
MASTER THE SQL STATEMENTS
that every application developer needs

to retrieve and update the data
in a Microsoft SQL Server database

DESIGN DATABASES
LIKE A DBA

and implement them with SQL
statements or the Management Studio

GAIN PROFESSIONAL SKILLS
like working with views, scripts,

stored procedures, functions,
triggers, transactions, locking,

security, XML, and BLOBs

murach's
S L Server

2019
for developers

Bryan Syverson
Joel Murach

TRAINING & REFERENCE

murach's
S L Server

2019
for developers

Bryan Syverson

Joel Murach

lh MIKE MuRACH & AssociATEs, INc. •111 4340 N. Knoll Ave. • Fresno, CA 93722
www.murach.com • murachbooks@ murach.com

Authors:

Editor:

Production:

Bryan Syverson
Joel Murach

Anne Boehm

Juliette Baylon

Books for database developers
Murach's SQL Server for Developers

Murach 's Oracle SQL and PUSQLfor Developers

Murach 's MySQL

Books for .NET developers
Murach 's C#

Murach 's Visual Basic

Murach's ASP.NET Web Programming with C#

Murach 's ASP.NET Core MVC

Books for Python, C++, and Java developers
Murach's Python Programming

Murach 's C++ Programming

Murach 's Java Programming

Murach 's Java Servlets and JSP

Books for web developers
Murach 's HTML5 and CSS3

Murach 's JavaScript andjQuery

Murach 's PHP and MySQL

For more on Murach books,
please visit us at www.murach.com

© 2020, Mike Murach & Associates, Inc.
All rights reserved.

Printed in the United States of America

1098765432 1
ISBN-13: 978-1-943872-57-2

Content
Introduction

Section 1 An introduction to SQL

Chapter I

Chapter 2

An introduction to relational databases and SQL

How to use the Management Studio

Section 2 The essential SQL skills

Chapter 3 How to retrieve data from a single table

Chapter 4 How to retrieve data from two or more tables

Chapter 5 How to code summary queries

Chapter 6 How to code subqueries

Chapter 7 How to insert, update, and delete data

Chapter 8 How to work with data types

Chapter 9 How to use functions

Section 3 Database design and implementation

Chapter 10 How to design a databa~e

Chapter II How to create a database and its tables with SQL statements

Chapter 12 How to create a database and its tables with the Management Studio

Section 4 Advanced SQL skills

Chapter 13 How to work with views

Chapter 14 How to code scripts

Chapter IS How to code stored procedures, functions, and triggers

Chapter 16 How to manage transactions and locking

Chapter 17 How to manage database security

Chapter 18 How to work with XML

Chapter 19 How to work with BLOBs

Reference aids

Appendix A How to set up your computer for this book

Index

xvii

3

49

85
125
159
183
215
239
261

303
333
375

395
417
457
509
535
587
619

647

659

Expanded contents Vii

Expanded contents

Section 1 An introduction to SQL

Chapter 1 An introduction to relational databases and SQL
An introduction to client/server systems ... 4
The hardware components of a client/server system4
The software components of a client/server system 6
Other client/server system architectures ... 8

An introduction to the relational database model... 10
How a database table is organized 10
How the tables in a relational database are related 12
How the columns in a table are defined 14
How relational databases compare to other data models 16

An introduction to SOL and SOL-based systems 18
A brief history of SQL .. 18
A comparison of Oracle, DB2, MySQL, and SQL Server 20

The Transact-SOL statements ... 22
An introduction to the SQL statements 22
Typical statements for working with database objects .. 24
How to query a single table .. . 26
How to join data from two or more tables 28
How to add, update, and delete data in a table .. 30
SQL coding guidelines .. 32

How to work with other database objects 34
How to work with views 34
How to work with stored procedures, triggers, and user-defined functions 36

How to use SOL from an application program 38
Common data access models 38
How to use ADO.NET from a .NET application40
Visual Basic code that retrieves data from a SQL Server database 42
C# code that retrieves data from a SQL Server database .. 44

Chapter 2 How to use the Management Studio
An introduction to SOL Server 2019 ... 50
A summary of the SQL Server 2019 tools .. 50
How to start and stop the database engine, 52
How to enable remote connections ... 52

An introduction to the Management Studio 54
How to connect to a database server 54
How to navigate through the database objects 56

How to manage the database files .. 58
How to attach a database ... 58
How to detach a database 58
How to back up a database .. 60
How to restore a database 60
How to set the compatibility level for a database ... 62

Viii Expanded contents

How to view and modify the database .. 54
How to create database diagrams 64
How to view the column definitions of a table 66
How to modify the column definitions .. 66
How to view the data of a table 68
How to modify the data of a table ... 68

How to work with queries ... 70
How to enter and execute a query 70
How to handle syntax errors 72
How to open and save queries 74
An introduction to the Query Designer ... 76

How to view the documentation for SQL Server 78
How to display the SQL Server documentation .. 78
How to look up information in the documentation ... 78

Section 2 The essential SQL skills

Chapter 3 How to retrieve data from a single table
An introduction to the SELECT statement 86
The basic syntax of the SELECT statement.. 86
SELECT statement examples .. 88

How to code the SELECT clause ... 90
How to code column specifications ... 90
How to name the columns in a result set.. 92
How to code string expressions 94
How to code arithmetic expressions 96
How to use functions 98
How to use the DISTINCT keyword to eliminate duplicate rows 100
How to use the TOP clause to return a subset of selected rows 102

How to code the WHERE clause ... 104
How to use comparison operators ... 104
How to use the AND, OR, and NOT logical operators ... 106
How to use the IN operator 108
How to use the BETWEEN operator 110
How to use the LIKE operator 112
How to use the IS NULL clause ll4

How to code the ORDER BY clause .. 116
How to sort a result set by a column name 116
How to sort a result set by an al ias, an expression, or a column number 118
How to retrieve a range of selected rows .. 120

Chapter 4 How to retrieve data from two or more tables
How to work with inner joins ... 126
How to code an inner join 126
When and how to use correlation names ... l28
How to work with tables from different databases 130
How to use compound join conditions .. 132
How to use a self-join l 34
Inner joins that join more than two tables ... 136
How to use the impl icit inner join syntax 138

Expanded contents ix

How to work with outer joins ... 140
How to code an outer join 140
Outer join examples 142
Outer joins that join more than two tables 144

Other skills for working with joins .. 146
How to combine inner and outer joins .. 146
How to use cross joins l48

How to work with unions .. 150
The syntax of a union .. l50
Unions that combine data from different tables 150
Unions that combine data from the same table ... 152
How to use the EXCEPT and INTERSECT operators 154

Chapter 5 How to code summary queries
How to work with aggregate functions ... 160
How to code aggregate functions .. 160
Queries that use aggregate functions ... 162

How to group and summarize data ... 164
How to code the GROUP BY and HAVING clauses 164
Queries that use the GROUP BY and HAVING clauses l66
How the HAVING clause compares to the WHERE clause l68
How to code complex search conditions 170

How to summarize data using SQL Server extensions 172
How to use the ROLLUP operator .. 172
How to use the CUBE operator l74
How to use the GROUPING SETS operator ... 176
How to use the OVER clause .. 178

Chapter 6 How to code subqueries
An introduction to subqueries .. 184
How to use subqueries ... 184
How subqueries compare to joins ... 186

How to code subqueries in search conditions 188
How to use subqueries with the IN operator 188
How to compare the result of a subquery with an expression 190
How to use the ALL keyword 192
How to use the ANY and SOME keywords 194
How to code correlated subqueries 196
How to use the EXISTS operator 198

Other ways to use subqueries ... 200
How to code subqueries in the FROM clause ... 200
How to code subqueries in the SELECT clause 202

Guidelines for working with complex queries 204
A complex query that uses subqueries .. 204
A procedure for building complex queries 206

How to work with common table expressions 208
How to code a CTE ... 208
How to code a recursive CTE 210

X Expanded contents

Chapter 7 How to insert, update, and delete data
How to create test tables ... 216
How to use the SELECT INTO statement 216
How to use a copy of the database 2 16

How to insert new rows .. 218
How to insert a single row 218
How to insert multiple rows 2 18
How to insert default values and null values 220
How to insert rows selected from another table 222

How to modify existing rows ... 224
How to perform a basic update operation 224
How to use subqueries in an update operation 226
How to use joins in an update operation 228

How to delete existing rows ... 230
How to perform a basic delete operation 230
How to use subqueries and joins in a delete operation 232

How to merge rows ... 234
How to perform a basic merge operation 234
How to code more complex merge operations 234

Chapter 8 How to work with data types
A review of the SQL data types ... 240
Data type overview 240
The numeric data types 242
The string data types 244
The date/time data types 246
The large value data types 248

How to convert data .. 250
How data conversion works 250
How to convert data using the CAST function ... 252
How to convert data using the CONVERT function 254
How to use the TRY _CONVERT function ... 256
How to use other data conversion functions 258

Chapter 9 How to use functions
How to work with string data ... 262
A summary of the string functions 262
How to solve common problems that occur with string data 266

How to work with numeric data ... 268
A summary of the numeric functions 268
How to solve common problems that occur with numeric data 270

How to work with date/time data ... 272
A summary of the date/time functions 272
How to parse dates and times 276
How to perform operations on dates and times 278
How to perform a date search 280
How to perform a time search 282

Other functions you should know about 284
How to use the CASE function 284
How to use the IIF and CHOOSE functions 286

Expanded contents Xi

How to use the COALESCE and IS NULL functions 288
How to use the GROUPING function 290
How to use the ranking functions 292
How to use the analytic functions 296

Section 3 Database design and implementation

Chapter 10 How to design a database
How to design a data structure ... 304
The basic steps for designing a data structure ... 304
How to identify the data elements ... 306
How to subdivide the data elements .. 308
How to identify the tables and assign columns ... 310
How to identify the primary and foreign keys 312
How to enforce the relationships between tables 314
How normalization works 316
How to identify the columns to be indexed 318

How to normalize a data structure .. 320
The seven normal forms 320
How to apply the fi rst normal form 322
How to apply the second normal form 324
How to apply the third normal form 326
When and how to denormalize a data structure 328

Chapter 11 How to create a database and its tables
with SQL Statements
An introduction to DOL .. 334
The SQL statements for data definition 334
Rules for coding object names 336

How to create databases, tables, and indexes 338
How to create a database 338
How to create a table 340
How to create an index 342
How to use snippets to create database objects ... 344

How to use constraints .. 346
An introduction to constraints 346
How to use check constraints 348
How to use foreign key constraints 350

How to change databases and tables ... 352
How to delete an index, table, or database 352
How to alter a table 354

How to work with sequences ... 356
How to create a sequence .. 356
How to use a sequence .. 356
How to delete a sequence 358
How to alter a sequence 358

How to work with collations ... 360
An introduction to encodings 360
An introduction to collations 362
How to view collations 364
How to specify a collation 366

Xi i Expanded contents

The script used to create the AP database 368
How the script works 368
How the DDL statements work 368

Chapter 12 How to create a database and its tables
with the Managment Studio
How to work with a database ... 376
How to create a database 376
How to delete a database 376

How to work with tables ... 378
How to create, modify, or delete a table 378
How to work with foreign key relationships 380
How to work with indexes and keys 382
How to work with check constraints 384
How to examine table dependencies ... 386

How to generate scripts ... 388
How to generate scripts for databases and tables 390
How to generate a change script when you modify a table 392

Section 4 Advanced SQL skills

Chapter 13 How to work with views
An introduction to views .. 396
How views work 396
Benefits of using views 398

How to create and manage views .. 400
How to create a view ... 400
Examples that create views 402
How to create an updatable view .. 404
How to delete or modify a view .. 406

How to use views .. 408
How to update rows through a view408
How to insert rows through a view 4 10
How to delete rows through a view41 0
How to use the catalog views 4 12

How to use the View Designer ... 414
How to create or modify a view .. 4 14
How to delete a view 414

Chapter 14 How to code scripts
An introduction to scripts .. 418
How to work with scripts 418
The Transact-SQL statements for script processing420

How to work with variables and temporary tables 422
How to work with scalar variables .. 422
How to work with table variables424
How to work with temporary tables .. 426
A comparison of the fi ve types ofTransact-SQL table objects428

How to control the execution of a script 430
How to perform conditional processing 430
How to test for the existence of a database object432

Expanded contents Xiii

How to perfonn repetitive processing434
How to use a cursor 436
How to handle errors 438
How to use surround-with snippets 440

Advanced scripting techniques .. 442
How to use the system functions ... 442
How to change the session settings444
How to use dynamic SQL 446
A script that summarizes the structure of a database 448
How to use the SQLCMD utility 452

Chapter 15 How to code stored procedures, functions,
and triggers
Procedural programming options in Transact-SQL458
Scripts 458
Stored procedures, user-defined functions, and triggers458

How to code stored procedures .. 460
An introduction to stored procedures 460
How to create a stored procedure 462
How to declare and work with parameters 464
How to call procedures with parameters466
How to work with return values 468
How to validate data and raise errors470
A stored procedure that manages insert operations 472
How to pass a table as a parameter478
How to delete or change a stored procedure 480
How to work with system stored procedures482

How to code user-defined functions .. 484
An introduction to user-defined functions 484
How to create a scalar-valued function 486
How to create a simple table-valued function .. .488
How to create a multi-statement table-valued function 490
How to delete or change a function ... 492

How to code triggers .. 494
How to create a trigger 494
How to use AFTER triggers 496
How to use INSTEAD OF triggers498
How to use triggers to enforce data consistency 500
How to use tr iggers to work with DDL statements 502
How to delete or change a trigger 504

Chapter 16 How to manage transactions and locking
How to work with transactions .. 510
How transactions maintain data integrity 510
SQL statements for handling transactions 5 12
How to work with nested transactions 514
How to work with save points 5 16

An introduction to concurrency and locking 518
How concurrency and locking are related ... 518
The four concurrency problems that locks can prevent 520
How to set the transaction isolation level... 522

XiV Expanded contents

How SQL Server manages locking ... 524
Lockable resources and lock escalation .. 524
Lock modes and lock promotion ... 526
Lock mode compatibil ity 528

How to prevent deadlocks ... 530
Two transactions that deadlock ... 530
Coding techniques that prevent deadlocks 532

Chapter 17 How to manage database security
How to work with SQL Server login IDs 536
An introduction to SQL Server security 536
How to change the authentication mode ... 538
How to create login IDs 540
How to delete or change login IDs or passwords oo .. oooooo oo542
How to work with database users 544
How to work with schemas 00 .. 000000 00 .. 00 00 546

How to work with permissions .. 548
How to grant or revoke object permissions 548
The SQL Server object permjssions .. 550
How to grant or revoke schema permissions ... 552
How to grant or revoke database permissions ... 554
How to grant or revoke server perrrussions ... 556

How to work with roles ... 558
How to work with the fixed server roles ... 558
How to work with user-defined server roles 560
How to display information about server roles and role members 00 562
How to work with the fixed database roles 564
How to work with user-defined database roles 566
How to display information about database roles and role members 568
How to deny permissions granted by role membership 00 .. 00 00 00 00 .. 00 570
How to work with application roles 572

How to manage security using the Management Studio 574
How to work with login IDs .. 574
How to work with the server roles for a login ID ... 576
How to assign database access and roles by login ID ... 578
How to assign user permissions to database objects ... 580
How to work with database perrrussions ... 582

Chapter 18 How to work with XM L
An introduction to XML .. 588
An XML document 5 88
An XML schema 590

How to work with the xml data type .. 592
How to store data in the xml data type 592
How to work with the XML Editor ... 594
How to use the methods of the xml data type 596
An example that parses the xml data type ... 600
Another example that parses the xml data type ... 602

How to work with XML schemas ... 604
How to add an XML schema to a database 604
How to use an XML schema to validate the xml data type 606
How to view an XML schema 00 00 00 . 608
How to drop an XML schema 608

Expanded contents XV

Two more skills for working with XML .. 610
How to use the FOR XML clause of the SELECT statement.. 610
How to use the OPENXML statement.. 614

Chapter 19 How to work with BLOBs
An introduction to BLOBs .. 620
Pros and cons of storing BLOBs in files ... 620
Pros and cons of storing BLOBs in a column 620
When to use FILESTREAM storage for BLOBs .. 620

How to use SQL to work with a varbinary(max) column 622
How to create a table with a varbinary(max) column 622
How to insert, update, and delete binary data 622
How to retrieve binary data 622

A .NET application that uses a varbinary(max) column 624
The user interface for the application .. 624
The event handlers for the form 626
A data access class that reads and writes binary data ... 628

How to use FILESTREAM storage ... 634
How to enable FILESTREAM storage on the server 634
How to create a database with FILESTREAM storage 636
How to create a table with a FILESTREAM column 638
How to insert, update, and delete FILESTREAM data 638
How to retrieve FILESTREAM data 638
A data access class that uses FILESTREAM storage 640

Appendix A How to set up your computer for this book
Three editions of SQL Server 20 19 Express 648
The tool for working with all editions of SQL Server 648
How to install SQL Server 2019 Express 650
How to install SQL Server Management Studio 650
How to install the fi les for this book 652
How to create the databases for this book 654
How to restore the databases for this book 654
How to install Visual Studio 2019 Community 656

Introduction
If you want to learn SQL, you've picked the right book. And if you want to

learn the specifics of SQL for SQL Server 2019, you've made an especially good
choice. Along the way, you'lllearn a lot about relational database management
systems in general and about SQL Server in particular.

Why learn SQL? First, because most programmers would be better at
database programming if they knew more about SQL. Second, because SQL
programming is a valuable specialty in itself. And third, because knowing SQL
is the first step toward becoming a database administrator. In short, knowing
SQL makes you more valuable on the job.

Who this book is for

This book is the ideal book for application developers who need to work
with a SQL Server database. It shows you how to code the SQL statements that
you need for your applications. It shows you how to code these statements so
they run efficiently. And it shows you how to take advantage of the most useful
advanced features that SQL Server has to offer.

This book is also a good choice for anyone who wants to learn standard
SQL. Since SQL is a standard language for accessing database data, most of
the SQL code in this book will work with any database management system. As
a result, once you use this book to learn how to use SQL to work with a SQL
Server database, you can transfer most of what you have learned to another
database management system such as Oracle, DB2, or MySQL.

This book is also the right .first book for anyone who wants to become a
database administrator. Although this book doesn' t present all of the advanced
skills that are needed by a top DBA, it will get you started. Then, when you have
finished this book, you' ll be prepared for more advanced books on the subject.

4 reasons why you'll learn faster with this book

• Unlike most SQL books, this one starts by showing you how to query an
existing database rather than how to create a new database. Why? Because
that's what you're most likely to need to do first on the job. Once you
master those skills, you can learn how to design and implement a database,
whenever you need to do that. Or, you can learn how to work with other
database features like views and stored procedures, whenever you need to
do that.

XViii Introduction

• Like all our books, this one includes hundreds of examples that range from
the simple to the complex. That way, you can quickly get the idea of how a
feature works from the simple examples, but you'll also see how the feature
is used in the real world from the complex examples.

• Like most of our books, this one has exercises at the end of each chapter
that give you hands-on experience by letting you practice what you've
learned. These exercises also encourage you to experiment and to apply
what you've learned in new ways.

• If you page through this book, you'll see that all of the information is
presented in "paired pages," with the essential syntax, guidelines, and
examples on the right page and the perspective and extra explanation on
the left page. This helps you learn more with less reading, and it is the ideal
reference format when you need to refresh your memory about how to do
something.

What you'll learn in this book

• In section 1, you' ll learn the concepts and terms you need for working with
any database. You' ll also learn how to use Microsoft SQL Server 2019 and
the Management Studio to run SQL statements on your own PC.

• In section 2, you'll learn all the skills for retrieving data from a database
and for adding, updating, and deleting that data. These chapters move from
the simple to the complex so you won't have any trouble if you're a SQL
novice. And they present skills like using outer joins, summary queries,
and subqueries that will raise your SQL expertise if you already have SQL
expenence.

• In section 3, you'll learn how to design a database and how to implement
that design by using either SQL statements or the Management Studio.
When you're done, you'll be able to design and implement your own
databases. But even if you're never called upon to do that, this section will
give you perspective that will make you a better SQL programmer.

• In section 4, you' ll learn the skills for working with database features like
views, scripts, stored procedures, functions, triggers, and transactions. In
addition, you' ll learn the skills for working with database security, XML,
and BLOBs. These are the features that give a database much of its power.
So once you master them, you'll have a powerful set of SQL skills.

Prerequisites

Although you will progress through this book more quickly if you have
some development experience, everything you need to know about databases
and SQL is presented in this book. As a result, you don' t need to have any
programming background to use this book to learn SQL.

Introduction XiX

However, if you want to use C# or Visual Basic to work with a SQL Server
database as described in chapter 19, you need to have some experience using
C# or Visual Basic to write ADO.NET code. If you don't already have that
experience, you can refer to the appropriate chapter in the current edition of
Murach's C#or Murach's Visual Basic.

What software you need for this book

All of the software you need for this book is available from Microsoft 's
website for free. That includes:

• SQL Server 2019 Express (only runs on Windows 10 and later

• SQL Server Management Studio

• Visual Studio Community (only necessary for chapter 19)

In appendix A, you'll find complete instructions for installing these items on
your PC.

However, SQL Server 2019 only runs on Windows 10 and later. As a result,
if you have an earlier version ofWindows, such as Windows 8, you'll need to
upgrade your operating system to Windows 10 or later.

What you can download from our website

You can download all the source code for this book from our website. That
includes:

• Scripts that create the databases used by this book

• The source code for all examples in this book

• The solutions for all exercises in this book

In appendix A, you'll find complete instructions for installing these items on
your PC.

Support materials for trainers and instructors

If you're a corporate trainer or a college instructor who would like to use
this book for a course, we offer these supporting materials: (1) a complete set
of PowerPoint slides that you can use to review and reinforce the content of this
book; (2) instructional objectives that describe the skills a student should have
upon completion of each chapter; (3) test banks that measure mastery of those
skills; (4) additional exercises for each chapter that aren' t in this book; and (5)
solutions to those exercises.

To learn more about these materials, please go to our website at
www.murachforinstructors.com if you're an instructor. If you're a trainer, please
go to www.murach.com and click on the Courseware for Trainers link, or
contact Kelly at 1-800-221-5528 or kelly@murach.com.

XX Introduction

Please let us know how this book works for you --
When we started working on this book, our goal was (1) to provide a

SQL Server book for application developers that will help them work more
effectively; (2) to cover the database design and implementation skills that
application developers are most likely to use; and (3) to do both in a way that
helps you learn faster and better than you can with any other SQL Server book.

Now, if you have any comments about this book, we would appreciate
hearing from you. If you like this book, please tell a friend. And good luck with
your SQL Server projects!

~~
Joel Murach
Author
joel@murach.com

Section 1

An introduction to SQL
Before you begin to learn the fundamentals of programming in SQL, you
need to understand the concepts and terms related to SQL and relational
databases. That's what you'lllearn in chapter 1. Then, in chapter 2, you' ll
learn about some of the tools you can use to work with a SQL Server
database. That will prepare you for using the skills you'llleam in the rest
of this book.

1

An introduction
to relational databases
and SQL
Before you can use SQL to work with a SQL Server database, you need to
be familiar with the concepts and terms that apply to database systems. In
particular, you need to understand what a relational database is. That's what
you' lllearn in the first part of this chapter. Then, you 'lllearn about some of the
basic SQL statements and features provided by SQL Server.

An introduction to client/server systems4
The hardware components of a client/server system4
The software components of a client/server system .. 6
Other client/server system architectures 8

An introduction to the relational database model 10
How a database table is organized .. 10
How the tables in a relational database are related 12
How the columns in a table are defined 14
How relational databases compare to other data models 16

An introduction to SQL and SQL-based systems 18
A brief history of SQL.. 18
A comparison of Oracle, DB2, MySQL, and SQL Server 20

The Transact-SaL statements .. 22
An introduction to the SQL statements 22
Typical statements for working with database objects 24
How to query a single table 26
How to join data from two or more tables ... 28
How to add, update, and delete data in a table 30
SQL coding guidelines .. 32

How to work with other database objects 34
How to work with views34
How to work with stored procedures, triggers,
and user-defined functions 36

How to use SQL from an application program 38
Common data access models ... 38
How to use ADO.NET from a .NET application 40
Visual Basic code that retrieves data from a SQL Server database42
C# code that retrieves data from a SQL Server database 44

Perspective ... 46

4 Section 1 An introduction to SQL

An introduction
to client/server systems

In case you aren' t familiar with client/server systems, the first two topics that
follow introduce you to their essential hardware and software components. These
are the types of systems that you're most likely to use SQL with. Then, the last
topic gives you an idea of how complex client/server systems can be.

The hardware components
of a client/server system

Figure 1-1 presents the three hardware components of a client/server system:
the clients, the network, and the server. The clients are usually the PCs that are
already available on the desktops throughout a company. And the network is the
cabling, communication lines, network interface cards, hubs, routers, and other
components that connect the clients and the server.

The server, commonly referred to as a database server, is a computer that
has enough processor speed, internal memory (RAM), and disk storage to
store the files and databases of the system and provide services to the clients
of the system. This computer is usually a high-powered PC, but it can also be
a midrange system like an IBM Power System or a Unix system, or even a
mainframe system. When a system consists of networks, midrange systems,
and mainframe systems, often spread throughout the country or world, it is
commonly referred to as an enterprise system.

To back up the files of a client/server system, a server usually has a disk
drive or some other form of offline storage. It often has one or more printers
or specialized devices that can be shared by the users of the system. And it can
provide programs or services like e-mail that can be accessed by all the users of
the system.

In a simple client/server system, the clients and the server are part of a
local area network (LAN). However, two or more LANs that reside at separate
geographical locations can be connected as part of a larger network such as a
wide area network (WAN). In addition, individual systems or networks can be
connected over the Internet.

Chapter 1 An introduction to relational databases and SQL 5

A simple client/server system

~-
Database Server

I

D D
I Network I

Client Client

I

D
I

Client

The three hardware components of a client/server system
• The clients are the PCs, Macs, or workstations of the system.

• The server is a computer that stores the files and databases of the system and
provides services to the clients. When it stores databases, it's often referred to as a
database server.

• The network consists of the cabling, communication lines, and other components
that connect the clients and the servers of the system.

Client/server system implementations
• In a simple client/server system like the one shown above, the server is typically

a high-powered PC that communicates with the clients over a local area network
(LAN).

• The server can also be a midrange system, like an IBM Power System or a Unix
system, or it can be a mainframe system. Then, special hardware and software
components are required to make it possible for the clients to communicate with
the midrange and mainframe systems.

• A client/server system can also consist of one or more PC-based systems, one
or more midrange systems, and a mainframe system in dispersed geographical
locations. This type of system is commonly referred to as an enterprise system.

• Individual systems and LANs can be connected and share data over larger private
networks, such as a wide area network (WAN), or a public network like the Internet.

Figure 1-1 The hardware components of a client/server system

6 Section 1 An introduction to SQL

The software components
of a client/server system

Figure 1-2 presents the software components of a typical client/server
system. In addition to a network operating system that manages the functions
of the network, the server requires a database management system (DBMS) like
Microsoft SQL Server or Oracle. This DBMS manages the databases that are
stored on the server.

In contrast to a server, each client requires application software to perform
useful work. This can be a purchased software package like a financial
accounting package, or it can be custom software that's developed for a specific
application.

Although the application software is run on the client, it uses data that's stored
on the server. To do that, it uses a data access API (application programming
inteiface) such as ADO.NET. Since the technique you use to work with an API
depends on the programming language and API you're using, you won't learn
those techniques in this book. Instead, you'lllearn about a standard language
called SQL, or Structured Query Language, that lets any application communicate
with any DBMS. (In conversation, SQL is pronounced as either S-Q-L or sequel.)

Once the software for both client and server is installed, the client
communicates with the server via SQL queries (or just queries) that are passed
to the DBMS through the API. After the client sends a query to the DBMS, the
DBMS interprets the query and sends the results back to the client.

As you can see in this figure, the processing done by a client/server system
is divided between the clients and the server. In this case, the DBMS on the
server is processing requests made by the application running on the client.
Theoretically, at least, this balances the workload between the clients and the
server so the system works more efficiently. By contrast, in a file-handling
system, the clients do all of the work because the server is used only to store the
files that are used by the clients.

Chapter 1 An introduction to relational databases and SQL 7

Client software, server software, and the SQL interface

Q .---SQ-L-qu-e-rie-s ---1. I.
_ Results

Client
Application software

Data access API

Server software

Database Server
Database management system

Database

• To store and manage the databases of the client/server system, each server requires
a database management system (DBMS) like Microsoft SQL Server.

• The processing that's done by the DBMS is typically referred to as back-end
processing, and the database server is referred to as the back end.

Client software
• The application software does the work that the user wants to do. This type of

software can be purchased or developed.

• The data access API (application programming interface) provides the interface
between the application program and the DBMS. The current Microsoft API is
ADO.NET, which can communicate directly with SQL Server. Older APis required
a data access model, such as ADO or DAO, plus a driver, such as OLE DB or
ODBC.

• The processing that's done by the client software is typically referred to as
front-end processing, and the client is typically referred to as the f ront end.

The SQL interface
• The application software communicates with the DBMS by sending SQL queries

through the data access API. When the DBMS receives a query, it provides a
service like returning the requested data (the query results) to the client.

• SQL stands for Structured Query Language, which is the standard language for
working with a relational database.

Client/server versus file-handling systems
• In a client/server system, the processing done by an application is typically divided

between the client and the server.

• In a file-handling system, all of the processing is done on the clients. Although the
clients may access data that 's stored in files on the server, none of the processing is
done by the server. As a result, a file-handling system isn' t a client/server system.

Figure 1-2 The software components of a client/server system

8 Section 1 An introduction to SQL

Other client/server system architectures

In its simplest form, a client/server system consists of a single database
server and one or more clients. Many client/server systems today, though,
include additional servers. In figure 1-3, for example, you can see two
client/server systems that include an additional server between the clients and
the database server.

The first illustration is for a simple Windows-based system. With this
system, only the user interface for an application runs on the client. The rest of
the processing that's done by the application is stored in one or more business
components on the application server. Then, the client sends requests to the
application server for processing. If the request involves accessing data in a
database, the application server formulates the appropriate query and passes it on
to the database server. The results of the query are then sent back to the
application server, which processes the results and sends the appropriate
response back to the client.

Similar processing is done by a web-based system, as illustrated by the
second example in this figure. In this case, though, a web browser running on
the client is used to send requests to a web application running on a web server
somewhere on the Internet. The web application, in turn, can use web services
to perform some of its processing. Then, the web application or web service can
pass requests for data on to the database server.

Although this figure should give you an idea of how client/server systems
can be configured, you should realize that they can be much more complicated
than what's shown here. In a Windows-based system, for example, business
components can be distributed over any number of application servers, and
those components can communicate with databases on any number of database
servers. Similarly, the web applications and services in a web-based system
can be distributed over numerous web servers that access numerous database
servers. In most cases, though, it 's not necessary for you to know how a system
is configured to use SQL.

Before I go on, you should know that client/server systems aren't the only
systems that support SQL. For example, traditional mainframe systems and
newer thin client systems also use SQL. Unlike client/server systems, though,
most of the processing for these types of systems is done by a mainframe or
another high-powered machine. The terminals or PCs that are connected to the
system do little or no work.

Chapter 1 An introduction to relational databases and SQL 9

A Windows-based system that uses an application server

D User request ~ SQ~ queries ~
Response ~ Results

I I L__j I

Client
User interface

Application Server
Business components

A simple web-based system

Database Server
DBMS

Database

I I Usen eq""' ~- U._s_e_r r_eq_u_es_t_ B SQL queries a
•--·,!!!!!!!~-•· • Respoose ~ Respoose ~@ "•'"'" ~[

Client
Web browser

Description

Web Server
Web applications

Web services

Database Server
DBMS

Database

• In addition to a database server and clients, a client/server system can include
additional servers, such as application servers and web servers.

• Application servers are typically used to store business components that do part
of the processing of the application. In particular, these components are used to
process database requests from the user interface running on the client.

• Web servers are typically used to store web applications and web services. Web
applications are applications that are designed to run on a web server. Web services
are like business components, except that, like web applications, they are designed
to run on a web server.

• In a web-based system, a web browser running on a client sends a request to a web
server over the Internet. Then, the web server processes the request and passes any
requests for data on to the database server.

• More complex system architectures can include two or more application servers,
web servers, and database servers.

Figure 1-3 Other client/server system architectures

1 0 Section 1 An introduction to SQL

An introduction
to the relational database model

In 1970, Dr. E. F. Codd developed a model for a new type of database called
a relational database. This type of database eliminated some of the problems
that were associated with standard files and other database designs. By using the
relational model, you can reduce data redundancy, which saves disk storage and
leads to efficient data retrieval. You can also view and manipulate data in a way
that is both intuitive and efficient. Today, relational databases are the de facto
standard for database applications.

How a database table is organized --------------------
The model for a relational database states that data is stored in one or more

tables. It also states that each table can be viewed as a two-dimensional matrix
consisting of rows and columns. This is illustrated by the relational table in
figure 1-4. Each row in this table contains information about a single vendor.

In practice, the rows and columns of a relational database table are often
referred to by the more traditional terms, records and fields. In fact, some
software packages use one set of terms, some use the other, and some use a
combination. This book uses the terms rows and columns because those are the
terms used by SQL Server.

In general, each table is modeled after a real-world entity such as a vendor
or an invoice. Then, the columns of the table represent the attributes of the entity
such as name, address, and phone number. And each row of the table represents
one instance of the entity. A value is stored at the intersection of each row and
column, sometimes called a cell.

If a table contains one or more columns that uniquely identify each row
in the table, you can define these columns as the primary key of the table. For
instance, the primary key of the Vendors table in this figure is the VendoriD
column. In this example, the primary key consists of a single column. However,
a primary key can also consist of two or more columns, in which case it's called
a composite primary key.

In addition to primary keys, some database management systems Jet you
define additional keys that uniquely identify each row in a table. If, for example,
the VendorName column in the Vendors table contains unique data, it can be
defined as a non-primary key. In SQL Server, this is called a unique key.

Indexes provide an efficient way of accessing the rows in a table based on
the values in one or more columns. Because applications typically access the
rows in a table by referring to their key values, an index is automatically created
for each key you define. However, you can define indexes for other columns as
well. If, for example, you frequently need to sort the Vendor rows by zip code,
you can set up an index for that column. Like a key, an index can include one or
more columns.

Chapter 1 An introduction to relational databases and SQL 11

The Vendors table in an Accounts Payable database

Primary key Columns

I ~ I ~
VendoriD Vendor Name Vendor Address 1 VendorAddress2 VendorOty "

1 r·;··] US Postal Service Attn: Supt. Window Services PO Box 7005 Madison -
~ ,,,,,,,,,,,,,,i

2 2 Nationl!l Information Dati! Qr PO Box 96621 NULL Wl!shington

3 3 Register al Copyrights Library Of Congress NULL Washington

4 4 Jo~k 1990 Westwood Blvd Ste 260 NULL Los Nlgeles

5 5 Newbrige Book Oubs 3000 Cndel Drive NULL Washington

6 6 CaiWomil! Oll!mber Of Commerce 3255 Rllmos Or NULL Sl!cn!mento

7 7 Towne Advertiser's Ml!iling Svcs Kevin M1nder 3441 W Ml!cl!rthur Blvd Sl!fltahll!

8 8 B Fl Industries PO Box 9369 NULL Fresno
r-- Rows

9 9 Pi!cif'IC Gl!s & Bectrlc Box 52001 NULL Sl!n Frl!Odsc

10 10 Robbins Mobile Lock h1d Key 4669 N Fresno NULL Fresno

11 11 Bill Mllrvin Bectric Inc 4583 E Home NULL Fresno

12 12 City Of Fresno PO Box 2069 NULL Fresno

13 13 Golden Eagle lnsun~nce Co PO Box 85826 NULL Sl!n Diego

14 14 Expedatl! Inc 4420 N. Rrst Street. SUte 108 NULL Fresno

15 15 ASC Signs 1528 N Siem~ Vistll NULL Fresno

16 16 lnleml!l Revenue Service NULL NULL Fresno .., -< >

Concepts
• A relational database consists of tables. Tables consist of rows and columns, which

can also be referred to as records and .fields.

• A table is typically modeled after a real-world entity, such as an invoice or a
vendor.

• A column represents some attribute of the entity, such as the amount of an invoice
or a vendor's address.

• A row contains a set of values for a single instance of the entity, such as one invoice
or one vendor.

• The intersection of a row and a column is sometimes called a cell. A cell stores a
single value.

• Most tables have a primary key that uniquely identifies each row in the table. The
primary key is usually a single column, but it can also consist of two or more
columns. If a primary key uses two or more columns, it's called a composite
primary key.

• In addition to primary keys, some database management systems let you define one
or more non-primary keys. In SQL Server, these keys are called unique keys. Like a
primary key, a non-primary key uniquely identifies each row in the table.

• A table can also be defined with one or more indexes. An index provides an
efficient way to access data from a table based on the values in specific columns.
An index is automatically created for a table's primary and non-primary keys.

Figure 1-4 How a database table is organized

12 Section 1 An introduction to SQL

How the tables in a relational database
are related

The tables in a relational database can be related to other tables by values
in specific columns. The two tables shown in figure 1-5 illustrate this concept.
Here, each row in the Vendors table is related to one or more rows in the Invoices
table. This is called a one-to-many relationship.

Typically, relationships exist between the primary key in one table and the
foreign key in another table. The foreign key is simply one or more columns in
a table that refer to a primary key in another table. In SQL Server, relationships
can also exist between a unique key in one table and a foreign key in another
table.

Although one-to-many relationships are the most common, two tables can
also have a one-to-one or many-to-many relationship. If a table has a one-to-one
relationship with another table, the data in the two tables could be stored in a
single table. However, it's often useful to store large objects such as images,
sound, and videos in a separate table. Then, you can join the two tables with the
one-to-one relationship only when the large objects are needed.

By contrast, a many-to-many relationship is usually implemented by using
an intermediate table that has a one-to-many relationship with the two tables in
the many-to-many relationship. In other words, a many-to-many relationship can
usually be broken down into two one-to-many relationships.

Chapter 1 An introduction to relational databases and SQL 13

The relationship between the Vendors and Invoices tables in the database

Primary key

I
VendoriD VendorName Vendor Address 1 VendorAddress2 VendaOty

113 114 Postmaster Postage Due T edridan 1900 E Street Fresno
114 115 Roadw~ Package System. Inc Dept La 21095 NULL Pasadena
115 116 State of Caliomia Employment Development D ... PO Box 826276 Sacramento
116 117 Subu!ban Propane 2874 S Cheny Ave NULL Fresno
117 118 Unocal p 0. Box 860070 NULL Pasadena

118 119 Yesmed.lnc PO Box 2061 NULL Fresno
119 120 Dataforms/West 1617W. Shaw Avenue Suite F Fresno
120 121 Zytka Design 3467 W Shaw Ave #103 NULL Fresno
121 122 United Parcel Service p 0 . Box 505820 NULL Reno
, .,..., 123 Federal Express Corporation P.O. Box 1140 Dept A Memphis
<

lnvoiceiD VendortD Invoice Number Invoice Date Invoice Total Payment Total "
29 29 108 121897 2019-11-19 450.00 450.00
~" '" 123 1-200-5164 2019-11-20 63.40 63.40

31 31 104 P02-3n2 2019-11-21 7125.34 7125.34

32 32 121 97/ 486 2019-11-21 953.10 953.10

33 33 105 94007005 2019-11-23 220.00 220.00
'lA. "L 123 963253232 2019-11-23 127.75 127.75

35 35 107 RTR-72-3662-X 2019-11-25 160000 1600.00

36 36 121 97/ 465 2019-11-25 565.15 565.15
,., ,.,

123 963253260 2019-11-25 36.00 36.00
.,0 .,0 123 963253272 2019-11-26 61.50 61.50

39 39 110 0-2058 2019-11-28 37966.19 37966.19 "' < >

T
•

Foreign key

Concepts
• The tables in a relational database are related to each other through their key

columns. For example, the VendoriD column is used to relate the Vendors and
Invoices tables above. The VendoriD column in the Invoices table is called a foreign
key because it identifies a related row in the Vendors table. A table may contain one
or more foreign keys.

• When you define a foreign key for a table in SQL Server, you can 't add rows to
the table with the foreign key unless there 's a matching primary key in the related
table.

• The relationships between the tables in a database correspond to the relationships
between the entities they represent. The most common type of relationship is
a one-to-many relationship as illustrated by the Vendors and Invoices tables. A
table can also have a one-to-one relationship or a many-to-many relationship with
another table.

Figure 1-5 How the tables in a relational database are related

"

"' >

14 Section 1 An introduction to SQL

How the columns in a table are defined

When you define a column in a table, you assign properties to it as indicated
by the design of the Invoices table in figure 1-6. The most critical property for
a column is its data type, which determines the type of information that can be
stored in the column. With SQL Server 2019, you typically use one of the data
types listed in this figure. As you define each column in a table, you generally
try to assign the data type that will minimize the use of disk storage because that
will improve the performance of the queries later.

In addition to a data type, you must identify whether the column can store
a null value. A null represents a value that's unknown, unavailable, or not
applicable. If you don' t allow null values, then you must provide a value for the
column or you can't store the row in the table.

You can also assign a default value to each column. Then, that value is
assigned to the column if another value isn't provided. You' lllearn more about
how to work with nulls and default values later in this book.

Each table can also contain a numeric column whose value is generated
automatically by the DBMS. In SQL Server, a column like this is called an
identity column, and you establish it using the Is Identity, Identity Seed, and
Identity Increment properties. You'lllearn more about these properties in chapter
11. For now, just note that the primary key of both the Vendors and the Invoices
tables-VendoriD and InvoiceiD-are identity columns.

Chapter 1 An introduction to relational databases and SQL

The columns of the Invoices table
• .; MMA 17\SQLEXPRESS.AP - dbo.lnvo~ees- MICrosoft SQL Server Management Studoo Quock launch (Ctri•Ql

Fole Edot Voe.~ Project Table Desogner Tools Wondow Help

0 • ,J • " .Jil .Iii Ne.~Query .Iii .~ ,0 ,o;., ,?,. cl(, OJ t.J ~ p 00:00:00 ----------------Object Explorer • q X

Connect · f ' ¥ G -Jo.

13 i5 localhost\ SQLEXPRESS (SQL Server 15.0.2000- murach\Anno) "
8 Databasos

1.tJ System Databases
l!l Database Snapshots

8 ii AP

0 Ready

ctl Database Diagrams
9 Tables

Ill Systom Tablos
Ill FileTables
IE Extornal Tables
Ill Graph Tablos
Ill !Ill dbo.ContactUpdates
Ill !Ill dbo.GLAccounts
IE Iii dbo.lnvoicMrchive

III & dbo.lnvoicelineltems
13 !Ill dbo.lnvoicos

l3 Columns

.. lnvoiceiD (PK, in~ not null)
\!>" VondoriD (FK, in~ not null)
l3 lnvoicoNumbor (varchar(SO), not nuiQ
l3 lnvoiceDate (dot .. not nuiQ
13 lnvoicoTotal (money, not null)
13 PaymontT otal (money, not null)
l3 CroditT otal (money, not nuiQ
~ T ormsiD (FK, in~ not null)

Common SQL Server data types

MMA 17\SQLEXPRESS.AP - dbo.lnvoiCes <> X

Column Name Data Type

·~ ~~~~~~~~~=~~==~~ int
VondoriD

lnvoiceNumber

InvoiceD ate

lnvoice:Total

PaymentTotal

CroditTotal

TermsiO

lnvoiceDueDate

PaymentOate

Column Properties

J:l1!
ldentrty SpecrfJcatJOn

I v I (Is Identity)

Identity Increment

ldontity s .. d

lndoxablo

Identity Specification

int

varchar(SO)

date

money

money

money

int

datt~

date

Yos

Yos

Yos

Type Description

p - I: X

Allow Nulls

0
0
0
0
0
0
0
0
0
0

bit

int, bigint, smallint, tinyint

money, smallmoney

decimal, numeric

A value of I or 0 that represents a True or False value.

Integer values of various sizes.

float, real

date, time, datetime2

char, varchar

nchar, nvarchar

Description

Monetary values that are accurate to four decimal places.

Decimal values that are accurate to the least significant digit The values
can contain an integer portion and a decimal portion.

Floating-point values that contain an approximation of a decimal value.

Dates and times.

A string of letters, symbols, and numbers in the ASCII character set

A string of letters, symbols, and numbers in the Unicode character set.

• The data type that's assigned to a column determines the type and size of the
information that can be stored in the column.

• Each column definition also indicates whether or not it can contain null values. A
null value indicates that the value of the column is unknown.

• A column can also be defined with a default value. Then, that value is used if
another value isn't provided when a row is added to the table.

• A column can also be defined as an identity column. An identity column is a numeric
column whose value is generated automatically when a row is added to the table.

Figure 1-6 How the columns in a table are defined

15

16 Section 1 An introduction to SQL

How relational databases compare
to other data models

Now that you understand how a relational database is organized, you're
ready to learn how relational databases differ from other data models.
Specifically, you should know how relational databases compare to conventional
file systems, hierarchical databases, and network databases. Figure 1-7 presents
the most important differences.

To start, you should realize that because the physical structure of a relational
database is defined and managed by the DBMS, it's not necessary to define that
structure within the programs that use the database. Instead, you can simply refer
to the tables and columns you want to use by name and the DBMS will take care
of the rest. By contrast, when you use a conventional file system, you have to
define and control the files of the system within each application that uses them.
That's because a conventional file system is just a collection of files that contain
the data of the system. In addition, if you modify the structure of a file, you
have to modify every program that uses it. That's not necessary with a relational
database.

The hierarchical and network database models were predecessors to the
relational database model. The hierarchical database model is limited in that it
can only represent one-to-many relationships, also called parent/child
relationships. The network database model is an extension of the hierarchical
model that provides for all types of relationships.

Although hierarchical and network databases don't have the same drawbacks
as conventional file systems, they still aren't as easy to use as relational
databases. In particular, each program that uses a hierarchical or network
database must navigate through the physical layout of the tables they use. By
contrast, this navigation is automatically provided by the DBMS in a relational
database system. In addition, programs can define ad hoc relationships between
the tables of a relational database. In other words, they can use relationships that
aren't defined by the DBMS. That's not possible with hierarchical and network
databases.

Another type of database that's not mentioned in this figure is the object
database. This type of database is designed to store and retrieve the objects that
are used by applications written in an object-oriented programming language
such as C#, C++, or Java. Although object databases have some advantages
over relational databases, they also have some disadvantages. In general, object
databases have not yet become widely used. However, they have acquired a
niche in some areas such as engineering, telecommunications, financial services,
high energy physics, and molecular biology.

Chapter 1 An introduction to relational databases and SQL 17

A comparison of relational databases and conventional file systems
Feature Conventional file system Relational database

Definition

Maintenance

Each program that uses the fi le must
define the fil e and the layout of the
records within the file

If the definition of a file changes,
each program that uses the file must
be modified

Tables, rows, and columns are
defined within the database and can
be accessed by name

Programs can be used without
modification when the definition of a
table changes

Validity checking Each program that updates a file must
include code to check for valid data

Can include checks for valid data

Relationships

Data access

Each program must provide for and
enforce relationships between fi les

Each 1/0 operation targets a speci fic
record in a file based on its relative
position in the file or its key value

Can enforce relationships between
tables using foreign keys; ad hoc
relationships can also be used

A program can use SQL to access
selected data in one or more tables of
a database

A comparison of relational databases and other database systems

Feature Hierarchical database Network database Relational database
Supported One-to-many only One-to-many, one-to-one, One-to-many, one-to-one,
relationships and many-to-many and many-to-many; ad hoc

relationships can also be
used

Data access Programs must include Programs must include Programs can access data
code to navigate through code to navigate through without knowing its
the physical structure of the physical structure of physical structure
the database the database

Maintenance New and modified New and modified Programs can be used
relationships can be relationships can be without modification when
difficult to implement in difficult to implement in the definition of a table
application programs application programs changes

Description
• To work with any of the data models other than the relational database model, you must

know the physical structure of the data and the relationships between the files or tables.

• Because relationships are difficult to implement in a conventional file system, redundant
data is often stored in these types of files.

• The hierarchical database model provides only for one-to-many relationships, called
parent/child relationships.

• The network database model can accommodate any type of relationship.

• Conventional files, hierarchical databases, and network databases are all more efficient
than relational databases because they require fewer system resources. However, the
flexibility and ease of use of relational databases typically outweigh this inefficiency.

Figure 1-7 How relational databases compare to other data models

18 Section 1 An introduction to SQL

An introduction
to SQL and SQL-based systems

In the topics that follow, you' ll learn how SQL and SQL-based database
management systems evolved. In addition, you'lllearn how some of the most
popular SQL-based systems compare.

A brief history of SQL

Prior to the release of the first relational database management system
(RDBMS), each database had a unique physical structure and a unique
programming language that the programmer had to understand. That all changed
with the advent of SQL and the relational database management system.

Figure 1-8lists the important events in the history of SQL. In 1970, Dr. E.
F. Codd published an article that described the relational database model he
had been working on with a research team at IBM. By 1978, the IBM team had
developed a database system based on this model, called System/R, along with a
query language called SEQUEL (Structured English Query Language). Although
the database and query language were never officially released, IBM remained
committed to the relational model.

The following year, Relational Software, Inc. released the first relational
database management system, called Oracle. This RDBMS ran on a minicom
puter and used SQL as its query language. This product was widely successful,
and the company later changed its name to Oracle to reflect that success.

In 1982, IBM released its first commercial SQL-based RDBMS, called
SQUDS (SQUData System). This was followed in 1985 by DB2 (Database 2).
Both systems ran only on IBM mainframe computers. Later, DB2 was ported to
other systems, including those that ran the Unix, Linux, and Windows operating
systems. Today, it continues to be IBM's premier database system.

During the 1980s, other SQL-based database systems, including SQL
Server, were developed. Although each of these systems used SQL as its query
language, each implementation was unique. That began to change in 1989,
when the American National Standards Institute (ANSI) published its first set
of standards for a database query language. These standards have been revised
a few times since then, most recently in 2016. As each database manufacturer
has attempted to comply with these standards, their implementations of SQL
have become more similar. However, each still has its own dialect of SQL that
includes additions, or extensions, to the standards.

Although you should be aware of the SQL standards, they will have little
effect on your job as a SQL programmer. The main benefit of the standards is
that the basic SQL statements are the same in each dialect. As a result, once
you've learned one dialect, it's relatively easy to learn another. On the other
hand, porting applications that use SQL from one database to another isn' t as
easy as it should be. In fact, any non-trivial application will require at least
modest modifications.

Chapter 1 An introduction to relational databases and SQL 19

Important events in the history of SQL
Year Event

1970 Dr. E. F. Codd developed the relational database model.

1978 IBM developed the predecessor to SQL, called Structured English Query Language
(SEQUEL). This language was used on a database system called System/R, but neither
the system nor the query language was ever released.

1979 Relational Software, Inc. (later renamed Oracle) released the first relational DBMS,
Oracle.

1982 IBM released their first relational database system, SQL!DS (SQL!Data System).

1985 IBM released DB2 (Database 2).

1987 Microsoft released SQL Server.

1989 The American National Standards Institute (ANSI) published the first set of standards
for a database query language, called ANSI/ISO SQL-89, or SQLl. Because they were
not stringent standards, most commercial products could claim adherence.

1992 ANSI published revised standards (ANSI/ISO SQL-92, or SQL2) that were more
stringent than SQLl and incorporated many new features. These standards introduced
levels of conformance that indicated the extent to which a dialect met the standards.

1999 ANSI published SQL3 (ANSI/ISO SQL: 1999), which incorporated new features,
including support for objects. Levels of conformance were dropped and were replaced
by a core specification along with specifications for nine additional packages.

2003 ANSI published SQL:2003, which introduced XML-related features,
standardized sequences, and identity columns.

2006 ANSI published SQL:2006, which defined how SQL can be used with XML. The
standards also allowed applications to integrate XQuery into their SQL code.

2008 ANSI published SQL:2008, which introduced INSTEAD OF triggers and the
TRUNCATE statement.

2011 ANSI published SQL:2011 , which included improved support for temporal databases.

2016 ANSI published SQL:2016, which introduced polymorphic table functions, row pattern
recognition, and support for JSON.

Description
• SQL-92 initially provided for three levels of conformance: entry, intermediate, and

full . A transitional level was later added between the entry and intermediate levels.

• SQL: 1999 includes a core specification that defines the essential elements for conformance,
plus nine packages. Each package is designed to serve a specific market niche.

• Although SQL is a standard language, each vendor has its own SQL dialect, or
variant, that may include extensions to the standards. SQL Server's SQL dialect is
called Transact-SQL.

How knowing "standard SQL'' helps you
• The most basic SQL statements are the same for all SQL dialects.

• Once you have learned one SQL dialect, you can easily learn other dialects.

How knowing "standard SQL'' does not help you
• Any non-trivial application will require modification when moved from one SQL

database to another.

Figure 1-8 A brief history of SOL

20 Section 1 An introduction to SQL

A comparison of Oracle, DB2, MySQL,
and SQL Server

Although this book is about SQL Server, you may want to know about some
of the other SQL-based relational database management systems. Figure 1-9
compares SQL Server with three of the most popular: Oracle, DB2, and MySQL.

Oracle has a huge installed base of customers and continues to dominate the
marketplace, especia11y for servers running the Unix or Linux operating system.
Oracle works well for large systems and has a reputation for being extremely
reliable, but also has a reputation for being expensive and difficult to use.

DB2 was originally designed to run on IBM mainframe systems and
continues to be the premier database for those systems. It also dominates in
hybrid environments where IBM mainframes and newer servers must coexist.
Although it has a reputation for being expensive, it also has a reputation for
being reliable and easy to use.

MySQL runs on all major operating systems and is widely used for web
applications. MySQL is an open-source database, which means that any
developer can view and improve its source code. In addition, the MySQL
Community Server is free for most users, although Oracle also sells other
editions of MySQL that include customer support and advanced features.

SQL Server was designed by Microsoft to run on Windows and is widely
used for small- to medium-sized departmental systems. It has a reputation for
being inexpensive and easy to use.

Until2016, SQL Server ran only under the Windows operating system. By
contrast, Oracle and MySQL ran under most modern operating systems. As a
result, if a company used Linux as the operating system for its database servers,
it couldn't use SQL Server and had to use Oracle or MySQL. However, in 2016,
Microsoft released a preview version of SQL Server that runs under Linux, and
it released a final version in 2017. This should allow SQL Server to compete
with Oracle and MySQL when a company prefers to use Linux, not Windows,
for its database servers. Although this book focuses on using SQL Server with
Windows, the database engine is basically the same for Linux.

If you search the Internet, you'll find that dozens of other relational database
products are also available. These include proprietary databases like Informix,
SQL Anywhere, and Teradata. And they include open-source databases like
PostgreSQL.

Chapter 1 An introduction to relational databases and SQL 21

A comparison of Oracle, 082, MySQL, and SQL Server
Oracle 082 MySQL SQL Server

Released 1979 1985 2000 1987

Platforms Unix/Linux OS/390, z/OS, and AIX Unix/Linux Windows
z/OS Unix/Linux Windows Linux
Windows Windows mac OS
macOS macOS

Description
• Oracle is typically used for large, mission-critical systems that run on one or more

Unix servers.

• DB2 is typically used for large, mission-critical systems that run on legacy IBM
mainframe systems using the z/OS or OS/390 operating system.

• MySQL is a popular open-source database that runs on all major operating systems
and is commonly used for web applications.

• SQL Server is typically used for small- to medium-sized systems that run on one or
more Windows servers. However, SQL Server 2017 and later are designed to run on
Linux as well as Windows.

Figure 1-9 A comparison of Oracle, 0 82, MySQL, and SOL Server

22 Section 1 An introduction to SQL

The Transact-SQL statements
In the topics that follow, you'llleam about some of the SQL statements

provided by SQL Server. As you'll see, you can use some of these statements to
manipulate the data in a database, and you can use others to work with database
objects. Although you may not be able to code these statements after reading
these topics, you should have a good idea of how they work. Then, you'll be
better prepared to learn the details of coding these statements when they're
presented in sections 2 and 3 of this book.

An introduction to the SQL statements

Figure 1-10 summarizes some of the most common SQL statements. As
you can see, these statements can be divided into two categories. The statements
that work with the data in a database are called the data manipulation language
(DML). These four statements are the ones that application programmers use the
most. You'll see how these statements work later in this chapter, and you'lllearn
the details of using them in section 2 of this book.

The statements that work with the objects in a database are called the
data definition language (DDL). On large systems, these statements are used
exclusively by database administrators, or DBAs. It's the DBA's job to maintain
existing databases, tune them for faster performance, and create new databases.
On smaller systems, though, the SQL programmer may also be the DBA. You'll
see examples of some of these statements in the next figure, and you'lllearn how
to use them in chapter 11.

Chapter 1 An introduction to relational databases and SQL 23

SQL statements used to work with data (DML)
Statement Description

SELECT

INSERT

UPDATE

DELETE

Retrieves data from one or more tables.

Adds one or more new rows to a table.

Changes one or more existing rows in a table.

Deletes one or more existing rows from a table.

SQL statements used to work with database objects (DOL)
Statement Description

CREATE DATABASE

CREATE TABLE

CREATE INDEX

ALTER TABLE

ALTER INDEX

DROP DATABASE

DROP TABLE

DROP INDEX

Description

Creates a new database.

Creates a new table in a database.

Creates a new index for a table.

Changes the structure of an existing table.

Changes the structure of an existing index.

Deletes an existing database.

Deletes an existing table.

Deletes an existing index.

• The SQL statements can be divided into two categories: the data manipulation
language (DML) that lets you work with the data in the database and the data
definition language (DDL) that lets you work with the objects in the database.

• SQL programmers typically work with the DML statements, while database
administrators (DBAs) use the DDL statements.

Figure 1-10 An introduction to the SOL statements

24 Section 1 An introduction to SQL

Typical statements
for working with database objects

To give you an idea of how you use the DDL statements you saw in the
previous figure, figure 1-11 presents five examples. The first statement creates an
accounts payable database named AP. This is the database that's used in many of
the examples throughout this book.

The second statement creates the Invoices table you saw earlier in this
chapter. If you don't understand all of this code right now, don't worry. You' ll
learn how to code statements like this later in this book. For now, just realize that
this statement defines each column in the table, including its data type, whether
or not it allows null values, and its default value if it has one. In addition, it
identifies identity columns, primary key columns, and foreign key columns.

The third statement in this figure changes the Invoices table by adding a
column to it. Like the statement that created the table, this statement specifies all
the attributes of the new column. Then, the fourth statement deletes the column
that was just added.

The last statement creates an index on the Invoices table. In this case, the
index is for the VendoriD column, which is used frequently to access the table.
Notice the name that's given to this index. This follows the standard naming
conventions for indexes, which you '11 learn about in chapter 11 .

Chapter 1 An introduction to relational databases and SQL 25

A statement that creates a new database
CREATE DATABASE AP;

A statement that creates a new table
CREATE TABLE Invoices
(

) ;

InvoiceiD
VendoriD
InvoiceNwnber
InvoiceDate
InvoiceTotal
Payment Total
Credit Total
TermsiD
InvoiceDueDate
PaymentDate

INT
INT
VARCHAR (50)
DATE
MONEY
MONEY
MONEY
INT
DATE
DATE

NOT NULL IDENTITY PRIMARY KEY,
NOT NULL REFERENCES Vendors(VendoriD),
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL DEFAULT 0 ,
NOT NULL DEFAULT 0 ,
NOT NULL REFERENCES Terms(TermsiD),
NOT NULL,
NULL

A statement that adds a new column to the table
ALTER TABLE Invoices
ADD BalanceDue MONEY NOT NULL;

A statement that deletes the new column
ALTER TABLE Invoices
DROP COLUMN BalanceDue;

A statement that creates an index on the table
CREATE INDEX IX_ Invoices_VendoriD

ON Invoices (VendoriD);

Description
• The REFERENCES clause for a column indicates that the column contains a

foreign key, and it names the table and column that contains the primary key.
Because the Invoices table includes foreign keys to the Vendors and Terms tables,
these tables must be created before the Invoices table.

• Because default values are specified for the PaymentTotal and CreditTotai columns,
these values don't need to be specified when a row is added to the table.

• Because the PaymentDate column accepts nulls, a null value is assumed if a value
isn't specified for this column when a row is added to the table.

Figure 1-11 Typical statements for working with database objects

26 Section 1 An introduction to SQL

How to query a single table

Figure 1-12 shows how to use a SELECT statement to query a single table in
a database. At the top of this figure, you can see some of the columns and rows
of the Invoices table. Then, in the SELECT statement that follows, the SELECT
clause names the columns to be retrieved, and the FROM clause names the table
that contains the columns, called the base table. In this case, six columns will be
retrieved from the Invoices table.

Notice that the last column, BalanceDue, is calculated from three other
columns in the table. In other words, a column by the name of BalanceDue
doesn' t actually exist in the database. This type of column is called a calculated
value, and it exists only in the results of the query.

In addition to the SELECT and FROM clauses, this SELECT statement
includes a WHERE clause and an ORDER BY clause. The WHERE clause gives
the criteria for the rows to be selected. In this case, a row is selected only if it has
a balance due that's greater than zero. And the returned rows are sorted by the
InvoiceDate column.

This figure also shows the result table, or result set, that's returned by the
SELECT statement. A result set is a logical table that 's created temporarily
within the database. When an application requests data from a database, it
receives a result set.

Chapter 1 An introduction to relational databases and SQL 27

The Invoices base table
lnvoiceiD VendoriD Invoice Number Invoice Date Invoice Total Payment Total Credit Total TermsiD "

1 [... !.·.·.·.·.·.·.·.·.·.-.·.-.·.·.·.-.·.·.~·.·.~] 122 989319-457 2019-1 ().08 3813.33 3813.33 0.00 3
2 2 123 263253241 2019-11}10 40.20 40.20 0.00 3

3 3 123 963253234 2019-11}13 138.75 138.75 0.00 3
4 4 123 2.()00. 2993 2019-11}16 144.70 144.70 0.00 3

5 5 123 963253251 2019-11}16 15.50 15.50 0.00 3
6 6 123 963253261 2019-11}16 42.75 42.75 0.00 3

7 7 123 963253237 2019-11}21 m .50 172.50 0.00 3

8 8 89 125521} 1 2019-11}24 95.00 95.00 0.00 1

9 9 121 97/488 2019-11}24 601.95 601.95 0.00 3

10 10 123 263253250 2019-11}24 42.67 42.67 0.00 3
11 11 123 963253262 2019-11}25 42.50 42.50 0.00 3

12 12 96 177271.001 2019-11}26 662.00 662.00 0.00 2
13 13 95 111-92R-10096 2019-11}30 16.33 16.33 0.00 2

14 14 115 25022117 2019-11-()1 6.00 6.00 0.00 4
15 15 48 P02-88DnS7 2019-11-()3 856.92 856.92 0.00 3 ..,
<)

A SELECT statement that retrieves and sorts selected columns and rows
from the Invoices table

SELECT InvoiceNumber, InvoiceDate, InvoiceTota l,
PayrnentTotal , CreditTotal,
InvoiceTotal - PayrnentTotal - CreditTotal AS BalanceDue

FROM Invoices
WHERE InvoiceTotal - PayrnentTotal - CreditTotal > 0
ORDER BY InvoiceDate;

The result set defined by the SELECT statement
Invoice Number Invoice Date Invoice Total Payment Total CreditT otal Balance Due

1 i"'391'04"""""'""""""'i 2021}01-10
l - J

85.31 0.00 0.00 85.31

2 963253264 2021}01-18 52.25 0.00 0.00 52.25

3 31361833 2021}01-21 579.42 0.00 0.00 579.42

4 263253268 2021}01-21 59.97 0.00 0.00 59.97

5 263253270 2021}01-22 67.92 0.00 0.00 67.92

6 263253273 2021}01-22 30.75 0.00 0.00 30.75
~

Concepts

"

L

• You use the SELECT statement to retrieve selected columns and rows from a base
table. The result of a SELECT statement is a result table, or result set, like the one
shown above.

• A result set can include calculated values that are calculated from columns in the
table.

• The execution of a SELECT statement is commonly referred to as a query.

Figure 1-1 2 How to query a single table

28 Section 1 An introduction to SQL

How to join data from two or more tables

Figure 1-13 presents a SELECT statement that retrieves data from two
tables. This type of operation is called a join because the data from the two
tables is joined together into a single result set. For example, the SELECT
statement in this figure joins data from the Invoices and Vendors tables.

An inner join is the most common type of join. When you use an inner join,
rows from the two tables in the join are included in the result table only if their
related columns match. These matching columns are specified in the FROM
clause of the SELECT statement. In the SELECT statement in this figure, for
example, rows from the Invoices and Vendors tables are included only if the
value of the VendoriD column in the Vendors table matches the value of the
VendoriD column in one or more rows in the Invoices table. If there aren't any
invoices for a particular vendor, that vendor won't be included in the result set.

Although this figure shows only how to join data from two tables, you
should know that you can extend this idea to join data from three or more
tables. If, for example, you want to include line item data from a table named
InvoiceLineltems in the results shown in this figure, you can code the FROM
clause of the SELECT statement like this:

FROM Vendo r s
INNER JOIN Invoices

ON Vendors . Vendor iD = Invoic es . VendoriD
INNER JOIN InvoiceLineitems

ON I nvoices . Invoicei D = InvoiceLineite ms. Inv oiceiD

Then, in the SELECT clause, you can include any of the columns in the
InvoiceLineitems table.

In addition to inner joins, SQL Server supports outer joins and cross joins.
You'lllearn more about the different types of joins in chapter 4.

Chapter 1 An introduction to relational databases and SQL 29

A SELECT statement that joins data from the Vendors and Invoices tables
SELECT VendorName, InvoiceNumber, InvoiceDate, InvoiceTotal
FROM Vendors INNER JOIN Invoices

ON Vendors.VendoriD = Invoices.VendoriD
WHERE InvoiceTotal >= 500
ORDER BY VendorName, InvoiceTotal DESC;

The result set defined by the SELECT statement
VendorName Invoice Number Invoice Date Invoice Total

r.·.~.rt..~i.~i.~·.·.·!~~~·~~~.~·~~~~:·.·.~~·.·~.] 509786 2019-12·18 6940.25

2 Cahners Publishing Company 587056 2019-12·28 2184.50

3 Computerworid 367447 2019-12·11 2433.00

4 Data Reproductions Corp 40318 2019-12.01 21842.00

5 Dean Witter Reynolds 75C-90227 2019-12·11 1367.50

6 Dig~al Dreamworks P02-3m 2019-11·21 7125.34

7 Federal Express Corporation 963253230 2020.()1.()7 739.20

8 Ford Motor Cred~ Company 9982n1 2020.()1-24 503.20

9 Franchise Tax Board RTR-72·366 ... 2019-11·25 1600.00

10 Fresno County Tax Conector P02-88D77S7 2019-11.()3 856.92

11 IBM Q54.544.3 2019-12.()9 1083.58

12 Ingram 31359783 2019-12.()3 1575.00

13 Ingram 31361833 2020.()1-21 579.42

14 Manoy Lithographing Inc G-2058 2019-11·28 37966.19

15 Maftoy Lithographing Inc P.Q259 2020.()1-19 26881.40

16 MaUoy Lithographing Inc G-2060 2020.()1-24 23517.58

17 Manoy Lithographing Inc P.Q608 2020.()1-23 20551.18
~

Concepts
• A join lets you combine data from two or more tables into a single result set.

• The most common type of join is an inner join. This type of join returns rows from
both tables only if their related columns match.

• An outer join returns rows from one table in the join even if the other table doesn't
contain a matching row.

Figure 1-13 How to join data from two or more tables

30 Section 1 An introduction to SQL

How to add, update, and delete data in a table

Figure 1-14 shows how you can use the INSERT, UPDATE, and DELETE
statements to modify the data in a table. The first statement in this figure, for
example, uses the INSERT statement to add a row to the Invoices table. To do
that, the INSERT clause names the columns whose values are supplied in the
VALUES clause. You' ll learn more about specifying column names and values
in chapter 7. For now, just realize that you have to specify a value for a column
unless it's an identity column, a column that allows null values, or a column
that's defined with a default value.

The two UPDATE statements in this figure illustrate how you can change the
data in one or more rows of a table. The first statement, for example, assigns a
value of 35.89 to the CreditTotal column of the invoice in the Invoices table with
invoice number 367447. The second statement adds 30 days to the invoice due
date for each row in the Invoices table whose TermsiD column has a value of 4.

To delete rows from a table, you use the DELETE statement. The first
DELETE statement in this figure, for example, deletes the invoice with invoice
number 4-342-8069 from the Invoices table. The second DELETE statement
deletes all invoices with a balance due of zero.

Before I go on, you should know that INSERT, UPDATE, and DELETE
statements are often referred to as action queries because they perform an action
on the database. By contrast, SELECT statements are referred to as queries since
they simply query the database. When I use the term query in this book, then,
I'm usually referring to a SELECT statement.

Chapter 1 An introduction to relational databases and SQL 31

A statement that adds a row to the Invoices table
INSERT INTO Invoices (VendoriD, InvoiceNumber, InvoiceDate,

InvoiceTotal, TermsiD, InvoiceDueDate)
VALUES (12, '3289175', '2/18/2020 •, 165, 3, '3/18/2020 I);

A statement that changes the value of the CreditTotal column
for a selected row in the Invoices table

UPDATE Invoices
SET CreditTotal = 35.89
WHERE InvoiceNumber = '367447';

A statement that changes the values in the lnvoiceDueDate column
for all invoices with the specified TermsiD

UPDATE Inv oices
SET InvoiceDueDate = InvoiceDueDate + 30
WHERE TermsiD = 4;

A statement that deletes a selected invoice from the Invoices table
DELETE FROM Invoices
WHERE InvoiceNumber = '4-342-8069';

A statement that deletes all paid invoices from the Invoices table
DELETE FROM Invoices
WHERE InvoiceTota1 - Pay.mentTota1 - CreditTota1 = 0;

Concepts
• You use the INSERT statement to add rows to a table.

• You use the UPDATE statement to change the values in one or more rows of a table
based on the condition you specify.

• You use the DELETE statement to delete one or more rows from a table based on
the condition you specify.

• The execution of an INSERT, UPDATE, or DELETE statement is often referred to
as an action query.

Warning
• Until you read chapter 7 and understand the effect that these statements can have on

the database, do not execute the statements shown above.

Figure 1-14 How to add, update, and delete data in a table

32 Section 1 An introduction to SQL

SQL coding guidelines

SQL is a freeform language. That means that you can include line breaks,
spaces, and indentation without affecting the way the database interprets the
code. In addition, SQL is not case-sensitive like some languages. That means
that you can use uppercase or lowercase letters or a combination of the two
without affecting the way the database interprets the code.

Although you can code SQL statements with a freeform style, we suggest
that you follow the coding recommendations presented in figure 1-15. First, you
should start each clause of a statement on a new line. In addition, you should
continue long clauses onto multiple lines and you should indent the continued
lines. You should also capitalize the first letter of each keyword in a statement to
make them easier to identify, you should capitalize the first letter of each word in
table and column names, and you should end each statement with a semicolon.
Although the semicolon isn't currently required in most cases, it will be in a
future version of SQL Server. So you should get used to coding it now. Finally,
you should use comments to document code that's difficult to understand.

The examples at the top of this figure illustrate these coding recommenda
tions. The first example presents an unformatted SELECT statement. As you can
see, this statement is difficult to read. By contrast, this statement is much easier
to read after our coding recommendations are applied, as you can see in the
second example.

The third example illustrates how to code a block comment. This type
of comment is typically coded at the beginning of a statement and is used to
document the entire statement. Block comments can also be used within a
statement to describe blocks of code, but that's not common.

The fourth example in this figure includes a single-line comment. This type
of comment is typically used to document a single line of code. A single-line
comment can be coded on a separate line as shown in this example, or it can be
coded at the end of a line of code. In either case, the comment is delimited by the
end of the line.

Although many programmers sprinkle their code with comments, that
shouldn' t be necessary if you write your code so it's easy to read and understand.
Instead, you should use comments only to clarify portions of code that are hard
to understand. Then, if you change the code, you should be sure to change the
comments too. That way, the comments will always accurately represent what
the code does.

Chapter 1 An introduction to relational databases and SQL 33

A SELECT statement that's difficult to read
select invoicenumber, invoicedate, invoicetotal,
invoicetotal - paymenttotal - credittotal as balancedue
from invoices where invoicetotal - paymenttotal -
credittotal > 0 order by invoicedate

A SELECT statement that's coded with a readable style
Select InvoiceNumber, InvoiceDate, InvoiceTotal,

InvoiceTotal - PaymentTotal - CreditTotal As BalanceDue
From Invoices
Where InvoiceTotal - PaymentTotal - CreditTotal > 0
Order By InvoiceDate;

A SELECT statement with a block comment
/*
Author: Joel Murach
Date: 1/22/2020
*I
SELECT InvoiceNumber, InvoiceDate, InvoiceTotal,

InvoiceTotal - PaymentTotal - CreditTotal AS BalanceDue
FROM Invoices;

A SELECT statement with a single-line comment
SELECT InvoiceNumber, InvoiceDate, InvoiceTotal,

InvoiceTotal - PaymentTotal - CreditTotal AS BalanceDue
-- The fourth column calculates the balance due for each invoice

FROM Invoices;

Coding recommendations
• Start each new clause on a new line.

• Break long clauses into multiple lines and indent continued lines.

• Capitalize the fi rst letter of each keyword and each word in column and table names.

• End each statement with a semicolon (;).

• Use comments only for portions of code that are difficult to understand.

How to code a comment
• To code a block comment, type/* at the start of the block and */ at the end.

• To code a single-line comment, type -- followed by the comment.

Description
• Line breaks, white space, indentation, and capitalization have no effect on the

operation of a statement.

• Comments can be used to document what a statement does or what specific parts of
a statement do. They are not executed by the system.

Note
• Throughout this book, SQL keywords are capitalized so they're easier to identify.

However, it's not necessary or customary to capitalize SQL keywords in your own code.

Figure 1-1 5 SOL coding guidelines

34 Section 1 An introduction to SQL

How to work
with other database objects

In addition to the tables you've already learned about, relational databases
can contain other objects. In the two topics that follow, you'll be introduced
to four of those objects: views, stored procedures, triggers, and user-defined
functions. Then, in section 4, you' ll learn more about how to code and use these
objects.

How to work with views

A view is a predefined query that's stored in a database. To create a view,
you use the CREATE VIEW statement as shown in figure 1-16. This statement
causes the SELECT statement you specify to be stored with the database. In
this case, the CREATE VIEW statement creates a view named VendorsMin that
retrieves three columns from the Vendors table.

Once you've created the view, you can refer to it instead of a table in
most SQL statements. For this reason, a view is sometimes referred to as a
viewed table. For example, the SELECT statement in this figure refers to the
VendorsMin view rather than to the Vendors table. Notice that this SELECT
statement makes use of the * operator, which causes all three of the columns
defined by the view to be returned.

If you choose to, you can let a user query certain views but not query the
tables on which the views are based. In this way, views can be used to restrict the
columns and rows of a table that the user can see. In addition, you can simplify
a user's access to one or more tables by coding complex SELECT queries as
views.

Chapter 1 An introduction to relational databases and SQL 35

A CREATE VIEW statement for a view named VendorsMin
CREATE VIEW VendorsMin AS

SELECT VendorName, VendorState, VendorPhone
FROM Vendors;

The virtual table that's represented by the view
VendorName VendorState VendorPhone

1 L·.Q.S.~~.P..~.~.~.i~~~.~~·.·.·.·~~.·~~.·~~.·~~~~~~~~~.·~~.·~~.·~~.·~~.·~.·.·~] w I (800) 555-1205

2 National Information Data Ctr DC (301) 555-8950

3 Register of Copyrights DC NULL

4 Jobtrak CA (800) 55S.Sn5

5 Newbrige Book Oubs NJ (800) 555-9980

6 California Olamber Of Commerce CA (916) 555-6670

7 Towne Advertiser's Maning Svcs CA NULL

8 B Fl Industries CA (559) 555-1551

9 Pacific Gas & Bectric CA (800) 555-6081

10 Robbins MobUe Lock hid Key CA (559) 555-9375

"""'

A SELECT statement that uses the VendorsMin view
SELECT * FROM VendorsMin
WHERE VendorState = 'CA'
ORDER BY VendorName ;

The result set that's returned by the SELECT statement
VendorName

1 L·~·~·~··.?.f.ii.~.~.·.·.F.~F..i.~~~~~.·.·.·.·.·.·.~·.·.~·.·~~.·~.·.·.·.·.·.J
2 American Express

3 ASC Signs

4 Aztek Label

5 Bertelsmann Industry Svcs. Inc

6 BFIIndustries

7 Bin Jones

8 BiQ Marvin Electric Inc

9 Blanchard & Johnson Associates

Description

VendorState VendorPhone

CA

CA

CA

CA

CA

CA

CA

CA

CA

(559) 555-8300

(800) 555-3344

NULL

(714) 555-9000

(805) 555-0584

(559) 555-1551

NULL

(559) 555-5106

(214) 555-3647

• A view consists of a SELECT statement that's stored with the database. Because
views are stored as part of the database, they can be managed independently of the
applications that use them.

• A view behaves like a virtual table. Since you can code a view name anywhere
you'd code a table name, a view is sometimes called a viewed table.

• Views can be used to restrict the data that a user is allowed to access or to present
data in a form that 's easy for the user to understand. In some databases, users may
be allowed to access data only through views.

Figure 1-1 6 How to work with views

36 Section 1 An introduction to SQL

How to work with stored procedures, triggers,
and user-defined functions

A stored procedure is a set of one or more SQL statements that are stored
together in a database. To create a stored procedure, you use the CREATE
PROCEDURE statement as shown in figure 1-17. Here, the stored procedure
contains a single SELECT statement. To use the stored procedure, you send
a request for it to be executed. One way to do that is to use the Transact-SQL
EXEC statement as shown in this figure. You can also execute a stored procedure
from an application program by issuing the appropriate statement. How you do
that depends on the programming language and the API you're using to access
the database.

When the server receives the request, it executes the stored procedure. If the
stored procedure contains a SELECT statement like the one in this figure, the
result set is sent back to the calling program. If the stored procedure contains
INSERT, UPDATE, or DELETE statements, the appropriate processing is
performed.

Notice that the stored procedure in this figure accepts an input parameter
named @State from the calling program. The value of this parameter is then
substituted for the parameter in the WHERE clause so that only vendors in the
specified state are included in the result set. When it's done with its processing, a
stored procedure can also pass output parameters back to the calling program. In
addition, stored procedures can include control-of-flow language that determines
the processing that's done based on specific conditions. You' ll learn more about
how to code stored procedures in chapter 15.

A trigger is a special type of stored procedure that's executed automatically
when an insert, update, or delete operation is executed on a table or when a DOL
statement is executed on a database. Triggers are used most often to validate
data before a row is added or updated, but they can also be used to maintain
the relationships between tables or to provide information about changes to the
definition of a database.

A user-defined function, or UDF, is also a special type of procedure. After
it performs its processing, a UDF can return a single value or an entire table to
the calling program. You' llleam how to code and use user-defined functions and
triggers in chapter 15.

Chapter 1 An introduction to relational databases and SQL 37

A CREATE PROCEDURE statement
for a procedure named spVendorsByState

CREATE PROCEDURE spVendorsByState @StateVar char(2) AS
SELECT VendorName, VendorState, VendorPhone
FROM Vendors
WHERE VendorState = @Statevar
ORDER BY VendorName;

A statement that executes the spVendorsByState stored procedure
EXEC spVendorsByState 'CA';

The result set that's created when the stored procedure is executed
VendorName VendorState VendorPhone

1 [_·~.b..~i..·.~.~.~.·~.F.~~.~.~~~~~~.·.·~.·.·~~.·~~.·~~.·~~.·.·~.·] CA (559) 555-8300
2 American Express CA (800) 555-3344

ASC Signs

Aztek label

3

4

5

6

7

8

Bertelsmann Industry Svcs. Inc

B F I Industries

Bift Jones

BiD Marvin Bectric Inc

"""""'

Concepts

CA

CA

CA

CA

CA

CA

"""

NULL

(714) 555-9000

(805) 555-0584

(559) 555-1551

NULL

(559) 555-5106

• A stored procedure is one or more SQL statements that have been compiled and
stored with the database. A stored procedure can be started by application code on
the client.

• Stored procedures can improve database performance because the SQL statements
in each procedure are only compiled and optimized the first time they're executed.
By contrast, SQL statements that are sent from a client to the server have to be
compiled and optimized every time they're executed.

• In addition to SELECT statements, a stored procedure can contain other SQL
statements such as INSERT, UPDATE, and DELETE. It can also contain
control-of-flow language, which lets you perform conditional processing within the
stored procedure.

• A trigger is a special type of procedure that's executed when rows are inserted,
updated, or deleted from a table or when the definition of a database is changed.
Triggers are typically used to check the validity of the data in a row that's being
updated or added to a table.

• A user-defined function (UDF) is a special type of procedure that can return a value
or a table.

Figure 1-17 How to use stored procedures, triggers, and user-defined functions

38 Section 1 An introduction to SQL

How to use SQL
from an application program

This book teaches you how to use SQL from within the SQL Server
environment. However, SQL is commonly used from application programs
too. So in the topics that follow, you'll get a general idea of how that works.
And you'll see that it's easy to recognize the SQL statements in an application
program because they're coded just as they would be if they were running on
their own.

Common data access models

Figure 1-18 shows two common ways for an application to access a SQL
Server database. First, you can access a SQL Server database from a .NET
application written using a .NET language such as C# or Visual Basic. To
do that, you can use ADO. NET. This is a data access model developed by
Microsoft, and it can communicate directly with SQL Server.

Because ADO.NET uses a disconnected data architecture, its use has
become widespread, particularly for web-based applications. That's because
web-based applications by necessity work with disconnected data. That means
that once an application has sent a response to the client, it doesn' t maintain its
connection to the database.

The second data access model in this figure is JDBC, which is used by Java
applications. Unlike ADO.NET, JDBC requires additional software, called a
driver, to communicate with SQL Server.

Although it's not shown here, another option for accessing SQL Server data
that's becoming more and more popular is using an object-relational mapping
(ORM) framework. When you use an ORM framework, the data in a relational
database is mapped to the objects used by an object-oriented programming
language such as C# or Java. Then, the application can make requests against the
object model, and those requests are translated into ones that can be executed
by the database. This simplifies the code that's needed to communicate with the
database. Before you start developing an application that works with a database,
then, you should consider using an ORM framework such as Entity Framework
(EF) for .NET applications and Hibernate for Java applications.

Chapter 1 An introduction to relational databases and SQL 39

Two common options for accessing SQL Server data

Description
• To work with the data in a SQL Server database, an application uses a data access

model. For an application written in a .NET language such as C# or Visual Basic
that model is typically ADO.NET. For an application written in Java, that model is
typically JDBC (Java Database Connectivity).

• Each data access model defines a set of objects you can use to connect to and work
with a SQL Server database. For example, both of the models shown above include
a connection object that you can use to specify the information for connecting to a
database.

• Some of the data access models require additional software, called drivers, to
communicate with SQL Server. For example, JDBC requires a Java driver.

• ADO.NET, a data access model developed by Microsoft, includes its own driver so
it can communicate directly with SQL Server.

• In addition to working with ADO.NET and JDBC directly, you can use an object
relational mapping (ORM) framework. An ORM framework works by mapping the
data in a relational database to the objects used by an object-oriented programming
language. Then, the ORM translates requests to retrieve, insert, update, and delete
data so the DBMS will understand them.

• The most popular ORM framework for use with .NET applications is Entity
Framework (EF), which was developed by Microsoft. The most popular ORM
framework for use with Java is Hibernate. Both of these frameworks are
open-source.

Figure 1-18 Common data access models

40 Section 1 An introduction to SQL

How to use ADO.NET from a .NET application
-~--~

To illustrate how you use a data access model, figure 1-19 introduces you to
the basic ADO.NET objects that you use in a .NET application. Then, in the next
two figures, you' ll see some actual code that creates and uses these objects. Keep
in mind, though, that there's a lot more you need to know about ADO.NET than
what's presented here.

When you develop a .NET application, you can choose from several
languages, but the most popular are Visual Basic and C#. Although C# has
become more popular than Visual Basic over the past few years, the language
you choose is largely a matter of personal preference.

To access a database using the objects shown here, you execute command
objects. Then, a connection object is used to connect to the database, perform
the requested operation, and return the result. If you execute a command
that contains a SELECT statement, the result is a result set that contains the
rows you requested. Then, you can read the rows in the result set using a data
reader object. If you execute a command that contains an INSERT, UPDATE,
or DELETE statement, the result is a value that indicates if the operation was
successful.

Chapter 1 An introduction to relational databases and SQL 41

Basic ADO. NET objects in a .NET application

.NET data provider

Data reader

i
Select command

1 i
Connection

i
Insert, Delete, or
Update command

Description

Database server

• To work with the data in a SQL Server database from a .NET application, you can
use ADO.NET objects like the ones shown above.

• A .NET data provider provides the classes that let you create the objects that you
use to retrieve data from a database and to store data in a database.

• To retrieve data from a database, you execute a command object that contains a
SELECT statement. Then, the command object uses a connection object to connect
to the database and retrieve the data. You can then read the results one row at a time
using a data reader object.

• To insert, update, or delete data in a database, you execute a command object that
contains an INSERT, UPDATE, or DELETE statement. Then, the command object
uses a connection to connect to the database and update the data. You can then
check the value that's returned to determine if the operation was successful.

• After data is retrieved from a database or updated in a database, the connection is
closed and the resources used by the connection are released. This is referred to as
a disconnected data architecture.

Figure 1-19 How to use ADO. NET from a .NET application

42 Section 1 An introduction to SQL

Visual Basic code that retrieves data
from a SQL Server database

Figure 1-20 presents a Visual Basic function that uses the ADO.NET objects
shown in the previous figure. This function is from a simple application that
accepts a vendor ID from the user, retrieves the information for the vendor with
that ID from the Vendors table, and then displays that information. Although I
don' t expect you to understand this code, I hope it will give you a feel for how
you use SQL from an application program.

This function starts by creating a new Vendor object. Although it's not
shown here, this object contains properties that correspond to the columns in
the Vendors table. Then, this function creates the connection object that will be
used to connect to the database and sets the connection string for that object. The
connection string provides ADO.NET with the information it needs to connect to
the database.

Once the connection string is set, the next group of statements defines the
Command object that will be executed to retrieve the data from the database.
The first statement in this group creates the command object. Then, the next
statement assigns the connection object to the command object. That means
that when the statement that this object will contain is executed, it will use the
connection string in the connection object to connect to the database.

The next statement in this group specifies the SELECT statement to be
executed. If you review this statement, you'll see that the WHERE clause
includes a parameter named @VendoriD that will contain the value of the
vendor ID. This value is set by the last statement in this group.

The next statement opens the connection to the database. Then, the next
group of statements retrieves the vendor row and stores it in a Vendor object. To
do that, it starts by executing the command to create a data reader. Then, if the
vendor is found, it assigns the values of the columns in the row to the properties
of the Vendor object. Otherwise, the Vendor object is set to Nothing.

After all of the rows are processed, the data reader and connection are
closed. Then, the Vendor object is returned to the calling procedure.

Now that you've reviewed this code, you can see that there's a lot involved
in accessing a SQL Server database from an application program. However, you
can also see that only one statement in this figure actually involves using SQL.
That's the statement that specifies the SELECT statement to be executed. Of
course, if the program also provided for updating the data in the Vendors table, it
would include INSERT, UPDATE, and DELETE statements. With the skills that
you'lllearn in this book, though, you won't have any trouble coding the SQL
statements you need for your applications.

Chapter 1 An introduction to relational databases and SQL 43

A Visual Basic function that uses ADO.NET objects
to retrieve data from a SQL Server database

Public Share d Function GetVendor (vendoriD As Integer) As Vendor
Dim vendor As New Vendor

1 Create the c onnec tion objec t
Dim connection As New SqlConnection()
connection.ConnectionString = "Data Source=localhost \ SqlExpress; " &

"Initial Catalog=AP;Integrated Security=True"

1 Create the command object and set the connection,
1 SELECT statement, and parame ter value
Dim sele ctCommand As New SqlCommand
selectCommand.Connection = connection
selectCommand.CommandText = "SELECT VendoriD, " &

"VendorName, VendorAddressl, VendorAddress2, " &
"VendorCity, VendorState, VendorZipCode " &
"FROM Vendors WHERE VendoriD • ~VendoriD"

selectCommand.Parameters.AddWithValue ("@VendoriD", vendoriD)

1 Open the connection to the database
connection.Open ()

1 Retrieve the row specified by the SELECT statement
1 and load it into the Vendor object
Dim reader As SqlDataReader = selectCommand.ExecuteReader
If reader . Read Then

vendor.Vendor iD = Cint(reader ("VendoriD"))
vendor.VendorName = reader("VendorName") .ToString
vendor.VendorAddressl = reader ("VendorAddressl") .ToString
vendor.VendorAddress2 = reader("VendorAddress2").ToString
vendor.VendorCity = reader("VendorCity") .ToString
vendor.VendorState = reader ("VendorState").ToString
vendor.VendorZipCode = reader ("VendorZipCode").ToString

Else
vendor = Nothing

End If
reader .Close()

1 Close the connection to the database
connection.Close()

Return vendor
End Function

Description
• To issue a SQL statement from a Visual Basic program, you can create ADO.NET

objects like the ones shown above.

• After you create the ADO.NET objects, you have to set the properties of those
objects that define how they work. For example, the ConnectionString property
of a connection object contains the information ADO.NET needs to connect to a
database.

Figure 1-20 Visual Basic code that retrieves data from a SOL Server database

44 Section 1 An introduction to SQL

C# code that retrieves data
from a SQL Server database

Figure 1-21 presents C# code that uses the ADO.NET objects to retrieve data
from a SQL Server database. This code provides the same functionality as the
Visual Basic code presented in figure 1-20. If you compare the code presented in
these two figures, you'll see that both Visual Basic and C# use the same
ADO.NET objects that are provided as part of the .NET Framework.

The main difference is that the C# language uses a different syntax than
Visual Basic. This syntax is similar to the syntax that's used by C++ and Java.
As a result, if you already know C++ or Java, it should be relatively easy for you
to learn C#. Conversely, once you learn C#, it's easier to learn C++ or Java.

Chapter 1 An introduction to relational databases and SQL 45

A C# method that uses ADO.NET objects
to retrieve data from a SQL Server database

public static Vendor GetVendor(int vendoriD)
{

}

Vendor vendor = new Vendor();

II Create the connection object
SqlConnection connection = new SqlConnection();
connection.ConnectionString = "Data Source=localhost\\SqlExpress;" +

"Initial Catalog=AP;Integrated Security=True";

II Create the command object and set the connection,
II SELECT statement, and parameter value
SqlCommand selectCommand = new SqlCommand();
selectCommand.Connection = connection;
selectCommand.CommandText = "SELECT VendoriD, " +

"VendorName , VendorAddressl, Ve ndorAddress 2, " +
"VendorCity, VendorState, VendorZipCode " +
" FROM Vendors WHERE VendoriD • @VendoriD" ;

selectCommand.Parameters.AddWithValue("@VendoriD", vendoriD);

II Open the connection to the database
connection.Open();

II Retrieve the row specified by the SELECT statement
II and load it into the Vendor object
SqlDataReader reader= selectCommand.ExecuteReader();
if (reader.Read())
{

vendor. VendoriD = (int) reader ["VendoriD"] ;
vendor.VendorName = reader["VendorName"] .ToString();
vendor.VendorAddressl = reader["VendorAddressl"].ToString();
vendor.VendorAddress2 = reader["VendorAddress2"].ToString();
vendor.VendorCity = reader["VendorCity"] .ToString();
vendor.VendorState = reader["VendorState"] .ToString();
vendor.VendorZipCode = reader["VendorZipCode"].ToString();

}

else
{

vendor = null;
}

reader.Close();

II Close the connection to the database
connection.Close();

return vendor;

Description
• To issue a SQL statement from a C# application, you can use ADO.NET objects

like the ones shown above.

Figure 1-21 C# code that retrieves data from a SOL Server database

46 Section 1 An introduction to SQL

Perspective
To help you understand how SQL is used from an application program,

this chapter has introduced you to the hardware and software components
of a client/server system. It has also described how relational databases are
organized and how you use some of the basic SQL statements to work with
the data in a relational database. With that as background, you're ready to start
using SQL Server. In the next chapter, then, you ' 11 learn how to use some of the
tools provided by SQL Server.

Terms

client
server
database server
network
client/server system
local area network (LAN)
enterprise system
wide area network (WAN)
network operating system
database management system

(DBMS)
back end
application software
data access API (application

programming interface)
front end
SQL (Structured Query Language)
SQL query
query results
application server
web server
business component
web application
web service
web browser
thin client
relational database
table
row
column
record
field
cell

primary key
composite primary key
non-primary key
unique key
index
foreign key
one-to-many relationship
one-to-one relationship
many-to-many relationship
data type
null value
default value
identity column
hierarchical database
parent/child relationship
network database
object database
relational database management

system (RDBMS)
Oracle
DB2 (Database 2)
ANSI (American National Standards

Institute)
levels of conformance
core specification
package
SQL dialect
extension
SQL variant
Transact-SQL
open-source database
data manipulation language (DML)
data definition language (DDL)

Chapter 1 An introduction to relational databases and SQL 47

database administrator (DBA)
base table
result table
result set
calculated value

J Oin

inner join
outer join
cross JOin

action query
comment
block comment
single-line comment
view
viewed table

stored procedure
input parameter
output parameter
control-of-flow language
user-defined function (UDF)
trigger
data access model
ADO.NET
JDBC (Java Database Connectivity)
disconnected data architecture
driver
command
connection
data source

2

How to use the
Management Studio
In the last chapter, you learned about some of the SQL statements you can use
to work with the data in a relational database. Before you learn the details of
coding these statements, however, you need to become familiar with a tool that
you can use to execute these statements against a relational database. Since this
book is about SQL Server 2019, this chapter will teach you about the primary
tool for working with SQL Server 2019, the SQL Server Management Studio.

An introduction to SQL Server 2019 50
A summary of the SQL Server 2019 tools 50
How to start and stop the database engine 52
How to enable remote connections 52

An introductionto the Management Studio 54
How to connect to a database server ... 54
How to navigate through the database objects 56

How to manage the database files 58
How to attach a database ... 58
How to detach a database 58
How to back up a database 60
How to restore a database 60
How to set the compatibility level for a database 62

How to view and modify the database 64
How to create database diagrams ... 64
How to view the column defin itions of a table ... 66
How to modify the column defin itions 66
How to view the data of a table 68
How to modify the data of a table ... 68

How to work with queries .. 70
How to enter and execute a query 70
How to handle syntax errors .. 72
How to open and save queries 74
An introduction to the Query Designer ... 76

How to view the documentationfor SQL Server 78
How to display the SQL Server documentation 78
How to look up information in the documentation 78

Perspective ... 80

50 Section 1 An introduction to SQL

An introduction to SQL Server 2019
The current version of Microsoft SQL Server, SQL Server 2019, is a

complete database management system. It consists of a database server that
provides the services for managing SQL Server databases and client tools that
provide an interface for working with the databases. Of these client tools, the
Management Studio is the primary tool for working with a database server.

Before I go on, you should know that you can follow along with the skills
presented in this chapter if you have access to SQL Server 2019. If that's not
the case, you can refer to appendix A of this book to learn how to download and
install it. In addition, you can refer to appendix A to download all of the database
and source code files used in this book. Once you do that, you can work along
with the book examples.

If you install SQL Server as described in appendix A of this book, a free
edition of SQL Server, called the SQL Server 2019 Express, will be installed on
your machine. Although the Express Edition restricts the number of processors,
the amount of memory, and the amount of data that SQL Server can manage, it
provides a realistic testing environment that is 100% compatible with the other
versions of SQL Server 2019. In fact, SQL Server Express is adequate for many
small and medium sized applications. And since it's free and easy to use, it's
perfect for learning about SQL Server. For example, I used SQL Server Express
to create and test all of the statements presented in this book.

Note, however, that SQL Server Express is strictly a database server, or
database engine. In other words, it doesn' t provide some of the client tools you
may need. In particular, it doesn' t include the Management Studio. That's why
appendix A describes how to install the Management Studio, which is also avail
able for free.

A summary of the SQL Server 2019 tools

Figure 2-1 summarizes the SQL Server 2019 client tools that you' ll learn
how to use in this book: the Management Studio and the Configuration Manager.
Although other tools exist for working with a SQL Server 2019 database, they are
commonly used by database administrators and other specialists, not application
developers. That's why they aren' t presented in this book.

Chapter 2 How to use the Management Studio 51

A summary of the SQL Server 2019 tools
Tool Description

SQL Server Management Studio The primary graphical tool that a developer uses
to work with a SQL Server 2019 database. You
can use this tool to work directly with database
objects and to develop and test SQL statements.

SQL Server Configuration Manager A graphical tool that you can use to start and
stop the database server.

Description
• To work with a SQL Server database and the data it contains, you can use the SQL

Server 2019 tools described above.

• After you install SQL Server 2019, you can access the Management Studio from
the Start-7Microsoft SQL Server Tools 18 program group, and you can access
the Configuration Manager from the Start-7Microsoft SQL Server 2019 program
group. To start one of these tools, just select it from its group.

• To make either of these tools easier to access, you can pin it to the Start menu by
right-clicking on it and selecting Pin to Start. Then, it will appear as a tile in the
Start menu and you can click on it to start it.

Figure 2-1 The SOL Server 2019 tools

52 Section 1 An introduction to SQL

How to start and stop the database engine

If you've installed SQL Server Express on your own system, you can use
the SQL Server Configuration Manager to start and stop the database engine
as described in figure 2-2. By default, the database engine starts automatically
when the operating system starts, which is usually what you want. However, you
may occasionally need to stop and then restart the engine. For example, some
changes you make to the database server won' t go into effect until you restart the
engme.

By the way, if you simply want to find out if the database engine is running,
you can do that by selecting SQL Server 2019 Services in the left pane. Then,
you can look at the State column in the right pane. In this figure, for example,
the Configuration Manager shows that the SQL Server Express database engine
. .
IS runmng.

How to enable remote connections

When you install SQL Server 2019, remote connections are disabled
by default. This is a security precaution that prevents other computers from
connecting to this instance of SQL Server before it has been properly secured.
As a result, if you have installed SQL Server 2019 and you want to allow other
computers to be able to access this instance of SQL Server, you must enable
remote connections. To do that, you can use the SQL Server Configuration
Manager tool as described in figure 2-2. Of course, if databases that contain
sensitive data are running under this instance of SQL Server, you'll want to
secure the database properly before you enable remote connections.

Chapter 2 How to use the Management Studio

The SQL Server Configuration Manager (Services)
Sql Server Configuration Manager 0 X

~ SQL Server Configuration Manager (locaij Name State Start Mode Log On As Proc6s 10
Cl SQL Server Services

,.[, SQL Server Network Configuration (32bit f.tj SQL Full-text Fiker Daemon Launc ... Running
·a SOL Server (SQLEXPRESS) Runmng Automatoc NT Servoce\MSSQLSSQLEXPRESS 3068

> -~·SOL Native Client 11.0Configuration (321 11'.>.-. sQL S R · Se · (SQ R ·
.[SOL Server Network Configuration li1V erver eportlng rv~ces "' unnlng

·~· SQL Native Client 11.0 Configuration ! SOL Server Agent (SQLEXPRfSS) Stopped
· · ~.!J SOL Server Browser Stopped

Manual NT Service\ MSSQLFDLauncherSS ...

Automatic NT Service\ ReportServerSSQLEXP ...

Other (Boo~ Syste ... NT AUTHORITY\NETWORKSERVI ...

Other (Boo~ Syste ... NT AUTHORITY\LOCALSERVICE

> <

The SQL Server Configuration Manager (Network Configuration)
Sql Server Configuration Manager -

File Action View Help

• +I ::J ID ut l 6
r-

~ SQL Server Configuration Manager (locaij Protocol Name Status
rJ SQL Server Services T"Shared Memory Enabled
,.[, SQL Server Network Configuration (32bit T"Named Pipes Disabled
.~. SQL Native Client 11.0 Configuration (321 . . . I

v ,.[, SQL Server Network Configuration Enable
Q.- Protocols for SOL EXPRESS

Disable ~
.~. SQL Native Client 11.0 Configuration

Properti .. _j
Help

< >
-
Enable selected protocol.

Description
• After you install SQL Server Express, the database server will start automatically

each time you start your PC by default

• To display the Configuration Manager, select Start-? Microsoft SQL Server
2019-?SQL Server 2019 Configuration Manager.

• To start or stop a service, select the service in the right pane, and use the buttons in
the toolbar to start or stop the service.

• To change the start mode for a service, right-click on the service in the right pane,
select the Properties command to display the properties for the service, select the
Service tab, and select the start mode you want from the Start Mode combo box.

• By default, remote connections are disabled for SQL Server 2019. To enable them,
expand the SQL Server Network Configuration node and select the Protocols node
for the server. Then, right-click on the protocol you want to enable and select the
Enable command.

Figure 2-2 How to work with the database server

3800
3024

0

0

0 X

53

54 Section 1 An introduction to SQL

An introduction
to the Management Studio

Once the SQL Server database engine is installed, configured, and running,
you can use the Management Studio to connect to an instance of the SQL Server
database engine. Then, you can use the Management Studio to work with the
SQL Server database engine as described throughout this chapter.

How to connect to a database server

When you start the Management Studio, a dialog box like the one in
figure 2-3 is displayed. This dialog box lets you select the instance of SQL
Server you want to connect to, and it lets you enter the required connection
information.

As you can see in this figure, you can use one of two types of authentication
to connect to a server. In most cases, you can select the Windows Authentication
option to let Windows supply the appropriate login name and password for you.

However, if you aren' t able to use Windows Authentication, you can use
SQL Server authentication. For example, you may need to use SQL Server
authentication if you're accessing your school's or company's server. In that
case, you can contact the database administrator to get an appropriate SQL
Server login name and password. For more information about both types of
authentication, please refer to chapter 17.

Chapter 2 How to use the Management Studio 55

How to connect using Windows authentication
di Connect to Server

~:

SQL Server

Database EnQne

~Ntllt.iij;l$i.1

Wndows AIAherlication

I ~

X

How to connect using SQL Server authentication
di Connect to Server X

SQL Server

Oataba"' EnQne

[@ ;t;tJJ.~tJI(!Q:IJ$1

I ~ Help

Description
• When you start the Management Studio, it displays a dialog box that allows you to

specify the information that's needed to connect to the appropriate database server.

• To connect to a database server, you use the Server Name combo box to enter or
select a path that specifies the database server. You begin by entering the name of
the computer, followed by a backslash, followed by the name of the SQL Server
database server.

• To connect to the SQL Server Express database engine when it's running on
your PC, you can use the localhost keyword to specify your computer as the host
machine, and you can use "SqlExpress" to specify SQL Server Express as the
database engine.

• If you select Windows authentication, SQL Server will use the login name and
password that you use for your computer to verify that you are authorized to
connect to the database server.

• If you select SQL Server authentication, you'll need to enter an appropriate
login name and password. This type of authentication is typically used only with
non-Windows clients.

Figure 2-3 How to connect to a database server

56 Section 1 An introduction to SQL

How to navigate through the database objects

Figure 2-4 shows how to use the Management Studio to navigate through the
database objects that are available from the current database server. By default,
the Object Explorer window is displayed on the left side of the Management
Studio window. If it isn't displayed, you can use the View menu to display it.

This window displays the instance of SQL Server that the Management
Studio is connected to, all of the databases that are attached to this instance of
SQL Server, and all objects within each database. These objects include tables,
columns, keys, constraints, triggers, indexes, views, stored procedures, functions,
and so on.

To navigate through the database objects displayed in the Object Explorer,
you can click on the plus (+) and minus (-) signs to the left of each node
to expand or collapse the node. In this figure, for example, I expanded the
Databases node. That way, all databases on the server are shown. Then, I
expanded the node for the database named AP to browse through all of the
objects for this database, and I expanded the Tables node for the AP database
to view all of the tables for this database. Finally, I expanded the Vendors table
node to show the types of database objects that are available for a table.

To work with a specific object, you can right-click on it to display a shortcut
menu. To view or modify the design of a table, for example, you can right-click on
the table and select the Design command. You' lllearn how to use this command
later in this chapter.

When you' re working with the Management Studio, you may occasionally
want to free up more space for the pane that's displayed to the right of the Object
Explorer. To do that, you can click on the AutoHide button that's displayed in
the top right of the Object Explorer. This button looks like a pushpin, and it
automatically hides the Object Explorer when you click on it. Then, a tab for the
Object Explorer is displayed on the left side of the Management Studio, and you
can display the window by pointing to this tab. You can turn off the AutoHide
feature by displaying the window and clicking on the AutoHide button again.

Before I go on, I want to point out the qualifier that's used on all of the table
names in this figure: dbo. This qualifier indicates the schema that the tables
belong to. In SQL Server, a schema is a container that holds objects. If you don't
specify a schema when you create an object, it's stored in the default schema,
dbo. As you' lllearn in chapter 17, you can use schemas to make it easier to
implement the security for a database. For now, you can assume that all the
objects you work with are stored in the dbo schema.

The SQL Server Management Studio
L; M1crosoft SQL Strver Management Stud1o

File Edit Vi"" ProJect Tools Wmdow Help

IJ . " ~

Object Explorer

Connect · f ' ¥ G ..j..

localhost\SQLEXPRESS (SQl Server 15.0.2000 • murach\ "'
8 Databases

m System Databases
1tJ Oat., base Snapshots

8 Iii AP
(!) Database Diagrams
9 Tables

Ill System Tables
IE FileTables
IE External T abies
IE Graph T abies
IE 1111 dbo.ContactUpdates
IE 1111 dbo.GlAccounts
IE 1111 dbo.lnvoiceArchive
l!l e dbo.lnvoicelineltems
IE 1111 dbo.lnvoices
IE 1111 dbo.T erms
13 1111 dbo.Vendors

lit Columns

IE Keys
[iJ Constraints

lit Triggers

IE Indexes

IE m!ll!ll
Gl Views
(II External Resources

IE Synonyms

Description

Chapter 2 How to use the Management Studio

QuiCk launch (Ctrl+ Q) p - 1: X

• The Management Studio is a graphical tool that you can use to work with the
objects in a SQL Server database.

• If the Object Explorer isn' t displayed, you can use the View menu to display it. You
can close this window by clicking the Close button at the top of the window.

• To navigate through the database objects displayed in the Object Explorer, click on
the plus (+) and minus (-) signs to the left of each node to expand or collapse the
node.

• To display a menu of commands for working with an object, right-click on the
object.

• If you want to automatically hide the Object Explorer, you can click on the
AutoHide button at the top of the Object Explorer. Then, you can display the
window by pointing to the Object Explorer tab that's displayed along the left side
of the Management Studio window.

Figure 2-4 How to navigate through the database objects

57

58 Section 1 An introduction to SQL

How to manage the database files
Before you can work with the objects that are stored within a database, you

need to create the database and its objects. If you have the files for an existing
SQL Server database, the easiest way to create the database is to attach those
files to the database server.

How to attach a database

Figure 2-5 shows how to use the Management Studio to attach the database
files for a SQL Server database to an instance of the server. A SQL Server
database consists of two types of files. The first file is the main data file, and it
has an extension of mdf. The second file is the log file, and it has an extension of
ldf.

If you have the data file for a database, the easiest way to attach the database
is to use the existing data file. To do that, you right-click on the Databases folder
and select the Attach Database command to display the Attach Databases dialog
box. Then, you can click on the Add button and use the resulting dialog box to
select the mdf file for the database. This should add both the data file and the log
file for the database to the Database Details pane at the bottom of the dialog box.
In this figure, for example, the Attach Databases dialog box shows both the mdf
and ldf fi les for the database named AP. Finally, click OK to attach the database.

If you want to attach a database that doesn't have a log file, or if you want to
create a new log file for a database, you can remove the log file for the database
before you click the OK button. To do that, select the log file in the Database
Details pane and click the Remove button. Then, when you click the OK button,
the Management Studio will create a new log file for the database.

Before you attach database files, you need to decide where you'd like to
store them. In most cases, you' ll store them in the default directory shown in
this figure. This is the directory where SQL Server 2019 stores the database files
for databases you create from scratch. For example, when you run the script
that creates the databases for this book as described in appendix A, SQL Server
will store the database files in this directory. If you want to store the files for a
database in a different location, though, you can do that too. You just need to
remember where you store them.

How to detach a database

After you attach a database file, you will sometimes need to detach it. If,
for example, you try to move a database file that's attached to a server, you' ll
get an error message that indicates that the file is in use. To get around this, you
can detach the database file as described in figure 2-5. Then, you can move the
database file and reattach it to the server later.

The Attach Databases dialog box
ii Attach Databas6

Selecta
/1 General

Qat abases to attach:

Chapter 2 How to use the Management Studio 59

0 X

(MDF Rle location

c:::::J C:\f'rovam Rleo\Mcrosoft SOL Selver\MSSOL ..

Dotabaoe Name
AP

Selver:
locatlost\SOLEXPRESS

Comection:
rrurachVme

Iff \lew comectOO oropertl ..

Progras

Ready

I

<

"AP" dotabaoe de\aols:

~ Rle N_~_, Ale Type
l AP J!1d j Data

AP -~.ldf log

<

>

(yld ... fiemove

-
Current File Poth Messaoe -
C'\Program Rles\Mcrosoft SOL Selver -
C:\Progam Rles\Miaosoft SOL Selver... . ..

> --1 ~-
OK Cancel

The default directory for SQL Server 2019 databases
C:\Program Files\Microsoft SQL Server\MSSQLlS.SQLEXPRESS\MSSQL\DATA

Description
• To attach a database, right-click on the Databases folder and select the Attach

command to display the Attach Databases dialog box shown above. Then, click
on the Add button and use the resulting dialog box to select the mdf file for the
database. This should add both the data file and the log file for the database to the
Database Details pane at the bottom of the dialog box. Finally, click OK to attach
the database.

• If you want to attach a database that doesn't have a log file, or if you want to create
a new log fi le for a database, you can remove the log file for the database before
you click the OK button. To do that, select the log file in the Database Details pane
and click the Remove button.

• To detach a database, right-click on its icon and select the Tasks-7Detach command
to display the Detach Database dialog box. If the Message column indicates that
there are active connections, you can usually select the Drop option to drop the
connections. Then, click on the OK button.

Figure 2-5 How to attach or detach a database

60 Section 1 An introduction to SQL

How to back up a database

Whenever you're working with a database, and especially before you begin
experimenting with new features, it's a good idea to back up the database as
shown in figure 2-6. Then, if you accidentally modify or delete data, you can
easily restore it.

By default, the Management Studio creates a full backup of the database and
it stores the file for this database in the Backup directory shown in this figure.
The file for the backup is the name of the database with an extension of bak. In
this figure, for example, the backup file for the AP database is named AP.bak.

By default, the backup is set to expire in zero days, which means that the
backup file will be saved on disk until the backup is run again. Then, the old
backup fi le will be replaced by the new backup.

For the purposes of this book, those settings are usually adequate. However,
if they aren't, you can use an incremental backup, or you can set the number of
expiration days for the backup.

How to restore a database

If you need to restore a database from the backup copy, you can use the
procedure described in figure 2-6. Although the Restore Database dialog box
isn't shown in this figure, you shouldn't have any trouble using it.

By default, the Restore Database dialog box restores the current database
to the most recent backup of the database, which is usually what you want.
However, if you want to restore the database to a specific point in time, you can
use the Restore Database dialog box to specify a date and time. Then, when you
click OK, SQL Server will use the log files to restore the database to the specific
point in time.

Chapter 2 How to use the Management Studio 61

The Back Up Database dialog box
ii Bock Up Databos• • AP

Select a~

"' Generli
1- Meda()poons
1- Bad<up ()ptlo!lo Souce

[Mtabaoa· AP

Aecov"'Y model SI~PLE

Bac!>up t)l)e: ful

0 Copx-orjy backup

0 X

•
c ... -

Server:
localhoii\SQLEXPRESS

CorMdion:,.,Vv-ne

r '----·;;;"'i"'T.'i'_.;_:·t::t-~t_"'#ttt_-_~ .. i-·ll .. _:f#b_._~~ .. _*·_~·_ .. .,.~_!ll-?3-~;l_ .. i"'_t_ .. ,.'!_·~·_=tf#_.r.t:_d_,il_i't' _____ :____J =
v'f ',lew ccmed!on!l!!lOe!lies

The default directory for SQL Server 2019 database backups
C: \ Program Files\Microsoft SQL Server\ MSSQLlS.SQLEXPRESS\ MSSQL\Backup

Description
• To back up a database, right-click on the database and select the Tasks-7 Back Up

command to display the Back Up Database dialog box. For the purposes of this
book, the default settings are usually adequate for backing up the database. As a
result, you can usually click OK to back up the database.

• To restore a database, right-click on the database and select the
Tasks7 Restore7 Database command to display the Restore Database dialog box.
Then, click OK to restore the database. This replaces the current database with the
most recent backup of the database.

Figure 2-6 How to back up and restore a database

62 Section 1 An introduction to SQL

How to set the compatibility level for a database

The SQL Server 2019 database engine is backwards compatible and can
run older versions of SQL Server databases as if they were running under an
older version of the SQL Server database engine. As a result, after you attach a
database, you may want to change the compatibility level for the database so it's
appropriate for your purposes as described in figure 2-7.

For example, if you attach database fi les that were originally created under
SQL Server 2016 to the SQL Server 2019 database engine, the compatibility
level will remain set to SQL Server 2016. As a result, you will still be able to
use most SQL Server 2016 features, even ones that have been deprecated, and
you won't be able to use new SQL Server 2019 features. If that's what you want,
you can leave the compatibility level set as it is. However, if you want to try
using new SQL Server 2019 features with this database, you need to change the
compatibility level to SQL Server 2019.

Chapter 2 How to use the Management Studio 63

The Database Properties dialog box with the compatibility level options
ii Database Properties· AP

Select•-

" General J; Fies

~- ~·
1- [!D
1- O>anoe Trackno
J; Pem111ion1

" Eldended l'ropecties
J; Q.,e,y SIO<O

Conneclion

Server
localhoot\SOLE.XPRESS

~:

Recovery model:

CompatJblity!eva:

Cortannert type:

Qther options.

:: ~ I I

SOL_Lan 1_Generai_CP 1_CI_AS

Sinple

SOL Server 2019 (150)

None

v Dol- Scaped Carl..,.._
legacy Catdinali:y Eotmatoon OFF
legacy Catdinoli:y Eotmatoon Fa< Secondary PRINARY
Max OOP 0
Max OOP Fa< Secondary
Parameler Sniflng
Parameler Snilf"ll Fot Secondary
Q.Jef)' Optmzer Ax ..

ON
PRINARY
OFF
PRINARY

0 X

-
"

Q.,e,y Optmzer Axet Fa< Secondary
v Al.ESTREAM ------

FILESTREAM Directory Name
FILESTREAM Non·TranMCted Acce11

v lhc
Off

v¥ 't1ew coooed!OO Q!POC!IIe! ,ljiowScnptng True
Fal,.

Pr

Ready

Description

tideFie5e'tngo
v _,_

,ljiow Snapshot looloboo Fal""
AN~ NUll JJ.i.,.

Allow Snapshot lsolalion

OK Cancel

• The SQL Server 2019 database engine is backwards compatible and can run older
versions of SQL Server databases just as if they were running under an older
version of the SQL Server database engine.

• To set the compatibility level for a database to SQL Server 2019 , right-click the
database, select the Properties command, click on the Options item, and select SQL
Server 2019 from the Compatibility Level drop-down list.

Figure 2-7 How to set the compatibility level for a database

64 Section 1 An introduction to SQL

How to view and modify the database
Before you use SQL to query a database, you need to know how the

database is defined. In particular, you need to know how the columns in each
table are defined and how the tables are related. In addition, you may need to
modify the database definition so it works the way you want.

How to create database diagrams

The easiest way to view the relationships between the tables in a database is
to create a database diagram for the database as described in figure 2-8. In this
figure, for example, the database diagram shows the relationships between five
of the tables in the AP database. In addition, this diagram shows the names of
each column in each table. For a database that doesn't contain many tables, like
the AP database, a single database diagram may be adequate for the database.
However, for a database that contains a large number of tables, it may be helpful
to use several database diagrams. Then, each diagram can focus on a subset of
related tables within the database.

When you first create a database diagram for a database, the tables may be
placed in an illogical order, and the lines that indicate the relationships between
the tables may be tangled. This makes the diagram difficult to read. To fix this,
you can use standard Windows techniques to move and size the tables in the
diagram. For example, you can drag the title bar of a table to move it, you can
drag the edge of a table to resize it, and you can right-click anywhere in the
diagram to get a context-sensitive shortcut menu. You can use these menus to
add or remove tables from the diagram, or to automatically size a table. With a
bit of fiddling around, you should be able to organize your diagram so it's easy
to see the relationships between the tables.

When you create a database diagram, the relationships between tables are
displayed as links as shown in this figure. You can tell what type of relationship
exists between two tables by looking at the endpoints of the link. The "one"
side is represented by a key, and the "many" side is represented by an infinity
symbol. In this diagram, all of the relationships are one-to-many. For example,
one row in the Vendors table can be related to many rows in the Invoices table.

As you review this diagram, notice that you can't tell which columns in each
table form the relationship. However, you can see which columns are defined
as primary key columns. As you may remember from chapter 1, these are the
columns that are typically used on the "one" side of the relationships. From that
information, you should be able to figure out which columns identify the foreign
keys by reading the names of the columns. For example, it's fairly obvious that
the DefaultAccountNo column in the Vendors table is related to the AccountNo
column in the GLAccounts table. If you can't determine the relationships just by
reading the column names, you can review the primary and foreign keys for each
table by using the Object Explorer as described in the next figure.

Chapter 2 How to use the Management Studio 65

The relationships between the tables in the AP database
L.; MMA11\SQLEXPRESS.AP • MainTabl6 - MICrosoft SOl Server Managtment Studto

Fill! Ed1t View ProJ~d Table Designer Tools Window Help

o · rJ •

Obje:Ct Explorer '"' ~ X MMA17\SQLEXPRESs.AP · Mamlables .g X

Connect'" f .,, G ...Jo..

EJ iS locathost\SQLE.XPRESS (SQl Serve:r

8 Databases
Ill System D11hbues

1!1 Database Sm pshots

E1 ii AP
13 Database Diagrams

tg dbo.MainTables
l!l Tables
III Vi~

liJ External Resources
Ill Synonyms
1!J Prograrrmability

ttl StrviceBroker
liJ Storage

IE Stcurity

l!l .. Security
1±1 • Strver Objects
IE .. Replication
!±I .. PolyBase

('!) • Management
(i) I!] XEvent Profiltr

Description

Vendors
V Ve:ndoriD

Ve:ndorName

VtndorAddrtssl

VendorAddren2

VendorCity

VendorState

VtndorZipCode

VendorPhone

VendorContactLName

VendorContactFName

OefauttTermsiO

OefauttAccountNo

GLAccounts
i AccountNo

AccountOescription

Invoices

Terms

' lnvciceiO

VMdortO

lnvoi<:tNumber

InvoiceD ate

Invoice Total

Payment Total

CrtditTotal

TmnsJO

lnvciceOueOate

PaymentOate

- V TermsJD

I
Tmn.O<>eription

TmnsOu~ays

Ou•cklaunch (Ctrl+Q)

• Database diagrams can be used to illustrate the relationships between the tables in
a database.

• To create a database diagram, right-click on the Database Diagrams node and select
New Database Diagram to display the Add Table dialog box. If you get a dialog
box that says that the database doesn' t have one or more of the required support
objects for database diagramming, you can select Yes to create the support objects.
Then, select each table you want to add from the list that's displayed, and click the
Add button. When you save the diagram, you' ll be asked to enter a name for it.

