products and services based around PostgreSQL.

Many features are contributed regularly by the larger commercial companies, such as
EDB.

How to get PostgreSQL
PostgreSQL is 100% open source software and is freely available to use, alter, or
redistribute in any way you choose. Its license is an approved open source license, very
similar to the Berkeley Software Distribution (BSD) license, though only just different
enough that it is now known as The PostgreSQL License (TPL). You can see the license
here: https://opensource.org/licenses/PostgreSQL.

How to do it...
PostgreSQL is already being used by many different application packages, so you may find
it already installed on your servers. Many Linux distributions include PostgreSQL as part
of the basic installation or include it with the installation disk.

One thing to be wary of is that the included version of PostgreSQL may not be the latest
release. It will typically be the latest major release that was available when that operating
system release was published. There is usually no good reason to stick to that level – there
is no increased stability implied there—and later production versions are just as well
supported by the various Linux distributions as the earlier versions.

https://axleproject.eu/
https://opensource.org/licenses/PostgreSQL

How to get PostgreSQL 9

If you don't have a copy yet or the latest version, you can download the source code or
binary packages for a variety of operating systems from http://www.postgresql.
org/download/.

Installation details vary significantly from platform to platform, and there aren't any
special tricks or recipes to mention. Just follow the installation guide, and away you go!
We've consciously avoided describing the installation processes here to make sure we
don't garble or override the information published to assist you.

EDB has provided the main macOS/Windows installer for PostgreSQL for many years,
which can be accessed here:

https://www.enterprisedb.com/downloads/postgres-postgresql-
downloads. This gives you the option of installing both client and server software so that
you can try it out on your laptop:

Figure 1.1 – The PostgreSQL Setup Wizard

http://www.postgresql.org/download/
http://www.postgresql.org/download/
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

10 First Steps

The installer shown in Figure 1.1 also allows you to install just the client software, allowing
you to work with remote database servers, such as PostgreSQL in the cloud:

Figure 1.2 – Selecting components to install

If you would like to receive email updates of the latest news, you can subscribe to the
PostgreSQL announce mailing list, which contains updates from all the vendors that
support PostgreSQL. You'll get a few emails each month about new releases of core
PostgreSQL, related software, conferences, and user group information. It's worth keeping
in touch with these developments.

Note
For more information about the PostgreSQL announcement mailing list, visit
http://archives.postgresql.org/pgsql-announce/.

How it works...
Many people ask questions such as, How can this be free? Are you sure I don't have to pay
someone? Who gives this stuff away for nothing?

Open source applications such as PostgreSQL work on a community basis, where many
contributors perform tasks that make the whole process work. For many of these people,
their involvement is professional, rather a hobby, and they can do this because there is
generally great value for both the contributors and their employers alike.

You might not believe it. You don't have to, because it just works!

http://archives.postgresql.org/pgsql-announce/

Connecting to the PostgreSQL server 11

There's more…
Remember that PostgreSQL is more than just the core software. There is a huge range of
websites that offer add-ons, extensions, and tools for PostgreSQL. You'll also find an army
of bloggers who provide useful tricks and discoveries that will help you in your work.

Besides these, a range of professional companies can offer you help when you need it.

Connecting to the PostgreSQL server
How do we access PostgreSQL?

Connecting to the database is the first experience of PostgreSQL for most people, so we
want to make it a good one. Let's do it now, and fix any problems we have along the way.
Remember that a connection needs to be made secure, so there may be some hoops for us
to jump through to ensure that the data we wish to access is secure.

Before we can execute commands against the database, we need to connect to the database
server to give us a session.

Sessions are designed to be long-lived, so you connect once, perform many requests, and
eventually disconnect. There is a small overhead during the connection. It may become
noticeable if you connect and disconnect repeatedly, so you may wish to investigate the
use of connection pools. Connection pools allow pre-connected sessions to be quickly
served to you when you wish to reconnect.

Getting ready
First, cache your database. If you don't know where it is, you'll probably have difficulty
accessing it. There may be more than one database, and you'll need to know the right one
to access and also have the authority to connect to it.

How to do it…
You need to specify the following parameters to connect to PostgreSQL:

• A host or host address

• A port

• A database name

• A user

• A password (or other means of authentication, if any)

12 First Steps

To connect, there must be a PostgreSQL server running on host, listening to port
number port. On that server, a database named dbname and a user named user must
also exist. The host must explicitly allow connections from your client (explained in the
Enabling access for network/remote users recipe), and you must also pass authentication
using the method the server specifies – for example, specifying a password won't work if
the server has requested a different form of authentication.

Almost all PostgreSQL interfaces use the libpq interface library. When using libpq,
most of the connection parameter handling is identical, so we can discuss that just once.

If you don't specify the preceding parameters, PostgreSQL looks for values set through
environment variables, which are as follows:

• PGHOST or PGHOSTADDR

• PGPORT (set this to 5432 if it is not set already)

• PGDATABASE

• PGUSER

• PGPASSWORD (this is definitely not recommended)

If you somehow specify the first four parameters but not the password, PostgreSQL looks
for a password file, discussed in the Avoiding hardcoding your password recipe.

Some PostgreSQL interfaces use the client-server protocol directly, so the ways in
which the defaults are handled may differ. The information we need to supply won't vary
significantly, so check the exact syntax for that interface.

Connection details can also be specified using a Uniform Resource
Identifier (URI) format, as follows:

psql postgresql://myuser:mypasswd@myhost:5432/mydb

This specifies that we will connect the psql client application to the PostgreSQL server
at the myhost host, on port 5432, with the mydb database name, myuser user,
and mypasswd password.

Note
If you do not set mypasswd in the preceding URI, you will be prompted to
enter the password.

Connecting to the PostgreSQL server 13

How it works…
PostgreSQL is a client-server database. The system it runs on is known as the host. We
can access the PostgreSQL server remotely, through the network. However, we must
specify host, which is a hostname, or hostaddr, which is an IP address. We can specify
a host as localhost if we wish to make a TCP/IP connection to the same system. It is
often better to use a Unix socket connection, which is attempted if the host begins with a
slash (/) and the name is presumed to be a directory name (the default is /tmp).

On any system, there can be more than one database server. Each database server listens
to exactly one well-known network port, which cannot be shared between servers on the
same system. The default port number for PostgreSQL is 5432, which has been registered
with the Internet Assigned Numbers Authority (IANA) and is uniquely assigned to
PostgreSQL (you can see it used in the /etc/services file on most *nix servers).
The port number can be used to uniquely identify a specific database server, if any exist.
IANA (http://www.iana.org) is the organization that coordinates the allocation
of available numbers for various internet protocols.

A database server is also sometimes known as a database cluster because the PostgreSQL
server allows you to define one or more databases on each server. Each connection request
must identify exactly one database, identified by its dbname. When you connect, you will
only be able to see the database objects created within that database.

A database user is used to identify the connection. By default, there is no limit on the
number of connections for a particular user. In the Enabling access for network/remote
users recipe, we will cover how to restrict that. In more recent versions of PostgreSQL,
users are referred to as login roles, though many clues remind us of the earlier
nomenclature, and that still makes sense in many ways. A login role is a role that has been
assigned the CONNECT privilege.

Each connection will typically be authenticated in some way. This is defined at the server
level: client authentication will not be optional at connection time if the administrator has
configured the server to require it.

Once you've connected, each connection can have one active transaction at a time and one
fully active statement at any time.

The server will have a defined limit on the number of connections it can serve, so a
connection request can be refused if the server is oversubscribed.

http://www.iana.org

14 First Steps

There's more…
If you are already connected to a database server with psql and you want to confirm that
you›ve connected to the right place and in the right way, you can execute some, or all, of
the following commands. Here is the command that shows the current_database:

SELECT current_database();

The following command shows the current_user ID:

SELECT current_user;

The next command shows the IP address and port of the current connection, unless you
are using Unix sockets, in which case both values are NULL:

SELECT inet_server_addr(), inet_server_port();

A user's password is not accessible using general SQL, for obvious reasons.

You may also need the following:

SELECT version();

From PostgreSQL version 9.1 onward, you can also use the new psql meta-command, \
conninfo. This displays most of the preceding information in a single line:

postgres=# \conninfo

You are connected to database postgres, as user postgres, via
socket in /var/run/postgresql, at port 5432.

See also
There are many other snippets of information required to understand connections. Some
of them are mentioned in this chapter, and others are discussed in Chapter 6, Security. For
further details, refer to the PostgreSQL server documentation.

Enabling access for network/remote users
PostgreSQL comes in a variety of distributions. In many of these, you will note that
remote access is initially disabled as a security measure. You can do this quickly as
described here, but you really should read the chapter on Security soon.

Enabling access for network/remote users 15

How to do it…
By default, PostgreSQL gives access to clients who connect using Unix sockets, provided
that the database user is the same as the system's username. Here, we'll show you how to
enable other connections.

Note
In this recipe, we mention configuration files, which can be located as shown
in the Finding the current configuration settings recipe in Chapter 3, Server
Configuration.

The steps are as follows:

1. Add or edit this line in your postgresql.conf file:

listen_addresses = '*'

2. Add the following line as the first line of pg_hba.conf to allow access to all
databases for all users with an encrypted password:

TYPE DATABASE USER CIDR-ADDRESS METHOD

host all all 0.0.0.0/0 scram-sha-256

3. After changing listen_addresses, we restart the PostgreSQL server,
as explained in the Updating the parameter file recipe in Chapter 3, Server
Configuration.

Note
This recipe assumes that postgresql.conf does not include any other
configuration files, which is the case in a default installation. If changing
listen_addresses in postgresql.conf does not seem to work,
perhaps that setting is overridden by another configuration file. Check out the
Updating the parameter file recipe in Chapter 3, Server Configuration, for more
details.

How it works…
The listen_addresses parameter specifies which IP addresses to listen to. This allows
you to flexibly enable and disable listening on interfaces of multiple Network Interface
Cards (NICs) or virtual networks on the same system. In most cases, we want to accept
connections on all NICs, so we use *, meaning all IP addresses.

16 First Steps

The pg_hba.conf file contains a set of host-based authentication rules. Each rule is
considered in sequence until one rule fires or the attempt is specifically rejected with
a reject method.

The preceding rule means that a remote connection that specifies any user or database
on any IP address will be asked to authenticate using an SCRAM-SHA-256-encrypted
password. The following are the parameters required for SCRAM-SHA-256-encrypted
passwords:

• Type: For this, host means a remote connection.

• Database: For this, all means for all databases. Other names match exactly, except
when prefixed with a plus (+) symbol, in which case we mean a group role rather
than a single user. You can also specify a comma-separated list of users or use
the @ symbol to include a file with a list of users. You can even specify sameuser
so that the rule matches when you specify the same name for the user and database.

• User: For this, all means for all users. Other names match exactly, except when
prefixed with a plus (+) symbol, in which case we mean a group role rather
than a single user. You can also specify a comma-separated list of users, or use
the @ symbol to include a file with a list of users.

• CIDR-ADDRESS: This consists of two parts: an IP address and a subnet mask.
The subnet mask is specified as the number of leading bits of the IP address that
make up the mask. Thus, /0 means 0 bits of the IP address so that all IP addresses
will be matched. For example, 192.168.0.0/24 would mean matching the first
24 bits, so any IP address of the 192.168.0.x form would match. You can also
use samenet or samehost.

• Method: For this, scram-sha-256 means that PostgreSQL will ask the client to
provide a password encrypted with SCRAM-SHA-256. Another common setting
is trust, which effectively means no authentication. Other authentication methods
include GSSAPI, SSPI, LDAP, RADIUS, and PAM. PostgreSQL connections can also
be made using SSL, in which case client SSL certificates provide authentication. See
the Using SSL certificates to authenticate the client recipe in Chapter 6, Security, for
more details.

Don't use the password authentication method in pg_gba.conf as this sends the
password in plain text (It has been deprecated for years). This is not a real security issue if
your connection is encrypted with SSL, there are normally no downsides with SCRAM-
SHA-256 anyway, and you have extra security for non-SSL connections.

Using the pgAdmin4 GUI tool 17

There's more…
In earlier versions of PostgreSQL, access through the network was enabled by adding
the -i command-line switch when you started the server. This is still a valid option, but
now it means the following:

listen_addresses = '*'

So, if you're reading some notes about how to set things up and this is mentioned, be
warned that those notes are probably long out of date. They are not necessarily wrong, but
it's worth looking further to see whether anything else has changed.

See also
Look at the installer and/or operating system-specific documentation to find the standard
location of the files.

Using the pgAdmin4 GUI tool
Graphical administration tools are often requested by system administrators. PostgreSQL
has a range of tool options. In this book, we'll cover pgAdmin4 and OmniDB.

pgAdmin4 is a client application that sends and receives SQL to and from PostgreSQL,
displaying the results for you. The admin client can access many databases servers,
allowing you to manage a fleet of servers. The tool works in both standalone app mode
and within web browsers.

How to do it…
pgAdmin 4 is usually named just pgAdmin. The 4 at the end has a long history but isn't
that important. It is not the release level; pgAdmin 4 replaces the earlier pgAdmin 3.

When you start pgAdmin, you will be prompted to register a new server.

18 First Steps

Give your server a name on the General tab, and then click Connection and fill in the
five basic connection parameters, as well as the other information. You should uncheck
the Save password? box:

Figure 1.3 – The Server Connection properties

Using the pgAdmin4 GUI tool 19

If you have many database servers, you can group them together. I suggest keeping any
replicated servers together in the same server group. Give each server a sensible name.

Once you've added a server, you can connect to it and display information about it.

The default screen is Dashboard, which presents a few interesting graphs based on the
data it polls from the server. That's not very useful, so click on the Statistics tab.

You will then get access to the main browser screen, with the object tree view on the left
and statistics on the right, as shown in the following screenshot:

Figure 1.4 – The pgAdmin Tree View with the Statistics tab

20 First Steps

pgAdmin easily displays much of the data that is available from PostgreSQL. The
information is context-sensitive, allowing you to navigate and see everything quickly and
easily. The information is not dynamically updated; this will occur only when you click to
refresh, so bear this in mind when using the application.

pgAdmin also provides Grant Wizard. This is useful for DBAs for review and
immediate maintenance:

Figure 1.5 – Grant Wizard

The pgAdmin query tool allows you to have multiple active sessions. The query tool has a
good-looking visual Explain feature, which displays the EXPLAIN plan for your query:

Using the pgAdmin4 GUI tool 21

Figure 1.6 – The visual Explain feature

How it works…
pgAdmin provides a wide range of features, many of which are provided by other tools
as well. This gives us the opportunity to choose which of those tools we want. For many
reasons, it is best to use the right tool for the right job, and that is always a matter of
expertise, experience, and personal taste.

pgAdmin submits SQL to the PostgreSQL server and displays the results quickly and
easily. As a database browser, it is fantastic. For performing small DBA tasks, it is ideal. As
you might've guessed from these comments, I don't recommend GUI tools for every task.

Scripting is an important technique for DBAs. You keep a copy of the task executed, and
you can edit and resubmit if problems occur. It's also easy to put all the tasks in a script
into a single transaction, which isn't possible using the current GUI tools. For scripting,
I strongly recommend the psql utility, which has many additional features that you'll
increasingly appreciate over time.

22 First Steps

Although I recommend psql as a scripting tool, many people find it convenient as a
query tool. Some people may find this strange and assume that it is a choice for experts
only. Two great features of psql are the online help for SQL and the tab completion
feature, which allows you to build up SQL quickly without having to remember the syntax.
See the Using the psql query and scripting tool recipe for more information.

pgAdmin provides the PSQL tool, which allows you to run psql alongside pgAdmin.
This is a great innovation and allows you to get the power of a GUI alongside the power
of psql.

pgAdmin also provides pgAgent, a job scheduler, which we will discuss in Chapter 7,
Database Administration.

A quick warning! When you create an object in pgAdmin, the object will be created with
a mixed-case name if you use capitals anywhere in the object name. If I ask for a table
named MyTable, the only way to access that table is by referring to it in double-quotes
as "MyTable". See the Handling objects with quoted names recipe in Chapter 5, Tables
and Data:

Figure 1.7 – Table options

Using the OmniDB GUI tool
Graphical administration tools are often requested by system administrators. PostgreSQL
has a range of tool options. In this book, we'll cover pgAdmin4 and OmniDB.

OmniDB is a client application that sends/receives SQL to/from PostgreSQL, displaying
the results for you. The admin client can access many databases servers, allowing you to
manage a fleet of servers. The tool works in both standalone app mode and within
web browsers.

Using the OmniDB GUI tool 23

OmniDB is designed to access PostgreSQL, MySQL, MariaDB, and Oracle in
one interface, though it makes sure it provides full features for the PostgreSQL
database: https://github.com/OmniDB/OmniDB.

OmniDB provides a very responsive interface and is designed with full security in mind.
It can be used as a desktop application, and it can also be served using a web server to be
accessed by the web browser of your choice.

How to do it…
OmniDB has the standard tree-view browsing interface, with multi-tab access for each
database server you access. It's easy to be connected to multiple PostgreSQL, MySQL,
and Oracle database servers at the same time:

Figure 1.8 – The OmniDB tree view

https://github.com/OmniDB/OmniDB

24 First Steps

OmniDB has a SQL editor that has code completion and debugging. The EXPLAIN
ANALYZE output is colored to highlight the areas of the plan that take the most time:

Figure 1.9 – The OmniDB SQL Editor and the EXPLAIN tab

Or, if you prefer the command-line feel, try the Console tab:

Using the OmniDB GUI tool 25

Figure 1.10 – The OmniDB console

You can also visualize the query plan:

Figure 1.11 – The OmniDB visual Explain

26 First Steps

Administrators in OmniDB can manage users graphically. The interface gives you
the ability to add, edit, and remove users. These users can then create connections to
PostgreSQL, MySQL, MariaDB, and Oracle – all managed through a unified web page.
Connections can also use SSH tunnels:

Figure 1.12 – The OmniDB connections screen

In order to ease the process of developing code in PL/pgSQL, OmniDB provides a
powerful, full-featured debugger. The debugger works as an inner tab of the SQL Editor
and provides insights into parameters, variables, results, messages, and statistics in
five tabs:

Figure 1.13 – The PL/pgSQL debugger

Using the psql query and scripting tool 27

Another useful feature in OmniDB is the monitoring dashboard. The dashboard gives
you real-time statistics of important system metrics you might want to monitor, such
as Memory Usage, CPU Usage, and Locks:

Figure 1.14 – The OmniDB dashboard

OmniDB has been designed to be a flexible and extensible tool. Though it comes with
several default charts, you can use Python and JSON to write new ones or use the existing
ones as templates to enhance and expand. OmniDB provides a plugin API, allowing you
to write and distribute your own plugins for expanded capabilities.

See also
You may also be interested in commercial tools of various kinds for PostgreSQL. A full
listing is given in the PostgreSQL software catalog at http://www.postgresql.org/
download/products/1.

Using the psql query and scripting tool
psql is the query tool supplied as a part of the core distribution of PostgreSQL, so it is
available in all environments and works similarly in all of them. This makes it an ideal
choice for developing portable applications and techniques.

psql provides features for use as both an interactive query tool and as a scripting tool.

http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1

28 First Steps

Getting ready
From here on, we will assume that the psql command is enough to allow you access to
the PostgreSQL server. This assumes that all your connection parameters are defaults,
which may not be true.

Written in full, the connection parameters will be either of these options:

psql -h myhost -p 5432 -d mydb -U myuser

psql postgresql://myuser@myhost:5432/mydb

The default value for the port (-p) is 5432. By default, mydb and myuser are both
identical to the operating system›s username. The default myhost on Windows is
localhost, while on Unix, we use the default directory for Unix socket connections.
The location of such directories varies across distributions and is set at compile
time. However, note that you don't actually need to know its value because, on local
connections, both the server and the client are normally compiled together, so they use
the same default.

How to do it…
The command that executes a single SQL command and prints the output is the easiest, as
shown here:

$ psql -c "SELECT current_time"

 timetz

 18:48:32.484+01

(1 row)

The -c command is non-interactive. If we want to execute multiple commands, we can
write those commands in a text file and then execute them using the -f option. This
command loads a very small and simple set of examples:

$ psql -f examples.sql

It produces the following output when successful, which is a list of command tags that
show the command that was executed, and how many rows were affected:

SET

SET

SET

SET

Using the psql query and scripting tool 29

SET

SET

DROP SCHEMA

CREATE SCHEMA

SET

SET

SET

CREATE TABLE

CREATE TABLE

COPY 5

COPY 3

The examples.sql script is very similar to a dump file produced by PostgreSQL backup
tools, so this type of file and the output it produces are very common. When a command
is executed successfully, PostgreSQL outputs a command tag equal to the name of that
command; this is how the preceding output was produced.

The psql tool can also be used with both the -c and -f modes together; each one can be
used multiple times. In this case, it will execute all the commands consecutively:

$ psql -c "SELECT current_time" –f examples.sql -c "SELECT
current_time"

 timetz

 18:52:15.287+01

(1 row)

 ...output removed for clarity...

 timetz

 18:58:23.554+01

(1 row)

The psql tool can also be used in interactive mode, which is the default, so it requires
no option:

$ psql

postgres=#

30 First Steps

The first interactive command you'll need is the following:

postgres=# help

You can then enter SQL or other commands. The following is the last interactive
command you'll need:

postgres=# \quit

Unfortunately, you cannot type quit on its own, nor can you type \exit or other
options. Sorry – it's just \quit, or \q for short!

How it works…
In psql, you can enter the following two types of command:

• psql meta-commands

• SQL

A meta-command is a command for the psql client, whereas SQL is sent to the database
server. An example of a meta-command is \q, which tells the client to disconnect. All
lines that begin with \ (a backslash) as the first non-blank character are presumed to be
meta-commands of some kind.

If it isn't a meta-command, it's SQL. We keep reading SQL until we find a semicolon, so
we can spread SQL across many lines and format it any way we find convenient.

The help command is the only exception. We provide this for people who are completely
lost, which is a good thought; so let's start from there ourselves.

There are two types of help commands, which are as follows:

• \?: This provides help on psql meta-commands.

• \h: This provides help on specific SQL commands.

Consider the following snippet as an example:

postgres=# \h DELETE

Command: DELETE

Description: delete rows of a table

Syntax:

[WITH [RECURSIVE] with_query [, ...]]

DELETE FROM [ONLY] table [[AS] alias]

Using the psql query and scripting tool 31

 [USING usinglist]

 [WHERE condition | WHERE CURRENT OF cursor_name]

 [RETURNING * | output_expression [AS output_name] [,]]

I find this a great way to discover and remember options and syntax. You'll also appreciate
having the ability to scroll back through the previous command history.

You'll get a lot of benefits from tab completion, which will fill in the next part of the syntax
when you press the Tab key. This also works for object names, so you can type in just the
first few letters and then press Tab; all the options will be displayed. Thus, you can type in
just enough letters to make the object name unique and then hit Tab to get the rest of
the name.

One-line comments begin with two dashes, as follows:

-- This is a single-line comment

Multiline comments are similar to those in C and Java:

/*

 * Multiline comment

 */

You'll probably agree that psql looks a little daunting at first, with strange backslash
commands. I do hope you'll take a few moments to understand the interface and keep
digging for more information. The psql tool is one of the most surprising parts of
PostgreSQL, and it is incredibly useful for database administration tasks when used
alongside other tools.

There's more…
psql works across releases and works well with older versions. It may not work at all with
newer server versions, so use the latest client level of the server you are accessing.

See also
Check out some other useful features of psql, which are as follows:

• Informational metacommands, such as \d, \dn and more.

• Formatting, for output, such as \x

• Execution timing using the \timing command

• Input/output and editing commands, such as \copy and \i, \o

32 First Steps

• Automatic startup files, such as .psqlrc

• Substitutable parameters (variables), such as \set, \unset

• Access to the OS command line using \!

• Crosstab views, \crosstabview

• Conditional execution, such as \if, \elif, \else, \endif

Changing your password securely
If you are using password authentication, then you may wish to change your password
from time to time. This can be done from any interface. pgAdmin is a good choice, but
here we show to do that from psql.

How to do it…
The most basic method is to use the psql tool. The \password command will prompt
you once for a new password and again to confirm. Connect to the psql tool and type
the following:

SET password_encryption = 'scram-sha-256';

\password

Enter a new password. This causes psql to send a SQL statement to the PostgreSQL
server, which contains an already encrypted password string. An example of the SQL
statement sent is as follows:

ALTER USER postgres PASSWORD 'SCRAM-SHA-256$4096:H45+UIZiJUcEX-
rB9SHlv5Q==$I0mc87UotsrnezRKv9Ijqn/zjWMGPVdy1zHPARAGfVs=:nS-
jwT9LGDmAsMo+GqbmC2X/9LMgowTQBjUQsl45gZzA=';

Make sure you use the SCRAM-SHA-256 encryption, not the older and easily
compromised MD5 encryption. Whatever you do, don't use postgres as your password.
This will make you vulnerable to idle hackers, so make it a little more difficult than that!

Make sure you don't forget your password either. It may prove difficult to maintain your
database if you can't access it.

Avoiding hardcoding your password 33

How it works…
As changing the password is just a SQL statement, any interface can do this.

If you don't use one of the main routes to change the password, you can still do it yourself,
using SQL from any interface. Note that you need to encrypt your password because if
you do submit one in plain text, such as the following, it will be shipped to the server in
plaintext:

ALTER USER myuser PASSWORD 'secret';

Luckily, the password in this case will still be stored in an encrypted form, but it will also
be recorded in plaintext in the psql history file, as well as in any server and application
logs, depending on the actual log-level settings.

PostgreSQL doesn't enforce a password change cycle, so you may wish to use more
advanced authentication mechanisms, such as GSSAPI, SSPI, LDAP, or RADIUS.

Avoiding hardcoding your password
We can all agree that hardcoding your password is a bad idea. This recipe shows you how
to keep your password in a secure password file.

Getting ready
Not all database users need passwords; some databases use other means of authentication.
Don't perform this step unless you know you will be using password authentication and
you know your password.

First, remove the hardcoded password from where you set it previously. Completely
remove the password = xxxx text from the connection string in a program.
Otherwise, when you test the password file, the hardcoded setting will override the details
you are about to place in the file. Keeping the password hardcoded and in the password
file is not any better. Using PGPASSWORD is not recommended either, so remove that also.

If you think someone may have seen the password, change your password before placing it
in the secure password file.

34 First Steps

How to do it…
A password file contains the usual five fields that we require when connecting, as
shown here:

host:port:dbname:user:password

An example of how to set this would be as follows:

myhost:5432:postgres:sriggs:moresecure

The password file is located using an environment variable named PGPASSFILE.
If PGPASSFILE is not set, a default filename and location must be searched for, as
follows:

• On *nix systems, look for ~/.pgpass.

• On Windows systems, look for %APPDATA%\postgresql\pgpass.conf,
where %APPDATA% is the application data subdirectory in the path (for me, that
would be C:\).

Note
Don't forget to set the file permissions on the file so that security is maintained.
File permissions are not enforced on Windows, although the default location
is secure. On *nix systems, you must issue the following command: chmod
0600 ~/.pgpass.

If you forget to do this, the PostgreSQL client will ignore the .pgpass file.
While the psql tool will issue a clear warning, many other clients will just fail
silently, so don›t forget!

How it works…
Many people name the password file .pgpass, whether or not they are on Windows, so
don't get confused if they do this.

The password file can contain multiple lines. Each line is matched against the
requested host:port:dbname:user combination until we find a line that matches.
Then, we use that password.

Using a connection service file 35

Each item can be a literal value or *, a wildcard that matches anything. There is no
support for partial matching. With appropriate permissions, a user can potentially
connect to any database. Using the wildcard in the dbname and port fields makes sense,
but it is less useful in other fields. The following are a few examples of wildcards:

• myhost:5432:*:sriggs:moresecurepw

• myhost:5432:perf:hannu:okpw

• myhost:*:perf:gianni:sicurissimo

There's more…
This looks like a good improvement if you have a few database servers. If you have many
different database servers, you may want to think about using a connection service file
instead (see the Using a connection service file recipe) or perhaps even storing details on
a Lightweight Directory Access Protocol (LDAP) server.

Using a connection service file
As the number of connection options grows, you may want to consider using
a connection service file.

The connection service file allows you to give a single name to a set of connection
parameters. This can be accessed centrally to avoid the need for individual users to know
the host and port of the database, and it is more resistant to future change.

You can set up a system-wide file as well as individual per-user files. The default file paths
for these files are /etc/pg_service.conf and ~/.pg_service.conf respectively.

A system-wide connection file controls service names for all users from a single place,
while a per-user file applies only to that particular user. Keep in mind that the per-user file
overrides the system-wide file – if a service is defined in both the files, then the definition
in the per-user file will prevail.

How to do it…
First, create a file named pg_service.conf with the following content:

[dbservice1]

host=postgres1

port=5432

dbname=postgres

36 First Steps

You can then copy it to either /etc/pg_service.conf or another agreed-upon
central location. You can then set the PGSYSCONFDIR environment variable to that
directory location.

Alternatively, you can copy it to ~/.pg_service.conf. If you want to use a different
name, set PGSERVICEFILE. Either way, you can then specify a connection string, such as
the following:

service=dbservice1 user=sriggs

The service can also be set using an environment variable named PGSERVICE.

How it works…
This feature applies to libpq connections only, so it does not apply to JDBC.

The connection service file can also be used to specify the user, although that means that
the username will be shared.

The pg_service.conf and .pgpass files can work together, or you can use just one
of the two. Note that the pg_service.conf file is shared, so it is not a suitable place for
passwords. The per-user connection service file is not shared, but in any case, it seems best
to keep things separate and confine passwords to .pgpass.

Troubleshooting a failed connection
This recipe is all about what you should do when things go wrong.

Bear in mind that 90% of problems are just misunderstandings, and you'll quickly be on
track again.

How to do it…
Here, we've made a checklist to be followed if a connection attempt fails:

• Check whether the database name and the username are accurate. You may be
requesting a service on one system when the database you require is on another
system. Recheck your credentials; ensure that you haven't mixed things up and that
you are not using the database name as the username, or vice versa. If you receive an
error for too many connections, then you may need to disconnect another session
before you can connect or request the administrator to allow further connections.

Troubleshooting a failed connection 37

• Check for explicit rejections. If you receive the pg_hba.conf rejects
connection for host... error message, it means that your connection
attempt has been explicitly rejected by the database administrator for that server.
You will not be able to connect from the current client system using those
credentials. There is little point in attempting to contact the administrator, as you
are violating an explicit security policy with what you are attempting to do.

• Check for implicit rejections. If the error message you receive is no pg_hba.conf
entry for..., it means there is no explicit rule that matches your credentials.
This is likely an oversight on the part of the administrator and is common in very
complex networks. Contact the administrator and request a ruling on whether your
connection should be allowed (hopefully) or explicitly rejected in the future.

• Check whether the connection works with psql. If you're trying to connect to
PostgreSQL from anything other than the psql command-line utility, switch to
that now. If you can make psql connect successfully but cannot make your main
connection work correctly, the problem may be in the local interface you are using.

• PostgreSQL 9.3 and later versions, including PostgreSQL 14, ship the pg_
isready utility, which checks the status of a database server, either local or remote,
by establishing a minimal connection. Only the hostname and port are mandatory,
which is great if you don›t know the database name, username, or password. The
following outcomes are possible:

 � The server is running and accepting connections.

 � The server is running but not accepting connections (because it is starting up,
shutting down, or in recovery).

 � A connection attempt was made, but it failed.

 � No connection attempt was made because of a client problem (invalid parameters
or out of memory).

 � Check whether the server is up. If a server is shut down, you cannot connect. The
typical problem here is simply mixing up the server to which you are connecting.
You need to specify the hostname and port, so it's possible that you are mixing up
those details.

 � Check whether the server is up and accepting new connections. A server that is
shutting down will not accept new connections, apart from superusers. Also, a
standby server may not have the hot_standby parameter enabled, preventing
you from connecting.

38 First Steps

 � Check whether the server is listening correctly, and check the port to which the
server is actually listening. Confirm that the incoming request is arriving on the
interface listed in the listen_addresses parameter. Check whether it is set
to * for remote connections and localhost for local connections.

 � Check whether the database name and username exist. It's possible that the
database or user no longer exists.

 � Check the connection request – that is, check whether the connection request was
successful and was somehow dropped following the connection. You can confirm
this by looking at the server log when the following parameters are enabled:

log_connections = on

log_disconnections = on

 � Check for other reasons for disconnection. If you are connecting to a standby
server, it is possible that you have been disconnected because of hot standby
conflicts. See Chapter 12, Replication and Upgrades, for more information.

There's more…
Client authentication and security are the rapidly changing areas in subsequent major
PostgreSQL releases. You will also find differences between maintenance release levels.
The PostgreSQL documents on this topic can be viewed at http://www.postgresql.
org/docs/current/interactive/client-authentication.html.

Always check which release level you are using before consulting the manual or asking for
support. Many problems are caused simply by confusing the capabilities between release
levels.

PostgreSQL in the cloud
Like many other systems, PostgreSQL is available in the "cloud" as a Database as a Service
(DbaaS). These services create and manage databases for you, with high availability and
backup included. So its less work, but not zero work, and you still have responsibilities…
which you will see later.

Getting ready
We will select EDB's BigAnimal as an example of a PostgreSQL cloud service, since EDB
has the largest number of contributors to open source PostgreSQL, over the
longest period.

http://www.postgresql.org/docs/current/interactive/client-authentication.html
http://www.postgresql.org/docs/current/interactive/client-authentication.html

PostgreSQL in the cloud 39

EDB's BigAnimal creates clusters within your own cloud account, allowing you to
understand and control the costs you incur when running PostgreSQL. So, the first step is
to login into your host cloud account: https://www.biganimal.com/.

How to do it…
Using EDB's BigAnimal as a specific example, navigate through these steps:

1. If you don't have an account, you can sign in using the Free Trial at http://www.
biganimal.com/, click Try for free, sign up and sign in. This will take you to
Step 5 of this sequence. If you do already have an account, then you can start at
Step 2."

2. Connect to the cloud portal – for example, Azure. If you have multiple accounts,
as I do, then make sure you are connected to the right account. BigAnimal is then
available as a marketplace subscription.

3. Go to https://portal.biganimal.com/:

Figure 1.15 – The portal main screen

4. Manage your cloud limits, if necessary.

https://www.biganimal.com/
http://www.biganimal.com/
http://www.biganimal.com/
https://portal.biganimal.com/

40 First Steps

5. Select Create New Cluster, and then set Cluster Name and Password:

Figure 1.16 – The portal main screen

6. In this example, we will create a cluster called Cluster2. Specify Database Type.
Select the software type and version – for example, PostgreSQL 14. Select the cloud
provider and distribution across region(s) – for example, Azure and (Asia Pacific)
Japan East:

PostgreSQL in the cloud 41

Figure 1.17 – BigAnimal database type

7. Specify the instance type and key details, all of which will then be provisioned
for you:

• Specify the instance type – for instance, E2s v3:

 � How many CPUs? (such as 2 vCPUs)

 � How much RAM? (such as 16GB RAM)

• Specify storage:

 � Volume type? (Azure Premium Storage)

 � Provisioned IOPS? (4 GB, 120 IOPS, 25 MB/s)

• Specify other aspects:

 � Networking? (Public)

 � High availability? (Yes)

 � HA clusters are configured with a single primary and two replica nodes using
streaming physical replication. Clusters are configured across availability zones
automatically. synchronous_replication is configured by default.

42 First Steps

8. Create the cluster. Wait for the cluster to be built, which will usually be very quick,
yet varies according to the options selected in the previous step. Assume it will take
1 hour to avoid sitting and watching it:

Figure 1.18 – The BigAnimal progress bar

9. Set up Connection Info for our new Cluster2:

Figure 1.19 – EDB's BigAnimal connection details
Test the connection and then set up the connection details, as discussed in earlier
recipes. Assign the new instance a shortcut name, since remembering a node name
such as p-czmnt55ivu.qsbilba3hlgp1vqr.biganimal.io will not be easy!

PostgreSQL in the cloud 43

How it works…
Cloud (or DbaaS) means that PostgreSQL is managed for you, so this is all you need to do.

EDB's BigAnimal provides a GUI to allow you to create PostgreSQL clusters manually
on demand. One of the main themes in this cookbook is using repeatable, scriptable
mechanisms where possible, so I recommend that you use either a Command-Line
Interface (CLI) or an Application Programming Interface (API). The API uses a
RESTful interface to define and manage clusters.

Note that when you run a database service, you still have these and other responsibilities:

• You are responsible for contacting the support team if things are not as you think
they should be.

• You are responsible for securing your passwords to the cluster.

• You are responsible for creating users with appropriate access rights to your data.

• You are responsible for choosing whether to enable high availability and for noting
the availability level offered by the service.

• You are responsible for data modeling, query performance, and scaling the cluster
to meet your performance needs.

• You are responsible for choosing the appropriate resources for your workload,
including instance type, storage, and connections. You are also responsible for
managing your cloud resource limits to ensure the underlying infrastructure can
scale.

• You are responsible for periodically restoring and verifying the restores to ensure
that archives are completed frequently and successfully to meet your needs.

• You are responsible for paying!

So, the cloud is just a good way forward and not a way to avoid taking full responsibility
for your overall application and database.

44 First Steps

There's more…
Cloud services are also available from these and others:

• Aiven

• Amazon Web Services

• Crunchy

• Google

• Microsoft

2
Exploring the

Database
To understand PostgreSQL, you need to see it in use. An empty database is like a ghost
town without houses.

For now, we will assume that you already have a database. There are over a thousand
books on how to design your own database from nothing. So, here, we aim to help
people who are still learning to use the PostgreSQL database management system with
handy routines to explore the database.

The best way to start is by asking some simple questions to orient yourself and begin the
process of understanding. Incidentally, these are also questions that you'll need to answer
if you ask someone else for help.

In this chapter, we'll cover the following recipes:

• What type of server is this?

• What version is the server?

• What is the server uptime?

• Locating the database server files

• Locating the database server's message log

• Locating the database's system identifier

46 Exploring the Database

• Listing databases on the database server

• How many tables are there in a database?

• How much disk space does a database use?

• How much disk space does a table use?

• Which are my biggest tables?

• How many rows are there in a table?

• Quickly estimating the number of rows in a table

• Listing extensions in this database

• Understanding object dependencies

What type of server is this?
PostgreSQL is an open source object-relational database management
system (ORDBMS) distributed under a very permissive license and developed by an
active community.

There are a number of PostgreSQL-related services and software (https://wiki.
postgresql.org/wiki/PostgreSQL_derived_databases), either open source
or not, that are provided by other software companies. Here, we discuss how to recognize
which one you are using.

It is not so easy to detect the variant of PostgreSQL from the name; many of the products
and services involving PostgreSQL include the word Postgres or PostgreSQL.

However, if you need to check the documentation, or to buy services such as support and
consulting, you need to find out exactly what type your server is, as the available options
will vary.

If you are paying a license fee or a cloud service subscription, you will already know the
name of the company you are paying, and of the specific variant of PostgreSQL you are
subscribed to. But it's not rare to have multiple servers of different types, so it is still useful
to be able to tell them apart.

https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases

What version is the server? 47

How to do it…
Unfortunately, there isn't a single function or parameter that works on each variant of
PostgreSQL and, at the same time, is able to answer that question. The closest you can get
is the version() function, which is used in the next recipe, What version is the server?,
which returns a textual description of the version you are running, including (but not
limited to) the version number.

In some cases, this is enough but, otherwise, you have to determine the specific version
from other clues, such as the following:

• The version number for stable releases of community PostgreSQL is
either X.Y (with X=10 or above) or X.Y.Z (up to X=9). An extra number usually
indicates that you are running a variant of PostgreSQL.

• The presence of certain objects that are available only on a specific variant, for
instance, an extension. More details on how to work with extensions can be found
in the Listing extensions in this database recipe in this chapter.

There's more...
Some of the PostgreSQL-based services on the cloud will return the same value
of version() as community PostgreSQL does. While this is correct, in the sense that
they are indeed running that version of PostgreSQL, it doesn't mean that you have the
same level of control. For instance, you might not be given a superuser account, and you
will probably be unable to install extensions freely.

What version is the server?
PostgreSQL has internal version numbers for the data file format, database catalog layout,
and crash recovery format. Each of these is checked as the server runs to ensure that the
data doesn't become corrupt. PostgreSQL doesn't change these internal formats for a
single minor release; they only change across major releases.

From a user's perspective, each release differs in terms of the way the server behaves. If
you know your application well, then it should be possible to assess the differences simply
by reading the release notes for each version. In many cases, a retest of the application is
the safest thing to do.

If you experience any general problems related to setup and configuration with your
database, then you'll need to double-check which version of the server you have. This will
help you to report a fault or to consult the correct version of the manual.

48 Exploring the Database

How to do it…
We will find out the version by querying the database server directly:

1. Connect to the database and issue the following command:

postgres=# SELECT version();

2. You'll get a response that looks something like this:

PostgreSQL 14.0 (Debian 14.0-1.pgdg100+1) on x86_64-pc-
linux-gnu, compiled by gcc (Debian 8.3.0-6) 8.3.0, 64-bit

That's probably too much information all at once!

Another way of checking the version number in your programs is as follows:

postgres=# SHOW server_version;

The preceding shows the version in text form, so you may also want a numerical value that
is easier to compare using a greater than symbol, in which case you execute this command
instead:

postgres=# SHOW server_version_num;

Another alternative is via command-line utilities, such as this:

bash # psql --version

psql (PostgreSQL) 14.0 (Debian 14.0-1.pgdg100+1)

However, be wary that this shows the client software version number, which may differ
from the server software version number. This will usually be reported to you so that
you're aware.

How it works…
The current PostgreSQL server version format is composed of two numbers; the first
number indicates the major release, and the second one denotes subsequent maintenance
releases for that major release. It is common to mention just the major release when
discussing what features are supported, as they are unchanged on a maintenance release.

What is the server uptime? 49

14.0 is the first release of PostgreSQL 14, and subsequent maintenance releases will be
14.1, 14.2, 14.3, and so on. In the preceding example, we see that 14.0 is the version of that
PostgreSQL server.

For each major release, there is a separate version of the manual, since the feature set is
not the same. If something doesn't work exactly the way you think it should, make sure
you are consulting the correct version of the manual.

There's more…
Prior to release 10, PostgreSQL was using a three-part numbering series, meaning that the
feature set and compatibility related to the first two numbers, while maintenance releases
were denoted by the third number. For instance, version 9.6 contained more additional
features and compatibility changes when compared to version 9.5; version 9.6.0 was the
initial release of 9.6, and version 9.6.1 was a later maintenance release.

The release support policy for PostgreSQL is available at http://www.postgresql.
org/support/versioning/. This article explains that each release will be supported
for a period of 5 years. Since we release one major version per year, this means 5 major
releases.

Support for all releases up to and including 9.6 ended in September 2021. So, by the time
you're reading this book, only PostgreSQL 10 and higher versions will be supported. The
earlier versions are still robust, although many performance and enterprise features are
missing from those releases. The future end-of-support dates are as follows:

Figure 2.1 – A table showing PostgreSQL version release dates

What is the server uptime?
You may be wondering, how long has it been since the server started?

For instance, you might want to verify that there was no server crash if your server is
not monitored, or to see when the server was last restarted, for instance, to change the
configuration. We will find this out by asking the database server.

http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/

50 Exploring the Database

How to do it…
Issue the following SQL from any interface:

postgres=# SELECT date_trunc('second', current_timestamp - pg_
postmaster_start_time()) as uptime;

You should get the output as follows:

 uptime

 2 days 02:48:04

How it works…
Postgres stores the server start time, so we can access it directly, as follows:

postgres=# SELECT pg_postmaster_start_time();

pg_postmaster_start_time

--

2021-10-01 19:37:41.389134+00

Then, we can write a SQL query to get the uptime, like this:

postgres=# SELECT current_timestamp - pg_postmaster_start_
time();

?column?

 02:59:18.925917

Finally, we can apply some formatting:

postgres=# SELECT date_trunc('second', current_timestamp - pg_
postmaster_start_time()) as uptime;

 uptime

 03:00:26

Locating the database server files 51

See also
This is simple stuff. Further monitoring and statistics are covered in Chapter 8, Monitoring
and Diagnosis.

Locating the database server files
Database server files are initially stored in a location referred to as the data directory.
Additional data files may also be stored in tablespaces if any exist.

In this recipe, you will learn how to find the location of these directories on a given
database server.

Getting ready
You'll need to get operating system access to the database system, which is what we call
the platform on which the database runs.

How to do it...
If you can connect using psql, then you can use this command:

postgres=# SHOW data_directory;

 data_directory

 /var/lib/pgsql/data/

If not, the following are the system default data directory locations:

• Debian or Ubuntu systems: /var/lib/postgresql/MAJOR_RELEASE/main

• Red Hat RHEL, CentOS, and Fedora: /var/lib/pgsql/data/

• Windows: C:\Program Files\PostgreSQL\MAJOR_RELEASE\data

MAJOR_RELEASE is composed of just one number (for release 10 and above) or two (for
releases up to 9.6).

On Debian or Ubuntu systems, the configuration files are located in /etc/
postgresql/MAJOR_RELEASE/main/, where main is just the name of
a database server. Other names are also possible. For the sake of simplicity, we assume that
you only have a single installation, although the point of including the release number and
database server name as components of the directory path is to allow multiple database
servers to coexist on the same host.

52 Exploring the Database

Note
The pg_lsclusters utility is specific to Debian/Ubuntu and displays a list
of all the available database servers, including information for each server.

The information for each server includes the following:

• Major release number

• Port

• Status (for example, online and down)

• Data directory

• Log file

The pg_lsclusters utility is part of the postgresql-common Debian/Ubuntu
package, which provides a structure under which multiple versions of PostgreSQL can be
installed, and multiple clusters can be maintained, at the same time.

In the packages distributed with Red Hat RHEL, CentOS, and Fedora, the default data
directory location also contains the configuration files (*.conf) by default. However,
note that the packages distributed by the PostgreSQL community use a different default
location: /var/lib/pgsql/MAJOR_RELEASE/data/.

Again, that is just the default location. You can create additional data directories using the
initdb utility.

The initdb utility populates the given data directory with the initial content. The
directory will be created for convenience if it is missing but, for safety, the utility will stop
if the data directory is not empty. The initdb utility will read the data directory name
from the PGDATA environment variable unless the -d command-line option is used.

How it works...
Even though the Debian/Ubuntu and Red Hat file layouts are different, they both follow
the Linux Filesystem Hierarchy Standard (FHS), so neither layout is wrong.

The Red Hat layout is simpler and easier to understand. The Debian/Ubuntu layout is
more complex, but it has different and more adventurous goals. The Debian/Ubuntu
layout is similar to the Optimal Flexible Architecture (OFA) of other database
systems. As pointed out earlier, the goals are to provide a file layout that will allow you
to have multiple PostgreSQL database servers on one system and to allow many versions
of the software to exist in the filesystem at once.

Locating the database server files 53

Again, the layouts for the Windows and OS X installers are different. Multiple database
clusters are possible, but they are also more complex than on Debian/Ubuntu.

I recommend that you follow the Debian/Ubuntu layout on whichever platform
you are using. It doesn't really have a name, so I call it the PostgreSQL Flexible
Architecture (PFA). Clearly, if you are using Debian or Ubuntu, then the Debian/Ubuntu
layout is already being used. If you do this on other platforms, you'll need to lay things out
yourself, but it does pay off in the long run. To implement PFA, you can set the following
environment variables to name parts of the file layout:

export PGROOT=/var/lib/pgsql/

export PGRELEASE=14

export PGSERVERNAME=mamba

export PGDATA=$PGROOT/$PGRELEASE/$PGSERVERNAME

In this example, PGDATA is /var/lib/pgsql/14/mamba.

Finally, you must run initdb to initialize the data directory, as noted earlier, and
custom administration scripts should be prepared to automate actions, such as starting or
stopping the database server, when the system undergoes similar procedures.

Note that server applications such as initdb can only work with one major PostgreSQL
version. On distributions that allow several major versions, such as Debian or Ubuntu,
these applications are placed in dedicated directories, which are not put in the default
command path. This means that if you just type initdb, the system will not find the
executable, and you will get an error message.

This may look like a bug, but in fact, it is the desired behavior. Instead of accessing
initdb directly, you are supposed to use the pg_createcluster utility
from postgresql-common, which will select the right initdb utility depending on
the major version you specify.

Note
If you plan to run more than one database server on the same host, you must
set the preceding variables differently for each server as they determine the
name of the data directory. For instance, you can set them in the script
that you use to start or stop the database server, which would be enough
because PGDATA is mostly used only by the database server process.

54 Exploring the Database

There's more…
Once you've located the data directory, you can look for the files that comprise the
PostgreSQL database server. The layout is as follows:

Figure 2.2 – Contents of the PostgreSQL data directory

None of the aforementioned directories contain user-modifiable files, nor should any of
the files be manually deleted to save space, or for any other reason. Don't touch it, because
you'll break it, and you may not be able to fix it! It's not even sensible to copy files in these
directories without carefully following the procedures described in Chapter 11, Backup
and Recovery. Keep off the grass!

Subdirectory Purpose

base
This is the main table storage. Beneath this directory, each database has its own
directory, within which the files for each database table or index are located.

global Here are the tables that are shared across all databases, including the list of databases.

pg_commit_ts Here we store transaction commit timestamp data (from 9.5 onward).

pg_dynshmem This includes dynamic shared memory information (from 9.4 onward).

pg_logical This includes logical decoding status data.

pg_multixact This includes files used for shared row-level locks.

pg_notify This includes the LISTEN/NOTIFY status files.

pg_replslot This includes information about replication slots (from 9.4 onward).

pg_serial This includes information on committed serializable transactions.

pg_snapshots This includes exported snapshot files.

pg_stat This includes permanent statistics data.

pg_stat_tmp This includes transient statistics data.

pg_subtrans This includes subtransaction status data.

pg_tblspc This includes symbolic links to tablespace directories.

pg_twophase This includes state files for prepared transactions.

pg_wal This includes the transaction log or Write-Ahead Log (WAL) (formerly pg_xlog).

pg_xact This includes the transaction status files (formerly pg_clog).

Locating the database server's message log 55

We'll talk about tablespaces later in the book. We'll also discuss a performance
enhancement that involves putting the transaction log on its own set of disk drives
in Chapter 10, Performance and Concurrency.

The only things you are allowed to touch are configuration files, which are all *.
conf files, and server message log files. Server message log files may or may not be in
the data directory. For more details on this, refer to the next recipe, Locating the database
server's message log.

Locating the database server's message log
The database server's message log is a record of all messages recorded by the database
server. This is the first place to look if you have server problems and a good place to
check regularly.

This log will include messages that look something like the following:

2021-09-01 19:37:41 GMT [2507-1] LOG: database system was shut
down at 2021-09-01 19:37:38 GMT

2021-09-01 19:37:41 GMT [2506-1] LOG: database system is ready
to accept connections

We'll explain some more about these logs once we've located the files.

Getting ready
You'll need to get operating system access to the database system, which is what we call
the platform on which the database runs.

The server log can be in a few different places, so let's list all of them first so that we can
locate the log or decide where we want it to be placed:

• The server log may be in a directory beneath the data directory.

• It may be in a directory elsewhere on the filesystem.

• It may be redirected to syslog.

• There may be no server log at all. In this case, it's time to add a log soon.

If not redirected to syslog, the server log consists of one or more files. You can change
the names of these files, so it may not always be the same on every system.

56 Exploring the Database

How to do it...
The following are the default server log locations:

• Debian or Ubuntu systems: /var/log/postgresql.

• Red Hat, RHEL, CentOS, and Fedora: /var/lib/pgsql/data/pg_log.

• Windows systems: The messages are sent to the Windows Event Log.

The current server log file is named postgresql-MAJOR_RELEASE-SERVER.log,
where SERVER is the name of the server (by default, main), and MAJOR_RELEASE
represents the major release of the server, for example, 9.6 or 11 (as we mentioned in a
prior recipe, from release 10 onward, the major release is composed by just one number).
An example is postgresql-14-main.log, while older log files are numbered
as postgresql-14-main.log.1. The higher the final number, the older the file, since
they are being rotated by the logrotate utility.

How it works...
The server log is just a file that records messages from the server. Each message has a
severity level, the most typical of them being LOG, although there are others, as shown in
the following table:

Figure 2.3 – PostgreSQL message severity levels

Watch out for FATAL and PANIC. This shouldn't happen in most cases during normal
server operation, apart from certain cases related to replication, so you should also check
out Chapter 12, Replication and Upgrades.

Locating the database's system identifier 57

You can adjust the number of messages that appear in the log by changing the log_
min_messages server parameter. You can also change the amount of information that
is displayed for each event by changing the log_error_verbosity parameter. If the
messages are sent to a standard log file, then each line in the log will have a prefix of useful
information that can also be controlled by the system administrator, with a parameter
named log_line_prefix.

You can also alter the what and the how much that goes into the logs by changing other
settings such as log_statements, log_checkpoints, log_connections/log_
disconnections, log_verbosity, and log_lock_waits.

There's more...
The log_destination parameter controls where the log messages are stored. The valid
values are stderr, csvlog, syslog, and eventlog (the latter is only on Windows).

The logging collector is a background process that writes to a log file everything that
the PostgreSQL server outputs to stderr. This is probably the most reliable way to log
messages in case of problems since it depends on fewer services.

Log rotation can be controlled with settings such as log_rotation_age and log_
rotation_size if you are using the logging collector. Alternatively, it is possible to
configure the logrotate utility to perform log rotation, which is the default on Debian
and Ubuntu systems.

See also
In general, monitoring activities are covered in Chapter 8, Monitoring and Diagnosis, and
examining the message log is just one part of it. Refer to the Producing a daily summary of
log file errors recipe in Chapter 8, Monitoring and Diagnosis, for more details.

Locating the database's system identifier
Each database server has a system identifier assigned when the database is initialized
(created). The server identifier remains the same if the server is backed up, cloned,
and so on.

58 Exploring the Database

Many actions on the server are keyed to the system identifier, and you may be asked to
provide this information when you report a fault.

In this recipe, you will learn how to display the system identifier.

Getting ready
You need to connect as the Postgres OS user, or another user with execute privileges on
the server software.

How to do it…
In order to display the system identifier, we just need to launch the following command:

pg_controldata <data-directory> | grep "system identifier"

Database system identifier: 7015545877453537036

Note that the preceding syntax will not work on Debian or Ubuntu systems, for the same
reasons explained in relation to initdb in the Locating the database server files recipe.
However, in this case, there is no postgresql-common alternative, so if you must
run pg_controldata, you need to specify the full path to the executable, as in this
example:

/usr/lib/postgresql/14/bin/pg_controldata $PGDATA

Tip
Don't use -D in front of the data directory name. This is the only PostgreSQL
server application where you don't need to do that.

How it works…
The pg_controldata utility is a PostgreSQL server application that shows the content
of a server's control file. The control file is located within the data directory of a server,
and it is created at database initialization time. Some of the information within it is
updated regularly, and some is only updated when certain major events occur.

The full output of pg_controldata looks like the following (some values may change
over time as the server runs):

pg_control version number: 1300

Catalog version number: 202107181

Listing databases on the database server 59

Database system identifier: 7015545877453537036

Database cluster state: in production

pg_control last modified: Tue 05 Oct 2021 12:46:26
BST

Latest checkpoint location: 0/16F2EC0

… (not shown in full)

Tip
Never edit the PostgreSQL control file. If you do, the server probably won't
start correctly, or you may mask other errors. And if you do that, people will be
able to tell, so fess up as soon as possible!

Listing databases on the database server
When we connect to PostgreSQL, we always connect to just one specific database on any
database server. If there are many databases on a single server, it can get confusing, so
sometimes you may just want to find out which databases are parts of the database server.

This is also confusing because we can use the word database in two different, but
related, contexts. Initially, we start off by thinking that PostgreSQL is a database in
which we put data, referring to the whole database server by just the word database. In
PostgreSQL, a database server (also known as a cluster) is potentially split into multiple,
individual databases, so, as you get more used to working with PostgreSQL, you'll start to
separate the two concepts.

How to do it…
If you have access to psql, you can type the following command:

bash $ psql -l

 List of databases

 Name | Owner | Encoding | Collate | Ctype |
Access privileges

-----------+--------+----------+-------------+-------------+---

 postgres | sriggs | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 |

 template0 | sriggs | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 |
=c/sriggs +

 | | | | |
sriggs=CTc/sriggs

60 Exploring the Database

 template1 | sriggs | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 |
=c/sriggs +

 | | | | |
sriggs=CTc/sriggs

(3 rows)

You can also get the same information while running psql by simply typing \l.

The information that we just looked at is stored in a PostgreSQL catalog table named pg_
database. We can issue a SQL query directly against that table from any connection to
get a simpler result, as follows:

postgres=# select datname from pg_database;

datname

template1

template0

postgres

(3 rows)

How it works...
PostgreSQL starts with three databases: template0, template1, and postgres. The
main user database is postgres.

You can create your own databases as well, like this:

CREATE DATABASE cookbook;

You can do the same from the command line, using the following expression:

bash $ createdb cookbook

After you've created your databases, be sure to secure them properly, as discussed
in Chapter 6, Security.

From now on, we will run our examples in the cookbook database.

When you create another database, it actually takes a copy of an existing database. Once it
is created, there is no further link between the two databases.

Listing databases on the database server 61

The template0 and template1 databases are known as template databases.
The template1 database can be changed to allow you to create a localized template
for any new databases that you create. The template0 database exists so that,
when you alter template1, you still have a pristine copy to fall back on. In other words,
if you break template1, then you can drop it and recreate it from template0.

You can drop the database named postgres. But don't, okay? Similarly, don't try to
touch template0, because you won't be allowed to do anything with it, except use it as a
template. On the other hand, the template1 database exists to be modified, so feel free
to change it.

There's more...
The information that we just saw is stored in a PostgreSQL catalog table named pg_
database. We can look at this directly to get some more information. In some ways, the
output is less useful as well, as we need to look up some of the code in other tables:

cookbook=# \x

cookbook=# select * from pg_database;

-[RECORD 1]-+------------------------------

oid | 1

datname | template1

datdba | 10

encoding | 6

datcollate | en_GB.UTF-8

datctype | en_GB.UTF-8

datistemplate | t

datallowconn | t

datconnlimit | -1

datlastsysoid | 11620

datfrozenxid | 644

datminmxid | 1

dattablespace | 1663

datacl | {=c/sriggs,sriggs=CTc/sriggs}

-[RECORD 2]-+------------------------------

oid | 13706

datname | template0

datdba | 10

encoding | 6

62 Exploring the Database

datcollate | en_GB.UTF-8

datctype | en_GB.UTF-8

datistemplate | t

datallowconn | f

datconnlimit | -1

datlastsysoid | 11620

datfrozenxid | 644

datminmxid | 1

dattablespace | 1663

datacl | {=c/sriggs,sriggs=CTc/sriggs}

-[RECORD 3]-+------------------------------

oid | 13707

datname | postgres

datdba | 10

encoding | 6

datcollate | en_GB.UTF-8

datctype | en_GB.UTF-8

datistemplate | f

datallowconn | t

datconnlimit | -1

datlastsysoid | 11620

datfrozenxid | 644

datminmxid | 1

dattablespace | 1663

datacl |

-[RECORD 4]-+------------------------------------

oid | 16408

datname | cookbook

datdba | 16384

encoding | 6

datcollate | en_GB.UTF-8

datctype | en_GB.UTF-8

datistemplate | f

datallowconn | t

datconnlimit | -1

datlastsysoid | 13706

How many tables are there in a database? 63

datfrozenxid | 726

datminmxid | 1

dattablespace | 1663

datacl |

First of all, look at the use of the \x command. It makes the output in psql appear as one
column per line, rather than one row per line.

We've already discussed templates. The other interesting things are that we can turn
connections on and off for a database, and we can set connection limits for them, as well.

Also, you can see that each database has a default tablespace. Therefore, data tables get
created inside one specific database, and the data files for that table get placed in one
tablespace.

You can also see that each database has a collation sequence, which is the way that various
language features are defined. We'll cover more on that in the Choosing good names for
database objects recipe in Chapter 5, Tables and Data.

How many tables are there in a database?
The number of tables in a relational database is a good measure of the complexity of a
database, so it is a simple way to get to know any database. But the complexity of what?
Well, a complex database may have been designed to be deliberately flexible in order to
cover a variety of business situations, or a complex business process may have a limited
portion of its details covered in the database. So, a large number of tables might reveal a
complex business process or just a complex piece of software.

In this recipe, we will show you how to compute the number of tables.

How to do it...
From any interface, type the following SQL command:

SELECT count(*) FROM information_schema.tables

WHERE table_schema NOT IN ('information_schema','pg_catalog');

You can also look at the list of tables directly, and judge whether the list is a small or
large number.

64 Exploring the Database

In psql, you can see your own tables by using the following command:

$ psql -c "\d"

 List of relations

 Schema | Name | Type | Owner

--------+----------+-------+----------

 public | accounts | table | postgres

 public | branches | table | postgres

In pgAdmin 4, you can see the tables in the tree view on the left-hand side, as shown in
the following screenshot:

Figure 2.4 – The tree view of database objects in pgAdmin

How many tables are there in a database? 65

How it works…
PostgreSQL stores information about the database in catalog tables. They describe every
aspect of the way the database has been defined. There is a main set of catalog tables
stored in a schema, called pg_catalog. There is a second set of catalog objects called
the information schema, which is the standard SQL way of accessing information in a
relational database.

We want to exclude both of these schemas from our query, to avoid counting non-user
objects. We excluded them in the preceding query using the NOT IN phrase in the
WHERE clause.

Excluding partitions from the count is more involved. The information schema shows
partitions as the same as tables, which is true for PostgreSQL, so somewhat misleading.
So, what we want to do is exclude tables that are also partitions. Partitions are marked
in the pg_catalog.pg_class table, with a Boolean column of relispartition. If we
use pg_class, we also need to exclude non-tables and ensure we don't include internal
schemas, which leaves us with this much more complex query:

SELECT count(*) FROM pg_class

WHERE relkind = 'r'

AND not relispartition

AND relnamespace NOT IN (

 SELECT oid FROM pg_namespace

 WHERE nspname IN ('information_schema','pg_catalog', 'pg_
toast')

 AND nspname NOT LIKE 'pg_temp%' AND nspname NOT LIKE 'pg_
toast_temp%'

);

Note
Note that this query shows only the number of tables in one of the databases on
the PostgreSQL server. You can only see the tables in the database to which you
are currently connected, so you'll need to run the same query on each database
in turn.

66 Exploring the Database

There's more…
The highest number of distinct, major tables I've ever seen in a database is 20,000, without
counting partitions, views, and worktables. That clearly rates as a very complex system.

Figure 2.5 – Estimating database complexity based on the number of tables

Of course, you can't always easily tell which tables are entities, so we just need to count
the tables. Some databases use a lot of partitions or similar tables, so the numbers
can grow dramatically. I've seen databases with up to 200,000 tables (of any kind).
That's not recommended, however, as the database catalog tables then begin to become
awfully large.

How much disk space does a database use?
It is very important to allocate sufficient disk space for your database. If the disk gets
full, it will not corrupt the data, but it might lead to database server panic and then
consequent shutdown.

For planning or space monitoring, we often need to know how big the database is.

How to do it...
We can do this in the following ways:

• Look at the size of the files that make up the database server.

• Run a SQL request to confirm the database size.

How much disk space does a table use? 67

If you look at the size of the actual files, you'll need to make sure that you include the data
directory and all subdirectories, as well as all other directories that contain tablespaces.
This can be tricky, and it is also difficult to break out all the different pieces.

The easiest way is to ask the database a simple query, like this:

SELECT pg_database_size(current_database());

However, this is limited to just the current database. If you want to know the size of all the
databases together, then you'll need a query such as the following:

SELECT sum(pg_database_size(datname)) from pg_database;

How it works...
The database server knows which tables it has loaded. It also knows how to calculate the
size of each table, so the pg_database_size() function just looks at the file sizes.

How much disk space does a table use?
The maximum supported table size in the default configuration is 32 TB and it does not
require large file support from the operating system. The filesystem size limits do not
impact the large tables, as they are stored in multiple 1 GB files.

Large tables can suffer performance issues. Indexes can take much longer to update and
query performance can degrade. In this recipe, we will see how to measure the size of a
table.

How to do it…
We can see the size of a table by using this command:

cookbook=# select pg_relation_size('pgbench_accounts');

The output of this command is as follows:

pg_relation_size

 13582336

(1 row)

68 Exploring the Database

We can also see the total size of a table, including indexes and other related spaces,
as follows:

cookbook=# select pg_total_relation_size('pgbench_accounts');

The output is as follows:

pg_total_relation_size

 15425536

(1 row)

We can also use a psql command, like this:

cookbook=# \dt+ pgbench_accounts

 List of relations

 Schema | Name | Type | Owner | Size |
Description

--------+------------------+-------+--------+-------+---------

 gianni | pgbench_accounts | table | gianni | 13 MB |

(1 row)

How it works…
In PostgreSQL, a table is made up of many relations. The main relation is the data table. In
addition, there are a variety of additional data files. Each index created on a table is also a
relation. Long data values are placed in a secondary table named TOAST, so, in most cases,
each table also has a TOAST table and a TOAST index.

Each relation consists of multiple data files. The main data files are broken into 1 GB
pieces. The first file has no suffix; others have a numbered suffix (such as .2). There are
also files marked _vm and _fsm, which represent the visibility map and free space map,
respectively. They are used as part of maintenance operations. They stay fairly small, even
for very large tables.

Which are my biggest tables? 69

There's more…
The preceding functions, which measure the size of a relation, output the number of
bytes, which is normally too large to be immediately clear. You can apply the pg_size_
pretty() function to format that number nicely, as shown in the following example:

SELECT pg_size_pretty(pg_relation_size('pgbench_accounts'));

This yields the following output:

pg_size_pretty

13 MB

(1 row)

TOAST stands for The Oversized-Attribute Storage Technique. As the name implies,
this is a mechanism used to store long column values. PostgreSQL allows many data
types to store values up to 1 GB in size. It transparently stores large data items in many
smaller pieces, so the same data type can be used for data ranging from 1 byte to 1 GB.
When appropriate, values are automatically compressed and decompressed before they
are split and stored, so the actual limit will vary, depending on compressibility.

You may also see files ending in _init; they are used by unlogged tables and their
indexes, for restoring them after a crash. Unlogged objects are called this way because they
do not produce WAL. So, they support faster writes, but in the event of a crash they must
be truncated; that is, restored to an empty state.

Which are my biggest tables?
We've looked at getting the size of a specific table, so now it's time to widen the problem
to related areas. Rather than having an absolute value for a specific table, let's look at the
relative sizes.

How to do it...
The following basic query will tell us the 10 biggest tables:

SELECT quote_ident(table_schema)||'.'||quote_ident(table_name)
as name

 ,pg_relation_size(quote_ident(table_schema)

 || '.' || quote_ident(table_name)) as size

FROM information_schema.tables

70 Exploring the Database

WHERE table_schema NOT IN ('information_schema', 'pg_catalog')

ORDER BY size DESC

LIMIT 10;

The tables are shown in descending order of size, with at the most 10 rows displayed.
In this case, we look at all the tables in all the schemas, apart from the tables in
information_schema or pg_catalog, as we did in the How many tables are in the
database? recipe.

How it works…
PostgreSQL provides a dedicated function, pg_relation_size, to compute the
actual disk space used by a specific table or index. We just need to provide the table
name. In addition to the main data files, there are other files (called forks) that can
be measured by specifying an optional second argument. These include the Visibility
Map (VM), the Free Space Map (FSM), and the initialization fork for unlogged objects.

How many rows are there in a table?
There is no limit on the number of rows in a table, but the table is limited to available disk
space and memory/swap space. If you are storing rows that exceed an aggregated data size
of 2 KB, then the maximum number of rows may be limited to 4 billion or fewer.

Counting is one of the easiest SQL statements, so it is also many people's first experience
of a PostgreSQL query.

How to do it…
From any interface, the SQL command used to count rows is as follows:

SELECT count(*) FROM table;

This will return a single integer value as the result.

In psql, the command looks like the following:

cookbook=# select count(*) from orders;

 count

 345

(1 row)

How many rows are there in a table? 71

How it works...
PostgreSQL can choose between two techniques available to compute the
SQL count(*) function. Both are available in all the currently supported versions:

• The first is called sequential scan. We access every data block in the table one after
the other, reading the number of rows in each block. If the table is on the disk, it will
cause a beneficial disk access pattern, and the statement will be fairly fast.

• The other technique is known as an index-only scan. It requires an index on
the table, and it covers a more general case than optimizing SQL queries
with count(*), so we will cover it in more detail in Chapter 10, Performance
and Concurrency.

Some people think that the count SQL statement is a good test of the performance
of a DBMS. Some DBMSs have specific tuning features for the count SQL statement,
and Postgres optimizes this using index-only scans. The PostgreSQL project has talked
about this many times, but few people thought we should try to optimize this. Yes,
the count function is frequently used within applications, but without any WHERE clause,
it is not that useful. Therefore, the index-only scans feature has been implemented, which
applies to more real-world situations, as well as this recipe.

We scan every block of the table because of a major feature of Postgres,
named Multiversion Concurrency Control (MVCC). MVCC allows us to run
the count SQL statement at the same time that we are inserting, updating, or deleting
data from the table. That's a very cool feature, and we went to a lot of trouble in Postgres
to provide it for you.

MVCC requires us to record information on each row of a table, stating when that change
was made. If the changes were made after the SQL statement began to execute, then
we just ignore those changes. This means that we need to carry out visibility checks on
each row in the table to allow us to work out the results of the count SQL statement.
The optimization provided by index-only scans is the ability to skip such checks on
the table blocks that are already known to be visible to all current sessions. Rows in these
blocks can be counted directly on the index, which is normally smaller than the table, and
is, therefore, faster.

If you think a little deeper about this, you'll see that the result of the count SQL statement
is just the value at a moment in time. Depending on what happens to the table, that value
could change a little or a lot while the count SQL statement is executing. So, once you've
executed this, all you really know is that, at a particular point in the past, there were
exactly x rows in the table.

72 Exploring the Database

Quickly estimating the number of rows in
a table
We don't always need an accurate count of rows, especially on a large table that may take a
long time to execute. Administrators often need to estimate how big a table is so that they
can estimate how long other operations may take.

How to do it…
The Postgres optimizer can provide a quick estimate of the number of rows in a table
simply by using its statistics:

EXPLAIN SELECT * FROM mytable;

 QUERY PLAN

--
--

 Seq Scan on mytable (cost=0.00..2640.00 rows=100000 width=97)

(1 row)

We can directly compute a similar number using roughly the same calculation:

SELECT (CASE WHEN reltuples > 0 THEN pg_relation_
size(oid)*reltuples/(8192*relpages)

ELSE 0

END)::bigint AS estimated_row_count

FROM pg_class

WHERE oid = 'mytable'::regclass;

This gives us the following output:

 estimated_row_count

 99960

(1 row)

Both queries return a row count very quickly, no matter how large the table that we are
examining is, because they use statistics that were collected in advance. You may want to
create a SQL function for the preceding calculation, so you won't need to retype the SQL
code every now and then.

Quickly estimating the number of rows in a table 73

The following function estimates the total number of rows using a mathematical
procedure called extrapolation. In other words, we take the average number of bytes per
row resulting from the last statistics collection, and we apply it to the current table size:

CREATE OR REPLACE FUNCTION estimated_row_count(text)

RETURNS bigint

LANGUAGE sql

AS $$

SELECT (CASE WHEN reltuples > 0 THEN

 pg_relation_size($1)*reltuples/(8192*relpages)

 ELSE 0

 END)::bigint

FROM pg_class

WHERE oid = $1::regclass;

$$;

How it works…
We saw the pg_relation_size() function earlier, so we know that it brings back an
accurate value for the current size of the table.

When we vacuum a table in Postgres, we record two pieces of information in the pg_
class catalog entry for the table. These two items are the number of data blocks
in the table (relpages) and the number of rows in the table (reltuples). Some
people think they can use the value of reltuples in pg_class as an estimate, but it
could be severely out of date. You will also be fooled if you use information in another
table named pg_stat_user_tables, which is discussed in more detail in Chapter
10, Performance and Concurrency.

The Postgres optimizer uses the relpages and reltuples values to calculate the
average rows per block, which is also known as the average tuple density.

If we assume that the average tuple density remains constant over time, then we can
calculate the number of rows using this formula: Row estimate = number of data blocks *
rows per block.

We include some code to handle cases where the reltuples or relpages fields are
zero. The Postgres optimizer actually works a little harder than we do in that case, so our
estimate isn't very good.

74 Exploring the Database

The WHERE oid = 'mytable'::regclass; syntax introduces the concept of object
identifier types. They just use a shorthand trick to convert the name of an object to the
object identifier number for that object. The best way to understand this is to think of that
syntax as meaning the same as a function named relname2relid().

There's more…
The good thing about the preceding recipe is that it returns a value in about the same time,
no matter how big the table is. The bad thing about it is that pg_relation_size()
requests a lock on the table, so if any other user has an AccessExclusiveLock lock on
the table, then the table size estimate will wait for the lock to be released before returning
a value.

Err... so what is an AccessExclusiveLock lock? While performing a SQL
maintenance action, such as changing the data type of a column, PostgreSQL will lock
out all other actions on that table, including pg_relation_size, which takes a lock in
the AccessShareLock mode. For me, a typical case is when I issue some form of SQL
maintenance action, such as ALTER TABLE, and the statement takes much longer than
I thought it would. At that point, I think, Oh, was that table bigger than I thought? How
long will I be waiting? Yes, it's better to calculate that beforehand, but hindsight doesn't get
you out of the hole you are in right now. So, we need a way to calculate the size of a table
without needing the lock.

A solution is to look at the operating system files that Postgres uses to store data, and
figure out how large they are, but that requires a high level of security than most people
usually allow. In any case, looking at files without a lock could cause problems if the table
were dropped or changed.

Listing extensions in this database
Every PostgreSQL database contains some objects that are automatically brought in when
the database is created. Every user will find a pg_database system catalog that lists
databases, as shown in the Listing databases on this database server recipe. There is little
point in checking whether these objects exist because even superusers are not allowed to
drop them.

On the other hand, PostgreSQL comes with tens of collections of optional objects,
called modules, or equivalently extensions. The database administrator can install or
uninstall these objects, depending on the requirements. They are not automatically
included in a newly created database because they might not be required by every use
case. Users will install only the extensions they actually need, when they need them; an
extension can be installed while a database is up and running.

Listing extensions in this database 75

In this recipe, we will explain how to list extensions that have been installed on the current
database. This is important for getting to know the database better, and also because
certain extensions affect the behavior of the database.

How to do it…
In PostgreSQL, there is a catalog table recording the list of installed extensions, so this
recipe is quite simple. Issue the following command:

cookbook=> SELECT * FROM pg_extension;

This results in the following output:

-[RECORD 1]--+--------

oid | 13693

extname | plpgsql

extowner | 10

extnamespace | 11

extrelocatable | f

extversion | 1.0

extconfig |

extcondition |

Note
Note that the format is expanded, as if the \x meta command has been
previously issued.

To get the same list with fewer technical details, you can use the \dx meta command, as
when listing databases.

How it works…
A PostgreSQL extension is represented by a control file, <extension name>.
control, located in the SHAREDIR/extension directory, plus one or more files
containing the actual extension objects. The control file specifies the extension name,
version, and other information that is useful for the extension infrastructure. Each time an
extension is installed, uninstalled, or upgraded to a new version, the corresponding row in
the pg_extension catalog table is inserted, deleted, or updated, respectively.

76 Exploring the Database

There's more…
In this recipe, we only mentioned extensions distributed with PostgreSQL, and solely
for the purpose of listing which ones are being used in the current database. The
infrastructure for extensions will be described in greater detail in Chapter 3, Server
Configuration. We will talk about the version number of an extension, and we will
show you how to install, uninstall, and upgrade extensions, including those distributed
independently of PostgreSQL.

See also
To get an idea of which extensions are available, you can browse the list of additional
modules shipped together with PostgreSQL, which are almost all extensions, at
https://www.postgresql.org/docs/current/static/contrib.html.

Understanding object dependencies
In most databases, there will be dependencies between objects in the database. Sometimes,
we need to understand these dependencies to figure out how to perform certain actions,
such as modifying or deleting existing objects. Let's look at this in detail.

Getting ready
We'll use the following simple database to understand and investigate them:

1. Create two tables as follows:

CREATE TABLE orders (

 orderid integer PRIMARY KEY

);

CREATE TABLE orderlines (

 orderid integer

,lineid smallint

,PRIMARY KEY (orderid, lineid)

);

2. Now, we add a link between them to enforce what is known as referential integrity,
as follows:

ALTER TABLE orderlines ADD FOREIGN KEY (orderid)

REFERENCES orders (orderid);

https://www.postgresql.org/docs/current/static/contrib.html

Understanding object dependencies 77

3. If we try to drop the referenced table, we get the following message:

DROP TABLE orders;

ERROR: cannot drop table orders because other objects
depend on it

DETAIL: constraint orderlines_orderid_fkey on table
orderlines depends on table orders

HINT: Use DROP ... CASCADE to drop the dependent objects
too.

Be very careful! If you follow the hint, you may accidentally remove all the objects that
have any dependency on the orders table. You might think that this would be a great
idea, but it is not the right thing to do. It might work, but we need to ensure that it
will work.

Therefore, you need to know what dependencies are present on the orders table, and
then review them. Then, you can decide whether it is okay to issue the CASCADE version
of the command, or whether you should reconcile the situation manually.

How to do it…
You can use the following command from psql to display full information about a table,
the constraints that are defined upon it, and the constraints that reference it:

\d+ orders

You can also get specific details of the constraints by using the following query:

SELECT * FROM pg_constraint

WHERE confrelid = 'orders'::regclass;

The aforementioned queries only covered constraints between tables. This is not the end
of the story, so read the There's more... section.

How it works…
When we create a foreign key, we add a constraint to the catalog table, known as pg_
constraint. Therefore, the query shows us how to find all the constraints that depend
upon the orders table.

78 Exploring the Database

There's more…
With Postgres, there's always a little more when you look beneath the surface. In this case,
there's a lot more, and it's important.

We didn't discuss dependencies with other kinds of objects. Two important types of
objects that might have dependencies on tables are views and functions.

Consider the following command:

DROP TABLE orders;

If you issue this, the dependency on any of the views will prevent the table from being
dropped. So, you need to remove those views and then drop the table.

The story with function dependencies is not as useful. Relationships between
functions and tables are not recorded in the catalog, nor is the dependency
information between functions. This is partly due to the fact that most PostgreSQL
procedural languages allow dynamic query execution, so you wouldn't be able to tell
which tables or functions a function would access until it executes. That's only partly the
reason because most functions clearly reference other tables and functions, so it should be
possible to identify and store those dependencies. However, right now, we don't do that.
So, make a note that you need to record the dependency information for your functions
manually so that you'll know if and when it's okay to remove or alter a table or other
objects that the functions depend on.

3
Server Configuration
I get asked many questions about parameter settings in PostgreSQL. Everybody's
busy, and most people want a 5-minute tour of how things work. That's exactly what a
cookbook does, so we'll do our best.

Some people believe that some magical parameter settings will improve their
performance and spend hours combing the pages of books to glean insights. Others feel
comfortable because they have found a website somewhere that explains everything, and
they know they have their database configured OK.

For the most part, the settings are easy to understand. Finding the best setting can be
difficult, and the optimal setting may change over time. This chapter is mostly about
knowing how, when, and where to change parameter settings.

In this chapter, we will cover the following recipes:

• Read the fine manual

• Planning a new database

• Setting configuration parameters for the database server

• Setting configuration parameters in your programs

• Finding the configuration settings for your session

• Finding parameters with non-default settings

80 Server Configuration

• Setting parameters for particular groups of users

• A basic server configuration checklist

• Adding an external module to PostgreSQL

• Using an installed module/extension

• Managing installed extensions

RTFM
RTFM is often (rudely) used to mean don't bother me; I'm busy, or it is used as a stronger
form of abuse. The strange thing is that asking you to read a manual is most often very
good advice. Take the advice! The most important point to remember is that you
should refer to a manual whose release version matches that of the server on which you
are operating.

The PostgreSQL manual is very well written and comprehensive in its coverage of specific
topics. However, one of its main failings is that the documents aren't organized in a way
that helps somebody who is trying to learn PostgreSQL. They are organized from the
perspective of people checking specific technical points so that they can decide whether
their difficulty is a user error. It sometimes answers what? but it seldom answers why?
or how?.

I've helped write sections of PostgreSQL documents, so I'm not embarrassed to steer you
toward reading them. There are, nonetheless, many things to read here that are useful.

How to do it…
The main documents for each PostgreSQL release are available at http://www.
postgresql.org/docs/manuals/.

These are the most frequently accessed parts of the documents:

• The Structured Query Language (SQL) command reference, as well as client and
server tools' reference (http://www.postgresql.org/docs/current/
interactive/reference.html)

• Configuration (http://www.postgresql.org/docs/current/
interactive/runtime-config.html)

• Functions (http://www.postgresql.org/docs/current/
interactive/functions.html)

http://www.postgresql.org/docs/manuals/
http://www.postgresql.org/docs/manuals/
http://www.postgresql.org/docs/current/interactive/reference.html
http://www.postgresql.org/docs/current/interactive/reference.html
http://www.postgresql.org/docs/current/interactive/runtime-config.html
http://www.postgresql.org/docs/current/interactive/runtime-config.html
http://www.postgresql.org/docs/current/interactive/functions.html
http://www.postgresql.org/docs/current/interactive/functions.html

Planning a new database 81

You can also grab yourself a PDF version of the manual, which can allow for easier
searching in some cases. Don't print it! The documents are about 2,800 pages of A4-sized
sheets.

How it works…
PostgreSQL documents are written in Standard Generalized Markup Language (SGML),
which is similar to, but not the same as, Extensible Markup Language (XML). These files
are then processed to generate HyperText Markup Language (HTML) files, PDFs, and so
on. This ensures that all the formats have exactly the same content. Then, you can choose
the format you prefer, and you can even compile it in other formats, such as EPUB, INFO,
and so on.

Moreover, the PostgreSQL manual is actually a subset of the PostgreSQL source code, so it
evolves together with the software. It is written by the same people who make PostgreSQL,
which gives you even more reasons to read it!

There's more…
More information is also available at http://wiki.postgresql.org.

Many distributions offer packages that install static versions of the HTML documentation.
For example, on Debian and Ubuntu, the documentation for the most recent stable
PostgreSQL version is named postgresql-doc-14.

Planning a new database
Planning a new database can be a daunting task. It's easy to get overwhelmed by it, so
here, we will present some planning ideas. It's also easy to charge headlong at the task,
thinking that whatever you know is all you'll ever need to consider.

Getting ready
You are ready. Don't wait to be told what to do. If you haven't been told what
the requirements are, then write down what you think they are, clearly labeling them
as assumptions rather than requirements; you must not confuse the two.

Iterate until you get some agreement, and then build a prototype.

http://wiki.postgresql.org

82 Server Configuration

How to do it…
Write a document that covers the following items:

• Database design—plan your database design.

• Calculate the initial database sizing.

• Transaction analysis—how will we access the database?

• Look at the most frequent access paths (for example, queries).

• What are the requirements for the response times?

• Hardware specification (yes—still needed in the cloud).

• Initial performance thoughts—will all of the data fit into the available random-
access memory (RAM)?

• Choose the operating system (OS) and filesystem types.

• Localization plan.

• Decide the server encoding, locale, and time zone.

• Access and security administration plan.

• Identify client systems and specify the required drivers.

• Create roles according to a plan for access control.

• Specify connection routes and authentication for the server in pg_hba.conf.

• Monitoring—are there PostgreSQL plugins for the monitoring solution you are
already using (usually yes)? What are the business-specific metrics we need to
monitor?

• Maintenance plan—who will keep it working? How?

Setting configuration parameters for the database server 83

• Availability plan—consider the availability requirements.

• And if you are working with a cloud database cluster, you should also consider
the following:

 � Plan your backup mechanism and test it.

 � High-availability (HA) plan.

 � Decide which form of replication you'll need—if any.

How it works…
One of the most important reasons for planning your database ahead of time is that
retrofitting some things is difficult. This is especially true of server encoding and locale,
which can cause much downtime and exertion if we need to change them later. Security is
also much more difficult to set up when the system is nearly live.

There's more…
Planning always helps. You may know what you're doing, but others may not. Tell
everybody what you're going to do before you do it to avoid wasting time. If you're
not sure yet, then build a prototype to help you decide. Approach the administration
framework as if it were a development task. Make a list of things you don't know yet, and
work through them one by one.

This is deliberately a very short recipe. Everybody has their own way of doing things, and
it's very important not to be too prescriptive about how to do things. If you already have a
plan, great! If you don't, think about what you need to do, make a checklist, and then do it.

Setting configuration parameters for the
database server
The parameter file is the main location that's used for defining parameter values for
the PostgreSQL server. All the parameters can be set in the parameter file, which is
known as postgresql.conf. There are also two other parameter files: pg_hba.
conf and pg_ident.conf. Both of these relate to connections and security, so
we'll cover them in later chapters.

84 Server Configuration

Getting ready
In the pg_settings view, the context defines when each parameter can be set. The
following table categorizes this so that we can see what action is needed for changes
to take effect. SET is a command, but RELOAD and RESTART are actions, not specific
commands. What is RESTART ALL? Some parameters marked POSTMASTER are
marked as exceptions in the following table. These parameters must be set to a value less than
or equal to their setting on standby. As a result, to increase them on the primary, we must
first increase them on ALL standby nodes and then restart before restarting the primary
node—for example, max_connections:

Figure 3.1 – Parameter context shows when changes take effect

To simplify the preceding table, we have avoided mentioning two more complex contexts.

Setting configuration parameters for the database server 85

How to do it…
Let's start by looking at this in the cloud, then move on to a discussion on command-line
actions for on-prem users. With EDB BigAnimal as a specific example, follow these steps:

1. Navigate to https://portal.biganimal.com and log in.
2. On the left navigation bar, select Clusters and locate your specific cluster.
3. On the right-hand side, select Edit cluster:

Figure 3.2 – Cluster Info

https://portal.biganimal.com/

86 Server Configuration

4. On the Edit Cluster page, select the DB Configuration tab:

Figure 3.3 – Edit Cluster | DB Configuration tab with a search on one parameter

The preceding example shows how to find the log_lock_waits parameter, then flip the
radio button to on, then if you are happy, save the results.

Once parameters have been changed, the server will reload automatically. If any changed
parameters are marked with a yellow exclamation mark (!), the server will restart, though
if the parameter is on the Exceptions list, this will cause the standbys to be restarted before
restarting the primary.

How it works…
On cloud-based PostgreSQL deployments, it is typical that access to the superuser
is restricted, so a graphical user interface (GUI) is often available to allow configuration
changes.

With more than 300 settable parameters, it is better to search for them individually and
change the values. Hit Save to keep the changed settings before you leave the screen.

Setting configuration parameters for the database server 87

There's more…
In some cases, you may have direct access to the parameter files, in which case we
need to locate postgresql.conf, as described in Finding the configuration settings for
your session recipe.

After changing parameters marked SIGHUP, we issue a reload command to the server,
forcing PostgreSQL to re-read the postgresql.conf file (and all other configuration
files). There are a number of ways to do that, depending on your distribution and OS. The
most common way is to issue the following command, with the same OS user that runs
the PostgreSQL server process:

pg_ctl reload

This assumes the default data directory; otherwise, you have to specify the correct data
directory with the -D option.

As we previously noted, Debian and Ubuntu have a different multiversion architecture, so
you should issue the following command instead:

pg_ctlcluster 14 main reload

On modern distributions, you should use systemd, as follows:

sudo systemctl reload postgresql@14-main

Note
See the Starting the database server manually recipe in Chapter 4, Server
Control, for more details on how to manage PostgreSQL via systemd;
the Reloading the server configuration files recipe, also in Chapter 4, Server
Control, shows more ways to reload configuration files.

After changing parameters marked POSTMASTER, we issue a restart of the server for
changes to take effect—for instance, listen_addresses. The syntax is very similar to
a reload operation, as shown here:

pg_ctl restart

For Debian and Ubuntu, use this command:

pg_ctlcluster 14 main restart

88 Server Configuration

With system, use this command:

sudo systemctl restart postgresql@14-main

Of course, a restart also has some impact on existing connections. See the Restarting the
server quickly recipe in Chapter 4, Server Control, for further details.

The postgresql.conf file is a normal text file that can be simply edited. Most of the
parameters are listed in the file, so you can just search for them and then insert the desired
value in the right place.

If you set the same parameter twice in different parts of the file, the last setting is what
applies. This can cause lots of confusion if you add settings to the bottom of the file, so you
are advised against doing this.

A longstanding and good practice is to version-control configuration files by using Git
alongside any other code or configuration changes. An even better alternative is to use
configuration management software such as Ansible, Chef, or Puppet, rather than editing
configuration files directly.

The postgresql.conf file also supports an include directive. This allows the
postgresql.conf file to reference other files, which can then reference other files, and
so on. That may help you organize your parameter settings better if you don't make it too
complicated.

For more on reloading, see the Reloading the server configuration files recipe in Chapter 4,
Server Control.

Furthermore, you can change the values stored in the parameter files directly from your
session with syntax such as the following, if you have superuser access:

ALTER SYSTEM SET shared_buffers = '1GB';

The behavior of this syntax is quite different compared to the other setting-related
commands: you run it from within your session, and it changes the default value but not
the value in the current session.

Setting configuration parameters in your programs 89

This command will not actually edit postgresql.conf. Instead, it writes the new
setting to another file named postgresql.auto.conf. The effect is equivalent, albeit
in a crash-safe way. The original configuration is never written, so it cannot be damaged
in the event of a crash. If you mess up with too many ALTER SYSTEM commands, you
can always delete postgresql.auto.conf manually and reload the configuration or
restart PostgreSQL, depending on which parameters you changed. However, there are no
serious checks on values passed to ALTER SYSTEM, so it's relatively easy to break the
configuration of the system and have the server fail to start when the server does actually
restart—which might be via a different person—sometime later.

Setting configuration parameters in
your programs
PostgreSQL allows you to override some parameter settings for each session or transaction
using SQL commands. Here are some examples of parameters that are designed to be
user-modifiable:

• application_name—to help identify the session for monitoring

• synchronous_commit—to set the level of durability desired

• Various timeouts and check intervals:

 � client_connection_check_interval

 � idle_on_transaction_session_timeout

 � idle_session_timeout

 � lock_timeout

 � statement_timeout

• Client-tuning parameters:

 � commit_siblings

 � cursor_tuple_fraction

 � maintenance_work_mem

 � vacuum_cost_delay

 � work_mem

90 Server Configuration

• Data type-specific settings:

 � bytea_output

 � DateStyle

 � xmlbinary

 � xmloption

• Optimization settings (too many to list, but not normally changed)

How to do it…
Execute the following steps to set custom parameters:

1. You can change the value of a setting during your session, like this:

SET work_mem = '16MB';

2. This value will then be used for every future transaction. You can also change it only
for the duration of the current transaction:

SET LOCAL work_mem = '16MB';

3. The setting will last until you issue this command:

RESET work_mem;

4. Alternatively, you can issue the following command:

RESET ALL;

The SET and RESET commands are SQL commands that can be issued from any interface.
They apply only to PostgreSQL server parameters, but this does not mean that they affect
the entire server. In fact, the parameters you can change with SET and RESET apply
only to the current session. Also, note that there may be other parameters, such as Java
Database Connectivity (JDBC) driver parameters, that cannot be set in this way. Refer
to the Connecting to the PostgreSQL server recipe in Chapter 1, First Steps, for help with
those parameters.

How it works…
Suppose you change the value of a setting during your session—for example, by issuing
this command:

SET work_mem = '16MB';

Setting configuration parameters in your programs 91

Then, the following will show up in the pg_settings catalog view:

postgres=# SELECT name, setting, reset_val, source FROM pg_
settings WHERE source = 'session';

 name | setting | reset_val | source

----------+---------+-----------+---------

 work_mem | 16384 | 4096 | session

This will show until you issue this command:

RESET work_mem;

After issuing it, the setting returns to reset_val, and source returns to the default:

 name | setting | reset_val | source

---------+---------+-----------+---------

work_mem | 4096 | 4096 | default

There's more…
You can change the value of a setting during your transaction as well, like this:

SET LOCAL work_mem = '16MB';

This results in the following output:

WARNING: SET LOCAL can only be used in transaction blocks

SET

In order to understand what the warning means, we can look that setting up in the pg_
settings catalog view:

postgres=# SELECT name, setting, reset_val, source FROM pg_
settings WHERE source = 'session';

 name | setting | reset_val | source

----------+---------+-----------+---------

 work_mem | 4096 | 4096 | session

92 Server Configuration

Huh? What happened to your parameter setting? The SET LOCAL command takes
effect only for the transaction in which it was executed, which was just the SET LOCAL
command in our case. We need to execute it inside a transaction block to be able to see
the setting take hold, as follows:

BEGIN;

SET LOCAL work_mem = '16MB';

Here is what shows up in the pg_settings catalog view:

postgres=# SELECT name, setting, reset_val, source

 FROM pg_settings WHERE source =
'session';

 name | setting | reset_val | source

----------+---------+-----------+---------

 work_mem | 16384 | 4096 | session

You should also note that the value of source is session rather than transaction,
as you might have been expecting.

Finding the configuration settings for your
session
At some point, it will occur to you to ask: What are the current configuration settings?

Most settings can be changed in more than one way, and some ways do not affect all users
or all sessions, so it is quite possible to get confused.

How to do it…
Your first thought is probably to look in postgresql.conf, which is the configuration
file and is described in detail in the Updating the parameter file recipe. That works, but
only as long as there is only one parameter file. If there are two, then maybe you're reading
the wrong file! How would you know? So, the cautious and accurate way is to not trust a
text file but to trust the server itself.

Moreover, you learned in the previous recipe, Setting configuration parameters in your
programs that each parameter has a scope that determines when it can be set. Some
parameters can be set through postgresql.conf, but others can be changed afterward.
So, the current values of the configuration settings may have been subsequently changed.

Finding the configuration settings for your session 93

We can use the SHOW command like this:

postgres=# SHOW work_mem;

This is its output:

work_mem

4MB

(1 row)

However, remember that it reports the current setting at the time it is run, and that can be
changed in many places.

Another way of finding the current settings is to access a PostgreSQL catalog view named
pg_settings:

postgres=# \x

Expanded display is on.

postgres=# SELECT * FROM pg_settings WHERE name = 'work_mem';

[RECORD 1] --

name | work_mem

setting | 4096

unit | kB

category | Resource Usage / Memory

short_desc | Sets the maximum memory to be used for query
workspaces.

extra_desc | This much memory can be used by each internal sort
operation and hash table before switching to temporary disk
files.

context | user

vartype | integer

source | default

min_val | 64

max_val | 2147483647

enumvals |

boot_val | 4096

reset_val | 4096

sourcefile |

sourceline |

94 Server Configuration

Thus, you can use the SHOW command to retrieve the value for a setting, or you can access
full details using the catalog table.

The actual location of each configuration file can be queried directly to the PostgreSQL
server, as shown in this example:

postgres=# SHOW config_file;

This returns the following output, depending upon the OS distribution:

 config_file

--

 /etc/postgresql/14/main/postgresql.conf

(1 row)

This shows the top-level file, which may include directives to other files.

The other configuration files can be located by querying similar variables—that is, hba_
file and ident_file.

How it works…
Each parameter setting is cached within each session so that we can get quick access to the
parameter settings. This allows us to access the parameter settings with ease.

Remember that the values displayed are not necessarily settings for the server as a whole.
Many of those parameters will be specific to the current session. That's different from what
you experience with many other types of database software, and it is also very useful.

Finding parameters with non-default settings
Often, we need to check which parameters have been changed, or whether our changes
have taken effect correctly.