• To view an existing database diagram, expand the Database Diagrams node for the
database, and double-click on the diagram you want to display.

• The relationships between the tables in the diagram appear as links, where the
endpoints of the links indicate the type of relationship. A key indicates the "one"
side of a relationship, and the infinity symbol (oo) indicates the "many" side of a
relationship.

• The primary key for a table appears as a key icon that's displayed to the left of the
column or columns that define the primary key.

• You can use standard Windows techniques to move and size the tables in a database
diagram to make the diagram easier to understand.

Figure 2-8 How to view the relationships between tables

66 Section 1 An introduction to SQL

If necessary, you can use a database diagram to add columns, to remove
columns, or to change the names of existing columns. However, these changes
actually modify the definition of the database. As a result, you'll only want to
use them if the database is under development and you' re sure that existing code
doesn' t depend on any existing columns that you delete or modify.

How to view the column definitions of a table

To view the column definitions of a table, you can use the Object Explorer
to expand the Columns node for a table as shown in figure 2-9. In this figure,
for example, the Object Explorer shows the columns for the Vendors table. This
shows the name and data type for each column, along with an indication of
whether or not it can contain null values.

In addition, the columns that define keys are marked with a key icon.
Here, the first key icon indicates that the VendoriD column is the primary
key (PK), and the next two key icons indicate that the DefaultTermsiD and
DefaultAccountNo columns are foreign keys (FK).

How to modify the column definitions

If you want to modify the columns in a table, or if you want to view more
detailed information about a column, you can display the table in a Table
Designer tab. To do that, right-click on the table and select the Design command.
In this figure, for example, you can see that the Table Designer tab for the
Vendors table is displayed on the right side of the Management Studio.

The Table Designer tab is divided into two parts. The top of the tab shows
three columns that display the name and data type for the column as well as
whether the column allows null values. If you want, you can use these columns
to modify these values. For example, if you don't want to allow null values for
a column, you can remove the appropriate check mark from the Allow Nulls
column.

If you want to display additional information about a column, you can
select the column by clicking on its row selector. Then, additional properties
are displayed in the Column Properties tab that's displayed at the bottom of
the window. In this figure, for example, the properties for the DefaultTermsiD
column are displayed. As you can see, these properties indicate that this column
has a default value of 3. Note that the properties that are available change
depending on the data type of the column. For a column with the varchar data
type, for example, the properties also indicate the length of the column. You' ll
learn more about that in chapter 8.

Chapter 2 How to use the Management Studio

The columns in the Vendors table
L,; MMA 17\SO.lEXPRESS.AP · dbo.Vendors · Microsoft SOl Server Management Studio Quock Launch (Ctri•Q) P - 1:1 X

F1lt Edit V1f!W ProJect Table Dts1gner Tools W1ndow Help

0 · ,:J • " II' .~ NowOu•ry .lSI ~ ~ ,o:i'l ,'I/1 .)(, OJ ~ p 00:00:00 • 10) I' :i: ~

===:-:~=---lllliili--I Object Explorer .. q. X

Connect · ¥ ' ¥ C. -Jo.

8 i8 localhost\SQlEXPRfSS (SQL S.rv•r 15.0.2000- murach\Ann•l
8 Databases

III System Databases
III Database Snapshots
8 (i AP

0 Rudy

W Database Diagrams

8 Tables
1!J S)'>t•m Tables
1!J Fil<lables
(E Ertemal Tabl6

1!J Graph Tables
1!J 1111 dbo.ContactUpdates

(±) !m dbo.GlAccounts
Ill 1m dbo.lnvoice.Archive

(f) II dbo.lnvoicelineltems
(il 1m dbo.lnvoices

I!J 1111 dbo.T •rms
8 1111 dbo.V•ndors

EJ Columns
.. V•ndoriD (PK, in~ not nuiO
EJ V•ndorNam• (varchar(50), not null)
EJ V•ndorAddr•ssl (varchar(50), nuiQ
EJ V•ndorAddr•ss2 (varchar(50), null)
EJ V•ndorCity (varchar(50), not null)
EJ V<ndorStat< (char(2), not nuiQ

EJ V<ndorZipCod• (varchar(20), not null)
EJ V<ndorPhon< (varchar(50), null)
EJ V<ndorContactLNam• (varchar(50), nuiQ
§ VendorContactFName (varchar(SO), null)

.,. D<fau~T•rmsiD (FK, in~ not nuiQ
~ OefaultAccountNo (FK. int, not null)

Description

MMA17\SQUXPRESS.AP- dbo.V<ndors -o X

Column Name

9 Vendor!()

Vendort-.ame

VendorAddressl

VendorAddress2

V<ndorCity

Ve:ndorS!ate:

V<ndorZopCod•

Ve:ndorPhone:

Ve:ndorContactlName:

Ve:ndorContactFName:
·-.. -·t
~ D<fau~T<rmsiD

DefaultAccountNo

Column Properties

Allow Nulls

Data Typ•

Default Value or Binding
v T~e Designer

(Gene~o

Data Type Allow Nulls

int

varchar(50)

varchar(50)

varchar(SO)

varchar(SO)

char(2)

varchar(20)

varchar(50)

varchar(50)

varchar(50)

int

int

DdaultlermsiD
No

int

((3))

D
D
0
0
D
D
D
0
0
0
D
D
D

• To view the columns for a table, expand the Tables node, expand the node for
the table, and expand the Columns node. This displays the columns in the Object
Explorer.

• To modify the columns for a table, expand the Tables node, right-click on the
table, and select the Design command to display the table in a Table Designer tab.
Then, you can click on the row selector to the left of the column name to display
the properties for the column in the Column Properties tab at the bottom of the
window. If necessary, you can use the Table Designer tab or the Column Properties
tab to modify the properties for a column.

Figure 2-9 How to view or modify the column definitions of a table

67

68 Section 1 An introduction to SQL

How to view the data of a table

If you want to quickly view some data for a table, you can right-click on
the table and select the Select Top 1000 Rows command. This automatically
generates and executes a query that displays the top 1000 rows of the table in a
Results tab that's displayed below the generated query. This works similarly to
entering and executing a query as shown in figure 2- 11, but it's faster since the
query is automatically generated and executed.

How to modify the data of a table

For tables that have more than 200 rows, you' ll need to use SQL statements
to modify the data for the table. However, for smaller tables such as the Terms
table, the Management Studio provides an easy way to modify the data for the
table. To do that, you can right-click on the table and select the Edit Top 200
Rows command. This displays the top 200 rows of the table in an editable grid.
In figure 2-10, for example, the Terms table is shown after the Edit Top 200
Rows command has been executed on it. Since this table has fewer than 200
rows, this allows you to edit the entire table.

Once you execute the Edit Top 200 Rows command on a table, you can
insert, update, and delete the data for the table. For example, you can insert a
new row by entering it in the row at the bottom of the grid that contains NULL
values. You can update existing data by clicking on the data you want to update
and editing the data. And you can delete an existing row by right-clicking on the
row selector to the left of the row and selecting the Delete command.

When you update the data for an existing row, the changes aren' t committed
to the database until you move the cursor to a different row. In this figure, for
example, I have changed the number of days for the fifth row from 90 to 80.
However, the changes haven' t been committed to the database yet. That's why
a red warning icon is displayed after the data for the second and third columns
in this row. As a result, you can press the Esc key to roll back these changes. Or,
you can move the cursor to another row to commit the changes to the database.

Chapter 2 How to use the Management Studio

The data in the Terms table with a row being modified
L; MMA17\SQLEXPRESS.AP- dbo.Te.rms- Microsoft SOL Server Management Stud1o

Frle Edrt VreN ProJect Query Oesrgner Tools Wrndow Help

IE

Databases

(jJ System Ootoboses
1iJ Database Snapshots

8 i AP

m Database Diagrams
8 Tobles

w
IE
IE
IE
IE
w
IE

1!J System Tobles
IE FileTobles
Iii External Tables

1!J Graph Tables
IE 11!1 dbo.ContoctUpdotes
IE 11!1 dbo.GlAccounts
IE 11!1 dbo.lnvoiceArchive
Ill e dbo.lnvoicelineltems

IE 11!1 dbo.lnvoices
IE 11!1 dbo.T erms
IE 11!1 dbo.Vendors

Views
External Resources
Synonyms
Programmability

Strv~ce Broker
Stor~ge

Security
Security

0 Ready

Description

ofS

Qurck lounch (Ctri•QJ

10

20

Net due 30 doys 30

Net due 60 doys 60

Net due 80 days 9 80

NULL NULL

9

Cell is Read Only.

p - 0 X

• To view the data for a table, expand the Tables node, right-click on the table, and
select the Select Top 1000 Rows command. This automatically generates and
executes a query that displays the top 1000 rows of the table.

• To modify the data for a table, expand the Tables node, right-click on the table, and
select the Edit Top 200 Rows command. This displays the top 200 rows of the table
in an editable grid. Then, you can use the grid to insert, update, and delete data
from the table.

Figure 2-1 0 How to view or modify the data of a table

69

70 Section 1 An introduction to SQL

How to work with queries
Now that you know how to use the Management Studio to attach a database

and view the definition for that database, you're ready to learn how to use this
tool to enter and execute queries. You can use this tool to test the queries that are
presented throughout this book. As you will see, the Management Studio is a
powerful tool that makes it easy to work with queries.

How to enter and execute a query

To enter and edit queries, the Management Studio provides a Query Editor
window like the one in figure 2-11. The Query Editor is specifically designed for
writing Transact-SQL statements, but it works like most text editors. To begin,
you can open a new Query Editor window by clicking on the New Query button
in the toolbar. Or, you can open an existing query in a Query Editor window by
clicking on the Open button in the toolbar as described in figure 2-13. Once the
Query Editor is open, you can use standard techniques to enter or edit the
statement in this window.

As you enter statements, you' ll notice that the Query Editor automatically
applies colors to various elements. For example, keywords are displayed in blue
by default, and literal values are displayed in red. This makes your statements
easier to read and understand and can help you identify coding errors.

In addition, you' ll notice that the Query Editor uses the IntelliSense feature
to automatically display completion lists that you can use to enter parts of the
SQL statement. In this figure, for example, one of these lists is being used to
enter the InvoiceDate column. As you gain experience with the Management
Studio, you' ll find that IntelliSense can help you enter most types of SQL
statements, even complex ones.

When using lntelliSense, you' ll want to be sure that you identify the
database the query uses before you start entering the query. That way,
IntelliSense can include the names of the tables the database contains in the
completion lists. To identify the database, you can select it from the Available
Databases combo box in the toolbar. In addition, it's often helpful to enter the
table name before you enter the columns. That way, IntelliSense can include the
column names for the table in the completion lists.

By default, the IntelliSense feature is on. Since this feature can save you
a lot of typing and reduce errors in your code, that's usually what you want.
However, it's possible to tum some or all parts of this feature off. In addition,
the IntelliSense feature isn' t able to work correctly if you aren' t connected to
the correct SQL Server database engine or if your SQL statement contains some
types of errors. As a result, if IntelliSense isn' t working properly on your system,
you should make sure that it's turned on, that you're connected to the database,
and that your statement doesn't contain errors.

To execute a query, you can press F5 or click the Execute button in the
tool bar. If the statement returns data, that data is displayed in the Results tab at
the bottom of the Query Editor. In this figure, for example, the result set that's
returned by the execution of a SELECT statement is displayed in the Results

Chapter 2 How to use the Management Studio

A SELECT statement with a completion list

Available Databases
combo box

Execute button Query Editor Window

L.} SQLQuery1 - loc~lhost\SQLEXPRESS.AP !mur~cn\Anlne Y.! p - c:l X

file fdit y_,.,., Query froJect Iools

Object Explorer • '1 X

Connect • ¥ ' ¥ G -+
8 ijS localhost\SQLEXPRESS (SQL Server 15.0."'

EJ SELECT InvoiceNumber., InvoiceDate, InvoiceTotal , P•v ~>Tn1t•

· InvoiceTotal • Pay.,.,ntTotal - Credi tTotal AS ea
FROM Invoices

EJ Databases htiERE InvoiceTotal - PaymentTotal - CreditTotal > 0

111 System Databases ORDER BY Inv

1!1 D~t~base Snapshots lnv
8 Iii AP !I] lnvoiceArchive

1!1 Database Diagrams
T~bles

El column lnvoiceDate(date, not nul~ lnvoiCeOate ~
8

1!1 System T ~bles

111 File Tables

1!1 External Tables

1!1 Graph Tables
1!1 Iii dbo.ContactUpd~tes
111 Iii dbo.GLAccounts
1!1 Iii dbo.lnvoiceArchive
III Iii dbo.lnvoicelineltems
1!1 Iii dbo.lnvoices
1!1 Iii dbo.T erms
1!1 Iii dbo.Vendors

I±J Vit!WS

111 Ext~rnal Re.sourc6

1!1 Synonyms

1!1 Programmability

1!1 Service: Brob:r

1+1 Storaoe

100% . ~

§ lnvo1ceDueOate

El lnvoiCeiD

f!ID lnvoicelineJtems
El lnvoiceNumber

.!!!!I Invoices

Iii Reds
El lnvoiCeTot~l

(i)i Me·~·
kwolce~mber Invoice Date kwolce Total

[~~i~~~~~=] 20~1-10 85.31

963253264 20~1-18 52.25

3 31361833 20~1-21 579.42
4 263253268 20~1-21 59.97

5 263253270 20~1-22 67.92

263253273 20~1-22 30.75
7 P-()6()8 20~1-23 20551.18

8 9982n1 20~1-24 503.20

P aymert Total CredtTotal Balance Due "'
0.00 0.00 85.31

0.00 0.00 52.25

0.00 0.00 579.42

0.00 0.00 59.97

0.00 0.00 67.92

0.00 0.00 30.75
0.00 1200.00 19351.18

0.00 0.00 503.20

() Query executed successful... localhost\SQLEXPRESS (15.0 ... murach\Anne (57) AP 00:00:00 11 rows

0 Re~dy ln 5 Col13 Ch 13 INS

Description
• To open a new Query Editor window, click on the New Query button in the toolbar.

To open a saved query in a Query Editor window, click on the Open button in the
toolbar as described in figure 2-13.

• To select the database that you want to work with, use the Available Databases
combo box in the toolbar.

• To enter a SQL statement, type it into the Query Editor window.

• As you enter a SQL statement, the IntelliSense feature automatically displays
completion lists that help you complete the statement. To select an item from a list,
use the Up or Down arrow key to select the item and press the Tab key. To hide a
list, press the Esc key. To manually display a list, press Alt+Right-arrow or Ctrl+J.

• To execute a SQL statement, press the F5 key or click the Execute button in the
toolbar. If the statement retrieves data, the data is displayed in the Results tab that's
displayed at the bottom of the Query Editor. Otherwise, a message is displayed in
the Messages tab that's displayed at the bottom of the Query Editor.

Figure 2-11 How to enter and execute a query

71

72 Section 1 An introduction to SQL

tab. If you execute an action query, the Messages tab is displayed instead of the
Results tab. This tab will contain an indication of the number of rows that were
affected by the query. The Messages tab is also used to provide error information,
as you'll see in figure 2-12.

How to handle syntax errors

When you are entering a SQL statement, the IntelliSense feature will display
wavy red underlining beneath any parts of the SQL statement that contain errors.
In figure 2-12, for example, wavy red underlining is displayed beneath the first
column in the SELECT statement, the InvoiceNum column. The reason for this
error is that there isn't a column with this name in the Invoices table of the AP
database, which is the selected database. As a result, you can correct this error by
entering a valid column name, such as InvoiceNumber.

If an error occurs during the execution of a SQL statement, an error message
is displayed in the Messages tab of the Query Editor. In this figure, for example,
the error message indicates that InvoiceNum column is invalid. This, of course,
is the same error that was detected by the IntelliSense feature.

One common error when working with SQL statements is to forget to select
the correct database from the Available Databases combo box. In this figure, the
AP database is selected, which is the correct database for the statement that's
entered. However, if the ProductOrders database was selected, this statement
would contain many errors since the Invoices table and its columns don' t exist
in that database. To correct this mistake, you can simply select the appropriate
database for the statement.

This figure also lists some other common causes of errors. As you can see,
these errors are caused by incorrect syntax. When an error is caused by invalid
syntax, you can usually identify and correct the problem without much trouble.
In some cases, though, you won't be able to figure out the cause of an error by
the information that's provided by IntelliSense or the Messages tab. Then, you
can get additional information about the error by looking it up in the SQL Server
Reference or by searching the Internet for the error.

Chapter 2 How to use the Management Studio

How the Management Studio displays an error message
• .; SQLQu<ryl.sql- localhost\SQLEXPRESS.AP (murach\Ann• (57))"- MICrosoft SQL S.rv.r Manag<m<nt SL. QuiCk launch (Ctri•QJ p - 0 X

Erl• fdrt y_,e.; Qu•ry eroJ«t !ools l!trndow !::!<lp

0 · ,J • " Iii ~ .'ill t:!e.;Qu<ry .'ill ,"?,1 ~ ,r:'iil /~ .)(. OJ b'J ? · ~ p ~

·~; AP

Obj«l Explom • Q X

Conn<ct • f •y C:, ..Jo

E1 id localhost\SQLEXPRESS (SQl S•rv•r 1 S.O. "
8 Databas«

[jJ Syst<m Data bas«
]

SELECT ~. Invoie<Oat< , Invoie<Total, Payar<ntTotal, Cr<ditTotal,
Invoic~Total - PaymentTotal - Cr~ditTotal AS Balanc~Oue!

FR<»'l Invoic~s
!.tiERE InvoiceTotal Pa)'11M!ntTotal CreditTotal 0
ORDER BY InvoiceOatej

(f) Data bas! Snapshots

8 ii AP
m Database Diagrams
8 Tabl«

[jJ Syst<m Tabi<S
IE Fii<Tabl«
IE Ext•rnal Tabl<s
IE Graph Tabi<S
IE !Ill dbo.ContactUpdat<s
IE !Ill dbo.GlAccounts
III mJ dbo.lnvoice.Archive

Ill e dbo.lnvoicelineltems

IE !Ill dbo.lnvoic«
[jJ !Ill dbo.T <rms
IE !Ill dbo.V<ndors

IE Viev.s
w External Resources
ltJ Synonyms
Gl Programmability

S.Mco Broker
m Stonae

100% • •

li)'Me·-
M•; 207, Level 1,, St.a'te 1, Line 1
Invall.d colwn."l O&l:ltl 'InvoiceNwn' .

Complat.ion t.iii'IA: 2020-0l-14T12: 42:03 . 0 4S82SS- 08 :00

100% •

1 Query compl<t<d woth <rro... localhost\SQLEXPRESS(lS.O ... murach\Ann<(S7) AP 00:00:00 Crows

0 Ready ln S Col 22 Ch 22 INS

Common causes of errors
• Forgetting to select the correct database from the Available Databases combo box

• Misspelling the name of a table or column

• Misspelling a keyword

• Omitting the closing quotation mark for a character string

Description
• Before you execute a statement, IntelliSense may display wavy red underlining

beneath the parts of a SQL statement that contain errors.

• If an en or occurs during the execution of a SQL statement, the Management Studio
displays an error message in the Messages tab of the Query Editor.

• Most errors are caused by incorrect syntax and can be detected and corrected
without any additional assistance. If not, you can get more information about an
error by looking it up in the SQL Server Reference.

Figure 2-12 How to handle syntax errors

73

7 4 Section 1 An introduction to SQL

How to open and save queries

After you get a query working the way you want it to work, you may want
to save it. Then, you can open it and run it again later or use it as the basis for a
new query. To do that, you use the techniques in figure 2-13.

If you've used other Windows programs, you shouldn't have any trouble
opening and saving query files. To save a new query, for example, or to save a
modified query in the original file, you use the standard Save command. To save
a modified query in a new file, you use the standard Save As command. And to
open a query, you use the standard Open command. Note that when you save a
query, it's saved with a file extension of sql.

As you work with queries, you may find it helpful to open two or more
queries at the same time. To do that, you can open additional Query Editor
windows by starting a new query or by opening an existing query. After you
open two or more windows, you can switch between the queries by clicking on
the appropriate tab. Then, if necessary, you can cut, copy, and paste code from
one query to another.

If you open many queries and not all tabs are visible, you can use the Active
Files list to switch between queries. To display this list, click on the drop-down
arrow that's displayed to the right of the Query Editor tabs. Then, select the
query you want from the list of active files.

Chapter 2 How to use the Management Studio

The Open File dialog box
L,; SelectUnpa1d nvo1C~.sql·localhost1SQLEXPRESS.AP (murach\Anne (S1))- MICrosoft SOL Server Manag ... Qu1ck launch (Ctri+Q) p - 0 X

File Edit Vie.; Quel)' Project Tools Window Help

0 . " Iii ~ .'ill Ne.;Quel)' "" " o:..J p ;

·~; AP

Object Explorer • Q X

Connect · f ' ¥ C:, ..Jo

EJ id localhost\ SQlEXPRESS (SQL Server 15.0. "

8 Databases
[jJ System Databases
(f) Data bas! Snapshots

8 ii AP

SELECT Invoict:Number, InvoiceDate, InvoiceTotal., PaymentTotal , CreditTotal,
InvoiceTotal - PaytM!ntTotal - Cr!:ditTotal AS BalanceDue

FR<»'l Invoices
!.tiERE InvoiceTotol CreditTotol 0

v 1' « Scripts > Chapter 02 v ~ Search Chapter 02

X

[jJ

8 Ne.; folder ~:: . [) 8

IE
IE
ltJ
IE

[jJ

IE
IE

Description

• OneDrive

Cl This PC

.) 3D Objects

• Desktop

~ Documents

... Downloads

)I MuSic

1.::1 Pictures

• Videos

_ local DISk (C:)

Name Date modified Type

Jil SelectCAVendors.sql 11<.,20161:18 PM MICrosoft SQL Sel'.-.r

Jil Selec!Unpaidlnvoices.sql 1/8/20161:18 PM Microsoft SQL Server

.. <

File name: J SelectCAVendors.sql ----:] AII Files('.')

I Open 1•1 Caned

• To save a query, click the Save button in the toolbar or press Ctrl+S. Then, if necessary,
use the Save File As dialog box to specify a file name for the query.

• To open a query, click the Open button in the toolbar or press Ctrl+O. Then, use the
Open File dialog box shown above to locate and open the query.

• To save all open queries, click the Save All button in the toolbar. Then, if necessary,
use the Save File As dialog box to specify a file name for any queries that haven' t
already been named.

• To switch between open queries, click on the tab for the query you want to display.
If you can' t see the tab, click on the drop-down arrow that's displayed to the right
of the Query Editor tabs, and select the query from the list of active files.

• To cut, copy, and paste code from one query to another, use the standard Windows
techniques.

Figure 2-1 3 How to open and save queries

75

76 Section 1 An introduction to SQL

An introduction to the Query Designer

Figure 2-14 presents the Query Designer, a tool that can help you create
queries using a graphical interface. In the Diagram pane, you select the tables
and columns that you want to use in the query. Then, the columns you select
are listed in the Criteria pane, and you can use this pane to set the criteria and
sort sequence for the query. As you work in the Diagram and Criteria panes,
the Query Designer generates a SQL statement and displays it in the SQL pane.
When you have the statement the way you want it, you can click the OK button
to insert the query into the Query Editor. From the Query Editor, you can edit the
text for the query and run it just as you would any other query.

When you first start working with a database, the Query Designer can help
you become famili ar with the tables and columns it contains. In addition, it can
help you build simple queries quickly and easily. If you analyze the SQL
statements that it generates, it can also help you learn SQL.

Keep in mind, though, that the best way to learn SQL is to code it yourself.
That's why this book emphasizes the use of the Query Editor. Plus, it can be
difficult, and sometimes impossible, to create certain types of complex queries
using the Query Designer. Because of that, you're usually better off using the
Query Editor to enter complex queries yourself.

Although this figure shows how to use the Query Designer to create a
SELECT statement, you should know that you can also use it to create INSERT,
UPDATE, and DELETE statements. To start one of these queries, you can
right-click anywhere in the Query Designer window, select the Change Type
submenu, and select the type of query that you want to create.

Chapter 2 How to use the Management Studio

The Query Designer window
Query Designer X

.:..! .:..!
,.

1m Vendors 1m InvoiCes

D• (All Columns) J O lnvoic<ID ~
111 0 Vm dot1D f-!;)>o O VendoriD J 0VendorName ~~ 01nvoie<Number

O vendorAddress1 01nvoiceDate
O vendorAddress2 ..:J 01nvoie< Total ~~ V' ..:J - -

v

< >

Column Alias Table Outp ... Sort Type Sort Order Filter 0 "

VendorName Vendors 0 Ascending 1

lnvoict!:Numbe.r lnvoic~s 0 Lll!
InvoiceD ate Invoices 0

~ Invoice Total lnvoic~s 0 Descending 2 [~~~:~~-~~~~-~~]
[!] v

< >
~ELECT Vendors.VendorName, lnvoices.lnvoiceNumber, lnvoices.lnvoiceDate, lnvoices.lnvoiceTotal
FROM Vendors INNER JOIN

Invoices ON Vendors.VendoriD = lnvoices.VendoriD
WHERE (lnvoices.lnvoiceTotal >= 500)
ORDER BYVendors.VendorName, lnvoices.lnvoiceTotal DESC

I OK I Cancel

,.!I!

The three panes in the Query Designer window
Pane Description

Diagram pane Displays the tables used by the query and lets you select the columns
you want to include in the query.

Criteria pane

SQL pane

Description

Displays the columns selected in the Diagram pane and lets you specify
the sort order and the criteria you want to use to select the rows for the
result set. You can also use this pane to select or deselect the columns
that are included in the output and to create calculated values.

Displays the SQL statement built by the Query Designer based on the
information in the Diagram and Criteria panes.

• You can use the Query Designer to build simple queries quickly and easily.
However, you may not be able to create more complex queries this way.

Diagram
pane

Criteria
pane

SOL
pane

• To display the Query Designer, right-click on a blank Query Editor window and
select the Design Query in Editor command. Then, you can use the Query Designer
window to create the query. When you click the OK button, the query will be
inserted into the Query Editor where you can edit and run it just as you would any
other query.

• To modify a query with the Query Designer, select the query, right-click on the
selection, and select the Design Query in Editor command.

Figure 2-14 An introduction to the Query Designer

77

78 Section 1 An introduction to SQL

How to view the documentation
for SQL Server

Sometimes, you need to look up information about SQL statements, or you
need to get more information about an error message that's returned by SQL
Server. To do that, you can use your browser to search the Internet. Often, this is
the quickest and easiest way to find the information you're looking for.

However, there are also times when you need to view the official documen
tation for SQL Server. To do that, you can start a browser and navigate to the
website for the technical documentation for SQL Server as shown in figure 2-15.

How to display the SQL Server documentation

To display the documentation for SQL Server, you can begin by searching
the Internet for "SQL Server technical documentation". Then, you can click on
the search result that leads to that documentation. This displays a page with a
table of contents in the left column and links to information about topics related
to SQL Server in the main area of the page.

How to look up information in the documentation

Once you've displayed the main page for the SQL Server documentation,
you can display information about a specific topic using a number of techniques.
First, you can click on a link in the main area of the page. Second, you can use
the table of contents to locate and display the information you need. To display
the topic on the SELECT statement shown in this figure, for example, I clicked
several links in the table of contents until I found the topic I wanted.

You can also filter the table of contents by title to locate a topic. To do that,
just enter the text you want to search for in the Filter by Title text box and then
select a topic from the ones that are listed. For example, I could have displayed
the topic on the SELECT statement by entering "select" in this text box and then
selecting the appropriate topic. Note that if you enter this text, though, a list of
almost 50 titles will be displayed. Because of that, you'll want to use this feature
only if you can enter more specific text.

The most efficient way to find the information you need is typically to use
the full-text search feature. For example, I could also have located the topic on
the SELECT statement by entering "select statement" in the Search text box,
pressing the Enter key to display a list of topics on that statement, and clicking
the appropriate topic. Although this can display a large number of topics, the one
you want is typically near the topic if the search text is specific.

Chapter 2 How to use the Management Studio

The documentation for the SELECT statement

: Microsoft I SQL Docs Ov<t<V>WN v ln>t.l v Se<uJO v o p v Mu<¥ v I Oov.J~O~ SOLs.""' I
l)ocs ~l Rtlt'f"<t orJnU<t·~L (I •SQU l!olt•tn<t au.nts

SELECT

VerSion

SQL So""' 2019

y ~ol\01 1111 u.
) Oit4t~•

> XML

>06CC

• SELECT

SELECT

SFlfCT (IAJJ••

SlllCT L<•m~s

SELECT· ~OR

J. Oownlood I'Of

Description

I

:..qn '"

SELECT (Transact-SQL)

APPLIES TO: 0 SQL ~rver 0 Azure SQL Database 0 Azure Synapse

Analyt!Cs (~QL DW) 0 Parallel O.ta Warehouse

~~~~~• 10m hum th~ Udldbd>e dnll ~ndbl~ lh~ >~l~tion ol on~ 01 mdny 
row; or column< from onr or m,1ny 1.1blr< in SOl Srrvrr Thr full o;ynt,,. of thr 

S(L(CT statement is complex. but the main clauses can~ summarized as· 

( WIIH ( ( XMLNAMt~PAC.t~ ,J (• common table expression • J} J 

SELECT s~l.xUur ( INTO r~ew_lllble] 

( FROM mbiP_ <twf(P] ( WHFRF <POrch_rondirion J 

l GROUP BY group_by_txprmion] 

l HAVIN<:. s~rch cond1rion J 

( ORDER BV otdel_ eApt('S>IOrl ( ASC I OESC ] ( 

Thr UNION FXCFPT and INTFRSFCT oprrators c.1n br u~ brrwrrn qurrir< 
to combine or compare their results into one result set 

Is this page 

helpful? 

r" ~" ;;> No 

In this ~tticle 

l synr .. 
Rom••k> 

l "'.)<tAl 

Pru<."""MJ 
Orr1,.rcftr'•" 
SELECT 
1U!fltTIHlt 

• To view the official documentation for SQL Server 2019, you can start a web 
browser and search for "SQL Server technical documentation". 

• The main page of the documentation displays a table of contents in the left column 
and links to various topics related to SQL Server in the main area of the page. 

• You can click on any link in the main area to display information about that topic. 

• To use the table of contents, click on a topic to display it in the middle pane. You 
can also filter the contents by title by entering text in the Filter by Title text box 
above the table and contents and then selecting a title from the list that's displayed. 

• To use full-text search, click the search icon in the upper right corner that looks like 
a magnifying glass, enter the text into the Search text box, and press the Enter key. 
Then, select the topic that you want from the resulting list of topics. 

Figure 2-1 5 How to view the documentation for SOL Server 

79 



80 Section 1 An introduction to SQL 

Perspective 
In this chapter, you learned how to use the tools that you need to begin 

learning about SQL. To begin, you learned how to start and stop the database 
server. Then, you learned how to use the Management Studio to connect to 
the database server, to attach a database, to view the definition of a database, 
and to execute SQL statements against that database. Finally, you learned how 
to view the official documentation for SQL Server. With that as background, 
you're ready to go on to the next chapter where you' ll start learning the details 
of coding your own SQL statements. 

Before you go on to the next chapter, though, I recommend that you install 
SQL Server Express and the Management Studio on your system as described 
in appendix A. In addition, I recommend that you download and install the 
databases and sample code that come with this book as described in appendix 
A. That way, you can begin experimenting with these tools. In particular, you 
can enter and execute queries like the ones described in this chapter. Or, you 
can open any of the queries shown in this chapter, view their code, and execute 
them. 

For now, though, focus on the mechanics of using the Management Studio 
to enter and execute queries, and don' t worry if you don' t understand the 
details of how the SQL statements are coded. You' lllearn the details for coding 
SQL statements in the chapters that follow. In the next chapter, for example, 
you' ll learn the details for coding a SELECT statement that retrieves data from 
a single table. 

Terms 

database server 
client tools 
database engine 
SQL Server 2019 Express Edition 
SQL Server Express 
SQL Server Management Studio 
SQL Server Configuration Manager 
schema 
attach a database 
detach a database 
back up a database 
restore a database 
database diagram 
Query Editor 
IntelliSense feature 
completion list 
Query Designer 



Chapter 2 How to use the Management Studio 81 

Before you do the exercises for this chapter 
If you're working on your own PC, you' ll need to set up your system as 
described in appendix A before you can do these exercises. 

1. Use the Management Studio to view all of the databases that are available 
from the server. If the AP database isn't available, follow the procedure in 
appendix A to create it. Then, view the tables that are available from the AP 
database. Finally, view the columns that are available from the Invoices table. 
Note the primary and foreign keys of this table and the definition for each 
column. 

2. Right-click on the Vendors table and select the Design command to display 
the Vendors table in a Table Designer tab. Review the properties for each 
column in this table. In particular, note that the VendoriD column is defined as 
an identity column. 

3. Use the Management Studio to create a database diagram for the AP database. 
The diagram should include the Vendors, Invoices, InvoiceLineltems, Terms, 
and GLAccounts tables. Save the diagram with any name you'd like. 

4. Organize the tables and connecting lines in the diagram you created in step 
3 so they are easy to read. (Hint: You can use the Autosize Selected Tables 
button and the Arrange Tables button in the toolbar to help you do this.) 
Finally, review the information that's contained in each table, note the primary 
key of each table, and try to identify the relationships between the tables. 

5. Open a new Query Editor window and then enter this SELECT statement: 
SELECT Vendo r Name, Ve ndorSta te 
FROM Vendo r s 
WHERE VendorSta te = 'CA ' 

Press F5 to execute the query and display the results. If an error is displayed, 
correct the problem before you continue. (Hint: If you get an error message 
that indicates that 'Vendors' isn' t a valid object, the AP database isn't the 
current database. To fix this error, select the AP database from the Available 
Databases combo box.) Then, save the query with a name of VendorsinCA 
and close it. 

6. Open the query named VendorslnCA that you saved in exercise 5. Then, click 
the Execute Query toolbar button to execute it. (Hint: You may need to select 
the AP database from the Available Databases combo box.) 

7. Look up information about the Query Editor in the SQL Server documenta
tion. The easiest way to do this is to use the full-text search to look up "query 
editor" . Continue experimenting with the documentation until you feel 
comfortable with it. 





Section 2 

The essential SQL skills 
This section teaches you the essential SQL coding skills for working 
with the data in a SQL Server database. The first four chapters in this 
section show you how to retrieve data from a database using the SELECT 
statement. In chapter 3, you ' Ill earn how to code the basic clauses of the 
SELECT statement to retrieve data from a single table. In chapter 4, you'll 
learn how to get data from two or more tables. In chapter 5, you' lllearn 
how to summarize the data that you retrieve. And in chapter 6, you'lllearn 
how to code subqueries, which are SELECT statements coded within other 
statements. 

Next, chapter 7 shows you how to use the INSERT, UPDATE, and 
DELETE statements to add, update, and delete rows in a table. Chapter 
8 shows you how to work with the various types of data that SQL Server 
supports. And finally, chapter 9 shows you how to use some of the SQL 
Server functions for working with data in your SQL statements. When you 
complete these chapters, you'll have the skills you need to code most any 
SELECT, INSERT, UPDATE, or DELETE statement. 





3 

How to retrieve data 
from a single table 
In this chapter, you' ll learn how to code SELECT statements that retrieve data 
from a single table. You should realize, though, that the skills covered here are 
the essential ones that apply to any SELECT statement you code ... no matter 
how many tables it operates on, no matter how complex the retrieval. So you' ll 
want to be sure you have a good understanding of the material in this chapter 
before you go on to the chapters that follow. 

An introduction to the SELECT statement ........................ 86 
The basic syntax of the SELECT statement... .. ......... ................................. ... 86 
SELECT statement examples ...... ................ .............. .. .... .... ......... .... ... .. ........ 88 

How to code the SELECT clause ........................................ 90 
How to code column specifications .................. ........... .... ................ ............. 90 
How to name the columns in a result set.. ..................................................... 92 
How to code string expressions ................................... .... .... ........ .... .............. 94 
How to code arithmetic expressions .............................................................. 96 
How to use functions ....................................................... .............................. 98 
How to use the DISTINCT keyword to eliminate duplicate rows .............. 100 
How to use the TOP clause to return a subset of selected rows .................. 102 

How to code the WHERE clause ....................................... 104 
How to use comparison operators .... .. .. .. ...... .. .. .. .... ...... .... .... .... .... .... .... .... .. . 104 
How to use the AND, OR, and NOT logical operators ........ ................. ...... 106 
How to use the IN operator ................................................................ .... ...... l08 
How to use the BETWEEN operator ............... .. ......................................... 110 
How to use the LIKE operator .. ........................................ ................. .... ...... ll2 
How to use the IS NULL clause .................................................... .. .. .. .. ...... 114 

How to code the ORDER BY clause ................................. 116 
How to sort a result set by a column name .................. .. .. .. .......................... 116 
How to sort a result set by an alias, an expression, or a column number .... 118 
How to retrieve a range of selected rows .................... .. .... .... ............ ........... l20 

Perspective ......................................................................... 122 



86 Section 2 The essential SQL skills 

An introduction 
to the SELECT statement 

To help you learn to code SELECT statements, this chapter starts by 
presenting its basic syntax. Next, it presents several examples that will give you 
an idea of what you can do with this statement. Then, the rest of this chapter will 
teach you the details of coding this statement. 

The basic syntax of the SELECT statement 

Figure 3-1 presents the basic syntax of the SELECT statement. The syntax 
summary at the top of this figure uses conventions that are similar to those used 
in other programming manuals. Capitalized words are keywords that you have 
to type exactly as shown. By contrast, you have to provide replacements for 
the lowercase words. For example, you can enter a list of columns in place of 
select_list, and you can enter a table name in place of table_source. 

Beyond that, you can choose between the items in a syntax summary that 
are separated by pipes (I) and enclosed in braces ( {}) or brackets ([]).And 
you can omit items enclosed in brackets. If you have a choice between two or 
more optional items, the default item is underlined. And if an element can be 
coded multiple times in a statement, it's followed by an ellipsis( ... ). You' ll see 
examples of pipes, braces, default values, and ellipses in syntax summaries later 
in this chapter. For now, if you compare the syntax in this figure with the coding 
examples in the next figure, you should easily see how the two are related. 

The syntax summary in this figure has been simplified so you can focus on 
the four main clauses of the SELECT statement: SELECT, FROM, WHERE, 
and ORDER BY. Most of the SELECT statements you code will contain all four 
of these clauses. However, only the SELECT clause is always required, and the 
FROM clause is required when you retrieve data from one or more tables. 

The SELECT clause is always the first clause in a SELECT statement. It 
identifies the columns that will be included in the result set. These columns are 
retrieved from the base tables named in the FROM clause. Since this chapter 
focuses on retrieving data from a single table, the FROM clauses in all of the 
statements shown in this chapter name a single base table. In the next chapter, 
though, you'lllearn how to retrieve data from two or more tables. 

The WHERE and ORDER BY clauses are optional. The ORDER BY clause 
determines how the rows in the result set are sorted, and the WHERE clause 
determines which rows in the base table are included in the result set. The 
WHERE clause specifies a search condition that's used to filter the rows in the 
base table. This search condition can consist of one or more Boolean expressions, 
or predicates. A Boolean expression is an expression that evaluates to True or 
False. When the search condition evaluates to True, the row is included in the 
result set. 

In this book, I won't use the terms "Boolean expression" or "predicate" 
because I don' t think they clearly describe the content of the WHERE clause. 
Instead, I'll just use the term "search condition" to refer to an expression that 
evaluates to True or False. 



Chapter 3 How to retrieve data from a single table 87 

The simplified syntax of the SELECT statement 
SELECT s ele c t _ list 
[FROM table_ source] 
[WHERE search_ c ondition] 
[ORDER BY order_by_ list] 

The four clauses of the SELECT statement 

Clause Description 
SELECT Describes the columns that will be included in the result set. 

FROM Names the table from which the query will retrieve the data. 

WHERE Specifies the conditions that must be met for a row to be 
included in the result set. This clause is optional. 

ORDER BY Specifies how the rows in the result set will be sorted. 
This clause is optional. 

Description 
• You use the basic SELECT statement shown above to retrieve the columns 

specified in the SELECT clause from the base table specified in the FROM clause 
and store them in a result set. 

• The WHERE clause is used to filter the rows in the base table so that only those 
rows that match the search condition are included in the result set. If you omit the 
WHERE clause, all of the rows in the base table are included. 

• The search condition of a WHERE clause consists of one or more Boolean 
expressions, or predicates, that result in a value of True, False, or Unknown. If the 
combination of all the expressions is True, the row being tested is included in the 
result set. Otherwise, it's not. 

• If you include the ORDER BY clause, the rows in the result set are sorted in the 
specified sequence. Otherwise, the rows are returned in the same order as they 
appear in the base table. In most cases, that means that they' re returned in primary 
key sequence. 

Note 
• The syntax shown above does not include all of the clauses of the SELECT 

statement. You' ll learn about the other clauses later in this book. 

Figure 3-1 The basic syntax of the SELECT statement 



88 Section 2 The essential SQL skills 

SELECT statement examples 

Figure 3-2 presents five SELECT statement examples. All of these state
ments retrieve data from the Invoices table. If you aren't already familiar with 
this table, you should use the Management Studio as described in the last chapter 
to review its definition. 

The first statement in this figure retrieves all of the rows and columns from 
the Invoices table. Here, an asterisk (*) is used as a shorthand to indicate that 
all of the columns should be retrieved, and the WHERE clause is omitted so 
there are no conditions on the rows that are retrieved. Notice that this statement 
doesn' t include an ORDER BY clause, so the rows are in primary key sequence. 
You can see the results following this statement as they're displayed by the 
Management Studio. Notice that both horizontal and vertical scroll bars are 
displayed, indicating that the result set contains more rows and columns than can 
be displayed on the screen at one time. 

The second statement retrieves selected columns from the Invoices table. As 
you can see, the columns to be retrieved are listed in the SELECT clause. Like 
the first statement, this statement doesn' t include a WHERE clause, so all the 
rows are retrieved. Then, the ORDER BY clause causes the rows to be sorted by 
the InvoiceTotal column in ascending sequence. 

The third statement also lists the columns to be retrieved. In this case, 
though, the last column is calculated from two columns in the base table, 
CreditTotal and PaymentTotal, and the resulting column is given the name 
TotalCredits. In addition, the WHERE clause specifies that only the invoice 
whose InvoiceiD column has a value of 17 should be retrieved. 

The fourth SELECT statement includes a WHERE clause whose condition 
specifies a range of values. In this case, only invoices with invoice dates between 
01101/2020 and 03/31/2020 are retrieved. In addition, the rows in the result set 
are sorted by invoice date. 

The last statement in this figure shows another variation of the WHERE 
clause. In this case, only those rows with invoice totals greater than 50,000 are 
retrieved. Since none of the rows in the Invoices table satisfy this condition, the 
result set is empty. 



Chapter 3 How to retrieve data from a single table 89 

A SELECT statement that retrieves all the data from the Invoices table 
SELECT * 
FROM Invoices; 

lnvoiceiD VendoriD Invoice Number Invoice Date Invoice Total Payment Total CredHotal "' 
1 [ f '.'.'.'.·.·.·.·.·.-.·.·.··.-... ~ .......... ] 122 989319-457 2019-10-08 3813.33 3813.33 0.00 

2 2 123 263253241 2019-1~10 40.20 40.20 0.00 
Ill 

3 3 123 963253234 2019-1~13 138.75 138.75 0.00 

4 4 123 2.()()().2993 2019-1~16 144.70 144.70 0.00 'I 

< > 

(114 rows) 

A SELECT statement that retrieves three columns 
from each row, sorted in ascending sequence by invoice total 

SELECT InvoiceNumber, InvoiceDate, InvoiceTotal 
FROM Invoices 
ORDER BY InvoiceTotal; 

Invoice Number Invoice Date Invoice Total 

1 L.~~~.1 .. 1 . .? ....... .' ...... J 201s-11-01 6.00 

2 24863706 2019-11-10 6.00 

3 24780512 2019-12-22 6.00 

4 214923721 2019-11-13 9.95 

(114 rows) 

Ill 

A SELECT statement that retrieves two columns and a calculated value 
for a specific invoice 

SELECT InvoiceiD, InvoiceTotal, CreditTotal + PaymentTotal AS TotalCredits 
FROM Invoices 
WHERE InvoiceiD = 17; 

Invoice I D Invoice Total 

[ .'.if.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.' .. ] 10.00 

TotaiCredb 

10.00 

A SELECT statement that retrieves all invoices between given dates 
SELECT InvoiceNumber, InvoiceDate, InvoiceTotal 
FROM Invoices 
WHERE InvoiceDate BETWEEN '2020-01-01' AND '2020-03-31' 
ORDER BY InvoiceDate; 

Invoice Number Invoice Date Invoice Total 

l.'.'#~#.~.!.'B..~~.-.~~ .......... J 2020-01-01 2318.03 

2 263253265 2020-01-02 26.25 

3 203339-13 2020-01-05 17.50 

4 963253258 2020-01-06 111.00 

(35 rows) 

A SELECT statement that returns an empty result set 
SELECT InvoiceNumber, InvoiceDate, InvoiceTotal 
FROM Invoices 
WHERE InvoiceTotal > 50000; 

Invoice Number Invoice Date Invoice Total 

Figure 3-2 SELECT statement examples 

Ill 



90 Section 2 The essential SQL skills 

How to code the SELECT clause 
Figure 3-3 presents an expanded syntax for the SELECT clause. The 

keywords shown in the first line allow you to restrict the rows that are returned 
by a query. You'lllearn how to code them in a few minutes. First, though, you'll 
learn various techniques for identifying which columns are to be included in a 
result set. 

How to code column specifications 

Figure 3-3 summarizes the techniques you can use to code column 
specifications. You saw how to use some of these techniques in the previous 
figure. For example, you can code an asterisk in the SELECT clause to retrieve 
all of the columns in the base table, and you can code a list of column names 
separated by commas. Note that when you code an asterisk, the columns are 
returned in the order that they occur in the base table. 

You can also code a column specification as an expression. For example, 
you can use an arithmetic expression to perform a calculation on two or more 
columns in the base table, and you can use a string expression to combine two or 
more string values. An expression can also include one or more functions. You' ll 
learn more about each of these techniques in the topics that follow. 

But first, you should know that when you code the SELECT clause, you 
should include only the columns you need. For example, you shouldn' t code 
an asterisk to retrieve all the columns unless you need all the columns. That's 
because the amount of data that's retrieved can affect system performance. This 
is particularly important if you're developing SQL statements that will be used 
by application programs. 



Chapter 3 How to retrieve data from a single table 91 

The expanded syntax of the SELECT clause 
SELECT [ALLIDISTINCT] [TOP n [PERCENT] [WITH TIES]] 

column_specification [[AS] result_ column] 
[, column_ specification [[AS] result_column]] 

Five ways to code column specifications 

Source Option Syntax 
Base table value All columns 

Column name 

Calculated value Result of a calculation 

Result of a concatenation 

Result of a function 

* 
column_name 

Arithmetic expression (see figure 3-6) 

String expression (see figure 3-5) 

Function (see figure 3-7) 

Column specifications that use base table values 
The * is used to retrieve all columns 
SELECT * 

Column names are used to retrieve specific columns 
SELECT VendorName, VendorCity, VendorState 

Column specifications that use calculated values 
An arithmetic expression is used to calculate BalanceDue 
SELECT InvoiceNumber, 

InvoiceTotal - PaymentTotal - CreditTotal AS BalanceDue 

A string expression is used to calculate FuiiName 
SELECT VendorContactFName + 1 1 + VendorContactLName AS FullName 

A function is used to calculate CurrentDate 
SELECT InvoiceNumber, InvoiceDate, 

GETDATE() AS CurrentDate 

Description 
• Use SELECT * only when you need to retrieve all of the columns from a table. 

Otherwise, list the names of the columns you need. 

• An expression is a combination of column names and operators that evaluate to a 
single value. In the SELECT clause, you can code arithmetic expressions, string 
expressions, and expressions that include one or more functions. 

• After each column specification, you can code an AS clause to specify the name for 
the column in the result set. See figure 3-4 for details. 

Note 
• The ALL and DISTINCT keywords and the TOP clause let you control the number 

of rows that are returned by a query. See figures 3-8 and 3-9 for details. 

Figure 3-3 How to code column specifications 



92 Section 2 The essential SQL skills 

How to name the columns in a result set 

By default, a column in a result set is given the same name as the column 
in the base table. However, you can specify a different name if you need to. You 
can also name a column that contains a calculated value. When you do that, the 
new column name is called a column alias. Figure 3-4 presents two techniques 
for creating column aliases. 

The first technique is to code the column specification followed by the AS 
keyword and the column alias. This is the ANSI-standard coding technique, and 
it's illustrated by the first example in this figure. Here, a space is added between 
the two words in the name of the InvoiceNumber column, the InvoiceDate 
column is changed to just Date, and the InvoiceTotal column is changed to Total. 
Notice that because a space is included in the name of the first column, it's 
enclosed in brackets([]). As you'lllearn in chapter 10, any name that doesn' t 
follow SQL Server's rules for naming objects must be enclosed in either brackets 
or double quotes. Column aliases can also be enclosed in single quotes. 

The second example in this figure illustrates another technique for creating a 
column alias. Here, the column is assigned to an alias using an equal sign. This 
technique is only available with SQL Server, not with other types of databases, 
and is included for compatibility with earlier versions of SQL Server. So 
although you may see this technique used in older code, I don' t recommend it 
for new statements you write. 

The third example in this figure illustrates what happens when you don't 
assign an alias to a calculated column. Here, no name is assigned to the column, 
which usually isn' t what you want. That's why you usually assign a name to any 
column that's calculated from other columns in the base table. 



Chapter 3 How to retrieve data from a single table 93 

Two SELECT statements that name the columns in the result set 
A SELECT statement that uses the AS keyword (the preferred technique) 
SELECT InvoiceNumber AS [Invoice Number], InvoiceDate AS Date, 

InvoiceTotal AS Total 
FROM Invoices; 

A SELECT statement that uses the equal operator (an older technique) 
SELECT [Invoice Number] = InvoiceNumber, Date = InvoiceDate, 

Total = InvoiceTotal 
FROM Invoices; 

The result set for both SELECT statements 
Invoice Nurrber Date Total "' 

1 1'"98931'94'57"''''"""1 2019-1().08 3813.33 
l ........................................... i 

1!1 

2 263253241 2019-1().10 40.20 

3 963253234 2019-10.13 138.75 

4 2.()()().2993 2019-1().16 144.70 

5 963253251 2019-10.16 15.50 'I 

A SELECT statement that doesn't provide a name for a calculated column 
SELECT InvoiceNumber, InvoiceDate, InvoiceTotal, 

InvoiceTotal - PaymentTotal - CreditTotal 
FROM Invoices; 

Invoice Number Invoice Date Invoice Total (No column name) 

1 [?.#.?.~.~~~.~?~.·.·~.·.·.·.·.·.] 2019-1 ().08 3813.33 0.00 

2 263253241 2019-10.10 40.20 0.00 

3 963253234 2019-1().13 138.75 0.00 

4 2.()()().2993 2019-10.16 144.70 0.00 

5 963253251 2019-1().16 15.50 0.00 

Description 

111 

• By default, a column in the result set is given the same name as the column in the 
base table. If that's not what you want, you can specify a column alias or substitute 
name for the column. 

• One way to name a column is to use the AS phrase as shown in the first example 
above. Although the AS keyword is optional, I recommend you code it for 
readability. 

• Another way to name a column is to code the name followed by an equal sign and 
the column specification as shown in the second example above. This syntax is 
unique to Transact-SQL. 

• It's generally considered a good practice to specify an alias for a column that 
contains a calculated value. If you don' t, no name is assigned to it as shown in the 
third example above. 

• If an alias includes spaces or special characters, you must enclose it in double 
quotes or brackets([]). That's true of all names you use in Transact-SQL. SQL 
Server also lets you enclose column aliases in single quotes for compatibility with 
earlier releases. 

Figure 3-4 How to name the columns in a result set 



94 Section 2 The essential SQL skills 

How to code string expressions 

A string expression consists of a combination of one or more character 
columns and literal values. To combine, or concatenate, the columns and values, 
you use the concatenation operator ( + ). This is illustrated by the examples in 
figure 3-5. 

The first example shows how to concatenate the VendorCity and VendorState 
columns in the Vendors table. Notice that because no alias is assigned to this 
column, it doesn' t have a name in the result set. Also notice that the data in 
the VendorState column appears immediately after the data in the VendorCity 
column in the results. That's because of the way VendorCity is defined in the 
database. Because it's defined as a variable-length column (the varchar data 
type), only the actual data in the column is included in the result. By contrast, if 
the column had been defined with a fixed length, any spaces following the name 
would have been included in the result. You' lllearn about data types and how 
they affect the data in your result set in chapter 8. 

The second example shows how to format a string expression by adding 
spaces and punctuation. Here, the VendorCity column is concatenated with a 
string literal, or string constant, that contains a comma and a space. Then, the 
VendorState column is concatenated with that result, followed by a string literal 
that contains a single space and the VendorZipCode column. 

Occasionally, you may need to include a single quotation mark or an 
apostrophe within a literal string. If you simply type a single quote, however, the 
system will misinterpret it as the end of the literal string. As a result, you must 
code two quotation marks in a row. This is illustrated by the third example in this 
figure. 



Chapter 3 How to retrieve data from a single table 95 

How to concatenate string data 
SELECT VendorCity, VendorState, VendorCity + VendorState 
FROM Vendors ; 

1 

2 

VendOIOy VendorState 
1'''''""""""'''''""""'-"""1 

, Mad1son ' WI 
l ....................................... i 

Washington DC 

3 Washington DC 

(No col1n1n name) 

Madison WI 

Washington DC 

Washington DC 

How to format string data using literal values 
SELECT VendorName, 

111 

VendorCity + 1 1 + VendorState + 1 1 + VendorZipCode AS Address 
FROM Vendors; 

VendorName Mdress 

1 [~.Q~.·.-.P..~.~-~-i~.--~~;~~~~~~ .. ·.·.·.·.· .. ·.·.·~~~~~~~ .. ·.·.·.·~ .. ·.·.·~~~~~~.1 Madison. WI 53707 
2 National Information Data Or Washington. DC 20090 

3 Register of Copyrigl'ts Washington. DC 20559 

4 Jobtrak Los lv1geles. CA 90025 

How to include apostrophes in literal values 
SELECT VendorName + 1 1 1 S Address: 1

, 

VendorCity + 1 , 1 + VendorState + 1 1 + VendorZipCode 
FROM Ve ndors ; 

(No colullY'I name) (No coltn1n name) ............................................................................................................... : 
1 [.Y?. ... ~.~.~.~.~ .. ~~~:~ .. ~.~.~.: ...................................... .J Madison. WI 53707 
2 National Information Data Or's Address: Washington. DC 20090 

3 Register of Copyrigl'ts's Address: Washington. DC 20559 

4 

5 
6 

Jobtrak 's Address: 

Newbrige Book Clubs's Address: 

Califomia 01amber Of Commerce's Address: 

Description 

Los lv1geles. CA 90025 

Washington. NJ 07882 

Sacramento. CA 95827 

Ill 

• A string expression can consist of one or more character columns, one or more 
literal values, or a combination of character columns and literal values. 

• The columns specified in a string expression must contain string data (that means 
they're defined with a data type such as char or varchar). 

• The literal values in a string expression also contain string data, so they can be 
called string literals or string constants. To create a literal value, enclose one or 
more characters within single quotation marks ('). 

• You can use the concatenation operator ( +) to combine columns and literals in a 
string expression. 

• You can include a single quote within a literal value by coding two single quotation 
marks as shown in the third example above. 

Figure 3-5 How to code string expressions 



96 Section 2 The essential SQL skills 

How to code arithmetic expressions 

Figure 3-6 shows how to code arithmetic expressions. To start, it summarizes 
the five arithmetic operators you can use in this type of expression. Then, it 
presents three examples that illustrate how you use these operators. 

The SELECT statement in the first example includes an arithmetic 
expression that calculates the balance due for an invoice. This expression 
subtracts the PaymentTotal and CreditTotal columns from the InvoiceTotal 
column. The resulting column is given the name BalanceDue. 

When SQL Server evaluates an arithmetic expression, it performs the 
operations from left to right based on the order of precedence. This order says 
that multiplication, division, and modulo operations are done first, followed by 
addition and subtraction. If that's not what you want, you can use parentheses 
to specify how you want an expression evaluated. Then, the expressions in the 
innermost sets of parentheses are evaluated first, followed by the expressions in 
outer sets of parentheses. Within each set of parentheses, the expression is 
evaluated from left to right in the order of precedence. Of course, you can 
also use parentheses to clarify an expression even if they're not needed for the 
expression to be evaluated properly. 

To illustrate how parentheses and the order of precedence affect the 
evaluation of an expression, consider the second example in this figure. Here, 
the expressions in the second and third columns both use the same operators. 
When SQL Server evaluates the expression in the second column, it performs 
the multiplication operation before the addition operation because multiplication 
comes before addition in the order of precedence. When SQL Server evaluates 
the expression in the third column, however, it performs the addition operation 
first because it's enclosed in parentheses. As you can see in the result set shown 
here, these two expressions result in different values. 

Although you're probably familiar with the addition, subtraction, 
multiplication, and division operators, you may not be fami liar with the modulo 
operator. This operator returns the remainder of a division of two integers. 
This is illustrated in the third example in this figure. Here, the second column 
contains an expression that returns the quotient of a division operation. Note that 
the result of the division of two integers is always an integer. You'lllearn more 
about that in chapter 8. The third column contains an expression that returns the 
remainder of the division operation. If you study this example for a minute, you 
should quickly see how this works. 



Chapter 3 How to retrieve data from a single table 97 

The arithmetic operators in order of precedence 

* Multiplication 

I Division 

% Modulo (Remainder) 

+ Addition 

Subtraction 

A SELECT statement that calculates the balance due 
SELECT InvoiceTotal, PaymentTotal, CreditTotal, 

InvoiceTotal - PaymentTotal - CreditTotal AS BalanceDue 
FROM Invoices ; 

Invoice Total Payment Total CredHotal Balance Due 

[_~_1§:.~:.·:.-.·.·.·.·_·:.J 3813.33 0.00 0.00 

2 40.20 40.20 0.00 0.00 

3 138.75 138.75 0.00 0.00 

A SELECT statement that uses parentheses 
to control the sequence of operations 

SELECT Invo iceiD, 
Invoice iD + 7 * 3 AS OrderOfPrecedence, 
(InvoiceiD + 7 ) * 3 AS AddFirst 

FROM Inv oice s 
ORDER BY Inv oiceiD; 

2 

3 

Invoice I D OrderOf Precedence 
!" .. , ......................... ! 22 
!.. .......................... .) 

2 23 

3 24 

Addrii"St 

24 

27 

30 

A SELECT statement that uses the modulo operator 
SELECT Invo i c eiD, 

Invoice iD I 10 AS Quotient , 
InvoiceiD % 10 AS Remainder 

FROM Invo i ces 
ORDER BY InvoiceiD; 

Invoice I D Quotient Remainder 

9 9 0 9 

10 10 0 

11 11 

Description 

111 

111 

111 

• Unless parentheses are used, the operations in an expression take place from left to 
right in the order of precedence. For arithmetic expressions, multiplication, division, 
and modulo operations are done first, followed by addition and subtraction. 

• Whenever necessary, you can use parentheses to clarify or override the sequence of 
operations. Then, the operations in the innermost sets of parentheses are done first, 
followed by the operations in the next sets, and so on. 

Figure 3-6 How to code arithmetic expressions 



98 Section 2 The essential SQL skills 

How to use functions 

Figure 3-7 introduces you to functions and illustrates how you use them in 
column specifications. A function performs an operation and returns a value. For 
now, don't worry about the details of how the functions shown here work. You'll 
learn more about all of these functions in chapter 9. Instead, just focus on how 
they're used in column specifications. 

To code a function, you begin by entering its name followed by a set of 
parentheses. If the function requires one or more parameters, you enter them 
within the parentheses and separate them with commas. When you enter a 
parameter, you need to be sure it has the correct data type. You'lllearn more 
about that in chapter 9. 

The first example in this figure shows how to use the LEFT function to 
extract the first character of the VendorContactFName and VendorContactLName 
columns. The first parameter of this function specifies the string value, and the 
second parameter specifies the number of characters to return. The results of the 
two functions are then concatenated to form initials as shown in the result set for 
this statement. 

The second example shows how to use the CONVERT function to change 
the data type of a value. This function requires two parameters. The first 
parameter specifies the new data type, and the second parameter specifies the 
value to convert. In addition, this function accepts an optional third parameter 
that specifies the format of the returned value. The first CONVERT function 
shown here, for example, converts the PaymentDate column to a character value 
with the format mrn/dd/yy. And the second CONVERT function converts the 
PaymentTotal column to a variable-length character value that's formatted with 
commas. These functions are included in a string expression that concatenates 
their return values with the InvoiceNumber column and three literal values. 

The third example uses two functions that work with dates. The first one, 
GETDATE, returns the current date. Notice that although this function doesn' t 
accept any parameters, the parentheses are still included. The second function , 
DATEDIFF, gets the difference between two date values. This function requires 
three parameters. The first one specifies the units in which the result will be 
expressed. In this example, the function will return the number of days between 
the two dates. The second and third parameters specify the start date and the end 
date. Here, the second parameter is the invoice date and the third parameter is 
the current date, which is obtained using the GETDATE function. 



Chapter 3 How to retrieve data from a single table 99 

A SELECT statement that uses the LEFT function 
SELECT VendorContactFName, VendorContactLName, 

LEFT (VendorContactFName, 1 ) + 
LEFT(VendorContactLName, 1 ) AS Initials 

FROM Vendors ; 

VendorContadFName VendorContadLName ln~ials 

1 [~¥.~.~.~~~·.·.·.·~~.·.·~~~.·.·.·.·~~~~~~~~~.·.·.·.·.·.·_] Nberto FA 
2 flna Irvin AI 

3 Lukas Uana LL 

A SELECT statement that uses the CONVERT function 
SELECT ' Invoice: #' + InvoiceNumber 

+ ' , dated ' + CONVERT (char(8 ), PaymentDate, 1 ) 
+ ' for $' + CONVERT (varchar (9), PaymentTotal, 1) 

FROM I nv o i ces; 

(No colurm name) 

1 [~.~.~.~.~.~.~~~~.~?.~.i.·E~?.·:·.·.d..~~~.·.·~.·~.~.??~.~~.!.~~~.~·~~.if~·~J 
2 Invoice: #2G3253241 . dated 11/ 14/ 19for $40.20 

A SELECT statement that computes the age of an invoice 
SELECT Inv oic eDat e , 

GETDATE () AS 'Today' 's Date' , 
DATEDIFF(day, Invoice Date, GETDATE ( )) AS Age 

FROM Invoices ; 

1 

2 

lnvoiceDate Today's Date Atje 

1"'202iHi2'.02'""! 2020{)3-01 12 35 44 310 28 l.. ............................... .J : : . 
2020{)2-01 2020-03-01 12:35:44.310 29 

3 2020{)1-31 2020{)3-01 12:35:44.310 30 

Description 
• An expression can include any of the functions that are supported by SQL Server. A 

function performs an operation and returns a value. 

• A function consists of the function name, followed by a set of parentheses that 
contains any parameters, or arguments, required by the function. If a function 
requires two or more arguments, you separate them with commas. 

• For more information on using functions, see chapter 9. 

Figure 3-7 How to use functions 



1 00 Section 2 The essential SQL skills 

How to use the DISTINCT keyword 
to eliminate duplicate rows 

By default, all of the rows in the base table that satisfy the search condition 
you specify in the WHERE clause are included in the result set. In some cases, 
though, that means that the result set will contain duplicate rows, or rows whose 
column values are identical. If that's not what you want, you can include the 
DISTINCT keyword in the SELECT clause to eliminate the duplicate rows. 

Figure 3-8 illustrates how this works. Here, both SELECT statements 
retrieve the VendorCity and VendorState columns from the Vendors table. The 
first statement, however, doesn' t include the DISTINCT keyword. Because of 
that, the same city and state can appear in the result set multiple times. In the 
results shown in this figure, for example, you can see that Anaheim CA occurs 
twice and Boston MA occurs three times. By contrast, the second statement 
includes the DISTINCT keyword, so each city/state combination is included 
only once. 

Notice that, in addition to including the DISTINCT keyword, the second 
statement doesn't include the ORDER BY clause. That's because when you 
include the DISTINCT keyword, the result set is automatically sorted by its first 
column. In this case, that's the same column that was used to sort the result set 
returned by the first statement. 



Chapter 3 How to retrieve data from a single table 101 

A SELECT statement that returns all rows 
SELECT VendorCity, VendorState 
FROM Vendors 
ORDER BY VendorCity; 

VendOIOty VendorS! ate 

1 
! .................................... ! 
· Anahetm ' CA l... ................................. i 

2 Anaheim CA 

3 Ann Arbor Ml 

4 1\Jbum HUis Ml 

5 Boston MA 

6 Boston MA 

7 Boston MA 

8 Brea CA 

(122 rows) 

A SELECT statement that eliminates duplicate rows 
SELECT DISTINCT VendorCity, VendorState 
FROM Vendors; 

VendOIOty VendorState 

1 r·~~h~·····-·······i 
t •..•..•..•..•..•..•..•..••.•.••.•... ; 

CA 

2 Ann Arbor Ml 

3 1\Jbum Hills Ml 

4 Boston MA 

5 Brea CA 

6 Carol Stream IL 

7 Charlotte NC 

8 Chicago IL 

(53 rows) 

Description 
• The DISTINCT keyword prevents duplicate (identical) rows from being included in 

the result set. It also causes the result set to be sorted by its first column. 

• The ALL keyword causes all rows matching the search condition to be included in 
the result set, regardless of whether rows are duplicated. Since this is the default, 
it's a common practice to omit the ALL keyword. 

• To use the DISTINCT or ALL keyword, code it immediately after the SELECT 
keyword as shown above. 

Figure 3-8 How to use the DISTINCT keyword to eliminate duplicate rows 



1 02 Section 2 The essential SQL skills 

How to use the TOP clause 
to return a subset of selected rows 

In addition to eliminating duplicate rows, you can limit the number of rows 
that are retrieved by a SELECT statement. To do that, you use the TOP clause. 
Figure 3-9 shows you how. 

You can use the TOP clause in one of two ways. First, you can use it to 
retrieve a specific number of rows from the beginning, or top, of the result set. To 
do that, you code the TOP keyword followed by an integer value that specifies the 
number of rows to be returned. This is illustrated in the first example in this figure. 
Here, only five rows are returned. Notice that this statement also includes an 
ORDER BY clause that sorts the rows by the InvoiceTotal column in descending 
sequence. That way, the invoices with the highest invoice totals will be returned. 

You can also use the TOP clause to retrieve a specific percent of the rows 
in the result set. To do that, you include the PERCENT keyword as shown in 
the second example. In this case, the result set includes six rows, which is five 
percent of the total of 114 rows. 

By default, the TOP clause causes the exact number or percent of rows you 
specify to be retrieved. However, if additional rows match the values in the last 
row, you can include those additional rows by including WITH TIES in the TOP 
clause. This is illustrated in the third example in this figure. Here, the SELECT 
statement says to retrieve the top five rows from a result set that includes the 
VendoriD and InvoiceDate columns sorted by the InvoiceDate column. As you 
can see, however, the result set includes six rows instead of five. That's because 
WITH TIES is included in the TOP clause, and the columns in the sixth row 
have the same values as the columns in the fifth row. 



Chapter 3 How to retrieve data from a single table 103 

A SELECT statement with a TOP clause 
SELECT TOP 5 VendoriD, InvoiceTotal 
FROM Invoices 
ORDER BY InvoiceTotal DESC; 

Vendorl 0 Invoice Total 

1 [.55§·.·.·.·~.·.·~.·.·~~.·~~.".1 3 7966.19 
2 110 26881.40 
3 110 

4 n 
5 110 

23517.58 

21842.00 

20551.18 

A SELECT statement with a TOP clause and the PERCENT keyword 
SELECT TOP 5 PERCENT VendoriD, Invoic eTotal 
FROM Invoice s 
ORDER BY Inv oice Total DESC; 

VendoriO Invoice Total 

1 [5.j§~~.·~~.·~~.·~~.·~~] 37966.19 
2 110 26881.40 

3 110 2351 7.58 

4 n 21842.00 

5 110 20551.18 

6 110 10976.06 

A SELECT statement with a TOP clause and the WITH TIES keyword 
SELECT TOP 5 WITH TIES VendoriD, Inv oiceDate 
FROM Invoice s 
ORDER BY Invoi ceDate ASC; 

VendoriO Invoice Date 

1 [5~.·~~.·~~.·~~.·~~.·~~] 2019-1 ~ 
2 123 2019-10.10 

3 123 2019-10.13 

4 123 2019-10.16 

5 123 2019-10.16 

6 123 2019-10.16 

Description 
• You can use the TOP clause within a SELECT clause to limit the number of rows 

included in the result set. When you use this clause, the first n rows that meet the 
search condition are included, where n is an integer. 

• If you include PERCENT, the first n percent of the selected rows are included in 
the result set. 

• If you include WITH TIES, additional rows will be included if their values match, 
or tie, the values of the last row. 

• You should include an ORDER BY clause whenever you use the TOP keyword. 
Otherwise, the rows in the result set will be in no particular sequence. 

Figure 3-9 How to use the TOP clause to return a subset of selected rows 



1 04 Section 2 The essential SQL skills 

How to code the WHERE clause 
Earlier in this chapter, I mentioned that to improve performance, you should 

code your SELECT statements so they retrieve only the columns you need. That 
goes for retrieving rows too: The fewer rows you retrieve, the more efficient 
the statement will be. Because of that, you' ll almost always include a WHERE 
clause on your SELECT statements with a search condition that filters the rows 
in the base table so that only the rows you need are retrieved. In the topics that 
follow, you'lllearn a variety of ways to code this clause. 

How to use comparison operators 

Figure 3-10 shows you how to use the comparison operators in the search 
condition of a WHERE clause. As you can see in the syntax summary at the top 
of this figure, you use a comparison operator to compare two expressions. If the 
result of the comparison is True, the row being tested is included in the query 
results. 

The examples in this figure show how to use some of the comparison 
operators. The first WHERE clause, for example, uses the equal operator(=) to 
retrieve only those rows whose VendorS tate column have a value of IA. Since 
the state code is a string literal, it must be included in single quotes. By contrast, 
the numeric literal used in the second WHERE clause is not enclosed in quotes. 
This clause uses the greater than (>) operator to retrieve only those rows that 
have a balance due greater than zero. 

The third WHERE clause illustrates another way to retrieve all the invoices 
with a balance due. Like the second clause, it uses the greater than operator. 
Instead of comparing the balance due to a value of zero, however, it compares 
the invoice total to the total of the payments and credits that have been applied to 
the invoice. 

The fourth WHERE clause illustrates how you can use comparison 
operators other than the equal operator with string data. In this example, the less 
than operator ( <) is used to compare the value of the Vendor Name column to 
a literal string that contains the letter M. That will cause the query to return all 
vendors with names that begin with the letters A through L. 

You can also use the comparison operators with date literals, as illustrated 
by the fifth and sixth WHERE clauses. The fifth clause will retrieve rows with 
invoice dates on or before January 31 , 2020, and the sixth clause will retrieve 
rows with invoice dates on or after January 1, 2020. Like string literals, date 
literals must be enclosed in single quotes. In addition, you can use different 
formats to specify dates as shown by the two date literals shown in this figure. 
You' ll learn more about the acceptable date formats in chapter 8. 

The last WHERE clause shows how you can test for a not equal condition. 
To do that, you code a less than sign followed by a greater than sign. In this case, 
only rows with a credit total that's not equal to zero will be retrieved. 

Whenever possible, you should compare expressions that have similar data 
types. If you attempt to compare expressions that have different data types, 
SQL Server may implicitly convert the data type for you. Often, this implicit 



Chapter 3 How to retrieve data from a single table 105 

The syntax of the WHERE clause with comparison operators 
WHERE expression_ ! operator expression_ 2 

The comparison operators 

= Equal 

> Greater than 

< Less than 

<= Less than or equal to 

>= Greater than or equal to 

<> Not equal 

Examples of WHERE clauses that retrieve ... 

Vendors located in Iowa 
WHERE VendorState = 'IA' 

Invoices with a balance due (two variations) 
WHERE Invoi ceTotal - PaymentTotal - CreditTotal > 0 
WHERE Inv oiceTotal > PaymentTota l + CreditTota l 

Vendors with names from A to L 
WHERE VendorName < ' M' 

Invoices on or before a specified date 
WHERE InvoiceDa te <= '2020 - 01-31' 

Invoices on or after a specified date 
WHERE InvoiceDate >= '1/1/20' 

Invoices with credits that don't equal zero 
WHERE CreditTotal <> 0 

Description 

• You can use a comparison operator to compare any two expressions that result in 
like data types. Although unlike data types may be converted to data types that can 
be compared, the comparison may produce unexpected results. 

• If a comparison results in a True value, the row being tested is included in the result 
set. If it's False or Unknown, the row isn' t included. 

• To use a string literal or a date literal in a comparison, enclose it in quotes. To use a 
numeric literal, enter the number without quotes. 

• Character comparisons performed on SQL Server databases are not case-sensitive. 
So, for example, 'CA' and 'Ca' are considered equivalent. 

Figure 3-1 0 How to use the comparison operators 



1 06 Section 2 The essential SQL skills 

conversion is acceptable. However, implicit conversions will occasionally yield 
unexpected results. In that case, you can use the CONVERT function you saw 
earlier in this chapter or the CAST function you'lllearn about in chapter 8 to 
explicitly convert data types so the comparison yields the results you want. 

How to use the AND, OR, 
and NOT logical operators 

Figure 3-11 shows how to use logical operators in a WHERE clause. You 
can use the AND and OR operators to combine two or more search conditions 
into a compound condition. And you can use the NOT operator to negate a 
search condition. The examples in this figure illustrate how these operators work. 

The first two examples illustrate the difference between the AND and OR 
operators. When you use the AND operator, both conditions must be true. So, 
in the first example, only those vendors in New Jersey whose year-to-date 
purchases are greater than 200 are retrieved from the Vendors table. When you 
use the OR operator, though, only one of the conditions must be true. So, in the 
second example, all the vendors from New Jersey and all the vendors whose 
year-to-date purchases are greater than 200 are retrieved. 

The third example shows a compound condition that uses two NOT operators. 
As you can see, this expression is somewhat difficult to understand. Because of 
that, and because using the NOT operator can reduce system performance, you 
should avoid using this operator whenever possible. The fourth example in this 
figure, for instance, shows how the search condition in the third example can be 
rephrased to eliminate the NOT operator. Notice that the condition in the fourth 
example is much easier to understand. 

The last two examples in this figure show how the order of precedence for 
the logical operators and the use of parentheses affect the result of a search 
condition. By default, the NOT operator is evaluated first, followed by AND and 
then OR. However, you can use parentheses to override the order of precedence 
or to clarify a logical expression, just as you can with arithmetic expressions. In 
the next to last example, for instance, no parentheses are used, so the two 
conditions connected by the AND operator are evaluated first. In the last 
example, though, parentheses are used so the two conditions connected by the 
OR operator are evaluated first. If you take a minute to review the results shown 
in this figure, you should be able to see how these two conditions differ. 



Chapter 3 How to retrieve data from a single table 107 

The syntax of the WHERE clause with logical operators 
WHERE [NOT) search_condition_ 1 {ANDIOR} [NOT] search_condition_ 2 

Examples of queries using logical operators 
A search condition that uses the AND operator 
WHERE VendorState = 'NJ' AND YTDPurchases > 200 

A search condition that uses the OR operator 
WHERE VendorState = 'NJ' OR YTDPurchases > 200 

A search condition that uses the NOT operator 
WHERE NOT (InvoiceTotal >= 5000 OR NOT InvoiceDate <= '2020-02-01') 

The same condition rephrased to eliminate the NOT operator 
WHERE InvoiceTotal < 5000 AND InvoiceDate <= '2020-02-01' 

A compound condition without parentheses 
WHERE InvoiceDate > '01/01/2020' 

OR InvoiceTotal > 500 
AND InvoiceTotal - PaymentTotal - CreditTotal > 0 

Invoice Number Invoice Date Invoice Total Balance Due 

[.?.§?.~~~~.·~~.·~~.·~~.·] 202(H)1~2 26.25 0.00 

2 203339-13 202(H)1~ 17.50 0.00 

3 111-92R-1 0093 202(H)1~ 39.n 0.00 

4 963253258 202(H)1~ 111.00 0.00 

(34 rows) 

The same compound condition with parentheses 
WHERE (InvoiceDate > '01/01/2020' 

OR InvoiceTotal > 500) 
AND InvoiceTotal - PaymentTotal - CreditTotal > 0 

Invoice Number Invoice Date Invoice Total Balance Due 

1 
, ..•..•..•..•..•..•....... ,,,_,,, ......... ! 

l...~?..~.~ ....................... .J 202{Hl1-1 0 85.31 85.31 

2 963253264 202(H)1-18 52.25 52.25 

3 31361833 202(H)1-21 579.42 579.42 

4 263253268 202{Hl1-21 59.97 59.97 

' 
(11 rows) 

Description 

-

... 

ill 

'I 

• You can use the AND and OR logical operators to create compound conditions that 
consist of two or more conditions. You use the AND operator to specify that the 
search must satisfy both of the conditions, and you use the OR operator to specify 
that the search must satisfy at least one of the conditions. 

• You can use the NOT operator to negate a condition. Because this operator can 
make the search condition difficult to read, you should rephrase the condition if 
possible so it doesn' t use NOT. 

• When SQL Server evaluates a compound condition, it evaluates the operators in this 
sequence: (1) NOT, (2) AND, and (3) OR. You can use parentheses to override this 
order of precedence or to clarify the sequence in which the operations will be evaluated. 

Figure 3-11 How to use the AND, OR, and NOT logical operators 



1 08 Section 2 The essential SQL skills 

How to use the IN operator 

Figure 3-12 shows how to code a WHERE clause that uses the IN operator. 
When you use this operator, the value of the test expression is compared with the 
list of expressions in the IN phrase. If the test expression is equal to one of the 
expressions in the list, the row is included in the query results. This is illustrated 
by the first example in this figure, which will return all rows whose TermsiD 
column is equal to 1, 3, or 4. 

You can also use the NOT operator with the IN phrase to test for a value 
that's not in a list of expressions. This is illustrated by the second example in 
this figure. In this case, only those vendors who are not in California, Nevada, or 
Oregon are retrieved. 

If you look at the syntax of the IN phrase shown at the top of this figure, 
you'll see that you can code a subquery in place of a list of expressions. 
Subqueries are a powerful tool that you' lllearn about in detail in chapter 6. For 
now, though, you should know that a subquery is simply a SELECT 
statement within another statement. In the third example in this figure, for 
instance, a subquery is used to return a list of VendoriD values for vendors who 
have invoices dated December 1, 2019. Then, the WHERE clause retrieves 
a vendor row only if the vendor is in that list. Note that for this to work, the 
subquery must return a single column, in this case, VendoriD. 



Chapter 3 How to retrieve data from a single table 109 

The syntax of the WHERE clause with an IN phrase 
WHERE test_expression [NOT] IN ( {subquerylexpression_ 1 [, expression_ 2 ] •• . }) 

Examples of the IN phrase 

An IN phrase with a list of numeric literals 
WHERE Ter.ms iD IN (1 , 3 , 4) 

An IN phrase preceded by NOT 
WHERE VendorStat e NOT IN ( ' CA' , 'NV ', 'OR' ) 

An IN phrase with a subquery 
WHERE Vendor iD IN 

(SELECT Ve ndoriD 
FROM Inv oices 
WHERE Inv oice Date = ' 2 019 - 1 2-01' ) 

Description 

• You can use the IN phrase to test whether an expression is equal to a value in a list 
of expressions. Each of the expressions in the list must evaluate to the same type of 
data as the test expression. 

• The list of expressions can be coded in any order without affecting the order of the 
rows in the result set. 

• You can use the NOT operator to test for an expression that's not in the list of 
expressions. 

• You can also compare the test expression to the items in a list returned by a subquery 
as illustrated by the third example above. You' ll learn more about coding subqueries 
in chapter 6. 

Figure 3-1 2 How to use the IN operator 



11 0 Section 2 The essential SQL skills 

How to use the BETWEEN operator 
--~ 

Figure 3-13 shows how to use the BETWEEN operator in a WHERE clause. 
When you use this operator, the value of a test expression is compared to the 
range of values specified in the BETWEEN phrase. If the value falls within this 
range, the row is included in the query results. 

The first example in this figure shows a simple WHERE clause that uses the 
BETWEEN operator. It retrieves invoices with invoice dates between January 
1, 2020 and January 31, 2020. Note that the range is inclusive, so invoices with 
invoice dates of January 1 and January 31 are included in the results. 

The second example shows how to use the NOT operator to select rows 
that are not within a given range. In this case, vendors with zip codes that aren't 
between 93600 and 93799 are included in the results. 

The third example shows how you can use a calculated value in the test 
expression. Here, the PaymentTotal and CreditTotal columns are subtracted from 
the InvoiceTotal column to give the balance due. Then, this value is compared to 
the range specified in the BETWEEN phrase. 

The last example shows how you can use calculated values in the 
BETWEEN phrase. Here, the first value is the result of the GETDATE function, 
and the second value is the result of the GETDATE function plus 30 days. So the 
query results will include all those invoices that are due between the current date 
and 30 days from the current date. 



Chapter 3 How to retrieve data from a single table 111 

The syntax of the WHERE clause with a BETWEEN phrase 
WHERE test_expression [NOT] BETWEEN begin_expression AND end_expressio n 

Examples of the BETWEEN phrase 
A BETWEEN phrase with literal values 
WHERE Inv oiceDate BETWEEN '2020 - 01- 01' AND ' 2020-01-31' 

A BETWEEN phrase preceded by NOT 
WHERE VendorZipCod e NOT BETWEEN 93600 AND 93799 

A BETWEEN phrase with a test expression coded as a calculated value 
WHERE Invoic eTotal - Pa ymentTotal - Cr edit Total BETWEEN 2 00 AND 500 

A BETWEEN phrase with the upper and lower limits coded 
as calculated values 
WHERE InvoiceDue Date BETWEEN GetDate() AND Get Date() + 3 0 

Description 
• You can use the BETWEEN phrase to test whether an expression falls within a 

range of values. The lower limit must be coded as the first expression, and the 
upper limit must be coded as the second expression. Otherwise, the result set will 
be empty. 

• The two expressions used in the BETWEEN phrase for the range of values are 
inclusive. That is, the result set will include values that are equal to the upper or 
lower limit. 

• You can use the NOT operator to test for an expression that's not within the given 
range. 

Warning about date comparisons 
• All columns that have the datetime2 data type include both a date and time, and 

so does the value returned by the GETDATE function. But when you code a date 
literal like '2020-01-01 ', the time defaults to 00:00:00 on a 24-hour clock, or 
12:00 AM (midnight). As a result, a date comparison may not yield the results you 
expect. For instance, January 31 , 2020 at 2:00PM isn't between '2020-01-01 ' and 
'2020-01-31' . 

• To learn more about date comparisons, please see chapter 9. 

Figure 3-1 3 How to use the BETWEEN operator 



112 Section 2 The essential SQL skills 

How to use the LIKE operator 
------

One final operator you can use in a search condition is the LIKE operator 
shown in figure 3-14. You use this operator along with the wildcards shown at 
the top of this figure to specify a string pattern, or mask, you want to match. The 
examples shown in this figure illustrate how this works. 

In the first example, the LIKE phrase specifies that all vendors in cities that 
start with the letters SAN should be included in the query results. Here, the 
percent sign (%) indicates that any characters can follow these three letters. So 
San Diego and Santa Ana are both included in the results. 

The second example selects all vendors whose vendor name starts with the 
letters COMPU, followed by any one character, the letters ER, and any 
characters after that. Two vendor names that match that pattern are Compuserve 
and Computerworld. 

The third example searches the values in the VendorContactLName column 
for a name that can be spelled two different ways: Damien or Damion. To do 
that, the mask specifies the two possible characters in the fifth position, E and 0 , 
within brackets. 

The fourth example uses brackets to specify a range of values. In this case, 
the VendorS tate column is searched for values that start with the letter N and end 
with any letter from A to J. That excludes states like Nevada (NV) and New York 
(NY). 

The fifth example shows how to use the caret(") to exclude one or 
more characters from the pattern. Here, the pattern says that the value in the 
VendorState column must start with the letter N, but must not end with the letters 
K through Y. This produces the same result as the previous statement. 

The last example in this figure shows how to use the NOT operator with a 
LIKE phrase. The condition in this example tests the VendorZipCode column for 
values that don' t start with the numbers 1 through 9. The result is all zip codes 
that start with the number 0. 

The LIKE operator provides a powerful technique for finding information in 
a database that can't be found using any other technique. Keep in mind, however, 
that this technique requires a lot of overhead, so it can reduce system 
performance. For this reason, you should avoid using the LIKE operator in 
production SQL code whenever possible. 

If you need to search the text that's stored in your database, a better option 
is to use the Full-Text Search feature that's provided by SQL Server. This feature 
provides more powerful and flexible ways to search for text, and it performs 
more efficiently than the LIKE operator. However, Full-Text Search is an 
advanced feature that requires some setup and administration and is too complex 
to explain here. For more information, you can look up "full-text search" in the 
SQL Server documentation. 



Chapter 3 How to retrieve data from a single table 113 

The syntax of the WHERE clause with a LIKE phrase 
WHERE match_ expression [NOT] LIKE pattern 

Wildcard symbols 
Symbol Description 

% Matches any string of zero or more characters. 

Matches any single character. 

[ 1 Matches a single character listed within the brackets. 

- 1 Matches a single character within the given range. 

[ " 1 Matches a single character not listed after the caret. 

WHERE clauses that use the LIKE operator 
Example Results that match the mask 

WHERE VendorCity LIKE 'SAN%' 

WHERE Ve ndo rName LIKE 'COMPU_ER%' 

WHERE VendorContactLName LIKE 'DAMI[EO]N' 

WHERE VendorState LIKE 'N[A-J] • 

WHERE VendorState LIKE 'N[ "K-Y] ' 

WHERE VendorZi pCode NOT LIKE • [1-9] %' 

Description 

"San Diego" and "Santa Ana" 

"Compuserve" and "Computerworld" 

"Damien" and "Damion" 

"NC" and "NJ" but not "NV" or "NY" 

"NC" and "NJ" but not "NV" or "NY" 

"021 07" and "08816" 

• You use the LIKE operator to retrieve rows that match a string pattern, called 
a mask. Within the mask, you can use special characters, called wildcards, that 
determine which values in the column satisfy the condition. 

• You can use the NOT keyword before the LIKE keyword. Then, only those rows 
with values that don' t match the string pattern will be included in the result set. 

• Most LIKE phrases will significantly degrade performance compared to other types 
of searches, so use them only when necessary. 

Figure 3-14 How to use the LIKE operator 



114 Section 2 The essential SQL skills 

How to use the IS NULL clause 

In chapter 1, you learned that a column can contain a null value. A null isn' t 
the same as zero, a blank string that contains one or more spaces ( I 

1 
), or an 

empty string ( " ). Instead, a null value indicates that the data is not applicable, 
not available, or unknown. When you allow null values in one or more columns, 
you need to know how to test for them in search conditions. To do that, you can 
use the IS NULL clause as shown in figure 3-15. 

This figure uses a table named NullSample to illustrate how to search for 
null values. This table contains two columns. The first column, InvoiceiD, is 
an identity column. The second column, InvoiceTotal, contains the total for 
the invoice, which can be a null value. As you can see in the first example, the 
invoice with InvoiceiD 3 contains a null value. 

The second example in this figure shows what happens when you retrieve 
all the invoices with invoice totals equal to zero. Notice that the row that has a 
null invoice total isn' t included in the result set. Likewise, it isn't included in the 
result set that contains all the invoices with invoices totals that aren't equal to 
zero, as illustrated by the third example. Instead, you have to use the IS NULL 
clause to retrieve rows with null values, as shown in the fourth example. 

You can also use the NOT operator with the IS NULL clause as illustrated 
in the last example in this figure. When you use this operator, all of the rows that 
don' t contain null values are included in the query results. 



Chapter 3 How to retrieve data from a single table 115 

The syntax of the WHERE clause with the IS NULL clause 
WHERE expression IS [NOT] NULL 

The contents of the NuiiSample table 
SELECT * lnvolceiD lnvoiceTotC!I 
FROM NullSample; 1 r·1························1 125.oo 

l ............................. ; 

2 2 0.00 

3 3 NULL 

4 4 2199.99 

5 5 0.00 
= = 

A SELECT statement that retrieves rows with zero values 
SELECT * 
FROM NullSample 
WHERE InvoiceTotal = 0; 

A SELECT statement that retrieves rows with non-zero values 
SELECT * lnvolceiD lnvolceTotC!I 
FROM NullSample 
WHERE InvoiceTotal <> 0; 

1 L.i~ .. -.:~~-·.:~~.::~~.::~J 125.oo 
2 4 2199.99 

A SELECT statement that retrieves rows with null values 
SELECT * 
FROM NullSample 
WHERE InvoiceTotal IS NULL; 

A SELECT statement that retrieves rows without null values 
SELECT * lnvoiceiD Invoice Total 
FROM NullSample 1 r··i······-····-···········! 125 oo 

WHERE InvoiceTotal IS NOT NULL; l •••••••••••••••••••••••••••••• 

2 2 0.00 

3 4 2199.99 

4 5 0.00 

Description 
• A null value represents a value that's unknown, unavailable, or not applicable. It 

isn' t the same as a zero, a blank space(' '), or an empty string("). 

• To test for a null value, you can use the IS NULL clause. You can also use the NOT 
keyword with this clause to test for values that aren't null. 

• The definition of each column in a table indicates whether or not it can store null 
values. Before you work with a table, you should identify those columns that allow 
null values so you can accommodate them in your queries. 

Figure 3-15 How to use the IS NULL clause 



116 Section 2 The essential SQL skills 

How to code the ORDER BY clause 
The ORDER BY clause specifies the sort order for the rows in a result set. 

In most cases, you can use column names from the base table to specify the sort 
order as you saw in some of the examples earlier in this chapter. However, you 
can also use other techniques to sort the rows in a result set. In addition, you 
can use the OFFSET and FETCH clauses of the ORDER BY clause to retrieve a 
range of rows from the sorted result set. 

How to sort a result set by a column name 

Figure 3-16 presents the expanded syntax of the ORDER BY clause. As 
you can see, you can sort by one or more expressions in either ascending or 
descending sequence. This is illustrated by the three examples in this figure. 

The first two examples show how to sort the rows in a result set by a 
single column. In the first example, the rows in the Vendors table are sorted in 
ascending sequence by the VendorName column. Since ascending is the default 
sequence, the ASC keyword is omitted. In the second example, the rows are 
sorted by the VendorName column in descending sequence. 

To sort by more than one column, you simply list the names in the ORDER 
BY clause separated by commas as shown in the third example. Here, the rows 
in the Vendors table are first sorted by the VendorState column in ascending 
sequence. Then, within each state, the rows are sorted by the VendorCity column 
in ascending sequence. Finally, within each city, the rows are sorted by the 
VendorName column in ascending sequence. This can be referred to as a nested 
sort because one sort is nested within another. 

Although all of the columns in this example are sorted in ascending 
sequence, you should know that doesn't have to be the case. For example, I 
could have sorted by the VendorName column in descending sequence like this: 

ORDER BY VendorState, VendorCity, VendorName DESC 

Note that the DESC keyword in this example applies only to the VendorName 
column. The VendorState and VendorCity columns are still sorted in ascending 
sequence. 



Chapter 3 How to retrieve data from a single table 117 

The expanded syntax of the ORDER BY clause 
ORDER BY expression [ASCIDESC] [, expression [ASCIDESC]] 

An ORDER BY clause that sorts by one column in ascending sequence 
SELECT VendorName, 

VendorCity + 1 , 1 + VendorState + 1 1 + VendorZipCode AS Address 
FROM Vendors 
ORDER BY VendorName; 

VendorName Address 

111 
1 [~.·.~.~.~~.:~.~~·~~~~~~~~~.·.·.·.·~.·.·.·.] Fresno. CA 93722 
2 American Booksellers AsSQc Tarrytown. NY 10591 

3 American Express Los An9eles. CA 90096 

An ORDER BY clause that sorts by one column in descending sequence 
SELECT VendorName, 

VendorCity + 1 , 1 + VendorState + 1 1 + VendorZipCode AS Address 
FROM Vendors 
ORDER BY VendorName DESC; 

VendorName Address 

1 [~~~·~~.·.·~.~·~·~~.·~~.·.·.·.·.·~~.·.·~~~~~.·.·~.·.·.·.·.·~~~~~~~~.·.·.·.·.·] Fresno. CA 93711 
2 ap Print & Copy Certer Fresno. CA 93 m 111 

3 lee Medical Selvice Co WashinQton. lA 52353 

An ORDER BY clause that sorts by three columns 
SELECT VendorName, 

VendorCity + 1
, 

1 + VendorState + 1 1 + VendorZipCode AS Address 
FROM Vendors 
ORDER BY VendorState, VendorCity, VendorName; 

1 

2 
3 

4 

5 

Computer l.Jbrary 

Wefts FarQo Bank 

Aztek Label 

Blue Shield of California 

Phoenix. AZ. 85023 

Phoenix. AZ. 85038 

Anaheim, CA 92807 

Anaheim. CA 92850 

6 Diversified Printin9 & Pub Brea. CA 92621 

7 Abbey Office FumishinQs Fresno. CA 93 722 

8 ASC SiQns Fresno. CA 93 703 

9 BFIIndustries Fresno. CA 93792 

Description 
• The ORDER BY clause specifies how you want the rows in the result set sorted. 

You can sort by one or more columns, and you can sort each column in either 
ascending (ASC) or descending (DESC) sequence. ASC is the default. 

• By default, in an ascending sort, nu11s appear fi rst in the sort sequence, fo11owed 
by special characters, then numbers, then letters. Although you can change this 
sequence, that's beyond the scope of this book. 

• You can sort by any column in the base table regardless of whether it's included 
in the SELECT clause. The exception is if the query includes the DISTINCT 
keyword. Then, you can only sort by columns included in the SELECT clause. 

Figure 3-1 6 How to sort a result set by a column name 



118 Section 2 The essential SQL skills 

How to sort a result set by an alias, an expression, 
or a column number 

Figure 3-17 presents three more techniques you can use to specify sort 
columns. First, you can use a column alias that's defined in the SELECT clause. 
The first SELECT statement in this figure, for example, sorts by a column named 
Address, which is an alias for the concatenation of the VendorCity, VendorS tate, 
and VendorZipCode columns. Within the Address column, the result set is also 
sorted by the VendorName column. 

You can also use an arithmetic or string expression in the ORDER BY clause, 
as illustrated by the second example in this figure. Here, the expression consists 
of the VendorContactLName column concatenated with the VendorContactFName 
column. Here, neither of these columns is included in the SELECT clause. 
Although SQL Server allows this seldom-used coding technique, many other 
database systems do not. 

The last example in this figure shows how you can use column numbers to 
specify a sort order. To use this technique, you code the number that corresponds 
to the column of the result set, where 1 is the first column, 2 is the second 
column, and so on. In this example, the ORDER BY clause sorts the result set 
by the second column, which contains the concatenated address, then by the 
first column, which contains the vendor name. The result set returned by this 
statement is the same as the result set returned by the first statement. Notice, 
however, that the statement that uses column numbers is more difficult to 
read because you have to look at the SELECT clause to see what columns the 
numbers refer to. In addition, if you add or remove columns from the SELECT 
clause, you may also have to change the ORDER BY clause to reflect the new 
column positions. As a result, you should avoid using this technique. 



Chapter 3 How to retrieve data from a single table 119 

An ORDER BY clause that uses an alias 
SELECT VendorName, 

VendorCity + 1
, 

1 + VendorState + 1 1 + VendorZipCode AS Address 
FROM Vendors 
ORDER BY Address, VendorName; 

1 

2 
3 

VendorName Address 
!"'k(;··~ ..................................... l Arlaheim. CA 92807 
................................................................... ; 

Blue Shield of Califomia Arlaheim. CA 92850 

Manoy Lithographing Inc Ann Arbor, Ml48106 

An ORDER BY clause that uses an expression 
SELECT VendorName, 

VendorCity + 1
, 

1 + VendorState + 1 1 + VendorZipCode AS Address 
FROM Vendors 
ORDER BY VendorContactLName + VendorContactFName; 

1 

2 

VendorName Address 
J"'Dri~~~ .. G;:;;~~"&"Mci:'~;;;:;i~ ....... ] Fresno, CA 93720 
~ ........................................................................... : 

lntemal Revenue Service Fresno. CA 93888 

3 US Postal Service Madison. WI 53707 

An ORDER BY clause that uses column positions 
SELECT VendorName, 

-

VendorCity + 1
, 

1 + VendorState + 1 1 + VendorZipCode AS Address 
FROM Vendors 
ORDER BY 2, 1; 

1 

2 

3 

VendorName Address 
l"'k(;"c;;t;~ .................................... l Arlaheim. CA 92807 
····························-·····································; 

Blue Shield of Califomia Arlaheim. CA 92850 

MaUoy Lithographing Inc /Inn Arbor, Ml48106 

Description 

111 

• The ORDER BY clause can include a column alias that's specified in the SELECT 
clause. 

• The ORDER BY clause can include any valid expression. The expression can refer 
to any column in the base table, even if it isn't included in the result set. 

• The ORDER BY clause can use numbers to specify the columns to use for sorting. 
In that case, 1 represents the first column in the result set, 2 represents the second 
column, and so on. 

Figure 3-17 How to sort a result set by an alias, an expression, or a column number 



120 Section 2 The essential SQL skills 

How to retrieve a range of selected rows 

Earlier in this chapter, you saw how to use the TOP clause to return a subset 
of the rows selected by a query. When you use this clause, the rows are always 
returned from the beginning of the result set. By contrast, the OFFSET and 
FETCH clauses let you return a subset of rows starting anywhere in a sorted 
result set. Figure 3-18 illustrates how these clauses work. 

The first example in this figure shows how to use the OFFSET and FETCH 
clauses to retrieve rows from the beginning of a result set. In this case, the first 
five rows are retrieved. By contrast, the second example retrieves ten rows from 
the result set starting with the eleventh row. Notice that the FETCH clause in 
the first example uses the FIRST keyword, and the FETCH clause in the second 
example uses the NEXT keyword. Although these keywords are interchangeable, 
they're typically used as shown here. 

You can also return all of the rows to the end of a result set after skipping 
the specified number of rows. To do that, you just omit the FETCH clause. For 
instance, if you omitted this clause from the second example in this figure, rows 
11 through the end of the result set would be retrieved. 

The OFFSET and FETCH clauses are most useful when a client application 
needs to retrieve and process one page of data at a time. For example, suppose an 
application can work with up to 20 rows of a result set at a time. Then, the first 
query would retrieve rows 1 through 20, the second query would retrieve rows 
21 through 40, and so on. 

Because a new result set is created each time a query is executed, the client 
application must make sure that the result set doesn't change between queries. 
For example, if after retrieving the first 20 rows of a result set as described above 
one of those rows is deleted, the row that would have been the 21'1 row now 
becomes the 201h row. Because of that, this row isn't included when the next 20 
rows are retrieved. To prevent this problem, an application can execute all of the 
queries within a transaction whose isolation level is set to either SNAPSHOT or 
SERIALIZABLE. For information on how transactions and isolation levels work 
within SQL Server, see chapter 16. 



Chapter 3 How to retrieve data from a single table 121 

The syntax of the ORDER BY clause for retrieving a range of rows 
ORDER BY order_by_ list 

OFFSET offset_ row_count {ROWIROWS} 
[FETCH (FIRSTINEXT} fetch_ row_ c ount {ROW IROWS} ONLY] 

An ORDER BY clause that retrieves the first five rows 
SELECT VendoriD, InvoiceTotal 
FROM Invoices 
ORDER BY Inv o i c eTotal DESC 

OFFSET 0 ROWS 

1 

2 

3 
4 

5 

FETCH FIRST 5 ROWS ONLY; 

VendoriO Invoice Total 

[5 .. 1§~~.·~~.~~.·~~.·~~] 37966.19 
110 26881.40 

110 23517.58 

72 21842.00 

110 20551.18 

An ORDER BY clause that retrieves rows 11 through 20 
SELECT VendorName, Vendo r City, VendorState, Vendo rZipCode 
FROM Vendors 
WHERE VendorState = 'CA' 
ORDER BY VendorCity 

OFFSET 10 ROWS 
FETCH NEXT 10 ROWS ONLY; 

VendorName VendorOty 

[.·.~~~~~.·.~.~.~~.·.~~·.·.~~~.·~~~~] Fresno 
2 SF I Industries Fresno 

3 Cal~omia Data Marketing Fresno 

4 Yale Industrial Trucks-Fresno Fresno 

5 Cost co Fresno 

6 Graylift Fresno 

7 Shields Design Fresno 

8 Fresno CoU"Ity Tax Collector Fresno 

9 Gary McKeighan Insurance Fresno 

10 Ph Photographic Services Fresno 

Description 

VendorState Vendor QpCode 

CA 93726 

CA 93792 

CA 93721 

CA 93706 

CA 93711 

CA 93745 

CA 93728 

CA 93715 

CA 93711 

CA 93726 

--"""" 

• The OFFSET clause specifies the number of rows that should be skipped before 
rows are returned from the result set. 

• The FETCH clause specifies the number of rows that should be retrieved after 
skipping the specified number of rows. If you omit the FETCH clause, all of the 
rows to the end of the result set are retrieved. 

• The number of rows to be skipped and retrieved can be specified as an integer or an 
expression that results in an integer that is greater than or equal to zero. 

• The OFFSET and FETCH clauses are most useful when a client application needs 
to retrieve one page of data at a time. 

Figure 3-1 8 How to retrieve a range of selected rows 



122 Section 2 The essential SQL skills 

Perspective 
The goal of this chapter has been to teach you the basic skills for coding 

SELECT statements. You' ll use these skills in almost every SELECT statement 
you code. As you' ll see in the chapters that follow, however, there's a lot more 
to coding SELECT statements than what's presented here. In the next three 
chapters, then, you' lllearn additional skills for coding SELECT statements. 
When you complete those chapters, you ' II know everything you need to know 
about retrieving data from a SQL Server database. 

Terms 

keyword 
filter 
Boolean expression 
predicate 
expressiOn 
column alias 
substitute name 
string expression 
concatenate 
concatenation operator 
literal value 
string literal 
string constant 
arithmetic expression 
arithmetic operator 

order of precedence 
function 
parameter 
argument 
date literal 
comparison operator 
logical operator 
compound condition 
subquery 
string pattern 
mask 
wildcard 
Full-Text Search 
null value 
nested sort 



Chapter 3 How to retrieve data from a single table 123 

Exercises 
1. Write a SELECT statement that returns three columns from the Vendors table: 

VendorContactFName, VendorContactLName, and VendorName. Sort the 
result set by last name, then by first name. 

2. Write a SELECT statement that returns four columns from the Invoices table, 
named Number, Total, Credits, and Balance: 

Number 

Total 

Credits 

Balance 

Column alias for the InvoiceNumber column 

Column alias for the InvoiceTotal column 

Sum of the PaymentTotal and CreditTotal columns 

InvoiceTotal minus the sum of PaymentTotal and CreditTotal 

Use the AS keyword to assign column aliases. 

3. Write a SELECT statement that returns one column from the Vendors table 
named Full Name. Create this column from the VendorContactFName and 
VendorContactLName columns. Format it as follows: last name, comma, first 
name (for example, "Doe, John"). Sort the result set by last name, then by first 
name. 

4. Write a SELECT statement that returns three columns: 

InvoiceTotal 

10% 

From the Invoices table 

10% of the value of InvoiceTotal 

Plus 10% The value of InvoiceTotal plus 10% 

(For example, if InvoiceTotal is 100.0000, 10% is 10.0000, and Plus 10% is 
110.0000.) Only return those rows with a balance due greater than 1000. Sort 
the result set by InvoiceTotal, with the largest invoice first. 

5. Modify the solution to exercise 2 to filter for invoices with an InvoiceTotal 
that's greater than or equal to $500 but less than or equal to $10,000. 

6. Modify the solution to exercise 3 to filter for contacts whose last name begins 
with the letter A, B, C, or E. 

7. Write a SELECT statement that determines whether the PaymentDate column 
of the Invoices table has any invalid values. To be valid, PaymentDate must be 
a null value if there 's a balance due and a non-null value if there's no balance 
due. Code a compound condition in the WHERE clause that tests for these 
conditions. 





4 

How to retrieve data 
from two or more tables 
In the last chapter, you learned how to create result sets that contain data from 
a single table. Now, this chapter will show you how to create result sets that 
contain data from two or more tables. To do that, you can use either a join or a 
umon. 

How to work with inner joins ............................................. 126 
How to code an inner join ............................................ .. .............................. l26 
When and how to use correlation names ............................... ...... .......... ...... l28 
How to work with tables from different databases ............... .... ..... .............. 130 
How to use compound join conditions .................................. ...... ................ 132 
How to use a self-jo in .... .... .... ................. .. .. .. .. ........... .. .... .... ......... ... ...... ...... 134 
Inner joins that join more than two tables .... .... .......................................... . 136 
How to use the implic it inner join syntax ... .. ............... .... ............................ l38 

How to work with outer joins ............................................. 140 
How to code an outer join ...... ... .... .... .. .. ..................... .. .. .... ... .... .... .... .... .... ... l40 
Outer join examples ............................ .. ............. .... ................... .... ........ .... .. . l42 
Outer joins that join more than two tables ................ .. .. ........ ... ..... .... .......... 144 

Other skills for working with joins .................................... 146 
How to combine inner and outer joins ........................................................ 146 
How to use cross joins ................................................. .... ............................ 148 

How to work with unions ................................................... 150 
The syntax of a union ............................................................................... ... 150 
Unions that combine data from different tables .......................................... 150 
Unions that combine data from the same table ........................... .......... ..... . 152 
How to use the EXCEPT and INTERSECT operators .... .... ........ ..... .......... 154 

Perspective ......................................................................... 156 



126 Section 2 The essential SQL skills 

How to work with inner joins 
A join lets you combine columns from two or more tables into a single result 

set. In the topics that follow, you'lllearn how to use the most common type 
of join, an inner join. You'lllearn how to use other types of joins later in this 
chapter. 

How to code an inner join 

Figure 4-1 presents the explicit syntax for coding an inner join. As you '11 
see later in this chapter, SQL Server also provides an implicit syntax that you 
can use to code inner joins. However, the syntax shown in this figure is the one 
you'll use most often. 

To join data from two tables, you code the names of the two tables in the 
FROM clause along with the JOIN keyword and an ON phrase that specifies 
the join condition. The join condition indicates how the two tables should be 
compared. In most cases, they're compared based on the relationship between 
the primary key of the first table and a foreign key of the second table. The 
SELECT statement in this figure, for example, joins data from the Vendors and 
Invoices tables based on the VendoriD column in each table. Notice that because 
the equal operator is used in this condition, the value of the VendoriD column 
in a row in the Vendors table must match the VendoriD in a row in the Invoices 
table for that row to be included in the result set. In other words, only vendors 
with one or more invoices will be included. Although you' ll code most inner 
joins using the equal operator, you should know that you can compare two tables 
based on other conditions, too. 

In this example, the Vendors table is joined with the Invoices table using a 
column that has the same name in both tables: VendoriD. Because of that, the 
columns must be qualified to indicate which table they come from. As you can 
see, you code a qualified column name by entering the table name and a period 
in front of the column name. Although this example uses qualified column 
names only in the join condition, you must qualify a column name anywhere it 
appears in the statement if the same name occurs in both tables. If you don't, 
SQL Server will return an error indicating that the column name is ambiguous. 
Of course, you can also qualify column names that aren't ambiguous. However, I 
recommend you do that only if it clarifies your code. 



Chapter 4 How to retrieve data from two or more tables 127 

The explicit syntax for an inner join 
SELECT select_ list 
FROM table_ l 

[INNER) JOIN table_ 2 
ON join_ condition_ 1 

[[INNER) JOIN table_ 3 
ON join_ condition_ 2] ••• 

A SELECT statement that joins the Vendors and Invoices tables 
SELECT InvoiceNumber, VendorName 
FROM Vendors JOIN Invoices 

ON Vendors.VendoriD = Invoices.VendoriD; 

The result set 
lnvoiceNumber VendorName 

1 [§.P..~?.? ...... ·.·.·_·.-.·.·.·.-.·.·.·.J IBM 

2 Q545443 IBM 

3 54 7481328 Blue Cross 

4 547479217 Blue Cross 

5 547480102 Blue Cross 

6 P02-88DnS7 Fresno County Tax Conector 

7 40318 Data Reproductions Corp 

(114 rows) 

Description 
• A join is used to combine columns from two or more tables into a result set based 

on the join conditions you specify. For an inner join, only those rows that satisfy 
the join condition are included in the result set. 

• A join condition names a column in each of the two tables involved in the join and 
indicates how the two columns should be compared. In most cases, you use the 
equal operator to retrieve rows with matching columns. However, you can also use 
any of the other comparison operators in a join condition. 

• In most cases, you' ll join two tables based on the relationship between the primary 
key in one table and a foreign key in the other table. However, you can also join 
tables based on relationships not defined in the database. These are called ad hoc 
relationships. 

• If the two columns in a join condition have the same name, you have to qualify 
them with the table name so that SQL Server can distinguish between them. To 
code a qualified column name, type the table name, followed by a period, followed 
by the column name. 

Notes 
• The INNER keyword is optional and is seldom used. 

• This syntax for coding an inner join can be referred to as the explicit syntax. It is 
also called the SQL-92 syntax because it was introduced by the SQL-92 standards. 

• You can also code an inner join using the implicit syntax. See figure 4-7 for more 
information. 

Figure 4-1 How to code an inner join 



128 Section 2 The essential SQL skills 

When and how to use correlation names 

When you name the tables to be joined in the FROM clause, you can assign 
temporary names to the tables called correlation names or table aliases. To do 
that, you use the AS phrase just as you do when you assign a column alias. After 
you assign a correlation name, you must use that name in place of the original 
table name throughout the query. This is illustrated in figure 4-2. 

The first SELECT statement in this figure joins data from the Vendors and 
Invoices table. Here, both tables have been assigned correlation names that 
consist of a single letter. Although short correlation names like this can reduce 
typing, they can also make a query more difficult to read and maintain. As a 
result, you should only use correlation names when they simplify or clarify the 
query. 

The correlation name used in the second SELECT statement in this figure, 
for example, simplifies the name of the InvoiceLineitems table to just Lineltems. 
That way, the shorter name can be used to refer to the InvoiceiD column of 
the table in the join condition. Although this doesn't improve the query in 
this example much, it can have a dramatic effect on a query that refers to the 
InvoiceLineitems table several times. 



Chapter 4 How to retrieve data from two or more tables 129 

The syntax for an inner join that uses correlation names 
SELECT select_ list 
FROM table_ 1 [AS] n1 

[INNER) JOIN table_ 2 [AS] n2 
ON n1 . column_ name operator n2 . column_ name 

[[INNER) JOIN table_ 3 [AS] n3 
ON n2.column_ name operator n3.column_ name] ••• 

An inner join with correlation names 
that make the query more difficult to read 

SELECT InvoiceNumber, VendorName, InvoiceDueDate, 
InvoiceTotal - PaymentTotal - CreditTotal AS BalanceDue 

FROM Vendors AS v JOIN Invoices AS i 
ON v .VendoriD = i.VendoriD 

WHERE InvoiceTotal - PaymentTotal - CreditTotal > 0 
ORDER BY InvoiceDueDate DESC; 

2 

3 

lnvoiceNumber VendorName 
f"0:24J6 ...................... , Maloy I.Ahographng nc 
t •....•..••.... ,.. ...; 

547480102 Blue Cross 

9982n1 Ford Motor Cred~ Company 

(11 rows) 

Invoice Due Date Balance Due 

2020-02·29 10976.06 
2020-02·29 224.00 

2020-02·23 503.20 

An inner join with a correlation name that simplifies the query 

II 

SELECT InvoiceNumber, InvoiceLineitemAmount, InvoiceLineitemDescription 
FROM Invoices JOIN InvoiceLineitems AS Lineitems 

ON Invoices.InvoiceiD = Lineitems.InvoiceiD 
WHERE AccountNo = 540 
ORDER BY InvoiceDate; 

1 

2 
3 133560 

(6 rows) 

Description 

175.00 

lnvoiceUne~emDe~~n 

Publishers Marketing 

Prospect Hst 

Card deck advertising 

_ , 

• Correlation names are temporary table names assigned in the FROM clause. You 
can use correlation names when long table names make qualified column names 
long or confusing. A correlation name can also be called a table alias. 

• If you assign a correlation name to a table, you must use that name to refer to the 
table within your query. You can' t use the original table name. 

• Although the AS keyword is optional, I recommend you use it because it makes the 
FROM clause easier to read. 

• You can use a correlation name for any table in a join without using correlation 
names for all of the other tables. 

• Use correlation names whenever they simplify or clarify the query. Avoid using 
correlation names when they make a query more confusing or difficult to read. 

Figure 4-2 When and how to use correlation names 



130 Section 2 The essential SQL skills 

How to work with tables from different databases 

Although it's not common, you may occasionally need to join data from 
tables that reside in different databases. To do that, you have to qualify one or 
more of the table names. Figure 4-3 shows you how. 

To start, this figure presents the syntax of a fully-qualified object name. 
As you can see, a fully-qualified name consists of four parts: a server name, a 
database name, a schema name, and the name of the object itself. In this chapter, 
you'lllearn how to qualify table names. However, you should realize that you 
can use this syntax with other objects as well. 

The first SELECT statement in this figure illustrates the use of 
fully-qualified object names. This statement joins data from two tables (Vendors 
and Customers) in two different databases (AP and ProductOrders). Both 
databases are on the same server (OBServer) and are stored in the same schema 
(dbo). Here, correlation names are assigned to both of these tables to make them 
easier to refer to in the join condition. 

Although you can qualify all table names this way, you typically specify 
only the parts that are different from the current settings. When you start the 
Management Studio, for example, you connect to a specific server. As long 
as you work with databases on that server, then, you don' t need to include the 
server name. Similarly, before you execute a statement, you typically select the 
database it uses. So as long as you work with tables in that database, you don' t 
need to include the database name. You can also omit the schema name as long 
as you work with tables in the user's default schema (see chapter 17) or in the 
dbo schema. That's why all of the statements you've seen up to this point have 
included only the table name. 

When you omit one or more parts from a fully-qualified object name, you 
create a partially-qualified object name. The second SELECT statement in 
this figure, for example, shows how the first statement can be rewritten using 
partially-qualified object names. Here, the server name, database name, and 
schema name are all omitted from the Vendors table since it resides in the 
default schema (dbo) within the current database (AP) on the current server. The 
Customers table, however, must be qualified with the database name because it 's 
not in the AP database. Notice that because the schema name falls between the 
database name and the table name, two periods were coded to indicate that this 
part of the name was omitted. 

Before you can specify a server name as shown in this figure, you must add 
a linked server to the current instance of the server. A linked server is a virtual 
server that specifies all the information necessary to be able to connect to a local 
or remote server. To add a linked server, you can use the stored procedure named 
sp_AddLinkedServer. In this figure, for example, the stored procedure adds a 
linked server named OBServer to the master database for the current instance 
of SQL Server. This server has all the information necessary to connect to an 
instance of SQL Server Express that's running on the local machine. However, a 
similar syntax could be used to connect to an instance of SQL Server running on 
a remote server. 



Chapter 4 How to retrieve data from two or more tables 131 

The syntax of a fully-qualified object name 
linked_ server.database.schema.object 

A join with fully-qualified table names 
SELECT VendorName, CustLastName, CustFirstName, 

VendorState AS State, VendorCity AS City 
FROM DBServer.AP.dbo.Vendors AS Vendors 

JOIN DBServer.ProductOrders.dbo.Customers AS Customers 
ON Vendors.VendorZipCode = Customers.CustZip 

ORDER BY State, City; 

The same join with partially-qualified table names 
SELECT VendorName, CustLastName, CustFirstName, 

VendorState AS State, VendorCity AS City 
FROM Vendors 

JOIN ProductOrders .• Customers AS Customers 
ON Vendors.VendorZipCode = Customers.CustZip 

ORDER BY State, City; 

The result set 
VendorName Cust Last Name Cust First Name State Ciy 

1 [~.~-~---~-~-~·.·.~:~.·.·.:~.·.·.:.·.·~.:.·.·~.:.·.·~] Marissa Kyle p;z Phoenix 
2 Aztek Label Irvin fl.rda CA Jlllaheim 

3 Gary Me Keighan Insurance Neftaly Thalia CA Fresno 

4 Gary Me Keighan Insurance Holbrooke Rash ad CA Fresno 

5 Shields Desigl Damien Deborah CA Fresno 

~ ' 
(37 rows) 

A stored procedure that adds a linked server 
USE master; 
EXEC sp_addlinkedserver 

@server= 1 DBServer 1
, 

@srvproduct= 1 1 
, 

@provider= 1 SQLNCLI 1
, 

@datasrc= 1 localhost\Sq1Express 1
; 

Description 
• A fully-qualified object name is made up of four parts: the server name, the 

database name, the schema name (typically dbo), and the name of the object 
(typically a table). This syntax can be used when joining tables from different 
databases or databases on different servers. 

li 

• If the server or database name is the same as the current server or database name, 
or if the schema name is dbo or the name of the user's default schema, you can 
omit that part of the name to create a partially-qualified object name. If the omitted 
name falls between two other parts of the name, code two periods to indicate that 
the name is omitted. 

• Before you can specify a server name, you must add a linked server to the current 
instance of the server. To do that, you can use the stored procedure named 
sp_AddLinkedServer. Then, you can specify the name of the linked server. To 
remove a linked server, you can use the stored procedure named sp_DropServer. 

Figure 4-3 How to work with tables from different databases 



132 Section 2 The essential SQL skills 

To remove a linked server, you can use the stored procedure named 
sp_DropServer. For more information about working with linked servers, look 
up "Linked Servers (Database Engine)" in the documentation for SQL Server. 

How to use compound join conditions 

Although a join condition typically consists of a single comparison, you can 
include two or more comparisons in a join condition using the AND and OR 
operators. Figure 4-4 illustrates how this works. 

In the first SELECT statement in this figure, you can see that the Invoices 
and InvoiceLineitems tables are joined based on two comparisons. First, the 
primary key of the Invoices table, InvoiceiD, is compared with the foreign 
key of the InvoiceLineitems table, also named InvoiceiD. As in previous 
examples, this comparison uses an equal condition. Then, the InvoiceTotal 
column in the Invoices table is tested for a value greater than the value of the 
InvoiceLineltemAmount column in the InvoiceLineitems table. That means that 
only those invoices that have two or more line items will be included in the result 
set. You can see part the result set in this figure. 

Another way to code these conditions is to code the primary join 
condition in the FROM clause and the other condition in the WHERE clause. 
This is illustrated by the second SELECT statement in this figure. 

When you code separate compound join conditions like this, the join 
condition in the ON expression is performed before the tables are joined, and 
the search condition in the WHERE clause is performed after the tables are 
joined. Because of that, you might expect a SELECT statement to execute more 
efficiently if you code the search condition in the ON expression. However, SQL 
Server examines the join and search conditions as it optimizes the query. So you 
don' t need to worry about which technique is most efficient. Instead, you should 
code the conditions so they're easy to understand. 



Chapter 4 How to retrieve data from two or more tables 133 

An inner join with two conditions 
SELECT InvoiceNumber, InvoiceDate, 

InvoiceTotal, InvoiceLineitemAmount 
FROM Invoices JOIN InvoiceLineitems AS Lineitems 

ON (Invoices.InvoiceiD = Lineitems.InvoiceiD) AND 
(Invoices.InvoiceTotal > Lineitems.InvoiceLineitemAmount) 

ORDER BY InvoiceNumber; 

The same join with the second condition coded in a WHERE clause 
SELECT InvoiceNumber, InvoiceDate, 

InvoiceTotal, InvoiceLineitemAmount 
FROM Invoices JOIN InvoiceLineitems AS Lineitems 

ON Invoices.InvoiceiD = Lineitems . InvoiceiD 
WHERE Invoices.InvoiceTotal > Lineitems.InvoiceLineitemAmount 
ORDER BY InvoiceNumber; 

The result set 
Invoice Number Invoice Date Invoice Total Invoice Une ~em Amount 

1 rs7/sn-··-···-·-··-1 2019-12·28 1962.13 1197.00 
1.. ""'""''""""~''"'";: 

2 97/522 2019-12·28 1962.13 765.13 

3 1m71.0o1 2019-1().26 602.00 50.00 
4 1m71.o01 2019-1().26 602.00 75.60 

5 1m71.0o1 2019-1().26 602.00 58.40 

6 1m71.0o1 2019-1().26 602.00 478.00 

Description 
• A join condition can include two or more conditions connected by AND or OR 

operators. 

• In most cases, your code will be easier to read if you code the join condition in the 
ON expression and search conditions in the WHERE clause. 

Figure 4-4 How to use compound join conditions 



134 Section 2 The essential SQL skills 

How to use a self-join 

A self-join is a join where a table is joined with itself. Although self-joins 
are rare, there are some unique queries that are best solved using self-joins. 

Figure 4-5 presents an example of a self-join that uses the Vendors table. 
Notice that since the same table is used twice, correlation names are used to 
distinguish between the two occurrences of the table. In addition, each column 
name used in the query is qualified by the correlation name since the columns 
occur in both tables. 

The join condition in this example uses three comparisons. The first two 
match the VendorCity and VendorState columns in the two tables. As a result, 
the query will return rows for vendors that reside in the same city and state as 
another vendor. Because a vendor resides in the same city and state as itself, 
however, a third comparison is included to exclude rows that match a vendor 
with itself. To do that, this condition uses the not equal operator to compare the 
VendoriD columns in the two tables. 

Notice that the DISTINCT keyword is also included in this SELECT 
statement. That way, a vendor appears only once in the result set. Otherwise, it 
would appear once for each row with a matching city and state. 

This example also shows how you can use columns other than key columns 
in a join condition. Keep in mind, however, that this is an unusual situation and 
you're not likely to code joins like this often. 



Chapter 4 How to retrieve data from two or more tables 135 

A self-join that returns vendors from cities in common with other vendors 
SELECT DISTINCT Vendorsl.VendorName, Vendorsl.VendorCity, 

Vendorsl.VendorState 
FROM Vendors AS Vendorsl JOIN Vendors AS Vendors2 

ON (Vendorsl.VendorCity = Vendors2.VendorCity) AND 
(Vendorsl.VendorSta te = Vendors2 .VendorState) AND 
(Vendorsl.VendoriD <> Vendors2 .VendoriD) 

ORDER BY Vendorsl.VendorState, Vendorsl . VendorCity; 

The result set 
VendorName VendO!Oty VendorState 

1 L~i.&.!.·.·.·:·.·.·.·:.·.·.·.·.·.·.·.·:.:·.·.·.·.·.·.·.·.·:.·.·.·.·:.·.·.·.·.·.·.·.·:.·.·.·J Phoenix AZ 
2 Computer l.bary Phoenix AZ 
3 Wells Fargo Bark Phoenix AZ 
4 Aztek Label Anaheim CA 

5 Blue Shield of CaiWornia Anaheim CA 

6 Abbey Office Funishings Fresno CA 

7 ASC Signs Fresno CA 

8 BFI Industnes Fresno CA 

...... 
(84 r ows ) 

Description 
• A self-join is a join that joins a table with itself. 

• When you code a self-join, you must use correlation names for the tables, and you 
must qualify each column name with the correlation name. 

• Self-joins frequently include the DISTINCT keyword to eliminate duplicate rows. 

Figure 4-5 How to use a self-join 



136 Section 2 The essential SQL skills 

Inner joins that join more than two tables 

So far in this chapter, you've seen how to join data from two tables. 
However, SQL Server lets you join data from up to 256 tables. Of course, it's not 
likely that you'll ever need to join data from more than a few tables. In addition, 
each join requires additional system resources, so you should limit the number 
of joined tables whenever possible. 

The SELECT statement in figure 4-6 joins data from four tables: Vendors, 
Invoices, InvoiceLineitems, and GLAccounts. Each of the joins is based on 
the relationship between the primary key of one table and a foreign key of 
the other table. For example, the AccountNo column is the primary key of the 
GLAccounts table and a foreign key of the InvoiceLineitems table. 

Below the SELECT statement, you can see three tables. The first one 
presents the result of the join between the Vendors and Invoices tables. This 
table can be referred to as an interim table because it contains interim results. 
Similarly, the second table shows the result of the join between the first interim 
table and the InvoiceLineitems table. And the third table shows the result of 
the join between the second interim table and the GLAccounts table after the 
ORDER BY sequence is applied. 

As you review the three tables in this figure, keep in mind that SQL Server 
may not actually process the joins as illustrated here. However, the idea of 
interim tables should help you understand how multi-table joins work. 



Chapter 4 How to retrieve data from two or more tables 137 

A SELECT statement that joins four tables 
SELECT VendorName, InvoiceNumber, InvoiceDate, 

InvoiceLineitemAmount AS LineitemAmount, AccountDescription 
FROM Vendors 

JOIN Invoices ON Vendors . VendoriD = Invoices.VendoriD 
JOIN InvoiceLineitems 

ON Invoices.InvoiceiD = InvoiceLineitems.InvoiceiD 
JOIN GLAccounts ON InvoiceLineitems . AccountNo = GLAccounts.AccountNo 

WHERE Inv o i ceTotal - PaymentTota l - Credi tTotal > 0 
ORDER BY VendorName , LineitemAmount DESC; 

The first interim table 
VendorName Invoice Number Invoice Date 

1 r.·.~~~~-~-~-~--.·~.-~:.·.·.·~.·.·.·.·~.·.·.·~~-·.·.·~·.·.··~~-·.·.·~.·.·.·.·~.·.·.·.·~.·] 547480102 202CH>2.01 

2 Cardinal Business Media. Inc. 134116 202CH>1-28 

3 Data Reproductions Corp 39104 202CH>1-10 

4 Federal Express Corporation 963253264 202CH>1-18 

5 Federal Express Corporation 263253268 202CH>1-21 

6 Federal Express Corporation 263253270 202CH>1-22 

7 Federal Express Corporation 263253273 202CH>1-22 

(1 1 rows) 

The second interim table 
Vendor Name Invoice Number Invoice Date Lnekern~ 

1 r.·.~~~~-~-~-~~·.·.·~:·.···~.·.··~~-····~.····~···~~-···~.·.···~.···"'1 547480102 202CH>2.01 224.00 

2 Cardinal Business Media. Inc. 134116 202CH>1-28 90.36 

3 Data Reproductions Corp 39104 202CH>1-10 85.31 

4 Federal Express Corporation 263253273 202CH>1·22 30.75 

5 Federal Express Corporation 963253264 202CH>1-18 52.25 

6 Federal Express Corporation 263253268 202CH>1·21 59.97 

7 Federal Express Corporation 263253270 202CH>1·22 67.92 

(11 rows ) 

The final result set 
VendorName Invoice Number Invoice Date UnekemMlount Accolx1t Description 

1 r.·.~~~~-~-~-~·.·.·~~:.·.·.·~~-·.··~~--.·~~~--.·~~-·.··~~~-"'''"'''"'''1 54 7480102 202CH>2.01 224.00 Group Insurance 

2 Cardinal Business Media. Inc. 134116 202CH>1-28 90.36 Direct Mail Advertising 

3 Data Reproductions Corp 39104 202CH>1-10 85.31 Book Printing Costs 

4 Federal Express Corporation 263253270 202CH>1·22 67.92 Freight 

5 Federal Express Corporation 263253268 202CH>1-21 59.97 Freight 

6 Federal Express Corporation 963253264 202CH>1·18 52.25 Freight 

7 Federal Express Corporation 263253273 202CH>1·22 30.75 Freight 

(11 rows) 

Description 
• You can think of a multi-table join as a series of two-table joins proceeding from 

left to right. The first two tables are joined to produce an interim result set or 
interim table. Then, the interim table is joined with the next table, and so on. 

Figure 4-6 Inner joins that join more than two tables 



138 Section 2 The essential SQL skills 

How to use the implicit inner join syntax 
-----~-

Earlier in this chapter, I mentioned that SQL Server provides an implicit 
syntax for joining tables. This syntax was used prior to the SQL-92 standards. 
Although I recommend you use the explicit syntax, you should be familiar with 
the implicit syntax in case you ever need to maintain SQL statements that use it. 

Figure 4-7 presents the implicit syntax for an inner join along with two 
statements that use it. As you can see, the tables to be joined are simply listed in 
the FROM clause. Then, the join conditions are included in the WHERE clause. 

The first SELECT statement, for example, joins data from the Vendors and 
Invoices table. Like the SELECT statement you saw back in figure 4-1, these 
tables are joined based on an equal comparison between the VendoriD columns 
in the two tables. In this case, though, the comparison is coded as the search 
condition of the WHERE clause. If you compare the result set shown in this 
figure with the one in figure 4-1, you' 11 see that they' re identical. 

The second SELECT statement uses the implicit syntax to join data from 
four tables. This is the same join you saw in figure 4-6. Notice in this example 
that the three join conditions are combined in the WHERE clause using the AND 
operator. In addition, an AND operator is used to combine the join conditions 
with the search condition. 

Because the explicit syntax for joins lets you separate join conditions from 
search conditions, statements that use the explicit syntax are typically easier to 
read than those that use the implicit syntax. In addition, the explicit syntax helps 
you avoid a common coding mistake with the implicit syntax: omitting the join 
condition. As you' ll learn later in this chapter, an implicit join without a join 
condition results in a cross join, which can return a large number of rows. For 
these reasons, I recommend you use the explicit syntax in all your new SQL 
code. 



Chapter 4 How to retrieve data f rom two or more tables 139 

The implicit syntax for an inner join 
SELECT s elect_ lis t 
FROM t able_l, table_ 2 [ , table_ 3 ] ••. 
WHERE table_ l . column_ name operator table_ 2.column_name 

[AND table_ 2.column_name operator table_ 3.column_ name] . .• 

A SELECT statement that joins the Vendors and Invoices tables 
SELECT Invoi c e Number, VendorName 
FROM Vendors, Invoices 
WHERE Vendors . VendoriD = Invoices.VendoriD; 

The result set 

1 

2 

3 

Invoice Number VendocName 

[§~~:~·.·.·~.·.·.·.·.·~.·.·.·~~] IBM 
Q54544J IBM 

547481328 Blue Cross 

4 547479217 Blue Cross 

5 547480102 Blue Cross 

6 P02-88DnS7 Fresno County Tax Collector 

7 40318 Data Reproductions Corp 

A statement that joins four tables 
SELECT VendorName, Invo iceNumber, InvoiceDate, 

InvoiceLineitemAmount AS LineitemAmount , AccountDesc ription 
FROM Vendors, Invoic es, InvoiceLi neitems, GLAc counts 
WHERE Vendors .VendoriD = Invoices . Ve ndoriD 

AND Invo i c es.InvoiceiD = InvoiceLine items .Invo i ceiD 
AND Invoic eLineitems.AccountNo = GLAccounts.AccountNo 
AND InvoiceTotal - PaymentTotal - CreditTotal > 0 

ORDER BY VendorName, LineitemAmount DESC; 

The result set 
VendorName Invoice Number Invoice Date UnelemAmotr.t Pcccxxt Desaiption 

1 r.·.~~~~·~.~·~~.·.·~~~.·.·.·~~.·.·.·~~.·.·.·~~.·.·.·~~.·.·~~.·.·.·~~.·.·.·~~.·.·~~~] 54 7480102 202!Hl2.()1 224.00 Group Insurance 

2 Cardinal Business Media, Inc. 134116 202!Hl1-28 90.36 Direct Mail Advertising 

3 Data Reproductions Corp 39104 202!Hl1-10 85.31 Book Printing Costs 

4 Federal Express Corporation 263253270 202!Hl1-22 67.92 Freight 

5 Federal Express Corporation 263253268 202!Hl1-21 59.97 Freight 

6 Federal Express Corporation 963253264 202!Hl1-18 52.25 Freight 

7 Federal Express Corporation 263253273 202!Hl1-22 30.75 Freight 
~ 

Description 
• Instead of coding a join condition in the FROM clause, you can code it in the 

WHERE clause along with any search conditions_ Then, you simply list the tables 
you want to join in the FROM clause separated by commas_ 

• This syntax for coding joins is referred to as the implicit syntax, or the theta syntax. 
It was used prior to the SQL-92 standards, which introduced the explicit syntax. 

• If you omit the join condition from the WHERE clause, a cross join is performed. 
You 'Ill earn about cross joins later in this chapter. 

Figure 4-7 How to use the implicit inner join syntax 



140 Section 2 The essential SQL skills 

How to work with outer joins 
Although inner joins are the type of join you'll use most often, SQL Server 

also supports outer joins. Unlike an inner join, an outer join returns all of the 
rows from one or both tables involved in the join, regardless of whether the join 
condition is true. You' ll see how this works in the topics that follow. 

How to code an outer join 

Figure 4-8 presents the explicit syntax for coding an outer join. Because 
this syntax is similar to the explicit syntax for inner joins, you shouldn' t have 
any trouble understanding how it works. The main difference is that you include 
the LEFT, RIGHT, or FULL keyword to specify the type of outer join you want 
to perform. As you can see in the syntax, you can also include the OUTER 
keyword, but it's optional and is usually omitted. 

The table in this figure summarizes the differences between left, right, and 
full outer joins. When you use a left outer join, the result set includes all the 
rows from the first, or left, table. Similarly, when you use a right outer join, the 
result set includes all the rows from the second, or right, table. And when you 
use afull outer join, the result set includes all the rows from both tables. 

The example in this figure illustrates a left outer join. Here, the Vendors table 
is joined with the Invoices table. Notice that the result set includes vendor rows 
even if no matching invoices are found. In that case, null values are returned for 
the columns in the Invoices table. 

When coding outer joins, it's a common practice to avoid using right joins. 
To do that, you can substitute a left outer join for a right outer join by reversing 
the order of the tables in the FROM clause and using the LEFT keyword instead 
of RIGHT. This often makes it easier to read statements that join more than two 
tables. 

In addition to the explicit syntax for coding outer joins, earlier versions of 
SQL Server provided for an implicit syntax. This worked much the same as the 
implicit syntax for coding inner joins. For outer joins, however, you used the *= 
operator in the WHERE clause to identify a left outer join, and you used the =* 
operator to identify a right outer join. Although you can't use these operators 
in SQL Server 2005 and later, you should at least be aware of them in case you 
come across them in older queries. 



Chapter 4 How to retrieve data f rom two or more tables 141 

The explicit syntax for an outer join 
SELECT s e lect _ lis t 
FROM table_ l 

{LEFTIRIGHTIFULL} [OUTER] JOIN table_ 2 
ON join_ condition_ l 

[{LEFT IRIGHTIFULL} [OUTER] JOIN table_ 3 
ON join_ condition_ 2] ••• 

What outer joins do 
Joins of this type Keep unmatched rows from 

Left outer join 

Right outer join 

Full outer join 

The first (left) table 

The second (right) table 

Both tables 

A SELECT statement that uses a left outer join 
SELECT Vendo rName, Invoic eNumber, Invoic eTotal 
FROM Vendors LEFT JOIN Invoic es 

ON Vendors.VendoriD = Inv oices.VendoriD 
ORDER BY VendorName; 

VendorName lnvoiceNunber Invoice Total 

1 [.§.~.·-~-~-~~---~~~·.·.·.:.·~···=··] 20333~ 13 17.50 
2 American Booksell~ Assoc NULL NULL 

3 American Express NULL NULL 

4 ASC Signs NULL NULL 

5 Ascom Hasler Mailing Systems NULL NULL 

6 AT&T NULL NULL 

(202 rows ) 

Description 
• An outer j oin retrieves all rows that satisfy the join condition, plus unmatched rows 

in one or both tables. 

• In most cases, you use the equal operator to retrieve rows with matching columns. 
However, you can also use any of the other comparison operators. 

• When a row with unmatched columns is retrieved, any columns from the other 
table that are included in the result set are given null values. 

Notes 
• The OUTER keyword is optional and typically omitted. 

• Prior to SQL Server 2005 , you could also use the implicit syntax to code left outer 
and right outer joins. To do that, you listed the tables to be joined in the FROM 
clause, and you used the *= (left) and =* (right) operators in the WHERE clause to 
specify the join condition. 

Figure 4-8 How to code an outer join 



142 Section 2 The essential SQL skills 

Outer join examples 

To give you a better understanding of how outer joins work, figure 4-9 
presents three more examples. These examples use the Departments and 
Employees tables shown at the top of this figure. In each case, the join condition 
joins the tables based on the values in their DeptNo columns. 

The first SELECT statement performs a left outer join on these two tables. In 
the result set produced by this statement, you can see that department number 3 
is included in the result set even though none of the employees in the Employees 
table work in that department. Because of that, a null value is assigned to the 
LastName column from that table. 

The second SELECT statement uses a right outer join. In this case, all of the 
rows from the Employees table are included in the result set. Notice, however, 
that two of the employees, Watson and Locario, are assigned to a department 
that doesn't exist in the Departments table. Of course, if the DeptNo column in 
this table had been defined as a foreign key to the Departments table, this would 
not have been allowed. In this case, though, a foreign key wasn't defined, so null 
values are returned for the DeptName column in these two rows. 

The third SELECT statement in this figure illustrates a full outer join. If you 
compare the results of this query with the results of the queries that use a left and 
right outer join, you' ll see that this is a combination of the two joins. In other 
words, each row in the Departments table is included in the result set, along with 
each row in the Employees table. Because the DeptNo column from both tables 
is included in this example, you can clearly identify the row in the Departments 
table that doesn' t have a matching row in the Employees table and the two rows 
in the Employees table that don't have matching rows in the Departments table. 



Chapter 4 How to retrieve data from two or more tables 143 

The Departments table The Employees table 
DeptName DeptNo EmployeeiD Last Name PntN;,me Dept No 

1 [.~~·::::~J 1 1 LT:· .. ::·.·:::.· .. ::.·.::·.·.·::·_·] Snmh Ondy 2 

2 Payroll 2 2 2 Jones Bmer 4 

3 Operi!lions 3 3 3 Simoni!ll'l Ri!lph 2 

4 Personnel 4 4 4 HemCIOdez Olivia 1 

5 Maintenance 5 5 5 Aaronsen Robert 2 - 6 6 WC!Ison Denise 6 

7 7 Hardy Thomas 5 

8 8 O'Leary Rhea 4 

9 9 l..ocario Paulo 6 

""" 
A left outer join 

SELECT DeptName, Departments.DeptNo, 
LastName 

Dept Name DeptNo L..astName 

FROM Departments LEFT JOIN Employees 
ON Departments.DeptNo = 

Employees.DeptNo; 

l'"'"'""'''""'""'""'"""'l 

1 l .. ~~~ ....... .J1 
2 Payroll 2 

3 Payroll 2 

4 Payroll 2 

5 Operations 3 

6 PefSOmel 4 

Hernandez 

Smlh 

Simonian 

Aaron sen 

NULL 

Jones 

7 PefSOmel 4 O'leary 

8 Maintenance 5 Hardy 

A right outer join 
SELECT DeptName, Employees.DeptNo, 

LastName 
FROM Departments RIGHT JOIN Employees 

ON Departments.DeptNo 
Employees.DeptNo; 

A full outer join 
SELECT DeptName, Departments . DeptNo, 

Employees . DeptNo, LastName 
FROM Departments FULL JOIN Employees 

ON Departments.DeptNo = 
Employees.DeptNo; 

Description 

1 
2 
3 

4 

5 

6 

7 

8 
9 

10 

Dept Name Dept No 

1 
..................................... 

l...P..~ .................. ..J2 
2 Personnel 4 

3 Payroll 2 

4 kcounting 1 

5 Payroll 2 
6 NULL 6 

7 Maintenance 5 

8 Personnel 4 

9 NULL 6 

Dept Name Dept No Dept No 

[_~;~·::·::·_]1 1 
Payroll 2 2 
Payroll 2 2 

Payroll 2 2 
Operi!lions 3 NULL 

Personnel 4 4 

Personnel 4 4 

Maintenance 5 5 

NULL NULL 6 

NULL NULL 6 

• From these examples, you can see that none of the employees in the Employees 
table work in the Operations department, and two of the employees (Watson and 
Locario) work in a department that doesn' t exist in the Departments table. 

Figure 4-9 Outer join examples 

Last Name 

Smlh 

Jones 

Simonian 

Hernandez 

Aaron sen 

WC!Ison 

Hardy 

O'Leary 

l..ocario 

Last Name 

Hernandez 

Smlh 

Simonian 

Aaron sen 

NULL 

Jones 

O'le;,ry 

Hardy 

WC!Ison 

l..oc;,rio 



144 Section 2 The essential SQL skills 

Outer joins that join more than two tables 

Like inner joins, you can use outer joins to join data from more than 
two tables. The two examples in figure 4-10 illustrate how this works. These 
examples use the Departments and Employees tables you saw in the previous 
figure, along with a Projects table. All three of these tables are shown at the top 
of this figure. 

The first example in this figure uses left outer joins to join the data in the 
three tables. Here, you can see once again that none of the employees in the 
Employees table are assigned to the Operations department. Because of that, null 
values are returned for the columns in both the Employees and Projects tables. In 
addition, you can see that two employees, Hardy and Jones, aren't assigned to a 
project. 

The second example in this figure uses full outer joins to join the three 
tables. This result set includes unmatched rows from the Departments and 
Employees table just like the result set you saw in figure 4-9 that was created 
using a full outer join. In addition, the result set in this example includes an 
unmatched row from the Projects table: the one for project number Pl014. In 
other words, none of the employees are assigned to this project. 



Chapter 4 How to retrieve data f rom two or more tables 145 

The Departments table 

1 

2 
3 

4 

5 

DeptName DeptNo 

[_'§.~"'.'] 1 
Payroll 2 

Ope!Mions 3 

Personnel 4 

Mairienance 5 

= 

The Employees table 

1 

2 
3 

4 

5 

EmployeeiD LastName 
r 1. · · · · · ·1 Smith 
~ . . 

2 Jones 
3 Simonian 

4 Hernandez 

5 Aaronsen 

6 6 Watson 

Hardy 

O'leary 

l.ocario 

7 7 

8 8 

9 9 

= 

F'rstName 

Qndy 

Bmer 

Ralph 

Olivia 

Robert 

Dept No 

2 

4 

2 

1 

2 
Denise 6 

Thomas 5 

Rhea 4 

Paulo 6 

= 

The Projects table 

1 

2 
3 

4 

5 

ProjectNo EmployeeiD 

['~5§!5'"'''":'] 8 

P1011 4 

P1012 3 

P1012 1 

P1012 5 

6 P1013 

7 P1013 

8 P1014 

6 

9 

10 

A SELECT statement that joins the three tables using left outer joins 
SELECT DeptName, LastName, ProjectNo 
FROM Departments 

LEFT JOIN Employees 
ON Departments.DeptNo = Employees.DeptNo 

LEFT JOIN Projects 
ON Employees.EmployeeiD = Proj ects.EmployeeiD 

ORDER BY DeptName, LastName, ProjectNo; 

Dept Name Last Name Project No 

1 [~~·_'.'.'.-] Hernandez P1011 

2 Maintenance Hardy NULL 

3 Opel'llllons NULL NULL 

4 Payroll Al!ronsen P1012 

5 Payroll Simonian P1012 

6 Payroll Smith P1012 

7 Personnel Jones NULL 

8 Personnel O'leary P1011 

A SELECT statement that joins the three tables using full outer joins 
SELECT DeptName, LastName, ProjectNo 
FROM Departments 

FULL JOIN Employees 
ON Departments.DeptNo = Employees.DeptNo 

FULL JOIN Projects 
ON Employees.EmployeeiD = Projects.EmployeeiD 

ORDER BY DeptName; 

Dept Name Last Name Project No 

1 [.~'_g.~~.-.. ~:~.'_'_'~.'.'.] Watson P1013 

2 NULL l.ocario P1013 

3 NULL NULL P1014 

4 Accounting Hernandez P1011 

5 Mainteniilnce Hii!rdy NULL 

6 Operations NULL NULL 

7 Payroll Smith P1012 

8 Payroll Simonian P1012 

9 Payroll Aaronsen P1012 

10 Personnel Jones NULL 

11 Personnel O'Leary P1011 

Figure 4-1 0 Outer joins that join more than two tables 



146 Section 2 The essential SQL skills 

Other skills for working with joins 
The two topics that follow present two additional skills for working with 

joins. In the first topic, you'lllearn how to use inner and outer joins in the same 
statement. Then, in the second topic, you'lllearn how to use another type of join, 
called a cross join. 

How to combine inner and outer joins 

Figure 4-11 shows how you can combine inner and outer joins. In this 
example, the Departments table is joined with the Employees table using an 
inner join. The result is an interim table that includes departments with one or 
more employees. Notice that the EmployeeiD column is shown in this table even 
though it's not included in the final result set. That's because it's used by the join 
that follows. 

After the Departments and Employees tables are joined, the interim table 
is joined with the Projects table using a left outer join. The result is a table that 
includes all of the departments that have employees assigned to them, all of 
the employees assigned to those departments, and the projects those employees 
are assigned. Here, you can clearly see that two employees, Hardy and Jones, 
haven' t been assigned projects. 



Chapter 4 How to retrieve data f rom two or more tables 147 

The Departments table 

1 

2 
3 

4 

5 

Dept Name Dept No 

[~0.~~--~~~] 1 
Peyrol 2 
Operations 3 

Persomel 4 

Maintenance 5 

= 

The Employees table 

1 

2 
3 

4 

5 

6 

7 

8 

EmployeeiD LastName 
r 1· · · · · ·1 Smith 
t . • . .: 

2 Jones 
3 Simonian 

4 Hernandez 

5 Aaronsen 

6 Watson 

7 Hardy 

8 O'leary 

9 9 l..ocario 

FrstName 

Ondy 

Bmer 
Ralph 

Olivia 

Robert 
Denise 

Thomas 

Rhea 

Paulo 

Dept No 

2 

4 

2 
1 

2 
6 

5 

4 

6 

The Projects table 

1 

2 
3 

4 

5 
6 

7 

8 

Project No Employee I D 

L.P.5.~if~~--~~~.-.J 8 
P1011 4 

P1012 3 

P1012 1 

P1012 5 

P1013 6 

P1013 9 

P1014 10 

A SELECT statement that combines an outer and an inner join 
SELECT DeptName, LastName, ProjectNo 
FROM Departments 

JOIN Employees 
ON Departments.DeptNo = Employees.DeptNo 

LEFT JOIN Projects 
ON Employees.EmployeeiD = Proj ects.EmployeeiD 

ORDER BY DeptName; 

The interim table 
Dept Name Last Name EmployeeiD 

[.£.~~~-·.·.:~~-~~:.·.·.~:·.] Smith 1 

2 p e!SOfll1el Jones 2 

3 Payrol Simonian 3 

4 Accounting Hernandez 4 

5 Payrol Aaronsen 5 

6 Maintenance Hardy 7 

7 Persomel O'Leary 8 
~ 

The result set 
Dept Name Last Name ProjedNo 

1 ["~0.i.·.·~~~:J Hema'ldez P1011 

2 Maintenance Hardy NULL 

3 Payrol Smith P1012 

4 Payrol Simonian P1012 

5 Payrol Aaronsen P1012 

6 Persomel Jones NULL 

7 p e!SOfll1el O'Leary P1011 

• 

Description 
• You can combine inner and outer joins within a single SELECT statement using 

the explicit join syntax. You can' t combine inner and outer joins using the implicit 
syntax. 

Figure 4-11 How to combine inner and outer joins 



148 Section 2 The essential SQL skills 

How to use cross joins 

A cross join produces a result set that includes each row from the first 
table joined with each row from the second table. The result set is known as 
the Cartesian product of the tables. Figure 4-12 shows how to code a cross join 
using either the explicit or implicit syntax. 

To use the explicit syntax, you include the CROSS JOIN keywords between 
the two tables in the FROM clause. Notice that because of the way a cross join 
works, you don't include a join condition. The same is true when you use the 
implicit syntax. In that case, you simply list the tables in the FROM clause and 
omit the join condition from the WHERE clause. 

The two SELECT statements in this figure illustrate how cross joins work. 
Both of these statements combine data from the Departments and Employees 
tables. As you can see, the result is a table that includes 45 rows. That's each of 
the five rows in the Departments table combined with each of the nine rows in 
the Employees table. Although this result set is relatively small, you can imagine 
how large it would be if the tables included hundreds or thousands of rows. 

As you study these examples, you should realize that cross joins have few 
practical uses. As a result, you'll rarely, if ever, need to use one. 



Chapter 4 How to retrieve data from two or more tables 149 

How to code a cross join using the explicit syntax 
The explicit syntax for a cross join 
SELECT sel e c t _ list 
FROM table_ l CROSS JOIN table_ 2 

A cross join that uses the explicit syntax 
SELECT De p a r t ments. De pt No, DeptName, EmployeeiD, LastName 
FROM Departments CROSS JOIN Employees 
ORDER BY Dep a rtments .DeptNo; 

How to code a cross join using the implicit syntax 
The implicit syntax for a cross join 
SELECT s e lect_ list 
FROM table_l, table_2 

A cross join that uses the implicit syntax 
SELECT Departments.DeptNo, DeptName, EmployeeiD, LastName 
FROM Departments, Employees 
ORDER BY Departments.Dept No; 

The result set created by the statements above 
Dept No Dept Name EmployeeiD Last Name 

1 ['!··~················] Accountng 1 Smith 

2 Accountng 2 Jones 

3 Accountng 3 Simonian 

4 Accountng 4 Hernandez 

5 Accournng 5 Aaronsen 

6 Accountng 6 W<J.soo 

7 Accountng 7 Hardy 

"""' (4 5 rows ) 

Description 
• A cross join joins each row from the first table with each row from the second 

table. The result set returned by a cross join is known as a Cartesian product. 

• To code a cross join using the explicit syntax, use the CROSS JOIN keywords in 
the FROM clause. 

• To code a cross join using the implicit syntax, list the tables in the FROM clause 
and omit the join condition from the WHERE clause. 

Figure 4-1 2 How to use cross joins 



150 Section 2 The essential SQL skills 

How to work with unions 
Like a join, a union combines data from two or more tables. Instead of 

combining columns from base tables, however, a union combines rows from two 
or more result sets. You' ll see how that works in the topics that follow. 

The syntax of a union 
-------

Figure 4-13 shows how to code a union. As the syntax shows, you create 
a union by connecting two or more SELECT statements with the UNION 
keyword. For this to work, the result of each SELECT statement must have the 
same number of columns, and the data types of the corresponding columns in 
each table must be compatible. 

In this syntax, I have indented all of the SELECT statements that are 
connected by the UNION operator to make it easier to see how this statement 
works. However, in a production environment, it's common to see the SELECT 
statements and the UNION operator coded at the same level of indentation. 

If you want to sort the result of a union operation, you can code an ORDER 
BY clause after the last SELECT statement. Note that the column names you 
use in this clause must be the same as those used in the first SELECT statement. 
That's because the column names you use in the first SELECT statement are the 
ones that are used in the result set. 

By default, a union operation removes duplicate rows from the result set. 
If that's not what you want, you can include the ALL keyword. In most cases, 
though, you' ll omit this keyword. 

Unions that combine data from different tables 

The example in this figure shows how to use a union to combine data from 
two different tables. In this case, the Activeinvoices table contains invoices with 
outstanding balances, and the Paidinvoices table contains invoices that have been 
paid in full. Both of these tables have the same structure as the Invoices table 
you've seen in previous fi gures. 

This union operation combines the rows in both tables that have an invoice 
date on or after 111/2020. Notice that the first SELECT statement includes 
a column named Source that contains the literal value "Active." The second 
SELECT statement includes a column by the same name, but it contains the 
literal value "Paid." This column is used to indicate which table each row in the 
result set came from. 

Although this column is assigned the same name in both SELECT 
statements, you should realize that doesn't have to be the case. In fact, none of 
the columns have to have the same names. Corresponding columns do have to 
have compatible data types. But the corresponding relationships are determined 
by the order in which the columns are coded in the SELECT clauses, not by their 
names. When you use column aliases, though, you'll typically assign the same 
name to corresponding columns so the statement is easier to understand. 



Chapter 4 How to retrieve data from two or more tables 151 

The syntax for a union operation 
SELECT_statement_ 1 

UNION [ALL) 
SELECT_statement_ 2 

[UNION [ALL] 
SELECT_statement_ 3] ••• 

[ORDER BY order_by_ list] 

A union that combines invoice data from two different tables 
SELECT 'Active' AS Source, InvoiceNumber, InvoiceDate, InvoiceTotal 
FROM Activeinvoices 
WHERE InvoiceDate >= '01/01/2020' 

UNION 
SELECT 'Paid' AS Source, InvoiceNumber, InvoiceDate, InvoiceTotal 
FROM Paidinvoices 
WHERE InvoiceDate >= '01/01/2020' 

ORDER BY InvoiceTotal DESC; 

The result set 
SotXCe Invoice Nunber Invoice Date Invoice Total 

1 i'"'fi~;;:j···········~ P~259 202().{)1-19 00:00:00 26881.40 

,., 

t ....................... ; 

L 2 Paid ().2060 202().{)1-24 00:00:00 23517.58 

3 Active P-0608 202().{)1-23 00:00:00 20551.18 

4 Active 0.2436 202().{)1-31 00:00:00 10976.06 

5 Paid 989319-447 202().{)1-24 00:00:00 3689.99 

6 Paid 989319-467 202().{)1-01 00:00:00 2318.03 

7 Paid 989319-417 202().{)1-23 00:00:00 2051.59 

8 Paid 971212 202().{)1-25 00:00:00 1000.46 

9 Paid 963253230 202().{)1-07 00:00:00 739.20 

(35 rows) 

Description 
• A union combines the result sets of two or more SELECT statements into one 

result set. 

• Each result set must return the same number of columns, and the corresponding 
columns in each result set must have compatible data types. 

• By default, a union eliminates duplicate rows. If you want to include duplicate 
rows, code the ALL keyword. 

• The column names in the final result set are taken from the first SELECT clause. 
Column aliases assigned by the other SELECT clauses have no effect on the final 
result set. 

• To sort the rows in the final result set, code an ORDER BY clause after the last 
SELECT statement. This clause must refer to the column names assigned in the 
first SELECT clause. 

Figure 4-13 How to combine data from different tables 



152 Section 2 The essential SQL skills 

Unions that combine data from the same table 

Figure 4-14 shows how to use unions to combine data from a single table. 
In the first example, rows from the Invoices table that have a balance due are 
combined with rows from the same table that are paid in full. As in the example 
in the previous figure, a column named Source is added at the beginning of each 
interim table. That way, the final result set indicates whether each invoice is 
active or paid. 

The second example in this figure shows how you can use a union with data 
that's joined from two tables. Here, each SELECT statement joins data from the 
Invoices and Vendors tables. The first SELECT statement retrieves invoices with 
totals greater than $10,000. Then, it calculates a payment of 33% of the invoice 
total. The two other SELECT statements are similar. The second one retrieves 
invoices with totals between $500 and $10,000 and calculates a 50% payment. 
And the third one retrieves invoices with totals less than $500 and sets the 
payment amount at 100% of the total. Although this is somewhat unrealistic, it 
helps illustrate the flexibility of union operations. 

Notice in this example that the same column aliases are assigned in each 
SELECT statement. Although the aliases in the second and third SELECT 
statements have no effect on the query, I think they make the query easier to 
read. In particular, it makes it easy to see that the three SELECT statements have 
the same number and types of columns. 



Chapter 4 How to retrieve data f rom two or more tables 153 

A union that combines information from the Invoices table 
SELECT 'Active• AS Source, InvoiceNumber, InvoiceDate, InvoiceTotal 
FROM Invoices 
WHERE InvoiceTotal - PaymentTotal - CreditTotal > 0 

UNION 
SELECT 'Paid' AS Source, InvoiceNumber, InvoiceDate, InvoiceTotal 
FROM Invoices 
WHERE InvoiceTotal - PaymentTotal - CreditTotal <= 0 

ORDER BY InvoiceTotal DESC; 

The result set 
Souce Invoice Nunber Invoice Date Invoice Total 

1 l.'Y~~:·.·.··:.·.·.·] ().2058 2019-11-28 37966.19 

2 Paid P~259 2020-01-19 26881 .40 

3 Paid ().2060 2020-01-24 23517.58 

4 Paid 40318 2019-12.()1 21842.00 

5 Active P-0608 2020-01-23 20551.18 

' (114 rows) 

1\ 

.., 

A union that combines payment data from the same joined tables 

II 

SELECT InvoiceNumber, VendorName, '33% Payment' AS PaymentType, 
InvoiceTotal AS Total, (InvoiceTotal * 0.333) AS Payment 

FROM Invoices JOIN Vendors 
ON Invoices.VendoriD = Vendors.VendoriD 

WHERE InvoiceTotal > 10000 
UNION 

SELECT InvoiceNumber, VendorName, '50% Payment' AS PaymentType, 
InvoiceTotal AS Total, (InvoiceTotal * 0.5) AS Payment 

FROM Invoices JOIN Vendors 
ON Invoices.VendoriD = Vendors.VendoriD 

WHERE InvoiceTotal BETWEEN 500 AND 10000 
UNION 

SELECT InvoiceNumber, VendorName, 'Full amount' AS PaymentType, 
InvoiceTotal AS Total, InvoiceTotal AS Payment 

FROM Invoices JOIN Vendors 
ON Invoices.VendoriD = Vendors.VendoriD 

WHERE InvoiceTotal < 500 
ORDER BY PaymentType, VendorName, InvoiceNumber; 

The result set 
Invoice Number VendorName Payment Type Total Payment 

6 P.()6()8 Malloy I.Ahographing Inc 33% Payment 20551.18 6843.5429400 

7 509786 Bertelsmann Industry Svcs. Inc 504 Payment 6940.25 34 70.1250000 

8 587056 Camers Publishing Company 50"4 Payment 2184.50 1092.2500000 

9 367447 Computerworid 504 Payment 2433.00 1 216.5000000 

"""""""' 
(114 rows) 

Figure 4-14 Unions that combine data from the same table 

1\ 

II 

.., 



154 Section 2 The essential SQL skills 

How to use the EXCEPT 
and INTERSECT operators 

Like the UNION operator, the EXCEPT and INTERSECT operators work 
with two or more result sets as shown in figure 4-15. Because of that, all three of 
these operators can be referred to as set operators. In addition, the EXCEPT and 
INTERSECT operators follow many of the same rules as the UNION operator. 

The first query shown in this figure uses the EXCEPT operator to return the 
first and last names of all customers in the Customers table except any customers 
whose first and last names also exist in the Employees table. Since Thomas 
Hardy is the only name that's the same in both tables, this is the only row that's 
excluded from the result set for the query that comes before the EXCEPT 
operator. 

The second query shown in this figure uses the INTERSECT operator to 
return the first and last names of all customers in the Customers table whose first 
and last names also exist in the Employees table. Since Thomas Hardy is the 
only name that exists in both tables, this is the only row that's returned for the 
result set for this query. 

When you use the EXCEPT and INTERSECT operators, you must follow 
many of the same rules that you must follow when working with the UNION 
operator. To start, both of the statements that are connected by these opera
tors must return the same number of columns. In addition, the data types for 
these columns must be compatible. Finally, when two queries are joined by 
an EXCEPT or INTERSECT operator, the column names in the final result 
set are taken from the first query. That's why the ORDER BY clause uses the 
CustomerLast column specified by the first query instead of the LastName 
column specified by the second query. If you understand how the UNION 
operator works, you shouldn' t have any trouble understanding these rules. 

Although it's often possible to get the same result sets by using an inner join 
or a subquery instead of the EXCEPT and INTERSECT operators, these operators 
are a helpful feature of SQL Server that can make it easier to compare two result 
sets. 



Chapter 4 How to retrieve data from two or more tables 155 

The syntax for the EXCEPT and INTERSECT operations 
SELECT_statement_ l 

{EXCEPT I INTERSECT} 
SELECT_statement_ 2 

[ORDER BY order_by_ list] 

The Customers table The Employees table 
CustomerFirst Customerl.ast "' 

, r·~~.ri.~·:::::::::::::::::.-:·J .aroers 
2 Ma Trujilo 

3 kdonio Moreno 

4 Thomas 

5 Olristina 

6 Hanna 

(24 rows) 

Hardy 

Berglood 

Moos 

First Name Last Name 
4 [~·~······.···: ·.··] Hernandez 

5 Robert ~ronsen 

6 Denise Watson 

7 Thomas Hardy 

8 Rhea O'Leary 

9 Paulo locario 

(9 rows) 

A query that excludes rows from the first query 
if they also occur in the second query 

SELECT CustomerFirst, CustomerLast 
FROM Customers 

EXCEPT 
SELECT FirstName, LastName 
FROM Employees 

ORDER BY CustomerLast; 

The result set 
CustomerArst Customerl.ast 

4 [·~~····:····:···:·:·] Ol~an 
5 Fred Oteaux 

6 Karl Jablonski 

7 Yoshi latimer 

(23 rows) 

._ Ill 

A query that only includes rows that occur in both queries 
SELECT CustomerFirst, CustomerLast 
FROM Customers 

INTERSECT 
SELECT FirstName, LastName 
FROM Employees; 

The result set 
CustomerRrst Customerl.ast 

[fh..?..~.~.~·.::::::::::.~:J Hardy 

(1 row) 

Description 

• The number of columns must be the same in both SELECT statements. 

• The data types for each column must be compatible. 

• The column names in the final result set are taken from the first SELECT statement. 

Figure 4-15 How to use the EXCEPT and INTERSECT operators 



156 Section 2 The essential SQL skills 

Perspective 
In this chapter, you learned a variety of techniques for combining data from 

two or more tables into a single result set. In particular, you learned how to use 
the SQL-92 syntax for combining data using inner joins. Of all the techniques 
presented in this chapter, this is the one you' ll use most often. So you' ll want to 
be sure you understand it thoroughly before you go on. 

Terms 

JOin 

join condition 
mner JOin 

ad hoc relationship 
qualified column name 
explicit syntax 
correlation name 
table alias 

interim table 
implicit syntax 
theta syntax 
outer join 

fully-qualified object name 
partially-qualified object name 
self-join 

left outer join 
right outer join 
full outer join 
CrOSS JOin 

Cartesian product 
umon 
set operator 

interim result set 

Exercises 
Unless otherwise stated, use the explicit join syntax. 

1. Write a SELECT statement that returns all columns from the Vendors table 
inner-joined with the Invoices table. 

2. Write a SELECT statement that returns four columns: 

VendorName 

InvoiceNumber 

InvoiceDate 

Balance 

From the Vendors table 

From the Invoices table 

From the Invoices table 

InvoiceTotal minus the sum of 
PaymentTotal and CreditTotal 

The result set should have one row for each invoice with a non-zero balance. 
Sort the result set by VendorName in ascending order. 

3. Write a SELECT statement that returns three columns: 

VendorName 

DefaultAccountNo 

From the Vendors table 

From the Vendors table 

AccountDescription From the GLAccounts table 

The result set should have one row for each vendor, with the account number 
and account description for that vendor's default account number. Sort the 
result set by AccountDescription, then by VendorName. 



Chapter 4 How to retrieve data from two or more tables 157 

4. Generate the same result set described in exercise 2, but use the implicit join 
syntax. 

5. Write a SELECT statement that returns five columns from three tables, all 
using column aliases: 

Vendor VendorName column 

Date InvoiceDate column 

Number InvoiceNumber column 

# 

Lineltem 

InvoiceSequence column 

InvoiceLineltemAmount column 

Assign the following correlation names to the tables: 

v Vendors table 

Invoices table 

li InvoiceLineltems table 

Sort the final result set by Vendor, Date, Number, and #. 

6. Write a SELECT statement that returns three columns: 

VendoriD From the Vendors table 

VendorName 

Name 

From the Vendors table 

A concatenation of VendorContactFName and 
VendorContactLName, with a space in between 

The result set should have one row for each vendor whose contact has the 
same first name as another vendor's contact. Sort the final result set by Name. 

Hint: Use a self-join. 

7. Write a SELECT statement that returns two columns from the GLAccounts 
table: AccountNo and AccountDescription. The result set should have one row 
for each account number that has never been used. Sort the final result set by 
AccountNo. 

Hint: Use an outer join to the InvoiceLineitems table. 

8. Use the UNION operator to generate a result set consisting of two columns 
from the Vendors table: VendorName and VendorState. If the vendor is in 
California, the VendorState value should be "CA"; otherwise, the VendorState 
value should be "Outside CA." Sort the final result set by VendorName. 





5 

How to code 
• summary quer1es 

In this chapter, you' ll learn how to code queries that summarize data. For 
example, you can use summary queries to report sales totals by vendor or 
state, or to get a count of the number of invoices that were processed each day 
of the month. You' ll also learn how to use a special type of function called an 
aggregate function. Aggregate functions allow you to easily do jobs like figure 
averages or totals, or find the highest value for a given column. So you ' ll use 
them frequently in your summary queries. 

How to work with aggregate functions ............................ 160 
How to code aggregate functions ................................................................ 160 
Queries that use aggregate functions ................ .. ......... .. .. .. .......................... 162 

How to group and summarize data ................................... 164 
How to code the GROUP BY and HAVING clauses .. .. .. ......... .... .... .... .... .. . 164 
Queries that use the GROUP BY and HAVING clauses ............................ . 166 
How the HAVING clause compares to the WHERE clause .... ................ .. . 168 
How to code complex search conditions .. .. .. .. .. ..................... ........... ........ ... 170 

How to summarize data 
using SQL Server extensions ........................................... 172 
How to use the ROLLUP operator ........................................... ................... 172 
How to use the CUBE operator .... .... .. ...... .. .. .. .......... .. .. .... .... .... .... ............... 174 
How to use the GROUPING SETS operator ............................ ................... 176 
How to use the OVER clause .... ................ .................. .. .... ............ .... ........... 178 

Perspective ......................................................................... 180 



160 Section 2 The essential SQL skills 

How to work with aggregate functions 
In chapter.3, you were introduced to scalar functions, which operate on a 

single value and return a single value. In this chapter, you'll learn how to use 
aggregate functions, which operate on a series of values and return a single 
summary value. Because aggregate functions typically operate on the values 
in columns, they are sometimes referred to as column functions. A query that 
contains one or more aggregate functions is typically referred to as a summary 
query. 

How to code aggregate functions 

Figure 5-l presents the syntax of the most common aggregate functions. 
Since the purpose of these functions is self-explanatory, I'll focus mainly on how 
you use them. 

All of the functions but one operate on an expression. In the query in this 
figure, for example, the expression that's coded for the SUM function 
calculates the balance due of an invoice using the InvoiceTotal, PaymentTotal, 
and CreditTotal columns. The result is a single value that represents the total 
amount due for all the selected invoices. If you look at the WHERE clause in this 
example, you'll see that it includes only those invoices with a balance due. 

In addition to an expression, you can also code the ALL or DISTINCT 
keyword in these functions. ALL is the default, which means that all values are 
included in the calculation. The exceptions are null values, which are always 
excluded from these functions. 

If you don' t want duplicate values included, you can code the DISTINCT 
keyword. In most cases, you'll use DISTINCT only with the COUNT function. 
You'll see an example of that in the next figure. You won't use it with MIN or 
MAX because it has no effect on those functions. And it doesn't usually make 
sense to use it with the AVG and SUM functions. 

Unlike the other aggregate functions , you can't use the ALL or DISTINCT 
keywords or an expression with COUNT(*). Instead, you code this function 
exactly as shown in the syntax. The value returned by this function is the number 
of rows in the base table that satisfy the search condition of the query, including 
rows with null values. The COUNT(*) function in the query in this figure, for 
example, indicates that the Invoices table contains 11 invoices with a balance 