In the previous two recipes, we have seen that parameters can be changed in several ways
and with different scopes. You learned how to inspect the value of one parameter or get a
full list of parameters.

Finding parameters with non-default settings 95

In this recipe, we will show you how to use SQL capabilities to list only those parameters
whose value in the current session differs from the system-wide default value.

This list is valuable for several reasons. First, it includes only a few of the 200+ available
parameters, so it is more immediate. Also, it is difficult to remember all our past actions,
especially in the middle of a long or complicated session.

How to do it…
We write an SQL query that lists all parameter values, excluding those whose current
value is either the default or set from a configuration file:

postgres=# SELECT name, source, setting, reset_val

 FROM pg_settings

 WHERE source != 'default'

 AND source != 'override'

 AND setting != reset_val

 ORDER by 2, 1;

The output is displayed here, where reset_val shows what happens if you issue RESET:

 name | source | setting | reset_val

----------+-----------+-------------+-----------

 TimeZone | session | Europe/Rome | Etc/UTC

How it works...
From pg_settings, you can see which parameters have non-default values, and what
the source of the current value is. The SHOW command only tells you the current value
but doesn't tell you whether a parameter is set at a non-default value. If the source is a
configuration file, then the sourcefile and sourceline columns are also set. These
can be useful in understanding where the configuration came from.

96 Server Configuration

There's more...
The setting column of pg_settings shows the current value, but you can also look
at the boot_val parameter. boot_val shows the value that was assigned when the
PostgreSQL database cluster was initialized (initdb). On a typical configuration, you
will see more than 40 parameters that differ from their boot_val parameter, but this is
simply because many parameters are configured after initialization. Unfortunately, there
is no way to view whether those values are "normal" purely by looking at pg_settings.
Having said that, on BigAnimal, you can show custom values by selecting the drop-down
filter that says Show only:, as shown here:

Figure 3.4 – Edit Cluster | DB Configuration tab with the Custom Values filter

Setting parameters for particular groups
of users
PostgreSQL supports a variety of ways of defining parameter settings for various user
groups. This is very convenient, especially for managing user groups that have
different requirements.

Setting parameters for particular groups of users 97

How to do it…
Follow these steps to set parameters at various levels as per the requirements:

1. For all users in the saas database, use the following commands:

ALTER DATABASE saas

SET configuration_parameter = value1;

2. For a user named simon connected to any database, use the following commands:

ALTER ROLE simon

SET configuration_parameter = value2;

3. Alternatively, you can set a parameter for a user only when they're connected to a
specific database, as follows:

ALTER ROLE simon

IN DATABASE saas

SET configuration_parameter = value3;

The user won't know that these have been executed specifically for them. These are default
settings, and in most cases, they can be overridden if the user requires non-default values.

How it works…
You can set parameters for each of the following:

• Database

• User (also called role by postgreSQL)

• Database and user combination

Each of the parameter defaults is overridden by the one following it.

As an example, we may wish to set the value of the work_mem configuration parameter.
In the preceding three SQL statements, the following applies:

• If gianni connects to the saas database, then value1 will apply.

• If simon connects to a database other than saas, then value2 will apply.

• If simon connects to the saas database, then value3 will apply.

PostgreSQL implements this in exactly the same way as if the user had manually issued
the equivalent SET statements immediately after connecting.

98 Server Configuration

A basic server configuration checklist
PostgreSQL arrives configured for use on a shared system, though many people want to
run dedicated database systems. The PostgreSQL project wishes to ensure that PostgreSQL
will play nicely with other server software and will not assume that it has access to
full server resources. If you, as the system administrator, know that there is no other
important server software running on the system, then you can crank the values up much
higher. The default values are conservative, so for many workloads, you will want a much
larger value.

Getting ready
Before we start, we need to know two sets of information:

• The size of the physical RAM that will be dedicated to PostgreSQL

• The types of applications for which you will use PostgreSQL

How to do it…
If your database is larger than 128 megabytes (MB), then you'll probably benefit from
increasing shared_buffers, the physical cache size. You can increase this to a much
larger value, but remember that running out of memory induces many problems.

For instance, PostgreSQL is able to store information on disk when the available memory
is too small, and it employs sophisticated algorithms to treat each case differently and to
place each piece of data on the disk or in memory, depending on each use case.

On the other hand, overstating the amount of available memory confuses such abilities
and results in suboptimal behavior. For instance, if the memory is swapped to disk, then
PostgreSQL will inefficiently treat all data as if it were the RAM. Another unfortunate
circumstance is when the Linux Out-Of-Memory (OOM) killer terminates one of the
various processes spawned by the PostgreSQL server. So, it's better to be conservative. It is
good practice to set a low value in your postgresql.conf file and increment slowly to
ensure that you get the benefits from each change.

There's more…
Don't worry about setting effective_cache_size. It is much less important a
parameter than you might think. Do not confuse this with the physical database cache,
which is the shared_buffers mentioned first.

Adding an external module to PostgreSQL 99

If there is heavy write activity, you may want to set wal_buffers to a much higher value
than the default. In fact, wal_buffers is automatically set from the value of shared_
buffers, following a rule that fits most cases. However, it is always possible to specify an
explicit value that overrides the computation for the very few cases where the rule is not
good enough.

If you're doing heavy write activity and/or large data loads, you may want to set max_
wal_size and min_wal_size higher than the default to avoid wasting input/output
(I/O) in excessively frequent checkpoints. You may also wish to set checkpoint_
timeout and checkpoint_completion_target.

PostgreSQL tries its best to decouple query latency from storage performance:
synchronous writes are limited to the Write-Ahead Logging (WAL) directory, and most
calculations are carried out in memory buffers. However, there are cases where a query
will need to use the disk before returning (for example, for reading data that was not
already cached), meaning that fewer checkpoints will actually improve query latency.

If your database has many large queries, you may wish to set work_mem to a value higher
than the default. However, remember that such a limit applies to each node separately in
the query plan, so there is a real risk of over-allocating memory, with all the problems we
discussed earlier.

Ensure that autovacuum is turned on unless you have a very good reason to turn it
off; most people don't. See later chapters for more information on autovacuum; in
particular, see Chapter 9, Regular Maintenance.

Leave the settings as they are for now. Don't fuss too much about getting the settings right.
You can change most of them later, so you can take an iterative approach to improving
things.

And remember—don't turn off the fsync parameter. It's keeping you safe.

Adding an external module to PostgreSQL
Another strength of PostgreSQL is its extensibility. Extensibility was one of the original
design goals, going back to the late 1980s. Now, in PostgreSQL 14, there are many
additional modules that plug into the core PostgreSQL server.

100 Server Configuration

There are many kinds of additional module offerings, such as the following:

• Additional functions

• Additional data types

• Additional operators

• Additional index types

Some extensions come preloaded with cloud services such as EDB BigAnimal, which
preloads pg_stat_statements and pgaudit when selecting a PostgreSQL database.
Other extensions are available from a pre-selected list, so move directly to the Using an
installed module/extension recipe if using PostgreSQL alongside a cloud service.

Many tools and client interfaces work with PostgreSQL without any special installation.
Here, we are discussing modules that extend and alter the behavior of the server beyond
its normal range of SQL standard syntax, functions, and behavior.

The procedure that makes a module usable is actually a two-step process. First, you install
the module's files on your system so that they become available to the database server.
Next, you connect to the database (or databases) where you want to use the module and
create objects as required. The first step is discussed in this recipe. For the second step,
refer to the next recipe, Using an installed module/extension.

In this book, we will use the words extension and module as synonyms, as we did in the
PostgreSQL documentation. Note, however, that these are the SQL commands to manage
extensions, which we'll describe in the next recipe:

• CREATE EXTENSION myext;

• ALTER EXTENSION myext UPDATE;

Getting ready
If you want an extension that is not pre-installed, you can choose from a wide range of
options from a number of sources, such as the following:

• Contrib: The PostgreSQL core includes many functions. There is also an official
section for add-in modules, known as contrib modules. They are always available
for your database server but are not automatically enabled in every database,
because not all users might need them. In PostgreSQL 14, we have 47 such modules.
These are documented at http://www.postgresql.org/docs/current/
static/contrib.html.

http://www.postgresql.org/docs/current/static/contrib.html
http://www.postgresql.org/docs/current/static/contrib.html

Adding an external module to PostgreSQL 101

• PGXN: This is the PostgreSQL Extension Network, a central distribution system
dedicated to sharing PostgreSQL extensions. The website started in 2010 as a
repository dedicated to the sharing of extension files. As of November 2018, there
were 279 extensions from 317 different authors. You can learn more about it
at http://pgxn.org/.

• Separate projects: These are large external projects, such as PostGIS,
offering extensive and complex PostgreSQL modules. For more information, take a
look at http://www.postgis.org/.

How to do it…
There are several ways to make additional modules available for your database server, as
follows:

• Using a software installer

• Installing from PGXN

• Installing from a manually downloaded package

• Installing from source code

Often, a particular module will be available in more than one way, and users are free to
choose their favorite, exactly as with PostgreSQL itself, which can be downloaded and
installed through many different procedures.

Installing modules using a software installer
Certain modules are available exactly like any other software packages that you may want
to install on your server. All main Linux distributions provide packages for the most
popular modules such as PostGIS, procedural languages other than those distributed with
the core, and so on.

Modules can sometimes be added during installation if you're using a standalone installer
application—for example, the OneClick installer, or tools such as rpm, apt-get,
and YaST on Linux distributions. The same procedure can also be followed after the
PostgreSQL installation when a need for a certain module arises. We will actually describe
this case, which is very common.

http://pgxn.org/
http://www.postgis.org/

102 Server Configuration

For example, let's say that you need to manage a collection of Debian package files and
that one of your tasks is to be able to pick the latest version of one of them. You start by
building a database that records all package files. Clearly, you need to store the version
number of each package. However, Debian version numbers are much more complex than
what we usually call numbers. For instance, Debian may use something such as 14.1-1.
pgdg90+1 for a version of the PostgreSQL client package. Despite being complicated,
that string follows a clearly defined specification that includes many bits of information,
including how to compare two versions to establish which of them is older.

Since this recipe discusses extending PostgreSQL with custom data types and operators,
you might have already guessed that I will now consider a custom data type for Debian
version numbers that is capable of tasks such as understanding the Debian version
number format, sorting version numbers, choosing the latest version number in a given
group, and so on. It turns out that somebody else already did the work of creating a
required PostgreSQL data type, endowed with all the useful accessories: comparison
operators, I/O functions, support for indexes, and maximum/minimum aggregates. All of
this has been packaged as a PostgreSQL extension as well as a Debian package (not a big
surprise), so it is just a matter of installing the postgresql-14-debversion package
with a Debian tool such as apt-get, aptitude, or synaptic. On my laptop, that boils
down to the following command:

apt-get install postgresql-14-debversion

This will download the required package and unpack all the files in the right locations,
making them available to my PostgreSQL server.

Installing modules from PGXN
PGXN is a website (http://pgxn.org) that was launched in late 2010 with the
purpose of providing a central distribution system for open source PostgreSQL extension
libraries. Anybody can register and upload their own module, packaged as an extension
archive. The website allows you to browse the available extensions and their versions,
either via a search interface or from a directory of packages and usernames.

The simple way is to use a command-line utility called pgxnclient. It can be easily
installed in most systems; see the PGXN website for how to do this. Its purpose is to
interact with PGXN and take care of administrative tasks, such as browsing available
extensions, downloading the package, compiling the source code, installing files in the
proper places, and removing installed package files. Alternatively, you can download the
extension files from the website and place them in the right location by following the
installation instructions.

http://pgxn.org

Adding an external module to PostgreSQL 103

PGXN is different compared with the official repositories because it serves another
purpose. Official repositories usually contain only seasoned extensions because they
accept new software only after a certain amount of evaluation and testing. On the other
hand, anybody can ask for a PGXN account and upload their own extensions, so there is
no filter except requiring that the extension has an open source license and a few files that
any extension must have.

Installing modules from source code
In many cases, useful modules may not have full packaging. In these cases, you may need
to install the module manually. This isn't very hard, and it's a useful exercise that will help
you understand what happens.

Each module will have different installation requirements. There are generally two aspects
to installing a module, as follows:

• Building the libraries (only for modules that have libraries)

• Installing the module files in the appropriate locations

You need to follow the instructions for the specific module to build the libraries if any are
required. The installation will then be straightforward, and there will usually be a suitably
prepared configuration file for the make utility, so you just need to type the following
command:

make install

Each file will be copied to the right directory. Remember that you normally need to be a
system superuser in order to install files on the system's directories.

Once a library file is in the directory expected by the PostgreSQL server, it will be loaded
automatically as soon as requested by a function.

How it works...
PostgreSQL can dynamically load libraries in the following ways:

• Using the explicit LOAD command in a session

• Using the shared_preload_libraries parameter in postgresql.conf at
the server start

• At the session start, using the local_preload_libraries parameter for a
specific user, as set using ALTER ROLE

104 Server Configuration

PostgreSQL functions and objects can reference code in these libraries, allowing
extensions to be bound tightly to the running server process. The tight binding makes
this method suitable for use in even very high-performance applications, and there's no
significant difference between additionally supplied features and native features.

Using an installed module/extension
In this recipe, we will explain how to enable an installed module so that it can be used in
a particular database. The additional types, functions, and so on will exist only in those
databases where we have carried out this step.

As we mentioned in the previous recipe, Adding an external module to PostgreSQL,
specially packaged modules are called extensions in PostgreSQL. They can be managed
with dedicated SQL commands.

Getting ready
The pg_available_extensions system view shows one row for each extension that
can be installed. All you need to know is the extension name.

How to do it…
Each extension has a unique name, so it is just a matter of issuing the following command:

CREATE EXTENSION myextname;

This will automatically create all required objects inside the current database.

For security reasons, you need to do this as a database superuser. For instance, if you want
to install the dblink extension, type this:

CREATE EXTENSION dblink;

How it works...
When you issue a CREATE EXTENSION command, the database server looks for a file
named EXTNAME.control in the SHAREDIR/extension directory. That file tells
PostgreSQL some properties of the extension, including a description, some installation
information, and the default version number of the extension (which is unrelated to the
PostgreSQL version number). Then, a creation script is executed in a single transaction;
thus, if it fails, the database is unchanged. The database server also notes down the
extension name and all the objects that belong to it in a catalog table.

Managing installed extensions 105

Managing installed extensions
In the previous two recipes, we showed you how to install external modules in PostgreSQL
to augment its capabilities.

In this recipe, we will show you some more capabilities that are offered by the extension
infrastructure.

How to do it…
Here are the steps to manage extensions:

1. First, we list all the available extensions:

postgres=# \x on

Expanded display is on.

postgres=# SELECT *

postgres-# FROM pg_available_extensions

postgres-# ORDER BY name;

-[RECORD 1]-----+-----------------------------------

name | adminpack

default_version | 2.0

installed_version |

comment | administrative functions for
PostgreSQL

-[RECORD 2]-----+-----------------------------------

name | pg_stat statements

default_version | 1.6

installed_version |

comment | track execution statistics of all SQL
statements executed

(...)

In particular, if the dblink extension is installed, then we see a record such as this:
-[RECORD 10]----+-----------------------------------

name | dblink

default_version | 1.2

installed_version | 1.2

comment | connect to other PostgreSQL databases
from within a database

106 Server Configuration

2. Now, we can list all objects in the dblink extension, as follows:

postgres=# \x off

Expanded display is off.

postgres=# \dx+ dblink

 Objects in extension "dblink"

 Object Description

--

 function dblink_build_sql_
delete(text,int2vector,integer,text[])

 function dblink_build_sql_
insert(text,int2vector,integer,text[],text[])

 function dblink_build_sql_
update(text,int2vector,integer,text[],text[])

 function dblink_cancel_query(text)

 function dblink_close(text)

 function dblink_close(text,boolean)

 function dblink_close(text,text)

(...)

3. Objects created as parts of extensions are not special in any way, except that you
can't drop them individually. This is done to protect you from mistakes:

postgres=# DROP FUNCTION dblink_close(text);

ERROR: cannot drop function dblink_close(text) because
extension dblink requires it

HINT: You can drop extension dblink instead.

4. Extensions might have dependencies, too. The cube and earthdistance
contrib extensions are a good example since the latter depends on the former:

postgres=# CREATE EXTENSION earthdistance;

ERROR: required extension "cube" is not installed

HINT: Use CREATE EXTENSION ... CASCADE to install
required extensions too.

postgres=# CREATE EXTENSION earthdistance CASCADE;

NOTICE: installing required extension "cube"

CREATE EXTENSION

Managing installed extensions 107

Note how the CASCADE keyword was used to automatically create all other
extensions that the extension being created depends on, as clearly reminded by
the HINT message.

5. As you can reasonably expect, dependencies are considered when dropping objects,
just as for other objects:

postgres=# DROP EXTENSION cube;

ERROR: cannot drop extension cube because other objects
depend on it

DETAIL: extension earthdistance depends on extension
cube

HINT: Use DROP ... CASCADE to drop the dependent objects
too.

postgres=# DROP EXTENSION cube CASCADE;

NOTICE: drop cascades to extension earthdistance

DROP EXTENSION

How it works…
The pg_available_extensions system view shows one row for each extension
control file in the SHAREDIR/extension directory (see the Using an installed module/
extension recipe). The pg_extension catalog table records only extensions that have
already been created.

The psql command-line utility provides the \dx meta-command to examine the
extensions. It supports an optional plus sign (+) to control verbosity, and an optional
pattern for the extension name to restrict its range. Consider the following command:

\dx+ db*

This will list all extensions whose names start with db, together with all their objects.

The CREATE EXTENSION command creates all objects belonging to a given extension
and then records the dependency of each object on the extension in pg_depend.
That's how PostgreSQL can ensure that you cannot drop one such object without dropping
its extension.

The extension control file admits an optional line, requires, that names one or more
extensions on which the current one depends. The implementation of dependencies is still
quite simple; for instance, there is no way to specify a dependency on a specific version
number of other extensions.

108 Server Configuration

As a general PostgreSQL rule, the CASCADE keyword tells the DROP command to
delete all objects that depend on cube, which is the earthdistance extension in
this example.

There's more…
Another system view, pg_available_extension_versions, shows all the versions
that are available for each extension. It can be valuable when there are multiple versions
of the same extension available at the same time—for example, when preparing for an
extension upgrade.

When a more recent version of an already installed extension becomes available to the
database server—for instance, because of a distribution upgrade that installs updated
package files—the superuser can perform an upgrade by issuing the following command:

ALTER EXTENSION mytext UPDATE TO '1.1';

This assumes that the author of the extension taught it how to perform the upgrade.

Extensions interact nicely with logical backup and restore nicely, a topic that will be fully
discussed in Chapter 11, Backup and Recovery. As an example, if your database contains
the cube extension, then you will surely want a single line (CREATE EXTENSION
cube) in the dump file instead of lots of lines recreating each object individually, which is
inefficient and also dangerous.

The use of CASCADE in a CREATE statement only applies to extensions because for other
object types, the dependency is not predefined in the object metadata and only exists after
creating a specific object (for example, a foreign key (FK)).

Remember that CREATE EXTENSION ... CASCADE will only work if all the
extensions it tries to install have already been placed in the appropriate location.

4
Server Control

The recipes in this chapter will show you how to control the database server directly.
Database servers in the cloud do not give access to the privileges that are required to
perform many of the actions listed in this chapter, but there are things worth considering
if you want to understand what is happening within.

This chapter covers the following recipes:

• Overview of controlling the database server

• Starting the database server manually

• Stopping the server safely and quickly

• Stopping the server in an emergency

• Reloading the server configuration files

• Restarting the server quickly

• Preventing new connections

• Restricting users to only one session each

• Pushing users off the system

• Deciding on a design for multitenancy

• Using multiple schemas

• Giving users their own private databases

110 Server Control

• Running multiple servers on one system

• Setting up a connection pool

• Accessing multiple servers using the same host and port

Overview of controlling the database server
PostgreSQL consists of a set of server processes, the group leader of which is named
the postmaster, though that name is not visible as a process title in later versions. Starting
the server is the act of creating these processes, and stopping the server is the act of
terminating those processes.

Each postmaster listens for client connection requests on a defined port number. Multiple
concurrently running postmasters cannot share that port number. The port number is
often used to uniquely identify a particular postmaster and hence also the database server
that it leads.

When we start a database server, we refer to a data directory, which contains the heart
and soul – or at least the data – of our database. Subsidiary tablespaces may contain some
data outside the main data directory, so the data directory is just the main central
location and not the only place where data for that database server is held. Each running
server has, at a minimum, one data directory; one data directory can have, at most, one
running server (or instance).

To perform any action on a database server, we must know the data directory for that
server. The basic actions we can perform on the database server are starting and stopping.
We can also perform a restart, though that is just a stop followed by a start. In addition, we
can reload the server, which means that we can reread the server's configuration files.

We should also mention a few other points.

The default port number for PostgreSQL is 5432. This has been registered with
the Internet Assigned Numbers Authority (IANA), so it should already be reserved for
PostgreSQL's use in most places. Because each PostgreSQL server requires a distinct port
number, the normal convention is to use subsequent numbers for any additional server –
for example, 5433 and 5434. Subsequent port numbers may not be as easily recognized
by the network infrastructure, which may, in some cases, make life more difficult for you
in large enterprises, especially in more security-conscious ones.

Port number 6432 has been registered with IANA for PgBouncer, the connection
pooler that we will describe in the Setting up a connection pool recipe. This only happened
recently, and many installations are using non-standard port numbers such as 6543
because they were deployed earlier.

Starting the database server manually 111

A database server is also sometimes referred to as a database cluster. I don't recommend
this term for normal usage as it makes people think about multiple nodes and not one
database server on one system.

Starting the database server manually
Typically, the PostgreSQL server will start automatically when the system boots. You may
opt to stop and start the server manually, or you may need to start it or shut it down for
various operational reasons.

Getting ready
First, you need to understand the difference between the service and the server. The
word server refers to the database server and its processes. The word service refers to the
operating system wrapper that the server gets called by. The server works in essentially the
same way on every platform, whereas each operating system and distribution has its own
concept of a service.

Moreover, the way services are managed has changed recently: for instance, at the time
of writing, most Linux distributions have adopted the systemd service manager. This
means that you need to know which distribution and release you are using to find the
correct variant of this recipe.

With systemd, a PostgreSQL server process is represented by a service unit, which is
managed via the systemctl command. The systemd command syntax is the same
on all distributions, but the name of the service unit isn't. For example, it will have to be
adjusted depending on your distribution.

In other cases, you need to type the actual data directory path as part of the command
line to start the server. More information on how to find out what is in the data directory
path can be found in the Locating the database server files recipe of Chapter 2, Exploring
the Database.

How to do it…
On each platform, there is a specific command to start the server.

If you are using a modern Linux distribution, then you are probably using systemd. In
this case, PostgreSQL can be started with the following command:

sudo systemctl start SERVICEUNIT

112 Server Control

This must be issued with operating system superuser privileges, after
replacing SERVICEUNIT with the appropriate systemd service unit name.

The systemctl command must always be issued with operating system superuser
privileges. Remember that, throughout this book, we will always prepend systemctl
invocations with sudo.

There are a couple of things to keep in mind:

• This will only work if the user executing the command has been previously granted
the appropriate sudo privileges by the system administrator.

• If the command is executed from a superuser account, then the sudo keyword is
unnecessary, although not harmful.

As we mentioned previously, the service unit name depends on what distribution you are
using, as follows:

• On Ubuntu and Debian, the service unit's name this as follows:

postgresql@RELEASE-CLUSTERNAME

• For each database server instance, there is another service unit called
postgresql, which can be used to manage all the database servers at once.
Therefore, you can issue the following command:

sudo systemctl start postgresql

• To start all the available instances, and to start only the default version 14 instance,
use the following command:

sudo systemctl start postgresql@14-main

• Default Red Hat/Fedora packages call the service unit simply postgresql, so the
syntax is as follows:

sudo systemctl start postgresql

• Red Hat/Fedora packages from the PostgreSQL Yum repository create a service unit
called postgresql--RELEASE, so we can start version 14 as follows:

sudo systemctl start postgresql-14

As we noted previously, systemctl is part of systemd, which is only available on
Linux and is normally used by most of the recent distributions.

The following commands can be used where systemd is not available.

Starting the database server manually 113

On Debian and Ubuntu releases, you must invoke the PostgreSQL-specific pg_
ctlcluster utility, as follows:

pg_ctlcluster 14 main start

This command will also work when systemd is available; it will just redirect the start
request to systemctl and print a message on the screen so that the next time, you will
remember to use systemctl directly.

For Red Hat/Fedora, you can use the following command:

service postgresql start

For Windows, the command is as follows:

net start postgres

For Red Hat/Fedora, you can also use the following command:

pg_ctl -D $PGDATA start

Here, PGDATA is set to the data directory path.

This command works on most distributions, including macOS, Solaris, and FreeBSD,
although bear the following points in mind:

• It is recommended that you use, whenever possible, the distribution-specific syntax
we described previously.

• You may have to specify the full path to the pg_ctl executable if it's not in your
path already. This is normally the case with multi-version directory schemes such as
Debian/Ubuntu, where distribution-specific scripts pick the appropriate executable
for your version.

How it works…
On Ubuntu/Debian, the pg_ctlcluster wrapper is a convenient utility that allows
multiple servers to coexist more easily, which is especially good when you have
servers with different versions. This was invented by Debian and is not found on other
PostgreSQL distributions. This capability is very useful and is transposed on systemd, as
shown in the examples using @ in the name of the service unit, where @ denotes the usage
of a service file template.

114 Server Control

Another interesting systemd feature is the capability to enable/ disable a service
unit to specify whether it will be started automatically on the next boot, with syntax such
as the following:

sudo systemctl enable postgresql@14-main

This can be very useful for setting the appropriate behavior based on the purpose of
each instance.

A similar feature is implemented on Ubuntu and Debian via the start.conf file, which
is located next to the other configuration files (that is, in the same directory). Apart
from the informational comments, it contains only a single word. These words have the
following meanings:

• auto: The server will be started automatically on boot. This is the default when
you're creating a new server. It is suitable for frequently used servers, such as those
powering live services or those being used for everyday development activities.

• manual: The server will not be started automatically on boot, but it can be started
with pg_ctlcluster. This is suitable for custom servers that are seldom used.

• disabled: The server is not supposed to be started. This setting only acts as
protection from starting the server accidentally. The pg_ctlcluster wrapper
won't let you start it, but a skilled user can easily bypass this protection.

If you need to reserve a port for a server that's not managed by pg_ctlcluster, such
as when you're compiling directly from the source code, then you can create a cluster
with start.conf set to disabled and then use its port. Any new servers will be
assigned different ports.

Stopping the server safely and quickly
There are several modes you can use to stop the server, depending on the level of urgency.
We'll compare the effects in each mode.

How to do it…
There are two variants: with and without systemd. This is similar to the previous
recipe, Starting the database server manually, which we'll refer to for further information.
For example, what is the exact name of the systemd service unit for a given database
server on a given GNU/Linux distribution?

Stopping the server safely and quickly 115

When using systemd, you can stop PostgreSQL using fast mode by issuing the following
after replacing SERVICEUNIT with the appropriate systemd service unit name:

sudo systemctl stop SERVICEUNIT

If systemd is not available and you are using Debian or Ubuntu, the command is as
follows, which applies to the default version 14 instance:

pg_ctlcluster 14 main stop -m fast

Fast mode is the default since PostgreSQL 9.5; the previous default was to use smart
mode, meaning wait for all users to finish before we exit. This can take a very long time,
and all while new connections are refused.

On other Linux/Unix distributions, you can issue a database server stop command using
fast mode, as follows:

pg_ctl -D datadir -m fast stop

How it works…
When you do a fast stop, all the users have their transactions aborted and all the
connections are disconnected. This is not very polite to users, but it still treats the server
and its data with care, which is good.

PostgreSQL is similar to other database systems in that it creates a shutdown checkpoint
before it closes. This means that the startup that follows will be quick and clean. The more
work the checkpoint has to do, the longer it will take to shut down.

One difference between PostgreSQL and some other RDBMSs, such as Oracle, DB2, and
SQL Server, is that the transaction rollback is very quick. On those other systems, if you
shut down the server in a mode that rolls back transactions, it can cause the shutdown
to take a while, possibly a very long time. This difference is for internal reasons and isn't
in any way unsafe. Debian and Ubuntu's pg_ctlcluster supports the --force
option, which is nice because it attempts a fast shutdown first; if that fails, it performs an
immediate shutdown. After that, it kills the postmaster.

See also
The technology that provides immediate rollback for PostgreSQL is called Multiversion
Concurrency Control (MVCC). More information on this is provided in the Identifying
and fixing bloated tables and indexes recipe in Chapter 9, Regular Maintenance.

116 Server Control

Stopping the server in an emergency
If nothing else is working, we may need to stop the server quickly, without caring about
disconnecting the clients gently.

Break the glass in case of emergency!

How to do it…
Follow these steps to stop the server:

1. The basic command to perform an emergency stop on the server is as follows:

pg_ctl -D datadir stop -m immediate

2. On Debian/Ubuntu, you can also use the following command:

pg_ctlcluster 14 main stop -m immediate

As we mentioned in the previous recipe, this is just a wrapper around pg_ctl. From this
example, we can see that it can pass through the -m immediate option.

In the previous recipe, we saw examples where the systemctl command was used
to stop a server safely; however, this command cannot be used to perform an
emergency stop.

How it works…
When you do an immediate stop, all the users have their transactions aborted and all
their connections are disconnected. There is no clean shutdown, nor is there politeness of
any kind.

An immediate mode stop is similar to a database crash. Some cached files will need to be
rebuilt, and the database itself will need to undergo crash recovery when it comes back up.

Note that for DBAs with Oracle experience, the immediate mode is the same thing
as a shutdown abort. The PostgreSQL immediate mode stop is not the same thing
as shutdown immediate on Oracle.

Reloading the server configuration files 117

Reloading the server configuration files
Some PostgreSQL configuration parameters can only be changed by reloading the
entire configuration files. Note that in some cloud-based database services, this occurs
automatically when parameters are changed, so this is not relevant.

How to do it…
There are two variants of this recipe, depending on whether you are using systemd.
This is similar to the previous recipes in this chapter, especially the Starting the database
server manually recipe. More details are provided there, such as the exact names of the
systemd service units, depending on which database server you want to reload, and
which GNU/Linux distribution you are working on.

With systemd, configuration files can be reloaded with the following syntax:

sudo systemctl reload SERVICEUNIT

Here, SERVICEUNIT must be replaced with the exact name of the systemd service unit
for the server(s) that you want to reload.

Otherwise, on each platform, there is a specific command you can use to reload the server
without using systemd. These commands are as follows:

• On Ubuntu and Debian, you can issue the following command:

pg_ctlcluster 14 main reload

• On older versions of Red Hat/Fedora, you must use the following command:

service postgresql reload

• You can also use the following command:

pg_ctl -D /var/lib/pgsql/data reload

This also works on macOS, Solaris, and FreeBSD, where you must replace /var/lib/
pgsql/data with your actual data directory if it's different.

On all platforms, you can also reload the configuration files while still connected to
PostgreSQL. If you are a superuser, or the privilege for this function has been granted to
you, this can be done with the following command:

postgres=# SELECT pg_reload_conf();

118 Server Control

The output is rather short:

 pg_reload_conf

 t

This function is also often executed from an admin tool, such as pgAdmin.

If you do this, you should realize that it's possible to implement a new authentication rule
that is violated by the current session. It won't force you to disconnect, but when you do
disconnect, you may not be able to reconnect.

Any error in a configuration file will be reported in the message log, so we recommend
that you look there immediately after reloading. You will quickly notice (and fix!) syntax
errors in the parameter file because they prevent any logins from occurring before
reloading. Other errors, such as typos in parameter names, or wrong units, will only
be reported in the log; moreover, only some non-syntax errors will prevent you from
reloading the whole file, so it's best to always check the log.

How it works…
To reload the configuration files, we must send the SIGHUP signal to the postmaster,
which then passes them to all the connected backends. That's why some people call
reloading the server sigh-up-ing.

If you look at the pg_settings catalog table, you'll see that there is a column
named context. Each setting has a time and a place where it can be changed. Some
parameters can only be reset by a server reload, so the value of context for those
parameters will be sighup. Here are a few of the parameters you may want to change
during server operation (there are others, however):

postgres=# SELECT name, setting, unit

 ,(source = 'default') as is_default

 FROM pg_settings

 WHERE context = 'sighup'

 AND (name like '%delay' or name like '%timeout')

 AND setting != '0';

 name | setting | unit | is_default

------------------------------+---------+------+------------

 authentication_timeout | 60 | s | t

 autovacuum_vacuum_cost_delay | 20 | ms | t

Restarting the server quickly 119

 bgwriter_delay | 200 | ms | f

 checkpoint_timeout | 300 | s | f

 max_standby_archive_delay | 30000 | ms | t

 max_standby_streaming_delay | 30000 | ms | t

 wal_receiver_timeout | 60000 | ms | t

 wal_sender_timeout | 60000 | ms | t

 wal_writer_delay | 200 | ms | t

(9 rows)

There's more…
Since reloading the configuration file is achieved by sending the SIGHUP signal, we can
only reload the configuration file for a single backend using the kill command. As you
may expect, you may get some strange results from doing this, so don't try this at home.

First, find the PID of the backend using pg_stat_activity. Then, from the operating
system prompt, issue the following command:

kill -SIGHUP pid

Alternatively, we can do both at once, as shown in the following command:

kill -SIGHUP \

&& psql -t -c "select pid from pg_stat_activity limit 1";

This is only useful with a sensible WHERE clause.

Restarting the server quickly
Some of the database server parameters require you to stop and start the server again fully.
Doing this as quickly as possible can be very important in some cases. The best time to do
this is usually a quiet time, with lots of planning, testing, and forethought. Sometimes, not
everything goes according to plan.

How to do it…
Many of the recipes in this chapter are presented in two forms: one with systemd and
one without. This may look repetitive or boring, but it's unavoidable because introducing
a new system does not automatically eliminate all existing alternatives or migrate old
installations to new ones.

120 Server Control

As we mentioned previously, you can find further systemd details, including details on
service unit names, in the previous recipe, Starting the database server manually.

A PostgreSQL server that's managed by systemd can be restarted in fast mode by issuing
the following command:

sudo systemctl restart SERVICEUNIT

As we mentioned previously, change SERVICEUNIT to the appropriate service unit name
– for example, postgresql@14-main for a PostgreSQL 10 cluster running in Debian
or Ubuntu.

If systemd is not available, then you can use the following syntax:

pg_ctlcluster 14 main restart -m fast

The basic command to restart the server is as follows:

pg_ctl -D datadir restart -m fast

A restart is just a stop that's followed by a start, so it sounds very simple. In many
cases, it will be simple, but there are times when you'll need to restart the server while it
is fairly busy. That's when we need to start performing some tricks to make that restart
happen quicker.

First, the stop that's performed needs to be a fast stop. If we do a default or
a smart stop, then the server will just wait for everyone to finish. If we do an immediate
stop, then the server will crash, and we will need to crash-recover the data, which will be
slower overall.

The running database server has a cache full of data blocks, many of which are dirty.
PostgreSQL is similar to other database systems in that it creates a shutdown checkpoint
before it closes. This means that the startup that follows will be quick and clean. The more
work the checkpoint has to do, the longer it will take to shut down.

The actual shutdown will happen much quicker if we issue a normal checkpoint first, as
the shutdown checkpoint will have much less work to do. So, flush all the dirty shared
buffers to disk with the following command, issued by a database superuser:

psql -c "CHECKPOINT"

The next consideration is that once we restart, the database cache will be empty again
and will need to refresh itself. The larger the database cache, the longer it will take for the
cache to get warm again, and 30 to 60 minutes is not uncommon before returning to full
speed. So, what was a simple restart can have a large business impact if handled badly.

Preventing new connections 121

There's more…
There is an extension called pgfincore that implements a set of functions to manage
PostgreSQL data pages in the operating system's file cache. One possible use is to preload
some tables so that PostgreSQL will load them quicker when requested. The general idea is
that you can provide more detailed information for the operating system cache so that it
can behave more efficiently.

Some distributions include a prebuilt pgfincore package, which makes installation
easier.

There is also a contrib module called pg_prewarm, which addresses a similar
problem. While there is some overlap with pgfincore, the feature sets are not the same;
for instance, pgfincore can operate on files that aren't in the shared buffer cache, and it
can also preload full relations with only a few system calls while taking the existing cache
into account; on the other hand, pg_prewarm can operate on the PostgreSQL shared
buffer cache, and it also works on Windows.

Preventing new connections
In certain emergencies, you may need to lock down the server completely, or just prevent
specific users from accessing the database. It's hard to foresee all the situations where you
may need to do this, so we will present a range of options.

How to do it…
Connections can be prevented in several ways, as follows:

1. Pause and resume the session pool. See the Setting up a connection pool recipe, later
in this chapter, on controlling connection pools.

2. Stop the server! See the Stopping the server safely and quickly and the Stopping the
server in an emergency recipes, though this is not recommended.

3. Restrict the connections for a specific database to zero by setting the connection
limit to 0:

ALTER DATABASE foo_db CONNECTION LIMIT 0;

This will limit normal users from connecting to that database, though it will still
allow superuser connections.

4. Restrict the connections for a specific user to zero by setting the connection limit to
zero (see the Restricting users to only one session each recipe):

ALTER USER foo CONNECTION LIMIT 0;

122 Server Control

This will prevent normal users from connecting to that database, but it will still
allow connections if the user is a superuser, so luckily, you cannot shut yourself
out accidentally.

5. Change the Host-Based Authentication (HBA) file to refuse all incoming
connections and then reload the server:

6. Create a new file called pg_hba_lockdown.conf and add the following two lines
to it. This puts rules in place that will completely lock down the server, including
superusers. Note that this is a serious and drastic action:

TYPE DATABASE USER ADDRESS METHOD

 local all all reject

 host all all 0.0.0.0/0 reject

If you still want superuser access, then try something such as the following:
TYPE DATABASE USER ADDRESS METHOD

 local all postgres peer

 local all all reject

 host all all 0.0.0.0/0 reject

This will prevent connections to the database by any user except the postgres operating
system user ID, which connects locally to any database. Be careful not to confuse the
second and third columns – the second column is the database, while the third column is
the username. It's worth keeping the header line just for that reason. The peer method
should be replaced with other authentication methods if a more complex configuration is
in use.

1. Copy the existing pg_hba.conf file to pg_hba_access.conf so that it can be
replaced later if required.

2. Copy pg_hba_lockdown.conf to pg_hba.conf.
3. Reload the server by following the recipe earlier in this chapter.

How it works…
The pg_hba.conf file is where we specify the host-based authentication rules. We
do not specify the authentications themselves; we just specify which authentication
mechanisms will be used. This is the top-level set of rules for PostgreSQL authentication.
These rules are specified in a file and applied by the postmaster process when connections
are attempted. To prevent denial-of-service attacks, the HBA rules never involve database
access, so we do not know whether a user is a superuser. As a result, you can lock out all
users, but note that you can always re-enable access by editing the file and reloading it.

Restricting users to only one session each 123

Restricting users to only one session each
If resources need to be closely controlled, you may wish to restrict users so that they can
only connect to the server once, at most. The same technique can be used to prevent
connections entirely for that user.

How to do it…
We can restrict users to only one connection using the following command:

postgres=# ALTER ROLE fred CONNECTION LIMIT 1;

ALTER ROLE

This will then cause any additional connections to receive the following error message:

FATAL: too many connections for role "fred"

You can eliminate this restriction by setting the value to -1.

It's possible to set the limit to zero or any positive integer. You can set this to a number
other than max_connections, though it is up to you to make sense of that if you do.

Setting the value to zero will completely restrict normal connections. Note that even if you
set the connection limit to zero for superusers, they will still be able to connect.

How it works…
The connection limit is applied during the session connection. Raising this limit will never
affect any connected users. Lowering the limit doesn't have any effect either unless they
try to disconnect and reconnect.

So, if you lower the limit, you should immediately check whether there are more
sessions connected than the new limit you just set. Otherwise, you may come across
some surprises if there is a crash:

postgres=> SELECT rolconnlimit

 FROM pg_roles

 WHERE rolname = 'fred';

 rolconnlimit

 1

(1 row)

postgres=> SELECT count(*)

124 Server Control

 FROM pg_stat_activity

 WHERE usename = 'fred';

 count

 2

(1 row)

If you have more connected sessions than the new limit, you can ask users to politely
disconnect, or you can apply the next recipe, Pushing users off the system.

Users can't raise or lower their connection limit, just in case you are worried that they
might be able to override this somehow.

Pushing users off the system
Sometimes, we may need to remove groups of users from the database server for various
operational reasons. Let's learn how to do this.

How to do it…
You can terminate a user's session with the pg_terminate_backend() function,
which is included with PostgreSQL. This function takes the PID, or the process ID, of the
user's session on the server. This process is known as the backend, and it is a different
system process from the program that runs the client.

To find the PID of a user, we can look at the pg_stat_activity view. We can use it in
a query, like this:

SELECT pg_terminate_backend(pid)

FROM pg_stat_activity

WHERE ...

There are a couple of things to note if you run this query. If the WHERE clause doesn't
match any sessions, then you won't get any output from the query. Similarly, if it matches
multiple rows, you will get a fairly useless result – that is, a list of Boolean true values.
Unless you are careful enough to exclude your session from the query, you will disconnect
yourself! What's even funnier is that you'll disconnect yourself halfway through
disconnecting the other users. This is because the query will run pg_terminate_
backend() in the order in which sessions are returned from the outer query.

Pushing users off the system 125

Therefore, I suggest a safer and more useful query that gives a useful response in all cases,
which is as follows:

postgres=# SELECT count(pg_terminate_backend(pid))

FROM pg_stat_activity

WHERE usename NOT IN

(SELECT usename

 FROM pg_user

WHERE usesuper);

 count

 1

The preceding code assumes that superusers are performing administrative tasks.

Some other good filters are as follows:

WHERE application_name = 'myappname'

WHERE wait_event_type IS NOT NULL AND wait_event_type !=
'Activity'

WHERE state = 'idle in transaction'

WHERE state = 'idle'

How it works…
The pg_terminate_backend() function sends a signal directly to the operating
system process for that session.

The session may have closed by the time pg_terminate_backend() is named. As PID
numbers are assigned by the operating system, you may try to terminate a given session
(let's call it session A), but you terminate another session while doing so (let's call it
session B).

Here is how it could happen. Suppose you take note of the PID of session A and decide to
disconnect it. Before you issue pg_terminate_backend(), session A disconnects, and
right after, a new session, session B, is given the same PID. So, when you terminate that
PID, you hit session B instead.

126 Server Control

On the one hand, you need to be careful. On the other hand, this case is really unlikely
and is only mentioned for completeness. For this to happen, the following events must
occur as well:

1. One of the sessions you are trying to close must terminate independently in the
very short interval between the moment pg_stat_activity is read and the
moment pg_terminate_backend() is executed.

2. Another session on the same database server must be started in the even shorter
interval between the old session closing and the execution of pg_terminate_
backend().

3. The new session must get the same PID value as the old session, which is less than a
1 in 32,000 chance on a 32-bit Linux machine.

Nonetheless, probability theory is tricky, even for experts. Therefore, it's better to be aware
that there is a tiny risk, especially if you use the query many times per day over a long
period, in which case the probability of getting caught at least once builds up.

It's also possible that new sessions could start after we get the list of active sessions. There's
no way to prevent this other than by following the Preventing new connections recipe.

Finally, remember that superusers can terminate any session, while a non-superuser can
only terminate a session that belongs to the same user.

Deciding on a design for multitenancy
There are many reasons why we may want to split groups of tables or applications:
security, resource control, convenience, and so on. Whatever the reason, we often need to
separate groups of tables (I avoid saying the word database, just to avoid various kinds of
confusion).

This topic is frequently referred to as multitenancy, though this is not a fully accepted
term yet.

The purpose of this recipe is to discuss the options we have so that we can move on to
other, more detailed recipes.

Deciding on a design for multitenancy 127

How to do it…
If you want to run multiple physical databases on one server, then you have four main
options, which are as follows:

• Option 0 (default): Run separate PostgreSQL instances in separate virtual machines
on the same physical server. This is the default option in cloud systems such as EDB
BigAnimal, as well as in on-premise deployments such as VMware or Kubernetes-
based services.

• Option 1: Run multiple sets of tables in different schemas in one database of a
PostgreSQL instance (covered in the Using multiple schemas recipe).

• Option 2: Run multiple databases in the same PostgreSQL instance (covered in
the Giving users their own private databases recipe).

• Option 3: Run multiple PostgreSQL instances on the same virtual/physical system
(covered in the Running multiple servers on one system recipe).

• Option 4: Place all the data in one schema and one database but use row-level
security (RLS) to ensure that users only have access to some subset of the data. This
provides security but not resource control or convenience.

Option 0 can be applied using virtualization technology, which is outside the scope of this
book. Having said that, this is the "default" mode.

Which is best? Well, that's certainly a question many people ask, and something
where many views exist. The answer lies in looking at the specific requirements, which
are as follows:

• If our goal is to separate physical resources, then option 0 works best, though option
3 is also viable. Separate database servers can easily be assigned different disks,
individual memory allocations can be assigned, and we can take the servers up or
down without impacting the others.

• If our goal is security, then option 2 is sufficient.

• If our goal is merely to separate the tables for administrative clarity, then option 1
or option 2 can be useful.

Option 2 allows complete separation for security purposes. However, this does prevent
someone with privileges on both groups of tables from performing a join between those
tables. So, if there is a possibility of future cross-analytics, it might be worth considering
option 1. However, it may also be argued that such analytics should be carried out on a
separate data warehouse, not by co-locating production systems.

128 Server Control

Option 3 has difficulty in many of the PostgreSQL distributions: the default installation
uses a single location for the database, making it a little harder to configure that option.
Ubuntu/Debian handles this aspect particularly well, making it more attractive in
that environment.

Option 4 is covered in the Granting user access to specific rows recipe.

How it works…
I've seen people who use PostgreSQL with thousands of databases, but it is my opinion
that the majority of people use only one database, such as postgres (or at least, only a
few databases). I've also seen people with a great many schemas.

One thing you will find is that almost all admin GUI tools become significantly less useful
if there are hundreds or thousands of items to display. In most cases, administration tools
use a tree view, which doesn't cope gracefully with a large number of items.

Using multiple schemas
We can separate groups of tables into namespaces, referred to as schemas by PostgreSQL.
In many ways, they can be thought of as being similar to directories, though that is not a
precise description, and schemas are not arranged in a hierarchy.

Getting ready
Make sure you've read the Deciding on a design for multitenancy recipe so that you're
certain that this is the route you wish to take. Other options exist, and they may be
preferable in some cases.

How to do it…
Follow these steps:

1. Schemas can easily be created using the following commands:

CREATE SCHEMA finance;

CREATE SCHEMA sales;

2. Then, we can create objects directly within those schemas using fully
qualified names, like this:

CREATE TABLE finance.month_end_snapshot (.....)

Using multiple schemas 129

The default schema where an object is created is known as current_schema. We
can find out what our current schema is by using the following query:

postgres=# select current_schema;

This returns an output similar to the following:
current_schema

 public

(1 row)

3. When we access database objects, we use the user-settable search_path
parameter to identify the schemas to search for. current_schema is the first
schema in the search_path parameter. There is no separate parameter for
current_schema.

So, if we only want to let a specific user look at certain sets of tables, we can modify
their search_path parameter. This parameter can be set for each user so that the
value will be set when they connect. The SQL queries for this would be something
like this:

ALTER ROLE fiona SET search_path = 'finance';

ALTER ROLE sally SET search_path = 'sales';

The public schema is not mentioned on search_path, so it will not be searched.
All the tables that are created by fiona will go into the finance schema
by default, whereas all the tables that are created by sally will go into
the sales schema by default.

4. The users for finance and sales will be able to see that the other schema exists
and change search_path to use it, but we will be able to GRANT or REVOKE
privileges so that they can neither create objects nor read data in other
people's schemas:

REVOKE ALL ON SCHEMA finance FROM public;

GRANT ALL ON SCHEMA finance TO fiona;

REVOKE ALL ON SCHEMA sales FROM public;

GRANT ALL ON SCHEMA sales TO sally;

130 Server Control

An alternate technique is to grant user create privileges to only one schema but
grant usage rights to all other schemas. We can set up this arrangement like this:

REVOKE ALL ON SCHEMA finance FROM public;

GRANT USAGE ON SCHEMA finance TO fiona;

GRANT CREATE ON SCHEMA finance TO fiona;

REVOKE ALL ON SCHEMA sales FROM public;

GRANT USAGE ON SCHEMA sales TO sally;

GRANT CREATE ON SCHEMA sales TO sally;

GRANT USAGE ON SCHEMA sales TO fiona;

GRANT USAGE ON SCHEMA finance TO sally

5. Note that you need to grant the privileges for usage on the schema, as well as
specific rights on the objects in the schema. So, you will also need to issue specific
grants for objects, as shown here:

GRANT SELECT ON month_end_snapshot TO public;

You can also set default privileges so that they are picked up when objects are created by
using the following command:

ALTER DEFAULT PRIVILEGES FOR USER fiona IN SCHEMA finance

GRANT SELECT ON TABLES TO PUBLIC;

How it works…
Earlier, I mentioned that schemas work like directories, or at least a little.

The PostgreSQL concept of search_path is similar to the concept of
a PATH environment variable.

The PostgreSQL concept of the current schema is similar to the concept of the current
working directory. There is no cd command to change the directory. The current working
directory is changed by altering search_path.

A few other differences exist; for example, PostgreSQL schemas are not arranged in a
hierarchy like filesystem directories are.

Many people create a user with the same name as the schema to make this work in a way
similar to other RDBMSs, such as Oracle.

Both the finance and sales schemas exist within the same PostgreSQL database, and
they run on the same database server. They use a common buffer pool, and many global
settings tie the two schemas fairly close together.

Giving users their own private databases 131

Giving users their own private databases
Separating data and users is a key part of administration. There will always be a need to
give users a private, secure, or simply risk-free area (sandbox) to use the database.
Here's how.

Getting ready
Again, make sure you've read the Deciding on a design for multitenancy recipe so that
you're certain this is the route you wish to take. Other options exist, and they may be
preferable in some cases.

How to do it…
Follow these steps to create a database with restricted access for a specific user:

1. We can create a database for a specific user with some ease. From the command
line, as a superuser, we can do the following:

postgres=# create user fred;

CREATE ROLE

postgres=# create database fred owner fred;

CREATE DATABASE

2. As database owners, users have login privileges, so they can connect to any database
by default. There is a command named ALTER DEFAULT PRIVILEGES for
this; however, this does not currently apply to databases, tablespaces, or languages.
The ALTER DEFAULT PRIVILEGES command also only currently applies to
roles (that is, users) that already exist.

So, we need to revoke the privilege to connect to our new database from
everybody except the designated user. There isn't a REVOKE ... FROM PUBLIC
EXCEPT command. Therefore, we need to revoke everything and then just re-grant
everything we need, all in one transaction, as shown in the following code:

postgres=# BEGIN;

BEGIN

postgres=# REVOKE connect ON DATABASE fred FROM public;

REVOKE

postgres=# GRANT connect ON DATABASE fred TO fred;

GRANT

postgres=# COMMIT;

132 Server Control

COMMIT

postgres=# create user bob;

CREATE ROLE

3. Then, try to connect as bob to the fred database:

os $ psql -U bob fred

psql: FATAL: permission denied for database "fred"

DETAIL: User does not have CONNECT privilege.

This is exactly what we wanted.

How it works…
If you didn't catch it before, PostgreSQL allows transactional DDL in most places, so
either the REVOKE and GRANT commands in the preceding section work or neither
works. This means that the fred user never loses the ability to connect to the database.
Note that CREATE DATABASE cannot be performed as part of a transaction, though
nothing serious happens as a result.

There's more…
Superusers can still connect to the new database, and there is no way to prevent them
from doing so. No other users can see the tables that were created in the new database, nor
can they know the names of any of the objects. The new database can be seen to exist by
other users, and they can also see the name of the user who owns the database.

See also
See Chapter 6, Security, for more details on these issues.

Running multiple servers on one system
Running multiple PostgreSQL servers on one physical system is possible if it is convenient
for your needs.

Getting ready
Once again, make sure that you've read the Deciding on a design for multitenancy recipe so
that you're certain this is the route you wish to take. Other options exist, and they may be
preferable in some cases.

Running multiple servers on one system 133

How to do it…
The core version of PostgreSQL easily allows multiple servers to run on the same system,
but there are a few wrinkles to be aware of.

Some installer versions create a PostgreSQL data directory named data. When this
happens, it gets a little difficult to have more than one data directory without using
different directory structures and names.

Debian/Ubuntu packagers chose a layout specifically designed to allow multiple servers
potentially running with different software release levels. You may remember this from
the Locating the database server files recipe in Chapter 2, Exploring the Database.

Starting from /var/lib/postgresql, which is the home directory of the Postgres
user, there is a subdirectory for each major version, such as 10 or 9.3, inside which the
individual data directories are placed. When you install PostgreSQL server packages, a
data directory is created with the default name of main. Configuration files are placed
separately in /etc/postgresql/<version>/<name>, and log files are created in
/var/log/postgresql/postgresql-<version>-<name>.log.

Thus, not all the files will be found in the data directory. As an example, let's create an
additional data directory:

1. We start by running the following command:

sudo -u postgres pg_createcluster 14 main2

2. Then, the new database server can be started using the following command:

sudo -u postgres pg_ctlcluster 14 main2 start

This is sufficient to create and start an additional database cluster in version 14,
named main2. The data and configuration files are stored inside the /var/lib/
postgresql/14/main2/ and /etc/postgresql/14/main2/ directories,
respectively, giving the new database the next unused port number, such as 5433, if this is
the second PostgreSQL server on that machine.

Local access to multiple PostgreSQL servers has been simplified as well. PostgreSQL client
programs, such as psql, are wrapped by a special script that takes the cluster name as an
additional parameter and automatically uses the corresponding port number. Hence, you
don't need the following command:

psql --port 5433 -h /var/run/postgresql ...

134 Server Control

Instead, you can refer to the database server by name, as shown here:

psql --cluster 14/main2 ...

This has its advantages, especially if you wish (or need) to change the port in the future.
I find this extremely convenient, and it works with other utilities, such as pg_dump
and pg_restore.

With Red Hat systems, you will need to run initdb directly, selecting your directories
carefully:

1. First, initialize your data directory with something such as the following:

sudo -u postgres initdb -D /var/lib/pgsql/datadir2

2. Then, modify the port parameter in the postgresql.conf file and start using
the following command:

sudo -u postgres pg_ctl -D /var/lib/pgsql/datadir2 start

This will create an additional database server at the default server version, with the files
stored in /var/lib/pgsql/datadir2.

You can also set up the server with the chkconfig utility to ensure it starts on boot if
your distribution supports it.

How it works…
PostgreSQL servers are controlled using pg_ctl. Everything else is a wrapper of some
kind around this utility. The only constraints of running multiple versions of PostgreSQL
come from file locations and naming conventions, assuming (of course) that you have
enough resources, such as disk space and memory. Everything else is straightforward.
Having said that, the Debian/Ubuntu design is currently the only design that makes it easy
to run multiple servers.

Setting up a connection pool
A connection pool is a term that's used for a collection of already-connected sessions that
can be used to reduce the overhead of connection and reconnection.

There are various ways by which connection pools can be provided, depending on
the software stack in use. The best option is to look at the server-side connection
pool software because that works for all connection types, not just within a single
software stack.

Setting up a connection pool 135

In this recipe, we're going to look at PgBouncer, which is designed as a very lightweight
connection pool. Its name comes from the idea that the pool can be paused and resumed
to allow the server to be restarted or bounced.

Getting ready
First of all, decide where you're going to store the PgBouncer parameter files, log files,
and PID files. PgBouncer can manage more than one database server's connections at
the same time, though that probably isn't wise for simple architectures. If you keep the
PgBouncer files associated with the database server, then it should be easy to manage.

How to do it…
Follow these steps to configure PgBouncer:

1. Create a pgbouncer.ini file, as follows:

;

; pgbouncer configuration example

;

[databases]

postgres = port=5432 dbname=postgres

[pgbouncer]

listen_addr = 127.0.0.1

listen_port = 6432

admin_users = postgres

;stats_users = monitoring userid

auth_type = scram-sha-256

; put these files somewhere sensible:

auth_file = users.txt

logfile = pgbouncer.log

pidfile = pgbouncer.pid

server_reset_query = DISCARD ALL;

; default values

pool_mode = session

default_pool_size = 20

log_pooler_errors = 0

136 Server Control

2. Create a users.txt file. This must contain the minimum users mentioned
in admin_users and stats_users. Its format is very simple – it's a collection of
lines with a username and a password. Consider the following as an example:

"postgres" ""

3. PgBouncer also supports SCRAM authentication. If the pgbouncer to server
connection requires SCRAM authentication, then you must also connect from the
client to pgbouncer using SCRAM authentication. To use that effectively, you need
to copy the SCRAM secrets from the database server into the users.txt file.

4. You may wish to create the users.txt file by directly copying the details from the
server. This can be done by using the following psql script (this is the same one
that is used for md5 authentication, back when that was recommended):

postgres=> \o users.txt

postgres=> \t

postgres=> SELECT '"'||rolname||'" "'||rolpassword||'"'

postgres-> FROM pg_authid;

postgres=> \q

5. Launch pgbouncer:

pgbouncer -d pgbouncer.ini

6. Test the connection; it should respond to reload:

psql -p 6432 -h 127.0.0.1 -U postgres pgbouncer -c
"reload"

7. Finally, verify that PgBouncer's max_client_conn parameter does not exceed
the max_connections parameter on PostgreSQL.

How it works…
PgBouncer is a great piece of software. Its feature set is carefully defined to ensure that it
is simple, robust, and very quick. PgBouncer is not multithreaded, so it runs in a single
process and, thus, on a single CPU. It is very efficient, but very large data transfers will
take more time and reduce concurrency, so create those data dumps using a
direct connection.

Setting up a connection pool 137

PgBouncer provides connection pooling. If you set pool_mode = transaction,
then PgBouncer will also provide connection concentration. This allows hundreds or even
thousands of incoming connections to be managed, while only a few server connections
are made.

As new connections, transactions, or statements arrive, the pool will increase in size up to
the user-defined maximum values. Those connections will stay around until the server_
idle_timeout value before the pool releases them.

PgBouncer also releases sessions every server_lifetime. This allows the server to free
backends in rotation to avoid issues with very long-lived session connections.

The query that creates users.txt only includes database users that have a password.
All other users will have a null rolpassword field, so the whole string evaluates to
NULL, and the line is omitted from the password file. This is intentional; users without a
password represent a security risk unless they are closely guarded. An example of this
is the postgres system user connecting from the same machine, which bypasses
PgBouncer, and is used only for maintenance by responsible and trusted people.

It is possible to use an HBA file with the same syntax as pg_hba.conf. This allows for
more flexibility when enabling TLS encryption (which includes SSL) for connections to
remote servers while using the more efficient peer authentication for local servers.

There's more…
Instead of retrieving passwords from the userlist.txt file, PgBouncer can retrieve
them directly from PostgreSQL, using the optional auth_user and auth_query
parameters. If auth_user is set, PgBouncer will connect to the database using that user
and run auth_query every time it needs to retrieve the password of some user trying to
log in. The default value of auth_query is as follows:

SELECT usename, passwd FROM pg_shadow WHERE usename=$1

This default is just a minimal functioning example, which illustrates the idea of auth_
query; however, it requires giving PgBouncer superuser access to PostgreSQL. Hence,
it is good practice to use the more sophisticated approach of creating a SECURITY
DEFINER function that can retrieve the username and password, possibly making some
checks on the username to allow only applicative connections. This is a good restriction
because database administration connections should not go through a connection pooler.

It's also possible to connect to PgBouncer itself to issue commands. This can be done
interactively, as if you were entering psql, or using single commands or scripts.

138 Server Control

To shut down PgBouncer, we can just type SHUTDOWN or enter a single command,
as follows:

psql -p 6432 pgbouncer -c "SHUTDOWN"

You can also use the RELOAD command to make PgBouncer reload (which means reread)
the parameter files, as we did to test that everything is working.

If you are doing a switchover, you can use the WAIT_CLOSE command, followed
by RELOAD or RECONNECT, to wait until the respective configuration change has been
fully activated.

If you are using pool_mode = transaction or pool_mode = statement, then
you can use the PAUSE command. This waits for the current transaction to complete
before holding further work on that session. Thus, it allows you to perform DDL more
easily or restart the server.

PgBouncer also allows you to use SUSPEND mode, which waits for all server-side buffers
to flush.

The PAUSE or SUSPEND modes should eventually be followed by RESUME when the work
is done.

In addition to the PgBouncer control commands, there are many varieties
of SHOW commands, as shown here:

Figure 4.1 – PgBouncer SHOW commands

Accessing multiple servers using the same host and port 139

Accessing multiple servers using the same
host and port
We will now show you one simple, yet important, application of the previous recipe,
Setting up a connection pool. In that recipe, you learned how to reuse connections with
PgBouncer, and thus reduce the cost of disconnecting and reconnecting.

Here, we will demonstrate another way to use PgBouncer – one instance can connect to
databases hosted by different database servers at the same time. These databases can be on
separate hosts and can even have different major versions of PostgreSQL!

Getting ready
Suppose we have three database servers, each one hosting one database. All you need to
know beforehand is the connection string for each database server.

More complex arrangements are possible, but those are left to you as an exercise.

Before you try this recipe, you should have already gone through the previous recipe.
These two recipes have many steps in common, but we've kept them separate because they
have different goals.

How to do it…
Each database is identified by its connection string. PgBouncer will read this information
from its configuration file. Follow these steps:

1. All you need to do is set up PgBouncer, as you did in the previous recipe, by
replacing the databases section of pgbouncer.ini with the following:

[databases]

myfirstdb = port=5432 host=localhost

anotherdb = port=5437 host=localhost

sparedb = port=5435 host=localhost

2. Once you have started PgBouncer, you can connect to the first database:

$ psql -p 6432 -h 127.0.0.1 -U postgres myfirstdb

psql (14.1)

Type "help" for help.

myfirstdb=# show port;

140 Server Control

port

5432

(1 row)

myfirstdb=# show server_version;

server_version

14.1

(1 row)

3. Now, you can connect to the anotherdb database as if it were on the same server:

myfirstdb=# \c anotherdb

psql (14.1, server 9.5.15)

You are now connected to database "anotherdb" as user
"postgres".

4. The server's greeting message suggests that we have landed on a different server, so
we must check the port and the version (wow! This server needs an upgrade soon!):

anotherdb=# show port;

 port

 5437

(1 row)

anotherdb=# show server_version;

server_version

 9.5.15

(1 row)

Accessing multiple servers using the same host and port 141

There's more…
The Listing databases on this database server recipe in Chapter 2, Exploring the Database,
shows you how to list the available databases on the current database server, using either
the \l meta-command or a couple of equivalent variations. Unfortunately, this doesn't
work when you're using PgBouncer, for the very good reason that the current database
server cannot know the answer.

We need to ask PgBouncer instead, which we can do using the SHOW command when
connected to the pgbouncer special administrative database:

myfirstdb=# \c pgbouncer

psql (14.1, server 1.8.1/bouncer)

You are now connected to database "pgbouncer" as user
"postgres".

pgbouncer=# show databases;

 name | host | port | database | force_user | pool_
size | reserve_pool

-----------+-----------+------+-----------+------------+-------
----+---------

 anotherdb | localhost | 5437 | anotherdb | |
20 | 0

 myfirstdb | localhost | 5432 | myfirstdb | |
20 | 0

 pgbouncer | | 6432 | pgbouncer | pgbouncer |
2 | 0

 sparedb | localhost | 5435 | sparedb | |
20 | 0

(4 rows)

5
Tables and Data

This chapter covers a range of general recipes for your tables and for working with
the data they contain. Many of the recipes contain general advice, with specific
PostgreSQL examples.

Some system administrators that I've met work only on the external aspects of a database
server. What's actually in the database is someone else's problem.

Look after your data, and your database will look after you. Keep your data clean, and
your queries will run faster and cause fewer application errors. You'll also gain many
friends in the business. Getting called in the middle of the night to fix data problems just
isn't cool.

In this chapter, we will cover the following recipes:

• Choosing good names for database objects

• Handling objects with quoted names

• Enforcing the same name and definition for columns

• Identifying and removing duplicates

• Preventing duplicate rows

• Finding a unique key for a set of data

• Generating test data

• Randomly sampling data

144 Tables and Data

• Loading data from a spreadsheet

• Loading data from flat files

• Making bulk data changes using server-side procedures with transactions

Choosing good names for database objects
The easiest way to help other people understand a database is to ensure that all the objects
have a meaningful name.

What makes a name meaningful?

Getting ready
Take some time to reflect on your database to make sure you have a clear view of its
purpose and main use cases. This is because all the items in this recipe describe certain
naming choices that you need to consider carefully given your specific circumstances.

How to do it…
Here are the points you should consider when naming your database objects:

• The name follows the existing standards and practices in place. Inventing new
standards isn't helpful; enforcing existing standards is.

• The name clearly describes the role or table contents.

• For major tables, use short, powerful names.

• Name lookup tables after the table to which they are linked, such as account_
status.

• For associative or linked tables, use all the names of the major tables to which they
relate, such as customer_account.

• Make sure that the name is clearly distinct from other similar names.

• Use consistent abbreviations.

• Use underscores. Casing is not preserved by default, so using camel case names,
such as customerAccount, as used in Java, will just leave them unreadable. See
the Handling objects with quoted names recipe. Avoid names that include spaces and
semicolons so that we can more easily tell names that have been deliberately crafted
by attackers to defeat security.

• Use consistent plurals, or don't use them at all.

Choosing good names for database objects 145

• Use suffixes to identify the content type or domain of an object. PostgreSQL already
uses suffixes for automatically generated objects.

• Think ahead. Don't pick names that refer to the current role or location of an object.
So don't name a table London because it exists on a server in London. That server
might get moved to Los Angeles.

• Think ahead. Don't pick names that imply that an entity is the only one of its kind,
such as a table named TEST or a table named BACKUP_DATA. On the other hand,
such information can be put in the database name, which is not normally used from
within the database.

• Avoid using acronyms in place of long table names. For example, money_
allocation_decision is much better than MAD. This is especially important
as PostgreSQL translates the names into lowercase, so the fact that it is an acronym
may not be clear.

• The table name is commonly used as the root for other objects that are created, so
don't add the table suffix or similar ideas.

There's more…
The standard names for indexes in PostgreSQL are as follows:

{tablename}_{columnname(s)}_{suffix}

Here, the suffix is one of the following:

• pkey: This is used for a primary key constraint.

• key: This is used for a unique constraint.

• excl: This is used for an exclusion constraint.

• idx: This is used for any other kind of index.

The standard suffix for all sequences is seq.

Tables can have multiple triggers fired on each event. Triggers are executed in alphabetical
order, so trigger names should have some kind of action name to differentiate them and
to allow the order to be specified. It might seem like a good idea to put INSERT, UPDATE,
or DELETE in the trigger name, but that can get confusing if you have triggers that work
on both UPDATE and DELETE, and all of this may end up as a mess.

The alphabetical order for trigger names always follows the C locale, regardless of your
actual locale settings. If your trigger names use non-ASCII characters, then the actual
ordering might not be what you expect.

146 Tables and Data

The following example shows how the è and é characters are ordered in the C locale.
You can change the locale and/or the list of strings to explore how different locales
affect ordering:

WITH a(x) AS (

 VALUES ('è'),('é')

) SELECT *

FROM a

ORDER BY x

COLLATE "C";

A useful naming convention for triggers is as follows:

{tablename}_{actionname}_{after|before}_trig

If you do find yourself with strange or irregular object names, it might be a good idea to
use the RENAME subcommands to tidy things up again. Here is an example of this:

ALTER INDEX badly_named_index RENAME TO tablename_status_idx;

You can enforce a naming convention using an event trigger. Event triggers can only be
created by super users and will be called for all DDL statements, executed by any user. To
enforce naming, run something like this:

CREATE EVENT TRIGGER enforce_naming_conventions

ON ddl_command_end

EXECUTE FUNCTION check_object_names();

The check_object_names() function can then access the details of newly created
objects using a query like this so that you can write programs to enforce naming:

SELECT object_identity

FROM pg_event_trigger_ddl_command()

WHERE NOT in_extension

 AND command_tage LIKE 'CREATE%';

Handling objects with quoted names
PostgreSQL object names can contain spaces and mixed-case characters if we enclose the
table names in double quotes. This can cause some difficulties and security issues, so this
recipe is designed to help you if you get stuck with this kind of problem.

Handling objects with quoted names 147

Case-sensitivity issues can often be a problem for people more used to working with other
database systems, such as MySQL, or for people who are facing the challenge of migrating
code away from MySQL.

Getting ready
First, let's create a table that uses a quoted name with mixed cases, such as the following:

CREATE TABLE "MyCust"

AS

SELECT * FROM cust;

How to do it...
If we try to access these tables without the proper case, we get this error:

postgres=# SELECT count(*) FROM mycust;

ERROR: relation "mycust" does not exist

LINE 1: SELECT * FROM mycust;

So, we write it in the correct case:

postgres=# SELECT count(*) FROM MyCust;

ERROR: relation "mycust" does not exist

LINE 1: SELECT * FROM mycust;

This still fails and, in fact, gives the same error.

If you want to access a table that was created with quoted names, then you must use
quoted names, such as the following:

postgres=# SELECT count(*) FROM "MyCust";

The output is as follows:

 count

 5

(1 row)

148 Tables and Data

The usage rule is that if you create your tables using quoted names, then you need to write
your SQL using quoted names. Alternatively, if your SQL uses quoted names, then you
will probably have to create the tables using quoted names as well.

How it works…
PostgreSQL folds all names to lowercase when used within an SQL statement. Consider
this command:

SELECT * FROM mycust;

This is exactly the same as the following command:

SELECT * FROM MYCUST;

It is also exactly the same as this command:

SELECT * FROM MyCust;

However, it is not the same thing as the following command:

SELECT * FROM "MyCust";

There's more…
If you are handling object names in SQL, then you should use quote_ident() to
ensure users don't call their objects a name that could cause security issues. quote_
ident() puts double quotes around a value if PostgreSQL requires that for an object
name, as shown here:

postgres=# SELECT quote_ident('MyCust');

 quote_ident

 "MyCust"

(1 row)

postgres=# SELECT quote_ident('mycust');

 quote_ident

 mycust

(1 row)

Enforcing the same name and definition for columns 149

For a longer explanation of why this is necessary, see the Performing actions on many
tables recipe in Chapter 7, Database Administration.

The quote_ident() function may be especially useful if you are creating a table based
on a variable name in a PL/pgSQL function, as follows:

EXECUTE 'CREATE TEMP TABLE ' || quote_ident(tablename) ||

 '(col1 INTEGER);'

Enforcing the same name and definition
for columns
Sensibly designed databases have smooth, easy-to-understand definitions. This allows all
users to understand the meaning of data in each table. It is an important way of removing
data quality issues.

Getting ready
If you want to run the queries in this recipe as a test, then use the following examples.
Alternatively, you can just check for problems in your own database:

CREATE SCHEMA s1;

CREATE SCHEMA s2;

CREATE TABLE s1.X(col1 smallint,col2 TEXT);

CREATE TABLE s2.X(col1 integer,col3 NUMERIC);

How to do it...
First, we will show you how to identify columns that are defined in different ways in
different tables, using a query against the catalog. We will use an information_
schema query, as follows:

SELECT

 table_schema

,table_name

,column_name

,data_type

 ||coalesce(' ' || text(character_maximum_length), '')

 ||coalesce(' ' || text(numeric_precision), '')

 ||coalesce(',' || text(numeric_scale), '')

150 Tables and Data

 as data_type

FROM information_schema.columns

WHERE column_name IN

(SELECT

 column_name

 FROM

 (SELECT

 column_name

 ,data_type

 ,character_maximum_length

 ,numeric_precision

 ,numeric_scale

 FROM information_schema.columns

 WHERE table_schema NOT IN ('information_schema', 'pg_
catalog')

 GROUP BY

 column_name

 ,data_type

 ,character_maximum_length

 ,numeric_precision

 ,numeric_scale

) derived

 GROUP BY column_name

 HAVING count(*) > 1

)

AND table_schema NOT IN ('information_schema', 'pg_catalog')

ORDER BY column_name

;

The query gives an output, as follows:

 table_schema | table_name | column_name | data_type

--------------+------------+-------------+---------------

 s1 | x | col1 | smallint 16,0

 s2 | x | col1 | integer 32,0

(2 rows)

Enforcing the same name and definition for columns 151

Comparing two given tables is more complex, as there are so many ways that the tables
might be similar and yet a little different. The following query looks for all tables of the
same name (and, hence, in different schemas) that have different definitions:

WITH table_definition as

(SELECT table_schema

 , table_name

 , string_agg(column_name || ' ' || data_type

 , ',' ORDER BY column_name

) AS def

 FROM information_schema.columns

 WHERE table_schema NOT IN ('information_schema'

 , 'pg_catalog')

 GROUP BY table_schema

 , table_name

)

 , unique_definition as

(SELECT DISTINCT table_name

 , def

 FROM table_definition

)

 , multiple_definition as

(SELECT table_name

 FROM unique_definition

 GROUP BY table_name

 HAVING count(*) > 1

)

SELECT table_schema

 , table_name

 , column_name

 , data_type

 FROM information_schema.columns

 WHERE table_name

 IN (SELECT table_name

 FROM multiple_definition)

 ORDER BY table_name

 , table_schema

152 Tables and Data

 , column_name

;

Here is its output:

 table_schema | table_name | column_name | data_type

--------------+------------+-------------+-----------

 s1 | x | col1 | smallint

 s1 | x | col2 | text

 s2 | x | col1 | integer

 s2 | x | col3 | numeric

(4 rows)

How it works…
The definitions of tables are held within PostgreSQL and can be accessed using the
information schema catalog views.

There might be valid reasons why the definitions differ. We've excluded PostgreSQL's own
internal tables because there are similar names between the two catalogs: PostgreSQL's
implementation of the SQL standard information schema and PostgreSQL's own
internal pg_catalog schema.

Those queries are fairly complex. In fact, there is even more complexity that we can add to
those queries to compare all sorts of things, such as default values or constraints. The basic
idea can be extended in various directions from here.

There's more…
We can compare the definitions of any two tables using the following function:

CREATE OR REPLACE FUNCTION diff_table_definition

(t1_schemaname text

,t1_tablename text

,t2_schemaname text

,t2_tablename text)

RETURNS TABLE

(t1_column_name text

,t1_data_type text

,t2_column_name text

Enforcing the same name and definition for columns 153

,t2_data_type text)

LANGUAGE SQL

as

$$

SELECT

 t1.column_name

,t1.data_type

,t2.column_name

,t2.data_type

FROM

 (SELECT column_name, data_type

 FROM information_schema.columns

 WHERE table_schema = $1

 AND table_name = $2

) t1

FULL OUTER JOIN

 (SELECT column_name, data_type

 FROM information_schema.columns

 WHERE table_schema = $3

 AND table_name = $4

) t2

ON t1.column_name = t2.column_name

AND t1.data_type = t2.data_type

WHERE t1.column_name IS NULL OR t2.column_name IS NULL

;

$$;

Here is its usage with output:

select diff_table_definition('s1','x','s2','x');

 diff_table_definition

 (col1,smallint,,)

 (col2,text,,)

 (,,col3,numeric)

 (,,col1,integer)

(4 rows)

154 Tables and Data

Identifying and removing duplicates
Relational databases work on the idea that items of data can be uniquely identified.
However hard we try, there will always be bad data arriving from somewhere. This recipe
shows you how to diagnose that and clean up the mess.

Getting ready
Let's start by looking at an example table, cust. It has a duplicate value in customerid:

CREATE TABLE cust (

 customerid BIGINT NOT NULL

,firstname TEXT NOT NULL

,lastname TEXT NOT NULL

,age INTEGER NOT NULL);

INSERT INTO cust VALUES (1, 'Philip', 'Marlowe', 33);

INSERT INTO cust VALUES (2, 'Richard', 'Hannay', 37);

INSERT INTO cust VALUES (3, 'Harry', 'Palmer', 36);

INSERT INTO cust VALUES (4, 'Rick', 'Deckard', 4);

INSERT INTO cust VALUES (4, 'Roy', 'Batty', 41);

postgres=# SELECT * FROM cust ORDER BY 1;

 customerid | firstname | lastname | age

------------+-----------+----------+-----

 1 | Philip | Marlowe | 33

 2 | Richard | Hannay | 37

 3 | Harry | Palmer | 36

 4 | Rick | Deckard | 4

 4 | Roy | Batty | 41

(5 rows)

Before you delete duplicate data, remember that sometimes it isn't the data that is
wrong – it is your understanding of it. In those cases, it may be that you haven't properly
normalized your database model and that you need to include additional tables to account
for the shape of the data. You might also find that duplicate rows are caused because of
your decision to exclude a column somewhere earlier in a data load process. Check twice,
cut once.

Identifying and removing duplicates 155

How to do it…
First, identify the duplicates using a query, such as the following:

CREATE UNLOGGED TABLE dup_cust AS

SELECT *

FROM cust

WHERE customerid IN

 (SELECT customerid

 FROM cust

 GROUP BY customerid

 HAVING count(*) > 1);

We save the list of duplicates in a separate table because the query can be very slow if the
table is big, so we don't want to run it more than once.

An UNLOGGED table can be created with less I/O because it does not write WAL. It is
better than a temporary table because it doesn't disappear if you disconnect and then
reconnect. The other side of the coin is that you lose its contents after a crash, but this
is not too bad because if you are choosing to use an unlogged table, then you are telling
PostgreSQL that you are able to recreate the contents of that table in the (unlikely) event
of a crash.

The results can be used to identify the bad data manually, and you can resolve the problem
by carrying out the following steps:

1. Merge the two rows to give the best picture of the data, if required. This might use
values from one row to update the row you decide to keep, as shown here:

UPDATE cust

SET age = 41

WHERE customerid = 4

AND lastname = 'Deckard';

2. Delete the remaining undesirable rows:

DELETE FROM cust

WHERE customerid = 4

AND lastname = 'Batty';

156 Tables and Data

In some cases, the data rows might be completely identical, so let's create an example:

CREATE TABLE new_cust (customerid BIGINT NOT NULL);

INSERT INTO new_cust VALUES (1), (1), (2), (3), (4), (4);

The new_cust table looks like the following:

postgres=# SELECT * FROM new_cust ORDER BY 1;

 customerid

 1

 2

 3

 4

 4

(5 rows)

Unlike the preceding case, we can't tell the data apart at all, so we cannot remove duplicate
rows without any manual process. SQL is a set-based language, so picking only one row
out of a set is slightly harder than most people want it to be.

In these circumstances, we should use a slightly different procedure to detect duplicates.
We will use a hidden column named ctid. It denotes the physical location of the row you
are observing – for example, duplicate rows will all have different ctid values. The steps
are as follows:

1. First, we start a transaction:

BEGIN;

2. Then, we lock the table in order to prevent any INSERT, UPDATE,
or DELETE operations, which would alter the list of duplicates and/or change
their ctid values:

LOCK TABLE new_cust IN SHARE ROW EXCLUSIVE MODE;

Identifying and removing duplicates 157

3. Now, we locate all duplicates, keeping track of the minimum ctid value so that we
don't delete it:

CREATE TEMPORARY TABLE dups_cust AS

SELECT customerid, min(ctid) AS min_ctid

FROM new_cust

GROUP BY customerid

HAVING count(*) > 1;

4. Then, we can delete each duplicate, with the exception of the duplicate with the
minimum ctid value:

DELETE FROM new_cust

USING dups_cust

WHERE new_cust.customerid = dups_cust.customerid

AND new_cust.ctid != dups_cust.min_ctid;

5. We commit the transaction, which also releases the lock we previously took:

COMMIT;

6. Finally, we clean up the table after the deletions:

VACUUM new_cust;

How it works…
The first query works by grouping together the rows on the unique column and counting
rows. Anything with more than one row must be caused by duplicate values. If we're
looking for duplicates of more than one column (or even all columns), then we have to use
a SQL query of the following form:

SELECT *

FROM mytable

WHERE (col1, col2, ... ,colN) IN

(SELECT col1, col2, ... ,colN

 FROM mytable

 GROUP BY col1, col2, ... ,colN

 HAVING count(*) > 1);

Here, col1, col2, and so on up until colN are the columns of the key.

158 Tables and Data

Note that this type of query may need to sort the complete table on all the key columns.
That will require sort space equal to the size of the table, so you'd better think first before
running that SQL on very large tables. You'll probably benefit from a large work_mem
setting for this query, probably 128 MB or more.

The DELETE FROM ... USING query that we showed only works with PostgreSQL
because it uses the ctid value, which is the internal identifier of each row in the table.
If you wanted to run that query against more than one column, as we did earlier in the
chapter, you'd need to extend the queries in step 3, as follows:

SELECT customerid, customer_name, ..., min(ctid) AS min_ctid

FROM ...

GROUP BY customerid, customer_name, ...

...;

Then, extend the query in step 4, like this:

DELETE FROM new_cust

...

WHERE new_cust.customerid = dups_cust.customerid

AND new_cust.customer_name = dups_cust.customer_name

AND ...

AND new_cust.ctid != dups_cust.min_ctid;

The preceding query works by grouping together all the rows with similar values and then
finding the row with the lowest ctid value. The lowest will be closer to the start of the
table, so duplicates will be removed from the far end of the table. When we run VACUUM,
we may find that the table gets smaller because we have removed rows from the far end.

The BEGIN and COMMIT commands wrap the LOCK and DELETE commands into a single
transaction, which is required. Otherwise, the lock will be released immediately after
being taken.

Another reason to use a single transaction is that we can always roll back if anything goes
wrong, which is a good thing when we are removing data from a live table.

Preventing duplicate rows 159

There's more…
Locking the table against changes for long periods may not be possible while we remove
duplicate rows. That creates some fairly hard problems with large tables. In that case, we
need to do things slightly differently:

1. Identify the rows to be deleted and save them in a side table.
2. Build an index on the main table to speed up access to rows (maybe using the

CONCURRENTLY keyword, as explained in the Maintaining indexes recipe in
Chapter 9, Regular Maintenance).

3. Write a program that reads the rows from the side table in a loop, performing a
series of smaller transactions.

4. Start a new transaction.
5. From the side table, read a set of rows that match.
6. Select those rows from the main table for updates, relying on the index to make

those accesses happen quickly.
7. Delete the appropriate rows.
8. Commit, and then loop again.

The aforementioned program can't be written as a database function, as we can't have
multiple transactions in a function. We need multiple transactions to ensure that we hold
locks on each row for the shortest possible duration.

Preventing duplicate rows
Preventing duplicate rows is one of the most important aspects of data quality for any
database. PostgreSQL offers some useful features in this area, extending beyond most
relational databases.

Getting ready
Identify the set of columns that you wish to make unique. Does this apply to all rows or
just a subset of rows?

Let's start with our example table:

postgres=# SELECT * FROM new_cust;

 customerid

 1

160 Tables and Data

 2

 3

 4

(4 rows)

How to do it…
To prevent duplicate rows, we need to create a unique index that the database server
can use to enforce the uniqueness of a particular set of columns. We can do this in the
following three similar ways for basic data types:

1. Create a primary key constraint on the set of columns. We are allowed only one
of these per table. The values of the data rows must not be NULL, as we force the
columns to be NOT NULL if they aren't already:

ALTER TABLE new_cust ADD PRIMARY KEY(customerid);

This creates a new index named new_cust_pkey.
2. Create a unique constraint on the set of columns. We can use these instead of/or

with a primary key. There is no limit on the number of these per table. NULL values
are allowed in the columns:

ALTER TABLE new_cust ADD UNIQUE(customerid);

This creates a new index named new_cust_customerid_key.
3. Create a unique index on the set of columns:

CREATE UNIQUE INDEX ON new_cust (customerid);

This creates a new index named new_cust_customerid_idx.
All these techniques exclude duplicates, just with slightly different syntaxes. All of them
create an index, but only the first two create a formal constraint. Each of these techniques
can be used when we have a primary key or unique constraint that uses multiple columns.

The last method is important because it allows you to specify a WHERE clause on the
index. This can be useful if you know that the column values are unique only in certain
circumstances. The resulting index is then known as a partial index.

Suppose our data looked like this:

postgres=# SELECT * FROM partial_unique;

Preventing duplicate rows 161

This gives the following output:

customerid | status | close_date

-----------+--------+------------

 1 | OPEN |

 2 | OPEN |

 3 | OPEN |

 3 | CLOSED | 2010-03-22

(4 rows)

Then, we can put a partial index on the table to enforce the uniqueness
of customerid only for status = 'OPEN', like this:

CREATE UNIQUE INDEX ON partial_unique (customerid)

 WHERE status = 'OPEN';

If your uniqueness constraint needs to be enforced across more complex data types, then
you may need to use a more advanced syntax. A few examples will help here.

Let's start with the simplest example: create a table of boxes and put sample data in it. This
may be the first time you're seeing PostgreSQL's data type syntax, so bear with me:

postgres=# CREATE TABLE boxes (name text, position box);

CREATE TABLE

postgres=# INSERT INTO boxes VALUES

 ('First', box '((0,0), (1,1))');

INSERT 0 1

postgres=# INSERT INTO boxes VALUES

 ('Second', box '((2,0), (2,1))');

INSERT 0 1

postgres=# SELECT * FROM boxes;

 name | position

--------+-------------

 First | (1,1),(0,0)

 Second | (2,1),(2,0)

(2 rows)

We can see two boxes that neither touch nor overlap, based on their x and y coordinates.

162 Tables and Data

To enforce uniqueness here, we want to create a constraint that will throw out any attempt
to add a position that overlaps with any existing box. The overlap operator for the box data
type is defined as &&, so we use the following syntax to add the constraint:

ALTER TABLE boxes ADD EXCLUDE USING gist (position WITH &&);

This creates a new index named boxes_position_excl:

 #\d boxes_position_excl

 Index "public.boxes_position_excl"

 Column | Type | Key? | Definition

----------+------+------+------------

 position | box | yes | "position"

gist, for table "public.boxes"

We can use the same syntax even with the basic data types. So, a fourth way of performing
our first example would be as follows:

ALTER TABLE new_cust ADD EXCLUDE (customerid WITH =);

This creates a new index named new_cust_customerid_excl, and duplicates
are excluded:

insert into new_cust VALUES (4);

ERROR: conflicting key value violates exclusion constraint
"new_cust_customerid_excl"

DETAIL: Key (customerid)=(4) conflicts with existing key
(customerid)=(4).

How it works…
Uniqueness is always enforced by an index.

Each index is defined with a data type operator. When a new row is inserted or the set of
column values is updated, we use the operator to search for existing values that conflict
with the new data.

So, to enforce uniqueness, we need an index and a search operator defined on the data
types of the columns. When we define normal UNIQUE constraints, we simply assume that
we mean the equality operator (=) for the data type. The EXCLUDE syntax offers a richer
syntax to allow us to express the same problem with different data types and operators.

Preventing duplicate rows 163

There's more...
Unique and exclusion constraints can be marked as deferrable, meaning that a user
can choose to postpone the check to the end of the transaction – a nice way to relax
constraints without reducing data integrity.

Duplicate indexes
Note that PostgreSQL allows you to have multiple indexes with exactly the same
definition. This is useful in some contexts but can also be annoying if you accidentally
create multiple indexes, as each index has its own cost in terms of writes. You can also
have constraints defined using each of the aforementioned different ways. Each of these
ways enforces, essentially, the same constraint, so take care.

Uniqueness without indexes
It's possible to have uniqueness in a set of columns without creating an index. That might
be useful if all we want is to ensure uniqueness rather than allow index lookups.

To do that, you can do either of the following:

• Use a serial data type.

• Manually alter the default to be the nextval() function of a sequence.

Each of these will provide a unique value for use as a row's key. The uniqueness is not
enforced, nor will there be a unique constraint defined. So, there is still a possibility
that someone might reset the sequence to an earlier value, which will eventually cause
duplicate values.

Consider, also, that this method provides the unique value as a default, which is not used
when a user specifies an explicit value. An example of this is as follows:

CREATE TABLE t(id serial, descr text);

INSERT INTO t(descr) VALUES ('First value');

INSERT INTO t(id,descr) VALUES (1,'Cheating!');

Finally, you might also wish to have mostly unique data, such as using the clock_
timestamp() function to provide ascending times to a microsecond resolution.

164 Tables and Data

A real-world example – IP address range allocation
The problem is about assigning ranges of IP addresses while at the same time ensuring
that we don't allocate (or potentially allocate) the same addresses to different people or
purposes. This is easy to do if we keep track of each individual IP address but much harder
to do if we want to deal solely with ranges of IP addresses.

Initially, you may think of designing the database as follows:

CREATE TABLE iprange

 (iprange_start inet

 ,iprange_stop inet

 ,owner text);

INSERT INTO iprange VALUES ('192.168.0.1','192.168.0.16',
'Simon');

INSERT INTO iprange VALUES ('192.168.0.17','192.168.0.24',
'Gianni');

INSERT INTO iprange VALUES ('192.168.0.32','192.168.0.64',
'Gabriele');

However, you'll realize that there is no way to create a unique constraint that enforces
the model constraint of avoiding overlapping ranges. You can create an after trigger that
checks existing values, but it's going to be messy.

PostgreSQL offers a better solution, based on range types. In fact, every data type that
supports a btree operator class (that is, a way of ordering any two given values) can be
used to create a range type. In our case, the SQL is as follows:

CREATE TYPE inetrange AS RANGE (SUBTYPE = inet);

This command creates a new data type that can represent ranges of inet values – that is,
of IP addresses. Now, we can use this new type when creating a table:

CREATE TABLE iprange2

(iprange inetrange

,owner text);

Finding a unique key for a set of data 165

This new table can be populated as usual. We just have to group the extremes of each
range into a single value, as follows:

INSERT INTO iprange2 VALUES ('[192.168.0.1,192.168.0.16]',
'Simon');

INSERT INTO iprange2 VALUES ('[192.168.0.17,192.168.0.24]',
'Gianni');

INSERT INTO iprange2 VALUES ('[192.168.0.32,192.168.0.64]',
'Gabriele');

Now, we can create a unique exclusion constraint on the table, using the following syntax:

ALTER TABLE iprange2

 ADD EXCLUDE USING GIST (iprange WITH &&);

If we try to insert a range that overlaps with any of the existing ranges, then PostgreSQL
will stop us:

INSERT INTO iprange2

VALUES ('[192.168.0.10,192.168.0.20]', 'Somebody else');

ERROR: conflicting key value violates exclusion constraint
"iprange2_iprange_excl"

DETAIL: Key (iprange)=([192.168.0.10,192.168.0.20]) conflicts
with existing key (iprange)=([192.168.0.1,192.168.0.16]).

A real-world example – a range of time
In many databases, there will be historical data tables with data that has a START_
DATE value and an END_DATE value, or something similar. As in the previous example,
we can solve this problem elegantly with a range type. Actually, this example is even
shorter – we don't need to create the range type, since the most common cases are already
built-in – that is, integers, decimal values, dates, and timestamps with and without a
time zone.

Finding a unique key for a set of data
Sometimes, it can be difficult to find a unique set of key columns that describe the data. In
this recipe, we will analyze the data in the database to allow us to identify the column(s)
that together form a unique key. This is useful when a key is not documented, not defined,
or has been defined incorrectly.

166 Tables and Data

Getting ready
Let's start with a small table, where the answer is fairly obvious:

postgres=# select * from ord;

We assume that the output is as follows:

orderid | customerid | amt

---------+------------+--------

 10677 | 2 | 5.50

 5019 | 3 | 277.44

 9748 | 3 | 77.17

(3 rows)

How to do it…
First of all, there's no need to do this through a brute-force approach. Checking all the
permutations of columns to see which is unique might take you a long time.

Let's start by using PostgreSQL's own optimizer statistics. Run the following command on
the table to get a fresh sample of statistics:

postgres=# analyze ord;

ANALYZE

This runs quickly, so we don't have to wait too long. Now, we can examine the relevant
columns of the statistics:

postgres=# SELECT attname, n_distinct

 FROM pg_stats

 WHERE schemaname = 'public'

 AND tablename = 'ord';

 attname | n_distinct

------------+------------

 orderid | -1

 customerid | -0.666667

 amt | -1

(3 rows)

Finding a unique key for a set of data 167

The preceding example was chosen because we have two potential answers. If the value
of n_distinct is -1, then the column is thought to be unique within the sample of
rows examined.

We will then need to use our judgment to decide whether one or both of these columns
are unique by chance or as part of the design of the database that created them.

It's possible that there is no single column that uniquely identifies the rows. Multiple
column keys are fairly common. If none of the columns were unique, then we should start
looking for unique keys that are combinations of the most unique columns. The following
query shows a frequency distribution for the table where a value occurs twice in one case
and another value occurs only once:

postgres=# SELECT num_of_values, count(*)

 FROM (SELECT customerid, count(*) AS num_of_values

 FROM ord

 GROUP BY customerid) s

 GROUP BY num_of_values

 ORDER BY count(*);

 num_of_values | count

---------------+-------

 2 | 1

 1 | 1

(2 rows)

We can change the query to include multiple columns, like this:

SELECT num_of_values, count(*)

FROM (SELECT customerid, orderid, amt

 ,count(*) AS num_of_values

 FROM ord

 GROUP BY customerid, orderid, amt

) s

GROUP BY num_of_values

ORDER BY count(*);

168 Tables and Data

When we find a set of columns that is unique, this query will result in only one row, as
shown in the following example:

 num_of_values | count

---------------+-------

 1 | 3

As we get closer to finding the key, we will see that the distribution gets tighter and tighter.

So, the procedure is as follows:

1. Choose one column to start with.
2. Compute the corresponding frequency distribution.
3. If the outcome is multiple rows, then add one more column and repeat from step 2.

Otherwise, it means you have found a set of columns satisfying a uniqueness
constraint.

Now, you must verify that the set of columns is minimal – for example, check whether it is
possible to remove one or more columns without violating the unique constraint. This can
be done using the frequency distribution as a test. To be precise, do the following:

1. Test each column by computing the frequency distribution on all the other columns.
2. If the frequency distribution has one row, then the column is not needed in the

uniqueness constraint. Remove it from the set of columns and repeat from step 1.
Otherwise, you have found a minimal set of columns, which is also called a key for
that table.

How it works…
Finding a unique key is possible for a program, but in most cases, a human can do
this much faster by looking at things such as column names, foreign keys, or business
understanding to reduce the number of searches required by the brute-force approach.

The ANALYZE command works by taking a sample of the table data and then performing
a statistical analysis of the results. The n_distinct value has two different meanings,
depending on its sign: if positive, it is the estimate of the number of distinct values for the
column; if negative, it is the estimate of the density of such distinct values, with the sign
changed. For example, n_distinct = -0.2 means that a table of 1 million rows is
expected to have 200,000 distinct values, while n_distinct = 5 means that we expect
just 5 distinct values.

Generating test data 169

Generating test data
DBAs frequently need to generate test data for a variety of reasons, whether it's for setting
up a test database or just for generating a test case for a SQL performance issue.

How to do it...
To create a table of test data, we need the following:

• Some rows

• Some columns

• Some order

The steps are as follows:

1. First, generate a lot of rows of data. We use something named a set-returning
function. You can write your own, though PostgreSQL includes a couple of very
useful ones.

2. You can generate a sequence of rows using a query like the following:

postgres=# SELECT * FROM generate_series(1,5);

 generate_series

 1

 2

 3

 4

 5

(5 rows)

3. Alternatively, you can generate a list of dates, like this:

postgres=# SELECT date(t)

FROM generate_series(now(),

 now() + '1 week', '1 day') AS f(t);

 date

 2021-08-25

 2021-08-26

 2021-08-27

170 Tables and Data

 2021-08-28

 2021-08-29

 2021-08-30

 2021-08-31

 2021-09-01

(8 rows)

4. Then, we want to generate a value for each column in the test table. We can break
that down into a series of functions, using the following examples as a guide:

 � Either of these functions can be used to generate both rows and reasonable
primary key values for them.