due. 



Chapter 5 How to code summary queries 161 

The syntax of the aggregate functions 
Function syntax Result 

AVG( [ALLI DISTINCT] expressi on) 

SUM ( [ALLIDISTINCT] expressi on) 

MIN ( [ALLIDI STI NCT ] expressi on) 

MAX ( [ALLIDISTI NCT] expressi on) 

COUNT ( [ALLI DISTINCT] expre ssion ) 

COUNT ( *) 

The average of the non-null values in the expression. 

The total of the non-null values in the expression. 

The lowest non-null value in the expression. 

The highest non-null value in the expression. 

The number of non-null values in the expression. 

The number of rows selected by the query. 

A summary query that counts unpaid invoices and calculates the total due 
SELECT COUNT (*) AS Numbe rOfinvoi ces, 

SUM ( I nvoiceTo tal - PaymentTo tal - Cred itTo tal ) AS TotalDue 
FROM Invoice s 
WHERE InvoiceTo t a l - Pa ymentTota l - Cred i tTota l > 0; 

The result set 

Description 
• Aggregate functions, also called columnfunctions, perform a calculation on the 

values in a set of selected rows. You specify the values to be used in the calculation 
by coding an expression for the function 's argument. In many cases, the expression 
is just the name of a column. 

• A SELECT statement that includes an aggregate function can be called a summary 
query. 

• The expression you specify for the AVG and SUM functions must result in a 
numeric value. The expression for the MIN, MAX, and COUNT functions can 
result in a numeric, date, or string value. 

• By default, all values are included in the calculation regardless of whether they're 
duplicated. If you want to omit duplicate values, code the DISTINCT keyword. 
This keyword is typically used only with the COUNT function. 

• All of the aggregate functions except for COUNT(*) ignore null values. 

• Aggregate functions are often used with the GROUP BY clause of the SELECT 
statement, which is used to group the rows in a result set. See figure 5-3 for more 
information. 

• If you code an aggregate function in the SELECT clause, that clause can't include 
non-aggregate columns from the base table unless the column is specified in a 
GROUP BY clause or the OVER clause is included for each aggregate function . 
See figure 5-10 for more information on the OVER clause. 

Figure 5-1 How to code aggregate functions 



162 Section 2 The essential SQL skills 

Queries that use aggregate functions 

Figure 5-2 presents four more queries that use aggregate functions. Before I 
describe these queries, you should know that with three exceptions, a SELECT 
clause that contains an aggregate function can contain only aggregate functions. 
The first exception is if the column specification results in a literal value. This is 
illustrated by the first column in the first two queries in this figure. The second 
exception is if the query includes a GROUP BY clause. Then, the SELECT 
clause can include any columns specified in the GROUP BY clause. The third 
exception is if the aggregate functions include the OVER clause. Then, the 
SELECT clause can include any columns from the base tables. You' ll see how 
you use the GROUP BY and OVER clauses later in this chapter. 

The first two queries in this figure use the COUNT(*) function to count the 
number of rows in the Invoices table that satisfy the search condition. In both 
cases, only those invoices with invoice dates after 7/1/2019 are included in the 
count. In addition, the first query uses the AVG function to calculate the average 
amount of those invoices and the SUM function to calculate the total amount of 
those invoices. By contrast, the second query uses the MIN and MAX functions 
to calculate the minimum and maximum invoice amounts. 

Although the MIN, MAX, and COUNT functions are typically used on 
columns that contain numeric data, they can also be used on columns that 
contain character or date data. In the third query, for example, they're used 
on the VendorName column in the Vendors table. Here, the MIN function 
returns the name of the vendor that's lowest in the sort sequence, the MAX 
function returns the name of the vendor that's highest in the sort sequence, and 
the COUNT function returns the total number of vendors. Note that since the 
VendorName column can' t contain null values, the COUNT(*) function would 
have returned the same result. 

The fourth query illustrates how using the DISTINCT keyword can affect 
the result of a COUNT function. Here, the first COUNT function uses the 
DISTINCT keyword to count the number of vendors that have invoices dated 
after 711/2019 in the Invoices table. To do that, it looks for distinct values in the 
VendoriD column. By contrast, because the second COUNT function doesn't 
include the DISTINCT keyword, it counts every invoice after 7/112019. Of 
course, you could accomplish the same thing using the COUNT(*) function. I 
used COUNT(VendoriD) here only to illustrate the difference between coding 
and not coding the DISTINCT keyword. 



Chapter 5 How to code summary queries 163 

A summary query that uses the COUNT(*), AVG, and SUM functions 
SELECT ' After 7/1/2019' AS SelectionDate, COUNT(*) AS NumberOfinvoices, 

AVG(InvoiceTotal) AS AverageinvoiceAmount, 
SUM(InvoiceTotal) AS TotalinvoiceAmount 

FROM Invoices 
WHERE InvoiceDate > '2019-07-01'; 

SelectionDate Numbe!Oflnvoices AveragelnvoiceAmount TotallnvoiceAmount 

I"'H!;"7/i'hO'i9''"! 114 1879.7413 214290.51 
\ooOOOOOOOOOOOOOO OOO" OOO" OOO"OOMO"OOOO! 

A summary query that uses the MIN and MAX functions 
SELECT 'After 7/1/2019' AS SelectionDate, COUNT(*) AS NumberOfinvoices, 

MAX(InvoiceTotal) AS HighestinvoiceTotal, 
MIN(InvoiceTotal) AS LowestinvoiceTotal 

FROM Invoices 
WHERE InvoiceDate > '2019-07-01'; 

Selection Date Nt..mbetOf Invoices Highest invoice Total Lowest Invoice Total 

r.·f.:t.i.~:·?.~i:~?.§i?·.·:J 114 37966.19 6.00 

A summary query that works on non-numeric columns 
SELECT MIN(VendorName) AS FirstVendor, 

MAX(VendorName) AS LastVendor, 
COUNT(VendorName) AS NumberOfVendors 

FROM Vendors; 

FllstVendor l.astVendor Numbe.OfVendors 

r.·~-~:.~.;·~-~:-~.;-~~:::J Z)t<a Design 122 

A summary query that uses the DISTINCT keyword 
SELECT COUNT(DISTINCT VendoriD) AS NumberOfVendors, 

COUNT(VendoriD) AS NumberOfinvoices, 
AVG(InvoiceTotal) AS AverageinvoiceAmount, 
SUM(InvoiceTotal) AS TotalinvoiceAmount 

FROM Invoices 
WHERE InvoiceDate > '2019-07-01'; 

Numbe.OfVendors NumbeiOflnvoices AveragelnvoiceAmoult T otallnvoiceAmount 

r.-:~:::::::::::::::::::::::::~::::::::::::::.] 114 1879.7413 214290.51 

Notes 
• If you want to count all of the selected rows, you ' ll typically use the COUNT(*) 

function as illustrated by the first two examples above. An alternative is to code the 
name of any column in the base table that can't contain null values, as illustrated by 
the third example. 

• If you want to count only the rows with unique values in a specified column, you 
can code the COUNT function with the DISTINCT keyword followed by the name 
of the column, as illustrated by the fourth example. 

Figure 5-2 Queries that use aggregate functions 



164 Section 2 The essential SQL skills 

How to group and summarize data 
Now that you understand how aggregate functions work, you're ready to 

learn how to group data and use aggregate functions to summarize the data in 
each group. To do that, you need to learn about two more clauses of the SELECT 
statement: GROUP BY and HAVING. 

How to code the GROUP BY and HAVING clauses 

Figure 5-3 presents the syntax of the SELECT statement with the GROUP 
BY and HAVING clauses. The GROUP BY clause determines how the selected 
rows are grouped, and the HAVING clause determines which groups are 
included in the final results. As you can see, these clauses are coded after the 
WHERE clause but before the ORDER BY clause. That makes sense because 
the search condition in the WHERE clause is applied before the rows are 
grouped, and the sort sequence in the ORDER BY clause is applied after the 
rows are grouped. 

In the GROUP BY clause, you list one or more columns or expressions 
separated by commas. Then, the rows that satisfy the search condition in the 
WHERE clause are grouped by those columns or expressions in ascending 
sequence. That means that a single row is returned for each unique set of values 
in the GROUP BY columns. This will make more sense when you see the 
examples in the next figure that group by two columns. For now, take a look at 
the example in this figure that groups by a single column. 

This example calculates the average invoice amount for each vendor who 
has invoices in the Invoices table that average over $2,000. To do that, it groups 
the invoices by VendoriD. Then, the AVG function calculates the average of the 
InvoiceTotal column. Because this query includes a GROUP BY clause, this 
function calculates the average invoice total for each group rather than for the 
entire result set. In that case, the aggregate function is called a vector aggregate. 
By contrast, aggregate functions like the ones you saw earlier in this chapter that 
return a single value for all the rows in a result set are called scalar aggregates. 

The example in this figure also includes a HAVING clause. The search 
condition in this clause specifies that only those vendors with invoices that 
average over $2,000 should be included. Note that this condition must be applied 
after the rows are grouped and the average for each group has been calculated. 

In addition to the AVG function, the SELECT clause includes the VendoriD 
column. That makes sense since the rows are grouped by this column. However, 
the columns used in the GROUP BY clause don' t have to be included in the 
SELECT clause. 



The syntax of the SELECT statement 
with the GROUP BY and HAVING clauses 

SELECT select_ list 
FROM table_sourc e 
[WHERE search_ condition] 
[GROUP BY group_by_ list] 
[HAVING search_condit ion] 
[ORDER BY order_by_list] 

Chapter 5 How to code summary queries 165 

A summary query that calculates the average invoice amount by vendor 
SELECT VendoriD, AVG (InvoiceTota l ) AS Avera geinv oiceAmount 
FROM Inv oices 
GROUP BY VendoriD 
HAVING AVG(Invo i c eTotal ) > 2 000 
ORDER BY AverageinvoiceAmount DESC ; 

VendoriD AveragelnvoiceProoult 

1 [ _"!"1§·:···:····:·:.·.] 23978.482 

2 72 10963.655 

3 104 7125.34 

4 99 6940.25 

5 119 4901.26 

6 122 2575.3288 

7 86 2433.00 

8 100 2184.50 

Description 
• The GROUP BY clause groups the rows of a result set based on one or more 

columns or expressions. It's typically used in SELECT statements that include 
aggregate functions. 

• If you include aggregate functions in the SELECT clause, the aggregate is calcu
lated for each set of values that result from the columns named in the GROUP BY 
clause. 

• If you include two or more columns or expressions in the GROUP BY clause, they 
form a hierarchy where each column or expression is subordinate to the previous 
one. 

• When a SELECT statement includes a GROUP BY clause, the SELECT clause can 
include aggregate functions, the columns used for grouping, and expressions that 
result in a constant value. 

• A group-by list typically consists of the names of one or more columns separated 
by commas. However, it can contain any expression except for those that contain 
aggregate functions. 

• The HAVING clause specifies a search condition for a group or an aggregate. This 
condition is applied after the rows that satisfy the search condition in the WHERE 
clause are grouped. 

Figure 5-3 How to code the GROUP BY and HAVING clauses 



166 Section 2 The essential SQL skills 

Queries that use the GROUP BY 
and HAVING clauses 

Figure 5-4 presents three more queries that group data. If you understood 
the query in the last figure, you shouldn't have any trouble understanding how 
the first query in this figure works. It groups the rows in the Invoices table by 
VendoriD and returns a count of the number of invoices for each vendor. 

The second query in this figure i1lustrates how you can group by more than 
one column. Here, a join is used to combine the VendorS tate and VendorCity 
columns from the Vendors table with a count and average of the invoices in the 
Invoices table. Because the rows are grouped by both state and city, a row is 
returned for each state and city combination. Then, the ORDER BY clause sorts 
the rows by city within state. Without this clause, the rows would be returned in 
no particular sequence. 

The third query is identical to the second query except that it includes a 
HAVING clause. This clause uses the COUNT function to limit the state and city 
groups that are included in the result set to those that have two or more invoices. 
In other words, it excludes groups that have only one invoice. 



Chapter 5 How to code summary queries 167 

A summary query that counts the number of invoices by vendor 
SELECT VendoriD, COUNT(*) AS InvoiceQty 
FROM Invoices 
GROUP BY VendoriD; 

1 

2 

3 

4 
5 

VendoriO lnvoiceOty 
!""34""""""""""""""1 2 
\ ,, ........................... i 

37 3 

48 1 

n 2 
80 2 

(34 rows) 

A summary query that calculates the number of invoices 
and the average invoice amount for the vendors in each state and city 

SELECT VendorState, VendorCity, COUNT(*) AS InvoiceQty, 
AVG(InvoiceTotal) AS InvoiceAvg 

FROM Invoices JOIN Vendors 
ON Invoices.VendoriD = Vendors.VendoriD 

GROUP BY VendorState, VendorCity 
ORDER BY VendorState, VendorCity; 

VendorState VendOICity lnvoiceOty lnvoiceAvg 

[.·~.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.~·.·.:.~·.·~.·] Phoenix 1 662.00 

2 CA Fresno 19 1208.7457 

3 CA los Angeles 1 503.20 

4 CA Oxnard 3 188.00 

5 CA Pasadena 5 196.12 
..... 

(20 rows) 

A summary query that limits the groups 
to those with two or more invoices 

SELECT VendorState, VendorCity, COUNT(*) AS InvoiceQty, 
AVG(InvoiceTotal) AS InvoiceAvg 

FROM Invoices JOIN Vendors 
ON Invoices.VendoriD = Vendors.VendoriD 

GROUP BY VendorState, VendorCity 
HAVING COUNT(*) >= 2 
ORDER BY VendorState, VendorCity; 

VendorState VendOICity lnvoiceOty lnvoiceAvg 

1 
r···························-······1 

Fresno 19 1208.7457 ; CA ! 
\ .................................... ! 

2 CA Oxnard 3 188.00 

3 CA Pasadena 5 196.12 

4 CA Sacramento 7 253.0014 

5 CA San Francisco 3 1211.04 
~ 

(12 rows) 

Note 

L 

• You can use a join with a summary query to group and summarize the data in two 
or more tables. 

Figure 5-4 Queries that use the GROUP BY and HAVING clauses 



168 Section 2 The essential SQL skills 

How the HAVING clause compares 
to the WHERE clause 

As you've seen, you can limit the groups included in a result set by coding 
a search condition in the HAVING clause. In addition, you can apply a search 
condition to each row before it's included in a group. To do that, you code the 
search condition in the WHERE clause just as you would for any SELECT 
statement. To make sure you understand the differences between search conditions 
coded in the HAVING and WHERE clauses, figure 5-5 presents two examples. 

In the first example, the invoices in the Invoices table are grouped by vendor 
name, and a count and average invoice amount are calculated for each group. 
Then, the HAVING clause limits the groups in the result set to those that have an 
average invoice total greater than $500. 

By contrast, the second example includes a search condition in the WHERE 
clause that limits the invoices included in the groups to those that have an 
invoice total greater than $500. In other words, the search condition in this 
example is applied to every row. In the previous example, it was applied to each 
group of rows. 

Beyond this, there are also two differences in the expressions that you can 
include in the WHERE and HAVING clauses. First, the HAVING clause can 
include aggregate functions as you saw in the first example in this figure, but the 
WHERE clause can't. That's because the search condition in a WHERE clause 
is applied before the rows are grouped. Second, although the WHERE clause 
can refer to any column in the base tables, the HAVING clause can only refer to 
columns included in the SELECT or GROUP BY clause. That's because it filters 
the summarized result set that's defined by the SELECT, FROM, WHERE, and 
GROUP BY clauses. In other words, it doesn't filter the base tables. 



Chapter 5 How to code summary queries 169 

A summary query with a search condition in the HAVING clause 
SELECT VendorName, COUNT(*) AS InvoiceQty, 

AVG(InvoiceTotal) AS InvoiceAvg 
FROM Vendors JOIN Invoices 

ON Vendors.VendoriD = Invoices.VendoriD 
GROUP BY VendorName 
HAVING AVG(InvoiceTotal) > 500 
ORDER BY InvoiceQty DESC; 

1 

2 

3 

VendorName lnvoiceOty 
r·~~ .. p:;;~i~~~~··························! 9 
~ ............................................................................... ; 

Zylka Design 8 

Manoy Lithographing Inc 5 

4 Data Reproductions Corp 2 

2 5 IBM 

(19 rows) 

lnvoiceAvg 

2575.3288 

867.5312 

23978.482 

109&3.655 

600.06 

A summary query with a search condition in the WHERE clause 
SELECT VendorName, COUNT(*) AS InvoiceQty, 

AVG(InvoiceTotal) AS InvoiceAvg 
FROM Vendors JOIN Invoices 

ON Vendors.VendoriD = Invoices.VendoriD 
WHERE InvoiceTotal > 500 
GROUP BY VendorName 
ORDER BY InvoiceQty DESC; 

VendorName lnvoiceOty lnvoiceAvg 

1 r.·.~.~~~¥..~·.·.~.~.~~~.:~.·~~~~~~~~~~~~~~~~] 9 2575.3288 
2 Zylka Design 7 946.6714 

3 Manoy Lithographing Inc 5 23978.482 

4 Ingram 

5 Pollstar 

(20 rows) 

Description 

2 1077.21 

1750.00 

• When you include a WHERE clause in a SELECT statement that uses grouping 
and aggregates, the search condition is applied before the rows are grouped and the 
aggregates are calculated. That way, only the rows that satisfy the search condition 
are grouped and summarized. 

• When you include a HAVING clause in a SELECT statement that uses grouping 
and aggregates, the search condition is applied after the rows are grouped and the 
aggregates are calculated. That way, only the groups that satisfy the search 
condition are included in the result set. 

• A HAVING clause can only refer to a column included in the SELECT or GROUP 
BY clause. A WHERE clause can refer to any column in the base tables. 

• Aggregate functions can only be coded in the HAVING clause. A WHERE clause 
can't contain aggregate functions. 

Figure 5-5 How the HAVING clause compares to the WHERE clause 



170 Section 2 The essential SQL skills 

How to code complex search conditions 

You can code compound search conditions in a HAVING clause just as you 
can in a WHERE clause. This is illustrated by the first query in figure 5-6. This 
query groups invoices by invoice date and calculates a count of the invoices 
and the sum of the invoice totals for each date. In addition, the HAVING clause 
specifies three conditions. First, the invoice date must be between 11112020 and 
1131/2020. Second, the invoice count must be greater than 1. And third, the sum 
of the invoice totals must be greater than $100. 

Because the second and third conditions in the HAVING clause in this query 
include aggregate functions, they must be coded in the HAVING clause. The first 
condition, however, doesn't include an aggregate function, so it could be coded 
in either the HAVING or WHERE clause. The second statement in this figure, 
for example, shows this condition coded in the WHERE clause. Note that the 
query returns the same result set regardless of where you code this condition. 

So how do you know where to code a search condition? In general, I think 
your code will be easier to read if you include all the search conditions in the 
HAVING clause. If, on the other hand, you prefer to code non-aggregate search 
conditions in the WHERE clause, that's OK, too. 

Since a search condition in the WHERE clause is applied before the rows 
are grouped while a search condition in the HAVING clause isn' t applied until 
after the grouping, you might expect a performance advantage by coding all 
search conditions in the HAVING clause. However, SQL Server takes care 
of this performance issue for you when it optimizes the query. To do that, it 
automatically moves search conditions to whichever clause will result in the best 
performance, as long as that doesn' t change the logic of your query. As a result, 
you can code search conditions wherever they result in the most readable code 
without worrying about system performance. 



Chapter 5 How to code summary queries 171 

A summary query with a compound condition in the HAVING clause 
SELECT InvoiceDate, COUNT(*) AS InvoiceQty, SUM(InvoiceTotal) AS InvoiceSum 
FROM Invoices 
GROUP BY InvoiceDate 
HAVING InvoiceDate BETWEEN '2020-01-01' AND '2020-01-31' 

AND COUNT(*) > 1 
AND SUM(InvoiceTotal) > 100 

ORDER BY InvoiceDate DESC; 

The same query coded with a WHERE clause 
SELECT InvoiceDate, COUNT(*) AS InvoiceQty, SUM(InvoiceTotal) AS InvoiceSum 
FROM Invoices 
WHERE I nvoiceDate BETWEEN '2020-01-01' AND '2020-01-31' 
GROUP BY InvoiceDate 
HAVING COUNT(*) > 1 

AND SUM(InvoiceTotal) > 100 
ORDER BY InvoiceDate DESC; 

The result set returned by both queries 
Invoice Date lnvoiceQty Invoice Sum 

1 1"'2020:o'1=24"'''1 4 
t .................... ............. "; 

27777.77 

2 2020-()1-23 3 22647.21 

3 2020-(}1-21 2 639.39 

4 2020-()1-19 2 27481.40 

5 202Q.OHl8 2 207.25 

6 202Q.OHl7 2 897.20 
7 202Q.OHl6 2 150.77 

= 

Description 

• You can use the AND and OR operators to code compound search conditions in a 
HAVING clause just as you can in a WHERE clause. 

• If a search condition includes an aggregate function, it must be coded in the 
HAVING clause. Otherwise, it can be coded in either the HAVING or the WHERE 
clause. 

• In most cases, your code will be easier to read if you code all the search conditions 
in the HAVING clause, but you can code non-aggregate search conditions in the 
WHERE clause if you prefer. 

Figure 5-6 How to code complex search conditions 



172 Section 2 The essential SQL skills 

How to summarize data 
using SQL Server extensions 

So far, this chapter has discussed standard SQL keywords and functions. 
However, you should also know about four extensions SQL Server provides for 
summarizing data: the ROLLUP, CUBE, and GROUPING SETS operators and 
the OVER clause. 

How to use the ROLLUP operator 
----------------~------

You can use the ROLLUP operator to add one or more summary rows to 
a result set that uses grouping and aggregates. The two examples in figure 5-7 
illustrate how this works. 

The first example shows how the ROLLUP operator works when you group 
by a single column. Here, the invoices in the Invoices table are grouped by 
VendoriD, and an invoice count and invoice total are calculated for each vendor. 
Notice that because the ROLLUP operator is included in the GROUP BY clause, 
an additional row is added at the end of the result set. This row 
summarizes all the aggregate columns in the result set. In this case, it summarizes 
the InvoiceCount and InvoiceTotal columns. Because the VendoriD column can' t 
be summarized, it's assigned a null value. 

The second query in this figure shows how the ROLLUP operator works 
when you group by two columns. This query groups the vendors in the Vendors 
table by state and city and counts the number of vendors in each group. Notice 
that in addition to a summary row at the end of the result set, summary rows are 
included for each state. 

You should also notice the ORDER BY clause in this query. It causes the 
rows in the result set to be sorted by city in descending sequence within state 
in descending sequence. The reason these columns are sorted in descending 
sequence is that the sort is performed after the summary rows are added to the 
result set, and those rows have null values in the VendorCity column. In addition, 
the final summary row has a null value in the VendorS tate column. So if you 
sorted these columns in ascending sequence, the rows with null values would 
appear before the rows they summarize, which isn' t what you want. 

You can also use another function, the GROUPING function, to work with 
null columns in a summary row. However, this function is typically used in 
conjunction with the CASE function , which you' llleam about in chapter 9. So 
I'll present the GROUPING function in that chapter. 

The syntax of the ROLL UP operator shown in these two examples was intro
duced with SQL Server 2008. The syntax that was used with earlier versions of 
SQL Server is shown below both of the examples. To use this syntax, you code 
the WITH ROLLUP phrase at the end of the GROUP BY clause. Because the 
syntax that was introduced with SQL Server 2008 is more consistent with other 
SQL Server extensions, you should use it for new development unless you're 
using a version of SQL Server before 2008. 



Chapter 5 How to code summary queries 173 

A summary query that includes a final summary row 
(SQL Server 2008 or later) 

SELECT VendoriD, COUNT ( * ) AS InvoiceCount , 
SUM ( I nvoiceTotal) AS Invoic eTotal 

FROM Invoices 
GROUP BY ROLLUP (Vendor iD) ; 

VendorlD lrwoiceColrt Invoice Total 

30 117 16.62 

31 119 1 4901.26 

32 121 8 6940.25 

33 122 9 23177.96 

34 123 47 4378.02 

35 NULL 114 214290.51 Summary row 

Another way to code the GROUP BY clause 
GROUP BY VendoriD WITH ROLLUP 

A summary query that includes a summary row for each grouping level 
(SQL Server 2008 or later) 

SELECT Ve ndorSta t e, Vendor City, COUNT (*) AS QtyVendors 
FROM Ve ndor s 
WHERE VendorSt ate I N (' IA ', ' NJ' ) 
GROUP BY ROLLUP (VendorState , Ve ndorCity) 
ORDER BY VendorState DESC, Vendo r City DESC; 

VendorState VendorQy OtyVendors 

1 [~J:::::.·:::::.·::::::::::::.·:J Wasllngton 
2 NJ Fairfield 1 

3 NJ East Bru1swick 2 

4 NJ NULL 4 Summary row for state 'NJ' 
5 lA Washington 

6 lA Faifleld 1 

7 lA NULL 2 Summary row for state 'lA' 
8 NULL NULL 6 Summary row for all rows 

Another way to code the GROUP BY clause 
GROUP BY Vendo r St a t e, Ve ndo r City WITH ROLLUP 

Description 
• The ROLLUP operator adds a summary row for each group specified. It also adds a 

summary row to the end of the result set that summarizes the entire result set. If the 
GROUP BY clause specifies a single group, only the final summary row is added. 

• The sort sequence in the ORDER BY clause is applied after the summary rows 
are added. Because of that, you' ll want to sort grouping columns in descending 
sequence so the summary row for each group, which can contain null values, 
appears after the other rows in the group. 

• When you use the ROLLUP operator, you can't use the DISTINCT keyword in any 
of the aggregate functions. 

• You can use the GROUPING function with the ROLLUP operator to determine if a 
summary row has a null value assigned to a given column. See chapter 9 for details. 

Figure 5-7 How to use the ROLLUP operator 



17 4 Section 2 The essential SQL skills 

How to use the CUBE operator 

Figure 5-8 shows you how to use the CUBE operator. This operator is 
similar to the ROLLUP operator, except that it adds summary rows for every 
combination of groups. This is illustrated by the two examples in this figure. As 
you can see, these examples are the same as the ones in figure 5-7 except that 
they use the CUBE operator instead of the ROLL UP operator. 

In the first example, the result set is grouped by a single column. In this 
case, a single summary row is added at the end of the result set that summarizes 
all the groups. In other words, this works the same as it does with the ROLLUP 
operator. 

In the second example, however, you can see how CUBE differs from 
ROLLUP when you group by two or more columns. In this case, the result set 
includes a summary row for each state just as it did when the ROLL UP operator 
was used. In addition, it includes a summary row for each city. The eighth row 
in this figure, for example, indicates that there are two vendors in cities named 
Washington. If you look at the first and fifth rows in the result set, you'll see that 
one of those vendors is in Washington, New Jersey and one is in Washington, 
Iowa. The same is true of the city named Fairfield. There are also two vendors in 
the city of East Brunswick, but both are in New Jersey. 

As with the ROLLUP operator, the syntax of the CUBE operator shown 
in these examples was introduced with SQL Server 2008. The syntax that was 
used prior to SQL Server 2008 is shown below both of the examples. If you 
understand how this syntax works for the ROLLUP operator, you shouldn' t have 
much trouble understanding how it works for the CUBE operator. Although this 
syntax won't work for versions of SQL Server prior to 2008, you can use it for 
new development. 

Now that you 've seen how the CUBE operator works, you may be 
wondering when you would use it. The fact is, you probably won't use it except 
to add a summary row to a result set that's grouped by a single column. And in 
that case, you could just as easily use the ROLLUP operator. In some unique 
cases, however, the CUBE operator can provide useful information that you 
can' t get any other way. 



Chapter 5 How to code summary queries 175 

A summary query that includes a final summary row 
(SQL Server 2008 or later) 

SELECT VendoriD, COUNT(*) AS InvoiceCount, 
SUM(InvoiceTotal) AS InvoiceTotal 

FROM Invoices 
GROUP BY CUBE(VendoriD); 

VendorlD lrwoiceColrt Invoice Total 

31 119 1 4901.26 

32 121 8 6940.25 
33 122 9 231n.96 

34 123 47 4378.02 

35 NULL 114 214290.51 Summary row 

Another way to code the GROUP BY clause 
GROUP BY VendoriD WITH CUBE 

A summary query that includes a summary row for each set of groups 
(SQL Server 2008 or later) 

SELECT VendorState, VendorCity, COUNT(*) AS QtyVendors 
FROM Vendors 
WHERE VendorState IN ('IA', 'NJ') 
GROUP BY CUBE (VendorState, VendorCity) 
ORDER BY VendorState DESC, VendorCity DESC; 

VendorS! ate VendooOy QtyVendors 

1 [~L.:.::::=:.::.:~.:J Washington 1 

2 NJ Fairfield 1 

3 NJ East Bn.nswick 2 

4 NJ NULL 4 Summary row for state 'NJ' 
5 lA Washington 1 

6 lA Farfield 1 Summary row for state 'lA' 
7 lA NULL 2 

8 NULL Washington 2 Summary row for city 'Washington' 

9 NULL Fairfield 2 Summary row for city 'Fairfield' 
10 NULL East Bn.nswick 2 Summary row for city 'East Brunswick' 
11 NULL NULL 6 Summary row for all rows 

Another way to code the GROUP BY clause 
GROUP BY VendorState, VendorCity WITH CUBE 

Description 

• The CUBE operator adds a summary row for every combination of groups specified. 
It also adds a summary row to the end of the result set that summarizes the entire 
result set. 

• When you use the CUBE operator, you can' t use the DISTINCT keyword in any of 
the aggregate functions. 

• You can use the GROUPING function with the CUBE operator to determine if a 
summary row has a null value assigned to a given column. See chapter 9 for details. 

Figure 5-8 How to use the CUBE operator 



176 Section 2 The essential SQL skills 

How to use the GROUPING SETS operator 
~------

Figure 5-9 shows you how to use the GROUPING SETS operator that was 
introduced with SQL Server 2008. This operator is similar to the ROLLUP 
and CUBE operators. However, the GROUPING SETS operator only includes 
summary rows, it only adds those summary rows for each specified group, and 
it uses a syntax that's similar to the 2008 syntax for the ROLLUP and CUBE 
operators. 

The first example in this figure is similar to the second example that's 
presented in the previous two figures. However, this example uses the 
GROUPING SETS operator instead of the CUBE or ROLLUP operator. Here, 
the result set only includes summary rows for the two grouping elements: state 
and city. To start, it displays the summary rows for the states. Then, it displays 
the summary rows for the cities. 

The second example in this figure shows some additional features that are 
available when you use the GROUPING SETS operator. To start, within the 
parentheses after the GROUPING SETS operator, you can add additional sets 
of parentheses to create composite groups that consist of multiple columns. In 
addition, you can add an empty set of parentheses to add a group for a summary 
row that summarizes the entire result set. In this example, the first group is the 
vendor's state and city, the second group is the vendor's zip code, and the third 
group is an empty set of parentheses that adds a summary row for the entire 
result set. 

When you use composite groups, you should know that you can add 
additional summary rows by applying the ROLLUP and CUBE operators to a 
composite group. To do that, you code the ROLLUP or CUBE operator before 
the composite group. In this figure, for instance, the third example shows a 
GROUPING SETS clause that applies the ROLLUP operator to the composite 
state/city group. This adds a summary row for each state, and it adds a summary 
row for the entire result set, much like the second example in figure 5-7. 
Although this may seem confusing at first, with a little experimentation, you 
should be able to get the result set you want. 



Chapter 5 How to code summary queries 177 

A summary query with two groups 
SELECT VendorState , Ve ndorCity, COUNT (*) AS QtyVendors 
FROM Vendors 
WHERE VendorState IN ( 'IA', 'NJ' ) 
GROUP BY GROUPING SETS (VendorState , VendorCity) 
ORDER BY VendorSta te DESC, Vendo rCity DESC; 

3 NULL 

4 NULL 

5 NULL 

OtyVendors 

4 

2 

Washington 2 

Fairfield 2 

East Brunswick 2 

A summary query with a composite grouping 
SELECT VendorState , VendorCity, VendorZipCode, 

COUNT (*) AS QtyVendors 
FROM Vendors 
WHERE VendorSta te IN ('IA', 'NJ' ) 
GROUP BY GROUPING SETS((VendorState , VendorCity), VendorZipCode, () ) 
ORDER BY Vend orState DESC, Vendo rCity DESC ; 

VendorState VendO!Oy 

1 L.ti.L.·.·~.·.·~.·.·~.·.·~~.·~~.·.:~~.·~~.J Wasrnngton 
2 NJ Fairfield 

3 NJ East Brunswick 

4 lA Washington 

5 lA Fairfield 

6 NULL NULL 

7 NULL NULL 

8 NULL NULL 

9 NULL NULL 

10 NULL NULL 

11 NULL NULL 

12 NULL NULL 
~ """""' 

Vendor ZipCode 

NULL 

NULL 

NULL 

NULL 

NULL 

07004 
07882 
08810 
08816 
52353 
52556 
NULL 

"""""' 

OtyVendors 

1 

1 

2 

1 

6 

A summary query with a group that uses the ROLLUP operator 
GROUP BY GROUPING SETS( ROLLUP (VendorState, Ve ndorCity) , Vendor ZipCod e ) 

Description 
• The GROUPING SETS operator creates a summary row for each specified group. 

• Within the parentheses after the GROUPING SETS operator, you can add 
additional sets of parentheses to create composite groups. 

• Within the parentheses after the GROUPING SETS operator, you can add an empty 
set of parentheses to add a summary row that summarizes the entire result set. 

• For a composite group, you can add the ROLLUP or CUBE operator to add 
additional summary rows. This performs the ROLLUP or CUBE operation on the 
composite group, which also adds a summary row that summarizes the entire result 
set. 

Figure 5-9 How to use the GROUPING SETS operator 



178 Section 2 The essential SQL skills 

How to use the OVER clause 

So far in this chapter, you've learned how to code summary queries that 
return just the summarized data. But what if you want to return the individual 
rows that are used to calculate the summaries along with the summary data? To 
do that, you can use the OVER clause as shown in figure 5-10. 

In the syntax at the top of this figure, you can see that you code the OVER 
clause after the aggregate function, followed by a set of parentheses. Within the 
parentheses, you can code a PARTITION BY clause, an ORDER BY clause, or 
both of these clauses. This is illustrated by the three examples in this figure. 

The first example calculates the total, count, and average of the invoices in 
the Invoices table. Here, I used the PARTITION BY clause to indicate that the 
invoices should be grouped by invoice date. If you look at the results of this 
query, you'll see that the Invoices table contains a single invoice for the first three 
dates. Because of that, the total, count, and average columns for those dates are 
calculated based on a single invoice. By contrast, the next three invoices are for 
the same date. In this case, the total, count, and average columns are calculated 
based on all three invoices. 

The second example is similar, but it uses the ORDER BY clause instead 
of the PARTITION BY clause. Because of that, the calculations aren't grouped 
by the invoice date like they are in the first example. Instead, the summaries 
accumulate from one date to the next. For example, the total and average 
columns for the first invoice are the same as the invoice total because they're 
calculated based on just that total. The total and average columns for the second 
invoice, however, are calculated based on both the first and second invoices. The 
total and average columns for the third invoice are calculated based on the first, 
second, and third invoices. And so on. In addition, the count column indicates 
the sequence of the invoice date within the result set. A total that accumulates 
like this is called a cumulative total, and an average that's calculated based on a 
cumulative total is called a moving average. 

If the result set contains more than one invoice for the same date, the 
summary values for all of the invoices are accumulated at the same time. This 
is illustrated by the fourth, fifth, and sixth invoices in this example. Here, the 
cumulative total column for each invoice includes the invoice totals for all three 
invoices for the same date, and the moving average is based on that cumulative 
total. Because the cumulative total now includes six rows, the count column is 
set to 6. In other words, the summary values for all three rows are the same. 

The last example in this figure uses both the PARTITION BY and ORDER 
BY clauses. In this case, the invoices are grouped by terms ID and ordered by 
invoice date. Because of that, the summaries for each invoice date are 
accumulated separately within each terms ID. When one terms ID ends and the 
next one begins, the accumulation starts again. 



Chapter 5 How to code summary queries 179 

The syntax of the OVER clause 
aggregate_ function OVER ([partition_by_clause] [order_by_clause]) 

A query that groups the summary data by date 
SELECT InvoiceNumber, InvoiceDate, InvoiceTotal, 

SUM(InvoiceTotal) OVER (PARTITION BY InvoiceDate) AS DateTotal, 
COUNT(InvoiceTotal) OVER (PARTITION BY InvoiceDate) AS DateCount, 
AVG(InvoiceTotal) OVER (PARTITION BY InvoiceDate) AS DateAvg 

FROM Invoices; 

Invoice Number Invoice Date Invoice Total Date Total DateCount DateAvg ,.. 
1 ['~?3.1'~'~!'''_''''''] 2019-1G{)S 3813.33 3813.33 3813.33 

2 263253241 2019-10.10 40.20 40.20 1 40.20 

3 963253234 2019-10.13 138.75 138.75 1 138.75 

4 2.()00.2993 2019-10.16 144.70 202.95 3 67.65 

5 963253251 2019-10.16 15.50 202.95 3 67.65 

6 963253261 2019-10.16 42.75 202.95 3 67.65 

"" 

A query that calculates a cumulative total and moving average 
SELECT InvoiceNumber, InvoiceDate, InvoiceTotal, 

SUM(InvoiceTotal) OVER (ORDER BY InvoiceDate) AS CumTotal, 
COUNT(InvoiceTotal) OVER (ORDER BY InvoiceDate) AS Count, 
AVG(InvoiceTotal) OVER (ORDER BY InvoiceDate) AS MovingAvg 

FROM Invoices; 

Invoice Number Invoice Date Invoice Total Cum Total CoiXll MovilgAvg ,.. 
1"'98931'94'5'7'"""""1 2019-1G{)S 
l.ooOOO OOOOOOOOOOOO,OOOO'"'' '"' OMOOOOOOO; 

3813.33 3813.33 1 3813.33 

2 263253241 2019-10.10 40.20 3853.53 2 1926.765 

3 963253234 2019-10.13 138.75 3992.28 3 1330.76 

4 2.()00.2993 2019-1().16 144.70 4195.23 6 699.205 

5 963253251 2019-10.16 15.50 4195.23 6 699.205 

6 963253261 2019-10.16 42.75 4195.23 6 699.205 

The same query grouped by TermsiD 
SELECT InvoiceNumber, TermsiD, InvoiceDate, InvoiceTotal, 

SUM(InvoiceTotal) 
OVER (PARTITION BY TermsiD ORDER BY InvoiceDate) AS CumTotal, 

COUNT(InvoiceTotal) 
OVER (PARTITION BY TermsiD ORDER BY InvoiceDate) AS Count, 

AVG(InvoiceTotal) 
OVER (PARTITION BY TermsiD ORDER BY InvoiceDate) AS MovingAvg 

FROM Invoices; 

Invoice Number TermsiD Invoice Date Invoice Total Cum Total Count MovingAvg ,.. 
22 97-1024A 2 202M1-20 356.48 9415.08 16 588.4425 

23 31361833 2 202M1-21 579.42 9994.50 17 587.9117 L 
24 134116 2 202M1-28 90.36 10084.86 18 560.27 

25 989319-457 3 2019-1G{)S 3813.33 3813.33 1 3813.33 

26 263253241 3 2019-10.10 40.20 3853.53 2 1926.765 

27 963253234 3 2019-10.13 138.75 3992.28 3 1330.76 'Y 

""" 

Description 
• When used with the aggregate functions, the OVER clause lets you summarize the 

data in a result set while still returning the rows used to calculate the summary. 

Figure 5-10 How to use the OVER clause 



180 Section 2 The essential SQL skills 

Perspective 
In this chapter, you learned how to code queries that group and summarize 

data. In most cases, you'll be able to use the techniques presented here to get 
the summary information you need. If not, you may want to find out about 
another tool provided by SQL Server 2019 called Analysis Services. This tool 
provides a graphical interface that lets you build complex data models based on 
cubes. Then, you can use those models to analyze the database using complex 
patterns and correlations. You can find out more about this tool by searching for 
"Analysis Services" in the documentation for SQL Server. 

Terms 

scalar function 
aggregate function 
column function 
summary query 

scalar aggregate 
vector aggregate 
cumulative total 
movmg average 

1. Write a SELECT statement that returns two columns from the Invoices table: 
VendoriD and PaymentSum, where PaymentSum is the sum of the PaymentTotal 
column. Group the result set by VendoriD. 

2. Write a SELECT statement that returns two columns: VendorName and 
PaymentSum, where PaymentSum is the sum of the PaymentTotal column. 
Group the result set by VendorName. Return only 10 rows, corresponding to 
the 10 vendors who've been paid the most. 

Hint: Use the TOP clause and join Vendors to Invoices. 

3. Write a SELECT statement that returns three columns: VendorName, 
InvoiceCount, and InvoiceSum. InvoiceCount is the count of the number of 
invoices, and InvoiceSum is the sum of the InvoiceTotal column. Group the 
result set by vendor. Sort the result set so the vendor with the highest number 
of invoices appears first. 

4. Write a SELECT statement that returns three columns: AccountDescription, 
LineltemCount, and LineltemSum. LineltemCount is the number of entries in 
the InvoiceLineitems table that have that AccountNo. LineitemSum is the sum 
of the InvoiceLineitemAmount column for that AccountNo. Filter the result 
set to include only those rows with LineitemCount greater than 1. Group the 
result set by account description, and sort it by descending LineltemCount. 

Hint: Join the GLAccounts table to the InvoiceLineltems table. 

5. Modify the solution to exercise 4 to filter for invoices dated from October 1, 
2019 to December 31, 2019. 

Hint: Join to the Invoices table to code a search condition based on InvoiceDate. 



Chapter 5 How to code summary queries 181 

6. Write a SELECT statement that answers the following question: What is the 
total amount invoiced for each AccountNo? Use the ROLLUP operator to 
include a row that gives the grand total. 

Hint: Use the InvoiceLineitemAmount column of the InvoiceLineltems table. 

7. Write a SELECT statement that returns four columns: VendorName, 
AccountDescription, LineitemCount, and LineitemSum. LineltemCount is 
the row count, and LineltemSum is the sum of the InvoiceLineltemAmount 
column. For each vendor and account, return the number and sum of line 
items, sorted first by vendor, then by account description. 

Hint: Use a four-table join. 

8. Write a SELECT statement that answers this question: Which vendors are 
being paid from more than one account? Return two columns: the vendor 
name and the total number of accounts that apply to that vendor's invoices. 

Hint: Use the DISTINCT keyword to count InvoiceLineitems.AccountNo. 

9. Write a SELECT statement that returns six columns: 

VendoriD From the Invoices table 

InvoiceDate From the Invoices table 

InvoiceTotal 

VendorTotal 

From the Invoices table 

The sum of the invoice totals for each vendor 

VendorCount The count of invoices for each vendor 

VendorAvg The average of the invoice totals for each vendor 

The result set should include the individual invoices for each vendor. 





6 

How to code subqueries 
A subquery is a SELECT statement that's coded within another SQL statement. 
As a result, you can use subqueries to build queries that would be difficult or 
impossible to do otherwise. In this chapter, you' llleam how to use subqueries 
within SELECT statements. Then, in the next chapter, you' ll learn how to use 
them when you code INSERT, UPDATE, and DELETE statements. 

An introduction to subqueries .......................................... 184 
How to use subqueries ................................................................................. 184 
How subqueries compare to joins ................................................................ 186 

How to code subqueries in search conditions ................ 188 
How to use subq ueries with the IN operator ............................................... 188 
How to compare the result of a subquery with an expression .................. ... 190 
How to use the ALL keyword .. .... ........ .. .. .. .. .. .. .. ........ .. .... ........ ... ...... ... .... .. . 192 
How to use the ANY and SOME keywords .............. .. ................. .... ........ ... 194 
How to code correlated subqueries ................... ................................. .... ...... l96 
How to use the EXISTS operator ...... ...... .......... .... .... .. ................................ 198 

Other ways to use subqueries .......................................... 200 
How to code subqueries in the FROM clause ............................................ 200 
How to code subqueries in the SELECT clause ............... .......................... 202 

Guidelines for working with complex queries ................. 204 
A complex query that uses subqueries .................. .... .. ............................... 204 
A procedure for building complex queries ............ ............ ... .... ......... ... ...... 206 

How to work with common table expressions ................ 208 
How to code a CTE .......................................................................... .. ......... 208 
How to code a recursive CTE ........................... .. .... .................. ..... .. ...... ...... 210 

Perspective ......................................................................... 212 



184 Section 2 The essential SQL skills 

An introduction to subqueries 
Since you know how to code SELECT statements, you already know how 

to code a subquery. It's simply a SELECT statement that's coded within another 
SQL statement. The trick to using subqueries, then, is knowing where and 
when to use them. You' ll learn the specifics of using subqueries throughout this 
chapter. The two topics that follow, however, will give you an overview of where 
and when to use them. 

How to use subqueries 

In figure 6-1, you can see that a subquery can be coded, or introduced, in 
the WHERE, HAVING, FROM, or SELECT clause of a SELECT statement. 
The SELECT statement in this figure, for example, illustrates how you can use a 
subquery in the search condition of a WHERE clause. When it's used in a search 
condition, a subquery can be referred to as a subquery search condition or a 
subquery predicate. 

The statement in this figure retrieves all the invoices from the Invoices table 
that have invoice totals greater than the average of all the invoices. To do that, the 
subquery calculates the average of all the invoices. Then, the search condition 
tests each invoice to see if its invoice total is greater than that average. 

When a subquery returns a single value as it does in this example, you can 
use it anywhere you would normally use an expression. However, a subquery can 
also return a single-column result set with two or more rows. In that case, it can 
be used in place of a list of values, such as the list for an IN operator. In addition, 
if a subquery is coded within a FROM clause, it can return a result set with two 
or more columns. You'lllearn about all of these different types of subqueries in 
this chapter. 

You can also code a subquery within another subquery. In that case, the 
subqueries are said to be nested. Because nested subqueries can be difficult 
to read and can result in poor performance, you should use them only when 
necessary. 



Chapter 6 How to code subqueries 185 

Four ways to introduce a subquery in a SELECT statement 
1. In a WHERE clause as a search condition 

2. In a HAVING clause as a search condition 

3. In the FROM clause as a table specification 

4. In the SELECT clause as a column specification 

A SELECT statement that uses a subquery in the WHERE clause 
SELECT InvoiceNumber, InvoiceDate, InvoiceTotal 
FROM Inv o ices 
WHERE Inv oiceTot al > 

(SELECT AVG(InvoiceTotal) 
FROM Invoices) 

ORDER BY InvoiceTota l; 

The value returned by the subquery 
1879.7413 

The result set 
Invoice Number Invoice Date Invoice Total 

1 

2 
3 

4 

5 

[~?.~.!~~!~.·.·~~ ...... ] 2019-12-20 
97/ 522 2019-12·28 
989319-417 2020-01-23 

989319-427 

989319-4n 

2019-12-16 

2019-12~ 

( 2 1 rows) 

Description 

1927.54 

1962.13 

2051.59 

2115.81 

2184.11 

• A subquery is a SELECT statement that's coded within another SQL statement. 

• A subquery can return a single value, a result set that contains a single column, or a 
result set that contains one or more columns. 

• A subquery that returns a single value can be coded, or introduced, anywhere an 
expression is allowed. A subquery that returns a single column can be introduced 
in place of a list of values, such as the values for an IN phrase. And a subquery that 
returns one or more columns can be introduced in place of a table in the FROM 
clause. 

• The syntax for a subquery is the same as for a standard SELECT statement. 
However, a subquery doesn't typically include the GROUP BY or HAVING clause, 
and it can't include an ORDER BY clause unless the TOP phrase is used. 

• A subquery that's used in a WHERE or HAVING clause is called a subquery search 
condition or a subquery predicate. This is the most common use for a subquery. 

• Although you can introduce a subquery in a GROUP BY or ORDER BY clause, 
you usually won' t need to. 

• Subqueries can be nested within other subqueries. However, subqueries that are 
nested more than two or three levels deep can be difficult to read and can result in 
poor performance. 

Figure 6-1 How to use subqueries 



186 Section 2 The essential SQL skills 

How subqueries compare to joins 

In the last figure, you saw an example of a subquery that returns an 
aggregate value that's used in the search condition of a WHERE clause. This 
type of subquery provides for processing that can't be done any other way. 
However, most subqueries can be restated as joins, and most joins can be 
restated as subqueries. This is illustrated by the SELECT statements in figure 
6-2. 

Both of the SELECT statements in this figure return a result set that consists 
of selected rows and columns from the Invoices table. In this case, only the 
invoices for vendors in California are returned. The first statement uses a join to 
combine the Vendors and Invoices table so the VendorState column can be tested 
for each invoice. By contrast, the second statement uses a subquery to return a 
result set that consists of the VendoriD column for each vendor in California. 
Then, that result set is used with the IN operator in the search condition so that 
only invoices with a VendoriD in that result set are included in the final result set. 

So if you have a choice, which technique should you use? In general, I 
recommend you use the technique that results in the most readable code. For 
example, I think that a join tends to be more intuitive than a subquery when 
it uses an existing relationship between two tables. That's the case with the 
Vendors and Invoices tables used in the examples in this figure. On the other 
hand, a subquery tends to be more intuitive when it uses an ad hoc relationship. 

As your queries get more complex, you may find that they're easier to code 
by using subqueries, regardless of the relationships that are involved. On the 
other hand, a query with an inner join typically performs faster than the same 
query with a subquery. So if system performance is an issue, you may want to 
use inner joins instead of subqueries. 

You should also realize that when you use a subquery in a search 
condition, its results can't be included in the final result set. For instance, the 
second example in this figure can't be changed to include the VendorName 
column from the Vendors table. That's because the Vendors table isn' t named in 
the FROM clause of the outer query. So if you need to include information from 
both tables in the result set, you need to use a join. 



A query that uses an inner join 
SELECT InvoiceNumber, InvoiceDate, InvoiceTotal 
FROM Invoices JOIN Vendors 

ON Invoices.VendoriD = Vendors.VendoriD 
WHERE VendorState = 'CA' 
ORDER BY InvoiceDate; 

The same query restated with a subquery 
SELECT InvoiceNumber, InvoiceDate, InvoiceTotal 
FROM Invoices 
WHERE VendoriD IN 

(SELECT VendoriD 
FROM Vendors 
WHERE VendorState = 'CA ' ) 

ORDER BY InvoiceDate; 

The result set returned by both queries 
Invoice Number Invoice Date Invoice Total 

1 
, ........................................... ! 
. 12552(}.1 ' 
'······························~···········; 

201~1(}.24 95.00 

2 97/488 201~1(}.24 601.95 

3 111-92R-10096 201~1(}.30 16.33 

4 25022117 201~1 1-01 6.00 

(40 rows) 

Advantages of joins 

Chapter 6 How to code subqueries 187 

II 

• The result of a join operation can include columns from both tables. The result of a 
query that includes a subquery can only include columns from the table named in 
the outer query. It can't include columns from the table named in the subquery. 

• A join tends to be more intuitive when it uses an existing relationship between the 
two tables, such as a primary key to foreign key relationship. 

• A query with a join typically performs faster than the same query with a subquery, 
especially if the query uses only inner joins. 

Advantages of subqueries 
• You can use a subquery to pass an aggregate value to the outer query. 

• A subquery tends to be more intuitive when it uses an ad hoc relationship between 
the two tables. 

• Long, complex queries can sometimes be easier to code using subqueries. 

Description 
• Like a join, a subquery can be used to code queries that work with two or more 

tables. 

• Most subqueries can be restated as joins and most joins can be restated as 
subqueries. 

Figure 6-2 How subqueries compare to joins 



188 Section 2 The essential SQL skills 

How to code subqueries 
in search conditions 

You can use a variety of techniques to work with a subquery in a search 
condition. You' lllearn about those techniques in the topics that follow. As you 
read these topics, keep in mind that although all of the examples illustrate the 
use of subqueries in a WHERE clause, all of this information applies to the 
HAVING clause as well. 

How to use subqueries with the IN operator 

In chapter 3, you learned how to use the IN operator to test whether an 
expression is contained in a list of values. One way to provide that list of values 
is to use a subquery. This is illustrated in figure 6-3. 

The example in this figure retrieves the vendors from the Vendors table that 
don't have invoices in the Invoices table. To do that, it uses a subquery to retrieve 
the VendoriD of each vendor in the Invoices table. The result is a result set like 
the one shown in this figure that contains just the VendoriD column. Then, this 
result set is used to filter the vendors that are included in the final result set. 

You should notice two things about this subquery. First, it returns a single 
column. That's a requirement when a subquery is used with the IN operator. 
Second, the subquery includes the DISTINCT keyword. That way, if more than 
one invoice exists for a vendor, the VendoriD for that vendor will be included 
only once. Note, however, that when the query is analyzed by SQL Server, this 
keyword will be added automatically. So you can omit it if you'd like to. 

In the previous figure, you saw that a query that uses a subquery with the 
IN operator can be restated using an inner join. Similarly, a query that uses a 
subquery with the NOT IN operator can typically be restated using an outer join. 
The first query shown in this figure, for example, can be restated as shown in the 
second query. In this case, though, I think the query with the subquery is more 
readable. In addition, a query with a subquery will sometimes execute faster 
than a query with an outer join. That of course, depends on a variety of factors. 
In particular, it depends on the sizes of the tables and the relative number of 
unmatched rows. So if performance is an issue, you may want to test your query 
both ways to see which one executes faster. 



Chapter 6 How to code subqueries 189 

The syntax of a WHERE clause that uses an IN phrase with a subquery 
WHERE test_expression [NOT] IN (subquery) 

A query that returns vendors without invoices 
SELECT VendoriD, VendorName, VendorState 
FROM Vendors 
WHERE VendoriD NOT IN 

(SELECT DISTINCT VendoriD 
FROM Invoices); 

The result of the subquery 
VendorlD 

1 r.·~:.·.·.·.·:.·.·.·::.·.·.·::.·.·.] 
2 37 

3 48 

4 72 

5 80 

6 81 

(34 rows) 

The result set 
VendorlD Vendor Name 

32 33 Nielson 

33 35 Cal Stille Termite 

34 36 Graytjft 

35 38 Venture Communiclltions In! 1 

36 39 Custom Printing Company 

37 40 Nllt Assoc of CoHege Stores 

(88 rows) 

VendorStllte 

OH 

CA 

CA 

NY 

MO 
OH 

The query restated without a subquery 
SELECT Vendors.VendoriD, VendorName, VendorState 
FROM Vendors LEFT JOIN Invoices 

ON Vendors.VendoriD = Invoices.VendoriD 
WHERE Invoices.VendoriD IS NULL; 

Description 

[ 

• You can introduce a subquery with the IN operator to provide the list of values that 
are tested against the test expression. 

• When you use the IN operator, the subquery must return a single column of values. 

• A query that uses the NOT IN operator with a subquery can typically be restated 
using an outer join. 

Figure 6-3 How to use subqueries with the IN operator 



190 Section 2 The essential SQL skills 

How to compare the result of a subquery 
with an expression 

-----

Figure 6-4 illustrates how you can use the comparison operators to compare 
an expression with the result of a subquery. In the example in this figure, the 
subquery returns the average balance due of the invoices in the Invoices table 
that have a balance due greater than zero. Then, it uses that value to retrieve all 
the invoices that have a balance due that's less than the average. 

When you use a comparison operator as shown in this figure, the subquery 
must return a single value. In most cases, that means that it uses an aggregate 
function. However, you can also use the comparison operators with subqueries 
that return two or more values. To do that, you use the SOME, ANY, or ALL 
keyword to modify the comparison operator. You'lllearn more about these 
keywords in the next two topics. 



Chapter 6 How to code subqueries 191 

The syntax of a WHERE clause that compares an expression 
with the value returned by a subquery 

WHERE expression comparison_operator [SOMEIANYIALL] (subquery) 

A query that returns invoices with a balance due less than the average 
SELECT InvoiceNumber, InvoiceDate, InvoiceTotal, 

InvoiceTotal - PaymentTotal - CreditTotal AS BalanceDue 
FROM Invoices 
WHERE InvoiceTotal - PaymentTotal - CreditTotal > 0 

AND InvoiceTotal - PaymentTotal - CreditTotal < 
(SELECT AVG(InvoiceTotal - PaymentTotal - CreditTotal) 
FROM Invoices 
WHERE InvoiceTotal - PaymentTotal - CreditTotal > 0) 

ORDER BY InvoiceTotal DESC; 

The value returned by the subquery 
2910.9472 

The result set 
Invoice Number Invoice Date Invoice Total Balance Due !" ......................................... , 

579.42 579.42 ! 31361833 ! 202().01·21 
l.. ....................................... i 

2 9982n1 202().01-24 503.20 503.20 

3 547480102 202().02.{)1 224.00 224.00 

4 134116 202().01-28 90.36 90.36 

5 39104 202().01-10 85.31 85.31 

(9 rows) 

Description 

Ll! 

• You can use a comparison operator in a search condition to compare an expression 
with the results of a subquery. 

• If you code a search condition without the ANY, SOME, and ALL keywords, the 
subquery must return a single value. 

• If you include the ANY, SOME, or ALL keyword, the subquery can return a list of 
values. See figures 6-5 and 6-6 for more information on using these keywords. 

Figure 6-4 How to compare the result of a subquery with an expression 



192 Section 2 The essential SQL skills 

How to use the ALL keyword 

Figure 6-5 shows you how to use the ALL keyword. This keyword modifies 
the comparison operator so the condition must be true for all the values returned 
by a subquery. This is equivalent to coding a series of conditions connected by 
AND operators. The table at the top of this figure describes how this works for 
some of the comparison operators. 

If you use the greater than operator (> ), the expression must be greater 
than the maximum value returned by the subquery. Conversely, if you use the 
less than operator ( <), the expression must be less than the minimum value 
returned by the subquery. If you use the equal operator(=), the expression must 
be equal to all of the values returned by the subquery. And if you use the not 
equal operator ( <> ), the expression must not equal any of the values returned by 
the subquery. Note that a not equal condition could be restated using a NOT IN 
condition. 

The query in this figure illustrates the use of the greater than operator with 
the ALL keyword. Here, the subquery selects the InvoiceTotal column for 
all the invoices with a VendoriD value of 34. This results in a table with two 
rows, as shown in this figure. Then, the outer query retrieves the rows from the 
Invoices table that have invoice totals greater than all of the values returned by 
the subquery. In other words, this query returns all the invoices that have totals 
greater than the largest invoice for vendor number 34. 

When you use the ALL operator, you should realize that if the subquery 
doesn't return any rows, the comparison operation will always be true. By 
contrast, if the subquery returns only null values, the comparison operation will 
always be false. 

In many cases, a condition with the ALL keyword can be rewritten so it's 
easier to read and maintain. For example, the condition in the query in this figure 
could be rewritten to use the MAX function like this: 

WHERE InvoiceTotal > 
(SELECT MAX(InvoiceTotal) 

FROM Invoices 
WHERE VendoriD = 34) 

Whenever you can, then, I recommend you replace the ALL keyword with an 
equivalent condition. 



Chapter 6 How to code subqueries 193 

How the ALL keyword works 
Condition Equivalent expression Description 

X > ALL (1, 2) X > 2 

X < ALL (1, 2) X < 1 

X = ALL (1, 2) (X = 1) AND (X = 2) 

X <> ALL (1, 2) (X <> 1) AND (X <> 2) 

x must be greater than all the values 
returned by the subquery, which means it 
must be greater than the maximum value. 

x must be less than all the values returned 
by the subquery, which means it must be 
less than the minimum value. 

This condition can evaluate to True only if 
the subquery returns a single value or if all 
the values returned by the subquery are the 
same. Otherwise, it evaluates to False. 

This condition is equivalent to: 
x NOT IN (1, 2) 

A query that returns invoices larger than the largest invoice for vendor 34 
SELECT VendorName, InvoiceNumber, InvoiceTotal 
FROM Invoices JOIN Vendors ON Invoices.VendoriD = Vendors.VendoriD 
WHERE InvoiceTotal > ALL 

(SELECT InvoiceTotal 
FROM Invoices 
WHERE Ve ndoriD = 34) 

ORDER BY VendorName; 

The result of the subquery 

I :~~:= 
The result set 

Vendor Name Invoice Number 

1 

2 
3 

4 

5 

[·.·:.~.~.~~·.~~~.·.~·~·~!::·:.~.·.·.] 509786 
Cahners Publishng Company 587056 

Computerworld 

Data Reproductions Corp 

Dean Witter Reynolds 

(25 rows) 

Description 

367447 

40318 

75C-90227 

Invoice Total 

6940.25 

2184.50 

2433.00 

21842.00 

1367.50 

I! 

li 

• You can use the ALL keyword to test that a comparison condition is true for all of the 
values returned by a subquery. This keyword is typically used with the comparison 
operators<,>,<=, and>=. 

• If no rows are returned by the subquery, a comparison that uses the ALL keyword is 
always true. 

• If all of the rows returned by the subquery contain a null value, a comparison that 
uses the ALL keyword is always false. 

Figure 6-5 How to use the ALL keyword 



194 Section 2 The essential SQL skills 

How to use the ANY and SOME keywords 

Figure 6-6 shows how to use the ANY and SOME keywords. You use these 
keywords to test if a comparison is true for any, or some, of the values returned 
by a subquery. This is equivalent to coding a series of conditions connected with 
OR operators. Because these keywords are equivalent, you can use whichever 
one you prefer. The table at the top of this figure describes how these keywords 
work with some of the comparison operators. 

The example in this figure shows how you can use the ANY keyword 
with the less than operator. This statement is similar to the one you saw in the 
previous figure, except that it retrieves invoices with invoice totals that are less 
than at least one of the invoice totals for a given vendor. Like the statement in the 
previous figure, this condition could be rewritten using the MAX function like 
this: 

WHERE InvoiceTotal < 
(SELECT MAX(InvoiceTotal) 

FROM Invoices 
WHERE VendoriD = 115) 

Because you can usually replace an ANY condition with an equivalent condition 
that's more readable, you probably won' t use ANY often. 



Chapter 6 How to code subqueries 195 

How the ANY and SOME keywords work 
Condition Equivalent expression Description 
X > ANY (1 , 2) X > 1 

X < ANY (1, 2) X < 2 

X = ANY (1, 2) (x = 1) OR (x = 2) 

X <> ANY (1, 2) (x <> 1 ) OR (x <> 2) 

x must be greater than at least one of the 
values returned by the subquery list, which 
means that it must be greater than the 
minimum value returned by the subquery. 

x must be less than at least one of the 
values returned by the subquery list, which 
means that it must be less than the 
maximum value returned by the subquery. 

This condition is equivalent to: 
X IN (1, 2) 

This condition will evaluate to True for any 
non-empty result set containing at least one 
non-null value that isn' t equal to x. 

A query that returns invoices smaller than the largest invoice 
for vendor 115 

SELECT VendorName, InvoiceNumber, InvoiceTotal 
FROM Vendors JOIN Invoices ON Vendors.VendoriD = Invoices.VendoriD 
WHERE InvoiceTotal < ANY 

(SELECT InvoiceTotal 
FROM Invoices 
WHERE VendoriD = 115); 

The result of the subquery 
Invoice Total 

1 r.·~.:,ii,il.·.:·.·.·.·:.·.·.·::.·.·.·::.·.·.·:J 
2 6.00 

3 25.67 

4 6.00 

The result set 
Vendor Name Invoice Number Invoice Total 

1 

2 
3 
4 

5 

r·~~:.~~~~:-~;~~··.,1 2033J9.13 17.50 
Pacific Bell 111·92R·10096 16.33 
Pacif'IC Bell 

Pacif'IC Bell 

Compuserve 

111-92R·10097 16.33 

111·92R·10094 19.67 
21-4923n1 9.95 

(17 rows) 

Description 

I! 

• You can use the ANY or SOME keyword to test that a condition is true for one or 
more of the values returned by a subquery. 

• ANY and SOME are equivalent keywords. SOME is the ANSI-standard keyword, 
but ANY is more commonly used. 

• If no rows are returned by the subquery or all of the rows returned by the subquery 
contain a null value, a comparison that uses the ANY or SOME keyword is always false. 

Figure 6-6 How to use the ANY and SOME keywords 



196 Section 2 The essential SQL skills 

How to code correlated subqueries 

The subqueries you've seen so far in this chapter have been subqueries that 
are executed only once for the entire query. However, you can also code 
subqueries that are executed once for each row that's processed by the outer 
query. This type of query is called a correlated subquery, and it's similar to 
using a loop to do repetitive processing in a procedural programming language. 

Figure 6-7 illustrates how correlated subqueries work. The example in 
this figure retrieves rows from the Invoices table for those invoices that have 
an invoice total that's greater than the average of all the invoices for the same 
vendor. To do that, the search condition in the WHERE clause of the subquery 
refers to the VendoriD value of the current invoice. That way, only the invoices 
for the current vendor will be included in the average. 

Each time a row in the outer query is processed, the value in the VendoriD 
column for that row is substituted for the column reference in the subquery. 
Then, the subquery is executed based on the current value. If the VendoriD value 
is 95, for example, this subquery will be executed: 

SELECT AVG(InvoiceTotal) 
FROM Invoices AS Inv_ Sub 
WHERE Inv_ Sub.VendoriD = 95; 

After this subquery is executed, the value it returns is used to determine 
whether the current invoice is included in the result set. For example, the value 
returned by the subquery for vendor 95 is 28.5016. Then, that value is compared 
with the invoice total of the current invoice. If the invoice total is greater than 
that value, the invoice is included in the result set. Otherwise, it's not. This 
process is repeated until each of the invoices in the Invoices table has been 
processed. 

As you study this example, notice how the column names in the WHERE 
clause of the inner query are qualified to indicate whether they refer to a column 
in the inner query or the outer query. In this case, the same table is used in both 
the inner and outer queries, so aliases, or correlation names, have been assigned 
to the tables. Then, those correlation names are used to qualify the column 
names. Although you have to qualify a reference to a column in the outer query, 
you don' t have to qualify a reference to a column in the inner query. However, 
it's common practice to qualify both names, particularly if they refer to the same 
table. 

Because correlated subqueries can be difficult to code, you may want to 
test a subquery separately before using it within another SELECT statement. To 
do that, however, you'll need to substitute a constant value for the variable that 
refers to a column in the outer query. That's what I did to get the average invoice 
total for vendor 95. Once you're sure that the subquery works on its own, you 
can replace the constant value with a reference to the outer query so you can use 
it within a SELECT statement. 



Chapter 6 How to code subqueries 197 

A query that uses a correlated subquery to return each invoice 
that's higher than the vendor's average invoice 

SELECT VendoriD, Invoic eNumber, Invoic eTotal 
FROM Invoice s AS Inv_ Main 
WHERE InvoiceTota l > 

(SELECT AVG (Invoic eTotal) 
FROM Invoices AS Inv_Sub 
WHERE Inv_Sub. VendoriD = Inv_Main.VendoriD) 

ORDER BY VendoriD, Invoic eTotal; 

The value returned by the subquery for vendor 95 
28.5016 

The result set 
VendoriD Invoice Number Invoice Total 

6 83 31359783 1575.00 

7 95 111·92R·10095 32.70 

8 95 111·92R·10093 39.77 

9 95 111-92R-10092 46.21 

10 110 P~59 26881 .40 
§ 

(36 r ows ) 

Description 

"' 

II 

'Y 

• A correlated subquery is a subquery that is executed once for each row processed 
by the outer query. By contrast, a noncorrelated subquery is executed only once. 
All of the subqueries you've seen so far have been noncorrelated subqueries. 

• A correlated subquery refers to a value that's provided by a column in the outer 
query. Because that value varies depending on the row that's being processed, each 
execution of the subquery returns a different result. 

• To refer to a value in the outer query, a correlated subquery uses a qualified column 
name that includes the table name from the outer query. If the subquery uses the 
same table as the outer query, an alias, or correlation name, must be assigned to 
one of the tables to remove ambiguity. 

Note 
• Because a correlated subquery is executed once for each row processed by the outer 

query, a query with a correlated subquery typically takes longer to run than a query 
with a noncorrelated subquery. 

Figure 6-7 How to code correlated subqueries 



198 Section 2 The essential SQL skills 

How to use the EXISTS operator 

Figure 6-8 shows you how to use the EXISTS operator with a subquery. This 
operator tests whether or not the subquery returns a result set. In other words, 
it tests whether the result set exists. When you use this operator, the subquery 
doesn' t actually return a result set to the outer query. Instead, it simply returns 
an indication of whether any rows satisfy the search condition of the subquery. 
Because of that, queries that use this operator execute quicldy. 

You typically use the EXISTS operator with a correlated subquery as 
illustrated in this figure. This query retrieves all the vendors in the Vendors table 
that don' t have invoices in the Invoices table. Notice that this query returns the 
same vendors as the two queries you saw in figure 6-3 that use the IN operator 
with a subquery and an outer join. However, the query in this figure executes 
more quicldy than either of the queries in figure 6-3 . 

In this example, the correlated subquery selects all of the invoices that have 
the same VendoriD value as the current vendor in the outer query. Because the 
subquery doesn't actually return a result set, it doesn' t matter what columns 
are included in the SELECT clause. So it's customary to just code an asterisk. 
That way, SQL Server will determine what columns to select for optimum 
performance. 

After the subquery is executed, the search condition in the WHERE clause of 
the outer query uses NOT EXISTS to test whether any invoices were found for 
the current vendor. If not, the vendor row is included in the result set. Otherwise, 
it's not. 



Chapter 6 How to code subqueries 199 

The syntax of a subquery that uses the EXISTS operator 
WHERE [NOT) EXISTS (subquery ) 

A query that returns vendors without invoices 
SELECT VendoriD, VendorName, VendorSta te 
FROM Vendors 
WHERE NOT EXISTS 

(SELECT * 
FROM Inv o i c e s 
WHERE Inv o i ces . Ve ndoriD Vendors . VendoriD) ; 

The result set 
VendoriD Vendor Name 

32 JJ Nielson 

JJ 35 Cal State T ennite 

34 36 Graylift 

35 38 Venture Communications lnt 1 

36 39 Custom Prirting Company 

37 40 Nat A:ssoc of CoUege Stores 

(88 rows ) 

Description 

VendorState 

OH 

CA 

CA 

NY 

MO 

OH 

[ 

• You can use the EXISTS operator to test that one or more rows are returned by the 
subquery. You can also use the NOT operator along with the EXISTS operator to 
test that no rows are returned by the subquery. 

• When you use the EXISTS operator with a subquery, the subquery doesn' t actually 
return any rows. Instead, it returns an indication of whether any rows meet the 
specified condition. 

• Because no rows are returned by the subquery, it doesn' t matter what columns you 
specify in the SELECT clause. So you typically just code an asterisk(*). 

• Although you can use the EXISTS operator with either a correlated or a 
noncorrelated subquery, it's used most often with correlated subqueries. That's 
because it's usually better to use a join than a noncorrelated subquery with 
EXISTS. 

Figure 6-8 How to use the EXISTS operator 



200 Section 2 The essential SQL skills 

Other ways to use subqueries 
Although you' ll typically use subqueries in the WHERE or HAVING clause 

of a SELECT statement, you can also use them in the FROM and SELECT 
clauses. You' lllearn how to do that in the topics that follow. 

How to code subqueries in the FROM clause 

Figure 6-9 shows you how to code a subquery in a FROM clause. As you can 
see, you can code a subquery in place of a table specification. In this example, 
the results of the subquery, called a derived table, are joined with another table. 
When you use a subquery in this way, it can return any number of rows and 
columns. 

Subqueries are typically used in the FROM clause to create derived tables 
that provide summarized data to a summary query. The subquery in this figure, 
for example, creates a derived table that contains the VendoriD values and the 
average invoice totals for the five vendors with the top invoice averages. To do 
that, it groups the invoices by VendoriD, sorts them in descending sequence by 
average invoice total, and then returns the top five rows. The derived table is then 
joined with the Invoices table, and the resulting rows are grouped by VendoriD. 
Finally, the maximum invoice date and average invoice total are calculated for 
the grouped rows, and the results are sorted by the maximum invoice date in 
descending sequence. 

You should notice four things about this query. First, the derived table is 
assigned a table alias so it can be referred to from the outer query. Second, the 
result of the AVG function in the subquery is assigned a column alias. This is 
because a derived table can't have unnamed columns. Third, since the subquery 
uses a TOP phrase, it also includes an ORDER BY clause. Fourth, although 
you might think that you could use the average invoice totals calculated by the 
subquery in the select list of the outer query, you can' t. That's because the outer 
query includes a GROUP BY clause, so only aggregate functions, columns 
named in the GROUP BY clause, and constant values can be included in this list. 
Because of that, the AVG function is repeated in the select list. 

When used in the FROM clause, a subquery is similar to a view. As you 
learned in chapter 1, a view is a predefined SELECT statement that's saved with 
the database. Because it's saved with the database, a view typically performs 
more efficiently than a derived table. However, it's not always practical to use 
a view. In those cases, derived tables can be quite useful. In addition, derived 
tables can be useful for testing possible solutions before creating a view. Then, 
once the derived table works the way you want it to, you can define the view 
based on the subquery you used to create the derived table. 



Chapter 6 How to code subqueries 201 

A query that uses a derived table to retrieve the top 5 vendors 
by average invoice total 

SELECT Invoices.VendoriD, MAX(InvoiceDate) AS Latestinv, 
AVG(InvoiceTotal) AS Avginvoice 

FROM Invoices JOIN 
(SELECT TOP 5 VendoriD, AVG(InvoiceTotal) AS Avginvoice 
FROM Invoices 
GROUP BY VendoriD 
ORDER BY Avginvoice DESC) AS TopVendor 
ON Invoices.VendoriD = TopVendor.VendoriD 

GROUP BY Invoices.VendoriD 
ORDER BY Latestinv DESC; 

The derived table generated by the subquery 
Vendor! D Avglnvoice 

[f1§·.·~.·.·.·~~~~~~~~.] 23978.482 
2 72 10963.655 

3 104 7125.34 

4 99 6940.25 

5 119 4901.26 

The result set 
VendoriD Latestlnv Avglnvoice 

1 
!""""""""""""""'] 

l. .. ~ .. 1.~ ................ ..i 2020-{)1-31 23978.482 

2 72 2020-{}1-10 10963.655 

3 99 2019-12-18 6940.25 

4 104 2019-11-21 7125.34 

5 119 2019-11-11 4901 .26 

Description 

• A subquery that's coded in the FROM clause returns a result set called a derived 
table. When you create a derived table, you must assign an alias to it. Then, you 
can use the derived table within the outer query just as you would any other table. 

• When you code a subquery in the FROM clause, you must assign names to any 
calculated values in the result set. 

• Derived tables are most useful when you need to further summarize the results of a 
summary query. 

• A derived table is like a view in that it retrieves selected rows and columns from 
one or more base tables. Because views are stored as part of the database, they're 
typically more efficient to use than derived tables. However, it may not always be 
practical to construct and save a view in advance. 

Figure 6-9 How to code subqueries in the FROM clause 



202 Section 2 The essential SQL skills 

How to code subqueries in the SELECT clause 

Figure 6-10 shows you how to use subqueries in the SELECT clause. As you 
can see, you can use a subquery in place of a column specification. Because of 
that, the subquery must return a single value. 

In most cases, the subqueries you use in the SELECT clause will be 
correlated subqueries. The subquery in this figure, for example, calculates the 
maximum invoice date for each vendor in the Vendors table. To do that, it refers 
to the VendoriD column from the Invoices table in the outer query. 

Because subqueries coded in the SELECT clause are difficult to read, and 
because correlated subqueries are typically inefficient, you shouldn't use them 
unless you can't find another solution. In most cases, though, you can replace the 
subquery with a join. The first query shown in this figure, for example, could be 
restated as shown in the second query. This query joins the Vendors and Invoices 
tables, groups the rows by VendorName, and then uses the MAX function to 
calculate the maximum invoice date for each vendor. As you can see, this query 
is much easier to read than the one with the subquery. It will also execute more 
quickly. 



Chapter 6 How to code subqueries 203 

A query that uses a correlated subquery in its SELECT clause 
to retrieve the most recent invoice for each vendor 

SELECT DISTINCT VendorName, 
(SELECT MAX(InvoiceDate) FROM Invoices 

WHERE Invoices.VendoriD = Vendors.VendoriD) AS Latestinv 
FROM Vendors 
ORDER BY Latestinv DESC; 

The result set 
VendorName l..atestlnv 

, L¥.~~i~~.~.~~.·.·~.~~~~·.·~.·.·~.J 20ml2.()2 
2 Blue Cross 20ml2.()1 

3 MaUoy lithographing Inc 20ml1-31 

4 Cardinal Business Media. Inc. 20ml1-28 

5 Zylka Design 20ml1-25 

6 Ford Motor Creel~ Company 20ml1-24 

7 Un~ed Parcel SetVice 20ml1-24 

8 Ingram 20ml1-21 

9 Wakefield Co 20ml1-20 

(122 rows) 

The same query restated using a join 
SELECT VendorName, MAX(InvoiceDate) AS Latestinv 
FROM Vendors LEFT JOIN Invoices ON Vendors.VendoriD = Invoices.VendoriD 
GROUP BY VendorName 
ORDER BY Latestinv DESC; 

Description 
• When you code a subquery for a column specification in the SELECT clause, the 

subquery must return a single value. 

• A subquery that's coded within a SELECT clause is typically a correlated subquery. 

• A query that includes a subquery in its SELECT clause can typically be restated 
using a join instead of the subquery. Because a join is usually faster and more 
readable, subqueries are seldom coded in the SELECT clause. 

Figure 6-10 How to code subqueries in the SELECT clause 



204 Section 2 The essential SQL skills 

Guidelines for working 
with complex queries 

So far, the examples you've seen of queries that use subqueries have been 
relatively simple. However, these types of queries can get complicated in a hurry, 
particularly if the subqueries are nested. Because of that, you'll want to be sure 
that you plan and test these queries carefully. You' lllearn a procedure for doing 
that in a moment. But first, you'll see a complex query that illustrates the type of 
query I'm talking about. 

A complex query that uses subqueries 

Figure 6-11 presents a query that uses three subqueries. The first subquery 
is used in the FROM clause of the outer query to create a derived table that 
contains the state, name, and total invoice amount for each vendor in the Vendors 
table. The second subquery is also used in the FROM clause of the outer query 
to create a derived table that's joined with the first table. This derived table 
contains the state and total invoice amount for the vendor in each state that has 
the largest invoice total. To create this table, a third subquery is nested within the 
FROM clause of the subquery. This subquery is identical to the first subquery. 

After the two derived tables are created, they're joined based on the columns 
in each table that contain the state and the total invoice amount. The final result 
set includes the state, name, and total invoice amount for the vendor in each state 
with the largest invoice total. This result set is sorted by state. 

As you can see, this query is quite complicated and difficult to understand. 
In fact, you might be wondering if there isn' t an easier solution to this problem. 
For example, you might think that you could solve the problem simply by 
joining the Vendors and Invoices table and creating a grouped aggregate. If you 
grouped by vendor state, however, you wouldn' t be able to include the name 
of the vendor in the result set. And if you grouped by vendor state and vendor 
name, the result set would include all the vendors, not just the vendor from each 
state with the largest invoice total. 

If you think about how else you might solve this query, I think you' ll agree 
that the solution presented here is fairly straightforward. However, in figure 6-13, 
you' ll learn how to use a feature called common table expressions to simplify 
this query. In particular, this feature allows you to code a single Summary 
subquery instead of coding the Summary! and Summary2 subqueries shown 
here. 



Chapter 6 How to code subqueries 205 

A query that uses three subqueries 
SELECT Summaryl.VendorState, Summaryl.VendorName, TopinState. SumOfinvo ices 
FROM 

(SELECT V_ Sub.VendorState, V_ Sub.Vendo rName , 
SUM ( I _ Sub . InvoiceTotal ) AS SumOfinvoices 

FROM Invoices AS I _ Sub JOIN Vendors AS V_ Sub 
ON I _ Sub.VendoriD = V_ Sub.VendoriD 

GROUP BY v_ sub.VendorSta te , v _ sub.VendorName ) AS Summaryl 
JOIN 

(SELECT Summary2 .VendorSta te , 
MAX (Summary2.Sum0 £Invoi ces ) AS SumOfinvoices 

FROM 
(SELECT V_ Sub . VendorState, V_ Sub . Vendor Name, 

SUM ( I _Sub.Inv oiceTotal ) AS SumOfinv oices 
FROM Invoices AS I _ Sub JOIN Vendors AS V_ Sub 

ON I _ Sub . VendoriD = v _Sub.VendoriD 
GROUP BY V_ Sub.Vendor State, V_Sub.VendorName) AS Summary2 

GROUP BY Summary2.VendorState) AS TopinState 
ON Summaryl.VendorSt a te = TopinState.VendorState AND 

Summaryl.SumOfinvo i c es = TopinState .SumOfinvoic es 
ORDER BY Summaryl . Ve ndorState; 

The result set 
VendorState Vendor Name SumO! Invoices 

1 !'"Ai ......................... ] Wefts Fargo Bank 662.00 
~ ................................... : 

2 CA Digital Dreamworks 7125.34 

3 DC Reiter's Scient~ic & Pro Books 600.00 

4 MA Dean Witter Reynolds 1367.50 

5 Ml Malloy Lithographing Inc 119892.41 

6 NV United Parcel Service 23177.96 

7 OH Edward Data Services 207.78 

8 PA Cardinal Business Media. Inc. 265.36 

(10 rows ) 

How the query works 
• This query retrieves the vendor from each state that has the largest invoice total. 

To do that, it uses three subqueries: Summaryl , Summary2, and ToplnState. The 
Summary! and ToplnState subqueries are joined together in the FROM clause of 
the outer query, and the Summary2 subquery is nested within the FROM clause of 
the ToplnState subquery. 

• The Summaryl and Summary2 subqueries are identical. They join data from the 
Vendors and Invoices tables and produce a result set that includes the sum of 
invoices for each vendor grouped by vendor name within state. 

• The ToplnState subquery produces a result set that includes the vendor state and the 
largest sum of invoices for any vendor in that state. This information is retrieved 
from the results of the Summary2 subquery. 

• The columns listed in the SELECT clause of the outer query are retrieved from the 
result of the join between the Summary! and ToplnState subqueries, and the results 
are sorted by state. 

Figure 6-11 A complex query that uses subqueries 



206 Section 2 The essential SQL skills 

A procedure for building complex queries 

To build a complex query like the one in the previous figure, you can use a 
procedure like the one in figure 6-12. To start, you should state the problem to be 
solved so you' re clear about what you want the query to accomplish. In this case, 
the question is, "Which vendor in each state has the largest invoice total?" 

Once you're clear about the problem, you should outline the query using 
pseudocode. Pseudocode is simply code that represents the intent of the 
query, but doesn' t necessari ly use SQL code. The pseudocode shown in this 
figure, for example, uses part SQL code and part English. Notice that this 
pseudocode identifies the two main subqueries. Because these subqueries 
define derived tables, the pseudocode also indicates the alias that will be used 
for each: Summaryl and ToplnState. That way, you can use these aliases in the 
pseudocode for the outer query to make it clear where the data it uses comes 
from. 

If it's not clear from the pseudocode how each subquery will be coded, or, as 
in this case, if a subquery is nested within another subquery, you can also write 
pseudocode for the subqueries. For example, the pseudocode for the ToplnState 
query is presented in this figure. Because this subquery has a subquery nested in 
its FROM clause, that subquery is identified in this pseudocode as Summary2. 

The next step in the procedure is to code and test the actual subqueries to 
be sure they work the way you want them to. For example, the code for the 
Summary 1 and Summary2 queries is shown in this figure, along with the results 
of these queries and the results of the ToplnState query. Once you're sure that 
the subqueries work the way you want them to, you can code and test the final 
query. 

If you follow the procedure presented in this figure, I think you '11 find 
it easier to build complex queries that use subqueries. Before you can use 
this procedure, of course, you need to have a thorough understanding of how 
subqueries work and what they can do. So you' ll want to be sure to experiment 
with the techniques you learned in this chapter before you try to build a complex 
query like the one shown here. 



Chapter 6 How to code subqueries 207 

A procedure for building complex queries 
1. State the problem to be solved by the query in English. 

2. Use pseudocode to outline the query. The pseudocode should identify the subque
ries used by the query and the data they return. It should also include aliases used 
for any derived tables. 

3. If necessary, use pseudocode to outline each subquery. 

4. Code the subqueries and test them to be sure that they return the correct data. 

5. Code and test the final query. 

The problem to be solved by the query in figure 6-11 
• Which vendor in each state has the largest invoice total? 

Pseudocode for the query 
SELECT Summaryl.VendorState, Summaryl . VendorName, TopinState.SumOfinvoices 
FROM (Derived table returning VendorState, VendorName, SumOfinvoices) 

AS Summ.aryl 
JOIN (Derived table returning VendorState, MAX(SumOfinvoices)) 

AS TopinState 
ON Summaryl.VendorState = TopinState.VendorState AND 

Summaryl.SumOfinvoices = TopinState.SumOfinvoices 
ORDER BY Summaryl.VendorState; 

Pseudocode for the ToplnState subquery 
SELECT Summary2.VendorState, MAX(Summary2.SumOfinvoices) 
FROM (Derived table returning VendorState, VendorName, SumOfinvoices) 

AS Summ.ary2 
GROUP BY Summary2.VendorState; 

The code for the Summary1 and Summary2 subqueries 
SELECT V_ Sub.VendorState, V_ Sub.VendorName, 

SUM(I_ Sub.InvoiceTotal) AS SumOfinvoices 
FROM Invoices AS I _ Sub JOIN Vendors AS V_ Sub 

ON I _ Sub.VendoriD = V_ Sub.VendoriD 
GROUP BY V_Sub.VendorState, V_ Sub.VendorName; 

The result of the Summary1 and Summary2 subqueries 
VendorState VendorName SunOl Invoices 

10 MA Dean Wtter Reynolds 1367.50 

11 CA Oigit111 Dre11mworks 7125.34 

12 CA Drist11s Groom & McConnick 220.00 

13 OH Edw11rd Data Setvices 207.78 
~ 

(34 rows) 

The result of the ToplnState subquery 

1 

2 
3 

VendorState SumOflnvoices 
r··~---~~----~----~----~····:1 662.00 

CA 7125.34 

oc 600.00 

4 MA 1367.50 

(10 rows) 

Figure 6-12 A procedure for building complex queries 

li 



208 Section 2 The essential SQL skills 

How to work 
with common table expressions 

A common table expression ( CTE) is a feature that allows you to code an 
expression that defines a derived table. You can use CTEs to simplify complex 
queries that use subqueries. This can make your code easier to read and 
maintain. In addition, you can use a CTE to loop through nested structures. 

How to code a CTE 

Figure 6-13 shows how to use a CTE to simplify the complex query 
presented in figure 6-11. To start, the statement for the query begins with the 
WITH keyword to indicate that you are about to define a CTE. Then, it specifies 
Summary as the name for the first table, followed by the AS keyword, followed 
by an opening parenthesis, followed by a SELECT statement that defines 
the table, followed by a closing parenthesis. In this figure, for example, this 
statement returns the same result set as the subqueries named Summary1 and 
Summary2 that were presented in figure 6-11. 

After the first CTE is defined, this example continues by defining a second 
CTE named TopinState. To start, a comma is coded to separate the two CTEs. 
Then, this query specifies TopinState as the name for the second table, followed 
by the AS keyword, followed by an opening parenthesis, followed by a SELECT 
statement that defines the table, followed by a closing parenthesis. Here, this 
SELECT statement refers to the Summary table that was defined by the first 
CTE. When coding multiple CTEs like this, a CTE can refer to any CTEs in the 
same WITH clause that are coded before it, but it can't refer to CTEs coded after 
it. As a result, this statement wouldn't work if the two CTEs were coded in the 
reverse order. 

Finally, the SELECT statement that's coded immediately after the two CTEs 
uses both of these CTEs just as if they were tables. To do that, this SELECT 
statement joins the two tables, specifies the columns to retrieve, and specifies 
the sort order. To avoid ambiguous references, each column is qualified by the 
name for the CTE. If you compare figure 6-13 with figure 6-11, I think you'll 
agree that the code in figure 6-13 is easier to read. That's partly because the 
tables defined by the subqueries aren' t nested within the SELECT statement. In 
addition, I think you'll agree that the code in figure 6-13 is easier to maintain. 
That's because this query reduces code duplication by only coding the Summary 
query in one place, not in two places. 

When using the syntax shown here to define CTEs, you must supply distinct 
names for all columns defined by the SELECT statement, including calculated 
values. That way, it's possible for other statements to refer to the columns in the 
result set. Most of the time, that's all you need to know to be able to work with 
CTEs. For more information about working with CTEs, you can look up "WITH 
common_table_expression" in the documentation for SQL Server. 



The syntax of a CTE 
WITH cte_namel AS (query_definitionl) 
[, cte_name2 AS (query_definition2)] 
[ ... ] 
sql_ statement 

Two CTEs and a query that uses them 
WITH Swmnary AS 
( 

Chapter 6 How to code subqueries 209 

SELECT VendorState, VendorName, SUM(InvoiceTotal) AS SumOfinvoices 
FROM Invoices 

JOIN Vendors ON Invoices.VendoriD = Vendors.VendoriD 
GROUP BY VendorState, VendorName 

) I 

TopinState AS 
( 

SELECT VendorState, MAX(SumOfinvoices) AS SumOfinvoices 
FROM Summary 
GROUP BY VendorState 

SELECT Summary.VendorState, Summary.VendorName, TopinState.SumOfinvoices 
FROM Summary JOIN TopinState 

ON Summary.VendorState = TopinState.VendorState AND 
Summary.SumOfinvoices = TopinState.SumOfinvoices 

ORDER BY Swnmary.VendorState; 

The result set 
VendorState VendorName SumOf Invoices 

1 [~~ ... ·.·.· ... ·.·~ ... ~·~ .... ·.· •.. ·] WeDs Faroo Bank 662.00 

2 CA Digital Dreamworks 7125.34 

3 DC Reiter's ScienMic & Pro Books 600.00 

4 MA Dean Witter Reynolds 1367.50 

5 Ml Malloy Lithographing Inc 119892.41 

6 NV United Parcel Service 23177.96 

7 OH Edward Data Services 207.78 

8 PA Cardinal Business Media. Inc. 265.36 

(10 rows) 

Description 
• A common table expression ( CTE) is an expression (usually a SELECT statement) 

that creates one or more temporary tables that can be used by the following query. 

• To use a CTE with a query, you code the WITH keyword followed by the definition 
of the CTE. Then, immediately after the CTE, you code the statement that uses it. 

• To code multiple CTEs, separate them with commas. Then, each CTE can refer to 
itself and any previously defined CTEs in the same WITH clause. 

• You can use CTEs with SELECT, INSERT, UPDATE, and DELETE statements. 
However, you're most likely to use them with SELECT statements as shown in this 
figure and in figure 6-14. 

Figure 6-13 How to code a CTE 



21 0 Section 2 The essential SQL skills 

How to code a recursive CTE 

A recursive query is a query that is able to loop through a result set and 
perform processing to return a final result set. Recursive queries are commonly 
used to return hierarchical data such as an organizational chart in which a parent 
element may have one or more child elements, and each child element may have 
one or more child elements. To code a recursive query, you can use a recursive 
CTE. Figure 6-14 shows how. 

The top of this figure shows an Employees table where the ManageriD 
column is used to identify the manager for each employee. Here, Cindy Smith is 
the top level manager since she doesn' t have a manager, Elmer Jones and Paulo 
Locario report to Cindy, and so on. 

The recursive CTE shown in this figure returns each employee according to 
their level in the organization chart for the company. To do that, this statement 
begins by defining a CTE named EmployeesCTE. Within this CTE, two SELECT 
statements are joined by the UNION ALL operator. Here, the first SELECT 
statement uses the IS NULL operator to return the first row of the result set. This 
statement is known as the anchor member of the recursive CTE. 

Then, the second SELECT statement creates a loop by referencing itself. 
In particular, this query joins the Employees table to the EmployeesCTE table 
that's defined by the CTE. This statement is known as the recursive member 
and it loops through each row in the Employees table. With each loop, it adds 
1 to the rank column and appends the current result set to the final result set. 
For example, on the first loop, it appends Elmer Jones and Paulo Locario to the 
final result set. On the second loop, it appends Ralph Simonian, Thomas Hardy, 
Olivia Hernandez, and Rhea O'Leary to the final result set. And so on. 

When coding a recursive CTE, you must follow some rules. First, you must 
supply a name for each column defined by the CTE. To do that, you just need to 
make sure to specify a name for each column in the anchor member. Second, the 
rules for coding a union that you learned in chapter 4 still apply. In particular, 
the anchor member and the recursive member must have the same number of 
columns and the columns must have compatible data types. 

Most of the time, that's all you need to know to be able to work with recursive 
CTEs. However, the goal of this figure is to show a simple recursive CTE to give 
you a general idea of how they work. If necessary, you can code much more 
complex recursive CTEs. For example, you can code multiple anchor members 
and multiple recursive members. For more information about working with 
recursive CTEs, you can start by looking up "WITH common_table_expression" 
in the documentation for SQL Server. 

If you find that you're often using recursive CTEs to return hierarchical data, 
you may want to learn more about the hierarchyid data type that was introduced 
with SQL Server 2008. This data type makes it easier to work with hierarchical 
data such as organization charts. To learn more about this data type, you can 
look up "hierarchyid (Transact-SQL)" in the documentation for SQL Server. 



The Employees table 
EmployeeiD Last Name FntName ManageriD 

1 r·.~···~~---~~·······~···~·~···~] Smkh Qndy NULL 

2 2 Jones 8mer 1 

3 3 Simonian Ralph 2 
4 4 Hernandez Olivia 2 

5 5 Aarons en Robert 3 

6 6 Watson Denise 3 

7 7 Hardy Thomas 2 

8 8 O'leatY Rhea 2 
9 9 Locario Paulo 

= 

A recursive CTE that returns hierarchical data 
WITH Employe esCTE AS 
( 

- - Anchor member 
SELECT EmployeeiD, 

Chapter 6 How to code subqueries 211 

~ 

First Name + 1 1 + LastName As EmployeeName , 
1 As Rank 

FROM Employees 
WHERE Man a geriD IS NULL 

UNION ALL 
-- Recursive member 
SELECT Employees . EmployeeiD, 

FirstName + 1 1 + La stName , 
Rank + 1 

FROM Employees 
JOIN EmployeesCTE 
ON Employees.ManageriD = EmployeesCTE.EmployeeiD 

SELECT * 
FROM EmployeesCTE 
ORDER BY Rank, EmployeeiD; 

The final result set 
EmployeeiD Employee Name Rank 

1 r·~·-.·~··············:·· ······] Qndy Smith 1 

2 2 8merJones 2 

3 9 Paulo locario 2 
4 3 Ralph Simonan 3 

5 4 Olivia Hernandez 3 

6 7 Thomas Hardy 3 

7 8 Rhea O'leary 3 

8 5 Robert Aaronsen 4 

9 6 Denise Watson 4 

' 
Description 
• A recursive query is a query that is able to loop through a result set and perform 

processing to return a final result set. A recursive CTE can be used to create a 
recursive query. 

• A recursive CTE must contain at least two query definitions, an anchor member 
and a recursive member, and these members must be connected by the UNION 
ALL operator. 

Figure 6-14 How to code a recursive CTE 



212 Section 2 The essential SQL skills 

Perspective 
As you've seen in this chapter, subqueries provide a powerful tool for 

solving difficult problems. Before you use a subquery, however, remember 
that a subquery can often be restated more clearly by using a join. In addition, 
a query with a join often executes more quickly than a query with a subquery. 
Because of that, you' ll typically use a subquery only when it can' t be restated 
as a join or when it makes the query easier to understand without slowing it 
down significantly. 

If you find yourself coding the same subqueries over and over, you should 
consider creating a view for that subquery as described in chapter 13. This will 
help you develop queries more quickly since you can use the view instead of 
coding the subquery again. In addition, since views execute more quickly than 
subqueries, this may improve the performance of your queries. 

Terms 

subquery 
introduce a subquery 
subquery search condition 
subquery predicate 
nested subquery 
correlated subquery 
noncorrelated subquery 

derived table 
pseudocode 
common table expression (CTE) 
recursive query 
recursive CTE 
anchor member 
recursive member 

1. Write a SELECT statement that returns the same result set as this SELECT 
statement. Substitute a subquery in a WHERE clause for the inner join. 

SELECT DISTINCT VendorName 

FROM Vendors JOIN Invoices 

ON Vendors.VendoriD = Invoices . VendoriD 

ORDER BY VendorName; 

2. Write a SELECT statement that answers this question: Which invoices have 
a PaymentTotal that's greater than the average PaymentTotal for all paid 
invoices? Return the InvoiceNumber and InvoiceTotal for each invoice. 

3. Write a SELECT statement that answers this question: Which invoices have 
a PaymentTotal that's greater than the median PaymentTotal for all paid 
invoices? (The median marks the midpoint in a set of values; an equal number 
of values lie above and below it.) Return the InvoiceNumber and InvoiceTotal 
for each invoice. 

Hint: Begin with the solution to exercise 2, then use the ALL keyword in 
the WHERE clause and code "TOP 50 PERCENT PaymentTotal" in the 
subquery. 



Chapter 6 How to code subqueries 213 

4. Write a SELECT statement that returns two columns from the GLAccounts 
table: AccountNo and AccountDescription. The result set should have one 
row for each account number that has never been used. Use a correlated 
subquery introduced with the NOT EXISTS operator. Sort the final result set 
by AccountNo. 

5. Write a SELECT statement that returns four columns: VendorName, 
InvoiceiD, InvoiceSequence, and InvoiceLineltemAmount for each invoice 
that has more than one line item in the InvoiceLineitems table. 

Hint: Use a subquery that tests for InvoiceSequence > 1. 

6. Write a SELECT statement that returns a single value that represents the sum 
of the largest unpaid invoices submitted by each vendor. Use a derived table 
that returns MAX(InvoiceTotal) grouped by VendoriD, filtering for invoices 
with a balance due. 

7. Write a SELECT statement that returns the name, city, and state of each 
vendor that's located in a unique city and state. In other words, don' t include 
vendors that have a city and state in common with another vendor. 

8. Write a SELECT statement that returns four columns: VendorName, 
InvoiceNumber, InvoiceDate, and InvoiceTotal. Return one row per vendor, 
representing the vendor 's invoice with the earliest date. 

9. Rewrite exercise 6 so it uses a common table expression (CTE) instead of a 
derived table. 





7 

How to insert, update, 
and delete data 
In the last four chapters, you learned how to code the SELECT statement 
to retrieve and summarize data. Now, you' lllearn how to code the INSERT, 
UPDATE, and DELETE statements to modify the data in a table. When you're 
done with this chapter, you' ll know how to code the four statements that are 
used every day by professional SQL programmers. 

How to create test tables ................................................... 216 
How to use the SELECT INTO statement ..... ............. ..... .... ........ .... .... ....... 216 
How to use a copy of the database .... .... .... ........................ .... .... ........ .... .... .. . 216 

How to insert new rows ..................................................... 218 
How to insert a single row .... ..... ........... .... ...... ............. .. ... .... .... ................... 218 
How to insert multiple rows .. .................... ... ................................ ................ 218 
How to insert defau lt va lues and nu ll va lues ............................................... 220 
How to insert rows selected from another table .......................................... 222 

How to modify existing rows ............................................. 224 
How to perform a basic update operation ................................................... 224 
How to use subqueries in an update operation ............................................ 226 
How to use joins in an update operation ..................................................... 228 

How to delete existing rows .............................................. 230 
How to perform a basic delete operation .. .................... .... .... .... .... .... .... .... .. . 230 
How to use subqueries and joins in a delete operation .. ... .... .... .... .... .... .... ... 232 

How to merge rows ............................................................ 234 
How to perform a basic merge operation .................................................... 234 
How to code more complex merge operations ........... .. .... .... ........ .... ........... 234 

Perspective ......................................................................... 236 



216 Section 2 The essential SQL skills 

How to create test tables 
As you learn to code INSERT, UPDATE, and DELETE statements, you 

need to make sure that your experimentation won' t affect "live" data or a class
room database that is shared by other students. Two ways to get around that are 
presented next. 

How to use the SELECT INTO statement 

Figure 7-1 shows how to use the SELECT INTO statement to create test 
tables that are derived from the tables in a database. Then, you can experiment 
all you want with the test tables and delete them when you're done. When you 
use the SELECT INTO statement, the result set that's defined by the SELECT 
statement is simply copied into a new table. 

The three examples in this figure show some of the ways you can use this 
statement. Here, the first example copies all of the columns from all of the rows 
in the Invoices table into a new table named InvoiceCopy. The second example 
copies all of the columns in the Invoices table into a new table, but only for rows 
where the balance due is zero. And the third example creates a table that contains 
summary data from the Invoices table. 

For the examples in the rest of this chapter, I used the SELECT INTO 
statement to make copies of the Vendors and Invoices tables, and I named these 
tables VendorCopy and InvoiceCopy. If you do the same, you' ll avoid corrupting 
the original database. Then, when you're done experimenting, you can use the 
DROP TABLE statement that's shown in this figure to delete the test tables. 

When you use this technique to create tables, though, only the column 
definitions and data are copied, which means that definitions like those of 
primary keys, foreign keys, and default values aren' t retained. As a result, the 
test results that you get with the copied tables may be slightly different than the 
results you would get with the original tables. You' ll understand that better after 
you read chapters 10 and 11. 

How to use a copy of the database 

If you download the files for this book as described in appendix A, you can 
create copies of the databases used in this book on your local server by running 
the provided database creation scripts. As a result, you can modify the tables 
within these databases without worrying about how much you change them. 
Then, when you're done testing, you can restore these databases by running the 
database creation scripts again. 

However, when you create a copy of the entire database instead of making 
copies of tables within a database, the definitions of primary keys, foreign keys, 
and default values are retained, so your results may be slightly different than the 
ones shown in the examples. If, for example, you try to add a row with an invalid 
foreign key, SQL Server won' t let you do that. You' lllearn more about that in 
chapters 10 and 11. 



Chapter 7 How to insert, update, and delete data 217 

The syntax of the SELECT INTO statement 
SELECT select_ list 
INTO table_name 
FROM table_source 
[WHERE search_condition] 
[GROUP BY group_by_ list] 
[HAVING search_ condition] 
[ORDER BY order_by_ list] 

A statement that creates a complete copy of the Invoices table 
SELECT * 
INTO InvoiceCopy 
FROM Invoices; 

(114 rows affected) 

A statement that creates a partial copy of the Invoices table 
SELECT * 
INTO Oldinvoices 
FROM Invoices 
WHERE InvoiceTotal - PaymentTotal - CreditTotal = 0; 

(103 rows affected) 

A statement that creates a table with summary rows 
SELECT VendoriD, SUM(InvoiceTotal) AS SumOfinvoices 
INTO VendorBalances 
FROM Invoices 
WHERE InvoiceTotal - PaymentTotal - CreditTotal <> 0 
GROUP BY VendoriD; 

(7 rows affected) 

A statement that deletes a table 
DROP TABLE InvoiceCopy; 

Description 
• The INTO clause is a SQL Server extension that lets you create a new table based on 

the result set defined by the SELECT statement. Since the definitions of the columns in 
the new table are based on the columns in the result set, the column names assigned in 
the SELECT clause must be unique. 

• You can code the other clauses of the SELECT INTO statement just as you would for 
any other SELECT statement. 

• If you use calculated values in the select list, you must name the column since that 
name is used in the definition of the new table. 

• The table you name in the INTO clause must not exist. If it does, you must delete it 
using the DROP TABLE statement before you execute the SELECT INTO statement. 

Warning 
• When you use the SELECT INTO statement to create a table, only the column definitions 

and data are copied. That means that definitions of primary keys, foreign keys, indexes, 
default values, and so on are not included in the new table. 

Figure 7-1 How to use the SELECT INTO statement to create test tables 



218 Section 2 The essential SQL skills 

How to insert new rows 
To add new rows to a table, you use the INSERT statement. This statement 

lets you insert a single row or multiple rows. 

How to insert a single row 

Figure 7-2 shows how to code an INSERT statement to insert a single row. 
The two examples in this figure insert a row into the InvoiceCopy table. The data 
this new row contains is defined near the top of this figure. 

In the first example, you can see that you name the table in which the row 
will be inserted in the INSERT clause. Then, the VALUES clause lists the values 
to be used for each column. You should notice three things about this list. First, it 
includes a value for every column in the table except for the InvoiceiD column. 
This value is omitted because the InvoiceiD column is defined as an identity 
column. Because of that, its value will be generated by SQL Server. Second, 
the values are listed in the same sequence that the columns appear in the table. 
That way, SQL Server knows which value to assign to which column. And 
third, a null value is assigned to the last column, PaymentDate, using the NULL 
keyword. You' ll learn more about using this keyword in the next topic. 

The second INSERT statement in this figure includes a column list in the 
INSERT clause. Notice that this list doesn' t include the PaymentDate column 
since it allows a null value. In addition, the columns aren' t listed in the same 
sequence as the columns in the InvoiceCopy table. When you include a list of 
columns, you can code the columns in any sequence you like. Then, you just 
need to be sure that the values in the VALUES clause are coded in the same 
sequence. 

When you specify the values for the columns to be inserted, you must be 
sure that those values are compatible with the data types of the columns. For 
example, you must enclose literal values for dates and strings within single 
quotes. However, you don' t need to enclose literal values for numbers in single 
quotes. You' lllearn more about data types and how to work with them in the 
next chapter. For now, just realize that if any of the values aren't compatible with 
the data types of the corresponding columns, an error will occur and the row 
won't be inserted. 

How to insert multiple rows 

SQL Server 2008 extended the syntax for the INSERT statement to allow 
a single INSERT statement to insert multiple rows. To do that, you just use a 
comma to separate the multiple value lists as shown in the third INSERT 
statement in figure 7-2. Although this syntax doesn' t provide a performance 
gain, it does provide a more concise way to write the code than coding multiple 
INSERT statements. 



Chapter 7 How to insert, update, and delete data 219 

The syntax of the INSERT statement 
INSERT [INTO] table_name [(column_ list)] 
[DEFAULT] VALUES (expression_1 [, expression_2] .•• ) 
[, (expression_ 1 [, expression_ 2] ••• ) ••• ] 

The values for a new row to be added to the Invoices table 

Column Value Column Value 
InvoiceiD (Next available unique ID) Payment Total 0 

VendoriD 97 Credit Total 0 

InvoiceNUmber 456789 TermsiD 1 

InvoiceDate 3/01/2020 InvoiceDueDate 3/31/2020 

InvoiceTotal 8,344.50 PaymentDate null 

An INSERT statement that adds the new row without using a column list 
INSERT INTO InvoiceCopy 
VALUES (97, 1 456789 1

, 
1 2020-03-01 1

, 8344.50, 0, 0, 1, 1 2020-03-31 1
, NULL); 

An INSERT statement that adds the new row using a column list 
INSERT INTO InvoiceCopy 

(VendoriD, InvoiceNumber, InvoiceTotal, PaymentTotal, CreditTotal, 
TermsiD, InvoiceDate, InvoiceDueDate) 

VALUES 
(97 1 I 456789 I 1 8344 o 50, 0, 0, 1, I 2030-03-01 I 1 I 2020-03-31 I); 

The response from the system 
(1 row affected) 

An INSERT statement that adds three new rows 
INSERT INTO InvoiceCopy 
VALUES 

(95, I 111-10098 I I I 2020-03-01 I I 219.50, 0, 0, 1, I 2020-03-31 I I NULL) I 

(102, 1 109596 1
, 

1 2020-03-01 1 ,22.97, 0, 0, 1, 1 2020-03-31 1
, NULL), 

(72, 1 40319 1 , 1 2020-03-01 1 , 173.38 , 0, 0, 1, 1 2020-03-31 1 , NULL); 

The response from the system 
(3 rows affected) 

Description 
• You specify the values to be inserted in the VALUES clause. The values you 

specify depend on whether you include a column list. 

• If you don' t include a column list, you must specify the column values in the same 
order as they appear in the table, and you must code a value for each column in the 
table . The exception is an identity column, which must be omitted. 

• If you include a column list, you must specify the column values in the same order 
as they appear in the column list. You can omit columns with default values and 
columns that accept null values, and you must omit identity columns. 

Figure 7-2 How to insert one or more rows 



220 Section 2 The essential SQL skills 

How to insert default values and null values 

If a column allows null values, you'll want to know how to insert a null 
value into that column. Similarly, if a column is defined with a default value, 
you'll want to know how to insert that value. The technique you use depends on 
whether the INSERT statement includes a column list, as shown by the examples 
in figure 7-3. 

All of these INSERT statements use a table named ColorSample. This table 
contains the three columns shown at the top of this figure. The first column, ID, 
is defined as an identity column. The second column, ColorNumber, is defined 
with a default value of 0. And the third column, ColorName, is defined so it 
allows null values. 

The first two statements illustrate how you assign a default value or a null 
value using a column list. To do that, you simply omit the column from the list. 
In the first statement, for example, the column list names only the ColorNumber 
column, so the ColorName column is assigned a null value. Similarly, the 
column list in the second statement names only the ColorName column, so the 
ColorNumber is assigned its default value. 

The next three statements show how you assign a default or null value to a 
column without including a column list. As you can see, you do that by using 
the DEFAULT and NULL keywords. For example, the third statement specifies 
a value for the ColorName column, but uses the DEFAULT keyword for the 
ColorNumber column. Because of that, SQL Server will assign a value of zero 
to this column. The fourth statement assigns a value of 808 to the ColorNumber 
column, and it uses the NULL keyword to assign a null value to the ColorName 
column. The fifth statement uses both the DEFAULT and NULL keywords. 

Finally, in the sixth statement, the DEFAULT keyword is coded in front 
of the VALUES clause. When you use the DEFAULT keyword this way, any 
column that has a default value will be assigned that value, and all other columns 
(except the identity column) will be assigned a null value. Because of that, you 
can use this technique only when every column in the table is defined as either 
an identity column, a column with a default value, or a column that allows null 
values. 



Chapter 7 How to insert, update, and delete data 221 

The definition of the ColorSample table 
Column name Data Type Length Identity Allow Nulls Default Value 

ID 

ColorNumber 

Co lorN arne 

Int 

Int 

VarChar 

4 

4 

10 

Yes 

No 

No 

Six INSERT statements for the ColorSample table 
INSERT INTO ColorSample (ColorNumber) 
VALUES (606); 

INSERT INTO ColorSample (ColorName) 
VALUES ( 'Yellow•); 

INSERT INTO ColorSample 
VALUES (DEFAULT, 'Orange'); 

INSERT INTO ColorSample 
VALUES (808, NULL); 

INSERT INTO ColorSample 
VALUES (DEFAULT, NULL); 

INSERT INTO ColorSample 
DEFAULT VALUES; 

The ColorSample table after the rows are inserted 
10 ColorNunber ColorName 

1 [.'!~.··~··] 606 NULL 

2 2 0 Yellow 

3 3 0 Orange 

4 4 808 NULL 

5 5 0 NULL 

6 6 0 NULL 

"""" 

Description 

No 

No 

Yes 

No 

0 

No 

• If a column is defined so it allows null values, you can use the NULL keyword in the 
list of values to insert a null value into that column. 

• If a column is defined with a default value, you can use the DEFAULT keyword in the 
list of values to insert the default value for that column. 

• If all of the columns in a table are defined as either identity columns, columns 
with default values, or columns that allow null values, you can code the DEFAULT 
keyword at the beginning of the VALUES clause and then omit the list of values. 

• If you include a column list, you can omit columns with default values and null 
values. Then, the default value or null value is assigned automatically. 

Figure 7-3 How to insert default values and null values 



222 Section 2 The essential SQL skills 

How to insert rows selected from another table 

Instead of using the VALUES clause of the INSERT statement to specify the 
values for a single row, you can use a subquery to select the rows you want to 
insert from another table. Figure 7-4 shows you how to do that. 

Both examples in this figure retrieve rows from the InvoiceCopy table and 
insert them into a table named InvoiceArchive. This table is defined with the 
same columns as the InvoiceCopy table. However, the InvoiceiD column isn' t 
defined as an identity column, and the PaymentTota] and CreditTotal columns 
aren't defined with default values. Because of that, you must include values for 
these columns. 

The first example in this figure shows how you can use a subquery in an 
INSERT statement without coding a column list. In this example, the SELECT 
clause of the subquery is coded with an asterisk so that all the columns in the 
InvoiceCopy table will be retrieved. Then, after the search condition in the 
WHERE clause is applied, all the rows in the result set are inserted into the 
InvoiceArchive table. 

The second example shows how you can use a column list in the INSERT 
clause when you use a subquery to retrieve rows. Just as when you use the 
VALUES clause, you can list the columns in any sequence. However, the 
columns must be listed in the same sequence in the SELECT clause of the 
subquery. In addition, you can omit columns that are defined with default values 
or that allow null values. 

Notice that the subqueries in these statements aren't coded within parentheses 
as a subquery in a SELECT statement is. That's because they're not coded within 
a clause of the INSERT statement. Instead, they're coded in place of the VALUES 
clause. 

Before you execute INSERT statements like the ones shown in this figure, 
you'll want to be sure that the rows and columns retrieved by the subquery are 
the ones you want to insert. To do that, you can execute the SELECT statement 
by itself. Then, when you're sure it retrieves the correct data, you can add the 
INSERT clause to insert the rows in the derived table into another table. 



Chapter 7 How to insert, update, and delete data 223 

The syntax of the INSERT statement for inserting rows selected 
from another table 

INSERT [INTO] table_name [(column_ list)] 
SELECT column_list 
FROM table_source 
[WHERE search_condition] 

An INSERT statement that inserts paid invoices in the lnvoiceCopy table 
into the lnvoiceArchive table 

INSERT INTO InvoiceArchive 
SELECT * 
FROM InvoiceCopy 
WHERE InvoiceTotal - PaymentTotal - CreditTotal = 0; 

(103 rows affected) 

The same INSERT statement with a column list 
INSERT INTO InvoiceArchive 

(InvoiceiD, VendoriD, InvoiceNumber, InvoiceTotal, CreditTotal, 
PaymentTotal, TermsiD, InvoiceDate, InvoiceDueDate) 

SELECT 
InvoiceiD, VendoriD, InvoiceNumber, InvoiceTotal, CreditTotal, 
PaymentTotal, TermsiD, InvoiceDate, InvoiceDueDate 

FROM InvoiceCopy 
WHERE InvoiceTotal - PaymentTotal - CreditTotal = 0; 

(103 rows affected) 

Description 
• To insert rows selected from one or more tables into another table, you can code a 

subquery in place of the VALUES clause. Then, the rows in the derived table that 
result from the subquery are inserted into the table. 

• If you don' t code a column list in the INSERT clause, the subquery must return 
values for all the columns in the table where the rows will be inserted, and the 
columns must be returned in the same order as they appear in that table. The 
exception is an identity column, which must be omitted. 

• If you include a column list in the INSERT clause, the subquery must return values 
for those columns in the same order as they appear in the column list. You can omit 
columns with default values and columns that accept null values, and you must 
omit identity columns. 

Figure 7-4 How to insert rows selected from another table 



224 Section 2 The essential SQL skills 

How to modify existing rows 
To modify the data in one or more rows of a table, you use the UPDATE 

statement. Although most of the UPDATE statements you code will perform 
simple updates like the ones you'll see in the next figure, you can also code more 
complex UPDATE statements that include subqueries and joins. You' ll learn how 
to use these features after you learn how to perform a basic update operation. 

How to perform a basic update operation 

Figure 7-5 presents the syntax of the UPDATE statement. As you can see 
in the examples, most UPDATE statements include just the UPDATE, SET, and 
WHERE clauses. The UPDATE clause names the table to be updated, the SET 
clause names the columns to be updated and the values to be assigned to those 
columns, and the WHERE clause specifies the condition a row must meet to be 
updated. Although the WHERE clause is optional, you' ll almost always include 
it. If you don' t, all of the rows in the table will be updated, which usually isn' t 
what you want. 

The first UPDATE statement in this figure modifies the values of two 
columns in the InvoiceCopy table: PaymentDate and PaymentTotal. Because the 
WHERE clause in this statement identifies a specific invoice number, only the 
columns in that invoice will be updated. Notice in this example that the values 
to be assigned to the two columns are coded as literals. You should realize, 
however, that you can assign any valid expression to a column as long as it 
results in a value that's compatible with the data type of the column. You can 
also use the NULL keyword to assign a null value to a column that allows nulls, 
and you can use the DEFAULT keyword to assign the default value to a column 
that's defined with one. 

The second UPDATE statement modifies a single column in the InvoiceCopy 
table: TermsiD. This time, however, the WHERE clause specifies that all the 
rows for vendor 95 should be updated. Because this vendor has six rows in the 
InvoiceCopy table, all six rows will be updated. 

The third UPDATE statement illustrates how you can use an expression to 
assign a value to a column. In this case, the expression increases the value of 
the CreditTotal column by 100. Like the first UPDATE statement, this statement 
updates a single row. 

Before you execute an UPDATE statement, you'll want to be sure that you've 
selected the correct rows. To do that, you can execute a SELECT statement with 
the same search condition. Then, if the SELECT statement returns the correct 
rows, you can change it to an UPDATE statement. 

In addition to the UPDATE, SET, and WHERE clauses, an UPDATE 
statement can also include a FROM clause. This clause is an extension to the 
SQL standards, and you' ll see how to use it in the next two figures. 



Chapter 7 How to insert, update, and delete data 225 

The syntax of the UPDATE statement 
UPDATE table_name 
SET column_name_l =expression_! [, column_name_2 = expression_2] ... 
[FROM table_ source [[AS] table_ alias] 
[WHERE search_condition] 

An UPDATE statement that assigns new values to two columns 
of a single row in the lnvoiceCopy table 

UPDATE InvoiceCopy 
SET PaymentDate = '2020 - 03 - 21', 

PaymentTotal = 19351.18 
WHERE InvoiceNumber = '97/522'; 

(1 row affected) 

An UPDATE statement that assigns a new value to one column 
of all the invoices for a vendor 

UPDATE InvoiceCopy 
SET TermsiD = 1 
WHERE VendoriD = 95; 

(6 rows affected) 

An UPDATE statement that uses an arithmetic expression 
to assign a value to a column 

UPDATE InvoiceCopy 
SET CreditTotal = CreditTotal + 100 
WHERE InvoiceNumber = '97/522'; 

(1 row affected) 

Description 

• You use the UPDATE statement to modify one or more rows in the table named in 
the UPDATE clause. 

• You name the columns to be modified and the value to be assigned to each 
column in the SET clause. You can specify the value for a column as a literal or an 
expressiOn. 

• You can provide additional criteria for the update operation in the FROM clause, 
which is a SQL Server extension. See figures 7-6 and 7-7 for more information. 

• You can specify the conditions that must be met for a row to be updated in the 
WHERE clause. 

• You can use the DEFAULT keyword to assign the default value to a column that 
has one, and you can use the NULL keyword to assign a null value to a column that 
allows nulls. 

• You can' t update an identity column. 

Warning 
• If you omit the WHERE clause, all the rows in the table will be updated. 

Figure 7-5 How to perform a basic update operation 



226 Section 2 The essential SQL skills 

How to use subqueries in an update operation ----
Figure 7-6 presents four more UPDATE statements that illustrate how you 

can use subqueries in an update operation. In the first statement, a subquery 
is used in the SET clause to retrieve the maximum invoice due date from the 
InvoiceCopy table. Then, that value is assigned to the InvoiceDueDate column 
for invoice number 97/522. 

In the second statement, a subquery is used in the WHERE clause to identify 
the invoices to be updated. This subquery returns the VendoriD value for the 
vendor in the VendorCopy table with the name "Pacific Bell." Then, all the 
invoices with that VendoriD value are updated. 

The third UPDATE statement also uses a subquery in the WHERE clause. 
This subquery returns a list of the VendoriD values for all the vendors in 
California, Arizona, and Nevada. Then, the IN operator is used to update all 
the invoices with VendoriD values in that list. Note that although the subquery 
returns 80 vendors, many of these vendors don't have invoices. As a result, the 
UPDATE statement only affects 51 invoices. 

The fourth example in this figure shows how you can use a subquery in the 
FROM clause of an UPDATE statement to create a derived table. In this case, the 
subquery returns a table that contains the InvoiceiD values of the ten invoices 
with the largest balances of $100 or more. (Because this UPDATE statement 
will apply a credit of $100 to these invoices, you don't want to retrieve invoices 
with balances less than that amount.) Then, the WHERE clause specifies that 
only those invoices should be updated. You can also use a column from a derived 
table in an expression in the SET clause to update a column in the base table. 



Chapter 7 How to insert, update, and delete data 227 

An UPDATE statement that assigns the maximum due date 
in the lnvoiceCopy table to a specific invoice 

UPDATE InvoiceCopy 
SET CreditTotal = CreditTotal + 100, 

InvoiceDueDate = (SELECT MAX(InvoiceDueDate) FROM InvoiceCopy) 
WHERE InvoiceNumber = '97/522'; 

(1 row affected) 

An UPDATE statement that updates all the invoices for a vendor based 
on the vendor's name 

UPDATE InvoiceCopy 
SET Te:rmsiD = 1 
WHERE VendoriD = 

(SELECT VendoriD 
FROM VendorCopy 
WHERE VendorName = 'Pacific Bell'); 

(6 rows affected) 

An UPDATE statement that changes the terms of all invoices 
for vendors in three states 

UPDATE InvoiceCopy 
SET Te:rmsiD = 1 
WHERE VendoriD IN 

(SELECT VendoriD 
FROM VendorCopy 
WHERE VendorState IN ('CA', 'AZ', 'NV')); 

(51 rows affected) 

An UPDATE statement that applies a $100 credit to the 10 invoices 
with the largest balances 

UPDATE InvoiceCopy 
SET CreditTotal = CreditTotal + 100 
FROM 

(SELECT TOP 10 InvoiceiD 
FROM InvoiceCopy 
WHERE InvoiceTotal - PaymentTotal - CreditTotal >= 100 
ORDER BY InvoiceTotal - PaymentTotal - CreditTotal DESC) AS Topinvoices 

WHERE InvoiceCopy.InvoiceiD = Topinvoices.InvoiceiD; 

(5 rows affected) 

Description 
• You can code a subquery in the SET, FROM, or WHERE clause of an UPDATE 

statement. 

• You can use a subquery in the SET clause to return the value that's assigned to a 
column. 

• You can use a subquery in the FROM clause to identify the rows that are available 
for update. Then, you can refer to the derived table in the SET and WHERE clauses. 

• You can code a subquery in the WHERE clause to provide one or more values used 
in the search condition. 

Figure 7-6 How to use subqueries in an update operation 



228 Section 2 The essential SQL skills 

How to use joins in an update operation 

In addition to subqueries, you can use joins in the FROM clause of an 
UPDATE statement. Joins provide an easy way to base an update on data in a 
table other than the one that's being updated. The two examples in figure 7-7 
illustrate how this works. 

The first example in this figure updates the TermsiD column in all the 
invoices in the InvoiceCopy table for the vendor named "Pacific Bell." This 
is the same update operation you saw in the second example in the previous 
figure. Instead of using a subquery to retrieve the VendoriD value for the vendor, 
however, this UPDATE statement joins the InvoiceCopy and VendorCopy 
tables on the VendoriD column in each table. Then, the search condition in 
the WHERE clause uses the VendorName column in the VendorCopy table to 
identify the invoices to be updated. 

The second example in this figure shows how you can use the columns in 
a table that's joined with the table being updated to specify values in the SET 
clause. Here, the VendorCopy table is joined with a table named ContactUpdates. 
As you can see in the figure, this table includes VendoriD, LastName, and 
FirstName columns. After the two tables are joined on the VendoriD column, the 
SET clause uses the LastName and FirstName columns from the ContactUpdates 
table to update the VendorContactLName and VendorContactFName columns in 
the VendorCopy table. 



Chapter 7 How to insert, update, and delete data 229 

An UPDATE statement that changes the terms of all the invoices 
for a vendor 

UPDATE InvoiceCopy 
SET TermsiD = 1 
FROM InvoiceCopy JOIN VendorCopy 

ON InvoiceCopy.VendoriD = VendorCopy.VendoriD 
WHERE VendorName = ' Pacific Bell'; 

(6 rows affected) 

An UPDATE statement that updates contact names 
in the VendorCopy table based on data in the ContactUpdates table 

UPDATE VendorCopy 
SET VendorContactLName = LastName, 

VendorContactFName = FirstName 
FROM VendorCopy JOIN ContactUpdates 

ON VendorCopy.VendoriD = ContactUpdates.VendoriD; 

(8 rows affected) 

The ContactUpdates table 
VendoriD LastNli!Tle F'IISIName 

[·~.·.····.·.··.-··.··:·.·.··.-··.·] Da~son MicheDe 

2 12 Mayteh Kendal 

3 17 Onandonga Bruce 

4 44 Antavius Anthony 

5 76 Bradlee Danny 

6 94 Suscipe Reynaldo 

7 101 O'SuDivan Geraldine 

8 123 Bucket Olar1es 

Description 
• If you need to specify column values or search conditions that depend on data in 

a table other than the one named in the UPDATE clause, you can use a join in the 
FROM clause. 

• You can use columns from the joined tables in the values you assign to columns in 
the SET clause or in the search condition of a WHERE clause. 

Figure 7-7 How to use joins in an update operation 



230 Section 2 The essential SQL skills 

How to delete existing rows 
To delete one or more rows from a table, you use the DELETE statement. 

Just as you can with the UPDATE statement, you can use subqueries and joins in 
a DELETE statement to help identify the rows to be deleted. You' lllearn how to 
use subqueries and joins after you learn how to perform a basic delete operation. 

How to perform a basic delete operation 

Figure 7-8 presents the syntax of the DELETE statement, along with three 
examples that illustrate some basic delete operations. As you can see, you 
specify the name of the table that contains the rows to be deleted in the DELETE 
clause. You can also code the FROM keyword in this clause, but this keyword is 
optional and is usually omitted. 

To identify the rows to be deleted, you code a search condition in the 
WHERE clause. Although this clause is optional, you' ll almost always include 
it. If you don' t, all of the rows in the table are deleted. This is a common coding 
mistake, and it can be disastrous. 

You can also include a FROM clause in the DELETE statement to join 
additional tables with the base table. Then, you can use the columns of the joined 
tables in the search condition of the WHERE clause. The FROM clause is an 
extension to the standard SQL syntax. You' ll see how to use it in the next figure. 

The first DELETE statement in this figure deletes a single row from the 
InvoiceCopy table. To do that, it specifies the InvoiceiD value of the row to be 
deleted in the search condition of the WHERE clause. The second statement is 
similar, but it deletes all the invoices with a VendoriD value of 37. In this case, 
three rows are deleted. 

The third DELETE statement shows how you can use an expression in 
the search condition of the WHERE clause. In this case, the Invoice Total, 
PaymentTotal, and CreditTotal columns are used to calculate the balance due. 
Then, if the balance due is zero, the row is deleted. You might use a statement 
like this after inserting the paid invoices into another table as shown in figure 
7-4. 

Finally, the fourth DELETE statement shows how easy it is to delete all 
the rows from a table. Because the WHERE clause has been omitted from this 
statement, all the rows in the InvoiceCopy table will be deleted, which probably 
isn't what you want. 

Because you can't restore rows once they've been deleted, you' ll want to 
be sure that you've selected the correct rows. One way to do that is to issue a 
SELECT statement with the same search condition. Then, if the correct rows are 
retrieved, you can be sure that the DELETE statement will work as intended. 



The syntax of the DELETE statement 
DELETE [FROM] table_name 
[FROM table_ source] 
[WHERE search_condition] 

Chapter 7 How to insert, update, and delete data 231 

A DELETE statement that removes a single row 
from the lnvoiceCopy table 

DELETE InvoiceCopy 
WHERE InvoiceiD = 115; 

(1 row affected) 

A DELETE statement that removes all the invoices for a vendor 
DELETE InvoiceCopy 
WHERE VendoriD = 37; 

(3 rows affected) 

A DELETE statement that removes all paid invoices 
DELETE InvoiceCopy 
WHERE InvoiceTotal - PaymentTotal - CreditTotal = 0; 

(103 rows affected) 

A DELETE statement that removes all the rows from the lnvoiceCopy table 
DELETE InvoiceCopy; 

(114 rows affected) 

Description 
• You can use the DELETE statement to delete one or more rows from the table you 

name in the DELETE clause. 

• You specify the conditions that must be met for a row to be deleted in the WHERE 
clause. 

• You can specify additional criteria for the delete operation in the FROM clause. See 
figure 7-9 for more information. 

Warning 

• If you omit the WHERE clause from a DELETE statement, all the rows in the table 
will be deleted. 

Figure 7-8 How to perform a basic delete operation 



232 Section 2 The essential SQL skills 

How to use subqueries and joins 
in a delete operation 

The examples in fi gure 7-9 illustrate how you can use subqueries and joins 
in a DELETE statement. Because you've seen code like this in other statements, 
you shouldn' t have any trouble understanding these examples. 

The first two examples delete all the invoices from the InvoiceCopy table 
for the vendor named "Blue Cross." To accomplish that, the first example 
uses a subquery in the WHERE clause to retrieve the VendoriD value from 
the VendorCopy table for this vendor. By contrast, the second example joins 
the InvoiceCopy and VendorCopy tables. Then, the WHERE clause uses the 
VendorName column in the VendorCopy table to identify the rows to be deleted. 

The third DELETE statement deletes all vendors that don't have invoices. 
To do that, it uses a subquery to return a list of the VendoriD values in the 
InvoiceCopy table. Then, it deletes all vendors that aren't in that list. 

The fourth DELETE statement shows how you can use the FROM clause 
to join the base table named in the DELETE clause with a derived table. Here, 
the subquery creates a derived table based on the InvoiceCopy table. This 
subquery groups the invoices in this table by vendor and calculates the total 
invoice amount for each vendor. Then, after the derived table is joined with the 
VendorCopy table, the results are filtered by the total invoice amount. Because of 
that, only those vendors that have invoices totaling $100 or less will be deleted 
from the VendorCopy table. 



Chapter 7 How to insert, update, and delete data 233 

A DELETE statement that deletes all invoices for a vendor based 
on the vendor's name 

DELETE InvoiceCopy 
WHERE VendoriD = 

(SELECT VendoriD 
FROM VendorCopy 
WHERE VendorName 

(3 rows affected) 

'Blue Cross'); 

The same DELETE statement using a join 
DELETE InvoiceCopy 
FROM InvoiceCopy JOIN VendorCopy 

ON InvoiceCopy.VendoriD = VendorCopy.VendoriD 
WHERE VendorName = 'Blue Cross'; 

(3 rows affected) 

A DELETE statement that deletes vendors that don't have invoices 
DELETE VendorCopy 
WHERE VendoriD NOT IN 

(SELECT DISTINCT VendoriD FROM InvoiceCopy); 

(88 rows affected) 

A DELETE statement that deletes vendors whose invoices total $100 
or less 

DELETE VendorCopy 
FROM VendorCopy JOIN 

(SELECT VendoriD, SUM(InvoiceTotal) AS TotalOfinvoices 
FROM InvoiceCopy 
GROUP BY VendoriD) AS InvoiceSum 

ON VendorCopy.VendoriD = InvoiceSum.VendoriD 
WHERE TotalOfinvoices <= 100; 

(6 rows affected) 

Description 
• You can use subqueries and joins in the FROM clause of a DELETE statement 

to base the delete operation on the data in tables other than the one named in the 
DELETE clause. 

• You can use any of the columns returned by a subquery or a join in the WHERE 
clause of the DELETE statement. 

• You can also use subqueries in the WHERE clause to provide one or more values 
used in the search condition. 

Note 
• The FROM clause is a SQL Server extension. 

Figure 7-9 How to use subqueries and joins in a delete operation 



234 Section 2 The essential SQL skills 

How to merge rows 
SQL Server 2008 introduced a MERGE statement that allows you to merge 

multiple rows from one table into another table. Since this typically involves 
updating existing rows and inserting new rows, the MERGE statement is 
sometimes referred to as the upsert statement. 

How to perform a basic merge operation 

Figure 7-10 presents the syntax of the MERGE statement, along with an 
example that shows how it works. To start, you code the MERGE keyword, 
followed by the optional INTO keyword, followed by the target table. In this 
example, the target table is the InvoiceArchive table, and it has an alias of ia. 

After the MERGE clause, you code the USING keyword followed by the 
source table. In this example, the source table is the InvoiceCopy table, and it 
has an alias of ic. 

After the USING clause, you code an ON clause that specifies the condition 
that's used to join the two tables. In this figure, both tables use the InvoiceiD 
column as the primary key, and the ON clause joins these tables on this column. 
However, if necessary, you can code more complex join conditions. 

After the USING clause, you can code one or more WHEN clauses that 
control when a row is inserted, updated, or deleted. In this figure, for instance, 
the first WHEN clause checks if (a) the InvoiceiD values are matched, (b) 
the PaymentDate column in the InvoiceCopy table is not a NULL value, and 
(c) the PaymentTotal column in the InvoiceCopy table is greater than the 
PaymentTotal column in the InvoiceArchive table. Here, the second and third 
conditions prevent every row with a matching lnvoiceiD from being updated. 
If all three conditions are true, this WHEN clause updates the columns in the 
InvoiceArchive table with the corresponding values in the InvoiceCopy table. To 
do that, this code uses the table aliases to qualify each column name. 

The second WHEN clause checks if the InvoiceiD values are unmatched. If 
so, it inserts the row into the InvoiceArchive table. To do that, this code uses the 
table alias for the InvoiceCopy table to qualify each column name. 

Finally, to signal the end of a MERGE statement, you must code a 
semi-colon(;). Otherwise, you will get an error when you attempt to run it. 

How to code more complex merge operations 

The example in this figure shows a typical use of the MERGE statement. 
However, you can also use the MERGE statement to delete rows in the target 
table that aren' t matched in the source table. To do that, you can add a WHEN 
clause like the third one in figure 7-10. In addition, the MERGE statement 
supports other more complex functionality such as a TOP clause. For more 
information, you can look up the MERGE statement in the documentation for 
SQL Server. 



Chapter 7 How to insert, update, and delete data 235 

The syntax of the MERGE statement 
MERGE [INTO] table_ target 
USING table_source 
ON join_ condition 
[WHEN MATCHED [AND search_ condition] ••• 

THEN dml_statement ] 
[WHEN NOT MATCHED [BY TARGET] [AND search_ condition] ••• 

THEN dml_statement 1 
[WHEN NOT MATCHED BY SOURCE [AND search_condition] ••• 

THEN dml_statement ] 
; 

A MERGE statement that inserts and updates rows 
MERGE InvoiceArchive AS ia 
USING InvoiceCopy AS ic 
ON ic.InvoiceiD = ia.InvoiceiD 
WHEN MATCHED AND 

ic.PaymentDate IS NOT NULL AND 
ic.PaymentTotal > ia.PaymentTotal 

THEN 
UPDATE SET 

ia.PaymentTotal = ic.PaymentTotal, 
ia.CreditTotal = ic.CreditTotal, 
ia.PaymentDate = ic.PaymentDate 

WHEN NOT MATCHED THEN 

; 

INSERT (InvoiceiD, VendoriD, InvoiceNumber, 
InvoiceTotal, PaymentTotal, CreditTotal, 
Ter.msiD, InvoiceDate, InvoiceDueDate) 

VALUES (ic.InvoiceiD, ic.VendoriD, ic.InvoiceNumber, 
ic.InvoiceTotal, ic.PaymentTotal, ic.CreditTotal, 
ic.TermsiD, ic.InvoiceDate, ic.InvoiceDueDate) 

A WHEN clause that deletes rows that aren't matched by the source 
WHEN NOT MATCHED BY SOURCE THEN 

DELETE 

Description 
• The MERGE statement merges multiple rows from one table into another table. 

Since this often involves updating existing rows and inserting new rows, the 
MERGE statement is sometimes referred to as the upsert statement. 

• When coding search conditions, you can use the AND keyword to create compound 
search conditions. 

• You can code one or more WHEN clauses that control when and how a row is 
inserted, updated, or deleted. 

• Within a WHEN clause, you can code a simplified INSERT, UPDATE, or DELETE 
statement that doesn' t include a table name or a WHERE clause. 

• To signal the end of a MERGE statement, you must code a semicolon (;). 

Figure 7-10 How to perform a merge operation 



236 Section 2 The essential SQL skills 

Perspective 
In this chapter, you learned how to use the INSERT, UPDATE, and 

DELETE statements to modify the data in a database. Now, if you want to 
practice using these statements, please use one of the two options presented 
at the start of this chapter so you won't corrupt a live database or a database 
shared by others. 

In chapters 10 and 11, you'lllearn more about the table definitions that 
can affect the way these statements work. If, for example, you delete a row 
in a Vendors table that has related rows in an Invoices table, SQL Server may 
delete all of the related rows in the Invoices table. But that depends on how 
the relationship is defined. So, to complete your understanding of the INSERT, 
UPDATE, and DELETE statements, you need to read chapters 10 and 11. 

Finally, you should know that you can use the TOP clause with the 
INSERT, UPDATE, and DELETE statements to limit the number of rows 
that are inserted, updated, or deleted. This works similarly to using the TOP 
clause with a SELECT statement as described in chapter 3. As a result, if you 
read chapter 3, you shouldn' t have much trouble using the TOP clause with 
the INSERT, UPDATE, and DELETE statements. For coding details, you can 
search for "TOP (Transact-SQL)" in the documentation for SQL Server. 

1. Write SELECT INTO statements to create two test tables named VendorCopy 
and InvoiceCopy that are complete copies of the Vendors and Invoices tables. 
If VendorCopy and InvoiceCopy already exist, first code two DROP TABLE 
statements to delete them. 

2. Write an INSERT statement that adds a row to the InvoiceCopy table with the 
following values: 

VendoriD: 32 
InvoiceTotal: $434.58 
TermsiD: 2 
InvoiceNumber: AX-014-027 
PaymentTotal: $0.00 
InvoiceDueDate: 05/8/2020 
InvoiceDate: 4/2112020 
CreditTotal: $0.00 
PaymentDate: null 

3. Write an INSERT statement that adds a row to the VendorCopy table for 
each non-California vendor in the Vendors table. (This will result in duplicate 
vendors in the VendorCopy table.) 

4. Write an UPDATE statement that modifies the VendorCopy table. Change 
the default account number to 403 for each vendor that has a default account 
number of 400. 



Chapter 7 How to insert, update, and delete data 237 

5. Write an UPDATE statement that modifies the InvoiceCopy table. Change 
the PaymentDate to today's date and the PaymentTotal to the balance due for 
each invoice with a balance due. Set today's date with a literal date string, or 
use the GETDATE() function. 

6. Write an UPDATE statement that modifies the InvoiceCopy table. Change 
TermsiD to 2 for each invoice that's from a vendor with a DefaultTermsiD of 
2. Use a subquery. 

7. Solve exercise 6 using a join rather than a subquery. 

8. Write a DELETE statement that deletes all vendors in the state of Minnesota 
from the VendorCopy table. 

9. Write a DELETE statement for the VendorCopy table. Delete the vendors that 
are located in states from which no vendor has ever sent an invoice. 

Hint: Use a subquery coded with "SELECT DISTINCT VendorState" 
introduced with the NOT IN operator. 





8 

How to work 
with data types 
So far, you have been using SQL statements to work with the three most 
common types of data: strings, numbers, and dates. Now, this chapter takes 
a more in-depth look at the data types that are available with SQL Server 
and shows some basic skills for working with them. When you complete this 
chapter, you' ll have a thorough understanding of the data types, and you' ll 
know how to use some functions to convert one data type to another. 

A review of the SQL data types ......................................... 240 
Data type overview ................ ... .... .... .... .... ................. .. ..... .... .... .... ..... ... .... .. 240 
The numeric data types ........... .... ................ ................ .... .... ..... ... .... .. .... ...... 242 
The string data types ..... .... .... ... .... .... .... .... ..................... ... .... .... ..... .... .... ... .. 244 
The date/time data types .......... ... ............ .... ................ ..... .... .... ... ...... .. .. ..... 246 
The large value data types ........ .... .... .... .... ........................ ........ ..... .... ... .... .. 248 

How to convert data ........................................................... 250 
How data conversion works .. ................ .. ...... .. .. .. .... ... ... .... .... .... ............. ... .. . 250 
How to convert data using the CAST function .. .... ..... ........................... ...... 252 
How to convert data using the CONVERT function .. ... .... .... ............ .... ...... 254 
How to use the TRY_CONVERT function ....... .... ..... ........... ................ ...... 256 
How to use other data conversion functions .. .... .... .... .. .. .. .. .... ...... .. .. .. .... ...... 258 

Perspective ......................................................................... 260 



240 Section 2 The essential SQL skills 

A review of the SQL data types 
A column's data type specifies the kind of information the column is intended 

to store. In addition, a column's data type determines the operations that can be 
performed on the column. 

Data type overview 

The SQL Server data types can be divided into the four categories shown 
in the fi rst table in figure 8-1. The string data types are intended for storing a 
string of one or more characters, which can include letters, numbers, symbols, or 
special characters. The terms character, string, and text are used interchangeably 
to describe this type of data. 

The numeric data types are intended for storing numbers that can be used for 
mathematical calculations. As you'll see in the next topic, SQL Server can store 
numbers in a variety of formats. 

The temporal data types are used to store dates and times. These data types 
are typically referred to as date/time, or date, data types. 

Historically, most databases have stored string, numeric, and temporal data. 
That's why this book focuses on working with these data types. However, it's 
becoming more common to store other types of data such as images, sound, and 
video in databases. That's why SQL Server 2005 introduced new data types for 
working with these types of data. For more information about working with large 
character and binary values, see figure 8-5. 

SQL Server 2005 also introduced a rowversion data type. This data type 
is meant to replace the timestamp data type, which has been deprecated. The 
rowversion data type is used to store unique 8-byte binary values that are 
generated by SQL Server and that are typically used to identify various versions 
of the rows in a table. The value of a column with the rowversion data type is 
updated any time a row is inserted or updated in the table. 

Finally, SQL Server 2005 introduced an xml data type that provides new 
functionality for storing XML in a database. To learn more about working with 
the xml data type, see chapter 18. 

Beyond that, SQL Server 2008 introduced several more data types. It 
introduced several new date/time data types that are described later in this 
chapter. In addition, it introduced a geometry data type for storing geometric 
data such as points, lines, and polygons. It introduced a geography data type that 
works similarly to the geometry type, except that it uses longitude and latitude to 
specify points on the earth's surface. And, it introduced the hierarchyid data type 
for storing hierarchical data such as organization charts. 

Most of the SQL Server data types correspond to the ANSI-standard data 
types. These data types are listed in the second table in this figure. Here, the 
second column lists the SQL Server data type names, and the first column lists 
the synonyms SQL Server provides for the ANSI-standard data types. Although 
you can use these synonyms instead of the SQL Server data types, you're not 
likely to do that. If you do, SQL Server simply maps the synonyms to the 
corresponding SQL Server data types. 



Chapter 8 How to work with data types 241 

The four data type categories 
Category Description 

Strings of character data String 

Numeric 

Temporal (date/time) 

Other 

Integers, floating point numbers, currency, and other numeric data 

Dates, times, or both 

Large character and binary values, XML, geometric data, 
geographic data, hierarchical data 

ANSI-standard data types and SQL Server equivalents 
Synonym for ANSI-standard data type SQL Server data type used 

binary varying 

char varying 
character varying 

character 

dec 

double precision 

float 

integer 

national char 
national character 

national char varying 
national character varying 

national text 

timestamp 

Description 

varbinary 

varchar 

char 

decimal 

float 

real or float 

int 

nchar 

nvarchar 

ntext 

row version 

• SQL Server defines dozens of data types that are divided into the four categories 
shown above. 

• The temporal data types are typically referred to as date/time data types, or simply 
date data types. 

• SQL Server supports most, but not all, of the ANSI-standard data types. 

• SQL Server provides a synonym for each of the supported ANSI-standard data 
types. Although you can use these synonyms, I recommend you use the SQL Server 
data types instead. 

• When you use the synonym for an ANSI data type, it's mapped to the appropriate 
SQL Server data type indicated in the table above. 

Figure 8-1 Data type overview 



242 Section 2 The essential SQL skills 

The numeric data types 

Figure 8-2 presents the numeric data types supported by SQL Server. As you 
can see, these can be divided into three groups: integer, decimal, and real. 

Integer data types store whole numbers, which are numbers with no digits 
to the right of the decimal point. The five integer data types differ in the amount 
of storage they use and the range of values they can store. Notice that the bigint, 
int, and smallint data types can store positive or negative numbers. By contrast, 
the tinyint and bit data types can store only positive numbers or zero. 

To store numbers with digits to the right of the decimal point, you use the 
decimal data types. These data types have a fixed decimal point, which means that 
the number of digits to the right of the decimal point doesn' t vary. The number of 
digits a value has to the right of the decimal point is called its scale, and the total 
number of digits is called its precision. Notice that the money and smallmoney 
data types have a fixed precision and scale. These data types are intended for 
storing units of currency. By contrast, you can customize the precision and scale 
of the decimal and numeric data types so they' re right for the data to be stored. 
Although the decimal and numeric data types are synonymous, decimal is more 
commonly used. 

In contrast to the fixed-point numbers stored by the decimal data types, the 
real data types are used to store floating-point numbers. These data types provide 
for very large and very small numbers, but with a limited number of significant 
digits. The real data type can be used to store a single-precision number, which 
provides for numbers with up to 7 significant digits. And the float data type can 
be used to store a double-precision number, which provides for numbers with up 
to 15 significant digits. Because the real data type is equivalent to float(24), the 
float data type is typically used for fl oating-point numbers. 

To express the value of a floating-point number, you can use scientific 
notation. To use this notation, you type the letter E followed by a power of 10. 
For instance, 3.65E+9 is equal to 3.65 x 109, or 3,650,000,000. If you have a 
mathematical background, of course, you're already familiar with this notation. 

Because the precision of all the integer and decimal data types is exact, 
these data types are considered exact numeric data types. By contrast, the real 
data types are considered approximate numeric data types because they may 
not represent a value exactly. That can happen, for example, when a number is 
rounded to the appropriate number of significant digits. For business applications, 
you will most likely use only the exact numeric types, as there's seldom the need 
to work with the very large and very small numbers that the real data types are 
designed for. 



Chapter 8 How to work with data types 243 

The integer data types 
Type Bytes Description 

bigint 

int 

smallint 

tinyint 

bit 

8 

4 

2 

Large integers from -9,223,372,036,854,775,808 through 
9 ,223,372,036,854, 775,807. 

Integers from -2,147,483,648 through 2,147,483,647. 

Small integers from -32,768 through 32,767. 

Very small positive integers from 0 through 255. 

Integers with a value of 1 or 0. 

The decimal data types 
Type Bytes Description 

decimal[(p[,s])] 

numeric[(p[,s])] 

money 

smallmoney 

The real data types 

5-17 

5-17 

8 

4 

Decimal numbers with fixed precision (p) and scale (s) from 
-1038+ I through 1038- 1. The precision can be any number 
between I and 38; the default is 18. The scale can be any 
number between 0 and the precision; the default is 0. 

Synonymous with decimal. 

Monetary values with four decimal places from 
-922,337,203,685,477.5808 through 
922,337,203,685,477.5807. Synonymous with decimal( l9,4). 

Monetary values with four decimal places from -214,748.3648 
through 214,748.3647. Synonymous with decimal(l0,4). 

Type Bytes Description 

float [ (n) ] 

real 

Description 

4 or 8 

4 

Double-precision floating-point numbers from - I . 79x I 0308 through 
1.79x 10308• n represents the number of bits used to store the decimal 
portion of the number (the mantissa): n=24 is single-precision; n=53 
is double-precision. The default is 53. 

Single-precision floating point numbers from -3.4x 1038 through 
3.4x l 038• Synonymous with float(24). 

• The integer data types are used to store whole numbers, which are numbers without 
any digits to the right of the decimal point. 

• The decimal data types are used to store decimal values, which can include digits 
to the right of the decimal point. The precision of a decimal value indicates the total 
number of digits that can be stored, and the scale indicates the number of digits that 
can be stored to the right of the decimal point. 

• The integer and decimal data types are considered exact numeric data types 
because their precision is exact. 

• The real data types are used to store floating-point numbers, which have a limited 
number of significant digits. These data types are considered approximate numeric 
data types because they may not represent a value exactly. 

Figure 8-2 The numeric data types 



244 Section 2 The essential SQL skills 

The string data types 

Figure 8-3 presents the four most common string data types supported by 
SQL Server. The number of bytes that are used to store each character for these 
data types depends on the collation that's used. You' lllearn more about collations 
in chapter 11. For now, we' ll assume you're using the default collation. 

With the default collation for SQL Server, the char and varchar data types 
use one byte per character. This allows them to store most characters used by 
Western European languages. On the other hand, the nchar and nvarchar data 
types use two bytes per character. This allows them to store most Unicode 
characters, which include most characters used by the world's writing systems. 
In the ANSI standards, two-byte characters are known as national characters. 
That's why the names of these data types start with the letter n, and that's why 
you prefix string literals with an N when working with these data types. 

You use the char and nchar data types to store fixed-length strings. These 
data types always use the same number of bytes regardless of the length of the 
string. To make that possible, SQL Server appends spaces to the string whenever 
necessary. These data types are typically used to define columns that have a fixed 
number of characters. For example, the VendorS tate column in the Vendors table 
is defined with the char(2) type because it always contains two characters. 

You use the varchar and nvarchar data types to store variable-length strings. 
These data types only use the number of bytes needed to store the string, plus 
two bytes to store the length of the string. They're typically used to define 
columns whose lengths vary from one row to the next. In general, variable-length 
strings use less storage than fixed-length strings. As a result, you should only use 
fixed-length strings when the length of the string is always going to be the same. 

Although you typically store numeric values using numeric data types, the 
string data types may be a better choice for some numeric values. For example, 
you typically store zip codes, telephone numbers, and social security numbers 
in string columns even if they contain only numbers. That's because their values 
aren't used in arithmetic operations. In addition, if you stored these numbers in 
numeric columns, leading zeros would be stripped, which isn' t what you want. 

As I said, the char and varchar types store each character with a single byte 
when you use the default collation. Because a byte consists of eight bits and 
because eight bits can be combined in 256 different ways, each byte can represent 
one of 256 different characters. These characters are assigned numeric codes from 
0 to 255. Most systems use the same codes for the first 128 characters. These 
are the codes defined by the ASCII (American Standard Code for Information 
Interchange) system. The other codes, however, may be unique on your system. 

When you use the nchar and nvarchar types to store Unicode characters 
with the default collation, each character is stored in two bytes (16 bits). This 
provides for 63,536 different characters, which allows for most characters used 
by the world's writing systems. Because of that, you should use the nchar and 
nvarchar data types if your database needs to support a multi-language 
environment. However, if your database primarily needs to support Western 
European languages, you should use the char and varchar data types to keep 
storage requirements to a minimum. 



Chapter 8 How to work with data types 245 

The string data types used to store standard characters 
Type Bytes Description 

char(n) 

varchar(n) 

n Fixed-length string of characters where n is the number of bytes 
ranging from 1 to 8000. 

Variable-length string of characters where n is the maximum 
number of bytes ranging from 1 to 8000. 

The string data types used to store Unicode characters 
Type Bytes Description 

nchar(n) 2xn 

nvarchar(n) 

Fixed-length string of Unicode characters where n is the number 
of byte-pairs ranging from 1 to 4000. 

Variable-length string of Unicode characters where n is the 
maximum number of byte-pairs ranging from 1 to 4000. 

The string data types with the default collation for most systems 
Type Original value Value stored Bytes used 
CHAR(2) 'CA' 'CA' 2 

CHAR( 10) 'CA' 'CA 10 

VARCHAR ( 2 0 ) 'CA' 'CA' 4 (2 + 2) 

VARCHAR ( 2 0 ) 'New York' 'New York' 10 (8 + 2) 

NCHAR(2) N'CA' N'CA' 4 

NCHAR(10) N'CA' N'CA 20 

NVARCHAR ( 2 0) N'CA' N'CA' 6 (4 + 2) 

NVARCHAR ( 2 0) N'New York' N'New York' 18 (16 + 2) 

Description 
• The number of bytes that are used to store characters depends on the collation that's 

used. For more information about collations, see chapter 11. 

• With the default collation, the char and varchar types use one byte per character. This 
allows these types to store the characters used by most Western European languages. 

• With the default collation, the nchar and nvarchar types use one byte-pair, or two 
bytes, per character. This allows these types to store most Unicode characters, 
which includes most characters used by the world's writing systems. 

• The char and nchar types store fixed-length strings that use the same amount of storage 
for each value. To do that, they append spaces to the end of the string whenever necessary. 

• The varchar and nvarchar types store variable-length strings that use a varying 
amount of storage for each value. To do that, they store the characters for the string 
plus two bytes that store the length of the string. 

• With the default collation, the number specified within the parentheses for a data type 
matches the number of characters that can be stored in the data type. However, that's not 
true for collations that allow these data types to store the full range of Unicode characters. 

Figure 8-3 The string data types 



246 Section 2 The essential SQL skills 

The date/time data types 

Figure 8-4 starts by presenting the two date/time data types supported prior 
to SQL Server 2008. These data types differ by the amount of storage they use 
and the range of values they can store. In particular, the datetime type supports a 
wider range of dates and more precise time values than the smalldatetime type. 
However, it also requires more bytes. 

After the older data types, this figure presents the four date/time data types 
that were introduced with SQL Server 2008. These data types offer several 
advantages over the older date/time types. As a result, for new development, you 
will probably want to use the data types that were introduced with SQL Server 
2008 instead of the older date/time data types. Of course, for existing databases, 
you can continue to use the older date/time types. 

If you want to store date values without storing a time component, you 
can use the date data type. This data type is appropriate for many date/time 
values where the time component isn' t necessary such as birthdays. In addition, 
compared to the datetime type, the date type reduces storage requirements, 
allows for a wider range of dates, and makes it easier to search a range of dates. 

Conversely, if you want to store a time value without storing a date 
component, you can use the time data type. When you work with this type, you 
can specify the precision for the fractional seconds from 0 to 7 digits. Then, the 
amount of disk space that's required varies from 3 to 5 bytes depending on the 
precision that's specified. For example, the time(l) type can only store 1 digit 
of fractional seconds and requires 3 bytes. At the other end of the spectrum, the 
time(7) type can store 7 digits of fractional seconds and requires 5 bytes. 

The datetime2 data type combines the date and time data types into a single 
type that stores both a date and a time component. This allows you to use the 
techniques for specifying the precision for fractional seconds with the datetime2 
data type. For example, compared to the datetime type, the datetime2(3) type 
stores a wider range of date values with more precise time values and uses less 
storage (only 6 bytes). 

The datetimeoffset data type works like the datetime2 data type. However, 
this data type also stores a time zone offset that specifies the number of hours 
that the value is ahead or behind Greenwich Mean Time (GMT), which is also 
known as Universal Time Coordinate (UTC). Although this can make it easier to 
work with time zones, it requires another 2 bytes of storage. 

When you work with date/time values, you need to know how to code date 
and time literals. This figure presents some of the most common formats for 
dates and times. All SQL Server systems recognize dates in the yyyy-mm-dd 
format, which is why I've used this format in most of the examples in this book. 
Most systems recognize the other date and time formats shown here as well. 
Since the supported formats depend on system settings, however, you may need 
to check and see which ones are acceptable on your system. 

You also need to be aware of the two-digit year cutoff that's defined on 
your system when you work with date literals. When you code a two-digit year, 
the two-digit year cutoff determines whether the year is interpreted as a year 



Chapter 8 How to work with data types 247 

The date/time data types prior to SQL Server 2008 
Type Bytes Description 

datetime 8 

smalldatetime 4 

Dates and times from January I, 1753 through December 31, 9999, with an 
accuracy af 3.33 milliseconds. 

Dates and times from January 1, 1900 through June 6, 2079, with an accuracy 
of one minute. 

The date/time data types introduced with SQL Server 2008 
Type Bytes Description 

date 

time(n) 

datetime2(n) 

d a tetimeoffset (n) 

3 

3-5 

6-8 

8-10 

Dates only (no time part) from January 1, 0001 through December 31, 9999. 

Times only (no date part) from 00:00:00.0000000 through 
23:59:59.9999999, with an accuracy of .0000001 seconds. n is the number 
of digits from 0 to 7 that are used for fractional second precision. 

Dates from January 1, 0001 through December 31, 9999 with time values 
from 00:00:00.0000000 through 23:59:59.9999999. 

An extension of the datetime2 type that also includes a time zone offset 
from -14 to +14. 

Common date and time formats 
Date format Example 

yyyy-JIDII-dd 2020-04-30 

JIDII/ dd/ yyyy 4 / 30/ 202 0 

JIDII-dd-yy 4-30-20 

Month dd, yyyy April 30, 2020 

Mon dd, yy Apr 30, 20 

dd Mon yy 30 Apr 20 

Time format Example 

hh :mi 16 :20 

hh:mi am/pm 4 : 20 pm 

hh :mi:ss 4 : 20 : 36 

hh :mi : ss : mmm 4 : 20 : 36 : 12 

hh :mi : ss.nnnnnnn 4 : 20 : 36 . 1234567 

Description 
• You can specify a date/time value by coding a date/time literal. To code a date/time literal, 

enclose the date/time value in single quotes. 

• If you don' t specify a time when storing a date/time value, the time defaults to 12:00 a.m. If 
you don't specify a date when storing a date/time value, the date defaults to January 1, 1900. 

• By default, the two-digit year cutoff is 50, which means that 00 to 49 are interpreted as 2000 
to 2049 and 50 through 99 are interpreted as 1950 through 1999. 

• You can specify a time using either a 12-hour or a 24-hour clock. For a 12-hour clock, am is 
the default. 

Figure 8-4 The date/time data types 



248 Section 2 The essential SQL skills 

in the 20th or the 21st century. By default, SQL Server interprets the years 00 
through 49 as 2000 through 2049, and it interprets the years 50 through 99 as 
1950 through 1999. Because the two-digit year cutoff can be modified, however, 
you'll want to find out what it is on your system before you use date literals with 
two-digit years. Then, if you code a date literal outside the range, you'll have 
to use a four-digit year. Of course, you can always code all of your date literals 
with four-digit years, just to be sure. 

The large value data types 

Figure 8-5 presents the data types introduced in SQL Server 2005 that make 
it easier to work with large values, such as image and sound files. To start, SQL 
Server provides a max specifier that can be used with the varchar and nvarchar 
data types described in figure 8-3. This allows you to store up to 2 gigabytes of 
character data in a column. In addition, the max specifier can be used with the 
varbinary data type. This allows you to store up to 2 gigabytes of binary data in a 
column. Since these data types allow you to store large values, they're known as 
the large value data types. 

Prior to SQL Server 2005, you could use the text, ntext, and image data 
types to store this type of data. However, these data types have been deprecated 
and will be removed in a future version of Microsoft SQL Server. As a result, 
you should avoid using these data types for any new development. Instead, you 
should use the corresponding large value data type. 

One advantage of the large value data types is that they work like their smaller 
counterparts. As a result, once you learn how to use the smaller counterparts, you 
can use the same skills to work with the large value data types. For example, once 
you understand how to work with the varchar data type, you can use the same 
skills for working with the varchar(max) data type. However, since the large value 
data types may store up to 2 gigabytes of data in a column, you may not want to 
read or write the entire value at once. In that case, you can use the SUBSTRING 
function that you' lllearn about in the next chapter to read the data in chunks, and 
you can use the .WRITE clause of the UPDATE statement to update the value in 
chunks. For more information about using the . WRITE clause of the UPDATE 
statement, you can look up the UPDATE statement in the documentation for SQL 
Server. 

A second advantage of the large value data types is that they don't have as 
many restrictions as the old text, ntext, and image data types. For example, they 
can be used as variables in batches and scripts. 

In recent years, it has become increasingly common to store large binary 
values such as images, sounds, and video within a database. That's why chapter 
19 shows how to use the varbinary(max) type to store large binary values within 
a database. Once you learn how to work with this type, you can apply similar 
skills to the varchar(max) and nvarchar(max) types if you need to do that. 



Chapter 8 How to work with data types 249 

The large value data types for SQL Server 2005 and later 
Type Description 

varchar(max) 

nvarchar(max) 

varbinary(max) 

Works the same as the varchar type described in figure 8-3, but the max 
specifier allows this data type to store up to 2,147,483,648 bytes of data. 

Works the same as the nvarchar type described in figure 8-3, but the max 
specifier allows this data type to store up to 2,147,483,648 bytes of data. 

Stores variable-length binary data up to a maximum of 2, 147,483,648 bytes. 
The number of bytes used to store the data depends on the actual length of 
the data. 

How the large value data types map to the old large object types 
SQL Server 2005 and later Prior to 2005 

varchar(max) 

nvarchar(max) 

varbinary(max) 

Description 

text 

ntext 

image 

• The max specifier can be used with the varchar, nvarchar, and varbinary data types 
to increase the storage capacity of the column so it can store up to 2 gigabytes of 
data. 

• The varchar(max), nvarchar(max), and varbinary(max) data types are known as the 
large value data types, and these data types can be used to store images and other 
types of large character or binary data. For more information about working with 
the varbinary(max) data type, see chapter 19. 

• The text, ntext, and image data types that were used prior to SQL Server 2005 have 
been deprecated and will be removed in a future version of Microsoft SQL Server. 
As a result, you should avoid using these data types for any new development. 

• The large value data types work like their smaller counterparts. As a result, once 
you learn how to use the smaller counterparts, you can use the same skills to work 
with the large value data types. In addition, the large value data types don' t have as 
many restrictions as the old text, ntext, and image data types. 

Figure 8-5 The large value data types 



250 Section 2 The essential SQL skills 

How to convert data 
As you work with the various data types, you'll find that you frequently need 

to convert a value with one data type to another data type. Although SQL Server 
does many conversions automatically, it doesn't always do them the way you 
want. Because of that, you need to be aware of how data conversion works, and 
you need to know when and how to specify the type of conversion you want to 
do. 

How data conversion works 

Before SQL Server can operate on two values, it must convert those values 
to the same data type. To do that, it converts the value that has the data type with 
the lowest precedence to the data type of the other value. Figure 8-6 presents the 
order of precedence for some common SQL Server data types. 

To illustrate how this works, consider the three expressions shown in this 
figure. The first expression multiplies the InvoiceTotal column, which is defined 
with the money data type, by a decimal value. Because the decimal data type 
has a higher precedence than the money data type, the value in the InvoiceTotal 
column is converted to a decimal before the multiplication is performed. Then, 
the result of the operation is also a decimal value. Similarly, the integer literal in 
the second expression is converted to the money data type before it 's subtracted 
from the PaymentTotal column, and the result of the operation is a money value. 

The third example shows that data conversion is also used when a value is 
assigned to a column. In this case, a date literal is assigned to the PaymentDate 
column. Because this column is defined with the date data type, the literal must 
be converted to this data type before it can be assigned to the column. 

When SQL Server performs a conversion automatically, it's called an 
implicit conversion. However, not all conversions can be done implicitly. Some 
of the conversions that can't be done implicitly are listed in this figure. These 
conversions must be done explicitly. To perform an explicit conversion, you use 
the CAST and CONVERT functions you'lllearn about in the next two topics. 

Before I go on, you should realize that you won't usually code expressions 
with literal values like the ones shown in this figure. Instead, you'll use column 
names that contain the appropriate values. I used literal values here so it's clear 
what data types are being evaluated. 



Chapter 8 How to work with data types 251 

Order of precedence for common SQL Server data types 
Precedence Category Data type 

Highest Date/ time datetime2 

date 

time 

Numeric float 

real 

decimal 

money 

smallmoney 

int 

smallint 

tinyint 

bit 

Stri ng nvarchar 

nchar 

varchar 

Lowest cha r 

Conversions that can't be done implicitly 
From data type To data type 
char, v a r char, ncha r, nvarcha r money, smallmoney 

money, smallmoney char, v a rcha r, nchar, nva rcha r 

Expressions that use implicit conversion 
InvoiceTotal * . 0775 
PaymentTotal - 1 00 
PaymentDate = ' 2020-04-05' 

Description 

InvoiceTotal (money) c onverte d to decimal 
Numeric l i teral converted to money 
Date liter al c onverte d t o date value 

• If you assign a value with one data type to a column with another data type, SQL 
Server converts the value to the data type of the column using implicit conversion. 
Not all data types can be converted implicitly to all other data types. 

• SQL Server also uses implicit conversion when it evaluates an expression that 
involves values with different data types. In that case, it converts the value whose 
data type has lower precedence to the data type that has higher precedence. The 
result of the expression is returned in this same data type. 

• Each combination of precision and scale for the decimal and numeric values is 
considered a different data type, with higher precision and scale taking precedence. 

• If you want to perform a conversion that can' t be done implicitly or you want to 
convert a data type with higher precedence to a data type with lower precedence, you 
can use the CAST or CONVERT function to perform an explicit conversion. 

• Not all data types can be converted to another data type. For example, the datetime2, 
date, and time data types can' t be converted to any of the numeric data types. 

Figure 8-6 How data conversion works 



252 Section 2 The essential SQL skills 

How to convert data using the CAST function 

Figure 8-7 presents the syntax of the CAST function. This function lets you 
convert, or cast, an expression to the data type you specify. 

The SELECT statement in this figure illustrates how this works. Here, the 
third column in the result set shows that when the date values that are stored in 
the InvoiceDate column are cast as varchar values, they're displayed the same 
as they are without casting. If you want to display them with a different format, 
then, you can use the CONVERT function as shown in the next figure. 

The fourth column in the result set shows what happens when the money 
values in the InvoiceTotal column are cast as integer values. Before the digits 
to the right of the decimal point are dropped, the numbers are rounded to the 
nearest whole number. Finally, the last column in the result set shows the values 
from the InvoiceTotal column cast as varchar values. In this case, the result looks 
the same even though the data has been converted from the money type to the 
varchar type. 

This figure also illustrates a problem that can occur when you perform 
integer division without explicit conversion. In the first example, the number 
50 is divided by the number 100 giving a result of 0. This happens because the 
result of the division of two integers must be an integer. For this operation to 
return an accurate result, then, you must explicitly convert one of the numbers 
to a decimal. Then, because the data type of the other value will be lower in the 
order of precedence, that value will be converted to a decimal value as well and 
the result will be a decimal. This is illustrated in the second example, where the 
value 100 is converted to a decimal. As you can see, the result is .5, which is 
what you want. 



Chapter 8 How to work with data types 253 

The syntax of the CAST function 
CAST(expression AS data_type ) 

A SELECT statement that uses the CAST function 
SELECT InvoiceDate , InvoiceTotal , 

CAST(Invoi ceDate AS varchar) AS varcharDate, 
CAST(Invoi ceTota l AS int) AS integerTotal, 
CAST(Invoi ceTotal AS varchar) AS varcharTotal 

FROM Invoic e s ; 

Invoice Date Invoice Total varcharDate integer Total varchar Total 

1 1"""201"S:10.00" .. , 3813.33 
·······························~···; 

2019-1 ().08 3813 3813.33 

2 2019-10-10 40.20 2019-10-10 40 40.20 

3 2019-10-13 138.75 2019-10-13 139 138.75 

4 2019-10-16 144.70 2019-10-16 145 144.70 

"' 

How to convert data when performing integer division 
Operation Result 

50/100 

50/CAST(lOO AS dec imal ( 3)) 

Description 

0 

.500000 

~ 

Ill 

'I 

• You can use the CAST function to explicitly convert, or cast, an expression from 
one data type to another. 

• When you perform a division operation on two integers, the result is an integer. To 
get a more accurate result, you can cast one of the integer values as a decimal. That 
way, the result will be a decimal. 

• CAST is an ANSI-standard function and is used more frequently than CONVERT, 
which is unique to SQL Server. You should use CONVERT when you need the 
additional formatting capabilities it provides. See figure 8-8 for details. 

Figure 8-7 How to convert data using the CAST function 



254 Section 2 The essential SQL skills 

How to convert data using the CONVERT function 

Although the CAST function is an ANSI-standard function, SQL Server 
provides another function you can use to convert data: CONVERT. Figure 8-8 
shows you how to use this function. 

In the syntax at the top of this figure, you can see that the CONVERT 
function provides an optional style argument. You can use this argument to 
specify the format you want to use when you convert date/time, real, or money 
data to character data. Some of the common style codes are presented in this 
figure. For a complete list of codes, please refer to the documentation for SQL 
Server. 

The SELECT statement in this figure shows several examples of the 
CONVERT function. The first thing you should notice here is that if you don't 
code a style argument, the CONVERT function works just like CAST. This is 
illustrated by the first and fourth columns in the result set. Because of that, you'll 
probably use CONVERT only when you need to use one of the formats provided 
by the style argument. 

The second and third columns both use the CONVERT function to format 
the InvoiceDate column. The second column uses a style code of 1, so the date 
is returned in the mrn/dd/yy format. By contrast, the third column uses a style 
code of 107, so the date is returned in the Mon dd, yyyy format. Finally, the fifth 
column uses the CONVERT function to format the InvoiceTotal column with 
two digits to the right of the decimal point and commas to the left. 



Chapter 8 How to work with data types 255 

The syntax of the CONVERT function 
CONVERT(data_ type, expression [, style]) 

A SELECT statement that uses the CONVERT function 
SELECT CONVERT(varchar, InvoiceDate) AS varcharDate, 

CONVERT(varchar, InvoiceDate, 1) AS varcharDate_1, 
CONVERT(varchar, InvoiceDate, 107) AS varcharDate_107, 
CONVERT(varchar, InvoiceTotal) AS varcharTotal, 
CONVERT(varchar, InvoiceTotal, 1) AS varcharTotal_1 

FROM Invoices; 

varcharDate varcharDate _1 varchar0ate_107 varchar T alai varcharTotal_1 I\ , ............................... .... , 
l..~.~.?.:~.~ .... ..i 10/ 08/19 Oct 08. 2019 3813.33 3.813.33 

2 2019-10-10 10/10/19 Od 10.2019 40.20 40.20 

3 2019-10-13 10/13119 Oct 13. 2019 138.75 138.75 

4 2019-10-16 10/16/19 Oct 16. 2019 144.70 144.70 'V 

Ill 

Common style codes for converting date/time data to character data 
Code Output format 

0 or 100 

1 or 101 

7 or 107 

8 or 108 

10 or 110 

12 or 112 

14 or 114 

Mon dd yyyy hh:miAM/PM 

rrrm/dd/yy or rrrm/dd/yyyy 

Mon dd, yy or Mon dd, yyyy 

hh:mi:ss 

rrrm-dd-yy or rrrm-dd-yyyy 

yyrrrmdd or yyyyrrrmdd 

hh:mi:ss:mmm (24-hour clock) 

Common style codes for converting real data to character data 
Code Output 

0 (default) 

1 

2 

6 digits maximum 

8 digits; must use scientific notation 

16 digits; must use scientific notation 

Common style codes for converting money data to character data 
Code Output 

0 (default) 

1 

2 

Description 

2 digits to the right of the decimal point; no commas to the left 

2 digits to the right of the decimal point; commas to the left 

4 digits to the right of the decimal point; no commas to the left 

• You can use the CONVERT function to explicitly convert an expression from one 
data type to another. 

• You can use the optional style argument to specify the format to be used for 
date/time, real, and money values converted to character data. For a complete list of 
codes, search for "cast and convert" in the SQL Server documentation. 

Figure 8-8 How to convert data using the CONVERT function 



256 Section 2 The essential SQL skills 

How to use the TRY _CONVERT function 

When you use the CAST or CONVERT function, SQL Server returns an 
error if the expression can' t be converted to the data type you specify. If that's 
not what you want, you can use the TRY _CONVERT function instead. Figure 
8-9 shows how this function works. 

If you compare the SELECT statement in this figure to the one in figure 8-8, 
you' ll notice two differences. First, it uses the TRY _CONVERT function instead 
of the CONVERT function. If you look at the results of the first five columns, 
you'll see that they're identical to the results of the CONVERT function. 

Second, a sixth column has been added to the SELECT clause. This column 
uses a TRY _CONVERT function that attempts to convert an invalid date to the 
date data type. As you can see, this function returns a value of NULL instead 
of generating an error. This is particularly useful if you need to test the value 
of a variable within a script. For more information on coding scripts, please see 
chapter 14. 

Note that you can only use the TRY_CONVERT function with a data 
type that can be converted to the specified data type. As mentioned earlier, for 
example, the datetime2, date, and time data types can't be converted to any of 
the numeric data types. If you try to perform this type of conversion, SQL Server 
will return an error just like it does if you use the CAST or CONVERT function. 



Chapter 8 How to work with data types 257 

The syntax of the TRY_CONVERT function 
TRY_ CONVERT(data_ type , expression[, style] ) 

A SELECT statement that uses the CONVERT function 
SELECT TRY_CONVERT(varchar, InvoiceDate ) AS varcha rDate , 

TRY_CONVERT (varchar, InvoiceDate, 1) AS varcharDate_ 1, 
TRY_CONVERT (varchar, InvoiceDate , 107 ) AS varcha rDa te_ 107, 
TRY_CONVERT (varchar , Invoi ceTotal ) AS varcharTotal, 
TRY_CONVERT (varchar, Invoi c eTotal, 1) AS varcharTotal_ 1, 
TRY_CONVERT (date , 'Feb 29 2019') AS invalidDate 

FROM Invoice s ; 

varcharOate varcharOate _1 varchar0ate_107 varchar Total varchar T otal_1 invalid Date " 
r:~_,_·~-~<8.1#.·_-:J 10/08/19 Oct 08.2019 3813.33 3,813.33 NULL 

2 2019-10-10 10/10/ 19 Oct 10,2019 40.20 40.20 NULL 

3 2019-10-13 10/ 13/19 Oct 13,2019 138.75 138.75 NULL 

4 2019-10-16 10/ 16/19 Oct 16.2019 144.70 144.70 NULL 

5 2019-10-16 10/16/19 Oct 16.2019 15.50 15.50 NULL 

6 2019-10-16 10/16/19 Oct 16.2019 42.75 42.75 NULL 

7 2019-10-21 10/21/ 19 Oct 21.2019 172.50 172.50 NULL 

8 2019-10-24 10/24/19 Oct 24.2019 95.00 95.00 NULL 
,... 

Description 
• You can use the TRY_CONVERT function to explicitly convert an expression from 

one data type to another. 

• If the TRY _CONVERT function can' t convert the expression to the specified data 
type, it returns a NULL value instead of generating an error. 

• You can use the optional style argument to specify the format to be used for 
date/time, real, and money values converted to character data. See figure 8-8 for 
more information. 

• The TRY _CONVERT function can only be used with an expression that has a data 
type that can be explicitly converted to the specified data type. 

Figure 8-9 How to convert data using the TRY _CONVERT function 



258 Section 2 The essential SQL skills 

How to use other data conversion functions 

Although CAST, CONVERT, and TRY_CONVERT are the conversion 
functions you' ll use most often, SQL Server provides some additional functions 
to perform special types of conversions. These functions are presented in figure 
8-10. 

You can use the first function, STR, to convert a floating-point value to 
a character value. You can think of this function as two conversion functions 
combined into one. First, it converts a floating-point value to a decimal value 
with the specified length and number of digits to the right of the decimal point. 
Then, it converts the decimal value to a character value. The function in this 
figure, for example, converts the number 1234.5678 to a string with a maximum 
length of seven characters and one digit to the right of the decimal point. Notice 
that the decimal digits are rounded rather than truncated. 

The other four functions are used to convert characters to their equivalent 
numeric code and vice versa. CHAR and ASCII work with standard character 
strings that are stored one byte per character. The CHAR function shown in 
this figure, for example, converts the number 79 to its equivalent ASCII code, 
the letter 0 . Conversely, the ASCII function converts the letter 0 to its numeric 
equivalent of 79. Notice that although the string in the ASCII function can 
include more than one character, only the first character is converted. 

The NCHAR and UNICODE functions convert Unicode characters to and 
from their numeric equivalents. You can see how these functions work in the 
examples. Notice in the last example that to code a Unicode character as a literal 
value, you have to precede the literal with the letter N. 

CHAR is frequently used to output ASCII control characters that can' t 
be typed on your keyboard. The three most common control characters are 
presented in this figure. These characters can be used to format output so 
it's easy to read. The SELECT statement in this figure, for example, uses the 
CHAR(l3) and CHAR(lO) control characters to start new lines after the vendor 
name and vendor address in the output. 



Chapter 8 How to work with data types 259 

Other data conversion functions 
Function Description 
STR(float[,length[,decimal]]) 

CHAR(integer) 

ASCII(string) 

NCHAR(integer) 

UNICODE(string) 

Converts a floating-point number to a character string 
with the given length and number of digits to the right 
of the decimal point. The length must include one 
character for the decimal point and one character for 
the sign. The sign is blank if the number is positive. 

Converts the ASCII code represented by an integer 
between 0 and 255 to its character equivalent. 

Converts the leftmost character in a string to its 
equivalent ASCII code. 

Converts the Unicode code represented by an integer 
between 0 and 65535 to its character equivalent. 

Converts the leftmost character in a UNICODE string 
to its equivalent UNICODE code. 

Examples that use the data conversion functions 

Function Result 
STR(1234.5678, 7, 1) 

CHAR(79) 

ASCII ( 1 Orange 1 
) 

NCHAR(332) 

UNICODE(N 1 0r 1
) 

1234.6 

0 

79 

0 

332 

ASCII codes for common control characters 

Control character Value 
Tab 

Line feed 

Carriage return 

Char(9) 

Char(10) 

Char(13) 

A SELECT statement that uses the CHAR function to format output 
SELECT VendorName + CHAR(13) + CHAR(10) 

+ VendorAddress1 + CHAR(13) + CHAR(10) 
+ VendorCity + 1

, 
1 + VendorState + 1 1 + VendorZipCode 

FROM Vendors 
WHERE VendoriD = 1; 

US Postal Service 
Attn: Supt. Window Services 
Madison, WI 53707 

Description 
• The CHAR function is typically used to insert control characters into a character string. 

• To code a Unicode value as a literal, precede the value with the character N. 

Figure 8-10 How to use other data conversion functions 



260 Section 2 The essential SQL skills 

Perspective 
In this chapter, you learned about the different SQL Server data types. In 

addition, you learned how to use some functions for converting data from one 
type to another. In the next chapter, you'lllearn about some of the additional 
functions for working with data. 

Terms 

data type 
string data type 
numeric data type 
temporal data type 
date/time data type 
date data type 
integer data type 
decimal data type 
scale 
prectswn 
real data type 
fixed-point number 
floating-point number 
significant digits 
single-precision number 
double-precision number 
scientific notation 

exact numeric data types 
approximate numeric data types 
Unicode character 
supplementary characters 
national character 
fi xed-length string 
variable-length string 
bit 
ASCII (American Standard Code 
for Information Interchange) 
large value data types 
implicit conversion 
explicit conversion 
cast 
Universal Time Coordinate (UTC) 
Greenwich Mean Time 

1. Write a SELECT statement that returns four columns based on the InvoiceTotal 
column of the Invoices table: 

• Use the CAST function to return the first column as data type decimal 
with 2 digits to the right of the decimal point. 

• Use CAST to return the second column as a varchar. 

• Use the CONVERT function to return the third column as the same data 
type as the first column. 

• Use CONVERT to return the fourth column as a varchar, using style 1. 

2. Write a SELECT statement that returns three columns based on the 
InvoiceDate column of the Invoices table: 

• Use the CAST function to return the first column as data type varchar. 

• Use the CONVERT function to return the second and third columns as 
a varchar, using style 1 and style 10, respectively. 



9 

How to use functions 
In chapter 3, you were introduced to some of the scalar functions that you can 
use in a SELECT statement. Now, this chapter expands on that coverage by 
presenting many more of the scalar functions. When you complete this chapter, 
you' ll have a thorough understanding of the functions that you can use with 
SQL Server. 

How to work with string data ............................................. 262 
A summary of the string functions .............................................................. 262 
How to solve common problems that occur with string data ........... .......... 266 

How to work with numeric data ......................................... 268 
A summary of the numeric functions ....... .. ........... ...... .... ............ .... ..... ...... . 268 
How to solve common problems that occur with numeric data ... .... .... ....... 270 

How to work with date/time data ...................................... 272 
A summary of the date/time functions ....................................................... 272 
How to parse dates and times .......................................... ............................ 276 
How to perform operations on dates and times ........................................... 278 
How to perform a date search .......................................... ........................... 280 
How to perform a time search ..................................................... ................ 282 

Other functions you should know about ......................... 284 
How to use the CASE function .. .... ................ ........ .... .. ...... .... ...... ...... .... ..... 284 
How to use the IIF and CHOOSE functions ........................ ............. .... ...... 286 
How to use the COALESCE and ISNULL functions ....................... .... ...... 288 
How to use the GROUPING function .......... .. .............. .... .... .... ............ ....... 290 
How to use the ranking functions .. .... ............. .. .. .... ....................... .. .. .... ...... 292 
How to use the analytic functions .......................... ..................................... 296 

Perspective ......................................................................... 300 



262 Section 2 The essential SQL skills 

How to work with string data 
SQL Server provides a number of functions for working with string data. 

You' lllearn how to use some of those functions in the topics that follow. In 
addition, you'll learn how to solve two common problems that can occur when 
you work with string data. 

A summary of the string functions 

Part 1 of figure 9-1 summarizes the string functions that are available with 
SQL Server. Most of these functions are used to perform string manipulation. 
For example, you can use the LEN function to get the number of characters 
in a string. Note that this function counts spaces at the beginning of the string 
(leading spaces), but not spaces at the end of the string (trailing spaces). If you 
want to remove leading or trailing spaces from a string, you can use the LTRIM 
or RTRlM function. If you want to remove both leading and trailing spaces, you 
can use the TRIM function. 

You can use the LEFT and RIGHT functions to get the specified number of 
characters from the beginning and end of a string. You can use the SUBSTRING 
function to get the specified number of characters from anywhere in a string. 
You can use the REPLACE function to replace a substring within a string with 
another substring. You can use the TRANSLATE function to replace one or 
more characters in a string with other characters. In some cases, you can use 
this function instead of multiple REPLACE functions. And you can use the 
REVERSE function to reverse the order of the characters in a string. 

The CHARINDEX function lets you locate the first occurrence of a 
substring within another string. The return value is a number that indicates the 
position of the substring. Note that you can start the search at a position other 
than the beginning of the string by including the start argument. 

The PATINO EX function is similar to CHARINDEX. Instead of locating a 
string, however, it locates a string pattern. Like the string patterns you learned 
about in chapter 3 for use with the LIKE operator, the string patterns you use 
with the PATINDEX function can include wildcard characters. You can refer 
back to chapter 3 if you need to refresh your memory on how to use these 
characters. 

The CONCAT function lets you concatenate two or more values into a single 
string. Although this function is similar to the concatenation operator, it lets you 
concatenate values other than strings. To do that, it implicitly converts all values 
to strings. That includes null values, which it converts to empty strings. The 
CONCAT_ WS (concatenate with separator) function works like the CONCAT 
function, but it lets you specify a delimiter that's used to separate the values. 

The last three functions should be self-explanatory. You use the LOWER and 
UPPER functions to convert the characters in a string to lower or upper case. 
And you use the SPACE function to return a string that has the specified number 
of spaces. 



Chapter 9 How to use functions 263 

Some of the string functions 
Function Description 
LEN(string) 

LTRIM(string) 

RTRIM(string) 

TRIM(string) 

LEFT(string,length) 

RIGHT(string,length) 

SUBSTRING(string,start,length) 

REPLACE(search,find,replace) 

TRANSLATE(search,find,replace) 

REVERSE(string) 

CHARINDEX(find,search[,start]) 

PATINDEX(find,search) 

CONCAT(val uel,value2[,value3] ... ) 

CONCAT_WS(delimiter,valuel, 
value2[,value3] ... ) 

LOWER(string) 

UPPER (string) 

SPACE(integer) 

Notes 

Returns the number of characters in the string. Leading 
spaces are included, but trailing spaces are not. 

Returns the string with any leading spaces removed. 

Returns the string with any trailing spaces removed. 

Returns the string with any lead ing and trailing spaces 
removed. 

Returns the specified number of characters from the 
beginning of the string. 

Returns the specified number of characters from the 
end of the string. 

Returns the specified number of characters from the 
string starting at the specified position. 

Returns the search string with all occurrences of the 
find string replaced with the replace string. 

Returns the search string with characters in the find 
string replaced with the characters in the replace string. 

Returns the string with the characters in reverse order. 

Returns an integer that represents the position of the 
first occurrence of the find string in the search string 
starting at the specified position. If the starting position 
isn' t specified, the search starts at the beginning of the 
string. If the string isn' t found, the function returns 
zero. 

Returns an integer that represents the position of the 
first occurrence of the find pattern in the search string. 
If the pattern isn' t found, the function returns zero. The 
find pattern can include wildcard characters. If the 
pattern begins with a wildcard, the value returned is 
the position of the first non-wildcard character. 

Returns a string that contains a concatenation of the 
specified values. The values are implicitly converted to 
strings. A null value is converted to an empty string. 

Same as CONCAT but the values are separated by the 
specified delimiter. 

Returns the string converted to lowercase letters. 

Returns the string converted to uppercase letters. 

Returns a string with the specified number of space 
characters (blanks). 

• The start argument must be an integer from 1 to the length of the string. 

• The TRIM, TRANSLATE, and CONCAT_ WS functions were introduced with SQL 
Server 2017. 

Figure 9-1 A summary of the string functions (part 1 of 2) 



264 Section 2 The essential SQL skills 

Part 2 of figure 9-1 presents examples of most of the string functions. If 
you study the examples at the top of this figure, you shouldn' t have any trouble 
figuring out how they work. If you're confused by any of them, though, you can 
refer back to part 1 to check the syntax. 

The SELECT statement shown in this figure illustrates how you can use the 
LEFf and RIGHT functions to format columns in a result set. In this case, the 
LEFf function is used to retrieve the first character of the VendorContactFName 
column in the Vendors table, which contains the first name of the vendor contact. 
In other words, this function retrieves the first initial of the vendor contact. Then, 
this initial is combined with the last name of the vendor contact and two literal 
values. You can see the result in the second column of the result set. 

The third column in the result set lists the vendor's phone number without 
an area code. To accomplish that, this column specification uses the RIGHT 
function to extract the eight rightmost characters of the VendorPhone column. 
This assumes, of course, that all of the phone numbers are stored in the same 
format, which isn' t necessarily the case since the VendorPhone column is defined 
as varchar(50). 

This SELECT statement also shows how you can use a function in the 
search condition of a WHERE clause. This condition uses the SUBSTRING 
function to select only those rows with an area code of 559. To do that, it 
retrieves three characters from the VendorPhone column starting with the second 
character. Again, this assumes that the phone numbers are all in the same format 
and that the area code is enclosed in parentheses. 



Chapter 9 How to use functions 265 

String function examples 

Function Result 
LEN ( ' SQL Server' ) 

LEN( I SQL Server 

LEFT('SQL Server', 

LTRIM( I SQL Server 

RTRIM( I SQL Server 

TRIM( I SQL Server 

LOWER('SQL Server') 

UPPER ( ' ca' ) CA 

I ) 

3) 

I ) 

I ) 

I ) 

PATINDEX(' %v_r%', 'SQL Server') 

CHARINDEX('SQL', ' SQL Server') 

CHARINDEX('-', '(559) 555-1212') 

SUBSTRING('(559) 555-1212', 7, 8) 

REPLACE(RIGHT( I (559) 555-1212 I, 13), I) I, I- I) 

TRANSLATE( I (XDG) 197 .TS224 I, I ().I, I[]- I) 

CONCAT('Run time: ',1.52,' seconds') 

CONCAT_WS('.', 559, 555, 1212) 

A SELECT statement that uses the LEFT, RIGHT, 
and SUBSTRING functions 

10 

12 

'SQL' 

'SQL Server 

SQL Server' 

'SQL Server• 

'sql server' 

8 

3 

10 

555-1212 

559-555-1212 

[XDG] 197-TS224 

Run time: 1.52 seconds 

559.555.1212 

SELECT VendorName, VendorContactLName + •, ' + LEFT(VendorContactFName, 1) 
+' · 'AS ContactName, RIGHT(VendorPhone, 8) AS Phone 

FROM Vendors 
WHERE SUBSTRING(VendorPhone, 2, 3) = 559 
ORDER BY VendorName; 

VendorName Contact Name Phone 

1 r.·~b.~~~;~~y~;~-~~-~~~~~~~~-~] Francis, K. 555-8300 

2 SF I Industries Kaleigh, E. 555-1551 

3 8iU Marvin Electric Inc HosllefY. K. 555-5106 

4 Cal State T erm~e Hunter. D. 555-1534 

5 CaiWomia Bu!iness Mac:Nnes Rohansen. A. 555-5570 

6 California Data Marketing Jonessen. M. 555-3801 

7 Oty Of Fresno Mayte. K. 555-9999 

8 Coffee Break Service Smitzen. J. 555-8700 

Figure 9-1 A summary of the string functions (part 2 of 2) 



266 Section 2 The essential SQL skills 

How to solve common problems 
that occur with string data 

Figure 9-2 presents solutions to two common problems that occur when you 
work with string data. The first problem occurs when you store numeric data in a 
character column and then want to sort the column in numeric sequence. 

To illustrate, look at the first example in this figure. Here, the columns in 
the StringSample table are defined with character data types. The first SELECT 
statement shows the result of sorting the table by the first column, which 
contains a numeric ID. As you can see, the rows are not in numeric sequence. 
That's because SQL Server interprets the values as characters, not as numbers. 

One way to solve this problem is to convert the values in the ID column to 
integers for sorting purposes. This is illustrated in the second SELECT statement 
in this example. As you can see, the rows are now sorted in numeric sequence. 

Another way to solve this problem is to pad the numbers with leading zeros 
or spaces so the numbers are aligned on the right. This is illustrated by the AltiD 
column in this table, which is padded with zeros. If you sorted by this column 
instead of the first column, the rows would be returned in numeric sequence. 

The second problem you'll encounter when working with string data occurs 
when two or more values are stored in the same string. For example, both a first 
and a last name are stored in the Name column of the StringSample table. If you 
want to work with the first and last names independently, you have to parse the 
string using the string functions. This is illustrated by the SELECT statement in 
the second example in this figure. 

To extract the first name, this statement uses the LEFT and CHARINDEX 
functions. First, it uses the CHARINDEX function to locate the first space in the 
Name column. Then, it uses the LEFT function to extract all of the characters up 
to that space. Notice that one is subtracted from the value that's returned by the 
CHARINDEX function, so the space itself isn' t included in the first name. 

To extract the last name, this statement uses the RIGHT, LEN, and 
CHARINDEX functions. It uses the LEN function to get the number of characters 
in the Name column. Then, it uses the CHARINDEX function to locate the first 
space in the Name column, and it subtracts that value from the value returned by 
the LEN function. The result is the number of characters in the last name. That 
value is then used in the RIGHT function to extract the last name from the Name 
column. 

As you review this example, you should keep in mind that I kept it simple so 
you can focus on how the string functions are used. You should realize, however, 
that this code won't work for all names. If, for example, a first name contains 
a space, such as in the name Jean Paul, this code won't work properly. That 
illustrates the importance of designing a database so this type of problem doesn' t 
occur. You' lllearn more about that in the next chapter. For now, just realize that 
if a database is designed correctly, you won' t have to worry about this type of 
problem. Instead, this problem should occur only if you're importing data from 
another file or database system. 



Chapter 9 How to use functions 267 

How to use the CAST function to sort by a string column 
that contains numbers 

The StringSample table sorted by the ID column 
SELECT * FROM StringSample 
ORDER BY ID; 

ID Name MID 

1 !"""1········~ Uzbeth Darien 
t ............ ; 

01 

2 17 Lance Pinos-Potter 17 

3 2 Damell O'Su!Nvan 02 

4 20 Jean Paul Renard 20 

5 3 Alisha von Strunp 03 

The StringSample table sorted by the ID column cast to an integer 
SELECT * FROM St ringSample 
ORDER BY CAST ( ID AS i nt); 

ID Name MID 

1 [5.·.·.·::.J Uzbeth Darien 01 

2 2 DarneU O'Su!Nvan 02 

3 3 Alisha von Strump 03 

4 17 Lance Pinos-Potter 17 

5 20 Jean Paul Renard 20 

How to use the string functions to parse a string 
SELECT Name, 

LEFT (Name, CHARINDEX( ' ' , Name) - 1 ) AS First, 
RIGHT (Name, LEN(Name) - CHARINDEX( ' ' ,Name ) ) AS La st 

FROM StringSample; 

Name Rrst Last 

1 r.·.~-~~::~.~~·:·::::·::::·:J Uzbeth Darien 

2 Damell O'Sull1van Damell O'Sulivan 

3 Lance Pinos-Potter Lance Pinos-Potter 

4 Jean Paul Renard Jean Paul Renard 

5 Alisha von Sllump Alisha von Strump 

Description 
• If you sort by a string column that contains numbers, you may receive unexpected 

results. To avoid that, you can convert the string column to a numeric value in the 
ORDER BY clause. 

• If a string consists of two or more components, you can parse it into its individual 
components. To do that, you can use the CHARINDEX function to locate the 
characters that separate the components. Then, you can use the LEFT, RIGHT, 
SUBSTRING, and LEN functions to extract the individual components. 

Figure 9-2 How to solve common problems that occur with string data 



268 Section 2 The essential SQL skills 

How to work with numeric data 
In addition to the string functions, SQL Server provides several numeric 

functions. Although you'll probably use only a couple of these functions on a 
regular basis, you should be aware of all of them in case you ever need them. 
After you learn about these functions, I'll show you how you can use them 
and some of the other functions you've learned about in this chapter to solve 
common problems that occur when you work with numeric data. 

A summary of the numeric functions 

Figure 9-3 summarizes eight of the numeric functions SQL Server provides. 
The function you'll probably use most often is ROUND. This function rounds 
a number to the precision specified by the length argument. Note that you can 
round the digits to the left of the decimal point by coding a negative value 
for this argument. However, you're more likely to code a positive number to 
round the digits to the right of the decimal point. You can also use the ROUND 
function to truncate a number to the specified length. To do that, you can code 
any integer value other than zero for the optional function argument. 

The first set of examples in this figure shows how the ROUND function 
works. The first example rounds the number 12.5 to a precision of zero, which 
means that the result has no significant digits to the right of the decimal point. 
Note that this function does not change the precision of the value. The result still 
has one digit to the right of the decimal point. The number has just been rounded 
so the digit is insignificant. To make that point clear, the second example rounds 
a number with four decimal places to a precision of zero. Notice that the result 
still has four digits to the right of the decimal point; they're just all zero. 

The next three examples show variations of the first two examples. The third 
example rounds a number with four decimal places to a precision of 1, and the 
fourth example rounds the digits to the left of the decimal point to a precision of 
one. Finally, the last example truncates a number to a precision of zero. 

The other function you're likely to use is IS NUMERIC. This function 
returns a Boolean value that indicates if an expression is numeric. This is 
illustrated by the next set of examples in this figure. This function can be useful 
for testing the validity of a value before saving it in a table. 

You can use the next three functions, ABS, CEILING, and FLOOR, to get 
the absolute value of a number, the smallest integer greater than or equal to a 
number, or the largest integer less than or equal to a number. If you study the 
examples, you shouldn' t have any trouble figuring out how these functions work. 

The next two functions, SQUARE and SQRT, are used to calculate the 
square and square root of a number. And the last function, RAND, generates 
a floating-point number with a random value between 0 and 1. SQL Server 
provides a variety of functions like these for performing mathematical 
calculations, but you're not likely to use them. For a complete list of these 
functions, you can search for "mathematical functions" in the SQL Server 
documentation. 



Chapter 9 How to use functions 269 

Some of the numeric functions 
Function Description 
ROUND(number,length 

[,function]) 

ISNUMERIC(expression) 

ABS (number) 

CEILING(number) 

FLOOR(number) 

SQUARE(float_ number) 

SQRT(float_ number) 

RAND( [integer]) 

Returns the number rounded to the precision specified by length. If 
length is positive, the digits to the right of the decimal point are 
rounded. If it's negative, the digits to the left of the decimal point are 
rounded. To truncate the number rather than round it, code a non-zero 
value for function. 

Returns a value of 1 (true) if the expression is a numeric value; returns 
a value of 0 (false) otherwise. 

Returns the absolute value of the number. 

Returns the smallest integer that is greater than or equal to the number. 

Returns the largest integer that is less than or equal to the number. 

Returns the square of a floating-point number. 

Returns the square root of a floating-point number. 

Returns a random floating-point number between 0 and 1. If integer 
is coded, it provides a starting value for the function. Otherwise, the 
function will return the same number each time it's invoked within the 
same query. 

Examples that use the numeric functions 
Function Result 
ROUND(l2.5,0) 

ROUND(12.4999,0) 

ROUND(12.4999,1) 

ROUND(12.4999,-1) 

ROUND(12.5,0,1) 

ISNUMERIC(-1 . 25) 

ISNUMERIC('SQL Server') 

ISNUMERIC('2020-04-30 ') 

ABS ( -1. 25) 

CEILING(-1.25) 

FLOOR ( -1. 2 5) 

CEILING(1.25) 

FLOOR( 1. 25) 

SQUARE(5. 2786) 

SQRT(125.43) 

RAND() 

Note 

13.0 

12.0000 

12.5000 

10 . 0000 

12.0 

1 

0 

0 

1.25 

-1 

-2 

2 

1 

27.86361796 

11. 199553562531 

0 . 243729 

• To calculate the square or square root of a number with a data type other than float or 
real, you must cast it to a floating-point number. 

Figure 9-3 A summary of the numeric functions 



270 Section 2 The essential SQL skills 

How to solve common problems 
that occur with numeric data 

In the previous chapter, you learned that numbers with the real data types 
don't contain exact values. The details of why that is are beyond the scope of this 
book. From a practical point of view, though, that means that you don't want to 
search for exact values when you're working with real numbers. If you do, you'll 
miss values that are in essence equal to the value you're looking for. 

To illustrate, consider the RealSample table shown in figure 9-4. This table 
includes a column named R that's defined with the float(53) data type. Now, 
consider what would happen if you selected all the rows where the value of R 
is equal to 1. The result set would include only the second row, even though the 
table contains two other rows that have values approximately equal to 1. 

When you perform a search on a column with a real data type, then, you 
usually want to search for an approximate value. This figure shows two ways to 
do that. First, you can search for a range of values. The first SELECT statement 
in this figure, for example, searches for values between .99 and 1.01. Second, 
you can search for values that round to an exact value. This is illustrated by the 
second SELECT statement. Both of these statements return the three rows in 
the ReaiSample table that are approximately equal to 1. In fact, the value in the 
first row is so close to 1 that the Management Studio removes the decimal places 
from thjs number when it displays the results. 

Although both of the SELECT statements shown here return the same 
results, the first statement is more efficient than the second one. That's because 
SQL Server isn' t able to optimize a query that uses a function in its search 
condition. Because of that, I recommend you use the range technique to search 
for a real value whenever possible. 

Another problem you may face is formatting numeric values so they're easy 
to read. One way to do that is to format them so they're aligned on the right, 
as shown in the third SELECT statement. To do this, the real numbers in the R 
column are first cast as decimal numbers to give them a consistent scale. Then, 
the decimal values are cast as character data and padded on the left with spaces 
to right-align the data as shown in the column named R_Formatted. 

If you look at the expression for the last column, you'll see that it's quite 
complicated. If you break it down into its component parts, however, you 
shouldn' t have much trouble understanding how it works. To help you break 
it down, the third, fourth, and fifth columns in the result set show the interim 
results returned by portions of the expression. 

To align the values at the right, the last column specification assumes a 
column width of nine characters. Then, the length of the number to be formatted 
is subtracted from nine, and the SPACE function is used to create a string with 
the resulting number of spaces. Finally, the number is concatenated to the string 
of spaces after it's converted to a string value. The result is a string column 
with the numbers aligned at the right. However, this formatting isn't displayed 
properly when you use the Management Studio to view the results in the grid. As 
a result, to view this formatting, you must click on the Results to Text button to 
view the results as text as shown in this figure. 



Chapter 9 How to use functions 271 

The ReaiSample table 
ID R -

1 1.0000000000000011 

2 

3 0. 999999999999999 

4 1234.56789012345 

s 999.04440209348 

6 24.04849 

How to search for approximate real values 
A SELECT statement that searches for a range of values 
SELECT * FROM RealSample 
WHERE R BETWEEN 0.99 AND 1.01; 

A SELECT statement that searches for rounded values 
SELECT * FROM RealSample 
WHERE ROUND(R,2) = 1; 

A SELECT statement that formats real numbers 
SELECT ID, R, CAST(R AS decima1(9,3)) AS R_decimal, 

CAST(CAST(R AS decimal(9,3)) AS varchar(9)) AS R_varchar, 
LEN(CAST(CAST(R AS decima1(9,3)) AS varchar(9))) AS R_LEN, 
SPACE(9 - LEN(CAST(CAST(R AS decimal(9,3)) AS varchar(9)))) + 

CAST(CAST(R AS decimal(9,3)) AS varchar(9)) AS R_ Formatted 
FROM RealSample; 

R_decimal R_varchar R_LEN R_Formatted 

~:::·------------- -------------------- ~::::·--- ~---------- ----~:::·----- ----·-- ---------------------L 
1.000 1 . 000 5 1.000 
1234.568 
999.044 
24.048 

1234.568 8 
999.044 7 
24.048 6 

1234.568 
999.044 

24 .048 

100% • I 

Description 

• Because real values are approximate, you' ll want to search for approximate values 
when retrieving real data. To do that, you can specify a range of values, or you can 
use the ROUND function to search for rounded values. 

• When you display real or decimal values, you may want to format them so they're 
aligned on the right. 

Figure 9-4 How to solve common problems that occur with numeric data 



272 Section 2 The essential SQL skills 

How to work with date/time data 
In the topics that follow, you'lllearn how to use some of the functions SQL 

Server provides for working with dates and times. As you'll see, these include 
functions for extracting different parts of a date/time value and for performing 
operations on dates and times. In addition, you'lllearn how to perform different 
types of searches on date/time values. 

A summary of the date/time functions 

Figure 9-5 presents a summary of the date/time functions and shows how 
some of them work. One of the functions you'll use frequently is GETDATE, 
which gets the current local date and time from your system. GETUTCDATE is 
similar, but it returns the Universal Time Coordinate (UTC) date, also known as 
Greenwich Mean Time (GMT). 

Although you probably won't use the GETUTCDATE function often, it's 
useful if your system will operate in different time zones. That way, the 
date/time values will always reflect Greenwich Mean Time, regardless of the 
time zone in which they're entered. For example, a date/time value entered at 
11:00 a.m. Los Angeles time would be given the same value as a date/time value 
entered at 2:00 p.m. New York time. That makes it easy to compare and operate 
on these values. 

The next three functions (SYSDATETIME, SYSUTCDATETIME, and 
SYSDATETIMEOFFSET) work similarly to the first two functions. However, 
they return the datetime2 and datetimeoffset types that were introduced with 
SQL Server 2008. As a result, these functions return a more precise fractional 
second value. In addition, the SYSDATETIMEOFFSET function returns a value 
that includes a time zone offset. Note that the time zone offset is not adjusted for 
daylight savings time. 

The next five functions (DAY, MONTH, YEAR, DATENAME, and 
DATEPART) let you extract different parts of a date value. For more information 
about these functions, you can refer to figure 9-6. For now, just realize that when 
you use the DATEPART and DATENAME functions, you can retrieve any of the 
date parts listed in part 2 of this figure. 

The DATEADD and DATEDIFF functions let you perform addition and 
subtraction operations on date/time values. As you can see, these functions 
let you specify the date part to be added. For more information about these 
functions, you can refer to figure 9-7. 

The TODATETIMEOFFSET and SWITCHOFFSET functions let 
you work with the datetimeoffset data type. In particular, you can use the 
TODATETIMEOFFSET function to add a time zone offset to a datetime2 value 
and return a datetimeoffset value. In addition, you can use the SWITCHOFFSET 
function to specify a new time zone offset value for a datetimeoffset value. 

The next two functions, EOMONTH and DATEFROMPARTS, were 
introduced with SQL Server 2012. The EOMONTH function gets the last day of 
the month for the specified date. This can be helpful for determining what days 
are valid for a given month. The DATEFROMPARTS function lets you create 



Chapter 9 How to use functions 273 

Some of the date/time functions 
Function Description 
GETDATE() 

GETUTCDATE ( ) 

SYSDATETIME() 

SYSUTCDATETIME() 

SYSDATETIMEOFFSET() 

DAY(date) 

MONTH(date) 

YEAR(date) 

DATENAME(datepart,date) 

DATEPART(datepart,date ) 

DATEADD(datepart,number,date) 

DATEDIFF(datepart,startdate,enddate) 

TODATETIMEOFFSET(datetime2,tzoffset) 

SWITCHOFFSET(datetimeoffset,tzoffset ) 

EOMONTH(startdate[,months]) 

DATEFROMPARTS(year,month,day) 

ISDATE(expression) 

Returns a datetime value for the current local 
date and time based on the system's clock. 

Returns a datetime value for the current UTC 
date and time based on the system's clock and 
time zone setting. 

Returns a datetime2(7) value for the current 
local date and time based on the system's clock. 

Returns a datetime2(7) value for the current 
UTC date and time based on the system's clock 
and time zone setting. 

Returns a datetimeoffset(7) value for the current 
UTC date and time based on the system's clock 
and time zone setting with a time zone offset 
that is not adjusted for daylight savings time. 

Returns the day of the month as an integer. 

Returns the month as an integer. 

Returns the 4-digit year as an integer. 

Returns the part of the date specified by 
datepart as a character string. 

Returns the part of the date specified by 
datepart as an integer. 

Returns the date that results from adding the 
specified number of datepart units to the date. 

Returns the number of datepart units between 
the specified start and end dates. 

Returns a datetimeoffset value that results from 
adding the specified time zone offset to the 
specified datetime2 value. 

Returns a datetimeoffset value that results from 
switching the time zone offset for the specified 
datetimeoffset value to the specified offset. 

Returns a date value for the last day of the 
month specified by the start date. If months is 
specified, the number of months is added to 
the start date before the end-of-month date is 
calculated. 

Returns a date value for the specified year, 
month, and day. 

Returns a value of I (true) if the expression is a 
valid date/time value; returns a value ofO (false) 
otherwise. 

Figure 9-5 A summary of the date/time functions (part 1 of 2) 



27 4 Section 2 The essential SQL skills 

a date value for a given year, month, and day. In addition to this function, SQL 
Server 2012 introduced other functions that let you create datetime, 
smalldatetime, time, datetime2, and datetimeoffset values. For more information, 
please search for "date and time functions" in the SQL Server documentation. 

The last function (ISDATE) returns a Boolean value that indicates whether 
an expression can be cast as a valid date/time value. This function is useful 
for testing the validity of a date/time value before it's saved to a table. This is 
illustrated by the last set of examples. Here, you can see that the first and third 
expressions are valid dates, but the second and fourth expressions aren't. The 
second expression isn' t valid because the month of September has only 30 days. 
And the fourth expression isn't valid because a time value can have a maximum 
of 59 minutes and 59 seconds. Note that this function checks for both a valid 
date/time format and a valid date/time value. 

The first two sets of examples illustrate the differences between the functions 
that return date/time values. To start, there's a 7 hour difference between the 
datetime value that's returned by the GETDATE and GETUTCDATE functions. 
That's because I ran these functions from California, which is 7 hours behind the 
Universal Time Coordinate (UTC). In addition, note that the datetime2(7) value 
that's returned by the SYSDATETIME function provides more precise fractional 
second values than the datetime value that's returned by the GETDATE and 
GETUTCDATE functions. Finally, note that the SYSDATETIMEOFFSET 
function returns a datetimeoffset value that includes a time zone offset. 

The third set of examples shows how you can use the date parts with the 
DATEPART and DATENAME functions. To start, you don't need to specify a 
date part when you use the MONTH function to return an integer value for the 
month. However, you can get the same result with the DATEPART function by 
specifying the month date part as the first argument. Or, if you want to return 
the name of the month as a string of characters, you can specify the month date 
part as the first argument of the DATENAME function. Finally, you can use an 
abbreviation for a date part whenever that makes sense. However, I generally 
prefer to avoid abbreviations as they tend to make the code more difficult to read 
and understand. 

The fourth set of examples shows how to use the EOMONTH and 
DATEFROMPARTS functions that were introduced with SQL Server 2012. 
Here, the first expression uses the EOMONTH function to return a date for the 
last day of the month for February 1, 2020. Since 2020 is a leap year, this returns 
February 29, 2020. The second expression is similar, but it adds two months 
to the specified date. Finally, the last expression uses the DATEFROMPARTS 
function to create a date with a year value of 2020, a month value of 4, and a day 
value of 3. 



Chapter 9 How to use functions 275 

Date part values and abbreviations 
Argument Abbreviations 

year yy, yyyy 

quarter qq,q 

month mm, m 

dayofyear dy, y 

day dd,d 

week wk,ww 

weekday dw 

hour hh 

minute mi , n 

second ss, s 

millisecond ms 

microsecond mcs 

nanosecond ns 

tzoffset tz 

Examples that use date/time functions 

Function Result 
GETDATE() 

GETUTCDATE () 

SYSDATETIME() 

SYSUTCDATETIME() 

SYSDATETIMEOFFSET( ) 

MONTH('2020-04-30 ' ) 

DATEPART(month,' 2020-04-30') 

DATENAME(month, '2020-04-30') 

DATENAME(m, ' 2020-04-30 ' ) 

EOMONTH('2020-02-01') 

EOMONTH('2020-02-01 ' ,2 ) 

DATEFROMPARTS(2020,4,3 ) 

ISDATE('2020-04-30 ' ) 

ISDATE('2020-04-31') 

ISDATE('23 : 59:59') 

ISDATE('23 : 99 : 99') 

2020-04-30 14:10 : 13.813 

2020-04-30 21:10 : 13.813 

2020-04-30 14 : 10 : 13.8160822 

2020-04-30 21 : 10 : 13 . 8160822 

2020-04-30 14 : 10 : 13 . 8160822 -07 . 00 

4 

4 

April 

Apri l 

2020-02-29 

2020-04-30 

2020-04-03 

1 

0 

1 

0 

Figure 9-5 A summary of the date/t ime functions (part 2 of 2) 



276 Section 2 The essential SQL skills 

How to parse dates and times 

Figure 9-6 shows you how to use the DAY, MONTH, YEAR, DATEPART, 
and DATENAME functions to parse dates and times. If you just need to get an 
integer value for a day, month, or year, you should use the DAY, MONTH, and 
YEAR functions as shown in the examples at the top of this figure since these 
are ANSI-standard functions. If you need to extract another part of a date or 
time as an integer, however, you' ll need to use the DATEPART function. And if 
you need to extract a date part as a string, you' ll need to use the DATENAME 
function. 

This figure shows the result of using each of the date part values with the 
DATEPART and DATENAME functions. As you can see, many of the values 
returned by the two functions appear to be the same. Keep in mind, however, 
that all of the values returned by DATEPART are integers. By contrast, all of the 
values returned by DATENAME are strings. That's why the month and week 
day are returned as names rather than numbers when you use DATENAME. The 
function you use, then, will depend on what you need to do with the date part. If 
you need to use it in an arithmetic operation, for example, you ' ll want to use the 
DATEPART function. But if you need to use it in a concatenation, you' ll want to 
use the DATENAME function. 

Finally, it's important to note the difference between the DATEPART and 
DATENAME functions when working with the tzoffset date part. With this part, 
the DATEPART function returns an integer value for the number of minutes for 
the time zone offset, and the DATENAME function returns a string value that 
specifies the hours and minutes. 



Chapter 9 How to use functions 277 

Examples that use the DAY, MONTH, and YEAR functions 
Function Result 
DAY(' 2020-04-30') 30 

MONTH('2020-04-30') 4 

YEAR('2020-04-30') 2020 

Examples that use the DATEPART function 
Function Result 
DATEPART(day, '2020-04-30 11:35:00') 

DATEPART(month, '2020-04-30 11:35:00') 

DATEPART(year, '2020-04-30 11:35:00') 

DATEPART(hour, '2020-04-30 11:35 : 00') 

DATEPART(minute, '2020-04-30 11:35:00') 

DATEPART(second, '2020-04-30 11:35:00') 

DATEPART(quarter, ' 2020-04-30 11:35:00') 

DATEPART(dayofyear, '2020-04-30 11:35:00') 

DATEPART(week, '2020-04-30 11:35:00') 

DATEPART(weekday, '2020-04-30 11:35:00') 

DATEPART(millisecond, '11:35:00 . 1234567') 

DATEPART(microsecond, '11:35:00.1234567') 

DATEPART(nanosecond, '11 : 35 : 00 . 1234567') 

DATEPART(tzoffset, '11:35:00.1234567 -07:00 ' ) 

Examples that use the DATENAME function 

30 

4 

2020 

11 

35 

0 

2 

121 

18 

5 

123 

123456 

123456700 

-420 

Function Result 
DATENAME(day, '2020-04-30 11:35:00') 

DATENAME(month, '2020-04-30 11:35:00 ' ) 

DATENAME(year, '2020-04-30 11:35:00') 

DATENAME(hour, '2020-04-30 11:35 : 00') 

DATENAME(minute, '2020-04-30 11:35:00') 

DATENAME(second, '2020-04-30 11:35:00') 

DATENAME(quarter, '2020-04-30 11:35:00') 

DATENAME(dayofyear, ' 2020-04-30 11:35 : 00') 

DATENAME(week, '2020-04-30 11 : 35 : 00') 

DATENAME(weekday, ' 2020-04-30 11:35:00 ' ) 

DATENAME(millisecond, '11 : 35:00 . 1234567') 

DATENAME(microsecond, '11 : 35:00.1234567') 

DATENAME(nanosecond, '11:35 : 00.1234567') 

DATENAME(tzoffset, '11:35:00.1234567 -07:00') 

Notes 

30 

April 

2020 

11 

35 

0 

2 

121 

18 

Thursday 

123 

123456 

123456700 

-07:00 

• When you use weekday with the DATEPART fu nction, it returns an integer that indicates 
the day of the week where l =Sunday, 2=Monday, etc. 

• The DAY, MONTH, and YEAR functions are ANSI-standard functions. The DATEPART 
and DATENAME functions are more general-purpose functions provided by SQL Server. 

Figure 9-6 How to parse dates and times 



278 Section 2 The essential SQL skills 

How to perform operations on dates and times 

Figure 9-7 shows you how to use the DATEADD and DATEDIFF functions 
to perform operations on dates and times. You can use the DATEADD function 
to add a specified number of date parts to a date. The first eight DATEADD 
functions in this figure, for example, show how you can add one day, month, 
year, hour, minute, second, quarter, and week to a date/time value. If you want to 
subtract date parts from a date/time value, you can do that with the DATEADD 
function too. Just code the number argument as a negative value, as illustrated by 
the next to last DATEADD function. The last DATEADD function illustrates that 
you can't add a fractional number of date parts to a date/time value. If you try to, 
the fractional portion is ignored. 

If you need to find the difference between two date/time values, you can 
use the DATED IFF function as illustrated by the second set of examples in this 
figure. As you can see, the result is expressed in the date part units you specify. 
The first function, for example, returns the number of days between two dates, 
and the second example returns the number of months between the same two 
dates. 

In most cases, the earlier date is specified as the second argument in the 
DATEDIFF function and the later date is specified as the third argument. That 
way, the result of the function is a positive value. However, you can also code 
the later date first. Then, the result is a negative value as you can see in the last 
DATEDIFF function in this figure. 

If you use the DATED IFF function, you should realize that it returns the 
number of date/time boundaries crossed, which is not necessarily the same as 
the number of intervals between two dates. To understand this, consider the third 
DATEDIFF function. This function returns the difference in years between the 
dates 2019-07-01 and 2020-04-30. Since the second date is less than one year 
after the first date, you might expect this function to return a value of zero. As 
you can see, however, it returns a value of 1 because it crossed the one-year 
boundary between the years 2019 and 2020. Because this is not intuitive, you' ll 
want to use this function carefully. 

The last three examples in this figure show how you can perform operations 
on dates and times without using the DATEADD and DATEDIFF functions. The 
first expression, for example, adds one day to a date/time value, and the second 
expression subtracts one day from the same value. When you use this technique, 
SQL Server assumes you're adding or subtracting days. So you can't add or 
subtract other date parts unless you express them as multiples or fractions of 
days. In addition, you can' t use the addition and subtraction operators with the 
date, time, datetime2, and datetimeoffset data types. 

The last expression shows how you can subtract two date/time values to 
calculate the number of days between them. Notice that after the dates are 
subtracted, the result is converted to an integer. That's necessary because the 
result of the subtraction operation is implicitly cast as a date/time value that 
represents the number of days after January 1, 1900. For this reason, the integer 
difference of 304 days is interpreted as the following date/time value: 
1900-10-31 00:00:00:000. 



Chapter 9 How to use functions 279 

Examples that use the DATEADD function 
Function Result 

DATEADD(day, 1, '2020-04-30 11 : 35 : 00') 

DATEADD(month, 1, '2020-04 - 30 11 : 35 : 00') 

DATEADD(year, 1, ' 2020-04-30 11 : 35:00 ' ) 

DATEADD(hour, 1, '2020-04-30 11:35 : 00 ' ) 

DATEADD(minute, 1, '2020-04-30 11 : 35 : 00') 

DATEADD(second, 1, ' 2020-04-30 11:35 : 00') 

DATEADD(quarter, 1, '2020-04-30 11 : 35:00') 

DATEADD(week, 1, '2020-04-30 11:35 : 00') 

DATEADD(month, -1, ' 2020-04-30 11:35 : 00 ' ) 

DATEADD(year, 1 . 5, '2020-04-30 11:35:00') 

Examples that use the DATEDIFF function 

2020-05-01 

2020- 05- 30 

2021-04-30 

2020-04-30 

2020-04-30 

2020-04-30 

2020-07-30 

2020-05-07 

2020-03-30 

2021-04-30 

Function Result 

DATEDIFF(day, '2019-07-01', '2020-04-30') 

DATEDIFF(month, '2019-07-01', '2020-04-30') 

DATEDIFF(yea r, ' 2019-07-01', '2020-04-30') 

DATEDIFF(hour, '06 : 46 : 45', '11 : 35 : 00') 

DATEDIFF(minute, '06 : 46 : 45', '11 : 35 : 00') 

DATEDIFF(second, ' 06 : 46:45 ', ' 11 : 35 : 00') 

DATEDIFF(quarter, '2019-07-01', '2020-04-30') 

DATEDIFF(week, ' 2019-07-01' , '2020-04-30') 

DATEDIFF(day, '2020-04-30', '2019-07-01') 

304 

9 

1 

5 

289 

17295 

3 

43 

-304 

11:35 : 00.000 

11:35:00.000 

11: 35 : 00 . 000 

12:35:00.000 

11:36 : 00.000 

11 : 35:01.000 

11:35:00.000 

11:35:00.000 

11:35:00.000 

11 : 35:00.000 

Examples that use the addition and subtraction operators 
Operation Result 

CAST ( '2020-04-30 11:35:00' AS smalldatetime) + 1 

CAST('2020-04-30 11:35:00' AS smalldatetime) - 1 

CAST(CAST( '2020-04-30 ' AS datetime) 

2020-05-01 11: 35 : 00 

2020-04-29 11: 35 : 00 

- CAST( ' 2019- 07 - 01 ' AS datetime) AS int) 304 

Description 
• You can use the DATEADD function to subtract a specified number of date parts from a 

date by coding the number of date parts as a negative value. 

• If the number of date parts you specify in the DATEADD function isn' t an integer, the fractional 
portion of the number is ignored. 

• If the end date you specify in a DATED IFF function is before the start date, the function 
will return a negative value. 

• You can also use the addition and subtraction operators to add and subtract days from a 
date value . To add and subtract days from a date string, cast the string to a date/time value. 

• You can also calculate the number of days between two dates by subtracting the date/time 
values and converting the result to an integer. 

Figure 9-7 How to perform operations on dates and times 



280 Section 2 The essential SQL skills 

How to perform a date search 
----------~----~----------~ 

Because date/time values often contain both a date and a time component, 
searching for specific dates and times can be difficult. In this topic, you' lllearn a 
variety of ways to ignore the time component when you search for a date value. 
And in the next topic, you'lllearn how to ignore date components when you 
search for time values. 

Before I go on, you should realize that the problems described here can 
sometimes be avoided by designing the database differently. For example, if you 
don't need to include a time component, you can use the date data type for the 
column that stores the date. That way, there's no time component to complicate 
your date searches. Conversely, if you don' t need to include a date component, 
you can use the time data type for the column that holds the time. Of course, 
since these data types were introduced with SQL Server 2008, you'll need to use 
a different technique for prior versions of SQL Server. 

Figure 9-8 illustrates the problem you can encounter when searching for 
dates. The examples in this figure use a table named DateSample. This table 
includes an ID column that contains an integer value and a StartDate column that 
contains a datetime value. Notice that the time components in the first three rows 
in this table have a zero value. By contrast, the time components in the next three 
rows have non-zero time components. 

The problem occurs when you try to search for a date value. The first 
SELECT statement in this figure, for example, searches for rows in the 
DateSample table with the date 2019-10-28. Because a time component isn' t 
specified, a zero time component is added when the date string is converted to 
a datetime value. However, because the row with this date has a non-zero time 
value, no rows are returned by this statement. 

To solve this problem, you can use one of the five techniques shown in this 
figure. Of these techniques, the first technique is usually the easiest to use. Here, 
you use the CONVERT function to convert the datetime value to a date value. Of 
course, this only works for SQL Server 2008 or later. 

As a result, if you need to work with a prior version of SQL Server, you'll 
need to use one of the other techniques. For example, you can use the second 
technique to search for dates that are greater than or equal to the date you're 
looking for and less than the date that follows the date you're looking for. Or, 
you can use the third technique to search for the values that are returned by the 
MONTH, DAY, and YEAR functions. 

The fourth technique is to use the CAST function to convert the value in the 
StartDate column to an 11-character string. That causes the time portion of the 
date to be truncated (if you look back at figure 8-7, you ' 11 see that when a 
date/time data type is cast to a string data type, the date portion contains 11 
characters in the format "Mon dd yyyy"). Then, the string is converted back to a 
datetime value, which adds a zero time component. 

The last technique is similar, but it uses the CONVERT function instead of 
the CAST function. The style code used in this function converts the datetime 
value to a 10-character string that doesn' t include the time. Then, the string is 
converted back to a date with a zero time component. 



Chapter 9 How to use functions 281 

The contents of the DateSample table 
ID Start Date 

1 
j"'"'"'"'l 
! 1 ! 1990-11-0100:00:00.000 
\ ............ : 

2 2 2010.10.28 00:00:00.000 

3 3 2015-06-30 00:00:00.000 

4 4 2016-10.28 10:00:00.000 

5 5 2019-10.28 13:58:32.823 

6 6 2019-11-01 09:02:25.000 

A search condition that fails to return a row 
SELECT * FROM DateSample 
WHERE StartDate = '2019-10 - 28'; 

Five SELECT statements that ignore time values 
A SELECT statement that uses the date type to remove time values 
(SQL Server 2008 or later) 
SELECT * FROM DateSample 
WHERE CONVERT(date, StartDate) = '2019-10-28'; 

A SELECT statement that searches for a range of dates 
SELECT * FROM DateSample 
WHERE StartDate >= '2019-10-28' AND StartDate < '2019-10-29'; 

A SELECT statement that searches for month, day, and year components 
SELECT * FROM DateSample 
WHERE MONTH(StartDate) = 10 AND 

DAY(StartDate) = 28 AND 
YEAR(StartDate) = 2019; 

A SELECT statement that uses the CAST function to remove time values 
SELECT * FROM DateSample 
WHERE CAST(CAST(StartDate AS char(11)) AS datetime) = '2019-10-28'; 

A SELECT statement that uses the CONVERT function to remove time values 
SELECT * FROM DateSample 
WHERE CONVERT(datetime, CONVERT(char(10), StartDate, 110)) = '2019-10-28'; 

The result set 
ID StartDate 

r.·~.·~····J 2019-10.28 13:58:32.823 

Description 

• If you perform a search using a date string that doesn' t include the time, the date 
string is converted implicitly to a date/time value with a zero time component. 
Then, if the date columns you're searching have non-zero time components, you 
have to accommodate the times in the search condition. 

Figure 9-8 How to perform a date search 



282 Section 2 The essential SQL skills 

Note that the second technique (searching for a range of dates) is the only 
technique that doesn't use any functions in the WHERE clause. Because of that, 
this is the most efficient technique for searching for dates. As a result, you may 
want to use it even if you're using SQL Server 2008 or later. 

How to perform a time search 

When you search for a time value without specifying a date component, 
SQL Server automatically uses the default date of January 1, 1900. That's why 
neither of the first two SELECT statements in figure 9-9 return any rows. Even 
though at least one row has the correct time value for each search condition, 
those rows don't have the correct date value. 

To solve this problem, you can use a SELECT statement like the one shown 
in the third or fourth example. In the third example, the CONVERT function is 
used to convert the datetime value to a time value. Of course, since the time data 
type was introduced with SQL Server 2008, this won't work for earlier versions 
of SQL Server. 

As a result, if you need to use an earlier version of SQL Server, you can use 
a SELECT statement like the one shown in the fourth example. In this statement, 
the search condition uses the CONVERT function to convert the datetime values 
in the StartDate column to string values without dates. To do that, it uses a style 
argument of 8. Then, it converts the string values back to datetime values, which 
causes the default date to be used. That way, the date will match the dates that 
are added to the date literals. 



The contents of the DateSample table 
ID StartDate 

1 ['.~ ........... ] 1990-11-01 00:00:00.000 

2 2 2010-10-28 00:00:00.000 

3 3 201£.0G-30 00:00:00.000 

4 4 201&-10-28 10:00:00.000 

5 5 2019-10-28 13:58:32.823 

6 6 2019-11-01 09:02:25.000 

Two search conditions that fail to return a row 
SELECT * FROM DateSample 
WHERE StartDate = CAST ( '10:00:00' AS datetime); 

SELECT * FROM DateSample 
WHERE StartDate >= ' 09:00:00' AND 

StartDate < '12:59:59:999'; 

Two SELECT statements that ignore date values 

Chapter 9 How to use functions 283 

A SELECT statement that removes date values (SQL Server 2008 or later) 
SELECT * FROM DateSample 
WHERE CONVERT(time, StartDate) >= '09:00:00' AND 

CONVERT(time, StartDate) < ' 12:59:59:999 ' ; 

A SELECT statement that removes date values (prior to SQL Server 2008) 
SELECT * FROM DateSample 
WHERE CONVERT(datetime , CONVERT(char(12 ) , StartDate, 8)) >= '09:00 : 00 ' AND 

CONVERT(datetime , CONVERT(char(12 ) , StartDate, 8) ) < '12:59:59 : 999'; 

The result set 
ID StartDate 

[ .. ~ ........ ] 201&-10-28 10:00:00.000 
2 6 2019-11-01 09:02:25.000 

Description 
• If you perform a search using a date string that includes only a time, the date is 

converted implicitly to a date/time value with a default date component of 
1900-01-01. Then, if the date columns you're searching have other dates, you have 
to accommodate those dates in the search condition. 

Figure 9-9 How to perform a time search 



284 Section 2 The essential SQL skills 

Other functions you should know about 
In addition to the conversion functions and the functions for working 

with specific types of data, SQL Server provides some other general purpose 
functions you should know about. Several of these functions are described in the 
topics that follow. 

How to use the CASE function 

Figure 9-10 presents the two formats of the CASE function. This function 
returns a value that's determined by the conditions you specify. The easiest way 
to describe how this function works is to look at the two examples shown in this 
figure. 

The first example uses a simple CASE function. When you use this function, 
SQL Server compares the input expression you code in the CASE clause with 
the expressions you code in the WHEN clauses. In this example, the input 
expression is a value in the TermsiD column of the Invoices table, and the when 
expressions are the valid values for this column. When SQL Server finds a 
when expression that's equal to the input expression, it returns the expression 
specified in the matching THEN clause. If the value of the TermsiD column is 
3, for example, this function returns the value "Net due 30 days." Although it's 
not shown in this example, you can also code an ELSE clause at the end of the 
CASE function. Then, if none of the when expressions are equal to the input 
expression, the function returns the value specified in the ELSE clause. 

The simple CASE function is typically used with columns that can contain a 
limited number of values, such as the TermsiD column used in this example. By 
contrast, the searched CASE function can be used for a wide variety of purposes. 
For example, you can test for conditions other than equal with this function. In 
addition, each condition can be based on a different column or expression. The 
second example in this figure illustrates how this function works. 

This example determines the status of the invoices in the Invoices table. To 
do that, the searched CASE function uses the DATEDIFF function to get the 
number of days between the current date and the invoice due date. If the 
difference is greater than 30, the CASE function returns the value "Over 30 days 
past due." Similarly, if the difference is greater than 0, the function returns the 
value "1 to 30 days past due." Notice that if an invoice is 45 days old, both of 
these conditions are true. In that case, the function returns the expression 
associated with the first condition since this condition is evaluated first. In other 
words, the sequence of the conditions is critical to getting logical results. If 
neither of the conditions is true, the function returns the value "Current." 

Because the WHEN clauses in this example use greater than conditions, this 
CASE function couldn't be coded using the simple syntax. Of course, CASE 
functions can be more complicated than what's shown here, but this should give 
you an idea of what you can do with this function. 



Chapter 9 How to use functions 285 

The syntax of the simple CASE function 
CASE input_expression 

END 

WHEN when_expression_ 1 THEN result_expression_ 1 
[WHEN when_expression_ 2 THEN result_expression_ 2] ••• 
[ELSE else_result_expression] 

The syntax of the searched CASE function 
CASE 

WHEN conditional_expression_1 THEN result_expression_1 
[WHEN conditional_expression_2 THEN result_expression_2] ... 
[ELSE else_result_expression] 

END 

A SELECT statement that uses a simple CASE function 
SELECT InvoiceNumber, TermsiD, 

CASE TermsiD 
WHEN 1 THEN 'Net due 10 days' 
WHEN 2 THEN 'Net due 20 days' 
WHEN 3 THEN 'Net due 30 days' 
WHEN 4 THEN 'Net due 60 days' 
WHEN 5 THEN 'Net due 90 days' 

END AS Terms 
FROM Invoices; 

Invoice Number TermsiD Terms I'. 

6 963253261 3 Net due 30 days 

7 963253237 3 Net due 30 days 
- I! 

8 12552G-1 Net due 10 days 'I 

A SELECT statement that uses a searched CASE function 
SELECT InvoiceNumber, InvoiceTotal, InvoiceDate, InvoiceDueDate, 

CASE 
WHEN DATEDIFF(day, InvoiceDueDate, GETDATE()) > 30 

THEN 'Over 30 days past due' 
WHEN DATEDIFF(day, InvoiceDueDate, GETDATE()) > 0 

THEN '1 to 30 days past due• 
ELSE 'Current' 

END AS Status 
FROM Invoices 
WHERE InvoiceTotal - PaymentTotal - CreditTotal > 0; 

Invoice Number Invoice Total Invoice Date Invoice Due Date Status I'. 

9 134116 90.36 202G-01-28 202G-02-17 Current 

10 1}.2436 10976.06 202G-01-31 202G-02-29 Current 
_ I! 

11 547480102 224.00 202G-02.()1 202G-02-29 Current 'I 

Description 
• The simple CASE function tests the expression in the CASE clause against the 

expressions in the WHEN clauses. Then, the function returns the result expression 
associated with the first test that results in an equal condition. 

• The searched CASE function tests the conditional expression in each WHEN clause in 
sequence and returns the result expression for the first condition that evaluates to true. 

Figure 9-10 How to use the CASE function 



286 Section 2 The essential SQL skills 

How to use the IIF and CHOOSE functions 

Figure 9-11 shows how to use the two Logical functions that were introduced 
with SQL Server 2012. The IIF function returns one of two values depending on 
the result of a conditional expression, and the CHOOSE function returns a value 
from a list of values depending on the index you specify. 

The SELECT statement in the first example in this figure illustrates how 
the IIF function works. This statement groups the rows in the Invoices table 
by the VendoriD column and returns three columns. The first column contains 
the VendoriD for each vendor, and the second column contains the sum of 
the invoice totals for that vendor. Then, the third column contains a value that 
indicates if the sum of invoice totals is less than 1000 or greater than or equal to 
1000. To do that, the first argument of the IIF function tests if the sum of invoice 
totals is less than 1000. If it is, a value of "Low" is returned. Otherwise, a value 
of "High" is returned. 

If you compare the IIF function with the searched CASE function in the 
previous figure, you' ll see that it provides another way to test a conditional 
expression that can result in one of two values. In fact, SQL Server translates IIF 
functions to CASE functions before processing them. For example, SQL Server 
would translate the IIF function in this figure so it looks something like this: 

SELECT VendoriD, SUM(InvoiceTotal) AS Suminvoices, 
CASE 

WHEN SUM(InvoiceTotal) < 1000 
THEN 'Low' 

ELSE 
'High' 

END AS InvoiceRange 
FROM Invoices 
GROUP BY VendoriD; 

The technique you use is mostly a matter of preference. 
The second SELECT statement in this figure illustrates how to use the 

CHOOSE function. Although this function isn' t as useful as some of the other 
functions presented in this book, it can be useful in certain situations. In this 
example, it's used to return a description of the due days for the invoices in the 
Invoices table with a balance due based on the value of the TermsiD column. 
This works because the TermslD column is an int type. 



Chapter 9 How to use functions 287 

The syntax of the IIF function 
IIF (conditional_ expression, true_value , false_value) 

The syntax of the CHOOSE function 
CHOOSE(index, value1, value2 [,value3] ••• ) 

A SELECT statement that uses the IIF function 
SELECT VendoriD, SUM(InvoiceTotal ) AS Suminvoices, 

IIF(SUM(InvoiceTotal) < 1000, 'Low•, 'High') AS InvoiceRange 
FROM Invoices 
GROUP BY VendoriD; 

VendoriD Sum Invoices Invoice Ra119e 

r.·~--~----~----~----~----~~--~~J 1200.12 High 

2 37 564.00 Low 
3 48 856.92 Low 
4 72 21927.31 High 

5 80 265.36 Low 
6 81 936.93 Low 
7 82 600.00 Low 
8 83 2154.42 High 

' 

A SELECT statement that uses the CHOOSE function 
SELECT InvoiceNumber, InvoiceDate, InvoiceTotal, 

CHOOSE(Ter.msiD, '10 days•, '20 days•, '30 days•, '60 days•, '90 days') 
AS NetDue 

FROM Invoices 
WHERE InvoiceTotal - PaymentTotal - CreditTotal > 0; 

Invoice Number Invoice Date Invoice Total Net Due 
1"""391"04""""""""""""""""""""""""! 2020-01·10 85.31 JOdays 
t .......................................... ; 

2 963253264 2020-01·18 52.25 JOdays L 
3 31361833 2020-01·21 579.42 20days 

4 263253268 2020-01·21 59.97 JOdays 

5 263253270 2020-01·22 67.92 JOdays 

' 

Description 
• The IIF and CHOOSE functions are known as logical functions, and they were 

introduced with SQL Server 2012. 

• The IIF function lets you test an expression and return one value if the expression 
is true and another value if the expression is false. It provides a shorthand way of 
coding a searched CASE function with a single WHEN clause and an ELSE clause. 

• The CHOOSE function provides an index into a list of values. The index value 
must be a type that can be converted to an int value and it must range from 1 to the 
number of values in the list. 

Figure 9-11 How to use the IIF and CHOOSE functions 



288 Section 2 The essential SQL skills 

How to use the COALESCE and ISNULL functions 

Figure 9-12 presents two functions that you can use to work with null 
values: COALESCE and ISNULL. Both of these functions let you substitute 
non-null values for null values. Although these two functions are similar, 
COALESCE is more flexible because it lets you specify a list of values. Then, it 
returns the first non-null value in the list. By contrast, the ISNULL function uses 
only two expressions. It returns the first expression if that expression isn't null. 
Otherwise, it returns the second expression. 

The examples in this figure illustrate how these functions work. The first 
example uses the COALESCE function to return the value of the PaymentDate 
column, if that column doesn' t contain a null value. Otherwise, it returns the 
date 1900-01-01. The second example performs the operation using the ISNULL 
function. Note that when you use either of these functions, all of the expressions 
must have the same data type. So, for example, you couldn't substitute the string 
"Not Paid" for a null payment date. 

The third example shows how you can work around this restriction. In this 
example, the value of the InvoiceTotal column is converted to a character value. 
That way, if the InvoiceTotal column contains a null value, the COALESCE 
function can substitute the string "No invoices" for this value. Notice that this 
example uses an outer join to combine all of the rows in the Vendors table with 
the rows for each vendor in the Invoices table. Because of that, a null value 
will be returned for the InvoiceTotal column for any vendor that doesn't have 
invoices. As you can see, then, this function is quite useful with outer joins. 



Chapter 9 How to use functions 289 

The syntax of the COALESCE function 
COALESCE(expression_ 1 [ , expression_ 2] .•• ) 

The syntax of the IS NULL function 
ISNULL(check_expression, replacement_ value) 

A SELECT statement that uses the COALESCE function 
SELECT PaymentDate, 

COALESCE(PaymentDate, '1900-01-01') AS NewDate 
FROM Invoices ; 

The same SELECT statement using the ISNULL function 
SELECT PaymentDate, 

ISNULL(PaymentDate, '1900-01-01') AS NewDate 
FROM Invoices; 

The result set 
Payment Dale New Date 

111 202t).Ol.OJ 2020-03-03 

112 NULL 19()().{)1-{)1 

113 NULL 19()().{)1-{)1 

114 2020-{)3-04 2020-{)3-04 

_II 

A SELECT statement that substitutes a different data type 
SELECT VendorName, 

COALESCE(CAST(InvoiceTotal AS varchar), 'No invoices') AS InvoiceTotal 
FROM Vendors LEFT JOIN Invoices 

ON Vendors.VendoriD = Invoices.VendoriD 
ORDER BY VendorName; 

1 

2 

VendorName Invoice Total 
r·;.;t;b;;·Offi~~ .. F~;;:;;;t;i~ij; ................... l 11.so 
t ............................................................................... ; 

American Booksellers hsoc No invoices 

3 American Express No invoices 

4 ASC Signs No invoices 

5 Ascom Hasler Mailing Systems No invoices 

Description 
• The COALESCE and ISNULL functions let you substitute non-null values for null 

values. 

• The COALESCE function returns the first expression in a list of expressions that 
isn' t null. All of the expressions in the list must have the same data type. If all of 
the expressions are null, this function returns a null value. 

• The ISNULL function returns the expression if it isn' t null. Otherwise, it returns 
the value you specify. The expression and the value must have the same data type. 

• COALESCE is not an ANSI-standard function, but it 's more widely supported than 
ISNULL, which is unique to SQL Server. 

Figure 9-1 2 How to use the COALESCE and ISNULL functions 



290 Section 2 The essential SQL skills 

How to use the GROUPING function 

In chapter 5, you learned how to use the ROLLUP and CUBE operators to 
add summary rows to a summary query. You may recall that when you do that, a 
null value is assigned to any column in a summary row that isn' t being 
summarized. If you need to, you can refer back to figures 5-7 and 5-8 to refresh 
your memory on how this works. 

If you want to assign a value other than null to these columns, you can do 
that using the GROUPING function as illustrated in figure 9-13. This function 
accepts the name of a column as its argument. The column you specify must be 
one of the columns named in a GROUP BY clause that includes the ROLLUP or 
CUBE operator. 

The example in this figure shows how you can use the GROUPING function 
in a summary query that summarizes vendors by state and city. This is the same 
summary query you saw back in figure 5-7. Instead of simply retrieving the 
values of the VendorS tate and VendorCity columns from the base table, however, 
this query uses the GROUPING function within a CASE function to determine 
the values that are assigned to those columns. If a row is added to summarize the 
VendorState column, for example, the value of the GROUPING function for that 
column is 1. Then, the CASE function assigns the value "All" to that column. 
Otherwise, it retrieves the value of the column from the Vendors table. Similarly, 
if a row is added to summarize the VendorCity column, the value "All" is 
assigned to that column. As you can see in the result set shown here, this makes 
it more obvious what columns are being summarized. 

This technique is particularly useful if the columns you're summarizing 
can contain null values. In that case, it would be difficult to determine which 
rows are summary rows and which rows simply contain null values. Then, you 
may not only want to use the GROUPING function to replace the null values in 
summary rows, but you may want to use the COALESCE or ISNULL function 
to replace null values retrieved from the base table. 



Chapter 9 How to use functions 291 

The syntax of the GROUPING function 
GROUPING(column_name) 

A summary query that uses the GROUPING function 
SELECT 

CASE 
WHEN GROUPING(VendorState) = 1 THEN 'All' 
ELSE VendorState 

END AS VendorState, 
CASE 

WHEN GROUPING(VendorCity) = 1 THEN 'All' 
ELSE VendorCity 

END AS VendorCity, 
COUNT(*) AS QtyVendors 

FROM Vendors 
WHERE VendorState IN ('IA', 'NJ') 
GROUP BY VendorState, VendorCity WITH ROLLUP 
ORDER BY VendorState DESC, VendorCity DESC; 

The result set 
VendorState VendorOty QtyVendoB 

1 [H~~····~··················J Washington 1 

2 NJ Fairfield 1 

3 NJ East Brunswick 2 

4 NJ All 4 

5 lA 

6 lA 

7 lA 

8 All 

Description 

Washington 

Failfield 

All 

All 

2 

6 

• You can use the GROUPING function to determine when a null value is assigned to 
a column as the result of the ROLL UP or CUBE operator. The column you name in 
this function must be one of the columns named in the GROUP BY clause. 

• If a null value is assigned to the specified column as the result of the ROLL UP or 
CUBE operator, the GROUPING function returns a value of 1. Otherwise, it returns 
a value ofO. 

• You typically use the GROUPING function with the CASE function. Then, if the 
GROUPING function returns a value of 1, you can assign a value other than null to 
the column. 

Figure 9-13 How to use the GROUPING function 



292 Section 2 The essential SQL skills 

How to use the ranking functions 

Figure 9-14 shows how to use the four ranking functions. These functions 
provide a variety of ways that you can rank the rows that are returned by a result 
set. All four of these functions have a similar syntax and work similarly. 

The first example shows how to use the ROW _NUMBER function. Here, 
the SELECT statement retrieves two columns from the Vendors table. The first 
column uses the ROW _NUMBER function to sort the result set by VendorName 
and to number each row in the result set. To show that the first column has been 
sorted and numbered correctly, the second column displays the VendorName. 

To accomplish the sorting and numbering, you code the name of the 
ROW _NUMBER function, followed by a set of parentheses, followed by the 
OVER keyword and a second set of parentheses. Within the second set of 
parentheses, you code the required ORDER BY clause that specifies the sort 
order that's used by the function. In this example, for instance, the ORDER BY 
clause sorts by VendorN arne in ascending order. However, you can code more 
complex ORDER BY clauses whenever that's necessary. In addition, when 
necessary, you can code an ORDER BY clause that applies to the entire result 
set. In that case, the ORDER BY clause within the ranking function is used to 
number the rows and the ORDER BY clause outside the ranking function is used 
to sort the rows after the numbering has been applied. 

The second example shows how to use the optional PARTITION BY clause 
of a ranking function. This clause allows you to specify a column that's used to 
divide the result set into groups. In this example, for instance, the PARTITION 
BY clause uses a column within the Vendors table to group vendors by state and 
to sort these vendors by name within each state. 

However, you can also use the PARTITION BY clause when a SELECT 
statement joins one or more tables like this: 

SELECT VendorName, InvoiceNumber, 
ROW_NUMBER() OVER(PARTITION BY VendorName 
ORDER BY InvoiceNumber) As RowNUmber 

FROM Vendors JOIN Invoices 
ON Vendors.VendoriD = Invoices .VendoriD; 

Here, the invoices will be grouped by vendor and sorted within each vendor by 
invoice number. As a result, if a vendor has three invoices, these invoices will be 
sorted by invoice number and numbered from 1 to 3. 



Chapter 9 How to use functions 293 

The syntax for the four ranking functions 
ROW_NUMBER ( ) 
RANK() 

DENSE_ RANK ( ) 

OVER 
OVER 
OVER 

NTILE(integer_expression) OVER 

([partition_by_ clause] 
([partition_by_clause] 
([partition_by_ clause] 
([partition_by_clause] 

A query that uses the ROW_NUMBER function 

order_by_ clause) 
order_by_clause) 
order_by_ clause) 
order_by_ clause) 

SELECT ROW_NUMBER() OVER(ORDER BY VendorName) AS RowNumber, VendorName 
FROM Vendors; 

The result set 
RowNumber VendorName 

1 [!~::~~.·.:~~.·.:~~.·.:~~.·.:~~.·] Abbey Off~e Flmstwlgs 
2 2 American BookseUm Assoc 
3 3 American Express 

4 4 ASC Signs 

5 5 Ascom Hasler Marting Systems 

A query that uses the PARTITION BY clause 
SELECT ROW_NUMBER() OVER(PARTITION BY VendorState 

ORDER BY VendorName) As RowNumber, VendorName, VendorState 
FROM Vendors; 

The result set 

3 3 

4 

5 2 
6 3 

Description 

Wens Fargo Bark 

VendorState 

~ 

~ 

~ 

Abbey Office Furnishings CA 

American Express 

ASC Signs 

CA 

CA 

• The ROW _NUMBER, RANK, DENSE_RANK, and NTILE functions are known 
as ranking functions. 

• The ROW _NUMBER function returns the sequential number of a row within a 
partition of a result set, starting at 1 for the first row in each partition. 

• The ORDER BY clause of a ranking function specifies the sort order in which the 
ranking function is applied. 

• The optional PARTITION BY clause of a ranking function specifies the column 
that's used to divide the result set into groups. 

Figure 9-14 How to use the ranking functions (part 1 of 2) 



294 Section 2 The essential SQL skills 

The third example shows how the RANK and DENSE_RANK functions 
work. You can use these functions to rank the rows in a result set. In this 
example, both the RANK and the DENSE_RANK functions sort all invoices in 
the Invoices table by the invoice total. Since the first three rows have the same 
invoice total, both of these functions give these three rows the same rank, 1. 
However, the fourth row has a different value. To calculate the value for this row, 
the RANK function adds 1 to the total number of previous rows. In other words, 
since the first three rows are tied for first place, the fourth row gets fourth place 
and is assigned a rank of 4. 

The DENSE_RANK function, on the other hand, calculates the value for the 
fourth row by adding 1 to the rank for the previous row. As a result, this function 
assigns a rank of 2 to the fourth row. In other words, since the first three rows are 
tied for first place, the fourth row gets second place. 

The fourth example shows how the NTILE function works. You can use 
this function to divide the rows in a partition into the specified number of 
groups. When the rows can be evenly divided into groups, this function is easy 
to understand. For example, if a result set returns 100 rows, you can use the 
NTILE function to divide this result set into 10 groups of 10. However, when the 
rows can' t be evenly divided into groups, this function is a little more difficult 
to understand. In this figure, for example, the NTILE function is used to divide 
a result set that contains 5 rows. Here, the first NTILE function divides this 
result into 2 groups with the first having 3 rows and the second having 2 rows. 
The second NTILE function divides this result set into 3 groups with the first 
having 2 rows, the second having 2 rows, and the third having 1 row. And so on. 
Although this doesn' t result in groups with even numbers of rows, the NTILE 
function creates the number of groups specified by its argument. 

In this figure, the examples for the RANK, DENSE_RANK, and NTILE 
functions don' t include PARTITION BY clauses. As a result, these functions are 
applied to the entire result set. However, whenever necessary, you can use the 
PARTITION BY clause to divide the result set into groups just as shown in the 
second example for the ROW _NUMBER function. 



Chapter 9 How to use functions 295 

A query that uses the RANK and DENSE_RANK functions 
SELECT RANK() OVER (ORDER BY InvoiceTotal) As Rank, 

DENSE_RANK () OVER (ORDER BY InvoiceTotal ) As DenseRank, 
InvoiceTotal , InvoiceNumber 

FROM Invoice s; 

The result set 
Rank Dense Rank Invoice Total lnvoiceNunber 

1 r.·;~·.··~~···~~-] 1 6.00 25022117 

2 1 6.00 24863706 

3 6.00 24780512 

4 4 2 9.95 21-4923721 

5 4 2 9.95 21-4748363 

6 6 3 10.00 4·321·2596 
~ 

Description 
• The RANK and DENSE_RANK functions both return the rank of each row within 

the partition of a result set. 

• If there is a tie, both of these functions give the same rank to all rows that are tied. 

• To determine the rank for the next distinct row, the RANK function adds 1 to the 
total number of rows, while the DENSE_RANK function adds 1 to the rank for the 
previous row. 

A query that uses the NTILE function 
SELECT TermsDesc ription, 

NTILE ( 2) OVER (ORDER BY TermsiD) AS Tile2, 
NTILE ( 3) OVER (ORDER BY TermsiD) AS Ti le3, 
NTILE ( 4) OVER (ORDER BY TermsiD) AS Tile4 

FROM Terms; 

The result set 
T enns Description Tre2 Tile3 Tile4 

1 r.·.~---~-."5~--~~---~·] 1 1 1 

2 Net due 20 days 1 1 1 

3 Net due 30 days 1 2 2 

4 Net due 60 days 2 2 3 

5 Net due 90 days 2 3 4 

Description 
• The NTILE function divides the rows in a partition into the specified number of 

groups. 

• If the rows can't be evenly divided into groups, the later groups may have one less 
row than the earlier groups. 

Figure 9-14 How to use the ranking functions (part 2 of 2) 



296 Section 2 The essential SQL skills 

How to use the analytic functions 

Figure 9-15 shows how to use the analytic functions that were introduced 
with SQL Server 2012. These functions let you perform calculations on ordered 
sets of data. Note that all of the examples in this figure use the SalesReps and 
SalesTotals tables that are summarized in this figure. These tables are related by 
the RepiD column in each table. 

The FIRST_ VALUE and LAST_ VALUE functions let you return the first 
and last values in an ordered set of values. The first example in this figure uses 
these functions to return the name of the sales rep with the highest and lowest 
sales for each year. To do that, the OVER clause is used to group the result set 
by year and sort the rows within each year by sales total in descending sequence. 
Then, the expression that's specified for the functions causes the name for the 
first rep within each year to be returned. 

For the LAST_ VALUE function to return the value you want, you also have 
to include the RANGE clause as shown here. This clause indicates that the rows 
should be unbounded within the partition. In other words, all of the rows in the 
partition should be included in the calculation. If you don't include this clause, 
the LAST_ VALUE function will return the last value for each group specified by 
the ORDER BY clause. In this case, that means that the function would return 
the last rep name for each sales total. Since all of the sales totals are different, 
though, the function would simply return the name of the rep in each row, which 
isn' t what you want. So, you would typically use this clause only if you sorted 
the result set by a column that contains duplicate values. In that case, you can 
typically omit the PARTITION BY clause. 

Instead of the RANGE clause, you can code a ROWS clause on a 
FIRST_ VALUE or LAST_ VALUE function. This clause lets you specify the 
rows to include relative to the current row. For more information on how to 
code this clause and the RANGE clause, please search for it in the SQL Server 
documentation. 



The syntax of the analytic functions 
{FIRST_VALUE ILAST_VALUE}(scalar_ expression) 

Chapter 9 How to use functions 297 

OVER ([partition _ by _clause] o rder_by_ clause [rows _range_ clause]) 

{LEADILAG} (s c alar_ expressio n [ , offset [ , default]] ) 
OVER ( [partition _ by_clause] order_by_clause ) 

{PERCENT_RANK () ICUME_ DIST} OVER ( [pa rti t i on_by_ cla use] order_by_ clause ) 

{PERCENTILE_CONTIPERCENTILE_ DISC} (numer i c _ liter al ) 
WITHIN GROUP (ORDER BY e xpressi on [ASCIDESC] ) OVER (partition_by_ clause ) 

The columns in the SalesReps and SalesTotals tables 
Column name Data type Column name Data type 

RepiD 

RepFirstName 

RepLastName 

int 

varchar(50) 

varchar(SO) 

RepiD 

Sales Year 

SalesTotal 

int 

char(4) 

money 

A query that uses the FIRST_VALUE and LAST_VALUE functions 
SELECT Sale sYe a r, RepFir stName + 1 1 + Re pLastName AS Re pName, Sale s Total, 

FIRST_VALUE (RepFir stName + 1 1 + Re pLastName ) 
OVER ( PARTITION BY SalesYear ORDER BY SalesTotal DESC ) 
AS Highe s t Sales , 

LAST_VALUE( Rep FirstName + 1 1 + Re pLastName ) 
OVER ( PARTITION BY SalesYear ORDER BY Sa l e sTotal DESC 

RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) 
AS LowestSa les 

FROM Sales Totals JOIN Sa les Reps 
ON SalesTotals . RepiD = SalesReps . RepiD; 

Sales Year RepiD Sales Total PdRank CumeDist PercentUeCont Percertile Disc 

[_'?§1 ... ?.·.·.·~~.·.·.·~~.·.·.·] 2 978465.99 0 0.333333333333333 1032875.48 1032875.48 

2 2017 3 1032875.48 0.5 0.666666666666667 1032875.48 1032875.48 

3 2017 1 1274856.38 1 1 1032875.48 1032875.48 

4 2018 5 422847.86 0 0.2 923746.85 923746.85 

5 2018 4 655786.92 0.25 0.4 923746.85 923746.85 

6 2018 923746.85 0.5 0.6 923746.85 923746.85 

7 2018 2 974853.81 0.75 0.8 923746.85 923746.85 

8 2018 3 1132744.56 1 1 923746.85 923746.85 

9 2019 5 45182.44 0 0.25 480069.56 72443.37 

10 2019 4 72443.37 0.3333 ... 0.5 480069.56 72443.37 

11 2019 2 887695.75 0.6666 ... 0.75 480069.56 72443.37 

12 2019 998337.46 480069.56 72443.37 

Description 
• The FIRST_ VALUE, LAST_ VALUE, LEAD, LAG, PERCENT_RANK, 

CUME_DIST, PERCENTILE_CONT, and PERCENTILE_DISC functions are 
known as analytic functions. They were introduced with SQL Server 2012. 

• The FIRST_ VALUE function returns the first value in a sorted set of values, and 
the LAST_ VALUE function returns the last value in a sorted set of values. When 
you use the PARTITION BY clause with LAST_ VALUE, you typically include the 
ROWS or RANGE clause as well. 

Figure 9-1 5 How to use the analytic functions (part 1 of 2) 



298 Section 2 The essential SQL skills 

The LEAD and LAG functions let you refer to values in other rows of the 
result set. The LAG function is illustrated in the second example in this figure. 
Here, the OVER clause is used to group the result set by rep ID and sort it by 
year. Then, the LAG function in the fourth column gets the sales total from one 
row prior to the current row (the offset). Since the rows are sorted by year for 
each sales rep, that means that the function retrieves the sales rep's sales for 
the previous year. The fifth column uses the same function, but it subtracts the 
result of this function from the current sales to show the change in sales from 
the previous year. The LEAD function is similar, but it lets you refer to values in 
following rows rather than preceding rows. 

Notice that the value of the LAG function for the first row for each sales rep 
is 0.00. That's because there isn' t a row for the prior year. By default, this value 
is NULL. Because I wanted to calculate the change for each row in the result set, 
though, I set the third argument of the LAG function (default) to 0. 

The third example in this figure shows how to use all four of the remaining 
functions. Each of these functions groups the rows by year and sorts them by 
sales total in ascending sequence. Notice, though, that the ORDER BY clause 
for the PERCENTILE_CONT and PERCENTILE_DISC functions isn' t 
specified on the OVER clause. Instead, it's specified on the WITHIN GROUP 
clause, which, unlike the OVER clause, allows for the result set to be sorted only 
by a single column. 

The PERCENT _RANK function calculates a percent that indicates the rank 
of each row within a group. The result of this function is always a value between 
0 and 1. If you study the results in this example, you shouldn't have any trouble 
understanding how this function works. 

The CUME_DIST function is similar, but it calculates the percent of values 
that are less than or equal to the current value. This function represents the 
cumulative distribution of the values. The cumulative distribution is calculated 
by dividing the number of rows with the current value or a lower value by the 
total number of rows in the group. 

The PERCENTILE_CONT and PERCENTILE_DISC functions calculate 
the value at the percentile you specify. The difference between these two 
functions is that PERCENTILE_CONT is based on a continuous distribution of 
values, and PERCENTILE_DISC is based on a discrete distribution of values. 
This means that the value returned by PERCENTILE_CONT doesn' t need to 
appear in the result set, but the value returned by PERCENTILE_DISC does. 

In this example, these functions are used to calculate the median of the 
sales totals for each year (the value in the middle). Because there are an odd 
number of rows for 2017 and 2018, both functions return the value in the middle 
row. Because there are an even number of rows for 2019, though, there isn' t 
a middle value. In that case, the PERCENTILE_CONT function calculates 
the median by adding the two middle values together and dividing by 2. As 
you can see, the resulting value doesn't exist in the result set. By contrast, the 
PERCENTILE_DISC function uses the CUME_DIST function to identify the 
row with a cumulative distribution of .5 (the same percentile specified by the 
PERCENTILE_DISC function), and it uses the value of that row as the result. 



Chapter 9 How to use functions 299 

A query that uses the LAG function 
SELECT RepiD, SalesYear , SalesTotal AS CurrentSales, 

LAG (SalesTotal, 1 , 0) OVER ( PARTITION BY RepiD ORDER BY Sales Ye ar) 
AS LastSales , 

SalesTotal - LAG (Sa lesTotal, 1 , 0 ) 
OVER ( PARTITION BY REPID ORDER BY SalesYear) AS Change 

FROM Sales Totals ; 

RepiD Sales Year Current Sales Last Sales Oiange I\ 

1 c.r :.·.·.·.·.·::.·:::J 2017 1274856.38 0.00 1274856.38 

2 2018 923746.85 1274856.38 -351109.53 

3 2019 998337.46 923746.85 74590.61 

4 2 2017 978465.99 0.00 978465.99 

5 2 2018 974853.81 978465.99 ·3612.18 

6 2 2019 887695.75 974853.81 -8715806 

A query that uses the PERCENT_RANK, CUME_DIST, PERCENTILE_CONT, 
and PERCENTILE DISC functions 

SELECT SalesYear, RepiD, SalesTo tal, 
PERCENT_RANK () OVER (PARTITION BY Sa lesYear ORDER BY SalesTotal ) 

AS PctRank, 
CUME_DIST() OVER (PARTITION BY SalesYear ORDER BY SalesTotal ) 

AS CumeDist, 
PERCENTILE_ CONT(.S ) WITHIN GROUP (ORDER BY SalesTota l ) 

OVER ( PARTITION BY SalesYear) AS PercentileCont, 
PERCENTILE_ DISC (. S ) WITHIN GROUP (ORDER BY SalesTotal ) 

OVER ( PARTITION BY SalesYear) AS Percenti leDi s c 
FROM SalesTotals; 

Sales Year Rep Name Sales Total Highest Sales lowest Sales 

[}iJ.i ... ?.·.·.·~··.·.·~··.·~~] Jonathon Thomas 1274856.38 Jonathon Thomas Sonja Marmez 

2 2017 Andrew Marl<asian 1032875.48 Jonathon Thomas Sonja Martinez 

3 2017 Sonja Marmez 978465.99 Jonathon Thomas Sorja Martinez 

4 2018 Andrew Marl<asian 1132744.56 Andrew Marl<asian Lydia Kramer 

5 2018 Sonja Martilez 974853.81 JIMrew Marl<asian Lydia Kramer 

6 2018 Jonathon Thomas 923746.85 !Vldrew Marl<asian Lydia Kramer 

7 2018 Phift~ Wonters 655786.92 Mdrew Marl<asian Lydia Kramer 

8 2018 Lydia Kramer 422847.86 Mdrew Marl<asian Lydia Kramer 

9 2019 Jonathon Thomas 998337.46 Jonathon Thomas Lydia Kramer 

10 2019 Sonja Martilez 887695.75 Jonathon Thomas Lydia Kramer 

11 2019 Phi"~ Wonters 72443.37 Jonathon Thomas Lydia Kramer 

12 2019 Lydia Kramer 45182.44 Jonathon Thomas Lydia Kramer 

Description 
• The LEAD function retrieves data from a subsequent row in a result set, and the LAG 

function retrieves data from a previous row in a result set. 

• The PERCENT_RANK function calculates the rank of the values in a sorted set of 
values as a percent. The CUME_DIST function calculates the percent of the values in a 
sorted set of values that are less than or equal to the current value. 

• The PERCENTILE_CONT and PERCENTILE_DISC functions calculate the value at 
the specified percentile for a sorted set of values. PERCENTILE_CONT returns an exact 
percentile, and PERCENTILE_DIST returns a value that exists in the sorted column. 

Figure 9-1 5 How to use the analytic functions (part 2 of 2) 



300 Section 2 The essential SQL skills 

Perspective 
In this chapter, you learned about many of the functions that you can use 

to operate on SQL Server data. At this point, you have all of the essential skills 
you need to develop SQL code at a professional level. 

However, there's a lot more to learn about SQL Server. In the next section 
of this book, then, you'lllearn the basic skills for designing a database. Even 
if you never need to design your own database, understanding this material 
will help you work more efficiently with databases that have been designed by 
others. 

Terms 

logical functions 
ranking functions 
analytic functions 

Exercises 

cumulative distribution 
continuous distribution 
discrete distribution 

1. Write a SELECT statement that returns two columns based on the Vendors 
table. The first column, Contact, is the vendor contact name in this format: 
first name followed by last initial (for example, "John S.") The second 
column, Phone, is the VendorPhone column without the area code. Only 
return rows for those vendors in the 559 area code. Sort the result set by first 
name, then last name. 

2. Write a SELECT statement that returns the lnvoiceNumber and balance due 
for every invoice with a non-zero balance and an InvoiceDueDate that 's less 
than 30 days from today. 

3. Modify the search expression for InvoiceDueDate from the solution for 
exercise 2. Rather than 30 days from today, return invoices due before the last 
day of the current month. 

4. Write a summary query that uses the CUBE operator to return LineltemSum 
(which is the sum of InvoiceLineltemAmount) grouped by Account (an alias 
for AccountDescription) and State (an alias for VendorState). Use the CASE 
and GROUPING function to substitute the literal value "*ALL*" for the 
summary rows with null values. 

5. Add a column to the query described in exercise 2 that uses the RANK() 
function to return a column named BalanceRank that ranks the balance due in 
descending order. 



Section 3 

Database design 
and implementation 
In large programming shops, database administrators are usually 
responsible for designing the databases that are used by production 
applications, and they may also be responsible for the databases that are 
used for testing those applications. Often, though, programmers are asked 
to design, create, or maintain small databases that are used for testing. And 
in a small shop, programmers may also be responsible for the production 
databases. 

So whether you're a database administrator or a SQL programmer, 
you need the skills and knowledge presented in this section. That's true 
even if you aren't ever called upon to design or maintain a database. By 
understanding what's going on behind the scenes, you'll be able to use 
SQL more effectively. 

So, in chapter 10, you'lllearn how to design a SQL Server database. 
In chapter 11, you'll learn how to use the Data Definition Language (DDL) 
statements to create and maintain the SQL Server objects of a database. 
And in chapter 12, you'lllearn how to use the Management Studio to do 
the same tasks. 





10 

How to design a database 
In this chapter, you' ll learn how to design a new database. This is useful 
information for the SQL programmer whether or not you ever design a 
database on your own. To illustrate this process, I'll use the accounts payable 
(AP) system that you've seen throughout this book because that will make it 
easier for you to understand the design techniques. 

How to design a data structure ......................................... 304 
The basic steps for designing a data structure ..................... .. ..................... 304 
How to identify the data elements .......................... .... ..... .... ......... ... ........... 306 
How to subdivide the data elements ............................................ ............... 308 
How to identify the tables and assign columns ........................................... 310 
How to identify the primary and foreign keys ............................ ................ 312 
How to enforce the relationships between tables ........................................ 314 
How normalization works ....... .. .. .. ........... .. .. .. ............... .. .. .. .. ........ .. .. .... ...... 316 
How to identify the columns to be indexed ................................................ . 318 

How to normalize a data structure .................................... 320 
The seven normal forms ..................... .. ............................ .... ....................... 320 
How to apply the first normal form .............. .............. .. .... .... ....... .... .. .. .. ...... 322 
How to apply the second normal form .............. ........ .. ................ .... .. .... ... ... 324 
How to apply the third normal form .................. .... .... .. .......................... ...... 326 
When and how to denormalize a data structure .... .... .. ................................ 328 

Perspective ......................................................................... 330 



304 Section 3 Database design and implementation 

How to design a data structure 
Databases are often designed by database administrators (DBAs) or design 

specialists. This is especially true for large, multiuser databases. How well this 
is done can directly affect your job as a SQL programmer. In general, a well 
designed database is easy to query, while a poorly designed database is difficult 
to work with. In fact, when you work with a poorly designed database, you will 
often need to figure out how it is designed before you can code your queries 
appropriately. 

The topics that follow will teach you a basic approach for designing a data 
structure. We use that term to refer to a model of the database rather than the 
database itself. Once you design the data structure, you can use the techniques 
presented in the next two chapters to create a database with that design. 

The basic steps for designing a data structure 

In many cases, you can design a data structure based on an existing 
real-world system. The illustration at the top of figure 10-1 presents a conceptual 
view of how this works. Here, you can see that all of the information about the 
people, documents, and facilities within a real-world system is mapped to the 
tables, columns, and rows of a database system. 

As you design a data structure, each table represents one object, or entity, in 
the real-world system. Then, within each table, each column stores one item of 
information, or attribute, for the entity, and each row stores one occurrence, or 
instance, of the entity. 

This figure also presents the six steps you can follow to design a data 
structure. You' lllearn more about each of these steps in the topics that follow. In 
general, though, step 1 is to identify all the data elements that need to be stored 
in the database. Step 2 is to break complex elements down into smaller 
components whenever that makes sense. Step 3 is to identify the tables that 
will make up the system and to determine which data elements are assigned as 
columns in each table. Step 4 is to define the relationships between the tables by 
identifying the primary and foreign keys. Step 5 is to normalize the database to 
reduce data redundancy. And step 6 is to identify the indexes that are needed for 
each table. 

To model a database system after a real-world system, you can use a 
technique called entity-relationship (ER) modeling. Because this is a complex 
subject of its own, I won' t present it in this book. However, I have applied some 
of the basic elements of this technique to the design diagrams presented in this 
chapter. In effect, then, you'll be learning some of the basics of this modeling 
technique. 



Chapter 10 How to design a database 305 

A database system is modeled after a real-world system 

Real-world system Database system 

Facilities 

Documents 

Other 
systems 

The six basic steps for designing a data structure 
Step 1: Identify the data elements 

Columns 

Step 2: 

Step 3: 

Subdivide each element into its smallest useful components 

Identify the tables and assign columns 

Step 4: 

Step 5: 

Step 6: 

Identify the primary and foreign keys 

Review whether the data structure is normalized 

Identify the indexes 

Description 
• A relational database system should model the real-world environment where it's 

used. The job of the designer is to analyze the real-world system and then map it 
onto a relational database system. 

• A table in a relational database typically represents an object, or entity, in the real 
world. Each column of a table is used to store an attribute associated with the 
entity, and each row represents one instance of the entity. 

• To model a database and the relationships between its tables after a real-world 
system, you can use a technique called entity-relationship (ER) modeling. Some of 
the diagrams you'll see in this chapter apply the basic elements ofER modeling. 

Figure 10-1 The basic steps for designing a data structure 



306 Section 3 Database design and implementation 

How to identify the data elements 

The first step for designing a data structure is to identify the data elements 
required by the system. You can use several techniques to do that, including 
analyzing the existing system if there is one, evaluating comparable systems, and 
interviewing anyone who will be using the system. One particularly good source 
of information are the documents used by an existing system. 

In figure 10-2, for example, you can see an invoice that's used by an 
accounts payable system. We' ll use this document as the main source of 
information for the database design presented in this chapter. Keep in mind, 
though, that you' ll want to use all available resources when you design your own 
database. 

If you study this document, you'll notice that it contains information about 
three different entities: vendors, invoices, and line items. First, the form itself 
has preprinted information about the vendor who issued the invoice, such as the 
vendor's name and address. If this vendor were to issue another invoice, this 
information wouldn' t change. 

This document also contains specific information about the invoice. Some 
of this information, such as the invoice number, invoice date, and invoice total, 
is general in nature. Although the actual information will vary from one invoice 
to the next, each invoice will include this information. In addition to this general 
information, each invoice includes information about the items that were 
purchased. Although each line item contains similar information, each invoice 
can contain a different number of line items. 

One of the things you need to consider as you review a document like this 
is how much information your system needs to track. For an accounts payable 
system, for example, you may not need to store detailed data such as the 
information about each line item. Instead, you may just need to store summary 
data like the invoice total. As you think about what data elements to include in 
the database, then, you should have an idea of what information you ' ll need to 
get back out of the system. 



Chapter 10 How to design a database 307 

An invoice that can be used to identify data elements 

Acme Fabrication. Inc. 
Custom Contraptions, Contril•ance.1· and Confahulations Invoice Number: 101-1088 

1234 West Industrial Way East Los Angeles California 90022 Invoice Date: 04/05/20 

800.555.1212 fax 562.555.1213 www.acmefabrication.com Terms: Net 30 

Part No. Qty. Description Unit Price Extension 

CUST345 12 Design service, hr 100 . 00 1200 . 00 

457332 7 Baling wire , 25x3ft roll 79 . 90 559 . 30 

50173 4375 Duct tape, black , yd 1. 09 4768 . 75 

328771 2 Rubber tubing , 100ft roll 4 . 79 9 . 58 

CUST281 7 Assembly, hr 75 . 00 525 . 00 

CUST917 2 Testing, hr 125 . 00 250 . 00 

Sales Tax 245 . 20 

Your salesperson: Ruben Goldberg, ext 4512 

Accounts receivable: Inigo Jones , ext 4901 

Thanks for your business! 

The data elements identified on the invoice document 
Vendor name 

Vendor address 

Vendor phone number 

Vendor fax number 

Vendor web address 

Invoice number 

Description 

Invoice date 

Invoice terms 

Item part number 

Item quantity 

Item description 

Item unit price 

Item extension 

Vendor sales contact name 

Vendor sales contact extension 

Vendor AR contact name 

Vendor AR contact extension 

Invoice total 

• Depending on the nature of the system, you can identify data elements in a variety 
of ways, including interviewing users, analyzing existing systems, and evaluating 
comparable systems. 

• The documents used by a real-world system, such as the invoice shown above, can 
often help you identify the data elements of the system. 

• As you identify the data elements of a system, you should begin thinking about 
the entities that those elements are associated with. That will help you identify the 
tables of the database later on. 

Figure 10-2 How to identify the data elements 



308 Section 3 Database design and implementation 

How to subdivide the data elements 

Some of the data elements you identify in step 1 of the design procedure will 
consist of multiple components. The next step, then, is to divide these elements 
into their smallest useful values. Figure 10-3 shows how you can do that. 

The first example in this figure shows how you can divide the name of the 
sales contact for a vendor. Here, the name is divided into two elements: a first 
name and a last name. When you divide a name like this, you can easily perform 
operations like sorting by last name and using the first name in a salutation, such 
as "Dear Ruben." By contrast, if the full name is stored in a single column, you 
have to use the string functions to extract the component you need. And, as you 
learned in the last chapter, that can lead to inefficient and complicated code. In 
general, then, you should separate a name like this whenever you'll need to use 
the name components separately. Later, when you need to use the full name, you 
can combine the first and last names using concatenation. 

The second example shows how you typically divide an address. Notice 
in this example that the street number and street name are stored in a single 
column. Although you could store these components in separate columns, that 
usually doesn' t make sense since these values are typically used together. That's 
what I mean when I say the data elements should be divided into their smallest 
useful values. 

With that guideline in mind, you might even need to divide a single string 
into two or more components. A bulk mail system, for example, might require a 
separate column for the first three digits of the zip code. And a telephone number 
might require two columns: one for the area code and another for the rest of the 
number. Historically, the area code was a useful value as it provided information 
about the geographical location of the phone. However, now that so many phone 
numbers are mobile numbers, this value has become less useful. 

As in the previous step, knowledge of the real-world system and of the 
information that will be extracted from the database is critical. In some 
circumstances, it may be okay to store data elements with multiple components 
in a single column. That can simplify your design and reduce the overall number 
of columns. In general, though, most designers divide data elements as much as 
possible. That way, it 's easy to accommodate almost any query, and you don' t 
have to change the database design later on when you realize that you need to 
use just part of a column value. 



Chapter 10 How to design a database 309 

A name that's divided into first and last names 

Vendor sales contact name 

Ruben Goldberg 

+ 
Vendor sales contact first name Vendor sales contact last name 

Ruben Goldberg 

An address that's divided into street address, city, state, and zip code 

Vendor address 

1234 West Industrial Way, East Los Angeles, Californ ia 90022 

+ 
Street and number City 

1234 West Industrial Way East Los Angeles California 90022 

Description 
• If a data element contains two or more components, you should consider 

subdividing the element into those components. That way, you won't need to parse 
the element each time you use it. 

• The extent to which you subdivide a data element depends on how it will be used. 
Because it's difficult to predict all future uses for the data, most designers subdivide 
data elements as much as possible. 

• When you subdivide a data element, you can easily rebuild it when necessary by 
concatenating the individual components. 

Figure 10-3 How to subdivide the data elements 



31 0 Section 3 Database design and implementation 