 � For a random integer value, this is the function:

(random()*(2*10^9))::integer

 � For a random bigint value, the function is as follows:

(random()*(9*10^18))::bigint

5. For random numeric data, the function is the following:

(random()*100.)::numeric(5,2)

 � For a random-length string, up to a maximum length, this is the function:

repeat('1',(random()*40)::integer)

 � For a random-length substring, the function is as follows:

substr('abcdefghijklmnopqrstuvwxyz',1,
(random()*25)::integer)

 � Here is the function for a random string from a list of strings:

(ARRAY['one','two','three'])[0.5+random()*3]

6. Finally, we can put both techniques together to generate our table:

postgres=# SELECT key

 ,(random()*100.)::numeric(4,2)

,repeat('1',(random()*25)::integer)

 FROM generate_series(1,10) AS f(key);

Generating test data 171

 key | numeric | repeat

-----+---------+------------------------

 1 | 83.05 | 1111

 2 | 5.28 | 11111111111111

 3 | 41.85 | 1111111111111111111111

 4 | 41.70 | 11111111111111111

 5 | 53.31 | 1

 6 | 10.09 | 1111111111111111

 7 | 68.08 | 111

 8 | 19.42 | 1111111111111111

 9 | 87.03 | 11111111111111111111

 10 | 70.64 | 111111111111111

(10 rows)

7. Alternatively, we can use random ordering:

postgres=# SELECT key

 ,(random()*100.)::numeric(4,2)

,repeat('1',(random()*25)::integer)

 FROM generate_series(1,10) AS
f(key)

 ORDER BY random() * 1.0;

 key | numeric | repeat

-----+---------+-------------------------

 4 | 86.09 | 1111

 10 | 28.30 | 11111111

 2 | 64.09 | 111111

 8 | 91.59 | 111111111111111

 5 | 64.05 | 11111111

 3 | 75.22 | 11111111111111111

 6 | 39.02 | 1111

 7 | 20.43 | 1111111

 1 | 42.91 | 11111111111111111111

 9 | 88.64 | 1111111111111111111111

(10 rows)

172 Tables and Data

How it works…
Set-returning functions literally return a set of rows. That allows them to be used in
either the FROM clause, as if they were a table, or the SELECT clause. The generate_
series() set of functions returns either dates or integers, depending on the data types
of the input parameters you use.

The :: operator is used to cast between data types. The random string from a
list of strings example uses PostgreSQL arrays. You can create an array using
the ARRAY constructor syntax and then use an integer to reference one element in the
array. In our case, we used a random subscript.

There's more…
There are also some commercial tools used to generate application-specific test
data for PostgreSQL. They are available at http://www.sqlmanager.net/
products/postgresql/datagenerator and http://www.datanamic.com/
datagenerator/index.html.

The key features for any data generator are as follows:

• The ability to generate data in the right format for custom data types

• The ability to add data to multiple tables, while respecting foreign key constraints
between tables

• The ability to add data to non-uniform distributions

The tools and tricks shown here are cool and clever, though there are some problems
hiding here as well. Real data has so many strange things in it that it can be very hard
to simulate. One of the most difficult things is generating data that follows realistic
distributions. For example, if we had to generate data for people's heights, then we'd want
to generate data to follow a normal distribution. If we were generating customer bank
balances, we'd want to use a Zipf distribution, or for the number of reported insurance
claims, perhaps a Poisson distribution (or perhaps not). Replicating real quirks in data can
take some time.

Finally, note that casting a float into an integer rounds it to the nearest integer, so the
distribution of integers is not uniform on each extreme. For instance, the probability
of (random()*10)::int being 0 is just 5%, as is its probability of being 10, while each
integer between 1 and 9 occurs with a probability of 10%. This is why we put 0.5 in the last
example, which is simpler than using the floor() function.

http://www.sqlmanager.net/products/postgresql/datagenerator
http://www.sqlmanager.net/products/postgresql/datagenerator
http://www.datanamic.com/datagenerator/index.html
http://www.datanamic.com/datagenerator/index.html

Randomly sampling data 173

See also
You can use existing data to generate test databases using sampling. That's the subject of
our next recipe, Randomly sampling data.

Randomly sampling data
DBAs may be asked to set up a test server and populate it with test data. Often, that server
will be old hardware, possibly with smaller disk sizes. So, the subject of data sampling
raises its head.

The purpose of sampling is to reduce the size of the dataset and improve the speed of later
analysis. Some statisticians are so used to the idea of sampling that they may not even
question whether its use is valid or if it might cause further complications.

The SQL standard way to perform sampling is by adding the TABLESAMPLE clause to
the SELECT statement.

How to do it…
In this section, we will take a random sample of a given collection of data (for example, a
given table). First, you should realize that there isn't a simple tool to slice off a sample of
your database. It would be neat if there were, but there isn't. You'll need to read all of this
to understand why:

1. We first consider using SQL to derive a sample. Random sampling is actually
very simple because we can use the TABLESAMPLE clause. Consider the following
example:

postgres=# SELECT count(*) FROM mybigtable;

 count

 10000

(1 row)

postgres=# SELECT count(*) FROM mybigtable

 TABLESAMPLE BERNOULLI(1);

 count

 106

(1 row)

postgres=# SELECT count(*) FROM mybigtable

174 Tables and Data

 TABLESAMPLE BERNOULLI(1);

 count

 99

(1 row)

2. Here, the TABLESAMPLE clause applies to mybigtable and tells SELECT to
consider only a random sample, while the BERNOULLI keyword denotes the
sampling method used, and the number 1 between parentheses represents the
percentage of rows that we want to consider in the sample – that is, 1%. Quite easy!

3. Now, we need to get the sampled data out of the database, which is tricky for a
few reasons. Firstly, there is no option to specify a WHERE clause for pg_dump.
Secondly, if you create a view that contains the WHERE clause, pg_dump dumps
only the view definition, not the view itself.

4. You can use pg_dump to dump all databases, apart from a set of tables, so you can
produce a sampled dump like this:

pg_dump –-exclude-table=mybigtable > db.dmp

pg_dump –-table=mybigtable –-schema-only > mybigtable.
schema

psql -c '\copy (SELECT * FROM mybigtable

 TABLESAMPLE BERNOULLI (1)) to
mybigtable.dat'

5. Then, reload onto a separate database using the following commands:

psql -f db.dmp

psql -f mybigtable.schema

psql -c '\copy mybigtable from mybigtable.dat'

Overall, my advice is to use sampling with caution. In general, it is easier to apply it to a
few very large tables only, in view of both the mathematical issues surrounding the sample
design and the difficulty of extracting the data.

How it works...
The extract mechanism shows off the capabilities of the psql and pg_dump PostgreSQL
command-line tools, as pg_dump allows you to include or exclude objects and dump the
entire table (or only its schema), whereas psql allows you to dump out the result of an
arbitrary query into a file.

Randomly sampling data 175

The BERNOULLI clause specifies the sampling method – that is, PostgreSQL takes the
random sample by performing a full table scan and then selecting each row with the
required probability (here, 1%).

Another built-in sampling method is SYSTEM, which reads a random sample of table
pages and then includes all rows in these pages; this is generally faster, given that samples
are normally quite a bit smaller than the original, but the randomness of the selection is
affected by how rows are physically arranged on disk, which makes it suitable for some
applications only.

Here is an example that shows what the problem is. Suppose you take a dictionary, rip
out a few pages, and then select all the words in them; you will get a random sample
composed of a few clusters of consecutive words. This is good enough if you want to
estimate the average length of a word but not for analyzing the average number of words
for each initial letter. The reason is that the initial letter of a word is strongly correlated
with how the words are arranged in pages, while the length of a word is not.

We haven't discussed how random the TABLESAMPLE clause is. This isn't the right
place for such details; however, it is reasonably simple to extend PostgreSQL with
extra functions or sampling methods, so if you prefer another mechanism, you can
find an external random number generator and create a new sampling method for
the TABLESAMPLE clause. PostgreSQL includes two extra sampling methods, tsm_
system_rows and tsm_system_time,, as contrib extensions; they are excellent
examples to start from.

The tsm_system_rows method does not work with percentages; instead, the numeric
argument is interpreted as the number of rows to be returned. Similarly, the tsm_
system_time method will regard its argument as the number of milliseconds to spend
retrieving the random sample.

These two methods include the word system in their name because they use block-level
sampling, such as the built-in system sampling method; hence, their randomness is
affected by the same clustering limitation as described previously.

The sampling method shown earlier is a simple random sampling technique that has
an Equal Probability of Selection (EPS) design.

EPS samples are considered useful because the variance of the sample attributes is similar
to the variance of the original dataset. However, bear in mind that this is useful only if you
are considering variances.

176 Tables and Data

Simple random sampling can make the eventual sample biased toward more frequently
occurring data. For example, if you have a 1% sample of data on which some kinds of data
occur only 0.001% of the time, you may end up with a dataset that doesn't have any of that
outlying data.

What you might wish to do is to pre-cluster your data and take different samples from
each group to ensure that you have a sampled dataset that includes many more outlying
attributes. A simple method might be to do the following:

• Include 1% of all normal data.

• Include 25% of outlying data.

Note that if you do this, then it is no longer an EPS sample design.

Undoubtedly, there are statisticians who will be fuming after reading this. You're welcome
to use the facilities of the SQL language to create a more accurate sample. Just make sure
that you know what you're doing, and check out some good statistical literature, websites,
or textbooks.

Loading data from a spreadsheet
Spreadsheets are the most obvious starting place for most data stores. Studies within a
range of businesses consistently show that more than 50% of smaller data stores are held
in spreadsheets or small desktop databases. Loading data from these sources is a frequent
and important task for many DBAs.

Getting ready
Spreadsheets combine data, presentation, and programs all into one file. That's perfect
for power users wanting to work quickly. As with other relational databases, PostgreSQL
is mainly concerned with the lowest level of data, so extracting just data from these
spreadsheets can present some challenges.

We can easily handle spreadsheet data if that spreadsheet's layout follows a very specific
form, as follows:

• Each spreadsheet column becomes one column in one table.

• Each row of the spreadsheet becomes one row in one table.

• Data is only in one worksheet of the spreadsheet.

• Optionally, the first row is a list of column descriptions/titles.

Loading data from a spreadsheet 177

This is a very simple layout, and more often, there will be other things in the spreadsheet,
such as titles, comments, constants for use in formulas, summary lines, macros, and
images. If you're in this position, the best thing to do is to create a new worksheet within
the spreadsheet in the pristine form described earlier and then set up cross-worksheet
references to bring in the data. An example of a cross-worksheet reference would
be =Sheet2.A1. You'll need a separate worksheet for each set of data, which will become
one table in PostgreSQL. You can load multiple worksheets into one table, however.

Some spreadsheet users will say that all of this is unnecessary and is evidence of the
problems of databases. The real spreadsheet gurus do actually advocate this type of layout
– data in one worksheet and calculation and presentation in other worksheets. So, it is
actually a best practice to design spreadsheets in this way; however, we must work with
the world the way it is.

How to do it...
Here, we will show you an example where data in a spreadsheet is loaded into a database:

1. If your spreadsheet data is neatly laid out in a single worksheet, as shown in the
following screenshot, then you can go to File | Save As and then select CSV as the
file type to be saved:

Figure 5.1 – A very simple spreadsheet example

2. This will export the current worksheet to a file, as follows:

"Key","Value"

1,"c"

2,"d"

178 Tables and Data

3. We can then create a table to load the data into, using psql and the command:

CREATE TABLE example

(key integer

,value text);

4. We can then load it into the PostgreSQL table, using the following psql command:

postgres=# \COPY sample FROM sample.csv CSV HEADER

postgres=# SELECT * FROM sample;

 key | value

-----+-------

 1 | c

 2 | d

5. Alternatively, from the command line, this would be as follows:

psql -c '\COPY sample FROM sample.csv CSV HEADER'

The filename can include a full file path if the data is in a different directory.
The psql \COPY command transfers data from the client system where you run
the command through to the database server, so the file is on the client. Higher
privileges are not required, so this is the preferred method.

6. If you are submitting SQL through another type of connection, then you can also
use the following SQL statement of the form, noting that the leading backslash is
removed:

COPY sample FROM '/mydatafiledirectory/sample.csv' CSV
HEADER;

The COPY statement shown in the preceding SQL statement uses an absolute path
to identify data files, which is required. This method runs on the database server
and can only be executed by a super user, or a user who has been granted one of the
pg_read_server_files, pg_write_server_files, or pg_execute_
server_program roles. So, you need to ensure that the server process is allowed
to read that file, then transfer the data yourself to the server, and finally, load the
file. These privileges are not commonly granted, which is why we prefer the
earlier method.

Loading data from flat files 179

The COPY (or \COPY) command does not create the table for you; that must be done
beforehand. Note also that the HEADER option does nothing but ignore the first line of
the input file, so the names of the columns from the .csv file don't need to match those
of the Postgres table. If it hasn't occurred to you yet, this is also a problem. If you say
HEADER and the file does not have a header line, then all it does is ignore the first data
row. Unfortunately, there's no way for PostgreSQL to tell whether the first line of the file is
truly a header or not. Be careful!

There isn't a standard tool to load data directly from the spreadsheet to the database. It's
fairly simple to write a spreadsheet macro to automate the aforementioned tasks, but that's
not a topic for this book.

How it works...
The \COPY command executes a COPY SQL statement, so the two methods described
earlier are very similar. There's more to be said about COPY, so we'll cover that in the
next recipe.

Under the covers, the \COPY command executes a COPY … FROM STDIN command.
When using this form of command, the client program must read the file and feed
the data to the server. psql does this for you, but in other contexts, you can use this
mechanism to avoid the need for higher privileges or additional roles, which are needed
when running COPY with an absolute filename.

There's more...
There are many data extraction and loading tools available out there, some cheap and
some expensive. Remember that the hardest part of loading data from any spreadsheet
is separating the data from all the other things it contains. I've not yet seen a tool that
can help with that! This is why the best practice for spreadsheets is to separate data into
separate worksheets.

Loading data from flat files
Loading data into your database is one of the most important tasks. You need to do this
accurately and quickly. Here's how.

Getting ready
For basic loading, COPY works well for many cases, including CSV files, as shown in the
last recipe.

180 Tables and Data

If you want advanced functionality for loading, you may wish to try pgloader, which is
commonly available in all main software distributions. At the time of writing, the current
stable version is 3.6.3. There are many features, but it is stable, with very few new features
in recent years.

How to do it...
To load data with pgloader, we need to understand our requirements, so let's break this
down into a step-by-step process, as follows:

1. Identify the data files and where they are located. Make sure that pgloader is
installed in the location of the files.

2. Identify the table into which you are loading, ensure that you have the permissions
to load, and check the available space. Work out the file type (examples include
fixed-size fields, delimited text, and CSV) and check the encoding.

3. Specify the mapping between columns in the file and columns on the table being
loaded. Make sure you know which columns in the file are not needed – pgloader
allows you to include only the columns you want. Identify any columns in the
table for which you don't have data. Do you need them to have a default value on
the table, or does pgloader need to generate values for those columns through
functions or constants?

4. Specify any transformations that need to take place. The most common issue is date
formats, although it's possible that there may be other issues.

5. Write the pgloader script.
6. The pgloader script will create a log file to record whether the load has succeeded

or failed, and another file to store rejected rows. You need a directory with sufficient
disk space if you expect them to be large. Their size is roughly proportional to the
number of failing rows.

7. Finally, consider what settings you need for performance options. This is definitely
last, as fiddling with things earlier can lead to confusion when you're still making
the load work correctly.

8. You must use a script to execute pgloader. This is not a restriction; actually,
it is more like a best practice, because it makes it much easier to iterate toward
something that works. Loads never work the first time, except in the movies!

Let's look at a typical example from the quick-start documentation of pgloader,
the csv.load file.

Loading data from flat files 181

Define the required operations in a command and save it in a file, such as csv.load:

LOAD CSV

 FROM '/tmp/file.csv' (x, y, a, b, c, d)

 INTO postgresql://postgres@localhost:5432/postgres?csv (a,
b, d, c)

 WITH truncate,

 skip header = 1,

 fields optionally enclosed by '"',

 fields escaped by double-quote,

 fields terminated by ','

 SET client_encoding to 'latin1',

 work_mem to '12MB',

 standard_conforming_strings to 'on'

 BEFORE LOAD DO

 $$ drop table if exists csv; $$,

 $$ create table csv (

 a bigint,

 b bigint,

 c char(2),

 d text

);

 $$;

This command allows us to load the following CSV file content. Save this in a file, such
as file.csv, under the /tmp directory:

Header, with a © sign

"2.6.190.56","2.6.190.63","33996344","33996351","GB","United
Kingdom"

"3.0.0.0","4.17.135.31","50331648","68257567","US","United
States"

"4.17.135.32","4.17.135.63","68257568","68257599","CA","Canada"

"4.17.135.64","4.17.142.255","68257600","68259583","US","United
States"

"4.17.143.0","4.17.143.15","68259584","68259599","CA","Canada"

"4.17.143.16","4.18.32.71","68259600","68296775","US","United
States"

182 Tables and Data

We can use the following load script:

pgloader csv.load

Here's what gets loaded in the PostgreSQL database:

postgres=# select * from csv;

 a | b | c | d

----------+----------+----+----------------

 33996344 | 33996351 | GB | United Kingdom

 50331648 | 68257567 | US | United States

 68257568 | 68257599 | CA | Canada

 68257600 | 68259583 | US | United States

 68259584 | 68259599 | CA | Canada

 68259600 | 68296775 | US | United States

(6 rows)

How it works…
pgloader copes gracefully with errors. The COPY command loads all rows in a single
transaction, so only a single error is enough to abort the load. pgloader breaks down
an input file into reasonably sized chunks and loads them piece by piece. If some rows
in a chunk cause errors, then pgloader will split it iteratively until it loads all the good
rows and skips all the bad rows, which are then saved in a separate rejects file for later
inspection. This behavior is very convenient if you have large data files with a small
percentage of bad rows – for instance, you can edit the rejects, fix them, and finally, load
them with another pgloader run.

Versions from the 2.x iteration of pgloader were written in Python and connected
to PostgreSQL through the standard Python client interface. Version 3.x is written in
Common Lisp. Yes, pgloader is less efficient than loading data files using a COPY
command, but running a COPY command has many more restrictions: the file has to
be in the right place on the server, has to be in the right format, and must be unlikely
to throw errors on loading. pgloader has additional overhead, but it also has the
ability to load data using multiple parallel threads, so it can be faster to use as well. The
ability of pgloader to reformat the data via user-defined functions is often essential; a
straight COPY command may not be enough.

pgloader also allows loading from fixed-width files, which COPY does not.

If you need to reload the table completely from scratch, then specify the WITH
TRUNCATE clause in the pgloader script.

Loading data from flat files 183

There are also options to specify SQL to be executed before and after loading data.
For instance, you can have a script that creates the empty tables before, you can add
constraints after, or both.

There's more…
After loading, if we have load errors, then there will be bloat in the PostgreSQL tables.
You should think about whether you need to add a VACUUM command after the data load,
though this will possibly make the load take much longer.

We need to be careful to avoid loading data twice. The only easy way of doing so is to
make sure that there is at least one unique index defined on every table that you load. The
load should then fail very quickly.

String handling can often be difficult because of the presence of formatting or
non-printable characters. The default setting for PostgreSQL is to have a parameter named
standard_conforming_strings set to off, which means that backslashes will
be assumed to be escape characters. Put another way, by default, the \n string means
a line feed, which can cause data to appear truncated. You'll need to turn standard_
conforming_strings to on, or you'll need to specify an escape character in the load-
parameter file.

If you are reloading data that has been unloaded from PostgreSQL, then you may want
to use the pg_restore utility instead. The pg_restore utility has an option to
reload data in parallel, -j number_of_threads, though this is only possible if the
dump was produced using the custom pg_dump format. Refer to the recipes in Chapter
11, Backup and Recovery, for more details. This can be useful for reloading dumps, though
it lacks almost all of the other pgloader features discussed here.

If you need to use rows from a read-only text file that does not have errors, then you may
consider using the file_fdw contrib module. The short story is that it lets you create
a virtual table that will parse the text file every time it is scanned. This is different from
filling a table once and for all, either with COPY or pgloader; therefore, it covers a
different use case. For example, think about an external data source that is maintained by
a third party and needs to be shared across different databases.

Another option would be EDB*Loader, which also contains a wide range of load options:
https://www.enterprisedb.com/docs/epas/latest/epas_compat_
tools_guide/02_edb_loader/.

https://www.enterprisedb.com/docs/epas/latest/epas_compat_tools_guide/02_edb_loader/
https://www.enterprisedb.com/docs/epas/latest/epas_compat_tools_guide/02_edb_loader/

184 Tables and Data

Making bulk data changes using server-side
procedures with transactions
In some cases, you'll need to make bulk changes to your data. In many cases, you need to
scroll through the data making changes according to a complex set of rules. You have a
few choices in that case:

• Write a single SQL statement that can do everything.

• Open a cursor and read the rows out, and then make changes with a client-side
program.

• Write a procedure that uses a cursor to read the rows and make changes using
server-side SQL.

Writing a single SQL statement that does everything is sometimes possible, but if you
need to do more than just use UPDATE, then it becomes difficult very quickly. The main
difficulty is that the SQL statement isn't restartable, so if you need to interrupt it, you will
lose all of your work.

Reading all the rows back to a client-side program can be very slow – if you need to write
this kind of program, it is better to do it all on the database server.

Getting ready
Create an example table and fill it with nearly 1,000 rows of test data:

CREATE TABLE employee (

 empid BIGINT NOT NULL PRIMARY KEY

,job_code TEXT NOT NULL

,salary NUMERIC NOT NULL

);

INSERT INTO employee VALUES (1, 'A1', 50000.00);

INSERT INTO employee VALUES (2, 'B1', 40000.00);

INSERT INTO employee SELECT generate_series(10,1000), 'A2',
10000.00);

Making bulk data changes using server-side procedures with transactions 185

How to do it…
We're going to write a procedure in PL/pgSQL. A procedure is similar to a function,
except that it doesn't return any value or object. We use a procedure because it allows you
to run multiple server-side transactions. By using procedures in this way, we are able to
break the problem down into a set of smaller transactions that cause less of a problem
with database bloat and long-running transactions.

As an example, let's consider a case where we need to update all employees with the A2
job grade, giving each person a 2% pay rise:

CREATE PROCEDURE annual_pay_rise (percent numeric)

LANGUAGE plpgsql AS $$

DECLARE

c CURSOR FOR

SELECT * FROM employee

 WHERE job_code = 'A2';

BEGIN

FOR r IN c LOOP

UPDATE employee

SET salary = salary * (1 + (percent/100.0))

WHERE empid = r.empid;

 IF mod (r.empid, 100) = 0 THEN

COMMIT;

END IF;

END LOOP;

END;

$$;

Execute the preceding procedure like this:

CALL annual_pay_rise(2);

We want to issue regular commits as we go. The preceding procedure is coded so that it
issues commits roughly every 100 rows. There's nothing magical about that number; we
just want to break it down into smaller pieces, whether it is the number of rows scanned
or rows updated.

186 Tables and Data

There's more…
You can use both COMMIT and ROLLBACK in a procedure. Each new transaction
will see the changes from prior transactions and any other concurrent commits that
have occurred.

What happens if your procedure is interrupted? Since we are using multiple transactions
to complete the task, we won't expect the whole task to be atomic. If the execution is
interrupted, we need to rerun the parts that didn't execute successfully. What happens if
we accidentally rerun parts that have already been executed? We will give some people a
double pay rise, but not everyone.

To cope, let's invent a simple job restart mechanism. This uses a persistent table to track
changes as they are made, accessed by a simple API:

CREATE TABLE job_status

(id bigserial not null primary key,status text not
null,restartdata bigint);

CREATE OR REPLACE FUNCTION job_start_new ()

 RETURNS bigint

 LANGUAGE plpgsql

 AS $$

 DECLARE

 p_id BIGINT;

BEGIN

 INSERT INTO job_status (status, restartdata)

 VALUES ('START', 0)

 RETURNING id INTO p_id;

 RETURN p_id;

 END; $$;

CREATE OR REPLACE FUNCTION job_get_status (jobid bigint)

RETURNS bigint

LANGUAGE plpgsql

AS $$

DECLARE

 rdata BIGINT;

BEGIN

 SELECT restartdata INTO rdata

 FROM job_status

Making bulk data changes using server-side procedures with transactions 187

 WHERE status != 'COMPLETE' AND id = jobid;

 IF NOT FOUND THEN

 RAISE EXCEPTION 'job id does not exist';

 END IF;

 RETURN rdata;

END; $$;

CREATE OR REPLACE PROCEDURE

job_update (jobid bigint, rdata bigint)

LANGUAGE plpgsql

AS $$

BEGIN

 UPDATE job_status

 SET status = 'IN PROGRESS'

 ,restartdata = rdata

 WHERE id = jobid;

END; $$;

CREATE OR REPLACE PROCEDURE job_complete (jobid bigint)

LANGUAGE plpgsql

AS $$

BEGIN

 UPDATE job_status SET status = 'COMPLETE'

 WHERE id = jobid;

END; $$;

First of all, we start a new job:

SELECT job_start_new();

Then, we execute our procedure, passing the job number to it. Let's say this returns 8474:

CALL annual_pay_rise(8474);

If the procedure is interrupted, we will restart from the correct place, without needing to
specify any changes:

CALL annual_pay_rise(8474);

188 Tables and Data

The existing procedure needs to be modified to use the new restart API, as shown in the
following code block. Note, also, that the cursor has to be modified to use an ORDER
BY clause to make the procedure sensibly repeatable:

CREATE OR REPLACE PROCEDURE annual_pay_rise (job bigint)

LANGUAGE plpgsql AS $$

DECLARE

 job_empid bigint;

 c NO SCROLL CURSOR FOR

 SELECT * FROM employee

 WHERE job_code='A2'

 AND empid > job_empid

 ORDER BY empid;

BEGIN

 SELECT job_get_status(job) INTO job_empid;

 FOR r IN c LOOP

 UPDATE employee

 SET salary = salary * 1.02

 WHERE empid = r.empid;

 IF mod (r.empid, 100) = 0 THEN

 CALL job_update(job, r.empid);

 COMMIT;

 END IF;

 END LOOP;

 CALL job_complete(job);

END; $$;

For extra practice, follow the execution using the debugger in pgAdmin or OmniDB.

The CALL statement can also be used to call functions that return void, but other than
that, functions and procedures are separate concepts. Procedures also allow you to execute
transactions in PL/Python and PL/Perl.

6
Security

This chapter will present a few common recipes for securing your database server. Taken
together, these will cover the main areas around security in PostgreSQL that you should
be concerned with. The last recipe will cover some cloud-specific topics.

This chapter covers the following recipes:

• Overview of PostgreSQL security

• The PostgreSQL superuser

• Revoking user access to a table

• Granting user access to a table

• Granting user access to specific columns

• Granting user access to specific rows

• Creating a new user

• Temporarily preventing a user from connecting

• Removing a user without dropping their data

• Checking whether all users have a secure password

• Giving limited superuser powers to specific users

• Auditing database access

• Always knowing which user is logged in

190 Security

• Integrating with Lightweight Directory Access Protocol (LDAP)

• Connecting using encryption SSL GSS API)

• Using SSL certificates to authenticate

• Mapping external usernames to database roles

• Using column-level encryption

• Setting up cloud security using predefined roles

Overview of PostgreSQL security
Security is a huge area of related methods and technologies, so we will take a practical
approach, covering the most common issues related to database security.

First, we set up access rules in the database server. PostgreSQL allows you to control
access based upon the host that is trying to connect, using the pg_hba.conf file. You
can specify SSL/GSSAPI connections if needed or skip that if the network is secure.
Passwords are encrypted using SCRAM-SHA-256, but many other authentication
methods are available.

Next, set up the role and privileges for accessing your data. Modern databases should
be configured using the principle of least privilege (POLP). Data access is managed
by a privilege system, where users are granted different privileges for different tables or
other database objects, such as schemas or functions. Thus, some records or tables can
only be seen by certain users, and even those tables that are visible to everyone can have
restrictions in terms of who can insert new data or change existing data.

It is good practice not to grant privileges directly to users, but to instead use an
intermediate role to collect a set of privileges. This is easier to audit and is more extensible.
Then, instead of granting all the same privileges to the actual user, the entire role is
granted to users needing these privileges. For example, a clerk role may have the right to
both insert data and update existing data in the user_account table but may have the
right to only insert data in the transaction_history table.

Fine-grained control over access can be managed using the Row-Level Security (RLS)
feature, which allows a defined policy on selected tables.

Another aspect of database security concerns the management of this access to the
database: making sure that only the right people can access the database; that one user
can't see what other users are doing (unless they are an administrator or auditor); and
deciding whether users can or cannot pass on the roles granted to them.

The PostgreSQL superuser 191

You should consider auditing the actions of administrators using pgaudit, though there
is also audit functionality within EDB Postgres Advanced Server.

Some aspects of security are also covered in Chapter 7, Database Administration, and
Chapter 8, Monitoring and Diagnosis, of this book, PostgreSQL Administration Cookbook.

Typical user roles
The minimal production database setup contains at least two types of users—namely,
administrators and end users—where administrators can do many things and end users
can only do very little, usually just modifying the data in only a few tables and reading
from a few more.

It is not a good idea to let ordinary users create or change database object definitions,
meaning that they should not have the CREATE privilege on any schema, including
PUBLIC.

There can be more roles for different types of end users, such as analysts, who can only
select from a single table or view, or some maintenance script users who see no data at all
and just have the ability to execute a few functions.

Alternatively, there can also be a manager role, which can grant and revoke roles for other
users but is not supposed to do anything else.

The PostgreSQL superuser
A PostgreSQL superuser is a user that bypasses all permission checks, except the right
to log in. Superuser is a dangerous privilege and should not be used carelessly, and many
cloud databases do not allow this level of privilege to be granted at all. It is normal to place
strict controls on users of this type. If you are using PostgreSQL in a cloud service, then
please read the Setting up cloud security using predefined roles recipe instead.

In this recipe, you will learn how to grant the right to a user to become a superuser.

192 Security

How to do it…
Follow the next steps to add or remove superuser privileges for any user.

• A user becomes a superuser when they are created with the SUPERUSER
attribute set:

CREATE USER username SUPERUSER;

• A user can be deprived of their superuser status by removing the SUPERUSER
attribute using this command:

ALTER USER username NOSUPERUSER;

• A user can be restored to superuser status later using the following command:

ALTER USER username SUPERUSER;

• When neither SUPERUSER nor NOSUPERUSER is given in the CREATE USER
command, then the default is to create a user who is not a superuser.

How it works…
The rights to some operations in PostgreSQL are not available by default and need to
be granted specifically to users. They must be performed by a special user who has this
special attribute set. The preceding commands set and reset this attribute for the user.

There's more…
The PostgreSQL system comes set up with at least one superuser. Most commonly, this
superuser is named postgres, but occasionally, it adopts the same name as the system
user who owns the database directory and with whose rights the PostgreSQL server runs.

Other superuser-like attributes
In addition to SUPERUSER, there are two lesser attributes—CREATEDB and
CREATEUSER—that give the user only some of the power reserved for superusers: namely,
creating new databases and users. See the Giving limited superuser powers to specific users
recipe for more information on this.

See also
Also, check out the Always knowing which user is logged in recipe in this chapter.

Revoking user access to a table 193

Revoking user access to a table
This recipe answers the question How do I make sure that user X cannot access table Y?

Getting ready
The current user must either be a superuser, the owner of the table, or a user with a GRANT
option for the table.

Also, bear in mind that you can't revoke rights from a user who is a superuser.

How to do it…
To revoke all rights on the table1 table from the user2 user, you must run the
following SQL command:

REVOKE ALL ON table1 FROM user2;

However, if user2 has been granted another role that gives them some rights on
table1—say, role3—this command is not enough; you must also choose one of the
following options:

• Fix the user—that is, revoke role3 from user2

• Fix the role—that is, revoke privileges on table1 from role3

Both choices are imperfect because of their side effects. The former will revoke all of the
privileges associated with role3, not just the privileges concerning table1; the latter
will revoke the privileges on table1 from all other users that have been granted role3,
not just from user2.

It is normally better to avoid damaging other legitimate users, so we opt for the first
solution. We'll now look at a working example.

Using psql, display a list of roles that have been granted at least one privilege on table1
by issuing \z table1. For instance, you can obtain the following output (an extra
column about column privileges has been removed from the right-hand side because it
was not relevant here):

 Access privileges

 Schema | Name | Type | Access privileges | ...

--------+--------+-------+---------------------------+ ...

 public | table1 | table | postgres=arwdDxt/postgres+| ...

 | | | role3=r/postgres +| ...

194 Security

 | | | role5=a/postgres | ...

(1 row)

Then, we check whether user2 is a member of any of those roles by typing \du user2:

 List of roles

 Role name | Attributes | Member of

-----------+------------+---------------

 user2 | | {role3, role4}

In the previous step, we notice that role3 had been granted the SELECT privilege (r for
read) by the postgres user, so we must revoke it, as follows:

REVOKE role3 FROM user2;

We must also inspect role4. Even if it doesn't have privileges on table1, in theory, it
could be a member of one of the three roles that have privileges on that table. We issue
\du role4 and get the following output:

 List of roles

 Role name | Attributes | Member of

-----------+--------------+-----------

 role4 | Cannot login | {role5}

Our suspicion was well-founded: user2 can get the INSERT privilege (a for append) on
table1, first via role4 and then via role5. So, we must break this two-step chain, as
follows:

REVOKE role4 FROM user2;

This example may seem too unlikely to be true. We unexpectedly gain access to the table
via a chain of two different role memberships, which was made possible by the fact that
a non-login role, such as role4, was made a member of another non-login role—that is,
role5. In most real-world cases, superusers will know whether such chains exist at all,
so there will be no surprises; however, the goal of this recipe is to make sure that the user
cannot access the table, meaning we cannot exclude less-likely options. See also the later
recipe, Auditing database access.

Revoking user access to a table 195

How it works…
The \z command, as well as its synonym, \dp, displays all privileges granted on tables,
views, and sequences. If the Access privileges column is empty, it means we use
default privileges—that is, all privileges are given to the owner (and the superusers, as
always).

The \du command shows you the attributes and roles that have been granted to roles.

Both commands accept an optional name or pattern to restrict the display.

There's more…
Here, we'll cover some good practices on user and role management.

Database creation scripts
For production systems, it is usually a good idea to always include GRANT and REVOKE
statements in the database creation script so that you can be sure that only the right set of
users has access to the table. If this is done manually, it is easy to forget. Also, in this way,
you can be sure that the same roles are used in development and testing environments so
that there are no surprises at deployment time.

Here is an extract from the database creation script:

CREATE TABLE table1(

...

);

GRANT SELECT ON table1 TO webreaders;

GRANT SELECT, INSERT, UPDATE, DELETE ON table1 TO editors;

GRANT ALL ON table1 TO admins;

Default search path
It is always good practice to use a fully qualified name when revoking or granting rights;
otherwise, you may be inadvertently working with the wrong table.

196 Security

To see the effective search path for the current database, run the following code:

pguser=# show search_path ;

 search_path

 "$user",public

(1 row)

To see which table will be affected if you omit the schema name, run the following code
in psql:

pguser=# \d x

 Table "public.x"

 Column | Type | Modifiers

--------+------+-----------

The public.x table name in the response contains the full name, including the schema.

Securing views
It is a common technique to use a view to disclose only some parts of a secret table;
however, a clever attacker can use access to the view to display the rest of the table using
log messages. For instance, consider the following example:

CREATE VIEW for_the_public AS

 SELECT * FROM reserved_data WHERE importance < 10;

GRANT SELECT ON for_the_public TO PUBLIC;

A malicious user could define the following function:

CREATE FUNCTION f(text)

RETURNS boolean

COST 0.00000001

LANGUAGE plpgsql AS $$

BEGIN

 RAISE INFO '$1: %', $1;

 RETURN true;

END;

$$;

Granting user access to a table 197

They could use it to filter rows from the view:

SELECT * FROM for_the_public x WHERE f(x :: text);

The PostgreSQL optimizer will then internally rearrange the query, expanding the
definition of the view and then combining the two filter conditions into a single WHERE
clause. The trick here is that the function has been told to be very cheap using the COST
keyword, so the optimizer will choose to evaluate that condition first. In other words,
the function will access all of the rows in the table, as you will realize when you see the
corresponding INFO lines on the console if you run the code yourself.

This security leak can be prevented using the security_barrier attribute:

ALTER VIEW for_the_public SET (security_barrier = on);

This means that the conditions that define the view will always be computed first,
irrespective of cost considerations.

The performance impact of this fix can be mitigated by the LEAKPROOF attribute for
functions. In short, a function that cannot leak information other than its output value can
be marked as LEAKPROOF by a superuser so that the planner will know it's secure enough
to compute the function before the other view conditions.

Granting user access to a table
A user needs to have access to a table in order to perform any actions on it.

Getting ready
Make sure that you have the appropriate roles defined and that privileges are revoked from
the PUBLIC role:

CREATE GROUP webreaders;

CREATE USER tim;

CREATE USER bob;

REVOKE ALL ON SCHEMA someschema FROM PUBLIC;

198 Security

How to do it…
We had to grant access to the schema in order to allow access to the table. This suggests
that access to a given schema can be used as a fast and extreme way of preventing any
access to any object in that schema. Otherwise, if you want to allow some access, you must
use specific GRANT and REVOKE statements, as needed:

GRANT USAGE ON SCHEMA someschema TO webreaders;

It is often desirable to give a group of users similar permissions to a group of database
objects. To do this, you first assign all the permissions to a proxy role (also known as a
permission group), and then assign the group to selected users, as follows:

GRANT SELECT ON someschema.pages TO webreaders;

GRANT INSERT ON someschema.viewlog TO webreaders;

GRANT webreaders TO tim, bob;

Now, both tim and bob have the SELECT privilege on the pages table and INSERT on
the viewlog table. You can also add privileges to the group role after assigning it to users.
Consider the following command:

GRANT INSERT, UPDATE, DELETE ON someschema.comments TO
webreaders;

After running this command, both bob and tim have all of the aforementioned privileges
on the comments table.

This assumes that both the bob and tim roles were created with the INHERIT default
setting. Otherwise, they do not automatically inherit the rights of roles but need to
explicitly set their role to the granted user to make use of the privileges granted to
that role.

We can grant privileges on all objects of a certain kind in a specific schema, as follows:

GRANT SELECT ON ALL TABLES IN SCHEMA someschema TO bob;

You still need to grant the privileges on the schema itself in a separate GRANT statement.

How it works...
The preceding sequence of commands first grants access to a schema for a group role, then
gives appropriate viewing (SELECT) and modifying (INSERT) rights on certain tables to
the role, and finally grants membership in that role to two database users.

Granting user access to specific columns 199

There's more…
There is no requirement in PostgreSQL to have some privileges in order to have others.
This means that you may well have write-only tables where you are allowed to insert but
you can't select. This can be used to implement a mail-queue-like functionality, where
several users post messages to one user but can't see what other users have posted.

Alternatively, you could set up a situation where you can write a record, but you can't
change or delete it. This is useful for auditing log-type tables, where all changes are
recorded but cannot be tampered with.

Granting user access to specific columns
A user can be given access to only some table columns.

Getting ready
We will continue the example from the previous recipe, so we assume that there is already
a schema called someschema and a role called somerole with USAGE privileges on it.
We create a new table on which we will grant column-level privileges:

CREATE TABLE someschema.sometable2(col1 int, col2 text);

How to do it…
We want to grant somerole the ability to view existing data and insert new data; we also
want to provide the ability to amend existing data, limited to the col2 column only. We
use the following self-evident statements:

GRANT SELECT, INSERT ON someschema.sometable2

TO somerole;

GRANT UPDATE (col2) ON someschema.sometable2

TO somerole;

200 Security

We can then test whether this has worked successfully, as follows:

1. Let's assume the identity of the somerole role and test these privileges with the
following commands:

SET ROLE TO somerole;

INSERT INTO someschema.sometable2 VALUES (1, 'One');

SELECT * FROM someschema.sometable2 WHERE col1 = 1;

2. As expected, we are able to insert a new row and view its contents. Let's now check
our ability to update individual columns. We start with the second column, which
we have authorized:

UPDATE someschema.sometable2 SET col2 = 'The number one';

This command returns the familiar output:
UPDATE 1

3. This means that we were able to successfully update that column in one row. Now,
we try to update the first column:

UPDATE someschema.sometable2 SET col1 = 2;

This time, we get the following error message:
ERROR: permission denied for relation sometable2

This confirms that, as planned, we only authorized updates to the second column.

How it works…
The GRANT command has been extended to allow for specifying a list of columns,
meaning that the privilege is granted on that list of columns, rather than on the
whole table.

There's more…
Consider a table, t, with c1, c2, and c3 columns; there are two different ways of
authorizing the user (u) to perform the following query:

SELECT * FROM t;

The first is by granting a table-level privilege, as follows:

GRANT SELECT ON TABLE t TO u;

Granting user access to specific rows 201

The alternative way is by granting column-level privileges, as follows:

GRANT SELECT (c1,c2,c3) ON TABLE t TO u;

Despite these two methods having overlapping effects, table-level privileges are distinct
from column-level privileges, which is correct since the meaning of each is different.
Granting privileges on a table means giving them to all columns present and future, while
column-level privileges require the explicit indication of columns and, therefore, don't
extend automatically to new columns.

The way privileges work in PostgreSQL means that a given role will be allowed to
perform a given action if it matches one of its privileges. This creates some ambiguity in
overlapping areas. For example, consider the following command sequence:

GRANT SELECT ON someschema.sometable2 TO somerole;

REVOKE SELECT (col1) ON someschema.sometable2 FROM

somerole;

The outcome, somehow surprisingly, will be that somerole is allowed to view all of
the columns of that table using the table-level privilege granted by the first command.
The second command was ineffective because it tried to revoke a column-level privilege
(SELECT on col1) that was never granted in the first place.

Granting user access to specific rows
PostgreSQL supports granting privileges on a subset of rows in a table using RLS.

Getting ready
Just as we did for the previous recipe, we assume that there is already a schema called
someschema and a role called somerole with USAGE privileges on it. We create a new
table to experiment with row-level privileges:

CREATE TABLE someschema.sometable3(col1 int, col2 text);

RLS must also be enabled on that table:

ALTER TABLE someschema.sometable3 ENABLE ROW LEVEL SECURITY;

202 Security

How to do it…
First, we grant somerole the privilege to view the contents of the table, as we did in the
previous recipe:

GRANT SELECT ON someschema.sometable3 TO somerole;

Let's assume that the contents of the table are as shown by the following command:

SELECT * FROM someschema.sometable3;

 col1 | col2

------+-----------

 1 | One

 -1 | Minus one

(2 rows)

In order to grant the ability to access some rows only, we create a policy specifying what
is allowed and on which rows. For instance, this way, we can enforce the condition that
somerole is only allowed to select rows with positive values of col1:

CREATE POLICY example1 ON someschema.sometable3

FOR SELECT

TO somerole

USING (col1 > 0);

The effect of this command is that the rows that do not satisfy the policy are silently
skipped, as shown when somerole issues the following command:

SELECT * FROM someschema.sometable3;

 col1 | col2

------+-----------

 1 | One

(1 row)

What if we want to introduce a policy on the INSERT clause? The preceding policy shows
how the USING clause specifies which rows are affected. There is also a WITH CHECK
clause that can be used to specify which inserts are accepted. More generally, the USING
clause applies to pre-existing rows, while WITH CHECK applies to rows that are generated
by the statement being analyzed. So, the former works with SELECT, UPDATE, and
DELETE, while the latter works with INSERT and UPDATE.

Granting user access to specific rows 203

Coming back to our example, we may want to allow inserts only where col1 is positive:

CREATE POLICY example2 ON someschema.sometable3

FOR INSERT

TO somerole

WITH CHECK (col1 > 0);

We must also remember to allow INSERT commands on the table, as we did before with
SELECT:

GRANT INSERT ON someschema.sometable3 TO somerole;

SELECT * FROM someschema.sometable3;

 col1 | col2

------+-----------

 1 | One

(1 row)

Now, we are able to insert a new row and to see it afterward:

INSERT INTO someschema.sometable3 VALUES (2, 'Two');

SELECT * FROM someschema.sometable3;

 col1 | col2

------+-----------

 1 | One

 2 | Two

(2 rows)

How it works…
RLS policies are created and dropped on a given table using the CREATE POLICY syntax.
The RLS policy itself must also be enabled explicitly on the given table because it is
disabled by default.

In the previous example, we needed to grant privileges on the table or on the columns,
in addition to creating an RLS policy. This is because RLS is not one more privilege to be
added to the other; rather, it works as an additional check. In this sense, it is convenient
that it is off by default, as we have to create policies only on the tables where our access
logic depends on the row contents.

204 Security

There's more...
RLS can lead to very complex configurations for a variety of reasons, as in the following
instances:

• An UPDATE policy can specify both the rows on which we act and which changes
can be accepted.

• UPDATE and DELETE policies, in some cases, require visibility as granted by an
appropriate SELECT policy.

• UPDATE policies are also applied to INSERT ... ON CONFLICT DO UPDATE.

We recommend reading the finer details at the following URL: https://www.
postgresql.org/docs/current/static/ddl-rowsecurity.html

Creating a new user
In this recipe, we will show you two ways of creating a new database user—one with a
dedicated command-line utility and another using SQL commands.

Getting ready
To create new users, you must either be a superuser or have the CREATEROLE or
CREATEROLE privilege.

How to do it...
From the command line, you can run the createuser command:

pguser@hvost:~$ createuser bob

If you add the --interactive command-line option, you activate the interactive mode,
which means you will be asked some questions, as follows:

pguser@hvost:~$ createuser --interactive alice

Shall the new role be a superuser? (y/n) n

Shall the new role be allowed to create databases? (y/n) y

Shall the new role be allowed to create more new roles? (y/n) n

Without --interactive, the preceding questions get no as the default answer; you can
change that with the -s, -d, and -r command-line options.

https://www.postgresql.org/docs/current/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/current/static/ddl-rowsecurity.html

Temporarily preventing a user from connecting 205

In interactive mode, questions are asked only if they make sense. One example is when
the user is a superuser; no other questions are asked because a superuser is not subject to
privilege checks. Another example is when one of the preceding options is used to specify
a non-default setting; the corresponding question will not be asked.

How it works…
The createuser program is just a shallow wrapper around the executing SQL against
the database cluster. It connects to the postgres database and then executes SQL
commands for user creation. To create the same users through SQL, you can issue the
following commands:

CREATE USER bob;

CREATE USER alice CREATEDB;

There's more…
You can check the attributes of a given user in psql, as follows:

pguser=# \du alice

This gives you the following output:

 List of roles

 Role name | Attributes | Member of

-----------+------------+-----------

 alice | Create DB | {}

The CREATE USER and CREATE GROUP commands are actually variations of CREATE
ROLE. The CREATE USER username; statement is equivalent to CREATE ROLE
username LOGIN;, and the CREATE GROUP groupname; statement is equivalent to
CREATE ROLE groupname NOLOGIN;.

Temporarily preventing a user from
connecting
Sometimes, you need to temporarily revoke a user's connection rights without actually
deleting the user or changing the user's password. This recipe presents ways of doing this.

206 Security

Getting ready
To modify other users, you must either be a superuser or have the CREATEROLE privilege
(in the latter case, only non-superuser roles can be altered).

How to do it…
Follow these steps to temporarily prevent and reissue the logging-in capability to a user:

1. To temporarily prevent the user from logging in, run this command:

pguser=# alter user bob nologin;

ALTER ROLE

2. To let the user connect again, run the following command:

pguser=# alter user bob login;

ALTER ROLE

How it works...
This sets a flag in the system catalog, telling PostgreSQL not to let the user log in. It does
not kick out already connected users.

There's more…
Here are some additional remarks.

Limiting the number of concurrent connections by a user
The same result can be achieved by setting the connection limit for that user to 0:

pguser=# alter user bob connection limit 0;

ALTER ROLE

To allow 10 concurrent connections for the bob user, run this command:

pguser=# alter user bob connection limit 10;

ALTER ROLE

To allow an unlimited number of connections for this user, run the following command:

pguser=# alter user bob connection limit -1;

ALTER ROLE

Removing a user without dropping their data 207

Allowing unlimited connections to PostgreSQL concurrently could allow a denial-of-
service (DoS) attack by exhausting connection resources; also, a system could fail or
degrade by an overload of legitimate users. To reduce these risks, you may wish to limit
the number of concurrent sessions per user.

Forcing NOLOGIN users to disconnect
In order to make sure that all users whose login privileges have been revoked are
disconnected right away, run the following SQL statement as a superuser:

SELECT pg_terminate_backend(pid)

 FROM pg_stat_activity a

 JOIN pg_roles r ON a.usename = r.rolname AND NOT
rolcanlogin;

This disconnects all users who are no longer allowed to connect by terminating the
backends opened by these users.

Removing a user without dropping their data
When trying to drop a user who owns some tables or other database objects, you get the
following error, and the user is not dropped:

testdb=# drop user bob;

ERROR: role "bob" cannot be dropped because some objects
depend on it

DETAIL: owner of table bobstable

owner of sequence bobstable_id_seq

This recipe presents two solutions to this problem.

Getting ready
To modify users, you must either be a superuser or have the CREATEROLE privilege.

208 Security

How to do it…
The easiest solution to this problem is to refrain from dropping the user and use the trick
from the Temporarily preventing a user from connecting recipe to prevent the user from
connecting:

pguser=# alter user bob nologin;

ALTER ROLE

This has the added benefit of the original owner of the table being available later, if
needed, for auditing or debugging purposes (Why is this table here? Who created it?).

Then, you can assign the rights of the deleted user to a new user, using the following code:

pguser=# GRANT bob TO bobs_replacement;

GRANT

How it works…
As noted previously, a user is implemented as a role with the login attribute set. This
recipe works by removing that attribute from the user, which is then kept just as a role.

If you really need to get rid of a user, you have to assign all ownership to another user. To
do so, run the following query, which is a PostgreSQL extension to standard SQL:

REASSIGN OWNED BY bob TO bobs_replacement;

It does exactly what it says: it assigns ownership of all database objects currently owned by
the bob role to the bobs_replacement role.

However, you need to have privileges on both the old and the new roles to do that, and
you need to do it in all databases where bob owns any objects, as the REASSIGN OWNED
command works only on the current database.

After this, you can delete the original user, bob.

Checking whether all users have a secure password 209

Checking whether all users have a
secure password
By default, as of PostgreSQL 14, passwords are encrypted using the SCRAM-SHA-256
login method for users, which was added in PostgreSQL 10. Any servers upgrading from
earlier versions should upgrade from MD5 to SCRAM-SHA-256 password encryption
since the MD5 authentication method is considered insecure for many applications.

For client applications connecting from trusted private networks, either real or a virtual
private network (VPN), you may use host-based access, provided you know that the
machine on which the application is running is not used by some non-trusted individuals.
For remote access over public networks, it may be a better idea to use SSL client
certificates. See the later recipe, Using SSL certificates to authenticate, for more on this.

How to do it…
To see which users don't yet have SCRAM-encrypted passwords, use this query:

test2=# select usename,passwd from pg_shadow where passwd

not like 'SCRAM%' or passwd is null;

 usename | passwd

----------+--------------

 tim | weakpassword

 asterisk | md5chicken

(2 rows)

How it works…
The password_encryption parameter decides how the ALTER USER statement will
encrypt the password. This should be set globally in the postgresql.conf file or by
using ALTER SYSTEM. As of PostgreSQL 14, the default value is scram-sha-256.

Having the passwords encrypted in the database is just half of the equation. The bigger
problem is making sure that users actually use passwords that are hard to guess. Passwords
such as password, secret, or test are out of the question, and most common words
are not good passwords either.

As of PostgreSQL14, passwords can be of arbitrary length. However, on PgBouncer, there
is a limit of 996 characters, so that is the reasonable limit. Note that usernames can be—at
most—63 characters.

210 Security

If you don't trust your users to select strong passwords, you can write a wrapper
application that checks the password strength and make them use that when changing
passwords. A contrib module lets you do this for a limited set of cases (the password is
sent from client to server in plain text). Visit http://www.postgresql.org/docs/
current/static/passwordcheck.html for more information on this.

Giving limited superuser powers to
specific users
The superuser role has some privileges that can also be granted to non-superuser roles
separately.

To give the bob role the ability to create new databases, run this:

ALTER ROLE BOB WITH CREATEDB;

To give the bob role the ability to create new users, run the following command:

ALTER ROLE BOB WITH CREATEROLE;

Note that the PostgreSQL documentation warns against doing the preceding action:

"Be careful with the CREATEROLE privilege. There is no concept of inheritance for the
privileges of a CREATEROLE-role. That means that even if a role does not have a certain
privilege but is allowed to create other roles, it can easily create another role with different
privileges than its own (except for creating roles with superuser privileges). For example, if
the role "user" has the CREATEROLE privilege but not the CREATEDB privilege, nonetheless
it can create a new role with the CREATEDB privilege. Therefore, regard roles that have the
CREATEROLE privilege as almost-superuser-roles."

(https://www.postgresql.org/docs/current/sql-createrole.html)

It is also possible to give ordinary users more fine-grained and controlled access to an
action reserved for superusers using security definer functions. The same trick can
also be used to pass partial privileges between different users.

Getting ready
First, you must have access to the database as a superuser in order to delegate powers.
Here, we assume we are using a default superuser named postgres.

We will demonstrate two ways to make some superuser-only functionality available to a
selected ordinary user.

http://www.postgresql.org/docs/current/static/passwordcheck.html
http://www.postgresql.org/docs/current/static/passwordcheck.html
https://www.postgresql.org/docs/current/sql-createrole.html

Giving limited superuser powers to specific users 211

How to do it…
An ordinary user cannot tell PostgreSQL to copy table data from a file. Only a superuser
can do that, as follows:

pguser@hvost:~$ psql -U postgres

test2

...

test2=# create table lines(line text);

CREATE TABLE

test2=# copy lines from '/home/bob/names.txt';

COPY 37

test2=# SET ROLE to bob;

SET

test2=> copy lines from '/home/bob/names.txt';

ERROR: must be superuser to COPY to or from a file

HINT: Anyone can COPY to stdout or from stdin. psql's \copy
command also works for anyone.

To let bob copy directly from the file, the superuser can write a special wrapper function
for bob, as follows:

create or replace function copy_from(tablename text, filepath
text)

returns void

security definer

as

$$

 declare

 begin

 execute 'copy ' || quote_ident(tablename)

 || ' from ' || quote_literal(filepath) ;

 end;

$$ language plpgsql;

It is usually a good idea to restrict the use of such a function to the intended user only:

revoke all on function copy_from(text, text) from public;

grant execute on function copy_from(text, text) to bob;

212 Security

You may also want to verify that bob imports files only from his home directory.

Unfortunately, this solution is not completely secure against superuser privilege escalation
by a malicious attacker. This is because the execution of the COPY command inside the
function will also cause the execution, as the postgres user, of all side effects, such
as the execution of any INSERT trigger, the computation of any CHECK constraint, the
computation of any functional index, and more.

In other words, if the user wants to execute a given function as the superuser, it's enough
to put that function inside any of the preceding functions.

There are a few workarounds for this security hole, none of which is optimal.

You can require that the table has no triggers and CHECK constraints and functional
indexes.

Instead of running COPY on the given table, create a new table with the same structure
using the CREATE newtable(LIKE oldtable) syntax. Run COPY against the new
table, drop the old table, and give the new table the same name as the old one.

How it works…
When a function defined with security definer is called, PostgreSQL changes the
session's rights to those of the user who defined the function while that function is being
executed.

So, when bob executes the copy_from(tablename, filepath) function, bob is
effectively promoted to a superuser when the function is running.

This behavior is similar to the setuid flag in Unix systems, where you can have a
program that can be run by anybody (with execute access) as the owner of that
program. It also carries similar risks.

There's more…
There are other operations that are reserved for PostgreSQL superusers, such as setting
certain parameters.

Writing a debugging_info function for developers
Several of the parameters controlling logging are reserved for superusers.

Giving limited superuser powers to specific users 213

If you want to allow some of your developers to set logging, you can write a function for
them to do exactly that:

create or replace function debugging_info_on()

returns void

security definer

as

$$

 begin

 set client_min_messages to 'DEBUG1';

 set log_min_messages to 'DEBUG1';

 set log_error_verbosity to 'VERBOSE';

 set log_min_duration_statement to 0;

 end;

$$ language plpgsql;

revoke all on function debugging_info_on() from public;

grant execute on function debugging_info_on() to bob;

You may also want to have a function go back to the default logging state by assigning
DEFAULT to all of the variables involved:

create or replace function debugging_info_reset()

returns void

security definer

as

$$

 begin

 set client_min_messages to DEFAULT;

 set log_min_messages to DEFAULT;

 set log_error_verbosity to DEFAULT;

 set log_min_duration_statement to DEFAULT;

 end;

$$ language plpgsql;

There's no need for GRANT and REVOKE statements here, as setting them back to the
default does not pose a security risk. Instead of SET xxx to DEFAULT, you can also use
a shorter version of the same command—namely, RESET xxx.

214 Security

Alternatively, you can simply end your session, as the parameters are valid only for the
current session.

Auditing database access
Auditing database access is a much bigger topic than you might expect because it can
cover a whole range of requirements.

Getting ready
First, decide which of these you want and look at the appropriate subsection:

• Which privileges can be executed? (Auditing access)

• Which SQL statements were executed? (Auditing SQL)

• Which tables were accessed? (Auditing table access)

• Which data rows were changed? (Auditing data changes)

• Which data rows were viewed? (Not described here—usually too much data)

Auditing just SQL produces the lowest volume of audit log information, especially if
you choose to log only data definition language (DDL). Higher levels accumulate more
information very rapidly, so you may quickly decide not to do this in practice. Read each
section to understand the benefits and trade-offs.

Auditing access
Reviewing which users have access to which information is important. There are a few
ways of doing this:

• Write scripts that access the database catalog tables. Access control list (ACL)
information is not held in one place, so you have lots of places to look at:

cookbook=# select relname, attname

from pg_attribute join pg_class c on attrelid = c.oid

where attname like '%acl%' and relkind = 'r';

 relname | attname

-------------------------+-----------------

 pg_proc | proacl

 pg_type | typacl

 pg_attribute | attacl

Auditing database access 215

 pg_class | relacl

 pg_language | lanacl

 pg_largeobject_metadata | lomacl

 pg_namespace | nspacl

 pg_database | datacl

 pg_tablespace | spcacl

 pg_foreign_data_wrapper | fdwacl

 pg_foreign_server | srvacl

 pg_default_acl | defaclrole

 pg_default_acl | defaclnamespace

 pg_default_acl | defaclobjtype

 pg_default_acl | defaclacl

(15 rows)

• Write scripts that test access conforms to a specific definition. This can be achieved
by writing tests using the database information functions provided by PostgreSQL—
for example, has_table_privilege(), has_column_privilege(), and
so on.

Auditing SQL
There are a few ways to capture SQL statements:

• Using the PostgreSQL log_statement parameter—a fairly crude approach

• Using the pgaudit extension's pgaudit.log parameter

• Using EDB Postgres' audit facility

The log_statement parameter can be set to one of the following options:

• ALL: Logs all SQL statements executed at the top level

• MOD: Logs all SQL statements for INSERT, UPDATE, DELETE, and TRUNCATE

• ddl: Logs all SQL statements for DDL commands

• NONE: No statements logged

216 Security

For example, to log all DDL commands, edit your postgresql.conf file to set the
following:

log_statement = 'ddl'

log_statement SQL statements are explicitly given in top-level commands. It is still
possible to perform SQL without it being logged by this setting if you use any of the
Python Languages (PLs), either through DO statements or by calling a function that
includes SQL statements.

Was the change committed? It is possible to have some statements recorded in the log
file but for these not to be visible in the database structure. Most DDL commands in
PostgreSQL can be rolled back, so what is in the log is just a list of commands executed
by PostgreSQL—not what was actually committed. The log file is not transactional, and it
keeps commands that were rolled back. It is possible to display the transaction identifier
(TID) on each log line by including %x in the log_line_prefix setting, though that
has some difficulties in terms of usage.

Who made the changes? To be able to know which database user made the DDL changes,
you have to make sure that this information is logged as well. In order to do so, you may
have to change the log_line_prefix parameter to include the %u format string.

A recommended minimal log_line_prefix format string for auditing DDL is %t
%u %d, which tells PostgreSQL to log the timestamp, database user, and database name
at the start of every log line.

The pgaudit extension provides two levels of audit logging: session and object levels.
The session level has been designed to solve some of the problems of log_statement.
pgaudit will log all access, even if it is not executed as a top-level statement, and it will
log all dynamic SQL. pgaudit.log can be set to include zero or more of the following
settings:

• READ: SELECT and COPY

• WRITE: INSERT, UPDATE, DELETE, TRUNCATE, and COPY

• FUNCTION: Function calls and DO blocks

• ROLE: GRANT, REVOKE, CREATE/ALTER/DROP ROLE

• DDL: All DDL not already included in the ROLE category

• MISC: Miscellaneous—DISCARD, FETCH, CHECKPOINT, VACUUM, and so on

Auditing database access 217

For example, to log all DDL commands, edit your postgresql.conf file to set the
following:

pgaudit.log = 'role, ddl'

You should set these parameters to reduce the overhead of logging:

pgaudit.log_catalog = off

pgaudit.log_relation = off

pgaudit.log_statement_once = on

The pgaudit extension was originally written by Simon Riggs and Abhijit Menon-Sen
of 2ndQuadrant as part of the Advanced Analytics for Extremely Large European
Databases (AXLE) project for the European Union (EU). The next version was designed
by Simon Riggs and David Steele to provide object-level logging. The original version was
deprecated and is no longer available. The new version is fully supported and has been
adopted by the United States Department of Defense (US DoD) as the tool of choice for
PostgreSQL audit logging.

pgaudit is available in binary form via postgresql.org repositories.

Auditing table access
pgaudit can log access to each table. So, if an SQL table touches three tables, then it can
generate three log records, one for each table. This is important because otherwise, you
might have to try to parse the SQL to find out which tables it touched, which would be
difficult without access to the schema and the search_path settings.

To make it easier to access the audit log per table, adjust these settings:

pgaudit.log_relation = on

pgaudit.log_statement_once = off

If you want even finer-grained auditing, pgaudit allows you to control which tables are
audited. The user cannot tell which tables are logged and which are not, so it is possible for
investigators to quietly enhance the level of logging once they are alerted to a suspect or a
potential attack.

First, set the role that will be used by the auditor:

pgaudit.role = 'investigator'

218 Security

Then, you can define logging through the privilege system, as in the following command:

GRANT INSERT, UPDATE, DELETE on <vulnerable_table> TO
investigator;

Remove it again when no longer required.

Privileges may be set at the individual column level to protect personally identifiable
information (PII).

Managing the audit log
Both log_statement and pgaudit output audit log records to the server log. This is
the most flexible approach since the log can be routed in various ways to ensure it is safe
and separate from normal log entries.

If you allow the log entries to go the normal server log, you can find all occurrences of the
CREATE, ALTER, and DROP commands in the log:

postgres@hvost:~$ egrep -i "create|alter|drop" \

/var/log/postgresql/postgresql-14-main.log

If log rotation is in effect, you may need to use grep on older logs as well.

If the available logs are too new and you haven't saved the older logs in some other place,
you are out of luck.

The default settings in the postgresql.conf file for log rotation look like this:

log_filename = 'postgresql-%Y-%m-%d_%H%M%S.log'

log_rotation_age = 1d

log_rotation_size = 10MB

Log rotation can also be implemented with third-party utilities. For instance, the
default behavior on Debian and Ubuntu distributions is to use the logrotate utility
to compress or delete old log files, according to the rules specified in the /etc/
logrotate.d/postgresql-common file.

To make sure you have the full history of DDL commands, you may want to set up a cron
job that saves the DDL statements extracted from the main PostgreSQL log to a separate
DDL audit log. You would still want to verify that the logs are not rotating too fast for this
to catch all DDL statements.

If you use syslog, you can then route audit messages using various operating system
(OS) utilities.

Auditing database access 219

Alternatively, you can use the pgaudit analyze extension to load data back into a special
audit log database. Various other options exist.

Auditing data changes
This section of the recipe provides different ways of collecting changes to data contained
in the tables for auditing purposes.

First, you must make the following decisions:

• Do you need to audit all changes or only some?

• What information about the changes do you need to collect? Only the fact that the
data has changed?

• When recording the new value of a field or tuple, do you also need to record the
old value?

• Is it enough to record which user made the change, or do you also need to record
the Internet Protocol (IP) address and other connection information?

• How secure (tamper-proof) must the auditing information be? For example, does it
need to be kept separately, away from the database being audited?

Changes can be collected using triggers that collect new (and, if needed, old) values from
tuples and save them to auditing table(s). Triggers can be added to whichever tables need
to be tracked.

The audit_trigger extension provides a handy universal audit trigger, so you do not
need to write your own. It logs both old and new values of rows in any table, serialized as
hstore data type values. The latest version and its documentation are both available at
https://github.com/2ndQuadrant/audit-trigger.

The extension creates a schema called audit into which all of the other components of
the audit trigger code are placed, after which we can enable auditing on specific tables.

As an example, we create standard pgbench tables by running the pgbench utility:

pgbench -i

Next, we connect to PostgreSQL as a superuser, and issue the following SQL to enable
auditing on the pgbench_account table:

SELECT audit.audit_table('pgbench_accounts');

https://github.com/2ndQuadrant/audit-trigger

220 Security

Now, we perform some write activity to see how it is audited. The easiest choice is to run
the pgbench utility again, this time to perform some transactions, as follows:

pgbench -t 1000

We expect the audit trigger to have logged the actions on pgbench_accounts, as we
have enabled auditing on it. In order to verify this, we connect again with psql and issue
the following SQL:

cookbook=# SELECT count(*) FROM audit.logged_actions;

count

1000

(1 row)

This confirms that we have indeed logged 1,000 actions. Let's inspect the information that
is logged by reading one row of the logged_actions table. First, we enable expanded
mode, as the query produces a large number of columns:

cookbook=# \x on

Then, we issue the following command:

cookbook=# SELECT * FROM audit.logged_actions LIMIT 1;

-[RECORD 1]-----+---

event_id | 1

schema_name | public

table_name | pgbench_accounts

relid | 246511

session_user_name | gianni

action_tstamp_tx | 2017-01-18 19:48:05.626299+01

action_tstamp_stm | 2017-01-18 19:48:05.626446+01

action_tstamp_clk | 2017-01-18 19:48:05.628488+01

transaction_id | 182578

application_name | pgbench

client_addr |

client_port |

client_query | UPDATE pgbench_accounts SET abalance =
abalance + -758 WHERE aid = 86061;

Always knowing which user is logged in 221

action | U

row_data | "aid"=>"86061", "bid"=>"1", "filler"=>" ",
"abalance"=>"0"

changed_fields | "abalance"=>"-758"

statement_only | f

Always knowing which user is logged in
In the preceding recipes, we just logged the value of the user variable in the current
PostgreSQL session to log the current user role.

This does not always mean that this particular user was the user that was actually
authenticated at the start of the session. For example, a superuser can execute the SET
ROLE TO ... command to set its current role to any other user or role in the system.
As you might expect, non-superusers can only assume roles that they own.

It is possible to differentiate between the logged-in role and the assumed role using the
current_user and session_user session variables:

postgres=# select current_user, session_user;

current_user | session_user

-------------+--------------

postgres | postgres

postgres=# set role to bob;

SET

postgres=> select current_user, session_user;

current_user | session_user

-------------+--------------

bob | postgres

Sometimes, it is desirable to let each user log in with their own username and just assume
the role needed on a case-by-case basis.

Getting ready
Prepare the required group roles for different tasks and access levels by granting the
necessary privileges and options.

222 Security

How to do it…
Follow these steps:

1. Create user roles with no privileges and with the NOINHERIT option:

postgres=# create user alice noinherit;

CREATE ROLE

postgres=# create user bob noinherit;

CREATE ROLE

2. Then, create roles for each group of privileges that you need to assign:

postgres=# create group sales;

CREATE ROLE

postgres=# create group marketing;

CREATE ROLE

postgres=# grant postgres to marketing;

GRANT ROLE

3. Now, grant each user the roles they may need:

postgres=# grant sales to alice;

GRANT ROLE

postgres=# grant marketing to alice;

GRANT ROLE

postgres=# grant sales to bob;

GRANT ROLE

After you do this, the alice and bob users have no rights after login, but they can
assume the sales role by executing SET ROLE TO sales, and alice can additionally
assume the superuser role.

How it works…
If a role or user is created with the NOINHERIT option, this user will not automatically
get the rights that have been granted to the other roles that have been granted to them. To
claim these rights from a specific role, they have to set their role to one of those
other roles.

Integrating with LDAP 223

In some sense, this works a bit like the su (set user) command in Unix and Linux
systems—that is, you (may) have the right to become that user, but you do not
automatically have the rights of the aforementioned user.

This setup can be used to get better audit information, as it lets you know who the actual
user was. If you just allow each user to log in as the role needed for a task, there is no
good way to know later which of the users was really logged in as clerk1 when a USD
$100,000 transfer was made.

There's more…
The SET ROLE command works both ways—that is, you can both gain and lose
privileges. A superuser can set their role to any user defined in the system. To get back to
your original login role, just use RESET ROLE.

Not inheriting user attributes
Not all rights come to users via GRANT commands. Some important rights are given
via user attributes (SUPERUSER, CREATEDB, and CREATEROLE), and these are never
inherited.

If your user has been granted a superuser role and you want to use the superuser powers
of this granted role, you have to use SET ROLE To mysuperuserrole before
anything that requires the superuser attribute to be set.

In other words, the user attributes always behave as if the user had been a NOINHERIT
user.

Integrating with LDAP
This recipe shows you how to set up your PostgreSQL system so that it uses the LDAP for
authentication.

Getting ready
Ensure that the usernames in the database and your LDAP server match, as this method
works for user authentication checks of users who are already defined in the database.

224 Security

How to do it…
In the pg_hba.conf PostgreSQL authentication file, we define some address ranges
to use LDAP as an authentication method, and we configure the LDAP server for this
address range:

host all all 10.10.0.1/16 ldap \

ldapserver=ldap.our.net ldapprefix="cn=" ldapsuffix=",

 dc=our,dc=net"

How it works…
This setup makes the PostgreSQL server check passwords from the configured LDAP
server.

User rights are not queried from the LDAP server but have to be defined inside the
database using the ALTER USER, GRANT, and REVOKE commands.

There's more…
We have shown you how PostgreSQL can use an LDAP server for password
authentication. It is also possible to use some more information from the LDAP server, as
shown in the next two examples.

Setting up the client to use LDAP
If you are using the pg_service.conf file to define your database access parameters,
you may define some to be queried from the LDAP server by including a line similar to
the following in your pg_service.conf file:

ldap://ldap.mycompany.com/
dc=mycompany,dc=com?uniqueMember?one?(cn=mydb)

Replacement for the User Name Map feature
Although we cannot use the User Name Map feature with LDAP, we can achieve a similar
effect on the LDAP side. Use ldapsearchattribute and the search and bind mode to
retrieve the PostgreSQL role name from the LDAP server.

Connecting using encryption (SSL/GSSAPI) 225

See also
• For server setup, including the search and bind mode, visit http://www.

postgresql.org/docs/current/static/auth-methods.html#AUTH-
LDAP.

• For client setup, visit http://www.postgresql.org/docs/current/
static/libpq-ldap.html.

Connecting using encryption (SSL/GSSAPI)
Here, we will demonstrate how to enable PostgreSQL to use SSL for the protection of
database connections by encrypting all of the data passed over that connection. Using SSL
makes it much harder to sniff the database traffic, including usernames, passwords, and
other sensitive data. Otherwise, everything that is passed unencrypted between a client
and the database can be observed by someone listening to a network somewhere between
them. An alternative to using SSL is running the connection over a VPN.

Using SSL makes the data transfer on the encrypted connection a little slower, so you
may not want to use it if you are sure that your network is safe. The performance impact
can be quite large if you are creating lots of short connections, as setting up an SSL
connection is quite central-processing unit (CPU)-heavy. In this case, you may want to
run a local connection-pooling solution, such as PgBouncer, to which the client connects
without encryption, and then configure PgBouncer for server connections using SSL.
Older versions of PgBouncer did not support SSL; the solution was to channel server
connections through stunnel, as described in the PgBouncer FAQs at https://
pgbouncer.github.io/faq.html.

Getting ready
Get, or generate, an SSL server key and certificate pair for the server, and store these in the
data directory of the current database instance as server.key and server.crt files.

On some platforms, this is unnecessary; the key and certificate pair may already be
generated by the packager. For example, in Ubuntu, PostgreSQL is set up to support SSL
connections by default.

How to do it…
Set ssl = on in postgresql.conf and restart the database, if not already set.

http://www.postgresql.org/docs/current/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/current/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/current/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/current/static/libpq-ldap.html
http://www.postgresql.org/docs/current/static/libpq-ldap.html
https://pgbouncer.github.io/faq.html
https://pgbouncer.github.io/faq.html

226 Security

How it works…
If ssl = on is set, then PostgreSQL listens to both plain and SSL connections on the
same port (5432, by default) and determines the type of connection from the first byte of
a new connection. Then, it proceeds to set up an SSL connection if an incoming request
asks for it.

PostgreSQL 13+ now defaults to use ssl_min_protocol_version = TLSv1.2,
though valid values are TLSv1.3, TLSv1.2, TLSv1.1, TLSv1. SSL2 and SSL3 are
now always disabled.

There's more…
You can leave the choice of whether or not to use SSL up to the client, or you can force SSL
usage from the server side.

To let the client choose, use a line of the following form in the pg_hba.conf file:

host database user IP-address/IP-mask auth-method

If you want to allow only SSL clients, use the hostssl keyword instead of host. If
connecting using GSSAPI, you would use hostgssenc rather than hostssl, shown
previously. Details of connecting with GSSAPI are not otherwise covered in this recipe.

The contents of pg_hba.conf can be seen using the pg_hba_file_rules view,
so you can run queries to check that you have configured it correctly and it is actually
working!

Entries in pg_hba.conf can now span multiple lines, by specifying a backslash at the
end of the line.

The following fragment of pg_hba.conf enables both non-SSL and SSL connections
from the 192.168.1.0/24 local subnet, but requires SSL from everybody accessing the
database from other networks:

host all all 192.168.1.0/24 scram-
sha-256

hostssl all all 0.0.0.0/0 scram-
sha-256

Connecting using encryption (SSL/GSSAPI) 227

Getting the SSL key and certificate
For web servers, you must usually get your SSL certificate from a recognized Certificate
Authority (CA), as most browsers complain if the certificate is not issued by a known CA.
They warn the user of the most common security risks and require confirmation before
connecting to a server with a certificate issued by an unknown CA.

For your database server, it is usually sufficient to generate a certificate yourself using
OpenSSL. The following commands generate a self-signed certificate for your server:

openssl genrsa 2048 > server.key

openssl req -new -x509 -key server.key -out server.crt

Read more on X.509 keys and certificates by visiting OpenSSL's HOWTO pages at
https://github.com/openssl/openssl/tree/master/doc/HOWTO.

Setting up a client to use SSL
The behavior of the client application regarding SSL is controlled by a PGSSLMODE
environment variable. This can have the following values, as defined in the official
PostgreSQL documentation:

Figure 6.1 – Explanation of ssl_mode

https://github.com/openssl/openssl/tree/master/doc/HOWTO

228 Security

A MITM attack refers to when someone poses as your server, perhaps by manipulating
Domain Name System (DNS) records or IP routing tables, but actually just observes and
forwards the traffic.

For this to be possible with an SSL connection, this person needs to have obtained a
certificate that your client considers valid.

Checking server authenticity
The last two SSL modes allow you to be reasonably sure that you are actually talking to
your server by checking the SSL certificate presented by the server.

In order to enable this useful security feature, the following files must be available on the
client side. On Unix systems, they are located in the client home directory, in a subdirectory
named ~/.postgresql. On Windows, they are in %APPDATA%\postgresql\:

Figure 6.2 – Certificate files

Only the root.crt file is required for the client to authenticate the server certificate. It
can contain multiple root certificates against which the server certificate is compared.

Using SSL certificates to authenticate
This recipe shows you how to set up your PostgreSQL system so that it requires clients to
present a valid X.509 certificate before allowing them to connect.

This can be used as an additional security layer, using double authentication, where
the client must both have a valid certificate to set up the SSL connection and know the
database user's password. It can also be used as the sole authentication method, where the
PostgreSQL server will first verify the client connection using the certificate presented by
the client, and then retrieve the username from the same certificate.

Getting ready
Get, or generate, a root certificate and a client certificate to be used by the connecting client.

Using SSL certificates to authenticate 229

How to do it…
For testing purposes, or for setting up a single trusted user, you can use a self-signed
certificate:

openssl genrsa 2048 > client.key

openssl req -new -x509 -key server.key -out client.crt

In the server, set up a line in the pg_hba.conf file with the hostssl method and the
clientcert option set to 1:

hostssl all all 0.0.0.0/0 scram-sha-256 clientcert=1

Put the client root certificate in the root.crt file in the server data directory
($PGDATA/root.crt). This file may contain multiple trusted root certificates.

If you are using a central CA, you probably also have a certificate revocation list, which
should be put in a root.crl file and regularly updated.

In the client, put the client's private key and certificate in ~/.postgresql/
postgresql.key and ~/.postgresql/postgresql.crt. Make sure that
the private key file is not world-readable or group-readable by running the following
command:

chmod 0600 ~/.postgresql/postgresql.key

In a Windows client, the corresponding files are %APPDATA%\postgresql\
postgresql.key and %APPDATA%\postgresql\postgresql.crt. No
permission check is done, as the location is considered secure.

If the client certificate is not signed by the root CA but by an intermediate CA, then
all of the intermediate CA certificates up to the root certificate must be placed in the
postgresql.crt file as well.

How it works…
If the clientcert=1 option is set for a hostssl row in pg_hba.conf, then
PostgreSQL accepts only connection requests accompanied by a valid certificate.

The validity of the certificate is checked against certificates present in the root.crt file
in the server data directory.

If there is a root.crl file, then the presented certificate is searched for in this file and, if
found, is rejected.

230 Security

After the client certificate is validated and the SSL connection is established, the server
proceeds to validate the actual connecting user using whichever authentication method is
specified in the corresponding hostssl line.

In the following example, clients from a special address can connect as any user when
using an SSL certificate, and they must specify a SCRAM-SHA-256 password for non-SSL
connections. Clients from all other addresses must present a certificate and use SCRAM-
SHA-256 password authentication:

host all all 10.10.10.10/32 scram-sha-256

hostssl all all 10.10.10.10/32 trust clientcert=1

hostssl all all all scram-sha-256 clientcert=1

There's more…
In this section, we provide some additional content, describing an important optimization
for an SSL-only database server, plus two extensions of the basic SSL configuration.

Avoiding duplicate SSL connection attempts
In the Setting up a client to use SSL section of the previous Connecting using encryption
(SSL/GSSAPI) recipe, we saw how the client's SSL behavior is affected by environment
variables. Depending on how the SSLMODE environment variable is set on the client
(either via compile-time settings, the PGSSLMODE environment variable, or the sslmode
connection parameter), the client may attempt to connect without SSL first, and then
attempt an SSL connection only after the server rejects the non-SSL connection. This
duplicates a connection attempt every time a client accesses an SSL-only server.

To make sure that the client tries to establish an SSL connection on the first attempt,
SSLMODE must be set to prefer or higher.

Using multiple client certificates
You may sometimes need different certificates to connect to different PostgreSQL servers.

The location of the certificate and key files in postgresql.crt and postgresql.key
in the table from the Checking server authenticity section (Figure 6.2) is just the default and
can be overridden by specifying alternative file paths using the sslcert and sslkey
connection parameters or the PGSSLCERT and PGSSLKEY environment variables.

Using SSL certificates to authenticate 231

Using the client certificate to select a database user
It is possible to use the client certificate for two purposes at once: proving that the
connecting client is a valid one and selecting a database user to be used for the
connection.

To do this, set the authentication method to cert in the hostssl line:

hostssl all all 0.0.0.0/0 cert

As you can see, the clientcert=1 option used with hostssl to require client
certificates is no longer required, as it is implied by the cert method itself.

When using the cert authentication method, a valid client certificate is required, and
the cn (short for Common Name) attribute of the certificate will be compared to the
requested database username. The login will be allowed only if they match.

It is possible to use a User Name Map to map common names in the certificates to
database usernames by specifying the map option:

hostssl all all 0.0.0.0/0 cert map=x509cnmap

Here, x509cnmap is the name that we have arbitrarily chosen for our mapping. More
details on User Name Maps are provided in the Mapping external usernames to database
roles recipe.

See also
To understand more about SSL in general, and the OpenSSL library used by PostgreSQL
in particular, visit http://www.openssl.org or get a good book about SSL.

To get started with the generation of simple SSL keys and certificates, see https://
github.com/openssl/openssl/blob/master/doc/HOWTO/certificates.
txt.

http://www.openssl.org
https://github.com/openssl/openssl/blob/master/doc/HOWTO/certificates.txt
https://github.com/openssl/openssl/blob/master/doc/HOWTO/certificates.txt
https://github.com/openssl/openssl/blob/master/doc/HOWTO/certificates.txt

232 Security

Mapping external usernames to database
roles
In some cases, the authentication username is different from the PostgreSQL username.
For instance, this can happen when using an external system for authentication, such as
certificate authentication (as described in the previous recipe), or any other external or
single sign-on (SSO) system authentication method from http://www.postgresql.
org/docs/current/static/auth-methods.html (GSSAPI, Security Support
Provider Interface (SSPI), Kerberos, Radius, or Privileged Access Management (PAM)).
You may just need to enable an externally authenticated user to connect as multiple
database users. In such cases, you can specify rules to map the external username to the
appropriate database role.

Getting ready
Prepare a list of usernames from the external authentication system and decide which
database users they are allowed to connect as—that is, which external users map to which
database users.

How to do it…
Create a pg_ident.conf file in the usual place (PGDATA), with lines in the
following format:

map-name system-username database-username

This should be read as "system-username is allowed to connect as database-
username," rather than "every time system-username connects, they will be
forced to use database-username."

Here, map-name is the value of the map option from the corresponding line in pg_hba.
conf, system-username is the username that the external system authenticated
the connection as, and database-username is the database user this system user
is allowed to connect as. The same system user may be allowed to connect as multiple
database users, so this is not a 1:1 mapping, but rather a list of allowed database users for
each system user.

http://www.postgresql.org/docs/current/static/auth-methods.html
http://www.postgresql.org/docs/current/static/auth-methods.html

Mapping external usernames to database roles 233

If system-username starts with a slash (/), then the rest of it is treated as a regular
expression (regex) rather than a directly matching string, and it is possible to use the \1
string in database-username to refer to the part captured by the parentheses in the
regex. For example, consider the following lines:

salesmap /^(.*)@sales\.comp\.com$ \1

salesmap /^(.*)@sales\.comp\.com$ sales

salesmap manager@sales.comp.com auditor

These will allow any user authenticated with a @sales.comp.com email address
to connect both as a database user equal to the name before the @ sign in their email
address and as the sales user. They will additionally allow anager@sales.comp.
com to connect as the auditor user. Then, edit the pg_hba.conf line to specify the
map=salesmap option.

How it works…
After authenticating the connection using an external authentication system, PostgreSQL
will usually proceed to check that the externally authenticated username matches the
database username that the user wishes to connect as and rejects the connection if these
two do not match.

If there is a map= parameter specified for the current line in pg_hba.conf, then the
system will scan the map line by line and will let the client proceed with connecting if a
match is found.

There's more…
By default, the map file is called pg_ident.conf (because it was first used for the
ident authentication method).

Nowadays, it is possible to change the name of this file via the ident_file configuration
parameter in postgresql.conf. It can also be located outside the PGDATA directory
by setting ident_file to a full path.

A relative path can also be used, but since it is relative to where the postgres process is
started, this is usually not a good idea.

234 Security

Using column-level encryption
The user can encrypt data in the database so that it is not visible to the hosting provider.
In general, this means that the data cannot then be used for searching or indexing, unless
you use homomorphic encryption.

The strictest form of encryption would be client-side encryption so that all the database
knows about is a blob of data, which would then normally be stored in a bytea database
column, but could be others.

Data can also be encrypted server-side before it is returned to the user using the
pgcrypto contrib package provided as an extension with PostgreSQL.

Getting ready
Make sure you (and/or your database server) are in a country where encryption is legal—
in some countries, it is either banned completely or a license is required.

In order to create and manage Pretty Good Privacy (PGP) keys, you also need the well-
known GnuPG command-line utility, which is available on practically all distributions.

pgcrypto is part of the contrib collection. Starting from version 10, on Debian and
Ubuntu, it is part of the main postgresql-NN server package.

Install it on the database in which you want to use it, following the Adding an external
module to PostgreSQL recipe from Chapter 3, Server Configuration.

You also need to have PGP keys set up:

pguser@laptop:~$ gpg --gen-key

Answer some questions here (the defaults are OK unless you are an expert), select the key
type as DSA and Elgamal, and enter an empty password.

Now, export the keys:

pguser@laptop:~$ gpg -a --export "PostgreSQL User (test key for
PG Cookbook) <pguser@somewhere.net>" > public.key

pguser@laptop:~$ gpg -a --export-secret-keys "PostgreSQL User
(test key for PG Cookbook) <pguser@somewhere.net>" > secret.key

Make sure only you and the postgres database user have access to the secret key:

pguser@laptop:~$ sudo chgrp postgres secret.key

pguser@laptop:~$ chmod 440 secret.key

pguser@laptop:~$ ls -l *.key

Using column-level encryption 235

-rw-r--r-- 1 pguser pguser 1718 2016-03-26 13:53 public.key

-r--r----- 1 pguser postgres 1818 2016-03-26 13:54 secret.key

Last but not least, make a copy of the public and the secret key; if you lose them, you'll
lose the ability to encrypt/decrypt.

How to do it…
To ensure that secret keys are never visible in database logs, write a wrapper function to
get the keys from the file. You need to do it in an untrusted embedded language, such
as PL/Python as only untrusted languages can access the filesystem. You need to be a
PostgreSQL superuser in order to create functions in untrusted languages. It's not difficult
to write a PostgreSQL function that reads a text file. For convenience, here is an example
that requires PL/PythonU:

create or replace function get_my_public_key() returns text as
$$

return open('/home/pguser/public.key').read()

$$

language plpythonu;

revoke all on function get_my_public_key() from public;

create or replace function get_my_secret_key() returns text as
$$

return open('/home/pguser/secret.key').read()

$$

language plpythonu;

revoke all on function get_my_secret_key() from public;

This can also be fully implemented in PL/pgSQL using the built-in pg_read_file
(filename) PostgreSQL system function, and you don't have to bother with PL/PythonU
at all. However, to use this function, you must place the files in the data directory as
required by that function for added security so that the database superuser cannot access
the rest of the filesystem directly. However, using that file needs superuser privileges, until
granted via role or accessed using security definer functions.

If you don't want other database users to be able to see the keys, you also need to write
wrapper functions for encryption and decryption and then give access to these wrapper
functions to end users.

236 Security

The encryption function could look like this:

create or replace function encrypt_using_my_public_key(

 cleartext text,

 ciphertext out bytea

)

AS $$

DECLARE

 pubkey_bin bytea;

BEGIN

 -- text version of public key needs to be passed through
function dearmor() to get to raw key

 pubkey_bin := dearmor(get_my_public_key());

 ciphertext := pgp_pub_encrypt(cleartext, pubkey_bin);

END;

$$ language plpgsql security definer;

revoke all on function encrypt_using_my_public_key(text) from
public;

grant execute on function encrypt_using_my_public_key(text) to
bob;

The decryption function could look like this:

create or replace function decrypt_using_my_secret_key(

 ciphertext bytea,

 cleartext out text

)

AS $$

DECLARE

 secret_key_bin bytea;

BEGIN

 -- text version of secret key needs to be passed through
function dearmor() to get to raw binary key

 secret_key_bin := dearmor(get_my_secret_key());

 cleartext := pgp_pub_decrypt(ciphertext, secret_key_bin);

END;

Using column-level encryption 237

$$ language plpgsql security definer;

revoke all on function decrypt_using_my_secret_key(bytea) from
public;

grant execute on function decrypt_using_my_secret_key(bytea) to
bob;

Finally, we test the encryption:

test2=# select encrypt_using_my_public_key('X marks the
spot!');

This function returns a bytea (that is, raw binary) result that looks something like this:

encrypt_using_my_public_key |

\301\301N\003\223o\215\2125\203\252;\020\007\376-z\233\211H...

To see that it actually works, you must go both ways:

test2=# select decrypt_using_my_secret_key(encrypt_using_my_
public_key('X marks the spot!'));

 decrypt_using_my_secret_key

 X marks the spot!

(1 row)

Yes—we got back our initial string!

How it works…
What we have done here is this:

• Hidden the keys from non-superuser database users

• Provided wrappers for authorized users to use encryption and decryption
functionalities

To ensure that your sensitive data is not stolen while in transit between the client and the
database server, make sure you connect to PostgreSQL either using an SSL-encrypted
connection or from localhost.

You also have to trust your server administrators and all of the other users with superuser
privileges to be sure that your encrypted data is safe. And, of course, you must trust the
safety of the entire environment; PostgreSQL can decrypt the data, so any other user or
software that has access to the same files can do the same.

238 Security

There's more…
A higher level of security is possible, with more complex procedures and architecture, as
shown in the next sections. We also mention a limited pgcrypto version that does not
use OpenSSL.

For really sensitive data
For some data, you wouldn't want to risk keeping the decryption password on the same
machine as the encrypted data.

In those cases, you can use public-key cryptography, also known as asymmetric
cryptography, and carry out only the encryption part on the database server. This also
means that you only have the encryption key on the database host and not the key needed
for decryption. Alternatively, you can deploy a separate, extra-secure encryption server in
your server infrastructure that provides just the encrypting and decrypting functionality
as a remote call.

This solution is secure because, in asymmetric cryptography, the private (that is,
decryption) key cannot be derived from the corresponding public (that is, encryption)
key, hence the names public and private, which denote the appropriate dissemination
policies.

If you wish to prove the identity of the author of a file, the correct method is to use a
digital signature, which is an entirely different application of cryptography. Note that this
is not currently supported by pgcrypto, so you must implement your own methods as C
functions or in a procedural language capable of using cryptographic libraries.

For really, really, really sensitive data
For even more sensitive data, you may never want the data to leave the client computer
unencrypted; therefore, you need to encrypt the data before sending it to the database.
In that case, PostgreSQL receives already encrypted data and never sees the unencrypted
version. This also means that the only useful indexes you can have are for use in WHERE
encrypted_column = encrypted_data and for ensuring uniqueness.

Even these forms can be used only if the encryption algorithm always produces the
same ciphertext (output) for the same plaintext (input), which is true only for weaker
encryption algorithms. For example, it would be easy to determine the age or sex of a
person if the same value were always encrypted into the same ciphertext. To avoid this
vulnerability, strong encryption algorithms are able to produce a different ciphertext for
the same value.

Setting up cloud security using predefined roles 239

The versions of pgcrypto are usually compiled to use the OpenSSL library (http://
www.openssl.org). If for some reason you don't have OpenSSL, or just don't want to
use it, it is possible to compile pgcrypto without it, with a smaller number of supported
encryption algorithms and a slightly reduced performance.

See also
• The page on pgcrypto in the PostgreSQL online documentation, available at

http://www.postgresql.org/docs/current/static/pgcrypto.
html

• The OpenSSL web page, accessed at http://www.openssl.org/

• The GNU Privacy Handbook at http://www.gnupg.org/gph/en/manual.
html

Setting up cloud security using
predefined roles
Many databases as a service (DBaaS)/database clouds restrict the use of superusers, with
good reason. Administrators in a database cloud need to use an intermediate level
of authority.

For example, in the EDB BigAnimal cloud service, a user called edb_admin holds most
privileges, including CREATEROLE and CREATEDB. BigAnimal runs within your own
account on cloud platforms, so the service provides data isolation, which in turn makes it
easier and safer to administer than other clouds.

In prior releases of PostgreSQL, many functions were superuser-only, but these functions
and views are now just superuser-by-default.

Rather than have administrators work out for themselves how to set up admin privileges,
PostgreSQL now provides predefined roles, previously known as default roles, that can be
thought of as useful groupings of privileges to grant to different types of administrators.

Getting ready
Set up a cloud account (for example, using BigAnimal) that supports PostgreSQL 14:
https://www.biganimal.com

http://www.openssl.org
http://www.openssl.org
http://www.postgresql.org/docs/current/static/pgcrypto.html
http://www.postgresql.org/docs/current/static/pgcrypto.html
http://www.openssl.org/
http://www.gnupg.org/gph/en/manual.html
http://www.gnupg.org/gph/en/manual.html
https://www.biganimal.com

240 Security

How to do it…
The edb_admin user can be used to create two new "group" roles:

• ops_dba—This will monitor and control PostgreSQL, but without being able to see
any of the data in the database, so may not be counted as a data processor under the
General Data Protection Regulation (GDPR).

• app_dba—This will supervise the data in PostgreSQL, allowing the authority to
correct data quality issues and add new and remove old data, which would be a data
processor under GDPR.

These two roles can be configured like this:

CREATE ROLE ops_dba LOGIN;

CREATE ROLE app_dba LOGIN;

GRANT pg_monitor, pg_signal_backend TO ops_dba;

GRANT pg_read_all_data, pg_write_all_data TO app_dba;

We can then assign individual users to each group role:

GRANT app_dba TO donald;

Don't put your company name in the usernames. This gets especially confusing if you
need to grant access to someone from a service company contracted to assist in managing
the database.

How it works…
PostgreSQL has the following predefined roles:

Setting up cloud security using predefined roles 241

Figure 6.3 – Main predefined roles

There are also three roles that should not often be granted to users. The pg_read_
server_files, pg_write_server_files, and pg_execute_server_program
roles are intended to allow administrators to have trusted, but non-superuser roles that
are able to access files and run programs on the same database server on which the user
database runs as. As these roles are able to access any file on the server filesystem, they
bypass all database-level permission checks when accessing files directly, and they could
be used to gain superuser-level access; therefore, great care should be taken when granting
these roles to users.

Some other aspects of security in BigAnimal come preconfigured:

• Data encryption: All data in BigAnimal is encrypted in motion and at rest.
Network traffic is encrypted using Transport Layer Security (TLS) v1.2 or greater,
where applicable. Data at rest is encrypted using the Advanced Encryption
Standard (AES) with 256-bit keys. Data encryption keys are envelope-encrypted,
and the wrapped data encryption keys are securely stored in a key management
system (KMS).

• Portal audit logging: Activities in the cloud user portal, such as those related to
user roles, organization updates, and cluster creation and deletion, are tracked and
viewed in the activity log. Command-line interface (CLI) actions are also logged.

242 Security

• Database logging and auditing: Functionality to track and analyze database
activities is enabled automatically. For PostgreSQL, the PostgreSQL Audit
Extension (pgaudit) is enabled for you when deploying a Postgres cluster. For
EDB Postgres Advanced Server, the EDB Audit Extension (edbaudit) is enabled
for you. All DDL is logged.

There's more…
Some PostgreSQL privileges can only be granted directly by superusers, which may
need special actions in a cloud-based service. These exceptions are shown here for
completeness.

For replication management functions (described here: https://www.postgresql.
org/docs/devel/functions-admin.html#FUNCTIONS-REPLICATION),
slot functions are available to users with the REPLICATION privilege—for example,
streaming_replica.

Replication origins functions are available by default to superusers and could be granted
to other users.