How to identify the tables and assign columns 

Figure 10-4 presents the three main entities for the accounts payable system 
and lists the possible data elements that can be associated with each one. In 
most cases, you'll recognize the main entities that need to be included in a data 
structure as you identify the data elements. As I reviewed the data elements 
represented on the invoice document in figure 10-2, for example, I identified 
the three entities shown in this figure: vendors, invoices, and invoice line items. 
Although you may identify additional entities later on in the design process, it's 
sufficient to identity the main entities at this point. These entities will become 
the tables of the database. 

After you identify the main entities, you need to determine which data 
elements are associated with each entity. These elements will become the 
columns of the tables. In many cases, the associations are obvious. For example, 
it's easy to determine that the vendor name and address are associated with the 
vendors entity and the invoice date and invoice total are associated with the 
invoices entity. Some associations, however, aren't so obvious. In that case, you 
may need to list a data element under two or more entities. In this figure, for 
example, you can see that the invoice number is included in both the invoices 
and invoice line items entities and the account number is included in all three 
entities. Later, when you normalize the data structure, you may be able to 
remove these repeated elements. For now, though, it's okay to include them. 

Before I go on, I want to point out the notation I used in this figure. To start, 
any data elements I included that weren't identified in previous steps are shown 
in italics. Although you should be able to identify most of the data elements in 
the first two steps of the design process, you' ll occasionally think of additional 
elements during the third step. In this case, since the initial list of data elements 
was based on a single document, I added several data elements to this list. 

Similarly, you may decide during this step that you don' t need some of the 
data elements you've identified. For example, I decided that I didn' t need the fax 
number or web address of each vendor. So I used the strikethrough feature of my 
word processor to indicate that these data elements should not be included. 

Finally, I identified the data elements that are included in two or more tables 
by coding an asterisk after them. Although you can use any notation you like for 
this step of the design process, you' ll want to be sure that you document your 
design decisions. For a complicated design, you may even want to use a CASE 
(computer-aided software engineering) tool. 

By the way, a couple of the new data elements I added may not be clear to 
you if you haven' t worked with a corporate accounts payable system before. 
"Terms" refers to the payment terms that the vendor offers. For example, the 
terms might be net 30 (the invoice must be paid in 30 days) or might include 
a discount for early payment. "Account number" refers to the general ledger 
accounts that a company uses to track its expenses. For example, one account 
number might be assigned for advertising expenses, while another might be for 
office supplies. Each invoice that's paid is assigned to an account, and in some 
cases, different line items on an invoice are assigned to different accounts. 



Chapter 10 How to design a database 311 

Possible tables and columns for an accounts payable system 
Vendors Invoices Invoice line items 

Vendor name 

Vendor address 

Vendor city 

Vendor state 

Vendor zip code 

Vendor phone number 

Vendm fax ,,umbe1 

Vendor web address 

Invoice number* 

Invoice date 

Terms* 

Invoice total 

Payment date 

Payment total 

Invoice due date 

Credit total 

Vendor contact first name Account number* 

Vendor contact last name 

Vendor eontaet phone 

Vendo1 AR fi1 st name 

Ve1,d01 AR last name 

Vendor A:R phone 

Terms* 

Account number* 

Description 

Invoice number* 

Item patt numbet 

Item quantity 

Item description 

Item unit price 

Item extension 

Account number* 

Sequence number 

• After you identify and subdivide all of the data elements for a database, you should 
group them by the entities with which they're associated. These entities will later 
become the tables of the database, and the elements will become the columns. 

• If a data element relates to more than one entity, you can include it under all of the 
entities it relates to. Then, when you normalize the database, you may be able to 
remove the duplicate elements. 

• As you assign the elements to entities, you should omit elements that aren' t needed, 
and you should add any additional elements that are needed. 

The notation used in this figure 
• Data elements that were previously identified but aren't needed are crossed out. 

• Data elements that were added are displayed in italics. 

• Data elements that are related to two or more entities are followed by an asterisk. 

• You can use a similar notation or develop one of your own. You can also use a 
CASE (computer-aided software engineering) tool if one is available to you. 

Figure 10-4 How to identify the tables and assign columns 



312 Section 3 Database design and implementation 

How to identify the primary and foreign keys 

Once you identify the entities and data elements of a system, the next step is 
to identify the relationships between the tables. To do that, you need to identify 
the primary and foreign keys as shown in figure 10-5. 

As you know, a primary key is used to uniquely identify each row in a table. 
In some cases, you can use an existing column as the primary key. For example, 
you might consider using the VendorName column as the primary key of the 
Vendors table. Because the values for this column can be long, however, and 
because it would be easy to enter a value incorrectly, that's not a good candidate. 
Instead, an identity column is used as the primary key. 

Similarly, you might consider using the InvoiceNumber column as the 
primary key of the Invoices table. However, it's possible for different vendors to 
use the same invoice number, so this value isn' t necessarily unique. Because of 
that, an identity column is used as the primary key of this table as well. 

To uniquely identify the rows in the InvoiceLineitems table, this design 
uses a composite key. This composite key uses two columns to uniquely identify 
each row. The first column is the InvoiceiD column from the Invoices table, and 
the second column is the InvoiceSequence column. This is necessary because 
this table may contain more than one row (line item) for each invoice. And that 
means that the InvoiceiD value by itself won' t be unique. 

This book uses the composite key in the InvoiceLineitems table to show 
how to work with composite keys. However, it usually makes more sense to use 
a single column as the primary key. For example, the InvoiceLineltems table 
could start with an InvoiceLineitemiD column that uniquely identifies each row 
in the table. Then, you could use that column as the primary key, and you could 
consider dropping the InvoiceSequence column. 

After you identify the primary key of each table, you need to identify the 
relationships between the tables and add foreign key columns as necessary. In 
most cases, two tables will have a one-to-many relationship with each other. For 
example, each vendor can have many invoices, and each invoice can have many 
line items. To identify the vendor that each invoice is associated with, a VendoriD 
column is included in the Invoices table. Because the InvoiceLineitems table 
already contains an InvoiceiD column, it's not necessary to add another column 
to this table. 

The diagram at the top of this figure illustrates the relationships I identified 
between the tables in the accounts payable system. As you can see, the primary 
keys are displayed in bold. Then, the lines between the tables indicate how the 
primary key in one table is related to the foreign key in another table. Here, a 
small, round connector indicates the "one" side of the relationship, and the 
triangular connector indicates the "many" side of the relationship. 

In addition to the one-to-many relationships shown in this diagram, you can 
also use many-to-many relationships and one-to-one relationships. The second 
diagram in this figure, for example, shows a many-to-many relationship between 
an Employees table and a Committees table. As you can see, this type of 
relationship can be implemented by creating a linking table, also called a 



Chapter 10 How to design a database 313 

The relationships between the tables in the accounts payable system 

Vendors Invoices lnvoicelineltems 

VendoriD ~ lnvo iceiD • ~ lnvo iceiD 
VendorName VendoriD lnvo iceSequence 
Vendor Address lnvoiceNumber AccountNo 
VendorCity Invoice Date LineltemDescription 
VendorState lnvoiceTotal Item Quantity 
VendorZipCode PaymentTotal ltemUnitPrice 
VendorPhone CreditTotal LineltemAmount 
VendorContactFName Terms 
VendorContactLName lnvoiceDueDate 
Terms PaymentDate 
AccountNo AccountNo 

Two tables with a many-to-many relationship 

1§,13&%41 Memberships Committees 

EmployeeiD ee----01111111 EmployeeiD 
FirstName CommitteeiD 

r--e CommitteeiD 
~ CommitteeName 

LastName 
Linking table 

Two tables with a one-to-one relationship 

1§,13&%41 Employee Photos 

EmployeeiD ••---e• EmployeeiD 
FirstName EmployeePhoto 
LastName 

Description 
• Most tables should have a primary key that uniquely identifies each row. If 

necessary, you can use a composite key that uses two or more columns to uniquely 
identify each row. 

• The values of the primary keys should seldom, if ever, change. The values should 
also be short and easy to enter correctly. 

• If a suitable column doesn't exist, you can create an identity column that can be 
used as the primary key. 

• If two tables have a one-to-many relationship, you may need to add a foreign key 
column to the table on the "many" side. The foreign key column must have the 
same data type as the primary key column it's related to. 

• If two tables have a many-to-many relationship, you' ll need to define a linking 
table to relate them. Then, each of the tables in the many-to-many relationship will 
have a one-to-many relationship with the linking table. The linking table doesn't 
usually have a primary key. 

• If two tables have a one-to-one relationship, they should be related by their primary 
keys. This type of relationship is typically used to improve performance. Then, 
columns with large amounts of data can be stored in a separate table. 

Figure 10-5 How to identify the primary and foreign keys 



314 Section 3 Database design and implementation 

connecting table or an associate table. This table contains the primary key 
columns from the two tables. Then, each table has a one-to-many relationship 
with the linking table. Notice that the linking table doesn' t have its own primary 
key. Because this table doesn' t correspond to an entity and because it's used only 
in conjunction with the Employees and Committees tables, a primary key isn' t 
needed. 

The third example in figure 10-5 illustrates two tables that have a one-to-one 
relationship. With this type of relationship, both tables have the same primary 
key, which means that the information could be stored in a single table. This 
type of relationship is often used when a table contains one or more columns 
with large amounts of data. In this case, the EmployeePhotos table contains a 
large binary column with a photo of each employee. Because this column is used 
infrequently, storing it in a separate table will make operations on the Employees 
table more efficient. Then, when this column is needed, it can be combined with 
the columns in the Employees table using a join. 

How to enforce the relationships between tables 

Although the primary keys and foreign keys indicate how the tables in a 
database are related, SQL Server doesn't enforce those relationships automati
cally. Because of that, any of the operations shown in the table at the top of 
figure 10-6 would violate the referential integrity of the tables. If you deleted a 
row from a primary key table, for example, and the foreign key table included 
rows related to that primary key, the referential integrity of the two tables would 
be destroyed. In that case, the rows in the foreign key table that no longer have 
a related row in the primary key table would be orphaned. Similar problems can 
occur when you insert a row into the foreign key table or update a primary key 
or foreign key value. 

To enforce those relationships and maintain the referential integrity of the 
tables, you can use one of two features provided by SQL Server: declarative 
referential integrity or triggers. To use declarative referential integrity (DR!), 
you define foreign key constraints that indicate how the referential integrity 
between the tables is enforced. You' llleam more about defining foreign key 
constraints in the next two chapters. For now, just realize that these constraints 
can prevent all of the operations listed in this figure that violate referential 
integrity. 



Chapter 10 How to design a database 315 

Operations that can violate referential integrity 
This operation... Violates referential integrity if ... 

Delete a row from the primary key table 

Insert a row in the foreign key table 

Update the value of a foreign key 

Update the value of a primary key 

Description 

The foreign key table contains one or more rows 
related to the deleted row 

The foreign key value doesn't have a matching 
primary key value in the related table 

The new foreign key value doesn' t have a matching 
primary key value in the related table 

The foreign key table contains one or more rows 
related to the row that's changed 

• Referential integrity means that the relationships between tables are maintained 
correctly. That means that a table with a foreign key doesn' t have rows with foreign 
key values that don' t have matching primary key values in the related table. 

• In SQL Server, you can enforce referential integrity by using declarative referential 
integrity or by defining triggers. 

• To use declarative referential integrity (DR/), you define foreign key constraints. 
You' lllearn how to do that in the next two chapters. 

• When you define foreign key constraints, you can specify how referential integrity 
is enforced when a row is deleted from the primary key table. The options are to 
return an error or to delete the related rows in the foreign key table. 

• You can also specify how referential integrity is enforced when the primary key of 
a row is changed and foreign key constraints are in effect. The options are to return 
an error or to change the foreign keys of all the related rows to the new value. 

• If referential integrity isn' t enforced and a row is deleted from the primary key 
table that has related rows in the foreign key table, the rows in the foreign key table 
are said to be orphaned. 

• The three types of errors that can occur when referential integrity isn' t enforced are 
called the deletion anomaly, the insertion anomaly, and the update anomaly. 

Figure 10-6 How to enforce the relationships between tables 



316 Section 3 Database design and implementation 

How normalization works 

The next step in the design process is to review whether the data structure is 
normalized. To do that, you look at how the data is separated into related tables. 
If you follow the first four steps for designing a database that are presented in 
this chapter, your database will already be partially normalized when you get to 
this step. However, almost every design can be normalized further. 

Figure 10-7 illustrates how normalization works. The first two tables in this 
figure show some of the problems caused by an unnormalized data structure. 
In the first table, you can see that each row represents an invoice. Because an 
invoice can have one or more line items, however, the ItemDescription column 
must be repeated to provide for the maximum number of line items. But since 
most invoices have fewer line items than the maximum, this can waste storage 
space. 

In the second table, each line item is stored in a separate row. That eliminates 
the problem caused by repeating the ItemDescription column, but it introduces 
a new problem: the invoice number must be repeated in each row. This, too, can 
cause storage problems, particularly if the repeated column is large. In addition, 
it can cause maintenance problems if the column contains a value that's likely to 
change. Then, when the value changes, each row that contains the value must be 
updated. And if a repeated value must be reentered for each new row, it would be 
easy for the value to vary from one row to another. 

To eliminate the problems caused by data redundancy, you can normalize 
the data structure. To do that, you apply the normal forms you' lllearn about later 
in this chapter. As you' ll see, there are a total of seven normal forms. However, 
it's common to apply only the first three. 

The diagram in this fi gure, for example, shows the accounts payable system 
in third normal form. Here, the Terms table stores data that's needed by the 
Vendors and Invoices tables. Similarly, the GLAccounts table stores data that's 
needed by the Vendors and InvoiceLineitems tables. Storing terms and accounts 
data in one table instead of in multiple tables reduces data redundancy. At this 
point, it might not be clear to you how this works, but it should become clearer 
as you learn about the different normal forms. 



A table that contains repeating columns 

1 

2 
3 

Invoice Number hemDesaiption 1 
!"'1'1'2897 ..................... ! C# ad 
!. ••••••••••••••••••••••••••••••••••••••••• ; 

97/ 552 Catalogs 

97/ 5338 Cald revision 

lem Desaiption 2 

SOL ad 

SOL flyer 

NULL 

hemDesaiption3 

Ubrary directory 

NULL 

NULL 

A table that contains redundant data 
Invoice Number hem Desaiption 

••••••••••••••••••••••••••••••••••••••••••• 1 

1 l...~ .. ~ .. ?.~?..? .................... J C# ad 
111 

2 112897 SOL ad 

3 112897 Ubrary directory 

4 97/ 522 Catalogs 

5 97/ 522 SQL flyer 

6 97/ 5338 Card revision 

• 

Chapter 10 How to design a database 317 

. 

I 

The accounts payable system in third normal form 

Vendors 

VendoriD 
VendorName 
Vendor Address 
VendorCity 
VendorState 
VendorZipCode 
VendorPhone 
VendorContactFName 
VendorContactlastName 
DefaultTermsiD 
DefaultAccountNo 

Description 

Invoices 

~ lnvo ice iD 
VendoriD 
Invoice Number 
Invoice Date 
Invoice Total 
PaymentTotal 
CreditTotal 
TermsiD 
Invoice Due Date 
PaymentDate 

lnvoicelineltems 

• .__..,.1111 lnvo iceiD 
lnvo iceSequence 
AccountNo 
LineltemAmount 
LineltemDescription 

GLAccounts 

~r+----------------~-e Account No 

Terms 

TermsiD 
Terms Description 
TermsDueDays 

AccountDescription 

• Normalization is a formal process you can use to separate the data in a data 
structure into related tables. Normalization reduces data redundancy, which can 
cause storage and maintenance problems. 

• In an unnormalized data structure, a table can contain information about two or 
more entities. It can also contain repeating columns, columns that contain repeating 
values, and data that's repeated in two or more rows. 

• In a normalized data structure, each table contains information about a single 
entity, and each piece of information is stored in exactly one place. 

• To normalize a data structure, you apply the normal forms in sequence. Although 
there are a total of seven normal forms, a data structure is typically considered 
normalized if the first three normal forms are applied. 

Figure 10-7 How normalization works 



318 Section 3 Database design and implementation 

How to identify the columns to be indexed 

The last step in the design process is to identify the columns that should 
be indexed. An index is a structure that provides for locating one or more rows 
directly. Without an index, SQL Server has to perform a table scan, which 
involves searching through the entire table. Just as the index of a book has page 
numbers that direct you to a specific subject, a database index has pointers that 
direct the system to a specific row. This can speed performance not only when 
you're searching for rows based on a search condition, but when you're joining 
data from tables as well. If a join is done based on a primary key to foreign key 
relationship, for example, and an index is defined for the foreign key column, 
SQL Server can use that index to locate the rows for each primary key value. 

In general, a column should meet the guidelines listed at the top of figure 10-8 
before you consider creating an index for it. To start, you should index a column 
if it will be used frequently in search conditions or joins. Since you use foreign 
keys in most joins, you should typically index each foreign key column. The 
column should also contain mostly distinct values, and the values in the column 
should be updated infrequently. If these conditions aren' t met, the overhead of 
maintaining the index will probably outweigh the advantages of using it. 

SQL Server provides for two types of indexes. A clustered index defines the 
sequence in which the rows of the table are stored. Because of that, each table 
can contain a single clustered index. Although SQL Server creates a clustered 
index automatically for the primary key, you can change that if you need to. The 
second list in this figure presents some guidelines you can use to determine when 
to change the clustered index from the primary key column to another column. 
If you review these guidelines, you'll see that the primary key is usually the best 
column to use for the clustered index. 

The other type of index is a nonclustered index. You can define up to 249 
nonclustered indexes for each table. You should be aware, however, that the 
indexes must be updated each time you add, update, or delete a row. Because of 
that, you don' t want to define more indexes than you need. 

As you identify the indexes for a table, keep in mind that, like a key, an index 
can consist of two or more columns. This type of index is called a composite 
index. A special type of composite index that includes all of the columns used by 
a query is called a covering index . Although a covering index speeds retrieval, the 
overhead to maintain this type of index is significant, particularly if the table is 
updated frequently. Because of that, you won't usually define covering indexes. 

Since you don't want to add unnecessary indexes, some database designers 
recommend adding indexes later when the database is in testing or production. 
That way, you can test the queries that are commonly run against the database 
and see how they perform. Then, if they don ' t perform well, you can add indexes. 

Management Studio includes a feature that can help you identify and add 
indexes that would improve performance. To do that, enter a commonly run 
query into a Query Editor window. Then, select the Query-7 Display Estimated 
Execution Plan command. This should show any missing indexes that would 
improve performance. If you want to add the missing index, you can right-click 
it and select the Missing Index Details command to generate a script for creating 
that index. 



Chapter 10 How to design a database 319 

When to create an index 

• When the column is a foreign key 

• When the column is used frequently in search conditions or joins 

• When the column contains a large number of distinct values 

• When the column is updated infrequently 

When to reassign the clustered index 
• When the column is used in almost every search condition 

• When the column contains mostly distinct values 

• When the column is small 

• When the column values seldom, if ever, change 

• When most queries against the column will return large result sets 

Description 

• An index provides a way for SQL Server to locate information more quickly. When 
it uses an index, SQL Server can go directly to a row rather than having to search 
through all the rows until it finds the ones you want. 

• An index can be either clustered or nonclustered. Each table can have one clustered 
index and up to 249 nonclustered indexes. 

• The rows of a table are stored in the sequence of the clustered index. By default, 
SQL Server creates a clustered index for the primary key. If you don' t identify a 
primary key, the rows of the table are stored in the order in which they're entered. 

• Indexes speed performance when searching and joining tables. However, they can' t 
be used in search conditions that use the LIKE operator with a pattern that starts 
with a wildcard. And they can' t be used in search conditions that include functions 
or expressiOns. 

• You can create composite indexes that include two or more columns. You should 
use this type of index when the columns in the index are updated infrequently or 
when the index will cover almost every search condition on the table. 

• Because indexes must be updated each time you add, update, or delete a row, you 
shouldn' t create more indexes than you need. 

Figure 10-8 How to identify the columns to be indexed 



320 Section 3 Database design and implementation 

How to normalize a data structure 
The topics that follow describe the seven normal forms and teach you how to 

apply the first three. As I said earlier, you apply these three forms to some extent 
in the first four database design steps, but these topics will give you more insight 
into the process. Then, the last topic explains when and how to denormalize 
a data structure. When you finish these topics, you' ll have the basic skills for 
designing databases that are efficient and easy to use. 

The seven normal forms 

Figure 10-9 summarizes the seven normal forms. Each normal form assumes 
that the previous forms have already been applied. Before you can apply the third 
normal form, for example, the design must already be in the second normal form. 

Strictly speaking, a data structure isn' t normalized until it's in the fifth or 
sixth normal form. However, the normal forms past the third normal form are 
applied infrequently. Because of that, I won't present those forms in detail here. 
Instead, I'll just describe them briefly so you ' ll have an idea of how to apply 
them if you need to. 

The Boyce-Codd normal form is a slightly stronger version of the third 
normal form that can be used to eliminate transitive dependencies. With this 
type of dependency, one column depends on another column, which depends 
on a third column. Most tables that are in the third normal form are also in the 
Boyce-Codd normal form. 

The fourth normal form can be used to eliminate multiple multivalued 
dependencies from a table. A multivalued dependency is one where a primary 
key column has a one-to-many relationship with a non-key column. This normal 
form gets rid of misleading many-to-many relationships. 

To apply the fifth normal form, you continue to divide the tables of the 
data structure into smaller tables until all redundancy has been removed. When 
further splitting would result in tables that couldn't be used to reconstruct the 
original table, the data structure is in fifth normal form. In this form, most tables 
consist of little more than key columns with one or two data elements. 

The domain-key normal form, sometimes called the sixth normal form, is 
only of academic interest since no database system has implemented a way to 
apply it. For this reason, even normalization purists might consider a database to 
be normalized in fifth normal form. 

This figure also lists the benefits of normalizing a data structure. To 
summarize, normalization produces smaller, more efficient tables. In addition, it 
reduces data redundancy, which makes the data easier to maintain and reduces 
the amount of storage needed for the database. Because of these benefits, you 
should always consider normalizing your data structures. 

You should also be aware that the subject of normalization is a contentious 
one in the database community. In the academic study of computer science, 
normalization is considered a form of design perfection that should always be 
strived for. In practice, though, database designers and DBAs tend to use 
normalization as a flexible design guideline. 



Chapter 10 How to design a database 321 

The seven normal forms 
Normal form Description 

First ( lNF) 

Second (2NF) 

Third (3NF) 

Boyce-Codd (BCNF) 

Fourth (4NF) 

Fifth (SNF) 

Domain-key (DKNF) 
or 
Sixth (6NF) 

The value stored at the intersection of each row and column must be a scalar 
value, and a table must not contain any repeating columns. 

Every non-key column must depend on the primary key. 

Every non-key column must depend only on the primary key. 

A non-key column can' t be dependent on another non-key column. This 
prevents transitive dependencies, where column A depends on column C and 
column B depends on column C. Since both A and B depend on C, A and B 
should be moved into another table with C as the key. 

A table must not have more than one multi valued dependency, where the 
primary key has a one-to-many relationship to non-key columns. This form 
gets rid of misleading many-to-many relationships. 

The data structure is split into smaller and smaller tables until all redundancy 
has been elimjnated. If further splitting would result in tables that couldn' t be 
joined to recreate the original table, the structure is in fifth normal form. 

Every constraint on the relationship is dependent only on key constraints 
and domain constraints, where a domain is the set of allowable values 
for a column. This form prevents the insertion of any unacceptable data 
by enforcing constraints at the level of a relationship, rather than at the table 
or column level. DKNF is less a design model than an abstract "uhimate" 
normal form. SQL Server has no way to implement the constraints required 
for DKNF. 

The benefits of normalization 
• Since a normalized database has more tables than an unnormalized database, 

and since each table can have a clustered index, the database has more clustered 
indexes. That makes data retrieval more efficient. 

• Since each table contains information about a single entity, each index has fewer 
columns (usually one) and fewer rows. That makes data retrieval and insert, update, 
and delete operations more efficient. 

• Each table has fewer indexes, which makes insert, update, and delete operations 
more efficient. 

• Data redundancy is minimized, which simplifies maintenance and reduces storage. 

• Queries against the database run faster. 

Description 
• Each normal form assumes that the design is already in the previous normal form. 

• A database is typically considered to be normalized if it is in third normal form. 
The other four forms are not commonly used and are not covered in detail in this 
book. 

Figure 10-9 The seven normal forms 



322 Section 3 Database design and implementation 

How to apply the first normal form 

Figure 10-10 illustrates how you apply the first normal form to an unnor
malized invoice data structure consisting of the data elements that are shown 
in figure 10-2. The first two tables in this figure illustrate structures that aren't 
in first normal form. Both of these tables contain a single row for each invoice. 
Because each invoice can contain one or more line items, however, the first table 
allows for repeating values in the ItemDescription column. The second table 
is similar, except it includes a separate column for each line item description. 
Neither of these structures is acceptable in first normal form. 

The third table in this figure has eliminated the repeating values and 
columns. To do that, it includes one row for each line item. Notice, however, that 
this has increased the data redundancy. Specifically, the vendor name and invoice 
number are now repeated for each line item. This problem can be solved by 
applying the second normal form. 

Before I describe the second normal form, I want you to realize that I 
intentionally omitted many of the columns in the invoice data structure from the 
examples in this figure and the next figure. In addition to the columns shown 
here, for example, each of these tables would also contain the vendor address, 
invoice date, invoice total, etc. By eliminating these columns, it will be easier for 
you to focus on the columns that are affected by applying the normal forms. 



Chapter 10 How to design a database 323 

The invoice data with a column that contains repeating values 

1 

2 

VendorName lnvoiceNumber 
r·c:;;h~··f>~i;i;~il·· .. , 112897 
!. •••••••••••••••••••••••••••••••••••••••••••••••••• ; 

Zylka Design 97/ 522 

3 Zylka Design 97/ 5338 

lemDescriplion 

C# ad. SQL ad. Ubral}' directory 

Catalogs. SQ L flyer 

Card revision 
Ill 

The invoice data with repeating columns 
Vendor Name Invoice Number tern Description 1 lemDe~ion2 

1 [~~.~~~f..~.~.~~~~] 112897 C#ad SQLad 

2 Zylka Design 97/ 522 Catalogs SOL flyer 

3 Zylka Design 97/ 5338 Card revision NULL 
...... 

The invoice data in first normal form 
Vendor Name Invoice Number lem Description 

r.~.~.~.·.·.P..~.;.~~~J 112897 C#ad 

2 Cahners Publishing 112897 SQLad 

3 Cahners Publishing 112897 Ubrary directory 

4 Zylka Design 97/ 522 Catalogs 

5 Zylka Design 971522 SQLflyer 

6 Zylka Design 97/ 5338 Card revision 

Description 

lemDescription3 

Ubrary directory 

NULL 

NULL 
[! ............ 

• For a table to be in first normal form, its columns must not contain repeating 
values. Instead, each column must contain a single, scalar value. In addition, the 
table must not contain repeating columns that represent a set of values. 

• A table in first normal form often has repeating values in its rows. This can be 
resolved by applying the second normal form. 

Figure 10-1 0 How to apply the first normal form 



324 Section 3 Database design and implementation 

How to apply the second normal form 

Figure 10-11 shows how to apply the second normal form. To be in second 
normal form, every column in a table that isn't a key column must depend on the 
entire primary key. This form only applies to tables that have composite primary 
keys, which is often the case when you start with data that is completely unnor
malized. The table at the top of this figure, for example, shows the invoice data 
in first normal form after key columns have been added. In this case, the primary 
key consists of the InvoiceiD and InvoiceSequence columns. 

Now, consider the three non-key columns shown in this table. Of these 
three, only one, ItemDescription, depends on the entire primary key. The other 
two, VendorName and InvoiceNumber, depend only on the InvoiceiD column. 
Because of that, these columns should be moved to another table. The result is a 
data structure like the second one shown in this figure. Here, all of the 
information related to an invoice is stored in the Invoices table, and all of the 
information related to an individual line item is stored in the InvoiceLineitems 
table. 

Notice that the relationship between these tables is based on the lnvoiceiD 
column. This column is the primary key of the Invoices table, and it's the 
foreign key in the InvoiceLineltems table that relates the rows in that table to 
the rows in the Invoices table. This column is also part of the primary key of the 
InvoiceLineltems table. 

When you apply second normal form to a data structure, it eliminates some 
of the redundant row data in the tables. In this figure, for example, you can see 
that the invoice number and vendor name are now included only once for each 
invoice. In first normal form, this information was included for each line item. 



Chapter 10 How to design a database 325 

The invoice data in first normal form with keys added 
lnvoiceiD VendorName Invoice Number Invoice Sequence 

1 
l""'i ......................... 1 Cahners Publishing 

112897 1 
t ............................. ; 

2 1 Cahners Publishing 112897 2 

3 1 CahneB Publishing 112897 3 
4 2 Zylka Design 97/ 522 1 

5 2 Zylka Design 97/ 522 2 

G 3 Zylka Design 97/ 5338 
~ 

The invoice data in second normal form 
lnvoiceNumber VendorName lnvoiceiD ~ 

1 r·1"1"2897·····················i Cahners Publishng 1 
~ .............................. ~ .......... ; 

2 97/ 522 Zylka Design 2 

3 97/ 5338 Zylka Design 3 

1 

2 
3 
4 

5 

G 

Description 

Invoice I D Invoice Sequence 
r·····························: 
l...1 .... ................... .J 1 

1 2 

1 3 

2 
2 2 
3 

kern Desaiption 

C#ad 

SQLad 

l.Jbrary directory 

Catalogs 

SQLflyer 

Card revision 

~em Description 

C#ad 

SQLad 

l.brary directory 

Catalogs 

SOL flyer 

Card revision 

"'""' 

• For a table to be in second normal form, every non-key column must depend on 
the entire primary key. If a column doesn' t depend on the entire key, it indicates 
that the table contains information for more than one entity. This is reflected by the 
table 's composite key. 

• To apply second normal form, you move columns that don' t depend on the entire 
primary key to another table and then establish a relationship between the two 
tables. 

• Second normal form helps remove redundant row data, which can save storage 
space, make maintenance easier, and reduce the chance of storing inconsistent data. 

Figure 10-11 How to apply the second normal form 



326 Section 3 Database design and implementation 

How to apply the third normal form 

To apply the third normal form, you make sure that every non-key column 
depends only on the primary key. Figure 10-12 illustrates how you can apply 
this form to the data structure for the accounts payable system. At the top of this 
figure, you can see all of the columns in the Invoices and InvoiceLineitems tables 
in second normal form. Then, you can see a list of questions that you might ask 
about some of the columns in these tables when you apply third normal form. 

First, does the vendor information depend only on the InvoiceiD column? 
Another way to phrase this question is, "Will the information for the same vendor 
change from one invoice to another?" If the answer is no, the vendor information 
should be stored in a separate table. That way, you can be sure that the vendor 
information for each invoice for a vendor will be the same. In addition, you will 
reduce the redundancy of the data in the Invoices table. This is illustrated by the 
diagram in this figure that shows the accounts payable system in third normal 
form. Here, a Vendors table has been added to store the information for each 
vendor. This table is related to the Invoices table by the VendoriD column, which 
has been added as a foreign key to the Invoices table. 

Second, does the Terms column depend only on the InvoiceiD column? The 
answer to that question depends on how this column is used. In this case, it's 
used not only to specify the terms for each invoice, but also to specify the default 
terms for a vendor. Because of that, the terms information could be stored in 
both the Vendors and the Invoices tables. To avoid redundancy, however, the 
information related to different terms can be stored in a separate table, as 
illustrated by the Terms table in this figure. As you can see, the primary key of 
this table is an identity column named TermsiD. Then, a foreign key column 
named DefaultTermsiD has been added to the Vendors table, and a foreign key 
column named TermsiD has been added to the Invoices table. 

Third, does the AccountNo column depend only on the InvoiceiD column? 
Again, that depends on how this column is used. In this case, it's used to specify 
the general ledger account number for each line item, so it depends on the 
InvoiceiD and the InvoiceSequence columns. In other words, this column should 
be stored in the InvoiceLineltems table. In addition, each vendor has a default 
account number, which should be stored in the Vendors table. Because of that, 
another table named GLAccounts has been added to store the account numbers 
and account descriptions. Then, foreign key columns have been added to the 
Vendors and InvoiceLineltems tables to relate them to this table. 

Fourth, can the InvoiceDueDate column in the Invoices table and the 
InvoiceLineltemAmount column in the InvoiceLineitems table be derived 
from other data in the database? If so, they depend on the columns that contain 
that data rather than on the primary key columns. In this case, the value 
of the InvoiceLineitemAmount column can always be calculated from the 
ItemQuantity and ItemUnitPrice columns. Because of that, this column could 
be omitted. Alternatively, you could omit the ItemQuantity and ItemUnitPrice 
columns and keep just the InvoiceLineitemAmount column. That's what I did 
in the data structure shown in this figure. The solution you choose, however, 
depends on how the data will be used. 



Chapter 10 How to design a database 327 

The accounts payable system in second normal form 

Invoices 

lnvoice iD 
VendorName 
Vendor Address 
VendorCity 
VendorState 
VendorZipCode 
VendorPhone 
VendorContactFName 
VendorContactLName 
Invoice Number 

Invoice Date 
Invoice Total 
PaymentTotal 
CreditTotal 
Terms 
lnvoiceDueDate 
PaymentDate 
AccountNo 

lnvoiceLineltems 

••----4o4 lnvoiceiD 
lnvoiceSequence 
AccountNo 
lnvoicelineltemDescription 
Item Quantity 
ltemUnitPrice 
lnvoicelineltemAmount 

Questions about the structure 
1. Does the vendor information (VendorName, VendorAddress, etc.) depend only 

on the InvoiceiD column? 

2. Does the Terms column depend only on the lnvoiceiD column? 

3. Does the AccountNo column depend only on the InvoiceiD column? 

4. Can the InvoiceDueDate and InvoiceLineltemAmount columns be derived from 
other data? 

The accounts payable system in third normal form 

Vendors 

VendoriD 
VendorName 
Vendor Address 
VendorCity 
VendorState 
VendorZipCode 
VendorPhone 
VendorContactFName 
VendorContactLName 
DefaultTermsiD 
DefaultAccountNo 

Description 

Invoices 

~ lnvoiceiD 
VendoriD 
lnvoiceNumber 
InvoiceD ate 
lnvoiceTotal 
PaymentTotal 
CreditTotal 
TermsiD 
lnvoiceDueDate 
PaymentDate 

lnvoiceLineltems 

• .__..,.,.. lnvoiceiD 
lnvoiceSequence 
AccountNo 
LineltemAmount 
LineltemDescription 

GLAccounts 

..-t-+-~=====~-'--e AccountNo 

Terms 

TermsiD 
Terms Description 
Terms Due Days 

AccountDescription 

• For a table to be in third normal form, every non-key column must depend only on 
the primary key. 

• If a column doesn't depend only on the primary key, it implies that the column is 
assigned to the wrong table or that it can be computed from other columns in the 
table. A column that can be computed from other columns contains derived data. 

Figure 10-12 How to apply the third normal form 



328 Section 3 Database design and implementation 

By contrast, although the InvoiceDueDate column could be calculated from 
the InvoiceDate column in the Invoices table and the TermsDueDays column 
in the related row of the Terms table, the system also allows this date to be 
overridden. Because of that, the InvoiceDueDate column should not be omitted. 
If the system didn' t allow this value to be overridden, however, this column 
could be safely omitted. 

When and how to denormalize a data structure 

Denormalization is the deliberate deviation from the normal forms. Most 
denormalization occurs beyond the third normal form. By contrast, the first three 
normal forms are almost universally applied. 

To illustrate when and how to denormalize a data structure, figure 10-13 
presents the design of the accounts payable system in fifth normal form. Here, 
notice that the vendor addresses are stored in a separate table that contains the 
address, city, state, and zip code for each vendor. In addition, the vendor contacts 
are stored in a separate table that contains the first name, last name, and phone 
number for each vendor contact. 

Since this allows you to use the same address or contact for multiple 
vendors, this reduces data redundancy if multiple vendors share the same address 
or contact person. However, since vendor address and contact information is 
now split across three tables, a query that retrieves vendor addresses and contact 
information requires two joins. By contrast, if you left the address and contact 
information in the Vendors table, no joins would be required, but the Vendors 
table would be larger. 

In general, you should denormalize based on the way the data will be used. 
In this case, the system rarely needs to query vendors without address and 
contact information. In addition, it's rare that multiple vendors would have the 
same address or contact information. For these reasons, I've denormalized my 
design by eliminating the Addresses and Contacts tables. 

You might also consider denormalizing a table if the data it contains is 
updated infrequently. In that case, redundant data isn't as likely to cause problems. 

Finally, you should consider including derived data in a table if that data is 
used frequently in search conditions. For example, if you frequently query the 
Invoices table based on invoice balances, you might consider including a column 
that contains the balance due. That way, you won' t have to calculate this value 
each time it's queried. Keep in mind, though, that if you store derived data, it's 
possible for it to deviate from the derived value. For this reason, you may need 
to protect the derived column so it can't be updated directly. Alternatively, you 
could update the table periodically to reset the value of the derived column. 

Because normalization eliminates the possibility of data redundancy errors 
and optimizes the use of storage, you should carefully consider when and how to 
denormalize a data structure. In general, you should denormalize only when the 
increased efficiency outweighs the potential for redundancy errors and storage 
problems. Of course, your decision to denormalize should also be based on your 
knowledge of the real-world environment in which the system will be used. If 
you've carefully analyzed the real-world environment as outlined in this chapter, 
you' ll have a good basis for making that decision. 



Chapter 10 How to design a database 329 

The accounts payable system in fifth normal form 

Vendors 

VendoriD 
VendorName 
ContactiD 
Address iD 
DefaultTermsl D 
DefaultAccountNo 

Addresses 

A ddressiD 
Address 
City 
State 
ZipCode 

Contacts 

ContactiD 
FirstName 
Last Name 
PhoneNumber 

When to denormalize 

Invoices 

.---, lnvoiceiD 
Y VendoriD 

lnvoiceNumber 
Invoice Date 
Invoice Total 
PaymentTotal 
CreditTotal 
TermsiD 
lnvoiceDueDate 
PaymentDate 

Terms 

Terms iD 
TermsDescription 
TermsDueDays 

lnvoicelineltems 

••----4~ lnvoiceiD 
lnvoiceSequence 
AccountNo 
LineltemAmount 

[ 

LineltemDescriptioniD 

LineltemDescript ioniD 
Line Item Description 

LineltemDescriptions 

GLAccounts 

AccountNo 
'--------------e AccountDescription 

• When a column from a joined table is used repeatedly in search criteria, you should 
consider moving that column to the primary key table if it will eliminate the need 
for a join. 

• If a table is updated infrequently, you should consider denormalizing it to improve 
efficiency. Because the data remains relatively constant, you don't have to worry 
about data redundancy errors once the initial data is entered and verified. 

• Include columns with derived values when those values are used frequently in 
search conditions. If you do that, you need to be sure that the column value is 
always synchronized with the value of the columns it's derived from. 

Description 
• Data structures that are normalized to the fourth normal form and beyond typically 

require more joins than tables normalized to the third normal form. 

• Most designers denormalize data structures to some extent, usually to the third 
normal form. 

• Denormalization can result in larger tables, redundant data, and reduced 
performance. 

• Only denormalize when necessary. It is better to adhere to the normal forms unless 
it is clear that performance will be improved by denormalizing. 

Figure 10-1 3 When and how to denormalize a data structure 



330 Section 3 Database design and implementation 

Perspective 
Database design is a complicated subject. Because of that, it's impossible 

to teach you everything you need to know in a single chapter. With the skills 
you've learned in this chapter, however, you should now be able to design 
simple databases of your own. More important, you should now be able to 
evaluate the design of any database that you work with. That way, you can be 
sure that the queries you code will be as efficient and as effective as possible. 

One aspect of database design that isn't covered in this chapter is 
designing the security of the database. Among other things, that involves 
creating login IDs and database users and assigning permissions. It may also 
involve organizing the tables and other objects in the database into two or 
more schemas. You' lllearn more about how to implement database security in 
chapter 17. 

Terms 

data structure 
entity 
attribute 
instance 
entity-relationship (ER) modeling 
CASE (computer-aided software 

engineering) 
composite key 
linking table 
connecting table 
associate table 
referential integrity 
declarative referential integrity 

(DRI) 
foreign key constraints 
triggers 
orphaned row 
update anomaly 
insertion anomaly 

deletion anomaly 
normalization 
data redundancy 
unnormalized data structure 
normalized data structure 
normal forms 
index 
table scan 
clustered index 
nonclustered index 
composite index 
covering index 
Boyce-Codd normal form 
transitive dependency 
multivalued dependency 
domain-key normal form 
derived data 
denormalized data structure 
denormalization 



Chapter 10 How to design a database 331 

Exercises 
1. Design a database diagram for a product orders database with four tables. 

Indicate the relationships between tables and identify the primary key and 
foreign keys in each table. Explain your design decisions. 

Customers Orders 

CustomeriD OrdersiD 
CustomerName CustomeriD 
CustomerAddress OrderDate 
CustomerPhone ShipAddress 

Ship Date 

Orderlineltems 

OrderiD 
OrderSequence 
ProductiD 
Quantity 
UnitPrice 

Products 

ProductiD 
ProductName 
QtyPerUnit 
UnitPrice 
lnStock 
OnOrder 

2. Add the two tables below into the design for exercise 1. Create additional 
tables and columns, if necessary. Explain your design decisions. 

Shippers 

ShipperiD 
ShipperName 
ShipperAddress 
ShipperPhone 

Employees 

EmployeeiD 
FirstName 
LastName 
SSN 
Hire Date 

3. Modify your design for exercise 2 to identify the columns that should be 
indexed, and explain your decision. 

4. Design a database diagram that allows individuals to be assigned membership 
in one or more groups. Each group can have any number of individuals and 
each individual can belong to any number of groups. Create additional tables 
and columns, if necessary. Explain your design decisions. 

5. Modify your design for exercise 4 to keep track of the role served by each 
individual in each group. Each individual can only serve one role in each 
group. Each group has a unique set of roles that members can fulfill. Create 
additional tables and columns, if necessary. Explain your design decisions. 





11 

How to create a database 
and its tables with SQL 
statements 
Now that you've learned how to design a database, you're ready to learn how to 
implement your design. To do that, you use the set of SQL statements that are 
known as the data definition language (DOL). As an application programmer, 
you can use the DDL statements to create and modify the database objects 
such as tables and sequences that you need for testing. Beyond that, knowing 
what these statements do will give you a better appreciation for how a database 
works. 

An introduction to DDL ...................................................... 334 
The SQL statements for data definition ... .................. .. ..... .... .... .... .... .... .... ... 334 
Rules for coding object names .. .... .... .. .. .... ............. .... .. ..... .... .... .... .... .... .... .. . 336 

How to create databases, tables, and indexes ................ 338 
How to create a database ....... ..................................... ..... ............................ 338 
How to create a table .................................................................................. 340 
How to create an index .................................................................. ... ........ ... 342 
How to use snippets to create database objects .......................................... 344 

How to use constraints ...................................................... 346 
An introduction to constraints ..... ................................ .... ............ .... ........... 346 
How to use check constraints .... .... .... ......... .... .... .... ... .. .. .... .... ........ .... .... ...... 348 
How to use foreign key constraints ...... .... .... ...... ... .... .. .... ..... .... ... ..... .... ...... . 350 

How to change databases and tables .............................. 352 
How to delete an index, table, or database ...................... ............ ..... ........... 352 
How to alter a table ...................................................................................... 354 

How to work with sequences ............................................ 356 
How to create a sequence .............. .... ........... .... ..................... ............ .... ...... 356 
How to use a sequence ... .... .... .. ..... .... .... .... .... .. ........... .. ..... .... .... .... .... ........ ... 356 
How to delete a sequence ............... .... ........... .... ................. .... ............ .... ...... 358 
How to alter a sequence ..... .... .. .. .... ................ .... .... .... .. .. .... .......... .. .............. 358 

How to work with collations .............................................. 360 
An introduction to encodings .. .... ..... .. .. .... .. .. .. .. ..... ...... .... ..... .... ... .... ..... .... .. .360 
An introduction to collations .... .... .... ........... ............... ...... .... ........ ..... .... ...... 362 
How to view collations ...... ...... ..... .... .. .. .... .... ......... .... ....... .... .... ............ .... .. 364 
How to specify a collation .. ... ... .... .... ....... .... ... .. ...... ...... ..... .... ... .... ..... ... ....... 366 

The script used to create the AP database ...................... 368 
How the script works ................................................................................... 368 
How the DDL statements work .................................... .... .............. .............. 368 

Perspective ......................................................................... 372 



334 Section 3 Database design and implementation 

An introduction to DDL 
All of the SQL statements that you've seen so far have been part of the data 

manipulation language, or DML. But now, you'lllearn how to use the SQL 
statements that are part of the data definition language. You use these statements 
to define the objects of a database. 

The SQL statements for data definition 

Figure 11-1 summarizes the data definition language, or DDL, statements 
that you use to create, delete, or change the objects of a database. In thi s chapter, 
you'll learn how to use the statements that work with databases, tables, indexes, 
and sequences. You ' lllearn how to use the statements that work with other 
objects in later chapters. 

To work with the objects of a database, you often use the Management 
Studio that comes with SQL Server. This tool lets you create and change 
database objects using a graphical user interface. To do that, it generates and 
executes the DOL statements that implement the changes you've made. You' ll 
learn how to use the Management Studio to work with database objects in 
chapter 12. 

But first, this chapter teaches you how to code the DOL statements yourself. 
This is useful for two reasons. First, you sometimes need to examine and verify 
the DOL that's generated by the Management Studio. This is especially true for 
large database projects. Second, knowing the DOL statements helps you use the 
DML statements more effectively. Beyond that, if you ever use a DBMS that 
doesn't offer a graphical tool like the Management Studio, you have to code the 
DOL yourself. 

Because the syntax of each of the DOL statements is complex, this chapter 
doesn' t present complete syntax diagrams for the statements. Instead, the 
diagrams present only the most commonly used clauses. If you're interested in 
the complete syntax of any statement, of course, you can find it the SQL Server 
documentation. 

If you're working on a large database project, you probably won' t have 
the option of coding DOL statements at all because that will be handled by a 
database administrator (DBA). This is a common practice because the DDL 
statements can destroy data if they're used incorrectly. In addition, many of the 
optional clauses for these statements are used for tuning the performance of the 
system, which is typically the role of a DBA 

For small projects, though, the SQL programmer may often have to serve as 
the DBA too. And even for large databases, the SQL programmer often uses the 
DOL to create and work with smaller databases that are needed for testing or for 
special projects. 



Chapter 11 How to create a database and its tables with SQL statements 335 

DOL statements to create, modify, and delete objects 
Statement Description 

CREATE DATABASE 

CREATE TABLE 

CREATE INDEX 

CREATE SEQUENCE 

CREATE FUNCTION 

CREATE PROCEDURE 

CREATE TRIGGER 

CREATE VIEW 

ALTER TABLE 

ALTER SEQUENCE 

ALTER FUNCTION 

ALTER PROCEDURE 

ALTER TRIGGER 

ALTER VIEW 

DROP DATABASE 

DROP TABLE 

DROP SEQUENCE 

DROP INDEX 

DROP FUNCTION 

DROP PROCEDURE 

DROP TRIGGER 

DROP VIEW 

Description 

Creates a new database. 

Creates a new table in the current database. 

Creates a new index for the specified table. 

Creates a new sequence in the current database. 

Creates a new function in the current database. 

Creates a new stored procedure in the current database. 

Creates a new trigger in the current database. 

Creates a new view in the current database. 

Modifies the structure of the specified table. 

Modifies the attributes of a sequence. 

Modifies the specified function. 

Modifies the specified stored procedure. 

Modifies the specified trigger. 

Modifies the specified view. 

Deletes the specified database. 

Deletes the specified table. 

Deletes the specified sequence. 

Deletes the specified index. 

Deletes the specified function. 

Deletes the specified stored procedure. 

Deletes the specified trigger. 

Deletes the specified view. 

• You use the data definition language (DDL) statements to create, modify, and 
delete database objects such as the database itself, the tables contained in a 
database, and the indexes for those tables. 

• Typically, a database administrator is responsible for using the DDL statements on 
production databases in a large database system. However, every SQL programmer 
should be comfortable using these statements so they can create and work with 
small databases for testing. 

• In most cases, you' ll use the graphical user interface of the Management Studio 
to create and maintain database objects as described in chapter 12. Although the 
Management Studio generates DDL statements for you, you may need to verify or 
correct these statements. To do that, you need to understand their syntax and use. 

• If you use a SQL database other than SQL Server, it may not have a graphical tool 
for managing database objects. In that case, you must use the DDL statements. 

Figure 11-1 The SOL statements for data definition 



336 Section 3 Database design and implementation 

Rules for coding object names 

When you create most database objects, you give them names. In SQL 
Server, the name of an object is its identifier. Each identifier can be up to 128 
characters in length. To code an identifier, you typically follow the formatting 
rules presented in figure 11-2. 

As you can see, the formatting rules limit the characters you can use in 
an identifier. For example, the first character of an identifier can be a letter, an 
underscore, an at sign, or a number sign. The characters that can be used in 
the remainder of the identifier include all of the characters allowed as the first 
character, plus numbers and dollar signs. Note that a regular identifier can't 
include spaces and can't be a Transact-SQL reserved keyword, which is a word 
that's reserved for use by SQL Server. 

The first set of examples in this figure presents some valid regular identifiers. 
Notice that the identifier in the second example starts with a number sign. This 
type of identifier is used for a temporary table or procedure. Similarly, an 
identifier that starts with an at sign as in the fifth example is used for a local 
variable or parameter. You' lllearn about these special types of identifiers in 
chapters 14 and 15. 

In most cases, you'll create objects with identifiers that follow the 
formatting rules shown here. If you're working with an existing database, 
however, the identifiers may not follow these rules. In that case, you have to 
delimit the identifiers to use them in SQL statements. You can code a delimited 
identifier by enclosing it in either brackets or double quotes. The second set of 
examples shows how this works. Here, two of the identifiers are enclosed in 
brackets and one is enclosed in double quotes. The identifier in the first example 
must be delimited because it starts with a percent sign. The identifier in the 
second example must be delimited because it includes spaces. The third example 
illustrates that even when a name follows the formatting rules, you can delimit it. 
In most cases, though, there 's no reason to do that. 



Chapter 11 How to create a database and its tables with SQL statements 337 

Formatting rules for regular identifiers 
• The first character of an identifier must be a letter as defined by the Unicode 

Standard 3.2, an underscore(_), an at sign (@), or a number sign (#). 

• All characters after the first must be a letter as defined by the Unicode Standard 3.2, 
a number, an at sign, a dollar sign ($), a number sign, or an underscore. 

• An identifier can' t be a Transact-SQL reserved keyword. 

• An identifier can' t contain spaces or special characters other than those already 
mentioned. 

Valid regular identifiers 
Employees 

#Paidinvoices 

ABC$123 

Invoice_Line_Items 

@Total Due 

Valid delimited identifiers 
[%Increase) 

"Invoice Line Items" 

[@TotalDue) 

Description 
• The name of an object in SQL Server is called its identifier. Most objects are 

assigned an identifier when they're created. Then, the identifier can be used to refer 
to the object. 

• SQL Server provides for two classes of identifiers. Regular identifiers follow the 
formatting rules for identifiers. Delimited identifiers are enclosed in brackets ([]) or 
double quotation marks("") and may or may not follow the formatting rules. If an 
identifier doesn' t follow the formatting rules, it must be delimited. 

• An identifier can contain from 1 to 128 characters. 

• An at sign (@) at the beginning of an identifier indicates that the identifier is a local 
variable or parameter, a number sign (#) indicates that the identifier is a temporary 
table or procedure, and two number signs (##) indicates that the identifier is a 
global temporary object. See chapters 14 and 15 for details. 

Figure 11-2 Rules for coding object names 



338 Section 3 Database design and implementation 

How to create databases, tables, 
and indexes 

The primary role of the DOL statements is to define database objects on the 
server. So to start, the three topics that follow will teach you how to code the 
DOL statements that you use to create databases, tables, and indexes. 

How to create a database 

Figure 11-3 presents the basic syntax of the CREATE DATABASE state
ment. This statement creates a new database on the current server. In many cases, 
you ' 11 code this statement with just a database name to create the database with 
the default options. This is illustrated by the first example in this figure. 

The CREATE DATABASE statement in this example creates a database 
named New _AP. When you issue a statement like this one, SQL Server creates 
two files and allocates space for them. The first file, New_AP.mdf, will hold the 
data for the database. The second file, New _AP _log.ldf, will keep a log of any 
changes made to the database. 

If you want to use a database that was created on another server, you can 
copy the mdf file to your server. At that point, though, it's simply a data fil e. 
To be able to use the database, you have to attach it to your server. To do that, 
you use two of the optional clauses in the CREATE DATABASE statement, 
ON PRIMARY and FOR ATTACH. As you can see in the second example, you 
specify the name of the fil e that contains the database in the ON PRIMARY 
clause. Then, instead of creating a new database, SQL Server simply makes the 
existing database available from the current server. 

In this figure, the statement that attaches the database doesn' t specify an 
existing transaction log file for the database. As a result, SQL Server attempts 
to use an ldf file with the same name as the database followed by "_log". For 
example, for the data stored in the file named Test_AP.mdf, SQL Server will 
attempt to use the log data stored in the file named Test_AP _log.ldf. If a log 
file with that name doesn' t exist, SQL Server will create a new log fi le with that 
name. However, it will also return an error message that indicates that a new log 
file was created. 

Most of the clauses that aren' t included in the syntax shown here are used 
to tune the database by changing the locations of the database fi les. For small 
databases, though, this tuning usually isn' t necessary. If you want to learn about 
these options, you can refer to the description of this statement in the SQL 
Server documentation. 



Chapter 11 How to create a database and its tables with SQL statements 339 

The basic syntax of the CREATE DATABASE statement 
CREATE DATABASE database_name 

[ON [PRIMARY] (FILENAME= 'file_name' ) ] 
[FOR ATTACH] 

A statement that creates a new database 
CREATE DATABASE New_AP ; 

The response from the system 
Commands comple t e d successfully. 

A statement that attaches an existing database file 
CREATE DATABASE Test_AP 

ON PRIMARY ( FILENAME = 
'C :\Murach \SQL Se rve r 2019 \ Databas e s\Tes t _AP .mdf' ) 

FOR ATTACH; 

The response from the system 
Commands completed successf ully. 

Description 
• The CREATE DATABASE statement creates a new, empty database on the current 

server. Although the ANSI standards don' t include this statement, it's supported by 
virtually all SQL database systems. The optional clauses shown here, however, are 
supported only by SQL Server. 

• If you code this statement without any options, the new database is created using 
the default settings and the database files are stored in the default directory on the 
hard drive. For most small database projects, these settings are acceptable. 

• One of the fi les SQL Server creates when it executes the CREATE DATABASE 
statement is a transaction log file. This file is used to record modifications to the 
database. SQL Server generates the name for this file by appending "_log" to the 
end of the database name. The database name is limited to 123 characters. 

• If you have a copy of a database fi le that you'd like to work with on your server, 
you can use the FOR ATTACH clause in addition to the ON PRIMARY clause to 
attach the fi le as a database to the current server. 

• Most of the optional clauses that have been omitted from this syntax are used to 
specify the underlying file structure of the database. These clauses are used by 
DBAs to tune the performance of the database. See the SQL Server documentation 
for details. 

Warning 
• On some systems, the CREATE DATABASE statement can overwrite an existing 

database. Because of that, you' ll want to check with the DBA before using this 
statement. 

Figure 11-3 How to create a database 



340 Section 3 Database design and implementation 

How to create a table 

Figure 11-4 presents the basic syntax of the CREATE TABLE statement. 
By default, this statement creates a new table in the default schema, dbo, within 
the current database. If that's not what you want, you can qualify the table name 
with the schema name or the database name. 

All of the clauses and keywords for the CREATE TABLE statement can be 
divided into two categories: attributes that affect a single column and attributes 
that affect the entire table. This figure summarizes some of the common column 
attributes. You'llleam about the table attributes later in this chapter. 

In its simplest form, the CREATE TABLE statement consists of the name of 
the new table followed by the names and data types of its columns. This is illus
trated by the first example of this figure. Notice that the column definitions are 
enclosed in parentheses. In most cases, you'll also code one or more attributes 
for each column as illustrated by the second example in this figure. 

To identify whether a column can accept null values, you code either the 
NULL or NOT NULL keyword. If you omit both keywords, the default value is 
NULL unless the column is also defined as the primary key, in which case the 
default is NOT NULL. 

The PRIMARY KEY keywords identify the primary key for the table. To 
create a primary key based on a single column, you can code these keywords 
as an attribute of that column. To create a primary key based on two or more 
columns, however, you must code PRIMARY KEY as a table attribute. You' ll 
see how to do that in a later figure. 

When you identify a column as the primary key, two of the column's 
attributes are changed automatically. First, the column is forced to be NOT 
NULL. Second, the column is forced to contain a unique value for each row. In 
addition, a clustered index is automatically created based on the column. 

In addition to a primary key, you can also define one or more unique keys 
using the UNIQUE keyword. Unlike a primary key column, a unique key 
column can contain null values. And instead of creating a clustered index for the 
key, SQL Server creates a nonclustered index. Like the PRIMARY keyword, you 
can code the UNIQUE keyword at either the column or the table level. 

NOT NULL, PRIMARY KEY, and UNIQUE are examples of constraints. 
Constraints are special attributes that restrict the data that can be stored in the 
columns of a table. You' llleam how to code other constraints in a moment. 

The IDENTITY keyword defines a column as an identity column. As you 
know, SQL Server assigns an identity column a unique integer value. This value 
is generated by incrementing the previous value for the column. SQL Server 
allows only one identity column per table, and that column is typically used as 
the primary key. 

The DEFAULT attribute specifies a default value for a column. This value 
is used if another value isn' t specified. The default value that's specified must 
correspond to the data type for the column. 

The last attribute, SPARSE, optimizes the storage of null values for a 
column. Since this optimization requires more overhead to retrieve non-null 



Chapter 11 How to create a database and its tables with SQL statements 341 

The basic syntax of the CREATE TABLE statement 
CREATE TABLE table_name 
(column_name_ l data_ type [column_attributes] 
[, column_name_ 2 data_type [column_attributes]] ••• 
[, table_attributes]) 

Common column attributes 
Attribute Description 

NULL I NOT NULL 

PRIMARY KEYIUNIQUE 

IDENTITY 

DEFAULT default_value 

SPARSE 

Indicates whether or not the column can accept nu ll values. If 
omitted, NULL is the default unless PRIMARY KEY is speci fied. 

Identifies the primary key or a unique key for the table. If 
PRIMARY is specified, the NULL attribute isn' t allowed. 

Identifies an identity column. Only one identity column can be 
created per table. 

Specifies a default value for the column. 

Optimizes storage of null values for the column. This attribute 
was introduced with SQL Server 2008. 

A statement that creates a table without column attributes 
CREATE TABLE Vendors 
(VendoriD 

VendorName 
INT, 
VARCHAR( 50)); 

A statement that creates a table with column attributes 
CREATE TABLE Invoices 
(InvoiceiD INT PRIMARY KEY IDENTITY, 
VendoriD INT NOT NULL, 
InvoiceDate DATE NULL, 
InvoiceTotal MONEY NULL DEFAULT 0); 

A column definition that uses the SPARSE attribute 
VendorAddress2 VARCHAR (50) SPARSE NULL 

Description 
• The CREATE TABLE statement creates a table based on the column definitions, 

column attributes, and table attributes you specify. A database can contain as many 
as two billion tables. 

• A table can contain between one and 1,024 columns. Each column must have a 
unique name and must be assigned a data type. In addition, you can assign one or 
more of the column attributes shown above. 

• You can also assign one or more constraints to a column or to the entire table. See 
figures 11-7, 11-8, and 11-9 for details. 

• For the complete syntax of the CREATE TABLE statement, refer to the SQL Server 
documentation. 

Figure 11-4 How to create a table 



342 Section 3 Database design and implementation 

values, you should only use it when a column contains a high percentage of 
null values. As a general guideline, it usually makes sense to use the SPARSE 
attribute when at least 60% of the column's values are null. 

How to create an index 

Figure 11-5 presents the basic syntax of the CREATE INDEX statement, 
which creates an index based on one or more columns of a table. This syntax 
omits some of the optional clauses that you can use for tuning the indexes for 
better performance. This tuning is often done by DBAs working with large 
databases, but usually isn' t necessary for small databases. 

In the last chapter, you learned that a table can have one clustered index and 
up to 249 nonclustered indexes. By default, SQL Server creates a clustered index 
based on the primary key of a table, which is usually what you want. Because of 
that, you' ll rarely create a clustered index. 

To create an index, you name the table and columns that the index will 
be based on in the ON clause. For each column, you can specify the ASC or 
DESC keyword to indicate whether you want the index sorted in ascending or 
descending sequence. If you don 't specify a sort order, ASC is the default. 

The first example in this figure creates an index based on the VendoriD 
column in the Invoices table. Because none of the optional keywords are speci
fied, this creates a nonclustered index that is sorted in ascending sequence. 

The second example creates a nonclustered index based on two columns 
in the Invoices table: InvoiceDate and InvoiceTotal. Notice here that the 
InvoiceDate column is sorted in descending sequence. That way, the most recent 
invoices will occur first. 

For most databases, you can achieve adequate performance using indexes 
like the ones shown in the first two examples. Since these indexes index every 
row in the table, they are known as full-table indexes. However, when a database 
becomes very large, you may be able to improve performance by creating.filtered 
indexes, which are indexes that use a WHERE clause to filter the rows in the 
index. 

In general, it makes sense to create a filtered index when the number of rows 
in the index is small compared to the total number of rows in the table as shown 
in the third and fourth examples. That way, it's easier for the database engine to 
use and maintain the index, which results in better performance. Otherwise, a 
full-table index may yield better performance. 

You should also notice the names that are assigned to the indexes in these 
examples. Although you can name an index anything you like, SQL Server's 
convention is to prefix index names with the characters /X_. So I recommend 
you do that too. Then, if the index is based on a single column, you can follow 
the prefix with the name of that column as shown in the first example. Or, if an 
index is based on two or more columns, you can use the table name instead of 
the column names as shown in the second example. If necessary, you can add 
additional information to identify the index as shown in the last two examples. 



Chapter 11 How to create a database and its tables with SQL statements 343 

The basic syntax of the CREATE INDEX statement 
CREATE [CLUSTEREDINONCLUSTERED] INDEX inde x_ name 

ON table_name (col_name_ l [ASCIDESC] [, col_name 2 [ASC IDESC]] . . . ) 
[WHERE filter-condition] 

A statement that creates a nonclustered index based on a single column 
CREATE INDEX IX_VendoriD 

ON Invoic e s (Vendor iD); 

A statement that creates a nonclustered index based on two columns 
CREATE INDEX I X_I nvoi ces 

ON Invoice s ( Invoi ceDate DESC, Invoi ceTotal ); 

A statement that creates a filtered index for a subset of data in a column 
CREATE INDEX IX_Inv oices Payme ntFilter 

ON Invoi ces (InvoiceDa t e DESC, InvoiceTota l ) 
WHERE Paymen t Date IS NULL; 

A statement that creates a filtered index for categories in a column 
CREATE INDEX IX_ InvoicesDate Filter 

ON Invoi ces (Inv o i ceDate DESC, InvoiceTotal) 
WHERE Inv o iceDa te > '202 0- 02-01 ' ; 

Description 
• You use the CREATE INDEX statement to create an index for a table. An index can 

improve performance when SQL Server searches for rows in the table. 

• SQL Server automatically creates a clustered index for a table's primary key. If 
that's not what you want, you can drop the primary key constraint using the ALTER 
TABLE statement shown in figure 11-11 and then recreate the primary key with a 
nonclustered index. 

• Each table can have a single clustered index and up to 999 nonclustered indexes. 
SQL Server automatically creates a nonclustered index for each unique key other 
than the primary key. 

• By default, an index is sorted in ascending sequence. If that's not what you want, 
you can code the DESC keyword. The sequence you use should be the sequence in 
which the rows are retrieved most often when using that index. 

• A full-table index is an index that applies to every row in the table. 

• A filtered index is a type of nonclustered index that includes a WHERE clause that 
filters the rows that are included in the index. Filtered indexes were introduced with 
SQL Server 2008. 

• A filtered index can improve performance when the number of rows in the index is 
small compared to the total number of rows in the table. 

• For more details about working with filtered indexes, refer to the SQL Server 
documentation. 

Figure 11 -5 How to create an index 



344 Section 3 Database design and implementation 

How to use snippets to create database objects 

Now that you're familiar with the statements for creating tables and indexes, 
you should know that you don' t have to start these statements from scratch when 
you use the SQL Server Management Studio. Instead, you can use a feature 
introduced with SQL Server 2012 called Transact-SQL snippets that provide 
the basic structure of the statements for creating these objects as well as many 
others. Figure 11-6 shows how snippets work. 

To insert a snippet, you use the snippet picker. The easiest way to display 
this picker is to right-click in the Query Editor window and then select the Insert 
Snippet command from the shortcut menu. When you do, a list of folders that 
correspond to different types of database objects is displayed. Then, you can 
double-click the folder for the type of object you want to create to display a list 
of the snippets for that object. Finally, you can double-click a snippet to insert 
it into your code. In this figure, I inserted the snippet for the CREATE TABLE 
statement. 

After you insert a snippet, you need to replace the highlighted portions of 
code so the object is defined appropriately. For the CREATE TABLE statement 
shown here, for example, you'll want to change the name of the table, and you'll 
want to change the definitions for the two columns. You may also want to change 
the schema name. In addition, you'll typically need to add code to the snippet. 
To create a table, for example, you' ll need to enter the definitions for any 
additional columns. 



Chapter 11 How to create a database and its tables with SQL statements 345 

The snippet picker with a list of database object folders 

100% • 

Function 

Index 

Login 

Role 

Schema 

Stored Procedure 

Synonym 

Table 

Trigger 

The snippet picker with the list of snippets for a table 

Insert Snippet Table > 

:R !create Table I Creates a table. 

100% • 

The CREATE TABLE snippet after it has been inserted 
G CREATE TABLE ~ . Sample_Table 

( 

l 
column_l int 
column 2 int L~~ 

) ; 

100% • 

Description 

'Ud! , 

• Transact-SQL snippets help you write statements for creating database objects. 

...1.. 
T 

..... 

...1.. 
T 

..... 

...1.. 
T 
..... 

• To insert a Transact-SQL snippet, right-click in the Query Editor window and select 
the Insert Snippet command from the resulting menu. Then, use the snippet picker 
to select a snippet. 

• To select a snippet using the snippet picker, double-click on the folder for the 
object you want to create, then double-click on a snippet in the list that's displayed. 
Alternatively, you can select the folder or snippet and then press the Tab or Enter 
key. 

• Once a snippet has been inserted, you can replace the highlighted portions with 
your own code and add any other required code. To move from one highlighted 
portion of code to the next, press the Tab key. To move to the previous highlighted 
portion, press the Shift+ Tab keys. 

Figure 11-6 How to use snippets to create database objects 



346 Section 3 Database design and implementation 

How to use constraints 
As you've already learned, you can code constraints to restrict the values 

that can be stored in a table. These constraints are tested before a new row 
is added to a table or an existing row is updated. Then, if one or more of the 
constraints aren't satisfied, the operation isn' t performed. 

The constraints you've seen so far identify a primary key or unique key 
column or prevent null values in a column. Now you'llleam how to code other 
types of constraints. In particular, you'llleam how to code constraints to validate 
data and to enforce referential integrity. 

An introduction to constraints 

Figure 11-7 summarizes the five types of constraints provided by SQL 
Server. Except for NOT NULL, each of these constraints can be coded at either 
the column level or the table level. You've already seen how to code a primary 
key constraint at the column level, and you can code a unique key constraint in 
the same way. Now, the first example in this figure shows how to code a primary 
key constraint at the table level. 

In this example, the primary key consists of two columns. Because of that, 
it can't be defined at the column level. Notice that when you code a constraint 
at the table level, you must code a comma at the end of the preceding column 
definition. If you don't, SQL Server will try to associate the constraint with the 
preceding column, and an error will result. 

Two types of constraints you haven' t seen yet are check constraints and 
foreign key constraints. You' ll learn more about these types of constraints in the 
next two topics. To illustrate the difference between column-level constraints 
and table-level constraints, however, the second and third examples in this 
figure show two ways you can code the same two check constraints. The first 
example uses column-level constraints to limit the values in the InvoiceTotal 
and PaymentTotal columns to numbers greater than or equal to zero. The second 
example uses a compound condition to specify both constraints at the table level. 
Although the first technique is preferred, the second example illustrates that a 
table-level constraint can refer to any of the columns in a table. By contrast, a 
column-level constraint can refer only to the column that contains the constraint. 



Chapter 11 How to create a database and its tables with SQL statements 347 

Column and table constraints 
Constraint Used as a column-level constraint Used as a table-level constraint 

NOT NULL 

PRIMARY KEY 

UNIQUE 

CHECK 

[FOREIGN KEY] 
REFERENCES 

Prevents null values from being stored 
in the column. 

Requires that each row in the table have a 
unique value in the column. Null values 
are not allowed. 

Requires that each row in the table have a 
unique value in the column. 

Limits the values for a column. 

Enforces referential integrity between a 
column in the new table and a column in a 
related table. 

n/a 

Requires that each row in the table have 
a unique set of values over one or more 
columns. Null values are not allowed. 

Requires that each row in the table have 
a unique set of values over one or more 
columns. 

Limits the values for one or more columns. 

Enforces referential integrity between 
one or more columns in the new table 
and one or more columns in the related 
table. 

A statement that creates a table with a two-column primary key constraint 
CREATE TABLE InvoiceLineitemsl 
(InvoiceiD INT NOT NULL, 
InvoiceSequence SMALLINT NOT NULL, 
InvoiceLineitemAmount MONEY NOT NULL, 
PRIMARY KEY (InvoiceiD, InvoiceSequence)); 

A statement that creates a table with two column-level check constraints 
CREATE TABLE Invoicesl 
(InvoiceiD INT NOT NULL IDENTITY PRIMARY KEY, 
InvoiceTotal MONEY NOT NULL CHECK (Invoic eTotal >= 0), 
PaymentTotal MONEY NOT NULL DEFAULT 0 CHECK (PaymentTotal >= 0)); 

The same statement with the check constraints coded at the table level 
CREATE TABLE Invoices2 
(InvoiceiD INT NOT NULL IDENTITY PRIMARY KEY, 
InvoiceTotal MONEY NOT NULL, 
PaymentTotal MONEY NOT NULL DEFAULT 0, 
CHECK ((InvoiceTotal >= 0) AND (PaymentTotal >= 0))); 

Description 
• Constraints are used to enforce the integrity of the data in a table by defining rules about 

the values that can be stored in the columns of the table. Constraints can be used at the 
column level to restrict the value of a single column or at the table level to restrict the 
value of one or more columns. 

• You code a column-level constraint as part of the definition of the column it constrains. 
You code a table-level constraint as if it were a separate column definition, and you name 
the columns it constrains within that definition. 

• Constraints are tested before a new row is added to a table or an existing row is updated. 
If the new or modified row meets all of the constraints, the operation succeeds. Otherwise, 
an error occurs and the operation fails. 

Figure 11-7 An introduction to constraints 



348 Section 3 Database design and implementation 

How to use check constraints 

To code a check constraint, you use the syntax presented in figure 11-8. As 
you can see, you code the CHECK keyword followed by the condition that the 
data must satisfy. This condition is evaluated as a Boolean expression. The insert 
or update operation that's being performed is allowed only if this expression 
evaluates to a True value. 

The first example in this figure uses a column-level check constraint to 
limit the values in the InvoiceTotal column to numbers greater than zero. This 
is similar to the constraints you saw in the previous figure. Notice that if you try 
to store a negative value in this column as illustrated by the INSERT statement 
in this example, the system responds with an error and the insert operation is 
terminated. 

The second example shows how you can use a check constraint to limit a 
column to values that have a specific format. Note that although this constraint 
limits the values in a single column, it's coded at the table level because it refers 
to a column other than the one being constrained. The first part of the condition in 
this check constraint uses a LIKE expression to restrict the VendorCode column to 
six characters, consisting of two alphabetic characters followed by four numeric 
characters. Then, the second part of the condition restricts the first two characters 
of the YendorCode column to the first two characters of the VendorName column. 

In general, you should use check constraints to restrict the values in a 
column whenever possible. In some situations, however, check constraints can 
be too restrictive. As an example, consider a telephone number that's constrained 
to the typical "(000) 000-0000" format used for US phone numbers. The 
problem with this constraint is that it wouldn't let you store phone numbers with 
extensions (although you could store extensions in a separate column) or phone 
numbers with an international format. 

For this reason, check constraints aren't used by all database designers. That 
way, the database can store values with formats that weren' t predicted when the 
database was designed. However, this flexibility comes at the cost of allowing 
some invalid data. For some systems, this tradeoff is acceptable. 

Keep in mind, too, that application programs that add and update data can 
also include data validation. In that case, check constraints may not be necessary. 
Because you can't always assume that an application program will check for 
valid data, though, you should include check constraints whenever that makes 
sense. 



Chapter 11 How to create a database and its tables with SQL statements 349 

The syntax of a check constraint 
CHECK (condition) 

A column-level check constraint that limits invoices to positive amounts 
A statement that defines the check constraint 
CREATE TABLE Invoices3 
(InvoiceiD INT NOT NULL IDENTITY PRIMARY KEY, 
InvoiceTotal MONEY NOT NULL CHECK (InvoiceTotal > 0)); 

An INSERT statement that fails due to the check constraint 
INSERT Invoices3 
VALUES (-100); 

The response from the system 
The INSERT statement conflicted with the CHECK constraint "CK __ Invoices3 
Invoi OBC6C43E". The conflict occurred in database "New_AP", table "dbo. 
Invoices3", column ' InvoiceTotal'. 
The statement has been terminated. 

A table-level check constraint that limits vendor codes to a specific format 
A statement that defines the check constraint 
CREATE TABLE Vendorsl 
(VendorCode CHAR(6) NOT NULL PRIMARY KEY, 

VendorName VARCHAR ( 50 ) NOT NULL, 
CHECK ((VendorCode LIKE '[A-Z][A-Z] [0-9] [0-9][0-9] [0-9]') AND 

(LEFT(VendorCode,2) = LEFT(VendorName,2)))); 

An INSERT statement that fails due to the check constraint 
INSERT Vendorsl 
VALUES ('Mc4559','Castle Printers, Inc.'); 

The response from the system 
The INSERT statement conflicted with the CHECK constraint "CK __ 
Vendors1 __ 164452B1". The conflict occurred in database "New_AP", table 
"dbo.Vendorsl". 
The statement has been terminated. 

Description 
• Check constraints limit the values that can be stored in the columns of a table. 

• The condition you specify for a check constraint is evaluated as a Boolean expres
sion. If the expression is true, the insert or update operation proceeds. Otherwise, it 
fails. 

• A check constraint that's coded at the column level can refer only to that column. A 
check constraint that's coded at the table level can refer to any column in the table. 

Figure 11-8 How to use check constraints 



350 Section 3 Database design and implementation 

How to use foreign key constraints 

Figure 11-9 presents the syntax of a foreign key constraint, also known as 
a reference constraint. This type of constraint is used to define the relationships 
between tables and to enforce referential integrity. 

To create a foreign key constraint at the column level, you code the 
REFERENCES keyword followed by the name of the related table and the name 
of the related column in parentheses. Although you can also code the FOREIGN 
KEY keywords, these keywords are optional and are usually omitted. After 
the REFERENCES clause, you can code the ON DELETE and ON UPDATE 
clauses. I'll have more to say about these clauses in a moment. 

The first two statements in this figure show how to create two related tables. 
The first statement creates the primary key table, a table named Vendors9. Then, 
the second statement creates the foreign key table, named Invoices9. Notice that 
the VendoriD column in this table includes a REFERENCES clause that identifies 
the VendoriD column in the Vendors9 table as the related column. 

The next statement in this figure is an INSERT statement that attempts to 
insert a row into the Invoices9 table. Because the Vendors9 table doesn' t contain 
a row with the specified VendoriD value, however, the insert operation fails. 

Before I go on, you should realize that although the foreign key of one table 
is typically related to the primary key of another table, that doesn' t have to be the 
case. Instead, a foreign key can be related to any unique key. For the purposes of 
this topic, though, I'll assume that the related column is a primary key column. 

By default, you can' t delete a row from the primary key table if related rows 
exist in a foreign key table. Instead, you have to delete the related rows from 
the foreign key table first. If that 's not what you want, you can code the ON 
DELETE clause with the CASCADE option. Then, when you delete a row from 
the primary key table, the delete is cascaded to the related rows in the foreign 
key table. Because a cascading delete can destroy valuable data if it 's used 
improperly, you should use it with caution. 

The ON UPDATE clause is similar. If you code the CASCADE keyword in 
this clause, a change to the value of a primary key is automatically cascaded to 
the related rows in the foreign key table. Otherwise, the change isn' t allowed. 
Since most tables are designed so their primary key values don' t change, you 
won' t usually code the ON UPDATE clause. 

When you code a foreign key constraint at the column level, you relate a 
single column in the foreign key table to a single column in the primary key 
table. If the keys consist of two or more columns, however, you have to code the 
constraint at the table level. For example, suppose that a foreign key consists of 
two columns named CustomeriD2 and CustomeriD4 and that the foreign key is 
related to two columns with the same name in a table named Customers. Then, 
you would define the foreign key constraint like this: 

FOREIGN KEY (CustomeriD2, CustomeriD4) 
REFERENCES Customers (CustomeriD2, CustomeriD4) 

In this case, you must include the FOREIGN KEY keywords. 



Chapter 11 How to create a database and its tables with SQL statements 351 

The syntax of a column-level foreign key constraint 
[FOREIGN KEY] REFERENCES ref_ table_name (ref_ column_name) 

[ON DELETE {CASCADEINO ACTION}] 
[ON UPDATE {CASCADEINO ACTION}] 

The syntax of a table-level foreign key constraint 
FOREIGN KEY (column_name_1 [, column_name_2] • • • ) 

REFERENCES ref_table_name (ref_column_name_1 [, ref_column_name_2] ••• ) 
[ON DELETE {CASCADEINO ACTION}] 
[ON UPDATE {CASCADEINO ACTION}] 

A foreign key constraint defined at the column level 
A statement that creates the primary key table 
CREATE TABLE Vendors9 
(VendoriD 

VendorName 
INT NOT NULL PRIMARY KEY, 
VARCHAR(SO) NOT NULL); 

A statement that creates the foreign key table 
CREATE TABLE Invoices9 
(InvoiceiD INT NOT NULL PRIMARY KEY, 
VendoriD INT NOT NULL REFERENCES Vendors9 (VendoriD), 
InvoiceTotal MONEY NULL) ; 

An INSERT statement that fails because a related row doesn't exist 
INSERT Invoices9 
VALUES (1, 99, 100); 

The response from the system 
The INSERT statement conflicted with the FOREIGN KEY constraint 
"FK_Invoices9_Vendo 1367E606". The conflict occurred in database "New_AP" , 
table "dbo .Vendors9", column 'VendoriD'. 
The statement has been terminated. 

Description 
• You use the FOREIGN KEY clause to define a foreign key constraint, also called a 

reference constraint. A foreign key constraint defines the relationship between two 
tables and enforces referential integrity. 

• A foreign key constraint that's coded at the column level can only relate a single column 
in the new table to a single column in the related table. A constraint that's coded at the 
table level can relate two tables by two or more columns. 

• Typically, a foreign key constraint refers to the primary key of the related table. However, 
it can also refer to a unique key. 

• The ON DELETE clause specifies what happens to rows in the table if the row in the 
related table with the same key value is deleted. The ON UPDATE clause specifies what 
happens to rows in the table if the key of the related row is updated. 

• The CASCADE keyword causes the rows in this table to be deleted or updated to match 
the row in the related table. This is known as a cascading delete or a cascading update. 

• The NO ACTION keyword prevents the row in the related table from being deleted 
or updated and causes an error to be raised. This is usually the preferred option. 

Figure 11-9 How to use foreign key constraints 



352 Section 3 Database design and implementation 

How to change databases and tables 
After you create a database, you may need to change it. For example, you 

may need to add a new table or index. To do that, you can use the CREATE 
statements that you've already learned. If you need to modify an existing table, 
however, or if you need to delete an existing index, table, or database, you'll 
need to use the statements that follow. 

How to delete an index, table, or database 

Figure 11-10 presents the syntax of the three DROP statements you use to 
delete an index, a table, or a database. You can use these statements to delete one 
or more indexes, tables, or databases on the current server. 

If other objects depend on the object you're trying to delete, SQL Server 
won' t allow the deletion. For example, you can't delete a table if a foreign key 
constraint in another table refers to that table, and you can' t delete an index if it's 
based on a primary key or a unique key. In addition, you can' t drop a database 
that's currently in use. 

You should also know that when you delete a table, many of the objects 
related to that table are deleted as well. That includes any indexes, triggers, or 
constraints defined for the table. By contrast, any views or stored procedures that 
are associated with a deleted table are not deleted. Instead, you have to delete 
these objects explicitly using the statements you'lllearn in chapter 15. 

Because the DROP statements delete objects permanently, you' ll want to use 
them cautiously. In fact, you may want to create a backup copy of the database 
before using any of these statements. That way, you can restore the database if 
necessary. 



Chapter 11 How to create a database and its tables with SQL statements 353 

The syntax of the DROP INDEX statement 
DROP INDEX index_name_ l ON table_name_ l [, index_name_ 2 ON table_name_ 2] ••• 

The syntax of the DROP TABLE statement 
DROP TABLE table_name_ l [, table_name_ 2] ••• 

The syntax of the DROP DATABASE statement 
DROP DATABASE database_name_ l [, database_ name_ 2] ... 

Statements that delete database objects 
A statement that deletes an index from the Invoices table 
DROP INDEX IX_ Invoices ON Invoices; 

A statement that deletes a table from the current database 
DROP TABLE Vendorsl; 

A statement that qualifies the table to be deleted 
DROP TABLE New_AP.dbo.Vendorsl; 

A statement that deletes a database 
DROP DATABASE New_AP; 

Description 
• You can use the DROP INDEX statement to delete one or more indexes from one 

or more tables in any database on the current server. 

• You can use the DROP TABLE statement to delete one or more tables from any 
database on the current server. To delete a table from a database other than the 
current database, you must qualify the table name with the database name. 

• You can use the DROP DATABASE statement to delete one or more databases 
from the current server. 

• You can' t delete a table if a foreign key constraint in another table refers to that 
table. 

• When you delete a table, all of the data, indexes, triggers, and constraints are 
deleted. Any views or stored procedures associated with the table must be deleted 
explicitly. 

• You can't delete an index that's based on a primary key or unique key constraint. To 
do that, you have to use the ALTER TABLE statement. See figure 11-11 for details. 

Warnings 
• You can' t undo a delete operation. For this reason, you may want to back up the 

database before you use any of these statements so you can restore it if necessary. 

• You should never use these statements on a production database without first 
consulting the DBA. 

Figure 11-1 0 How to delete an index, table, or database 



354 Section 3 Database design and implementation 

How to alter a table 

Figure 11-11 presents the basic syntax of the ALTER TABLE statement. You 
can use this statement to modify an existing table in one of several ways. The 
clauses shown here are the ones you're most likely to use. 

The first example in this figure shows how to add a new column to a table. 
As you can see, you code the column definition the same way you do when you 
create a new table: You specify the column name, followed by its data type and 
its attributes. 

The second example shows how to drop an existing column. Note that SQL 
Server prevents you from dropping some columns. For example, you can't drop 
a column if it's the primary key column, if it's used in a check constraint or a 
foreign key constraint, or if an index is based on it. 

The third and fourth examples show how to add constraints to a table. 
The third example adds a check constraint, and the fourth example adds a 
foreign key constraint. You can use the same technique to add a primary key or 
unique constraint. Note that you use this technique regardless of whether the 
constraint refers to a single column or to two or more columns. That's because 
the ALTER COLUMN clause only lets you change the data type or the NULL 
or NOT NULL attribute of an existing column. You can't use it to add column 
constraints. 

When you add a table constraint, SQL Server automatically checks that 
existing data meets the constraint. If that's not what you want, you can include 
the WITH NOCHECK keywords in the ALTER statement. This is illustrated in 
the third example. 

In addition to adding constraints, you can use the ALTER TABLE statement 
to delete constraints. To do that, you have to know the name of the constraint. 
Although you can name a constraint when you create it, you don't usually do 
that. That's why I didn't include that information in the syntax for creating 
constraints. Instead, you usually let SQL Server generate a constraint name for 
you. Then, if you need to delete the constraint, you can use the Management 
Studio as described in the next chapter to find out what name SQL Server 
assigned to it. 

The last example shows how to modify the data type of an existing column. 
In this case, a column that was defined as VARCHAR(lOO) is changed to 
VARCHAR(200). Because the new data type is wider than the old data type, 
you can be sure that the existing data will still fit. However, that's not always 
the case. Because of that, SQL Server checks to be sure that no data will be lost 
before it changes the data type. If the change will result in a loss of data, it's not 
allowed. 



Chapter 11 How to create a database and its tables with SQL statements 355 

The basic syntax of the ALTER TABLE statement 
ALTER TABLE table_name [WITH CHECKIWITH NOCHECK] 
{ADD new_ column_name data_ type [column_attributes] 

DROP COLUMN column_name I 
ALTER COLUMN column_ name new_ data_ type [NULLINOT NULL] 
ADD [CONSTRAINT] new_constraint_ definition I 
DROP [CONSTRAINT] constraint_name} 

Examples of the ALTER TABLE statement 
A statement that adds a new column 
ALTER TABLE Vendors 
ADD LastTranDate DATE NULL; 

A statement that drops a column 
ALTER TABLE Vendors 
DROP COLUMN LastTranDate; 

A statement that adds a new check constraint 
ALTER TABLE Invoices WITH NOCHECK 
ADD CHECK (InvoiceTotal >= 1); 

A statement that adds a foreign key constraint 
ALTER TABLE InvoiceLineitems WITH CHECK 
ADD FOREIGN KEY (AccountNo) REFERENCES GLAccounts(AccountNo); 

A statement that changes the data type of a column 
ALTER TABLE InvoiceLineitems 
ALTER COLUMN InvoiceLineitemDescription VARCHAR(200); 

Description 
• You use the ALTER TABLE statement to modify an existing table. You can use this 

statement to add columns or constraints, drop columns or constraints, or change the 
definition of an existing column, including changing the column's data type. 

• Before SQL Server changes the data type of a column, it checks to be sure that no 
data will be lost. If it will, the operation isn't performed. 

• You can modify a column to allow null values as long as the column isn' t defined 
as the primary key. You can modify a column so it doesn' t allow null values as long 
as none of the existing rows contain null values in that column. 

• You can add a column that doesn't allow null values only if you specify a default 
value for that column. 

• To delete a constraint, you must know its name. If you let SQL Server generate the 
name for you, you can use the Management Studio as shown in the next chapter to 
look up the name. 

• By default, SQL Server verifies that existing data satisfies a new check or foreign 
key constraint. If that's not what you want, you can code the WITH NOCHECK 
keywords. 

Warning 
• You should never alter a table in a production database without first consulting the DBA. 

Figure 11-11 How to alter a table 



356 Section 3 Database design and implementation 

How to work with sequences 
A sequence is a type of database object introduced with SQL Server 2012 

that automatically generates a sequence of integer values. Because you can 
use the IDENTITY attribute for the primary key of a table to generate a simple 
sequence of numbers that starts with 1 and is incremented by 1, you won't 
typically use a sequence for that purpose. Instead, you'll use a sequence only 
if you want to generate a more complex sequence of numbers or if you want to 
share the sequence between multiple tables. 

How to create a sequence 

Figure 11-12 shows how to create a sequence. Most of the time, you can 
create a sequence by coding the CREATE SEQUENCE statement followed by the 
name of the sequence and the starting value. In the first example, for instance, the 
CREATE SEQUENCE statement creates a sequence named TestSequencel. This 
sequence starts with a value of 1, is incremented by a value of 1, has minimum 
and maximum values that are determined by the data type (bigint by default). In 
addition, this sequence doesn't cycle back to the minimum value when it reaches 
the last number in the sequence, and it doesn' t cache any sequence numbers. 
(Although CACHE is the default, a cache size must be specified to use it.) In 
most cases, these settings are adequate. 

If you need to create a sequence that works differently, you can use any 
of the other clauses of the CREATE SEQUENCE statement to modify the 
sequence. For example, you can use the INCREMENT BY clause as shown in 
the second example to increment the sequence numbers by a value other than 1. 
Although you'll typically code a positive increment value to create an ascending 
sequence, you can also code a negative value to create a descending sequence. 

The third example shows how to create a sequence using all of the optional 
clauses. This example generates a sequence of int values that begins with 100, 
is incremented by a value of 10, has a minimum value of 0, has a maximum 
value of 1 ,000,000, stores 10 values in the cache at a time, and cycles back to 
the beginning of the sequence when it reaches the end. Note that a sequence 
cycles back to the minimum value for the sequence (the maximum value for a 
descending sequence) even if a starting value is specified. Because of that, you'll 
want to be sure to specify a minimum value when you use the CYCLE keyword. 

How to use a sequence 

Once you've created a sequence, you can use it in a variety of ways. For 
example, you can use it to specify the default value for a column in a table. 
You can also use it in an INSERT statement as the value for a column. This is 
illustrated in the second set of examples in figure 11-12. Here, the first example 
creates a table that contains an int column named SequenceNo. Then, the second 
example inserts two rows into the table. Here, the NEXT VALUE FOR function 



Chapter 11 How to create a database and its tables with SQL statements 357 

How to create a sequence 
The syntax of the CREATE SEQUENCE statement 
CREATE SEQUENCE sequence_name 

[AS integer_type] 
[START WITH starting_integer] 
[INCREMENT BY increment_integer] 
[{MINVALUE minimum_integer I NO MINVALUE}] 
[ {MAXVALUE maximum_integer I NO MAXVALUE}] 
[{CYCLEINOCYCLE}] 
[{CACHE cache_ sizeiNOCACHE}] 

A statement that creates a sequence that starts with 1 
CREATE SEQUENCE TestSequence1 

START WITH 1; 

A statement that specifies a starting value and an increment for a sequence 
CREATE SEQUENCE TestSequence2 

START WITH 10 
INCREMENT BY 10; 

A statement that specifies all optional parameters for a sequence 
CREATE SEQUENCE TestSequence3 

AS int 
START WITH 100 INCREMENT BY 10 
MINVALUE 0 MAXVALUE 1000000 
CYCLE CACHE 10; 

How to use a sequence 
A statement that creates a test table 
CREATE TABLE SequenceTab1e( 

SequenceNo 
Description 

INT, 
VARCHAR(SO)); 

Statements that get the next value for a sequence 
INSERT INTO SequenceTable 
VALUES (NEXT VALUE FOR TestSequence3, 'First inserted row') 
INSERT INTO SequenceTable 
VALUES (NEXT VALUE FOR TestSequence3, 'Second inserted row'); 

A statement that gets the current value of the sequence 
SELECT current_value FROM sys.sequences WHERE name= 'TestSequence3'; 

c:urrent_ value !" ..................................... ! 
' 110 ' l ....................................... J 

Description 
• You use the CREATE SEQUENCE statement to generate integer values for a 

column in one or more tables. 

• By default, the CREATE SEQUENCE statement creates a sequence with the bigint 
data type that starts with the minimum value for the data type, is incremented by 
a value of 1, has minimum and maximum values based on the data type, doesn' t 
specify the cache size, and doesn't restart the sequence when the end is reached. 

• You can use the NEXT VALUE FOR function to get the next value in the sequence. 

• You can query the sys.sequences table to get information about a sequence. 

Figure 11-12 How to create and use a sequence 



358 Section 3 Database design and implementation 

gets the next value from the sequence named TestSequence3 so it can be inserted 
into the SequenceNo column. 

The last example in figure 11-12 shows how to use the sys.sequences catalog 
view to get information about a sequence. You'lllearn about catalog views in 
chapter 13. For now, just realize that the SELECT statement shown here retrieves 
the current value for the sequence from this view. If you review the starting value 
and the increment for the sequence, you'll see how this works. 

How to delete a sequence 

When you delete a table, the sequences that are used by the table aren' t 
deleted since they' re independent of any table. As a result, if you want to delete 
a sequence, you must use the DROP SEQUENCE statement shown in figure 
11-13. Here, the first example drops the sequence named TestSequence2 that was 
created in figure 11-12. 

How to alter a sequence 

Once you've created a sequence, you can use the ALTER SEQUENCE 
statement to alter the attributes of the sequence as shown in figure 11-13. This 
statement is similar to the CREATE SEQUENCE statement. The two differ
ences are that you can' t change the data type for a sequence, and you use the 
RESTART clause to set a new starting number for the sequence. In addition, 
you can't set the minimum and maximum values so they don't make sense. For 
example, if the starting value of the sequence is 1, you can't set the minimum 
value to 2 without resetting the starting value so it's greater than or equal to 2. 
Similarly, if the current value of the sequence is 99, you can' t set the maximum 
value to 98 without resetting the starting value so it's less than or equal to 98. 



Chapter 11 How to create a database and its tables with SQL statements 359 

The syntax of the DROP SEQUENCE statement 
DROP SEQUENCE sequence_namel[, sequence_name2] .•• 

A statement that drops a sequence 
DROP SEQUENCE TestSequence2; 

The syntax of the ALTER SEQUENCE statement 
ALTER SEQUENCE sequence_name 

[RESTART [WITH starting_ integer]] 
[INCREMENT BY increment_ integer] 
[{MINVALUE minimum_integer I NO MINVALUE}] 
[ {MAXVALUE maximum_ integer I NO MAXVALUE}] 
[{CYCLEINOCYCLE}] 
[{CACHE cache_sizeiNOCACHE}] 

A statement that alters a sequence 
ALTER SEQUENCE TestSequencel 

INCREMENT BY 9 
MINVALUE 1 MAXVALUE 999999 
CACHE 9 
CYCLE; 

Description 
• You can use the DROP SEQUENCE statement to delete a sequence. A sequence 

can't be deleted if it's used as the default value for a column. 

• You can use the ALTER SEQUENCE statement to alter the attributes of a 
sequence. However, you can't change the data type, and you can't set the minimum 
and maximum values so they don't make sense based on existing values. 

• If you omit the WITH value of the RESTART clause, the sequence is restarted 
based on the current definition of the sequence. 

Figure 11-1 3 How to delete and alter a sequence 



360 Section 3 Database design and implementation 

How to work with collations 
So far, this book has assumed that you're using the default collation for SQL 

Server. Now, you'll learn more about collations and why you might want to use 
a collation that's different from the default. But first, you need to learn a little 
about encodings. 

An introduction to encodings 

A character set refers to a set of characters and their numeric codes. An 
encoding refers to the representation of these numeric codes. For example, 
Unicode is a character set that defines numeric codes for characters from most of 
the world's writing systems, and UTF-8 and UTF-16 are encodings of Unicode 
that provide two different ways to represent these characters. 

Figure 11-14 begins by presenting four encodings that are commonly used 
by SQL Server. The Latini encoding, technically known as ISO/IEC 8859-1, 
is the default encoding used for the char and varchar types. It uses 1 byte per 
character to represent 256 of the most commonly used characters in Western 
European languages. That includes the 128 characters in the older ASCJ/ 
character set. 

The UCS-2 encoding is the default encoding used for the nchar and nvarchar 
types. It uses 2 bytes per character and can be used to represent the first 65,536 
Unicode characters. 

SQL Server 2012 introduced support for the supplementary characters 
provided by Unicode that go beyond the original 65,536 characters. To provide 
for these characters in nchar and nvarchar types, SQL Server uses the UTF-16 
encoding. This encoding uses 4 bytes per character to store supplementary 
characters such as emojis. 

SQL Server 2019 introduced support for the UTF-8 encoding, which can be 
used to store Unicode characters, including the supplementary characters, in char 
and varchar data types. This encoding requires from 1 to 4 bytes per character 
and is widely used when working with the Internet. 

The second table in this figure should help you understand the differences in 
the bytes required to store characters using the three Unicode encodings. To store 
an ASCII character, for example, UTF-8 requires 1 byte, but UCS-2 and UTF-16 
require 2 bytes. On the other hand, to store Asian ideographs, UTF-8 requires 3 
bytes but UCS-2 and UTF-16 require only two. Both UTF-8 and UTF-16 require 
4 bytes to store supplementary characters, and these characters aren't supported 
by UCS-2. This is important to keep in mind when you decide what collation to 
use. 



Chapter 11 How to create a database and its tables with SQL statements 361 

Common character encodings 
Name Bytes Supported characters 

Latinl 

UCS- 2 

UTF-8 

1 

2 

1-4 

The letters, digits, and punctuation for most Western European languages. 

The first 65,536 Unicode characters, with 2 bytes for each character. 

All Unicode characters, with I to 3 bytes for the first 65,536 characters and 4 
bytes for the supplementary characters. 

UTF- 1 6 2 or 4 All Unicode characters, with 2 bytes for the first 65,536 characters and 4 bytes 
for the supplementary characters. 

Bytes required for Unicode characters 
Numeric 
code range Characters UCS-2 UTF-8 UTF-16 

0-127 ASCII 2 

128-2047 European letters and Middle Eastern script 2 2 

2048-65,535 Korean, Chinese, and Japanese ideographs 2 3 

65,536-1,114,111 Supplementary characters N/A 4 

Description 
• Character sets and encodings map a numeric code to each character. In practice, 

these terms are used interchangeably. 

• One byte consists of eight bits, which can be combined in 256 different ways. Two 
bytes, or 16 bits, can be combined in 65,536 different ways. 

2 

2 

2 

4 

• Most systems use the same numeric codes for the first 128 characters. These are the 
codes defined by the ASCII (American Standard Code for Information Interchange) 
character set. 

• The Latini (ISO/IEC 8859-1) encoding starts with the 128 ASCII characters and 
adds another 128 characters commonly used by Western Europe languages. 

• Unicode begins by defining 65,536 Unicode characters from most of the world's 
writing systems. The first 256 ofthese characters are the ones in the Latin1 character set. 

• To work with Unicode characters, you use an encoding such as UCS-2, UTF-8, or 
UTF-16. All three of these encodings allow you to access the first 65,536 Unicode 
characters. 

• Unicode also defines supplementary characters that go beyond the first 65,536 
characters. SQL Server 2012 and later provide support for these characters, and you 
can work with them using either the UTF-8 encoding with the char or varchar data 
type (SQL Server 2019 or later) or the UTF-16 encoding with the nchar or nvarchar 
data type. 

• The Latini and UCS-2 encodings are known as fixed-length encodings, since they 
always use the same number of bytes per character. 

• The UTF-8 and UTF-16 encodings are known as variable-length encodings, since 
the number of bytes per character varies depending on the character. 

Figure 11-14 An introduction to character sets and encodings 



362 Section 3 Database design and implementation 

An introduction to collations 

A collation determines how character data is stored in a server, database, or 
column and how that data can be sorted and compared. You specify a collation 
by coding the collation name, followed by one or more collation options. 

SQL Server's default collation, for example, uses _Latini to specify that the 
Latin1 encoding should be used for the char and varchar types and the UCS-2 
encoding should be used for the nchar and nvarchar types. Then, the _CI option 
specifies that sorting should be case-insensitive. This means that SQL Server 
sorts uppercase letters such as A and lowercase letters such as a at the same 
level, which is usually what you want. Finally, the _AS option specifies that 
character accents are used when sorting. This means that Latin letters that have 
accents such as A are not sorted at the same level as characters such as A that 
don' t have accents, which is usually what you want. 

Figure 11-15 begins by describing three collation sets supported by SQL 
Server. Then, it describes some of the collation options. If SQL Server isn' t 
storing or sorting characters the way you want, you can change the collation as 
described in figure 11-17. 

If you're creating a new database, for example, you probably want to use 
a collation from the Windows set, not the SQL Server set. That's because the 
collations in the Windows set are newer and provide sorting that's compatible 
with Windows sorting. In most cases, you only want to use a collation from the 
SQL Server set for backwards compatibility with existing SQL Server databases. 

When sorting, you may want to include one or more of the sorting options. 
To perform a case-sensitive sort, you can use a collation that includes the _CS 
option. Similarly, to perform an accent-sensitive sort, you can use a collation 
that includes the _AS option. Or, to perform a sort as quickly as possible, you 
can use a collation that includes the _BIN or _BIN2 option. Here, bin stands for 
binary, and it means that SQL Server sorts characters by their numeric codes. 
This results in a case-sensitive and accent-sensitive sort. 

When specifying the collation, the _SC and _UTF8 options change how 
SQL Server stores data. To start, the _SC option allows supplementary 
characters to be stored in the nchar and nvarchar types using UTF-16 encoding. 
Similarly, using both the _SC and _UTF8 options allows Unicode characters, 
including supplementary characters, to be stored in the char and varchar types 
using UTF-8 encoding. 

Note that if you use the _SC or the _SC and _UTF8 collation options, your 
string data types may not be able to store as many characters as they would 
without these options. That's because, as you learned in the last figure, many of 
the Unicode characters require more than one byte with UTF-8 encoding, and all 
of the supplementary characters require four bytes with both UTF-8 and UTF-16 
encoding. When you use these collation options, then, you need to be sure to 
declare string columns with the appropriate size. You' ll learn more about that in 
a minute. 



Chapter 11 How to create a database and its tables with SQL statements 363 

Collation sets supported by SQL Server 
Set Description 

Windows 

SQL Server 

Binary 

Collations in this set store data based on an associated Windows system locale and 
provide sorting that's completely compatible with Windows. 

The collations in this set have a prefix of SQL_. They provide sorting that's not 
compatible with Windows for non-Unicode data. This set is older than the Windows 
set and is provided for backwards compatibility with existing SQL Server databases. 

The collations in this set have a suffix of _BIN or _BIN2. They can only be used for 
sorting. Because they sort by numeric code, they always perform a case-sensitive and 
accent-sensitive sort. They are also the fastest collations for sorting. 

Some collation options 
Option Name Description 
_CS 

_CI 

AS 

_AI 

_BIN 

_BIN2 

_sc 

_UTF8 

Case Sensitive 

Case Insensitive 

Accent Sensitive 

Accent Insensitive 

Binary (legacy) 

Binary (new) 

Supplementary 
Characters 

UTF-8 

Collation examples 

Case is used when sorting. 

Case is not used when sorting. This is the default. 

Character accents are used when sorting. 

Character accents are not used when sorting. This is the default. 

Sorts based on the numeric codes of the characters. 

Sorts based on the Unicode codes of the characters. 

Allows supplementary characters to be stored. Can be used only 
with version 90 and 100 Windows collations. Version 140 
collations automatically provide for supplementary characters. 

Uses UTF-8 for the char and varchar data types. 

The default server collation for the English (United States) locale 
SQL_Latinl_General_CPl_CI_AS 

The closest Windows equivalent to this collation 
Latinl_General_ lOO_ CI_AS 

A collation that provides for supplementary characters using UTF-8 
Latinl_General_ 100_ CI_AS_ SC_UTF8 

Description 
• A collation determines how character data is stored in a server, database, or column 

and how that data can be sorted and compared. You specify a collation by coding the 
collation name, followed by one or more collation options. 

• For the Latin1_General_ IOO_CI_AS collation, the char and nchar types use the 
1-byte Latin i character set, and the nchar and nvarchar types use the 2-byte UCS-2 
encoding to access most of the Unicode characters. 

• With SQL Server 2012 and later, you can use a collation that supports supplementary 
characters. Then, the nchar and nvarchar types use UTF-16 encoding, not UCS-2. 

• With SQL Server 2019 and later, you can use a collation that supports UTF-8 
encoding. Then, the char and varchar types use UTF-8 encoding, not Latin 1. 

Figure 11-15 An introduction to collations 



364 Section 3 Database design and implementation 

How to view collations 

Figure 11-16 starts by showing how to view the default collation for a server. 
Here, the first example shows the collation that's the default for many locales, 
including the United States. 

The second example shows how to view all collations that are available on 
the current server. To do that, you can use a SELECT statement to view all rows 
and columns returned by a system function named FN_HELPCOLLATIONS. 
As the result set shows, this function returns the name and a description for each 
collation. 

The third example shows how to view collations with a specific name. 
To do that, you can add a LIKE clause that uses the % wildcard character to 
limit the number of rows that are returned. Here, the SELECT statement uses 
the % wildcard character to return all rows that have a name that starts with 
Latin1_General_l00. 

The fourth example shows how to view the collation for a specific database. 
To do that, you can use a SELECT statement that queries the data that's returned 
by the sys.databases catalog view. As you'lllearn in chapter 13, you can use 
catalog views to retrieve information about database objects. In this example, 
the SELECT statement displays the name of the database and its collation where 
the database name is AP. Here, the result set shows that the collation for the AP 
database has been changed from the collation used by the server. You' lllearn 
how to specify a different collation in the next figure. 

The fifth example shows how to view the collations for each column in a 
table. To do that, you can query the tables that are returned by the sys.tables 
and sys.columns catalog views. Here, the SELECT statement returns the table 
name, column name, and collation for each column in the current database. In 
this figure, the current database happens to be the AP database, but this SELECT 
statement works for any database. This result set shows that a collation is 
assigned to each string column, but not to columns that store other data types 
such as numbers and dates. 

Now that you have a basic understanding of collations, you may wonder 
which collation you should use. For new development, it's generally considered 
a good practice to use a collation from the Windows set, not one from the SQL 
Server set, which is provided mainly for backwards compatibility. 

Beyond that, the answer depends on the nature of the string data that you 
need to store in your database. If your string data consists entirely of characters 
from Western European languages, using the Latin 1 encoding allows you to 
minimize storage by using the char and varchar types to store these characters 
using 1 byte per character. If your string data consists mostly of characters from 
Western European languages but you need to support Unicode characters too, 
using UTF-8 encoding allows you to minimize storage. However, if your string 
data contains a high percentage of characters that are Asian ideographs, using 
the UCS-2 or UTF-16 encodings and the nchar and nvarchar types minimizes 
storage requirements by using 2 bytes for Asian ideographs instead of the 3 bytes 
required by UTF-8. Of course, if you use UTF-8 or UTF-16, you need to make 
sure your columns specify enough bytes to avoid data truncation errors. 



Chapter 11 How to create a database and its tables with SQL statements 

How to view the default collation for a server 
SELECT CONVERT(varchar, SERVERPROPERTY( 1 collation 1

)); 

How to view all available collations for a server 
SELECT* FROM sys.fn_ helpcollations(); 

name description 

3137 latin 1_Generai_1 00_CI_AS_SC latin H>eneral-1 00, case4nsensitive, accert -sensitive, .. . 

3138 latin 1_Generai_100_CI_AS_ws_sc l.atin l -General-100. case1nsensitive. accent-sensitive ... . 

3139 latin 1_Generai_100_CI_AS_KS_SC latin l -General-100. case1nsensitive. accent-sensitive ... . 

3140 latin1_Generai_1 00_CI_AS_Ks_ws_sc latin l {leneral-100. case4nsensitive. accert-sensitive ... . 

3141 latin 1_Generai_100_CS_AI_SC 

3142 latin 1_Generai_100_CS_AI_WS_SC 

latin l {leneral-100, case-sensitive , accert1nsensitive ... . 

latin 1-General-100, case-sensitive, accert-insenslive, .. . [ 
3143 latin 1_Generai_100_CS_AI_KS_SC latin l {leneral-100. case-sensitive. accert-insensitive ... . 

3144 latin 1_Genera1_1 oo_cs_AI_KS_ ws_sc latin 1-General-100, case-sensitive. accent-insensitive .. .. 

3145 latin 1_Generai_1 00_CS_AS_SC latin l {leneral-100, case-sensitive. accent-sensitive ... . 

3146 latin 1_General_1oo_cs_AS_ws_sc latin l {leneral-100, case-sensitive, accert-sensitive, ... v 
~ 

How to view all collations with a specific name 
SELECT * FROM sys.fn_ helpcollations() 
WHERE name LIKE 1 Latinl_General_ 100%1

; 

How to view the collation for a database 
SELECT name, collation_name 
FROM sys.databases 
WHERE name = 1 AP 1 

; 

name conation _name 
r···················· 
l..~ ......... .J latin 1_Genera1_100_CI_AS 

How to view the collations for the columns in a database 
SELECT sys.tables.name AS TableName , sys.columns.name AS ColumnName, 

collation_name 
FROM sys.columns inner join sys.tables 

ON sys.columns.object_ id = sys.tables.object_ id; 

Table Name Column Name collation_name 

31 Terms TermsiD NULL 

32 Terms Terms Description latin 1_ Genenll_l 00 _ CI_AS 

33 Terms Terms Due Days NULL 

34 Vendors VendoriD NULL 

35 Vendors VendorName latin1_Genera1_100_CI_AS 

l 36 Vendors Vendor Address 1 latin1_Genera1_100_CI_AS 

37 Vendors VendorAddress2 latin 1_ General_l 00 _ CI_AS 

38 Vendors Vendo!City latin 1_ General_! 00 _ CI_AS 
" 

~ "" 

Note 
• When you install SQL Server, the default collation is based on the operating system 

locale. 

Figure 11-16 How to view collations 

365 



366 Section 3 Database design and implementation 

How to specify a collation 

Figure 11-17 shows how to specify a collation at three levels: database, 
column, and expression. In most cases, you want to specify the collation at the 
database level as shown in the first example. Then, all the columns that store 
string data are defined with that collation. If necessary, though, you can override 
collation that 's set at the database level by setting it at the column or expression 
level as shown by the second and third examples. 

To specify a collation, you use the COLLATE clause. For a new database or 
table, you add this clause to the CREATE statement for the database or columns 
in the table. For an existing database or table, you add these clauses to the 
ALTER statement for the database or columns in the table. 

When you specify a collation for a database, it sets the encoding that's used 
for the columns of the database that store string data. In the first example, the 
CREATE DATABASE statement specifies a collation that uses Latin 1 encoding 
for char and varchar types and UCS-2 encoding for nchar and nvarchar types. 
Then, the ALTER DATABASE statement specifies a collation that uses UTF-8 
encoding for char and varchar types and UTF-I6 encoding for nchar and nvarchar 
types. 

The second example works similarly, except that the collation only applies 
to the EmployeeName column, not the entire AR database. In other words, the 
column-level collation overrides the database-level collation. 

The third example specifies an expression-level collation for an ORDER BY 
clause of a SELECT statement. More specifically, it uses the _BIN2 option to 
specify a binary collation. Binary collations provide the fastest sorting, but you 
can only use them in expressions such as this ORDER BY clause. In other words, 
you can' t use them at the database or column level. 

If you switch from Latini to UTF-8, you may need to quadruple the 
maximum number of bytes for any char and varchar types impacted by the 
new collation. Otherwise, these data types may not be able to support as many 
characters as they did previously. For example, if you attempt to store characters 
that use more than I byte per character, you may get a truncation error like the 
one shown in the fourth example. Here, the Message column was defined with 
the varchar(lO) type, so it can store 10 bytes. Then, the user attempted to insert 
7 characters, but the last three characters are emojis. Because emojis require 
4 bytes per character, the string requires a total of I6 bytes ( 4x I+ 3x4 ), which 
causes an error. 

In the second example, the CREATE TABLE statement uses the Latini 
encoding for the EmployeeName column that's defined with the varchar(50) type. 
Then, when the ALTER TABLE statement changes the collation for this column 
to one that uses UTF-8, it also changes the data type to varchar(200). That way, 
this column can store at least 50 characters, even if all characters use 4 bytes. 

The same principles apply if you switch from UCS-2 to UTF-I6. In this case, 
however, you only need to double the maximum number of bytes for any nchar 
and nvarchar types impacted by the new collation. That 's because a column with 
the nchar(lO) type can store 20 bytes. As a result, to make sure you don' t get a 
truncation error, you only need to double it to nchar(20) so it can store 40 bytes. 



Chapter 11 How to create a database and its tables with SQL statements 367 

The clause used to specify a collation 
[COLLATE collation] 

How to specify a collation at the database level 
For a new database 
CREATE DATABASE AR COLLATE Latinl_ General_ lOO_ CI_AS; 

For an existing database 
ALTER DATABASE AR COLLATE Latinl_ General_ lOO_CI_AS_ SC_UTFS; 

How to specify a collation at the column level 

For a column in a new table 
CREATE TABLE Employees 
( 

) ; 

EmployeeiD 
EmployeeName 

INT 
VARCHAR (50) 

For a column in an existing table 
ALTER TABLE Employees 

PRIMARY KEY, 
COLLATE Latinl_ General_ lOO CI AS 

ALTER COLUMN EmployeeName VARCHAR(200) 
COLLATE Latinl_General_lOO_CI_AS_SC_UTFS; 

How to specify a collation for an expression 
SELECT * FROM Employees 
ORDER BY EmployeeName COLLATE Latinl_General_ l00_ BIN2; 

A possible error message after switching to UTF-8 or UTF-16 
String or binary data would be truncated in table 'Test', column 'Message'. 
Truncated value: 'Hi! @@@ •. 

Description 
• You can use the COLLATE clause to set the collation at the database level, at the 

column level, or for an expression in an ORDER BY clause. 

• The default collation for a database is the collation for the server, and the default 
collation for a column in a table is the collation for the database. 

• You can use a binary collation only to specify that a binary sort is to be performed 
on an expression. 

• To use UTF-8 encoding, a collation must also provide for supplementary characters. 

• If you switch from Latin 1 to UTF-8, you may need to quadruple the maximum 
number of bytes for any char and varchar types impacted by the new collation. 
Otherwise, these data types may not be able to support as many characters as they 
did previously. 

• If you switch from UCS-2 to UTF-16, you may need to double the maximum 
number of bytes for any nchar and nvarchar types impacted by the new collation. 
Otherwise, these data types may not be able to support as many characters as they 
did previously. 

Figure 11-17 How to specify a collation 



368 Section 3 Database design and implementation 

The script used 
to create the AP database 

To complete this chapter, figure 11-18 presents the DOL statements that I 
used to create the AP database that's used in the examples throughout this book. 
By studying these DDL statements, you'll get a better idea of how a database is 
actually implemented. Note, however, that these statements are coded as part of 
a script. So before I describe the DOL statements, I'll introduce you to scripts. 

How the script works 

In this figure, all of the DDL statements are coded as part of a script, which 
consists of one or more SQL statements that are stored in a file . This is typically 
the way that all of the objects for a database are created. In chapter 14, you' ll 
learn the details of coding scripts, but here are some basic concepts. 

A script consists of one or more batches. The script shown in the two parts 
of this figure, for example, consists of two batches. Each batch consists of 
one or more SQL statements that are executed as a unit. To signal the end of a 
batch and execute the statements it contains, you use the GO command. As you 
can see, then, the first batch shown in this figure consists of a single CREATE 
DATABASE statement, and the second batch consists of several CREATE 
TABLE and CREATE INDEX statements. Notice that a GO command isn't 
required at the end of the second batch, which is the last batch in this script. 

To create and execute a script, you can use the Management Studio. 
Although you may not be aware of it, you're creating a script each time you 
enter a SQL statement into the Management Studio. So far, though, the scripts 
you've created have consisted of a single batch. 

The reason for breaking a script like the one shown here into batches is that 
some of the statements must be executed before others can execute successfully. 
Before any tables can be created in the AP database, for example, the database 
itself must be created. 

The only other statement used in this script that you're not familiar with is 
the USE statement. You use this statement to change the current database. That 
way, after the script creates the AP database, the statements that follow will 
operate on that database rather than on the one that's selected in the Management 
Studio toolbar. 

How the DDL statements work 

Notice that each CREATE TABLE statement in this script lists the primary 
key column (or columns) first. Although this isn' t required, it's a conventional 
coding practice. Also note that the order in which you declare the columns 
defines the default order for the columns. That means that when you use a 
SELECT * statement to retrieve all of the columns, they're returned in this order. 
For that reason, you'll want to define the columns in a logical sequence. 



Chapter 11 How to create a database and its tables with SQL statements 369 

The SQL script that creates the AP database 
CREATE DATABASE AP; 
GO 

USE AP; 
CREATE TABLE Terms 
(TermsiD 
TermsDescription 
TermsDueDa ys 

CREATE TABLE GLAccounts 
(Acc ountNo 

Acc ountDescripti on 

CREATE TABLE Vendors 

INT 
VARCHAR (50) 
SMALL INT 

INT 
VARCHAR (50) 

NOT NULL PRIMARY KEY, 
NOT NULL, 
NOT NULL); 

NOT NULL PRIMARY KEY, 
NOT NULL) ; 

Page 1 

(VendoriD INT NOT NULL IDENTITY PRIMARY KEY I 
VendorName VARCHAR (50) NOT NULL, 
VendorAddre ssl VARCHAR (50 ) NULL, 
VendorAddress2 VARCHAR (50 ) SPARSE NULL, 
VendorCity VARCHAR (50 ) NOT NULL, 
Vendor St a te CHAR ( 2 ) NOT NULL, 
Vendor ZipCode VARCHAR (20 ) NOT NULL, 
Vendor Phone VARCHAR (50 ) NULL, 
VendorContactLName VARCHAR (50) NULL, 
VendorContactFName VARCHAR (50) NULL, 
Defau ltTermsiD INT NOT NULL 

REFERENCES Terms (TermsiD), 
De f a ultAccountNo INT NOT NULL 

REFERENCES GLAccounts (AccountNo ) ); 

Basic script concepts 
• Instead of creating database objects one at a time, you can write a script that 

contains all of the statements needed to create the database and its tables and 
indexes. 

• A script is a set of one or more batches that can be stored in a file. A batch 
is a sequence of SQL statements that are executed as a unit. You can use the 
Management Studio to create and execute script fi les. 

• The GO command signals the end of the batch and causes all of the statements in 
the batch to be executed. You should issue a GO command when the execution of 
the next statement depends on the successful completion of the previous statements. 

• SQL Server executes the last batch in a script automatically, so a final GO 
command isn' t required. 

• To change the current database within a script, you use the USE statement. 

Note 
• The Terms and GLAccounts tables are created first so the other tables can define 

foreign keys that refer to them. Similarly, the Vendors table is created before the 
Invoices table, and the Invoices table is created before the InvoiceLineltems table 
(see part 2). 

Figure 11 -18 The script used to create the AP database (part 1 of 2) 



370 Section 3 Database design and implementation 

Also notice that most of the columns in this database are assigned the NOT 
NULL constraint. The exceptions are the VendorAddress1, VendorAddress2, 
VendorPhone, VendorContactLName, and VendorContactFName columns in the 
Vendors table and the PaymentDate column in the Invoices table. Because not all 
vendor addresses will require two lines and because some vendors won' t provide 
a street address at all, a null value can be assigned to both address columns to 
indicate that they're not applicable. Similarly, you may not have a phone number 
and contact information for each vendor. For this reason, you could assign a null 
value to one of these columns to indicate an unknown value. Finally, an invoice 
wouldn't be assigned a payment date until it was paid. Until that time, you could 
assign a null value to the PaymentDate column to indicate that it hasn' t been 
paid. 

I could also have used a default date to indicate an unpaid invoice. To do 
that, I could have defined the PaymentDate column like this: 

PaymentDate DATE NOT NULL DEFAULT '1900-01-01' 

In this case, the date January 1, 1900 would be stored in the PaymentDate 
column unless another value was assigned to that column. Usually, a null value 
is a more intuitive representation of an unknown value than a default such as 
this, but either representation is acceptable. Keep in mind, though, that the 
technique you use will affect how you query the table. 

Since at least 60% of the values for the VendorAddress2 column are likely to 
contain a null value, this column uses the SPARSE attribute to optimize storage 
of null values. Although this attribute isn' t critical, it can significantly reduce the 
amount of storage required for this column. 

The Vendors, Invoices, and InvoiceLineltems tables also define the 
appropriate foreign key constraints. Notice that the foreign key constraint in the 
InvoiceLineltems table that defines the relationship to the Invoices table includes 
the ON DELETE CASCADE clause. That way, if an invoice is deleted, its line 
items are deleted too. 

Because each of the five tables in this database has a primary key, SQL 
Server creates a clustered index for each table based on that key. In addition, 
this script creates seven additional indexes to improve the performance of the 
database. The first five of these indexes are based on the foreign keys that each 
referring table uses to relate to another table. For example, since the VendoriD 
column in the Invoices table references the VendoriD column in the Vendors 
table, I created a nonclustered index on VendoriD in the Invoices table. Similarly, 
I created indexes for TermsiD in the Invoices table, DefaultTermsiD and 
DefaultAccountNo in the Vendors table, and AccountNo in the InvoiceLineitems 
table. Finally, I created indexes for the VendorName column in the Vendors table 
and the InvoiceDate column in the Invoices table because these columns are 
frequently used to search for rows in these tables. 

As you may have noticed, I created an index for each column that 
appears in a foreign key constraint except one: the InvoiceiD column in the 
InvoiceLineitems table. Since this column is part of the composite primary 
key for this table, it's already included in the clustered index. For this reason, 
the addition of a nonclustered index on InvoiceiD by itself won' t improve 
performance. 



Chapter 11 How to create a database and its tables with SQL statements 

The SQL script that creates the AP database Page2 
CREATE TABLE Invoices 
(InvoiceiD 
VendoriD 

INT 
INT 

NOT NULL IDENTITY PRIMARY KEY, 
NOT NULL 

REFERENCES Vendors(VendoriD), 
VARCHAR(SO) NOT NULL, 
DATE NOT NULL, 
MONEY NOT NULL, 

InvoiceNumber 
InvoiceDate 
InvoiceTotal 
Payment Total 
Credit Total 
TermsiD 

MONEY NOT NULL DEFAULT 

InvoiceDueDate 
PaymentDate 

MONEY 
INT 
REFERENCES 
DATE 
DATE 

CREATE TABLE InvoiceLineitems 
(InvoiceiD INT 

NOT NULL DEFAULT 
NOT NULL 

Terms (TermsiD), 
NOT NULL, 
NULL); 

NOT NULL 
REFERENCES Invoices(InvoiceiD) 
ON DELETE CASCADE, 

InvoiceSequence 
AccountNo 

SMALL INT 
INT 

NOT NULL, 
NOT NULL 

REFERENCES GLAccounts(AccountNo), 
InvoiceLineitemAmount MONEY NOT NULL, 
InvoiceLineitemDescription VARCHAR(lOO) NOT NULL, 
PRIMARY KEY (InvoiceiD, InvoiceSequence)); 

CREATE INDEX IX_Invoices_VendoriD 
ON Invoices (VendoriD); 

CREATE INDEX IX_Invoices_TermsiD 
ON Invoices (TermsiD); 

CREATE INDEX IX_Vendors_TermsiD 
ON Vendors (DefaultTermsiD); 

CREATE INDEX IX_Vendors_AccountNo 
ON Vendors (DefaultAccountNo); 

CREATE INDEX IX_ InvoiceLineitems_AccountNo 
ON InvoiceLineitems (AccountNo); 

CREATE INDEX IX_VendorName 
ON Vendors (VendorName); 

CREATE INDEX IX_ InvoiceDate 
ON Invoices (InvoiceDate DESC); 

Notes 

0, 
0, 

• The InvoiceLineltems table has a composite primary key that consists of the 
InvoiceiD and InvoiceSequence columns. For this reason, the PRIMARY KEY 
constraint must be defined as a table-level constraint. 

• In addition to the five indexes that SQL Server automatically creates for the primary 
key of each table, this script creates seven additional indexes. The first five are 
indexes for the foreign keys that are used in the REFERENCES constraints. The last 
two create indexes on the VendorName column and the InvoiceDate column since 
these columns are used frequently in search conditions. 

Figure 11-18 The script used to create the AP database (part 2 of 2) 

371 



372 Section 3 Database design and implementation 

Perspective 
Now that you've completed this chapter, you should be able to create 

and modify databases, tables, and indexes by coding DDL statements. This 
provides a valuable background for working with any database. In practice, 
though, you may sometimes want to use the Management Studio to perform the 
functions that are done by DDL statements, so that's what you' lllearn to do in 
the next chapter. 

Terms 

data definition language (DDL) 
database objects 
identifier 
transaction log file 
attach a database 
full-table index 
filtered index 
snippet 
snippet picker 
constraint 
column-level constraint 
table-level constraint 
check constraint 
foreign key constraint 
reference constraint 
cascading delete 
cascading update 

sequence 
character set 
encoding 
Unicode 
UTF-8 
UTF-16 
Latini 
ASCII (American Standard Code for 

Information Interchange) 
UCS-2 
supplementary characters 
fixed-length encoding 
variable-length encoding 
collation 
script 
batch 



Chapter 11 How to create a database and its tables with SQL statements 373 

1. Create a new database named Membership. 

2. Write the CREATE TABLE statements needed to implement the following 
design in the Membership database. Include foreign key constraints. Define 
IndividualiD and GroupiD as identity columns. Decide which columns should 
allow null values, if any, and explain your decision. Define the Dues column 
with a default of zero and a check constraint to allow only positive values. 

Individuals 

lndividuaiiD, int 
FirstName, varchar 
LastName, varchar 
Address, varchar 
Phone, varchar 

GroupMembership 

....., GroupiD, int 
Y lndividuaiiD, int 

Groups 

••-....... ~ Group iD, int 
GroupName, varchar 
Dues, money 

3. Write the CREATE INDEX statements to create a clustered index on the 
GroupiD column and a nonclustered index on the IndividualiD column of the 
GroupMembership table. 

4. Write an ALTER TABLE statement that adds a new column, DuesPaid, to 
the Individuals table. Use the bit data type, disallow null values, and assign a 
default Boolean value of False. 

5. Write an ALTER TABLE statement that adds two new check constraints to the 
Invoices table of the AP database. The first should allow (1) PaymentDate to 
be null only if PaymentTotal is zero and (2) PaymentDate to be not null only 
if PaymentTotal is greater than zero. The second constraint should prevent the 
sum of PaymentTotal and CreditTotal from being greater than Invoice Total. 

6. Delete the GroupMembership table from the Membership database. Then, 
write a CREATE TABLE statement that recreates the table, this time with 
a unique constraint that prevents an individual from being a member in the 
same group twice. 

7. Write a SELECT statement that displays the collation name for the collation 
that 's used by the Membership database. If NULL is displayed for the colla
tion name, it means that there isn' t an active connection to the Membership 
database. To fix that, select the Membership database from the Available 
Databases combo box in the SQL Editor toolbar. 

8. Write an ALTER TABLE statement that changes the collation for the 
GroupName column in the Groups table to Latinl_General_ lOO_CI_AS_ 
SC_UTF8. Be sure to account for extra bytes that may be required to store 
Unicode characters with the UTF-8 encoding. 





12 

How to create a database 
and its tables with the 
Management Studio 
Now that you've learned how to code all of the essential SQL statements for 
data definition, you're ready to learn how to use the Management Studio to 
generate this code for you. The Management Studio makes it easy to perform 
common tasks, and you' ll use it frequently to create, modify, and delete the 
objects of a database. Once you learn how to use the Management Studio to 
create or modify the design of a database, you can decide when it makes sense 
to use it and when it makes sense to code the DDL statements yourself. 

How to work with a database ............................................ 376 
How to create a database .......... ..... .... ...... ......... .. .... ....... .... .... ........ ... .... ....... 376 
How to delete a database ... ...... ..... .... .... ... .............. .... .. ..... .... .... ......... ... .... .. . 376 

How to work with tables ..................................................... 378 
How to create, modify, or delete a table ..................... .. .... .... ....................... 378 