Execute privileges could be granted on this, to allow you to plan for point-in-time
recovery (PITR):

• pg_create_restore_point()

Execute privileges could be granted on these functions, but backup is already provided by
the cloud service:

• pg_start_backup()

• pg_stop_backup()

Execute privileges could be granted by superusers on these functions, but would likely
interfere with the orchestration of HA features, so would be dangerous:

• pg_switch_wal()

• pg_promote()

• pg_wal_replay_pause()

• pg_wal_replay_resume()

Generic file access functions are insecure and should not typically be granted: https://
www.postgresql.org/docs/devel/functions-admin.html#FUNCTIONS-
ADMIN-GENFILE.

https://www.postgresql.org/docs/devel/functions-admin.html#FUNCTIONS-REPLICATION
https://www.postgresql.org/docs/devel/functions-admin.html#FUNCTIONS-REPLICATION
https://www.postgresql.org/docs/devel/functions-admin.html#FUNCTIONS-ADMIN-GENFILE
https://www.postgresql.org/docs/devel/functions-admin.html#FUNCTIONS-ADMIN-GENFILE
https://www.postgresql.org/docs/devel/functions-admin.html#FUNCTIONS-ADMIN-GENFILE

7
Database

Administration
In Chapter 5, Tables and Data, we looked at the contents of tables and various
complexities. Now, we'll turn our attention to larger administration tasks that we need to
perform from time to time, such as creating things, moving things around, storing things
neatly, and removing them when they're no longer required.

The most sensible way to perform major administrative tasks is to write a script to do
what you think is required. This allows you to run the script on a system test server, and
then run it again on the production server once you're happy with it. Manically typing
commands against production database servers isn't wise. Worse, using an admin tool can
lead to serious issues if that tool doesn't show you the SQL you're about to execute. If you
haven't dropped your first live table yet, don't worry; there is still time. Perhaps you might
want to read Chapter 11, Backup and Recovery, first, eh? Back it up using scripts.

Scripts are great because you can automate common tasks, and there's no need to sit
there with a mouse, working your way through hundreds of changes. If you're drawn to
the discussion about the command line versus GUI, then my thoughts and reasons are
completely orthogonal to that. I want to encourage you to avoid errors and save time by
executing small administration programs or scripts repetitively and automatically. If it
were safe or easy to record a macro using mouse movements in a script, then that would
be an option, but it's not. The only viable way to write a repeatable script is by writing SQL
commands in a text file.

244 Database Administration

Which scripting tool you should use is a more interesting debate. We will consider psql
here because it's a great scripting tool and if you've got PostgreSQL, then you've certainly
got it, without needing to install additional software. We will also discuss GUI tools and
explain how and when they are relevant.

Let's move on to the recipes! First, we'll start by looking at some scripting techniques that
are valuable in PostgreSQL.

In this chapter, we will cover the following recipes:

• Writing a script that either succeeds entirely or fails entirely

• Writing a psql script that exits on the first error

• Using psql variables

• Placing query output into psql variables

• Writing a conditional psql script

• Investigating a psql error

• Setting the psql prompt with useful information

• Using pgAdmin for DBA tasks

• Scheduling jobs for regular background execution

• Performing actions on many tables

• Adding/removing columns on a table

• Changing the data type of a column

• Changing the definition of an enum data type

• Adding a constraint concurrently

• Adding/removing schemas

• Moving objects between schemas

• Adding/removing tablespaces

• Moving objects between tablespaces

• Accessing objects in other PostgreSQL databases

• Accessing objects in other foreign databases

• Making views updatable

• Using materialized views

Writing a script that either succeeds entirely or fails entirely 245

• Using GENERATED data columns

• Using data compression

Writing a script that either succeeds entirely
or fails entirely
Database administration often involves applying a coordinated set of changes to the
database. One of PostgreSQL's greatest strengths is its transaction system, wherein almost
all actions can be executed inside a transaction. This allows us to build a script with many
actions that will either all succeed or all fail. This means that if any of these actions fail,
then all the other actions in the script are rolled back and never become visible to any
other user, which can be critically important in a production system. This property is
referred to as atomicity in the sense that the script is intended as a single unit that cannot
be split. This is the meaning of the A in the ACID properties of database transactions.

Transactions apply to Data Definition Language (DDL), which refers to the set of SQL
commands that are used to define, modify, and delete database objects. The term DDL
goes back many years, but it persists because that subset is a useful short name for the
commands that most administrators need to execute: CREATE, ALTER, DROP, and so on.

Note
Although most commands in PostgreSQL are transactional, there are
a few that cannot be. One example is sequence allocation. It cannot be
transactional because when a new sequence number is allocated, the effect
of having consumed that number must become visible immediately, without
waiting for that transaction to be committed. Otherwise, the same number will
be given to another transaction. Other examples include CREATE INDEX
CONCURRENTLY and CREATE DATABASE.

How to do it…
The basic way to ensure that all the commands are successful or that none are is to wrap
our script into a transaction, as follows:

BEGIN;

command 1;

command 2;

command 3;

COMMIT;

246 Database Administration

Writing a transaction control command involves editing the script, which you may not
want to do or even have access to. There are, however, other ways to do this.

Using psql, you can do this by simply using the -1 or --single-
transaction command-line options, as follows:

bash $ psql -1 -f myscript.sql

bash $ psql --single-transaction -f myscript.sql

The -1 option is short, but I recommend using --single-transaction as it's much
clearer regarding which option is being selected.

How it works…
The entire script will fail if, at any point, one of the commands gives an error (or higher)
message. Almost all of the SQL that's used to define objects (DDL) provides a way to avoid
throwing errors. More precisely, commands that begin with the DROP keyword have an IF
EXISTS option. This allows you to execute the DROP commands, regardless of whether or
not the object already exists.

Thus, by the end of the command, that object will not exist:

DROP VIEW IF EXISTS cust_view;

Similarly, most commands that begin with the CREATE keyword have the optional OR
REPLACE suffix. This allows the CREATE statement to overwrite the definition if one
already exists, or add the new object if it doesn't exist yet, like this:

CREATE OR REPLACE VIEW cust_view AS SELECT * FROM cust;

In cases where both the DROP IF EXISTS and CREATE OR REPLACE options exist,
you may think that CREATE OR REPLACE is usually sufficient. However, if you change
the output definition of a function or a view, then using OR REPLACE is not sufficient. In
that case, you must use DROP and recreate it, as shown in the following example:

postgres=# CREATE OR REPLACE VIEW cust_view AS

SELECT col as title1 FROM cust;

CREATE VIEW

postgres=# CREATE OR REPLACE VIEW cust_view

AS SELECT col as title2 FROM cust;

ERROR: cannot change name of view column "title1" to "title2"

Writing a script that either succeeds entirely or fails entirely 247

Also, note that CREATE INDEX does not have an OR REPLACE option. If you run it
twice, you'll get two indexes on your table, unless you specifically name the index. There is
a DROP INDEX IF EXISTS option, but it may take a long time to drop and recreate an
index. An index exists just for optimization, and it does not change the actual result of any
query, so this different behavior is very convenient. This is also reflected in the fact that
the SQL standard doesn't mention indexes at all, even though they exist in practically all
database systems, because they do not affect the logical layer.

PostgreSQL does not support nested transaction control commands, which can lead
to unexpected behavior. For instance, consider the following code, which has been written
in a nested transaction style:

postgres=# BEGIN;

BEGIN

postgres=# CREATE TABLE a(x int);

CREATE TABLE

postgres=# BEGIN;

WARNING: there is already a transaction in progress

BEGIN

postgres=# CREATE TABLE b(x int);

CREATE TABLE

postgres=# COMMIT;

COMMIT

postgres=# ROLLBACK;

NOTICE: there is no transaction in progress

ROLLBACK

The hypothetical author of such code probably meant to create table a first, and then
create table b. Then, they changed their mind and rolled back both the inner transaction
and the outer transaction. However, what PostgreSQL does is discard the second BEGIN
statement so that the COMMIT statement is matched with the first BEGIN statement, and
what looks like an inner transaction is part of the top-level transaction. Hence, right
after the COMMIT statement, we are outside a transaction block, so the next statement
is assigned a separate transaction. When ROLLBACK is issued as the next statement,
PostgreSQL notices that the transaction is empty.

The danger in this particular example is that the user inadvertently committed a
transaction, thus waiving the right to roll it back; however, note that a careful user would
have noticed this warning and paused to think before going ahead.

248 Database Administration

From this example, you have learned a valuable lesson: if you have used transaction
control commands in your script, then wrapping them again in a higher-level script or
command can cause problems of the worst kind, such as committing stuff that you wanted
to roll back. This is important enough to deserve a boxed warning.

Note
PostgreSQL accepts nested transactional control commands but does not act on
them. After the first commit, the commands will be assumed to be transactions
in their own right and will persist, should the script fail. Be careful!

There's more…
These commands cannot be included in a script that uses transactions in the way we just
described because they execute multiple database transactions and cannot be used in a
transaction block:

• CREATE DATABASE/DROP DATABASE

• CREATE TABLESPACE/DROP TABLESPACE

• CREATE INDEX CONCURRENTLY

• VACUUM

• REINDEX DATABASE/REINDEX SYSTEM

• CLUSTER

None of these actions need to be run manually regularly within complex programs, so this
shouldn't be a problem for you.

Also, note that these commands do not substantially alter the logical content of a database;
that is, they don't create new user tables or alter any rows, so there's less need to use them
inside complex transactions.

While PostgreSQL does not support nested transaction commands, it supports the notion
of SAVEPOINT, which can be used to achieve the same behavior. Suppose we wanted to
implement the following pseudocode:

(begin transaction T1)

 (statement 1)

 (begin transaction T2)

 (statement 2)

 (commit transaction T2)

Writing a psql script that exits on the first error 249

 (statement 3)

(commit transaction t1)

The effect we seek has the following properties:

• If statements 1 and 3 succeed, and statement 2 fails, then statements
1 and 3 will be committed.

• If all three statements succeed, then they will all be committed.

• Otherwise, no statement will be committed.

These properties also hold with the following PostgreSQL commands:

BEGIN;

 (statement 1)

 SAVEPOINT T2;

 (statement 2)

 RELEASE SAVEPOINT T2; /* we assume that statement 2 does not
fail */

 (statement 3)

COMMIT;

This form, as noted in the preceding code, applies only if statement 2 does not fail. If
it fails, we must replace RELEASE SAVEPOINT with ROLLBACK TO SAVEPOINT, or
we will get an error. This is a slight difference between top-level transaction commands;
a COMMIT statement is silently converted into a ROLLBACK when the transaction is in a
failed state.

Writing a psql script that exits on the
first error
The default mode for the psql script tool is to continue processing when it finds an error.
This sounds silly, but it exists for historical compatibility only. There are some easy and
permanent ways to avoid this, so let's look at them.

250 Database Administration

Getting ready
Let's start with a simple script, with a command we know will fail:

$ $EDITOR test.sql

mistake1;

mistake2;

mistake3;

Execute the following script using psql to see what the results look like:

$ psql -f test.sql

psql:test.sql:1: ERROR: syntax error at or near "mistake1"

LINE 1: mistake1;

 ^

psql:test.sql:2: ERROR: syntax error at or near "mistake2"

LINE 1: mistake2;

 ^

psql:test.sql:3: ERROR: syntax error at or near "mistake3"

LINE 1: mistake3;

 ^

How to do it…
Let's perform the following steps:

1. To exit the script on the first error, we can use the following command:

$ psql -f test.sql -v ON_ERROR_STOP=on

psql:test.sql:1: ERROR: syntax error at or near
"mistake1"

LINE 1: mistake1;

 ^

2. Alternatively, we can edit the test.sql file with the initial line that's shown here:

$ vim test.sql

\set ON_ERROR_STOP on

mistake1;

mistake2;

mistake3;

Using psql variables 251

3. Note that the following command will not work because we have missed the
crucial ON value:

$ psql -f test.sql -v ON_ERROR_STOP

How it works…
The ON_ERROR_STOP variable is a psql special variable that controls the behavior
of psql as it executes in script mode. When this variable is set, a SQL error will generate
an OS return code 3, whereas other OS-related errors will return code 1.

There's more…
When you run psql, a startup file will be executed, sometimes called a profile file. You
can place your psql commands in that startup file to customize your environment.
Adding ON_ERROR_STOP to your profile will ensure that this setting is applied to
all psql sessions:

$ $EDITOR ~/.psqlrc

\set ON_ERROR_STOP

You can forcibly override this and request psql to execute without a startup file using -X.
This is probably the safest thing to do for the batch execution of scripts so that they always
work in the same way, irrespective of the local settings.

ON_ERROR_STOP is one of some special variables that affects the way psql behaves. The
full list is available at the following URL: https://www.postgresql.org/docs/
current/static/app-psql.html#APP-PSQL-VARIABLES.

Using psql variables
In the previous recipe, you learned how to use the ON_ERROR_STOP variable. Here, we
will show you how to work with any variable, including user-defined ones.

Getting ready
As an example, we will create a script that takes a table name as a parameter. We will keep
it simple because we just want to show how variables work.

252 Database Administration

For instance, we might want to add a text column to a table and then set it to a given
value. So, we must write the following lines in a file called vartest.sql:

ALTER TABLE mytable ADD COLUMN mycol text;

UPDATE mytable SET mycol = 'myval';

The script can be run as follows:

psql -f vartest.sql

How to do it…
We change vartest.sql as follows:

\set tabname mytable

\set colname mycol

\set colval 'myval'

ALTER TABLE :tabname ADD COLUMN :colname text;

UPDATE :tabname SET :colname = :'colval';

How it works…
What do these changes mean? We have defined three variables, setting them to the table
name, column name, and column value. Then, we replaced the mentions of those specific
values with the name of the variable preceded by a colon, which in psql means replace
with the value of this variable. In the case of colval, we have also surrounded the
variable name with single quotes, meaning treat the value as a string.

If we want vartest.sql to add a different column, we just have to make one change to
the top of the script, where all the variables are conveniently set. Then, the new column
name will be used.

There's more…
This was just one way to define variables. Another is to indicate them in the command line
when running the script:

psql -v tabname=mytab2 -f vartest.sql

Placing query output into psql variables 253

Variables can also be set interactively. The following line will prompt the user, and then set
the variable to whatever is typed before hitting Enter:

\prompt 'Insert the table name: ' tabname

In the next recipe, we will learn how to set variables using a SQL query.

Placing query output into psql variables
It is also possible to store some values that have been produced by a query into variables –
for instance, to reuse them later in other queries.

In this recipe, we will demonstrate this approach with a concrete example.

Getting ready
In the Controlling automatic database maintenance recipe of Chapter
9, Regular Maintenance, we will describe VACUUM, showing that it runs regularly on
each table based on the number of rows that might need vacuuming (dead rows).
The VACUUM command will run if that number exceeds a given threshold, which by
default is just above 20% of the row count.

In this recipe, we will create a script that picks the table with the largest number of dead
rows and runs VACUUM on it, assuming you have some tables already in existence.

How to do it…
The script is as follows:

SELECT schemaname

, relname

, n_dead_tup

, n_live_tup

FROM pg_stat_user_tables

ORDER BY n_dead_tup DESC

LIMIT 1

\gset

\qecho Running VACUUM on table :"relname" in schema
:"schemaname"

\qecho Rows before: :n_dead_tup dead, :n_live_tup live

VACUUM ANALYZE :schemaname.:relname;

254 Database Administration

\qecho Waiting 1 second...

SELECT pg_sleep(1);

SELECT n_dead_tup AS n_dead_tup_now

, n_live_tup AS n_live_tup_now

FROM pg_stat_user_tables

WHERE schemaname = :'schemaname'

AND relname = :'relname'

\gset

\qecho Rows after: :n_dead_tup_now dead, :n_live_tup_now live

How it works…
You may have noticed that the first query does not end with a semicolon, as usual. This
is because we end it with \gset instead, which means to run the query and assign each
returned value to a variable that has the same name as the output column.

This command expects the query to return exactly one row, as you might expect it to, and
if not, it does not set any variable.

The script waits 1 second before reading the updated number of dead and live rows. The
reason for the wait is that such statistics are updated after the end of the transaction that
makes the changes, which sends a signal to the statistics collector, which then does the
update. There's no guarantee that the stats will be updated in 1 second, though in most
cases they will be.

There's more…
See the next recipe on how to improve the script with iterations so that it vacuums more
than one table.

Writing a conditional psql script
psql supports the conditional \if, \elif, \else, and \endif meta-commands. In this
recipe, we will demonstrate some of them.

Getting ready
We want to improve the vartest.sql script so that it runs VACUUM if there are dead
rows in that table.

Writing a conditional psql script 255

How to do it…
We can add conditional commands to vartest.sql, resulting in the following script:

\set needs_vacuum false

SELECT schemaname

, relname

, n_dead_tup

, n_live_tup

, n_dead_tup > 0 AS needs_vacuum

FROM pg_stat_user_tables

ORDER BY n_dead_tup DESC

LIMIT 1

\gset

\if :needs_vacuum

\qecho Running VACUUM on table :"relname" in schema
:"schemaname"

\qecho Rows before: :n_dead_tup dead, :n_live_tup live

VACUUM ANALYZE :schemaname.:relname;

\qecho Waiting 1 second...

SELECT pg_sleep(1);

SELECT n_dead_tup AS n_dead_tup_now

, n_live_tup AS n_live_tup_now

FROM pg_stat_user_tables

WHERE schemaname = :'schemaname' AND relname = :'relname'

\gset

\qecho Rows after: :n_dead_tup_now dead, :n_live_tup_now live

\else

\qecho Skipping VACUUM on table :"relname" in schema
:"schemaname"

\endif

How it works…
We have added an extra column, needs_vacuum, to the first query, resulting in one
more variable that we can use to make the VACUUM part conditional.

256 Database Administration

There's more…
Conditional statements are usually part of flow-control statements, which also
include iterations.

While iterating is not directly supported by psql, a similar effect can be achieved in
other ways.

For instance, a script called file.sql (for instance) can be iterated by adding some lines
at the end, as shown in the following fragment:

SELECT /* add a termination condition as appropriate */ AS do_
loop

\gset

\if do_loop

\ir file.sql

\endif

Instead of iterating, you can follow the approach described later in this chapter in
the Performing actions on many tables recipe.

Investigating a psql error
Error messages can sometimes be cryptic, and you may be left wondering, why did this
error happen at all?

For this purpose, psql recognizes two variables – VERBOSITY and CONTEXT; valid
values are terse, default, or verbose for the former and never, errors,
or always for the latter. A more verbose error message will hopefully specify extra
details, and the context information will be included. Here is an example to show the
difference:

postgres=# \set VERBOSITY terse

postgres=# \set CONTEXT never

postgres=# select * from missingtable;

ERROR: relation "missingtable" does not exist at character 15

This is quite a simple error, so we don't need the extra details, but it is nevertheless
useful for illustrating the extra detail you get when raising verbosity and enabling
context information:

postgres=# \set VERBOSITY verbose

postgres=# \set CONTEXT errors

Investigating a psql error 257

postgres=# select * from missingtable;

ERROR: 42P01: relation "missingtable" does not exist

LINE 1: select * from missingtable;

 ^

LOCATION: parserOpenTable, parse_relation.c:1159

Now, you get SQL error code 42P01, which you can look up in the PostgreSQL manual.
You will even find a reference to the file and the line in the PostgreSQL source code where
this error has been raised so that you can investigate it (the beauty of open source!).

However, there is a problem with having to enable verbosity in advance: you need to do so
before running the command. If all the errors were reproducible, this would not be a huge
inconvenience. But in certain cases, you may hit a transient error, such as a serialization
failure, which is difficult to detect itself, and it could sometimes happen that you struggle
to reproduce the error, let alone analyze it.

The \errverbose meta-command in psql was introduced to avoid these problems.

Getting ready
There isn't much to do, as the point of the \errverbose meta-command is to capture
information about the error without requiring any prior activity.

How to do it…
Follow these steps to understand the usage of the \errverbose meta-command:

1. Suppose you hit an error, as shown in the following query, and verbose reporting
was not enabled:

postgres=# create table wrongname();

ERROR: relation "wrongname" already exists

2. The extra detail that is not displayed is remembered by psql, so you can view it as
follows:

postgres=# \errverbose

ERROR: 42P07: relation "wrongname" already exists

LOCATION: heap_create_with_catalog, heap.c:1067

258 Database Administration

There's more…
The error and source codes for this recipe can be found at the following links:

• The list of PostgreSQL error codes is available at the following URL: https://
www.postgresql.org/docs/current/static/errcodes-appendix.
html.

• The PostgreSQL source code can be downloaded from or inspected at the following
URL https://git.postgresql.org/.

Setting the psql prompt with useful
information
When you're connecting to multiple systems, it can be useful to configure your psql
prompt so that it tells you what you are connected to.

To do this, we will edit the psql profile file so that we can execute commands when we first
start psql. In the profile file, we will set values for two special variables, called PROMPT1
and PROMPT2, that control the command-line prompt.

Getting ready
Identify and edit the ~/.psqlrc file that will be executed when you start psql.

How to do it…
My psql prompt looks like this:

Figure 7.1 – The psql prompt set by ~./psqlrc

https://www.postgresql.org/docs/current/static/errcodes-appendix.html
https://www.postgresql.org/docs/current/static/errcodes-appendix.html
https://www.postgresql.org/docs/current/static/errcodes-appendix.html
https://git.postgresql.org/

Setting the psql prompt with useful information 259

As you can see, it has a banner that highlights my employer's company name – I have this
set for when we do demos. You can skip that part, or you can create some word art, being
careful with backslashes since they are escape characters:

\echo '________ _____ _______'

\echo '| ______) ___ \\ | ___ \\'

\echo '| |___ | | \\ \\| |__))'

\echo '| ___) | | | | __ ('

\echo '| |_____| |__/ /| |__))'

\echo '|_______)_____/ |______/'

\echo ''

\echo 'EnterpriseDB https://www.enterprisedb.com/'

\echo ''

select current_setting('cluster_name') as nodename,

 case current_setting('cluster_name') when '' then 'true'
else 'false' end as nodename_unset

\gset

\if :nodename_unset

 \set nodename unknown

\endif

\set PROMPT1 '[%:nodename:] %n@%/ %x %R%# '

\set PROMPT2 '[%:nodename:] %n@%/ %x %R%# '

\timing

How it works…
The last part of the file runs a SQL query to retrieve the value of the cluster_name
parameter. This is usually set to something sensible, but if not, it will return the word
true in the nodename variable. I then use a \if conditional to check if nodename is
set correctly. If not, it uses the unknown string.

The prompts are set from multiple variables and fields:

Nodename as set above

%n current session username

%/ current databasename

%x transaction status - mostly blank, * if transaction
block, ! if aborted, ? if disconnected

%R multi-line status - mostly =, shows if in a

260 Database Administration

continuation/quote/double-quote/comment

%# set to # if user is a superuser, else set to >

Lastly, I turn on timing automatically for all future SQL commands.

Using pgAdmin for DBA tasks
In this recipe, we will show you how to use pgAdmin for some administration tasks in
your database. PgAdmin is one of the two graphical interfaces that we introduced in
the Using graphical administration tools recipe in Chapter 1, First Steps.

Getting ready
You should have already installed pgAdmin as part of the Using graphical administration
tools recipe of Chapter 1, First Steps, which includes website pointers. If you haven't done
so, please read it now.

Remember to install pgAdmin 4, which is the last generation of the software; the previous
one, pgAdmin 3, is no longer supported and hasn't been for a few years, so it will give
various errors on PostgreSQL 10 and above.

How to do it…
The first task of a DBA is to get access to the database and get a first glance at its contents.
In that respect, we have already learned how to create a connection, access the dashboard,
and display some database statistics. We also mentioned the Grant Wizard and the
graphical Explain tool:

1. The list of schemas in a given database can be obtained by opening a database and
selecting Schemas:

Using pgAdmin for DBA tasks 261

Figure 7.2 – The pgAdmin 4 dashboard

2. If you right-click on an individual schema, you will see several possible actions that
you can perform. For instance, you can take a backup of that schema only:

Figure 7.3 – pgAdmin 4 context-sensitive menus

262 Database Administration

3. Clicking the left button on the mouse will drill down inside the schema and show
you several object types. You will probably want to start from Tables:

Figure 7.4 – pgAdmin 4 tree view of schema contents

4. A PostgreSQL table supports a wide range of operations. For instance, you can
count the number of rows:

Using pgAdmin for DBA tasks 263

Figure 7.5 – pgAdmin 4 table-context menu

Note that this is just an example of a pgAdmin feature; we are not suggesting that
counting table rows is the best way to gather information on your database. See the
How many rows are there in a table? recipe of Chapter 2, Exploring the Database, for a
discussion on this topic.

264 Database Administration

How it works...
PostgreSQL is a complex database system, with many features and even more actions, so
we can't discuss them all; we will just mention three table actions of interest here:

• The Maintenance... entry opens a dialog box that includes actions such
as VACUUM and ANALYZE, which will be discussed in various recipes in Chapter
9, Regular Maintenance.

• The Import/Export… entry leads to a dialog box where you can export and import
data using the COPY command, which includes CSV format, as demonstrated
in Chapter 5, Tables and Data.

• With View/Edit Data, you can edit the contents of the table as you would do in a
spreadsheet. This is slightly different than the CSV import/export feature because
you edit the data directly inside the database without having to export it to another
tool.

Finally, we would also like to mention these other three options as well:

• Each server (for example, connection) offers the option to Backup Globals,
meaning roles (users/groups) and tablespaces.

• The Maintenance... entry inside Indexes, which itself is a sub-entry of Tables,
allows you to REINDEX or CLUSTER a given index.

• You can create SQL scripts to perform some of the specific actions, such as if you
want to execute a procedure or write an INSERT query on a given table.

There's more…
As you can see, the general idea of pgAdmin is that right-clicking on an object or a group
of objects opens a menu presenting several actions for that particular object or group.

Browsing the available actions is a very good way to become more familiar with what
PostgreSQL can do, although not all the actions that are available in PostgreSQL can be
researched through pgAdmin's interface.

Scheduling jobs for regular background execution 265

Scheduling jobs for regular
background execution
Normal user tasks cause the user to wait while the task executes. Frequently, there is a
requirement to run tasks or "jobs" in the background without the user present, which is
referred to as a Job Scheduler component. You can use cron, but some users look for an
in-database solution.

pgAgent is our recommended job scheduler for Postgres, which is supplied as part of
the pgAdmin package, but a separate component. pgAgent can be operated from the
pgAdmin GUI or using a simple command-line API. pgAgent keeps a history of job
executions so that you can see what is happening and what is not happening.

Getting ready
If you want to manage a new database from an existing Pgagent installation, then you
don't need to prepare anything. If you want to set up a new pgagent database, execute the
following command:

CREATE EXTENSION pgagent;

pgAgent is an external program, not a binary plugin, so you do not need to modify the
shared_preload_libraries parameter – allowing it to work easily with all cloud
databases.

Further information is available at https://www.pgadmin.org/docs/pgadmin4/
latest/pgagent_install.html.

How to do it…
Each job has a name, can be configured to have one or more job steps, and can be
configured to have multiple schedules that specify when it will run – but most jobs just
have one step and one schedule. If more than one job step exists, they are executed serially
in alphanumeric order.

Jobs are scheduled using UTC.

Each job that's executed keeps a log that can be inspected to see what has run. Jobs can be
enabled/disabled and schedules can have defined start/end dates to allow you to switch
from one schedule to another at a planned point in time.

You can do this using the GUI, as described in the PgAdmin docs: https://www.
pgadmin.org/docs/pgadmin4/latest/pgagent_jobs.html.

https://www.pgadmin.org/docs/pgadmin4/latest/pgagent_install.html
https://www.pgadmin.org/docs/pgadmin4/latest/pgagent_install.html
https://www.pgadmin.org/docs/pgadmin4/latest/pgagent_jobs.html
https://www.pgadmin.org/docs/pgadmin4/latest/pgagent_jobs.html

266 Database Administration

But since I encourage scripting, you can add a simple job like this:

SELECT pgagent.add_job('reindex weekly', '30 1 * * 7',

 'REINDEX DATABASE postgres');

Here, we have used code from https://github.com/simonriggs/pgagent_
add_job/.

This will create a job that runs at 01:30 A.M. every Sunday and re-indexes the local
database.

The parameters here are as follows:

• Jobname

• Jobschedule

• SQL

Jobschedule uses the same syntax as the cron(1) command in Linux:

• Minutes (0-59)

• Hours (0-23)

• Day of Month (1-31)

• Month of Year (1-12, 1=January)

• Day of Week (1-7, 1=Monday)

You can test a job in pgAdmin by right-clicking and then selecting Run now.

Once the jobs have been executed, you will see the result in the pgagent.pga_joblog
and pgagent.pga_jobsteplog tables.

How it works…
pgAgent is an external program that connects to the database server that stores its
metadata inside the database.

pgAgent polls the database each minute to see what jobs need to be started. pgAgent will
run multiple jobs in parallel when needed, each with a different thread. If a job is still
running when its next scheduled time arrives, the next job will wait for the first to finish
and then start immediately afterward.

https://github.com/simonriggs/pgagent_add_job/
https://github.com/simonriggs/pgagent_add_job/

Performing actions on many tables 267

pgAgent can be used to manage multiple databases or just the local database, as you
choose. pgAgent can be configured for high availability using two agents accessing
the same database server(s). Locking prevents the same job from being executed by
multiple hosts.

There's more…
SQL jobs that have been executed will use the connection string supplied with that job,
which requires you to provision how passwords or certificates are set up. Batch jobs use
the operating system user for the pgagent program.

Security will always be an important consideration, so we strongly recommend limiting
how many users can add/remove jobs. This will probably be a small list of maintenance
activities that are agreed upon in advance for each application, rather than a long list of
jobs with many users adding/removing jobs.

You can separate who adds/removes jobs and who can check they have run correctly. This
can be accomplished with two roles, as shown in the following code block:

CREATE ROLE pgggent_admin;

GRANT ALL ON pgagent to pgagent_admin;

CREATE ROLE pgagent_operator;

GRANT SELECT ON

 pgagent.pga_joblog,

 pgagent.pga_jobsteplog

TO pgagent_operator;

If you want to prevent pgAgent from using duplicate job names, you may wish to add the
following code:

CREATE UNIQUE INDEX ON pgagent.pga_job (jobname);

Performing actions on many tables
As a database administrator, you will often need to apply multiple commands as part of
the same overall task. This task could be one of the following:

• Performing many different actions on multiple tables

• Performing the same action on multiple tables

268 Database Administration

• Performing the same action on multiple tables in parallel

• Performing different actions, one on each table, in parallel

The first is a general case where you need to make a set of coordinated changes. The
solution is to write a script, as we've already discussed. We can also call this static
scripting because you write the script manually and then execute it.

The second type of task can be achieved very simply with dynamic scripts, where we write
a script that writes another script. This technique is the main topic of this recipe.

Performing actions in parallel sounds cool, and it would be useful if it were easy. In some
ways, it is, but trying to run multiple tasks concurrently and trap and understand all
the errors is much harder. And if you're thinking it won't matter if you don't check for
errors, think again. If you run tasks in parallel, then you cannot run them inside the same
transaction, so you need error handling in case one part fails.

Don't worry! Running in parallel is usually not as bad as it may seem after reading the
previous paragraph, and we'll explain it after looking at a few basic examples.

Getting ready
Let's create a basic schema to run some examples on:

postgres=# create schema test;

CREATE SCHEMA

postgres=# create table test.a (col1 INTEGER);

CREATE TABLE

postgres=# create table test.b (col1 INTEGER);

CREATE TABLE

postgres=# create table test.c (col1 INTEGER);

CREATE TABLE

How to do it…
Our task is to run a SQL statement using this form, with X as the table name, against each
of our three test tables:

ALTER TABLE X

ADD COLUMN last_update_timestamp TIMESTAMP WITH TIME ZONE
DEFAULT current_timestamp;

Performing actions on many tables 269

The steps are as follows:

1. Our starting point is a script that lists the tables that we want to perform tasks
against – something like the following:

postgres=# SELECT n.nspname, c.relname

 FROM pg_class c

 JOIN pg_namespace n

 ON c.relnamespace = n.oid

 WHERE n.nspname = 'test'

 AND c.relkind = 'r';

2. This displays the list of tables that we will act upon (so that you can check it):

relname

 a

 b

 c

 (3 rows)

3. We can then use the preceding SQL to generate the text for a SQL script,
substituting the schema name and table name in the SQL text:

postgres=# SELECT format('ALTER TABLE %I.%I ADD COLUMN
last_update_timestamp TIMESTAMP WITH TIME ZONE DEFAULT
current_timestamp;'

, n.nspname, c.relname)

FROM pg_class c

JOIN pg_namespace n

ON c.relnamespace = n.oid

WHERE n.nspname = 'test'

AND c.relkind = 'r';

4. Finally, we can run the script and watch the results (success!):

postgres=# \gexec

ALTER TABLE

ALTER TABLE

ALTER TABLE

270 Database Administration

How it works…
Overall, this is just an example of dynamic scripting, and it has been used by DBAs for
many decades, even before PostgreSQL was born.

The \gexec command means to execute the results of the query, so be very careful that
you test your query before you run it in production.

The format function takes a template string as its first argument and replaces all
occurrences of %I with the values supplied as additional arguments (in our case, the
values of n.nspname and r.relname).

%I treats the value as a SQL identifier, adding double quotes as appropriate. This is
extremely important if some joker or attacker creates a table like this:

postgres=# create table test."; DROP TABLE customer;" (col1
INTEGER);

If the script used just %s rather than %I, then the script will generate this SQL, which will
result in you dropping the customer table if it exists. So, for security purposes, you should
use %I:

ALTER TABLE test.a ADD COLUMN last_update_timestamp TIMESTAMP
WITH TIME ZONE DEFAULT current_timestamp;

 ALTER TABLE test.; drop table customer; ADD COLUMN last_
update_timestamp TIMESTAMP WITH TIME ZONE DEFAULT current_
timestamp;

 ALTER TABLE test.b ADD COLUMN last_update_timestamp TIMESTAMP
WITH TIME ZONE DEFAULT current_timestamp;

 ALTER TABLE test.c ADD COLUMN last_update_timestamp TIMESTAMP
WITH TIME ZONE DEFAULT current_timestamp;

Dynamic scripting can also be called a quick and dirty approach. The previous scripts
didn't filter out views and other objects in the test schema, so you'll need to add that
yourself, or not, as required.

There is another way of doing this as well:

DO $$

DECLARE t record;

BEGIN

 FOR t IN SELECT c.*, n.nspname

 FROM pg_class c JOIN pg_namespace n

 ON c.relnamespace = n.oid

Performing actions on many tables 271

 WHERE n.nspname = 'test'

 AND c.relkind = 'r' /* ; not needed */

 LOOP

 EXECUTE format(

 'ALTER TABLE %I.%I

 ADD COLUMN last_update_timestamp

 TIMESTAMP WITH TIME ZONE'

 , t.nspname, t.relname);

 END LOOP;

END $$;

I don't prefer using this method because it executes the SQL directly and doesn't allow you
to review it before, or keep the script afterward.

The preceding syntax with DO is called an anonymous code block because it's like a
function without a name.

There's more…
Earlier, I said I'd explain how to run multiple tasks in parallel. Some practical approaches
to this are possible, with a bit of discussion.

Making tasks run in parallel can be thought of as subdividing the main task so that we run
x2, x4, x8, and other subscripts, rather than one large script.

First, you should note that error-checking gets worse when you spawn more parallel tasks,
whereas performance improves the most for the first few subdivisions. Also, we're often
constrained by CPU, RAM, or I/O resources for intensive tasks. This means that splitting
the main task into two to four parallel subtasks isn't practical without some kind of tool to
help us manage them.

There are two approaches here, depending on the two types of tasks:

• A task consists of many smaller tasks, all roughly of the same size.

• A task consists of many smaller tasks, and the execution times vary according to the
size and complexity of the database object.

272 Database Administration

If we have lots of smaller tasks, then we can simply run our scripts multiple times using a
simple round-robin split so that each subscript runs a part of all the subtasks. Here is how
to do it: each row in pg_class has a hidden column called oid, whose value is a 32-bit
number that's allocated from an internal counter on table creation. Therefore, about half
of the tables will have even values of oid, and we can achieve an even split by adding the
following clauses:

• Script 1: Add WHERE c.oid % 2 = 0

• Script 2: Add WHERE c.oid % 2 = 1

Here, we added a column to many tables. In the previous example, we were adding the
column with no specified default; so, the new column will have a NULL value, and as a
result, it will run very quickly with ALTER TABLE, even on large tables. If we change
the ALTER TABLE statement to specify a default, then we should choose a non-volatile
expression for the default value; otherwise, PostgreSQL will need to rewrite the entire
table. So, the runtime will vary according to the table's size (approximately, and also
according to the number and type of indexes).

Now that our subtasks vary at runtime according to their size, we need to be more careful
when splitting the subtasks so that we end up with multiple scripts that will run for about
the same time.

If we already know that we have just a few big tables, it's easy to split them manually
into scripts.

If the database contains many large tables, then we can sort SQL statements by table size
and then distribute them using round-robin distribution into multiple subscripts that
will have approximately the same runtime. The following is an example of this technique,
which assumes you have multiple large tables in a schema called test:

First, create a table with all the SQL you would like to run:

CREATE TABLE run_sql AS

SELECT format('ALTER TABLE %I.%I ADD COLUMN

last_update_timestamp TIMESTAMP WITH TIME ZONE

DEFAULT now();' , n.nspname, c.relname) as sql,

row_number() OVER (ORDER BY pg_relation_size(c.oid))

FROM pg_class c

 JOIN pg_namespace n

 ON c.relnamespace = n.oid

WHERE n.nspname = 'test'

 AND c.relkind = 'r';

Adding/removing columns on a table 273

Then, create a file called exec-script.sql and place the following code in it:

SELECT sql FROM run_sql

WHERE row_number % 2 = :i

ORDER BY row_number DESC

\gexec

Then, we run the script twice, as follows:

$ psql -v i=0 -f make-script.sql &

$ psql -v i=1 -f make-script.sql &

Note how we used the psql parameters – via the -v command-line option – to select
different rows using the same script.

Also, note how we used the row_number() window function to sort the data by size.
Then, we split the data into pieces using the following line:

WHERE row_number % N = i;

Here, N is the total number of scripts we're producing, and i ranges between 0
and N minus 1 (we are using modulo arithmetic to distribute the subtasks).

Adding/removing columns on a table
As designs change, we may want to add or remove columns from our data tables. These
are common operations in development, though they need more careful planning on a
running production database server as they take full locks and may run for long periods.

How to do it…
You can add a new column to a table using the following command:

ALTER TABLE mytable

ADD COLUMN last_update_timestamp TIMESTAMP WITHOUT TIME ZONE;

You can drop the same column using the following command:

ALTER TABLE mytable

DROP COLUMN last_update_timestamp;

274 Database Administration

You can combine multiple operations when using ALTER TABLE, which then applies the
changes in a sequence. This allows you to perform a useful trick, which is to add a column
unconditionally using IF EXISTS, which is useful because ADD COLUMN does not allow
IF NOT EXISTS:

ALTER TABLE mytable

DROP COLUMN IF EXISTS last_update_timestamp,ADD COLUMN last_
update_timestamp TIMESTAMP WITHOUT TIME ZONE;

Note that this will have almost the same effect as the following command:

UPDATE mytable SET last_update_timestamp = NULL;

However, ALTER TABLE runs much faster. This is very cool if you want to perform an
update, but it's not much fun if you want to keep the data in the existing column.

How it works…
The ALTER TABLE statement, which is used to add or drop a column, takes a full
table lock (at the AccessExclusiveLock lock level) so that it can prevent all
other actions on the table. So, we want it to be as fast as possible.

The DROP COLUMN command doesn't remove the column from each row of the table; it
just marks the column as dropped. This makes DROP COLUMN a very fast operation.

The ADD COLUMN command is also very fast if we are adding a column with a
non-volatile default value, such as a NULL value or a constant. A non-volatile expression
always returns the same value when it's computed multiple times within the same SQL
statement; this means that PostgreSQL can compute the default value once and write it
into the table metadata. Conversely, if the default is a volatile expression, then it is not
guaranteed to evaluate the same result for each of the existing rows; therefore, PostgreSQL
needs to rewrite every row of the table, which can be quite slow.

If we rewrite the table, then the dropped columns are removed. If not, they may stay
there for some time. Subsequent INSERT and UPDATE operations will ignore the
dropped column(s). Updates will reduce the size of the stored rows if they were not null
already. So, in theory, you just have to wait, and the database will eventually reclaim the
space. In practice, this only works if all the rows in the table are updated within a given
period. Many tables contain historical data, so space may not be reclaimed at all without
additional actions.

Adding/removing columns on a table 275

To reclaim space from dropped columns, the PostgreSQL manual recommends
changing the data type of a column to the same type, which forces everything to be
rewritten. I don't recommend this because it will completely lock the table for a long
period, at least on larger databases. If you're looking for alternatives, then VACUUM will
not rewrite the table, though a VACUUM FULL or a CLUSTER statement will. Be careful in
those cases as well, because they also hold a full table lock.

There's more…
Indexes that depend on a dropped column are automatically dropped as well. This
is what you would expect if all the columns in the index are dropped, but it can
be surprising if some columns in the index are not dropped. All other objects that
depend on the column(s), such as foreign keys from other tables, will cause the ALTER
TABLE statement to be rejected. You can override this and drop everything in sight using
the CASCADE option, as follows:

ALTER TABLE x

DROP COLUMN last_update_timestamp

CASCADE;

Adding a column with a non-null default value can be done with ALTER TABLE … ADD
COLUMN … DEFAULT …, as we have just shown, but this holds an AccessExclusive
lock for the duration of the command, which can take a long time if DEFAULT is a volatile
expression, as 100% of the rows must be rewritten.

The script that we introduced in the Using psql variables recipe in this chapter is an
example of how to do the same without holding an AccessExclusive lock for a
long time. This lighter solution has only one other tiny difference: it doesn't use a single
transaction, which would be pointless since it would hold the lock until the end.

If any row is inserted by another session between ALTER TABLE and UPDATE and that
row has a NULL value for the new column, then that value will be updated together with
all the rows that existed before ALTER TABLE, which is OK in most cases, though not in
all, depending on the data model of the application.

A proper solution would involve using two sessions to ensure that no such writes can
happen in-between, with a procedure that can be sketched as follows:

1. Open two sessions and note their PIDs.
2. In session 1, BEGIN a transaction, and then take an ACCESS EXCLUSIVE lock on

the table, which will be granted.

276 Database Administration

3. Immediately after, but in session 2, BEGIN a transaction, then take a SHARE lock on
the table, which will hang waiting for session 1.

4. In a third session, display the ordered wait queue for locks on session 1, as follows:

SELECT *

FROM pg_stat_activity

WHERE pg_blocking_pids(pid) @> array[pid1]

ORDER BY state_change;

Here, pid1 is the PID of session 1. Check that PID2 is the second one in the list;
if not, this means that Step 3 was not fast enough, so ROLLBACK both sessions and
repeat from Step 1.

5. In session 1, use ALTER TABLE and then COMMIT.
6. In session 2 (which will be unblocked by the previous step, and will therefore

acquire the SHARE lock straight away), use UPDATE and then COMMIT.

Changing the data type of a column
Thankfully, changing column data types is not an everyday task, but when we need to
do it, we must understand the behavior to ensure we can execute the change without
any problem.

Getting ready
Let's start with a simple example of a table, with just one row, as follows:

CREATE TABLE birthday

(name TEXT

, dob INTEGER);

INSERT INTO birthday VALUES ('simon', 690926);

postgres=# select * from birthday;

This gives us the following output:

 name | dob

-------+--------

 simon | 690926

(1 row)

Changing the data type of a column 277

How to do it…
Let's say we want to change the dob column to another data type. Let's try this with a
simple example first, as follows:

postgres=# ALTER TABLE birthday

postgres-# ALTER COLUMN dob SET DATA TYPE text;

ALTER TABLE

This works fine. Let's just change that back to the integer type so that we can try
something more complex, such as a date data type:

postgres=# ALTER TABLE birthday

postgres-# ALTER COLUMN dob SET DATA TYPE integer;

ERROR: column "dob" cannot be cast automatically to type
integer

HINT: You might need to specify "USING dob::integer"

Oh! What went wrong? Let's try using an explicit conversion with the USING clause, as
follows:

postgres=# ALTER TABLE birthday

 ALTER COLUMN dob SET DATA TYPE integer

 USING dob::integer;

ALTER TABLE

This works as expected. Now, let's try moving to a date type:

postgres=# ALTER TABLE birthday

ALTER COLUMN dob SET DATA TYPE date

USING date(to_date(dob::text, 'YYMMDD') -

 (CASE WHEN dob/10000 BETWEEN 16 AND 69 THEN interval '100

 years'

 ELSE interval '0' END));

278 Database Administration

Now, it gives us what we were hoping to see:

postgres=# select * from birthday;

 name | dob

-------+------------

 simon | 26/09/1969

(1 row)

With PostgreSQL, you can also set or drop default expressions, irrespective of whether
the NOT NULL constraints are applied:

ALTER TABLE foo

ALTER COLUMN col DROP DEFAULT;

ALTER TABLE foo

ALTER COLUMN col SET DEFAULT 'expression';

ALTER TABLE foo

ALTER COLUMN col SET NOT NULL;

ALTER TABLE foo

ALTER COLUMN col DROP NOT NULL;

How it works…
Moving from the integer type to the date type uses a complex USING expression. Let's
break this down step by step so that we can see why, as follows:

postgres=# ALTER TABLE birthday

ALTER COLUMN dob SET DATA TYPE date

USING date(to_date(dob::text, 'YYMMDD') -

 (CASE WHEN dob/10000 > extract('year' from current_
date)%100

 THEN interval '100 years'

 ELSE interval '0' END));

First, PostgreSQL does not allow a conversion directly from integer to date. We need
to convert it into text and then into date. The dob::text statement means cast
to text.

Once we have text, we can use the to_date() function to move to a date type.

Changing the data type of a column 279

This is not enough; our starting data was 690926, which we presume is a date in the
YYMMDD format. PostgreSQL docs say "In to_date, if the year format specification is less
than four digits, such as YYY, and the supplied year is less than four digits, the year will be
adjusted to be nearest to the year 2020; for example, 95 becomes 1995." So, we must add an
adjustment factor as well since dates before 1970 will be presumed to be in the future.

It is very strongly recommended that you test this conversion by performing a SELECT
first. Converting data types, especially to/from dates, always causes some problems, so
don't try to do this quickly. Always take a backup of the data first.

There's more…
The USING clause can also be used to handle complex expressions involving other
columns. This could be used for data transformations, which might be useful for DBAs in
some circumstances, such as migrating to a new database design on a production database
server. Let's put everything together in a full, working example. We will start with the
following table, which has to be transformed:

postgres=# select * from cust;

 customerid | firstname | lastname | age

------------+-----------+----------+-----

 1 | Philip | Marlowe | 38

 2 | Richard | Hannay | 42

 3 | Holly | Martins | 25

 4 | Harry | Palmer | 36

(4 rows)

We want to transform it into a table design like the following:

postgres=# select * from cust;

 customerid | custname | age

------------+----------------+-----

 1 | Philip Marlowe | 38

 2 | Richard Hannay | 42

 3 | Holly Martins | 25

 4 | Harry Palmer | 36

(4 rows)

280 Database Administration

We can decide to do this using these simple steps:

ALTER TABLE cust ADD COLUMN custname text NOT NULL DEFAULT '';

UPDATE cust SET custname = firstname || ' ' || lastname;

ALTER TABLE cust DROP COLUMN firstname;

ALTER TABLE cust DROP COLUMN lastname;

We can also use the SQL commands directly or run them using a tool such as pgAdmin.
Following those steps may cause problems, as the changes aren't within a transaction,
meaning that other users can see the changes when they are only half-finished. Hence, it
would be better to do this in a single transaction using BEGIN and COMMIT. Also, those
four changes require us to make two passes over the table.

However, we can perform the entire transformation in one pass by using multiple clauses
on the ALTER TABLE command. So, instead, we can do the following:

BEGIN;

ALTER TABLE cust

 ALTER COLUMN firstname SET DATA TYPE text

 USING firstname || ' ' || lastname,

 ALTER COLUMN firstname SET NOT NULL,

 ALTER COLUMN firstname SET DEFAULT '',

 DROP COLUMN lastname;

ALTER TABLE cust RENAME firstname TO custname;

COMMIT;

Some type changes can be performed without actually rewriting rows – for example,
if you are casting data from varchar to text, or from NUMERIC(10,2) to
NUMERIC(18,2), or simply to NUMERIC. Moreover, foreign key constraints will
recognize type changes of this kind on the source table, so it will skip the constraint check
whenever it is safe.

Note that moving from VARCHAR(128) to VARCHAR(256) is safe, whereas reducing the
max length – say, VARCHAR(256) to VARCHAR(128), is not.

If you are changing from TIMESTAMP to TIMESTAMPTZ, then this is safe if your session
timezone is UTC. This is a new optimization in Postgres 14.

Changing the definition of an enum data type 281

Changing the definition of an enum data type
PostgreSQL comes with several data types, but users can create custom types to faithfully
represent any value. Data type management is mostly, but not exclusively, a developer's
job, and data type design goes beyond the scope of this book. This is a quick recipe that
only covers the simpler problem of the need to apply a specific change to an existing
data type.

Getting ready
Enumerative data types are defined like this:

CREATE TYPE satellites_uranus AS ENUM ('titania','oberon');

The other popular case is composite data types, which are created as follows:

CREATE TYPE node AS

(node_name text,

 connstr text,

 standbys text[]);

How to do it…
If you made misspelled some enumerative values, and you realize it too late, you can fix it
like so:

ALTER TYPE satellites_uranus RENAME VALUE 'titania' TO
'Titania';

ALTER TYPE satellites_uranus RENAME VALUE 'oberon' TO 'Oberon';

This is very useful if the application expects – and uses – the right names.

A more complicated case is when you are upgrading your database schema to a new
version, say because you want to consider some facts that were not available during the
initial design, and you need extra values for the enumerative type that we defined in
the preceding code. You want to put the new values in a certain position to preserve the
correct ordering. For that, you can use the ALTER TYPE syntax, as follows:

ALTER TYPE satellites_uranus ADD VALUE 'Ariel' BEFORE
'Titania';

ALTER TYPE satellites_uranus ADD VALUE 'Umbriel' AFTER 'Ariel';

282 Database Administration

Composite data types can be changed with similar commands. Attributes can be renamed,
as shown in the following example:

ALTER TYPE node

RENAME ATTRIBUTE replicas TO standbys;

And new attributes can be added as follows:

ALTER TYPE node

DROP ATTRIBUTE standbys,

ADD ATTRIBUTE async_standbys text[],

ADD ATTRIBUTE sync_standbys text[];

This form supports a list of changes, perhaps because composite types are more complex
than a list of enumerative values, and can therefore require complicated modifications.

How it works…
Each time you create a table, a composite type is automatically created with the same
attribute names, types, and positions. Each ALTER TABLE command that changes the
table column definitions will silently issue a corresponding ALTER TYPE statement to
keep the type in agreement with its table definition.

Enumerative values in PostgreSQL are stored in tables as numbers, which are
transparently mapped to strings via the pg_enum catalog table. To be able to insert a new
value between two existing ones, enumerative values are indexed by real numbers, which
allow decimal points and have the same size in bytes as integer numbers. The motive is to
use numeric ordering to encode the order of values that was specified by the user.

In the satellites_uranus example, the first two values were Titania and Oberon,
which initially got indexed by the real numbers 1 and 2:

postgres=# select * from pg_enum where enumtypid = regtype
'satellites_uranus';

 enumtypid | enumsortorder | enumlabel

-----------+---------------+-----------

 38112 | 1 | Titania

 38112 | 2 | Oberon

(2 rows)

Changing the definition of an enum data type 283

When we add a third value before Titania (that is, 1), the number 0 is taken, as you
would probably expect:

postgres=# ALTER TYPE satellites_uranus ADD VALUE 'Ariel'
BEFORE 'Titania';

ALTER TYPE

postgres=# select * from pg_enum where enumtypid = regtype
'satellites_uranus';

 enumtypid | enumsortorder | enumlabel

-----------+---------------+-----------

 38112 | 1 | Titania

 38112 | 2 | Oberon

 38112 | 0 | Ariel

(3 rows)

And, finally, when adding a fourth value between Ariel (0) and Titania (1),
PostgreSQL can pick the real value, 0.5:

postgres=# ALTER TYPE satellites_uranus ADD VALUE 'Umbriel'
AFTER 'Ariel';

ALTER TYPE

postgres=# select * from pg_enum where enumtypid = regtype
'satellites_uranus';

 enumtypid | enumsortorder | enumlabel

-----------+---------------+-----------

 38112 | 1 | Titania

 38112 | 2 | Oberon

 38112 | 0 | Ariel

 38112 | 0.5 | Umbriel

(4 rows)

To test the resulting order, we can build a test table that contains all the possible values,
and then sort it:

postgres=# CREATE TABLE test(x satellites_uranus);

CREATE TABLE

284 Database Administration

postgres=# INSERT INTO test VALUES ('Ariel'), ('Oberon'),
('Titania'), ('Umbriel');

INSERT 0 4

postgres=# SELECT * FROM test ORDER BY x;

 x

 Ariel

 Umbriel

 Titania

 Oberon

(4 rows)

There's more…
When an attribute is removed from a composite data type, the corresponding values
will instantly disappear from all the values of that same type that are stored in any
database table. What happens is that these values are still inside the tables, but they
have become invisible because their attribute is now marked as deleted, and the space they
occupy will only be reclaimed when the content of the composite type is parsed again.
This can be forced with a query such as the following:

UPDATE mycluster SET cnode = cnode :: text :: node;

Here, mycluster is a table that has a cnode column of the node type. This query
converts the values into the text type, displaying only current attribute values, and then
back into node. You may have noticed that this behavior is very similar to the example of
the dropped column in the previous recipe.

Adding a constraint concurrently
A table constraint is a guarantee that must be satisfied by all of the rows in the table.
Therefore, adding a constraint to a table is a two-phase procedure – first, the constraint is
created, and second, the existing rows are validated. Both happen in the same transaction,
and the table will be locked according to the type of constraint for the whole duration.

For example, if we add a Foreign Key to a table, we will lock the table to prevent all write
transactions against it. This validation could run for an hour in some cases and prevent
writes for all that time.

Adding a constraint concurrently 285

This recipe demonstrates another case – that it is possible to split those two phases into
multiple transactions since this allows validation to occur with a lower lock level than
what's required to add the constraint, reducing the effect of locking on the table.

First, we create the constraint and mark it as NOT VALID to make it clear that it does
not exclude violations, unlike ordinary constraints. Then, we VALIDATE all the rows
by checking them against the constraint. At this point, the NOT VALID mark will be
removed from the constraint.

Using the same example we used previously, if we add a NOT VALID Foreign Key to a
table, we will lock the table to prevent all write transactions against it for a short period.
Then, we VALIDATE all the rows, which run for 1 hour while holding a lock that does not
prevent writes.

It is possible to validate the constraint at a later time, for example, when you're allowed by
workload or business continuity requirements, which might be a long delay, or in some
cases, never.

Getting ready
We'll start this recipe by creating two tables with deliberately inconsistent data so that any
attempt to check the existing rows will result in an error message:

postgres=# CREATE TABLE ft(fk int PRIMARY KEY, fs text);

CREATE TABLE

postgres=# CREATE TABLE pt(pk int, ftval int);

CREATE TABLE

postgres=# INSERT INTO ft (fk, fs) VALUES (1,'one'), (2,'two');

INSERT 0 2

postgres=# INSERT INTO pt (pk, ftval) VALUES (1, 1), (2, 2),
(3, 3);

INSERT 0 3

286 Database Administration

How to do it…
If we attempt to create an ordinary foreign key, we will get an error since the
number 3 does not appear in the ft table:

postgres=# ALTER TABLE pt ADD CONSTRAINT pt_ft_fkey FOREIGN KEY
(ftval) REFERENCES ft (fk);

ERROR: insert or update on table "pt" violates foreign key
constraint pt_ft_fkey"

DETAIL: Key (pk)=(3) is not present in table "ft".

However, the same constraint can be successfully created as NOT VALID:

postgres=# ALTER TABLE pt ADD CONSTRAINT pt_ft_fkey FOREIGN KEY
(ftval) REFERENCES ft(fk) NOT VALID;

ALTER TABLE

postgres=# \d pt

 Table "public.pt"

 Column | Type | Modifiers

--------+---------+-----------

 pk | integer |

 ftval | text |

Foreign-key constraints:

 "pt_ft_fkey" FOREIGN KEY (ftval) REFERENCES ft(fk) NOT
VALID

Note
The invalid state of the foreign key is visible in psql.

This violation is detected when we try to transform the NOT VALID constraint into a
valid one:

postgres=# ALTER TABLE pt VALIDATE CONSTRAINT pt_ft_fkey;

ERROR: insert or update on table "pt" violates foreign key
constraint pt_ft_fkey"

DETAIL: Key (ftval)=(3) is not present in table "ft".

Adding a constraint concurrently 287

Validation becomes possible after removing the inconsistency, and the foreign key is
upgraded to be fully validated:

postgres=# DELETE FROM pt WHERE pk = 3;

DELETE 1

postgres=#

ALTER TABLE

postgres=# \d pt

 Table "public.pt"

 Column | Type | Modifiers

--------+---------+-----------

 pk | integer |

 ftval | text |

Foreign-key constraints:

 "pt_ft_fkey" FOREIGN KEY (ftval) REFERENCES ft (fk)

How it works…
ALTER TABLE ... ADD CONSTRAINT FOREIGN KEY.. NOT VALID uses
ShareRowExclusiveLock, which blocks writes, and VACUUM, yet allows reads on the
table to continue. ADD CONSTRAINT CHECK can also be added using the NOT VALID
option, but as of Postgres 14, it still takes a full AccessExclusiveLock when it
executes, which means it blocks all access to the table, including reads.

The ALTER TABLE ... VALIDATE CONSTRAINT command executes using
ShareUpdateExclusiveLock, which allows both reads and writes on the table, yet
blocks DDL and VACUUM while it scans the table.

PostgreSQL takes SQL locks according to the ISO standard; that is, locks are taken during
the transaction and then released when it ends. This means that algorithms like this
one, where there is a short activity requiring stronger locks, followed by a longer activity
that needs only lower strength locks, cannot be implemented within a single transaction.

288 Database Administration

There's more…
If you want to add ALTER TABLE ... SET NOT NULL concurrently, then you need to
do that as a three-step process:

1. The first step is as follows:

ALTER TABLE pt ADD CONSTRAINT ftval_not_null

CHECK (ftval IS NOT NULL) NOT VALID;

2. The second step is as follows:

ALTER TABLE pt VALIDATE CONSTRAINT ftval_not_null;

3. The third step is as follows:

ALTER TABLE pt ALTER COLUMN ftval SET NOT NULL;

The last step is optimized in Postgres 14+ so that it avoids needing to validate the NOT
NULL requirement because of the existence of a constraint that proves it is already true.

Adding/removing schemas
Separating groups of objects is a good way of improving administrative efficiency.
You need to know how to create new schemas and remove schemas that are no longer
required.

How to do it…
To add a new schema, issue this command:

CREATE SCHEMA sharedschema;

If you want that schema to be owned by a particular user, then you can add the
following option:

CREATE SCHEMA sharedschema AUTHORIZATION scarlett;

If you want to create a new schema that has the same name as an existing user so that the
user becomes the owner, then try this:

CREATE SCHEMA AUTHORIZATION scarlett;

Adding/removing schemas 289

In many database systems, the schema name is the same as that of the owning user.
PostgreSQL allows schemas that are owned by one user to have objects owned by another
user within them. This can be especially confusing when you have a schema that has
the same name as the owning user. To avoid this, you should have two types of schema:
schemas that are named the same as the owning user should be limited to only objects
owned by that user. Other general schemas can have shared ownership.

To remove a schema named str, we can issue the following command:

DROP SCHEMA str;

If you want to ensure that the schema exists in all cases, you can issue the
following command:

CREATE SCHEMA IF NOT EXISTS str;

You need to be careful here because the outcome of the preceding command depends on
the previous state of the database. As an example, try issuing the following command:

CREATE TABLE str.tb (x int);

This will generate an error if the str schema contained that table before CREATE
SCHEMA IF NOT EXISTS was run. Otherwise, no namespace error will occur.

Irrespective of your PostgreSQL version, there isn't a CREATE OR REPLACE
SCHEMA command, so when you want to create a schema, regardless of whether it already
exists, you can do the following:

DROP SCHEMA IF EXISTS newschema;

CREATE SCHEMA newschema;

The DROP SCHEMA command won't work unless the schema is empty or unless you use
the nuclear option:

DROP SCHEMA IF EXISTS newschema CASCADE;

The nuclear option kills all known germs and all your database objects (even the
good objects).

290 Database Administration

There's more…
In the SQL standard, you can also create a schema and the objects it contains in one SQL
statement. PostgreSQL accepts the following syntax if you need it:

CREATE SCHEMA foo

 CREATE TABLE account

 (id INTEGER NOT NULL PRIMARY KEY

 ,balance NUMERIC(50,2))

 CREATE VIEW accountsample AS

 SELECT *

 FROM account

 WHERE random() < 0.1;

Mostly, I find this limiting. This syntax exists to allow us to create two or more objects
at the same time. This can be achieved more easily using PostgreSQL's ability to allow
transactional DDL, which was discussed in the Writing a script that either succeeds entirely
or fails entirely recipe.

Using schema-level privileges
Privileges can be granted for objects in a schema using the GRANT command, as follows:

GRANT SELECT ON ALL TABLES IN SCHEMA sharedschema TO PUBLIC;

However, this will only affect tables that already exist. Tables that are created in the future
will inherit privileges defined by the ALTER DEFAULT PRIVILEGES command, as
follows:

ALTER DEFAULT PRIVILEGES IN SCHEMA sharedschema

GRANT SELECT ON TABLES TO PUBLIC;

Moving objects between schemas
Once you've created schemas for administration purposes, you'll want to move existing
objects to keep things tidy.

Adding/removing tablespaces 291

How to do it…
To move one table from its current schema to a new schema, use the following command:

ALTER TABLE cust

SET SCHEMA anotherschema;

If you want to move all objects, you can consider renaming the schema itself by using the
following query:

ALTER SCHEMA existingschema RENAME TO anotherschema;

This only works if another schema with that name does not exist. Otherwise, you'll need
to run ALTER TABLE for each table you want to move. You can follow the Performing
actions on many tables recipe, earlier in this chapter, to achieve that.

Views, sequences, functions, aggregates, and domains can also be moved by ALTER
commands with SET SCHEMA options.

How it works…
When you move tables to a new schema, all the indexes, triggers, and rules that have been
defined on those tables will also be moved to the new schema. If you've used a SERIAL
data type and an implicit sequence has been created, then that also moves to the new
schema. Schemas are purely an administrative concept and they do not affect the location
of the table's data files. Tablespaces don't work this way, as we will see in later recipes.

Databases, users/roles, languages, and conversions don't exist in a schema. Schemas exist
in a particular database. Schemas don't exist within schemas; they are not arranged in
a tree or hierarchy. More details can be found in the Using multiple schemas recipe of
Chapter 4, Server Control.

There's more…
Casts don't exist in schemas, though the data types and functions they reference do exist.
These things are not typically something we want to move around, anyway. This is just a
note if you're wondering how things work.

Adding/removing tablespaces
Tablespaces allow us to store PostgreSQL data across different devices. We may want
to do that for performance or administrative ease, or our database may have run out of
disk space.

292 Database Administration

Getting ready
Before we can create a useful tablespace, we need the underlying devices in a production-
ready form. Think carefully about the speed, volume, and robustness of the disks you are
about to use. Make sure that they have been configured correctly. Those decisions will
affect your life for the next few months and years!

Disk performance is a subtle issue that most people think can be decided in a few seconds.
We recommend reading Chapter 10, Performance and Concurrency, of this book, as well as
additional books on the same topic, to learn more.

Once you've done all of that, you can create a directory for your tablespace. The directory
must be as follows:

• Empty

• Owned by the PostgreSQL-owning user ID

• Specified with an absolute pathname

On Linux and Unix systems, you shouldn't use a mount point directly. Create a
subdirectory and use that instead. This simplifies ownership and avoids some filesystem-
specific issues, such as getting lost+found directories.

The directory also needs to follow sensible naming conventions so that we can identify
which tablespace goes with which server. Do not be tempted to use something simple,
such as data, because it will make later administration more difficult. Be especially
careful that test or development servers do not and cannot get confused with production
systems.

How to do it…
Once you've created your directory, adding the tablespace is simple:

CREATE TABLESPACE new_tablespace

LOCATION '/usr/local/pgsql/new_tablespace';

The command to remove the tablespace is also simple and is as follows:

DROP TABLESPACE new_tablespace;

Every tablespace has a location assigned to it, except for the pg_global and pg_
default default tablespaces, which are for shared system catalogs and all other objects,
respectively. They don't have a separate location because they live in a subdirectory of
the data directory.

Adding/removing tablespaces 293

A tablespace can only be dropped when it is empty, so how do you know when a
tablespace is empty?

Tablespaces can contain both permanent and temporary objects. Permanent data objects
are tables, indexes, and TOAST objects. We don't need to worry too much about TOAST
objects because they are created and always live in the same tablespace as their main table,
and you cannot manipulate their privileges or ownership.

Indexes can exist in separate tablespaces as a performance option, though that requires
explicit specification in the CREATE INDEX statement. The default is to create indexes in
the same tablespace as the table that they belong to.

Temporary objects may also exist in a tablespace. These exist when users have explicitly
created temporary tables or there may be implicitly created data files when large queries
overflow their work_mem settings. These files are created according to the setting of
the temp_tablespaces parameter. This might cause an issue because you can't tell
what the setting of temp_tablespaces is for each user. Users can change their setting
of temp_tablespaces from the default value specified in the postgresql.conf file
to something else.

We can identify the tablespace of each user object using the following query:

SELECT spcname

 ,relname

 ,CASE WHEN relpersistence = 't' THEN 'temp '

 WHEN relpersistence = 'u' THEN 'unlogged '

 ELSE '' END ||

 CASE

 WHEN relkind = 'r' THEN 'table'

 WHEN relkind = 'p' THEN 'partitioned table'

 WHEN relkind = 'f' THEN 'foreign table'

 WHEN relkind = 't' THEN 'TOAST table'

 WHEN relkind = 'v' THEN 'view'

 WHEN relkind = 'm' THEN 'materialized view'

 WHEN relkind = 'S' THEN 'sequence'

 WHEN relkind = 'c' THEN 'type'

 ELSE 'index' END as objtype

FROM pg_class c join pg_tablespace ts

ON (CASE WHEN c.reltablespace = 0 THEN

 (SELECT dattablespace FROM pg_database

294 Database Administration

 WHERE datname = current_database())

 ELSE c.reltablespace END) = ts.oid

WHERE relname NOT LIKE 'pg_toast%'

AND relnamespace NOT IN

 (SELECT oid FROM pg_namespace

 WHERE nspname IN ('pg_catalog', 'information_schema'))

;

This displays output such as the following:

 spcname | relname | objtype

------------------+-----------+------------

 new_tablespace | x | table

 new_tablespace | y | table

 new_tablespace | z | temp table

 new_tablespace | y_val_idx | index

You may also want to look at the spcowner, relowner, relacl, and spcacl columns
to determine who owns what and what they're allowed to do. The relacl and spcacl
columns refer to the Access Control List (ACL) that details the privileges available
on those objects. The spcowner and relowner columns record the owners of the
tablespace and tables/indexes, respectively.

How it works…
A tablespace is just a directory where we store PostgreSQL data files. We use symbolic
links from the data directory to the tablespace.

We exclude TOAST tables because they are always in the same tablespace as their parent
tables, but remember that TOAST tables are always in a separate schema. You can exclude
TOAST tables using the relkind column, but that would still include the indexes on
the TOAST tables. TOAST tables and TOAST indexes both start with pg_toast, so we can
exclude those easily from our queries.

The preceding query needs to be complex because the pg_class entry for an object
will show reltablespace = 0 when an object is created in the database's default
tablespace. So, if you directly join pg_class and pg_tablespace, you end up losing
rows.

Adding/removing tablespaces 295

Note that we can see that a temporary object exists and that we can also see the
tablespace that it has created, even though we cannot refer to a temporary object in
another user's session.

There's more…
Some more notes on best practices follow.

A tablespace can contain objects from multiple databases, so it's possible to be in a
position where there no objects are visible in the current database. The tablespace just
refuses to go away, giving us the following error:

ERROR: tablespace "old_tablespace" is not empty

You are strongly advised to make a separate tablespace for each database to avoid
confusion. This can be especially confusing if you have the same schema names and table
names in separate databases.

How do you avoid this? If you just created a new tablespace directory, you may want to
create subdirectories within that for each database that needs space, and then change the
subdirectories to tablespaces instead.

You may also wish to consider giving each tablespace a specific owner by using the
following query:

ALTER TABLESPACE new_tablespace OWNER TO eliza;

This may help smooth administration.

You may also wish to set default tablespaces for a user so that tables are automatically
created by issuing the following query:

ALTER USER eliza SET default_tablespace = 'new_tablespace';

296 Database Administration

Putting pg_wal on a separate device
You may seek advice about placing the pg_wal directory on a separate device for
performance reasons. This sounds very similar to tablespaces, though there is no explicit
command to do this once you have a running database, and files in pg_wal are frequently
written. So, you must perform the steps outlined in the following example:

1. Stop the database server:

[postgres@myhost ~]$ pg_ctl stop

2. Move pg_wal to a location that's supported by a different disk device:

[postgres@myhost ~]$ mv $PGDATA/pg_wal /mnt/newdisk/

3. Create a symbolic link from the old location to the new location:

[postgres@myhost ~]$ ln -s /mnt/newdisk/pg_wal
$PGDATA/pg_wal

4. Restart the database server:

[postgres@myhost ~]$ pg_ctl start

5. Verify that everything is working by committing any transaction (preferably, a
transaction that does not damage the existing workload):

[postgres@myhost ~]$ psql -c 'CREATE TABLE all is ok()'

Tablespace-level tuning
Since each tablespace has different I/O characteristics, we may wish to alter the planner
cost parameters for each tablespace. These can be set with the following command:

ALTER TABLESPACE new_tablespace SET

(seq_page_cost = 0.05, random_page_cost = 0.1);

In this example, the settings are roughly appropriate for an SSD drive, and it assumes
that the drive is 40 times faster than an HDD for random reads and 20 times faster for
sequential reads.

The values that have been provided need more discussion than we have time for here;
these are only examples to demonstrate how to change the settings.

Moving objects between tablespaces 297

Moving objects between tablespaces
At some point, you may need to move data between tablespaces.

Getting ready
First, create your tablespaces. Once the old and new tablespaces exist, we can issue the
commands to move the objects inside them.

How to do it…
Tablespaces can contain both permanent and temporary objects.

Permanent data objects include tables, indexes, and TOAST objects. We don't need to
worry too much about TOAST objects because they are created in and always live in the
same tablespace as their main table. So, if you alter the tablespace of a table, its TOAST
objects will also move:

ALTER TABLE mytable SET TABLESPACE new_tablespace;

Indexes can exist in separate tablespaces, and moving a table leaves the indexes where they
are. Don't forget to run ALTER INDEX commands as well, one for each index, as follows:

ALTER INDEX mytable_val_idx SET TABLESPACE new_tablespace;

Temporary objects cannot be explicitly moved to a new tablespace, so we need to ensure
they are created somewhere else in the future. To do that, you need to do the following:

1. Edit the temp_tablespaces parameter, as shown in the Updating the parameter
file recipe of Chapter 3, Server Configuration.

2. Reload the server configuration file to allow new configuration settings to take
effect:

SELECT pg_reload_conf()

How it works…
If you want to move a table and its indexes all in one pass, you can issue all the commands
in a single transaction, as follows:

BEGIN;

ALTER TABLE mytable SET TABLESPACE new_tablespace;

ALTER INDEX mytable_val1_idx SET TABLESPACE new_tablespace;

298 Database Administration

ALTER INDEX mytable_val2_idx SET TABLESPACE new_tablespace;

COMMIT;

Moving tablespaces means bulk copying data. Copying happens sequentially, block by
block. This works well, but there's no way to avoid the fact that the bigger the table, the
longer it will take.

The performance will be optimized if archiving or streaming replication is not active, as
no WAL will be written in that case.

You should be aware that the table is fully locked (with the AccessExclusiveLock
lock) while the copy is taking place, so this can cause an effective outage for your
application. Be very careful!

If you want to ensure that objects are created in the right place next time you create them,
then you can use the following query:

SET default_tablespace = 'new_tablespace';

You can run this automatically for all the users that connect to a database using the
following query:

ALTER DATABASE mydb SET default_tablespace = 'new_tablespace';

Ensure that you do not run the following command by mistake, however:

ALTER DATABASE mydb SET TABLESPACE new_tablespace;

This moves all the objects that do not have an explicitly defined tablespace into new_
tablespace. For a large database, this will take a very long time, and your database will
be completely locked while it runs; this is not preferred if you do it by accident!

There's more…
If you have just discovered that indexes don't get moved when you move a table, then you
may want to check whether any indexes are in tablespaces that are different than their
parent tables. Run the following code to check this:

SELECT i.relname as index_name

 , tsi.spcname as index_tbsp

 , t.relname as table_name

 , tst.spcname as table_tbsp

 FROM (pg_class t /* tables */

Moving objects between tablespaces 299

 JOIN pg_tablespace tst

 ON t.reltablespace = tst.oid

 OR (t.reltablespace = 0

 AND tst.spcname = 'pg_default')

)

 JOIN pg_index pgi

 ON pgi.indrelid = t.oid

 JOIN (pg_class I /* indexes */

 JOIN pg_tablespace tsi

 ON i.reltablespace = tsi.oid

 OR (i.reltablespace = 0

 AND tsi.spcname =''pg_defaul'')

)

 ON pgi.indexrelid = i.oid

 WHERE i.relname NOT LIKE''pg_toast''

 AND i.reltablespace != t.reltablespace

;

If we have one table with an index in a separate tablespace, we might see this as a psql
definition:

postgres=# \d y

 Table""public.""

 Column | Type | Modifiers

--------+------+-----------

 val | text |

Indexes:

 ""y_val_id"" btree (val), tablespace""new_tablespac""

Tablespace:""new_tablespace""

Running the previously presented query gives us the following output:

 relname | spcname | relname | spcname

-----------+------------------+---------+---------------

 y_val_idx | new_tablespace | y | new_tablespace2

(1 row)

300 Database Administration

In PostgreSQL 14, you can change the tablespace of an index when you run REINDEX, so
this can be used to resolve these problems using commands like this:

REINDEX (TABLESPACE new, CONCURRENTLY) v_val_idx;

Accessing objects in other PostgreSQL
databases
Sometimes, you may want to access data in other PostgreSQL databases. The reasons for
this may be as follows:

• You have more than one database server, and you need to extract data (such as a
reference) from one server and load it into the other.

• You want to access data that is in a different database on the same database server,
which was split for administrative purposes.

• You want to make some changes that you do not wish to rollback in the event of
an error or transaction abort. These are known as function side effects or
autonomous transactions.

You may also be considering this because you are exploring the scale-out, sharding, or
load balancing approaches. If so, read the last part of this recipe (the See also section) and
then skip to Chapter 12, Replication and Upgrades.

Note
PostgreSQL includes two separate mechanisms for accessing external
PostgreSQL databases: dblink and the PostgreSQL Foreign Data Wrapper.
The latter is now more efficient, so we no longer provide examples of the
older dblink .

Getting ready
First of all, let's make a distinction to prevent confusion:

• The Foreign Data Wrapper infrastructure, a mechanism that's used to manage the
definition of remote connections, servers, and users, is available in all supported
PostgreSQL versions. This is like the "driver manager" in JDBC/ODBC.

• The PostgreSQL Foreign Data Wrapper is a specific contrib extension
that uses the Foreign Data Wrapper infrastructure to connect to remote PostgreSQL
servers. This is like the driver in JDBC.

Accessing objects in other PostgreSQL databases 301

Foreign Data Wrapper extensions for other database systems will be discussed in the next
recipe, Accessing objects in other foreign databases.

How to do it…
Let's use the PostgreSQL Foreign Data Wrapper:

1. The first step is to install the postgres_fdw module called contrib , which is as
simple as this:

postgres=# CREATE EXTENSION postgres_fdw;

2. The result is as follows:

CREATE EXTENSION

3. This extension automatically creates the corresponding Foreign Data Wrapper, as
you can check with psql's \dew meta-command:

postgres=# \dew

 List of foreign-data wrappers

 Name | Owner | Handler |
Validator

--------------+--------+----------------------+----------

 postgres_fdw | gianni | postgres_fdw_handler | postgres_
fdw_validator

(1 row)

4. We can now define a server:

postgres=# CREATE SERVER otherdb

FOREIGN DATA WRAPPER postgres_fdw

OPTIONS (host 'foo', dbname 'otherdb', port '5432');

5. This produces the following output:

CREATE SERVER

6. Then, we can define the user mapping:

postgres=# CREATE USER MAPPING FOR PUBLIC SERVER otherdb;

302 Database Administration

7. The output is as follows:

CREATE USER MAPPING

8. As an example, we will access a portion of a remote table containing (integer, text)
pairs:

postgres=# CREATE FOREIGN TABLE ft (

 num int ,

 word text)

SERVER otherdb

OPTIONS (

 schema_name 'public' , table_name 't');

The result is quite laconic:
CREATE FOREIGN TABLE

9. This table can now be operated almost like any other table. Let's check whether it is
empty:

postgres=# select * from ft;

10. This is the output:

num | word

-----+------

(0 rows)

11. We can insert rows as follows:

postgres=# insert into ft(num,word) values

(1,'One'), (2,'Two'),(3,'Three');

12. This query produces the following output:

INSERT 0 3

13. Then, we can verify that the aforementioned rows have been inserted:

postgres=# select * from ft;

Accessing objects in other PostgreSQL databases 303

14. This is confirmed by the output:

num | word

-----+-------

1 | One

2 | Two

3 | Three

(3 rows)

Note
You don't have to manage connections or format text strings to assemble your
queries. Most of the complexity is handled automatically by the Foreign Data
Wrapper.

How it works…
Note that the remote connection persists even across transaction failures and other errors,
so there is no need to reconnect.

The postgres_fdw extension can manage connections transparently and efficiently,
so if your use case does not involve commands other than SELECT, INSERT, UPDATE,
and DELETE, then you should go for it.

Remote data sources look as if they can be treated like tables, and they are represented
as such by Foreign Data Wrappers. Ideally, we would like to use foreign tables
interchangeably with local tables, with minimum possible performance penalties and
maintenance costs, so it is important to know what optimizations work and which ones
are still on the wish list.

First, here's the good news: foreign tables can have statistics collected, just like ordinary
tables, and they can be used as models to create local tables:

CREATE TABLE my_local_copy (LIKE my_foreign_table);

This is not supported by dblink because it works on statements instead of managing
tables. In general, there is no federated query optimizer. If we join a local table and a
remote table with dblink, then data from the remote database is simply pulled through,
even if it would have been quicker to send the data and then pull back matching rows. On
the other hand, postgres_fdw can share information with the query planner, allowing
some optimization, and more improvements are likely to come in the following years now
that the infrastructure has been built.

304 Database Administration

postgres_fdw transparently pushes WHERE clauses to the remote server. Suppose you
issue the following command:

SELECT * FROM ft WHERE num = 2;

Here, only the matching rows will be fetched, using any remote index if available. This
is a massive advantage of working with selective queries on large tables. Note that the
dblink module cannot automatically send a local WHERE clause to the remote database.

This means that, in general, setting up views of remote data this way isn't very helpful
as it encourages users to think that the table location doesn't matter, whereas, from a
performance perspective, it does. This isn't any different than other federated or remote
access database products.

postgres_fdw can delegate even more activities to the remote node. This includes
performing sorts or joins, computing aggregates by carrying out entire UPDATE or
DELETE statements, and evaluating the operators or functions provided by suitable
extensions.

There's more…
If you are concerned about the overhead of connection time, then you may want to
consider using a session pool. This will reserve several database connections, which will
allow you to reduce apparent connection time. For more information, look at the Setting
up a connection pool recipe of Chapter 4, Server Control.

Another – and sometimes easier – way of accessing other databases is with
a tool named PL/Proxy, which is available as a PostgreSQL extension. PL/Proxy allows
you to create a local database function that is a proxy for a remote database function. PL/
Proxy only works for functions, and some people regard this as a restriction in a way
similar to postgres_fdw, which only operates on rows in tables. That is why these
solutions complement dblink, rather than replacing it.

Creating a local proxy function is simple:

CREATE FUNCTION my_task(VOID)

RETURNS SETOF text AS $$

 CONNECT 'dbname=myremoteserver';

 SELECT my_task();

$$ LANGUAGE plproxy;

Accessing objects in other foreign databases 305

You need a local function, but you don't need to call a remote function; you can use SQL
statements directly. The following example shows a parameterized function:

CREATE FUNCTION get_cust_email(p_username text)

RETURNS SETOF text AS $$

 CONNECT 'dbname=myremoteserver';

 SELECT email FROM users WHERE username = p_username;

$$ LANGUAGE plproxy;

PL/Proxy is specifically designed to allow more complex architecture for sharding and
load balancing. The RUN ON command allows us to dynamically specify the remote
database that we will run the SQL statement on. So, the preceding example becomes
as follows:

CREATE FUNCTION get_cust_email(p_username text)

RETURNS SETOF text AS $$

 CLUSTER 'mycluster';

 RUN ON hashtext(p_username);

 SELECT email FROM users WHERE username = p_username;

$$ LANGUAGE plproxy;

You'll likely need to read Chapter 12, Replication and Upgrades, before you begin designing
application architecture using these concepts.

Accessing objects in other foreign databases
In the previous recipe, you learned how to use objects from a different PostgreSQL
database, either with dblink or by using the Foreign Data Wrapper infrastructure. Here,
we will explore another variant of the latter – using Foreign Data Wrappers to access
databases other than PostgreSQL.

There are many Foreign Data Wrappers for other database systems, all of which are
maintained as extensions independently from the PostgreSQL project. The PostgreSQL
Extension Network (PGXN), which we mentioned in Chapter 3, Server Configuration, is a
good place to see which extensions are available.

Just note this so that you don't get confused: while you can find Foreign Data Wrappers
to access several database systems, there are also other wrappers for different types of
data sources, such as text files, web services, and so on. There is even postgres_fdw,
a backport of the contrib module that we covered in the previous recipe, for users of
older PostgreSQL versions who do not have it yet.

306 Database Administration

Note
When evaluating external extensions, I advise you to carefully examine
the README file in each extension before making stable choices, as the code
maturity varies a lot. Some extensions are still development experiments, while
others are production-ready extensions, such as oracle_fdw.

Getting ready
For this example, we will use the Oracle Foreign Data Wrapper, oracle_fdw, whose
current version is 2.4.0.

You must have obtained and installed the required Oracle software, as specified in
the oracle_fdw documentation at https://github.com/laurenz/oracle_
fdw/blob/ORACLE_FDW_2_4_0/README.oracle_fdw#L503.

The oracle_fdw wrapper is available in the PostgreSQL Extension Network, so you can
follow the straightforward installation procedure described in the Installing modules from
PGXN section of the Adding an external module to PostgreSQL recipe of Chapter 3, Server
Configuration.

You must have access to an Oracle database server.

How to do it…
Follow these steps to learn how to connect to an Oracle server using oracle_fdw:

1. First, we must ensure that the extension has been loaded:

CREATE EXTENSION IF NOT EXISTS oracle_fdw;

2. Then, we must configure the server and the user mapping:

CREATE SERVER myserv

FOREIGN DATA WRAPPER oracle_fdw

OPTIONS (dbserver '//myhost/MYDB');

CREATE USER MAPPING FOR myuser

SERVER myserv;

Accessing objects in other foreign databases 307

3. Then, we must create a PostgreSQL foreign table with the same column names as
the source table in Oracle, and with compatible column types:

CREATE FOREIGN TABLE mytab(id bigint, descr text)

SERVER myserv

OPTIONS (user 'scott', password 'tiger');

4. Now, we can try to write to the table:

INSERT INTO mytab VALUES (-1, 'Minus One');

5. Finally, we can read the values that we have inserted:

SELECT * FROM mytab WHERE id = -1;

This should result in the following output:
id | descr

----+-----------

-1 | Minus One

(1 row)

How it works…
Our query has a WHERE condition that filters the rows we select from the foreign table.
As in the postgres_fdw example from the previous recipe, Foreign Data Wrappers
do something clever: the WHERE condition is pushed to the remote server, and only the
matching rows are retrieved. Not all do FDWs do this, but many do (as we'll see shortly).

This is good in two ways: first, we delegate some work to another system, and second, we
reduce the overall network traffic by not transferring unnecessary data.

Also, note that the WHERE condition is expressed in the PostgreSQL syntax; the Foreign
Data Wrapper can translate it into whatever form is required by the remote system.

There's more…
PostgreSQL provides the infrastructure for collecting statistics on foreign tables, so
the planner will be able to consider such information, provided that the feature is
implemented in the specific Foreign Data Wrapper you are using. For example, statistics
are supported by oracle_fdw.

The latest improvements for foreign tables include trigger support, IMPORT FOREIGN
SCHEMA, and several improvements to the query planner.

308 Database Administration

Something particularly useful for database administrators is the IMPORT FOREIGN
SCHEMA syntax, which can be used to create foreign tables for all the tables and views in a
given remote schema with a single statement.

Among the query planner improvements, we wish to mention Join Pushdown. In a
nutshell, a query that joins some foreign tables that belong to the same server can have the
join performed transparently on the remote server. To avoid security issues, this can only
happen if these tables are all accessed with the same role.

Open source FDWs are also available for PostgreSQL 14 for the following databases:

• MySQL (https://github.com/EnterpriseDB/mysql_fdw): Supports
writable FDWs, SELECT clauses, WHERE clauses, and JOIN clause pushdowns, as
well as connection pooling.

• MongoDB (https://github.com/EnterpriseDB/mongo_fdw): Supports
writable FDWs and connection pooling.

• HDFS (Apache Hadoop, Apache Spark, Apache Hive) https://github.com/
EnterpriseDB/hdfs_fdw.

Making views updatable
PostgreSQL supports the SQL standard CREATE VIEW command, which supports
automatic UPDATE, INSERT, and DELETE commands, provided they are simple enough.

Note that certain types of updates are forbidden just because they are either impossible or
impractical to derive a corresponding list of modifications on the constituent tables. We'll
discuss those issues here.

Getting ready
First, you need to consider that only simple views can be made to receive insertions,
updates, and deletions easily. The SQL standard differentiates between views that are
simple and updatable, and more complex views that cannot be expected to be updatable.

So, before we proceed, we need to understand what a simple updatable view is and what it
is not. Let's start with the cust table:

postgres=# SELECT * FROM cust;

 customerid | firstname | lastname | age

------------+-----------+----------+-----

 1 | Philip | Marlowe | 38

 2 | Richard | Hannay | 42

https://github.com/EnterpriseDB/mysql_fdw
https://github.com/EnterpriseDB/mongo_fdw
https://github.com/EnterpriseDB/hdfs_fdw
https://github.com/EnterpriseDB/hdfs_fdw

Making views updatable 309

 3 | Holly | Martins | 25

 4 | Harry | Palmer | 36

 4 | Mark | Hall | 47

(5 rows)

Let's create a simply updatable view on top of it, as follows:

CREATE VIEW cust_view AS

SELECT customerid

 ,firstname

 ,lastname

 ,age

FROM cust;

Each row in our view corresponds to one row in a single-source table, and each column is
referred to directly without any further processing, except possibly for a column rename.
Thus, we expect to be able to make INSERT, UPDATE, and DELETE commands pass
through our view into the base table, which is what happens in PostgreSQL.

A view will be automatically updatable if a view has just one table or updatable view in the
FROM clause and does not contain functions in the SELECT, WITH, LIMIT DISTINCT,
aggregation, window functions, grouping, or sorting clauses.

The following examples are three views where the INSERT, UPDATE, and DELETE
commands cannot be made to flow to the base table easily, for the reasons just described:

CREATE VIEW cust_avg AS

SELECT avg(age)

FROM cust;

CREATE VIEW cust_above_avg_age AS

SELECT customerid

 ,substr(firstname, 1, 20) as fname

 ,substr(lastname, 1, 20) as lname

 ,age -

 (SELECT avg(age)::integer

 FROM cust) as years_above_avg

FROM cust

WHERE age >

 (SELECT avg(age)

310 Database Administration

 FROM cust);

CREATE VIEW potential_spammers AS

SELECT customerid, spam_score(firstname,lastname)

FROM cust

ORDER BY spam_score(firstname,lastname) DESC

LIMIT 100;

The first view just shows a single row with the average of a numeric column. Changing
an average directly doesn't make much sense. For instance, if we want to raise the average
age by 1, should we increase all numbers by 1, resulting in each row that is unusual being
updated? Or should we change some rows only, by a larger amount? A user who wants to
do this can update the cust table directly.

The second view shows a column called years_above_avg, which is the difference
between the age of that customer and the average. Changing that column would be more
complex than it seems at first glance: just consider that increasing the age by 10 would not
result in increasing years_above_avg by 10, because the average will also be affected.

The third view displays a computed column that can't be updated directly – we can't
change the value in the spam_score column without changing the algorithm that's
implemented by the spam_score() function.

Now, we can learn how to allow any or all insertions, updates, or deletions to flow from
views to base tables since we've clarified whether this makes sense conceptually.

How to do it…
There is nothing to do for simple views – PostgreSQL will propagate modifications to the
underlying table automatically.

Conversely, if the view is not simple enough, but you still have a clear idea of how
you would like to propagate changes to the underlying table(s), then you can allow
updatable views by telling PostgreSQL how to perform Data Manipulation Language
(DML) statements, which in PostgreSQL means INSERT, UPDATE, DELETE,
or TRUNCATE.

Making views updatable 311

PostgreSQL supports two mechanisms to achieve updatable views – namely, rewriting
rules and INSTEAD OF triggers. The latter provides a mechanism to implement
updatable views by creating trigger functions that execute arbitrary code every time a
data-modification command is executed on the view.

The INSTEAD OF triggers are part of the SQL standard, and other database systems
support them. Conversely, query rewrite rules are specific to PostgreSQL and cannot be
found anywhere else in this exact form.

There is no preferable method. On one hand, rules can be more efficient than triggers,
while on the other hand, they can be more difficult to understand than triggers and could
result in inefficient execution if the code is badly written (although the latter is not an
exclusive property of rules, unfortunately).

To explain this point concretely, we will now provide an example of using rules, and then
we will re-implement the same example with triggers:

1. We will start with a table of mountains and their height in meters:

CREATE TABLE mountains_m

(name text primary key

, meters int not null

);

2. Then, we will create a view that adds a computed column expressing the height in
feet, and that displays the data in descending height order:

CREATE VIEW mountains AS

SELECT *, ROUND(meters / 0.3048) AS feet

FROM mountains_m

ORDER BY meters DESC;

3. DML automatically flows to the base table when we insert columns that are
not computed:

INSERT INTO mountains(name, meters)

VALUES ('Everest', 8848);

TABLE mountains;

name | meters | feet

-------+--------+-------

Everest| 8848 | 29029

(1 row)

312 Database Administration

4. However, when we try to insert data with the height specified in feet, we get the
following error:

INSERT INTO mountains(name, feet)

VALUES ('K2', 28251);

ERROR: cannot insert into column "feet" of view
"mountains"

DETAIL: View columns that are not columns of their base
relation are not updatable.

5. So, we must create a rule that replaces the insert with another query that works all
the time:

CREATE RULE mountains_ins_rule AS

ON INSERT TO mountains DO INSTEAD

INSERT INTO mountains_m

VALUES (NEW.name, COALESCE (NEW.meters, NEW.feet *
0.3048));

6. Now, we can insert both meters and feet:

INSERT INTO mountains(name, feet)

VALUES ('K 2', 28251);

INSERT INTO mountains(name, meters)

VALUES ('Kangchenjunga', 8586);

TABLE mountains;

name | meters | feet

--------------+--------+----

Everest | 8848 | 29029

K 2 | 8611 | 28251

Kangchenjunga | 8586 | 28169

(3 rows)

7. Updates are also propagated automatically, but only to non-computed columns:

UPDATE mountains SET name = 'K2' WHERE name = 'K 2';

TABLE mountains;

name | meters | feet

--------------+--------+-------

Everest | 8848 | 29029

K2 | 8611 | 28251

Making views updatable 313

Kangchenjunga | 8586 | 28169

(3 rows)

UPDATE mountains SET feet = 29064 WHERE name = 'K2';

ERROR: cannot update column "feet" of view "mountains"

DETAIL: View columns that are not columns of their base
relation are not updatable.

8. If we add another rule that replaces updates with a query that covers all cases, then
the last update will succeed and produce the desired effect:

CREATE RULE mountains_upd_rule AS

ON UPDATE TO mountains DO INSTEAD

UPDATE mountains_m

SET name = NEW.name, meters =

CASE

WHEN NEW.meters != OLD.meters

THEN NEW.meters

WHEN NEW.feet != OLD.feet

THEN NEW.feet * 0.3048

ELSE OLD.meters

END

WHERE name = OLD.name;

UPDATE mountains SET feet = 29064 WHERE name = 'K2';

TABLE mountains;

name | meters | feet

--------------+--------+-------

K2 | 8859 | 29065

Everest | 8848 | 29029

Kangchenjunga | 8586 | 28169

(3 rows)

314 Database Administration

9. The query that's used in this rule also covers the simpler case of a non-computed
column:

UPDATE mountains SET meters = 8611 WHERE name = 'K2';

TABLE mountains;

name | meters | feet

--------------+--------+-------

Everest | 8848 | 29029

K2 | 8611 | 28251

Kangchenjunga | 8586 | 28169

(3 rows)

10. The same effect can be achieved by adding the following trigger, which replaces the
earlier two rules:

CREATE FUNCTION mountains_tf()

RETURNS TRIGGER

LANGUAGE plpgsql

AS $$

BEGIN

IF TG_OP = 'INSERT' THEN

INSERT INTO mountains_m VALUES (NEW.name,

CASE

 WHEN NEW.meters IS NULL

 THEN NEW.feet * 0.3048

 ELSE NEW.meters

 END);

ELSIF TG_OP = 'UPDATE' THEN

UPDATE mountains_m

SET name = NEW.name, meters =

CASE

WHEN NEW.meters != OLD.meters

THEN NEW.meters

WHEN NEW.feet != OLD.feet

THEN NEW.feet * 0.3048

ELSE OLD.meters

END

WHERE name = OLD.name;

Making views updatable 315

END IF;

RETURN NEW;

END;

$$;

CREATE TRIGGER mountains_tg

INSTEAD OF INSERT OR UPDATE ON mountains

FOR EACH ROW

EXECUTE PROCEDURE mountains_tf();

How it works…
In this rule-based example, we used the COALESCE function, which returns the first
argument, if it's not null, or the second one otherwise. When the original INSERT
statement does not specify a value in meters, then it uses the value in feet divided
by 0.3048.

The second rule sets the value in meters to different expressions – if the value in meters
was updated, we use the new one; if the value in feet was updated, we use the new value in
feet divided by 0.3048; and otherwise, we use the old value in meters (that is, we don't
change it).

The logic that's implemented in the trigger function is similar to the previous one; note
that we use the TG_OP automatic variable to handle INSERT and UPDATE separately.

We've just scratched the surface of what you can achieve with rules, though I find them
too complex for widespread use.

You can do a lot of things with rules, but you need to be careful with them. There are some
other important points that I should mention about rules before you dive in and start
using them everywhere.

Rules are applied by PostgreSQL once the SQL has been received by the server and parsed
for syntax errors, but before the planner tries to optimize the SQL statement.

In the rules in the preceding recipe, we referenced the values of the old or the new row,
just as we do within trigger functions, using the old and new keywords. Similarly, there
are only new values in an INSERT command and only old values in a DELETE command.

316 Database Administration

One of the major downsides of using rules is that we cannot bulk load data into the
table using the COPY command. Also, we cannot transform a stream of inserts into a
single COPY command, nor can we perform a COPY operation against the view. Bulk
loading requires direct access to the table.

Suppose we have a table and a view, such as the following:

CREATE TABLE cust

(customerid BIGINT NOT NULL PRIMARY KEY

,firstname TEXT

,lastname TEXT

,age INTEGER);

CREATE VIEW cust_minor AS

SELECT customerid

 ,firstname

,lastname

,age

FROM cust

WHERE age < 18;

Then, we have some more difficulties. If we wish to update this view, then you might read
the manual and understand that we can use a conditional rule by adding a WHERE clause
to match the WHERE clause in the view, as follows:

CREATE RULE cust_minor_update AS

ON update TO cust_minor

WHERE new.age < 18

DO INSTEAD

UPDATE cust SET

 firstname = new.firstname

,lastname = new.lastname

,age = new.age

WHERE customerid = old.customerid;

Making views updatable 317

This fails, however, as you can see if you try to update cust_minor. The fix is to add
two rules – one as an unconditional rule that does nothing (literally) and needs to exist
for internal reasons, and another to do the work we want:

CREATE RULE cust_minor_update_dummy AS ON

update TO cust_minor

DO INSTEAD NOTHING;

CREATE RULE cust_minor_update_conditional AS

ON update TO cust_minor

WHERE new.age < 18

DO INSTEAD

UPDATE cust SET firstname = new.firstname

,lastname = new.lastname

,age = new.age

WHERE customerid = old.customerid;

There's more…
There is yet another question that's posed by updatable views.

As an example, we shall use the cust_minor view we just defined, which does not allow
you to perform insertions or updates so that the affected rows fall out of the view itself.
For instance, consider this query:

UPDATE cust_minor SET age = 19 WHERE customerid = 123;

The preceding query will not affect any row because of the WHERE age < 18 conditions
in the rule definition.

The CREATE VIEW statement has a WITH CHECK OPTION clause; if specified, any
update that excludes any row from the view will fail.

If a view includes some updatable columns, along with other non-updatable columns (for
example expressions, literals, and so on), then updates are allowed if they only change the
updatable columns.

Finally, let's show that views are just (empty) tables with a SELECT rule. Let's start by
creating an empty table, as follows:

CREATE TABLE cust_view AS SELECT * FROM cust WHERE false;

318 Database Administration

The SELECT rule only works if it is named _RETURN and the table is empty:

postgres # CREATE RULE "_RETURN" AS

 ON SELECT TO cust_view

 DO INSTEAD

 SELECT * FROM cust;

CREATE RULE

postgres=# \d cust_view

Huh? So, what is it if it's not a table?

postgres # DROP TABLE cust_view;

ERROR: "cust_view" is not a table

HINT: Use DROP VIEW to remove a view

postgres # DROP VIEW cust_view;

DROP VIEW

Yes, we created a table and then added a rule to it. This turned the table into a view.

Using materialized views
Every time we select rows from a view, we select from the result of the underlying query.
If that query is slow and we need to use it more than once, then it makes sense to run the
query once, save its output as a table, and then select the rows from the latter.

This procedure has been available for a long time, and there is a dedicated syntax for it,
called CREATE MATERIALIZED VIEW, that we will describe in this recipe.

Getting ready
Let's create two randomly populated tables, of which one is large:

CREATE TABLE dish

(dish_id SERIAL PRIMARY KEY

, dish_description text

);

CREATE TABLE eater

(eater_id SERIAL

, eating_date date

Using materialized views 319

, dish_id int REFERENCES dish (dish_id)

);

INSERT INTO dish (dish_description)

VALUES ('Lentils'), ('Mango'), ('Plantain'), ('Rice'), ('Tea');

INSERT INTO eater(eating_date, dish_id)

SELECT floor(abs(sin(n)) * 365) :: int + date '2014-01-01'

, ceil(abs(sin(n :: float * n))*5) :: int

FROM generate_series(1,500000) AS rand(n);

Notice that the data is not truly random. It is generated by a deterministic procedure, so
you can get the same result if you copy the preceding code.

How to do it…
Let's get started:

1. First, create the following view:

CREATE VIEW v_dish AS

SELECT dish_description, count(*)

FROM dish JOIN eater USING (dish_id)

GROUP BY dish_description

ORDER BY 1;

2. Then, we'll query it:

SELECT * FROM v_dish;

3. We will obtain the following output:

dish_description | count

------------------+--------

 Lentils | 64236

 Mango | 66512

 Plantain | 74058

 Rice | 90222

 Tea | 204972

(5 rows)

320 Database Administration

4. With a very similar syntax, we will create a materialized view with the same
underlying query:

CREATE MATERIALIZED VIEW m_dish AS

SELECT dish_description, count(*)

FROM dish JOIN eater USING (dish_id)

GROUP BY dish_description

ORDER BY 1;

The corresponding query yields the same output that it did previously:
SELECT * FROM m_dish;

The materialized version is much faster than the non-materialized version. On my laptop,
their execution times are 0.2 milliseconds versus 300 milliseconds.

How it works…
Creating a non-materialized view is the same as creating an empty table with a SELECT
rule, as we discovered in the previous recipe. No data is extracted until the view is used.

When creating a materialized view, the default is to run the query immediately and then
store its results, as we do for table content.

In short, creating a materialized view is slow, but using it is fast. This is the opposite of
standard views, which are created instantly and recomputed at every use.

There's more…
The output of a materialized view is physically stored like a regular table, and the analogy
doesn't stop here – you can also create indexes to speed up queries.

A materialized view will not automatically change when its constituent tables change. For
that to happen, you must issue the following command:

REFRESH MATERIALIZED VIEW m_dish;

This replaces all the contents of the view with newly computed ones.

It is possible to quickly create an empty materialized view and populate it later. Just add
WITH NO DATA to the end of the CREATE MATERIALIZED VIEW statement. The view
cannot be used before it's populated, which you can do with REFRESH MATERIALIZED
VIEW, as you just saw.

Using GENERATED data columns 321

A materialized view cannot be read while it is being refreshed. For that, you need to use
the CONCURRENTLY clause at the expense of a somewhat slower refresh.

As you can see, currently, there is only a partial advantage in using materialized views,
compared to previous solutions such as this:

CREATE UNLOGGED TABLE m_dish AS SELECT * FROM v_dish;

However, when using a declarative language, such as SQL, the same syntax may
automatically result in a more efficient algorithm in the case of future improvements to
PostgreSQL. For instance, one day, PostgreSQL will be able to perform a faster refresh by
simply replacing those rows that changed, instead of recomputing the entire content.

Using GENERATED data columns
You are probably used to the idea that a column can have a default value that's been set by
a function; this is how we use sequences to set column values in tables. The SQL Standard
provides a new syntax for this, which is referred to as GENERATED … AS IDENTITY.
PostgreSQL supports this, but we won't discuss that here.

We can also use views to dynamically calculate new columns as if the data had been
stored. PostgreSQL 12+ allows the user to specify that columns can be generated and
stored in the table automatically, which is easier and faster than writing a trigger to do
this. This is a very important performance and usability feature since we can store data
that may take significant time to calculate, so this is much better than just using views.
We refer to this feature as GENERATED ALWAYS, which also follows the SQL Standard
syntax.

How to do it…
Let's start with an example table:

CREATE TABLE example

(id SERIAL PRIMARY KEY

, descr TEXT

);

ALTER TABLE example

 ADD COLUMN id2 integer GENERATED ALWAYS AS (id+1) STORED;

322 Database Administration

Note that adding a GENERATED column will always rewrite the table since existing rows
need to have a value set for the new column (the ALWAYS keyword in the command
means always!).

So, make sure you plan and decide what values you want to generate.

How it works…
The GENERATED value is calculated once on INSERT and then stored. After that, the
value is just read from the data block each time it is accessed.

After that, the column can't be updated, so you will get an ERROR message:

ERROR: column "foo" can only be updated to DEFAULT

DETAIL: Column "foo" is a generated column.

So, the value stays just as the table owner intended.

Rows with GENERATED data can be deleted normally.

There's more…
Stored expressions must be IMMUTABLE, meaning they depend solely on the values of
other data columns in the same row. This means that adding columns like this seems
useful but will just end with an ERROR:

ALTER TABLE example

 ADD COLUMN last_access_time timestamp

 GENERATED ALWAYS AS (current_timestamp) STORED

 ,ADD COLUMN last_access_user text

 GENERATED ALWAYS AS (current_user) STORED;

ERROR: generation expression is not immutable

So, if you always want to add dynamically generated values, this still needs to be done
using triggers.

Another point that may be confusing is that the SQL syntax for INSERT does allow for
a clause called OVERRIDING SYSTEM VALUE, but this only applies to GENERATED …
AS IDENTITY columns.

Using data compression 323

Using data compression
As data volumes expand, we often think about whether there are ways to compress data
to save space. There are many patents awarded in data compression, so the development
of open source solutions has been slower than normal. PostgreSQL 14 contains some
exciting innovations.

Getting ready
Make sure you're running Postgres 14+.

Various types of data compression are available for PostgreSQL:

• Automatic compression of long data values (TOAST)

• Extensions that offer compressed data types (for example, for JSON)

• Compression of WAL files

• Dump file compression

• Base backup compression

• SSL compression (this is considered insecure, so it's only used on private networks)

• GiST and SP-GiST index compression

• Btree index compression (also known as deduplication)

Only the first three types of compression will be discussed here, but we focus mainly
on the parameters that allow us to control how long data values are automatically
compressed.

PostgreSQL will try to compress and/or move longer column values out into an external
TOAST table. This is automatic and works optimally for a range of different types of data,
but there are a few things we can try to improve that.

How to do it…
Changing to the new compression algorithm is the easiest and most beneficial change.
The default for columns with no explicit setting is taken from the value of the default_
toast_compression parameter. This only applies to newly inserted data.

If we take an existing table, we can set the compression method explicitly, like this:

CREATE TABLE example

(id SERIAL PRIMARY KEY

324 Database Administration

, descr TEXT

);

ALTER TABLE example

 ALTER COLUMN descr SET COMPRESSION lz4;

Note that you need to do this separately for each toastable column. A small problem with
this is that not all the columns allow this change, so if you try this on an invalid column
data type or integer, then you'll get this ERROR, so don't try and just update every column
without checking the data type first. Set the compression option for TEXT, JSONB, XML,
BYTEA, or GIS data:

ALTER TABLE example

 ALTER COLUMN id SET COMPRESSION lz4;

ERROR: column data type integer does not support compression

Setting a new compression method doesn't rewrite the rows into the new compression
method, which is good because that would run for a long time. If you want a rewrite
to take place and are happy to lock the table while it runs for a long time, just change a
column's data type to the same type, a trick we described earlier.

If you're creating a new database, you just need to set this in postgresql.conf once
you've created it:

default_toast_compression = lz4

Since many upgrades use logical replication, we can just set this parameter once and let
the rewrite happen automatically during the upgrade process.

How it works…
Above a certain row length, PostgreSQL will attempt to compress and/or move column
values out into an external TOAST table. This is done separately for each row, so you will
find shorter data columns untouched while longer values from been compressed and/or
"toasted." Note that we are using "toast" as both a verb and a noun, describing whether the
value has been moved into the toast table.

We can make three different tweaks to this mechanism:

• Change the compression algorithm, which is new in PostgreSQL 14, as we
discussed previously.

Using data compression 325

• Alter the threshold row length at which we consider whether to toast, compress, or
do neither.

• Specify whether we don't want to attempt compression and toasting, for
special cases.

We can alter the toast threshold using toast_tuple_target, which is set separately
for each table using the ALTER TABLE statement. The default value is 2,040 for an 8 KB
block size, though this can be set to anything from 128 bytes to 8,160 bytes. By default, if
the total row length is longer than this threshold, then Postgres will attempt to compress
and/or toast columns, one at a time, with the longest first until the row is less than this
value or it cannot do anything more. This behavior is modified by storage options that
can be set for each column. So, what happens on any row depends on the data in all of the
columns for that specific row.

PostgreSQL has four different STORAGE options, all of which can be set for each
column separately:

• PLAIN: Inline, uncompressed; for example, the default for INTEGER

• EXTENDED: External, compressed; for example, the default for TEXT

• EXTERNAL: External, uncompressed; for example, already compressed data (images
and so on)

• MAIN: Inline, compressed; for example, medium length TEXT, JSONB, XML,
and so on

If you declare a column as using STORAGE MAIN, then Postgres will only toast the
column value if there is no other way to do this; this column will be at the back of the
queue to be toasted. So, if you have some JSONB data that is typically only a few KB, then
it might be good to define that column as MAIN to reduce the access time to that data.

If the data has already been compressed, then set it to be EXTERNAL so that Postgres will
not attempt to compress it.

There's more…
An extension called ZSON allows JSONB data to be compressed. This can be used to
reduce the size of JSONB data by anything from 0 – 50%, depending on your data.

Postgres can also be configured to use compression for the WAL transaction log:

wal_compression = off (default) | on

8
Monitoring and

Diagnosis
In this chapter, you will find recipes for some common monitoring and diagnosis actions
that you will want to perform inside your database. They are meant to answer specific
questions that you often face when using PostgreSQL.

 In this chapter, we will cover the following recipes:

• Overview of PostgreSQL monitoring

• Cloud-native monitoring

• Providing PostgreSQL information to monitoring tools

• Real-time viewing using pgAdmin

• Checking whether a user is connected

• Checking whether a computer is connected

• Repeatedly executing a query in psql

• Checking which queries are running

• Monitoring the progress of commands and queries

• Checking which queries are active or blocked

• Knowing who is blocking a query

328 Monitoring and Diagnosis

• Killing a specific session

• Detecting an in-doubt prepared transaction

• Knowing whether anybody is using a specific table

• Knowing when a table was last used

• Usage of disk space by temporary data

• Understanding why queries slow down

• Analyzing the real-time performance of your queries

• Investigating and reporting a bug

Overview of PostgreSQL monitoring
Databases are not isolated entities. They live on computer hardware using CPUs, RAM,
and disk subsystems. Users access databases using networks. Depending on the setup,
databases themselves may need network resources to function in any of the following
ways: performing some authentication checks when users log in, using disks that are
mounted over the network (not generally recommended), or making remote function
calls to other databases.

This means that monitoring only the database is not enough. At a minimum, you should
also monitor everything directly involved in using the database. This means knowing
the following:

• Is the database host available? Does it accept connections?

• How much of the network bandwidth is in use? Have there been network
interruptions and dropped connections?

• Is there enough RAM available for the most common tasks? How much of it is left?

• Is there enough disk space available? When will you run out of disk space?

• Is the disk subsystem keeping up? How much more load can it take?

• Can the CPU keep up with the load? How many spare idle cycles do the CPUs have?

• Are other network services the database access depends on (if any) available? For
example, if you use Kerberos for authentication, you need to monitor it as well.

• How many context switches are happening when the database is running?

• For most of these things, you are interested in their history; that is, how have things
evolved? Was everything mostly the same yesterday or last week?

Cloud-native monitoring 329

• When did the disk usage start changing rapidly?

• For any larger installation, you probably have something already in place to monitor
the health of your hosts and network.

The two aspects of monitoring are collecting historical data to see how things have evolved
and getting alerts when things go seriously wrong.

Tools such as Munin or Prometheus are quite popular for collecting historical
information on all aspects of the servers and presenting this information in an easy-to-
follow graphical form. Grafana is a popular tool for this. Real-time monitoring can help
when you're trying to figure out why the system is behaving the way it is.

Another aspect of monitoring is getting alerts when something goes wrong and needs
(immediate) attention. For alerting, one of the most widely used tools is Icinga (a fork
of Nagios), an established solution. The aforementioned trending tools can integrate with
it. check_postgres is a popular Icinga plugin for monitoring many standard aspects of
a PostgreSQL database server.

Icinga is a stable and mature solution based on the long-standing approach where
each plugin decides whether a given measurement is a cause for alarm, which
means that it's more complex to manage and maintain. A more recent tool is the
aforementioned Prometheus, which is based on a design that separates data collection
from the centralized alerting logic. This is covered in more detail next.

Cloud-native monitoring
Prometheus is the tool of choice from the Cloud Native Computing Foundation, so
we'll discuss it here. Prometheus is an open source monitoring and alerting toolkit that
allows multiple types of systems to feed it monitoring data. An open source Prometheus
exporter is available for PostgreSQL, though this is not always needed. For example, EDB's
Cloud Native Postgres Operator integrates a Prometheus exporter into the Kubernetes
operator to provide better security and avoid the need for a separate component in your
architecture.

330 Monitoring and Diagnosis

Data from Prometheus is displayed using Grafana. Data from Prometheus can also
be stored inside a database and there are various options there for storing data inside
PostgreSQL or other systems:

Figure 8.1 – Grafana view of PostgreSQL metrics

Remember that the key to successful monitoring is not the tool you use but what
information you display with it.

Providing PostgreSQL information to monitoring tools 331

Providing PostgreSQL information to
monitoring tools
PostgreSQL exposes a huge amount of information for monitoring. To expose that
information securely, make sure your user has the predefined (default) pg_monitor
role, which will give you all you need. Some sources say to expose the full contents of pg_
stat_activity and similar restricted views, but be careful how and when you do this.
Monitoring is important but so is security.

It's best to use historical monitoring information when all of it is available from the same
place and on the same timescale. Most monitoring systems are designed for generic
purposes while allowing application and system developers to integrate their specific
checks with the monitoring infrastructure. This is possible through a plugin architecture.
Adding new kinds of data inputs to them means installing a plugin. Sometimes, you may
need to write or develop this plugin, but writing a plugin for something such as Cacti is
easy. You just have to write a script that outputs monitored values in simple text format.

In most common scenarios, the monitoring system is centralized and data is collected
directly (and remotely) by the system itself or through some distributed components that
are responsible for sending the observed metrics back to the main node.

As far as PostgreSQL is concerned, some useful things to include in graphs are the
number of connections, disk usage, number of queries, number of WAL files, most
numbers from pg_stat_user_tables and pg_stat_user_indexes, and so
on. One Swiss Army knife script, which can be used from both Cacti and Nagios/Icinga,
is check_postgres. It is available at https://bucardo.org/check_postgres/.
It provides ready-made reporting actions for a large array of things that are worth
monitoring in PostgreSQL.

For Munin, there are some PostgreSQL plugins available at the Munin plugin repository
at https://github.com/munin-monitoring/contrib/tree/master/
plugins/postgresql.

https://bucardo.org/check_postgres/
https://github.com/munin-monitoring/contrib/tree/master/plugins/postgresql
https://github.com/munin-monitoring/contrib/tree/master/plugins/postgresql

332 Monitoring and Diagnosis

The following screenshot shows a Munin graph about PostgreSQL buffer cache hits for a
specific database, where cache hits (the top/blue line) dominate reads from the disk (the
bottom/green line, rarely above zero):

Figure 8.2 – Munin graph of buffer cache usage

Finding more information about generic
monitoring tools
Setting up the tools themselves is a larger topic, and it is beyond the scope of this
book. Each of these tools has more than one book written about them. The basic setup
information and the tools themselves can be found at the following URLs:

• RRDtool: http://www.mrtg.org/rrdtool/

• Cacti: http://www.cacti.net/

http://www.mrtg.org/rrdtool/
http://www.cacti.net/

Real-time viewing using pgAdmin 333

• Icinga: https://icinga.com/

• Munin: http://munin-monitoring.org/

• Nagios: http://www.nagios.org/

• Zabbix: https://www.zabbix.com/

• Postgres Enterprise Manager: https://www.enterprisedb.com/docs/
pem/latest/

Real-time viewing using pgAdmin
You can also use a GUI tool such as pgAdmin, which we discussed for the first time
in Chapter 1, First Steps, to get a quick view of what is going on in the database.

Getting ready
pgAdmin4 no longer requires an extension to access PostgreSQL fully, so there is no need
to install adminpack, as was required in earlier editions. If you use pgAdmin3, you may
still want to install the adminpack extension in the destination database by issuing the
following command:

CREATE EXTENSION adminpack;

This extension is a part of the additionally supplied modules of PostgreSQL (also known
as contrib).

https://icinga.com/
http://munin-monitoring.org/
http://www.nagios.org/
https://www.zabbix.com/
https://www.enterprisedb.com/docs/pem/latest/
https://www.enterprisedb.com/docs/pem/latest/

334 Monitoring and Diagnosis

How to do it…
This section illustrates the pgAdmin tool.

Once you have connected to the database server, a window similar to the one shown in the
following screenshot will be displayed, where you can see a general view, plus information
about connections, overall activity, and running transactions:

Figure 8.3 – pgAdmin dashboard of live usage

Checking whether a user is connected 335

Checking whether a user is connected
Here, we will show you how to learn whether a certain database user is currently
connected to the database.

Getting ready
If you are logged in as a superuser, you will have full access to monitoring information.

How to do it…
Issue the following query to see whether the user bob is connected:

SELECT datname FROM pg_stat_activity WHERE usename = 'bob';

If this query returns any rows, then that means that bob is connected to the database. The
returned value is the name of the database that the user is connected to.

How it works…
PostgreSQL's pg_stat_activity system view keeps track of all running PostgreSQL
backends. This includes information such as the query that is being currently executed, or
the last query that was executed by each backend, who is connected, when the connection,
the transaction, and/or the query were started, and so on.

There's more…
Please spend a few minutes reading the PostgreSQL documentation, which contains
more detailed information about pg_stat_activity, available at http://www.
postgresql.org/docs/current/static/monitoring-stats.html -
PG-STAT-ACTIVITY-VIEW.

You can find answers to many administration-related questions by analyzing the pg_
stat_activity view. One common example is outlined in the following recipe.

Checking whether a computer is connected
Often, several different processes may connect as the same database user. In that case, you
may want to know whether there is a connection from a specific computer.

336 Monitoring and Diagnosis

How to do it…
You can get this information from the pg_stat_activity view as it includes the
connected clients' IP address, port, and hostname (where applicable). The port is only
needed if you have more than one connection from the same client computer and you
need to do further digging to see which process there connects to which database. Run the
following command:

SELECT datname, usename, client_addr, client_port,

 application_name FROM pg_stat_activity

WHERE backend_type = 'client backend';

The client_addr and client_port parameters help you look up the exact computer
and even the process on that computer that has connected to the specific database.
You can also retrieve the hostname of the remote computer through the client_
hostname option (this requires log_hostname to be set to on).

There's more…
I would always recommend including application_name in your reports. This field
has become widely recognized and honored by third-party application developers (I
advise you to do the same with your applications).

For information on how to set the application name for your connections, please refer
to Database Connection Control Functions in the PostgreSQL documentation at http://
www.postgresql.org/docs/current/static/libpq-connect.html.

Repeatedly executing a query in psql
Sometimes, we want to execute a query more than once, repeated at regular intervals; in
this recipe, we will look at an interesting psql command that does exactly that.

How to do it…
The \watch meta-command allows psql users to automatically (and continuously)
re-execute a query. This behavior is similar to the watch utility of some Linux and Unix
environments.

In the following example, we will run a simple query on pg_stat_activity and ask
psql to repeat it every 5 seconds. You can exit at any time by pressing Ctrl + C:

gabriele=> SELECT count(*) FROM pg_stat_activity;

 count

http://www.postgresql.org/docs/current/static/libpq-connect.html
http://www.postgresql.org/docs/current/static/libpq-connect.html

Checking which queries are running 337

 1

(1 row)

gabriele=> \watch 5

Watch every 5s Tue Aug 27 21:47:24 2013

 count

 1

(1 row)

<snip>

There's more…
For further information about the psql utility, please refer to the PostgreSQL
documentation at http://www.postgresql.org/docs/current/static/
app-psql.html.

Checking which queries are running
In this section, we will show you how to check which query is currently running.

Getting ready
You must make sure that you are logged in as a superuser or as the same database user
you want to check out. Also, ensure that the track_activities = on parameter is
set (which it normally should be, being the default setting). If not, check the Updating the
parameter file recipe in Chapter 3, Server Configuration.

How to do it…
To see which connected users are running at this moment, just run the following code:

SELECT datname, usename, state, backend_type, query

 FROM pg_stat_activity;

This will show normal users as "client backend," but it will also show various PostgreSQL
worker processes that you may not want to see. So, you could filter this using WHERE
backend_type = 'client backend'.

http://www.postgresql.org/docs/current/static/app-psql.html
http://www.postgresql.org/docs/current/static/app-psql.html

338 Monitoring and Diagnosis

On systems with a lot of users, you may notice that the majority of backends
have state set to idle. This denotes that no query is running, and PostgreSQL is
waiting for new commands from the user. The query field shows the statement that was
last executed by that particular backend.

If, on the other hand, you are interested in active queries only, limit your selection to those
records that have state set to active:

SELECT datname, usename, state, query

 FROM pg_stat_activity

WHERE state = 'active'

 AND backend_type = 'client backend';

How it works…
When track_activities = on is set, PostgreSQL collects data about all running
queries. Users with sufficient rights can then view this data using the pg_stat_
activity system view.

The pg_stat_activity view uses a system function named pg_stat_get_
activity (procpid int). You can use this function directly to watch for the
activity of a specific backend by supplying the process ID as an argument. Giving NULL as
an argument returns information for all backends.

There's more…
Sometimes, you don't care about getting all the queries that are currently running. You
may only be interested in seeing some of these, or you may not like connecting to the
database just to see what is running.

Catching queries that only run for a few milliseconds
Since most queries on modern online transaction processing (OLTP) systems take only
a few milliseconds to run, it is often hard to catch the active ones when you're simply
probing the pg_stat_activity table.

Most likely, you will be able to only see the last executed query for those backends that
have state different from active. In some cases, this can be enough.

Checking which queries are running 339

In general, if you need to perform a deeper analysis, I strongly recommend installing and
configuring the pg_stat_statements module, which is described in the Analyzing
the real-time performance of your queries recipe in this chapter. Another option is to run a
post-analysis of log files using pgBadger. Depending on the workload of your system, you
may want to limit the production of highly granular log files (that is, log all queries) to a
short period. For further information on pgBadger, refer to the Producing a daily summary
of log file errors recipe of this chapter.

Watching the longest queries
Another point of interest that you may want to look for is long-running queries. To get a
list of running queries ordered by how long they have been executing, use the following
code:

SELECT

 current_timestamp - query_start AS runtime,

 datname, usename, query

FROM pg_stat_activity

WHERE state = 'active'

ORDER BY 1 DESC;

This will return currently running queries, with the longest-running queries in the front.

On busy systems, you may want to limit the set of queries that are returned to only the
first few queries (add LIMIT 10 at the end) or only the queries that have been running
over a certain period. For example, to get a list of queries that have been running for more
than 1 minute, use the following query:

SELECT

 current_timestamp - query_start AS runtime,

 datname, usename, query

FROM pg_stat_activity

WHERE state = 'active'

 AND current_timestamp - query_start > '1 min'

ORDER BY 1 DESC;

340 Monitoring and Diagnosis

Watching queries from ps
If you want, you can also make queries that are running show up in process titles by
setting the following configuration in the postgresql.conf file:

update_process_title = on

Although the ps and top outputs are not the best places for watching database queries,
they may make sense in some circumstances.

See also
See PostgreSQL's online documentation, which covers the appropriate settings, at
http://www.postgresql.org/docs/current/static/runtime-config-
statistics.html.

Monitoring the progress of commands
PostgreSQL 14 now has a growing list of commands that have a "progress bar" – in other
words, they provide information to show intermediate progress information for active
commands.

Getting ready
Using the earlier recipes, identify the active processes that concern you:

SELECT pid, query

FROM pg_stat_activity

WHERE state = 'active';

If the query column indicates that they are one of the following actions, then we can look
at detailed progress information for them:

• Maintenance commands: ANALYZE, VACUUM, VACUUM FULL/CLUSTER

• Index commands: CREATE INDEX, REINDEX

• Backup/replication: BASE BACKUP

• Data load/unload: COPY

At this time, SELECT statements don't provide detailed progress information.

http://www.postgresql.org/docs/current/static/runtime-config-statistics.html
http://www.postgresql.org/docs/current/static/runtime-config-statistics.html

Monitoring the progress of commands 341

How to do it…
Each type of command has specific progress information, so you must look in the view
that's appropriate to the type of command.

All commands show a pid – the process identifier of the backend running the command.

For each command, consult the appropriate catalog view:

• ANALYZE: pg_stat_progress_analyze

• VACUUM: pg_stat_progress_vacuum

• VACUUM FULL, CLUSTER: pg_stat_progress_cluster

• CREATE INDEX, REINDEX: pg_stat_progress_create_index

• BASE BACKUP: pg_stat_progress_basebackup

• COPY: pg_stat_progress_copy

All types of command, apart from COPY, show a phase, since, in most cases, there are
multiple steps involved in processing the command. Each type of command has a specific
series of phases (or states) that it will pass through.

We will cover how to monitor and tune a VACUUM in Chapter 9, Regular Maintenance.

CREATE INDEX progress is more complex, especially if we are using CONCURRENTLY.
The longest phase will be building index since it varies according to the size of the
table. And for commands with the CONCURRENTLY option, there will also be long index
validation phases, also varying according to the size of the table. At the end of builds
with the CONCURRENTLY option, there will be one or more wait phases; if the command
stays in this phase for too long, then it will be held up by other running processes, as
shown in the current_locker_pid column.

For BASE BACKUP, the longest phase is streaming database files. The backup
progress so far is backup_streamed bytes, so the % progress will be as follows:

SELECT pid, phase,

 100.0*((backup_streamed*1.0)/backup_total) AS "progress%"

FROM pg_stat_progress_basebackup;

342 Monitoring and Diagnosis

Although COPY doesn't show the phase, we can calculate the % progress like this:

• COPY FROM % progress will be as follows:

SELECT (SELECT relname FROM pg_class WHERE oid = relid),

100.0*((bytes_processed*1.0)/bytes_total) AS "progress%"

FROM pg_stat_progress_copy;

• COPY TO % progress will be as follows:

SELECT relname,

100.0*((tuples_processed*1.0)/(case reltuples WHEN 0 THEN
10 WHEN -1 THEN 10 ELSE reltuples END)) AS "progress%"

FROM pg_stat_progress_copy JOIN pg_class on oid = relid;

All types of commands, apart from BASE BACKUP, show the datid and datname
columns, which show the database ID and name, respectively. BASE BACKUP refers to
the whole database server, including all databases.

How it works…
When commands run, they update in-memory progress information. By accessing the
catalog views, we can see that intermediate progress information.

There's more…
More information is added in each new release, so expect this area to change quickly over
time.

Checking which queries are active or blocked
Here, we will show you how to find out whether a query is running or waiting for another
query.

Getting ready
Using the predefined (default) pg_monitor role, you will have full access to
monitoring information.

Checking which queries are active or blocked 343

How to do it…
Follow these steps to check if a query is waiting for another query:

1. Run the following query:

SELECT datname, usename, wait_event_type, wait_event,
backend_type, query

FROM pg_stat_activity

WHERE wait_event_type IS NOT NULL

AND wait_event_type NOT IN ('Activity', 'Client');

2. You will receive the following output:

-[RECORD 1]---+-----------------

datname | postgres

usename | gianni

wait_event_type | Lock

wait_event | relation

backend_type | client backend

query | select * from t;

How it works…
The pg_stat_activity system view includes the wait_event_type and wait_
event columns, which are set to the kind of wait and to the kind of object that is blocked,
respectively. The backend_type column indicates the type of current backend.

The preceding query uses the wait_event_type field to filter out only those queries
that are waiting.

There's more…
PostgreSQL provides a version of the pg_stat_activity view that's capable
of capturing many kinds of waits; however, in previous versions, pg_stat_
activity could only detect waits on locks such as those placed on SQL objects, via
the pg_stat_activity.waiting field.

Although this is the main cause of waiting when using pure SQL, it is possible to write
a query in any of PostgreSQL's embedded languages that can wait on other system
resources, such as waiting for an HTTP response, for a file write to get completed, or just
waiting on a timer.

344 Monitoring and Diagnosis

As an example, you can make your backend sleep for a certain number of seconds
using pg_sleep(seconds). While you are monitoring pg_stat_activity, open a
new Terminal session with psql and run the following statement in it:

db=# SELECT pg_sleep(10);

<it "stops" for 10 seconds here>

pg_sleep

(1 row)

In older versions of Postgres, it will show up as not waiting in the pg_stat_
activity view, even though the query is blocked in the timer.

You will see the following output with newer versions of Postgres where wait_event_
type is Timeout, where the server process is waiting for a timeout to expire and wait_
event is PgSleep, waiting for a process that called pg_sleep:

-[RECORD 1]---+---------------------

datname | postgres

usename | postgres

wait_event_type | Timeout

wait_event | PgSleep

backend_type | client backend

query | SELECT pg_sleep(10);

Knowing who is blocking a query
Once you have found out that a query is being blocked, you need to know who or what is
blocking it.

Getting ready
If you are logged in as a superuser, you will have full access to monitoring information.

Killing a specific session 345

How to do it…
Perform the following steps:

1. Write the following query:

SELECT datname, usename, wait_event_type, wait_event, pg_
blocking_pids(pid) AS blocked_by, backend_type, query

FROM pg_stat_activity

WHERE wait_event_type IS NOT NULL

AND wait_event_type NOT IN ('Activity', 'Client');

2. You will receive the following output:

-[RECORD 1]---+-----------------

datname | postgres

usename | gianni

wait_event_type | Lock

wait_event | relation

blocked_by | {18142}

backend_type | client backend

query | select * from t;

This is the query we described in the previous recipe, with the addition of the blocked_
by column. Recall that the PID is the unique identifier that's assigned by the operating
system to each session; for more details, see Chapter 4, Server Control. Here, the PID is
used by the pg_blocking_pids(pid) system function to identify blocking sessions.

How it works…
The query is relatively simple: we just introduced the pg_blocking_pids() function,
which returns an array composed of the PIDs of all the sessions that were blocking the
session with the given PID.

Parallel queries lock via the leader process, so they do not complicate how we
monitor locks.

Killing a specific session
Sometimes, the only way to let the system continue as a whole is by surgically terminating
some offending database sessions. Yes, you read that right: surgically.

346 Monitoring and Diagnosis

In this recipe, you will learn how to intervene, from gracefully canceling a query to
brutally killing the actual process from the command line.

How to do it…
Once you have figured out the backend you need to kill, try to use pg_cancel_
backend(pid), which cancels the current query, though only if there is one. This can be
executed by anyone who is a member of the role whose backend is being canceled.

If that is not enough, then you can use pg_terminate_backend(pid), which
kills the backend. This works even for client backends that are idle or idle in a transaction.

You can run these functions as a superuser, or if the calling role is a member of the
role whose backend pid is being signed (look for the usename field in the pg_stat_
activity view).

You can also grant pg_signal_backend privilege to users to allow this on any user.
However, only superusers can cancel superuser backends.

How it works…
When a backend executes these functions, it verifies that the process that's been identified
by the pid argument is a PostgreSQL backend. Once we know that, it sends a signal to the
process. The backend receiving this signal stops whatever it is doing at the next suitable
point in time and terminates it in a controlled way.

If the session is terminated, the client using that backend loses the connection to the
database. Depending on how the client application is written, it may silently reconnect, or
it may report the error to the user.

There's more…
Killing the session may not always be what you want, so you should consider other
options as well.

It may also be a good idea to look at the Server Signaling Functions section in the
PostgreSQL documentation at http://www.postgresql.org/docs/current/
static/functions-admin.html#FUNCTIONS-ADMIN-SIGNAL.

http://www.postgresql.org/docs/current/static/functions-admin.html#FUNCTIONS-ADMIN-SIGNAL
http://www.postgresql.org/docs/current/static/functions-admin.html#FUNCTIONS-ADMIN-SIGNAL

Killing a specific session 347

Using statement_timeout to clean up queries that take too long
to run
Often, you know that you don't have any use for queries that run longer than a given time.
Maybe your web frontend just refuses to wait for more than 10 seconds for a query to
complete and returns a default answer to users if it takes longer, abandoning the query.

In such a case, it may be a good idea to set statement_timeout = 10s, either
in postgresql.conf or as a per-user or per-database setting. Once you do so,
queries that are running for too long won't consume precious resources and make other
queries fail.

The queries that are terminated by a statement timeout show up in the log, as follows:

postgres=# SET statement_timeout TO '3 s';

SET

postgres=# SELECT pg_sleep(10);

ERROR: canceling statement due to statement timeout

Killing idle in-transaction sessions
Sometimes, people start a transaction, run some queries, and then just leave, without
ending the transaction. This can leave some system resources in a state where some
housekeeping processes can't be run. They may even have done something more serious,
such as locking a table, thereby causing an immediate denial of service for other users who
need that table.

You can use the following query to kill all backends that have an open transaction but
have been doing nothing for the last 10 minutes:

SELECT pg_terminate_backend(pid)

 FROM pg_stat_activity

WHERE state = 'idle in transaction'

 AND current_timestamp – state_change > '10 min';

You can even schedule this to run every minute while you are trying to find the
specific frontend application that ignores open transactions, or when you have a lazy
administration that leaves a psql connection open, or when a flaky network drops clients
without the server noticing it.

348 Monitoring and Diagnosis

Detecting an in-doubt prepared transaction
While using a two-phase commit (2PC), you may end up in a situation where you have
something locked but cannot find the backend that holds the locks. This recipe describes
how to detect such a case.

How to do it…
Perform the following steps:

1. You need to look up the pg_locks table for those entries with an empty pid value.
Run the following query:

SELECT t.schemaname || '.' || t.relname AS tablename,

 l.pid, l.granted

 FROM pg_locks l JOIN pg_stat_user_tables t

 ON l.relation = t.relid;

2. The output will be something similar to the following:

 tablename | pid | granted

-----------+-------+---------

 db.x | | t

 db.x | 27289 | f

(2 rows)

The preceding example shows a lock on the db.x table, which has no process associated
with it.

If you need to remove a particular prepared transaction, you can refer to the Removing old
prepared transactions recipe in Chapter 9, Regular Maintenance.

Knowing whether anybody is using a specific
table
This recipe will help you when you are in doubt about whether an obscure table is being
used anymore, or if it has been left over from past use and is just taking up space.

Getting ready
Make sure that you are a superuser, or at least have full rights to the table in question.

Knowing whether anybody is using a specific table 349

How to do it…
Perform the following steps:

1. To see whether a table is currently in active use (that is, whether anyone is using it
while you are watching it), run the following query on the database you plan
to inspect:

CREATE TEMPORARY TABLE tmp_stat_user_tables AS

 SELECT * FROM pg_stat_user_tables;

2. Then, wait for a while and see what has changed:

SELECT * FROM pg_stat_user_tables n

 JOIN tmp_stat_user_tables t

 ON n.relid=t.relid

 AND (n.seq_scan,n.idx_scan,n.n_tup_ins,n.n_tup_
upd,n.n_tup_del)

 <> (t.seq_scan,t.idx_scan,t.n_tup_ins,t.n_tup_
upd,t.n_tup_del);

How it works…
The pg_stat_user_tables view shows the current statistics for table usage.

To see whether a table is being used, you can check for changes in its usage counts.

The previous query selects all the tables where any of the usage counts for SELECT or data
manipulation have changed.

There's more...
There is a function called pg_stat_reset() that drops a bomb on all usage statistics!
This is NOT recommended because these statistics are used by autovacuum.

It is often useful to have historical usage statistics for tables when you're trying to solve
performance problems or understand usage patterns.

Various tools are available, such as EnterpriseDB's Postgres Enterprise Manager (PEM):
https://www.enterprisedb.com/products/postgres-enterprise-
manager-best-gui-tools-database-management.

https://www.enterprisedb.com/products/postgres-enterprise-manager-best-gui-tools-database-management
https://www.enterprisedb.com/products/postgres-enterprise-manager-best-gui-tools-database-management

350 Monitoring and Diagnosis

You can also collect the data yourself using a table like this:

CREATE TABLE backup_stat_user_tables AS

SELECT current_timestamp AS snaptime,*

 FROM pg_stat_user_tables

WITH NO DATA;

Then, using either a cron or a PostgreSQL-specific scheduler such as pg_agent, you can
execute the following query, which adds a snapshot of current usage statistics with
a timestamp:

INSERT INTO backup_stat_user_tables

SELECT current_timestamp AS snaptime,*

 FROM pg_stat_user_tables;

Knowing when a table was last used
Once you know that a table is not currently being used, the next question is, When was it
last used?

Getting ready
You need to use a user with appropriate privileges.

How to do it…
PostgreSQL does not have any built-in last used information about tables, so you have to
use other means to figure it out.

If you have set up a cron job to collect usage statistics, as described in the previous
chapter, then it is relatively easy to find out the last date of change using a SQL query.

Other than this, there are two possibilities, neither of which give you reliable answers.

You can either look at the actual timestamps of the files that the data is stored in, or you
can use the xmin and xmax system columns to find out the latest transaction ID that
changed the table data.

In this recipe, we will cover the first case and focus on the date information in the
table's files.

Knowing when a table was last used 351

The following PL/pgSQL function looks for the table's data files to get the value of their
last access and modification times:

CREATE OR REPLACE FUNCTION table_file_access_info(

 IN schemaname text, IN tablename text,

 OUT last_access timestamp with time zone,

 OUT last_change timestamp with time zone

) LANGUAGE plpgsql AS $func$

DECLARE

 tabledir text;

 filenode text;

BEGIN

 SELECT regexp_replace(

 current_setting('data_directory') || '/' || pg_
relation_filepath(c.oid),

 pg_relation_filenode(c.oid) || '$', ''),

 pg_relation_filenode(c.oid)

 INTO tabledir, filenode

 FROM pg_class c

 JOIN pg_namespace ns

 ON c.relnamespace = ns.oid

 AND c.relname = tablename

 AND ns.nspname = schemaname;

 RAISE NOTICE 'tabledir: % - filenode: %', tabledir,
filenode;

 -- find latest access and modification times over all
segments

 SELECT max((pg_stat_file(tabledir || filename)).access),

 max((pg_stat_file(tabledir || filename)).
modification)

 INTO last_access, last_change

 FROM pg_ls_dir(tabledir) AS filename

 -- only use files matching <basefilename>[.segmentnumber]

 WHERE filename ~ ('^' || filenode || '([.]?[0-9]+)?$');

END;

$func$;

352 Monitoring and Diagnosis

Here is the sample output:

postgres=# select * from table_file_access_info('public','job_
status');

NOTICE: tabledir: /Library/PostgreSQL/14/data/base/13329/ -
filenode: 169733

 last_access | last_change

---------------------------+---------------------------

 2019-04-19 22:42:00+05:30 | 2019-04-19 09:36:40+05:30

How it works...
The table_file_access_info(schemaname, tablename) function returns the
last access and modification times for a given table, using the filesystem as a source
of information.

The last query uses this data to get the latest time any of these files were modified or read
by PostgreSQL. Beware that this is not a very reliable way to get information about the
latest use of any table, but it gives you a rough upper-limit estimate of when it was last
modified or read (for example, consider the autovacuum process for accessing a table).

There's more…
Recently, there have been discussions about adding last-used data to the information
about tables that PostgreSQL keeps, so it is quite possible that answering the question
when did anybody last use this table? will be much easier in the next version of
PostgreSQL.

Usage of disk space by temporary data
In addition to ordinary persistent tables, you can also create temporary tables. Temporary
tables have disk files for their data, just as persistent tables do, but those files will be stored
in one of the tablespaces listed in the temp_tablespaces parameter or, if not set, the
default tablespace.

PostgreSQL may also use temporary files for query processing for sorts, hash joins, or
hold cursors if they are larger than your current work_mem parameter setting.

So, how do you find out how much data is being used by temporary tables and files? You
can do this by using any untrusted embedded language, or directly on the database host.

Usage of disk space by temporary data 353

Getting ready
You have to use an untrusted language because trusted languages run in a sandbox, which
prohibits them from directly accessing the host filesystem.

How to do it…
Perform the following steps:

1. First, check whether your database defines special tablespaces for temporary files,
as follows:

SELECT current_setting('temp_tablespaces');

2. As explained later on in this recipe, if the setting is empty, this means that
PostgreSQL is not using temporary tablespaces, and temporary objects will be
located in the default tablespace for each database.

3. On the other hand, if temp_tablespaces has one or more tablespaces, then
your task is easy because all temporary files, both those used for temporary tables
and those used for query processing, are inside the directories of these tablespaces.
The following query (which uses WITH queries and string and array functions)
demonstrates how to check the space that's being used by temporary tablespaces:

WITH temporary_tablespaces AS (SELECT

 unnest(string_to_array(

 current_setting('temp_tablespaces'), ',')

) AS temp_tablespace

)

SELECT tt.temp_tablespace,

pg_tablespace_location(t.oid) AS location,

 pg_tablespace_size(t.oid) AS size

FROM temporary_tablespaces tt

JOIN pg_tablespace t ON t.spcname = tt.temp_tablespace

 ORDER BY 1;

354 Monitoring and Diagnosis

The following output shows very limited use of temporary space (I ran the
preceding query while I had two open transactions that had just created small,
temporary tables using random data through generate_series()):

temp_tablespace | location | size

-----------------+--------------+---------

 pgtemp1 | /srv/pgtemp1 | 3633152

 pgtemp2 | /srv/pgtemp2 | 376832

(2 rows)

Even though you can obtain similar results using different queries, or just by checking the
disk usage from the filesystem through du (once you know the location of tablespaces), I
would like to focus on these functions:

• pg_tablespace_location(oid): This provides the location of the tablespace
with the given oid.

• pg_tablespace_size(oid) or pg_tablespace_size(name): This allows
you to check the size being used by a named tablespace directly within PostgreSQL.

• In PostgreSQL 12+, you can use pg_ls_tmpdir(oid) to view the file's names,
sizes, and last modification time, to allow you to see full details of the temporary
file's location(s).

Because the amount of temporary disk space being used can vary a lot in an active system,
you may want to repeat the query several times to get a better picture of how the disk
usage changes. (With psql, use \watch, as explained in the Checking whether a user is
connected recipe.)

Note
Further information on these functions can be found at http://www.
postgresql.org/docs/current/static/functions-
admin.html.

On the other hand, if the temp_tablespaces setting is empty, then the temporary
tables are stored in the same directory as ordinary tables, and the temporary files that
are used for query processing are stored in the pgsql_tmp directory inside the main
database directory.

Look up the cluster's home directory using the following query:

SELECT current_setting('data_directory') || '/base/pgsql_tmp'

http://www.postgresql.org/docs/current/static/functions-admin.html
http://www.postgresql.org/docs/current/static/functions-admin.html
http://www.postgresql.org/docs/current/static/functions-admin.html

Usage of disk space by temporary data 355

The size of this directory gives us the total size of current temporary files for
query processing.

The total size of the temporary files that are used by a database can be found in the pg_
stat_database system view, and specifically in the temp_files and temp_bytes
fields. These values are cumulative numbers, not current usage, so expect them to increase
over time. The following query returns the cumulative number of temporary files and
the space being used by every database since the last reset (stats_reset):

SELECT datname, temp_files, temp_bytes, stats_reset

 FROM pg_stat_database

WHERE datname is not null;

The pg_stat_database view holds very important statistics. I recommend that
you look at the official documentation at http://www.postgresql.org/docs/
current/static/monitoring-stats.html#PG-STAT-DATABASE-VIEW for
detailed information and to get further ideas on how to improve your monitoring skills.

How it works…
Because all temporary tables and other, larger temporary on-disk data are stored in files,
you can use PostgreSQL's internal tables to find the locations of these files, and then
determine the total size of these files.

You can control the max file size by setting the temp_file_limit parameter, which
is unset by default, noting that this is the total amount of all temporary files, not a limit
on just one temporary table. Note that this imposes a limit on all types of temporary files
used by queries.

There's more…
While the preceding information about temporary tables is correct, it is not the
entire story.

356 Monitoring and Diagnosis

Finding out whether a temporary file is in use anymore
Because temporary files are not as carefully preserved as ordinary tables (this is one of the
benefits of temporary tables, as less bookkeeping makes them faster), it may sometimes
happen that a system crash leaves a few temporary files, which can (in the worst case) take
up a significant amount of disk space. In PostgreSQL 14+, temporary files are removed
at restart with the default setting of the remove_temp_files_after_crash = on
parameter. In earlier releases, you may need to clean up such files by shutting down the
PostgreSQL server and then deleting all files from the pgsql_tmp directory, while the
database is shut down.

Logging temporary file usage
If you set log_temp_files = 0 or a larger value, then the creation of all temporary
files that are larger than this value in kilobytes is logged to the standard PostgreSQL log.

If, while monitoring the log and the pg_stat_database view, you notice an increase
in temporary file activity, you should consider increasing work_mem, either globally or
(preferably) on a query/session basis. While temporary files don't get synced to disk, they
do cause file I/O.

Understanding why queries slow down
In production environments with large databases and high concurrent access, it might
happen that queries that used to run in tens of milliseconds suddenly take several seconds.

Likewise, a summary query for a report that used to run in a few seconds may take half an
hour to complete.

Here are some ways to find out what is slowing them down.

Getting ready
Any questions of the type why is this different today from what it was last week? are much
easier to answer if you have some kind of historical data collection setup.

The tools we mentioned in the Providing PostgreSQL information recipe that can be used
to monitor general server characteristics, such as CPU and RAM usage, disk I/O, network
traffic, load average, and so on are very useful for seeing what has changed recently, and
for trying to correlate these changes with the observed performance of some database
operations.

Understanding why queries slow down 357

Also, collecting historical statistics data from pg_stat_* tables, whether daily, hourly, or
even every 5 minutes if you have enough disk space, is very useful for detecting possible
causes of sudden changes or a gradual degradation in performance.

If you are gathering both of these, then that's even better. If you have none, then the
question is actually: Why is this query slow?

But don't despair! There are a few things you can do to try to restore performance.

How to do it…
First, analyze your database tables using the following code, for all the tables in your
slow query:

db_01=# analyze my_table;

ANALYZE

Time: 6231.313 ms

db_01=#

This is the first thing you should try as it is usually cheap and is meant to be done quite
often anyway. Don't run it on the whole database since that is probably overkill and could
take some time.

If this restores the query's performance or at least improves the current performance
considerably, then this means that autovacuum is not doing its task well, and the next
thing to do is find out why.

You must ensure that the performance improvement is not due to caching the pages that
are required by the requested query. Make sure that you repeat your query several times
before classifying it as slow. Looking at pg_stat_statements (which will be covered
later in this chapter) can help you analyze the impact of a particular query in terms of
caching, and is done by inspecting two fields: shared_blks_hit and shared_blks_
read.

How it works…
The ANALYZE command updates statistics about data size and data distribution in all
tables. If a table's size has changed significantly without its statistics being updated,
then PostgreSQL's statistics-based optimizer may choose a bad plan. Manually running
the ANALYZE command updates the statistics for all tables.

358 Monitoring and Diagnosis

There's more…
There are a few other common problems.

Do queries return significantly more data than they did earlier?
If you've initially tested your queries on almost empty tables, you may be querying much
more data than you need.

As an example, if you select all users' items and then show the first 10 items, this
query runs very fast when the user has 10 or even 50 items, but not so well when they
have 50,000.

Ensure that you don't ask for more data than you need. Use the LIMIT clause to return
less data to your application (and to give the optimizer at least a chance to select a plan
that processes less data when selecting: it may also have a lower startup cost). In some
cases, you can evaluate the use of cursors for your applications.

Do queries also run slowly when they run alone?
If you can, then try to run the same slow query when the database has no (or very few)
other queries running concurrently. If it runs well in this situation, then it may be that
the database host is just overloaded (CPU, memory, or disk I/O) or other applications
are interfering with PostgreSQL on the same server. Consequently, a plan that works well
under a light load is not very good anymore. It may even be that this is not a very good
query plan to begin with, and you were fooled by modern computers being fast:

db=# select count(*) from t;

 count

 1000000

(1 row)

Time: 329.743 ms

As you can see, scanning 1 million rows takes just 0.3 seconds on a laptop that is a few
years old if these rows have already been cached.

However, if you have a few such queries running in parallel, and also other queries
competing for memory, this query is likely to slow down an order of magnitude or two.

See Chapter 10, Performance and Concurrency, for general advice on performance tuning.

Understanding why queries slow down 359

Is the second run of the same query also slow?
This test is related to the previous test, and it checks whether the slowdown is caused by
some of the necessary data not fitting into the memory or because it's being pushed out of
memory by other queries.

If the second run of the query is fast, then you probably lack enough memory. Again,
see Chapter 10, Performance and Concurrency, for details about this.

Table and index bloat
Table bloat is something that can develop over time if some maintenance processes can't
be run properly. In other words, due to the way Multiversion Concurrency Control
(MVCC) works, your table will contain a lot of older versions of rows, if these versions
can't be removed promptly.

There are several ways this can develop, but all involve lots of updates or deletes and
inserts, while autovacuum is prevented from doing its job of getting rid of old tuples.
It is possible that, even after the old versions are cleaned up, the table stays at its newly
acquired and large size, thanks to visible rows being located at the end of the table and
preventing PostgreSQL from shrinking the file. There have been cases where a one-row
table has grown to several gigabytes in size.

If you suspect that some tables may be bloated, then run the following query:

SELECT pg_relation_size(relid) AS
tablesize,schemaname,relname,n_live_tup

FROM pg_stat_user_tables

WHERE relname = <tablename>;

Then, see whether the relationship between tablesize to n_live_tup makes sense.
You may also think you need to look at n_dead_tup, but even after dead tuples are
removed, the bloat they have caused will still be there.

For example, if the table size is tens of megabytes, and there are only a small number of
rows, then you have bloat, and proper VACUUM strategies are necessary (as explained
in Chapter 9, Regular Maintenance).

It is important to check that the statistics are up to date. You may need to run ANALYSE
on the table and run the query again.

360 Monitoring and Diagnosis

See also
The following will aid your understanding of this topic:

• The Collecting daily usage statistics section shows one way to collect information on
table changes.

• Chapter 9, Regular Maintenance.

• Chapter 10, Performance and Concurrency.

• The How many rows in a table? recipe in Chapter 2, Exploring the Database, for an
introduction to MVCC.

• The auto_explain contrib module, at http://www.postgresql.org/
docs/current/static/auto-explain.html.

Analyzing the real-time performance of your
queries
The pg_stat_statements extension adds the capability to track the execution
statistics of queries that are run in a database, including the number of calls, total
execution time, the total number of returned rows, and internal information on memory
and I/O access.

It is evident how this approach opens up new opportunities in PostgreSQL performance
analysis by allowing database admins to get insights directly from the database through
SQL and in real time.

Getting ready
The pg_stat_statements module is available as a contrib module of PostgreSQL.
The extension must be installed as a superuser in the desired databases. It also requires
administrators to add the library to the postgresql.conf file, as follows:

shared_preload_libraries = 'pg_stat_statements'

This change requires restarting the PostgreSQL server.

Finally, to use it, the extension must be installed in the desired database through the
usual CREATE EXTENSION command (run as a superuser):

gabriele=# CREATE EXTENSION pg_stat_statements;

CREATE EXTENSION

Analyzing the real-time performance of your queries 361

How to do it…
Connect to a database where you have installed the pg_stat_statements extension,
preferably as a superuser.

You can start by retrieving a list of the top 10 most frequent queries:

SELECT query FROM pg_stat_statements ORDER BY calls DESC LIMIT
10;

Alternatively, you can retrieve the queries with the highest average execution time:

SELECT query, total_exec_time/calls AS avg, calls

 FROM pg_stat_statements ORDER BY 2 DESC;

These are just examples. I strongly recommend that you look at the PostgreSQL
documentation at http://www.postgresql.org/docs/current/static/
pgstatstatements.html for more detailed information on the structure of the pg_
stat_statements view.

How it works…
Since the pg_stat_statements shared library has been loaded by the PostgreSQL
server, Postgres starts collecting statistics for every database in the instance.

The extension simply installs the pg_stat_statements view and the pg_stat_
statements_reset() function in the current database, allowing the database admin
to inspect the available statistics.

By default, read access to the pg_stat_statements view is granted to every user
who can access the database (even though standard users are only allowed to see the SQL
statements of their queries).

The pg_stat_statements_reset() function can be used to discard the statistics
that have been collected by the server up to that moment and set all the counters to 0. It
requires a superuser to be run.

There's more…
A very important pg_stat_statements feature is normalizing queries that can
be planned (SELECT, INSERT, DELETE, and UPDATE). You may have noticed
some ? characters in the query field being returned by the queries we outlined in the
previous section. The normalization process intercepts constants in SQL statements run
by users and replaces them with a placeholder (identified by a question mark).

http://www.postgresql.org/docs/current/static/pgstatstatements.html
http://www.postgresql.org/docs/current/static/pgstatstatements.html

362 Monitoring and Diagnosis

Consider the following queries:

SELECT * FROM bands WHERE name = 'AC/DC';

SELECT * FROM bands WHERE name = 'Lynyrd Skynyrd';

After the normalization process, these two queries appear as one in pg_stat_
statements:

gabriele=# SELECT query, calls FROM pg_stat_statements;

 query | calls

---------------------------------------+-------

 SELECT * FROM bands WHERE name = ?; | 2

The extension comes with a few configuration options, such as the maximum number of
queries to be tracked.

Investigating and reporting a bug
When you find out that PostgreSQL is not doing what it should, then it's time
to investigate.

Getting ready
It is a good idea to make a full copy of your PostgreSQL installation before you start
investigating. This will help you restart several times and be sure that you are investigating
the results of the bug, and not chasing your tail by looking at changes that were introduced
by your last investigation and debugging attempt.

Do not forget to include your tablespaces in the full copy.

How to do it…
Try to make a minimal repeatable test scenario that exhibits this bug. Sometimes, the bug
disappears while doing this, but mostly, it is needed to make the process easy. It is almost
impossible to fix a bug that you can't observe and repeat at will.

If it is about query processing, then you can usually provide a minimal dump file (the
result of running pg_dump) of the specific tables, together with a SQL script that exhibits
the error.

Investigating and reporting a bug 363

If you have corrupt data, then you may want to make a subset of the corrupted data files
available for people who have the knowledge and time to look at it. Sometimes, you can
find such people on the PostgreSQL hackers' list, while other times, you will have to hire
someone or even fix it yourself. The more preparatory work you do yourself and the better
you formulate your questions, the higher the chance you have of finding help quickly.

When reporting a bug, always include at least the PostgreSQL version you are using and
the operating system that you are using it on.

More detailed information on this process is available on the PostgreSQL wiki. By
following the official recommendations at http://wiki.postgresql.org/wiki/
Guide_to_reporting_problems, you will have a higher chance of getting your
questions answered.

How it works…
If everything works well, then the following process should take a week or two:

• A user submits a well-researched bug report to the PostgreSQL hackers' list.

• Some discussions follow on the list, and the user may be asked to provide some
additional information.

• Somebody finds out what is wrong and proposes a fix.

• The fix is discussed on the hackers' list.

• The bug is fixed. There is a patch for the current version, and the fix is sure to be
included in the next version.

• Sometimes, the fix is backported to older versions.

Unfortunately, any step may go wrong due to various reasons, such as nobody feeling that
this is their area of expertise, the right people not having time and hoping for someone
else to deal with it, and these other people not reading the list at the right moment. If this
happens, follow up on your question in a day or two to try and understand why there was
no reaction.

For guaranteed response times to support queries, you should consider engaging with a
specialist PostgreSQL support provider such as EDB: http://www.enterprisedb.
com/. Other companies also offer support, but make sure to choose one that actively
makes significant contributions to PostgreSQL, because that is what pays for the
development of open source and makes the whole process "sustainable." Check their
credentials!

http://wiki.postgresql.org/wiki/Guide_to_reporting_problems
http://wiki.postgresql.org/wiki/Guide_to_reporting_problems
http://www.enterprisedb.com/
http://www.enterprisedb.com/

9
Regular

Maintenance
In these busy times, many people believe if it ain't broken, don't fix it. I believe that too,
but it isn't an excuse for not taking action to maintain your database servers and be sure
that nothing will break.

Database maintenance is about making your database run smoothly.

PostgreSQL prefers regular maintenance, so please read the Planning maintenance recipe
for more information.

We recognize that you're here for a reason and are looking for a quick solution to your
needs. You're probably thinking – Fix the problem first, and I'll plan later. So, off we go!

PostgreSQL provides a utility command named VACUUM, which is a reference to a garbage
collector that sweeps up all of the bad things and fixes them – or at least most of them.
That's the single most important thing you need to remember to do – I say single because
closely connected to that is the ANALYZE command, which collects statistics for the SQL
optimizer. It's possible to run VACUUM and ANALYZE as a single joint command, VACUUM
ANALYZE. These actions are automatically executed for you when appropriate
by autovacuum, a special background process that runs as part of the PostgreSQL server.

366 Regular Maintenance

VACUUM performs a range of cleanup activities, some of them too complex to describe
without a whole sideline into their internals. VACUUM has been heavily optimized over 30
years to take the minimum required lock levels on tables and execute them in the most
efficient manner possible, skipping all of the unnecessary work and using L2 cache CPU
optimizations when work is required.

Many experienced PostgreSQL DBAs will prefer to execute their VACUUM commands,
though autovacuum now provides a fine degree of control, which, if enabled and
controlled, can save much of your time. Using both manual and automatic vacuuming
gives you control and a safety net.

In this chapter, we will cover the following recipes:

• Controlling automatic database maintenance

• Avoiding auto-freezing and page corruptions

• Removing issues that cause bloat

• Removing old prepared transactions

• Actions for heavy users of temporary tables

• Identifying and fixing bloated tables and indexes

• Monitoring and tuning a vacuum

• Maintaining indexes

• Finding unused indexes

• Carefully removing unwanted indexes

• Planning maintenance

Controlling automatic database maintenance
autovacuum is enabled by default in PostgreSQL and mostly does a great job
of maintaining your PostgreSQL database. We say mostly because it doesn't
know everything you do about the database, such as the best time to perform
maintenance actions. Let's explore the settings that can be tuned so that you can use
vacuums efficiently.

Controlling automatic database maintenance 367

Getting ready
Exercising control requires some thinking about what you want:

• What are the best times of day to do things? When are system resources
more available?

• Which days are quiet, and which are not?

• Which tables are critical to the application, and which are not?

How to do it…
Perform the following steps:

1. The first thing you must do is make sure that autovacuum is switched on, which
is the default. Check that you have the following parameters enabled in your
postgresql.conf file:

autovacuum = on

track_counts = on

2. PostgreSQL controls autovacuum with more than 40 individually tunable
parameters that provide a wide range of options, though this can be a little daunting.
The following are the relevant parameters that can be set in postgresql.conf to
tune the VACUUM command:

vacuum_cleanup_index_scale_factor

vacuum_cost_delay

vacuum_cost_limit

vacuum_cost_page_dirty

vacuum_cost_page_hit

vacuum_cost_page_miss

vacuum_defer_cleanup_age

vacuum_failsafe_age

vacuum_freeze_min_age

vacuum_freeze_table_age

vacuum_multixact_freeze_min_age

vacuum_multixact_freeze_table_age

368 Regular Maintenance

3. There are also postgresql.conf parameters that apply specifically
to autovacuum:

autovacuum

autovacuum_analyze_scale_factor

autovacuum_analyze_threshold

autovacuum_freeze_max_age

autovacuum_max_workers

autovacuum_multixact_freeze_max_age

autovacuum_naptime

autovacuum_vacuum_cost_delay

autovacuum_vacuum_cost_limit

autovacuum_vacuum_insert_threshold

autovacuum_vacuum_insert_scale_factor

autovacuum_vacuum_scale_factor

autovacuum_vacuum_threshold

autovacuum_work_mem

log_autovacuum_min_duration

4. The preceding parameters apply to all tables at once. Individual tables can be
controlled by storage parameters, which are set using the following command:

ALTER TABLE mytable SET (storage_parameter = value);

5. The storage parameters that relate to maintenance are as follows:

autovacuum_enabled

autovacuum_analyze_scale_factor

autovacuum_analyze_threshold

autovacuum_freeze_min_age

autovacuum_freeze_max_age

autovacuum_freeze_table_age

autovacuum_multixact_freeze_max_age

autovacuum_multixact_freeze_min_age

autovacuum_multixact_freeze_table_age

autovacuum_vacuum_cost_delay

autovacuum_vacuum_cost_limit

autovacuum_vacuum_insert_threshold

autovacuum_vacuum_insert_scale_factor

Controlling automatic database maintenance 369

autovacuum_vacuum_scale_factor

autovacuum_vacuum_threshold

vacuum_truncate (no equivalent postgresql.conf parameter)

log_autovacuum_min_duration

6. The toast tables can be controlled with the following parameters. Note that these
parameters are set on the main table and not on the toast table (which gives an
error):

toast.autovacuum_enabled

toast.autovacuum_analyze_scale_factor

toast.autovacuum_analyze_threshold

toast.autovacuum_freeze_min_age

toast.autovacuum_freeze_max_age

toast.autovacuum_freeze_table_age

toast.autovacuum_multixact_freeze_max_age

toast.autovacuum_multixact_freeze_min_age

toast.autovacuum_multixact_freeze_table_age

toast.autovacuum_vacuum_cost_delay

toast.autovacuum_vacuum_cost_limit

toast.autovacuum_vacuum_insert_threshold

toast.autovacuum_vacuum_insert_scale_factor

toast.autovacuum_vacuum_scale_factor

toast.autovacuum_vacuum_threshold

toast.vacuum_truncate

toast.log_autovacuum_min_duration

How it works…
If autovacuum is set, then it will wake up every autovacuum_naptime seconds, and
decide whether to run VACUUM, ANALYZE, or both (don't modify that).

370 Regular Maintenance

There will never be more than autovacuum_max_workers maintenance processes
running at any time. As these autovacuum workers perform I/O, they accumulate cost
points until they hit the autovacuum_vacuum_cost_limit value, after which they
sleep for an autovacuum_vacuum_cost_delay period. This is designed to throttle
the resource utilization of autovacuum to prevent it from using all of the available
disk I/O bandwidth, which it should never do. So, increasing autovacuum_vacuum_
cost_delay will slow down each VACUUM to reduce the impact on user activity, but the
general advice is don't do that. autovacuum will run ANALYZE when there have been at
least autovacuum_analyze_threshold changes and a fraction of the table defined
by autovacuum_analyze_scale_factor has been inserted, updated, or deleted.

autovacuum will run VACUUM when there have been at least autovacuum_vacuum_
threshold changes, and a fraction of the table defined by autovacuum_vacuum_
scale_factor has been updated or deleted.

The autovacuum_* parameters only change vacuums and analyze operations that are
executed by autovacuum. User-initiated VACUUM and ANALYZE commands are affected
by vacuum_cost_delay and other vacuum_* parameters.

If you set log_autovacuum_min_duration, then any autovacuum process that
runs for longer than this value will be logged to the server log, like so:

2019-04-19 01:33:55 BST (13130) LOG: automatic vacuum of table
"postgres.public.pgbench_accounts": index scans: 1

 pages: 0 removed, 3279 remain

 tuples: 100000 removed, 100000 remain

 system usage: CPU 0.19s/0.36u sec elapsed 19.01 sec

2019-04-19 01:33:59 BST (13130) LOG: automatic analyze of
table "postgres.public.pgbench_accounts"

 system usage: CPU 0.06s/0.18u sec elapsed 3.66 sec

Most of the preceding global parameters can also be set at the table level. For example,
the normal autovacuum_cost_delay is 2 ms, but if you want big_table to be
vacuumed more quickly, then you can set the following:

ALTER TABLE big_table SET (autovacuum_vacuum_cost_delay = 0);

Controlling automatic database maintenance 371

It's also possible to set parameters for toast tables. A toast table is where the oversized
column values get placed, which the documents refer to as supplementary storage
tables. If there are no oversized values, then the toast table will occupy little space.
Tables with very wide values often have large toast tables. The Oversized Attribute
Storage Technique (TOAST) is optimized for UPDATE. For example, if you have
a heavily updated table, the toast table is often untouched, so it may make sense to turn
off autovacuuming for the toast table, as follows:

ALTER TABLE pgbench_accounts

SET (toast.autovacuum_enabled = off);

Note
Autovacuuming the toast table is performed completely separately from
the main table, even though you can't ask for an explicit include or exclude of
the toast table yourself when running VACUUM.

Use the following query to display reloptions for tables and their toast tables:

postgres=#

SELECT n.nspname

, c.relname

, array_to_string(

 c.reloptions ||

ARRAY(

SELECT 'toast.' || x

FROM unnest(tc.reloptions) AS x

), ', ')

AS relopts

FROM pg_class c

LEFT JOIN pg_class tc ON c.reltoastrelid = tc.oid

JOIN pg_namespace n ON c.relnamespace = n.oid

WHERE c.relkind = 'r'

AND nspname NOT IN ('pg_catalog', 'information_schema');

An example of the output of this query is shown here:

 nspname | relname | relopts

---------+------------------+------------------------------

 public | pgbench_accounts | fillfactor=100,

372 Regular Maintenance

 autovacuum_enabled=on,

 autovacuum_vacuum_cost_delay=20

 public | pgbench_tellers | fillfactor=100

 public | pgbench_branches | fillfactor=100

 public | pgbench_history |

 public | text_archive | toast.autovacuum_enabled=off

Managing parameters for many different tables becomes difficult with tens, hundreds,
or thousands of tables. We recommend that these parameter settings are used with
caution and only when you have good evidence that they are worthwhile. Undocumented
parameter settings will cause problems later.

Note that when multiple workers are running, the autovacuum cost delay parameters
are "balanced" among all the running workers, so that the total I/O impact on the system
is the same regardless of the number of workers running. However, if you set the per-table
storage parameters for autovacuum_vacuum_cost_delay or autovacuum_
vacuum_cost_limit, then those tables are not considered in the balancing algorithm.

VACUUM allows insertions, updates, and deletions while it runs, but it prevents DDL
commands such as ALTER TABLE and CREATE INDEX. autovacuum can detect
whether a user has requested a conflicting lock on the table while it runs, and it will cancel
itself if it is getting in the user's way. VACUUM doesn't cancel itself since we expect that the
DBA would not want it to be canceled.

From PostgreSQL 13+, autovacuum can be trigged by insertions, so you may see more
vacuum activity than before in some workloads, but this is likely to be a good thing and
nothing to worry about.

Note that VACUUM does not shrink a table when it runs unless there is a large run of space
at the end of a table, and nobody is accessing the table when we try to shrink it. If you
want to avoid trying to shrink a table when we vacuum it, you can turn this off with the
following setting:

ALTER TABLE pgbench_accounts

SET (vacuum_truncate = off);

To shrink a table properly, you'll need VACUUM FULL, but this locks up the whole table
for a long time and should be avoided if possible. The VACUUM FULL command will
rewrite every row of the table and completely rebuild all indexes. This process is faster
than it used to be, though it still takes a long time for larger tables, as well as needing up to
twice the current space for the sort and new copy of the table.

Controlling automatic database maintenance 373

There's more…
The postgresql.conf file also allows include directives, which look as follows:

include 'autovacuum.conf'

These specify another file that will be read at that point, just as if those parameters had
been included in the main file.

This can be used to maintain multiple sets of files for the autovacuum configuration.
Let's say we have a website that is busy mainly during the daytime, with some occasional
nighttime use. We decide to have two profiles – one for daytime, when we want less
aggressive autovacuuming, and another for nighttime, where we can allow more
aggressive vacuuming:

1. You need to add the following lines to postgresql.conf:

autovacuum = on

autovacuum_max_workers = 3

include 'autovacuum.conf'

2. Remove all other autovacuum parameters.
3. Then, create a file named autovacuum.conf.day that contains the following

parameters:

autovacuum_analyze_scale_factor = 0.1

autovacuum_vacuum_cost_delay = 5

autovacuum_vacuum_scale_factor = 0.2

4. Then, create another file, named autovacuum.conf.night, that contains the
following parameters:

autovacuum_analyze_scale_factor = 0.05

autovacuum_vacuum_cost_delay = 0

autovacuum_vacuum_scale_factor = 0.1

5. To swap profiles, simply do the following:

$ ln -sf autovacuum.conf.night autovacuum.conf

$ pg_ctl reload

The latter command reloads the server configuration, and it must be customized
depending on your platform.

374 Regular Maintenance

This allows us to switch profiles twice per day without needing to edit the configuration
files. You can also easily tell which is the active profile simply by looking at the full details
of the linked file (using ls -l). The exact details of the schedule are up to you. Night and
day was just an example, which is unlikely to suit everybody.

See also
The autovacuum_freeze_max_age parameter is explained in the next recipe,
Avoiding auto-freezing and page corruptions, as are the more complex table-level
parameters.

Avoiding auto-freezing and page corruptions
In the life cycle of a row, there are two routes that a row can take in PostgreSQL – a row
version dies and needs to be removed by VACUUM, or a row version gets old enough and
needs to be frozen, a task that is also performed by the VACUUM process. The removal of
dead rows is easy to understand, while the second seems strange and surprising.

PostgreSQL uses internal transaction identifiers that are 4 bytes long, so we only have
232 transaction IDs (about four billion). PostgreSQL starts again from the beginning
when that wraps around, circularly allocating new identifiers. The reason we do this is that
moving to an 8-byte identifier has various other negative effects and costs that we would
rather not pay for, so we keep the 4-byte transaction identifier. The impact is that we need
to do regular sweeps of the entire database to mark tuples as frozen, meaning they are
visible to all users – that's why this procedure is known as freezing. Once frozen, they
don't need to be touched again, though they can still be updated or deleted later if desired.

How to do it…
Why do we care? Suppose that we load a table with 100 million rows, and everything
is fine. When those rows have been there long enough to begin being frozen, the
next VACUUM operation on that table will rewrite all of them to freeze their transaction
identifiers. Put another way, autovacuum will wake up and start using lots of I/O to
perform the freezing.

The most obvious way to forestall this problem is to explicitly vacuum a table after a major
load. Of course, that doesn't remove the problem entirely, because vacuuming doesn't
freeze all the rows immediately and so some will remain for later vacuums.

The knee-jerk reaction for many people is to turn off autovacuum because it keeps
waking up at the most inconvenient times. My way of doing this is described in
the Controlling automatic database maintenance recipe.

Avoiding auto-freezing and page corruptions 375

Freezing takes place when a transaction identifier on a row becomes more than vacuum_
freeze_min_age transactions older than the current next value, measured in xid
values, not time. Normal VACUUM operations will perform a small amount of freezing
as you go, and in most cases, you won't notice that at all. As explained in the previous
example, large transactions leave many rows with the same transaction identifiers, so
those might cause problems when it comes to freezing.

The VACUUM command is normally optimized to only look at the chunks of a table that
require cleaning, both for normal vacuum and freezing operations.

If you fiddle with the vacuum parameters to try to forestall heavy VACUUM operations,
then you'll notice that the autovacuum_freeze_max_age parameter controls when
the table will be scanned by a forced VACUUM command. To put this another way, you
can't turn off the need to freeze rows, but you can defer it to a more convenient time.
The mistake comes from deferring it completely and then finding that PostgreSQL
executes an aggressive, uncancellable vacuum to remedy the lack of freezing. My
advice is to control autovacuum, as we described in the previous recipe, or perform
explicit VACUUM operations at a time of your choosing, rather than wait for the inevitable
emergency freeze operation.

The VACUUM command is also an efficient way to confirm the absence of page
corruptions, so it is worth scanning the whole database, block by block, from time to time.
To do this, you can run the following command on each of your databases:

VACUUM (DISABLE_PAGE_SKIPPING);

You can do this table by table as well. There's nothing important about running
whole database VACUUM operations anymore; in earlier versions of PostgreSQL, this
was important, so you may read that this is a good idea on the web.

You can focus on only the tables that most need freezing by using the vacuumdb utility
with the new --min-xid-age and --min-mxid-age options. By setting those
options, vacuumdb will skip them if the main table or toast table has a relfrozenxid
older than the specified age threshold. If you choose the values carefully, this will
skip tables that don't need freezing yet (there is no corresponding option for these on
the VACUUM command, as there is in most other cases).

If you've never had a corrupt block, then you may only need to scan every 2 to 3 months.
If you start to get corrupt blocks, then you may want to increase the scan rate to confirm
that everything is OK. Corrupt blocks are usually hardware induced, though they show up
as database errors. It's possible but rare that the corruption was from a PostgreSQL
bug instead.

376 Regular Maintenance

There's no easy way to fix page corruption at present. There are, however, ways
to investigate and extract data from corrupt blocks, for example, by using
the pageinspect contrib utility that Simon wrote. You can also detect them
automatically by creating the whole cluster using the following code:

initdb --data-checksums

This command initializes the data directory and enables data block checksums. This
means that every time something changes in a block, PostgreSQL will compute the new
checksum, and then store the resulting block checksums in that same block so that a
simple program can detect it.

Removing issues that cause bloat
Bloat can be caused by long-running queries or long-running write transactions that
execute alongside write-heavy workloads. Resolving that is mostly down to understanding
the workloads that are running on the server.

Getting ready
Look at the age of the oldest snapshots that are running, like this:

postgres=# SELECT now() -

 CASE

 WHEN backend_xid IS NOT NULL

 THEN xact_start

 ELSE query_start END

 AS age

, pid

, backend_xid AS xid

, backend_xmin AS xmin

, state

FROM pg_stat_activity

WHERE backend_type = 'client backend'

ORDER BY 1 DESC;

age | pid | xid | xmin | state

----------------+-------+----------+----------+---------------

00:00:25.791098 | 27624 | | 10671262 | active

Removing issues that cause bloat 377

00:00:08.018103 | 27591 | | | idle in
transaction

00:00:00.002444 | 27630 | 10703641 | 10703639 | active

00:00:00.001506 | 27631 | 10703642 | 10703640 | active

00:00:00.000324 | 27632 | 10703643 | 10703641 | active

00:00:00 | 27379 | | 10703641 | active

The preceding example shows an updated workload of three sessions alongside one
session that is waiting in an idle in transaction state, plus two other sessions that are only
reading data.

How to do it…
If you have sessions stuck in the idle_in_transaction state, then you may want to
consider setting the idle_in_transaction_session_timeout parameter so that
transactions in that mode will be canceled. The default for that is zero, meaning there will
be no cancellation.

If not, try running shorter transactions or shorter queries.

If that is not an option, then consider setting old_snapshot_threshold. This
parameter sets a time delay, after which dead rows are at risk of being removed. If a
query attempts to read data that has been removed, then we cancel the query. All queries
executing in less time than the old_snapshot_threshold parameter will be safe.
This is a very similar concept to the way Hot Standby works (see Chapter 12, Replication
and Upgrades).

How it works…
VACUUM cannot remove dead rows until they are invisible to all users. The earliest piece
of data that's visible to a session is defined by its oldest snapshot's xmin value, or if that is
not set, then by the backend's xid value.

There's more…
A session that is not running any query is in the idle state if it's outside of a transaction,
or in the idle in transaction state if it's inside a transaction; that is, between a BEGIN and
the corresponding COMMIT. Recall the Writing a script that either succeeds entirely or
fails entirely recipe in Chapter 7, Database Administration, which was about
how BEGIN and COMMIT can be used to wrap several commands into one transaction.

378 Regular Maintenance

The reason to distinguish between these two states is that locks are released at the end of
a transaction. Hence, an idle in transaction session is not currently doing anything, but it
might be preventing other queries, including VACUUM, from accessing some tables.

Removing old prepared transactions
You may have been routed here from other recipes, so you might not even know what
prepared transactions are, let alone what an old prepared transaction looks like.

The good news is that prepared transactions don't just happen at random; they happen in
certain situations. If you don't know what I'm talking about, that's OK! You don't need to,
and better still, you probably don't have any prepared transactions either.

Prepared transactions are part of the two-phase commit feature, also known as 2PC. A
transaction commits in two stages rather than one, allowing multiple databases to have
synchronized commits. Its typical use is to combine multiple so-called resource managers
using the XA protocol, which is usually provided by a Transaction Manager (TM), as
used by the Java Transaction API (JTA) and others. If none of this means anything to
you, then you probably don't have any prepared transactions.

Getting ready
First, check the setting of max_prepared_transactions:

SHOW max_prepared_transactions;

If your setting is more than zero, check whether you have any prepared transactions. As an
example, you may find something like the following:

postgres=# SELECT * FROM pg_prepared_xacts;

-[RECORD 1]------------------------------

transaction | 459812

gid | prep1

prepared | 2017-04-11 13:21:51.912374+01

owner | postgres

database | postgres

Here, gid (the global identifier) will usually be automatically generated.

Removing old prepared transactions 379

How to do it…
Removing a prepared transaction is also referred to as resolving in-doubt transactions. The
transaction is stuck between committing and aborting. The database or TM may have
crashed, leaving the transaction midway through the two-phase commit process.

If you have a connection pool of 100 active connections and something crashes, you'll
probably find 1 to 20 transactions stuck in the prepared state, depending on how
long your average transaction is.

To resolve the transaction, we need to decide whether we want that change or not. The
best way to do this is to check what happened externally to PostgreSQL. That should help
you decide.

If you need further help, look at the There's more... section of this recipe.

If you wish to commit these changes, then use the following command:

COMMIT PREPARED 'prep1';

If you want to roll back these changes, then use the following command:

ROLLBACK PREPARED 'prep1';

How it works…
Prepared transactions are persistent across crashes, so you can't just do a fast restart to
get rid of them. They have both an internal transaction identifier and an external global
identifier. Either of these can be used to locate locked resources and help you decide how
to resolve the transactions.

There's more…
If you're not sure what the prepared transaction did, you can go and look, but this is time-
consuming. The pg_locks view shows locks that are held by prepared transactions. You
can get a full report of what is being locked by using the following query:

postgres=# SELECT l.locktype, x.database, l.relation, l.page,
l.tuple,l.classid, l.objid, l.objsubid, l.mode, x.transaction,
x.gid, x.prepared, x.owner

FROM pg_locks l JOIN pg_prepared_xacts x

ON l.virtualtransaction = '-1/' || x.transaction::text;

380 Regular Maintenance

The documents mention that you can join pg_locks to pg_prepared_xacts, but
they don't mention that, if you join directly on the transaction ID, all it tells you is that
there is a transaction lock unless there are some row-level locks. The table locks are listed
as being held by a virtual transaction. A simpler query is the following:

postgres=# SELECT DISTINCT x.database, l.relation

FROM pg_locks l JOIN pg_prepared_xacts x

ON l.virtualtransaction = '-1/' || x.transaction::text

WHERE l.locktype != 'transactionid';

database | relation

---------+----------

postgres | 16390

postgres | 16401

(2 rows)

This tells you which relationships in which databases have been touched by the remaining
prepared transactions. We don't know their names because we'd need to connect to those
databases to check.

It is much harder to check the rows that have been changed by a transaction until it is
committed and even then, deleted rows will be invisible.

Actions for heavy users of temporary tables
If you are a heavy user of temporary tables in your applications, then there are some
additional actions that you may need to perform.

How to do it…
There are four main things to check, which are as follows:

• Make sure you run VACUUM on system tables or enable autovacuum so that it will
do this for you.

• Monitor running queries to see how many temporary files are active and how large
they are.

• Tune the memory parameters. Think about increasing the temp_buffers
parameter, but be careful not to over-allocate memory.

Actions for heavy users of temporary tables 381

• Separate the temp table's I/O. In a query-intensive system, you may find that
reads/writes to temporary files exceed reads/writes on permanent data tables and
indexes. In this case, you should create new tablespace(s) on separate disks, and
ensure that the temp_tablespaces parameter is configured to use the additional
tablespace(s).

How it works…
When we create a temporary table, we insert entries into the pg_class, pg_type,
and pg_attribute catalog tables. These catalog tables and their indexes begin
to grow and bloat – an issue that will be covered in further recipes. To control that
growth, you can either vacuum those tables manually or let autovacuum do its
work. You cannot run ALTER TABLE against system tables, so it is not possible to set
specific autovacuum settings for any of these tables.

If you vacuum the system catalog tables manually, make sure that you get all of the system
tables. You can get the full list of tables to vacuum and a list of their indexes by using the
following query:

postgres=# SELECT relname, pg_relation_size(oid) FROM pg_class

WHERE relkind in ('i','r') AND relnamespace = 'pg_
catalog'::regnamespace

ORDER BY 2 DESC;

This results in the following output:

 relname | pg_relation_size

---------------------------------+------------------

 pg_proc | 450560

 pg_depend | 344064

 pg_attribute | 286720

 pg_depend_depender_index | 204800

 pg_depend_reference_index | 204800

 pg_proc_proname_args_nsp_index | 180224

 pg_description | 172032

 pg_attribute_relid_attnam_index | 114688

 pg_operator | 106496

 pg_statistic | 106496

 pg_description_o_c_o_index | 98304

 pg_attribute_relid_attnum_index | 81920

382 Regular Maintenance

 pg_proc_oid_index | 73728

 pg_rewrite | 73728

 pg_class | 57344

 pg_type | 57344

 pg_class_relname_nsp_index | 40960

...(partial listing)

The preceding values are for a newly created database. These tables can become very large
if they're not properly maintained, with values of 11 GB for one index being witnessed in
one unlucky installation.

Identifying and fixing bloated tables and
indexes
PostgreSQL implements Multiversion Concurrency Control (MVCC), which allows
users to read data at the same time as writers make changes. This is an important feature
for concurrency in database applications as it can allow the following:

• Better performance because of fewer locks

• Greatly reduced deadlocking

• Simplified application design and management

Bloated tables and indexes are a natural consequence of MVCC design in
PostgreSQL. Bloat is caused mainly by updates, as we must retain both the old and new
updates for a certain period. Since these extra row versions are required to provide
MVCC, some amount of bloat is normal and acceptable. Tuning to remove bloat
completely isn't useful and probably a waste of time.

Bloating results in increased disk consumption, as well as performance loss – if a table is
twice as big as it should be, scanning it takes twice as long. VACUUM is one of the best ways
of removing bloat.

Many users execute VACUUM far too frequently, while at the same time complaining
about the cost of doing so. This recipe is all about understanding when you need to
run VACUUM by estimating the amount of bloat in tables and indexes.

Identifying and fixing bloated tables and indexes 383

Getting ready
MVCC is a core part of PostgreSQL and cannot be turned off, nor would you want it to be.
The internals of MVCC have some implications for the DBA that need to be understood:
each row represents a row version, so it has two system columns – xmin and xmax
– indicating the identifiers of the two transactions when the version was created and
deleted, respectively. The value of xmax is NULL if that version has not been deleted yet.

The general idea is that, instead of removing row versions, we alter their visibility by
changing their xmin and/or xmax values. To be more precise, when a row is inserted,
its xmin value is set to the "XID" or transaction ID of the creating transaction,
while xmax is emptied; when a row is deleted, xmax is set to the number of the deleting
transaction, without actually removing the row. An UPDATE operation is treated similarly
to a DELETE operation, followed by INSERT; the deleted row represents the older
version, and the row that's been inserted is the newer version. Finally, when rolling back
a transaction, all of its changes are made invisible by marking that transaction ID as
aborted.

In this way, we get faster DELETE, UPDATE, and ROLLBACK statements, but the price
of these benefits is that the SQL UPDATE command can cause tables and indexes
to grow in size because they leave behind dead row versions. The DELETE and
aborted INSERT statements take up space, which must be reclaimed by garbage
collection. VACUUM is the command we use to reclaim space in a batch operation, though
there is another internal feature named Heap-Only Tuples (HOT), which allows us to
clean data blocks one at a time as we scan each data block if that is possible. HOT also
reduces index bloat since not all updates require index maintenance.

How to do it…
The best way to understand this is to look at things the same way that autovacuum does,
by using a view that's been created with the following query:

CREATE OR REPLACE VIEW av_needed AS

SELECT N.nspname, C.relname

, pg_stat_get_tuples_inserted(C.oid) AS n_tup_ins

, pg_stat_get_tuples_updated(C.oid) AS n_tup_upd

, pg_stat_get_tuples_deleted(C.oid) AS n_tup_del

, CASE WHEN pg_stat_get_tuples_updated(C.oid) > 0

 THEN pg_stat_get_tuples_hot_updated(C.oid)::real

 / pg_stat_get_tuples_updated(C.oid)

 END

384 Regular Maintenance

 AS HOT_update_ratio

, pg_stat_get_live_tuples(C.oid) AS n_live_tup

, pg_stat_get_dead_tuples(C.oid) AS n_dead_tup

, C.reltuples AS reltuples

, round(COALESCE(threshold.custom, current_setting('autovacuum_
vacuum_threshold'))::integer

 + COALESCE(scale_factor.custom, current_
setting('autovacuum_vacuum_scale_factor'))::numeric

 * C.reltuples)

 AS av_threshold

, date_trunc('minute',

 greatest(pg_stat_get_last_vacuum_time(C.oid),

 pg_stat_get_last_autovacuum_time(C.oid)))

 AS last_vacuum

, date_trunc('minute',

 greatest(pg_stat_get_last_analyze_time(C.oid),

 pg_stat_get_last_analyze_time(C.oid)))

 AS last_analyze

, pg_stat_get_dead_tuples(C.oid) >

 round(current_setting('autovacuum_vacuum_
threshold')::integer

 + current_setting('autovacuum_vacuum_scale_
factor')::numeric

 * C.reltuples)

 AS av_needed

, CASE WHEN reltuples > 0

 THEN round(100.0 * pg_stat_get_dead_tuples(C.oid) /
reltuples)

 ELSE 0 END

 AS pct_dead

FROM pg_class C

LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace)

NATURAL LEFT JOIN LATERAL (

 SELECT (regexp_match(unnest,'^[^=]+=(.+)$'))[1]

 FROM unnest(reloptions)

 WHERE unnest ~ '^autovacuum_vacuum_threshold='

) AS threshold(custom)

Identifying and fixing bloated tables and indexes 385

 NATURAL LEFT JOIN LATERAL (

 SELECT (regexp_match(unnest,'^[^=]+=(.+)$'))[1]

 FROM unnest(reloptions)

 WHERE unnest ~ '^autovacuum_vacuum_scale_factor='

) AS scale_factor(custom)

WHERE C.relkind IN ('r', 't', 'm')

 AND N.nspname NOT IN ('pg_catalog', 'information_schema')

 AND N.nspname NOT LIKE 'pg_toast%'

ORDER BY av_needed DESC, n_dead_tup DESC;

We can then use this to look at individual tables, as follows:

postgres=# \x

postgres=# SELECT * FROM av_needed WHERE nspname = 'public' AND
relname = 'pgbench_accounts';

We will get the following output:

-[RECORD 1]----+------------------------

nspname | public

relname | pgbench_accounts

n_tup_ins | 100001

n_tup_upd | 117201

n_tup_del | 1

hot_update_ratio | 0.123454578032611

n_live_tup | 100000

n_dead_tup | 0

reltuples | 100000

av_threshold | 20050

last_vacuum | 2010-04-29 01:33:00+01

last_analyze | 2010-04-28 15:21:00+01

av_needed | f

pct_dead | 0

How it works…
We can compare the number of dead row versions, shown as n_dead_tup, against the
required threshold, av_threshold.

386 Regular Maintenance

The preceding query doesn't take into account table-specific autovacuum thresholds. It
could do so if you need it, but the main purpose of the query is to give us information to
understand what is happening, and then set the parameters accordingly – not the other
way around.

Notice that the table query shows insertions, updates, and deletions so that you can
understand your workload better. There is also something named hot_update_ratio.
This shows the fraction of updates that take advantage of the HOT feature, which
allows a table to self-vacuum as the table changes. If that ratio is high, then you may
avoid VACUUM activities altogether or at least for long periods. If the ratio is low, then you
will need to execute VACUUM commands or autovacuum more frequently. Note that the
ratio never reaches 1.0, so if you have it above 0.95, then that is very good and you need
not think about it further.

HOT updates take place when the UPDATE statement does not change any of the column
values that are indexed by any index, and there is enough free space in the disk page where
the updated row is located. If you change even one column that is indexed by just one
index, then it will be a non-HOT update, and there will be a performance hit. So, carefully
selecting indexes can improve update performance and reduce the need for maintenance.
Also, if HOT updates do occur, though not often enough for your liking, you might want
to try to decrease the fillfactor storage parameter for the table to make more space
for them. Remember that this will only be important on your most active tables. Seldom
touched tables don't need much tuning.

To recap, non-HOT updates cause indexes to bloat. The following query is useful in
investigating the index size and how it changes over time. It runs fairly quickly and can be
used to monitor whether your indexes are changing in size over time:

SELECT

nspname,relname,

round(100 * pg_relation_size(indexrelid) /

 pg_relation_size(indrelid)) / 100

 AS index_ratio,

 pg_size_pretty(pg_relation_size(indexrelid))

 AS index_size,

 pg_size_pretty(pg_relation_size(indrelid))

 AS table_size

FROM pg_index I

LEFT JOIN pg_class C ON (C.oid = I.indexrelid)

LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace)

WHERE

Identifying and fixing bloated tables and indexes 387

 nspname NOT IN ('pg_catalog', 'information_schema', 'pg_
toast') AND

 C.relkind='i' AND

 pg_relation_size(indrelid) > 0;

Another route is to use the pgstattuple contrib extension, which provides very
detailed statistics on tables and indexes:

CREATE EXTENSION pgstattuple;

You can scan tables using pgstattuple(), as follows:

test=> SELECT * FROM pgstattuple('pg_catalog.pg_proc');

The output will look as follows:

-[RECORD 1]------+-------

table_len | 458752

tuple_count | 1470

tuple_len | 438896

tuple_percent | 95.67

dead_tuple_count | 11

dead_tuple_len | 3157

dead_tuple_percent | 0.69

free_space | 8932

free_percent | 1.95

The downside of pgstattuple is that it derives exact statistics by scanning the whole
table and counting everything. If you have time to scan the table, you may as well vacuum
the whole table anyway. So, a better idea is to use pgstattuple_approx(), which is
much, much faster, and yet is still fairly accurate. It works by accessing the table's visibility
map first and then only scanning the pages that need VACUUM, so I recommend that you
use it in all cases for checking tables (there is no equivalent for indexes since they don't
have a visibility map):

postgres=# select * from pgstattuple_approx('pgbench_
accounts');

-[RECORD 1]--------+-----------------

table_len | 268591104

scanned_percent | 0

approx_tuple_count | 1001738

388 Regular Maintenance

approx_tuple_len | 137442656

approx_tuple_percent | 51.1717082037088

dead_tuple_count | 0

dead_tuple_len | 0

dead_tuple_percent | 0

approx_free_space | 131148448

approx_free_percent | 48.8282917962912

You can also scan indexes using pgstatindex(), as follows:

postgres=> SELECT * FROM pgstatindex('pg_cast_oid_index');

-[RECORD 1]------+------

version | 2

tree_level | 0

index_size | 8192

root_block_no | 1

internal_pages | 0

leaf_pages | 1

empty_pages | 0

deleted_pages | 0

avg_leaf_density | 50.27

leaf_fragmentation | 0

There's more…
You may want to set up monitoring for the bloated tables and indexes. Look at the
Nagios plugin called check_postgres_bloat, which is a part of the check_
postgres plugins.

It provides some flexible options to assess bloat. Unfortunately, it's not that well
documented, but if you've read this, it should make sense. You'll need to play with it to get
the thresholding correct anyway, so that shouldn't be a problem.

Also, note that the only way to know for certain the exact bloat of a table or index is to
scan the whole relationship. Anything else is just an estimate and may lead to you running
maintenance either too early or too late.

Monitoring and tuning a vacuum 389

Monitoring and tuning a vacuum
This recipe covers both the VACUUM command and autovacuum, which I refer to
collectively as vacuums (non-capitalized).

If you're currently waiting for a long-running vacuum (or autovacuum) to finish, go
straight to the How to do it... section.

If you've just had a long-running vacuum complete, then you may want to think about
setting a few parameters for next time, so read the How it works… section.

Getting ready
Let's watch what happens when we run a large VACUUM. Don't run VACUUM FULL,
because it runs for a long time while holding an AccessExclusiveLock on the table.
Ouch.