How to work with foreign key relationships ................................................ 380 
How to work with indexes and keys ........................... .. ... .. .. .. .......... .. .......... 382 
How to work with check constraints ........................................................... 384 
How to examine table dependencies ................................ ........................... 386 

How to generate scripts ..................................................... 388 
How to generate scripts for databases and tables .. .... .. .. .. .. .................... ...... 388 
How to generate a change script when you modify a table .. .... .... .... .... .... ... 390 

Perspective ......................................................................... 392 



376 Section 3 Database design and implementation 

How to work with a database 
In chapter 2, you learned how to use the Management Studio to attach the 

files for an existing database to the SQL Server engine. Now, you' lllearn how to 
use the Management Studio to create a new database from scratch. 

How to create a database 

Figure 12-1 shows the New Database dialog box that's used to create a new 
database. To display this dialog box, you can start the Management Studio, 
right-click on the Databases folder, and select the New Database command. 
Then, you can use the New Database dialog box to enter a name for the database. 
When you do, the names for the data and log files are automatically updated in 
the Database Files pane. In this figure, for example, I entered New_AP for the 
database name. As a result, the New Database dialog box automatically changed 
the name for the data file to New _AP, and it changed the name of the log file to 
New _AP _log. Although it's possible to alter these names, I recommend using 
this naming convention. 

Since the default properties for a database are set correctly for most 
databases, that's usually all you need to do to create a new database. However, 
if necessary, you can use the New Database dialog box to change any default 
properties that are used by SQL Server. If you want to change the initial size for 
the data file for a database, you can click in the Initial Size column and enter a 
new initial size. If you want to change the owner of the database from the default 
owner, you can click on the button to the right of the Owner text box. If you 
want to change other properties, you can display the Options page and change 
the properties that are available from this page. And so on. 

By default, the data and log files for a new database are stored in the directory 
shown in this figure, which is usually what you want. If it isn' t, you can detach, 
move, and reattach the database files as described in chapter 2. 

How to delete a database 

If you want to delete a database, you can right-click on the database in the 
Management Studio, select the Delete command, and click OK in the resulting 
dialog box. Keep in mind, however, that this permanently deletes the data and 
log files for the database. Because of that, you may want to create a backup copy 
of the database before you delete it as described in chapter 2. That way, you can 
restore the database later if necessary. Alternatively, you may want to detach the 
database from the server instead of deleting it. That way, the database files aren' t 
deleted and can be attached again later if necessary. 



Chapter 12 How to create a database and its tables with the Management Studio 377 

The New Database dialog box 
Iii N<w Data bas< 

Select a
/- Gerwal 
1- Options 
1- Fiegoups Database o.ame: 

Qwner: 

Database (iles: 

0 X 

I <default> 

logical Name Fie Type F~ nlial Size (M B) h.togrowth I Max9ize 

Connedion 

Server: 
local1ost\SQLEXPRESS 

Connection: 
murach'J>me 

vf '®w connect!OO D!ODe!!ies 

Pr09SS 

Ready 

New_AP ROWS ... PRIMARY f"a···----·-·--·-·-·--·1 By 64MB. Unimited 
1. •••• - •••••••••••••.•••••••••••••.••••• J 

New_AP _log LOG Not Applicable 8 By 64 M 8. Unimited 

< 

The default directory for SQL Server 2019 databases 

> 

C:\Program Files\Microsoft SQL Server\MSSQLlS.SQLEXPRESS\MSSQL\DATA 

How to create a new database 
• To create a new database, right-click on the Databases folder in the Management Studio and 

select the New Database command to display the New Database dialog box shown above. 
Then, enter a name for the database. This updates the names for the data and log files that are 
displayed in the Database Files pane. Finally, click OK to create the database and its files. 

How to delete a database 
• To delete a database, expand the Databases folder, right-click on the database, and select the 

Delete command to display the Delete Object dialog box. Then, click OK to delete the database 
and its fi les. 

• If you get an error message indicating that the database can' t be deleted because it's in use, 
select the Close Existing Connections option and click OK again. 

Figure 12-1 How to create or delete a database 



378 Section 3 Database design and implementation 

How to work with tables 
In the last chapter, you learned how to work with tables, keys, indexes, and 

constraints by coding DOL statements. Now you'll learn how to work with these 
objects by using the Management Studio. 

How to create, modify, or delete a table 

Figure 12-2 shows how to use the Table Designer to create, modify, or delete 
a table. To start, this figure shows the Table Designer for a simple version of the 
Invoices table that only has four columns. Here, each column in the table is listed 
in the column grid that's at the top of the Table Designer. This grid includes the 
column name, the data type for the column, and whether the column allows null 
values. In addition to these properties, you can use the Column Properties pane 
that appears at the bottom of this window to set the other column properties. In 
this figure, for example, the InvoiceiD column has been defined as an identity 
column. As you modify column properties, you'll find that the properties that are 
available for each column change depending on the properties that are specified 
in the column grid. For example, since the InvoiceDate column isn't of the int 
type, it can't be specified as an identity column. 

To create a new table, you can right-click on the Tables folder and select the 
Table command to display a blank table in the Table Designer. Then, you can 
enter the column names and data types for one or more columns in the table. 
When you save the table for the first time, the Management Studio will display a 
dialog box that allows you to enter a name for the table. 

To edit the design of an existing table, you can expand the Tables folder, 
right-click on the table, and select the Design command. This displays the 
table in the Table Designer. In addition, the Management Studio automatically 
displays the Table Designer toolbar. You can use this toolbar to work with the 
keys, relationships, indexes, and constraints defined by a table. 

To set the primary key for a table, for example, you can click on the box 
to the left of the key column to select it and then click on the Set Primary Key 
button that's available from the Table Designer toolbar. If the key consists of two 
or more columns, you can hold down the Ctrl key and click multiple columns to 
select them. When you set the primary key, a key icon appears to the left of the 
key column or columns. In this figure, for example, a key icon appears to the left 
of the InvoiceiD column. 

By default, you can't use the Table Designer to modify a table in such a way 
that requires dropping and recreating the table. For example, you can't modify 
the identity column for an existing table. Since dropping the table deletes all data 
in the table, this isn't usually what you want. However, in some cases, you may 
want to allow this type of change. To do that, you can pull down the Tools menu, 
select the Options command, expand the Designers group, select the Table and 
Database Designers group, and deselect the "Prevent saving changes that require 
table re-creation" option. 



Chapter 12 How to create a database and its tables with the Management Studio 379 

The Table Designer for the Invoices table 
L,; MMA 17\SQLEX.PRESS.N~_AP - dbo.lnvoiCes - MICrosoft SOL Server Management Studio 

F1ie Ed1t V'"" Project Table Des1gner Tools Wmdow Help 

al) • (t tlJ w'il Ntw Query w'il ~ t~ .2 a'ffJ Jt OJ oj 

EJI W i3 13 .D ~ ~ • 
Object Explorer • q X 

Connect • f ' 'f C, -1> 

8 iS localhost\ SQlEXPRESS (SOL Server 15.0.2 "' 
13 Databases 

I!) System Databases 
III Database Snapshots 

(!) li AP 
(!) 1i Examples 
13 li New_AP 

W Database Diagrams 
9 TabiO< 

(!) 

III 
III 
til 
III 

til System Tables 
III fileTables 
til Ext•rnal T abl•s 
(!) Graph Tables 
III 11!1 dbo.lnvoices 
(!) 11!1 dbo.Vendors 

Viov.> 
External Resources 

Synonyms 
Programmability 
Service Broker 

- - - - - - -- - - - - -- -

0 Ready 

MMA 17\SQLEXPRESS ... AP • dbo.lnvooces <> X 

Column Name Data Typ• 

•9 [~~~~i~~~~~~~=~~~~~=~~] int 
V•ndoriD int 

lnvoice:Date date 

lnvoiceTotal money 

Column Properties 

rvrdentity SpecifiCation 

(Is ldentoty) 

I 

Identity Increment 
Identity Seed 

lndexabl• 

lsColumnset 
Is Sparse 

(Is Identity) 

How to create or modify the design of a table 

Yes 

No 
No 

Quock Launch (Ctri+QJ fJ - 0 X 

~ p VB 

Allow Nulls 

0 
0 
0 
0 
0 

_____ • t;:l}' ~ 

• To create a new table, right-click on the Tables folder and select the Table 
command to display a new table in the Table Designer. Then, when you click on the 
Save button in the toolbar, you can supply a name for the table. 

• To edit the design of an existing table, expand the Tables folder, right-click on the 
table, and select the Design command to display the table in the Table Designer. 

• To set the basic properties for each column, use the grid at the top of the Table 
Designer to specify the column name, data type, and whether or not the column 
allows nulls. 

• To set other column properties, such as the identity column or a default value, 
select the column in the grid and use the Column Properties pane. 

• To set the primary key, select the column or columns and click the Set Primary Key 
button in the Table Designer toolbar. Then, a key icon appears to the left of key columns. 

How to delete a table 
• To delete a table, expand the Tables folder, right-click on the table, select the Delete 

command, and click the OK button in the Delete Object dialog box that's displayed. 

Note 
• When you create a table using the Management Studio, the table is automatically 

stored in the default schema. If you want to transfer the table to a different schema, 
you can use the ALTER SCHEMA statement. See chapter 17 for details. 

Figure 12-2 How to create, modify, or delete a table 



380 Section 3 Database design and implementation 

How to work with foreign key relationships 

Figure 12-3 shows how to specify foreign key relationships between tables. 
To start, you display the table that you want to contain the foreign key in the 
Table Designer as shown in figure 12-2. Then, you click on the Relationships 
button in the Table Designer toolbar to display the Foreign Key Relationships 
dialog box. To add a new foreign key relationship, you click on the Add button. 
This causes a relationship with a default name such as FK_Invoices_Invoices to 
be added to the list box on the left side of the dialog box. 

To specify the primary key table and the columns for a relationship, you use 
the Tables and Columns dialog box shown in this figure. Here, I specified that 
the VendoriD column should be used as the foreign key relationship between the 
Invoices and Vendors tables. When I specified this relationship, the Tables and 
Columns dialog box automatically changed the name of the relationship to the 
more meaningful name of FK_Invoices_ Vendors. 

You can also use the Foreign Key Relationships dialog box to control how 
the foreign key constraint is enforced. In this figure, for example, the Enforce 
Foreign Key Constraint property is set to Yes so the referential integrity between 
these two tables will be maintained. If this property was set to No, SQL Server 
would recognize but not enforce the relationship. In most cases, then, you'll 
want to be sure this property is set to Yes. 

You'll also want to be sure that the Delete Rule and Update Rule properties 
are set the way you want them. In this figure, these properties, which appear in 
the INSERT and UPDATE Specification group, are set to No Action. That means 
that primary keys in the Vendors table can't be changed if related records exist 
in the Invoices table, and a row can't be deleted from the Vendors table if related 
rows exist in the Invoices table. In most cases, that's what you want. In other 
cases, though, you'll want to change these properties to Cascade so update and 
delete operations are cascaded to the foreign key table. 

Although these properties are the ones you're most likely to change, you 
can also use the Check Existing Data On Creation Or Re-Enabling property 
to control whether SQL Server checks existing data to be sure that it satisfies 
the constraint. By default, this property is set to Yes, which is usually what you 
want. In addition, by default, the Enforce For Replication property is set to Yes, 
which causes the relationship to be enforced when the database is replicated. 
Replication is a technique that's used to create multiple copies of the same 
database in different locations. By using replication, SQL Server can keep the 
various copies of a database synchronized. Because this feature is only used by 
DBAs for enterprise systems, a complete presentation is beyond the scope of this 
book. 



Chapter 12 How to create a database and its tables with the Management Studio 381 

The Foreign Key Relationships dialog box for the Invoices table 
Foreign Key Relationships 

Selected Relationsh1p: 

lj@IWJ.ltiJ@MN 

Add 

X 

Editing properties for new relationship. The 'Tables And Columns 
Specification' property needs to be filled in before the new relationship will be 
accepted. 

v (GeneraO 

Check Existing Data On Creation Or Re Yes 

Tables And Columns Specification 
v Identity 

(Name) FK_Invoices_ Vendors 

Description 

v T;obl" O<OSign"r 
Enforce For Replication Yes 

Enforce Foreign Key Constraint Yes 

v INSERT And UPDATE Specification 

Delete Rule No Action 

Close 

The Tables and Columns dialog box 
Tables and Columns X 

Relationship namo: 

I FK_Invoices_Vendors 

Primary key tablo: Foreign key tablo: 

Vendors 

VendoriD 

Cancel 

Description 
• To display the Foreign Key Relationships dialog box for a table, display the table 

in the Table Designer and click on the Relationships button in the toolbar. 

• To add a new foreign key relationship, click on the Add button. To delete an 
existing relationship, select the relationship and click on the Delete button. 

• To specify the tables and columns that define the relationship, select the 
relationship, select the Tables And Columns Specification property, and click the 
button that appears to display the Tables and Columns dialog box. Then, use this 
dialog box to specify the primary key table and the appropriate columns in both 
tables. 

• To set other properties for a relationship, select the relationship and use the 
properties grid to change the properties. 

Figure 12-3 How to work with foreign key relationships 



382 Section 3 Database design and implementation 

How to work with indexes and keys 

Figure 12-4 shows how to work with the indexes and keys of a table. To 
start, you display the table that contains the foreign key in the Table Designer. 
Then, you click on the Manage Indexes and Keys button in the Table Designer 
toolbar to display the Indexes/Keys dialog box. In this figure, for example, the 
Indexes/Keys dialog box is shown for the Vendors table. 

If you have defined a primary key as described in figure 12-2, the primary 
key for the table is displayed in this dialog box. In this fi gure, for example, the 
primary key is named PK_ Vendors. If you click on this key to select it and view 
its properties, you ' ll see that it defines a unique primary key with a clustered 
index. 

To add a new index, you can click on the Add button. This causes an index 
with a default name such as IX_ Vendors to be added to the list box on the left 
side of the dialog box. Then, you can click on this index to select it, and you can 
set its properties. Here, you can use the Columns property to display a dialog 
box that allows you to specify the column or columns to index along with a sort 
order for each column. You can set the Type property to Index or Unique Key. If 
you set this property to Unique Key, the Is Unique property will automatically be 
set to Yes and grayed out. And finally, you can use the Name property to provide 
a more meaningful name for the index. 

The Index/Keys dialog box in this figure shows most of the properties for 
an index named IX_ VendorName. This index uses a nonclustered index to index 
the VendorName column in ascending order, and it does not require each vendor 
name to be unique. However, if you change the Type property to Unique Key, 
this index will define a unique key constraint. Then, SQL Server requires each 
vendor to have a unique name. 

You can also create an index that enforces the uniqueness of its values 
without using a unique key constraint. To do that, you set the Is Unique property 
to Yes, and you set the Type property to Index. In most cases, though, you' ll 
want to enforce uniqueness by setting the Type property to Unique Key. 

By default, the Create As Clustered property is set to Yes for the primary key 
of the table, which is usually what you want. This causes the primary key to use 
a clustered index. Since a table can only have one clustered index, SQL Server 
grays out this property for all other indexes. If a table doesn' t have a primary 
key, however, you can set the Create As Clustered property to Yes to create a 
clustered index for one index in the table. 



Chapter 12 How to create a database and its tables with the Management Studio 383 

The Indexes/Keys dialog box for the Vendors table 
Indexes/Key• X 

Selected Primary/ Unique Key or Index: 
.----------------------------------. 

IX_ VendorName 

PK_Vendo-. 

Add 

Description 

Delete 

Editing propertie. for exirting primary/ unique key or index. 

'V (GeneraO 

Column• 
I• Unique 

Type 

'V Identity 

(Name) 

De.cription 
'V Table Designer 

Create A• Clurtered 

Data Space Specification 

Fill Specification 

VendorName (ASC) 

No 

Index 

IX_VendorName 

No 

PRIMARY 

Clo•e 

• To display the Indexes/Keys dialog box for a table, display the table in the Table 
Designer and click on the Manage Indexes and Keys button in the Table Designer 
tool bar. 

• To add a new index, click the Add button, use the Columns property to specify 
the column name and sort order for each column in the index, and use the Name 
property to enter the name you want to use for the index. 

• To view or edit an existing index, select the index from the list box on the left side 
of the dialog box. Then, you can view its properties on the right side of the dialog 
box. 

• To create a unique key and an index that's based on that key, use the Type property 
to select the Unique Index option. When you do, the Is Unique property will 
automatically be set to Yes. 

• To create an index without creating a unique key, use the Type property to select the 
Index option and set the Is Unique property to No. 

• To create a clustered index, set the Create As Clustered property to Yes. If a table 
already contains a clustered index, this property is grayed out to show that it isn' t 
available. 

• The other options in this dialog box are used for performance tuning. In most cases, 
the default values for these options are acceptable. For more information, see the 
SQL Server documentation. 

Figure 12-4 How to work with indexes and keys 



384 Section 3 Database design and implementation 

How to work with check constraints 

Figure 12-5 shows how to work with check constraints. To start, it shows the 
Check Constraints dialog box that you can display by clicking on the Manage 
Check Constraints button in the Table Designer toolbar. You can use this dialog 
box to modify or delete existing check constraints for a table or to add new 
constraints. In this figure, for example, you can see a check constraint for the 
Invoices table. This constraint specifies that the InvoiceTotal column must be 
greater than zero. 

As you learned in chapter 11, when you create check constraints using DDL, 
you can define them at either the column level or the table level. By contrast, the 
check constraints you create using the Check Constraints dialog box are always 
defined at the table level. Because of that, a constraint can refer to any column in 
the table where it's defined. 

The properties that are available from the Table Designer group are similar 
to the properties you saw in the Foreign Key Relationships dialog box. The first 
one determines if existing data is checked when a new constraint is created. The 
second one determines if constraints are enforced when rows are inserted or 
updated. The third one determines if constraints are enforced when the database 
is replicated. In most cases, you' 11 set all three of these properties to Yes. If you 
want to temporarily disable a constraint during testing, however, you can do that 
by setting one or more of these properties to No. 



Chapter 12 How to create a database and its tables with the Management Studio 385 

The Check Constraints dialog box for the Invoices table 

Ch<ek Constraints 

Selected Check Constraint 

CK_InvoiceTotal 

Add Delete 

Description 

Editing properties for existing check constraint. 

v (GeneraO 

Expression 
v ld.,ntity 

(Invoice Total > 0) 

(Name) CK_Invoice Total 

Description 

v Tab!" Design"' 
Check Existing Data On Creation Or Re-Enabling Yes 

Enforce For INSERTs And UPDATEs Yes 

Enforce For Replication Yes 

Close 

X 

• To display the Check Constraints dialog box for a table, display the table in the 
Table Designer and click on the Manage Check Constraints button in the Table 
Designer toolbar. 

• To add a new constraint to the table, click the Add button. Then, you must enter the 
expression that defines the constraint in the Expression property, and you usually 
want to use the Name property to provide a meaningful name for the constraint. 

• To delete a constraint, select the constraint and click the Delete button. 

• To view or edit the properties for an existing constraint, select the constraint from 
the list that's displayed on the left side of the dialog box. 

• By default, SQL Server checks existing data when you add a new check constraint 
to be sure it satisfies the constraint. If that's not what you want, you can set the 
Check Existing Data On Creation Or Re-Enabling property to No. 

• By default, SQL Server enforces the constraint for insert and update operations. 
If that's not what you want, you can set the Enforce For INSERTs And UPDATEs 
property to No. 

• By default, SQL Server enforces the constraint when the database is replicated. If 
that's not what you want, you can set the Enforce For Replication property to No. 

Figure 12-5 How to work with check constraints 



386 Section 3 Database design and implementation 

How to examine table dependencies 

Figure 12-6 shows how you can view the dependencies for a table. To do 
that, right-click on the table and select View Dependencies. Then, the Object 
Dependencies dialog box lists the objects that depend on that table. In this 
case, you can see that the Invoices table depends on the Vendors table, and the 
InvoiceLineltems table depends on the Invoices table. 

Besides the dependencies that are based on the relationships between the 
tables, there may be views and stored procedures that depend on the Invoices 
table. Before you make a change to the Invoices table, then, you' ll want to 
consider how that change will affect these objects. 



Chapter 12 How to create a database and its tables with the Management Studio 387 

The Object Dependencies dialog box for the Vendors table 
db Obj•ct D•p•nd•ncios • V•ndors - 0 X 

Select a- rr T @ ~ 
" Gerwal 

® Qbjeds that dopend on [Vendon 1 
0 Objects on~ [Vendon] dopends 

Oependendes 

s !ma!ll 
8 1m Invoices 

'· 1m lnvoiceli1ekems 

Connedion 

Server: 
local1ost\SQLEXPRESS 

Connection: 
murach'J>me 

vf '®w connect!OO D!ODe!!ies 

Seleded object 
~ame: ~MA 17\SOLEXP RESS].[AP].(dbo].[Vendors] I Pr09SS 

0 Ready 
:rn>e: [ able I 
Qependency type: I Schema-bound dependency I 

I OK I Cancel 

Description 
• To view the dependencies for a table, right-click the table and select View 

Dependencies to display the Object Dependencies dialog box. 

.. 

• To expand or collapse a dependency, click on the plus ( +) or minus sign (-) that's 
displayed to the left of the dependency. 

• You should check table dependencies before you delete or modify a column or an 
entire table. 

Figure 12-6 How to examine table dependencies 



388 Section 3 Database design and implementation 

How to generate scripts 
If you use the Management Studio to design a database, you may eventually 

need or want to generate a script that contains the DDL statements that define 
the database or that record the changes that you've made to a database. That way, 
you can save these scripts and run them later if necessary. 

Fortunately, the Management Studio makes it easy to generate these types 
of scripts. Unfortunately, these scripts are often formatted in a way that's not 
easy to read. Worse, these scripts often contain DOL statements that are more 
complex than if you had coded them yourself. Still, by studying these DOL 
statements, you can learn a lot, and you can see the DOL statements that the 
Management Studio uses to create or alter a database. 

How to generate scripts for databases and tables 

Figure 12-7 describes how you can use the Management Studio to generate 
a script that creates, drops, or alters most database objects including the database 
itself. To do that, you right-click on the appropriate database object and select 
the appropriate commands from the resulting menus. For example, to create a 
script that creates the Invoices table, right-click on the Invoices table, select the 
Script Table as submenu, select the CREATE To submenu, and select the New 
Query Editor Window command. This generates a script like the one in this 
figure that creates the Invoices table, and it places this script in a new Query 
Editor window. 

If you study this script, you' ll see that it uses nearly a full page of DDL 
statements to create a simple Invoices table that only contains four columns. 
In addition, this script encloses all names in square brackets ([])even though 
that's not required, it qualifies table names with the default schema even though 
that's not required, and it uses separate ALTER TABLE statements to define 
the foreign key relationship constraint, check constraints, and default constraint 
even though that isn' t necessary. Compared with the script presented at the end 
of chapter 11 , I think you'll agree that this script is unwieldy and difficult to 
read even though it's for a simple table that contains only four columns. But 
that's one of the downsides of using a graphical tool like the Management Studio 
instead of coding the DOL statements yourself. 

Although the CREATE scripts are the ones that you'll want to generate most 
often, you can also generate other scripts such as ALTER and DROP scripts 
for most objects. In addition, you can generate SELECT, INSERT, UPDATE, 
and DELETE scripts for some objects such as tables, and you can generate 
EXECUTE scripts for other objects such as stored procedures. Some of these 
scripts are essentially templates that you'll need to modify before they become 
functional. Still, they can give you a good start for creating certain types of 
statements. With a little experimentation, you should be able to figure out how 
this works. 



Chapter 12 How to create a database and its tables with the Management Studio 389 

A generated script that creates a simple Invoices table 
USE [New_AP] 
GO 

SET ANSI_NULLS ON 
GO 

SET QUOTED_ IDENTIFIER ON 
GO 

CREATE TABLE [dbo] .[Invoices] 
( 

[InvoiceiD] [int] IDENTITY(l,l) NOT NULL, 
[VendoriD] [int] NOT NULL, 
[InvoiceDate] [date] NULL, 
[InvoiceTotal] [money] NULL, 
CONSTRAINT [PK_ Invoices] PRIMARY KEY CLUSTERED ([InvoiceiD] ASC) 
WITH (PAD_ INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DOP_KEY OFF, 
ALLOW_ROW_ LOCKS = ON, ALLOW_ PAGE_ LOCKS = ON, 
OPTIMIZE_ FOR_ SEQUENTIAL_ KEY = OFF) ON [PRIMARY] 

ON [PRIMARY] 
GO 

ALTER TABLE [dbo].[Invoices] ADD DEFAULT ((0)) FOR [InvoiceTotal] 
GO 

ALTER TABLE [dbo].[Invoices] WITH CHECK ADD CONSTRAINT [FK_Invoices_Vendors] 
FOREIGN KEY([VendoriD]) REFERENCES [dbo]. [Vendors] ([VendoriD]) 

GO 

ALTER TABLE [dbo] • [Invoices] 
CHECK CONSTRAINT [FK_ Invoices_Vendors] 

GO 

ALTER TABLE [dbo].[Invoices] WITH CHECK ADD CONSTRAINT [CK_ InvoiceTotal] 
CHECK (([InvoiceTotal]>(O))) 

GO 

ALTER TABLE [dbo] • [Invoices] 
CHECK CONSTRAINT [CK_ InvoiceTotal] 

GO 

Description 
• You can use the Management Studio to generate scripts to create, drop, or alter most 

objects that are contained in the database. You can send each script to Management 
Studio's Query Editor, a file, or to the clipboard. 

• To generate a script that creates a database, right-click on the database and select 
Script Database as7 CREATE To. Then, select New Query Editor Window, File, or 
Clipboard. 

• To generate a script that creates a table, right-click on the table and select 
Script Table as7 CREATE To. Then, select New Query Editor Window, File, or 
Clipboard. 

Figure 12-7 How to generate scripts for databases and tables 



390 Section 3 Database design and implementation 

If you experiment with scripts, you' ll find that you can send them to a new 
Query Editor window, to a file, or to the clipboard. Most of the time, it's easiest 
to send the generated script to a Query Editor window. Then, you can review 
the script before you run it, save it, or copy it to the clipboard. In some cases, 
though, you may want to send a script directly to a file without viewing it first. 
Or, you may want to send the script to the clipboard without viewing it first so 
you can paste it into another tool and use that tool to view, save, or run the script. 

How to generate a change script 
when you modify a table 

When you use the Table Designer to modify the design of a table, a Generate 
Change Script button becomes available in the Table Designer tool bar. If you 
want, you can click on this button to display the Save Change Script dialog box 
shown in fi gure 12-8. Then, you can use this dialog box to examine or save the 
SQL script that the Management Studio uses to alter the table. Most of the time, 
this isn't necessary. However, if you want to keep a permanent record of the 
change, or if you want to apply the change to other databases, you can save this 
script. Then, if necessary, you can run it against other databases. 

If you want to generate and save a change script every time you modify a 
table, you can check the Automatically Generate Change Script On Every Save 
option. Then, every time you attempt to save changes to the design of a table, the 
Management Studio will prompt you with a Save Change Script dialog box like 
the one in this figure. To save the script, you can click Yes and respond to the 
resulting Save dialog box. 



Chapter 12 How to create a database and its tables with the Management Studio 391 

The Save Change Script dialog box 
S.v< Chang< Script ? X 

I 
Do you want to sav< this chang< script to a t<XI: filt? 

Ill 

r To prov<nt any potontial data loss issuos, you should rovi.w this script in dotail btfor< n ,.. 
BEGIN TRANSACTION 
SET QUOTED_IDENTIFIER ON 

L SET ARITHABORT ON 
SET NUMERIC_ROUNDABORT OFF 
SET CONCAT_NULL_YIELDS_NULL ON 
SET ANSI_NULLS ON 
SET ANSI_PADDING ON 
SET ANSI_ WARNINGS ON 
COMMIT 
BEGIN TRANSACTION 
GO 
ALTER TABLE dbo.lnvoie<s " < > 

0 Automatically gtn<rat< chang< script on <V<ry sav< 

I Yos I No 

Description 
• If you use the Table Designer to modify the design of a table, you can click the 

Generate Change Script button in the toolbar to display the Save Change Script 
dialog box shown above. You can use this dialog box to examine or save the SQL 
script that the Management Studio uses to alter the table. 

• If you check the Automatically Generate Change Script On Every Save box, the 
Management Studio will prompt you with a Save Change Script dialog box each 
time you attempt to save changes to the design of a table. 

Figure 12-8 How to generate a change script when you modify a table 



392 Section 3 Database design and implementation 

Perspective 
In this chapter, you learned how to use the Management Studio to create 

and work with database objects, such as tables, keys, indexes, and constraints 
as well as the database itself. Now that you know how to use the Management 
Studio to work with the design of a database, you may be wondering when you 
should use it for database design and when you should code the DDL statements 
yourself. 

Although it's often a matter of preference, most SQL programmers find it 
easier to use the Management Studio to create and work with database objects. 
That way, they don' t have to worry about the exact syntax of the DOL 
statements, which they may use infrequently. 

However, some experienced database programmers prefer to enter the 
DOL statements themselves. That way, they have more control over how these 
scripts are coded. In addition, they can save a copy of the script that creates 
the database for future reference, which may be helpful if the database design 
ever needs to be ported to another type of database management system such as 
Oracle, DB2, or MySQL. 

Terms 

Table Designer 
replication 
dependencies 

1. Use the Management Studio to create a new database called Membership2 
using the default settings. (If the database already exists, use the Management 
Studio to delete it and then recreate it.) 

2. Use the Management Studio to create the following tables and relationships in 
the Membership database. Define IndividualiD and GroupiD as IDENTITY 
columns. Allow Address and Phone to accept null values; none of the other 
columns should allow null values. Define the Dues column with a default of 
zero and a check constraint to allow only positive values. Define the DuesPaid 
column with a default Boolean value of False. 

Individuals 

lnd ividuaiiD, int 
FirstName, varchar 
LastName, varchar 
Address, varchar 
Phone, varchar 
DuesPaid, bit 

Grou pMembershi p 

....., GroupiD, int 
Y lndividuai iD, int 

Groups 

••-......,..• GroupiD, int 
GroupName, varchar 
Dues, money 

3. Use the Management Studio to index the GroupMembership table. Create a 
clustered index on the GroupiD column, a nonclustered index on the 
IndividualiD column, and a unique index and constraint on both columns. 



Section 4 

Advanced SQL skills 
This section teaches SQL skills that go beyond the essentials. After 
you read all of the chapters in this section, you'll have the skills of a 
professional SQL programmer. To make these chapters as easy to use as 
possible, they're designed as independent modules. That means that you 
can read them in any order you prefer. 

In chapter 13, you can learn how to work with views, which let you 
simplify and restrict access to the data in a database. In chapter 14, you can 
learn how to use scripts to control the processing of SQL statements that 
you execute from a client tool like the Management Studio. Scripts are just 
one type of procedural program you can create in SQL Server. In chapter 
15, you can learn how to use the other types of procedural programs: stored 
procedures, triggers, and functions. 

In chapter 16, you can learn how to use transactions and locking to 
prevent data errors in a multi-user environment. In chapter 17, you can 
learn how to secure a database to restrict who has access to it. In chapter 
18, you can learn how to work with XML. Finally in chapter 19, you can 
learn how to work with large binary values such as images, sound, and 
video. 





13 

How to work with views 
As you've seen throughout this book, SELECT queries can be complicated, 
particularly if they use multiple joins, subqueries, or complex functions. 
Because of that, you may want to save the queries you use regularly. One 
way to do that is to store the statement in a file using the Management Studio. 
Another way is to create a view. 

Unlike a file you create with the Management Studio, a view is stored as 
part of the database. That means it can be used not only by SQL programmers, 
but by users and application programs that have access to the database. This 
provides some distinct advantages over using tables directly, as you'll see in 
this chapter. 

An introduction to views .................................................... 396 
How views work ............................ .... .... .... ............................ .... ............ .... ... 396 
Benefits of using views ...................... ........... ...... ......... .......... ................ ...... 398 

How to create and manage views ..................................... 400 
How to create a view ................................................................................... 400 
Examples that create views ............................................... ............ .... .... ...... 402 
How to c reate an updatable view ................................................................ 404 
How to delete or modify a view .................................................................. 406 

How to use views ................................................................ 408 
How to update rows through a view ........................................................... 408 
How to insert rows through a view .................................. .. .......................... 410 
How to delete rows through a view .............................................. ............... 410 
How to use the catalog views ...................................................................... 412 

How to use the View Designer .......................................... 414 
How to c reate or modify a view .................................................................. 414 
How to delete a view .................................................................................... 414 

Perspective ......................................................................... 416 



396 Section 4 Advanced SQL skills 

An introduction to views 
In chapter 1, you learned the basics of how views work. In the next topic, 

then, I'll just review this information. Then, I'll present some of the benefits of 
views so you' ll know when and why you should use them. 

How views work 

A view is a SELECT statement that's stored with the database. To create a 
view, you use a CREATE VIEW statement like the one shown in figure 13-1. 
This statement creates a view named VendorsMin that retrieves the VendorName, 
VendorState, and VendorPhone columns from the Vendors table. 

You can think of a view as a virtual table that consists only of the rows and 
columns specified in its CREATE VIEW statement. The table or tables that 
are listed in the FROM clause are called the base tables for the view. Since the 
view refers back to the base tables, it doesn' t store any data itself, and it always 
reflects the most current data in the base tables. 

To use a view, you refer to it from another SQL statement. The SELECT 
statement in this figure, for example, uses the VendorsMin view in the FROM 
clause instead of a table. As a result, this SELECT statement extracts its result 
set from the virtual table that the view represents. In this case, all the rows for 
vendors in California are retrieved from the view. 

Because a view is stored as an object in a database, it can be used by anyone 
who has access to the database. That includes users who have access to the 
database through end-user programs such as programs that provide for ad hoc 
queries and report generation, and application programs that are written 
specifically to work with the data in the database. In fact, views are often 
designed to be used with these types of programs. In the next topic, you'lllearn 
why. 



Chapter I 3 How to work with views 397 

A CREATE VIEW statement for a view named VendorsMin 
CREATE VIEW VendorsMin AS 

SELECT VendorName, VendorState, VendorPhone 
FROM Vendors; 

The virtual table that's represented by the view 
Vendor Name VendorState VendorPhone 

1 r.·_g_s.~·.P..~~~---~~~--~~~---~~~---~~~---~~~---~~~-~~~~--~~~~.J WI (800) 555-1205 

2 Nation11llnfoonation Dat11 Or DC (301) 555-8950 

3 Register ol Copyrights DC NULL 

4 Jobtrak CA (800) 555-8725 

5 Newbrige Book Oubs NJ (800) 555-9980 

6 Cal~omia Olamber Of Coovnerce CA (916) 555-6670 

7 Towne Advertiser's Mailing Svcs CA NULL 

8 SF I Industries CA (559) 555-1551 
~ 

(122 rows ) 

A SELECT statement that uses the VendorsMin view 
SELECT * FROM VendorsMin 
WHERE VendorState = ' CA' 
ORDER BY VendorName ; 

The result set that's returned by the SELECT statement 
VendorName VendorState Vendorl'hone 

r.·~~-~~~--~~~-~~---~~--~.:··~~~--~~~] CA (559) 555-8300 

2 (800) 555-3344 

3 NU~ 

4 (714) 555-9000 

5 (805) 555-0584 

6 (559) 555-1551 

7 NU~ 

8 (559) 555-5106 

(75 

Description 
• A view consists of a SELECT statement that's stored as an object in the database. 

The tables referenced in the SELECT statement are called the base tables for the 
view. 

• When you create a view, the query on which it's based is optimized by SQL Server 
before it's saved in the database. Then, you can refer to the view anywhere you 
would normally use a table in any of the data manipulation statements: SELECT, 
INSERT, UPDATE, and DELETE. 

• Although a view behaves like a virtual table, it doesn' t store any data. Since the 
view refers back to its base tables, it always returns current data. 

• A view can also be referred to as a viewed table because it provides a view to the 
underlying base tables. 

Figure 13-1 How views work 



398 Section 4 Advanced SQL skills 

Benefits of using views 

Figure 13-2 describes some of the advantages of using views. To start, 
the data that you access through a view isn' t dependent on the structure of the 
database. To illustrate, suppose a view refers to a table that you've decided to 
divide into two tables. To accommodate this change, you simply modify the 
view; you don' t have to modify any statements that refer to the view. That means 
that users who query the database using the view don 't have to be aware of the 
change in the database structure, and application programs that use the view 
don't have to be modified. 

You can also use views to restrict access to a database. To do that, you 
include just the columns and rows you want a user or application program to 
have access to in the views. Then, you let the user or program access the data 
only through the views. The view shown in this figure, for example, restricts 
access to a table that contains information on investors. In this case, the view 
provides access to name and address information that might be needed by the 
support staff that maintains the table. By contrast, another view that includes 
investment information could be used by the consultants who manage the 
investments. 

Views are also flexible. Because views can be based on almost any SELECT 
statement, they can be used to provide just the data that 's needed for specific 
situations. In addition, views can hide the complexity of a SELECT statement. 
That makes it easier for end users and application programs to retrieve the data 
they need. Finally, views can be used not only to retrieve data, but to modify data 
as well. You'll see how that works later in this chapter. 



Chapter I 3 How to work with views 399 

Some of the benefits provided by views 
Benefit Description 

Design independence 

Data security 

Flexibility 

Simplified queries 

Updatability 

Data that's accessed through a view is independent of the underlying 
database structure. That means that you can change the design of a 
database and then modify the view as necessary so the queries that 
use it don ' t need to be changed. 

You can create views that provide access only to the data that specific 
users are allowed to see. 

You can create custom views to accommodate different needs. 

You can create views that hide the complexity of retrieval operations. 
Then, the data can be retrieved using simple SELECT statements. 

With certain restrictions, a view can be used to update, insert, and 
delete data from a base table. 

The data in a table of investors 
lnvestoriD Last Name FntName Address Cty State 

1 [!."~~~---~~~---~~·-.·~~····~~] hld~ Maria 345 Wlfld1ell PI hldemln IN 

2 2 Trujilo Ana 1 298 E Smathers St. Benton AR 

3 3 Moreno krtonio &925 N Parkland Ave. Puyallup WA 

4 4 Hardy Thomas 83 d'UrbeiVille Ln. Castefbridge GA 

5 5 Bergh.xld Christina 22717 E 73rd Ave. Dubuque lA 

(5 rows) 

A view that restricts access to certain columns 
CREATE VIEW InvestorsGeneral 
AS 

llpCode 

4&014 

72018 

98373 

31209 

52004 

SELECT InvestoriD, LastName, FirstName, Address, 
City, State, ZipCode, Phone 

FROM Investors; 

The data retrieved by the view 
lnvestoriD Last Name PrstName Address Cty State llpCode 

r·;~··················· .. ····~ hld~ Maria 345 WlllChell PI hlderson IN 4&014 

2 2 Trujilo Ana 1 298 E Smathers St. Benton AR 72018 

3 3 Moreno krtonio &925 N Parkland Ave. Puyallup WA 98373 

4 4 Hardy Thomas 83 d'UrbeiVille Ln. Castefbridge GA 31209 

5 5 Bergh.xld Christina 22717 E 73rd Ave. Dubuque lA 52004 

(5 rows) 

Description 

Phone Investments 

(765) 555-7878 15000.00 

(5 10) 555-nJJ 43500.00 

(253) 555-8332 22900.00 

(478) 555-1139 5000.00 

(319) 555-1139 11750.00 

Phone 

(765) 555-7878 

(5 10) 555-nJJ 

(253) 555-8332 

(4 78) 555-1139 

(319)555-1139 

• You can create a view based on almost any SELECT statement. That means that 
you can code views that join tables, summarize data, and use subqueries and 
functions. 

• You can restrict access to the data in a table by including selected columns in the 
SELECT clause for a view, or by including a WHERE clause in the SELECT 
statement so that only selected rows are retrieved by the view. 

Figure 13-2 Benefits of using views 

NetGain 

1242.57 

8497.44 

2338.87 

·245.&9 

865.n 



400 Section 4 Advanced SQL skills 

How to create and manage views 
Now that you understand how views work and what benefits they provide, 

you're ready to learn how to create and manage them. That's what you'lllearn in 
the topics that follow. 

How to create a view 

Figure 13-3 presents the CREATE VIEW statement you use to create a 
view. In its simplest form, you code the name of the view in the CREATE VIEW 
clause followed by the AS keyword and the SELECT statement that defines the 
view. The statement shown in this figure, for example, creates a view named 
VendorShortList. This view includes selected columns from the Vendors table for 
all vendors with invoices. When this statement is executed, the view is added to 
the current database and a message like the one shown in this figure is displayed 
to indicate that the statement was successful. 

Because a SELECT statement can refer to a view, the SELECT statement 
you code within the definition of a view can also refer to another view. In 
other words, views can be nested. I recommend you avoid using nested views, 
however, because the dependencies between tables and views can become 
confusing, which can make problems difficult to locate. 

The SELECT statement for a view can use any of the features of a normal 
SELECT statement with two exceptions. First, it can't include an ORDER BY 
clause unless it also uses a TOP clause or the OFFSET and FETCH clauses. 
That means that if you want to sort the result set that's extracted from a view, 
you have to include an ORDER BY clause in the SELECT statement that refers 
to the view. Second, it can' t include the INTO keyword. That's because a view 
can' t be used to create a permanent table. 

By default, the columns in a view are given the same names as the columns 
in the base tables. If a view contains a calculated column, however, you'll want 
to name that column just as you do in other SELECT statements. In addition, 
you'll need to rename columns from different tables that have the same name. 
To do that, you can use the AS clause in the SELECT statement or you can code 
the column names in the CREATE VIEW clause. You' ll see examples of both of 
these techniques in the next figure. 

The CREATE VIEW statement also provides three optional clauses: WITH 
ENCRYPTION, WITH SCHEMABINDING, and WITH CHECK OPTION. The 
WITH ENCRYPTION clause prevents other users from examining the SELECT 
statement on which the view is based. In general, though, you don' t need to use 
this option unless your system requires enhanced security. 

The WITH SCHEMABINDING clause protects a view by binding it to the 
database structure, or schema. This prevents the underlying base tables from 
being deleted or modified in any way that affects the view. You' ll typically use 
this option for production databases, but not for databases you're using for testing. 

The WITH CHECK OPTION clause prevents a row in a view from being 
updated if that would cause the row to be excluded from the view. I'll have more 
to say about this clause in the topic on updating rows using a view. 



Chapter I 3 How to work with views 401 

The syntax of the CREATE VIEW statement 
CREATE VIEW view_name [ (column_name_ l [ , column_name_ 2] ••• ) ] 
[WITH {ENCRYPTIONISCHEMABINDINGIENCRYPTION,SCHEMABINDING}] 
AS 
select_ statement 
[WITH CHECK OPTION] 

A CREATE VIEW statement that creates a view of vendors 
that have invoices 

CREATE VIEW VendorShortList 
AS 
SELECT VendorName, VendorContactLName , VendorContactFName, VendorPhone 
FROM Vendors 
WHERE VendoriD IN (SELECT VendoriD FROM Invoices ) ; 

The response from the system 
Commands completed successfully. 

Description 
• You use the CREATE VIEW statement to create a view. The name you give the 

view must not be the same as the name of any existing table or view. 

• The SELECT statement within the view can refer to as many as 256 tables, and it 
can use any valid combination of joins, unions, or subqueries. 

• You can create a view that's based on another view rather than on a table, called a 
nested view. SQL Server views can be nested up to 32 levels deep. 

• The SELECT statement for a view can't include an INTO clause, and it can' t 
include an ORDER BY clause unless the TOP clause or the OFFSET and FETCH 
clauses are also used. To sort the rows in a view, you have to include the ORDER 
BY clause in the SELECT statement that uses the view. 

• You can name the columns in a view by coding a list of names in parentheses 
following the view name or by coding the new names in the SELECT clause. A 
column must be named if it's calculated from other columns or if a column with the 
same name already exists. Otherwise, the name from the base table can be used. 

• You can use the WITH ENCRYPTION clause to keep users from examining the 
SQL code that defines the view. 

• You can use the WITH SCHEMABINDING clause to bind a view to the database 
schema. Then, you can' t drop the tables on which the view is based or modify the 
tables in a way that would affect the view. 

• If you include the WITH SCHEMABINDING clause, you can' t use the all columns 
operator (*) in the SELECT statement. In addition, you must qualify the names of 
tables and views in the FROM clause with the name of the schema that contains 
them. 

• You can use the WITH CHECK OPTION clause to prevent a row from being 
updated through a view if it would no longer be included in the view. See figure 
13-7 for details. 

Figure 13-3 How to create a view 



402 Section 4 Advanced SQL skills 

Examples that create views 

To help you understand the flexibility that views provide, figure 13-4 
presents several CREATE VIEW statements. The first statement creates a view 
that joins data from the Vendors and Invoices tables. The second statement 
creates a view that retrieves the top five percent of invoices in the Invoices 
table. Notice that this SELECT statement includes an ORDER BY clause that 
sorts the rows in descending sequence so the invoices with the largest amounts 
are retrieved. This is one of only two cases in which you can use the ORDER 
BY clause. The other is if you include the OFFSET and FETCH clauses on the 
ORDER BY clause. 

The third and fourth statements illustrate the two ways that you can name 
the columns in a view. In both cases, the SELECT statement retrieves a calcu
lated column, so a name must be assigned to this column. The third statement 
shows how you would do this using the CREATE VIEW clause. Notice that even 
if you only want to name one column, you have to include the names for all the 
columns even if they're the same as the names in the base tables. By contrast, if 
you name this column in the SELECT clause as shown in the fourth example, 
you can let the other column names default to the column names in the base 
table. Since this syntax is easier to use, you' ll use it most of the time. Keep in 
mind, though, that the ANSI standards don' t support this syntax for naming view 
columns. 

The fifth statement creates a view that summarizes the rows in the Invoices 
table by vendor. This illustrates the use of the aggregate functions and the 
GROUP BY clause in a view. In this case, the rows are grouped by vendor name, 
and a count of the invoices and the invoice total are calculated for each vendor. 

Like the first statement, the last statement joins data from the Vendors and 
Invoices table. Unlike the first statement, though, this statement includes the 
WITH SCHEMABINDING clause. That means that neither the Vendors nor 
the Invoices table can be deleted without first deleting the view. In addition, 
no changes can be made to these tables that would affect the view. Notice that 
the table names in the FROM clause are qualified with the name of the table's 
schema, in this case, dbo. If you include the WITH SCHEMABINDING clause, 
you must qualify the table names in this way. 



A CREATE VIEW statement that uses a join 
CREATE VIEW Vendorinvoices 
AS 

Chapter I 3 How to work with views 403 

SELECT VendorName, InvoiceNumber, InvoiceDate, InvoiceTotal 
FROM Vendors JOIN Invoices ON Vendors.VendoriD = Invoices.VendoriD; 

A CREATE VIEW statement that uses TOP and ORDER BY clauses 
CREATE VIEW TopVendors 
AS 
SELECT TOP 5 PERCENT VendoriD, InvoiceTotal 
FROM Invoices 
ORDER BY InvoiceTotal DESC; 

Two CREATE VIEW statements that name the columns in a view 
A statement that names all the view columns in its CREATE VIEW clause 
CREATE VIEW Outstandinginvoices 

(InvoiceNumber, InvoiceDate, InvoiceTotal, BalanceDue) 
AS 
SELECT InvoiceNumber, InvoiceDate, InvoiceTotal, 

InvoiceTotal - PaymentTotal - CreditTotal 
FROM Invoices 
WHERE InvoiceTotal - PaymentTotal - CreditTotal > 0; 

A statement that names just the calculated column in its SELECT clause 
CREATE VIEW Outstandinginvoices 
AS 
SELECT InvoiceNumber, InvoiceDate, InvoiceTotal, 

InvoiceTotal - PaymentTotal - CreditTotal AS BalanceDue 
FROM Invoices 
WHERE InvoiceTotal - PaymentTotal - CreditTotal > 0; 

A CREATE VIEW statement that summarizes invoices by vendor 
CREATE VIEW InvoiceSummary 
AS 
SELECT VendorName, COUNT(*) AS InvoiceQty, SUM(InvoiceTotal) AS InvoiceSum 
FROM Vendors JOIN Invoices ON Vendors . VendoriD = Invoices.VendoriD 
GROUP BY VendorName; 

A CREATE VIEW statement that uses the WITH SCHEMABINDING option 
CREATE VIEW VendorsDue 
WITH SCHEMABINDING 
AS 
SELECT InvoiceDate AS Date, VendorName AS Name, 

VendorContactFName + 1 1 + VendorContactLName AS Contact, 
InvoiceNumber AS Invoice, 
InvoiceTotal - PaymentTotal - CreditTotal AS BalanceDue 

FROM dbo . Vendors JOIN dbo . Invoices 
ON Vendors.VendoriD = Invoices.VendoriD 

WHERE InvoiceTotal - PaymentTotal - CreditTotal > 0; 

Note 
• If you name the columns of a view in the CREATE VIEW clause, you have to name 

all of the columns. By contrast, if you name the columns in the SELECT clause, 
you can name just the columns you need to rename. 

Figure 13-4 CREATE VIEW examples 



404 Section 4 Advanced SQL skills 

How to create an updatable view 

Once you create a view, you can refer to it in a SELECT statement as you 
saw in figure 13-1. In addition, you can refer to it in INSERT, UPDATE, and 
DELETE statements to modify an underlying table. To do that, the view must be 
updatable. Figure 13-5 lists the requirements for creating updatable views. 

The first three requirements have to do with what you can code in the select 
list of the SELECT statement that defines the view. As you can see, the select list 
can't include the DISTINCT or TOP clause, it can' t include aggregate functions, 
and it can' t include calculated columns. In addition, the SELECT statement can't 
include a GROUP BY or HAVING clause, and two SELECT statements can't be 
joined by a union operation. 

The first CREATE VIEW statement in this figure creates a view that's 
updatable. This view adheres to all of the requirements for updatable views. That 
means that you can refer to it in an INSERT, UPDATE, or DELETE statement. 
For example, you could use the UPDATE statement shown in this figure to 
update the CreditTotal column in the Invoices base table. 

By contrast, the second CREATE VIEW statement in this figure creates a 
read-only view. This view is read-only because the select list contains a calculated 
value. 

In general, using INSERT, UPDATE, and DELETE statements to update 
data through a view is inflexible and prone to errors. Because of that, you should 
avoid this technique whenever possible. Instead, you should consider using 
INSTEAD OF triggers to update data through a view. You' ll learn about this type 
of trigger in chapter 15. 



Chapter I 3 How to work with views 405 

Requirements for creating updatable views 
• The select list can't include a DISTINCT or TOP clause. 

• The select list can't include an aggregate function. 

• The select list can't include a calculated value. 

• The SELECT statement can't include a GROUP BY or HAVING clause. 

• The view can't include the UNION operator. 

A CREATE VIEW statement that creates an updatable view 
CREATE VIEW InvoiceCredit 
AS 
SELECT InvoiceNumber, InvoiceDate, InvoiceTotal, PaymentTotal, CreditTotal 
FROM Invoices 
WHERE InvoiceTotal - PaymentTotal - CreditTotal > 0; 

An UPDATE statement that updates the view 
UPDATE InvoiceCredit 
SET CreditTotal = CreditTotal + 200 
WHERE InvoiceTotal - PaymentTotal - CreditTotal >= 200; 

A CREATE VIEW statement that creates a read-only view 
CREATE VIEW Outstandinginvoic es 
AS 
SELECT InvoiceNumber, InvoiceDate, InvoiceTotal, 

Invoic eTotal - PaymentTotal - CreditTotal AS Balanc eDue 
FROM Invoices 
WHERE Invoic eTotal - PaymentTotal - CreditTotal > 0; 

Description 
• An updatable view is one that can be used in an INSERT, UPDATE, or DELETE 

statement to modify the contents of a base table that the view refers to. If a view is 
not updatable, it's called a read-only view. 

• The requirements for coding updatable views are more restrictive than for coding 
read-only views. That's because SQL Server must be able to unambiguously 
determine which base tables and which columns are affected. 

• You can also insert, update, and delete data through a view using an INSTEAD OF 
trigger. See chapter 15 for details. 

Figure 13-5 How to create an updatable view 



406 Section 4 Advanced SQL skills 

How to delete or modify a view 
---~~ 

Figure 13-6 presents the statements you use to delete or modify a view. 
To delete a view, you use the DROP VIEW statement. In this statement, you 
simply name the view you want to delete. Like the other statements for deleting 
database objects, this statement deletes the view permanently. So, you may want 
to make a backup copy of the database first if there's any chance that you may 
want to restore the view later. 

To modify a view, you can use the ALTER VIEW statement. Notice that the 
syntax of this statement is the same as the syntax of the CREATE VIEW 
statement. If you understand the CREATE VIEW statement, then, you won't 
have any trouble using the ALTER VIEW statement. 

Instead of using the ALTER VIEW statement to modify a view, you can 
delete the view and then recreate it. If you've defined permissions for the view, 
you should know that those permissions are deleted when the view is deleted. If 
that's not what you want, you should use the ALTER VIEW statement instead. 

The examples in this figure show how you can use the DROP VIEW and 
ALTER VIEW statements. The first example is a CREATE VIEW statement that 
creates a view named Vendors_SW. This view retrieves rows from the Vendors 
table for vendors located in four states. Then, the second example is an ALTER 
VIEW statement that modifies this view so it includes vendors in two additional 
states. Finally, the third example is a DROP VIEW statement that deletes this 
vtew. 

In the last chapter, you learned how to display the dependencies for a table. 
Before you delete a table, you should display its dependencies to determine if 
any views are dependent on the table. If so, you should delete the views along 
with the tables. If you don' t, a query that refers to the view will cause an error. 
To prevent this problem, you can bind the view to the database schema by 
specifying the WITH SCHEMABINDING option in the CREATE VIEW or 
ALTER VIEW statement. Then, you won't be able to delete the base table 
without deleting the views that depend on it first. 



Chapter I 3 How to work with views 407 

The syntax of the DROP VIEW statement 
DROP VIEW view_ name 

The syntax of the ALTER VIEW statement 
ALTER VIEW view_name [(column_name_ l [, column_name_ 2] ••• )] 
[WITH {ENCRYPTIONISCHEMABINDINGIENCRYPTION,SCHEMABINDING}] 

AS 
select_ statement 
[WITH CHECK OPTION] 

A statement that creates a view 
CREATE VIEW Vendors_ SW 
AS 
SELECT * 
FROM Vendors 
WHERE VendorState IN ('CA','AZ','NV','NM'); 

A statement that modifies the view 
ALTER VIEW Vendors_ SW 
AS 
SELECT * 
FROM Vendors 
WHERE VendorState IN ('CA', 'AZ','NV','NM', 'UT','CO'); 

A statement that deletes the view 
DROP VIEW Vendors_ SW; 

Description 
• To delete a view from the database, use the DROP VIEW statement. 

• To modify the definition of a view, you can delete the view and then create it again, 
or you can use the ALTER VIEW statement to specify the new definition. 

• When you delete a view, any permissions that are assigned to the view are also 
deleted. 

• If you delete a table, you should also delete any views that are based on that table. 
Otherwise, an error will occur when you run a query that refers to one of those 
views. To find out what views are dependent on a table, display the table's 
dependencies as described in chapter 12. 

• If you specify the WITH SCHEMABINDING option when you create or modify a 
view, you won' t be able to delete the base tables without first deleting the view. 

Note 
• ALTER VIEW isn' t an ANSI-standard statement. Although it's supported on other 

SQL-based systems, its behavior on each system is different. 

Figure 13-6 How to delete or modify a view 



408 Section 4 Advanced SQL skills 

How to use views 
So far, you've seen how to use views in SELECT statements to retrieve data 

from one or more base tables. But you can also use views in INSERT, UPDATE, 
and DELETE statements to modify the data in a base table. You' lllearn how to 
do that in the topics that follow. In addition, you'lllearn how to use some views 
provided by SQL Server to get information about the database schema. 

How to update rows through a view 
---

Figure 13-7 shows how you can update rows in a table through a view. To do 
that, you simply name the view that refers to the table in the UPDATE statement. 
Note that for this to work, the view must be updatable as described in figure 
13-5. In addition, the UPDATE statement can only update the data in a single 
base table, even if the view refers to two or more tables. 

The examples in this figure illustrate how this works. First, the CREATE 
VIEW statement creates an updatable view named VendorPayment that joins 
data from the Vendors and Invoices tables. The data that's retrieved by this view 
is shown in this figure. Then, the UPDATE statement uses this view to modify 
the PaymentDate and PaymentTotal columns for a specific vendor and invoice. 
As you can see, the Invoices table reflects this update. 

Notice, however, that the row that was updated is no longer included in the 
view. That's because the row no longer meets the criteria in the WHERE clause 
of the SELECT statement that defines the view. If that's not what you want, 
you can include the WITH CHECK OPTION clause in the CREATE VIEW 
statement. Then, an update through the view isn't allowed if it causes the row 
to be excluded from the view. If the WITH CHECK OPTION clause had been 
included in the definition of the VendorPayment view, for example, the UPDATE 
statement in this figure would have resulted in an error message like the one 
shown. 



Chapter I 3 How to work with views 409 

A statement that creates an updatable view 
CREATE VIEW VendorPayment 
AS 
SELECT VendorName, Invoic eNumber, Invoic eDate, PaymentDate, 

Invoic eTotal, CreditTotal, PaymentTotal 
FROM Invoice s JOIN Vendors ON Invoices.VendoriD = Vendors.VendoriD 
WHERE InvoiceTotal - PaymentTotal - CreditTotal > 0; 

The data retrieved by the view before the update 
VendorName Invoice Number Invoice Date Payment Date Invoice Total Credit Total Paymert Total 

6 Federal Express Co!poration 263253273 202().{11-22 NULL 30.75 0.00 0.00 

7 Malloy Uthographi1g Inc P-{)6()8 202().{11-23 NULL 20551.18 1200.00 0.00 

8 Ford Motor Cred~ Company 9982n1 202().{11-24 NULL 503.20 0.00 0.00 

9 Cardinal Business Media. Inc. 134116 202().{11-28 NULL 90.36 0.00 0.00 

10 Malloy Uthographng Inc 0-2436 202().{11-31 NULL 10976.06 0.00 0.00 

A statement that updates the Invoices table through the view 
UPDATE VendorPayment 
SET PaymentTotal = 19351.18, PaymentDate = '2020-02-02' 
WHERE VendorName = ' Malloy Lithographing Inc ' AND Invoic eNumber = 'P-0608' ; 

The updated Invoices table 
lnvoiceiD VendoriD lnvoiceNunber Invoice Date Invoice Total P aymert Total CredH otal TennsiD Invoice Due Date ,.. 

102 102 110 P-{)6()8 202().{11-23 20551 .18 19351.18 1200.00 3 202().{12-22 

103 103 122 989319-417 202().{11-23 2051.59 2051.59 0.00 3 202().{12-22 

104 104 123 263253243 202().{11-23 44.44 44.44 0.00 3 202().{12-22 

105 105 106 9982n1 202().{11-24 503.20 0.00 0.00 3 202().{12-23 

106 106 110 ().2060 202().{11-24 23517.58 21221.63 2295.95 3 202().{12-23 ..., 

< ) 

~ 

The data retrieved by the view after the update 
VendorName Invoice Number Invoice Date PaymertOate Invoice Total Credit Total Payment Total ,.. 

6 Federal Express Co!poration 263253273 202().{11-22 NULL 30.75 000 0.00 

7 Ford Motor Credit Company 9982n1 202().{11-24 NULL 503.20 000 000 

8 Cardinal Busiless Media. I. .. 134116 202().{11-28 NULL 90.36 0.00 0.00 

9 Maloy Uthographng Inc ().2436 202().{11-31 NULL 10976.06 0.00 0.00 ..., 

The response if WITH CHECK OPTION is specified for the view 
The attempted insert or update failed because the target view either 
specifies WITH CHECK OPTION or spans a view that specifies WITH CHECK 
OPTION and one or more rows resulting from the operation did not qualify 
under the CHECK OPTION constraint. 
The s tatement has been terminated. 

Description 
• You can use the UPDATE statement to update a table through a view. To do that, 

you name the view in the UPDATE clause. 

• The view you name in the UPDATE statement must be updatable. In addition, the 
UPDATE statement can' t update data in more than one base table. 

• If you don't specify WITH CHECK OPTION when you create a view, a change you 
make through the view can cause the modified rows to no longer be included in the view. 

• If you specify WITH CHECK OPTION when you create a view, an error will occur if 
you try to modify a row in such a way that it would no longer be included in the view. 

Figure 13-7 How to update rows through a view 



41 0 Section 4 Advanced SQL skills 

How to insert rows through a view 

To insert rows through a view, you use the INSERT statement as shown in 
figure 13-8. At the top of this figure, you can see a CREATE VIEW statement 
for a view named IBM_Invoices. This view retrieves columns and rows from the 
Invoices table for the vendor named IBM. Then, the INSERT statement attempts 
to insert a row into the Invoices table through this view. 

This insert operation fails, though, because the view and the INSERT 
statement don' t include all of the required columns for the Invoices table. In 
this case, a value is required for the VendoriD, InvoiceNumber, InvoiceDate, 
InvoiceTotal, TermsiD, and InvoiceDueDate columns. By contrast, the InvoiceiD 
column can be omitted because it's an identity column; the PaymentTotal and 
CreditTotal columns can be omitted because they have default values; and the 
PaymentDate column can be omitted because it allows null values. 

In addition to providing values for all the required columns in a table, you 
should know that the INSERT statement can insert rows into only one table. 
That's true even if the view is based on two or more tables and all of the required 
columns for those tables are included in the view. In that case, you could use a 
separate INSERT statement to insert rows into each table through the view. 

How to delete rows through a view 

Figure 13-8 also shows how to delete rows through a view. To do that, you 
use a DELETE statement like the one shown here. This statement deletes an 
invoice from the Invoices table through the IBM_Invoices view. As you can 
see, the response from the system shows that one row was affected. Remember, 
though, that any delete operations on the Invoices table are cascaded to the 
InvoiceLineltems table. As a result, any line items for this invoice are also 
deleted. 



A statement that creates an updatable view 
CREATE VIEW IBM_ Invoices 
AS 

Chapter I 3 How to work with views 411 

SELECT InvoiceNumber1 InvoiceDate1 Invoic eTotal 
FROM Invoices 
WHERE VendoriD = (SELECT VendoriD FROM Vendors WHERE VendorName ='IBM'); 

The contents of the view 

1 

2 

lnvoiceNumber lnvoiceDate 

[§~-~·?.?.·.:.-.-.·.·.·.·.:.·.·.·.-.-.] 2019-11-{)7 
0545443 2019-12.()9 

Invoice Total 

116.54 

10&3.58 

An INSERT statement that fails due to columns with null values 
INSERT INTO IBM_Invoices 

(InvoiceNumber1 InvoiceDate1 InvoiceTotal) 
VALUES (I RA23988' I '2020-03 - 04' I 417.34) ; 

The response from the system 
Cannot insert the value NULL into column 'VendoriD'1 table 'AP.dbo . Invoices ' ; 
column does not allow nulls. INSERT fails. 
The statement has been terminated. 

A DELETE statement that succeeds 
DELETE FROM IBM_ Invoices 
WHERE Invoic eNumber = 'Q54544 3'; 

The response from the system 
(1 row affected) 

Description 
• You can use the INSERT statement to insert rows into a base table through a view. 

To do that, you name the view in the INSERT clause. Both the view and the INSERT 
statement must include all of the columns from the base table that require a value. 

• If the view names more than one base table, an INSERT statement can insert data into 
only one of those tables. 

• You can use the DELETE statement to delete rows from a base table through a view. 
To do that, you name the table in the DELETE clause. For this to work, the view must 
be based on a single table. 

Figure 13-8 How to insert or delete rows through a view 



412 Section 4 Advanced SQL skills 

How to use the catalog views 

The ANSI standards specify that a SQL database must maintain an online 
system catalog that lists all of the objects in a database. Although SQL Server 
lets you query the system catalogs directly, I don't recommend you do that. 
That's because if you do, you have to code queries that are dependent on the 
structure of the system tables that make up the system catalog. So if the system 
tables change in a future release of SQL Server, you have to change your 
quenes. 

Instead of querying the system tables directly, you can use the catalog views 
provided by SQL Server. Because these views are independent of the structure of 
the system tables, you don't have to worry about changing the queries that refer 
to them if the structure changes. Figure 13-9 lists some of these views and shows 
you how to use them. 

To display the data defined by a catalog view, you use a SELECT 
statement just as you would for any other view. The SELECT statement shown 
in this figure, for example, displays the name and schema of every table in the 
current database. To do that, it joins the sys.tables and sys.schemas views on the 
schema_id column in each view. 

If you look up the sys.tables view in the SQL Server documentation, you'll 
notice that this table doesn' t include the name column that's retrieved by the 
SELECT statement in this figure. Instead, this column is inherited from the 
sys.objects view. A view like this that contains columns that can be inherited by 
other views is called a base view, and the view that inherits the columns is called 
the derived view. Because the columns of the base view are inherited automati
cally, you can think of these columns as part of the derived view. 

Before catalog views were introduced with SQL Server 2005, you used 
information schema views to query the system catalog. Although these views are 
still available, we recommend you use the catalog views instead. That's because, 
unlike the information schema views, the catalog views provide access to all of 
the data in the system catalogs. In addition, the catalog views are more efficient 
than the information schema views. 

At this point, you may be wondering why you would want to use the catalog 
views. After all, you can get the same information using the Management 
Studio. The answer is that you may occasionally need to get information about 
the objects in a database from a script. You'lllearn how to do that in the next 
chapter. 



Chapter I 3 How to work with views 413 

Some of the SQL Server catalog views 
View name Contents 

sys.schemas 

sys.sequences 

sys. tables 

sys . views 

sys.colwnns 

sys.key_ constraints 

sys.foreign_ keys 

sys.foreign_key_columns 

s y s . objects 

One row for each schema in the current database. 

One row for each sequence in the current database. 

One row for each table in the current database. 

One row for each view in the current database. 

One row for each column in each table, view, or 
table-valued function in the current database. 

One row for each primary or unique key in each 
table in the current database. 

One row for each foreign key. 

One row for each column or set of columns that 
make up a foreign key. 

One row for each user-defined object in the current 
database, except for triggers. 

A SELECT statement that retrieves the name and schema of each table 
SELECT sys . t a bles.name AS TableName, sys. schemas.name AS Sc hemaName 
FROM sys.tables INNER JOIN sys.schemas 
ON sy s .table s . s chema_ id = sys.schemas . schema_ id; 

The result set 
Table Name Schema Name 

1 L~.~·~·q;;~~i.~:·_·] dbo 
2 GLAccounts dbo 

3 Invoice Archive dbo 

4 Invoice Uneke ... dbo 

5 Invoices dbo 

6 Terms dbo 

7 Vendors dbo 

8 sysdiagrams dbo 

9 VendoiCopy dbo 

Description 
• You can use the catalog views to examine the system catalog, which lists all of the 

system objects that define a database, including tables, views, columns, keys, and 
constraints. 

• Some catalog views inherit columns from other catalog views. In that case, the 
catalog view from which the columns are inherited is called the base view, and the 
catalog view that inherits the columns is called the derived view. 

• For a complete listing of the catalog views, refer to SQL Server documentation. 

Figure 13-9 How to use the catalog views 



414 Section 4 Advanced SQL skills 

How to use the View Designer 
The Management Studio provides a graphical tool called the View Designer 

that you can use to work with views. However, many programmers prefer to use 
the Query Editor to manually code the SQL for views as described earlier. As a 
result, this topic only provides a brief description of the View Designer. 

How to create or modify a view 

You can use the View Designer to create or modify a view as described 
in figure 13-10. This figure shows a view named VendorPayment in the View 
Designer. This tool is similar to the Query Designer that was briefly introduced 
in chapter 2. 

To create a new view, right-click on the Views folder and select the New 
View command. When you do, the View Designer prompts you to select the 
tables that the view will be based on. Then, it displays the tables that you select 
in the Diagram pane of the View Designer. When appropriate, the Diagram pane 
includes a link icon that shows the relationships between these tables. When you 
save the view for the first time, the Management Studio displays a dialog box 
that allows you to enter a name for the view. 

To edit the design of an existing view, you can expand the Views folder, 
right-click on the view, and select the Design command to display the view in 
the View Designer. If necessary, you can use the Add Table button in the View 
Designer toolbar to add new tables to the Diagram pane. 

Once you display the tables for the view in the Diagram pane, you can use 
that pane to select the columns that are displayed in the Criteria pane. Then, 
you can use the Criteria pane to set the criteria and sort sequence for the query. 
In this figure, for example, the Criteria pane shows the columns that will be 
included in the view, and it shows that the last column, which is a calculated 
column and is not included in the result set, must be greater than zero. 

As you work in the Diagram and Criteria panes, the View Designer generates 
a SQL statement and displays it in the SQL pane. When you have the statement 
the way you want it, you can test the view by clicking on the Execute SQL 
button in the View Designer toolbar. Then, the data that's returned by the view 
is displayed in the Results pane. In this figure, for example, the Results pane 
displays the results as read-only because the view that's defined by the SQL 
statement uses a calculated column. 

How to delete a view 

You can also use the Management Studio to delete a view. You do that using 
the same technique you use to delete any other type of database object. To start, 
right-click on the view and select Delete. Then, select OK to confirm the delete. 



Chapter 13 How to work with views 

The Management Studio with a view displayed in the View Designer 
L.; MMA 17\SO.LEX.PRESS.AP - dbo.VendorPayment.fll - M1crosoft SOL Server Management Studio Quock Launch (Ctri+QJ p - 0 X 

F1le Ed1t V1e.~ Project Query Des1gner Tools W1ndow Help 

<' Iii ~ .Iii New Query .~ ~ ~ .~ ,?,! j(, OJ 1§:'1 p VB _____ __,· :;J ~ 

•• 
Object Explorer • ~ X MMA 17\SQLEXPRES ... o.Vendorl'ayment' -o X SQLQuery7.sql · lo. (murach\Anne (52)) • 

Connect · 'f ' ¥ C, -J>. 

8 id localhost\SOlEXPRESS (SOL Server 15.0. " 
8 Databases 

G) System Oatabas6 
Hl Database Snapshots 

8 iii AP 
(t) OatJbase Diagrams 
(!) Tables 
8 Views 

1m Invoices 

• (All Columns) 
O lrrvoicelD 
O vendoriD 
0 1nvoiceNumber 
0 1nvoiceDate 

!Ill Vendors 

• (All Columns) 
0 Vendo<t0 
0VendorName 
O vendorAddress1 
[;;)VendorAddress2 

1!J System Views Column Alias Table Outp ... Sort Type Sort Order Filter 

1iJ ~ dbo.IBM_Invoices 
Iii ~ dbo.lnvoiceCredrt 
IE ~ dbo.lnvoiceSummary 
1iJ ~ dbo.Outstandinglnvoices 
Iii ~ dbo.T opVendors 

Invoice Total 

Creditlotal 

PaymentTotal 

dbo.lnvoices.lnvoic ... 

Invoices 0 
Invoices 0 
Invoices 0 

0 >0 

G) ~ dbo.Vendorlnvoices 

IE ~ dbo.VendorPayment 
1iJ ~ dbo.Vendors_SW 

SELECT 
FROM 

dbo.Vendors.VendorName, dbo.lnvoices.lnvoiceNumber, dbo.lnvoices.lnvoiceOete, dbo.lnvoices.Paymen 
dbo.lnvoices INNER JOIN 

(!) ~ dbo.VendorsDue 
IE ~ dbo.VendorShortList 

W External Resources 

IE Synonyms 
G) Pro9rammab1hty 
til Service Broker 
IE Stonge 

0 Ready 

WHERE 
dbo.Vendors ON dbo.lnvoices.VendoriD = dbo.Vendors.VendoriD 

(dbo.lnvoices.lnvoiceTotal· dbo.lnvoices.PaymentTotal· dbo.lnvoices.CreditTotal > 0) 

Vt.ndorNamt. lnvoict.Numbt.r lnvoict.Datt. Paymt.ntDatt. lnvoict.Total 

Data Reproduct. 3g104 2020-01-10 NULL 85.3100 

I~ I 1 of 10 ~ ~~ • Cell is Read Only. 

How to create or modify the design of a view 

Cr~itlota"' 

0.0000 

nnnnn 

• To create a new view, right-click on the Views folder and select the New View 
command to display a new view in the View Designer. Then, when you click on the 
Save button in the toolbar, you can supply a name for the view. 

• To edit the design of an existing view, expand the Views folder, right-click on the 
view, and select the Design command to display the view in the View Designer. 

• To add tables to the Diagram pane, click on the Add Table button in the View 
Designer toolbar. 

• To select the columns for a view, use the Diagram pane. 

• To specify the selection criteria and sort order for the view, use the Criteria pane. 

• To view the code that's generated for the view or to modify the generated code, use 
the SQL pane. 

• To display the results of the view in the Results pane, click on the Execute SQL 
button in the View Designer toolbar. 

How to delete a view 
• To delete a view, expand the Views folder, right-click on the view, select the Delete 

command, and click OK in the resulting Delete Object dialog box. 

Figure 13-1 0 How to use the Management Studio to work with views 

415 



416 Section 4 Advanced SQL skills 

Perspective 
In this chapter, you learned how to create and use views. As you've seen, 

views provide a powerful and flexible way to predefine the data that can be 
retrieved from a database. By using them, you can restrict the access to a 
database while providing a consistent and simplified way for end users and 
application programs to access that data. 

Terms 

vtew 
viewed table 
base table 
nested view 
database schema 
updatable view 

Exercises 

read-only view 
catalog views 
base view 
derived view 
system catalog 
information schema view 

1. Write a CREATE VIEW statement that defines a view named InvoiceBasic 
that returns three columns: VendorName, InvoiceNumber, and InvoiceTotal. 
Then, write a SELECT statement that returns all of the columns in the view, 
sorted by VendorName, where the first letter of the vendor name is N, 0 , or P. 

2. Create a view named ToplOPaidlnvoices that returns three columns for each 
vendor: VendorName, Lastlnvoice (the most recent invoice date), and 
SumOflnvoices (the sum of the InvoiceTotal column). Return only the 10 
vendors with the largest SumOflnvoices and include only paid invoices. 

3. Create an updatable view named Vendor Address that returns the VendoriD, 
both address columns, and the city, state, and zip code columns for each 
vendor. Then, write a SELECT query to examine the result set where 
VendoriD=4. Next, write an UPDATE statement that changes the address so 
that the suite number (Ste 260) is stored in VendorAddress2 rather than in 
VendorAddress l . To verify the change, rerun your SELECT query. 

4. Write a SELECT statement that selects all of the columns for the catalog 
view that returns information about foreign keys. How many foreign keys are 
defined in the AP database? 

5. Using the Management Studio, modify the InvoiceBasic view created in 
exercise 1 to sort the result set by VendorName. What clause does the system 
automatically code to allow the use of an ORDER BY clause in the view? 



14 

How to code scripts 
At the end of chapter 11, you saw a simple script that defines the AP database 
and the tables it contains. Now, this chapter teaches you how to code more 
complex scripts. With the skills you ' lllearn in this chapter, you'll be able to 
code scripts with functionality that's similar to the functionality provided by 
procedural programming languages like C#, Visual Basic, and Java. 

If you have experience with another procedural programming language, 
you shouldn' t have any trouble with the skills presented in this chapter. 
However, you should know that the programming power of Transact-SQL 
is limited when compared to other languages. That's because Transact-SQL 
is designed specifically to work with SQL Server databases rather than as a 
general-purpose programming language. For its intended use, Transact-SQL 
programming is powerful and fl exible. 

An introduction to scripts ................................................. 418 
How to work with scripts ....................................................... ... ................... 418 
The Transact-SQL statements for script processing ................................... .420 

How to work with variables and temporary tables .......... 422 
How to work with scalar variables ............................................................. .422 
How to work with table variables ......... ....................... .... ................. .... ....... 424 
How to work with temporary tables ........................................................... .426 
A comparison of the five types of Transact-SQL table objects ................ ... 428 

How to control the execution of a script .......................... 430 
How to perform conditional processing .................... .. .... .... ........ .... ........... .430 
How to test for the existence of a database object.. .......................... ... .. ...... 432 
How to perform repetitive processing .. ..................... .. ..... .... ................. ... .. .434 
How to use a cursor ........................................... ........ ............ ........ .... .... ..... .436 
How to handle errors ......... .... ... .... .... .. .. ..................... .. ..... .... .... ..... .... .... ... .. .438 
How to use surround-with snippets ... .......... .. .... .... .... .. ...... .... ...... .. .. .. .... ..... 440 

Advanced scripting techniques ........................................ 442 
How to use the system funct ions ................................ ........... .......... ........... .442 
How to change the session settings ............................................................ 444 
How to use dynamic SQL ........................................................................... 446 
A script that summarizes the structure of a database .................. .............. 448 
How to use the SQLCMD utility ..................................... .. .......................... 452 

Perspective ......................................................................... 454 



418 Section 4 Advanced SQL skills 

An introduction to scripts 
To start, this chapter reviews and expands on the script concepts you learned 

in chapter 11. Then, it summarizes the Transact-SQL statements you can use 
within scripts. Most of these statements will be presented in detail later in this 
chapter. 

How to work with scripts 

Most of the scripts you've created so far in this book have consisted of a 
single SQL statement. However, a script can include any number of statements, 
and those statements can be divided into one or more batches. To indicate the 
end of a batch, you code a GO command. The script in figure 14-1, for example, 
consists of two batches. The first one creates a database, and the second one 
creates three tables in that database. 

Because the new database must exist before you can add tables to it, the 
CREATE DATABASE statement must be coded in a separate batch that's 
executed before the CREATE TABLE statements. By contrast, the three 
CREATE TABLE statements don' t have to be in separate batches. However, 
notice that these three statements are coded in a logical sequence within 
the second batch. In this case, the CommitteeAssignments table references 
the other two tables, so I created the other tables first. If I had created the 
CommitteeAssignments table first, I couldn' t have declared the foreign key 
constraints. In that case, I would have had to add these constraints in an ALTER 
TABLE statement after the other two tables were created. 

Although you don' t have to code the CREATE TABLE statement in a 
separate batch, you do have to code the five statements listed in this figure in 
separate batches. Each of these statements must be the first and only statement 
in the batch. You learned how to code the CREATE VIEW statement in the 
last chapter, you'll learn how to code the CREATE PROCEDURE, CREATE 
FUNCTION, and CREATE TRIGGER statements in the next chapter, and you' ll 
learn how to code the CREATE SCHEMA statement in chapter 17. 

Before I go on, you should realize that GO isn' t a Transact-SQL statement. 
Instead, it's a command that's interpreted by two of the software tools that are 
included with SQL Server: the Management Studio and the SQLCMD utility. 
When one of these tools encounters a GO command, it sends the preceding 
statements to the server to be executed. You already know how to use the 
Management Studio, and you'lllearn the basics of working with the SQLCMD 
utility later in this chapter. 



Chapter14 Howtocodescripts 419 

A script with two batches 
I* 
Creates three tables in a database named ClubRoster. 
Author: Bryan Syverson 
Created: 2008-08-12 
Modified: 2016-09-26 
*I 

CREATE DATABASE ClubRoster; 
GO 

USE ClubRoster; 

CREATE TABLE Members 
(MemberiD int NOT NULL IDENTITY PRIMARY KEY, 
LastName varchar(75) NOT NULL, 
FirstName varchar(SO) NOT NULL, 
MiddleName varchar(SO) NULL); 

CREATE TABLE Committees 
(CommitteeiD int NOT NULL IDENTITY PRIMARY KEY, 
CommitteeName varchar(SO) NOT NULL); 

CREATE TABLE CommitteeAssignments 
(MemberiD int NOT NULL REFERENCES Members(MemberiD), 
CommitteeiD int NOT NULL REFERENCES Committees(CommitteeiD)); 

Statements that must be in their own batch 
CREATE VIEW 

CREATE TRIGGER 

Description 

CREATE PROCEDURE 

CREATE SCHEMA 

CREATE FUNCTION 

• A script is a series of SQL statements that you can store in a file. Each script can 
contain one or more batches that are executed as a unit. 

• To signal the end of a batch, you use the GO command. A GO command isn' t 
required after the last batch in a script or for a script that contains a single batch. 

• If a statement must be executed before the statements that follow can succeed, you 
should include a GO command after it. 

• The statements within a batch are executed in the order that they appear in the 
batch. Because of that, you need to code statements that depend on other statements 
after the statements they depend on. 

• If you create a database within a script, you have to execute the batch that contains 
the CREATE DATABASE statement before you can execute other statements that 
refer to the database. 

• The five statements listed above (CREATE VIEW, CREATE PROCEDURE, 
CREATE FUNCTION, CREATE TRIGGER, and CREATE SCHEMA) can' t be 
combined with other statements in a batch. 

• If a script will be used with a production database, you should include documentation 
as shown above. Additional information should be included when appropriate. 

Figure 14-1 How to work with scripts 



420 Section 4 Advanced SQL skills 

The Transact-SQL statements for script processing 

Figure 14-2 presents the Transact-SQL statements used to process scripts. 
These statements, which are sometimes referred to as T-SQL statements, are 
specific to SQL Server. You' lllearn how to code many of these statements 
throughout this chapter. 

Two statements I want to present right now are USE and PRINT. You can see 
both of these statements in the script presented in this figure. You use the USE 
statement to change the current database within a script. In this example, the 
USE statement makes the AP database the current database. That way, you don't 
have to worry about setting the current database using the drop-down list in the 
Management Studio. And when you create stored procedures, functions, and 
triggers as you' ll learn in the next chapter, you have to use the USE statement. 

You use the PRINT statement to return a message to the client. If the 
client is the Management Studio, for example, the message is displayed in the 
Messages tab of the Query Editor. The script in this figure includes two PRINT 
statements. Notice that the first statement uses concatenation to combine a literal 
string with the value of a variable. You' llleam how to work with variables as 
well as the other statements in this script in a moment. 

Two statements I won't present in this chapter are GOTO and RETURN. I 
recommend that you don' t use the GOTO statement because it can make your 
scripts difficult to follow. And the RETURN statement is used most often with 
stored procedures, so I'll present it in the next chapter. 



Chapter 14 How to code scripts 421 

Transact-SQL statements for controlling the flow of execution 
Keyword Description 

IF ••• ELSE 

BEGIN ••• END 

WHILE 

BREAK 

CONTINUE 

TRY ... CATCH 

GOTO 

RETURN 

Controls the flow of execution based on a condition. 

Defines a statement block. 

Repeats statements while a specific condition is true. 

Exits the innermost WHILE loop. 

Returns to the beginning of a WHILE loop. 

Controls the flow of execution when an error occurs. 

Unconditionally changes the flow of execution. 

Exits unconditionally. 

Other Transact-SQL statements for script processing 

Keyword Description 

USE 

PRINT 

DECLARE 

SET 

EXEC 

Changes the database context to the specified database. 

Returns a message to the client. 

Declares a local variable. 

Sets the value of a local variable or a session variable. 

Executes a dynamic SQL statement or stored procedure. 

The syntax of the USE statement 
USE database 

The syntax of the PRINT statement 
PRINT string_expression 

A script that uses some of the statements shown above 
USE AP; 
DECLARE @TotalDue money; 
SET @TotalDue = (SELECT SUM(InvoiceTotal - PaymentTotal - CreditTotal) 

FROM Invoices); 
IF @TotalDue > 0 

PRINT 'Total invoices due = $' + CONVERT(varchar, @TotalDue,l); 
ELSE 

PRINT 'Invoices paid in full'; 

Description 
• These statements are used within SQL scripts to add functionality similar to that 

provided by procedural programming languages. 

• These statements are part of the Transact-SQL, or T-SQL, language and aren' t 
available on SQL-based systems other than SQL Server. 

Figure 14-2 The Transact-SOL statements for script processing 



422 Section 4 Advanced SQL skills 

How to work with variables 
and temporary tables 

If you need to store values within a script, you can store them in scalar 
variables, table variables, or temporary tables. You' lllearn how to use all three 
of these techniques in the topics that follow. In addition, you'll see a comparison 
of the different types of SQL Server objects that you can use to work with table 
data so you'll know when to use each type. 

How to work with scalar variables 

Figure 14-3 presents the DECLARE and SET statements that you use to 
work with variables. Specifically you use these statements to work with scalar 
variables, which can contain a single value. You use the DECLARE statement to 
create a variable and specify the type of data it can contain, and you use the SET 
statement to assign a value to a variable. 

The variables you create using the DECLARE statement are also known as 
local variables. That's because a variable's scope is limited to a single batch. 
In other words, you can't refer to a variable from outside the batch. Variables 
are also described as local to distinguish them from global variables, which is 
an obsolete term for system functions. You' lllearn about some of the system 
functions later in this chapter. 

You can also assign a value to a variable within the select list of a SELECT 
statement. To do that, you use the alternate syntax shown in this figure. Although 
you can accomplish the same thing by using a SET statement to assign the result 
of a SELECT query to the variable, the alternate syntax usually results in more 
readable code. In addition, when you use a SELECT statement, you can assign 
values to two or more variables with a single statement. 

The script shown in this figure uses five variables to calculate the percent 
difference between the minimum and maximum invoices for a particular vendor. 
This script starts by declaring all of these variables. Then, it assigns values to 
two of the variables using SET statements. Notice that the second SET 
statement assigns the result of a SELECT statement to the variable, and the value 
of the first variable is used in the WHERE clause of that SELECT statement. The 
SELECT statement that follows this SET statement uses the alternate syntax to 
assign values to two more variables. Then, the next SET statement assigns the 
result of an arithmetic expression to the final variable. Finally, PRINT statements 
are used to display the values of four of the variables. 

Although you can use a variable in any expression, you can' t use it in place 
of a keyword or an object name. For example, this use is invalid: 

DECLARE @TableNamevar var c har(128); 
SET @TableNamevar = ' I nvoices • ; 
SELECT * FROM @TableNameVar; 

Later in this chapter, however, you'lllearn how to execute a SQL statement like 
this one using dynamic SQL. 



Chapter 14 How to code scripts 423 

The syntax of the DECLARE statement for scalar variables 
DECLARE @variable_name_1 data_ type [, @variable_name_ 2 data_ type] ••• 

The syntax of the SET statement for a scalar variable 
SET @variable_name = expression 

An alternate syntax for setting a variable's value in a select list 
SELECT @variable_name_1 column_ specification_ 1 

[, @variable_name_ 2 = column_ specification_ 2] ••• 

A SQL script that uses variables 
USE AP; 
DECLARE @Maxinvoice money, @Mininvoice money; 
DECLARE @PercentDifference decimal(8,2); 
DECLARE @InvoiceCount int, @VendoriDVar int; 

SET @VendoriDVar = 95; 
SET @Maxinvoice = (SELECT MAX(InvoiceTotal) FROM Invoices 

WHERE VendoriD = @VendoriDVar); 
SELECT @Mininvoice = MIN(InvoiceTotal), @InvoiceCount =COUNT(*) 
FROM Invoices 
WHERE VendoriD = @VendoriDVar; 
SET @PercentDifference = (@Maxinvoice - @Mininvoice) I @Mininvoice * 100; 

PRINT 'Maximum invoice is$' + CONVERT (varchar, @Maxinvoice,1) + '.'; 
PRINT 'Minimum invoice is$' + CONVERT(varc har,@Mininvoic e,1) + '.'; 
PRINT 'Maximum is ' + CONVERT(varchar,@PercentDifference) + 

' % more than minimum.•; 
PRINT 'Number of invoic es: ' + CONVERT(varc har,@InvoiceCount) + 

The response from the system 
Maximum invoice is $46.21. 
Minimum invoice is $16.33. 
Maximum is 182.97% more than minimum. 
Number of invoices: 6. 

Description 
• A variable is used to store data. To create a variable, you use the DECLARE 

statement. The initial value of a variable is always null. 

I I o 
• I 

• A scalar variable is defined with a standard data type and contains a single value. 
You can also create table variables to store an entire result set. 

• The name of a variable must always start with an at sign (@). Whenever possible, 
you should use long, descriptive names for variables. 

• The scope of a variable is the batch in which it's defined, which means that it can' t 
be referred to from outside that batch. Because of that, variables are often called 
local variables. 

• To assign a value to a variable, you can use the SET statement. Alternatively, you 
can use the SELECT statement to assign a value to one or more variables. 

• You can use a variable in any expression, but you can't use it in place of an object 
name or a keyword. 

Figure 14-3 How to work with scalar variables 



424 Section 4 Advanced SQL skills 

How to work with table variables 

Figure 14-4 presents the syntax of the DECLARE statement you use to 
create table variables. A table variable is a variable that can store the contents of 
an entire table. To create this type of variable, you specify the table data type in 
the DECLARE statement rather than one of the standard SQL data types. Then, 
you define the columns and constraints for the table using the same syntax that 
you use for the CREATE TABLE statement. 

The script shown in this figure illustrates how you might use a table variable. 
Here, a DECLARE statement is used to create a table variable named 
@BigVendors that contains two columns: VendoriD and VendorName. Then, an 
INSERT statement is used to insert all of the rows from the Vendors table for 
vendors that have invoices totaling over $5000 into this table variable. Finally, a 
SELECT statement is used to retrieve the contents of the table variable. 

Notice that the table variable in this example is used in place of a table 
name in the INSERT and SELECT statements. You can also use a table variable 
in place of a table name in an UPDATE or DELETE statement. The only place 
you can' t use a table variable instead of a table name is in the INTO clause of a 
SELECT INTO statement. 



Chapter 14 How to code scripts 425 

The syntax of the DECLARE statement for a table variable 
DECLARE @table_ name TABLE 
(column_name_l data_type [column_attributes] 
[, column_name_ 2 data_type [column_attributes]] ••• 
[, table_attributes]) 

A SQL script that uses a table variable 
USE AP; 

DECLARE @BigVendors table 
(VendoriD int, 

VendorName varchar(SO)); 

INSERT @BigVendors 
SELECT VendoriD, VendorName 
FROM Vendors 
WHERE VendoriD IN 

(SELECT VendoriD FROM Invoices WHERE InvoiceTotal > 5000); 

SELECT * FROM @BigVendors; 

The result set 
VendoriD VendorName 

1 

2 

i".n ................... 1 Data Reproductions Corp 
1. ••••••••••••••••••••••••••••• 1 

99 Bertelsmann Industry Svcs. Inc 

3 104 

4 110 

Description 

Dig~al Dreamworks 

Malloy Lithographing Inc 

• A table variable can store an entire result set rather than a single value. To create a 
table variable, use a DECLARE statement with the table data type. 

• You use the same syntax for defining the columns of a table variable as you do 
for defining a new table with the CREATE TABLE statement. See figure 11-4 in 
chapter 11 for details. 

• Like a scalar variable, a table variable has local scope, so it's available only within 
the batch where it's declared. 

• You can use a table variable like a standard table within SELECT, INSERT, 
UPDATE, and DELETE statements. The exception is that you can' t use it within 
the INTO clause of a SELECT INTO statement. 

Figure 14-4 How to work with table variables 



426 Section 4 Advanced SQL skills 

How to work with temporary tables 

In addition to table variables, you can use temporary tables to store table 
data within a script. Temporary tables are useful for storing table data within a 
complex script. In addition, they provide a way for you to test queries against 
temporary data rather than permanent data. 

Unlike a table variable, a temporary table exists for the duration of the 
database session in which it's created. If you create a temporary table in the 
Management Studio's Query Editor, for example, it exists as long as the Query 
Editor is open. As a result, you can refer to the table from more than one script. 

Figure 14-5 presents two scripts that use temporary tables. The first script 
creates a temporary table named #Top Vendors using a SELECT INTO query. 
This temporary table contains the VendoriD and average invoice total for the 
vendor with the greatest average. Then, the second SELECT statement joins the 
temporary table with the Invoices table to get the date of the most recent invoice 
for that vendor. Note, however, that you could have created the same result set 
using a derived table like this: 

WITH TopVendors AS 
( 

SELECT TOP 1 VendoriD, AVG(InvoiceTotal) AS Avginvoice 
FROM Invoices 
GROUP BY VendoriD 
ORDER BY Avginvoice DESC 

SELECT Invoices.VendoriD, MAX(InvoiceDate) AS Latestinv 
FROM Invoices JOIN TopVendors 

ON Invoices.VendoriD = TopVendors.VendoriD 
GROUP BY Invoices.VendoriD; 

Because derived tables are more efficient to use than temporary tables, you 
should use them whenever possible. 

The second script in this figure shows another use of a temporary table. 
This script creates a temporary table that contains two columns: an identity 
column and a character column with a nine-digit default value that's generated 
using the RAND function. Then, the script inserts two rows into this table using 
the default values. Finally, the script uses a SELECT statement to retrieve the 
contents of the table. A script like this can be useful during testing. 

In these examples, the name of a temporary table begins with a number sign 
( # ). If the name begins with a single number sign, the table is defined as a local 
temporary table, which means that it's visible only to the database session in 
which it's created. However, you can also create temporary tables that are visible 
to all open database sessions, called global temporary tables. To create a global 
temporary table, code two number signs at the beginning of the table name. 

When a database session ends, any temporary tables created during that 
session are deleted. If you want to delete a temporary table before the session 
ends, however, you can do that by issuing a DROP TABLE statement. 



Chapter 14 How to code scripts 427 

A script that uses a local temporary table instead of a derived table 
SELECT TOP 1 VendoriD, AVG(InvoiceTotal) AS Avginvoice 
INTO #TopVendors 
FROM Invoices 
GROUP BY VendoriD 
ORDER BY Avginvoice DESC; 

SELECT Invoices.VendoriD, MAX(InvoiceDate) AS Latestinv 
FROM Invoices JOIN #TopVendors 

ON Invoices.VendoriD = #TopVendors.VendoriD 
GROUP BY Invoices.VendoriD; 

The result set 
VendoriD Latestlnv 

[.5".1.§·.·.·.·~.·.·~.·.·~~.·~~] 2020-0 1· 31 

A script that creates a global temporary table of random numbers 
CREATE TABLE ##RandomSSNs 
( 

SSN_ ID int IDENTITY, 
SSN char(9) DEFAULT 

LEFT(CAST(CAST(CEILING(RAND()*lOOOOOOOOOO)AS bigint)AS varchar),9) 
) ; 

INSERT ##RandomSSNs VALUES (DEFAULT); 
INSERT ##RandomSSNs VALUES (DEFAULT); 

SELECT * FROM ##RandomSSNs; 

The result set 
SSN_ID SSN 

!"'1""""""""""'] 217589782 
l.. ........................ l 

2 439515826 

Description 
• A temporary table exists only during the current database session. In the Management 

Studio, that means that the table is available until you close the window where you 
created the table. 

• Temporary tables are stored in the system database named tempdb. 

• If you need to drop a temporary table before the end of the current session, you can do 
that using the DROP TABLE statement. 

• Temporary tables are useful for testing queries or for storing data temporarily in a 
complex script. 

• A local temporary table is visible only within the current session, but a global temporary 
table is visible to all sessions. To identify a local temporary table, you prefix the name 
with a number sign ( # ). To identify a global temporary table, you prefix the name with 
two number signs ( ##).Temporary table names are limited to 116 characters. 

• Because derived tables result in faster performance than temporary tables, you should 
use derived tables whenever possible. See figure 14-6 for details. 

Figure 14-5 How to work with temporary tables 



428 Section 4 Advanced SQL skills 

A comparison of the five types 
of Transact-SQL table objects 

Now that you've learned about table variables and temporary tables, you 
might want to consider when you'd use them within a script and when you'd 
create a new standard table or view or simply use a derived table instead. 
Figure 14-6 presents a comparison of these five types of table objects. Note that 
although a view isn't technically a table, I've included it in this figure because it 
can be used in place of a table. 

One of the biggest differences between these objects is their scope, which 
determines where it can be used in a script. Because standard tables and views 
are stored permanently within a database, they have the broadest scope and 
can be used anywhere, including in other scripts on the current connection or 
other scripts on other connections. By contrast, a derived table exists only while 
the query that creates it is executing. Because of that, a derived table can't be 
referred to from outside the query. As you've just learned, temporary tables and 
table variables fall somewhere in between. 

Another difference between the five table types is where they're stored. Like 
standard tables, temporary tables are stored on disk. By contrast, table variables 
and derived tables are stored in memory if they're relatively small. Because of 
that, table variables and derived tables usually take less time to create and access 
than standard or temporary tables. 

Although a view is also stored on disk, it can be faster to use than any of the 
other table objects. That's because it's simply a precompiled query, so it takes 
less time to create and access than an actual table. However, with the other table 
objects, you can insert, update, or delete data without affecting any of the base 
tables in your database, which isn' t true of a view. For this reason, you can't 
use a view in the same way as the other table objects. But if you find that you're 
creating a table object that doesn't need to be modified within your script, then 
you should be defining it as a view instead. 

In most scripts, table variables and temporary tables can be used 
interchangeably. Since a script that uses a table variable will outperform the 
same script with a temporary table, you should use table variables whenever 
possible. However, table variables are dropped when the batch finishes 
execution. So if you need to use the table in other batches, you'll need to use a 
temporary table instead. 



Chapter 14 How to code scripts 429 

The five types of Transact-SQL table objects 
Type Scope 
Standard table Available within the system until explicitly deleted. 

Temporary table Available within the system while the current database session is open. 

Table variable Available within a script whi le the current batch is executing. 

Derived table Available within a statement while the current statement is executing. 

View Available within the system until explicitly deleted. 

Description 
• Within a Transact-SQL script, you often need to work with table objects other than 

the base tables in your database. 

• The scope of a table object determines what code has access to that table. 

• Standard tables and views are stored permanently on disk until they are explicitly 
deleted, so they have the broadest scope and are therefore always available for use. 

• Derived tables and table variables are generally stored in memory, so they can 
provide the best performance. By contrast, standard tables and temporary tables are 
always stored on disk and therefore provide slower performance. 

• To improve the performance of your scripts, use a derived table instead of creating 
a table variable. However, if you need to use the table in other batches, create a 
temporary table. Finally, if the data needs to be available to other connections to the 
database, create a standard table or, if possible, a view. 

• Although a view isn' t a table, it can be used like one. Views provide fast 
performance since they're predefined, and high availability since they' re permanent 
objects. For these reasons, you should try to use a view rather than create a table 
whenever that's possible. However, if you need to insert, delete, or update the data 
in the table object without affecting the base tables of your database, then you can't 
use a view. 

• A common table expression (CTE) is a type of derived table. For more information 
about CTEs, see chapter 6. 

Figure 14-6 A comparison of the five types of Transact-SOL tables 



430 Section 4 Advanced SQL skills 

How to control the execution 
of a script 

----------------

The ability to control the execution of a program is an essential feature of 
any procedural programming language. T-SQL provides three basic control 
structures that you can use within scripts. You can use the first one to perform 
conditional processing, you can use the second one to perform repetitive 
processing, and you can use the third one to handle errors. You' ll learn how to 
use the statements that implement these structures in the topics that follow. 

How to perform conditional processing 

To execute a statement or a block of statements based on a condition, you 
use the IF ... ELSE statement. This statement is presented in figure 14-7. When 
an IF ... ELSE statement is executed, SQL Server evaluates the conditional 
expression after the IF keyword. If this condition is true, the statement or block 
of statements after the IF keyword is executed. Otherwise, the statement or block 
of statements after the ELSE keyword is executed if this keyword is included. 

The first script in this figure uses a simple IF statement to test the value of a 
variable that's assigned in a SELECT statement. This variable contains the oldest 
invoice due date in the Invoices table. If this value is less than the current date, 
the PRINT statement that follows the IF keyword is executed. Otherwise, no 
action is taken. 

In the second script, the logic of the first script has been enhanced. Here, a 
block of statements is executed if the oldest due date is less than the current date. 
Notice that this block of statements begins with the BEGIN keyword and ends 
with the END keyword. In addition, an ELSE clause has been added. Then, if the 
oldest due date is greater than or equal to the current date, a PRINT statement is 
executed to indicate that none of the invoices are overdue. 

Notice the comment that follows the ELSE keyword. This comment 
describes the expression that would result in this portion of code being executed. 
Although it isn' t required, this programming practice makes it easier to find and 
debug logical errors, especially if you're nesting IF. .. ELSE statements within 
other IF ... ELSE statements. 



The syntax of the IF. .. ELSE statement 
IF Boolean_expression 

{statementiBEGIN ••• END} 
[ELSE 

{statementiBEGIN ••• END}] 

Chapter 14 How to code scripts 431 

A script that tests for outstanding invoices with an IF statement 
USE AP; 
DECLARE @EarliestinvoiceDue date; 
SELECT @EarliestinvoiceDue = MIN(InvoiceDueDate) FROM Invoices 

WHERE InvoiceTotal - PaymentTotal - CreditTotal > 0; 
IF @EarliestinvoiceDue < GETDATE() 

PRINT 'Outstanding invoices overdue!'; 

The response from the system 
Outstanding invoices overdue! 

An enhanced version of the same script that uses an IF ... ELSE statement 
USE AP; 
DECLARE @MininvoiceDue money, @MaxinvoiceDue money; 
DECLARE @EarliestinvoiceDue date, @LatestinvoiceDue date; 
SELECT @MininvoiceDue = MIN(InvoiceTotal - PaymentTotal - CreditTotal), 

@MaxinvoiceDue = MAX(InvoiceTotal - PaymentTotal - CreditTotal), 
@EarliestinvoiceDue = MIN(InvoiceDueDate), 
@LatestinvoiceDue = MAX(InvoiceDueDate) 

FROM Invoices 
WHERE InvoiceTotal - PaymentTotal - CreditTotal > 0; 
IF @EarliestinvoiceDue < GETDATE() 

BEGIN 

END; 

PRINT 'Outstanding invoices overdue!'; 
PRINT ' Dated ' + CONVERT(varchar,@EarliestinvoiceDue,1) + 

'through' + CONVERT(varchar,@LatestinvoiceDue,1) + '.'; 
PRINT 'Amounting from $' + CONVERT(varchar,@MininvoiceDue,1) + 

'to$' + CONVERT(varchar,@MaxinvoiceDue,1) + '.'; 

ELSE --@EarliestinvoiceDue >= GETDATE() 
PRINT 'No overdue invoices.'; 

The response from the system 
Outstanding invoices overdue! 
Dated 02/09/20 through 02/29/20. 
Amounting from $30.75 to $19,351.18. 

Description 
• You use the IF ... ELSE statement to test a conditional expression. If that expres

sion is true, the statements that follow the IF keyword are executed. Otherwise, the 
statements that follow the ELSE keyword are executed if that keyword is included. 

• If you need to execute two or more SQL statements within an IF or ELSE clause, 
enclose them within a BEGIN ... END block. 

• You can nest IF. .. ELSE statements within other IF. .. ELSE statements. Although 
SQL Server doesn't limit the number of nested levels, you should avoid nesting so 
deeply that your script becomes difficult to read. 

Figure 14-7 How to perform conditional processing 



432 Section 4 Advanced SQL skills 

How to test for the existence 
of a database object 

Frequently, you'll need to write scripts that create and work with database 
objects. If you try to create an object that already exists, SQL Server will return 
an error. Similarly, SQL Server will return an error if you try to work with an 
object that doesn 't exist. To avoid these types of errors, you should check for the 
existence of an object before you create or work with it. 

If you're working with SQL Server 2016 or later, you can add the IF 
EXISTS clause to a DROP statement to check whether the object exists before 
you drop it. In figure 14-8, for instance, the first example adds this clause to a 
DROP statement that drops a database. As a result, if this database exists, it's 
dropped. If not, the script continues without returning an error. Although this 
example shows how to work with a database, the IF EXISTS clause also works 
with statements that drop other database objects such as tables, views, stored 
procedures, user-defined functions, and triggers. 

This example begins with a USE statement to change the current database to 
something other than the database you're testing. That's because a database can't 
be deleted if it's currently in use. 

If you're working with an older version of SQL Server, or if you want to 
perform another task besides dropping an object, you can use the OBJECT_ID 
function to check for the existence of a table, view, stored procedure, user
defined function, or trigger. Or, you use the DB_ID function to check for the 
existence of a database. If the specified object exists, these functions return the 
unique identification number assigned to that object by SQL Server. Otherwise, 
they return a null value. 

You can use these functions within an IF ... ELSE statement to test for a 
null return value. For instance, the second example uses the DB_ID function to 
test for the existence of a database. If the database already exists, this example 
executes a DROP DATABASE statement to delete it. 

The third example tests for the existence of a table name InvoiceCopy. Then, 
if the table exists, the example executes a DROP TABLE statement to delete it. 
However, when you use the OBJECT_ID function, you may not know what type 
of object you're dealing with. For example, InvoiceCopy could also be the name 
of a view or a stored procedure. In that case, the DROP TABLE statement would 
cause an error. 

To avoid this situation, you can use the technique shown in the fourth 
example. Instead of using a function, this example uses information in the 
catalog view named tables to determine if a table named InvoiceCopy exists. If it 
does, the table is deleted. Otherwise, no action is taken. You can use similar code 
to check for the existence of a view using the sys. views catalog view. 

The last example tests for the existence of a temporary table. Here, the table 
name is qualified with the name of the database that contains temporary tables, 
tempdb. You can omit the schema qualification, though, since this is a system 
database. 



Chapter 14 How to code scripts 433 

The syntax for the IF EXISTS clause (SQL Server 2016 and later) 
DROP OBJECT_TYPE IF EXISTS object_name; 

An example that uses the IF EXISTS clause 
USE master; 
DROP DATABASE IF EXISTS TestDB; 

The syntax of the OBJECT_ID function 
OBJECT_ ID('object') 

The syntax of the DB_ID function 
DB_ID('database') 

Examples that use the OBJECT_ID and DB_ID functions 
Code that tests whether a database exists before it deletes it 
USE master; 
IF DB_ID('TestDB') IS NOT NULL 

DROP DATABASE TestDB; 

CREATE DATABASE TestDB; 

Code that tests for the existence of a table 
IF OBJECT_ID('InvoiceCopy') IS NOT NULL 

DROP TABLE InvoiceCopy; 

Another way to test for the existence of a table 
IF EXISTS (SELECT * FROM sys.tables 

WHERE name= 'InvoiceCopy') 
DROP TABLE InvoiceCopy; 

Code that tests for the existence of a temporary table 
IF OBJECT_ ID('tempdb .. #AllUserTables') IS NOT NULL 

DROP TABLE #AllUserTables; 

Description 
• With SQL Server 2016 and later, you can add the IF EXISTS clause to a DROP 

statement to check whether an object exists before you drop it. 

• With earlier versions of SQL Server, you can use the OBJECT_ID and DB_ID 
functions within IF statements to check whether an object exists. 

• You can use the OBJECT_ID function to check for the existence of a table, view, 
stored procedure, user-defined function , or trigger. You use the DB_ID function 
to check for the existence of a database. Both functions return a null value if the 
object doesn' t exist. Otherwise, they return the object's identification number. 

• To test for the existence of a temporary table, you must qualify the table name with 
the database that contains it: tempdb. Since this is a system database, though, you 
can omit the schema name as shown above. 

Figure 14-8 How to test for the existence of a database object 



434 Section 4 Advanced SQL skills 

How to perform repetitive processing 

In some cases, you'll need to repeat a statement or a block of statements 
while a condition is true. To do that, you use the WHILE statement that's 
presented in figure 14-9. This coding technique is referred to as a loop. 

The script in this figure illustrates how the WHILE statement works. Here, a 
WHILE loop is used to adjust the credit amount of each invoice in the Invoices 
table that has a balance due unti l the total balance due is less than $20,000. 
Although this example is unrealistic, it will help you understand how the 
WHILE statement works. A more realistic example would be to use a WHILE 
statement to process cursors, which you' lllearn about in the next figure. 

This script starts by creating a copy of the Invoices table named InvoiceCopy 
that contains just the invoices that have a balance due. Since the WHILE 
statement will change the data in the table, this prevents corruption of the data in 
the source table. Then, the expression in the WHILE statement uses a SELECT 
statement to retrieve the sum of the invoice balances in this table. If the sum is 
greater than or equal to 20,000, the block of statements that follows is executed. 
Otherwise, the loop ends. 

The UPDATE statement within the WHILE loop adds five cents to the 
CreditTotal column of each invoice that has a balance due. (Although the table 
initially contains only invoices that have a balance due, that may change as 
credits are applied to the invoices within the loop.) Then, an IF statement tests 
the maximum credit amount in the table to see if it's more than 3000. If it is, 
a BREAK statement is used to terminate the loop. Because this statement can 
make your scripts difficult to read and debug, I recommend you use it only when 
necessary. In this case, it's used only for illustrative purposes. 

If the maximum credit total is less than or equal to 3000, the CONTINUE 
statement is executed. This statement causes control to return to the beginning 
of the loop. Then, the condition for the loop is tested again, and if it's true, the 
statements within the loop are processed again. 

Note that because the CONTINUE statement is the last statement in the 
loop, it's not required. That's because control will automatically return to 
the beginning of the loop after the last statement in the loop is executed. For 
example, this code would produce the same result: 

BEGIN 

IF (SELECT MAX(Cred itTotal ) FROM #InvoiceCopy) > 3 000 
BREAK; 

END; 

Sometimes, though, the CONTINUE statement can clarify the logic of an IF 
statement, as it does in the example in this figure. In addition, since this 
statement returns control to the beginning of the loop, it can be used in an IF 
clause to bypass the remaining statements in the loop. However, like the BREAK 
statement, this makes your code confusing to read, so I recommend you code 
your IF statements in such a way that you avoid using the CONTINUE statement 
whenever possible. 



The syntax of the WHILE statement 
WHILE expression 

{statementiBEGIN ... END} 
[BREAK) 

[CONTINUE) 

Chapter 14 How to code scripts 435 

A script that tests and adjusts credit amounts with a WHILE loop 
USE AP; 
IF OBJECT_ ID('tempdb •• #InvoiceCopy') IS NOT NULL 

DROP TABLE #InvoiceCopy; 

SELECT * INTO #InvoiceCopy FROM Invoices 
WHERE I nvoiceTotal - CreditTotal - PaymentTotal > 0; 

WHILE (SELECT SUM(InvoiceTotal - CreditTotal - PaymentTotal) 
FROM #InvoiceCopy) >= 20000 

BEGIN 

END; 

UPDATE #Invoic eCopy 
SET CreditTotal = CreditTotal + . OS 
WHERE InvoiceTotal - CreditTotal - PaymentTotal > 0; 

IF (SELECT MAX(CreditTotal) FROM #InvoiceCopy) > 3000 
BREAK; 

ELSE --(SELECT MAX(CreditTotal) FROM #InvoiceCopy) <= 3000 
CONTINUE ; 

SELECT InvoiceDate, InvoiceTotal, CreditTotal 
FROM #InvoiceCopy; 

The result set 
Invoice Date Invoice Total CreditT otal 

1 1"'202i}0'1~1'(i' "''! 85.31 
············ ·················· ·~···· 

0.00 
2 202().()1-18 52.25 0.00 
3 202().()1-21 579.42 0.00 
4 202().()1-21 59.97 0.00 

' 

Description 
• To execute a SQL statement repeatedly, you use the WHILE statement. This 

statement is executed as long as the conditional expression in the WHILE clause is 
true. 

• If you need to execute two or more SQL statements within a WHILE loop, enclose 
the statements within BEGIN and END keywords. 

• To exit from a WHILE loop immediately without testing the expression, use the 
BREAK statement. To return to the beginning of a WHILE loop without executing 
any additional statements in the loop, use the CONTINUE statement. 

Warning 
• This script takes a few seconds to execute. 

Figure 14-9 How to perform repetitive processing 



436 Section 4 Advanced SQL skills 

How to use a cursor 

By default, SQL statements work with an entire result set rather than 
individual rows. However, you may sometimes need to work with the data in 
a result set one row at a time. To do that, you can use a cursor as described in 
figure 14-10. 

In this figure, the script begins by declaring three variables. Then, it assigns 
a value of 0 to the third variable, @UpdateCount. 

After declaring the variables, this code declares a cursor named 
Invoices_Cursor. Within this declaration, this code uses a SELECT statement to 
define the result set for this cursor. This result set contains two columns from the 
Invoices table and all of the rows that have a balance due. 

Next, this code uses the OPEN statement to open the cursor. Then, it uses a 
FETCH statement to get the column values from the first row and store them in 
the variables declared earlier in the script. 

After getting the values from the first row, this script uses a WHILE loop 
to loop through each row in the cursor. To do that, this WHILE loop checks the 
value of the @@FETCH_ STATUS system function at the top of the loop. If this 
function returns a value that is not equal to -1, the loop continues. Otherwise, 
the end of the result set has been reached, so the loop exits. This loop works 
correctly because a second FETCH statement is coded at the end of the loop. 

Within the loop, an IF statement checks whether the value of the 
InvoiceTotal column for the current row is greater than 1000. If it is, an 
UPDATE statement adds 10% of the Invoice Total column to the CreditTotal 
column for the row, and a SET statement increments the count of the number of 
rows that have been updated. 

After the WHILE loop, this code closes and deallocates the cursor. Then, 
the first PRINT statement prints a blank line, and the second PRINT statements 
prints the number of rows that have been updated. 

Before you use a cursor to work with individual rows in a result set, you 
should consider other solutions. That's because standard database access is faster 
and uses fewer server resources than cursor-based access. For example, you 
can accomplish the same update as the stored procedure in this figure with this 
UPDATE statement: 

UPDATE Invoices 
SET CreditTotal = CreditTotal + (InvoiceTotal * .1) 
WHERE InvoiceTotal - PaymentTotal - CreditTotal > 0 
AND InvoiceTotal > 1000 

However, if you encounter a situation where it makes sense to use a cursor, the 
skills presented in this figure should help you do that. 



The syntax 
Declare a cursor 
DECLARE cursor_name CURSOR FOR select_statement; 

Open the cursor 
OPEN cursor_name; 

Chapter 14 How to code scripts 437 

Get column values from the row and store them in a series of variables 
FETCH NEXT FROM cursor_name INTO @variable1[, @variable2] [, @variable3] ••• ; 

Close and deallocate the cursor 
CLOSE cursor_name; 

DEALLOCATE cursor_name; 

A script that uses a cursor 
USE AP; 

DECLARE @InvoiceiDVar int, @InvoiceTotalVar money, @UpdateCount int; 
SET @UpdateCount = 0; 

DECLARE Invoices_ Cursor CURSOR 
FOR 

SELECT InvoiceiD, InvoiceTotal FROM Invoices 
WHERE InvoiceTotal - PaymentTotal - CreditTotal > 0; 

OPEN Invoices_Cursor; 

FETCH NEXT FROM Invoices Cursor INTO @InvoiceiDVar, @InvoiceTotalVar; 
WHILE @@FETCH_STATUS <> -1 

BEGIN 
IF @InvoiceTotalVar > 1000 
BEGIN 

END; 

UPDATE Invoices 
SET CreditTotal = CreditTotal + (InvoiceTotal * .1) 
WHERE InvoiceiD = @InvoiceiDVar; 

SET @UpdateCount = @UpdateCount + 1; 

FETCH NEXT FROM Invoices_ Cursor INTO @InvoiceiDVar, @InvoiceTotalVar; 
END; 

CLOSE Invoices_ Cursor; 
DEALLOCATE Invoices_ Cursor; 

PRINT I I o 
I 

PRINT CONVERT(varchar, @UpdateCount) + ' row(s) updated.'; 

The response from the system when the script is run 
2 row(s) updated. 

Description 
• The @ @FETCH_STATUS system function returns 0 if the row was fetched 

successfully or -1 if the row can' t be fetched because the end of the result set has been 
reached. 

Figure 14-1 0 How to use a cursor 



438 Section 4 Advanced SQL skills 

How to handle errors 

To handle errors in a SQL Server script, you can use the TRY ... CATCH 
statement shown in figure 14-11. Handling errors is often referred to as error 
handling or exception handling, and the TRY ... CATCH statement works 
similarly to the exception handling statements that are available from the .NET 
languages such as C# and Visual Basic. 

To start, you code the TRY block around any statements that might cause 
an error to be raised. A TRY block begins with the BEGIN TRY keywords and 
ends with the END TRY keywords. In this figure, for example, you can see that a 
TRY block is coded around an INSERT statement and a PRINT statement. 

Immediately following the TRY block, you must code a single CATCH 
block. A CATCH block begins with the BEGIN CATCH keywords and ends 
with the END CATCH keywords. Within the CATCH block, you can include any 
statements that handle the error that might be raised in the TRY block. In this 
figure, for example, the first statement in the CATCH block uses a PRINT 
statement to display a simple message that indicates that the INSERT 
statement in the TRY block did not execute successfully. Then, the second 
PRINT statement uses two functions that are designed to work within a CATCH 
block to provide more detailed information about the error. All four of the 
functions you can use within a CATCH block are presented in this figure. 
Although it's common to use a CATCH block to display information to the user, 
you can also use a CATCH block to perform other error handling tasks such as 
writing information about the error to a log table or rolling back a transaction. 

In this figure, the INSERT statement that's coded within the TRY block 
provides a vendor ID that doesn' t exist. As a result, when SQL Server attempts 
to execute this statement, a foreign key constraint will be violated and an error 
will be raised. Then, program execution will skip over the PRINT statement that 
follows the INSERT statement and jump into the CATCH block. This causes 
the message that's shown in this fi gure to be displayed. However, if the INSERT 
statement had executed successfully, program execution would have continued 
by executing the PRINT statement immediately following the INSERT statement 
and skipping the CATCH block. In that case, this code would have displayed a 
message indicating that the INSERT statement executed successfully. 

When coding TRY .. . CATCH statements, you may find that some types of 
errors aren' t handled. In particular, errors with a low severity are considered 
warnings and aren't handled. Conversely, errors with a high severity often cause 
the database connection to be closed, which prevents them from being handled. 

Another thing to keep in mind when coding TRY ... CATCH statements is 
that they must be coded within a single batch, stored procedure, or trigger. In 
other words, you can' t code a TRY block that spans multiple batches within a 
script. However, you can nest one TRY .. . CATCH statement within another. For 
example, if a CATCH block contains complex code that inserts error data into a 
log table, you may want to code a TRY ... CATCH statement within that CATCH 
block to catch any errors that might occur there. 



The syntax of the TRY ... CATCH statement 
BEGIN TRY 

{sql_ statementlstatement_block} 
END TRY 
BEGIN CATCH 

{sql_ statementlstatement_block} 
END CATCH 

Functions you can use within a CATCH block 
Function Description 

ERROR_ NUMBER ( ) 

ERROR_MESSAGE() 

ERROR_ SEVERITY() 

ERROR_ STATE() 

Returns the error number. 

Returns the error message. 

Returns the severity of the error. 

Returns the state of the error. 

A script that uses a TRY ... CATCH statement 
BEGIN TRY 

INSERT Invoices 

Chapter 14 How to code scripts 439 

VALUES (799, 'ZXK-799', '2020-03 - 07', 299.95, 0, 0, 
1, I 2020-04-06 I I NULL); 

PRINT 'SUCCESS: Record was inserted.'; 
END TRY 
BEGIN CATCH 

PRINT 'FAILURE: Record was not inserted.'; 
PRINT 'Error ' + CONVERT(varchar, ERROR_NUMBER(), 1) 

+ ': ' + ERROR_MESSAGE(); 
END CATCH; 

The message that's displayed 
FAILURE: Record was not inserted. 
Error 547: The INSERT statement conflicted with the FOREIGN KEY constraint 
"FK_ Invoices_Vendors". The conflict occurred in database "AP", table 
"dbo.Vendors", column 'VendoriD'. 

Description 
• You can use the TRY ... CATCH statement to provide error handling (also known 

as exception handling). This works similarly to exception handling statements 
provided by C# and Visual Basic. 

• A TRY block must be followed immediately by a single CATCH block. 

• When an error occurs in a statement within a TRY block, control is passed to the 
CATCH block where the error can be processed. If no error occurs inside the TRY 
block, the CATCH block is skipped. 

• Errors that have a severity of 10 or lower are considered warnings and are not 
handled by TRY . .. CATCH blocks. Errors that have a severity of 20 or higher and 
cause the database connection to be closed are not handled by TRY ... CATCH 
blocks. 

• Within a CATCH block, you can use the functions shown in this figure to return 
data about the error that caused the CATCH block to be executed. 

Figure 14-11 How to handle errors 



440 Section 4 Advanced SQL skills 

How to use surround-with snippets 

In chapter 11, you learned how to use snippets to help you code state
ments for creating database objects. In addition to these snippets, you can use 
surround-with snippets to enclose a block of statements in a BEGIN . .. END, IF, 
or WHILE statement. Figure 14-12 shows how surround-with snippets work. 

The first screen in this figure shows part of the code from the script in figure 
14-9. If you look back at that fi gure, you' ll see that the UPDATE and IF ... 
ELSE statements were executed within a WHILE loop. In this fi gure, I used a 
surround-with snippet to add the WHILE statement. To do that, I selected the 
statements I wanted to include in the loop and then selected the snippet for the 
WHILE statement as described in this figure. 

When you insert a snippet for an IF or WHILE statement, a BEGIN ... END 
statement is added automatically. That's true regardless of the number of 
statements you selected. That makes it easy to add statements to the block later 
on. 

After you insert a snippet for an IF or WHILE statement, you have to enter 
a condition for the statement. To make that easy to do, the placeholder for the 
condition is highlighted. Then, you can just replace the placeholder with the 
appropriate condition. 



Chapter 14 How to code scripts 441 

The list of surround-with snippets 
r:J SELECT INTO #Invoi ceCopy FROM Invoices 
fWHERE InvoiceTotal - CreditTotal - Payment Total 0 ; 

1 
UPDATE #InvoiceCopy 
SET CreditTotal • CreditTotal + .05 
\~ERE InvoiceTotal - CreditTotal Payment Total 0, 

El IF SELECT ~lAX Credi tTotal FROM #InvoiceCopy 3000 

l BREAK, 
ELSE --(SELECf_MAX(Creditiatall_EBOM #Invnire(nnv) <= ~~ 

CONTINUE ~ound With: I 
~ Begin I 
~If 

~ Jlijffi! Code Snippet for While loop. 

The code after the snippet is inserted 
:J SELECT INTO #InvoiceCopy FROM Invoices 
[WHERE InvoiceTotal - CreditTotal - PaymentTotal > 0; 

r-] WHI LE Conditio j, 
-;] BEGIN 

UPDATE #Invoi ceCopy 
SET CreditTotal • Cr editTotal + .05 
\~ERE InvoiceTotal - CreditTotal - PaymentTotal 0 ; 1 

1 
IF (SELECT ~(CreditTotal ) FROM #InvoiceCopy) > 3000 

BREAK, 
ELSE -- (SELECT ~(CreditTotal) FROM #InvoiceCopy) <• 3000 

CONTINUE; 

END 

Description 
• Surround-with snippets make it easy to enclose a block of statements in a BEGIN . .. 

END, IF, or WHILE statement. 

• To insert a surround-with snippet, select the statements you want to enclose. Then, 
right-click on the statements, select the Surround With command from the resulting 
menu, and select the snippet you want to insert from the list that's displayed. 

• To select a snippet from the list, double-click on it. Alternatively, you can use the 
Up and Down arrow keys to select the snippet and then press the Tab or Enter key. 

• If you insert a snippet for an IF or WHILE statement, you will need to complete 
the statement by replacing the highlighted condition. You can also enter an ELSE 
clause for an IF statement. 

• When you insert a snippet for an IF or WHILE statement, a BEGIN .. . END 
statement is added automatically. 

Figure 14-1 2 How to use surround-with snippets 



442 Section 4 Advanced SQL skills 

Advanced scripting techniques 
The remaining topics of this chapter present some additional techniques you 

can use in the scripts you write. Here, you'lllearn how to use some of the system 
functions that come with SQL Server, change some of the settings for the current 
session, use dynamic SQL, and use a command line utility to execute SQL 
statements and scripts. In addition, you' ll see a complete script that uses many of 
the techniques presented in this chapter. 

How to use the system functions 

Figure 14-13 presents some of the Transact-SQL system functions. These 
functions are particularly helpful for writing Transact-SQL scripts. For example, 
the script shown in this figure illustrates how you might use the @ @IDENTITY 
and@@ ROWCOUNT functions. This script starts by inserting a row into the 
Vendors table. Because the VendoriD column in that table is defined as an 
identity column, SQL Server generates the value of this column automatically. 
Then, the script uses the @ @IDENTITY function to retrieve this value so it can 
insert an invoice for the new vendor. Before it does that, though, it uses the 
@ @ROWCOUNT function to determine if the vendor was inserted successfully. 

Notice that this script stores the values returned by the @ @IDENTITY and 
@@ROWCOUNT functions in variables named @Myidentity and 
@MyRowCount. Alternatively, the script could have used the system functions 
directly in the IF and VALUES clauses. However, the values returned by these 
functions can change each time a SQL statement is executed on the system, so 
it usually makes sense to store these values in variables immediately after you 
execute a SQL statement. 

You can use the @@ERROR function to get the error number returned 
by the most recent SQL statement. If you use the TRY . .. CATCH statement as 
shown in figure 14-11, you won' t need to use this function. However, you may 
see it used in scripts that were written with earlier versions of SQL Server. 

The other functions I want to point out right now are the 
@@SERVERNAME, HOST_NAME, and SYSTEM_USER functions. The 
values returned by these functions can vary depending on who enters them 
and where they're entered. Because of that, they're often used to identify who 
entered or modified a row. For example, you could define a table with a column 
that defaults to the SYSTEM_ USER function like this: 

CREATE TABLE # SysFuncti onEx 
(Ent ryDBUs er var char( 12 8 ) DEFAULT SYSTEM_USER); 

This would cause the user name to be inserted automatically when each new row 
was added to the table. 

At this point, you may be wondering why the names of some of the system 
functions start with two at signs (@@) and some don' t. Those with @@ in 
their names have been a part of the T-SQL dialect for a long time and used to be 
called global variables. The other system functions have been added to T-SQL 
more recently. 



Chapter 14 How to code scripts 443 

Some of the Transact-SQL system functions 
Function name Description 

@@IDENTITY 

IDENT_CURRENT ( 'tablename' ) 

@@ROWCOUNT 

@@ERROR 

@@SERVERNAME 

HOST_ NAME() 

SYSTEM_USER 

Returns the last value generated for an identity column on 
the server. Returns NULL if no identity value was generated. 

Similar to @ @IDENTITY, but re turns the last identity value 
that was generated for a specified table. 

Returns the number of rows affected by the most recent SQL 
statement. 

Returns the error number generated by the execution of the 
most recent SQL statement. Returns 0 if no error occurred. 

Returns the name of the local server. 

Returns the name of the current workstation. 

Returns the name of the current user. 

A script that inserts a new vendor and a new invoice 
USE AP; 
DECLARE @Myidentity int, @MyRowCount int ; 

INSERT Ve ndors (VendorName, VendorAddress1, VendorCity, Ve ndorState, 
Vend orZipCode, VendorPhone, DefaultTermsiD, DefaultAccountNo) 

VALUES (' Peerless Binding' , ' 1112 S Windsor St', ' Hallowell ', ' ME ' , 
' 04 34 7 ', '(207 ) 555-1555 ', 4, 400) ; 

SET @Myidentity = @@IDENTITY; 
SET @MyRowCount = @@ROWCOUNT; 

IF @MyRowCount = 1 
INSERT Invoices 
VALUES (@My identity, 'BA- 0199' , ' 202 0- 03 - 01' , 4598. 23 , 

0 , 0 , 4 , ' 2020- 04-30' , NULL); 

The response from the system 
(1 r ow( s) affec ted) 

(1 r ow(s) affected) 

Description 
• The system functions return information about SQL Server values, objects, and 

settings. They can be used anywhere an expression is allowed. 

• System functions are useful in writing scripts. In addition, some of these functions 
can be used to provide a value for a DEFAULT constraint on a column. 

• System functions used to be called global variables, but that name is no longer 
used. 

• In general, it's better to store the value returned by a system function in a variable 
than to use the system function directly. That's because the value of a system 
function can change when subsequent statements are executed. 

Figure 14-1 3 How to use the system functions 



444 Section 4 Advanced SQL skills 

How to change the session settings 

Each time you start a new session, SQL Server sets the settings for that 
session to the defaults. If that's not what you want, you can change the settings 
using the SET statements presented in figure 14-14. Although SQL Server 
provides a variety of other statements, these are the ones you're most likely to 
use. And you're likely to use these only under special circumstances. 

For example, because the default format for entering dates is "mdy," 
03/06/20 is interpreted as March 6, 2020. If this date is being inserted from 
another data source, however, that data source could have used a date format 
where the year is entered first, followed by the month and the day. In that case, 
you could use a SET statement like the one shown in this figure to change the 
date format of the current session to "ymd." Then, the date would be interpreted 
as June 20, 2003. 

The ANSI_NULLS option determines how null values are compared. By 
default, this option is set to ON, in which case you can' t compare a value to the 
NULL keyword using a comparison operator. In that case, 

PaymentDa te = NULL 

is always Unknown rather than True or False, even if PaymentDate contains 
a null value. To determine if a column contains a null value, you must use the 
IS NULL or IS NOT NULL clause. If you set the ANSI_NULLS option to 
OFF, however, the expression shown above would return True if PaymentDate 
contains a null value, and it would return False otherwise. Because a future 
version of SQL Server will require that the ANSI_NULLS option is always set 
to on, I recommend that you don' t set this option to OFF. 

The SET ROW COUNT statement limits the number of rows that are 
processed by subsequent queries. For a SELECT query, this works the same as 
coding a TOP clause. However, since most other dialects of SQL don' t support 
the TOP clause, you'll often see SET ROWCOUNT used in the code of other 
SQL programmers. Be aware, though, that this session setting affects all queries, 
including action queries and queries stored within views and stored procedures. 
Since this can cause unexpected results, I recommend that you avoid modifying 
this session setting and use the TOP clause instead. 

Note that with a future version of SQL Server, SET ROWCOUNT won' t 
affect actions queries. Because of that, you'll have to use the TOP clause to 
limit the rows processed by INSERT, UPDATE, and DELETE statements. Since 
you don' t typically use the TOP clause with these statements, though, we don' t 
present it in this book. If you want to learn more about using it with these state
ments, you can refer to the SQL Server documentation. 



Chapter 14 How to code scripts 445 

Transact-SQL statements for changing session settings 

Statement Description 

SET DATEFORMAT format 

SET NOCOUNT {ONIOFF} 

SET ANSI_NULLS {QNI OFF} 

SET ANSI_PADDING {ON IOFF} 

SET ROWCOUNT number 

Sets the order of the parts of a date (month/day/year) for 
entering date/time data. The default is mdy, but any permutation 
of m, d, and y is valid. 

Determines whether SQL Server returns a message indicating 
the number of rows that were affected by a statement. OFF is 
the default. 

Determines how SQL Server handles equals ( = ) and not equals 
(<>)comparisons with null values. The default is ON, in 
which case "WHERE column =NULL" will always return an 
empty result set, even if there are null values in the column. 

Determines how SQL Server stores char and varchar values that 
are smaller than the maximum size for a column or that contain 
trailing blanks. Only affects new column definitions. The 
default is ON, which causes char values to be padded with 
blanks. In addition, trailing blanks in varchar values are not 
trimmed. If this option is set to OFF, char values that don' t 
allow nulls are padded with blanks, but blanks are trimmed 
from char values that allow nulls as well as from varchar values. 

Limits the number of rows that are processed by a query. The 
default setting is 0, which causes all rows to be processed. 

A statement that changes the date format 
SET DATEFORMAT ymd; 

Description 
• You use the SET statement to change configuration settings for the current session. 

These settings control the way queries and scripts execute. 

• If the ANSI_NULLS option is set to ON, you can only test for null values in a 
column by using the IS NULL clause. See figure 3-15 in chapter 3 for details. 

• In a future version of SQL Server, the ANSI_NULLS and ANSI_PADDING options 
will always be on and you won't be able to turn them off. Because of that, you 
shouldn' t use these options in new scripts that you write. 

• Instead of using the SET ROW COUNT statement to limit the numbers of rows that 
are processed by a query, you should use the TOP clause. See chapter 3 for 
information on how to use this clause with the SELECT statement. For information 
on how to use it with the INSERT, UPDATE, and DELETE statements, see the SQL 
Server documentation. 

• In a future version of SQL Server, the SET ROWCOUNT statement won't affect 
INSERT, UPDATE, and DELETE statements. 

• For a complete list of the Transact-SQL statements for changing session settings, see 
the topic on the SET statement in the SQL Server documentation. 

Figure 14-1 4 How to change the session settings 



446 Section 4 Advanced SQL skills 

How to use dynamic SQL 
--------~----~--

So far, the scripts you've seen in this chapter have contained predefined SQL 
statements. In other words, the statements don't change from one execution of 
the script to another other than for the values of variables used in the statements. 
However, you can also define an SQL statement as a script executes. Then, you 
use the EXEC statement shown in figure 14-15 to execute the dynamic SQL. 
Notice that EXEC is an abbreviation for EXECUTE. 

The EXEC statement executes a string that contains a SQL statement. To 
illustrate, the first script in this figure executes a SELECT statement against a 
table that's specified at run time. To do that, it concatenates the literal string 
"SELECT * FROM " with the value of a variable named @TableNameVar. If 
you think about it, you' ll realize that there's no other way to do this in SQL. Of 
course, it would have been easier to submit the simple query shown here directly 
rather than to use dynamic SQL. However, a more complex script might use an 
IF ... ELSE statement to determine the table that's used in the query. In that case, 
dynamic SQL can make the script easier to code. 

The second script in this figure is more complicated. It creates a table with 
columns that represent each vendor with outstanding invoices. That means that 
the number of columns in the new table will vary depending on the current 
values in the Invoices table. 

This script starts by creating a variable named @DynarnicSQL that will 
store the SQL string that's executed. Next, the new table to be created is deleted 
if it already exists. Then, a SET statement assigns the beginning of the SQL 
string to @DynamicSQL, which includes the CREATE TABLE statement, the 
name of the new table, and an opening parenthesis. The SELECT statement that 
follows concatenates the name of each column (the name of the current vendor) 
and data type to the SQL string. Finally, the second SET statement concatenates 