First, locate which process is running this VACUUM by using the pg_stat_
activity view to identify the specific pid (34399 is just an example).

How to do it…
Repeatedly execute the following query to see the progress of the VACUUM command,
specifying the pid of the process you wish to monitor:

postgres=# SELECT * FROM pg_stat_progress_vacuum WHERE pid =
343

The next section explains what this all means.

390 Regular Maintenance

How it works…
VACUUM works in various phases:

1. The first phase is initializing but this phase is over so quickly that you'll never see it.
2. The first main phase is scanning heap, which performs about 90% of the cleanup

of data blocks in the heap. The heap_blks_scanned columns will increase
from 0 up to the value of heap_blks_total. The number of blocks that have
been vacuumed is shown as heap_blks_vacuumed, and the resulting rows to be
removed are shown as num_dead_tuples. During this phase, by default, VACUUM
will skip blocks that are currently being pinned by other users – the DISABLE_
PAGE_SKIPPING option controls that behavior. If num_dead_tuples reaches
max_dead_tuples, then we move straight to the next phase, though we will
return later to continue scanning:

pid | 34399

datid | 12515

datname | postgres

relid | 16422

phase | scanning heap

heap_blks_total | 32787

heap_blks_scanned | 25207

heap_blks_vacuumed | 0

index_vacuum_count | 0

max_dead_tuples | 9541017

num_dead_tuples | 537600

3. After this, we switch to the second main phase, where we start vacuuming indexes.
We can avoid scanning the indexes altogether, so you may find that vacuuming
is faster in this release. You can control whether indexes are vacuumed by setting
the vacuum_cleanup_index_scale_factor parameter, which can also be set
at the table level if needed, though the default value seems good.

Monitoring and tuning a vacuum 391

While this phase is happening, the progress data doesn't change until it has
vacuumed all of the indexes. This phase can take a long time; more indexes increase
the time that is required unless you specify parallelism (more on this later). After
this phase, we increment index_vacuum_count. Note that this does not refer to
the number of indexes on the table, only how many times we have scanned all the
indexes:

pid | 3439

datid | 12515

datname | postgres

relid | 16422

phase | vacuuming indexes

heap_blks_total | 32787

heap_blks_scanned | 32787

heap_blks_vacuumed | 0

index_vacuum_count | 0

max_dead_tuples | 9541017

num_dead_tuples | 999966

4. Once the indexes have been vacuumed, we move onto the third main phase, where
we return to vacuuming the heap. In this phase, we scan through the heap, skipping
any blocks that did not have dead tuples, and removing completely any old tuple
item pointers.

5. If num_dead_tuples reaches the limit of max_dead_tuples, then we repeat
phases (1) "scanning heap," (2) "vacuuming indexes," and then (3) "vacuuming
the heap" until the whole table has been scanned. Each iteration will further
increment index_vacuum_count. The value of max_dead_tuples is
controlled by the setting of maintenance_work_mem. PostgreSQL needs 6
bytes of memory for each dead row pointer. It's a good idea to set maintenance_
work_mem high enough to avoid multiple iterations since these can take lots of
extra time:

pid | 34399

datid | 12515

datname | postgres

relid | 16422

phase | vacuuming heap

heap_blks_total | 32787

heap_blks_scanned | 32787

392 Regular Maintenance

heap_blks_vacuumed | 25051

index_vacuum_count | 1

max_dead_tuples | 9541017

num_dead_tuples | 999966

6. If the indexes were vacuumed, we then clean up the indexes, which is a short phase
where various pieces of metadata are updated.

7. If there are many empty blocks at the end of the table, VACUUM will attempt to
get AccessExclusiveLock on the table. Once acquired, it will truncate the end
of the table, showing a phase of truncating the heap. Truncation does not occur
every time because PostgreSQL will only attempt it if the gain is significant and
if there's no conflicting lock; if it does, the truncation can often last a long time
because it reads from the end of the table backward to find the truncation point.
(Note that AccessExclusiveLock is passed through to physical replication
standby servers and can cause replication conflicts, so you may wish to avoid it by
using the TRUNCATE OFF option. You can also set the vacuum_truncate option
on a table to ensure autovacuum doesn't attempt the truncation. However, there is
no function to specifically request truncation of a table as an individual action.)

8. Once a table has been vacuumed, we vacuum the TOAST table by default. This
behavior is controlled by the TOAST option. This isn't shown as a separate phase in
the progress view; vacuuming the TOAST table will be shown as a separate vacuum.

To make VACUUM run in minimal time, maintenance_work_mem should be set to
anything up to 1 GB, according to how much memory you can allocate to this task at this
time. This will minimize the number of times indexes are scanned. If you avoid running
vacuums, then more dead rows will be collected when it runs, which may cause an
overflow of max_dead_tuples, thus causing the vacuum to take longer to run.

Using the INDEX_CLEANUP OFF option allows you to request that steps after "scanning
heap" will be skipped, which will then make VACUUM go much faster. This is not an option
with autovacuum.

If your filesystem supports it, you may also be able to set maintenance_io_
concurrency to an optimal value for running ANALYZE and VACUUM.

VACUUM can be blocked while waiting for table-level locks by other DDL statements
such as a long-running ALTER TABLE or CREATE INDEX. If that happens, the lock
waits are not shown in the progress view, so you may also want to look in the pg_stat_
activity or pg_locks views. You can request that locked tables be skipped with the
SKIP_LOCKED option.

Monitoring and tuning a vacuum 393

You can request multiple options for a VACUUM command, as shown in these examples,
both of which do the same thing:

VACUUM (DISABLE_PAGE_SKIPPING, SKIP_LOCKED, VERBOSE) my_table;

VACUUM (DISABLE_PAGE_SKIPPING ON, SKIP_LOCKED ON, VERBOSE ON,
ANALYZE OFF) my_table;

There's more…
VACUUM doesn't run in parallel on a single table. However, if you have more than one
index on a table, the index scanning phases can be conducted in parallel, if specifically
requested by the user – autovacuum never does this. To use this feature, add the
PARALLEL option and specify the number of workers, which will be limited to the
number of indexes, the value of max_parallel_maintenance_workers, and
whether we exceed min_parallel_index_scan_size.

If you want to run multiple VACUUMs at once, you can do this by, for example,
running four vacuums, each job with up to two parallel workers to scan indexes,
scanning all databases:

$ vacuumdb --jobs=4 –parallel=2 --all

If you run multiple VACUUM at once, you'll use more memory and I/O, so be careful.

Vacuums can be slowed down by raising vacuum_cost_delay or lowering vacuum_
cost_limit. Setting vacuum_cost_delay too high is counterproductive. VACUUM is
your friend, not your enemy, so delaying it until it doesn't happen at all just makes things
worse. Be careful.

Each vacuum sleeps when the work it has performed takes it over its limit, so the
processes running VACUUM do not all sleep at the same time.

VACUUM commands use the value of vacuum_cost_limit as their limit.

For autovacuum workers, their limit is a share of the total autovacuum_vacuum_
cost_limit, so the total amount of work that's done is the same no matter what the
setting of autovacuum_max_workers.

autovacuum_max_workers should always be set to more than 2 to ensure that all the
tables can begin vacuuming when they need it. Setting it too high may not be very useful,
so you need to be careful.

If you need to change the settings to slow down or speed up a running process, then
vacuums will pick up any new default settings when you reload the postgresql.
conf file.

394 Regular Maintenance

If you do choose to run VACUUM FULL, the progress for that is available in PostgreSQL
12+ via the pg_stat_progress_cluster catalog view, which also covers the
CLUSTER command. Note that you can have multiple jobs running VACUUM FULL, but
you should not specify parallel workers when using FULL to avoid deadlocks.

PostgreSQL 13+ allows ANALYZE progress reporting via pg_stat_progress_
analyze. ANALYZE ignores any parallel workers that have been set.

Maintaining indexes
Just as tables can become bloated, so can indexes. However, reusing space in indexes is
much less effective. In the Identifying and fixing bloated tables and indexes recipe, you
saw that non-HOT updates can cause bloated indexes. Non-primary key indexes are also
prone to some bloat from normal INSERT commands, as is common in most relational
databases. Indexes can become a problem in many database applications that involve a
high proportion of INSERT and DELETE commands.

autovacuum does not detect bloated indexes, nor does it do anything to rebuild indexes.
Therefore, we need to look at other ways to maintain indexes.

Getting ready
PostgreSQL supports commands that will rebuild indexes for you. The client
utility, reindexdb, allows you to execute the REINDEX command conveniently from the
operating system:

$ reindexdb

This executes the SQL REINDEX command on every table in the default database. If you
want to reindex all your databases, then use the following command:

$ reindexdb -a

That's what the manual says, anyway. My experience is that many indexes don't need
rebuilding, so you should probably be more selective of what you rebuild.

Also, REINDEX puts a full table lock (AccessExclusiveLock) on the table while
it runs, preventing even SELECTs against the table. You don't want to run that on your
whole database!

So, I recommend that you rebuild individual indexes or all the indexes on one table at
a time.

Maintaining indexes 395

Try these steps instead:

1. First, let's create a test table with two indexes – a primary key and an additional
index – as follows:

DROP TABLE IF EXISTS test; CREATE TABLE test

(id INTEGER PRIMARY KEY

,category TEXT

, value TEXT);

CREATE INDEX ON test (category);

2. Now, let's look at the internal identifier of the tables, oid, and the current file
number (relfilenodes), as follows:

SELECT oid, relname, relfilenode

FROM pg_class

WHERE oid in (SELECT indexrelid

 FROM pg_index

 WHERE indrelid = 'test'::regclass);

 oid | relname | relfilenode

 -------+-------------------+-------------

 16639 | test_pkey | 16639

 16641 | test_category_idx | 16641

 (2 rows)

How to do it…
PostgreSQL supports a command known as REINDEX CONCURRENTLY, which builds an
index without taking a painful AccessExclusiveLock:

REINDEX INDEX CONCURRENTLY test_category_idx;

When we check our internal identifiers again, we get the following:

SELECT oid, relname, relfilenode

FROM pg_class

WHERE oid in (SELECT indexrelid

 FROM pg_index

 WHERE indrelid = 'test'::regclass);

 oid | relname | relfilenode

396 Regular Maintenance

-------+-------------------+-------------

 16639 | test_pkey | 16639

 16642 | test_category_idx | 16642

(2 rows)

Here, we can see that test_category_idx is now a completely new index.

This seems pretty good, and it works on primary keys too.

If you do choose to use the reindexdb tool, make sure that you use these options to
reindex one table at a time, concurrently, with some useful output:

$ reindexdb --concurrently -t test --verbose

INFO: index "public.test_category_idx" was reindexed

INFO: index "public.test_pkey" was reindexed

INFO: index "pg_toast.pg_toast_16414_index" was reindexed

INFO: table "public.test" was reindexed

DETAIL: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.02 s.

How it works…
The REINDEX INDEX CONCURRENTLY statement allows the INSERT, UPDATE,
and DELETE commands to be used while the index is being created. It cannot be executed
inside another transaction, and only one index per table can be created concurrently at
any time.

If you perform REINDEX TABLE CONCURRENTLY, then each index will be recreated
one after the other. However, each index can be built in parallel, as discussed shortly.

REINDEX will also work on partitioned tables, from PostgreSQL 14+.

You can also now use REINDEX to change the tablespaces of indexes, as it works.

Also new in PostgreSQL 14+ is the ability to use VACUUM to ignore long-running
transactions that execute REINDEX on other tables, making it even more practical to use
on production database servers.

Finding unused indexes 397

There's more…
CREATE INDEX/ REINDEX for B-tree indexes can be run in parallel for PostgreSQL
11+. The amount of parallelism will be directly controlled by the setting of a
table's parallel_workers parameter. Be careful since setting this at the table level
affects all queries, not just the index build/rebuild. If the table-level parameter is not
set, then the maintenance_work_mem and max_parallel_maintenance_
workers parameters will determine how many workers will be used; the default is 64
MB for maintenance_work_mem and 2 MB for max_parallel_maintenance_
workers. Increase both to get further gains in performance and/or concurrency. Note
that these workers are shared across all users, so be careful not to over-allocate jobs;
otherwise, there won't be enough workers to let everybody run in parallel.

If you are fairly new to database systems, you may think that rebuilding indexes for
performance is something that only PostgreSQL needs to do. Other DBMSes require this
as well – they just don't say so.

Indexes are designed for performance and, in all databases, deleting index entries causes
contention and loss of performance. PostgreSQL does not remove index entries for a row
when that row is deleted, so an index can be filled with dead entries. PostgreSQL attempts
to remove dead entries when a block becomes full, but that doesn't stop a small number of
dead entries from accumulating in many data blocks.

Finding unused indexes
Selecting the correct set of indexes for a workload is known to be a hard problem. It
usually involves trial and error by developers and DBAs to get a good mix of indexes.

Tools for identifying slow queries exist and many SELECT statements can be improved by
adding an index.

What many people forget is to check whether the mix of indexes remains valuable over
time, which is something for the DBA to investigate and optimize.

How to do it…
PostgreSQL keeps track of each access against an index. We can view that information and
use it to see whether an index is unused, as follows:

postgres=# SELECT schemaname, relname, indexrelname, idx_scan

FROM pg_stat_user_indexes ORDER BY idx_scan;

 schemaname | indexrelname | idx_scan

------------+--------------------------+----------

398 Regular Maintenance

 public | pgbench_accounts_bid_idx | 0

 public | pgbench_branches_pkey | 14575

 public | pgbench_tellers_pkey | 15350

 public | pgbench_accounts_pkey | 114400

(4 rows)

As shown in the preceding code, there is one unused index, alongside others that have
some usage. You now need to decide whether unused means that you should remove the
index. That is a more complex question, so we need to explain how it works.

How it works…
The PostgreSQL statistics accumulate various pieces of useful information. These statistics
can be reset to zero using an administrator function. Also, as the data accumulates over
time, we usually find that objects that have been there for longer periods have higher
apparent usage. So, if we see a low number for idx_scan, then it may be that the index
was newly created (as was the case in my preceding demonstration), or that the index
is only used by a part of the application that runs only at certain times of the day, week,
month, and so on.

Another important consideration is that the index may be a unique constraint
index that exists specifically to safeguard against duplicate INSERT commands.
An INSERT operation does not show up as idx_scan, even if the index was used while
checking the uniqueness of the newly inserted values, whereas UPDATE or DELETE may
show up because they have to locate the row first. So, a table that only
has INSERT commands against it will appear to have unused indexes.

Here is an updated version of the preceding query, which excludes unique constraint
indexes:

SELECT schemaname

 , relname

 , indexrelname

 , idx_scan

 FROM pg_stat_user_indexes i

 LEFT JOIN pg_constraint c

 ON i.indexrelid = c.conindid

 WHERE c.contype IS NULL

ORDER BY idx_scan DESC;

Carefully removing unwanted indexes 399

Also, some indexes that show usage might be showing historical usage, and there is no
further usage. Alternatively, it might be the case that some queries use an index where
they could just as easily and almost as cheaply use an alternative index. Those things are
for you to explore and understand before you take action. A very common approach is
to regularly monitor such numbers to gain knowledge by examining their evolution over
time, both on the master database and any replicated Hot Standby nodes.

In the end, you may decide that you want to remove an index. If only there was a way to
try removing an index and then put it back again quickly, in case you cause problems!
Rebuilding an index may take hours on a big table, so these decisions can be a little scary.
No worries! Just follow the next recipe, Carefully removing unwanted indexes.

Carefully removing unwanted indexes
Carefully removing? Do you mean pressing Enter gently after typing DROP INDEX? Err,
no!

The reasoning is that it takes a long time to build an index and a short time to drop it.

What we want is a way of removing an index so that if we discover that removing it was a
mistake, we can put the index back again quickly.

Getting ready
The following query will list all invalid indexes, if any:

SELECT ir.relname AS indexname

, it.relname AS tablename

, n.nspname AS schemaname

FROM pg_index i

JOIN pg_class ir ON ir.oid = i.indexrelid

JOIN pg_class it ON it.oid = i.indrelid

JOIN pg_namespace n ON n.oid = it.relnamespace

WHERE NOT i.indisvalid;

Take note of these indexes so that you can tell whether a given index is invalid later
because we marked it as invalid during this recipe, in which case it can safely be marked as
valid, or because it was already invalid for other reasons.

400 Regular Maintenance

How to do it…
Here, we will describe a procedure that allows us to deactivate an index without actually
dropping it so that we can appreciate what its contribution was and possibly reactivate it:

1. First, create the following function:

CREATE OR REPLACE FUNCTION trial_drop_index(iname
TEXT) RETURNS VOID

LANGUAGE SQL AS $$ UPDATE pg_index

SET indisvalid = false

WHERE indexrelid = $1::regclass;

$$;

2. Then run it to perform a trial of dropping the index.
3. If you experience performance issues after dropping the index, then use the

following function to undrop the index:

CREATE OR REPLACE FUNCTION trial_undrop_index(iname
TEXT) RETURNS VOID

LANGUAGE SQL AS

$$ UPDATE pg_index

SET indisvalid = true

WHERE indexrelid = $1::regclass;

$$;

Note
Be careful to avoid undropping any index that was detected by the query in
the Getting ready section; if it wasn't marked as invalid when applying this
recipe, then it may be unusable because it isn't valid.

How it works…
This recipe also uses some inside knowledge. When we create an index using CREATE
INDEX CONCURRENTLY, it is a two-stage process. The first phase builds the index and
then marks it as invalid. The INSERT, UPDATE, and DELETE statements now begin
maintaining the index, but we perform a further pass over the table to see whether we
missed anything, before declaring the index valid. User queries don't use the index until it
says that it is valid.

Planning maintenance 401

Once the index has been built and the valid flag has been set, if we set the flag to invalid,
the index will still be maintained. It's just that it will not be used by queries. This allows us
to turn the index off quickly, though with the option to turn it on again if we realize that
we do need the index after all. This makes it practical to test whether dropping the index
will alter the performance of any of your most important queries.

Planning maintenance
Monitoring systems are not a substitute for good planning. They alert you to unplanned
situations that need attention. The more unplanned things you respond to, the greater
the chance that you will need to respond to multiple emergencies at once. And when that
happens, something will break. Ultimately, that is your fault. If you wish to take your
responsibilities seriously, you should plan for this.

How to do it…
This recipe is all about planning, so we'll provide discussion points rather than portions of
code. We'll cover the main points that should be addressed and provide a list of points as
food for thought, around which the actual implementation should be built:

• Let's break a rule: If you don't have a backup, take one now. I mean now – go on,
off you go! Then, let's talk some more about planning maintenance. If you already
have, well done! It's hard to keep your job as a DBA if you lose data because of
missing backups, especially today, when everybody's grandmother knows to keep
their photos backed up.

• First, plan your time: Decide on a regular date to perform certain actions. Don't
allow yourself to be a puppet of your monitoring system, running up and down
every time the lights change. If you keep getting dragged off on other assignments,
then you must understand that you need to get a good handle on the database
maintenance to make sure that it doesn't bite you.

• Don't be scared: It's easy to worry about what you don't know, and either
overreact or underreact. Your database probably doesn't need to be inspected daily,
but it's never a bad practice.

402 Regular Maintenance

How it works…
Build a regular cycle of activity around the following tasks:

• Capacity planning: Observe long-term trends in system performance and keep
track of the growth of database volumes. Plan to schedule any new data feeds and
new projects that increase the rates of change. This is best done monthly so that you
can monitor what has happened and what will happen.

• Backups, recovery testing, and emergency planning: Organize regular reviews of
written plans and test scripts. Check the tape rotation, confirm that you still have
the password to the off-site backups, and so on. Some sysadmins run a test recovery
every night so that they always know that successful recovery is possible.

• Vacuum and index maintenance: Do this to reduce bloat, as well as
to collect optimizer statistics through the ANALYZE command. Also,
regularly check index usage, drop unused indexes, and reindex concurrently
as needed. Consider VACUUM again, with the need to manage the less
frequent freezing process. This is listed as a separate task so that you don't ignore
this and let it bite you later!

• Server log file analysis: How many times has the server restarted? Are you sure you
know about each incident?

• Security and intrusion detection: Has your database already been hacked? What
did they do?

• Understanding usage patterns: If you don't know much about what your database
is used for, then I'll wager it is not very well tuned or maintained.

• Long-term performance analysis: It's a common occurrence for me to get asked
to come and tune a slow system. Often, what happens is that a database server gets
slower over a very long period. Nobody ever noticed any particular day when it
got slow – it just got slower over time. Keeping records of response times over time
can help you confirm whether everything is as good now as it was months or years
earlier. This activity is where you may reconsider current index choices.

Many of these activities are mentioned in this chapter or throughout the rest of this
cookbook. Some are not because they aren't very technical and are more about planning
and understanding your environment.

Planning maintenance 403

There's more…
You may also find time to consider the following:

• Data quality: Is the content of the database accurate and meaningful? Could the
data be enhanced?

• Business intelligence: Is the data being used for everything that can bring value to
the organization?

10
Performance and

Concurrency
Performance and concurrency are two problems that are often tightly coupled—when
concurrency problems are encountered, performance usually degrades, in some cases by a
lot. If you take care of concurrency problems, you will achieve better performance.

In this chapter, you will see how to find slow queries and how to find queries that make
other queries slow.

Performance tuning, unfortunately, is still not an exact science, so you may also encounter
a performance problem that's not covered by any of the given methods.

We will also see how to get help in the final recipe, Reporting performance problems, in
case none of the other recipes that are covered here work.

406 Performance and Concurrency

In this chapter, we will cover the following recipes:

• Finding slow SQL statements

• Finding out what makes SQL slow

• Reducing the number of rows returned

• Simplifying complex SQL queries

• Speeding up queries without rewriting them

• Discovering why a query is not using an index

• Forcing a query to use an index

• Using parallel query

• Creating time-series tables using partitioning

• Using optimistic locking to avoid long lock waits

• Reporting performance problems

Finding slow SQL statements
Two main kinds of slowness can manifest themselves in a database.

The first kind is a single query that can be too slow to be really usable, such as a customer
information query in a customer relationship management (CRM) system running for
minutes, a password check query running in tens of seconds, or a daily data aggregation
query running for more than a day. These can be found by logging queries that take over a
certain amount of time, either at the client end or in the database.

The second kind is a query that is run frequently (say a few thousand times a second) and
used to run in single-digit milliseconds (ms) but is now running in several tens or even
hundreds of milliseconds, hence slowing the system down.

Here, we will show you several ways to find statements that are either slow or cause the
database as a whole to slow down (although they are not slow by themselves).

Finding slow SQL statements 407

Getting ready
Connect to the database as the user whose statements you want to investigate or as a
superuser to investigate all users' querie:.

1. Check that you have the pg_stat_statements extension installed:

 postgres=# \x

 postgres=# \dx pg_stat_statements

2. Here is a list of our installed extensions:

-[RECORD 1]--

Name | pg_stat_statements

Version | 1.9

Schema | public

Description | track execution statistics of all SQL
statements executed

3. If you can't see them, then issue the following command:

postgres=# CREATE EXTENSION pg_stat_statements;

postgres=# ALTER SYSTEM

 SET shared_preload_libraries = 'pg_stat_
statements';

4. Then, restart the server, or refer to the Using an installed module and Managing
installed extensions recipes from Chapter 3, Server Configuration, for more details.

How to do it…
Run this query to look at the top 10 highest workloads on your server side:

postgres=# SELECT calls, total_exec_time, query

 FROM pg_stat_statements

 ORDER BY total_exec_time DESC LIMIT 10;

The output is ordered by total_exec_time, so it doesn't matter whether it was a single
query or thousands of smaller queries.

408 Performance and Concurrency

Many additional columns are useful in tracking down further information about
particular entries:

postgres=# \d pg_stat_statements

 View "public.pg_stat_statements"

 Column | Type | Modifiers

---------------------+------------------+-----------

 userid | oid |

 dbid | oid |

 toplevel | bool |

Unique identifier for SQL

 queryid | bigint |

The SQL being executed

 query | text |

Number of times planned and timings

 plans | bigint |

 total_plan_time | double precision |

 min_plan_time | double precision |

 max_plan_time | double precision |

 mean_plan_time | double precision |

 stddev_plan_time | double precision |

Number of times executed and timings

 calls | bigint |

 total_exec_time | double precision |

 min_exec_time | double precision |

 max_exec_time | double precision |

 mean_exec_time | double precision |

 stddev_exec_time | double precision |

Number of rows returned by query

 rows | bigint |

Columns related to tables that all users can access

Finding slow SQL statements 409

 shared_blks_hit | bigint |

 shared_blks_read | bigint |

 shared_blks_dirtied | bigint |

 shared_blks_written | bigint |

Columns related to session-specific temporary tables

 local_blks_hit | bigint |

 local_blks_read | bigint |

 local_blks_dirtied | bigint |

 local_blks_written | bigint |

Columns related to temporary files

 temp_blks_read | bigint |

 temp_blks_written | bigint |

I/O timing

 blk_read_time | double precision |

 blk_write_time | double precision |

Columns related to WAL usage

 wal_records | bigint |

 wal_fpi | bigint |

 wal_bytes | numeric |

How it works…
pg_stat_statements collects data on all running queries by accumulating data in
memory, with low overheads.

Similar SQL statements are normalized so that the constants and parameters that are
used for execution are removed. This allows you to see all similar SQL statements in one
line of the report, rather than seeing thousands of lines, which would be fairly useless.
While useful, it can sometimes mean that it's hard to work out which parameter values are
actually causing the problem.

410 Performance and Concurrency

There's more…
Another way to find slow queries is to set up PostgreSQL to log them to the server log.
For example, if you decide to monitor any query that takes over 10 seconds, then use the
following command:

postgres=# ALTER SYSTEM

 SET log_min_duration_statement = 10000;

Remember that the duration is in ms. After doing this, reload PostgreSQL. All queries
whose duration exceeds the threshold will be logged. You should pick a threshold that is
above 99% of queries so that you only get the worst outliers logged. As you progressively
tune your system, you can reduce the threshold over time.

PostgreSQL log files are usually located together with other log files; for example, on
Debian/Ubuntu Linux, they are in the /var/log/postgresql/ directory.

If you set log_min_duration_statement = 0, then all queries would be logged,
which will typically swamp the log file, causing more performance problems itself, and
thus this is not recommended. A better idea would be to use the log_min_duration_
sample parameter, available in PostgreSQL 13+, to set a limit for sampling queries. The
two settings are designed to work together:

• Any query elapsed time less than log_min_duration_sample is not logged at
all.

• Any query elapsed time higher than log_min_duration_statement is always
logged.

• For any query elapsed time that falls between the two settings, we sample
the queries and log them at a rate set by log_statement_sample_rate
(default 1.0 = all). Note that the sampling is blind—it is not stratified/
weighted, so rare queries may not show up at all in the log.

Query logging will show the parameters that are being used for the slow query, even
when pg_stat_statements does not.

Finding out what makes SQL slow
An SQL statement can be slow for a lot of reasons. Here, we will provide a short list of
these reasons, with at least one way of recognizing each.

Finding out what makes SQL slow 411

Getting ready
If the SQL statement is still running, look at Chapter 8, Monitoring and Diagnosis.

How to do it…
The core issues are likely to be the following:

• You're asking the SQL statement to do too much work.

• Something is stopping the SQL statement from doing the work.

This might not sound that helpful at first, but it's good to know that there's nothing really
magical going on that you can't understand if you look.

In more detail, the main reasons/issues are these:

• Returning too much data.

• Processing too much data.

• Index needed.

• The wrong plan for other reasons—for example, poor estimates.

• Locking problems.

• Cache or input/output (I/O) problems. It's possible the system itself has bottlenecks
such as single-core, slow central processing units (CPUs), insufficient memory, or
reduced I/O throughput. Those issues may be outside the scope of this book—here,
we discuss just the database issues.

The first issue can be handled as described in the Reducing the number of rows
returned recipe. The rest of the preceding reasons can be investigated from two
perspectives: the SQL itself and the objects that the SQL touches. Let's start by looking
at the SQL itself by running the query with EXPLAIN ANALYZE. We're going to use the
optional form, as follows:

postgres=# EXPLAIN (ANALYZE, BUFFERS) ...SQL...

412 Performance and Concurrency

The EXPLAIN command provides output to describe the execution plan of the SQL,
showing access paths and costs (in abstract units). The ANALYZE option causes the
statement to be executed (be careful), with instrumentation to show the number of
rows accessed and the timings for that part of the plan. The BUFFERS option provides
information about the number of database buffers read and the number of buffers that
were hit in the cache. Taken together, we have everything we need to diagnose whether
the SQL performance is reduced by one of the earlier mentioned issues:

postgres=# EXPLAIN (ANALYZE, BUFFERS) SELECT count(*) FROM t;

 QUERY PLAN

--

 Aggregate (cost=4427.27..4427.28 rows=1 width=0) \

 (actual time=32.953..32.954 rows=1 loops=1)

 Buffers: shared hit=X read=Y

 -> Seq Scan on t (cost=0.00..4425.01 rows=901 width=0) \

 (actual time=30.350..31.646 rows=901 loops=1)

 Buffers: shared hit=X read=Y

 Planning time: 0.045 ms

 Execution time: 33.128 ms

(6 rows)

Let's use this technique to look at an SQL statement that would benefit from an index.

For example, if you want to get the three latest rows in a 1 million row table, run the
following query:

SELECT * FROM events ORDER BY id DESC LIMIT 3;

You can either read through just three rows using an index on the id SERIAL column or
you can perform a sequential scan of all rows followed by a sort, as shown in the following
code snippet. Your choice depends on whether you have a usable index on the field from
which you want to get the top three rows:

postgres=# CREATE TABLE events(id SERIAL);

CREATE TABLE

postgres=# INSERT INTO events SELECT generate_
series(1,1000000);

INSERT 0 1000000

postgres=# EXPLAIN (ANALYZE)

 SELECT * FROM events ORDER BY id DESC LIMIT 3;

Finding out what makes SQL slow 413

 QUERY PLAN

--

 Limit (cost=25500.67..25500.68 rows=3 width=4) \

 (actual time=3143.493..3143.502 rows=3 loops=1)

 -> Sort (cost=25500.67..27853.87 rows=941280 width=4)

 (actual time=3143.488..3143.490 rows=3 loops=1)

 Sort Key: id DESC

 Sort Method: top-N heapsort Memory: 25kB

 -> Seq Scan on events

 (cost=0.00..13334.80 rows=941280 width=4)

 (actual time=0.105..1534.418 rows=1000000 loops=1)

 Planning time: 0.331 ms

 Execution time: 3143.584 ms

(10 rows)

postgres=# CREATE INDEX events_id_ndx ON events(id);

CREATE INDEX

postgres=# EXPLAIN (ANALYZE)

 SELECT * FROM events ORDER BY id DESC LIMIT 3;

 QUERY PLAN

--

 Limit (cost=0.00..0.08 rows=3 width=4) (actual

 time=0.295..0.311 rows=3 loops=1)

 -> Index Scan Backward using events_id_ndx on events

 (cost=0.00..27717.34 rows=1000000 width=4) (actual

 time=0.289..0.295 rows=3 loops=1)

 Total runtime: 0.364 ms

(3 rows)

This produces a huge difference in query runtime, even when all of the data is in
the cache.

If you run the same analysis using EXPLAIN (ANALYZE, BUFFERS) on your
production system, you'll be able to see the cache effects as well. Databases work well if
the "active set" of data blocks in a database can be cached in random-access memory
(RAM). The active set, also known as the working set, is a subset of the data that is
accessed by queries on a regular basis. Each new index you add will increase the pressure
on the cache, so it is possible to have too many indexes.

414 Performance and Concurrency

You can also look at the statistics for objects touched by queries, as mentioned in
the Knowing whether anybody is using a specific table recipe from Chapter 8, Monitoring
and Diagnosis. In pg_stat_user_tables, the fast growth of seq_tup_read means
that there are lots of sequential scans occurring. The ratio of seq_tup_read to seq_
scan shows how many tuples each seqscan reads. Similarly, the idx_scan and idx_
tup_fetch columns show whether indexes are being used and how effective they are.

There's more…
If not enough of the data fits in the shared buffers, lots of rereading of the same
data happens, causing performance issues. In pg_statio_user_tables, watch
the heap_blks_hit and heap_blks_read fields, or the equivalent ones for index
and toast relations. They give you a fairly good idea of how much of your data is found
in PostgreSQL's shared buffers (heap_blks_hit) and how much had to be fetched
from the disk (heap_blks_read). If you see large numbers of blocks being read from
the disk continuously, you may want to tune those queries; if you determine that the disk
reads were justified, you can make the configured shared_buffers value bigger.

If your shared_buffers parameter is tuned properly and you can't rewrite the query to
perform less block I/O, you might need a bigger server.

You can find a lot of resources on the web that explain how shared buffers work and how
to set them based on your available hardware and your expected data access patterns. Our
professional advice is to always test your database servers and perform benchmarks before
you deploy them in production. Information on the shared_buffers configuration
parameter can be found at http://www.postgresql.org/docs/current/
static/runtime-config-resource.html.

Locking problems
Thanks to its multi-version concurrency control (MVCC) design, PostgreSQL does not
suffer from most locking problems, such as writers locking out readers or readers locking
out writers, but it still has to take locks when more than one process wants to update the
same row. Also, it has to hold the write lock until the current writer's transaction finishes.

So, if you have a database design where many queries update the same record, you can
have a locking problem. Running Data Definition Language (DDL) will also require
stronger locks that may interrupt applications.

Refer to the Knowing who is blocking a query recipe of Chapter 8, Monitoring and
Diagnosis, for more detailed information.

http://www.postgresql.org/docs/current/static/runtime-config-resource.html
http://www.postgresql.org/docs/current/static/runtime-config-resource.html

Reducing the number of rows returned 415

To diagnose locking problems retrospectively, use the log_lock_waits parameter to
generate log output for locks that are held for a long time.

EXPLAIN options
Use the FORMAT option to retrieve the output of EXPLAIN in a different format, such as
JavaScript Object Notation (JSON), Extensible Markup Language (XML), and YAML
Ain't Markup Language (YAML). This could allow us to write programs to manipulate
the outputs.

The following command is an example of this:

EXPLAIN (ANALYZE, BUFFERS, FORMAT JSON) SELECT count(*) FROM t;

Not enough CPU power or disk I/O capacity for the current load
These issues are usually caused by suboptimal query plans but, sometimes,
your computer is just not powerful enough.

In this case, top is your friend. For quick checks, run the following code from the
command line:

user@host:~$ top

First, watch the percentage of idle CPU from top. If this is in low single digits most of the
time, you probably have problems with the CPU's power.

If you have a high load average with a lot of CPU idle left, you are probably out of disk
bandwidth. In this case, you should also have lots of Postgres processes in the D status,
meaning that the process is in an uninterruptible state (usually waiting for I/O).

See also
For further information on the syntax of the EXPLAIN SQL command, refer to the
PostgreSQL documentation at http://www.postgresql.org/docs/current/
static/sql-explain.html.

Reducing the number of rows returned
Although the problem often produces too many rows in the first place, it is made worse by
returning all unnecessary rows to the client. This is especially true if the client and server
are not on the same host.

Here are some ways to reduce the traffic between the client and server.

http://www.postgresql.org/docs/current/static/sql-explain.html
http://www.postgresql.org/docs/current/static/sql-explain.html

416 Performance and Concurrency

How to do it…
Consider the following scenario: a full-text search returns 10,000 documents, but only the
first 20 are displayed to users. In this case, order the documents by rank on the server, and
return only the top 20 that actually need to be displayed:

SELECT title, ts_rank_cd(body_tsv, query, 20) AS text_rank

FROM articles, plainto_tsquery('spicy potatoes') AS query

WHERE body_tsv @@ query

ORDER BY rank DESC

LIMIT 20

;

The ORDER BY clause ensures the rows are ranked, and then the LIMIT 20 returns only
the top 20.

If you need the next 20 documents, don't just query with a limit of 40 and throw away the
first 20. Instead, use OFFSET 20 LIMIT 20 to return the next 20 documents.

The SQL optimizer understands the LIMIT clause and will change the execution plan
accordingly.

To gain some stability so that documents with the same rank still come out in the
same order when using OFFSET 20, add a unique field (such as the id column of
the articles table) to ORDER BY in both queries:

SELECT title, ts_rank_cd(body_tsv, query, 20) AS text_rank

FROM articles, plainto_tsquery('spicy potatoes') AS query

WHERE body_tsv @@ query

ORDER BY rank DESC, articles.id

OFFSET 20 LIMIT 20;

Another use case is an application that requests all products of a branch office so that it
can run a complex calculation over them. In such a case, try to do as much data analysis as
possible inside the database.

There is no need to run the following:

SELECT * FROM accounts WHERE branch_id = 7;

Also, instead of counting and summing the rows on the client side, you can run this:

SELECT count(*), sum(balance) FROM accounts WHERE branch_id =
7;

Reducing the number of rows returned 417

With some research on SQL, you can carry out an amazingly large portion of your
computation using plain SQL (for example, do not underestimate the power of window
functions).

If SQL is not enough, you can use Procedural Language/PostgreSQL (PL/pgSQL) or any
other embedded procedural language supported by PostgreSQL for even more flexibility.

There's more…
Consider one more scenario: an application runs a huge number of small lookup queries.
This can easily happen with modern object-relational mappers (ORMs) and other
toolkits that do a lot of work for the programmer but, at the same time, hide a lot of what
is happening.

For example, if you define a HyperText Markup Language (HTML) report over a query
in a templating language and then define a lookup function to resolve an identifier (ID)
inside the template, you may end up with a form that performs a separate, small lookup
for each row displayed, even when most of the values looked up are the same. This doesn't
usually pose a big problem for the database, as queries of the SELECT name FROM
departments WHERE id = 7 form are really fast when the row for id = 7 is in
shared buffers. However, repeating this query thousands of times still takes seconds due to
network latency, process scheduling for each request, and other factors.

The two proposed solutions are as follows:

• Make sure that the value is cached by your ORM

• Perform the lookup inside the query that gets the main data so that it can be
displayed directly

Exactly how to carry out these solutions depends on the toolkit, but they are both worth
investigating as they really can make a difference in speed and resource usage.

PostgreSQL 9.5 introduced the TABLESAMPLE clause into SQL. This allows you to run
commands much faster by using a sample of a table's rows, giving an approximate answer.
In certain cases, this can be just as useful as the most accurate answer:

postgres=# SELECT avg(id) FROM events;

 avg

 500000.500

(1 row)

postgres=# SELECT avg(id) FROM events TABLESAMPLE system(1);

418 Performance and Concurrency

 avg

 507434.635

(1 row)

postgres=# EXPLAIN (ANALYZE, BUFFERS) SELECT avg(id) FROM
events;

 QUERY PLAN

--

 Aggregate (cost=16925.00..16925.01 rows=1 width=32) (actual
time=204.841..204.841 rows=1 loops=1)

 Buffers: shared hit=96 read=4329

 -> Seq Scan on events (cost=0.00..14425.00 rows=1000000
width=4) (actual time=1.272..105.452 rows=1000000 loops=1)

 Buffers: shared hit=96 read=4329

 Planning time: 0.059 ms

 Execution time: 204.912 ms

(6 rows)

postgres=# EXPLAIN (ANALYZE, BUFFERS)

 SELECT avg(id) FROM events TABLESAMPLE system(1);

 QUERY PLAN

--

 Aggregate (cost=301.00..301.01 rows=1 width=32) (actual
time=4.627..4.627 rows=1 loops=1)

 Buffers: shared hit=1 read=46

 -> Sample Scan on events (cost=0.00..276.00 rows=10000
width=4) (actual time=0.074..2.833 rows=10622 loops=1)

 Sampling: system ('1'::real)

 Buffers: shared hit=1 read=46

Planning time: 0.066 ms

 Execution time: 4.702 ms

(7 rows)

Simplifying complex SQL queries 419

Simplifying complex SQL queries
There are two types of complexity that you can encounter in SQL queries.

First, the complexity can be directly visible in the query if it has hundreds—
or even thousands—of rows of SQL code in a single query. This can cause both
maintenance headaches and slow execution.

This complexity can also be hidden in subviews, so the SQL code of the query may seem
simple but it uses other views and/or functions to do part of the work, which can, in
turn, use others. This is much better for maintenance, but it can still cause performance
problems.

Both types of queries can either be written manually by programmers or data analysts or
emerge as a result of a query generator.

Getting ready
First, verify that you really have a complex query.

A query that simply returns lots of database fields is not complex in itself. In order to be
complex, the query has to join lots of tables in complex ways.

The easiest way to find out whether a query is complex is to look at the output
of EXPLAIN. If it has lots of rows, the query is complex, and it's not just that there is a lot
of text that makes it so.

All of the examples in this recipe have been written with a very typical use case in mind:
sales.

What follows is a description of a fictitious model that's used in this recipe. The most
important fact is the sale event, stored in the sale table (I specifically used the word
fact, as this is the right term to use in a data warehousing context). Every sale takes place at
a point of sale (the salespoint table) at a specific time and involves an item. That item
is stored in a warehouse (see the item and warehouse tables, as well as the item_in_
wh link table).

Both warehouse and salespoint are located in a geographical area
(the location table). This is important, for example, to study the provenance of a
transaction.

420 Performance and Concurrency

Here is a simplified entity-relationship model (ERM), which is useful for understanding
all of the joins that occur in the following queries:

Figure 10.1 – Data model for the example code

How to do it…
Simplifying a query usually means restructuring it so that parts of it can be defined
separately and then used by other parts.

We'll illustrate these possibilities by rewriting the following query in several ways.

The complex query in our example case is a so-called pivot or cross-tab query.
This query retrieves the quarterly profit for non-local sales from all shops, as shown in the
following code snippet:

SELECT shop.sp_name AS shop_name,

 q1_nloc_profit.profit AS q1_profit,

 q2_nloc_profit.profit AS q2_profit,

 q3_nloc_profit.profit AS q3_profit,

 q4_nloc_profit.profit AS q4_profit,

 year_nloc_profit.profit AS year_profit

 FROM (SELECT * FROM salespoint ORDER BY sp_name) AS shop

 LEFT JOIN (

 SELECT

 spoint_id,

 sum(sale_price) - sum(cost) AS profit,

 count(*) AS nr_of_sales

Simplifying complex SQL queries 421

 FROM sale s

 JOIN item_in_wh iw ON s.item_in_wh_id=iw.id

 JOIN item i ON iw.item_id = i.id

 JOIN salespoint sp ON s.spoint_id = sp.id

 JOIN location sploc ON sp.loc_id = sploc.id

 JOIN warehouse wh ON iw.whouse_id = wh.id

 JOIN location whloc ON wh.loc_id = whloc.id

 WHERE sale_time >= '2013-01-01'

 AND sale_time < '2013-04-01'

 AND sploc.id != whloc.id

 GROUP BY 1

) AS q1_nloc_profit

 ON shop.id = Q1_NLOC_PROFIT.spoint_id

 LEFT JOIN (

< similar subquery for 2nd quarter >

) AS q2_nloc_profit

 ON shop.id = q2_nloc_profit.spoint_id

 LEFT JOIN (

< similar subquery for 3rd quarter >

) AS q3_nloc_profit

 ON shop.id = q3_nloc_profit.spoint_id

 LEFT JOIN (

< similar subquery for 4th quarter >

) AS q4_nloc_profit

 ON shop.id = q4_nloc_profit.spoint_id

 LEFT JOIN (

< similar subquery for full year >

) AS year_nloc_profit

 ON shop.id = year_nloc_profit.spoint_id

ORDER BY 1;

Since the preceding query has an almost identical repeating part for finding the sales for a
period (the four quarters of 2013, in this case), it makes sense to move it to a separate view
(for the whole year) and then use that view in the main reporting query, as follows:

CREATE VIEW non_local_quarterly_profit_2013 AS

 SELECT

422 Performance and Concurrency

 spoint_id,

 extract('quarter' from sale_time) as sale_quarter,

 sum(sale_price) - sum(cost) AS profit,

 count(*) AS nr_of_sales

 FROM sale s

 JOIN item_in_wh iw ON s.item_in_wh_id=iw.id

 JOIN item i ON iw.item_id = i.id

 JOIN salespoint sp ON s.spoint_id = sp.id

 JOIN location sploc ON sp.loc_id = sploc.id

 JOIN warehouse wh ON iw.whouse_id = wh.id

 JOIN location whloc ON wh.loc_id = whloc.id

 WHERE sale_time >= '2013-01-01'

 AND sale_time < '2014-01-01'

 AND sploc.id != whloc.id

 GROUP BY 1,2;

SELECT shop.sp_name AS shop_name,

 q1_nloc_profit.profit as q1_profit,

 q2_nloc_profit.profit as q2_profit,

 q3_nloc_profit.profit as q3_profit,

 q4_nloc_profit.profit as q4_profit,

 year_nloc_profit.profit as year_profit

 FROM (SELECT * FROM salespoint ORDER BY sp_name) AS shop

 LEFT JOIN non_local_quarterly_profit_2013 AS q1_nloc_profit

 ON shop.id = Q1_NLOC_PROFIT.spoint_id

 AND q1_nloc_profit.sale_quarter = 1

 LEFT JOIN non_local_quarterly_profit_2013 AS q2_nloc_profit

 ON shop.id = Q2_NLOC_PROFIT.spoint_id

 AND q2_nloc_profit.sale_quarter = 2

 LEFT JOIN non_local_quarterly_profit_2013 AS q3_nloc_profit

 ON shop.id = Q3_NLOC_PROFIT.spoint_id

 AND q3_nloc_profit.sale_quarter = 3

 LEFT JOIN non_local_quarterly_profit_2013 AS q4_nloc_profit

 ON shop.id = Q4_NLOC_PROFIT.spoint_id

 AND q4_nloc_profit.sale_quarter = 4

 LEFT JOIN (

 SELECT spoint_id, sum(profit) AS profit

Simplifying complex SQL queries 423

 FROM non_local_quarterly_profit_2013 GROUP BY 1

) AS year_nloc_profit

 ON shop.id = year_nloc_profit.spoint_id

ORDER BY 1;

Moving the subquery to a view has not only made the query shorter but also easier to
understand and maintain.

You might want to consider materialized views—more on this later.

Before that, we will be using common table expressions (also known as WITH queries)
instead of a separate view. Starting with PostgreSQL version 8.4, you can use
a WITH statement to define a view in line, as follows:

WITH nlqp AS (

 SELECT

 spoint_id,

 extract('quarter' from sale_time) as sale_quarter,

 sum(sale_price) - sum(cost) AS profit,

 count(*) AS nr_of_sales

 FROM sale s

 JOIN item_in_wh iw ON s.item_in_wh_id=iw.id

 JOIN item i ON iw.item_id = i.id

 JOIN salespoint sp ON s.spoint_id = sp.id

 JOIN location sploc ON sp.loc_id = sploc.id

 JOIN warehouse wh ON iw.whouse_id = wh.id

 JOIN location whloc ON wh.loc_id = whloc.id

 WHERE sale_time >= '2013-01-01'

 AND sale_time < '2014-01-01'

 AND sploc.id != whloc.id

 GROUP BY 1,2

)

SELECT shop.sp_name AS shop_name,

 q1_nloc_profit.profit as q1_profit,

 q2_nloc_profit.profit as q2_profit,

 q3_nloc_profit.profit as q3_profit,

 q4_nloc_profit.profit as q4_profit,

 year_nloc_profit.profit as year_profit

 FROM (SELECT * FROM salespoint ORDER BY sp_name) AS shop

424 Performance and Concurrency

 LEFT JOIN nlqp AS q1_nloc_profit

 ON shop.id = Q1_NLOC_PROFIT.spoint_id

 AND q1_nloc_profit.sale_quarter = 1

 LEFT JOIN nlqp AS q2_nloc_profit

 ON shop.id = Q2_NLOC_PROFIT.spoint_id

 AND q2_nloc_profit.sale_quarter = 2

 LEFT JOIN nlqp AS q3_nloc_profit

 ON shop.id = Q3_NLOC_PROFIT.spoint_id

 AND q3_nloc_profit.sale_quarter = 3

 LEFT JOIN nlqp AS q4_nloc_profit

 ON shop.id = Q4_NLOC_PROFIT.spoint_id

 AND q4_nloc_profit.sale_quarter = 4

 LEFT JOIN (

 SELECT spoint_id, sum(profit) AS profit

 FROM nlqp GROUP BY 1

) AS year_nloc_profit

 ON shop.id = year_nloc_profit.spoint_id

ORDER BY 1;

For more information on WITH queries (also known as Common Table
Expressions (CTEs)), read the official documentation at http://www.postgresql.
org/docs/current/static/queries-with.html.

There's more…
Another ace in the hole is represented by temporary tables that are used for parts of a
query. By default, a temporary table is dropped at the end of a Postgres session, but the
behavior can be changed at the time of creation.

PostgreSQL itself can choose to materialize parts of a query during the query optimization
phase but, sometimes, it fails to make the best choice for the query plan, either due to
insufficient statistics or because—as can happen for large query plans where Genetic
Query Optimization (GEQO) is used—it may have just overlooked some possible query
plans.

If you think that materializing (separately preparing) some parts of a query is a good idea,
you can do this by using a temporary table, simply by running CREATE TEMPORARY
TABLE my_temptable01 AS <the part of the query you want to
materialize> and then using my_temptable01 in the main query, instead of the
materialized part.

http://www.postgresql.org/docs/current/static/queries-with.html
http://www.postgresql.org/docs/current/static/queries-with.html

Simplifying complex SQL queries 425

You can even create indexes on a temporary table for PostgreSQL to use in the main
query:

BEGIN;

CREATE TEMPORARY TABLE nlqp_temp ON COMMIT DROP

 AS

 SELECT

 spoint_id,

 extract('quarter' from sale_time) as sale_quarter,

 sum(sale_price) - sum(cost) AS profit,

 count(*) AS nr_of_sales

 FROM sale s

 JOIN item_in_wh iw ON s.item_in_wh_id=iw.id

 JOIN item i ON iw.item_id = i.id

 JOIN salespoint sp ON s.spoint_id = sp.id

 JOIN location sploc ON sp.loc_id = sploc.id

 JOIN warehouse wh ON iw.whouse_id = wh.id

 JOIN location whloc ON wh.loc_id = whloc.id

 WHERE sale_time >= '2013-01-01'

 AND sale_time < '2014-01-01'

 AND sploc.id != whloc.id

 GROUP BY 1,2

;

You can create indexes on a table and analyze the temporary table here:

SELECT shop.sp_name AS shop_name,

 q1_NLP.profit as q1_profit,

 q2_NLP.profit as q2_profit,

 q3_NLP.profit as q3_profit,

 q4_NLP.profit as q4_profit,

 year_NLP.profit as year_profit

 FROM (SELECT * FROM salespoint ORDER BY sp_name) AS shop

 LEFT JOIN nlqp_temp AS q1_NLP

 ON shop.id = Q1_NLP.spoint_id AND q1_NLP.sale_quarter = 1

 LEFT JOIN nlqp_temp AS q2_NLP

 ON shop.id = Q2_NLP.spoint_id AND q2_NLP.sale_quarter = 2

 LEFT JOIN nlqp_temp AS q3_NLP

426 Performance and Concurrency

 ON shop.id = Q3_NLP.spoint_id AND q3_NLP.sale_quarter = 3

 LEFT JOIN nlqp_temp AS q4_NLP

 ON shop.id = Q4_NLP.spoint_id AND q4_NLP.sale_quarter = 4

 LEFT JOIN (

 select spoint_id, sum(profit) AS profit FROM nlqp_temp
GROUP BY 1

) AS year_NLP

 ON shop.id = year_NLP.spoint_id

ORDER BY 1

;

COMMIT; -- here the temp table goes away

Using materialized views
If the part you put in the temporary table is large, does not change very often, and/or
is hard to compute, then you may be able to do it less often for each query by using a
technique named materialized views.

Materialized views are views that are prepared before they are used (similar to a cached
table). They are either fully regenerated as underlying data changes or, in some cases, can
update only those rows that depend on the changed data.

PostgreSQL natively supports materialized views through the CREATE MATERIALIZED
VIEW, ALTER MATERIALIZED VIEW, REFRESH MATERIALIZED VIEW, and DROP
MATERIALIZED VIEW commands. At the time of writing, PostgreSQL only supports
full regeneration of materialized tables using REFRESH MATERIALIZED VIEW
CONCURRENTLY, though this uses a parallel query to execute very quickly.

A fundamental aspect of materialized views is that they can have their own indexes,
as with any other table. See http://www.postgresql.org/docs/current/
static/sql-creatematerializedview.html for more information on creating
materialized views.

For instance, you can rewrite the example in the previous recipe using a materialized
view instead of a temporary table:

CREATE MATERIALIZED VIEW nlqp_temp AS

 SELECT spoint_id,

 extract('quarter' from sale_time) as sale_quarter,

 sum(sale_price) - sum(cost) AS profit,

 count(*) AS nr_of_sales

http://www.postgresql.org/docs/current/static/sql-creatematerializedview.html
http://www.postgresql.org/docs/current/static/sql-creatematerializedview.html

Speeding up queries without rewriting them 427

 FROM sale s

 JOIN item_in_wh iw ON s.item_in_wh_id=iw.id

 JOIN item i ON iw.item_id = i.id

 JOIN salespoint sp ON s.spoint_id = sp.id

 JOIN location sploc ON sp.loc_id = sploc.id

 JOIN warehouse wh ON iw.whouse_id = wh.id

 JOIN location whloc ON wh.loc_id = whloc.id

 WHERE sale_time >= '2013-01-01'

 AND sale_time < '2014-01-01'

 AND sploc.id != whloc.id

 GROUP BY 1,2

Using set-returning functions for some parts of queries
Another possibility for achieving similar results to temporary tables and/or materialized
views is by using a set-returning function for some parts of the query.

It is easy to have a materialized view freshness check inside a function. However, detailed
analysis and an overview of these techniques go beyond the goals of this book, as they
require a deep understanding of the PL/pgSQL procedural language.

Speeding up queries without rewriting them
Often, you either can't or don't want to rewrite a query. However, you can still
try and speed it up through any of the techniques we will discuss here.

How to do it…
By now, we assume that you've looked at various problems already, so the following are
more advanced ideas for you to try.

Increasing work_mem
For queries involving large sorts or for join queries, it may be useful to increase the
amount of working memory that can be used for query execution. Try setting the
following:

SET work_mem = '1TB';

428 Performance and Concurrency

Then, run EXPLAIN (not EXPLAIN ANALYZE). If EXPLAIN changes for the query,
then it may benefit from more memory. I'm guessing that you don't have access to 1
terabyte (TB) of RAM; the previous setting was only used to prove that the query plan is
dependent on available memory. Now, issue the following command:

RESET work_mem;

Now, choose a more appropriate value for production use, such as the following:

SET work_mem = '128MB';

Remember to increase maintenace_work_mem when creating indexes or adding
foreign keys (FKs), rather than work_mem.

More ideas with indexes
Try to add a multicolumn index that is specifically tuned for that query.

If you have a query that, for example, selects rows from the t1 table on the a column and
sorts on the b column, then creating the following index enables PostgreSQL to do it all in
one index scan:

CREATE INDEX t1_a_b_idx ON t1(a, b);

PostgreSQL 9.2 introduced a new plan type: index-only scans. This allows you to utilize a
technique known as covering indexes. If all of the columns requested by the SELECT list
of a query are available in an index, that particular index is a covering index for that
query. This technique allows PostgreSQL to fetch valid rows directly from the index,
without accessing the table (heap), so performance improves significantly. If the index is
non-unique, you can just add columns onto the end of the index, like so. However, please
be aware that this only works for non-unique indexes:

CREATE INDEX t1_a_b_c_idx ON t1(a, b, c);

PostgreSQL 11+ provides syntax to identify covering index columns in a way that works
for both unique and non-unique indexes, like this:

CREATE INDEX t1_a_b_cov_idx ON t1(a, b) INCLUDE (c);

Speeding up queries without rewriting them 429

Another often underestimated (or unknown) feature of PostgreSQL is partial indexes. If
you use SELECT on a condition, especially if this condition only selects a small number of
rows, you can use a conditional index on that expression, like this:

CREATE INDEX t1_proc_ndx ON t1(i1)

WHERE needs_processing = TRUE;

The index will be used by queries that have a WHERE clause that includes the index clause,
like so:

SELECT id, ... WHERE needs_processing AND i1 = 5;

There are many types of indexes in Postgres, so you may find that there are multiple types
of indexes that can be used for a particular task and many options to choose from:

• ID data: BTREE and HASH

• Categorical data: BTREE

• Text data: GIST and GIN

• JSONB or XML data: GIN, plus selective use of btree

• Time-range data: BRIN (and partitioning)

• Geographical data: GIST, SP-GIST, and BRIN

Performance gains in Postgres can also be obtained with another technique: clustering
tables on specific indexes. However, index access may still not be very efficient if the
values that are accessed by the index are distributed randomly, all over the table. If you
know that some fields are likely to be accessed together, then cluster the table on an index
defined on those fields. For a multicolumn index, you can use the following command:

CLUSTER t1_a_b_ndx ON t1;

Clustering a table on an index rewrites the whole table in index order. This can lock
the table for a long time, so don't do it on a busy system. Also, CLUSTER is a one-time
command. New rows do not get inserted in cluster order, and to keep the performance
gains, you may need to cluster the table every now and then.

Once a table has been clustered on an index, you don't need to specify the index name
in any cluster commands that follow. It is enough to type this:

CLUSTER t1;

430 Performance and Concurrency

It still takes time to rewrite the entire table, though it is probably a little faster once most
of the table is in index order.

There's more…
We will complete this recipe by listing four examples of query performance issues that can
be addressed with a specific solution.

Time-series partitioning
Refer to the Creating time-series tables recipe for more information on this.

Using a view that contains TABLESAMPLE
Where some queries access a table, replace that with a view that retrieves fewer rows
using a TABLESAMPLE clause. In this example, we are using a sampling method that
produces a sample of the table using a scan lasting no longer than 5 seconds; if the table is
small enough, the answer is exact, otherwise progressive sampling is used to ensure that
we meet our time objective:

CREATE EXTENSION tsm_system_time;

CREATE SCHEMA fast_access_schema;

CREATE VIEW fast_access_schema.tablename AS

 SELECT *

 FROM data_schema.tablename TABLESAMPLE system_time(5000); --5
secs

SET search_path = 'fast_access_schema, data_schema';

So, the application can use the new table without changing the SQL. Be careful, as some
answers can change when you're accessing fewer rows (for example, sum()), making this
particular idea somewhat restricted; the overall idea of using views is still useful.

In case of many updates, set fillfactor on the table
If you often update only some tables and can arrange your query/queries so that you don't
change any indexed fields, then setting fillfactor to a lower value than the default
of 100 for those tables enables PostgreSQL to use heap-only tuples (HOT) updates,
which can be an order of magnitude (OOM) faster than ordinary updates. HOT updates
not only avoid creating new index entries but can also perform a fast mini-vacuum inside
the page to make room for new rows:

ALTER TABLE t1 SET (fillfactor = 70);

Discovering why a query is not using an index 431

This tells PostgreSQL to fill only 70% of each page in the t1 table when performing
insertions so that 30% is left for use by in-page (HOT) updates.

Rewriting the schema – a more radical approach
In some cases, it may make sense to rewrite the database schema and provide an old view
for unchanged queries using views, triggers, rules, and functions.

One such case occurs when refactoring the database, and you would want old queries to
keep running while changes are made.

Another case is an external application that is unusable with the provided schema but can
be made to perform OK with a different distribution of data between tables.

Discovering why a query is not using an index
This recipe explains what to do if you think your query should use an index, but it isn't.

There could be several reasons for this but, most often, the reason is that the optimizer
believes that, based on the available distribution statistics, it is cheaper and faster to use a
query plan that does not use that specific index.

Getting ready
First, check that your index exists, and ensure that the table has been analyzed. If there is
any doubt, rerun it to be sure—though it's better to do this only on specific tables:

postgres=# ANALYZE;

ANALYZE

How to do it…
Force index usage and compare plan costs with an index and without, as follows:

postgres=# EXPLAIN ANALYZE SELECT count(*) FROM itable WHERE id
> 500;

 QUERY PLAN

--

 Aggregate (cost=188.75..188.76 rows=1 width=0)

 (actual time=37.958..37.959 rows=1 loops=1)

 -> Seq Scan on itable (cost=0.00..165.00 rows=9500

432 Performance and Concurrency

width=0)

 (actual time=0.290..18.792 rows=9500 loops=1)

 Filter: (id > 500)

 Total runtime: 38.027 ms

(4 rows)

postgres=# SET enable_seqscan TO false;

SET

postgres=# EXPLAIN ANALYZE SELECT count(*) FROM itable WHERE id
> 500;

 QUERY PLAN

--

 Aggregate (cost=323.25..323.26 rows=1 width=0)

 (actual time=44.467..44.469 rows=1 loops=1)

 -> Index Scan using itable_pkey on itable

 (cost=0.00..299.50 rows=9500 width=0)

 (actual time=0.100..23.240 rows=9500 loops=1)

 Index Cond: (id > 500)

 Total runtime: 44.556 ms

(4 rows)

Note that you must use EXPLAIN ANALYZE rather than just EXPLAIN. EXPLAIN
ANALYZE shows you how much data is being requested and measures the actual execution
time, while EXPLAIN only shows what the optimizer thinks will happen. EXPLAIN
ANALYZE is slower, but it gives an accurate picture of what is happening.

In PostgreSQL 14, please use these EXPLAIN (ANALYZE ON, SETTINGS ON,
BUFFERS ON, WAL ON) options rather than just using EXPLAIN ANALYZE.
SETTINGS will give you information about any non-default options, while BUFFERS and
WAL will give you more information about the data access for read/write.

How it works…
By setting the enable_seqscan parameter to off, we greatly increase the cost of
sequential scans for the query. This setting is never recommended for production use—
only use it for testing because this setting affects the whole query, not just the part of it
you would like to change.

Forcing a query to use an index 433

This allows us to generate two different plans, one with SeqScan and one without. The
optimizer works by selecting the lowest-cost option available. In the preceding example,
the cost of SeqScan is 188.75 and the cost of IndexScan is 323.25, so for this
specific case, IndexScan will not be used.

Remember that each case is different and always relates to the exact data distribution.

There's more…
Be sure that the WHERE clause you are using can be used with the type of index you have.
For example, the abs(val) < 2 WHERE clause won't use an index because you're
performing a function on the column, while val BETWEEN -2 AND 2 could use the
index. With more advanced operators and data types, it's easy to get confused as to the
type of clause that will work, so check the documentation for the data type carefully.

In PostgreSQL 10, join statistics were also improved by the use of FKs since they can be
used in some queries to prove that joins on those keys return exactly one row.

Forcing a query to use an index
Often, we think we know better than the database optimizer. Most of the time, your
expectations are wrong, and if you look carefully, you'll see that. So, recheck everything
and come back later.

It is a classic error to try to get the database optimizer to use indexes when the database
has very little data in it. Put some genuine data in the database first, then worry about it.
Better yet, load some data on a test server first, rather than doing this in production.

Sometimes, the optimizer gets it wrong. You feel elated—and possibly angry—that
the database optimizer doesn't see what you see. Please bear in mind that the data
distributions within your database change over time, and this causes the optimizer to
change its plans over time as well.

If you have found a case where the optimizer is wrong, this can sometimes change over
time as the data changes. It might have been correct last week and will be correct again
next week, or it correctly calculated that a change of plan was required, but it made that
change slightly ahead of time or slightly too late. Again, trying to force the optimizer to
do the right thing now might prevent it from doing the right thing later, when the plan
changes again. So hinting fixes things in the short term, but in the longer term can cause
problems to resurface.

In the long run, it is not recommended to try to force the use of a particular index.

434 Performance and Concurrency

Getting ready
Still here? Oh well.

If you really feel this is necessary, then your starting point is to run an EXPLAIN
command for your query, so please read the previous recipe first.

How to do it…
The most common problem is selecting too much data.

A typical point of confusion comes from data that has a few very common values among
a larger group. Requesting data for very common values costs more because we need to
bring back more rows. As we bring back more rows, the cost of using the index increases.
Therefore, it is possible that we won't use the index for very common values, whereas we
would use the index for less common values. To use an index effectively, make sure you're
using the LIMIT clause to reduce the number of rows that are returned.

Since different index values might return more or less data, it is common for execution
times to vary depending upon the exact input parameters. This could cause a problem if
we are using prepared statements—the first five executions of a prepared statement are
made using "custom plans" that vary according to the exact input parameters. From the
sixth execution onward, the optimizer decides whether to use a "generic plan" or not, if it
thinks the cost will be lower on average. Custom plans are more accurate, but the planning
overhead makes them less efficient than generic plans. This heuristic can go wrong
at times and you might need to override it using plan_cache_mode = force_
generic_plan or force_custom_plan.

Another technique for making indexes more usable is partial indexes. Instead of indexing
all of the values in a column, you might choose to index only a set of rows that are
frequently accessed—for example, by excluding NULL or other unwanted data. By making
the index smaller, it will be cheaper to access and will fit within the cache better, avoiding
pointless work by targeting the index at only the important data. Data statistics are kept
for such indexes, so it can also improve the accuracy of query planning. Let's look at an
example:

CREATE INDEX ON customer(id)

 WHERE blocked = false AND subscription_status = 'paid';

Forcing a query to use an index 435

Another common problem is that the optimizer may make errors in its estimation of the
number of rows returned, causing the plan to be incorrect. Some optimizer estimation
errors can be corrected using CREATE STATISTICS. If the optimizer is making errors,
it can be because the WHERE clause contains multiple columns. For example, queries that
mention related columns such as state and phone_area_code or city and zip_
code will have poor estimates because those pairs of columns have data values that are
correlated.

You can define additional statistics that will be collected when you next analyze the table:

CREATE STATISTICS cust_stat1 ON state, area_code FROM cust;

The execution time of ANALYZE will increase to collect the additional stats information,
plus there is a small increase in query planning time, so use this sparingly when you can
confirm this will make a difference. If there is no benefit, use DROP STATISTICS to
remove them again. By default, multiple types of statistics will be collected—you can fine-
tune this by specifying just a few types of statistics if you know what you are doing.

Unfortunately, the statistics command doesn't automatically generate names, so
include the table name in the statistics you create since the name is unique within the
database and cannot be repeated on different tables. In future releases, we may also add
cross-table statistics.

Additionally, you cannot collect statistics on individual fields within JSON documents
at the moment, nor collect dependency information between them; this command
only applies to whole column values at this time.

Another nudge toward using indexes is to set random_page_cost to a lower value—
maybe even equal to seq_page_cost. This makes PostgreSQL prefer index scans on
more occasions, but it still does not produce entirely unreasonable plans, at least for cases
where data is mostly cached in shared buffers or system disk caches, or underlying disks
are solid-state drives (SSDs).

The default values for these parameters are provided here:

random_page_cost = 4;

seq_page_cost = 1;

Try setting this:

set random_page_cost = 2;

See if it helps; if not, you can try setting it to 1.

436 Performance and Concurrency

Changing random_page_cost allows you to react to whether data is on disk or in
memory. Letting the optimizer know that more of an index is in the cache will help it to
understand that using the index is actually cheaper.

Index scan performance for larger scans can also be improved by allowing multiple
asynchronous I/O operations by increasing effective_io_concurrency.
Both random_page_cost and effective_io_concurrency can be set for specific
tablespaces or for individual queries.

There's more…
PostgreSQL does not directly support hints, but they are available via an extension.

If you absolutely, positively have to use the index, then you'll want to know about an
extension called pg_hint_plan. It is available for PostgreSQL 9.1 and later versions. For
more information and to download it, go to http://pghintplan.sourceforge.
jp/. Hints can be added to your application SQL using a special comment added to the
start of a query, like this:

/*+ IndexScan(tablename indexname) */ SELECT …

It works but, as I said previously, try to avoid fixing things now and causing yourself pain
later when the data distribution changes.

EnterpriseDB (EDB) Postgres Advanced Server (EPAS) also supports hints in an
Oracle-style syntax to allow you to select a specific index, like this:

SELECT /*+ INDEX(tablename indexname) */ … rest of query …

EPAS has many compatibility features such as this for migrating application logic from
Oracle. See https://www.enterprisedb.com/docs/epas/latest/epas_
compat_ora_dev_guide/05_optimizer_hints/ for more information on this.

Using parallel query
PostgreSQL now has an increasingly effective parallel query feature.

Response times from long-running queries can be improved by the use of parallel
processing. The concept is that if we divide a large task up into multiple smaller pieces
then we get the answer faster, but we use more resources to do that.

http://pghintplan.sourceforge.jp/
http://pghintplan.sourceforge.jp/
https://www.enterprisedb.com/docs/epas/latest/epas_compat_ora_dev_guide/05_optimizer_hints/
https://www.enterprisedb.com/docs/epas/latest/epas_compat_ora_dev_guide/05_optimizer_hints/

Using parallel query 437

Very short queries won't get faster by using parallel query, so if you have lots of those
you'll gain more by thinking about better indexing strategies. Parallel query is aimed
at making very large tasks faster, so it is useful for reporting and business intelligence
(BI) queries.

How to do it…
Take a query that needs to do a big chunk of work, such as the following:

\timing

SET max_parallel_workers_per_gather = 0;

SELECT count(*) FROM big;

count

1000000

(1 row)

Time: 46.399 ms

SET max_parallel_workers_per_gather = 2;

SELECT count(*) FROM big;

count

1000000

(1 row)

Time: 29.085 ms

By setting the max_parallel_workers_per_gather parameter, we've improved
performance using parallel query. Note that we didn't need to change the query at all. (The
preceding queries were executed multiple times to remove any cache effects).

In PostgreSQL 9.6 and 10, parallel query only works for read-only queries, so
only SELECT statements that do not contain the FOR clause (for example, SELECT ...
FOR UPDATE). In addition, a parallel query can only use functions or aggregates that
are marked as PARALLEL SAFE. No user-defined functions are marked PARALLEL
SAFE by default, so read the docs carefully to see whether your functions can be enabled
for parallelism for the current release.

438 Performance and Concurrency

How it works…
The plan for our earlier example of parallel query looks like this:

postgres=# EXPLAIN ANALYZE

 SELECT count(*) FROM big;

 QUERY PLAN

--

 Finalize Aggregate (cost=11614.55..11614.56 rows=1 width=8)
(actual time=59.810..62.074 rows=1 loops=1)

 -> Gather (cost=11614.33..11614.54 rows=2 width=8) (actual
time=59.709..62.067 rows=3 loops=1)

 Workers Planned: 2

 Workers Launched: 2

 -> Partial Aggregate (cost=10614.33..10614.34 rows=1
width=8) (actual time=56.298..56.299 rows=1 loops=3)

 -> Parallel Seq Scan on big
(cost=0.00..9572.67 rows=416667 width=0) (actual
time=0.009..32.138 rows=333333 loops=3)

 Planning Time: 0.056 ms

 Execution Time: 62.110 ms

(8 rows)

By default, a query will use only one process. Parallel query is enabled by setting max_
parallel_workers_per_gather to a value higher than zero (the default is 2). This
parameter specifies the maximum number of additional processes that are available
if needed. So, a setting of 1 will mean you have the leader process plus one additional
worker process, so two processes in total.

The query optimizer will decide whether parallel query is a useful plan based upon cost,
just as with other aspects of the optimizer. Importantly, it will decide how many parallel
workers to use in its plan, up to the maximum you specify.

Note that the performance increase from adding more workers isn't linear for anything
other than simple plans, so there are diminishing returns from using too many workers.
The biggest gains are from adding the first few extra processes.

Creating time-series tables using partitioning 439

PostgreSQL will assign a number of workers according to the size of the table compared
to the min_parallel_table_scan_size value, using the logarithm (base 3) of the
ratio. With default values this means:

Decreasing min_parallel_table_scan_size will increase the number of
workers assigned.

Across the whole server, the maximum number of worker processes available is specified
by the max_parallel_workers parameter and is set at server start only.

At execution time, the query will use its planned number of worker processes if that many
are available. If worker processes aren't available, the query will run with fewer worker
processes. As a result, it pays to not be too greedy, since if all concurrent users specify
more workers than are available, you'll end up with variable performance as the number of
concurrent parallel queries changes.

Creating time-series tables using partitioning
In many applications, we need to store data in time series. There are various mechanisms
in PostgreSQL that are designed to support this.

440 Performance and Concurrency

How to do it…
If you have a huge table and a query to select only a subset of that table, then you
may wish to use a block range index (BRIN index). These indexes give performance
improvements when the data is naturally ordered as it is added to the table, such
as logtime columns or a naturally ascending OrderId column. Adding a BRIN index
is fast and very easy, and works well for the use case of time-series data logging, though it
works less well under intensive updates, even with the new BRIN features in PostgreSQL
14. INSERT commands into BRIN indexes are specifically designed to not slow down as
the table gets bigger, so they perform much better than B-tree indexes for write-heavy
applications. B-trees do have faster retrieval performance but require more resources. To
try BRIN, just add an index, like so:

CREATE TABLE measurement (

 logtime TIMESTAMP WITH TIME ZONE NOT NULL,

 measures JSONB NOT NULL);

CREATE INDEX ON measurement USING BRIN (logtime);

Partitioning syntax was introduced in PostgreSQL 10. Over the last five releases,
partitioning has been very heavily tuned and extended to make it suitable for time-
series logging, BI, and fast Online Transaction Processing (OLTP) SELECT, UPDATE,
or DELETE commands.

The best reason to use partitioning is to allow you to drop old data quickly. For example,
if you are only allowed to keep data for 30 days, it might make sense to store data in 30
partitions. Each day, you would add one new empty partition and detach/drop the last
partition in the time series.

For example, to create a table for time-series data, you may want something like this:

CREATE TABLE measurement (

 logtime TIMESTAMP WITH TIME ZONE NOT NULL,

 measures JSONB NOT NULL

) PARTITION BY RANGE (logtime);

CREATE TABLE measurement_week1 PARTITION OF measurement

 FOR VALUES FROM ('2019-03-01') TO ('2019-04-01');

CREATE INDEX ON measurement_week1 USING BRIN (logtime);

Creating time-series tables using partitioning 441

CREATE TABLE measurement_week2 PARTITION OF measurement

 FOR VALUES FROM ('2019-04-01') TO ('2019-05-01');

CREATE INDEX ON measurement_week2 USING BRIN (logtime);

For some applications, the time taken to SELECT/UPDATE/DELETE from the table will
increase with the number of partitions, so if you are thinking you might need more than
100 partitions, you should benchmark carefully with fully loaded partitions to check this
works for your application.

You can use both BRIN indexes and partitioning at the same time so that there is less need
to have a huge number of partitions. As a guide, partition size should not be larger than
shared buffers, to allow the whole current partition to sit within shared buffers.

For more details on partitioning, check out https://www.postgresql.org/docs/
current/ddl-partitioning.html.

How it works…
Each partition is actually a normal table, so you can refer to partitions directly in queries.
A partitioned table is somewhat similar to a view, since it links all of the partitions under
it together. The partition key defines which data goes into which partition so that each row
lives in exactly one partition. Partitioning can also be defined with multiple levels—so, a
single top-level partitioned table, then with each sub-table also having sub-sub-partitions.

B-tree performance degrades very slowly as tables get bigger, so having single tables larger
than a few hundred GB may no longer be optimal. Using partitions and limiting the size
of each partition will prevent any bad news as data volumes climb over time. Let me
repeat the "very slowly" part—so, no need to rush around changing all of your tables when
you get to 101 GB.

As of PostgreSQL 14, adding and detaching partitions are both now optimized to hold a
lower level of lock, allowing SELECT statements to continue while those activities occur.
Adding a new partition with a reduced lock level just uses the syntax shown previously.
Simply dropping a partition will hold an AccessExclusiveLock—or, in other words,
will be blocked by SELECT statements and will block them while it runs. Dropping a
partition using a reduced lock level should be done in two steps, like this:

ALTER TABLE measurement

 DETACH PARTITION measurement_week2 CONCURRENTLY;

DROP TABLE measurement_week2;

https://www.postgresql.org/docs/current/ddl-partitioning.html
https://www.postgresql.org/docs/current/ddl-partitioning.html

442 Performance and Concurrency

Note that you cannot run those two commands in one transaction. If the ALTER TABLE
command is interrupted, then you will need to run FINALIZE to complete the operation,
like this:

ALTER TABLE measurement

 DETACH PARTITION measurement_week2 FINALIZE;

Partitioned tables also support default partitions, but I recommend against using them
because of the way table locking works with that feature. If you add a new partition that
partially overlaps the default partition, it will lock the default partition, scan it, and then
move data to the new partition. That activity can lock out the table for some time and
should be avoided on production systems. Note also that you can't use concurrent detach
if you have a default partition.

There's more…
The ability to do a "partition-wise join" can be very useful for large queries when joining
two partitioned tables. The join must contain all columns of the partition key and be the
same data type, with a 1:1 match between the partitions. If you have multiple partitioned
tables in your application, you may wish to enable the enable_partitionwise_join
= on optimizer parameter, which defaults to off.

If you do large aggregates on a partitioned table, you may also want to enable another
optimizer parameter, enable_partitionwise_aggregate = on, which defaults to
off.

PostgreSQL 11 adds the ability to have primary keys (PKs) defined over a partitioned
table, enforcing uniqueness across partitions. This requires that the partition key is the
same or a subset of the columns of the PK. Unfortunately, you cannot have a unique index
across an arbitrary set of columns of a partitioned table because multi-table indexes are
not yet supported—and it would be very large if you did.

You can define references from a partitioned table to normal tables to enforce FK
constraints. References to a partitioned table are possible in PostgreSQL 12+.

Partition tables can have before-and-after row triggers.

Partitioned tables can be used in publications and subscriptions, as well as in Postgres-Bi-
Directional Replication (BDR).

Using optimistic locking to avoid long lock waits 443

Using optimistic locking to avoid long
lock waits
If you perform work in one long transaction, the database will lock rows for long periods
of time. Long lock times often result in application performance issues because of long
lock waits:

BEGIN;

SELECT * FROM accounts WHERE holder_name ='BOB' FOR UPDATE;

<do some calculations here>

UPDATE accounts SET balance = 42.00 WHERE holder_name ='BOB';

COMMIT;

If that is happening, then you may gain some performance benefits by moving from
explicit locking (SELECT ... FOR UPDATE) to optimistic locking.

Optimistic locking assumes that others don't update the same record, and checks this at
update time, instead of locking the record for the time it takes to process the information
on the client side.

How to do it…
Rewrite your application so that the SQL is transformed into two separate
transactions, with a double-check to ensure that the rows haven't changed (pay
attention to the placeholders):

SELECT A.*, (A.*::text) AS old_acc_info

FROM accounts a WHERE holder_name ='BOB';

<do some calculations here>

UPDATE accounts SET balance = 42.00

WHERE holder_name ='BOB'

AND (A.*::text) = <old_acc_info from select above>;

Then, check whether the UPDATE operation really did update one row in your application
code. If it did not, then the account for BOB was modified between SELECT and UPDATE,
and you probably need to rerun your entire operation (both transactions).

444 Performance and Concurrency

How it works…
Instead of locking Bob's row for the time that the data from the first SELECT command
is processed in the client, PostgreSQL queries the old state of Bob's account record in
the old_acc_info variable and then uses this value to check that the record has not
changed when we eventually update.

You can also save all fields individually and then check them all in the UPDATE query; if
you have an automatic last_change field, then you can use that instead. Alternatively,
if you only care about a few fields changing—such as balance—and are fine
ignoring others—such as email—then you only need to check the relevant fields in
the UPDATE statement.

There's more…
You can also use the serializable transaction isolation level when you need to be absolutely
sure that the data you are looking at is not affected by other user changes.

The default transaction isolation level in PostgreSQL is read-committed, but you can
choose from two more levels—repeatable read and serializable—if you require stricter
control over the visibility of data within a transaction. See http://www.postgresql.
org/docs/current/static/transaction-iso.html for more information.

Another design pattern that's available in some cases is to use a single statement for
the UPDATE clause and return data to the user via the RETURNING clause, as in the
following example:

UPDATE accounts

 SET balance = balance - i_amount

WHERE username = i_username

AND balance - i_amount > - max_credit

RETURNING balance;

In some cases, moving the entire computation to the database function is a very good
idea. If you can pass all of the necessary information to the database for processing as a
database function, it will run even faster, as you save several round-trips to the database. If
you use a PL/pgSQL function, you also benefit from automatically saving query plans on
the first call in a session and using saved plans in subsequent calls.

http://www.postgresql.org/docs/current/static/transaction-iso.html
http://www.postgresql.org/docs/current/static/transaction-iso.html

Using optimistic locking to avoid long lock waits 445

Therefore, the preceding transaction is replaced by a function in the database, like so:

CREATE OR REPLACE FUNCTION consume_balance

(i_username text

, i_amount numeric(10,2)

, max_credit numeric(10,2)

, OUT success boolean

, OUT remaining_balance numeric(10,2)

) AS

$$

BEGIN

 UPDATE accounts SET balance = balance - i_amount

 WHERE username = i_username

 AND balance - i_amount > - max_credit

 RETURNING balance

 INTO remaining_balance;

 IF NOT FOUND THEN

 success := FALSE;

 SELECT balance

 FROM accounts

 WHERE username = i_username

 INTO remaining_balance;

 ELSE

 success := TRUE;

 END IF;

END;

$$ LANGUAGE plpgsql;

You can call it by simply running the following line of code from your client:

SELECT * FROM consume_balance ('bob', 7, 0);

The output will return the success variable. It tells you whether there was a sufficient
balance in Bob's account. The output will also return a number, telling you the
balance bob has left after this operation.

446 Performance and Concurrency

Reporting performance problems
Sometimes, you face performance issues and feel lost, but you should never feel alone
when working with one of the most successful open source projects ever.

How to do it…
If you need to get some advice on your performance problems, then the right place to do
so is the performance mailing list at http://archives.postgresql.org/pgsql-
performance/.

First, you may want to ensure that it is not a well-known problem by searching the
mailing-list archives.

A very good description of what to include in your performance problem report is
available at http://wiki.postgresql.org/wiki/Guide_to_reporting_
problems.

There's more…
More performance-related information can be found at http://wiki.postgresql.
org/wiki/Performance_Optimization.

http://archives.postgresql.org/pgsql-performance/
http://archives.postgresql.org/pgsql-performance/
http://wiki.postgresql.org/wiki/Guide_to_reporting_problems
http://wiki.postgresql.org/wiki/Guide_to_reporting_problems
http://wiki.postgresql.org/wiki/Performance_Optimization
http://wiki.postgresql.org/wiki/Performance_Optimization

11
Backup and

Recovery
Most people admit that backups are essential, though they also devote a very small
amount of time to thinking about the topic.

The first recipe in this chapter is about understanding and controlling crash recovery. You
need to understand what happens if a database server crashes so that you can understand
whether you need to perform a recovery operation.

The next recipe is all about planning. That's really the best place to start before you
perform backups.

The physical backup mechanisms here were initially written by Simon Riggs (one of
the authors of this book) for PostgreSQL 8.0 in 2004 and have been supported by him
ever since, now with increasing help from the community as its popularity grows.
2ndQuadrant and EDB have also been providing database recovery services since
2004, and regrettably, many people have needed them as a result of missing or
damaged backups.

448 Backup and Recovery

It is important to note that, in the last few years, the native streaming replication protocol
has become more and more relevant in PostgreSQL. It can be used for backup purposes
too – not only to take a base backup with pg_basebackup but also to stream WAL files
using pg_receivewal. Given that some of the recipes in this chapter will use streaming
replication, we will assume that you have a basic familiarity with it and refer you to the
next chapter for more details.

As a final note, all of the examples regarding physical backup and recovery in this chapter
are thoroughly explained so that you understand what is happening behind the scenes.
However, unless you have very specific requirements dictating otherwise, we highly
recommend that when in production, you use Barman (our open source backup and
recovery tool) or a similar product that is specialized in this area. The last two recipes in
this chapter will introduce Barman.

In this chapter, we will cover the following recipes:

• Understanding and controlling crash recovery

• Planning your backups

• Hot logical backup of one database

• Hot logical backup of all databases

• Backup of database object definitions

• A standalone hot physical backup

• Hot physical backup with Barman

• Recovery of all databases

• Recovery to a point in time

• Recovery of a dropped/damaged table

• Recovery of a dropped/damaged database

• Extracting a logical backup from a physical one

• Improving performance of logical backup/recovery

• Improving performance of physical backup/recovery

• Validating backups

Understanding and controlling crash recovery 449

Understanding and controlling crash recovery
Crash recovery is the PostgreSQL subsystem that saves us should the server crash or fail as
part of a system crash.

It's good to understand a little about it and what we can do to control it in our favor.

How to do it…
If PostgreSQL crashes, there will be a message in the server log with the severity level
set to PANIC. PostgreSQL will immediately restart and attempt to recover using the
transaction log or the Write-Ahead Log (WAL).

The WAL consists of a series of files written to the pg_wal subdirectory of the
PostgreSQL data directory. Each change made to the database is recorded first in WAL,
hence the name write-ahead log, which is a synonym for a transaction log. Note that
the former is probably more accurate, since, in the WAL, there are also changes not related
to transactions. When a transaction commits, the default (and safe) behavior is to force
the WAL records to disk. Should PostgreSQL crash, the WAL will be replayed, which
returns the database to the point of the last committed transaction, ensuring the durability
of any database changes.

Note
Database changes themselves aren't written to disk at transaction commit.
On a well-tuned server, those changes are written to disk sometime later by
asynchronous processes, such as the background writer or the checkpointer.

Crash recovery replays the WAL, but from what point does it start to recover? Recovery
starts from points in the WAL known as checkpoints. The duration of a crash recovery
depends on the number of changes in the transaction log since the last checkpoint. A
checkpoint is a known safe starting point for recovery, since it guarantees that all of the
previous changes to the database have already been written to disk.

A checkpoint can become a performance bottleneck on busy database servers because of
the number of writes required. We will look at a number of ways to fine-tune that, but you
must also understand the effect that those tuning options may have on crash recovery.

A checkpoint can be either immediate or scheduled. Immediate checkpoints are
triggered by the action of a super user, such as the CHECKPOINT command, and they are
performed at full speed, so an immediate checkpoint will complete as soon as possible.
Scheduled checkpoints are decided automatically by PostgreSQL, and their speed is
throttled to spread the load over a longer period of time and reduce the impact on other
activities, such as queries or replication.

450 Backup and Recovery

Two parameters control the occurrence of scheduled checkpoints. The first
is checkpoint_timeout, which is the number of seconds until the next checkpoint.
While this parameter is time-based, the second parameter, max_wal_size, influences
the amount of WAL data that will be written before a checkpoint is triggered; the actual
limit is computed from that parameter, taking into account the fact that WAL files can
only be deleted after one checkpoint (two in older releases). A checkpoint is called
whenever either of these two limits is reached.

If checkpoints are too frequent, then the amount of I/O will increase, so it's tempting to
banish checkpoints as much as possible by setting the following parameters:

max_wal_size = 20GB

checkpoint_timeout = '1 day'

However, if you do this, you should give some thought to how long crash recovery
will take and whether you want that; you must also consider how many changes will
accumulate before the next checkpoint and, more importantly, how much I/O the
checkpoint will generate due to those changes. Also, if you are using replication, then you
might not care about the recovery time because if the primary crashes, you can failover to
a standby without waiting for crash recovery to complete.

Also, you should make sure that the pg_wal directory is mounted on disks with enough
disk space. By default, max_wal_size is set to 1 GB. The amount of disk space required
by pg_wal might also be influenced by the following:

• Unexpected spikes in workload

• Failures in continuous archiving (see archive_command in the Hot physical
backup and continuous archiving recipe)

• The wal_keep_segments setting (you will need at least 16 MB times wal_
keep_segments of space)

In contrast to max_wal_size, with min_wal_size, you can control the minimum size
allotted to WAL storage, meaning that PostgreSQL will recycle existing WAL files instead
of removing them.

Planning your backups 451

How it works…
Recovery continues until the end of the transaction log. WAL data is being written
continually, so there is no defined endpoint; it is literally the last correct record. Each WAL
record is individually CRC-checked so that we know whether a record is complete and
valid before trying to process it. Each record contains a pointer to the previous record, so
we can tell that the record forms a valid link in the chain of actions recorded in the WAL.
As a result of that, recovery always ends with some kind of error in reading the next WAL
record. That is normal and means the next record does not exist (yet).

Recovery performance can be very fast, though its speed does depend on the actions
being recovered. The best way to test recovery performance is to set up a standby
replication server, as described in Chapter 12, Replication and Upgrades, which is actually
implemented as a variant of crash recovery.

There's more…
It's possible for a problem to be caused by replaying the transaction log so that the
database server will fail to start.

Some people's response to this is to use a utility named pg_resetwal, which removes
the current transaction log files and tidies up after that operation has taken place.

The pg_resetwal utility destroys data changes, which means data loss. If you do decide
to run that utility, make sure that you take a backup of the pg_wal directory first. Our
advice is to seek immediate assistance rather than do this. You don't know for certain that
doing this will fix a problem, but once you've done it, going back will be hard.

When discussing min_wal_size, we mentioned that WAL files are recycled; what this
actually means is that older WAL files are renamed so that they are ready to be reused as
future WAL files. This reduces commit latency in case of heavy write workloads because
creating a new file is slower than writing into an existing one.

Planning your backups
This recipe is all about thinking ahead and planning. If you're reading this recipe before
you've decided to take a backup, well done!

The key thing to understand is that you should plan your recovery, not your backup. The
type of backup you take influences the type of recovery that is possible, so you must give
some thought to what you are trying to achieve beforehand.

If you want to plan your recovery, then you need to consider the different types of failure
that can occur. What type of recovery do you wish to perform?

452 Backup and Recovery

You need to consider the following main aspects:

• Full or partial database?

• Everything or just object definitions?

• Point-in-Time Recovery (PITR)

• Restore performance

We need to look at the characteristics of the utilities to understand what our backup and
recovery options are. It's often beneficial to have multiple types of backup to cover the
different possible types of failure.

Your main backup options are the following:

• Logical backup, using pg_dump

• Physical backup, which is a filesystem backup

The pg_dump utility comes in two main flavors – pg_dump and pg_dumpall. The pg_
dump utility has the -F option for producing backups in various file formats. The file
format is very important when it comes to restoring from backup, so you need to pay close
attention to it.

As far as physical backup is concerned, in this chapter, we will focus on filesystem
backup using pg_start_backup() and pg_stop_backup(). However, it is
important to note that PostgreSQL has its own built-in application for physical base
backups, pg_basebackup, which relies on the native streaming replication protocol.
As authors, in order to distribute the content more evenly, we have decided to cover pg_
basebackup and streaming replication in the next chapter, Chapter 12, Replication and
Upgrades.

How to do it…
The following table shows the features that are available, depending on the backup
technique selected. The details of these techniques are covered in the remaining recipes in
this chapter:

Planning your backups 453

Figure 11.1 – Different backup techniques compared in terms of available features

The following notes were mentioned in the preceding table:

1. If you've generated a script with pg_dump or pg_dumpall and need to restore just
a single object, then you will need to go deeper. You will need to write a Perl script
(or similar) to read the file and extract the parts you want. This is messy and time-
consuming but probably faster than restoring the whole thing to a second server
and then extracting just the parts you need with another pg_dump.

2. Selective backup with a physical backup is possible but will cause problems later
when you try to restore.

3. See the Incremental/differential backup and restore recipe.
4. Selective restore with a physical backup isn't possible with the currently supplied

utilities; however, please see the Recovery of a dropped/damaged table and Extract a
logical backup from a physical one recipes for partial recovery.

454 Backup and Recovery

5. See the Standalone hot physical database backup recipe.
6. See the Hot physical backups with Barman recipe. Barman 2 fully supports

synchronous WAL streaming, allowing you to achieve a Recovery Point Objective
(RPO) equal to 0, meaning zero data loss.

7. A physical backup cannot be directly restored to a different PostgreSQL major
version. However, it is possible to restore it to the same PostgreSQL major version
and then follow the procedure described in the Major upgrades in-place recipe,
in Chapter 12, Replication and Upgrades, to upgrade restored files to a newer
major version.

There's more…
Choosing physical backups is a safer approach: if you can take a logical backup, then you
can also take a physical backup and then extract the same logical backup from it, while
the opposite is not possible. For more details, refer to the Extract a logical backup from a
physical one recipe later in this chapter.

Hot logical backups of one database
Logical backup makes a copy of the data in the database by dumping the content of each
table, as well as object definitions for that same database (such as schemas, tables, indexes,
views, privileges, triggers, and constraints).

How to do it…
The command to do this is simple. The following is an example of doing this when using a
database called pgbench:

pg_dump -F c pgbench > dumpfile

Alternatively, you can use the following command:

pg_dump -F c -f dumpfile pgbench

Finally, note that you can also run pg_dump via the pgAdmin 4 GUI, as shown in the
following screenshot:

Hot logical backups of one database 455

Figure 11.2 – Using the pgAdmin 4 GUI

How it works…
The pg_dump utility produces a single output file. This output file can use the split
command to separate the file into multiple pieces if required.

The pg_dump archive file, also known as the custom format, is lightly compressed by
default. Compression can be removed or made more aggressive.

Note
Even though, by default, pg_dump writes an SQL script directly to standard
output, it is recommended to use the archive file instead by enabling the
custom format through the -F c option. As we will cover later in this chapter,
backing up in the form of archive files gives you more flexibility and versatility
when restoring. Archive files must be used with a tool called pg_restore.

The pg_dump utility runs by executing SQL statements against the database to unload
data. When PostgreSQL runs a SQL statement, we take a snapshot of transactions that are
currently running, which freezes our viewpoint of the database. The pg_dump utility can
take a parallel dump of a single database using the snapshot export feature.

456 Backup and Recovery

We can't (yet) share that snapshot across sessions connected to more than one database, so
we cannot run an exactly consistent pg_dump in parallel across multiple databases. The
time of the snapshot is the only moment we can recover to – we can't recover to a time
either before or after. Note that the snapshot time is the start of the backup, not the end.

When pg_dump runs, it holds the very lowest kind of lock on the tables being dumped.
Those are designed to prevent DDL from running against the tables while the dump takes
place. If a dump is run at the point at which other DDLs are already running, then the
dump will sit and wait. If you want to limit the waiting time, you can do so by setting
the --lock-wait-timeout option.

Since pg_dump runs SQL queries to extract data, it will have some performance impact.
This must be taken into account when executing on a live server.

The pg_dump utility allows you to take a selective backup of tables. The -t option also
allows you to specify views and sequences. There's no way to dump other object types
individually using pg_dump. You can use some supplied functions to extract individual
snippets of information from the catalog.

Note
More details on these functions are available at this URL: https://
www.postgresql.org/docs/14/functions-info.
html#FUNCTIONS-INFO-CATALOG-TABLE.

The pg_dump utility works against earlier releases of PostgreSQL, so it can be used to
migrate data between releases.

Note
When migrating your database from an earlier version, it is generally
recommended to use pg_dump of the same version of the target PostgreSQL.
For example, if you are migrating a PostgreSQL 10.7 database to PostgreSQL
11, you should use pg_dump v11 to remotely connect to the 10.7 server and
back up the database.

https://www.postgresql.org/docs/14/functions-info.html#FUNCTIONS-INFO-CATALOG-TABLE
https://www.postgresql.org/docs/14/functions-info.html#FUNCTIONS-INFO-CATALOG-TABLE
https://www.postgresql.org/docs/14/functions-info.html#FUNCTIONS-INFO-CATALOG-TABLE

Hot logical backups of all databases 457

As far as extensions are concerned, pg_dump is aware of any objects (namely tables
and functions) that have been installed as part of an additional package, such as
PostGIS or Slony. Thanks to that, they can be recreated by issuing appropriate CREATE
EXTENSION commands instead of dumping and restoring them together with the other
database objects. Extension support removes such difficulties when restoring from a
logical backup, maintaining the list of additional tables that have been created as part
of the software installation process. Refer to the Managing installed extensions recipe
in Chapter 3, Server Configuration, for more details.

There's more…
What time was pg_dump taken? The snapshot for pg_dump is taken at the beginning of
a backup. The file modification time will tell you when the dump is finished. The dump is
consistent at the time of the snapshot, so you may need to know that time.

If you are making a script dump, you can do a verbose dump; continuing the previous
example, you just need to add -v, as follows:

pg_dump -F c -f dumpfile pgbench -v

This adds the time to the top of the script. Custom dumps store the start time as well, and
that can be accessed using the following command:

pg_restore --schema-only -v dumpfile 2>/dev/null | head | grep
Started

-- Started on 2018-06-03 09:05:46 BST

See also
Note that pg_dump does not dump roles (such as users and groups) and tablespaces.
Those two are only dumped by pg_dumpall; see the following recipes for more
detailed descriptions.

Hot logical backups of all databases
If you have more than one database in your PostgreSQL server, you may want to take a
logical backup of all of the databases at the same time.

458 Backup and Recovery

How to do it…
Our recommendation is that you repeat exactly what you do for one database to each
database in your cluster. You can run individual dumps in parallel if you want to speed
things up.

Once this is complete, dump the global information using the following command:

pg_dumpall -g

How it works…
To back up all databases, you may be told that you need to use the pg_dumpall utility.
The following are four good reasons why you shouldn't do that:

• If you use pg_dumpall, the only output produced will be in a script file. Script
files can't benefit from all the features of archive files, such as parallel and selective
restore of pg_restore. By making your backup in this way, you will immediately
deprive yourself of flexibility and versatility at restore time.

• The pg_dumpall utility produces dumps of each database, one after another.
This means that pg_dumpall is slower than running multiple pg_dump tasks in
parallel, one against each database.

• The dumps of individual databases are not consistent to a single point in time. As
we pointed out in the Hot logical backups of one database recipe, if you start the
dump at 4:00 and it ends at 7:00, then you cannot be sure exactly what time the
dump relates to; it could be any time between 4:00 and 7:00.

• Options for pg_dumpall and pg_dump are similar in many ways. pg_dump has
more options and therefore gives you more flexibility.

See also
If you are taking a logical backup of all of your databases for disaster recovery purposes,
you should look at the hot physical backup options instead.

Backups of database object definitions
Sometimes, it's useful to get a dump of the object definitions that make up a database. This
is useful for comparing what's in the database against the definitions in a data- or object-
modeling tool. It's also useful to make sure that you can recreate objects in the correct
schema, tablespace, and database with the correct ownership and permissions.

Backups of database object definitions 459

How to do it…
There are several important commands to note here.

• The basic command to dump the definitions for every database of your PostgreSQL
instance is as follows:

pg_dumpall --schema-only > myscriptdump.sql

This includes all objects, including roles, tablespaces, databases, schemas, tables,
indexes, triggers, constraints, views, functions, ownerships, and privileges.

• If you want to dump PostgreSQL role definitions, use the following command:

pg_dumpall --roles-only > myroles.sql

• If you want to dump PostgreSQL tablespace definitions, use the following
command:

pg_dumpall --tablespaces-only > mytablespaces.sql

• If you want to dump both roles and tablespaces, use the following command:

pg_dumpall --globals-only > myglobals.sql

The output is a human-readable script file that can be re-executed to recreate each
of the databases.

Note
The short form for the --globals-only option is -g, which we have
already seen in a previous recipe, Hot logical backups of all databases. Similar
abbreviations exist for --schema-only (-s), --tablespaces-
only (-t), and --roles-only (-r).

There's more…
In PostgreSQL, the word schema is also used to organize a set of related objects of a
database in a logical container, similar to a directory. It is also known as a namespace.
Be careful that you don't confuse what is happening here. The --schema-only option
makes a backup of the database schema – that is, the definitions of all objects in the
database (and in all namespaces). To make a backup of the data and definitions in just
one namespace and one database, use pg_dump with the -n option. To make a backup
of only the definitions, in just one namespace and one database, use pg_dump with
both -n and --schema-only together.

460 Backup and Recovery

You can also take advantage of a previously generated archive file (see the Hot logical
backups of one database recipe) and generate a script file using pg_restore, as follows:

pg_restore --schema-only mydumpfile > myscriptdump.sql

A standalone hot physical backup
Hot physical backup is an important capability for databases.

Physical backup allows us to get a completely consistent view of the changes to all
databases at once. Physical backup also allows us to back up even while DDL changes are
being executed on the database. Apart from resource constraints, there is no additional
overhead or locking with this approach.

Physical backup procedures used to be slightly more complex than logical backup
procedures, but in version 10, some defaults have been changed, making them easier; after
these changes, making a backup with pg_basebackup has become very easy, even with
default settings.

In this recipe, we will first describe the easiest method, which is to use the pg_
basebackup utility, and then provide a lower-level equivalent process to explain physical
backups in more detail and describe the changes required for additional features, such as
differential backup or a parallel file copy.

Getting ready
You just need to decide upon a directory where you want to place backups and make sure
it exists – for instance, /var/lib/postgresql/standalone.

How to do it…
Just log in as the postgres user and run the pg_basebackup utility, as follows:

pg_basebackup -D /var/lib/postgresql/backup/standalone -c fast
-P -R

Once this command returns, the /var/lib/postgresql/backup/standalone
directory will contain a PostgreSQL data directory whose contents are an exact copy of the
contents of the PostgreSQL server that you have backed up.

A standalone hot physical backup 461

How it works…
By default, pg_basebackup connects to the database using the same defaults as other
utilities based on LibPQ, such as psql. This normally means that you don't need to specify
connection information such as the database user, the hostname, and the port. But, if you
are running a server that uses non-default values for those settings, then you can specify
them with familiar syntax. For example, take the following options:

-h myhost -U myuser -p 5433

If you add them, then pg_basebackup will use the myhost host, the myuser user, and
port 5433.

Under the hood, pg_basebackup proceeds in a way that is equivalent to the following
sequence of steps:

1. Create an empty directory as the target of the standalone backup:

rm -rf /var/lib/postgresql/backup/standalone

mkdir -p /var/lib/postgresql/backup/standalone/pg_wal

2. Start streaming WAL into /var/lib/postgresql/backup/standalone/
pg_wal with the following command:

pg_receivewal -D /var/lib/postgresql/backup/standalone/
pg_wal

3. Ask the server to start the backup, as follows:

psql -c "select pg_start_backup('standalone')"

This step can take a while because PostgreSQL performs a checkpoint before returning
to ensure that the data files copied in the next step include all of the latest data changes.
See the Understanding and controlling crash recovery recipe from earlier in this chapter for
more details about checkpoints.

Depending on system configuration and workload, a checkpoint can take a long time,
even several minutes. This time is part of the backup duration, which in turn affects
the amount of WAL files needed for the backup; so it can be a good idea to reduce the
duration of this checkpoint by issuing a CHECKPOINT command just before pg_start_
backup is issued in step 3 and then by starting the backup in fast mode, as follows:

psql -c "select pg_start_backup('standalone', fast := true)"

462 Backup and Recovery

fast mode means that the checkpoint included in pg_start_backup runs as quickly
as possible, irrespective of its impact on the system; this should not be a problem because
most of the shared buffers will have been written already by the CHECKPOINT command
that was issued previously:

1. Make a base backup – copy the data files (excluding the content of the pg_wal and
pg_replslot directories) using the following commands:

tar -cvf- \

 --directory=$PGDATA \

 --exclude="pg_wal/*" --exclude="pg_replslot/*" . \

 | tar -xf- --directory=/var/lib/postgresql/backup/
standalone

2. Stop the backup, as follows:

psql -c "select pg_stop_backup(), current_timestamp"

3. Stop archiving by hitting Ctrl + C in the terminal session where pg_receivewal
is running.

There's more…
After the backup is finished, remember to store the contents of /var/lib/
postgresql/backup/standalone somewhere safe. A safe place is definitely not on
the same server.

This procedure ends with a directory populated with a copy of the database. It is
imperative to remember to copy it somewhere safe. It contains everything that you need
to recover.

The backup taken with this procedure only allows you to restore to a single point in time.
That point is the time of the pg_stop_backup() function.

A physical backup takes a copy of all files in the database (step 4 – the base backup). That
alone is not sufficient as a backup, and you need the other steps as well. A simple copy of
the database produces a time-inconsistent copy of the database files. To make the backup
time consistent, we need to add all of the changes that took place from the start to the end
of the backup. That's why we have steps 3 and 5 to bracket our backup step.

In technical terms, steps 3 and 5 take advantage of the API that controls exclusive
backups, meaning that there can only be one physical backup at a time, and it has to be
performed on a master server.

Hot physical backups with Barman 463

PostgreSQL supports non-exclusive backups as well, allowing users to perform the pg_
start_backup() and pg_stop_backup() functions on a read-only standby server.
To make a backup non-exclusive, just add the exclusive := false parameter to
those functions. However, note that the non-exclusive backup method is more complex
and is not covered in this recipe.

The changes that are made are put in the standalone/pg_wal directory as a set
of archived transaction log or WAL files by the pg_receivewal command started in
step 2.

If your PGDATA does not contain configuration files, such as postgresql.conf and
pg_hba.conf, you might have to manually copy them before performing a recovery.
Remember that standard Debian and Ubuntu installations keep configuration files outside
PGDATA, specifically under /etc/postgresql.

The important thing to understand in this recipe is that we need both the base backup and
the appropriate archived WAL files to allow us to recover. Without both of these, we have
nothing. Most of these steps are designed to ensure that we really will have the appropriate
WAL files in all cases.

As an alternative to WAL streaming, it is possible to configure file-based WAL archiving,
which works in a push mode, without requiring inbound access to the database server.
However, streaming WAL archiving has the advantage of transferring WAL as soon as it
is produced, without waiting for the 16 MB WAL segment to be completed, which usually
results in little or no data loss, even in the event of a disaster.

We describe this procedure only for the purpose of illustrating how pg_basebackup
works. If you want to copy files more efficiently, as explained in the Improving performance
of backup/recovery and Incremental/differential backup and restore recipes, then you should
use software that is specialized in backup and recovery, rather than writing your own
scripts. In this book, we cover Barman, software written by EDB developers, which has
become very popular among PostgreSQL users. It is an open source tool used in most of
the remaining recipes in this book.

Hot physical backups with Barman
The main motivation to start a new open source project for disaster recovery of
PostgreSQL databases was the lack (back in 2011) of a simple and standard procedure for
managing backups and, most importantly, recovery. Disasters and failures in ICT
will happen.

464 Backup and Recovery

As a database administrator, your duty is to plan for backups and the recovery of
PostgreSQL databases and perform regular tests in order to sweep away stress and fear,
which typically follow those unexpected events. Barman, which stands for Backup and
Recovery Manager, is definitely a tool that you can use for these purposes.

Barman hides most of the complexity of working with PostgreSQL backups. For more
information on the underlying technologies, you can refer to other recipes in this chapter:
Understanding and controlling crash recovery, Planning backups, Hot physical backup and
continuous archiving, and Recovery to a point in time. It is important to be aware of how
Barman works underneath if you need to address issues with installation, configuration,
and recovery.

Barman is currently available only for Linux systems and is written in Python. It supports
all PostgreSQL versions, starting from 8.3. Among its main features worth citing
are remote backup, remote recovery, multiple server management, backup catalogs,
incremental backups, retention policies, WAL streaming, compression of WAL files,
parallel copy (backup and restore), backup from a standby server, and geo-redundancy.

For the sake of simplicity, in this recipe, we will assume the following architecture:

• One Linux server named db1, running your PostgreSQL production database
server.

• One Linux server named backup1, running Barman for disaster recovery of your
PostgreSQL database server.

• WAL streaming is configured from PostgreSQL to Barman.

• Both servers are in the same LAN and, for better business continuity objectives, the
only resource they share is the network.

Later on, we will see how easy it is to add more PostgreSQL servers (such as bon) to our
disaster recovery solution on backup1 with Barman.

Getting ready
Although Barman can be installed via sources or through pip – Python's main package
manager – the easiest way to install Barman is by using the software package manager of
your Linux distribution.

Currently, EDB maintains packages for modern RHEL, CentOS, Debian, and Ubuntu
systems. If you are using a different distribution or another Unix system, you can follow
the instructions written in the official documentation of Barman, available at http://
docs.pgbarman.org/.

http://docs.pgbarman.org/
http://docs.pgbarman.org/

Hot physical backups with Barman 465

In this book, we will cover the installation of Barman 2.15 (currently the latest stable
release) on CentOS 8 and Ubuntu 20.04 LTS Linux servers.

If you are using RHEL or CentOS 8 on the backup1 server, you need to install the
following repositories:

• Fedora's Extra Packages Enterprise Linux (EPEL), available at http://
fedoraproject.org/wiki/EPEL

• The PostgreSQL Global Development Group RPM repository, available at http://
yum.postgresql.org/

Then, as root, type in the following:

yum install barman

If you are using Ubuntu on backup1, you need to install the APT PostgreSQL repository,
following the instructions available at http://apt.postgresql.org/. Then, as root,
type in the following:

apt-get install barman

From now on, we will assume the following:

• PostgreSQL is running on db1 and listening to the default port (5432).

• Barman is installed on backup1.

• You have created a super user called barman in your PostgreSQL server on db1
that can only connect from the backup1 server (see the Enabling access for
network/remote users recipe in Chapter 1, First Steps, and the PostgreSQL super user
recipe in Chapter 6, Security).

• The barman system user on backup1 can connect as the barman database user to
the PostgreSQL instance on db1 without having to type in a password.

http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL
http://yum.postgresql.org/
http://yum.postgresql.org/
http://apt.postgresql.org/

466 Backup and Recovery

How to do it…
We will start by looking at Barman's main configuration file:

1. Log in as root on backup1 and open the /etc/barman.conf file for
editing. This file contains global options for Barman. Once you are familiar with
the main configuration options, we recommend at least that you set the default
compression method by uncommenting the following line:

compression = gzip

2. Add the configuration file for the db1 server. Create the db1.conf file, containing
the following lines, in the /etc/barman.d directory:

[db1]

description = "PostgreSQL database on db1"

active = off

backup_method = postgres

archiver = off

streaming_archiver = on

slot_name = "barman_backup1"

conninfo = "host=db1 dbname=postgres user=barman"

streaming_conninfo = "host=db1 dbname=postgres
user=streaming_barman"

3. You have just added the db1 server to the list of Postgres servers managed by
Barman. The server is temporarily inactive until the configuration is completed. You
can verify this by typing barman list-server, as follows:

[root@backup1]# barman list-server

db1 - PostgreSQL database on db1 (inactive)

Note
In this recipe, you will be executing commands such as barman list-
server as root. However, Barman will run its own commands using
the barman system user (or, more generally, by the user specified in the
configuration file by the barman_user option).

Hot physical backups with Barman 467

4. The next task is to initialize the directory layout for the db1 server through the
check command:

[root@backup1]# barman check db1

Server db1 (inactive):

 WAL archive: FAILED (please make sure WAL
shipping is setup)

 PostgreSQL: OK

 superuser or standard user with backup
privileges: OK

 PostgreSQL streaming: OK

 wal_level: OK

 replication slot: FAILED (replication slot
'barman_backup1' doesn't exist. Please execute 'barman
receive-wal --create-slot db1')

(...)

[root@backup1]# echo $?

0

As you can see, the returned value is 0, meaning that there is no reason to worry;
the server is marked as inactive, meaning that we are still configuring it, so if there
are failures, then they are expected.

In fact, you are advised to add this command to your monitoring infrastructure as,
among other things, it ensures that the required libpq connection to the database
server is working properly, as well as continuously archiving.

5. Let's filter out OK so we display a to-do list:

[root@backup1]# barman check db1 | grep -v OK

Server db1 (inactive):

 WAL archive: FAILED (please make sure WAL
shipping is setup)

 replication slot: FAILED (replication slot
'barman_backup1' doesn't exist. Please execute 'barman
receive-wal --create-slot db1')

6. Now, we can mark the server as "active" by changing the following line in /etc/
barman.d/db1.conf:

active = on

468 Backup and Recovery

7. Then, we can create the replication slot, as previously suggested by Barman itself:

[root@backup1 ~]# barman receive-wal --create-slot db1

Creating physical replication slot 'barman_backup1' on
server 'db1'

Replication slot 'barman_backup1' created

8. At this point, we can ask PostgreSQL to switch to the next WAL file:

[root@backup1 ~]# barman switch-wal db1

The WAL file 000000010000000000000002 has been closed on
server 'db1'

9. Now, we run the barman check command again, and we repeat it until all the
checks pass.

10. Initially, the check command will raise an error like this:

WAL archive: FAILED (please make sure WAL shipping is
setup)

This simply means, "I did not archive any WAL file for this server yet, so I am not sure
whether you have already configured WAL archiving."

This error will cease when the first WAL file has been fully streamed, archived, and
compressed, which requires a run of the CRON job installed by Barman, which is
executed at the start of every minute. So, you should not have to wait more than a
couple of minutes, and then this check will return 0:

[root@backup1]# barman -q check db1

[root@backup1]# echo $?

0

Everything is good! PostgreSQL on db1 is now regularly streaming WAL files to
Barman on backup1.

11. Once you have set up continuous archiving, in order to add disaster recovery
capabilities to your database server, you need at least one full base backup. Taking
a full base backup in Barman is as easy as typing barman backup db1. Barman
initiates the physical backup procedure and waits for the checkpoint to happen,
before copying data files from db1 to backup1 using pg_basebackup:

[root@backup1 ~]# barman backup db1

Starting backup using postgres method for server db1 in /
var/lib/barman/db1/base/20211103T103940

Hot physical backups with Barman 469

Backup start at LSN: 0/3000060 (000000010000000000000003,
00000060)

Starting backup copy via pg_basebackup for
20211103T103940

(...)

12. Note that the command ends with the following warning:

WARNING: IMPORTANT: this backup is classified as WAITING_
FOR_WALS, meaning that Barman has not received yet all
the required WAL files for the backup consistency.

This is a common behaviour in concurrent backup
scenarios, and Barman automatically set the backup as
DONE once all the required WAL files have been archived.

Hint: execute the backup command with '--wait'

You don't need to worry, because WAL files are expected to arrive soon anyway,
but if you want to include the wait in the backup command, then you can add the
option suggested in the warning.

13. You can see that the new backup is now listed in the catalog:

[root@backup1 ~]# barman list-backup db1

db1 20211103T103940 - Wed Nov 3 10:39:42 2021 - Size:
23.5 MiB - WAL Size: 0 B

Note
It is worth noting that, during the backup procedure, your PostgreSQL server
is available for both read and write operations. This is because PostgreSQL
natively implements hot backup, a feature that other DBMS vendors might
make you pay for.

From now on, your db1 PostgreSQL server is continuously backed up on backup1. You
can now schedule weekly backups (using the barman user's cron) and manage retention
policies so that you can build a catalog of backups, covering you for weeks, months, or
years of data, allowing you to perform recovery operations at any point in time between
the first available backup and the last successfully archived WAL file.

470 Backup and Recovery

How it works…
Barman is a Python application that wraps PostgreSQL core technology for continuous
backup and PITR. It also adds some practical functionality, focused on helping the
database administrator to manage disaster recovery of one or more PostgreSQL servers.

When devising Barman, we decided to keep the design simple and not to use any daemon
or client/server architecture. Maintenance operations are simply delegated to the barman
cron command, which is mainly responsible for archiving WAL files (moving them
from the incoming directory to the WAL file and compressing them) and managing
retention policies.

If you have installed Barman through RPM or APT packages, you will notice that
maintenance is run every minute through cron:

[root@backup1 ~]# cat /etc/cron.d/barman

m h dom mon dow user command

 * * * * * barman [-x /usr/bin/barman] && /usr/
bin/barman -q cron

Barman follows the convention over configuration paradigm and uses an INI format
configuration file with options operating at two different levels:

• Global options: These are options specified in the [barman] section, and are
used by any Barman command and for every server. Several global options can be
overridden at the server level.

• Server options: These are options specified in the [SERVER_ID] section, used by
server commands. These options can be customized at the server level (including
overriding general settings).

The SERVER_ID placeholder (such as db1) is fundamental, as it identifies the server in
the catalog (therefore, it must be unique). Similarly, commands in Barman are of
two types:

• Global commands: These are general commands, not tied with any server in
particular, such as a list of the servers managed by the Barman installation (list-
server) and maintenance (cron).

• Server commands: These are commands executed on a specific server, such
as diagnostics (check and status), backup control (backup, list-
backup, delete, and show-backup), and recovery control (recover, which is
discussed in the next recipe, Recovery with Barman).

Hot physical backups with Barman 471

The previous sections of this recipe showed you how to add a server (db1) to a Barman
installation on the backup1 server. You can easily add a second server (db2) to the
Barman server on backup1. All you have to do is create the db2.conf file in the /etc/
barman.d directory and repeat the steps outlined in the How it works... section, as you
have done for db1.

There's more…
Every time you execute the barman backup command for a given server, you take a full
base backup (a more generic term for this is a periodical full backup). Once completed,
this backup can be used as a base for any recovery operation from the start time of the
backup to the last available WAL file for that server (provided there is continuity among
all of the WAL segments).

As we mentioned earlier, by scheduling daily or weekly automated backups, you end up
having several periodic backups for a server. In Barman's jargon, this is known as the
backup catalog, and it is one of our favorite features of this tool.

We already saw how to list all the available backups for a given server through the list-
backup command. You might also want to get familiar with show-backup, which gives
you detailed information on a specific backup regarding the server, base backup time, the
WAL archive, and context within the catalog (for example, the last available backup):

[root@backup1 ~]# barman show-backup db1 20211103T103940

Rather than the full backup ID (20211103T103940), you can use a few synonyms, such
as the following:

• last or latest: This refers to the latest available backup (the last in the catalog).

• first or oldest: This refers to the oldest available backup (the first in
the catalog).

For the show-backup command, however, we will use a real and concrete example,
taken directly from one of our customer's installations of Barman on a 16.4 TB Postgres
9.4 database:

Backup 20180930T130002:

 Server Name : skynyrd

 Status : DONE

 PostgreSQL Version : 90409

 PGDATA directory : /srv/pgdata

472 Backup and Recovery

 Base backup information:

 Disk usage : 16.4 TiB (16.4 TiB with WALs)

 Incremental size : 5.7 TiB (-65.08%)

 Timeline : 1

 Begin WAL : 000000010000358800000063

 End WAL : 00000001000035A0000000A2

 WAL number : 6208

 WAL compression ratio: 79.15%

 Begin time : 2018-09-30 13:00:04.245110+00:00

 End time : 2018-10-01 13:24:47.322288+00:00

 Begin Offset : 24272

 End Offset : 11100576

 Begin XLOG : 3588/63005ED0

 End XLOG : 35A0/A2A961A0

 WAL information:

 No of files : 3240

 Disk usage : 11.9 GiB

 WAL rate : 104.33/hour

 Compression ratio : 76.43%

 Last available : 00000001000035AD0000004A

 Catalog information:

 Retention Policy : not enforced

 Previous Backup : 20180923T130001

 Next Backup : - (this is the latest base backup)

As you can see, Barman is a production-ready tool that can be used in large, business-
critical contexts, as well as in basic Postgres installations. It provides good RPO outcomes,
allowing you to limit potential data loss to a single WAL file, or even less when WAL
streaming is configured.

Finally, note that Barman also supports parallel and incremental backups, through the
rsync method, which can dramatically reduce disk usage as well as backup and recovery
time. For further information, please refer to the Improving performance of physical
backup/restore recipe later in this chapter.

Recovery of all databases 473

Manually performing each step of this procedure is a great way to gain a clear
understanding of PostgreSQL's backup and restore infrastructure. However, to reduce
the chance of human error, it is good practice to use a dedicated tool rather than rely on
complex activities that must be performed by a human operator, or on custom developed
scripts that will not likely have the maturity of a tool that is used in production already
in many installations. While our preference goes with Barman, as we are its creators and
main developers, there are other third-party tools that are specialized in managing hot
physical backups, such as the following:

• pgBackRest: http://www.pgbackrest.org/

• pghoard: https://github.com/ohmu/pghoard

• wal-e: https://github.com/wal-e/wal-e

• wal-g: https://github.com/wal-g/wal-g

Barman is distributed under GNU GPL v3 terms and is available for download at
http://www.pgbarman.org/.

There is also a module for puppet, which is available at https://github.
com/2ndquadrant-it/puppet-barman.

For further and more detailed information, refer to the following:

• The man barman command, which gives the man page for the Barman application

• The man 5 barman command, which gives the man page for the configuration file

• The barman help command, which gives a list of the available commands

• The official documentation for Barman, which is publicly available at http://
docs.pgbarman.org/

• The mailing list for community support at http://www.pgbarman.org/
support/

Recovery of all databases
Recovery of a complete database server, including all of its databases, is an important
feature. This recipe covers how to execute a recovery in the simplest way possible.

Some complexities are discussed here, though most are covered in later recipes.

http://www.pgbackrest.org/
https://github.com/ohmu/pghoard
https://github.com/wal-e/wal-e
https://github.com/wal-g/wal-g
http://www.pgbarman.org/
https://github.com/2ndquadrant-it/puppet-barman
https://github.com/2ndquadrant-it/puppet-barman
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/

474 Backup and Recovery

Getting ready
Find a suitable server on which to perform the restore.

Before you recover onto a live server, always make another backup. Whatever problem you
thought you had can get worse if you aren't prepared.

Physical backups (including Barman ones) are more efficient than logical ones, but they
are subject to additional restrictions.

To be precise, a single instance of Barman can manage backups of several servers
having different versions of PostgreSQL. However, when it comes to recovery, the same
requirements for the PITR technology of PostgreSQL apply – in particular, the following:

• You must recover on a server with the same hardware architecture and PostgreSQL
major version.

• You will restore the entire PostgreSQL instance, with all its databases.

Actually, with backups, you don't get ready when you need to use them; you must be ready
before you need them, so preparation is everything. This also means that you will have
been aware of those requirements before the failure.

How to do it…
Here, we'll provide four distinct examples, depending on what type of backup was taken.

Logical – from the custom dump taken with pg_dump -F c
The procedure is as follows:

1. Restoring all databases means simply restoring each individual database from each
dump you took. Confirm that you have the correct backup before you restore:

pg_restore --schema-only -v dumpfile | head | grep
Started

2. Reload the global objects from the script file, as follows:

psql -f myglobals.sql

3. Reload all databases. Create the databases using parallel tasks to speed things up.
This can be executed remotely without the need to transfer dump files between
systems. Note that there is a separate dumpfile for each database:

pg_restore -C -d postgres -j 4 dumpfile

Recovery of all databases 475

Logical – from the script dump created by pg_dump -F p
As in the previous method, this can be executed remotely without needing to
transfer dumpfile between systems:

1. Confirm that you have the correct backup before you restore. If the following
command returns nothing, then it means that the file is not timestamped, and you'll
have to identify it in a different way:

head myscriptdump.sql | grep Started

2. Reload globals from the script file, as follows:

psql -f myglobals.sql

3. Reload all scripts, as follows:

psql -f myscriptdump.sql

Logical – from the script dump created by pg_dumpall
In order to recover a full backup generated by pg_dumpall, you need to execute the
following steps on a PostgreSQL server that has just been initialized:

1. Confirm that you have the correct backup before you restore. If the following
command returns nothing, then it means that the file is not timestamped, and you'll
have to identify it in a different way:

head myscriptdump.sql | grep Started

2. Reload the script in full:

psql -f myscriptdump.sql

Physical – from a standalone backup
If you made the backup following the Standalone hot physical database backup recipe, then
recovery is very easy:

1. Restore the backup files in the new data directory on the target server.
2. Confirm that you have the correct backup before you restore:

$ cat backup_label

START WAL LOCATION: 0/12000020 (file
000000010000000000000012)

476 Backup and Recovery

CHECKPOINT LOCATION: 0/12000058

START TIME: 2018-06-03 19:53:23 BST

LABEL: standalone

3. Verify that all file permissions and ownerships are correct and that the links are
valid. This should already be the case if you are using the postgres user ID
everywhere, which is recommended.

4. Start the server.

This procedure is so simple because, in the Standalone hot physical database backup recipe,
we gift-wrapped everything for you. That also helped you to understand that you need
both a base backup and the appropriate WAL files.

Physical – with Barman
If you made your backup according to the Hot physical backups with Barman recipe, then
you can restore it using the barman recover command.

In this example, we are making the following assumptions:

• We have a new server called db2 on which we want to restore the latest backup of
the PostgreSQL instance running on db1.

• The barman user on the backup host can connect via SSH as the postgres user
to the db2 host.

These are the steps for recovering a Barman backup of the db1 server to db2:

1. Decide the location of the data directory where you want to restore PostgreSQL –
for instance, /var/lib/pgsql/14/data.

2. Check whether the target data directory is empty; if not, ask yourself why (for
example, "Am I accidentally connected to the wrong host?"). If you don't find a good
answer, stop here; otherwise, make sure that it's okay to empty it, and then do it.

3. Connect as the barman user on backup1 and issue the following command:

barman recover db1 last /var/lib/pgsql/14/data \

 --remote-ssh-command 'ssh postgres@db2'

Recovery of all databases 477

This command will use the latest available backup for the db1 server and prepare
everything you need to restore your server in the PostgreSQL destination directory
(/var/lib/pgsql/14/data), as shown in the following output:

Starting remote restore for server db1 using backup
20211103T103940

Destination directory: /var/lib/pgsql/14/data

Remote command: ssh

Copying the base backup.

Copying required WAL segments.

Generating archive status files

Identify dangerous settings in destination directory.

At this point, Barman might find something in your settings that is considered
potentially dangerous. It doesn't mean that it definitely is; it just means that this
setting can accidentally be used in the wrong way, so you must use your knowledge
of how PostgreSQL works to decide whether there could actually be a problem.

For instance, you could get the following output:
WARNING

You are required to review the following options as
potentially dangerous

postgresql.conf line 780: include_dir = 'conf.d'

In any case, the restore will finish with a message like the following:
Recovery completed (start time: 2021-11-03
14:12:29.314034, elapsed time: 1 second)

Your PostgreSQL server has been successfully prepared for
recovery!

4. Before you start the server, it is a good idea to inspect the content of /var/lib/
pgsql/14/data; its contents should look very similar to what was in the db1
server just before you started the recovery.

5. You are also strongly encouraged to review the content of the postgresql.
conf file before starting the server, even though Barman takes care of disabling
or removing some potentially dangerous options and detecting others (as in the
example warning reported previously).

478 Backup and Recovery

The most critical option is archive_command, which is preemptively set to
false and is good for a disposable instance or when testing recovery. Barman
does this because, in most cases, you don't want the instance you restored to start
archiving to the original location. The goal is to make you think before you activate
archiving. If you are restoring a backup because you want to create a permanent
database server, then you need to consider your archiving strategies – for example,
you might want to add the new database server to the Barman server by repeating
the steps outlined in the previous recipe.

6. When you are satisfied with your checks, you can start Postgres in /var/lib/
pgsql/14/data the usual way. For example, on CentOS 8, you can execute the
following command:

sudo systemctl start postgresql-14

pg_ctl start /var/lib/pgsql/14/newdata

7. Look at the PostgreSQL logs to verify that you do not have any problems, and then
also check ps -axf.

Now, you have a PostgreSQL instance running on db2, with a copy of all the databases
that are hosted on db1 and the same contents that those databases had at the point in
time when the last WAL file was closed, which is usually a few minutes in the past.

How it works…
A logical backup is taken by asking PostgreSQL to print a description of each object and
its contents, in the form of a sequence of SQL commands. The restore procedure for each
database consists simply of issuing those SQL commands on an empty database.

A physical backup is a copy of the files inside the data directory. The format used by
PostgreSQL to store data in the filesystem allows those files to be copied even while they
are being written, as long as the correct procedure is followed. The restore procedure
consists of creating a new PostgreSQL instance whose data directory will initially contain
a copy of those files. These procedures are implemented in pg_basebackup, as well as
in third-party utilities such as Barman.

When executed with the --remote-ssh-command option, the recover
command uses that command to connect to the remote server (similar to what the
ssh-command configuration option does in the backup phase but in reverse – see the
Hot physical backups with Barman recipe for more information) and perform the restore.
Internally, Barman relies on rsync for this operation.

Recovery of all databases 479

There's more…
You can start and stop the server once recovery has started without any problems. It will
not interfere with the recovery.

You can connect to the database server while it is recovering and run queries if that is
useful. This is known as hot standby mode and is discussed in Chapter 12, Replication
and Upgrades.

Barman allows you to perform two types of recovery:

• Local recovery: This involves restoring a PostgreSQL instance on the same server
where Barman is running.

• Remote recovery: This involves restoring a PostgreSQL instance on a different
server, through the network, as we just did.

Note that the terms local and remote are relative to the host where Barman is installed,
which is where you execute the barman recover command.

A common reason for performing a local recovery is to test your backup or to extract
some data from the backup – for instance, to recover from user error. This is described in
the Recovery to a point in time recipe later in the chapter.

If you are using tablespaces and you are unable (or unwilling) to use the exact same
directory paths when restoring the backup, you can use a feature known as tablespace
mapping in pg_basebackup or tablespace relocation in Barman, where you can
indicate the desired path for each tablespace. For more details, please refer to the following
user manuals links or barman help recover.

In this example, we only recover those transactions that have been committed inside a
WAL file that is already closed. While this is the default mode of operation of barman
recover, it can be changed by adding the --get-wal option, which produces
two effects:

• Barman recover does not copy WAL files; instead, it configures an appropriate
restore_command on the recovered instance, which will then fetch WAL files
from Barman on demand.

• The restore command will also consider a partial WAL file when recovering
transactions.

In that case, Barman will recover also those transactions whose commit record is in the
WAL file currently being streamed. For further information, look at the Barman client
utilities section of the Barman documentation at https://docs.pgbarman.org/.

https://docs.pgbarman.org/

480 Backup and Recovery

Finally, another important use case for Barman is to regularly create copies of the server
to be used for purposes such as development, staging, or business intelligence. These
environments do not normally require extremely current data – for instance, a snapshot
taken on the previous day could be enough.

This recipe has covered only a few aspects of the recovery process in Barman. For further
and more detailed information, refer to the following links:

• User manuals, available here:

 � https://www.postgresql.org/docs/14/app-pgbasebackup.html

 � https://docs.pgbarman.org/

• Mailing lists for community support:

 � for pg_basebackup

 � http://www.pgbarman.org/support/

• Our blog at https://www.enterprisedb.com/blog/

Recovery to a point in time
If your database suffers a problem at 3:22 p.m. and your backup was taken at 4:00 a.m.,
you're probably hoping there is a way to recover the changes made between those two
times. What you need is known as Point-in-Time Recovery (PITR).

Regrettably, if you've made a backup with the pg_dump utility at 4:00 a.m., then you won't
be able to recover to any other time. As a result, the term PITR has become synonymous
with the physical backup and restore technique in PostgreSQL.

Getting ready
If you have a backup made with pg_dump utility, then give up all hope of using that as a
starting point for a PITR. It's a frequently asked question, but the answer is still no. The
reason it gets asked is exactly why we are pleading with you to plan your backups ahead
of time.

First, you need to decide the point in time you would like to recover to. If the answer is as
late as possible, then you don't need to do a PITR at all – just recover until the end of the
transaction logs.

https://www.postgresql.org/docs/14/app-pgbasebackup.html
https://docs.pgbarman.org/
http://www.pgbarman.org/support/
https://www.enterprisedb.com/blog/

Recovery to a point in time 481

How to do it…
How do you decide at what point to recover to? The point where we stop recovery is
known as the recovery target. The most straightforward way is to indicate a timestamp, as
in this example:

barman recover db1 last /var/tmp/pitr --get-wal \

 --target-time '2021-06-01 16:59:14.27452+01'

You will have noticed that we are recovering the backup into a path that is normally
used to hold temporary files, instead of using a standard PostgreSQL data directory
path. That's because the files will be restored by the barman user, as we are not using
--ssh-command, and the permissions of that user do not allow writing inside a
subdirectory of /var/lib/pgsql, which is accessible only to the postgres user.

Restoring this backup as a temporary directory is not necessarily wrong; in fact, it is
appropriate because we are running a PITR exercise, meaning that we are creating an
instance that will only live for the time required to extract the specific data we need.

For the same permission reasons, it is convenient to change the ownership of the restored
backup to the postgres user, using this command:

chown -R postgres: /var/tmp/pitr

You might have to review the configuration files to change those settings that make sense
only to the original database server (for instance, disable SSL in case it uses certificates
that are not available on the Barman host).

After that, you can start PostgreSQL and run queries in hot standby mode, for monitoring
recovery progress or extracting data, as explained in the Recovery of a dropped/damaged
table recipe.

Finally, when you no longer need this instance, you should remember to stop PostgreSQL
and remove the data directory.

Note
You need to be careful to specify the time zone of the target so that it matches
the time zone of the server that wrote the log. This might differ from the time
zone of the current server, so be sure to double-check them.

482 Backup and Recovery

How it works…
Barman is simply using the PITR feature of PostgreSQL, which allows a user to specify a
target time by setting a parameter in the postgresql.conf file, as shown in
this example:

recovery_target_time = '2021-06-01 16:59:14.27452+01'

More generally, Barman supports three ways to define the recovery target:

• --target-time TARGET_TIME: The target is a timestamp.

• --target-xid TARGET_XID: The target is a transaction ID.

• --target-name TARGET_NAME: The target is a named restore point, which
was created previously with the pg_create_restore_point(name) function.

When executed with one of these options, Barman will generate the appropriate
PostgreSQL configuration so that the server will stop recovery at the requested point.

Barman also needs to create a recovery.signal file inside the data directory; if this
file exists, PostgreSQL will start in targeted recovery mode, meaning that recovery will
end when the database will have reached the state it was in at the point of time indicated
by the target. PITR works by applying individual WAL records. These correspond to
individual block changes, so there are many WAL records for each transaction. The final
part of any successful transaction is a commit WAL record, though there are abort records
as well. Each transaction completion record has a timestamp that allows us to decide
whether or not to stop at that point.

There's more…
You can also define a recovery target using a transaction ID (xid), though finding out
which xid to use is somewhat difficult, and you may need to refer to external records, if
they exist. Using a Log Sequence Number (LSN) is also possible, and equally tricky; in
both cases, you can get an idea of what transaction IDs, or LSN, to use, by inspecting the
contents of a given WAL file with the pg_waldump utility, which is part of PostgreSQL.

Another practical way, which rarely applies after an unexpected disaster, is to define a
recovery target with a label, formally known as a named restore point. A restore point is
created with the pg_create_restore_point() function and requires super user
privileges. For example, let's say you have to perform a critical update of part of the data in
your database. As a precaution, before you start the update, you can execute the following
query as a super user:

SELECT pg_create_restore_point('before_critical_update');

Recovery to a point in time 483

Then, you can use the before_critical_update label in the recovery_target_
name option.

Finally, you can simply stop as soon as the recovery process becomes consistent by
specifying recovery_target = 'immediate' in place of any other recovery
target parameter.

The recovery target is specified in the server configuration and cannot change while the
server is running. If you want to change the recovery target, you can shut down the server,
edit the configuration, and then restart the server. However, be careful – if you change
the recovery target and recovery is already past the new point, it can lead to errors. If
you define a recovery_target_timestamp that has already been passed, then the
recovery will stop almost immediately, though this will be after the correct stopping point.
If you define recovery_target_xid or recovery_target_name parameters that
have already been passed, then the recovery will just continue until the end of the logs.
Restarting a recovery from the beginning using a fresh restore of the base backup is always
the safest option.

Once a server completes the recovery, it will assign a new timeline. Once a server is fully
available, we can write new changes to the database. Those changes might differ from the
changes we made in a previous future history of the database. So, we differentiate between
alternate futures using different timelines. If we need to go back and run the recovery
again, we can create a new server history using the original or subsequent timelines. The
best way to think about this is that it is exactly like a sci-fi novel – you can't change the
past, but you can return to an earlier time and take a different action instead. However,
you'll need to be careful to not get confused.

The timeline is a 32-bit integer that constitutes the first eight characters in the name of a
WAL file; therefore, changing the timeline means using a new series of filenames. There
are cases where this is important – for instance, if you restore a backup and start that
server as a new server while the original server is still running, then it's convenient that
both servers archive the WAL they produce without disturbing each other. In other words,
if you made a backup, then you want to be able to restore it as many times as you want,
and you don't want the restored instances overwriting some files in the original backup.

By default, when recovery reaches the target, then recovery is paused and the server can
be accessed with read-only queries, exactly like a hot standby replica. You can change this
behavior with the --target-action option, which by default is set to pause.

This corresponds to setting recovery_target_action in the PostgreSQL
configuration, as discussed in the Delaying, pausing, and synchronizing replication recipe
in Chapter 12, Replication and Upgrades.

484 Backup and Recovery

The pg_dump utility cannot be used as a base backup for a PITR. The reason for this
is that a log replay contains the physical changes to data blocks, not the logical changes
based on primary keys. If you reload the pg_dump utility, the data will likely go back into
different data blocks, so the changes won't correctly reference the data.

See also
PostgreSQL can pause, resume, and stop recovery dynamically while the server is up.
This allows you to use the hot standby facility to locate the correct stopping point more
easily. You can trick hot standby into stopping recovery, which may help. See the Delaying,
pausing, and synchronizing replication recipe in Chapter 12, Replication and Upgrades,
on managing hot standby. This procedure is also covered by the Barman command-line
utility, as mentioned in the Hot physical backup and continuous archiving recipe.

You can use the pg_waldump utility to print the content of WAL files in a human-
readable way. This can be very valuable to locate the exact transaction ID or timestamp,
or when a certain change was committed – for instance, if we want to stop recovery right
before that. pg_waldump is part of PostgreSQL and is described here: https://www.
postgresql.org/docs/11/static/pgwaldump.html.

Recovery of a dropped/damaged table
You may drop or even damage a table in some way. Tables could be damaged for physical
reasons, such as disk corruption, or they could also be damaged by running poorly
specified UPDATE or DELETE commands, which update too many rows or overwrite
critical data.

Recovering from this backup situation is a common request.

How to do it…
The methods to this approach differ, depending on the type of backup you have available.
If you have multiple types of backup, you have a choice.

Logical – from the custom dump taken with pg_dump -F c
If you've taken a logical backup using the pg_dump utility in a custom file, then you can
simply extract the table you want from the dumpfile, like so:

pg_restore -t mydroppedtable dumpfile | psql

https://www.postgresql.org/docs/11/static/pgwaldump.html
https://www.postgresql.org/docs/11/static/pgwaldump.html

Recovery of a dropped/damaged table 485

Alternatively, you can directly connect to the database using -d. If you use this option,
then you can allow multiple jobs in parallel with the -j option.

When working with just one table, as in this case, this is useful only if there are things
that can be done at the same time – that is, if the table has more than one index and/or
constraint. More details about parallel restore are available in the Improving performance
of backup/recovery recipe later in this chapter.

Note that PostgreSQL can also use multiple jobs when creating one B-tree index. This is
controlled by an entirely different set of parameters; see the Maintaining indexes recipe
in Chapter 9, Regular Maintenance, for more details.

The preceding command tries to recreate the table and then load data into it. Note that
the pg_restore -t option does not dump any of the indexes on the selected table.
This means that we need a slightly more complex procedure than would first appear, and
the procedure needs to vary, depending on whether we are repairing a damaged table or
putting back a dropped table.

To repair a damaged table, we want to replace the data in the table in a single transaction.
There isn't a specific option to do this, so we need to do the following:

1. Dump the data of the table (the -a option) to a script file, as follows:

pg_restore -a -t mydamagedtable dumpfile >
mydamagedtable.sql

2. Edit a script named repair_mydamagedtable.sql with the following code:

BEGIN;

TRUNCATE mydamagedtable;

\i mydamagedtable.sql

COMMIT;

3. Then, run it using the following command:

psql -f repair_mydamagedtable.sql

If you've already dropped a table, then you need to perform these steps:
4. Create a new database in which to work and name it restorework, as follows:

CREATE DATABASE restorework;

5. Restore the complete schema (using the -s option) to the new database, like this:

pg_restore -s -d restorework dumpfile

486 Backup and Recovery

6. Now, dump only the definitions of the dropped table in a new file. It will
contain CREATE TABLE, indexes, and other constraints and grants. Note that this
database has no data in it, so specifying -s is optional, as follows:

pg_dump -t mydroppedtable -s restorework >
mydroppedtable.sql

7. Now, recreate the table on the main database:

psql -f mydroppedtable.sql

8. Now, reload only the data into the maindb database:

pg_restore -t mydroppedtable -a -d maindb dumpfile

If you've got a very large table, then the fourth step can be a problem because it builds
indexes as well. If you want, you can manually edit the script in two pieces – one before
the load (preload) and one after the load (post-load). There are some ideas for that at the
end of this recipe.

Logical – from the script dump
Once you have located the PostgreSQL server on which you will prepare and verify the
data to restore (the staging server), you can proceed like so:

1. Reload the script in full on the staging server, as follows:

psql -f myscriptdump.sql

2. From the recovered database server, dump the table, its data, and all of the
definitions of the dropped table into a new file:

pg_dump -t mydroppedtable -F c mydatabase > dumpfile

3. Now, recreate the table in the original server and database, using parallel tasks to
speed things up (here, we will pick two parallel jobs as an example):

pg_restore -d mydatabase -j 2 dumpfile

Note
The last step can be executed remotely without having to transfer dumpfile
between systems. Just add connection parameters to pg_restore, as in the
following example: pg_restore -h remotehost -U remoteuser
....

Recovery of a dropped/damaged table 487

The only way to extract a single table from a script dump without doing all of the
preceding steps is to write a custom script to read and extract only those parts of the file
that you want. This can be complicated because you may need certain SET commands
at the top of the file, the table, and data in the middle of the file, and the indexes and
constraints on the table are near the end of the file. Writing a custom script can be very
complex. The safer route is to follow the recipe we just described.

Physical
To recover a single table from a physical backup, you first need to recreate a PostgreSQL
server from scratch, usually in a confined environment. Typically, this server is called the
recovery server, if dedicated to recovery drills and procedures, or the staging server,
if used for a broader set of cases, including testing. Then, you need to proceed as follows:

1. Recover the database server in full, as described in the previous recipes on physical
recovery, including all databases and all tables. You may wish to stop at a useful
point in time, in which case you can look at the Recovery to a point in time recipe
earlier in this chapter.

2. From the recovered database server, dump the table, its data, and all the definitions
of the dropped table into a new file, as follows:

pg_dump -t mydroppedtable -F c mydatabase > dumpfile

3. Now, recreate the table in the original server and database using parallel
tasks to speed things up. This can be executed remotely without needing to
transfer dumpfile between systems:

pg_restore -d mydatabase -j 2 dumpfile

How it works…
Restoring a single table from a logical backup is relatively easy, as each logical object is
backed up separately from the others, and its data and metadata can be filtered out.

However, a physical backup is composed of a set of binary data files in a complex storage
format that can be interpreted by a PostgreSQL engine.

This means that the only way to extract individual objects from it, at present, is to restore
the backup on a new instance and then make a logical dump, as explained in the previous
recipe – there's no way to restore a single table from a physical backup in just a single step.

488 Backup and Recovery

See also
The pg_dump and pg_restore utilities are able to split the dump into three parts:
pre-data, data, and post-data. Both commands support a section option that's used to
specify which section(s) should be dumped or reloaded.

Recovery of a dropped/damaged database
Recovering a complete database is also required sometimes. It's actually a lot easier than
recovering a single table. Many users choose to place all of their tables in a single database;
in that case, this recipe isn't relevant.

How to do it…
The methods differ, depending on the type of backup you have available. If you have
multiple types of backup, you have a choice.

Logical – from the custom dump -F c
Recreate the database in the original server using parallel tasks to speed things along.
This can be executed remotely without needing to transfer dumpfile between
systems, as shown in the following example, where we use the -j option to specify four
parallel processes:

pg_restore -h myhost -d postgres --create -j 4 dumpfile

Logical – from the script dump created by pg_dump
Recreate the database in the original server. This can be executed remotely without
needing to transfer dump files between systems, as shown here, where we must create the
empty database first:

createdb -h myhost myfreshdb

psql -h myhost -f myscriptdump.sql myfreshdb

Extracting a logical backup from a physical one 489

Logical – from the script dump created by pg_dumpall
There's no easy way to extract the required tables from a script dump. You need to
operate on a separate PostgreSQL server for recovery or staging purposes, and then follow
these steps:

1. Reload the script in full, as follows:

psql -f myscriptdump.sql

2. Once the restore is complete, you can dump the tables in the database by following
the Hot logical backups of one database recipe.

3. Now, recreate the database on the original server, as described for logical dumps
earlier in this recipe.

Physical
To recover a single database from a physical backup, you need to work on a separate
PostgreSQL server (for recovery or staging purposes), and then you must follow
these steps:

1. Recover the database server in full, as described in the previous recipes on physical
recovery, including all databases and all tables. You may wish to stop at a useful
point in time, in which case you can look at the Recovery to a point in time recipe
from earlier in this chapter.

2. Once the restore is complete, you can dump the tables in the database by following
the Hot logical backups of one database recipe.

3. Now, recreate the database on the original server, as described for logical dumps
earlier in this recipe.

Extracting a logical backup from a
physical one
Once you have a physical backup, you can extract a logical backup from it, applying some
of the recipes that we have already seen.

This recipe is quite short because it is essentially a combination of recipes that we have
already described. Nevertheless, it is important because it clarifies that you don't need to
worry about extracting logical backups, if you already have physical ones.

490 Backup and Recovery

Getting ready
You just need to decide whether you want to extract a logical backup corresponding to a
specific point in time or simply to the latest available snapshot.

How to do it…
First, perform a PITR, as indicated in the Recovery to a point in time recipe earlier in this
chapter. If you want a logical backup corresponding to the latest available snapshot, just
omit the --target-time clause. Then, follow the Hot logical backups of one database
recipe to take a logical backup from the temporary instance.

Finally, remember to stop the temporary instance and delete its data files.

There's more…
You can also extract other kinds of logical backups – for example, global metadata only
or a logical backup of all databases; you just need to change the second half of this
recipe accordingly.

Improving performance of logical backup/
recovery
Performance is often a concern in any medium-sized or large database.

Backup performance is often a delicate issue because resource usage may need to be
limited to remain within certain boundaries. There may also be a restriction on the
maximum runtime for the backup – for example, a backup that runs every Sunday.

Again, restore performance may be more important than backup performance, even if
backup is the more obvious concern.

In this recipe, we will discuss the performance of logical backup and recovery; the physical
case is quite different and is examined in the recipes after that.

Getting ready
If performance is a concern or is likely to be, then you should read the Planning
backups recipe first.

Improving performance of logical backup/recovery 491

How to do it…
You can use the -j option to specify the number of parallel processes that pg_dump
should use to perform the database backup. This requires that you use the -F d option,
which selects the "directory" format, where every table is backed up into a separate
data file.

Similarly, you can use the -j option to specify the number of parallel processes that pg_
restore should use to restore the backup, similarly to what pg_dump supports. There is
one important difference – namely, that this is compatible with both the directory format
(as in -F d) and the custom format (as in -F c).

You'll have to be careful about how you select the degree of parallelism to use. A
good starting point is the number of CPUs on the server. Be very careful that you
don't overflow the available memory when using parallel restore. Each job will use
memory up to the value of maintenance_work_mem, so the whole restore can begin
swapping when it hits larger indexes later in the restore. Plan the size of shared_
buffers and maintenance_work_mem according to the number of jobs specified.

Whether you use psql or pg_restore, you can speed up the program by assigning

maintenance_work_mem = 128MB or more, either in postgresql.conf or on the
user that will run the restore. If neither of those ways is easily possible, you can specify the
option using the PGOPTIONS environment variable, as follows:

export PGOPTIONS ="-c work_mem = 128000"

This will then be used to set that option value for subsequent connections.

If you are running archiving or streaming replication, then transaction log writes can
create a significant burden while restoring a logical backup. This can be mitigated by
increasing the size of the WAL buffer and making checkpoints less frequent for the
duration of the recovery operation.

Set wal_buffers between 16 MB and 64 MB, and then set max_wal_size to a large
value, such as 20 GB, so that it has room to breathe.

If you aren't running archiving or streaming replication, or you've turned it off during
the restore, then you'll be able to minimize the amount of transaction log writes. In
that case, you may wish to use the single transaction option, as that will also help to
improve performance.

492 Backup and Recovery

Whatever you do, make sure that you run ANALYZE afterward on every object that was
created. This will happen automatically if autovacuum is enabled. It often helps to
disable autovacuum completely while running a large restore, so double-check that
you have it switched on again after the restore. The consequence of skipping this step will
be extremely poor performance when you start your application again, which can easily
make everybody panic.

How it works…
Logical backup and restore involve moving data out of and into the database. That's
typically going to be slower than physical backup and restore. Particularly with a restore,
rebuilding indexes and constraints takes time, even when run in parallel. Plan ahead and
measure the performance of your backup and restore techniques so that you have a chance
when you need your database back in a hurry.

There's more…
Compressing backups are often considered as a way to reduce the size of the backup for
storage. Even mild compression can use large amounts of CPU. In some cases, this might
offset network transfer costs, so there isn't any hard rule as to whether compression is
always good.

By default, the custom dump format for logical backups will be compressed. Even when
compressed, the objects can be accessed individually if required.

Using --compress with script dumps will result in a compressed text file, just as if you
had dumped the file and then compressed it. Access to individual tables is not possible.

Improving performance of physical backup/
recovery
Physical backups are quite different from logical ones, and this difference extends also to
the options available to make them faster.

In both cases, it is possible to use multiple parallel processes, although for quite different
reasons. Physical backups are mostly constrained by network and storage bandwidth,
meaning that the benefit of parallelism is limited, although not marginally. Usually, there
is little benefit in using more than four parallel processes, and you can expect to reduce
backup time to 40–60% of what it is with a single thread. And, in any case, the more
threads you use, the more it will impact the current system.

Improving performance of physical backup/recovery 493

Incremental backup and restore are currently available only for physical backups.
Although, in theory, it is possible to implement incremental behavior for logical backup/
restore, in practice, this feature does not exist yet. Perhaps this is because physical
backups are by nature faster and lighter than logical ones and, therefore, more suitable for
addressing higher demands.

Getting ready
Make sure that you understand the limitations of parallel and incremental backup and
restore, which are only available for some tools and might require specific operation
modes and choices.

For instance, parallel backup and restore are supported by Barman through the -j option
but not by pg_basebackup, so you need to have configured Barman's rsync backup
method. A similar restriction applies to incremental backup and restore.

How to do it...
In the following example, which intentionally resembles a recipe that we saw earlier, we
are taking a parallel backup of the db1 server using four parallel jobs:

[root@backup1 ~]# barman -j 4 backup db1

We can restore it in parallel on the (remote) db2 server with similar syntax:

[root@backup1 ~]# barman -j 4 recover db1 last \

 /var/lib/pgsql/14/data \

 --remote-ssh-command 'ssh postgres@db2'

If we want to take an incremental backup, then we can add the reuse-backup option,
as shown in this example:

[root@backup1 ~]# barman --reuse-backup=link backup db1

The process of restoring a backup is automatically incremental, provided that the rsync
backup method is used; this is because Barman will copy files using rsync, whose
algorithm is able to efficiently reuse existing files and transmit only the differences. If you
want to force a non-incremental restore, you just need to empty the target directory before
you run barman recover.

494 Backup and Recovery

How it works…
A physical backup and restore is completely up to you. Copy those files as fast as you like
and in any way you like. Put them back in the same way or a different way.

If backup_method=postgres in the Barman configuration, then pg_basebackup
will be used for taking backups, and Barman will have the same restrictions: all files will
be copied in full and all by the same process.

Conversely, if backup_method=rsync, then Barman will take a backup that is
incremental compared to the latest existing backup for the same server and will
deduplicate any file that is unchanged. This implies that the backup will take less disk
space and will complete in a shorter time as well.

When restoring a backup, Barman always uses rsync, irrespective of settings. In other
words, a restore is always incremental, in the sense that any files existing in the target
directory are reused.

Parallel backup and restore in Barman is actually a consequence of the parallel copy
feature, which is activated by the -j N switch and applies to both barman backup and
barman recover. This feature is implemented by splitting the list of files in N sublists
and running N rsync processes in parallel, one for each sublist.

There's more…
Remember that your backup speed may be bottlenecked by your disks or your network.
Some larger systems have dedicated networks in place, solely for backups.

Compressing backups is a popular technique for reducing the size of the backup in
storage. The actual extent of the reduction depends on the kind of data being backed up
and is also affected by the algorithm and the options being used; in other words, there isn't
a hard rule on what is the best level of compression, and you need to find your own best
compromise between disk usage, backup time, and network transfer costs. Compression
for WAL files from physical backups is a common practice. In Barman, you can activate it
with a configuration setting, as shown in this example:

compression = gzip

Note that there are a number of possible choices other than gzip.

Physical backups can be compressed in various ways, depending on the exact backup
mechanism used.

Validating backups 495

Using multiple processes is known as pipeline parallelism. If you're using a physical
backup, then you can copy the data in multiple streams, which also allows you to take
advantage of parallel compression/decompression.

See also
If taking a backup is an expensive operation, then a way around this is to take the backup
from a replica instead, which offloads the cost of the backup operation away from the
master. Look at the recipes in Chapter 12, Replication and Upgrades, to see how to set up
a replica.

Validating backups
In this recipe, we will use the data checksum feature to detect data corruption caused by
I/O malfunctioning in advance.

It is important to discover such problems as soon as possible. For instance, we want a
chance to recover lost data from one of our older backups, or we may want to stop
data errors before they spread to the rest of the database when new data depends on
existing data.

Getting ready
This feature is disabled by default, since it results in some overhead; it can be
enabled when the cluster is initialized by using the --data-checksums option of
the initdb utility, or on an existing cluster, with pg_checksum --enable.

Also, before trying this recipe, you should be familiar with how to take backups and how
to restore them afterward, which are the subjects of most of this chapter.

How to do it…
First, check whether data checksums are enabled:

postgres=# SHOW data_checksums ;

 data_checksums

 on

(1 row)

496 Backup and Recovery

If not, then you need to stop the cluster and enable checksums. This will require some
downtime, so you need to wait for the next maintenance window and then run the
following command:

$ pg_checksum --enable

Once data checksums are enabled, if you are taking a backup with pg_basebackup,
then checksums are verified while pages are read from data files. Let's look at an example:

$ pg_basebackup -D backup2

If nothing goes wrong, then the backup finishes with no output – we know already that
pg_basebackup operates by default in no-news-is-good-news mode. Conversely, if a
checksum fails, then the return code is non-zero, and we get a warning like the following:

WARNING: checksum verification failed in file "./
base/16385/16388", block 0: calculated 246D but expected C938

pg_basebackup: checksum error occurred

In the (unlikely) case that you have a good reason for skipping this check, you can use
the no-verify-checksums option.

When a physical backup is taken without pg_basebackup, there is no PostgreSQL
utility that can verify checksums while the backup is being taken; the check must be
carried out afterward by running the pg_verify_checksums utility against the actual
files in the data directory.

Unfortunately, this utility requires the data directory to be in a clean shutdown state,
which is not the case when hot physical backups are taken. Therefore, we need to restore
the backup to a temporary directory and then carry out a recovery process, as described
in the Recovery to a point in time recipe previously – for instance, by using the following
settings in recovery.conf:

recovery_target = 'immediate'

recovery_target_action = shutdown

The immediate target means that the recovery will stop as soon as the data
directory becomes consistent, and then PostgreSQL will shut down, which is the specified
target action.

Validating backups 497

Once we have a clean data directory, we just run pg_verify_checksums against the
temporary directory, as follows:

$ pg_verify_checksums -D tempdir1

Should any checksum fail, you will see output like the following:

pg_verify_checksums: checksum verification failed in file
"tempdir1/base/16385/16388", block 0: calculated checksum 246D
but block contains C938

Checksum scan completed

Data checksum version: 1

Files scanned: 1226

Blocks scanned: 3852

Bad checksums: 1

How it works…
When the data checksum feature is enabled, each page header includes a 16-bit checksum
of its contents and block number, which is updated when the page is flushed to disk.

If enabled, data checksums are verified every time a block is read from disk to shared
buffers, as well as when pg_basebackup is used to perform a backup.

Since the checksum is computed and added to the block when flushing to disk, a failure
must be caused by a change inside the block that occurred while the block was not cached
in the shared buffers; conversely, a change occurring while the block was cached in the
shared buffers will be overwritten at the next flush.

There's more…
In our example, we have shown a case where the checksum fails. The checksum mismatch
will also be detected when a query causes PostgreSQL to attempt reading that block into
the shared buffers.

498 Backup and Recovery

In that case, the query will fail with an error, which is good because it protects the user
from inadvertently using corrupt data:

postgres=# SELECT * FROM t;

WARNING: page verification failed, calculated checksum 42501
but expected 37058

ERROR: invalid page in block 0 of relation base/16385/16388

If we want to intentionally load corrupt data – for example, to attempt some repair
activities – we can temporarily disable the checksum, as in the following example:

postgres=# SET ignore_checksum_failure = on;

postgres=# SELECT * FROM t;

WARNING: page verification failed, calculated checksum 42501
but expected 37058

 x

 88

(1 row)

We can see that the warning is still displayed, but we can proceed to read the data.

If the data corruption results in an invalid page format, the user will get the same error,
irrespective of the value of ignore_checksum_failure. This is intentional: this
parameter eliminates the risk of undetected failures. In other words, a page with an invalid
format does not need checksums to be detected, nor can it be read or amended within
SQL queries.

As you would expect, only a super user can change the ignore_checksum_
failure parameter.

12
Replication

and Upgrades
Replication isn't magic, though it can be pretty cool! It's even cooler when it works, and
that's what this chapter is all about.

Replication requires understanding, effort, and patience. There are a significant number
of points to get right. Our emphasis here is on providing simple approaches to get you
started, as well as some clear best practices on operational robustness.

PostgreSQL has included some form of native or in-core replication since version 8.2,
though that support has steadily improved over time. External projects and tools have
always been a significant part of the PostgreSQL landscape, with most of them being
written and supported by very skilled PostgreSQL technical developers. Some people
with a negative viewpoint have observed that this weakens PostgreSQL or emphasizes
shortcomings. Our view is that PostgreSQL has been lucky enough to be supported by
a huge range of replication tools together, offering a wide set of supported use cases
from which to build practical solutions. This view extends throughout this chapter on
replication, with many recipes using tools that are not part of the core PostgreSQL
project yet.

500 Replication and Upgrades

All tools mentioned in this chapter are actively enhanced by current core PostgreSQL
developers. The pace of change in this area is high, and it is likely that some of the
restrictions mentioned here could well be removed by the time you read this book.
Double-check the documentation for each tool or project.

Which technique is the best? This is a question that gets asked many times. The answer
varies depending on the exact circumstances. In many cases, people use one technique on
one server and a different technique on other servers. Even the developers of particular
tools use other tools when appropriate. Use the right tools for the job. All the tools and
techniques listed in this chapter have been recommended by us at some point, in relevant
circumstances. If something isn't mentioned here by us, that could imply that it is less
favorable for various reasons, and there are some tools and techniques that we would
personally avoid altogether in their present form or level of maturity.

I (Simon Riggs) must also confess to being the developer or designer of many parts of the
basic technology presented here. That gives me some advantages and disadvantages over
other authors. It means I understand some things better than others, which hopefully
translates into better descriptions and comparisons. It may also hamper me by providing
too narrow a focus, though the world is big, and this book is already long enough!

This book, and especially this chapter, covers technology in depth. As a result, we face the
risk of minor errors. We've gone to a lot of trouble to test all of our recommendations, but
just as with software, we have learned that books can be buggy too. We hope our efforts to
present actual commands, rather than just words, will be appreciated by you.

In this chapter, we will cover the following recipes:

• Replication concepts

• Replication best practices

• Setting up streaming replication

• Setting up streaming replication security

• Hot Standby and read scalability

• Managing streaming replication

• Using repmgr

• Using replication slots

• Monitoring replication

• Performance and synchronous replication (sync rep)

• Delaying, pausing, and synchronizing replication

Replication concepts 501

• Logical replication

• Bi-directional replication (BDR)

• Archiving transaction log data

• Upgrading minor releases

• Major upgrades in-place

• Major upgrades online

Replication concepts
In this recipe, we do not solve any specific replication problem—or, rather, we try to
prevent the generic problem of getting confused when discussing replication. We do that
by clarifying in advance the various concepts related to replication.

Indeed, replication technology can be confusing. You might be forgiven for thinking
that people have a reason to keep it that way. Our observation is that there are many
techniques, each with its own advocates, and their strengths and weaknesses are often
hotly debated.

There are some simple, underlying concepts that can help you understand the various
options available. The terms used here are designed to avoid favoring any particular
technique, and we've used standard industry terms whenever available.

Topics
Database replication is the term we use to describe technology that's used to maintain
a copy of a set of data on a remote system.

There are usually two main reasons for you wanting to do this, and those reasons are
often combined:

• High availability (HA): Reducing the chances of data unavailability by having
multiple systems, each holding a full copy of the data.

• Data movement: Allowing data to be used by additional applications or workload
on additional hardware. Examples of this are Reference Data Management (RDM),
where a single central server might provide information to many other applications,
and systems for business intelligence (BI)/reporting.

Of course, both those topics are complex areas, and there are many architectures and
possibilities for implementing each of them.

502 Replication and Upgrades

What we will talk about here is HA, where there is no transformation of the data. We
simply copy the data from one PostgreSQL database server to another. So, we are
specifically avoiding all discussion of popular keywords such as evaluate, transform,
and load (ETL) tools, enterprise application integration (EAI) tools, inter-database
migration, and data-warehousing strategies. Those are valid topics in information
technology (IT) architecture; it's just that we don't cover them in this book.

Basic concepts
Let's look at the basic database cluster architecture. Typically, individual database servers
are referred to as nodes. The whole group of database servers involved in replication
is known as a cluster. That is the common usage of the term, but be careful—the term
cluster has two other quite separate meanings elsewhere in PostgreSQL. Firstly, cluster
is sometimes used to refer to the database instance, though we prefer the term database
server. Secondly, there is a command named cluster, designed to sort data in a specific
order within a table.

A database server that allows a user to make changes is known as a primary or master
or may be described as a source of changes.

A database server that only allows read-only access is known as a standby or as a read
replica. A standby server is an exact copy of its upstream node, and therefore is standing
by, meaning that it can be quickly activated and replace the upstream node, should it fail
(for instance).

A key aspect of replication is that data changes are captured on a master and then
transferred to other nodes. In some cases, a node may send the changes it receives to other
nodes, which is a process known as cascading or relay. Thus, the master is a sending
node, but a sending node does not need to be a master.

Replication is often categorized by whether more than one master node is allowed, in
which case it will be known as multi-master replication. There is a significant difference
between how single-master and multi-master systems work, so we'll discuss that aspect in
more detail later. Each has its advantages and disadvantages.

History and scope
PostgreSQL didn't always have in-core replication. For many years, PostgreSQL users
needed to use one of many external packages to provide this important feature.

Replication concepts 503

Slony was the first package to provide useful replication features. Londiste was a variant
system that was somewhat easier to use. Both of those systems provided single-master
replication based on triggers. Another variant of this idea was the bucardo package,
which offered multi-master replication using triggers.

Trigger-based replication has now been superseded by transaction log-based replication,
which provides considerable performance improvements. There is some discussion
regarding exactly how much difference that makes, but log-based replication is
approximately twice as fast, though many users have reported much higher gains.
Trigger-based systems also have considerably higher replication lag. Lastly, triggers
need to be added to each table involved in replication, making these systems more time-
consuming to manage and more sensitive to production problems. These factors taken
together mean that trigger-based systems are usually avoided for new developments, and
we take the decision not to cover them at all in the latest edition of this book.

Outside the world of PostgreSQL, there are many competing concepts, and there is a lot of
research being done on them. This is a practical book, so we've mostly avoided comments
on research or topics concerning computer science.

The focus of this chapter is replication technologies that are part of the core software
of PostgreSQL, or will be in the reasonably near future. The first of these is known as
streaming replication (SR), introduced in PostgreSQL 9.0, but it is based on earlier
file-based mechanisms for physical transaction log replication. In this book, we refer to
this as physical SR (PSR) because we take the transaction log (often known as the write-
ahead log (WAL)) and ship that data to the remote node. The WAL contains an exact
physical copy of the changes made to a data block, so the remote node is an exact copy
of the primary. Therefore, the remote node cannot execute transactions that write to the
database because we want to keep applying the WAL from the upstream node; this type of
node is known as a standby.

Starting with PostgreSQL 9.4, we introduced an efficient mechanism for reading the
transaction log (WAL) and transforming it into a stream of changes; that is, a process
known as logical decoding. This was then the basis for a later, even more useful
mechanism, known as logical SR (LSR). This allows a receiver to replicate data without
needing to keep an exact copy of the data blocks, as we do with PSR. This has significant
advantages, which we will discuss later.

PSR requires us to have only a single master node, though it allows multiple standbys.
LSR can be used for all the same purposes as PSR. It just has fewer restrictions and allows
a great range of additional use cases. Crucially, LSR can be used as the basis of multi-
master clusters.

504 Replication and Upgrades

PSR and LSR are sometimes known as physical log SR (PLSR) and logical log SR (LLSR).
Those terms are sometimes used when explaining the differences between transaction
log-based and trigger-based replication.

Practical aspects
Since we refer to the transfer of replicated data as streaming, it becomes natural to talk
about the flow of data between nodes as if it were a river or stream. Cascaded data can
flow through a series of nodes to create complex architectures. From the perspective
of any node, it may have downstream nodes that receive replicated data from it and/or
upstream nodes that send data to it. Practical limits need to be understood to allow us to
understand and design replication architectures.

After a transaction commits on the primary, the time taken to transfer data changes to
a remote node is usually referred to as the latency or replication delay. Once the remote
node has received the data, changes must then be applied to the remote node, which
takes an amount of time known as the apply delay. The total time a record takes from
the primary to a downstream node is the replication delay plus the apply delay. Be careful
to note that some authors describe those terms differently and sometimes confuse the two,
which is easy to do. Also, note that these delays will be different for any two nodes.

Replication delay is best expressed as an interval (in seconds), but that is much harder
to measure than it first appears. In PostgreSQL 14, the delays of particular phases of
replication are given with the lag columns on pg_stat_replication. These are
derived from sampling the message stream and interpolating the current delay from
recent samples.

All forms of replication are initialized in roughly the same way. First, you enable change
capture, and then make a full replica of the dataset on the remote node, which we refer
to as the base backup or the initial copy. After that, we begin applying the changes,
starting from the point immediately before the base backup started and continuing
with any changes that occurred while the base backup was taking place. As a result, the
replication delay immediately following the initial copy task will be equal to the duration
of the initial copy task. The remote node will then begin to catch up with the primary,
and the replication delay will begin to reduce. The time taken to get the lowest replication
delay possible is known as the catch-up interval. If the primary is busy generating new
changes, which can increase the time it takes for the new node to catch up, you should try
to generate new nodes during quieter periods, if any exist. Note that in some cases, the
catch-up period will be too long to be acceptable. Be sure to include this understanding
in your planning and monitoring. The faster and more efficient your replication system is,
the easier it will be to operate in the real world. Performance matters!

Replication concepts 505

Either replication will copy all tables, or in some cases, we can copy a subset of tables, in
which case we call it selective replication. If you choose selective replication, you should
note that the management overhead increases roughly as the number of objects managed
increases. Replicated objects are often manipulated in groups known as replication sets to
help minimize the administrative overhead.

Data loss
By default, PostgreSQL provides asynchronous replication (async rep), where data is
streamed out whenever convenient for the server. If replicated data is acknowledged back
to the user prior to committing, we refer to that as sync rep.

With sync rep, the replication delay directly affects the elapsed time of transactions on
the primary. With async rep, the primary may continue at full speed, though this opens
up a possible risk that the standby may not be able to keep pace with the primary. All
replications must be monitored to ensure that a significant lag does not develop, which is
why we must be careful to monitor the replication delay.

Sync rep guarantees that data is written to at least two nodes before the user or application
is told that a transaction has committed. You can specify the number of nodes and other
details that you wish to use in your configuration.

Single-master replication
In single-master replication, if the primary dies, one of the standbys must take its place.
Otherwise, we will not be able to accept new write transactions. Thus, the designations
of primary and standby are just roles that any node can take at some point. To move the
primary role to another node, we perform a procedure named switchover. If the primary
dies and does not recover, then the more severe role change is known as a failover. In
many ways, these can be similar, but it helps to use different terms for each event.

We use the term clusterware for software that manages the cluster. Clusterware may
provide features such as automatic failover, and—in some cases—also load balancing.

The complexity of failover makes single-master replication harder to configure correctly
than many people would like it to be. The good news is that from an application
perspective, it is safe and easy to retrofit this style of replication to an existing system. Or,
put another way, since application developers don't really worry about HA and replication
until the very end of a project, single-master replication is frequently the best solution.

506 Replication and Upgrades

Multinode architectures
Multinode architectures allow users to write data to multiple nodes concurrently. There
are two main categories—tightly coupled and loosely coupled:

• Tightly coupled database clusters: These allow a single image of the database,
so there is less perception that you're even connected to a cluster at all. This
consistency comes at a price—the nodes of the cluster cannot be separated
geographically, which means if you need to protect against site disasters, then you'll
need additional technology to allow disaster recovery (DR). Clustering requires
replication as well.

• Loosely coupled database clusters: These have greater independence for each
node, allowing us to spread nodes out across wide areas, such as across multiple
continents. You can connect to each node individually. There are two benefits of
this. The first is that all data access can be performed quickly against local copies of
the data. The second benefit is that we don't need to work out how to route read-
only transactions to one or more standby nodes and read/write transactions to the
primary node.

Multi-master replication
An example of a loosely coupled system would be BDR. Postgres-BDR does not utilize
a global transaction manager, and each node contains data that is eventually consistent
between nodes. This is a performance optimization since tests have shown that trying
to use tightly coupled approaches catastrophically limits performance when servers are
geographically separated.

In its simplest multi-master configuration, each node has a copy of similar data. You can
update data on any node, and the changes will flow to other nodes. This makes it ideal for
databases that have users in many different locations, which is probably the case with most
websites. Each location can have its own copy of the application code and database, giving
fast response times for all your users, wherever they are located.

It is possible to make changes to the same data at the same time on different nodes, causing
write conflicts. While these could become a problem, the reality is that it is also easily
possible to design applications that do not generate conflicts in normal running, especially
if each user is modifying their own data (for example, in social media or retail).

Replication best practices 507

We need to understand where conflicts might arise so that we can resolve them. On
a single node, any application that allows concurrent updates to the same data will
experience poor performance because of contention. The negative effect of contention
will get much worse on multi-master clusters. In addition, the ability to write on multiple
nodes forces us to implement conflict resolution in any case, to resolve data differences
between nodes. Therefore, with some thought and planning, we can use multi-master
technologies very effectively in the real world.

In fact, the word conflict has a negative connotation that does not match an objective cost/
benefit analysis, at least in some cases. If the conflict resolution logic is compatible with
the application model, then a conflict is nothing more than a little amount of unnecessary
work that does no harm, and the application will be faster by accepting sporadic conflicts
rather than trying to prevent them.

Visit https://en.wikipedia.org/wiki/Replication_(computing) for
more information on this.

Other approaches to replication
This book covers in-database replication only. Replication is also possible in the
application layer (that is, above the database) or in the operating system (OS) layers (that
is, below the database):

• Application-level replication: For example, HA-JDBC and rubyrep

• OS-level replication: For example, Distributed Replicated Block Device (DRBD)

None of these approaches is very satisfying, since core database features cannot easily
integrate with them in ways that truly work. From a system administrator's (sysadmin's)
perspective, they work, but not very well from the perspective of a database architect.

Replication best practices
Some general best practices for running replication systems are described in this recipe.

Getting ready
Reading a list of best practices should be the very first thing you do when designing your
database architecture. So, the best way to get ready for it is to avoid doing anything and
start straight away with the next section, How to do it...

https://en.wikipedia.org/wiki/Replication_(computing)

508 Replication and Upgrades

How to do it…
Here are some best practices for replication:

• Use the latest release of PostgreSQL. Replication features are changing fast, with
each new release improving on the previous in major ways based on our real-world
experience. The idea that earlier releases are somehow more stable, and thus more
easily usable, is definitely not the case for replication.

• Use similar hardware and OSs on all systems. Replication allows nodes to switch
roles. If we switch over or fail over to different hardware, we may get performance
issues, and it will be hard to maintain a smoothly running application.

• Configure all systems identically as far as possible. Use the same mount points,
directory names, and users; keep everything the same where possible. Don't be
tempted to make one system more important than others in some way. It's just
a single point of failure (SPOF) and gets confusing.

• Give systems/servers good names to reduce confusion. Never, ever call one of your
systems primary and the other standby. When you do a switchover, you will get
very confused! Try to pick system names that have nothing to do whatsoever with
their role. Replication roles will inevitably change; system names should not. If one
system fails and you add a new system, never reuse the name of the old system; pick
another name, or it will be too confusing. Don't pick names that relate to something
in the business. Colors are also a bad choice because if you have two servers named
Yellow and Red, you then end up saying things such as There is a red alert
on server Yellow, which can easily be confusing. Don't pick place names, either.
Otherwise, you'll be confused trying to remember that London is in Edinburgh and
Paris is in Rome. Make sure that you use names, rather than Internet Protocol
(IP) addresses.

• Set the application_name parameter to be the server name in the replication
connection string. Set the cluster_name parameter to be the server name in
the postgresql.conf file.

• Make sure that all tables are marked as LOGGED (the default). UNLOGGED and
TEMPORARY tables will not be replicated by either PSR or LSR.

• Keep the system clocks synchronized. This helps you keep sane when looking at log
files that are produced by multiple servers. You should automate this rather than do
it manually, but however you do it, make sure it works.

Replication best practices 509

• Use a single, unambiguous time zone. Use UTC or something similar. Don't pick
a time zone that has daylight savings time (DST), especially in regions that have
complex DST rules. This just leads to (human) confusion with replication, as servers
are often in different countries, and time zone differences vary throughout the
year. Do this even if you start with all your servers in one country, because over the
lifetime of the application, you may need to add new servers in different locations.
Think ahead.

• Monitor each of the database servers. If you want HA, then you'll need to check
regularly that your servers are operational. I speak to many people who would like
to regard replication as a one-shot deal. Think of it more as a marriage and plan for
it to be a happy one!

• Monitor the replication delay between servers. All forms of replication are only
useful if the data is flowing correctly between the servers. Monitoring the time it
takes for the data to go from one server to another is essential for understanding
whether replication is working for you. Replication can be bursty, so you'll need
to watch to make sure it stays within sensible limits. You may be able to set tuning
parameters to keep things low, or you may need to look at other factors.

The important point is that your replication delay is directly related to the amount of data
you're likely to lose when running async rep. Be careful here because it is the replication
delay, not the apply delay, that affects data loss. A long apply delay may be more acceptable
as a result.

As described previously, your initial replication delay will be high, and it should reduce to
a lower and more stable value over a period of time. For large databases, this could take
days, so be careful to monitor it during the catch-up period.

There's more…
The preceding list doesn't actually say this explicitly, but you should use the same major
version of PostgreSQL for all systems. With PSR, you are required to do that, so it doesn't
even need to be said.

I've heard people argue that it's OK to have dissimilar systems and even that it's a good
idea because if you get a bug, it only affects one node. I'd say that the massive increase in
complexity is much more likely to cause problems.

510 Replication and Upgrades

Setting up streaming replication
Physical replication is a technique used by many database management systems. The
primary database node records change in a transaction log (WAL), and then the log data
is sent from the primary to the standby, where the log is replayed.

In PostgreSQL, PSR transfers WAL data directly from the primary to the standby, giving
us integrated security and shorter replication delay.

There are two main ways to set up streaming replication: with or without an additional
archive. We present how to set it up without an external archive, as this is simpler and
generally more efficient. However, there is one downside, suggesting that the simpler
approach may not be appropriate for larger databases, which is explained later in
this recipe.

Getting ready
If you haven't read the Replication concepts and Replication best practices recipes at the
start of this chapter, go and read them now. Note that streaming replication refers to the
master node as the primary node, and the two terms can be used interchangeably.

How to do it…
You can use the following procedure for base backups:

1. Identify your primary and standby nodes and ensure that they have been configured
according to the Replication best practices recipe. In this recipe, we assume that
host1 and host2 are the primary and the standby, respectively.

2. Configure replication security. Create or confirm the existence of a replication user
on the primary node:

CREATE USER repuser

 REPLICATION

 LOGIN

 CONNECTION LIMIT 2

 ENCRYPTED PASSWORD 'changeme';

Setting up streaming replication 511

3. Allow the replication user on the standby node to authenticate on the primary
node. The following example allows access from the standby node using password
authentication encrypted with SCRAM-SHA-256; you may wish to consider other
options. First, add the following line to pg_hba.conf on the primary node:

Host replication repuser host2 scram-sha-256

4. Then, ensure that the client password file for the postgres user on the standby
node contains the following line, as explained in the Avoiding hardcoding your
password recipe in Chapter 1, First Steps:

host1:5432:replication:repuser:changeme

5. Set the logging options in postgresql.conf on both the primary and the
standby so that any replication connection attempts and associated failures are
logged (this is not needed, but we recommend it, especially the first time when
configuring replication):

log_connections = on

6. Take a base backup of the primary node from the standby node:

pg_basebackup -d 'host=host1 user=repuser' -D /path/to_
data_dir -R -P

7. Start the standby server on host2:

pg_ctl start -D /path/to_data_dir

8. Carefully monitor the replication delay until the catch-up period is over. During
the initial catch-up period, the replication delay will be much higher than we would
normally expect it to be.

How it works…
pg_basebackup will perform a base backup and populate the directory indicated with
-D, and then configure the files in the newly created data directory as a standby of the
upstream specified with the -d option, which is what we requested with the -R option.
The -P option will enable progress display, which can be quite useful if the base backup
takes a long time.

512 Replication and Upgrades

Multiple standby nodes can connect to a single primary; max_wal_senders must
be set to the number of standby nodes, plus at least 1. The default value of 10 is enough
unless you are planning a large number of standbys. You may wish to set up an individual
user for each standby node, though it may be sufficient just to set the application_
name parameter in primary_conninfo if you only want to know which connection
is used by which standby node. The architecture for streaming replication is this: on
the primary, one WALSender process is created for each standby that connects to the
streaming replication. On the standby node, a WALReceiver process is created to work
cooperatively with the primary. Data transfer has been designed and measured to be very
efficient, and data is typically sent in 8,192-byte chunks, without additional buffering at
the network layer.

Both WALSender and WALReceiver will work continuously on any outstanding
data and will be replicated until the queue is empty. If there is a quiet period, then
WALReceiver will sleep for a while.

The standby connects to the primary using native PostgreSQL LibPQ connections. This
means that all forms of authentication and security work for replication, just as they do for
normal connections; just specify replication as the database name, which PostgreSQL
will interpret as follows: it will not connect to a database called replication, but it will
apply these settings to establish a PSR connection, which replicates all databases at once.
Note that, for replication sessions, the standby is the client and the primary is the server
if any parameters need to be configured. Using standard PostgreSQL LibPQ connections
also means that normal network port numbers are used, so no additional firewall rules
are required. You should also note that if the connections use Secure Sockets Layer
(SSL), then encryption costs will slightly increase the replication delay and the central
processing unit (CPU) resources required.

There's more…
If the connection between the primary and standby drops, it will take some time for that
to be noticed across an indirect network. To ensure that a dropped connection is noticed
as soon as possible, you may wish to adjust the timeout settings.

The standby will notice that the connection to the primary has dropped after wal_
receiver_timeout milliseconds. Once the connection is dropped, the standby will
retry the connection to the sending server every wal_retrieve_retry_interval
milliseconds. Set these parameters in the postgresql.conf file on the standby.

A sending server will notice that the connection has dropped after wal_sender_
timeout milliseconds, set in the postgresql.conf file on the sender. Once the
connection is dropped, the standby is responsible for re-establishing the connection.

Setting up streaming replication 513

Data transfer may stop if the connection drops or the standby server or the standby
system is shut down. If replication data transfer stops for any reason, it will attempt to
restart from the point of the last transfer. Will that data still be available? It depends on
how long the standby was disconnected. If the requested WAL file has been deleted in the
meantime, then the standby will no longer be able to replicate data from the primary, and
you will need to rebuild the standby from scratch.

In order to avoid this scenario, there are a few options; the easiest one is now to use
replication slots, which reserve WAL files for use by disconnected nodes. When using
replication slots, it is important to watch that WAL files don't build up, causing out-of-
disk-space errors—for instance, if one standby is disconnected for a long time and its slot
prevents the deletion of old WAL while new WAL is being produced. The amount of space
taken by WAL should be monitored, and the slot should be dropped if space reaches
a critical limit. As in many cases, simple monitoring of basic measures such as available
disk space can be very effective in preventing a wide range of problems with timely alerts.

There are --create-slot and --slot options in pg_basebackup, respectively, for
creating a replication slot and for using it to set up the standby.

When using replication slots, we recommend setting max_slot_wal_keep_size to
a positive value, which will define the maximum lag allowed for replication slots. Any slots
that fall beyond that limit will be marked as invalid, meaning that they will no longer be
considered for WAL retention. The default is -1, meaning that there is no limit.

For example, if you set max_slot_wal_keep_size = '1GB' and a standby is
lagging more than 1 gigabyte (GB), then its replication connection might break when
the next checkpoint removes old WAL, in which case that standby must be rebuilt from
scratch; but this is normally preferable to breaking the primary (and all its standbys)
because its pg_wal directory fills. If this parameter is so good, why is it not enabled by
default? Because a reasonable value should be the maximum available disk space minus
some allowance to let the checkpoint clear old WAL files. This depends on the workload
and disk layout, and hence it is best estimated by the user.

This setting was introduced in PostgreSQL 12; before that, users would set wal_keep_
segments, which specifies a fixed amount of WAL to be retained, irrespective of existing
replication connections and their log sequence numbers (LSNs).

514 Replication and Upgrades

In some cases, using a replication slot is not the best choice because it effectively means
that pg_wal on the upstream server is used as a long-term storage solution for a large
number of old WAL files for the convenience of standby nodes. A better practice for that
scenario is to configure restore_command on the standby so that it can fetch files from
the backup server (for example, Barman). The standby will no longer need a replication
slot to retain WAL on the primary and will be able to retrieve WAL files from Barman
instead. Barman itself will still use a replication slot, and the primary server will then be
vulnerable to a prolonged failure of Barman's connection, but this will be appropriate
because a production system should not be considered healthy if its backup function is
failing for a long time.

The --max-rate option can be used to throttle the base backup taken by pg_
basebackup, which could be desirable—for instance—if the overall network bandwidth
is limited and is shared with other important services.

Setting up streaming replication security
Streaming replication is at least as secure as normal user connections to PostgreSQL.

Replication uses standard LibPQ connections, so we have all the normal mechanisms for
authentication and SSL support, and all the firewall rules are similar.

Replication must be specifically enabled on both the sender and standby sides. Cascading
replication does not require any additional security.

When performing a base backup, the pg_basebackup, pg_receivewal, and pg_
recvlogical utilities will use the same type of LibPQ connections as a running,
streaming standby. You can use other forms of base backup, such as rsync, though you'll
need to set up the security configuration manually.

Note
Standbys are identical copies of the primary, so all users exist on all nodes
with identical passwords. All of the data is identical (eventually), and all the
permissions are the same too. If you wish to control access more closely, then
you'll need different pg_hba.conf rules on each server to control this.
Obviously, if your config files differ between nodes, then failover will be slightly
more dramatic unless you've given that some prior thought.

Setting up streaming replication security 515

Getting ready
Identify or create a user/role to be used solely for replication. Decide what form of
authentication will be used. If you are going across data centers or the wider internet, take
this very seriously.

How to do it…
On the primary, perform these steps:

1. Enable replication by setting a specific host access rule in pg_hba.conf.
2. Give the selected replication user/role the REPLICATION and LOGIN attributes:

ALTER ROLE replogin REPLICATION;

3. Alternatively, you can create it using this command:

CREATE ROLE replogin REPLICATION LOGIN;

On the standby, perform these steps:

1. Request replication by setting primary_conninfo in recovery.conf.
2. If you are using SSL connections, use sslmode=verify-full.
3. Enable per-server rules, if any, for this server in pg_hba.conf.

How it works…
Streaming replication connects to a virtual database called replication. We do this
because the WAL data contains changes to objects in all databases, so in a way, we aren't
just connecting to one database—we are connecting to all of them.

Streaming replication connects similarly to a normal user, except that instead of a normal
user process, we are given a WALSender process.

You can set a connection limit on the number of replication connections in two ways:

• At the role level, you can do it by issuing the following command:

ALTER ROLE replogin CONNECTION LIMIT 2;

• By limiting the overall number of WALSender processes using the max_wal_
senders parameter

Always allow one more connection than you think is required to allow for disconnections
and reconnections.

516 Replication and Upgrades

There's more…
You may notice that the WALSender process may hit 100% CPU if you use SSL
with compression enabled and write lots of data or generate a large WAL volume
from things such as data definition language (DDL) or vacuuming. You can disable
compression on fast networks when you aren't paying per-bandwidth charges by
using sslcompression=0 in the connection string specified for primary_
conninfo. Note that security can be compromised if you use compression since the data
stream is easier to attack.

Hot Standby and read scalability
Hot Standby is the name for the PostgreSQL feature that allows us to connect to a standby
node and execute read-only queries. Most importantly, Hot Standby allows us to run
queries while the standby is being continuously updated through either file-based or
streaming replication.

Hot Standby allows you to offload large or long-running queries or parts of your read-only
workload to standby nodes. Should you need to switch over or fail over to a standby node,
your queries will keep executing during the promotion process to avoid any interruption
of service.

You can add additional Hot Standby nodes to scale the read-only workload. There is no
hard limit on the number of standby nodes, as long as you ensure that enough server
resources are available and parameters are set correctly—10, 20, or more nodes are
easily possible.

There are two main capabilities provided by a Hot Standby node. The first is that the
standby node provides a secondary node in case the primary node fails. The second
capability is that we can run queries on that node. In some cases, these two aspects can
come into conflict with each other and can result in queries being canceled. We need to
decide the importance we attach to each capability ahead of time so that we can prioritize
between them.

In most cases, the role of standby will take priority: queries are good, but it's OK to cancel
them to ensure that we have a viable standby. If we have more than one Hot Standby node,
it may be possible to nominate one node as standby and dedicate the others to serving
queries, without any regard for their capability to act as standbys.

Standby nodes are started and stopped using the same server commands as primary
servers, which were covered in earlier chapters.

Hot Standby and read scalability 517

Getting ready
Hot Standby can be used with physical replication as well as with point-in-time
recovery (PITR).

The parameters required by Hot Standby are enabled by default on all recent PostgreSQL
versions, so there is nothing you need to do in advance unless you have changed them
explicitly (in which case, if you have disabled this feature, you will know that already).

How to do it…
On the standby node, changes from the primary are read from the transaction log and
applied to the standby database. Hot Standby works by emulating running transactions
from the primary so that queries on the standby have the visibility information they need
to respect multi-version concurrency control (MVCC). This makes the Hot Standby
mode particularly suitable for serving a large workload of short or fast SELECT queries. If
the workload is consistently short, then few conflicts will delay the standby and the server
will run smoothly.

Queries that run on the standby node see a version of the database that is slightly behind
the primary node. We describe this behavior as the cluster being eventually consistent.
How long is "eventually"? That time is exactly the replication delay plus the apply delay, as
discussed in the Replication concepts section. You may also request that standby servers
delay the application of the changes they receive from their upstreams; see the Delaying,
pausing, and synchronizing replication recipe later on in this chapter for more information.

Resource contention (CPU, I/O, and so on) may increase the apply delay. If the server is
busy applying changes from the primary, then you will have fewer resources to use for
queries. This also implies that if there are no changes arriving, then you'll get more query
throughput. If there are predictable changes in the write workload on the primary, then
you may need to throttle back your query workload on the standby when they occur.

Replication apply may also generate conflicts with running queries. Conflicts may
cause the replay to pause, and eventually queries on the standby may be canceled or
disconnected. Conflicts that can occur between the primary and queries on the standby
can be classified based on their causes:

• Locks, such as access exclusive locks

• Cleanup records

• Other special cases

518 Replication and Upgrades

If cancellations do occur, they will throw either error or fatal-level errors. These will be
marked with code—SQLSTATE 40001 SERIALIZATION FAILURE. The application
can be programmed to detect this error code and then resubmit the same SQL code, given
the nature of the error.

There are two sources of information for monitoring the number of conflicts. The total
number of conflicts in each database can be seen using this query:

SELECT datname, conflicts FROM pg_stat_database;

You can drill down further to look at the types of conflict using the following query:

SELECT datname, confl_tablespace, confl_lock, confl_snapshot,
confl_bufferpin, confl_deadlock

FROM pg_stat_database_conflicts;

Tablespace conflicts are the easiest to understand: if you try to drop a tablespace that
someone is still using, then you're going to get a conflict. Don't do that!

Lock conflicts are also easy to understand. If you wish to run certain commands on the
primary—such as ALTER TABLE ... DROP COLUMN, for instance—then you must
lock the table first to prevent all types of access because of the way that command is
implemented: while it will leave the database in a consistent state when it completes, it is
not designed to preserve that consistency at all times while it is running, meaning that
another session reading that table while that command runs could get inconsistent results.
For that reason, the lock request is sent to the standby server as well, and the standby will
then prevent those reads, meaning that it will cancel standby queries that are currently
accessing that table after a configurable delay.

On HA systems, making DDL changes to tables that cause long periods of locking on the
primary can be unacceptable. You may want the tables on the standby to stay available
for reads during the period in which changes are being made on the primary, even if that
means that the standby might delay the application of changes when it runs a conflicting
query. To do that, temporarily set these parameters on the standby: max_standby_
streaming delay = -1 and max_standby_archive_delay = -1. Then,
reload the server. As soon as the first lock record is seen on the standby, all further
changes will be held. Once the locks on the primary are released, you can reset the original
parameter values on the standby, which will then allow changes to be made there.

Hot Standby and read scalability 519

Note that max_standby_streaming_delay is used when the standby is streaming
WAL, which is usually the case while replication is running normally, while max_
standby_archive_delay is used when WAL files are fetched using restore_
command, which is the case when the standby has fallen behind considerably and is
fetching older WAL from the archive (for example, Barman). There are two separate
settings because the extent of what is an acceptable lag can differ between those scenarios.

Setting the max_standby_streaming_delay and max_standby_archive_
delay parameters to -1 is very timid and may not be useful for normal running if the
standby is intended to provide HA. No user query will ever be canceled if it conflicts with
applying changes, which will cause the apply process to wait indefinitely. As a result, the
apply delay can increase significantly over time, depending on the frequency and duration
of queries and the frequency of conflicts. To work out an appropriate setting for these
parameters, you need to understand more about the other types of conflicts, though there
is also a simple way to avoid this problem entirely.

Snapshot conflicts require some understanding of the internal workings of MVCC, which
many people find confusing. To avoid snapshot conflicts, you can set hot_standby_
feedback = on in the standby's postgresql.conf file.

In some cases, this could cause table bloat on the primary, so it is not set by default.
If you don't wish to set hot_standby_feedback = on, then you have further
options to consider; you can set an upper limit with max_standby_streaming_
delay and max_standby_archive_delay, as explained previously, and as a last
resort, you can set vacuum_defer_cleanup_age to a value higher than 0. This
parameter is fairly hard to set accurately, though we would suggest starting with a value
of 1000 and then tuning upward. A vague and inaccurate assumption would be to say
that each 1000 will be approximately 1 second of additional delay. This is probably helpful
more often than it is wrong. Other conflict types (buffer pin, deadlocks, and so on) are
possible, but they are rare.

Finally, if you want a completely static standby database with no further changes applied,
then you can do this by modifying the configuration so that neither restore_command
nor primary_conninfo is set but standby_mode is on, and then restarting the
server. You can come back out of this mode, but only if the archive contains the required
WAL files to catch up; otherwise, you will need to reconfigure the standby from a base
backup again.

If you attempt to run a non-read-only query, then you will receive an error marked with
SQLSTATE 25006 READ ONLY TRANSACTION. This could be used by the application
(if aware) to redirect SQL to the primary, where it can execute successfully.

520 Replication and Upgrades

How it works…
Changes made by a transaction on the primary will not be visible until the commit is
applied to the standby. So, for example, we have a primary and a standby with a replication
delay of 4 seconds between them. A long-running transaction may write changes to
the primary for 1 hour. How long does it take before those changes are visible on the
standby? With Hot Standby, the answer is 4 seconds after the commit on the primary. This
is because changes made during the transaction on the primary are streamed while the
transaction is still in progress, and in most cases, they are already applied on the standby
when the commit record arrives.

You may also wish to use the remote_apply mode; see the Delaying, pausing, and
synchronizing replication recipe later on in this chapter.

Hot Standby can also be used when running a PITR, so the WAL records that are applied
to the database need not arrive immediately from a live database server. We can just use
file-based recovery in that case, not streaming replication.

Finally, query performance has been dramatically improved in Hot Standby over time, so
it's a good idea to upgrade for that reason alone.

Managing streaming replication
Replication is great, provided that it works. Replication works well if it's understood, and
it works even better if it's tested.

Getting ready
You need to have a plan for the objectives for each individual server in the cluster. Which
standby server will be the failover target?

How to do it…
Switchover is a controlled switch from the primary to the standby. If performed correctly,
there will be no data loss. To be safe, simply shut down the primary node cleanly, using
either the smart or fast shutdown modes. Do not use the immediate mode shutdown
because you will almost certainly lose data that way.

Failover is a forced switch from the primary node to a standby because of the loss of the
primary. So, in that case, there is no action to perform on the primary; we presume it is
not there anymore.

Managing streaming replication 521

Next, we need to promote one of the standby nodes to be the new primary. A standby
node can be triggered into becoming a primary node with the pg_ctl promote
command.

The standby will become the primary only once it has fully caught up. If you haven't been
monitoring replication, this could take some time.

Once the ex-standby becomes a primary, it will begin to operate all normal functions,
including archiving files, if configured. Be careful and verify that you have all the correct
settings for when this node begins to operate as a primary.

It is likely that the settings will be different from those on the original primary from which
they were copied.

Note that I refer to this new server as a primary, not the primary. It is up to you to ensure
that the previous primary doesn't continue to operate—a situation known as split-brain.
You must be careful to ensure that the previous primary stays down.

Management of complex failover situations is not provided with PostgreSQL, nor is
automated failover. Situations can be quite complex with multiple nodes, and appropriate
clusterware is recommended and used in many cases to manage this.

There's more…
When following a switchover from one node to another, it is common to think of
performing a switchover back to the old primary server, which is sometimes called
failback or switchback.

Once a standby has become a primary, it cannot go back to being a standby again. So, with
log replication, there is no explicit switchback operation. This is a surprising situation for
many people and there is a repeated question, but it is quick to work around. Once you
have performed a switchover, all you need to do is the following:

• Reconfigure the old primary node again, repeating the same process as before to set
up a standby node

• Switch over from the current to the old primary node

522 Replication and Upgrades

The important part here is that if we perform the first step without deleting the files on
the old primary, it allows rsync to go much faster. When no files are present on the
destination, rsync just performs a copy. When similarly named files are present on the
destination, then rsync will compare the files and send only the changes. So, the rsync
we perform on a switchback operation performs much less data transfer than in the
original copy. It is likely that this will be enhanced in later releases of PostgreSQL. There
are also ways to avoid this, as shown in the repmgr utility, which will be discussed later.

The pg_rewind utility has been developed as a way to perform an automated switchback
operation. It performs a much faster switchback when there is a large database with few
changes to apply. To allow correct operation, this program can only run on a server that
was previously configured with the wal_log_hints = on parameter.

Using that parameter can cause more I/O on large databases, so while it improves
performance for switchback, it has a considerable overhead for normal running. If you
think you would like to run pg_rewind, then make sure you work out how it behaves
ahead of time. Trying to run it for the first time in a stress situation when the server is
down is a bad idea.

If all goes wrong, then please remember that pg_resetwal is not your friend. It is
specifically designed to remove WAL files, destroying your data changes in the process.
Always back up WAL files before using it.

PostgreSQL provides a recovery_end_command utility that was used to clean up
after switchover or failover with older versions when replication was based on copying
WAL files to a third location (archive) that needed to be maintained; this is largely
unnecessary nowadays.

See also
Clusterware may provide additional features, such as automated failover, monitoring,
or ease of management of replication:

• The repmgr utility is designed to manage PostgreSQL replication and failover, and
is discussed in more detail in the Using repmgr recipe.

• The pgpool utility is designed to allow session pooling and routing of requests to
standby nodes.

Using repmgr 523

Using repmgr
As we stated previously, replication is great, provided that it works; it works well if
it's understood, and it works even better if it's tested. This is a great reason to use the
repmgr utility.

repmgr is an open source tool that was designed specifically for PostgreSQL replication.
To get additional information about repmgr, visit http://www.repmgr.org/.

The repmgr utility provides a command-line interface (CLI) and a management
process (daemon) that's used to monitor and manage PostgreSQL servers involved in
replication. The repmgr utility easily supports more than two nodes with automatic
failover detection.

Getting ready
Install the repmgr utility from binary packages on each PostgreSQL node.

Set up replication security and network access between nodes according to the Setting up
streaming replication security recipe.

How to do it…
The repmgr utility provides a set of single command-line actions that perform all the
required activities on one nod:.

1. To start a new cluster with repmgr with the current node as its primary, use the
following command:

repmgr primary register

2. To add an existing standby to the cluster with repmgr, use the following command:

repmgr standby register

3. Use the following command to request repmgr to create a new standby for you by
copying node1. This will fail if you specify an existing data directory:

repmgr standby clone node1 -D /path/of_new_data_directory

4. To reuse an old primary as a standby, use the rejoin command:

repmgr node rejoin -d 'host=node2 user=repmgr'

http://www.repmgr.org/

524 Replication and Upgrades

5. To switch from one primary to another one, run this command on the standby that
you want to make a primary:

repmgr standby switchover

6. To promote a standby to be the new primary, use the following command:

repmgr standby promote

7. To request a standby to follow a new primary, use the following command:

repmgr standby follow

8. Check the status of each registered node in the cluster, like this:

repmgr cluster show

9. Request a cleanup of monitoring data, as follows. This is relevant only if
--monitoring-history is used:

repmgr cluster cleanup

10. Create a witness server for use with auto-failover voting, like this:

repmgr witness create

The preceding commands are presented in a simplified form. Each command also takes
one of these options:

• --verbose: This is useful when exploring new features

• -f: This specifies the path to the repmgr.conf file

For each node, create a repmgr.conf file containing at least the following parameters.
Note that the node_id and node_name parameters need to be different on each node:

node_id=2

node_name=beta

conninfo='host=beta user=repmgr'

data_directory=/var/lib/pgsql/11/data

Once all the nodes are registered, you can start the repmgr daemon on each node,
like this:

repmgrd -d -f /var/lib/pgsql/repmgr/repmgr.conf &

Using repmgr 525

If you would like the daemon to generate monitoring information for that node, you
should set monitoring_history=yes in the repmgr.conf file.

Monitoring data can be accessed using this:

repmgr=# select * from repmgr.replication_status;

-[RECORD 1]-------------+------------------------------

primary_node_id | 1

standby_node_id | 2

standby_name | node2

node_type | standby

active | t

last_monitor_time | 2017-08-24 16:28:41.260478+09

last_wal_primary_location | 0/6D57A00

last_wal_standby_location | 0/5000000

replication_lag | 29 MB

replication_time_lag | 00:00:11.736163

apply_lag | 15 MB

communication_time_lag | 00:00:01.365643

How it works…
repmgr works with all supported PostgreSQL versions. It supports the latest features
of PostgreSQL, such as cascading, sync rep, and replication slots. It can use pg_
basebackup, allowing you to clone from a standby. The use of pg_basebackup also
removes the need for rsync and key exchange between servers. Also, cascaded standby
nodes no longer need to re-follow.

There's more…
The default behavior for the repmgr utility is manual failover.

The repmgr utility also supports automatic failover capabilities. It can automatically
detect failures of other nodes and then decide which server should become the new
primary by voting among all of the still-available standby nodes. The repmgr utility
supports a witness server to ensure that there are an odd number of voters in order to
get a clear winner in any decision.

526 Replication and Upgrades

Using replication slots
Replication slots allow you to define your replication architecture explicitly. They also
allow you to track details of nodes even when they are disconnected. Replication slots
work with both PSR and LSR, though they operate slightly differently.

Replication slots ensure that data required by a downstream node persists until the node
receives it. They are crash-safe, so if a connection is lost, the slot still continues to exist. By
tracking data on downstream nodes, we avoid these problems:

• When a standby disconnects, the feedback data provided by hot_standby_
feedback is lost. When the standby reconnects, it may be sent cleanup records
that result in query conflicts. Replication slots remember the standby's xmin value
even when disconnected, ensuring that cleanup conflicts can be avoided.

• When a standby disconnects, knowledge of which WAL files were required is lost.
When the standby reconnects, we may have discarded the required WAL files,
requiring us to regenerate the downstream node completely (assuming that this
is possible). Replication slots ensure that nodes retain the WAL files needed by all
downstream nodes.

Replication slots are required by LSR and for any other use of logical decoding.
Replication slots are optional with PSR.

Getting ready
This recipe assumes that you have already set up replication according to the earlier
recipes, either via manual configuration or by using repmgr.

A replication slot represents one link between two nodes. At any time, each slot can
support one connection. If you draw a diagram of your replication architecture, then
each connecting line is one slot. Each slot must have a unique name. The slot name must
contain only lowercase letters, numbers, and underscores.

As we discussed previously, each node should have a unique name, so a suggestion would
be to construct the slot name from the two node names that it links. For various reasons,
there may be a need for multiple slots between two nodes, so additional information is
also required for uniqueness. For two servers called alpha and beta, an example of
a slot name would be alpha_beta_1.

For LSR, each slot refers to a single database rather than the whole server. In that case, slot
names could also include database names.

Using replication slots 527

How to do it…
If you set up replication with repmgr, then you just need to set the following in the
repmgr.conf file:

use_replication_slots = yes

For manual setup, you need to follow these steps:

1. Ensure that max_replication_slots > 0 on each sending PostgreSQL node;
the default of 10 is usually enough.

2. For PSR slots, you first have to create a slot on the sending node with SQL like this,
which will then display its LSN after creation:

SELECT (pg_create_physical_replication_slot

('alpha_beta_1', true)).wal_position;

wal_position

 0/5000060

3. Monitor the slot in use with the following query:

SELECT * FROM pg_replication_slots;

4. Set the primary_slot_name parameter on the standby using the unique name
that you assigned earlier:

primary_slot_name = 'alpha_beta_1'

Note that slots can be removed using the following query when you don't need them
anymore:

SELECT pg_drop_physical_replication_slot('alpha_beta_1');

There's more…
If all of your replication connections use slots, then there is no need to set the wal_
keep_segments parameter.

Replication slots can be used to support applications where downstream nodes are
disconnected for extended periods of time. Replication slots prevent the removal of WAL
files, which are needed by disconnected nodes. Therefore, it is important to be careful
that WAL files don't build up and cause out-of-disk-space errors due to leftover physical
replication slots with no currently connected standby.

528 Replication and Upgrades

See also
See the Logical replication recipe for more details on using slots with LSR.

Monitoring replication
Monitoring the status and progress of your replication is essential. We'll start by looking at
the server status and then query the progress of replication.

Getting ready
You'll need to start by checking the state of your server(s).

Check whether a server is up using pg_isready or another program that uses the
PQping() application programming interface (API) call. You'll get one of the
following responses:

• PQPING_OK (return code 0): The server is running and appears to be
accepting connections.

• PQPING_REJECT (return code 1): The server is running but is in a state that
disallows connections (start up, shutdown, or crash recovery) or a standby that is
not enabled with Hot Standby.

• PQPING_NO_RESPONSE (return code 2): The server could not be
contacted. This might indicate that the server is not running, there is something
wrong with the given connection parameters (for example, wrong port number),
or there is a network connectivity problem (for example, a firewall blocking the
connection request).

• PQPING_NO_ATTEMPT (return code 3): No attempt was made to contact
the server—for example, invalid parameters.

Note
At present, pg_isready does not differentiate between a primary and
a standby, though this may change in later releases, nor does it specify whether
a server is accepting write transactions or only read-only transactions
(a standby or a primary connection in read-only mode).

You can find out whether a server is a primary or a standby by connecting and executing
this query:

SELECT pg_is_in_recovery();

Monitoring replication 529

A true response means this server is in recovery, meaning it is running in Hot
Standby mode.

There are also two other states that may be important for backup and replication: while
the server is paused, and while the server is in the middle of an exclusive backup. The
paused state doesn't affect user queries, but replication will not progress at all when
paused. Only one exclusive backup may occur at any one time (which explains the name).

You can also check whether replay is paused by executing this query:

SELECT pg_is_wal_replay_paused();

If you want to check whether a server is in exclusive backup mode, execute the
following query:

SELECT pg_is_in_backup();

There is no supported function that shows whether a non-exclusive backup is in progress,
though there isn't as much to worry about if there is. If you care about that, make sure that
you set the application_name parameter of the backup program so that it shows up in
the session status output of pg_stat_activity, as discussed in Chapter 8, Monitoring
and Diagnosis.

How to do it…
The rest of this recipe assumes that Hot Standby is enabled. Actually, this is not an
absolute requirement, but it makes things much, much easier.

Both repmgr and pgpool provide replication monitoring facilities. Munin plugins are
available for graphing replication and apply delay.

Replication works by processing the WAL transaction log on servers other than the
one where it was created. You can think of WAL as a single, serialized stream of
messages. Each message in the WAL is identified by an 8-byte integer known as an
LSN. For historical reasons (and for readability), we show this as two separate 4-byte
hexadecimal (hex) numbers; for example, the LSN value 00000XXX0YYYYYYY is shown
as XXX/YYYYY.

You can compare any two LSNs using pg_wal_lsn_diff(). In some column and
function names, prior to PostgreSQL 10, an LSN was referred to as a location, a term
that's no longer in use. Similarly, the WAL was referred to as an xlog or transaction log.

530 Replication and Upgrades

To understand how to monitor progress, you need to understand a little more about
replication as a transport mechanism. The stream of messages flows through the system
like water through a pipe, and at certain points of the pipe, you have a meter that displays
the total amount of bytes (LSNs) that have flown via that point at that time. You can work
out how much progress has been made by measuring the LSN at two different points in
the pipe; the difference will be equal to the number of bytes that are in transit between
those two points. You can also check for blockages in the pipe, as they will cause all
downstream LSNs to stop.

Our pipe begins on the primary, where new WAL records are inserted into WAL files. The
current insert LSN can be found using this query:

SELECT pg_current_wal_insert_lsn();

However, WAL records are not replicated until they have been written and synced to the
WAL files on the primary. The LSN of the most recent WAL write is given by this query on
the primary:

SELECT pg_current_wal_lsn();

Once written, WAL records are then sent to the standby. The recent status can be found
by running this query on the standby (this and the later functions return NULL on a
primary):

SELECT pg_last_wal_receive_lsn();

Once WAL records have been received, they are written to WAL files on the standby.
When the standby has written those records, they can then be applied to it. The LSN of the
most recent apply is found using this standby query:

SELECT pg_last_wal_replay_lsn();

Remember that there will always be timing differences if you run status queries on
multiple nodes. What we really need is to see all of the information on one node. A view
called pg_stat_replication provides the information that we need:

SELECT pid, application_name /* or other unique key */

,pg_current_wal_insert_lsn() /* WAL Insert lsn */

,sent_lsn /* WALSender lsn */

,write_lsn /* WALReceiver write lsn */

,flush_lsn /* WALReceiver flush lsn */

,replay_lsn /* Standby apply lsn */

Monitoring replication 531

,backend_start /* Backend start */

FROM pg_stat_replication;

-[RECORD 1]-------------------+---------------------------
--- pid | 16496

application_name | pg_basebackup pg_current_wal_
insert_lsn | 0/80000D0

sent_lsn |

write_lsn |

flush_lsn |

replay_lsn |

backend_start | 2017-01-27 15:25:42.988149+00

-[RECORD 2]-------------------+-------------------pid

16497

application_name | pg_basebackup pg_current_wal_
insert_lsn | 0/80000D0

sent_lsn | 0/80000D0

write_lsn | 0/8000000

flush_lsn | 0/8000000

replay_lsn |

backend_start | 2017-01-27 15:25:43.18958+00

Each row in this view represents one replication connection. The preceding snippet shows
the output from a pg_basebackup that is using --wal-method=stream. The first
connection that's shown is the base backup, while the second session is streaming WAL
changes. Note that the replay_lsn value is NULL, indicating that this is not a standby.

This view is possible because standby nodes send regular status messages to their
upstream to let it know how far they have progressed. If you run this query on the
primary, you'll be able to see all the directly connected standbys. If you run this query on
a standby, you'll see values representing any cascaded standbys, but nothing about the
primary or any of the other standbys connected to the primary. Note that because the data
has been sent from a remote node, the values displayed are not exactly in sync; they will
each refer to a specific instant in the (recent) past. It is very likely that processing will have
progressed beyond the point being reported, but we don't know that for certain. That's just
physics. Welcome to the world of distributed systems!

532 Replication and Upgrades

In PostgreSQL 14, replication delay times are provided directly using sampled message
timings to provide the most accurate viewpoint of current delay times. Use this query:

SELECT pid, application_name /* or other unique key */

 ,write_lag, flush_lag, replay_lag

 FROM pg_stat_replication;

Finally, there is another view called pg_stat_wal_receiver that provides
information about the current standby node; this view returns zero rows on the primary
and one row on a standby. pg_stat_wal_receiver contains connection information
to allow you to connect to the primary server and detailed state information on the
WALReceiver process.

There's more…
The pg_stat_replication view shows only the currently connected nodes. If a node
is supposed to be connected but it isn't, then there is no record of it at all, anywhere. If you
don't have a list of the nodes that are supposed to be connected, then you'll just miss it.

Replication slots give you a way to define which connections are supposed to be present.
If you have defined a slot and it is currently connected, then you will get one row in
pg_stat_replication for the connection and one row in pg_replication_
slots for the corresponding slot; they can be matched via the process identifier (PID)
of the receiving process, which is the same. To find out which slots don't have current
connections, you can run this query:

SELECT slot_name, database, age(xmin), age(catalog_xmin)

 FROM pg_replication_slots

 WHERE NOT active;

To find details of currently connected slots, run something like this:

SELECT slot_name

 FROM pg_replication_slots

 JOIN pg_stat_replication ON pid = active_pid;

Performance and sync rep 533

Performance and sync rep
Sync rep allows us to offer a confirmation to the user that a transaction has been
committed and fully replicated on at least one standby server. To do that, we must wait
for the transaction changes to be sent to at least one standby, and then have that feedback
returned to the primary.

The additional time taken for the message's round trip will add elapsed time for the
commit of write transactions, which increases in proportion to the distance between
servers. PostgreSQL offers a choice to the user as to what balance they would like between
durability and response time.

Getting ready
The user application must be connected to a primary to issue transactions that write data.
The default level of durability is defined by the synchronous_commit parameter. That
parameter is user-settable, so it can be set for different applications, sessions, or even
individual transactions. For now, ensure that the user application is using this level:

SET synchronous_commit = on;

We must decide which standbys should take over from the primary in the event of a
failover. We do this by setting a parameter called synchronous_standby_names.

Note
You will need to configure at least three nodes to use sync rep correctly. This
is the short story, which you probably know already. For completeness, let's
explain the full story, which is slightly more nuanced.

When enabling sync rep as in the preceding example, you are requesting that
a transaction is considered committed only if it is stored at least on two
different nodes, so you have the guarantee that each transaction is safe even if
one node suddenly fails.

Based on your request, if you only have two nodes A and B, and (say) node B
is down, then you cannot commit that transaction. This is not a limitation of
the software, but simply the logical consequence of your request: you only have
node A left, so there is no way to place a transaction on two different nodes.

So, either (1) you wait until you have two nodes or (2) you accept the (tiny) risk
of losing the transaction after commit, should node A fail. Most people prefer
(2) over (1), and if they do not like (1) or (2), then they choose (3) to spend
a bit more money and add a third node, C.

534 Replication and Upgrades

How to do it...
Make sure that you have set the application_name parameter on each standby
node. Decide the order of servers to be listed in the synchronous_standby_names
parameter. Note that the standbys named must be directly attached standby nodes, or else
their names will be ignored. Sync rep is not possible for cascaded nodes, though cascaded
standbys may be connected downstream. An example of a simple four-node configuration
of nodeA (primary), nodeB, nodeC, and nodeD (standbys) would be set on nodeA,
as follows:

synchronous_standby_names = 'nodeB, nodeC, nodeD'

If you want to receive replies from the first two nodes in a list, then we would specify this
using the following special syntax:

synchronous_standby_names = '2 (nodeB, nodeC, nodeD)'

If you want to receive replies from any two nodes, known as quorum commit, then use
the following syntax:

synchronous_standby_names = 'any 2 (nodeB, nodeC, nodeD)'

Set synchronous_standby_names on all of the nodes, not just the primary.

You can see the sync_state value of connected standbys by using this query on
the primary:

 SELECT

 application_name

 ,state /* startup, backup, catchup or
streaming */

 ,sync_priority /* 0, 1 or more */

 ,sync_state /* async, sync or potential */

 FROM pg_stat_replication

 ORDER BY sync_priority;

There are a few columns here with similar names, so be careful not to confuse them.

Performance and sync rep 535

The sync_state column is just a human-readable form of sync_priority. When
sync_state is async, the sync_priority value will be zero (0). Standby nodes
that are mentioned in the synchronous_standby_names parameter will have
a nonzero priority that corresponds to the order in which they are listed. The standby
node with a priority of one (1) will be listed as having a sync_state value of sync.
We refer to this node as the sync standby. Other standby nodes configured to
provide feedback are shown with a sync_state value of potential and a sync_
priority value of more than 1.

If a server is listed in the synchronous_standby_names parameter but is not
currently connected, then it will not be shown at all by the preceding query, so it is
possible that the node is shown with a lower actual priority value than the stated ordering
in the parameter. Setting wal_receiver_status_interval to 0 on the standby
will disable status messages completely, and the node will show as an async node, even
if it is named in the synchronous_standby_names parameter. You may wish to
do this when you are completely certain that a standby will never need to be a failover
target, such as a test server.

The state for each server is shown as one of startup, catchup, or streaming. When
another node connects, it will first show as startup, though only briefly before it moves
to catchup. Once the node has caught up with the primary, it will move to streaming,
and only then will sync_priority be set to a nonzero value.

Catch-up typically occurs quickly after a disconnection or reconnection, such as when
a standby node is restarted. When performing an initial base backup, the server will show
as backup. After this, it will stay for an extended period at catchup. The delay at this
point will vary according to the size of the database, so it could be a long period. Bear this
in mind when configuring the sync rep.

When a new standby node moves to the streaming mode, you'll see a message like this
in the primary node log:

LOG standby $APPLICATION_NAME is now the synchronous

standby with priority N

536 Replication and Upgrades

How it works…
Standby servers send feedback messages that describe the LSN of the latest transaction
they have processed. Transactions committed on the primary will wait until they receive
feedback saying that their transaction has been processed. If there are no standbys
available for sending feedback, then the transactions on the primary will wait for standbys,
possibly for a very long time. That is why we say that you must have at least three servers
to sensibly use sync rep. It has probably occurred to you that you could run with just two
servers. You can, but such a configuration does not offer any transaction guarantees; it just
appears to. Many people are confused on that point, but please don't listen to them!

Sync rep increases the elapsed time of write transactions (on the primary). This can
reduce the performance of applications from a user perspective. The server itself will
spend more time waiting than before, which may increase the required number of
concurrently active sessions.

Remember that when using sync rep, the overall system is still eventually consistent.
Transactions committing on the primary are visible first on the standby, and a brief
moment later, those changes will be visible on the primary (yes—standby, and then
primary). This means that an application that issues a write transaction on the primary
followed by a read transaction on the sync standby will be guaranteed to see its
own changes.

You can increase performance somewhat by setting the synchronous_commit
parameter to remote_write, though you will lose data if both the primary and standby
crash. You can also set the synchronous_commit parameter to remote_apply when
you want to ensure that all changes are committed to the synchronous standbys and the
primary before we confirm back to the user. However, this is not the same thing
as synchronous visibility—the changes become visible on the different standbys
at different times.

There's more…
There is a small window of uncertainty for any transaction that is in progress just at the
point at which the primary goes down. This can be handled within the application by
checking the return code following a commit operation, rather than just assuming that it
has completed successfully, as developers often do.

If the commit fails, it is possible that the server committed the transaction successfully
but was unable to communicate that to the client; however, we don't know for certain.
Postgres-BDR resolves this problem, but unfortunately, PostgreSQL does not yet do that.
A workaround to resolve that uncertainty is to recheck a unique aspect of the transaction,
such as reconfirming the existence of a user ID that was inserted.

Delaying, pausing, and synchronizing replication 537

If no such object ID exists, we can create a table for this purpose:

CREATE TABLE TransactionCheck

 (TxnId SERIAL PRIMARY KEY);

During the transaction, we insert a row into that table using this query:

INSERT INTO TransactionCheck DEFAULT VALUES RETURNING TxnId;

Then, if the commit appears to fail, we can later reread this value to confirm the
transaction state as committed or aborted.

Sync rep works irrespective of whether you set up replication with or without repmgr,
as long as you have the right number of standby nodes. It is enabled by setting the
appropriate parameters in PostgreSQL, so nothing needs to be done in the configuration
file of repmgr.

Delaying, pausing, and synchronizing
replication
Some advanced features and thoughts for replication are covered here.

Getting ready
If you have multiple standby servers, you may want to have one or more servers operating
in a delayed apply state—for example, 1 hour behind the primary. This can be useful to
help recover from user errors such as mistaken transactions or dropped tables without
having to perform a PITR.

How to do it…
Normally, a standby will apply changes as soon as possible. When you set the recovery_
min_apply_delay parameter in recovery.conf, the application of commit records
will be delayed by the specified duration. Note that only commit records are delayed, so
you may receive Hot Standby cancelations when using this feature. You can prevent that
in the usual way by setting hot_standby_feedback to on, but use this with caution
since it can cause significant bloat on a busy primary if recovery_min_apply_delay
is large.

538 Replication and Upgrades

If something bad happens, then you can hit the Pause button, meaning that Hot
Standby provides controls for pausing and resuming the replay of changes. Precisely, do
the following:

1. To pause replay, issue this query:

SELECT pg_wal_replay_pause();

Once replay is paused, all queries will receive the same snapshot, which facilitates
lengthy repeated analysis of the database, or retrieval of a dropped table.

2. To resume (un-pause) processing, use this query:

SELECT pg_wal_replay_resume();

Be careful not to promote a delayed standby. If you have to, because your delayed standby
is the last server available, then you should reset recovery_min_apply_delay,
restart the server, and let it catch up before you issue a promote action.

There's more…
A standby is an exact copy of the primary. But how do you synchronize things so that
the query results you get from a standby are guaranteed to be the same as those you'd get
from the primary? Well, that in itself is not possible. It's just the physics of an eventually
consistent system. On the one hand, we need our system to be eventually consistent
because otherwise, the synchronization would become a performance bottleneck. And
even if we ignored that concern, total consistency would still be impossible because the
application cannot guarantee that two different servers are queried at exactly the same
time.

What we can reasonably do is to synchronize two requests on different servers, meaning
that we enforce their ordering—for example, we can issue a write on the primary and then
issue a read from a standby in a way that is guaranteed to happen after the write. Such
a case can be automatically handled by sync rep, but if we aren't using this feature, then
we can achieve a similar behavior by waiting for the standby to catch up with a specific
action on the primary (the write). To perform the wait, you need to do the following:

1. On the primary, perform a transaction that writes WAL—for example, create a table
or insert a row in an existing table. Make sure you do that with any setting other
than synchronous_commit = off.

2. On the primary, find the current write LSN using this query:

SELECT pg_current_wal_write_lsn();

Delaying, pausing, and synchronizing replication 539

3. On the standby, execute the following query repeatedly, until the LSN value
returned is equal to or higher than the LSN value you read from the primary in the
previous step:

SELECT pg_last_wal_replay_lsn();

4. At this point, you know that your transaction has been fully replayed, so you can
query the standby and see the effects of the transaction that you performed on
the primary.

The following function implements the activity of waiting until we pass a given LSN:

CREATE OR REPLACE FUNCTION wait_for_lsn(lsn pg_lsn)

RETURNS VOID

LANGUAGE plpgsql

AS $$

BEGIN

 LOOP

 IF pg_last_wal_replay_lsn() IS NULL OR

 pg_last_wal_replay_lsn() >= lsn THEN

 RETURN;

 END IF;

 PERFORM pg_sleep(0.1); /* 100ms */

 END LOOP;

END $$;

Note that this function isn't ideal since it could be interrupted while waiting due to a Hot
Standby conflict. Later releases may contain better solutions.

See also
It is also possible to pause and resume logical replication, except that we use the slightly
different terms of disable and enable, as shown in the following example:

ALTER SUBSCRIPTION mysub DISABLE;

ALTER SUBSCRIPTION mysub ENABLE;

540 Replication and Upgrades

Logical replication
Logical replication allows us to stream logical data changes between two nodes. By
logical, we mean streaming changes to data without referring to specific physical attributes
such as a block number or row ID.

These are the main benefits of logical replication:

• Performance is roughly two times better than that of the best trigger-based
mechanisms.

• Selective replication is supported, so we don't need to replicate the entire database.

• Replication can occur between different major releases, which can allow
a zero-downtime upgrade.

PostgreSQL provides a feature called logical decoding, which can be used to stream
a set of changes out of a primary server. This allows a primary to become a sending node
in logical replication. The receiving node uses a logical replication process to receive and
apply those changes, thereby implementing replication between those two nodes.

So far, we have referred to physical replication simply as streaming replication. Now
that we have introduced another kind of streaming replication, we have to extend
our descriptions and refer either to PSR (physical) or to LSR (logical) when discussing
streaming replication. In terms of security, network data transfer, and general
management, the two modes are very similar. Many concepts that are used to monitor
PSR can also be used to monitor LSR.

When using logical replication, the target systems are fully writable primary nodes in their
own right, meaning that we can use the full power of PostgreSQL without restrictions.
We can use temporary tables, triggers, different user accounts, and GRANT permissions
differently. We can also define indexes differently, collect statistics differently, and run
VACUUM on different schedules.

LSR works on a publish/subscribe (pub/sub) model, meaning that the sending node
publishes changes, and the receiving node receives the changes that it has subscribed
to. Because of this, we use the terms publisher and subscriber to denote, respectively, the
sending and receiving nodes.

LSR works on a per-database level, not a whole-server level like PSR, because
logical decoding uses the catalog to decode transactions, and the catalog is mostly
implemented at the database level. One publishing node can feed multiple subscriber
nodes without incurring additional disk write overhead.

Logical replication 541

Getting ready
Logical replication was introduced in PostgreSQL 10, so it is available on all currently
supported PostgreSQL versions.

The procedure goes like this:

1. Identify all nodes that will work together as parts of your replication architecture;
for instance, suppose that we want to replicate from node1 to node2.

2. Each LSR link can replicate changes from a single database, so you need to decide
which database(s) you want to replicate. Note that you will need one LSR link for
each database that you want to replicate.

3. Each LSR link will use one connection and one slot: ensure that the max_
replication_slots and max_connections parameters match
those requirements.

4. Likewise, each LSR link requires one WAL sender on the publisher: ensure
that max_wal_senders matches this requirement.

5. Also, each LSR link requires one apply process on the subscriber: ensure that max_
worker_processes matches this requirement.

How to do it…
The following steps have to be repeated once for each replicated database. In these queries,
we have used mypgdb as the database name, but you obviously need to replace it with the
real name of that databas:.

1. Dump the database schema from the published database and reload it in the
subscriber database:

pg_dump --schema-only -o schema.sql -h node1 mypgdb

psql -1 -f schema.sql -h node2 mypgdb

2. Publish the changes from all tables with the following statement:

CREATE PUBLICATION pub_node1_mypgdb_all

 FOR ALL TABLES;

3. Subscribe to the changes from all tables with the following statement:

CREATE SUBSCRIPTION sub_node1_mypgdb_all

 CONNECTION 'host=node1 dbname=mypgdb'

 PUBLICATION pub_node1_mypgdb_all;

542 Replication and Upgrades

Logical replication supports selective replication, which means that you don't need to
specify all the tables in the database. You just need to identify the tables to be replicated,
and then define publications that correspond to groups of tables that should be
replicated together.

The tables that will be replicated may need some preparatory steps as well. To enable
logical replication to apply UPDATE and DELETE commands correctly on the target node,
we need to define how PostgreSQL can identify rows. This is known as replica identity.
A primary key (PK) is a valid replica identity, so you need not take any action if you have
already defined PKs on all your replicated tables. If you want to replicate tables that do not
have a PK, it is worth pausing and reviewing them. With this, we mean that you should
consider whether those tables have a PK or should be given one. For example, if a table
has a column called customer_id that is unique and not null, and that will be updated
rarely or never, then it is a valid PK, even if it is not marked as such; so, you can make it
an official PK.

If you have carried out that review and you still have some tables without a PK that you
want to replicate, then you may need to define a replica identity explicitly by using
a command like this:

ALTER TABLE mytable REPLICA IDENTITY USING INDEX myuniquecol_
idx;

This means that PostgreSQL will use that index (and the columns it covers) to uniquely
identify rows to be deleted or updated.

Tables in a subscriber node must have the same name as in the publisher node and be in
the same schema. Tables on the subscriber must also have columns with the same name
as the publisher and with compatible data types, to be able to apply incoming changes.
Tables must have the same PRIMARY KEY constraint on both nodes. CHECK, NOT NULL,
and UNIQUE constraints must be the same or weaker (more permissive) on the subscriber.

Logical replication also supports filtering replication, which means that only certain
actions are replicated on the target node; for example, we can specify that INSERT
commands are replicated while DELETE commands are filtered away.

Logical replication 543

How it works…
Logical decoding is very efficient because it reuses the transaction log data (WAL) that
was already being written for crash safety. Triggers are not used at all for this form of
replication. Physical WAL records are translated into logical changes that are then sent to
the receiving node. Only real data changes are sent; no records are generated from changes
to indexes, cleanup records from VACUUM, and so on. So, bandwidth requirements are
usually reduced, depending on the exact application workload and database setup.

Changes are discarded if the top-level transaction aborts (savepoints and other
subtransactions are supported normally). Changes are applied in the order of the
transactions that have been committed, meaning that logical replication never breaks
because of an inconsistent sequence of activities, which could instead occur with other
cruder replication techniques such as statement-based replication.

On the receiving side, changes are applied using direct database calls, leading to a very
efficient mechanism. SQL is not re-executed, so volatile functions in the original SQL
don't produce any surprises. For example, let's say you make an update like this:

UPDATE table

SET

 col1 = col1 + random()

,col2 = col2 + random()

WHERE key = value

Logical replication will send the final calculated values of col1 and col2, instead of
repeating the execution of the functions (and getting different values) when we apply
the changes.

PostgreSQL has a mechanism to specify whether triggers should fire or not depending on
whether the changes are coming from a client session or via replication, with the default
being to fire triggers only for client sessions.

This means that you can define BEFORE ROW triggers that block or filter rows as you
wish, with a suitable configuration. For more information, check the documentation for
the following:

• The session_replication_role parameter

• The ALTER TABLE ... ENABLE REPLICA TRIGGER syntax

544 Replication and Upgrades

Logical replication will work even if you update one or more columns of the key (or any
other replica identity) since it will detect that situation and send the old values of the
columns with the changed row values. A statement that writes many rows results in a
stream of single-row changes.

Locks taken at table level (LOCK) or row level (SELECT ... FOR...) are not
replicated, nor are SET or NOTIFY commands.

Logical replication doesn't suffer from cancellations of queries on the apply node in
the way Hot Standby does. There isn't any need for a feature such as hot_standby_
feedback.

Both the publishing and subscribing nodes are primary nodes, so technically, it would be
possible for writes (INSERT, UPDATE, and DELETE) and/or row-level locks (SELECT
... FOR...) to be issued on the subscriber database. As a result, it is possible that local
changes could lock out, slow down, or interfere with the application of changes from
the source node. It is up to the user to enforce restrictions to ensure that this does not
occur. You can do this by having a user role defined specifically for replication, and then
using REVOKE on all access apart from the SELECT privilege to replicated tables, rather
than the user role applying the changes.

Data can be read on the apply side while changes are being made. That is just normal, and
it's the beautiful power of PostgreSQL's MVCC feature.

The use of replication slots means that if the network drops for some time or if one of the
nodes is temporarily offline, replication will automatically pick up again from the precise
point at which it stopped.

There's more…
LSR can work alongside PSR in the sense that the same node can have PSR standbys and
LSR subscribers at the same time. There are no conflicting parameters; just ensure that all
requirements are met for both PSR and LSR.

Logical replication provides cascaded replication.

With LSR and pglogical, neither DDL nor sequences are replicated; only data changes
(data manipulation language, or DML) are sent, including TRUNCATE commands.

Logical replication is one-way only, so if you want multi-master replication, see Postgres-
BDR, which is described in the BDR recipe. Also, this is currently the only logical
replication software that can replicate DDL.

Subscriptions use normal user access security, so there is no need to enable replication via
pg_hba.conf.

BDR 545

It is also possible to override the synchronous_commit parameter and demand that
the server provides sync rep.

BDR
BDR (Postgres-BDR) is a project aiming to provide multi-master replication with
PostgreSQL. There is a range of possible architectures. The first use case we support
is all-nodes-to-all-nodes. Postgres-BDR will eventually support a range of complex
architectures, which is discussed later.

With Postgres-BDR, the nodes in a cluster can be distributed physically, allowing
worldwide access to data as well as DR. Each Postgres-BDR primary node runs individual
transactions; there is no globally distributed transaction manager. Postgres-BDR includes
replication of data changes such as DML, as well as DDL changes. New tables are added
automatically to replication, ensuring that managing BDR is a low-maintenance overhead
for applications.

Postgres-BDR also provides global sequences, if you wish to have a sequence that works
across a distributed system where each node can generate new IDs. The usual local
sequences are not replicated.

One key advantage of Postgres-BDR is that you can segregate your write workload across
multiple nodes by application, user group, or geographical proximity. Each node can be
configured differently, yet all work together to provide access to the same data. Some
examples of use cases for this are shown here:

• Social media applications, where users need fast access to their local server, yet the
whole database needs a single database view to cater for links and interconnections

• Distributed businesses, where orders are taken by phone in one location and by
websites in another location, and then fulfilled in several other locations

• Multinational companies that need fast access to data from many locations, yet wish
to see and enforce a single, common view of their data

Postgres-BDR builds upon the basic technology of logical replication, enhancing it in
various ways. We refer heavily to the previous recipe, Logical replication.

Getting ready
Currently, Postgres-BDR can be deployed in the all-to-all architecture, which has been
tested on clusters of up to 99 primary nodes. Each of those nodes is a normal, fully
functioning PostgreSQL server that can perform both reads and writes.

546 Replication and Upgrades

Postgres-BDR establishes direct connections between each pair of nodes, forming
a mesh of connections. Changes flow directly to other nodes in constant time, no matter
how many nodes are in use. This is quite different from circular replication, which is
a technique used by other database management systems (DBMSs) to reduce the
number of connections at the expense of latency and (somewhat) simplicity.

All Postgres-BDR nodes should have pg_hba.conf definitions to allow connection
paths between each node pair. It would be easier to have these settings the same on all
nodes, but that is not strictly required.

Each node requires an LSR link to all other nodes for each replicated database. So, an
eight-node Postgres-BDR cluster will require seven LSR links per node. Ensure that the
settings are configured to allow for this and any possible future expansion. The parameters
should be the same on all nodes to avoid confusion. Remember that these changes require
a restart.

Postgres-BDR nodes also require configuring of the mechanism for conflict detection:

track_commit_timestamps = on

The current version of Postgres-BDR is 4.0, which was released in 2021 and supports
PostgreSQL 12 and later. Earlier versions of PostgreSQL were supported by previous
versions of BDR, such as 3.6 and 3.7.

For more information on release compatibility, please visit the compatibility matrix in the
documentation at https://www.enterprisedb.com/docs/bdr/latest/.

PostgreSQL-BDR is a proprietary software owned and licensed by EnterpriseDB (EDB).

How to do it…
BDR must be deployed using a tool called TPAexec, based on Ansible and available on the
same license terms as BDR, which internally runs the appropriate commands in the right
order so that the user doesn't actually need to run those commands directly.

In this section, we go through some examples of those commands, for the purpose of
illustrating how the BDR technology works.

https://www.enterprisedb.com/docs/bdr/latest/

BDR 547

New nodes are created in one of the following four ways:

• Using a command-line utility called bdr_init_physical that can convert
a physical replica into a BDR node. This utility operates in three modes:

 � Using an existing physical replica

 � Creating a physical replica from a physical backup

 � Creating a physical replica from scratch (bdr_init_physical will take
a base backup)

• By running the bdr.join_node_group() function

The time-consuming part is the initial data copy, which in the first case is carried out
while the node is still a physical replica, possibly using standard methods such as pg_
basebackup, restore from a Barman backup, or simple file copy, while in the second
case, it is included in the function run.

The four preceding options for joining a node can be compared in terms of which features
they provide—for example, whether the following applied:

1. The process can resume without having to restart from scratch if interrupted.
2. The data for a single node can be copied using multiple connections in parallel.
3. The data for multiple nodes can be copied concurrently.

In the following table, we compare these options:

Figure 12.1 – Options available for joining a node

548 Replication and Upgrades

How it works...
Postgres-BDR optimistically assumes that changes on one node do not conflict with
changes on other nodes. Any conflicts are detected and then resolved automatically using
a predictable last-update-wins strategy, though custom conflict handlers are supported to
allow more precise definition for particular applications.

Applications that regularly cause conflicts won't run very well on Postgres-BDR; while
conflicts will be resolved automatically as expected, conflicting transactions are generally
more expensive than non-conflicting ones, because of the extra effort required to
resolve the conflict, and also because two conflicting transactions will result in a single
transaction being eventually applied. Such applications would also suffer from lock waits
and resource contention on a normal database; the effects will be slightly amplified by the
distributed nature of Postgres-BDR, but it is only the existing problems that are amplified.
Applications that are properly designed to be scalable and contention-free will work well
on Postgres-BDR.

Postgres-BDR replicates changes at the row level, though there is an optional feature
available to resolve conflicts at the column level, described later. The default mechanism
used by BDR has some implications for applications, as shown here:

• Suppose we perform two simultaneous updates on different nodes, like this:

UPDATE foo SET col1 = col1 + 1 WHERE key = value;

• Then, in the event of a conflict, we will keep only one of the changes (the last
change). What we might like in this case is to make the changes additive; Postgres-
BDR provides this alternate behavior using dedicated data types called conflict-free
replicated data types (CRDT).

• Two updates that change different columns on different nodes will still cause
replication conflicts. Postgres-BDR provides an optional feature called column-level
conflict resolution, which avoids conflicts altogether in this case.

Postgres-BDR also supports eager replication, meaning any issues are resolved
before commit.

Postgres-BDR provides tools to diagnose and correct contention problems. Conflicts
are logged to a conflict history table with all the necessary details so that they can be
identified ex-post and removed at the application level. This also enables regular auditing
of the conflict resolution logic, to allow a declarative verification.

Archiving transaction log data 549

There's more…
If a primary node fails, you can fail over to either logical or physical standby nodes. Other
primary nodes continue processing normally—there is no wait for failover, nor is there
the need for complex voting algorithms to identify the best new primary. Failed primary
nodes that resume operations later will rejoin the cluster without needing any user action.

Archiving transaction log data
PSR can send transaction log data to a remote node, even if the node is not a full
PostgreSQL server, so that it can be archived. This can be useful for various purposes, such
as the following:

• Restoring a hot physical backup

• Investigating the contents of previous transactions

Getting ready
Normally, backups should be taken regularly on a production system; if you have
configured Barman already, as described in the Hot physical backup with Barman recipe of
Chapter 11, Backup and Recovery, then you are already archiving transaction logs because
they are needed to restore a physical backup, so no further action is needed, and you can
skip to the How to do it... section of the current recipe.

PostgreSQL includes two client tools to stream transaction data from the server to the
client. The tools are designed using a pull model; that is, you run the tools on the node
you wish the data to be saved on:

• pg_receivewal transmits physical transaction log data (WAL files), producing
an exact copy of the original WAL files. Replication slots are not required when
using this tool but could be useful.

• pg_recvlogical transmits the results of the logical decoding of transaction
log data, producing a copy of the transformed data rather than reconstructing
physical WAL files. A logical replication slot is required for this tool, created with
an appropriate logical decoding plugin. Note that in this case, you must set wal_
level to logical.

You can also configure archive_command on the PostgreSQL server; this uses a push
model to send complete WAL files to a remote location of your choice.

550 Replication and Upgrades

How to do it…
If you are backing up your PostgreSQL server using Barman, then the WAL is already
archived and can be retrieved as follows:

1. First, you have to establish the name of the WAL file that you wish to fetch. For
instance, you can extract the name of the last WAL file from the metadata for the
chosen server:

$ barman show-server db1 | grep current_xlog

current_xlog: 00000001000000000000001B

2. Then, you can download that file in the current directory, as follows:

$ barman get-wal -o . -P db1 00000001000000000000001B

Sending WAL '00000001000000000000001B.partial' for server
'db1' into './00000001000000000000001B' file

Note the message from Barman: the current WAL file has a partial suffix, as it is still
being added data from new writes. Barman will download a copy that corresponds
to the snapshot it has received so far.

3. At this point, you can inspect the content of this WAL file:

$ pg_waldump 00000001000000000000001B | tail

pg_waldump: fatal: error in WAL record at 0/1B3221F0:
invalid record length at 0/1B322228: wanted 24, got 0

rmgr: Heap len (rec/tot): 98/ 98, tx:
75392, lsn: 0/1B321F80, prev 0/1B321F40, desc: HOT_UPDATE
off 104 xmax 75392 flags 0x10 ; new off 105 xmax 0,
blkref #0: rel 1663/17055/18358 blk 0

(...)

Note the following:

 � The fatal: error message is not something we should worry about; it just
means that the last record in the WAL file does not point to a valid WAL record,
which is normal considering that this is a copy of the WAL file that is currently
being written.

 � The pg_waldump executable might not be in the path of the shell you are using;
in that case, you will need to write the full path before running it.

Internally, Barman uses either pg_receivewal or archive_command to receive the
WAL from the PostgreSQL server, depending on how it was configured. In either case,
you can retrieve and inspect WAL files as in the example we just described.

Archiving transaction log data 551

You can run a standalone pg_receivewal process on the archive node, as in
this example:

pg_receivewal -D /pgarchive/alpha -d "$MYCONNECTIONSTRING" &

Note, however, that several users choose Barman, which is also capable of restarting
pg_receivewal if it crashes and of compressing WAL files when they are stored while
returning them uncompressed, as in the preceding example.

Also, you can add the --slot=slotname parameter if you want pg_receivewal to
use a replication slot that you had previously created.

There's more...
The pg_recvlogical utility is somewhat different because it prints the contents of the
transaction data it receives, rather than just making a copy of the remote WAL file. This
utility requires a logical replication slot, and it is able to create one. In this example,
we create a new logical slot attached to the mydb database:

$ pg_recvlogical -d mydb --slot=test1 --create-slot

Once a slot exists, we can use it—for example—to display the decoded WAL to stdout:

$ pg_recvlogical -d mydb --slot=test1 --start -f -

BEGIN 75811

table bdr.global_consensus_journal: INSERT: log_index-
[bigint]:17206 term[bigint]:0 origin[oid]:3643123840
req_id[bigint]:-296718623095749962 req_payload[bytea]:'\
x00000067d925a880000278c7f519d7e700000000114ee5700003bd95000000
00114ee57000040000000d0000000d0000001800000019000000024552b9120
00000001b36f938000278c7f38d18fb000000006a9290f200000000114e65f-
0000278c7f50feb3d00000000' trace_context[bytea]:'\
x736e146a38578a207dbf6e2e01'

COMMIT 75811

(...)

While playing with this feature for the first time, try the --verbose option, which is
supported by all the previous tools.

For more details on logical decoding plugins, refer to the Logical replication recipe earlier
in this chapter.

552 Replication and Upgrades

Replication monitoring will show pg_receivewal and pg_recvlogical in exactly
the same way as it shows other connected nodes, so there is no additional monitoring
required. The default application_name parameter is the same as the name of the
tool, so you may want to set that parameter to something more meaningful to you.

You can archive WAL files using sync rep by specifying pg_receivewal
--synchronous. This causes a disk flush (fsync) on the client so that WAL data is
robustly saved to disk. It then passes status information back to the server to acknowledge
that the data is safe (regardless of the setting of the -s parameter). There is also a third
option, which is faster (and more dangerous)—namely, pg_receivewal –-no-sync.

See also
• The pg_waldump program is an additional server-side utility documented here:

https://www.postgresql.org/docs/14/pgwaldump.html

• The pg_receivewal program is documented here: https://www.
postgresql.org/docs/14/app-pgreceivewal.html

• The pg_recvlogical program is documented here: https://www.
postgresql.org/docs/14/app-pgrecvlogical.html

Upgrading minor releases
Minor release upgrades are released regularly by all software developers, and PostgreSQL
has had its share of corrections. When a minor release occurs, we bump the last number,
usually by one. So, the first release of a major release such as 14 is 14.0. The first set of bug
fixes is 14.1, then 14.2, and so on.

The PostgreSQL community releases new bug fixes quarterly. If you want bug fixes more
frequently than that, you will need to subscribe to a PostgreSQL support company. This
recipe is about moving from a minor release to a minor release.

Getting ready
First, get hold of the new release, by downloading either the source or fresh binaries.

How to do it…
In most cases, PostgreSQL aims for minor releases to be simple upgrades. We put in great
efforts to keep the on-disk format the same for both data/index files and transaction log
(WAL) files, but this isn't always the case; some files can change.

https://www.postgresql.org/docs/14/pgwaldump.html
https://www.postgresql.org/docs/14/app-pgreceivewal.html
https://www.postgresql.org/docs/14/app-pgreceivewal.html
https://www.postgresql.org/docs/14/app-pgrecvlogical.html
https://www.postgresql.org/docs/14/app-pgrecvlogical.html

Upgrading minor releases 553

The upgrade process goes like this:

1. Read the release notes to see whether any special actions need to be taken for this
particular release. Make sure that you consider the steps that are required by all
extensions that you have installed.

2. If you have professional support, talk to your support vendor to see whether
additional safety checks over and above the upgrade instructions are required or
recommended. Also, verify that the target release is fully supported by your vendor
on your hardware, OS, and OS release level; it may not be, yet.

3. Apply any special actions or checks; for example, if the WAL format has changed,
then you may need to reconfigure log-based replication following the upgrade. You
may need to scan tables, rebuild indexes, or perform some other actions. Not every
release has such actions, and we try to keep compatibility for minor releases so that
they exist only in case they are needed by a bug fix; in any case, watch closely for
them because if they exist, then they are important.

4. If you are using replication, test the upgrade by disconnecting one of your standby
servers from the primary.

5. Follow the instructions for your OS distribution and binary packager to complete
the upgrade. These can vary considerably.

6. Start up the database server being used for this test, apply any post-upgrade special
actions, and check that things are working for you.

7. Repeat Steps 4 to 6 for other standby servers.
8. Repeat Steps 4 to 6 for the primary server.

How it works…
Minor upgrades mostly affect the binary executable files, so it should be a simple matter of
replacing those files and restarting, but please check.

There's more…
When you restart the database server, the contents of the buffer cache will be
lost. The pg_prewarm module provides a convenient way to load relation data into the
PostgreSQL buffer cache.

You can install the pg_prewarm extension that's provided by default, as follows:

postgres=# CREATE EXTENSION pg_prewarm;

CREATE EXTENSION

554 Replication and Upgrades

You can perform pre-warming for any relation:

postgres=# select pg_prewarm('job_status');

 pg_prewarm

 1

The return value is the number of blocks that have been pre-warmed.

Major upgrades in-place
PostgreSQL provides an additional supplied program, called pg_upgrade, which
allows you to migrate between major releases, such as from 9.2 to 9.6, or from 9.6 to 11;
alternatively, you can upgrade straight to the latest server version. These upgrades are
performed in-place, meaning that we upgrade our database without moving to a new
system. That does sound good, but pg_upgrade has a few things that you may wish to
consider as potential negatives, which are outlined here:

• The database server must be shut down while the upgrade takes place.

• Your system must be large enough to hold two copies of the database server: old
and new copies. If it's not, then you have to use the link option of pg_upgrade,
or use the Major upgrades online recipe, coming next in this chapter. If you use
the link option on pg_upgrade, then there is no pg_downgrade utility.
The only option in that case is a restore from backup, and that means extended
unavailability while you restore.

• If you copy the database, then the upgrade time will be proportional to the size of
the database.

• The pg_upgrade utility does not validate all your additional add-in modules,
so you will need to set up a test server and confirm that these work, ahead of
performing the main upgrade.

The pg_upgrade utility supports versions from PostgreSQL 8.4 onward and allows you
to go straight from your current release to the latest release in one hop.

Getting ready
Find out the size of your database (using the How much disk space does a database
use? recipe in Chapter 2, Exploring the Database). If the database is large or you have an
important requirement for availability, you should consider making the major upgrade
using replication tools as well. Then, check out the next recipe.

Major upgrades in-place 555

How to do it…
1. Read the release notes for the new server version to which you are migrating,

including all of the intervening releases. Pay attention to the incompatibilities
section carefully; PostgreSQL changes from release to release. Assume this will take
some hours.

2. Set up a test server with the old software release on it. Restore one of your backups
on it. Upgrade that system to the new release to verify that there are no conflicts
from software dependencies. Test your application. Make sure that you identify and
test each add-in PostgreSQL module you were using to confirm that it still works at
the new release level.

3. Back up your production server. Prepare for the worst but hope for the best!
4. Most importantly, work out who you will call if things go badly, and exactly how to

restore from that backup you just took.
5. Install new versions of all the required software on the production server and create

a new database server.
6. Don't disable security during the upgrade. Your security team will do backflips if

they hear about this. Keep your job!
7. Now, go and do that backup. Don't skip this step; it isn't optional. Check whether

the backup is actually readable, accessible, and complete.
8. Shut down the database servers.
9. Run pg_upgrade -v and then run any required post-upgrade scripts. Make sure

that you check whether any were required.
10. Start up the new database server and immediately run a server-wide ANALYZE

operation using vacuumdb -analyze-in-stages.
11. Run through your tests to check whether they worked or if you need to start

performing a contingency plan.
12. If all is OK, re-enable wide access to the database server. Restart the applications.
13. Don't delete your old server directory if you used the link method. The old data

directory still contains the data for the new database server. It's confusing! So, don't
get caught out by this.

How it works…
The pg_upgrade utility works by creating a new set of database catalog tables and then
recreating the old objects in the new tables using the same IDs as before.

556 Replication and Upgrades

The pg_upgrade utility works easily because the data block format hasn't changed
between some releases. Since we can't (always) see the future, make sure you read the
release notes.

Major upgrades online
Upgrading between major releases is hard, and should be deferred until you have some
good reasons and sufficient time to get it right.

You can use replication tools to minimize the downtime required for an upgrade,
so we refer to this recipe as an online upgrade.

How to do it…
The following general steps should be followed, allowing at least a month for the complete
process to ensure that everything is tested and everybody understands the implications:

1. Set up a new release of the software on a new test system.
2. Take a standalone backup from the main system and copy it to the test system.
3. Test the applications extensively against the new release on the test system.

When everything works and performs correctly, then proceed to the next step.
4. Set up a connection pooler to the main database (it may be there already).
5. Set up logical replication for all tables from the old to new database servers,

as described in the Logical replication recipe earlier in this chapter.
6. Make sure that you wait until all the initial copy tasks have completed for all tables.

At this point, you have a copy of the data that you can use for testing with the
next steps.

7. Stop replication.
8. Retest the application extensively against the new release on live data.

You might have to repeat Steps 5 to 8 more than once in case you require a new copy
of the data; for example, if you want to repeat a test multiple times that affects the
contents, or you simply want to test against more recent data.

Then, when you are ready for the final cutover, we can proceed to the next steps.
9. Perform Steps 5 and 6 again, in order to create a new replica of the production data.
10. Pause the connection pool.

Major upgrades online 557

11. Switch the configuration of the pool over to the new system and then reload.
12. Resume the connection pool (so that it now accesses a new server).

The actual downtime for the application is the length of time to execute these last
three steps.

How it works...
The preceding recipe allows online upgrades with zero data loss because of the use of the
clean switchover process. There's no need for lengthy downtime during the upgrade, and
there's a much-reduced risk in comparison with an in-place upgrade, thanks to the ability
to carry out extensive testing with less time pressure. It works best with new hardware and
is a good way to upgrade the hardware or change the disk layout at the same time.

This procedure is also very useful for those cases where binary compatibility is not
possible, such as changing server encoding or migrating the database to a different OS or
architecture, where the on-disk format will change as a result of low-level differences, such
as endianness and alignment.

Index

A
access

enabling, for network/
remote users 14-16

Access Control List (ACL) 294
AccessExclusiveLock lock 74
actions

performing, on multiple tables 267-271
Advanced Encryption Standard (AES) 241
aggressive vacuuming 373
ALTER TABLE statement 272, 275, 280
ANALYZE command 168, 365
anonymous code block 271
application-level replication 507
Application Programming

Interface (API) 43
apply delay 504
asymmetric cryptography 238
asynchronous replication (async rep) 505
atomicity 245
audit_trigger extension

reference link 219
auto_explain contrib module

reference link 360
auto-freezing

avoiding 374, 375

automatic database maintenance
controlling 367-372

autonomous transactions 300
autovacuum 365-367, 369, 372, 389
average tuple density 73
AXLE project

about 217
reference link 8

B
backend 124
backup catalog 471
backups

compressing 492-494
options 452
planning 451-454
techniques 452
validating 495-497

backups, database object definitions
performing 458, 459

Barman (Backup and Recovery Manager)
about 464
hot physical backups 464-470
global commands 470
global options 470

560 Index

local recovery 479
reference link 464
remote recovery 479
server commands 470
server options 470

barman backup command 471
base backup 504
Berkeley Software Distribution

(BSD) license 8
Bi-Directional Replication (BDR) 442
BigAnimal

URL 39
bloat 376
bloated indexes

about 382
fixing 385, 386
identifying 383

bloated tables
about 382
fixing 385, 386
identifying 383

bloat issues
removing 376, 377

block range index (BRIN index) 440
boot_val parameter 96
bucardo package 503
bug

investigating 362, 363
reporting 362, 363

bulk data changes
making, by using server-side procedures

with transactions 184, 185
business intelligence (BI) 501

C
Cacti

URL 332

CALL statement
using 188

cascading 502
central processing unit

(CPU) 225, 411, 512
Certificate Authority (CA) 227
check_object_names() function 146
checkpoints 449
check_postgres 388
check_postgres_bloat 388
checksum

invalid page format 498
mismatch, detecting 497

client authentication
reference link 38

cloud
services 44

cloud-native monitoring 329, 330
cloud security

setting up, with predefined
roles 239-241

cluster 59, 502
clusterware 505
column data types

modifying 276-279
column-level encryption

for sensitive data 238
using 234-237

columns
adding, on table 273-275
definition, enforcing 149
identifying 149-152
name, enforcing 149
removing, on table 273-275

columns, uniqueness
without index 163

command-line interface
(CLI) 43, 241, 523

Index 561

commands
progress, monitoring 340-342

commercial support, to
PostgreSQL community

reference link 7
COMMIT function

using 186, 187
Common Name attribute 231
Common Table Expressions (CTEs) 424
community support, Barman

reference link 473, 480
complex SQL queries

simplifying 419-424
computer

connection, checking 335, 336
conditional psql script

writing 254, 255
configuration parameters

setting, for database server 83-88
setting, in programs 89-92

configuration settings
finding, for session 92-94

conflict-free replicated data
types (CRDT) 548

connection pool
about 11, 134
setting up 134-137

connections
preventing, from accessing

database 121, 122
connection service file

using 35, 36
constraint

adding, concurrently 285-287
contrib module

about 100, 333
reference link 210

covering indexes 428

CPU power capacity issues
for current load 415

crash recovery
about 449
controlling 449-451

CREATE VIEW statement 317
cross-tab query 420
cust_minor view 317
customer relationship management

(CRM) 406
custom format 455

D
data

loading, from flat files 179-183
loading, from spreadsheet 176-179
loading, with pgloader 180-182

database access
auditing 214, 215
audit log, managing 218
data changes, auditing 219, 220
SQL, auditing 215-217
table access, auditing 217, 218

Database as a Service (DbaaS) 38
database cluster 13, 111
database complexity

estimating, based on number
of tables 66

database creation scripts 195
database management systems

(DBMS) 546
database object definitions

backing up 458, 459
database objects names

selecting 144, 145
database replication 501

562 Index

database roles
external usernames, mapping 232, 233

databases
about 2
disk space usage, monitoring 66
extensions, listing 75
listing, on database server 59-61
planning 81-83
tables, computing 63-65

databases as a service (DBaaS) 239
database server

about 502
configuration parameters, setting 83-88
controlling 110
message log 55-57
starting, manually 111-114
system identifier 57, 58

database server files
locating 51-53

database sessions
terminating 345, 346

data compression
types 323
using 323-325

Data Definition Language
(DDL) 214, 245, 414, 516

data directory 51, 111
data generator

key features 172
Data Manipulation Language

(DML) 310, 544
Datanamic Data Generator

reference link 172
data set

unique key, finding 165-168
DBA tasks

pgAdmin, using for 260-264

dblink 303
dead rows 253
debugging_info function

writing, for developers 212, 213
deduplication 323
default privileges 195
default search path 195
definitions of tables

accessing, with information
schema catalog views 152

comparing, with functions 152
usage 153
within PostgreSQL 152

DELETE command 394, 398
denial-of-service (DoS) attack 207
disaster recovery (DR) 506
disk I/O capacity issues

for current load 415
disk space

usage, by temporary data 352-355
Distributed Regulated Block

Device (DRBD) 507
Domain Name System (DNS) 228
dropped connection 512, 513
dropped/damaged database

recovery 488
dropped/damaged table

recovery 484, 487
duplicate indexes 163
duplicate rows

index, defining 162
preventing 159-162

duplicate value
identifying 154-159
removing 154-159

dynamic scripting 270

Index 563

E
edb_admin user

app_dba 240
ops_dba 240

EDB Audit Extension (edbaudit) 242
EDB*Loader

reference link 183
electronic publication (EPUB) 81
EMS Data Generator for PostgreSQL

reference link 172
encryption (SSL/GSSAPI)

using 225, 226
enterprise application

integration (EAI) 502
EnterpriseDB (EDB)

about 7, 85, 191
reference link 39

EnterpriseDB (EDB) Postgres
Advanced Server (EPAS) 436

entity-relationship model (ERM) 420
enum data type

modifying 281-283
Equal Probability of Selection (EPS) 175
European Union (EU) 217
evaluate, transform, and load (ETL) 502
EXPLAIN options 415
extensibility 99
Extensible Markup Language

(XML) 81, 415
extensions

about 74, 104
listing, in database 75

external extensions
evaluating 306

external module
adding, to PostgreSQL 99-103

external usernames
mapping, to database roles 232, 233

Extra Packages Enterprise Linux (EPEL)
reference link 465

extrapolation 73

F
failed connection

checklist 36, 37
troubleshooting 36

failover 505
file permissions

setting 34
file.sql script 256
Filesystem Hierarchy Standard (FHS) 52
flat files

used, for loading data 179-183
Foreign Data Wrapper infrastructure 300
foreign key (FK) 108, 428
forks 70
Free Space Map (FSM) 70
freezing 374
functions

reference link 81
function side effects 300

G
General Data Protection

Regulation (GDPR) 240
GENERATED data columns

using 321, 322
generic monitoring tools

information, obtaining 332
Genetic Query Optimization (GEQO) 424
Geographical Information System (GIS) 6
graphical user interface (GUI) 86

564 Index

H
HA-Java Database Connectivity

(HA-JDBC) 507
hardcoding password

avoiding 33, 34
Heap-Only Tuples (HOT) 383
heavy users, of temporary tables

actions 380-382
help commands 30
host 13
Host-Based Authentication (HBA) 122
hot logical backups

of multiple database 457, 458
of database 454-457

hot physical backups
with Barman 464-470

Hot Standby 6, 479, 516-520
HyperText Markup Language

(HTML) 81, 417

I
Icinga

about 329
URL 332

identifier (ID) 417
idle in-transaction sessions

terminating 347
IMPORT FOREIGN SCHEMA 307
indexes

about 397
ideas 428
maintaining 394-396
table, clustering on 429
unused indexes, finding 397-399
unwanted indexes, removing 399, 400

index-only scan 71, 428
in-doubt prepared transaction

detecting 348
information schema 65
initdb utility 52
initial copy 504
initialization fork 70
input/output (I/O) 411, 517
INSERT command 394, 398
installed extension

managing 105-108
using 104

installed module
using 104

internal transaction identifiers 374
Internet Assigned Numbers

Authority (IANA)
about 13, 110
URL 13

Internet Protocol (IP) address 219, 508
IP address range allocation

example 164

J
Java Database Connectivity (JDBC) 90
JavaScript Object Notation (JSON) 415
Java Transaction API (JTA) 378
jobs

scheduling, for regular background
execution 265-267

Job Scheduler component 265
Join Pushdown 308

K
key management system (KMS) 241

Index 565

L
latency 504
less aggressive autovacuuming 373
Lightweight Directory Access

Protocol (LDAP)
about 35
client, setting up for 224
integrating with 223, 224
User Name Map feature,

replacement 224
locking problems 414
logical backup

about 454
extracting, from physical

backup 489, 490
logical decoding 503, 540, 543
logical log SR (LLSR) 504
logical replication

about 540-544
benefits 540

logical SR (LSR) 503, 544
login roles 13
Log Sequence Number (LSN) 482, 513
log_statement parameter 215
Londiste 503
long-running queries

watching 339
loosely coupled database clusters 506

M
maintenance

planning 401, 402
materialized views

reference link 426
using 318-320, 426

Message Digest 5 (MD5) 209
minor releases

upgrading 552, 553
min_wal_size 451
modules 74
monitoring tools

PostgreSQL information,
providing to 331

multinode architectures
about 506
loosely coupled database clusters 506
tightly coupled database clusters 506

multiple schemas
using 128-130

multiple servers
accessing, with same host

and port 139, 140
running, on one system 132-134

multiple tables
actions, performing 267-271

multitenancy
about 126
design, deciding 126-128

Multiversion Concurrency
Control (MVCC) 3, 71, 115,
359, 382, 383, 414, 517

Munin
about 329
URL 332

N
Nagios

about 329
URL 332

named restore point 482
namespace 459

566 Index

naming convention
enforcing, with event trigger 146
for trigger 146

nested transaction style 247
Network Interface Cards (NICs) 15
network/remote users

access, enabling 14-16
nodes 502
non-exclusive backups 463

O
object dependencies 76, 77
object-relational database management

system (ORDBMS) 46
object-relational mappers (ORMs) 417
objects

accessing, in other foreign
databases 305-307

accessing, in other PostgreSQL
databases 300-303

handling, with quoted names 146-148
moving, between schemas 290, 291
moving, between tablespaces 297, 298

obscure table
user, identifying 348, 349

old prepared transactions
removing 378, 379

OmniDB
URL 23

OmniDB GUI tool
using 22-27

ON_ERROR_STOP 251
online transaction processing (OLTP) 338
Online Transaction Processing

(OLTP) 440
online upgrade 556, 557

OpenSSL library
reference link 231

Optimal Flexible Architecture (OFA) 52
optimistic locking

using, to avoid long lock waits 443, 444
Optimizer Hints

reference link 436
ORDER BY clause

using 188
order of magnitude (OOM) 430
OS-level replication 507
Out-Of-Memory (OOM) 98

P
page corruptions

avoiding 376
parallel copy 494
parallel query

using 436-439
parameters

setting, for user groups 96, 97
parameters, with non-default settings

finding 94, 95
partial index 160, 429, 434
partitioning

reference link 441
used, for creating time-

series tables 439-442
password

hardcoding, avoiding 33, 34
modifying, securely 32, 33

performance, logical backup/recovery
improving 490-492

Performance Optimization
reference link 446

performance, physical backup/recovery
improving 492, 493

Index 567

performance problem report
reference link 446

performance problems
reporting 446

permission group 198
personally identifiable

information (PII) 218
pgAdmin

about 118, 280
used, for viewing real-time 333
using, for DBA tasks 260-264

pgAdmin 4 17
pgAdmin4 GUI tool

about 454
using 17-22

pgAgent
about 265, 266
installation link 265
reference link, for job creation 265

pg_available_extension_versions 108
pgBackRest

URL 473
pg_basebackup

reference link 480
PgBouncer

about 110, 135, 137, 138, 141
reference link, for FAQs 225

pg_controldata utility 58
pg_createcluster utility 53
pgcrypto 239
pg_dump 457
pg_dump archive file 455
pgfincore 121
pg_hint_plan extension 436
pgloader

used, for loading data 180-182
working 182

pg_locks view 379, 380

pg_lsclusters utility 52
pgpool utility 522
pg_prewarm 121, 553
pg_receivewal

reference link 552
pg_recvlogical

about 551
reference link 552

pg_relation_size function 70
pg_resetwal 451
pg_rewind utility 522
pg_size_pretty() function 69
pgsql-performance

reference link 446
pg_start_backup() function 463
pg_stat_replication 532
pg_stat_reset() 349
pg_stat_statements feature 361
pgstattuple 387, 388
pg_stop_backup() function 462, 463
pg_upgrade 554-556
pg_wal directory 451

placing, on separate device 296
pg_waldump utility

about 484
reference link 484

physical backup
about 454
logical backup, extracting from 489, 490

physical backup/recovery
performance, improving 492-494

physical log SR (PLSR) 504
physical SR (PSR) 503, 544
pipeline parallelism 495
pivot query 420
PL/Proxy 304
Point-in-Time Recovery

(PITR) 4, 242, 452, 480-482, 517

568 Index

Portable Document Format (PDF) 81
PostGIS

about 101
URL 101

Postgres 4
Postgres-BDR

about 545-548
use cases, examples 545

Postgres Enterprise Manager (PEM)
about 349
reference link 333

PostgreSQL
about 2, 46, 110
commands 14
commercial support 7
concurrency 6
download link 9
ease of use 5
extensibility 5
external module, adding 99-103
features 2, 3
future end-of-support dates 49
in cloud 38-43
modules, installing from PGXN 102
modules, installing from

source code 103
modules, installing with

software installer 101
network, accessing 17
NoSQL data model 6
obtaining 8-10
performance 6
popularity 7
predefined roles 240, 241
project objectives 3
reference link, for additional

supplied modules 76

reference link, for announcement
mailing list 10

reference link, for documentation 335
reference link, for error codes list 258
reference link, for release

support policy 49
reference link, for services

and software 46
reference link, for software catalog 27
research and development funding 8
robustness 4
scalability 6
security 4
server type, deciding 46, 47
server uptime 49, 50
SQL data model 6
STORAGE options 325
URL 81
users 4
version number, finding 47-49

PostgreSQL 14 6
PostgreSQL Audit Extension

(pgaudit) 242
postgresql.conf file

include directives 373
PostgreSQL databases

objects, accessing 300-303
PostgreSQL database server

files 54
PostgreSQL Extension Network (PGXN)

about 101, 305
URL 101

PostgreSQL Flexible Architecture
(PFA) 53

PostgreSQL Foreign Data Wrapper 300
PostgreSQL information

providing, to monitoring tools 331

Index 569

PostgreSQL license
reference link 8

PostgreSQL manual
about 80
reference link 80
working 81

PostgreSQL Monitoring 328, 329
PostgreSQL privileges 242
PostgreSQL security

overview 190
typical user roles 191

PostgreSQL server
connecting to 11-13

PostgreSQL source code
URL 258

PostgreSQL superuser
about 191
attributes 192
privileges, adding 192
privileges, removing 192
working 192

PostgreSQL Yum Repository
URL 465

postmaster 110
predefined roles

cloud security, setting up with 239-241
prepared transactions 378
Pretty Good Privacy (PGP) keys 234
primary key (PK) 442, 542
primary nodes 549
principle of least privilege (POLP) 190
private databases

providing, to users 131, 132
Privileged Access Management

(PAM) 232
Procedural Language/PostgreSQL

(PL/pgSQL) 417
process identifier (PID) 532

profile file 251
programs

configuration parameters, setting 89-92
Prometheus 329
ps

queries, watching from 340
psql

features 31
psql error

investigating 256, 257
psql prompt

setting, with useful information 258, 259
psql query

using 27-31
psql script

writing, to exit on first error 249-251
psql variables

query output, placing into 253, 254
using 251, 252

public-key cryptography 238
publish/subscribe (pub/sub) model 540
Python Languages (PLs) 216

Q
queries

active or blocked status,
checking 342-344

blocker, identifying 344, 345
catching, that only run for

few milliseconds 338
common issues 358, 359
execution, verifying 337, 338
forcing, to use index 433-436
real-time performance,

analyzing 360, 361
slowing down, reasons 356, 357

570 Index

speeding up, without rewriting 427
watching, from ps 340

query, in psql
executing, repeatedly 336

query, not using index
discovering, reasons 431-433

query output
placing, into psql variables 253, 254

quick and dirty approach 270
quorum commit 534
quoted names

used, for handling objects 146, 148
working 148

quote_ident() function 149

R
random-access memory (RAM) 82, 413
randomly sampling data

working 174-176
random sampling data 173, 174
read the fine manual (RTFM) 80
real-time

viewing, with pgAdmin 333
recovery, complete database server

executing 473, 478
from physical backup 475, 476
logical backup, from custom dump 474
logical backup, from script dump 475
physical backup, with Barman 476, 477

recovery, dropped/damaged database
about 488
from physical backup 489
logical backup, from custom dump 488
logical backup, from script

dump 488, 489
recovery, dropped/damaged table

about 484, 487

from physical backup 487
logical backup, from custom

dump 484, 485
logical backup, from script

dump 486, 487
recovery_end_command utility 522
Recovery Point Objective (RPO) 454
recovery process

in Barman 480
recovery server 487
recovery target 481, 483
Reference Data Management (RDM) 501
referential integrity 76
REFRESH MATERIALIZED VIEW 320
regular background execution

jobs, scheduling 265-267
regular expression (regex) 233
REINDEX command 300, 394
REINDEX CONCURRENTLY 395
reindexdb 394
REINDEX INDEX

CONCURRENTLY 396
relay 502
replica identity 542
replication

about 501
approaches 507
basic concepts 502
best practices 507-509
data loss 505
delaying 537, 538
history and scope 502, 503
monitoring 528-531
multi-master replication 506, 507
multinode architectures 506
pausing 537, 538
practical aspects 504
single-master replication 505

Index 571

synchronizing 537, 538
topics 501, 502

replication delay 504
replication management functions

reference link 242
replication sets 505
replication slots

about 513, 527
using 526, 527

repmgr utility
about 522
using 523-525

reporting 501
ROLLBACK function

using 186, 187
Row-Level Security (RLS) 5, 190
row_number() 273
rows

counting, in table 70, 71
estimating, in table 72, 73

RRDtool
reference link 332

rsync method 472

S
Salted Challenge Response Authentication

Mechanism (SCRAM) 4
Salted Challenge Response Authentication

Mechanism-Secure Hash Algorithm
256 (SCRAM-SHA-256) 190, 511

schema-level privileges
using 290

schemas
about 128, 459
creating 288, 289
existing objects, moving 290, 291

removing 288, 289
rewriting 431

SCRAM-SHA-256-encrypted
passwords, parameters

CIDR-ADDRESS 16
database 16
method 16
type 16
user 16

script
writing, with actions either succeed

or fail entirely 245-247
scripting tool

using 27-31
Secure Sockets Layer (SSL) 512
security, in BigAnimal

database logging and auditing 242
data encryption 241
portal audit logging 241

security information, in PostgreSQL
reference link 5

Security Support Provider
Interface (SSPI) 232

selective replication 505
sequential scan 71
serialization failure 257
server

restarting, quickly 119, 120
stopping, in emergency 116
stopping, safely and quickly 114, 115

server configuration
checklist 98, 99
files, reloading 117-119
reference link 80

server-side procedures
used, for making bulk data changes

with transactions 184, 185

572 Index

service unit 111
set-returning functions

using, for some parts of queries 427
SET ROLE command 223
shared buffers

about 414
reference link 414

show-backup command 471
single point of failure (SPOF) 508
single sign-on (SSO) system

authentication method
reference link 232

Slony 503
slow queries

finding 410
slow SQL statements

finding 406-409
snapshot export feature 455
solid-state drives (SSDs) 435
split-brain 521
spreadsheet

used, for loading data 176-179
SQL command

reference link 80
SQL statement

slowness issues 410-413
SSL

certificate 227
certificates, using for

authentication 228-230
client certificate, using for

database user selection 231
client, setting up 227, 228
duplicate SSL connection, avoiding 230
key 227
multiple client certificates, using 230
server authenticity, checking 228

staging server 487

standalone hot physical backup
performing 460-462

Standard Generalized Markup
Language (SGML) 81

standby 512, 514, 538, 539
standby server 502
statement_timeout

using, to clean up queries that
take too long to run 347

static scripting 268
streaming replication

about 503, 540
managing 520, 521
security, setting up 514, 515
setting up 510-512

Structured Query Language (SQL) 80, 518
superusers 132
switchback 521, 522
switchover 521
synchronous replication (sync

rep) 505, 533-537
sync standby 535
System Catalog Information Functions

reference link 456

T
table constraint 284
tables

biggest tables, finding 69, 70
clustering, on indexes 429
columns, adding 273-275
columns, removing 273-275
computing, in database 63-65
disk space usage, monitoring 67, 68
last used information, checking 350, 352
rows, counting 70, 71
rows, estimating 72, 73

Index 573

TABLESAMPLE
about 417
view, using 430

tablespace-level
tuning 296

tablespace mapping 479
tablespace relocation 479
tablespaces

about 291
best practices 295
creating 292-295
objects, moving between 297, 298
removing 292-295

targeted recovery mode 482
template databases 61
temporary data

disk space, usage 352-355
temporary file

usage, checking 356
usage, logging 356

test data
generating 169-172

The Oversized Attribute Storage
Technique (TOAST) 69, 371

The PostgreSQL License (TPL) 8
Third Normal Form (3NF) 6
tightly coupled database clusters 506
timeline, server recovery 483
time-series tables

creating, with partitioning 439-442
time zone

example 165
TPAexec 546
traffic, between client and server

reducing 415, 416
transaction identifier (TID) 216
Transaction Isolation

reference link 444

transaction log data
archiving 549-551

Transaction Manager (TM) 378
transactions

bulk data changes, making with
server-side procedures 184, 185

old prepared transactions,
removing 378, 379

Transport Layer Security (TLS) 241
trigger-based replication 503
two-phase commit (2PC) 348, 378

U
Uniform Resource Identifier

(URI) format 12
unique key

finding, for data set 165-168
United States Department of

Defense (US DoD) 217
unused indexes

finding 397-399
unwanted indexes

removing 399, 400
updatable views

creating 308-317
user access

granting, to specific columns 199-201
granting, to specific rows 201-203
granting, to table 197, 198
revoking, to table 193, 194
views, securing 196, 197

user groups
parameters, setting 96, 97

users
connection, checking 335
connection limit, setting 206
creating 204, 205

574 Index

encrypted passwords, checking 209
limited superuser powers, providing

to specific users 210-212
logged-in users, knowing 221, 222
NOINHERIT user 223
NOLOGIN users, forcing

to disconnect 207
preventing temporarily, from

connecting 205, 206
private databases, providing to 131, 132
removing, from database server 124-126
removing, without dropping

data 207, 208
restricting, to one session each 123, 124

USING clause 279

V
vacuum

monitoring 389-392
tuning 390-392

VACUUM command
about 365, 366, 372, 375, 389
phases 390-392

vacuumdb utility 375
VACUUM FULL command 372
virtual private network (VPN) 209
Visibility Map (VM) 70

W
WALSender process 516
work_mem

increasing 427
Write-Ahead Logging (WAL) 99
Write-Ahead Log (WAL) 449, 503

X
X.509 keys and certificates

reference link 227

Y
YAML Ain't Markup Language

(YAML) 415

Z
Zabbix

URL 332
ZSON extension 325

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

576 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering PostgreSQL 13 - Fourth Edition
Hans-Jürgen Schönig
ISBN: 9781800567498

• Get well versed with advanced SQL functions in PostgreSQL 13
• Get to grips with administrative tasks such as log file management and monitoring

Work with stored procedures and manage backup and recovery
• Employ replication and failover techniques to reduce data loss
• Perform database migration from Oracle to PostgreSQL with ease
• Replicate PostgreSQL database systems to create backups and scale your database
• Manage and improve server security to protect your data
• Troubleshoot your PostgreSQL instance to find solutions to common and not-so-common

problems

https://packt.link/9781800567498

Other Books You May Enjoy 577

Learn PostgreSQL
Luca Ferrari, Enrico Pirozzi
ISBN: 9781838985288

• Understand how users and connections are managed by running a PostgreSQL instance
• Interact with transaction boundaries using server-side programming
• Identify bottlenecks to maintain your database efficiently
• Create and manage extensions to add new functionalities to your cluster
• Choose the best index type for each situation
• Use online tools to set up a memory configuration that will suit most databases
• Explore how Postgres can be used in multi-instance environments to provide high-

availability, redundancy, and scalability

https://packt.link/9781838985288

578

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished PostgreSQL 14 Adminstration Cookbook, we'd love to hear your
thoughts! If you purchased the book from Amazon, please click here to go
straight to the Amazon review page for this book and share your feedback or
leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-803-24897-1
https://packt.link/r/1-803-24897-1

	Cover
	Title page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Chapter 1: First Steps
	Introducing PostgreSQL 14
	What makes PostgreSQL different?

	How to get PostgreSQL
	How to do it...
	How it works...
	There's more…

	Connecting to the PostgreSQL server
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Enabling access for network/remote users
	How to do it…
	How it works…
	There's more…
	See also

	Using the pgAdmin4 GUI tool
	How to do it…
	How it works…

	Using the OmniDB GUI tool
	How to do it…
	See also

	Using the psql query and scripting tool
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Changing your password securely
	How to do it…
	How it works…

	Avoiding hardcoding your password
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using a connection service file
	How to do it…
	How it works…

	Troubleshooting a failed connection
	How to do it…
	There's more…

	PostgreSQL in the cloud
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 2: Exploring the Database
	What type of server is this?
	How to do it…
	There's more...

	What version is the server?
	How to do it…
	How it works…
	There's more…

	What is the server uptime?
	How to do it…
	How it works…
	See also

	Locating the database server files
	Getting ready
	How to do it...
	How it works...
	There's more…

	Locating the database server's message log
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Locating the database's system identifier
	Getting ready
	How to do it…
	How it works…

	Listing databases on the database server
	How to do it…
	How it works...
	There's more...

	How many tables are there in a database?
	How to do it...
	How it works…
	There's more…

	How much disk space does a database use?
	How to do it...
	How it works...

	How much disk space does a table use?
	How to do it…
	How it works…
	There's more…

	Which are my biggest tables?
	How to do it...
	How it works…

	How many rows are there in a table?
	How to do it…
	How it works...

	Quickly estimating the number of rows in
a table
	How to do it…
	How it works…
	There's more…

	Listing extensions in this database
	How to do it…
	How it works…
	There's more…
	See also

	Understanding object dependencies
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 3: Server Configuration
	RTFM
	How to do it…
	How it works…
	There's more…

	Planning a new database
	Getting ready
	How to do it…
	How it works…
	There's more…

	Setting configuration parameters for the database server
	Getting ready
	How to do it…
	How it works…
	There's more…

	Setting configuration parameters in
your programs
	How to do it…
	How it works…
	There's more…

	Finding the configuration settings for your session
	How to do it…
	How it works…

	Finding parameters with non-default settings
	How to do it…
	How it works...
	There's more...

	Setting parameters for particular groups
of users
	How to do it…
	How it works…

	A basic server configuration checklist
	Getting ready
	How to do it…
	There's more…

	Adding an external module to PostgreSQL
	Getting ready
	How to do it…
	How it works...

	Using an installed module/extension
	Getting ready
	How to do it…
	How it works...

	Managing installed extensions
	How to do it…
	How it works…
	There's more…

	Chapter 4: Server Control
	Overview of controlling the database server
	Starting the database server manually
	Getting ready
	How to do it…
	How it works…

	Stopping the server safely and quickly
	How to do it…
	How it works…
	See also

	Stopping the server in an emergency
	How to do it…
	How it works…

	Reloading the server configuration files
	How to do it…
	How it works…
	There's more…

	Restarting the server quickly
	How to do it…
	There's more…

	Preventing new connections
	How to do it…
	How it works…

	Restricting users to only one session each
	How to do it…
	How it works…

	Pushing users off the system
	How to do it…
	How it works…

	Deciding on a design for multitenancy
	How to do it…
	How it works…

	Using multiple schemas
	Getting ready
	How to do it…
	How it works…

	Giving users their own private databases
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Running multiple servers on one system
	Getting ready
	How to do it…
	How it works…

	Setting up a connection pool
	Getting ready
	How to do it…
	How it works…
	There's more…

	Accessing multiple servers using the same host and port
	Getting ready
	How to do it…
	There's more…

	Chapter 5: Tables and Data
	Choosing good names for database objects
	Getting ready
	How to do it…
	There's more…

	Handling objects with quoted names
	Getting ready
	How to do it...
	How it works…
	There's more…

	Enforcing the same name and definition
for columns
	Getting ready
	How to do it...
	How it works…
	There's more…

	Identifying and removing duplicates
	Getting ready
	How to do it…
	How it works…
	There's more…

	Preventing duplicate rows
	Getting ready
	How to do it…
	How it works…
	There's more...

	Finding a unique key for a set of data
	Getting ready
	How to do it…
	How it works…

	Generating test data
	How to do it...
	How it works…
	There's more…
	See also

	Randomly sampling data
	How to do it…
	How it works...

	Loading data from a spreadsheet
	Getting ready
	How to do it...
	How it works...
	There's more...

	Loading data from flat files
	Getting ready
	How to do it...
	How it works…
	There's more…

	Making bulk data changes using server-side procedures with transactions
	Getting ready
	How to do it…
	There's more…

	Chapter 6: Security
	Overview of PostgreSQL security
	Typical user roles

	The PostgreSQL superuser
	How to do it…
	How it works…
	There's more…
	See also

	Revoking user access to a table
	Getting ready
	How to do it…
	How it works…
	There's more…

	Granting user access to a table
	Getting ready
	How to do it…
	How it works...
	There's more…

	Granting user access to specific columns
	Getting ready
	How to do it…
	How it works…
	There's more…

	Granting user access to specific rows
	Getting ready
	How to do it…
	How it works…
	There's more...

	Creating a new user
	Getting ready
	How to do it...
	How it works…
	There's more…

	Temporarily preventing a user from connecting
	Getting ready
	How to do it…
	How it works...
	There's more…

	Removing a user without dropping their data
	Getting ready
	How to do it…
	How it works…

	Checking whether all users have a
secure password
	How to do it…
	How it works…

	Giving limited superuser powers to
specific users
	Getting ready
	How to do it…
	How it works…
	There's more…

	Auditing database access
	Getting ready
	Auditing access
	Auditing SQL
	Auditing table access
	Managing the audit log
	Auditing data changes

	Always knowing which user is logged in
	Getting ready
	How to do it…
	How it works…
	There's more…

	Integrating with LDAP
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Connecting using encryption (SSL/GSSAPI)
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using SSL certificates to authenticate
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Mapping external usernames to database roles
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using column-level encryption
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Setting up cloud security using
predefined roles
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 7: Database Administration
	Writing a script that either succeeds entirely or fails entirely
	How to do it…
	How it works…
	There's more…

	Writing a psql script that exits on the
first error
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using psql variables
	Getting ready
	How to do it…
	How it works…
	There's more…

	Placing query output into psql variables
	Getting ready
	How to do it…
	How it works…
	There's more…

	Writing a conditional psql script
	Getting ready
	How to do it…
	How it works…
	There's more…

	Investigating a psql error
	Getting ready
	How to do it…
	There's more…

	Setting the psql prompt with useful information
	Getting ready
	How to do it…
	How it works…

	Using pgAdmin for DBA tasks
	Getting ready
	How to do it…
	How it works...
	There's more…

	Scheduling jobs for regular
background execution
	Getting ready
	How to do it…
	How it works…
	There's more…

	Performing actions on many tables
	Getting ready
	How to do it…
	How it works…
	There's more…

	Adding/removing columns on a table
	How to do it…
	How it works…
	There's more…

	Changing the data type of a column
	Getting ready
	How to do it…
	How it works…
	There's more…

	Changing the definition of an enum data type
	Getting ready
	How to do it…
	How it works…
	There's more…

	Adding a constraint concurrently
	Getting ready
	How to do it…
	How it works…
	There's more…

	Adding/removing schemas
	How to do it…
	There's more…

	Moving objects between schemas
	How to do it…
	How it works…
	There's more…

	Adding/removing tablespaces
	Getting ready
	How to do it…
	How it works…
	There's more…

	Moving objects between tablespaces
	Getting ready
	How to do it…
	How it works…
	There's more…

	Accessing objects in other PostgreSQL databases
	Getting ready
	How to do it…
	How it works…
	There's more…

	Accessing objects in other foreign databases
	Getting ready
	How to do it…
	How it works…
	There's more…

	Making views updatable
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using materialized views
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using GENERATED data columns
	How to do it…
	How it works…
	There's more…

	Using data compression
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 8: Monitoring and Diagnosis
	Overview of PostgreSQL monitoring
	Cloud-native monitoring
	Providing PostgreSQL information to monitoring tools
	Finding more information about generic
monitoring tools

	Real-time viewing using pgAdmin
	Getting ready
	How to do it…

	Checking whether a user is connected
	Getting ready
	How to do it…
	How it works…
	There's more…

	Checking whether a computer is connected
	How to do it…
	There's more…

	Repeatedly executing a query in psql
	How to do it…
	There's more…

	Checking which queries are running
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Monitoring the progress of commands
	Getting ready
	How to do it…
	How it works…
	There's more…

	Checking which queries are active or blocked
	Getting ready
	How to do it…
	How it works…
	There's more…

	Knowing who is blocking a query
	Getting ready
	How to do it…
	How it works…

	Killing a specific session
	How to do it…
	How it works…
	There's more…

	Detecting an in-doubt prepared transaction
	How to do it…

	Knowing whether anybody is using a specific table
	Getting ready
	How to do it…
	How it works…
	There's more...

	Knowing when a table was last used
	Getting ready
	How to do it…
	How it works...
	There's more…

	Usage of disk space by temporary data
	Getting ready
	How to do it…
	How it works…
	There's more…

	Understanding why queries slow down
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Analyzing the real-time performance of your queries
	Getting ready
	How to do it…
	How it works…
	There's more…

	Investigating and reporting a bug
	Getting ready
	How to do it…
	How it works…

	Chapter 9: Regular Maintenance
	Controlling automatic database maintenance
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Avoiding auto-freezing and page corruptions
	How to do it…

	Removing issues that cause bloat
	Getting ready
	How to do it…
	How it works…
	There's more…

	Removing old prepared transactions
	Getting ready
	How to do it…
	How it works…
	There's more…

	Actions for heavy users of temporary tables
	How to do it…
	How it works…

	Identifying and fixing bloated tables and indexes
	Getting ready
	How to do it…
	How it works…
	There's more…

	Monitoring and tuning a vacuum
	Getting ready
	How to do it…
	How it works…
	There's more…

	Maintaining indexes
	Getting ready
	How to do it…
	How it works…
	There's more…

	Finding unused indexes
	How to do it…
	How it works…

	Carefully removing unwanted indexes
	Getting ready
	How to do it…
	How it works…

	Planning maintenance
	How to do it…
	How it works…
	There's more…

	Chapter 10: Performance and Concurrency
	Finding slow SQL statements
	Getting ready
	How to do it…
	How it works…
	There's more…

	Finding out what makes SQL slow
	Getting ready
	How to do it…
	There's more…
	See also

	Reducing the number of rows returned
	How to do it…
	There's more…

	Simplifying complex SQL queries
	Getting ready
	How to do it…
	There's more…

	Speeding up queries without rewriting them
	How to do it…
	There's more…

	Discovering why a query is not using an index
	Getting ready
	How to do it…
	How it works…
	There's more…

	Forcing a query to use an index
	Getting ready
	How to do it…
	There's more…

	Using parallel query
	How to do it…
	How it works…

	Creating time-series tables using partitioning
	How to do it…
	How it works…
	There's more…

	Using optimistic locking to avoid long
lock waits
	How to do it…
	How it works…
	There's more…

	Reporting performance problems
	How to do it…
	There's more…

	Chapter 11: Backup and Recovery
	Understanding and controlling crash recovery
	How to do it…
	How it works…
	There's more…

	Planning your backups
	How to do it…
	There's more…

	Hot logical backups of one database
	How to do it…
	How it works…
	There's more…
	See also

	Hot logical backups of all databases
	How to do it…
	How it works…
	See also

	Backups of database object definitions
	How to do it…
	There's more…

	A standalone hot physical backup
	Getting ready
	How to do it…
	How it works…
	There's more…

	Hot physical backups with Barman
	Getting ready
	How to do it…
	How it works…
	There's more…

	Recovery of all databases
	Getting ready
	How to do it…
	How it works…
	There's more…

	Recovery to a point in time
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Recovery of a dropped/damaged table
	How to do it…
	How it works…
	See also

	Recovery of a dropped/damaged database
	How to do it…

	Extracting a logical backup from a
physical one
	Getting ready
	How to do it…
	There's more…

	Improving performance of logical backup/recovery
	Getting ready
	How to do it…
	How it works…
	There's more…

	Improving performance of physical backup/recovery
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also

	Validating backups
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 12: Replication
and Upgrades
	Replication concepts
	Topics
	Basic concepts
	History and scope
	Practical aspects
	Data loss
	Single-master replication
	Multinode architectures
	Multi-master replication
	Other approaches to replication

	Replication best practices
	Getting ready
	How to do it…
	There's more…

	Setting up streaming replication
	Getting ready
	How to do it…
	How it works…
	There's more…

	Setting up streaming replication security
	Getting ready
	How to do it…
	How it works…
	There's more…

	Hot Standby and read scalability
	Getting ready
	How to do it…
	How it works…

	Managing streaming replication
	Getting ready
	How to do it…
	There's more…
	See also

	Using repmgr
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using replication slots
	Getting ready
	How to do it…
	There's more…
	See also

	Monitoring replication
	Getting ready
	How to do it…
	There's more…

	Performance and sync rep
	Getting ready
	How to do it...
	How it works…
	There's more…

	Delaying, pausing, and synchronizing replication
	Getting ready
	How to do it…
	There's more…
	See also

	Logical replication
	Getting ready
	How to do it…
	How it works…
	There's more…

	BDR
	Getting ready
	How to do it…
	How it works...
	There's more…

	Archiving transaction log data
	Getting ready
	How to do it…
	There's more...
	See also

	Upgrading minor releases
	Getting ready
	How to do it…
	How it works…
	There's more…

	Major upgrades in-place
	Getting ready
	How to do it…
	How it works…

	Major upgrades online
	How to do it…
	How it works...

	Index
	About Packt
	Other Books You May Enjoy