a closing parenthesis and a semicolon to the string, and the string is executed. 

Notice that for each row retrieved by the SELECT statement, the variable 
@DynarnicSQL is concatenated with its previous value. Although this syntax 
is valid for any query, it isn' t useful except when generating dynamic SQL as 
shown here. Also notice that the name of each vendor is enclosed in brackets. 
That's because many of the vendors have spaces or other special characters in 
their names, which aren' t allowed in column names unless they're delimited. 

This figure also shows the SQL statement that's created by one execution of 
this script along with the contents of the table that's created. Although this table 
isn't useful the way it is, it could be used to cross-tabulate data based on the 
Vendors table. For example, each row of this table could represent a date and the 
Boolean value in each column could represent whether the vendor has an invoice 
that's due on that date. Since more than one vendor's invoice can be due on the 
same date, a cross-tabulation is a good representation of this data. 

As you may have noticed, the SQL string that's generated by this script 
has an extra comma following the last column specification. Fortunately, the 
CREATE TABLE statement ignores this extra comma without generating an 
error. However, if you wanted to, you could eliminate this comma by using the 
LEFT function before concatenating the closing parenthesis. 



The syntax of the EXEC statement 
{EXECIEXECUTE} ('SQL_ string') 

A script that uses an EXEC statement 
USE AP; 
DECLARE @TableNameVar varchar(128); 
SET @TableNameVar = 'Invoices'; 
EXEC ( ' SELECT* FROM ' + @TableNamevar + ';'); 

The contents of the SQL string at execution 
SELECT * FROM Invoices; 

A script that creates a table with one column 
for each vendor with a balance due 

USE AP; 
DECLARE @Dy.namicSQL varchar(8000); 

IF OBJECT_ ID('XtabVendors') IS NOT NULL 
DROP TABLE XtabVendors; 

SET @Dy.namicSQL = 'CREATE TABLE XtabVendors (' 

Chapter 14 How to code scripts 447 

SELECT @Dy.namicSQL = @DynamicSQL + '[' + VendorName + ']bit,' 
FROM Vendors 
WHERE VendoriD IN 

(SELECT VendoriD 
FROM Invoices 
WHERE InvoiceTotal - CreditTotal - PaymentTotal > 0) 

ORDER BY VendorName; 
SET @DynamicSQL = @DynamicSQL + ');'; 

EXEC (@DynamicSQL); 

SELECT * FROM XtabVendors; 

The contents of the SQL string 
CREATE TABLE XtabVendors ([Blue Cross] bit,[Cardinal Business Media, Inc.] 
bit, [Data Reproductions Corp] bit, [Federal Express Corporation] bit, [Ford 
Motor Credit Company] bit, [Ingram] bit, [Malloy Lithographing Inc] bit,); 

The result set 
Blue Cross Cmdinal Business Media. Inc. Data Reproductions COip Federlll Express Co!poration Ford M 

< > 

Description 
• The EXEC statement executes the SQL statement contained in a string. Because 

you define the SQL string within the script, you can create and execute SQL code 
that changes each time the script is run. This is called dynamic SQL. 

• You can use dynamic SQL to perform operations that can't be accomplished using 
any other technique. 

Figure 14-15 How to use dynamic SOL 



448 Section 4 Advanced SQL skills 

A script that summarizes the structure 
of a database 

Figure 14-16 presents a script that you can use to summarize the structure 
of a database. This script illustrates many of the techniques you learned in this 
chapter. It also shows how you might use some of the catalog views you learned 
about in the last chapter. 

This script starts by dropping the temporary table named #TableSummary if 
it already exists. Then, it recreates this table using a SELECT INTO statement 
and data from three catalog views named tables, columns, and types. The tables 
view provides information about the tables in the current database. The columns 
view provides information about the columns in the current database, including 
the ID of the table that contains the column and the ID of the column's data type. 
And the types view contains information about data types. 

As you can see in this figure, the tables and columns catalog views are 
joined to get the name of the table that contains a column. In addition, the 
columns and types catalog views are joined together to get the name of a 
column's data type. Then, the WHERE clause excludes three tables by name, 
including the two temporary tables created by this script and the system table 
named dtproperties. 

Next, this script drops and recreates another temporary table named 
#AllUserTables. This table will be used to generate the row count for each table. 
It has two columns: an identity column and a column for the table name. The 
INSERT statement that follows populates this table with the same list of table 
names that was inserted into the #TableSummary table. 



Chapter 14 How to code scripts 449 

A script that creates a summary of the tables in a database 
I* 
Creates and queries a table, #TableSummary, that lists 
the columns for each user table in the database, plus 
the number of rows in each table. 

Author: Bryan Syverson 
Created: 2008-07-02 
Modified: 2016-07-16 
*I 

USE AP; 

IF OBJECT_ ID('tempdb •• #TableSummary') IS NOT NULL 
DROP TABLE #TableSummary; 

SELECT sys.tables.name AS TableName, sys.columns.name AS ColumnName, 
sys.types.name AS Type 

INTO #TableSummary 
FROM sys.tables 

Page 1 

JOIN sys.columns ON sys.tables.object_ id = sys.columns.object_ id 
JOIN sys.types ON sys.columns.system_type_ id = sys.types.system_type_ id 

WHERE sys.tables.name IN 
(SELECT name 
FROM sys.tables 
WHERE name NOT IN ('dtproperties', 'TableSummary', 'AllUserTables')); 

IF OBJECT_ID('tempdb .. #AllUserTables') IS NOT NULL 
DROP TABLE #AllUserTables; 

CREATE TABLE #AllUserTables 
(TableiD int IDENTITY, TableName varchar(128)); 
GO 

INSERT #AllUserTables (TableName) 
SELECT name 
FROM sys.tables 
WHERE name NOT IN ('dtproperties', 'TableSummary', 'AllUserTables'); 

Description 
• A SELECT INTO statement is used to retrieve information from the tables, 

columns, and types catalog views and store it in a temporary table named 
#TableSummary. This table has one row for each column in each table of the 
database that includes the table name, column name, and data type. 

• A CREATE TABLE statement is used to create a temporary table named 
#AllUserTables. Then, an INSERT statement is used to insert rows into this table 
that contain the name of each table in the database. This information is retrieved 
from the catalog view named tables. Each row also contains a sequence number 
that's generated by SQL Server. 

• The system table named dtproperties and the two temporary tables themselves are 
omitted from both SELECT queries. 

Figure 14-16 A script that summarizes the structure of a database (part 1 of 2) 



450 Section 4 Advanced SQL skills 

Part 2 of this script includes a WHILE loop that uses dynamic SQL to insert 
an additional row into #TableSummary for each table in #AllUserTables. Each of 
these rows indicates the total number of rows in one of the base tables. The 
@LoopMax variable used by this loop is set to the maximum value of the 
TableiD column in #AllUserTables. The @LoopVar variable is set to 1, which 
is the minimum value ofTableiD. The WHILE loop uses @LoopVar to step 
through the rows of #AllUserTables. 

Within the loop, the SELECT statement sets @TableName Var to the value 
of the TableName column for the current table. Then, @ExecVar is built by 
concatenating each of the clauses of the final SQL string. This string consists of 
three statements. The DECLARE statement is used to create a variable named 
@CountVar that will store the number of rows in the current table. Note that 
because this variable is created within the dynamic SQL statement, its scope is 
limited to the EXEC statement. In other words, it isn' t available to the portion of 
the script outside of the EXEC statement. 

The SELECT statement within the dynamic SQL statement retrieves the row 
count from the current table and stores it in the @CountVar variable. Then, the 
INSERT statement inserts a row into the #TableSummary table that includes the 
table name, a literal value that indicates that the row contains the row count, and 
the number of rows in the table. You can see the contents of the SQL string that's 
created for one table, the ContactUpdates table, in this figure. 

After the SQL string is created, it's executed using an EXEC statement. 
Then, @LoopVar is increased by 1 and the loop is executed again. When the 
loop completes, the script executes a SELECT statement that retrieves the data 
from the #TableSummary table. That result set is also shown in this figure. 



Chapter 14 How to code scripts 451 

A script that creates a summary of the tables in a database 
DECLARE @LoopMax int, @LoopVar int; 
DECLARE @TableNameVar varchar(128), @ExecVar varchar(1000); 

SELECT @LoopMax = MAX(TableiD) FROM #AllUserTables; 

SET @LoopVar = 1; 

WHILE @LoopVar <= @LoopMax 
BEGIN 

SELECT @TableNameVar = TableName 
FROM #AllUserTables 
WHERE TableiD = @LoopVar; 

SET @ExecVar = 'DECLARE @CountVar int; I o 
I 

SET @Execvar = @Execvar + 'SELECT @CountVar = COUNT(*) 
SET @ExecVar = @ExecVar + 'FROM I + @TableNamevar + I o 

I 

SET @Execvar = @Execvar + 'INSERT #TableSwmnary I o 
I 

SET @Execvar @Execvar + 'VALUES ( I I I + @TableNamevar 

END; 

SET @Execvar = @Execvar + '''*Row Count*'','; 
SET @ExecVar @Execvar + '@CountVar);'; 
EXEC (@ExecVar); 
SET @LoopVar = @LoopVar + 1; 

SELECT * FROM #TableSummary 
ORDER BY TableName, ColumnName; 

The contents of the SQL string for one iteration of the loop 

Page2 

I o 
I 

I o 
I 

+ I I I I o 
I I 

DECLARE @CountVar int; SELECT @CountVar = COUNT(*) FROM ContactUpdates; 
INSERT #TableSummary VALUES ('ContactUpdates','*Row Count*', @CountVar); 

The result set 
T!!bleN!!me Column N~~me Type 

30 lnvoiceUne~ems "Row Count• 118 

31 Invoice Line ~ems /lcco<.rtNo int 

32 lnvoiceUne~ems lnvoiceiD int L 
33 lnvoiceUne~ems lnvoiceUneftemA. .. money 

34 lnvoiceUneftems lnvoicelXleftemD ... V!lrch!ll" 

35 lnvoiceUne~ems Invoice Sequence smallint 

36 Invoices "Row Count· 114 

37 Invoices CredHot11l money 
~ ~ 

Description 
• The WHll..E statement loops through the tables in the #AllUserTables table. For 

each table, it creates a dynamic SQL string that contains a SELECT statement and 
an INSERT statement. The SELECT statement retrieves the number of rows in the 
table, and the INSERT statement inserts a new row into the #TableSummary table 
that indicates the number of rows. 

• The final SELECT statement retrieves all of the rows and columns from the 
#TableSumrnary table sorted by column name within table name. 

Figure 14-1 6 A script that summarizes the structure of a database (part 2 of 2) 



452 Section 4 Advanced SQL skills 

How to use the SQLCMD utility 

SQL Server comes with a command line utility known as the SQLCMD 
utility. Unlike the Management Studio you've used throughout this book, the 
SQLCMD utility lets you enter and execute scripts from a command line. One 
advantage of the SQLCMD utility is that it provides a way to run a SQL script 
from a DOS batch file. 

Figure 14-17 presents an example of a Command Prompt window running 
a SQLCMD session. To open a session, you enter "sqlcmd" at the command 
prompt, followed by the appropriate command line switches. To start a session, 
you must begin by using the -S switch to specify a valid server. Then, if 
you want to connect to SQL Server using Windows authentication, the only 
command line switch you need is -E as shown in this figure. If you connect using 
SQL Server authentication, though, you' ll need to enter switches for the user 
name and password like this: 

sqlcmd -s localhost\SQLExpress -u joel -P Top$Secret 

You can also omit the password switch and the SQLCMD utility will prompt you 
for your password. This improves security because, unlike the Command Prompt 
window, the SQLCMD utility doesn' t display the password on the screen. 

Once you're connected, you can type one SQL statement per line as shown. 
Then, to execute the statement you've entered, you enter a GO command. 
When you 're done, you can close the SQLCMD session by entering the EXIT 
command. Then, you 're returned to the command prompt. 

You can also execute a script that's stored in a fi le on disk. To do that, you 
use the -i switch. To save the response from the server to a file, you use the -o 
switch. For example, this command would execute the script contained in a file 
named test.sql and save the result set in a file named test.txt: 

sqlcmd -s localhost\SQLExpress -i test.sql -o test .txt 

Note that the response also includes any result sets that are created. As a result, 
if the script stored in the test.sql file contains a SELECT statement, the result set 
returned by that SELECT statement will be stored in text format in the test.txt 
file. 

Although the SQLCMD utility provides an easy way to run T-SQL scripts 
from a DOS command line, SQL Server also provides support for Microsoft's 
command line tool, Microsoft Windows PowerShell. PowerShell is a powerful 
scripting tool that makes it possible to automate complex administrative tasks 
across multiple servers. However, due to its power and complexity, PowerShell 
has a steep learning curve. As a result, if you aren't familiar with it already, 
you'll only want to use it if you can't accomplish the task using a DOS batch fi le 
and a T-SQL script. 



Chapter 14 How to code scripts 453 

A Command Prompt window running the SQLCMD utility 

Command line switches 

Switch Function 

-? 

-E 

-L 

-s server_name 

-u user_name 

-P password 

-Q "query" 

-i file_name 

- o file_name 

Description 

Show a summary of all command line switches. 

Use a trusted connection (Windows authentication mode). 

List the names of the available servers. 

Log in to a specific server. 

Log in as a specific user (SQL Server authentication mode). 

Specify the password in the command line (SQL Server authentication mode). 

Execute the specified query, then exit. 

Specify the name of the script fi le to be executed. 

Specify an output file in which to save responses from the system. 

• You can use the SQLCMD utility to run T-SQL scripts from a command line. This 
provides a way to use a DOS batch file to run a script. 

• To open a Command Prompt window, select Command Prompt from the Start menu. 
On Windows 10, it's in the Windows System group. 

• To start the SQLCMD utility, enter "sqlcmd" at the C:\> prompt along with the 
appropriate command line switches. 

• You must begin most commands with the -S switch to specify the name of a valid server. 

• To log in, you can use the -E switch for Windows authentication, or you can use the 
-U and -P switches for SQL Server authentication. 

• Once you've started the SQLCMD utility and logged in, you can enter the statements 
you want to execute followed by the GO command. 

• To exit from the SQLCMD utility, enter "exit" at the SQLCMD prompt. 

Figure 14-1 7 How to use the SQLCMD utility 



454 Section 4 Advanced SQL skills 

Perspective 
In this chapter, you've learned how to code procedural scripts in T-SQL. By 

using the techniques you've learned here, you'll be able to code scripts that are 
more general, more useful, and less susceptible to failure. In particular, when 
you use dynamic SQL, you'll be able to solve problems that can't be solved 
using any other technique. 

In the next chapter, you'll expand on what you've learned here by learning 
how to code stored procedures, functions, and triggers. These objects are 
basically one-batch scripts that are stored with the database. But they provide 
special functionality that gives you greater control over a database, who has 
access to it, and how they can modify it. 

Terms 

script 
batch 
T-SQL statement 
variable 
scalar variable 
local variable 
table variable 
temporary table 
local temporary table 
global temporary table 
scope 

nested IF. .. ELSE statements 
WHILE loop 
cursor 
error handling 
exception handling 
surround-with snippets 
system function 
global variable 
dynamic SQL 
SQLCMD 
Windows PowerShell 



Chapter 14 How to code scripts 455 

Exercises 
1. Write a script that declares and sets a variable that's equal to the total 

outstanding balance due. If that balance due is greater than $ 10,000.00, the 
script should return a result set consisting ofVendorName, InvoiceNumber, 
InvoiceDueDate, and Balance for each invoice with a balance due, sorted 
with the oldest due date first. If the total outstanding balance due is less than 
$10,000.00, the script should return the message "Balance due is less than 
$1 0,000.00." 

2. The following script uses a derived table to return the date and invoice total 
of the earliest invoice issued by each vendor. Write a script that generates the 
same result set but uses a temporary table in place of the derived table. Make 
sure your script tests for the existence of any objects it creates. 

USE AP; 

SELECT VendorName, FirstinvoiceDate, InvoiceTotal 
FROM Invoices JOIN 

(SELECT VendoriD, MIN(InvoiceDate) AS FirstinvoiceDate 
FROM Invoices 
GROUP BY VendoriD) AS Firstinvoice 

ON (Invoices . VendoriD = Firstinvoice.VendoriD AND 
Invoices.InvoiceDate = Firstinvoice.FirstinvoiceDate) 

JOIN Vendors 
ON Invoices.VendoriD = Vendors.VendoriD 

ORDER BY VendorName, FirstinvoiceDate; 

3. Write a script that generates the same result set as the code shown in exercise 
2, but uses a view instead of a derived table. Also write the script that creates 
the view. Make sure that your script tests for the existence of the view. The 
view doesn' t need to be redefined each time the script is executed. 

4. Write a script that uses dynamic SQL to return a single column that repre
sents the number of rows in the first table in the current database. The script 
should automatically choose the table that appears first alphabetically, and it 
should exclude tables named dtproperties and sysdiagrams. Name the column 
CountOITable, where Table is the chosen table name. 

Hint: Use the sys.tables catalog view. 





15 

How to code stored 
procedures, functions, 
and triggers 
Now that you've learned how to work with scripts, you know that procedural 
statements can help you manage a database and automate tasks. In this chapter, 
you' ll learn how to extend this functionality by creating database objects that 
store program code within a database. The three types of programs discussed 
in this chapter provide a powerful and flexible way to control how a database is 
used. 

Procedural programming options in Transact-SOL ....... 458 
Scripts .......................................................................................................... 458 
Stored procedures, user-defined functions, and triggers ............................ .458 

How to code stored procedures ....................................... 460 
An introduction to stored procedures ... .... .. ....... .... ...... .... ......... ... .... ..... .... .. 460 
How to create a stored procedure .. ... .... ..................... .... ........ ... ............. ... ... 462 
How to declare and work with parameters ... ........................ .... .... ........ .... .. 464 
How to call procedures with parameters .. ................. .. .. .... ... .... ............. ... .. 466 
How to work with return values ... .... .... .. .. .. ...... ........... .... ..... .... ..... .... .... ... .. 468 
How to validate data and raise errors ... .... .... ......... .... .. ..... .... .... ............ .... ... 470 
A stored procedure that manages insert operations .. .. ..... .... .... .... ......... ... .. .472 
How to pass a table as a parameter. .. .. .. .... .... .................... .... .... ............ .... .. . 478 
How to delete or change a stored procedure .. .. .. ....... .. ..... .... .... ............ .... .. 480 
How to work with system stored procedures ......... .... .. ..... .... .... ... .. .... ... .... ... 482 

How to code user-defined functions ................................ 484 
An introduction to user-defined functions ................... ........ ........ ............... 484 
How to create a scalar-valued function ...................................................... .486 
How to create a simple table-valued function ........... .. .... ................. .......... .488 
How to create a multi-statement table-valued function .............................. .490 
How to delete or change a function ............................. .... .... ........ .... ........... .492 

How to code triggers .......................................................... 494 
How to create a trigger .. .... .... .. ..... .... .... ................. .... .. ..... .... .... ... ..... .... .... ... 494 
How to use AFTER triggers .. ... .... ..... ........................... .... ..... ........ .... .... ..... .496 
How to use INSTEAD OF triggers ............... .... .... .... .. .. ................ ............. .498 
How to use triggers to enforce data consistency ... .... .... .... .... ........ .... .... ..... 500 
How to use triggers to work with DDL statements ..... ......... .... .... ............ .. .502 
How to delete or change a trigger ..... .................. .... .... ...... .... ........ .... .... ...... 504 

Perspective ......................................................................... 506 



458 Section 4 Advanced SQL skills 

Procedural programming options 
in Transact-SQL 

Figure 15-1 presents the four types of procedural programs you can code 
using Transact-SQL. Each program type contains SQL statements. However, 
they differ by how they're stored and executed. 

Scripts 

Of the four types of procedural programs, only scripts can contain two or 
more batches. That's because only scripts can be executed by SQL Server tools 
such as the Management Studio and the SQLCMD utility. In addition, only 
scripts are stored in files outside of the database. For these reasons, scripts tend 
to be used most often by SQL Server programmers and database administrators. 

Stored procedures, user-defined functions, 
and triggers 

The other three types of procedural programs-stored procedures, 
user-defined functions, and triggers-are executable database objects. This 
means that each is stored within the database. To create these objects, you use 
the DDL statements you' lllearn about in this chapter. Then, these objects remain 
as a part of the database until they're explicitly dropped. 

Stored procedures, user-defined functions, and triggers differ by how they're 
executed. Stored procedures and user-defined functions can be run from any 
database connection that can run a SQL statement. By contrast, triggers run 
automatically in response to the execution of an action query on a specific table. 

Stored procedures are frequently written by SQL programmers for use by 
end users or application programmers. If you code stored procedures in this way, 
you can simplify the way these users interact with a database. In addition, you 
can provide access to a database exclusively through stored procedures. This 
gives you tight control over the security of the data. 

Both user-defined functions and triggers are used more often by SQL 
programmers than by application programmers or end users. SQL programmers 
often use their own functions within the scripts, stored procedures, and triggers 
they write. Since triggers run in response to an action query, programmers use 
them to help prevent errors caused by inconsistent or invalid data. 

Stored procedures, functions, and triggers also differ by whether or not they 
can use parameters. Parameters are values that can be passed to or returned from 
a procedure. Both stored procedures and user-defined functions can use 
parameters, but triggers can't. 



Chapter 15 How to code stored procedures, functions, and triggers 459 

A comparison of the different types of procedural SQL programs 

Accepts 
Type Batches How it's stored How it's executed parameters 

Script Multiple 

Stored procedure One only 

User-defined One only 
function 

Trigger One only 

Description 

In a file on a disk 

In an object in the 
database 

In an object in the 
database 

In an object in the 
database 

From within a client tool 
such as the Management 
Studio or SQLCMD 

No 

By an application or within Yes 
a SQL script 

By an application or within Yes 
a SQL script 

Automatically by the No 
server when a specific 
action query is executed 

• You can write procedural programs with Transact-SQL using scripts, stored 
procedures, user-defined functions, and triggers. 

• Scripts are useful for those users with access to the SQL Server client tools, such as 
the Management Studio. Typically, these tools are used by SQL programmers and 
DBAs, not by application programmers or end users. 

• Stored procedures, user-defined functions, and triggers are all executable database 
objects that contain SQL statements. Although they differ in how they're executed 
and by the kinds of values they can return, they all provide greater control and 
better performance than a script. 

• Stored procedures give the SQL programmer control over who accesses the 
database and how. Since some application programmers don' t have the expertise to 
write certain types of complex SQL queries, stored procedures can simplify their 
use of the database. 

• User-defined f unctions are most often used by SQL programmers within the stored 
procedures and triggers that they write, although they can also be used by 
application programmers and end users. 

• Triggers are special procedures that execute when an action query, such as an 
INSERT, UPDATE, or DELETE statement, is executed. Like constraints, you can 
use triggers to prevent database errors, but triggers give you greater control and 
flexibility. 

• Since procedures, functions, and triggers are database objects, the SQL statements 
you use to create, delete, and modify them are considered part of the DDL. 

Figure 15-1 Procedural programming options in Transact-SOL 



460 Section 4 Advanced SQL skills 

How to code stored procedures 
A stored procedure is a database object that contains one or more SQL 

statements. In the topics that follow, you'lllearn how to create and use stored 
procedures. In addition, you'lllearn how to use some of the stored procedures 
provided by SQL Server. 

An introduction to stored procedures 

Figure 15-2 presents a script that creates a stored procedure, also called an 
sproc or just a procedure. To do that, you use the CREATE PROC statement. 
You' lllearn the details of coding this statement in a moment. 

The first time a procedure is executed, each SQL statement it contains is 
compiled and executed to create an execution plan. Then, the procedure is stored 
in compiled form within the database. For each subsequent execution, the SQL 
statements are executed without compilation, because they're precompiled. This 
makes the execution of a stored procedure faster than the execution of an 
equivalent SQL script. 

To execute, or call, a stored procedure, you use the EXEC statement. If the 
EXEC statement is the first line in a batch, you can omit the EXEC keyword 
and just code the procedure name. Since this can lead to code that's confusing to 
read, however, I recommend that you include the EXEC keyword. 

The script in this figure creates a stored procedure named spinvoiceReport. 
This procedure consists of a single statement: a SELECT statement that retrieves 
data from the Vendors and Invoices tables. As you'll see in the topics that follow, 
however, a stored procedure can contain more than one statement, along with the 
same procedural code used in scripts. 

When you execute the script in this figure, you create the stored procedure. 
The response from the system shows that the procedure was created successfully. 
Then, when you execute the stored procedure, the result set retrieved by the 
SELECT statement is returned. 

As you can see, a user or program that calls this procedure doesn't need to 
know the structure of the database to use the stored procedure. This simplifies 
the use of the database by eliminating the need to know SQL and the need to 
understand the structure of the database. 

As you'lllearn in chapter 17, you can allow a user or program to call 
specific stored procedures but not to execute other SQL statements. By doing 
this, you can secure your database by restricting access to only those rows, 
columns, and tables that you provide access to through the stored procedures. 
For those systems where security is critical, this can be the best way to secure 
the data. 



Chapter 15 How to code stored procedures, functions, and triggers 461 

A script that creates a stored procedure 
USE AP; 
GO 
CREATE PROC spinvoiceReport 
AS 

SELECT VendorName, InvoiceNumber, InvoiceDate, InvoiceTotal 
FROM Invoices JOIN Vendors 

ON Invoices.VendoriD = Vendors.VendoriD 
WHERE InvoiceTotal - CreditTotal - PaymentTotal > 0 
ORDER BY VendorName; 

The response from the system 
Commands completed successfully. 

A statement that calls the procedure 
EXEC spinvoiceReport; 

The result set created by the procedure 
Vendor Name Invoice NI.ITlber Invoice Date Invoice Total 

1 [~~.~.·.·~~~.~·.·.·.·~~.~·~~.·.·.·.·.·.·~~.·.·~~~~.·.·.·.·.·.·.·.·.·~~~.·~~~~~.·.·.·.·.·] 547480102 202<Hl2.01 224.00 

2 Cardinal Business Media. Inc. 134116 202<Hl1·28 90.36 

3 Data Reprodudions Corp 39104 202<Hl1·10 85.31 

4 Federal Express Corporation 963253264 202<Hl1·18 52.25 

5 Federal Express Corporation 263253268 202<Hl1·21 59.97 

Description 

L 

• A stored procedure is an executable database object that contains SQL statements. 
A stored procedure is also called a sproc (pronounced either as one word or as 
"ess-proc") or a procedure. 

• Stored procedures are precompiled. That means that the execution plan for the SQL 
code is compiled the first time the procedure is executed and is then saved in its 
compiled form. For this reason, stored procedures execute faster than an equivalent 
SQL script. 

• You use the EXEC statement to run, or call, a procedure. If this statement is the 
first line in a batch, you can omit the EXEC keyword and code just the procedure 
name. To make your code easier to read, however, you should always include the 
EXEC keyword. 

• You can call a stored procedure from within another stored procedure. You can even 
call a stored procedure from within itself. This technique, called a recursive call or 
recursion, is seldom used in SQL programming. 

• One of the advantages of using procedures is that application programmers and end 
users don' t need to know the structure of the database or how to code SQL. 

• Another advantage of using procedures is that they can restrict and control access 
to a database. If you use procedures in this way, you can prevent both accidental 
errors and malicious damage. 

Figure 15-2 An introduction to stored procedures 



462 Section 4 Advanced SQL skills 

How to create a stored procedure 

Figure 15-3 presents the syntax of the CREATE PROC statement you use to 
create a stored procedure. You code the name of the procedure in the CREATE 
PROC clause. Note that stored procedure names can't be the same as the name 
of any other object in the database. To help distinguish a stored procedure from 
other database objects, it's a good practice to prefix its name with the letters sp. 

When the CREATE PROC statement is executed, the syntax of the SQL 
statements within the procedure is checked. If you've made a coding error, the 
system responds with an appropriate message and the procedure isn' t created. 

Because the stored procedure is created in the current database, you need 
to change the database context by coding a USE statement before the CREATE 
PROC statement. In addition, CREATE PROC must be the first and only 
statement in the batch. Since the script in this figure creates the procedure after a 
USE and DROP PROC statement, for example, it has a GO command just before 
the CREATE PROC statement. 

In addition to stored procedures that are stored in the current database, you 
can create temporary stored procedures that are stored in the tempdb database. 
These procedures exist only while the current database session is open, so they 
aren' t used often. To identify a temporary stored procedure, prefix the name 
with one number sign (#) for a local procedure and two number signs(##) for a 
global procedure. 

After the name of the procedure, you code declarations for any parameters it 
uses. You' lllearn more about that in the figures that follow. 

You can also code the optional WITH clause with the RECOMPILE 
option, the ENCRYPTION option, the EXECUTE_AS_clause option, or any 
combination of these options. The RECOMPILE option prevents the system 
from precompiling the procedure. That means that the execution plan for the 
procedure must be compiled each time it's executed, which will slow down most 
procedures. For this reason, you should generally omit this option. 

Some procedures, however, might make use of unusual or atypical values. 
If so, the first compilation may result in an execution plan that isn't efficient for 
subsequent executions. In that case, the additional overhead involved in 
recompiling the procedure may be offset by the reduced query execution time. 
If you find that a stored procedure you've written performs erratically, you may 
want to try this option. 

ENCRYPTION is a security option that prevents the user from being able to 
view the declaration of a stored procedure. Since the system stores the procedure 
as an object in the database, it also stores the code for the procedure. If this code 
contains information that you don' t want the user to examine, you should use 
this option. 

The EXECUTE_AS_clause option allows you to specify an EXECUTE AS 
clause to allow users to execute the stored procedure with a specified security 
context. For example, you can use this clause to allow users to execute the stored 
procedure with the same security permissions as you. That way, you can be sure 
that the stored procedure will work for the caller even if the caller doesn' t have 
permissions to access all of the objects that you used within the stored procedure. 



Chapter 15 How to code stored procedures, functions, and triggers 463 

The syntax of the CREATE PROC statement 
CREATE {PROCIPROCEDURE} procedure_name 
[parameter_declarations] 
[WITH [RECOMPILE] [, ENCRYPTION] [, EXECUTE_AS_ clause]] 

AS sql_ statements 

A script that creates a stored procedure that copies a table 
USE AP; 
IF OBJECT_ ID('spCopyinvoices') IS NOT NULL 

DROP PROC spCopyinvoices; 
GO 

CREATE PROC spCopyinvoices 
AS 

IF OBJECT_ ID('InvoiceCopy') IS NOT NULL 
DROP TABLE InvoiceCopy; 

SELECT * 
INTO InvoiceCopy 
FROM Invoices; 

Description 
• You use the CREATE PROC statement to create a stored procedure in the current 

database. The name of a stored procedure can be up to 128 characters and is 
typically prefixed with the letters sp. 

• The CREATE PROC statement must be the first and only statement in a batch. If 
you're creating the procedure within a script, then, you must code a GO command 
following any statements that precede the CREATE PROC statement. 

• To create a temporary stored procedure, prefix the procedure name with a number 
sign (#)for a local procedure or two number signs (##) for a global procedure. A 
temporary stored procedure only exists while the current database session is open. 

• You can use parameters to pass one or more values from the calling program to the 
stored procedure or from the procedure to the calling program. See figures 15-4 and 
15-5 for more information on working with parameters. 

• The AS clause contains the SQL statements to be executed by the stored procedure. 
Since a stored procedure must consist of a single batch, a GO command is inter
preted as the end of the CREATE PROC statement. 

• The RECOMPILE option prevents the system from precompiling the procedure, 
which means that it has to be compiled each time it's run. Since that reduces system 
performance, you don' t typically use this option. 

• The ENCRYPTION option prevents users from viewing the code in a stored 
procedure. See figure 15-11 for more information on viewing stored procedures. 

• The EXECUTE_AS_clause option allows users to execute the stored procedure 
with the permissions specified by the EXECUTE AS clause. For more information, 
look up "EXECUTE AS clause" in the SQL Server documentation. 

Figure 15-3 How to create a stored procedure 



464 Section 4 Advanced SQL skills 

How to declare and work with parameters 

Figure 15-4 presents the syntax for declaring parameters in a CREATE 
PROC statement. Like a local variable, the name of a parameter must begin with 
an at sign(@). The data type for a parameter can be any valid SQL Server data 
type except for the table data type. 

Stored procedures provide for two different types of parameters: input 
parameters and output parameters. An input parameter is passed to the stored 
procedure from the calling program. An output parameter is returned to the 
calling program from the stored procedure. You identify an output parameter 
with the OUTPUT keyword. If this keyword is omitted, the parameter is 
assumed to be an input parameter. 

You can declare an input parameter so it requires a value or so its value 
is optional. The value of a required parameter must be passed to the stored 
procedure from the calling program or an error occurs. The value of an optional 
parameter doesn't need to be passed from the calling program. You identify an 
optional parameter by assigning a default value to it. Then, if a value isn't passed 
from the calling program, the default value is used. Although you can also code a 
default value for an output parameter, there's usually no reason for doing that. 

You can also use output parameters as input parameters. That is, you can 
pass a value from the calling program to the stored procedure through an output 
parameter. However, that's an unusual way to use output parameters. To avoid 
confusion, you should use output parameters strictly for output. 

Within the procedure, you use parameters like variables. Although you 
can change the value of an input parameter within the procedure, that change 
isn't returned to the calling program and has no effect on it. Instead, when the 
procedure ends, the values of any output parameters are returned to the calling 
program. 



Chapter 15 How to code stored procedures, functions, and triggers 465 

The syntax for declaring parameters 
@parameter_name_ l data_type [= default] [OUTPUT] 
[, @parameter_name_ 2 data_ type [=default] [OUTPUT]] ... 

Typical parameter declarations 
@DateVar date 

@VendorVar varchar(40) NULL 

@InvTotal money OUTPUT 

Input parameter that accepts 
a date value 
Optional input parameter that accepts 
a character value 
Output parameter that returns 
a monetary value 

A CREATE PROC statement that uses an input and an output parameter 
CREATE PROC spinvTotall 

@Datevar date, 
@InvTotal money OUTPUT 

AS 
SELECT @InvTotal = SUM(InvoiceTotal) 
FROM Invoices 
WHERE InvoiceDate >= @DateVar; 

A CREATE PROC statement that uses an optional parameter 
CREATE PROC spinvTotal2 

@Datevar date = NULL 
AS 
IF @DateVar IS NULL 

SELECT @DateVar = MIN(InvoiceDate) FROM Invoices; 
SELECT SUM(InvoiceTotal) 
FROM Invoices 
WHERE InvoiceDate >= @DateVar; 

Description 

• To declare a parameter within a stored procedure, you code the name of the 
parameter followed by its data type. The parameter name must start with an at sign 
(@ ), and the data type can be any type except table. Parameters are always local to 
the procedure. 

• Input parameters accept values passed from the calling program. 

• Output parameters store values that are passed back to the calling program. You 
identify an output parameter by coding the OUTPUT keyword after the parameter 
name and data type 

• Optional parameters are parameters that do not require that a value be passed from 
the calling program. To declare an optional parameter, you assign it a default value. 
Then, that value is used if one isn't passed from the calling program. 

• A stored procedure can declare up to 2100 parameters. If you declare two or more 
parameters, the declarations must be separated by commas. 

• It's a good programming practice to code your CREATE PROC statements so they 
list required parameters first, followed by optional parameters. 

Figure 15-4 How to declare and work with parameters 



466 Section 4 Advanced SQL skills 

How to call procedures with parameters 

Figure 15-5 shows how you call procedures that use parameters. The stored 
procedure in this figure accepts two input parameters and returns one output 
parameter. As you can see, both of the input parameters are optional because 
each has a default value. 

To pass parameter values to a stored procedure, you code the values in the 
EXEC statement after the procedure name. You can pass parameters to a stored 
procedure either by position or by name. The first EXEC statement in this figure 
passes the parameters by position. When you use this technique, you don't 
include the names of the parameters. Instead, the parameters are listed in the 
same order as they appear in the CREATE PROC statement. This is the most 
common way to call stored procedures that have a short list of parameters. 

The second EXEC statement shows how you can pass the parameters by 
name. To do that, you include the names of the parameters as defined in the 
CREATE PROC statement. When you use this technique, you can list parameters 
in any order. If the procedure has many parameters, particularly if some of them 
are optional, passing parameters by name is usually easier than passing 
parameters by position. 

The third EXEC statement in this figure shows how you can omit an optional 
parameter when you pass the parameters by name. To do that, you simply omit 
the optional parameter. By contrast, when you pass parameters by position, you 
can omit them only if they appear after the required parameters. This is 
illustrated by the last EXEC statement in this figure. 

Notice that in all four of these examples, the EXEC statement is preceded 
by a DECLARE statement that creates a variable named @MyinvTotal. This 
variable is used to store the value of the output parameter that's returned from 
the stored procedure. As you can see, the name of this variable is included in 
each of the EXEC statements in this figure. In addition, the variable name is 
followed by the OUTPUT keyword, which identifies it as an output parameter. 



Chapter 15 How to code stored procedures, functions, and triggers 467 

A CREATE PROC statement that includes three parameters 
CREATE PROC spinvTota l3 

AS 

@InvTotal money OUTPUT, 
@DateVar date = NULL, 
@VendorVar varchar (4 0) = ' %' 

IF @DateVar IS NULL 
SELECT @DateVar MIN ( InvoiceDate) FROM Invoices ; 

SELECT @InvTotal = SUM(InvoiceTotal) 
FROM Invoices JOIN Vendors 

ON Invoices.VendoriD = Vendors.VendoriD 
WHERE (InvoiceDate >= @DateVar) AND 

(VendorName LIKE @Vendorvar); 

Code that passes the parameters by position 
DECLARE @MyinvTotal money; 
EXEC spinvTotal3 @MyinvTotal OUTPUT, '2020-01-01', ' P%'; 

Code that passes the parameters by name 
DECLARE @MyinvTotal money; 
EXEC spinvTotal3 @DateVar = '2020-01-01', @VendorVar = 'P%', 

@InvTotal = @MyinvTotal OUTPUT; 

Code that omits one optional parameter 
DECLARE @MyinvTotal money; 
EXEC spinvTotal3 @VendorVar = ' M% ', @InvTotal @MyinvTotal OUTPUT; 

Code that omits both optional parameters 
DECLARE @MyinvTotal money; 
EXEC spinvTotal3 @MyinvTotal OUTPUT; 

Description 
• To call a procedure that accepts parameters, you pass values to the procedure 

by coding them following the procedure name. You can pass the parameters by 
position or by name. 

• To pass parameters by position, list them in the same order as they appear in the 
CREATE PROC statement and separate them with commas. When you use this 
technique, you can omit optional parameters only if they're declared after any 
required parameters. 

• To pass parameters by name, code the name of the parameter fo llowed by an equal 
sign and the value. You can separate multiple parameters with commas. When you 
use this technique, you can list the parameters in any order and you can easily omit 
optional parameters. 

• To use an output parameter in the calling program, you must declare a variable to 
store its value. Then, you use the name of that variable in the EXEC statement, and 
you code the OUTPUT keyword after it to identify it as an output parameter. 

Figure 15-5 How to call procedures with parameters 



468 Section 4 Advanced SQL skills 

How to work with return values 

In addition to passing output parameters back to the calling program, stored 
procedures also pass back a return value. By default, this value is zero. However, 
you can use a RETURN statement to return another number. For example, if 
a stored procedure updates rows, you may want to return the number of rows 
that have been updated. To do that, you can use the @@ROWCOUNT function 
described in chapter 14. 

In figure 15-6, the stored procedure named spinvCount returns a count of the 
number of invoices that meet the conditions specified by the input parameters. 
These parameters are identical to the input parameters used by the stored 
procedure in figure 15-5. However, since this procedure uses a RETURN 
statement to return an integer value, there's no need to use an output parameter. 

The script that calls the procedure uses a variable to store the return value. 
To do that, the name of the variable is coded after the EXEC keyword, followed 
by an equals sign and the name of the stored procedure. After the procedure 
returns control to the script, the script uses a PRINT statement to print the return 
value. 

In this figure, the script gets the count of invoices where the invoice date is 
on or after January 1, 2020 and the vendor's name begins with P. Here, the return 
value indicates that 2 invoices match these specifications. 

So, when should you use the RETURN statement to return values and when 
should you use output parameters? If a stored procedure needs to return a single 
integer value, many programmers prefer using a RETURN statement since the 
syntax for returning a value is more concise and intuitive than using output 
parameters. However, if a stored procedure needs to return other types of data, 
or if it needs to return multiple values, then a RETURN statement won' t work. 
In that case, you can use output parameters, or you can use a function to return 
other data types (including result sets) as described later in this chapter. Of 
course, you can always use a RETURN statement together with output 
parameters whenever that makes sense. 



Chapter 15 How to code stored procedures, functions, and triggers 469 

The syntax of the RETURN statement for a stored procedure 
RETURN [inte ger_ expression] 

A stored procedure that returns a value 
CREATE PROC spinvCount 

AS 

@DateVar date = NULL, 
@Vendorvar varchar (4 0) = ' %' 

IF @DateVar IS NULL 
SELECT @DateVar = MIN(InvoiceDate) FROM Invoices; 

DECLARE @InvCount int; 

SELECT @InvCount = COUNT(InvoiceiD) 
FROM Invoices JOIN Vendors 

ON Invoices.VendoriD = Vendors.VendoriD 
WHERE (Invo iceDate >= @DateVar) AND 

(VendorName LIKE @Vendorvar); 

RETURN @InvCount; 

A script that calls the stored procedure 
DECLARE @InvCount int; 
EXEC @InvCount = spinVCount '2020-01-01', 'P%'; 
PRINT 'Invoice count: ' + CONVERT(varchar, @InvCount); 

The response from the system 
Invoice count : 2 

Description 
• The RETURN statement immediately exits the procedure and returns an optional 

integer value to the calling program. If you don' t specify a value in this statement, 
the return value is zero. 

• To use the return value in the calling program, you must declare a variable to store 
its value. Then, you code that variable name followed by an equals sign and the 
name of the procedure in the EXEC statement. 

Figure 15-6 How to work with return values 



470 Section 4 Advanced SQL skills 

How to validate data and raise errors 

In addition to using the TRY .. . CATCH statement to handle errors after they 
occur, you can also prevent errors before they occur by checking data before it's 
used to make sure it's valid. Checking data before it's used is often referred to 
as data validation, and it often makes sense to perform data validation within a 
stored procedure. Then, if the data is not valid, you can execute code that makes 
it valid, or you can return an error to the calling program. To return an error, it's 
often helpful to use the THROW statement. Then, if the calling program contains 
a TRY .. . CATCH statement, it can catch and handle the error. Otherwise, the 
client connection is terminated immediately. 

Figure 15-7 presents the syntax of the THROW statement. The first 
parameter is the error number you want to assign to the error. The value of this 
parameter must be 50000 or greater, which identifies it as a custom error. You 
can use this value to indicate the type of error that occurred. The second 
parameter is simply the error message you want to display if the error is raised. 
And the third parameter is the state that you want to associate with the error. The 
state code is strictly informational and has no system meaning. You can use any 
value between 0 and 255 to represent the state that the system was in when the 
error was raised. In most cases, you' ll just code 1 for this argument. 

The stored procedure in this figure illustrates how the THROW statement 
works. This procedure checks the VendoriD that's passed from the calling 
program before it performs the insert operation that's specified by the INSERT 
statement. That way, the system error that's raised when you try to insert a row 
with an invalid foreign key will never occur. Instead, if the VendoriD value is 
invalid, the THROW statement will raise a custom error that provides a 
user-friendly message. In this case, the custom error contains a short message 
that indicates that the VendoriD is not valid. 

The calling script in this figure attempts to insert a row into the Invoices 
table with VendoriD 799. Since this VendoriD doesn' t exist in the Vendors 
table, the insertion causes the custom error to be raised. As a result, program 
execution jumps into the CATCH block of the TRY .. . CATCH statement. This 
CATCH block prints a message that indicates that an error occurred, and it prints 
the message that's stored in the custom error. Then, the catch block uses an IF 
statement to check if the error number is greater than or equal to 50000. If so, it 
prints a message on the third line that indicates that the error is a custom error. 

When you code a THROW statement within a block of statements, you 
should be aware that it must always be preceded by a semicolon. That's true 
even if the THROW statement is the first or only statement in the block. This is 
illustrated in the last example in this figure. Here, you can see that I've coded a 
semicolon on the line before the THROW statement. Of course, if the THROW 
statement is preceded by another statement in the block, you can just code the 
semicolon at the end of that statement. 

The THROW statement was introduced with SQL Server 2012. In previous 
versions of SQL Server, you used the RAISERROR statement to perform a 
similar function. In addition to raising custom errors, this statement lets you 
raise system errors. It also lets you specify a severity level that indicates whether 



Chapter 15 How to code stored procedures, functions, and triggers 471 

The syntax of the THROW statement 
THROW [error_number, message, state] 

A stored procedure that tests for a valid foreign key 
CREATE PROC spinsertinvoice 

@VendoriD int, @InvoiceNumber varchar(SO), 
@InvoiceDate date, @InvoiceTotal money, 
@Ter.msiD int, @InvoiceDueDate date 

AS 

IF EXISTS(SELECT * FROM Vendors WHERE VendoriD = @VendoriD) 
INSERT Invoices 
VALUES (@VendoriD, @InvoiceNumber, 

@InvoiceDate, @InvoiceTotal, 0, 0, 
@TermsiD, @InvoiceDueDate, NULL); 

ELSE 
THROW 50001, ' Not a v a lid VendoriDI ', 1; 

A script that calls the procedure 
BEGIN TRY 

EXEC spinsertinvoice 
799,'ZXK-799', '2020 - 03-01' , 299.95,1, '2020- 04-01'; 

END TRY 
BEGIN CATCH 

PRINT 'An error occurred.'; 
PRINT 'Message: ' + CONVERT(varchar, ERROR_MESSAGE ( )) ; 
IF ERROR_NUMBER ( ) >= 50000 

PRINT 'This is a cus tom err or mes sage.'; 
END CATCH; 

The response from the system 
An error occurred. 
Message : Not a valid VendoriD! 
This is a custom error message. 

The THROW statement coded within a block 
BEGIN 

THROW 50001, 'Not a valid VendoriD!', 1; 
END; 

Description 
• The process of checking the values in one or more columns is known as data validation. 

It's a good practice to validate the data within a stored procedure whenever possible. 

• The THROW statement manually raises an error. Unless this error is caught by a 
TRY ... CATCH statement within the stored procedure, the error will be returned to the 
caller just like an error that's raised by the database engine. 

• You use the state argument to identify how serious an error is. The severity of an error 
that's raised with the THROW statement is always 16. 

• A THROW statement that's coded within a block must be preceded by a semicolon. 

• A THROW statement that doesn' t include any parameters must be coded in a CATCH 
block. 

Figure 15-7 How to validate data and raise errors 



472 Section 4 Advanced SQL skills 

the error is informational, whether program execution should jump into a 
CATCH block, or whether the client connection should be terminated. Because 
you shouldn' t throw system errors, though, and because you' ll almost always 
want an error to be caught and handled, you can simplify your error handling by 
using THROW statements instead of RAISERROR statements. 

A stored procedure 
that manages insert operations 

Figure 15-8 presents a stored procedure that might be used by an application 
program that inserts new invoices into the Invoices table. This should give you a 
better idea of how you can use stored procedures. 

This procedure starts with a comment that documents the stored procedure. 
This documentation includes the author's name, the date the procedure was 
created, the dates it was modified, who it was modified by, and a general 
description of the procedure 's purpose. Since this procedure returns a value, the 
return value is briefly described in the comments too. Of course, you can include 
any other information that you feel is useful. 

This procedure uses nine parameters that correspond to nine of the columns 
in the Invoices table. All of these parameters are input parameters, and each 
parameter is assigned the same data type as the matching column in the Invoices 
table. This means that if the calling program passes a value that can' t be cast to 
the proper data type, an error will be raised as the procedure is called. In other 
words, this type of error won' t be caught by the procedure. 

If the calling program was to pass a value of 13-15-89 to the @InvoiceDate 
parameter, for example, an error would occur because this value can' t be cast as 
a date. To handle this type of error within the procedure, you could define each 
parameter with the varchar data type. Then, the procedure could test for invalid 
data types and raise appropriate errors when necessary. 

All of the input parameters are also assigned a default value of NULL. Since 
most of the columns in the Invoices table can' t accept null values, this might 
seem like a problem. As you ' ll see in a minute, however, the procedure tests the 
value of each parameter before the insertion is attempted. Then, if the parameter 
contains an invalid value, an appropriate error is returned to the calling program 
and the insert operation is never performed. By coding the procedure this way, 
you can fix some errors by supplying default values, and you can return custom 
error messages for other errors. 



Chapter 15 How to code stored procedures, functions, and triggers 473 

A stored procedure that validates the data in a new invoice 
I* 
Handles insertion of new invoices into AP database, 
including data validation. 
Author: Bryan Syverson 
Created: 2002-07-17 
Modified: 2008-07-29 by Joel Murach 

2020-01-31 by Anne Boehm 
Return value: InvoiceiD for the new row if successful, 

0 if unsuccessful 
*I 

USE AP; 
GO 

IF OBJECT_ ID('spinsertinvoice') IS NOT NULL 
DROP PROC spinsertinvoice; 

GO 

CREATE PROC spinsertinvoice 
@VendoriD int = NULL, 
@InvoiceNumber varchar(SO) 

AS 

@InvoiceDate 
@InvoiceTotal 
@Payment Total 
@Credit Total 
@TermsiD 
@InvoiceDueDate 
@PaymentDate 

Description 

date = NULL, 
money = NULL, 
money = NULL, 
money = NULL, 
int = NULL, 
date = NULL, 
date = NULL 

NULL, 

• The nine parameters used in this procedure correspond to nine of the columns in 
the Invoices table. 

Figure 15-8 A stored procedure that manages insert operations (part 1 of 3) 

Page 1 



474 Section 4 Advanced SQL skills 

After the AS keyword, a series of IF statements are used to test the values 
in each input parameter. The first IF statement, for example, tests the value 
of @ VendoriD to determine if that vendor exists in the Vendors table. If not, 
a THROW statement is used to raise a custom error that indicates that the 
VendoriD is invalid. This statement also exits the stored procedure and returns 
the custom error to the calling program. 

For the first IF statement, the custom error contains a short message that 
says, "Invalid VendoriD." However, this message could easily be enhanced to 
display a more helpful and descriptive message such as "The specified VendoriD 
value does not exists in the Vendors table. Please specify a valid VendoriD." 

The next five IF statements check for null values. In addition, the IF 
statement for the @InvoiceD ate parameter checks to be sure that it falls between 
the current date and 30 days prior to the current date, and the IF statement for 
the @lnvoiceTotal parameter checks to be sure that it 's greater than zero. If not, 
a custom error is raised. 

Instead of returning an error if the @CreditTotal or @ PaymentTotal 
parameter contains a null value, this procedure sets the value of the parameter to 
zero. It also checks that the credit total isn' t greater than the invoice total, and it 
checks that the payment total isn' t greater than the invoice total minus the credit 
total. 

The next IF statement checks the value of the @TermsiD parameter to see if 
a row with this value exists in the Terms table. If not, this parameter is set to the 
value of the DefaultTermsld column for the vendor if the parameter contains a 
null value. If it contains any other value, though, a custom error is raised. 

This procedure also sets the @lnvoiceDueDate parameter if a due date 
isn't passed to the procedure. To do that, it gets the value of the TermsDueDays 
column from the Terms table and stores it in a variable, and then uses the 
DATEADD function to add the value of that variable to the @lnvoiceDate 
parameter. You might think that you could calculate the invoice due date using a 
SET statement like this: 

SET @InvoiceDueDate = @InvoiceDate + 
(SELECT TermsDueDays FROM Terms WHERE TermsiD = @Ter.msiD); 

You can' t do that, though, because as you learned in chapter 9, you can' t use the 
addition and subtraction operators with the date data type, and all three of the 
date parameters for this procedure are declared with that type. 

If a due date is passed to the procedure, the procedure checks that the date is 
after the invoice date but isn' t more than 180 days after the invoice date. Finally, 
the procedure checks the @PaymentDate parameter to be sure that it's not less 
than the invoice date or more than 14 days before the current date. 

As you can see, some of the data validation performed by this procedure 
duplicates the constraints for the Invoices table. If you didn' t check the VendoriD 
to be sure that it existed in the Vendors table, for example, the foreign key 
constraint would cause an error to occur when the row was inserted. By testing 
for the error before the insertion, however, the stored procedure can raise a 
custom error message that might be more easily handled by the calling program. 

Some of the data validation performed by this procedure goes beyond the 
constraints for the columns in the table. For example, all three of the date values 



Chapter 15 How to code stored procedures, functions, and triggers 475 

A stored procedure that validates the data in a new invoice 
IF NOT EXISTS ( SELECT * FROM Vendors WHERE VendoriD = @VendoriD) 

THROW 50001, 'Invalid VendoriD. ' , 1; 
IF @InvoiceNumber IS NULL 

THROW 50001, 'Invalid InvoiceNumber.•, 1; 
IF @InvoiceDate IS NULL OR @InvoiceDate > GETDATE() 

OR DATEDIFF(dd, @InvoiceDate, GETDATE()) > 30 
THROW 50001, 'Invalid InvoiceDate.', 1; 

IF @Invoi ceTotal IS NULL OR @InvoiceTotal <= 0 
THROW 50001, 'Invalid InvoiceTotal.' , 1; 

IF @PaymentTotal IS NULL 
SET @PaymentTotal = 0; 

IF @Cred itTotal IS NULL 
SET @CreditTotal = 0; 

IF @CreditTotal > @InvoiceTotal 
THROW 50001, 'Invalid CreditTotal . ', 1 ; 

IF @PaymentTotal > @Invoic eTotal - @CreditTotal 
THROW 50001, 'Invalid PaymentTotal.', 1; 

IF NOT EXISTS (SELECT * FROM Terms WHERE TermsiD = @TermsiD) 
IF @Ter.msiD IS NULL 

SELECT @TermsiD = DefaultTermsiD 
FROM Vendors 
WHERE VendoriD = @VendoriD; 

ELSE -- @TermsiD IS NOT NULL 
THROW 50001 , 'Invalid TermsiD. ' , 1 ; 

IF @InvoiceDueDate IS NULL 
BEGIN 

DECLARE @TermsDueDays int; 
SELECT @TermsDueDays = TermsDueDays 
FROM Terms 
WHERE TermsiD = @TermsiD; 

Page2 

SET @InvoiceDueDate = DATEADD(day, @TermsDueDays, @InvoiceDate); 
END 

ELSE - - @InvoiceDueDate IS NOT NULL 
IF @InvoiceDueDate < @InvoiceDate OR 

DATEDIFF(dd, @InvoiceDueDate, @InvoiceDate) > 180 
THROW 50001, ' Invalid InvoiceDueDate. ', 1 ; 

IF @PaymentDate < @InvoiceDate OR 
DATEDIFF(dd, @PaymentDate, GETDATE()) > 14 

THROW 50001, 'Invalid PaymentDate . ', 1 ; 

Description 
• A series of IF statements is used to validate the data in each column of the new 

invoice row. If the value in a column is invalid, a THROW statement is used to 
return a custom error to the calling program. This terminates the stored procedure. 

• Some of the conditions tested by this code could be accomplished using constraints. 
However, testing these conditions before the INSERT statement is executed 
prevents system errors from occurring and allows you to return a user-friendly 
custom error message. Other conditions tested by this code can't be enforced using 
constraints. 

Figure 15-8 A stored procedure that manages insert operations (part 2 of 3) 



476 Section 4 Advanced SQL skills 

are tested to determine whether they fall within an appropriate range. This 
illustrates the flexibility provided by using stored procedures to validate data. 

If the input parameters pass all of the validation tests, the INSERT statement 
is executed. Since the data has already been validated, the INSERT statement 
should execute successfully most of the time and insert the row. Then, the 
following statement uses the @@IDENTITY function to get the new invoice ID 
value that's generated when the row is inserted, and it returns that value to the 
calling program. 

However, even though the data for the insert has been validated, it's still 
possible for an unexpected system error to occur. In that case, SQL Server will 
raise a system error and end the stored procedure. 

In most cases, a stored procedure like this would be called from an 
application program. Since the details of doing that are beyond the scope of 
this book, however, this figure presents a SQL script that calls the procedure. 
This script includes processing similar to what might be used in an application 
program. In short, this script uses a TRY ... CATCH statement to catch any errors 
that have been raised and to handle them appropriately. In many cases, handling 
an error is as simple as displaying a message that describes the error and 
indicates what can be done to fix the problem. In this figure, for example, the 
CATCH block uses three PRINT statements to indicate that an error occurred, 
to display the error number, and to display the error message. In other cases, 
though, error handling can include additional processing such as saving data or 
exiting the program as gracefully as possible. 



Chapter 15 How to code stored procedures, functions, and triggers 477 

A stored procedure that validates the data in a new invoice 
INSERT Invoi ces 
VALUES (@VendoriD, @InvoiceNumber, @InvoiceDate, @InvoiceTotal, 

@PaymentTotal, @CreditTotal, @Ter.msiD, @InvoiceDueDate, 
@PaymentDate); 

RETURN @@IDENTITY; 

A SQL script that calls the stored procedure 
BEGIN TRY 

DECLARE @InvoiceiD int; 
EXEC @InvoiceiD = spinsertinvoice 

@VendoriD = 799, 
@InvoiceNumber = 'RZ99381' , 
@InvoiceDate = ' 2 020-02-12', 
@InvoiceTotal = 1292.45; 

PRINT 'Row was inserted.'; 
PRINT 'New Invoic eiD: ' + CONVERT (varchar, @Invoic eiD); 

END TRY 
BEGIN CATCH 

PRINT 'An error occurred. Row was not inserted. ' ; 
PRINT ' Error number: ' + CONVERT(varchar, ERROR_NUMBER()); 
PRINT 'Error message: ' + CONVERT (varchar, ERROR_MESSAGE()); 

END CATCH; 

The response from the system for a successful insert 
Row was inserted. 
New InvoiceiD: 115 

The response from the system when a validation error occurs 
An error occurred. Row was not inserted. 
Error number: 50001 
Error message : Invalid VendoriD. 

Description 
• If the data in all of the columns of the new row is valid, the procedure executes an 

INSERT statement to insert the row. If the insert succeeds, this procedure gets the 
new lnvoiceiD value and returns it to the calling program, which ends the 
procedure. Otherwise, the database engine raises a system error, returns a value of 
zero, and ends the procedure. 

• If this procedure was called by an application program, the program would need 
to handle any errors that occur. This includes custom errors raised by this stored 
procedure and unexpected system errors raised by SQL Server if it can't execute 
the INSERT statement. 

Figure 15-8 A stored procedure that manages insert operations (part 3 of 3) 

Page3 



478 Section 4 Advanced SQL skills 

How to pass a table as a parameter 

So far, all of the stored procedures shown in this chapter have accepted 
scalar values as parameters. However, there are times when you may want to 
pass an entire table to a stored procedure. For example, you may want to pass 
multiple invoices or line items to a stored procedure for processing. With SQL 
Server 2008 and later, you can pass a table as a parameter as shown in figure 
15-9. 

Before you can pass a table as a parameter, you must define a data type for 
the table. In other words, you must create a user-defined table type. To do that, 
you can code a CREATE TYPE statement like the one shown in this figure. This 
statement defines a data type named Lineitems for a table that contains columns 
similar to the columns of the InvoiceLineltems table, including the same 
definition for the primary key. However, foreign keys aren't allowed for 
user-defined table types. As a result, the column definitions in this figure don' t 
include foreign keys. 

Once you define a table type, you can create a stored procedure that accepts 
this data type as a parameter. In this figure, for example, the CREATE PROC 
statement creates a procedure that accepts a single parameter named @Lineltems 
of the Lineltems type. As a result, the body of the stored procedure can treat this 
parameter just as if it was a table variable. Here, an INSERT statement inserts all 
of the rows stored in the @Lineitems parameter into the InvoiceLineltems table. 
This works because the Lineltems type contains the same number and type of 
columns as the InvoiceLineltems table. 

When you code a stored procedure that accepts a table as a parameter, you 
must use the READONLY keyword to identify this parameter as read-only. As a 
result, you can' t modify the data that's stored in the parameter. However, outside 
of the stored procedure, you can modify the data that's stored in a variable of a 
user-defined table type. In this figure, for example, the code that passes the table 
to the stored procedure begins by declaring a variable of the Lineitems type. 
Then, it uses three INSERT statements to insert three rows into the table. Finally, 
it uses an EXEC statement to pass this table to the procedure. 

If you need to, you can also join a table that's passed as a parameter with 
another table. For example, suppose you want to update the InvoiceLineitems 
table with data from the @Lineltems table. To do that, you could code a statement 
like this: 

UPDATE I nvoice Line i t ems 
SET InvoiceLineitemAmount = l i . I t emAmount 
FROM I nvoic eLine items i J OIN @Li ne items l i 

ON i . InvoiceiD = l i.Invo iceiD 
AND i. Invoi c eSeque nce = l i . Invoi ceSeque nce; 

Here, the InvoiceLineitems table has a primary key that's defined by two 
columns. As a result, tables are joined based on both of these columns. 



Chapter 15 How to code stored procedures, functions, and triggers 479 

The syntax for creating a user-defined table type 
CREATE TYPE TableTypeName AS 
TABLE 
table_definition 

A statement that creates a user-defined table type 
CREATE TYPE Lineitems AS 
TABLE 
(InvoiceiD INT NOT NULL, 
InvoiceSequence SMALLINT NOT NULL, 
AccountNo INT NOT NULL, 
ItemAmount MONEY NOT NULL, 
ItemDescription VARCHAR(100) NOT NULL, 
PRIMARY KEY (InvoiceiD, InvoiceSequence)); 

A statement that creates a stored procedure 
that accepts a table as a parameter 

CREATE PROC spinsertLineitems 
@Lineitems Lineitems READONLY 

AS 
INSERT INTO InvoiceLineitems 
SELECT * 
FROM @Lineitems; 

Statements that pass a table to a stored procedure 
DECLARE @Lineitems Lineitems; 

INSERT INTO @Lineitems VALUES (114, 
INSERT INTO @Lineitems VALUES (114, 
INSERT INTO @Lineitems VALUES (114, 

EXEC spinsertLineitems @Lineitems; 

The response from the system 
(1 row affected) 
(1 row affected) 
(1 row affected) 
(3 rows affected) 

Description 

1, 553, 127.75, 
2, 553, 29.25, 
3 , 553, 48.50, 

'Freight'); 
'Freight'); 
' Freight'); 

• If you want to pass a table as a parameter to a stored procedure or a user-defined 
function, you must create a user-defined table type for the table. 

• A user-defined table type can only be used as an input parameter, not as an output 
parameter. 

• Creating a user-defined table type is similar to creating a regular table. However, 
you can' t define foreign keys for the table. 

Figure 15-9 How to pass a table as a parameter 



480 Section 4 Advanced SQL skills 

How to delete or change a stored procedure 

Figure 15-10 presents the syntax of the DROP PROC statement. You use this 
statement to delete one or more stored procedures from the database. As with 
the other statements you've learned that delete objects from the database, the 
deletion is permanent. 

This figure also presents the syntax of the ALTER PROC statement. You 
use this statement to redefine an existing stored procedure. As you can see, the 
syntax is the same as the syntax of the CREATE PROC statement. 

Like the ALTER VIEW statement, ALTER PROC completely replaces the 
previous definition for the stored procedure. Because of that, you'll usually 
change the definition of a stored procedure by deleting the procedure and then 
recreating it. If you've assigned security permissions to restrict the users who 
can call the procedure, however, those permissions are lost when you delete 
the procedure. If you want to retain the permissions, then, you should use the 
ALTER PROC statement instead. 

The examples in this figure show how you might use the ALTER PROC 
and DROP PROC statements. The first example creates a stored procedure 
named spVendorState that selects vendors from the state specified by the @State 
parameter. Because the SELECT statement will fail if a state isn' t specified, this 
parameter is required. In the second example, however, an ALTER PROC 
statement is used to modify this procedure so the state is optional. The last 
example deletes this procedure. 

If you delete a table or view used by a stored procedure, you should be sure 
to delete the stored procedure as well. If you don't, the stored procedure can still 
be called by any user or program that has access to it. Then, an error will occur 
because the table or view has been deleted. 



Chapter 15 How to code stored procedures, functions, and triggers 481 

The syntax of the DROP PROC statement 
DROP {PROCIPROCEDURE} procedure_name [ , ••. ] 

The syntax of the ALTER PROC statement 
ALTER {PROCIPROCEDURE} procedure_name 
[parameter declarations] 
[WITH [RECOMPILE] [, ENCRYPTION] [, EXECUTE_AS_ clause]] 

AS sql_ statements 

A statement that creates a procedure 
CREATE PROC spVendorState 

@State varchar (20) 
AS 
SELECT VendorName 
FROM Vendors 
WHERE VendorState = @State; 

A statement that changes the parameter defined by the procedure 
ALTER PROC spVendorState 

@State varchar(20) = NULL 
AS 
IF @State IS NULL 

SELECT VendorName 
FROM Vendors; 

ELSE 
SELECT VendorName 
FROM Vendors 
WHERE VendorState = @State; 

A statement that deletes the procedure 
DROP PROC spVendorState; 

Description 

• To delete a stored procedure from the database, use the DROP PROC statement. 

• To modify the definition of a procedure, you can delete the procedure and then 
create it again, or you can use the ALTER PROC statement to specify the new 
definition. 

• When you delete a procedure, any security permissions that are assigned to the 
procedure are also deleted. If that's not what you want, you can use the ALTER 
PROC statement to modify the procedure and preserve the permissions. 

Figure 15-1 0 How to delete or change a stored procedure 



482 Section 4 Advanced SQL skills 

How to work with system stored procedures 

SQL Server comes with hundreds of system stored procedures that you can 
use to manage and maintain your databases. These procedures are stored in the 
Master database, but you can call them from any database. Figure 15-11 presents 
a table of commonly used system stored procedures. 

This figure also presents a script that calls the sp_HelpText system stored 
procedure. This procedure returns the SQL code that was specified by the 
CREATE statement for a view, stored procedure, user-defined function, or 
trigger. If the object was created with the WITH ENCRYPTION option, 
however, the SQL code can' t be returned. Because the code for system stored 
procedures is never encrypted, you can examine the code in these procedures 
too. 

You can use the system stored procedures to simplify your administrative 
tasks. However, you may want to avoid using these procedures in production 
programs. That's because each time a new version of SQL Server is released, 
some of these stored procedures may change. Then, you may have to rewrite the 
programs that use them. 

In addition to the system stored procedures provided by SQL Server, you 
can also create your own system stored procedures. To do that, you create the 
procedure in the Master database, and you give the procedure a name that starts 
with sp_. 



Chapter 15 How to code stored procedures, functions, and triggers 483 

Commonly used system stored procedures 
Procedure Description 
sp_ Help [name] 

sp_HelpText name 

sp_ HelpDb [database_name] 

sp_Who [login_ ID] 

sp_ Colwnns name 

Returns information about the specified database 
object or data type. Without a parameter, returns a 
summary of all objects in the current database. 

Returns the text of an unencrypted stored procedure, 
user-defined function, trigger, or view. 

Returns information about the specified database or, 
if no parameter is specified, all databases. 

Returns information about who is currently logged 
in and what processes are running. If no parameter is 
specified, information on all active users is returned. 

Returns information about the columns defined in 
the specified table or view. 

How to use the sp_HelpText system stored procedure 
USE AP; 
EXEC sp_HelpText spinvoiceReport; 

The results returned by the procedure 
Text 

1 [¢.~~~~i~~~.P..·~·.·.~ ~-~;;;;:-~~.rt.~~~~~~-·.····.·.·.·.·.~~~ ··~~~-···.·.·.·.·.~~~~~-~~~-···· .. ·.·.·. ~~~--~~~--, 
2 AS 
3 

4 SELECT VendorName. lnvok:eNumber. Invoice Date. L 

5 FROM Invoices JOIN Vendors 

6 ON lnvoices.VendorlD • Vendors.VendoriD 

7 WHERE lnvoiceTotai-CredHotal- Payment Total > 0 

8 ORDER BYVendorName: 

The results if WITH ENCRYPTION is included in the procedure definition 
The text for object 'spinvoiceReport' is enc rypted. 

Description 
• Microsoft SQL Server includes many system stored procedures that you can use to 

perform useful tasks on a database. These procedures are identified by the prefix 
sp_. You can use these procedures in the scripts and procedures you write. 

• System stored procedures are stored in the Master database, but you can execute 
them on any database. These procedures operate within the current database context 
that you've set with the USE statement. 

• SQL Server has hundreds of system stored procedures. To view the complete list, 
look up "system stored procedures" in the SQL Server documentation. 

• You can also create your own system stored procedures. To do that, give the 
procedure a name that begins with sp_ and create it in the Master database. 

Figure 15-11 How to work with system stored procedures 



484 Section 4 Advanced SQL skills 

How to code user-defined functions 
In addition to the SQL Server functions you've learned about throughout this 

book, you can also create your own functions, called user-defined functions. To 
do that, you use code that's similar to the code you use to create a stored 
procedure. There are some distinct differences between stored procedures and 
user-defined functions, however. You ' 11 learn about those differences in the 
topics that follow. 

An introduction to user-defined functions 

Figure 15-12 summarizes the three types of user-defined functions, also 
called UDFs, or just functions , that you can create using Transact-SQL. 
Scalar-valued functions are like the functions you learned about in chapter 9 that 
return a single value. In addition to scalar-valued functions, however, you can 
also create table-valued functions. As its name implies, a table-valued function 
returns an entire table. A table-valued function that's based on a single SELECT 
statement is called a simple table-valued function. By contrast, a table-valued 
function that's based on multiple SQL statements is called a multi-statement 
table-valued function . 

Like a stored procedure, a UDF can accept one or more input parameters. 
The function shown in this figure, for example, accepts a parameter named 
@VendorName. However, a UDF can't be defined with output parameters. 
Instead, the RETURN statement must be used to pass a value back to the calling 
program. The value that's returned must be compatible with the data type that 's 
specified in the RETURNS clause. In this example, an integer that contains a 
VendoriD value selected from the Vendors table is returned. 

To call, or invoke, a scalar-valued function, you include it in an expression. 
Then, the value returned by the function is substituted for the function. The 
first SELECT statement in this figure, for example, uses the value returned by 
the fnVendoriD function in its WHERE clause. Note that when you refer to a 
user-defined function, you must include the name of the schema. In this case, the 
schema is dbo. 

To invoke a table-valued function, you refer to it anywhere you would 
normally code a table or view name. The second SELECT statement in this 
figure, for example, uses a function named fnTop VendorsDue in the FROM 
clause. You' ll see the definition of this function later in this chapter. 

Unlike a stored procedure, a UDF can' t make permanent changes to the 
objects in a database. For example, it can't issue INSERT, UPDATE, and 
DELETE statements against tables or views in the database. However, within the 
code for a function, you can create a table, a temporary table, or a table variable. 
Then, the function can perform insert, update, and delete operations on that 
table. 



Chapter 15 How to code stored procedures, functions, and triggers 485 

The three types of user-defined functions 
Function type Description 

Scalar-valued function 

Simple table-valued function 

Multi-statement table-valued function 

Returns a single value of any T-SQL data type. 

Returns a table that's based on a single SELECT statement. 

Returns a table that's based on multiple statements. 

A statement that creates a scalar-valued function 
CREATE FUNCTION fnVendoriD 

(@VendorName varchar(SO)) 
RETURNS int 

BEGIN 
RETURN (SELECT VendoriD FROM Vendors WHERE VendorName @VendorName); 

END; 

A statement that invokes the scalar-valued function 
SELECT InvoiceDate, InvoiceTotal 
FROM Invoice s 
WHERE VendoriD = dbo.fnVendoriD('IBM'); 

A statement that invokes a table-valued function 
SELECT * FROM dbo.fnTopVendorsDue(SOOO); 

Description 
• A user-defined function, also called a UDF or just a function, is an executable 

database object that contains SQL statements. 

• The name of a function can be up to 128 characters and is typically prefixed with 
the letters fn. 

• Functions always return a value. A scalar-valued function returns a single value of 
any T-SQL data type. A table-valued function returns an entire table. 

• A table-valued function can be based on a single SELECT statement, in which case 
it's called a simple table-valued function, or it can be based on two or more 
statements, in which case it's called a multi-statement table-valued function. 

• A function can't have a permanent effect on the database. In other words, it can' t 
run an action query against the database. 

• You can call, or invoke, a scalar-valued function from within any expression. You 
can invoke a table-valued function anywhere you'd refer to a table or a view. 

• Unlike other database objects, you must specify the name of the schema when 
invoking a UDF. 

Figure 15-1 2 An introduction to user-defined functions 



486 Section 4 Advanced SQL skills 

How to create a scalar-valued function 

Figure 15-13 presents the syntax of the CREATE FUNCTION statement you 
use to create a scalar-valued function. The CREATE FUNCTION clause names 
the function and declares the input parameters. If you don't specify the schema 
name as part of the name, the function is stored in the schema that's associated 
with the current user. 

The syntax you use to declare parameters for a function is similar to the 
syntax you use to declare parameters for stored procedures. For a function, 
however, the declarations must be enclosed in parentheses. In addition, because a 
function can't have output parameters, the OUTPUT keyword isn' t allowed. 

To invoke a function that has parameters, you must pass the parameters 
by position. You can' t pass them by name as you can when you call a stored 
procedure. For this reason, you should code required parameters first, followed 
by optional parameters. Furthermore, you can't simply omit optional parameters 
when invoking a function as you can with a stored procedure. Instead, you must 
use the DEFAULT keyword as a placeholder for the optional parameter. You' ll 
see an example of that in figure 15-14. 

The RETURNS clause specifies the data type of the value that's returned by 
the function. Because the value must be scalar, you can' t specify the table data 
type. In addition, you can't specify text, ntext, image, or timestamp. 

You code the statements for the function within a BEGIN ... END block. 
Within that block, the RETURN statement specifies the value that's passed back 
to the invoking program. Since this statement causes the function to terminate, 
it's usually coded at the end of the function. Notice that unlike a RETURN 
statement you code within a stored procedure, a RETURN statement you 
code within a function can return a value with any data type. Within a specific 
function, however, it must return a value with a data type that's compatible with 
the data type specified by the RETURNS clause. 

The scalar-valued function that's shown in this figure doesn' t accept any 
input parameters and returns a value with the money data type. In this case, the 
code for the function consists of a single SELECT statement coded within the 
RETURN statement. However, a function can include as many statements as are 
necessary to calculate the return value. 

If you find yourself repeatedly coding the same expression, you may want 
to create a scalar-valued function for the expression. Then, you can use that 
function in place of the expression, which can save you coding time and make 
your code easier to maintain. Most SQL programmers create a set of useful 
UDFs each time they work on a new database. 



Chapter 15 How to code stored procedures, functions, and triggers 487 

The syntax for creating a scalar-valued function 
CREATE FUNCTION [schema_name.]function_name 

([@parameter_name data_ type [=default]] [, ••• ]) 
RETURNS data_ type 
[WITH [ENCRYPTION] [, SCHEMABINDING] [, EXECUTE_AS_clause]] 
[AS] 

BEGIN 
[ sql_ statements] 
RETURN scalar_ expression 

END 

A statement that creates a scalar-valued function 
that returns the total invoice amount due 

CREATE FUNCTION fnBalanceDue() 
RETURNS money 

BEGIN 
RETURN (SELECT SUM(InvoiceTotal - PaymentTotal - CreditTotal) 

FROM Invoices 
WHERE InvoiceTotal - PaymentTotal - CreditTotal > 0); 

END; 

A script that invokes the function 
PRINT 'Balance due: $' + CONVERT(varchar, dbo.fnBalanceDue( ) , 1); 

The response from the system 
Balanc e due : $32,020.42 

Description 
• Functions can be defined with from zero to 1024 input parameters. You specify 

these parameters in parentheses after the name of the function in the CREATE 
FUNCTION statement. Each parameter can be assigned an optional default value. 

• A function can't contain output parameters. Instead, you specify the data type of 
the data to be returned by the function in the RETURNS clause. 

• You code the statements that define the function within a BEGIN ... END block. 
This block includes a RETURN statement that specifies the value to be returned. 

• When you invoke a function, you list the parameters within parentheses after the 
name of the function. To use the default value of a parameter, code the DEFAULT 
keyword in place of the parameter value. You can't pass function parameters by 
name. 

• When you create a function, it's stored in the schema associated with the current 
user if you don' t specify a schema name. When you invoke the function, however, 
you must specify the schema name. 

• The SCHEMABINDING option binds the function to the database schema. 
This prevents you from dropping or altering tables or views that are used by the 
function. This option is more commonly used for table-valued functions. 

• The ENCRYPTION option prevents users from viewing the code in the function. 

• The EXECUTE_AS_clause option specifies the security context under which the 
function is executed. 

Figure 15-1 3 How to create and use a scalar-valued function 



488 Section 4 Advanced SQL skills 

How to create a simple table-valued function 

Figure 15-14 presents the syntax for creating a simple table-valued function, 
also called an inline table-valued function. You use this syntax if the result set 
can be returned from a single SELECT statement. Otherwise, you'll need to use 
the syntax that's presented in the next figure. 

To declare the function as table-valued, you code the table data type in the 
RETURNS clause. Then, you code the SELECT statement that defines the table 
in parentheses in the RETURN statement. Note that because a table can't have 
any unnamed columns, you must assign a name to every calculated column in 
the result set. 

The function shown in this figure returns a table that contains the vendor 
name and total balance due for each vendor with a balance due. The one input 
parameter, @CutOff, is an optional parameter because it's assigned a default 
value of 0. This parameter is used in the HAVING clause to return only those 
vendors with total invoices that are greater than or equal to the specified amount. 
The first SELECT statement shown in this figure, for example, returns vendors 
with total invoices greater than or equal to $5,000. 

The second SELECT statement shows how you can join the result of a 
table-valued function with another table. Notice that to avoid having to code the 
function in both the FROM and ON clauses, the function is assigned a correlation 
name. Also notice in this example that a value isn't specified for the optional 
parameter. Instead, the DEFAULT keyword is specified so the default value of the 
parameter will be used. 

A table-valued function like the one shown here acts like a dynamic view. 
Because a function can accept parameters, the result set it creates can be 
modified. This is a powerful extension to standard SQL functionality. 



Chapter 15 How to code stored procedures, functions, and triggers 489 

The syntax for creating a simple table-valued function 
CREATE FUNCTION [schema_name.]function_name 

([@parameter_name data_ type [=default]] [, • •• ] ) 
RETURNS TABLE 
[WITH [ENCRYPTION] [ , SCHEMABINDING]] 
[AS] 

RETURN [(] select_ statement [ ) ] 

A statement that creates a simple table-valued function 
CREATE FUNCTION fnTopVendorsDue 

(@CutOff money = 0 ) 
RETURNS table 

RETURN 
(SELECT VendorName, SUM(InvoiceTotal ) AS TotalDue 
FROM Vendors JOIN Invoices ON Vendors.VendoriD = Invoices.VendoriD 
WHERE InvoiceTotal - CreditTotal - PaymentTotal > 0 
GROUP BY VendorName 
HAVING SUM(InvoiceTotal) >=@Cut Off); 

A SELECT statement that invokes the function 
SELECT * FROM dbo.fnTopVendorsDue (SOOO ); 

The result set 

I 
VendorName TotaiDue 

1 L.~.~_n_;;y~~~~-~-i-~-~~~-i-~~~~] 31527.24 

A SELECT statement that uses the function in a join operation 
SELECT Vendors . VendorName, VendorCity, TotalDue 
FROM Vendors JOIN dbo.fnTopVendorsDue (DEFAULT ) AS TopVendors 

ON Vendors.VendorName = TopVendors.VendorName; 

The result set 
VendorName VendotOty Total Due 

r.·.~-~-~--~~-~~-~~·.··~:~·.··~~~---~~~---~~~--~~~~--~~~~--~~~~-~~~~-·] Oxnard 224.00 

2 Cardinal Business Media. Inc. Pht1adelphia 90.36 

3 Data Reproductions Corp 1\Jbum Hills 85.31 

4 Federal Express Corporation Memphis 210.89 

5 Ford Motor Credit Company Los klgeles 503.20 

6 Ingram Dalas 579.42 

7 Manoy l.ithogaphing Inc l>nn Mlor 31527.24 

Description 
• You create a simple table-valued function, also called an inline table-valued 

function, by coding the table data type in the RETURNS clause of the CREATE 
FUNCTION statement. Then, you code a SELECT statement that defines the table 
in the RETURN statement. 

• To use a simple table-valued function, code the function name in place of a table 
name or a view name. If you use a table-valued function in a join operation, you' ll 
want to assign a correlation name to it as shown above. 

Figure 15-14 How to create and use a simple table-valued function 



490 Section 4 Advanced SQL skills 

How to create a multi-statement 
table-valued function 

Figure 15-15 presents the syntax for creating a multi-statement table-valued 
function. Although you should know about this syntax, you ' ll probably never 
need to use it. That's because a single SELECT statement with joins and 
subqueries can fulfil l almost every query need. 

Since a multi-statement table-valued function creates a new table, you must 
define the structure of that table. To do that, you declare a table variable in the 
RETURNS clause and then define the columns for the new table. The syntax you 
use to define the columns is similar to the syntax you use to define the columns 
of a table variable. 

You code the SQL statements that create the table within a BEGIN .. . END 
block. This blocks ends with a RETURN keyword with no argument. This 
terminates the function and returns the table variable to the invoking program. 

The function shown in this figure returns a table with one row for each 
invoice with a balance due. This function calculates the credit adjustment that 
would be necessary to reduce the total balance due to the threshold amount that's 
passed to the function. This function is similar to the script you saw in figure 
14-9 in chapter 14 that uses a temporary table. 

This function starts by using an INSERT statement to copy all the rows in 
the Invoices table with a balance due to the @OutTable table variable. Then, 
a WHILE statement is used to increment the CreditTotal column of each row 
in this table by one cent until the total amount due for all invoices falls below 
the threshold. The SELECT statement that uses this function summarizes the 
CreditTotal column by vendor. 



Chapter 15 How to code stored procedures, functions, and triggers 491 

The syntax for creating a multi-statement table-valued function 
CREATE FUNCTION [schema_name.]function_name 

([@parameter_name data_type [=default]] [, • •• ] ) 
RETURNS @return_variable TABLE 
(column_name_ l data_type [column_attributes] 
[, c olumn_name_ 2 data_ type [column_a ttributes]] • • • ) 
[WITH [ENCRYPTION] [, SCHEMABINDING] [, EXECUTE_AS_clause]] 
[AS] 

BEGIN 
sql_ statements 
RETURN 

END 

A statement that creates a multi-statement table-valued function 
CREATE FUNCTION fnCreditAdj (@HowMuch money) 

RETURNS @OutTable table 
(InvoiceiD int, VendoriD int, InvoiceNUmber varchar(SO), 
InvoiceDate date, InvoiceTotal money, 
PaymentTotal money, CreditTotal money) 

BEGIN 

END; 

INSERT @OutTable 
SELECT InvoiceiD, VendoriD, InvoiceNUmber, InvoiceDate, 

InvoiceTotal, PaymentTotal, CreditTotal 
FROM Invoices 
WHERE InvoiceTotal - CreditTotal - PaymentTotal > 0; 

WHILE (SELECT SUM(InvoiceTotal - CreditTotal - PaymentTotal) 
FROM @OutTable) >= @HowMuch 

UPDATE @OutTable 
SET CreditTotal = CreditTotal + .01 
WHERE InvoiceTotal - CreditTotal - PaymentTotal > 0; 

RETURN; 

A SELECT statement that uses the function 
SELECT VendorName, SUM(CreditTotal) AS CreditRequest 
FROM Vendors JOIN dbo.fnCreditAdj(25000) AS CreditTable 

ON Vendors.VendoriD = CreditTable.VendoriD 
GROUP BY VendorName; 

The response from the system 
VendorName Cred~ Request 

1 L.~.~~~~-~-~-~~~---·~:~.·--~~~~--~~~~--~~~~---·~~~--~~~~--~~~~~~~~~~] 22 4. oo 
2 Cardinal Business Media, Inc. 90.36 

3 Data Reproductions Corp 85.31 

4 Federal Express Corporation 210.89 

5 Ford Motor Cred~ Company 503.20 

6 Ingram 579.42 

7 MaUoy Uthographing Inc 6527.26 

Warning 

• Because this code must loop through the Invoices table thousands of times, this 
function can take several seconds or more to execute. 

Figure 15-1 5 How to create and use a multi-statement table-valued function 



492 Section 4 Advanced SQL skills 

How to delete or change a function 

Figure 15-16 presents the syntax of the DROP FUNCTION and ALTER 
FUNCTION statements. The DROP FUNCTION statement permanently deletes 
one or more user-defined functions from the database. In addition, it drops 
any security permissions defined for the function along with any dependencies 
between the function and the tables and views it uses. 

The ALTER FUNCTION statement modifies the definition of a user-defined 
function. You should use this statement if you need to preserve permissions and 
dependencies that would be lost if you dropped the function and then recreated 
it. Just like the CREATE FUNCTION statement, the ALTER FUNCTION 
statement has three syntax variations for the three types of functions you can 
create. 



Chapter 15 How to code stored procedures, functions, and triggers 493 

The syntax of the DROP FUNCTION statement 
DROP FUNCTION [schema_name.]function_ name [, ..• ] 

The syntax of the ALTER FUNCTION statement 
for a scalar-valued function 

ALTER FUNCTION [schema_name.]function_name 
([@parameter_name data_type [=default]] [, ••• ]) 
RETURNS data_ type 
[WITH [ENCRYPTION] [, SCHEMABINDING] [, EXECUTE_AS_clause]] 

BEGIN 
[sql_ statements] 
RETURN scalar_ expression 

END 

The syntax for altering a simple table-valued function 
ALTER FUNCTION [schema_name.]function_name 

([@parameter_name data_ type [=default]] [, ••• ]) 
RETURNS TABLE 
[WITH [ENCRYPTION] [ , SCHEMABINDING]] 

RETURN [(] select_ statement [)] 

The syntax for altering a multi-statement table-valued function 
ALTER FUNCTION [schema_name.]function_name 

([@parameter_name data_type [=default]] [, • •• ]) 
RETURNS @return_variable TABLE 
(column_name_ l data_type [column_attributes] 
[, column_name_2 data_type [column_attributes]] •• • ) 
[WITH [ENCRYPTION] [, SCHEMABINDING] [, EXECUTE_AS_clause]] 

BEGIN 

END 

sql_ statements 
RETURN 

Description 
• To delete a user-defined function from the database, use the DROP FUNCTION 

statement. 

• To modify the definition of a function, you can delete the function and then create 
it again, or you can use the ALTER FUNCTION statement to specify the new 
definition. 

• When you delete a function, any security permissions that are assigned to the 
function and any dependencies between the function and the tables and views 
it uses are also deleted. If that's not what you want, you can use the ALTER 
FUNCTION statement to modify the function and preserve the permissions and 
dependencies. 

Figure 15-1 6 How to delete or change a function 



494 Section 4 Advanced SQL skills 

How to code triggers 
A trigger is a special type of procedure that's invoked, or fired , automatically 

when an action query is executed on a table or view. Triggers provide a powerful 
way to control how action queries modify the data in your database. If 
necessary, you can use triggers to enforce design rules, implement business 
logic, and prevent data inconsistency. However, triggers can cause locking and 
performance problems. In addition, there's often a better way to accomplish a 
task than by using a trigger. As a result, I recommend you use them sparingly. 

How to create a trigger 

Figure 15-17 presents the syntax of the CREATE TRIGGER statement you 
use to create a trigger. Notice in this syntax that a trigger can't use parameters. In 
addition, a trigger can' t return a value. 

The CREATE TRIGGER statement provides for two types of triggers: 
AFfER triggers and INSTEAD OF triggers. Both types of triggers can be 
defined to fire for an insert, update, or delete operation or any combination of 
these operations. If an action query has an AFfER trigger, the trigger fires after 
the action query. If an action query has an INSTEAD OF trigger, the trigger 
is fi red instead of the action query. In other words, the action query is never 
executed. 

In addition to AFTER and INSTEAD OF, you can code the FOR keyword 
in the CREATE TRIGGER statement. A FOR trigger is identical to an AFTER 
trigger. FOR is an ANSI-standard keyword and is more commonly used than 
AFfER. However, this book uses AFTER since it more clearly describes when 
the trigger fires. 

Each trigger is associated with the table or view named in the ON clause. 
Although each trigger is associated with a single table or view, a single table can 
have any number of AFfER triggers. Since two or more triggers for the same 
table can be confusing to manage and debug, however, I recommend you have 
no more than one trigger for each action. Each table or view can also have one 
INSTEAD OF trigger for each action. A view can't have AFfER triggers. 

The CREATE TRIGGER statement in this figure defines an AFTER trigger 
for the Vendors table. Notice that the name of this trigger reflects the table it's 
associated with and the operations that will cause it to fire . This is a common 
naming convention. In this case, the trigger fires after an insert or update 
operation is performed on the table. As you can see, the trigger updates the 
VendorState column so state codes are in uppercase letters. 

Notice that the WHERE clause in the trigger uses a subquery that's based 
on a table named Inserted. This is a special table that's created by SQL Server 
during an insert operation. It contains the rows that are being inserted into the 
table. Since this table only exists while the trigger is executing, you can only 
refer to it in the trigger code. 



Chapter 15 How to code stored procedures, functions, and triggers 495 

The syntax of the CREATE TRIGGER statement 
CREATE TRIGGER trigger_name 

ON {table_namelview_name} 
[WITH [ENCRYPTION] [,] [EXECUTE_AS_clause]] 
{FORIAFTERIINSTEAD OF} [INSERT] [,] [UPDATE] [,] [DELETE] 

AS sql_ statements 

A CREATE TRIGGER statement that corrects mixed-case state names 
CREATE TRIGGER Vendors_ INSERT_UPDATE 

ON Vendors 
AFTER INSERT, UPDATE 

AS 
UPDATE Vendors 
SET VendorState = UPPER(VendorState) 
WHERE VendoriD IN (SELECT VendoriD FROM Inserted); 

An INSERT statement that fires the trigger 
INSERT Vendors 
VALUES ('Peerless Uniforms, Inc.•, '785 S Pixley Rd', NULL, 

'Piqua•, 'Oh', '45356', '(937) 555-8845' , NULL, NULL, 4, 550); 

The new row that's inserted into the Vendors table 
VendoriD VendorName VendorAddress1 VendorAddress2 VendOIOty VendorState Vendorllpi 

1 !""1'25 ................. ] Peerless Unifoons. Inc. 785 S Pbdey Rd NULL P'~qua OH 45356 
; ............................. ! 

< > 

Description 

• A trigger is a special kind of procedure that executes, or fires, in response to an 
action query. Unlike a stored procedure, you can't invoke a trigger directly, you 
can't pass parameters to a trigger, and a trigger can' t pass back a return value. 

• A trigger is associated with a single table or view, which you identify in the ON 
clause. The trigger can be set to fire on INSERT, UPDATE, or DELETE statements 
or on a combination of these statements. 

• A trigger can be set to fire after the action query (AFTER) or instead of the action 
query (INSTEAD OF). A FOR trigger is the same as an AFfER trigger. 

• A table can have multiple AFfER triggers, even for the same action. A view can't 
have an AFTER trigger. A table or view can have only one INSTEAD OF trigger 
for each action. 

• To hide the code for the trigger from the user, include the ENCRYPTION option. 

• To execute a trigger under a specific security context, include the 
EXECUTE_AS_clause option. 

• It's a common programming practice to name triggers based on the table or view 
and the actions that will cause the trigger to fire. 

• Within a trigger, you can refer to two tables that are created by the system: Inserted 
and Deleted. The Inserted table contains the new rows for insert and update operations. 
The Deleted table contains the original rows for update and delete operations. 

Figure 15-17 How to create a trigger 



496 Section 4 Advanced SQL skills 

Similarly, a table named Deleted that contains the rows that are being 
deleted is created by SQL Server during a delete operation. For an update 
operation, SQL Server creates both tables. In that case, the Inserted table 
contains the rows with the updated data, and the Deleted table contains the 
original data from the rows that are being updated. 

How to use AFTER triggers 

Figure 15-18 shows another example of an AFfER trigger. This trigger 
archives all rows deleted from the Invoices table by inserting the deleted rows 
into another table named InvoiceArchive. 

The CREATE TRIGGER statement shown in this fi gure begins by 
specifying a name of Invoices_DELETE. Then, it specifies that this trigger 
should execute after a DELETE statement is executed against the Invoices table. 
The body of this trigger uses an INSERT statement to insert the rows that have 
been deleted from the Invoices table into the InvoiceArchive table. To accomplish 
this, this trigger uses a SELECT statement to retrieve columns from the Deleted 
table. 

The DELETE statement shown in this figure deletes three rows from 
Invoices table. This causes the Invoices_DELETE trigger to fire. As a result, the 
trigger inserts these three rows into the InvoiceArchive table after the DELETE 
statement executes. 

Because an AFfER trigger fires after the action query is executed, the 
trigger doesn' t fire if the action query causes an error. Usually, that 's what you 
want. In this figure, for example, you wouldn' t want to archive deleted rows if 
the DELETE statement caused an error and didn' t execute successfully. 



Chapter 15 How to code stored procedures, functions, and triggers 497 

An AFTER trigger that archives deleted data 
CREATE TRIGGER Invoices_DELETE 

ON Invoices 
AFTER DELETE 

AS 
INSERT INTO InvoiceArchiv e 

(InvoiceiD, VendoriD, InvoiceNumber, InvoiceDate, InvoiceTotal, 
PaymentTotal, CreditTotal, TermsiD, InvoiceDueDate, PaymentDate) 

SELECT InvoiceiD, VendoriD, InvoiceNumber, InvoiceDate, InvoiceTotal, 
PaymentTotal, CreditTotal, TermsiD, InvoiceDueDate, PaymentDate 

FROM Deleted 

A DELETE statement that causes the AFTER trigger to fire 
DELETE Invoic es 
WHERE VendoriD = 37 

The rows inserted into the lnvoiceArchive table 
lnvoiceiD VendoriD Invoice Number Invoice Date Invoice Total Payment Total 

1 [55·~.·~.·.·~.·.·~.·.·~~.·~~.] 3 7 547480102 20164Hl1 224.00 0.00 
2 50 37 547479217 2016-02~7 116.00 116.00 

3 46 37 547481328 2016-02~3 224.00 224.00 

< 

Description 

CreditT otal 

0.00 
0.00 

0.00 

Tern 

3 
3 

3 

> 

• An AFTER trigger fires after the action query is executed. If the action query 
causes an error, the AFTER trigger never fires. 

• AFTER triggers can be used to archive deleted data. 

Figure 15-18 How to use AFTER triggers 



498 Section 4 Advanced SQL skills 

How to use INSTEAD OF triggers 

An INSTEAD OF trigger can be associated with either a table or a view. 
However, INSTEAD OF triggers are used most often to provide better control of 
updatable views. 

Figure 15-19 presents an INSTEAD OF trigger that's used to control an 
insert operation through a view named IBM_Invoices. This view selects the 
InvoiceNumber, InvoiceDate, and InvoiceTotal from the Invoices table for the 
vendor named "IBM." If you look at the design of the Invoices table you' ll see 
that there are six additional columns that don' t allow null values. The problem is, 
how do you insert values into these six additional columns when the view isn' t 
aware of their existence? 

Three of the six columns (InvoiceiD, PaymentTotal , and CreditTotal) don' t 
need to be inserted through the view. That's because the design of the Invoices 
table automatically handles null values for these columns. InvoiceiD is an 
identity column, so the database automatically inserts the value for that column. 
The other two columns have a default value of 0, so the database uses this 
default value. 

This leaves three columns (VendoriD, TermsiD, and InvoiceDueDate) that 
must be updated when you insert data through the view. If you attempt to insert 
a row through the view, you can' t specify these required columns, and the insert 
operation fails. 

This trigger accommodates these missing columns by calculating their 
values based on three logical assumptions. First, the VendoriD can be assumed 
because this view is explicitly for invoices for vendor "IBM." Second, the terms 
for the invoice can be assumed to be the default terms for the vendor. Third, 
the due date for the invoice can be calculated based on the invoice date and the 
terms. 

After it declares the variables it uses, the trigger queries the Inserted table to 
get a count of the number of rows that are being inserted. Since this trigger will 
work only if a single row is being inserted, an error is raised if the row count 
is greater than one. Otherwise, the trigger queries the Inserted table to get the 
values of the three columns that were specified in an INSERT statement like the 
one shown in this figure. The SELECT statement assigns these values to three 
of the variables. Then, if all three variables contain values other than null, the 
trigger calculates the values of the missing columns. 

Since an INSTEAD OF trigger is executed instead of the action query that 
caused it to fire, the action will never occur unless you code it as part of the 
trigger. For this reason, the last statement in this trigger is an INSERT statement 
that inserts the new row into the Invoices table. Without this statement, the row 
would never be inserted. 



Chapter 15 How to code stored procedures, functions, and triggers 499 

An INSTEAD OF INSERT trigger for a view 
CREATE TRIGGER IBM_ Invoices_ INSERT 

ON IBM_Invoices 
INSTEAD OF INSERT 

AS 
DECLARE @InvoiceDate date, @InvoiceNumber varchar(SO), 

@InvoiceTotal money, @VendoriD int, 
@InvoiceDueDate date, @TermsiD int, 
@DefaultTerms smallint, @TestRowCount int; 

SELECT @TestRowCount = COUNT(*) FROM Inserted; 
IF @TestRowCount = 1 

BEGIN 
SELECT @InvoiceNumber = InvoiceNumber, @InvoiceDate 

@InvoiceTotal = InvoiceTotal 
FROM Inserted; 

InvoiceDate, 

IF (@InvoiceDate IS NOT NULL AND @InvoiceNumber IS NOT NULL AND 
@InvoiceTotal IS NOT NULL) 

END; 
ELSE 

BEGIN 

END; 

SELECT @VendoriD = VendoriD, @TermsiD = DefaultTermsiD 
FROM Vendors 
WHERE VendorName 'IBM'; 

SELECT @DefaultTerms = TermsDueDays 
FROM Terms 
WHERE TermsiD = @TermsiD; 

SET @InvoiceDueDate = 
DATEADD(day, @DefaultTerms , @InvoiceDate); 

INSERT Invoices 
(VendoriD, InvoiceNumber, InvoiceDate, InvoiceTotal, 
TermsiD, InvoiceDueDate, PaymentDate ) 

VALUES (@VendoriD, @InvoiceNumber, @InvoiceDate, 
@InvoiceTotal, @TermsiD, @InvoiceDueDate, NULL); 

THROW 50027, 'Limit INSERT to a single row.•, 1; 

An INSERT statement that succeeds due to the trigger 
INSERT IBM_ Invoices 
VALUES (I RA23988 I' I 2020-03-09 I' 417.34) i 

Description 
• An INSTEAD OF trigger is executed instead of the action query that causes it to 

fi re. Because the action query is never executed, the trigger typically contains code 
that performs the operation. 

• INSTEAD OF triggers are typically used to provide for updatable views. They can 
also be used to prevent errors, such as constraint violations, before they occur. 

• Each table or view can have only one INSTEAD OF trigger for each type of 
action. However, if a table is defined with a foreign key constraint that specifies the 
CASCADE UPDATE or CASCADE DELETE option, INSTEAD OF UPDATE 
and INSTEAD OF DELETE triggers can't be defined for the table. 

Figure 15-19 How to use INSTEAD OF triggers 



500 Section 4 Advanced SQL skills 

How to use triggers to enforce data consistency ---
Triggers can also be used to enforce data consistency. For example, the 

sum of line item amounts in the InvoiceLineltems table should always be 
equal to the invoice total for the invoice in the Invoices table. Unfortunately, 
you can't enforce this rule using a constraint on either the Invoices table or the 
InvoiceLineltems table. However, you can use a trigger like the one in figure 
15-20 to enforce this rule when a payment amount is updated. 

The trigger shown here fires after an update operation on the Invoices table. 
Since you can assume that posting a payment is likely to be the last action taken 
on an invoice, firing a trigger on this action is a good way to verify that all of the 
data is valid. If an update operation changes the PaymentTotal column, the rest 
of the trigger verifies that the sum of the line items is equal to the invoice total. If 
the data isn' t valid, the trigger raises an error and uses the ROLLBACK TRAN 
statement to roll back the update. You' ll learn more about using this statement in 
the next chapter. 

Notice the two IF statements shown in this figure. They use the EXISTS 
operator to test for the existence of the data specified by the subqueries that 
follow. In chapter 6, you saw how to use the EXISTS operator in the WHERE 
clause. Because this keyword returns a Boolean value, however, you can use it in 
an IF statement as well. 

You can use triggers like the one shown here to enforce business rules 
or verify data consistency. Since you can program a trigger to accommodate 
virtually any situation, triggers are more flexible than constraints. As a result, 
some programmers prefer to use triggers rather than constraints to enforce data 
consistency and sometimes even check constraints and defaults. 



Chapter 15 How to code stored procedures, functions, and triggers 501 

A trigger that validates line item amounts when posting a payment 
CREATE TRIGGER Invoices_UPDATE 

ON Invoices 
AFTER UPDATE 

AS 
IF EXISTS --Test whether PaymentTotal was changed 

(SELECT * 
FROM Deleted JOIN Invoices 

ON Deleted.InvoiceiD = Invoices.InvoiceiD 
WHERE Deleted.PaymentTotal <> Invoices.PaymentTotal) 
BEGIN 

IF EXISTS 
(SELECT * 

--Test whether line items total and InvoiceTotal match 

END; 

FROM Invoices JOIN 
(SELECT InvoiceiD, SUM(InvoiceLineitemAmount) AS SumOfinvoices 
FROM InvoiceLineitems 
GROUP BY Invoic eiD) AS Lineitems 

ON Invoices.InvoiceiD = Lineitems.InvoiceiD 
WHERE (Invoices.InvoiceTotal <> Lineitems.SumOfinvoices) AND 

(Lineitems.InvoiceiD IN (SELECT InvoiceiD FROM Deleted))) 
BEGIN 

THROW 50113, 'Correct line item amounts before posting payment. ' , 1; 
ROLLBACK TRAN; 

END; 

An UPDATE statement that fires the trigger 
UPDATE Invoices 
SET PaymentTotal = 662, PaymentDate = '2020 - 03 - 09' 
WHERE InvoiceiD = 98; 

The response from the system 
Msg 50113 , Level 16, State 1, Procedure Invoices_UPDATE, Line 23 
Correct line item amounts before posting payment. 

Description 
• Triggers can be used to enforce database rules for data consistency that can' t be 

enforced by constraints. 

• Triggers can also be used to enforce the same rules as constraints, but with more 
flexibility. 

Figure 15-20 How to use triggers to enforce data consistency 



502 Section 4 Advanced SQL skills 

How to use triggers to work with DDL statements 

So far, this chapter has only shown you how to create triggers for DML 
statements such as the INSERT, UPDATE, and DELETE statements since that's 
typically how triggers are used. However, you can also create triggers for DDL 
statements such as the CREATE TABLE statement. For example, figure 15-21 
shows a trigger that is executed when any CREATE TABLE or DROP TABLE 
statement is executed on the current database. 

Although the syntax for this trigger is similar to a trigger for a DML 
statement, the ON clause works a little differently. To start, you can code the 
DATABASE keyword after the ON keyword to fire the trigger when the specified 
DDL actions are executed on the current database. Or, you can code the ALL 
SERVER keywords after the ON keyword to fire the trigger when the specified 
DDL actions are executed on any database on the current server. However, only a 
handful of DDL actions apply to a server-level trigger. As a result, a server-level 
trigger can only be fired by certain actions that apply to the server such as the 
CREATE DATABASE statement. 

To specify the DDL actions for the trigger, you begin by coding the AFTER 
or INSTEAD OF keywords just as you do for any type of trigger. Then, you 
specify one or more DDL statements, separated by commas. When you code the 
name of the DDL statement, replace any spaces with underscores. In this figure, 
for example, the statement uses CREATE_ TABLE and 
DROP _TABLE to specify that the trigger fires after a CREATE TABLE or 
DROP TABLE statement is executed. 

Next, two variables are declared, @EventData with an xml data type and 
@EventType with a varchar data type. Then, the @EventData variable is 
filled using a special function called EVENTDATA. This function is available 
from within the body of a trigger for a DDL statement, and it returns an XML 
document that contains data about the event that caused the trigger to fire. 

After that, the @EventType variable is filled by parsing the character data 
that's stored in the @EventData variable. This returns information about what 
type of DDL statement was executed. For now, don't worry if you don' t 
understand the code that parses the @EventData variable. It should make more 
sense after you've read chapter 18. Finally, the code inserts the data stored in the 
@EventData and @EventType variables into the corresponding columns in the 
AuditDDL table. 

This figure shows the data in the AuditDDL table after a user has created a 
table named VendorsTest. If you are using Management Studio and you click on 
the XML in the EventData column, Management Studio displays the XML for 
the event. This XML should be similar to the XML shown in this figure. 

If you want to make it easier to access any of this data, you can store it in the 
columns of the AuditDDL table. To do that, create the necessary columns in the 
AuditDDL table. Then, use the techniques described in chapter 18 to parse the 
@EventData variable and store each piece of data in the appropriate column. For 
example, you might want to store the PostTime and UserName values in their 
own columns. That way, you could easily query the AuditDDL table to 
determine when the DDL statement was executed and who executed it. 



Chapter 15 How to code stored procedures, functions, and triggers 503 

A trigger that works with DOL statements 
CREATE TRIGGER Database_CreateTable_ DropTable 

ON DATABASE 

AS 
AFTER CREATE_ TABLE, DROP_ TABLE 

DECLARE @EventData xml; 
DECLARE @EventType varchar(20 ) ; 

SELECT @EventData = EVENTDATA() ; 
SET @EventType = 

@EventData.value(' ( / EVENT_ INSTANCE/ EventType) [1] ', 'varchar(100)'); 

INSERT INTO AuditDDL (EventType, EventData) 
VALUES(@EventType, @EventData); 

A CREATE TABLE statement that fires the trigger 
CREATE TABLE VendorsTest (VendoriD int, VendorName varc har(SO)); 

The row inserted into the AuditDDL table 
Event Type Event Data 

!"'''"''""'""'"""'"'"''""'"'"""') 

i CREATE_ TABLE ! <EVENT INSTANCE><EventType>CREATE TABLE<./EventTy 
~ ................................. ~ ............. ; 

The XML saved in the EventData column 
<EVENT_ INSTANCE> 

<EventType>CREATE_ TABLE</EventType> 
<PostTime>2020 - 02-05T12:38:23.147</PostTime> 
<SPID>54</SPID> 
<ServerName>MMA17 \ SQLEXPRESS</ServerName> 
<LoginName>murach\anne</LoginName> 
<UserName>dbo</UserName> 
<DatabaseName>AP</DatabaseName> 
<SchemaName>dbo< /SchemaName> 
<ObjectName>VendorsTest</ObjectName> 
<ObjectType>TABLE</ObjectType> 
<TSQLCommand> 

<SetOptions ANSI_ NULLS="ON" ANSI_ NULL_ DEFAULT="ON" ANSI_ PADDING="ON" 
QUOTED_ IDENTIFIER="ON" ENCRYPTED="FALSE" / > 

<Command Text> 
CREATE TABLE VendorsTest 
(VendoriD int, VendorName varchar(SO)); 

</Co:mmandText> 
</TSQLCo:mmand> 

</EVENT_ INSTANCE> 

Description 
• In the ON clause, you can specify the DATABASE keyword to fire the trigger only 

for the current database, or you can specify the ALL SERVER keywords to fire the 
trigger for any database on the current server. 

• To specify a DDL statement for a trigger, you can code the name of the DDL 
statement, replacing any spaces with underscores. 

• The EVENTDATA function returns an XML document of the xml data type. If 
necessary, you can use the skills presented in chapter 18 to parse this document. 

Figure 15-21 A trigger that works with DOL statements 



504 Section 4 Advanced SQL skills 

How to delete or change a trigger 

Figure 15-22 presents the syntax of the DROP TRIGGER and ALTER 
TRIGGER statements. DROP TRIGGER permanently deletes one or more 
triggers along with any security permissions associated with the trigger. 

If you want to change the definition of a trigger without affecting 
permissions, you can use the ALTER TRIGGER statement. The statement shown 
in this figure, for example, modifies the trigger you saw in figure 15-17. This 
trigger now removes spaces from the beginning and end of the address columns 
in addition to converting the state code to upper case. 



Chapter 15 How to code stored procedures, functions, and triggers 505 

The syntax of the DROP TRIGGER statement 
DROP TRIGGER trigger_ name [, .•• ] 

The syntax of the ALTER TRIGGER statement 
ALTER TRIGGER trigger_name 
ON {table_namelview_name} 
[WITH [ENCRYPTION] [,] [EXECUTE_AS_clause]] 
{FORIAFTERIINSTEAD OF} [INSERT] [,] [UPDATE] [,] [DELETE] 
AS sql_ statements 

A statement that modifies the trigger in figure 15-17 
ALTER TRIGGER Vendors_ INSERT_UPDATE 

ON Vendors 

AS 
AFTER INSERT, UPDATE 

UPDATE Vendors 
SET VendorState = UPPER(VendorState ), 

VendorAddressl = TRIM(VendorAddressl), 
VendorAddress2 = TRIM (VendorAddress2) 

WHERE VendoriD IN (SELECT VendoriD FROM Inserted) ; 

A statement that deletes the trigger 
DROP TRIGGER Vendors_ INSERT_UPDATE; 

Description 
• To delete a trigger from the database, use the DROP TRIGGER statement. 

• To modify the definition of a trigger, you can locate the trigger in the Object 
Explorer of SQL Server Management Studio by expanding the table the trigger is 
associated with and then expanding the Triggers folder. Finally, you can right-click 
on the trigger and choose modify. 

• To modify the definition of a DDL trigger, you can locate the trigger in the 
Object Explorer by expanding the Programmability folder and then expanding the 
Database Triggers folder. Finally, you can right-click on the trigger and choose 
modify. 

• When you delete a trigger, any security permissions that are assigned to the trigger 
are also deleted. If that's not what you want, you can use the ALTER TRIGGER 
statement to modify the trigger and preserve the permissions. 

• Unless a trigger and its corresponding table or view belong to the default schema, 
you must include the schema name on the DROP TRIGGER and ALTER 
TRIGGER statements. 

Figure 15-22 How to delete or change a trigger 



506 Section 4 Advanced SQL skills 

Perspective 
In this chapter, you've learned how to create the three types of executable 

database objects supported by SQL Server using SQL statements. Stored 
procedures are the most flexible of the three because you can use them in so many 
different ways. You can code procedures to simultaneously simplify and restrict 
a user's access to the database, to verify data integrity, and to ease your own 
administrative tasks. 

Although they're generally less flexible than stored procedures, functions 
and triggers are powerful objects. You can use them to solve problems that 
otherwise would be difficult or impossible to solve. In particular, table-valued 
functions are one of the most useful extensions provided by Transact-SQL 
because they behave like views but can accept parameters that can change the 
result set. 

In addition to using SQL statements to work with stored procedures, 
functions, and triggers, you can use the Management Studio. You' ll find all 
three of these object types in folders within the Programmability folder for 
a database. Then, you can add, modify, and delete objects using the menus 
that appear when you right-click on a folder or object. You can use this same 
technique to work with the user-defined table types you use with stored 
procedures. 

Terms 

stored procedure 
user-defined function (UDF) 
trigger 
sproc 
call a procedure 
precompiled 
execution plan 
recursive call 
recursion 
temporary stored procedure 
local procedure 
global procedure 
parameter 
input parameter 
output parameter 

required parameter 
optional parameter 
passing parameters by position 
passing parameters by name 
return value 
data validation 
user-defined table type 
system stored procedure 
scalar-valued function 
table-valued function 
simple table-valued function 
multi-statement table-valued function 
invoke a function 
inline table-valued function 
fire a trigger 



Chapter 15 How to code stored procedures, functions, and triggers 507 

Exercises 
1. Create a stored procedure named spBalanceRange that accepts three optional 

parameters. The procedure should return a result set consisting of 
VendorName, InvoiceNumber, and Balance for each invoice with a balance 
due, sorted with largest balance due first. The parameter @VendorVar is a 
mask that's used with a LIKE operator to filter by vendor name, as shown in 
figure 15-5. @BalanceMin and @BalanceMax are parameters used to specify 
the requested range of balances due. If called with no parameters or with a 
maximum value of 0, the procedure should return all invoices with a balance 
due. 

2. Code three calls to the procedure created in exercise 1: 

(a) passed by position with @VendorVar='M%' and no balance range 

(b) passed by name with @VendorVar omitted and a balance range from 
$200 to $1000 

(c) passed by position with a balance due that's less than $200 filtering for 
vendors whose names begin with C or F 

3. Create a stored procedure named spDateRange that accepts two parameters, 
@DateMin and @DateMax, with data type varchar and default value null. 
If called with no parameters or with null values, raise an error that describes 
the problem. If called with non-null values, validate the parameters. Test 
that the literal strings are valid dates and test that @DateMin is earlier than 
@ DateMax. If the parameters are valid, return a result set that includes the 
InvoiceNumber, InvoiceDate, InvoiceTotal, and Balance for each invoice for 
which the InvoiceDate is within the date range, sorted with earliest invoice 
first. 

4. Code a call to the stored procedure created in exercise 3 that returns invoices 
with an InvoiceDate between October 10 and October 20, 2019. This call 
should also catch any errors that are raised by the procedure and print the 
error number and description. 

5. Create a scalar-valued function named fnUnpaidinvoiceiD that returns the 
InvoiceiD of the earliest invoice with an unpaid balance. Test the function in 
the following SELECT statement: 

SELECT VendorName, InvoiceNumber, InvoiceDueDate, 
InvoiceTotal - CreditTotal - Pay.mentTotal AS Balance 

FROM Vendors JOIN Invoices 
ON Vendors . VendoriD = Invoices.VendoriD 

WHERE InvoiceiD = dbo.fnUnpaidinvoiceiD(); 

6. Create a table-valued function named fnDateRange, similar to the stored 
procedure of exercise 3. The function requires two parameters of data type 
date. Don't validate the parameters. Return a result set that includes the 
InvoiceNumber, InvoiceDate, InvoiceTotal, and Balance for each invoice 
for which the InvoiceDate is within the date range. Invoke the function 
from within a SELECT statement to return those invoices with InvoiceDate 
between October 10 and October 20, 2019. 



508 Section 4 Advanced SQL skills 

7. Use the function you created in exercise 6 in a SELECT statement that returns 
five columns: VendorName and the four columns returned by the function. 

8. Create a trigger for the Invoices table that automatically inserts the vendor 
name and address for a paid invoice into a table named ShippingLabels. The 
trigger should fire any time the PaymentTotal column of the Invoices table is 
updated. The structure of the ShippingLabels table is as follows: 

CREATE TABLE ShippingLabels 
(VendorName varchar(SO), 
VendorAddressl varchar(SO), 
VendorAddress2 varchar(SO), 
VendorCity varchar(SO), 
VendorState 
VendorZipCode 

char(2) , 
varchar(20)); 

Use this UPDATE statement to test the trigger: 
UPDATE Invoices 
SET PaymentTotal = 67.92, PaymentDate = '2020-02-23' 
WHERE InvoiceiD = 100 ; 

9. Write a trigger that prohibits duplicate values except for nulls in the 
NoDupName column of the following table: 

CREATE TABLE TestUniqueNulls 
(RowiD int IDENTITY NOT NULL, 
NoDupName varchar(20) NULL); 

(Note that you can't do this by using a unique constraint because the 
constraint wouldn't allow duplicate null values.) If an INSERT or UPDATE 
statement creates a duplicate value, roll back the statement and return an error 
message. 

Write a series of INSERT statements that tests that duplicate null values are 
allowed but duplicates of other values are not. 



16 

How to manage 
transactions and locking 
If you've been working with a stand-alone copy of SQL Server, you've been 
the only user of your database. In the real world, though, a database is typically 
used by many users working simultaneously. Then, what happens when two 
users try to update the same data at the same time? 

In this chapter, you' ll learn how SQL Server manages concurrent changes. 
But first, you' ll learn how to combine related SQL statements into a single 
unit, called a transaction. By learning these skills, you' ll be able to write code 
that anticipates these conflicts. 

How to work with transactions ......................................... 510 
How transactions maintain data integrity ................................................... 510 
SQL statements for handling transactions ............. ...... .... ................. .... .... ... 512 
How to work with nested transactions .............. .. ................... ................ ...... 514 
How to work with save points ........ ... .... ........................... ............................ 516 

An introduction to concurrency and locking .................. 518 
How concurrency and locking are related ................. .. ..... ... ........ .... ............ 518 
The four concurrency problems that locks can prevent .. .. .. .. ............ .. .. ...... 520 
How to set the transaction isolation level .................. .. ..... .... .... .... .... .... .... ... 522 

How SQL Server manages locking ................................... 524 
Lockable resources and lock escalation ...................................................... 524 
Lock modes and lock promotion ....................... .......... .... .... ......... ... .. .......... 526 
Lock mode compatibi lity ............................................................................. 528 

How to prevent deadlocks ................................................. 530 
Two transactions that deadlock ............ ................. .... ....... ........................ ... 530 
Coding techniques that prevent deadlocks ............................ ................ ..... . 532 

Perspective ......................................................................... 534 



510 Section 4 Advanced SQL skills 

How to work with transactions 
A transaction is a group of database operations that you combine into a 

single logical unit. By combining operations in this way, you can prevent certain 
kinds of database errors. In the topics that follow, you' lllearn the SQL statements 
for managing transactions. 

How transactions maintain data integrity 

Figure 16-1 presents an example of three INSERT statements that are good 
candidates for a transaction. As you can see, the first INSERT statement adds 
a new invoice to the Invoices table. Next, a SET statement assigns the identity 
value for the newly inserted invoice to the @InvoiceiD variable. Then, the last 
two INSERT statements insert rows into the InvoiceLineltems table that represent 
the two line items associated with the invoice. 

What would happen if one or more of these INSERT statements failed? 
If the first statement failed, @InvoiceiD wouldn' t be assigned a valid value, 
so the last two insertions would also fail. However, if the first statement 
succeeded and one or both of the other INSERT statements failed, the Invoices 
and InvoiceLineltems tables wouldn' t match. Specifically, the total of the 
InvoiceLineitemAmount columns in the InvoiceLineitems table wouldn' t equal 
the InvoiceTotal column in the Invoices table, so the data would be invalid. 

Now, suppose that these three INSERT statements were executed as part of 
the same transaction as illustrated in the second example in this figure. Here, 
you can see that a BEGIN TRAN statement is executed before the first INSERT 
statement. Then, after all three INSERT statements are executed, a COMM£T 
TRAN statement commits the changes to the database making them permanent. 
Because these statements are coded within a TRY block, however, the COMMIT 
TRAN statement is never executed if any of the INSERT statements fail. Instead, 
execution jumps into the CATCH block. This block executes a ROLLBACK 
TRAN statement to undo, or rollback, all of the changes made since the 
beginning of the transaction. 

By grouping these SQL statements together in a single transaction, you 
can control whether and how changes are made to the database. Since all three 
INSERT statements must succeed for the transaction to be committed, a failure 
of any of the statements will cause the entire transaction to be rolled back. Note, 
however, that once you commit the transaction, you can' t roll it back. Likewise, 
once you roll a transaction back, you can' t commit it. 

In this particular example, an error in one of the INSERT statements 
wouldn't be catastrophic. If a statement failed because you coded it incorrectly, 
you could easily correct the error by resubmitting the failed INSERT statement. 
If the failure was due to a system error such as a server crash, however, you 
wouldn' t discover the error unless you looked for it after the server was restored. 



Chapter 16 How to manage transactions and locking 511 

Three INSERT statements that work with related data 
DECLARE @InvoiceiD int; 
INSERT Invoices 

VALUES (34, 'ZXA-080', '2020-03-01',14092.59,0,0,3, '2020-03-31',NULL); 
SET @InvoiceiD = @@IDENTITY; 
INSERT InvoiceLineitems VALUES (@InvoiceiD,1,160,4447.23, 'HW upgrade'); 
INSERT InvoiceLineitems VALUES (@InvoiceiD,2,167,9645.36, 'OS upgrade'); 

The same statements coded as a transaction 
DECLARE @InvoiceiD int; 
BEGIN TRY 

BEGIN TRAN; 
INSERT Invoices 

VALUES (34, 'ZXA-080', '2020-03-01',14092.59,0,0,3, '2020-03-31',NULL); 
SET @InvoiceiD = @@IDENTITY; 
INSERT InvoiceLineitems VALUES (@InvoiceiD,1,160,4447.23,'HW upgrade'); 
INSERT InvoiceLineitems VALUES (@InvoiceiD,2,167,9645.36,'0S upgrade'); 
COMMIT TRAN; 

END TRY 
BEGIN CATCH 

ROLLBACK TRAN; 
END CATCH; 

When to use explicit transactions 
• When you code two or more action queries that affect related data 

• When you update foreign key references 

• When you move rows from one table to another table 

• When you code a SELECT query followed by an action query and the values 
inserted in the action query are based on the results of the SELECT query 

• When a failure of any set of SQL statements would violate data integrity 

Description 

• A transaction is a group of database operations that are combined into a logical 
unit. By default, each SQL statement is treated as a separate transaction. However, 
you can combine any number of SQL statements into a single transaction as shown 
above. 

• When you commit a transaction, the operations pelformed by the SQL statements 
become a permanent part of the database. Until it's committed, you can undo all of 
the changes made to the database since the beginning of the transaction by rolling 
back the transaction. 

• A transaction is either committed or rolled back in its entirety. Once you commit a 
transaction, it can't be rolled back. 

Figure 16-1 How transactions maintain data integrity 



512 Section 4 Advanced SQL skills 

For some systems, however, a violation of data integrity such as this one 
is critical. For instance, consider the classic example of a transfer between two 
accounts in a banking system. In that case, one update reduces the balance in the 
first account and another update increases the balance in the second account. If 
one of these updates fails, either the bank or the customer gets an unexpected 
windfall. Because an error like this could cause problems even during the short 
period of time it may take to fix it, these two updates should be coded as a 
transaction. 

SQL statements for handling transactions 

Figure 16-2 summarizes the SQL statements used to process transactions. 
As you can see, you can code either the TRAN or the TRANSACTION keyword 
in each of these statements, although TRAN is used more commonly. You can 
also omit this keyword entirely from the COMMIT and ROLLBACK statements. 
However, it's customary to include this keyword since it makes your code easier 
to read. 

The BEGIN TRAN statement explicitly marks the starting point of a 
transaction. If you don't code this statement, SQL Server implicitly starts a new 
transaction for each SQL statement you code. If the statement succeeds, the 
implicit transaction is committed automatically. For this reason, this mode is 
called autocommit mode. Note that you can't use the COMMIT TRAN statement 
to commit an implicit transaction. 

However, you can code a ROLLBACK TRAN statement to roll back an 
implicit transaction. You saw an example of that in the trigger in figure 15-20. 
That trigger rolled back an UPDATE statement if it caused the data in the 
Invoices and InvoiceLineltems tables to be inconsistent. 

You can also use the SAVE TRAN statement to declare one or more save 
points within a transaction. Then, you can roll back part of a transaction by 
coding the save point name in the ROLLBACK TRAN statement. You' ll learn 
more about how that works in a moment. 

This figure presents another script that uses a transaction. This script deletes 
the invoices for a particular vendor and then deletes the vendor. Notice that the 
script tests the value of the@ @ROWCOUNT system function after rows are 
deleted from the Invoices table to see if more than one invoice was deleted. If so, 
the transaction is rolled back, so the deletion from the Invoices table is undone. 
If only one invoice was deleted, however, the transaction is committed, so the 
deletion is made permanent. 

Before I go on, you should realize that you can also name a transaction in 
the BEGIN TRAN statement, and you can refer to that name in the COMMIT 
TRAN and ROLLBACK TRAN statements. Since there 's usually no reason to 
do that, however, I've omitted that option from the syntax shown in this figure 
and from the examples shown in this chapter. 



Chapter 16 How to manage transactions and locking 513 

Summary of the SQL statements for processing transactions 
Statement Description 

BEGIN {TRANITRANSACTION} 

SAVE {TRANITRANSACTION} save_point 

COMMIT [TRANITRANSACTION1 

ROLLBACK [[TRANITRANSACTION1 
[save _point 1 1 

Marks the starting point of a transaction. 

Sets a new save point within a transaction. 

Marks the end of a transaction and makes the 
changes within the transaction a permanent part 
of the database. 

Rolls back a transaction to the starting point 
or to the specified save point. 

A script that performs a test before committing the transaction 
BEGIN TRAN; 

DELETE Invoices 
WHERE VendoriD = 34; 

IF @@ROWCOUNT > 1 
BEGIN 

END; 
ELSE 

ROLLBACK TRAN; 
PRINT 'More invoices than expected. Deletions rolled back.' ; 

BEGIN 
COMMIT TRAN; 
PRINT 'Deletions committed to the database.'; 

END; 

The response from the system 
(3 rows affected) 
More invoices than expected. Deletions rolled back. 

Description 
• Although you can omit the TRAN keyword from the COMMIT and ROLLBACK 

statements, it's generally included for readability. 

• By default, SQL Server is in autocommit mode. Then, unless you explicitly start 
a transaction using the BEGIN TRAN statement, each statement is automatically 
treated as a separate transaction. If the statement causes an error, it's automatically 
rolled back. Otherwise, it's automatically committed. 

• Even if you don' t explicitly start a transaction, you can roll it back using the 
ROLLBACK TRAN statement. However, you can' t explicitly commit an implicit 
transaction. 

• When you use save points, you can roll a transaction back to the beginning or to a 
particular save point. See figure 16-4 for details on using save points. 

• Although you can name a transaction in the BEGIN TRAN statement and you can 
refer to that name in the COMMIT TRAN and ROLLBACK TRAN statements, 
you' re not likely to do that. 

Figure 16-2 SOL statements for handling transactions 



514 Section 4 Advanced SQL skills 

How to work with nested transactions 

A nested transaction is a transaction that's coded within another transaction. 
In other words, a BEGIN TRAN statement is coded after another BEGIN TRAN 
statement but before the COMMIT TRAN or ROLLBACK TRAN statement 
that ends the first transaction. Since there are few problems that can only be 
solved using nested transactions, it's unlikely that you'll ever need to code them. 
However, you should understand how the COMMIT TRAN statement behaves 
when you code it within a nested transaction. Figure 16-3 presents a script that 
illustrates how this works. 

This example uses the @ @TRANCOUNT system function, which returns 
the number of explicit transactions that are active on the current connection. If 
you haven' t coded a BEGIN TRAN statement, @ @TRANCOUNT returns zero. 
Then, each BEGIN TRAN statement increments @ @TRANCOUNT by one, so 
its value indicates how deeply you've nested the transactions. 

If the current value of @ @TRANCOUNT is one, the COMMIT TRAN 
statement closes the current transaction and commits the changes to the database 
as you've seen in the last two figures. But if @ @TRANCOUNT is greater than 
one, COMMIT TRAN simply decrements @ @TRANCOUNT by 1. In other 
words, within a nested transaction, the COMMIT TRAN statement doesn' t 
commit a transaction. 

This counterintuitive behavior is illustrated by the script in this figure. Here, 
the COMMIT TRAN statement that follows the DELETE statement that deletes 
all the rows in the Vendors table decrements @ @TRANCOUNT, but doesn' t 
commit the deletion. That's because this COMMIT TRAN statement is coded 
within a nested transaction. 

On the other hand, the ROLLBACK TRAN statement always rolls back all 
of the uncommitted statements, whether or not they're coded within a nested 
transaction. In this script, for example, the ROLLBACK TRAN statement rolls 
back both DELETE statements. As you can see from the results of the last five 
statements in this script, neither DELETE statement was committed. 



A script with nested transactions 
BEGIN TRAN; 

Chapter 16 How to manage transactions and locking 515 

PRINT 'First Tran @@TRANCOUNT: ' + CONVERT(varchar 1 @@TRANCOUNT); 
DELETE Invoices; 

BEGIN TRAN; 
PRINT 'Second Tran @@TRANCOUNT: ' + CONVERT(varchar 1 @@TRANCOUNT); 
DELETE Vendors; 

COMMIT TRAN; -- This COMMIT decrements @@TRANCOUNT. 
--It doesn't commit 'DELETE Vendors'. 

PRINT 'COMMIT @@TRANCOUNT: ' + CONVERT(varchar 1 @@TRANCOUNT); 
ROLLBACK TRAN; 
PRINT 'ROLLBACK @@TRANCOUNT: ' + CONVERT(varchar 1 @@TRANCOUNT); 

PRINT I I o 
I 

DECLARE @VendorsCount inti @InvoicesCount int; 
SELECT @VendorsCount = COUNT (*) FROM Vendors; 
SELECT @InvoicesCount = COUNT (*) FROM Invoices; 
PRINT 'Vendors Count: ' +CONVERT (varchar @VendorsCount); 
PRINT 'Invoices Count: ' + CONVERT (varchar 1 @InvoicesCount); 

The response from the system 
First Tran @@TRANCOUNT: 1 

(114 rows affected) 
Second Tran @@TRANCOUNT: 2 

(122 rows affected) 
COMMIT @@TRANCOUNT: 1 
ROLLBACK @@TRANCOUNT: 0 

Vendors count : 122 
Invoices count: 114 

Description 
• You can nest transactions by coding nested BEGIN TRAN statements. Each time 

this statement is executed, it increments the @ @TRANCOUNT system function 
by 1. Then, you can query this function to determine how many levels deep the 
transactions are nested. 

• If you execute a COMMIT TRAN statement when @ @TRANCOUNT is equal to 
1, all of the changes made to the database during the transaction are committed and 
@@TRANCOUNT is set to zero. If @@TRANCOUNT is greater than 1, however, 
the changes aren't committed. Instead, @ @TRANCOUNT is simply decremented 
by 1. 

• The ROLLBACK TRAN statement rolls back all active transactions regardless of 
the nesting level where it's coded. It also sets the value of @ @TRANCOUNT back 
to 0. 

• Since there are few programming problems that you can only solve using nested 
transactions, you probably won't use them often. 

Figure 16-3 How to work with nested transactions 



516 Section 4 Advanced SQL skills 

How to work with save points 

You can create save points within a transaction by coding the SAVE TRAN 
statement. In that case, you can roll back the transaction to that particular point 
by coding the save point name in the ROLLBACK TRAN statement. Figure 16-4 
presents a script that shows how this works. 

First, this script creates a temporary table named #VendorCopy that contains 
a copy of the vendor IDs and names for the vendors in the Vendors table with 
vendor IDs 1, 2, 3, and 4. After beginning a transaction, the script deletes a row 
and then sets a save point named Vendorl. Then the script deletes a second row, 
sets another save point named Vendor2, and deletes a third row. The result of the 
first SELECT statement that follows illustrates that only one row is left in the 
#VendorCopy table. 

Next, a ROLLBACK TRAN statement rolls back the transaction to the 
Vendor2 save point. This rolls back the third delete, as illustrated by the second 
SELECT statement in this figure. The next ROLLBACK TRAN statement rolls 
the transaction back to the Vendorl save point, which rolls back the second 
delete. At that point, the #VendorCopy table contains three rows, as illustrated 
by the third SELECT statement. Finally, a COMMIT TRAN statement commits 
the transaction. Since the only statement that hasn' t already been rolled back is 
the statement that deleted the first row, this row is deleted permanently. The last 
SELECT statement illustrates the final result of this code. 

You should note that if you don't code a save point name in the ROLLBACK 
TRAN statement, it ignores any save points and rolls back the entire 
transaction. In addition, you should notice that you can't code a save point 
name in a COMMIT TRAN statement. This means that you can't partially 
commit a transaction. Instead, a COMMIT TRAN statement ignores save points 
completely and commits the entire transaction. 

As with nested transactions, you' ll probably never need to use save points 
since there are few problems that can be solved by using them. Unlike the way 
that nested transactions work, however, save points work in an intuitive way, so 
coding them is less confusing. 



Chapter 16 How to manage transactions and locking 517 

A transaction with two save points 
IF OBJECT_ ID('tempdb .. #VendorCopy') IS NOT NULL 

DROP TABLE tempdb .. #VendorCopy; 
SELECT VendoriD, VendorName 
INTO #VendorCopy 
FROM Vendors 
WHERE VendoriD < 5; 
BEGIN TRAN; 

DELETE #VendorCopy WHERE VendoriD = 1; 
SAVE TRAN Vendorl ; 

DELETE #VendorCopy WHERE VendoriD 2; 
SAVE TRAN Vendor2; 

DELETE #VendorCopy WHERE VendoriD = 3; 
SELECT * FROM #VendorCopy; 

ROLLBACK TRAN Vendor2; 
SELECT * FROM #VendorCopy; 

ROLLBACK TRAN Vendorl; 
SELECT * FROM #VendorCopy; 

COMMIT TRAN; 
SELECT * FROM #VendorCopy; 

The response from the system 
VendoriD VendorName 

[·~.·.·.·::.·.·:::.·.·:::.·.·::.·.·.] Jobtrak 

VendoriD VendorName 

[~:::.::::.::::.:::::::::.] Register af Copyrights 
2 4 Jobtrak 

VendoriD VendorName 

1 [·?.··::.····:·:·.·· .···1 NC!!ionllllnforme!lion DC!Ill Or 

2 3 Register af Copyrights 

3 4 Jobtrak 

VendoriD VendorName 

1 

2 

!"'2 ....................... ] NC!!ionllllnforme!lion OC!Il! Or 
~.......... l 

3 Register af Copyrights 

3 4 Jobtrak 

Description 

I 

• You can partially roll back a transaction if you use save points. If you code a save 
point name in the ROLLBACK TRAN statement, the system rolls back all of the 
statements to that save point. 

• If you don' t code a save point name, the ROLLBACK TRAN statement rolls back 
the entire transaction. 

• Since you can't code a save point name in a COMMIT TRAN statement, the 
system always commits the entire transaction. 

• As with nested transactions, there are few practical programming problems that you 
can solve using save points. 

Figure 16-4 How to work with save points 



518 Section 4 Advanced SQL skills 

An introduction to concurrency 
and locking 

When two or more users have access to the same database, it's possible for 
them to be working with the same data at the same time. This is called 
concurrency. Concurrency isn' t a problem when two users retrieve the same 
data at the same time. If they then try to update that data, however, that can be a 
problem. In the topics that follow, you' lllearn more about concurrency and how 
SQL Server uses locking to prevent concurrency problems. You' ll also learn how 
you can control the types of problems that are allowed. 

How concurrency and locking are related 

Figure 16-5 presents two transactions that select and then update data from 
the same row in the same table. If these two transactions are submitted at the 
same time, the one that executes first will be overwritten by the one that executes 
second. Since this means that one of the two updates is lost, this is known as a 
lost update. 

This figure shows the result if the update operation in transaction A is 
executed first, in which case its update is lost when the update in transaction B is 
executed. Because transaction A is unaware that its update has been lost, however, 
this can leave the data in an unpredictable state that affects the integrity of the 
data. For the AP database, it's unlikely that a lost update will adversely affect the 
system. For some database systems, however, this sort of unpredictability can be 
disastrous. 

If your database has a relatively small number of users, the likelihood of 
concurrency problems is low. However, the larger the system, the greater the 
number of users and transactions. For a large system, then, you should expect 
concurrency, and therefore concurrency problems, to occur more frequently. 

One way to avoid concurrency problems is to use locking. By holding a lock 
on the data, the transaction prevents others from using that data. Then, after the 
transaction releases the lock, the next transaction can work with that data. 

Since SQL Server automatically enables and manages locking, it may 
prevent most of the concurrency problems on your system. If the number of 
users of your system grows, however, you may find that the default locking 
mechanism is insufficient. In that case, you may need to override the default 
locking behavior. You' lllearn how to do that in a moment. But first, you need to 
understand the four concurrency problems that locks can prevent. 



Chapter 16 How to manage transactions and locking 519 

Two transactions that retrieve and then modify the data in the same row 

Transaction A 
BEGIN TRAN; 
DECLARE @InvoiceTotal money, @PaymentTotal money, @CreditTotal money; 
SELECT @InvoiceTotal InvoiceTotal, @CreditTotal = CreditTotal, 

@PaymentTotal = PaymentTotal FROM Invoices WHERE InvoiceiD = 112; 
UPDATE Invoices 

SET InvoiceTotal = @InvoiceTotal, CreditTotal = @CreditTotal + 317.40, 
PaymentTotal = @PaymentTotal WHERE InvoiceiD = 112; 

COMMIT TRAN; 

Transaction 8 
BEGIN TRAN; 
DECLARE @InvoiceTotal money, @PaymentTotal money, @CreditTotal money; 
SELECT @InvoiceTotal = InvoiceTotal, @CreditTotal = CreditTotal, 

@PaymentTotal = PaymentTotal FROM Invoices WHERE InvoiceiD = 112; 
UPDATE Invoices 

SET InvoiceTotal = @InvoiceTotal, CreditTotal = @CreditTotal, 
PaymentTotal = @InvoiceTotal - @CreditTotal, 
PaymentDate = GetDate() WHERE InvoiceiD = 112; 

COMMIT TRAN; 

The initial values for the row 
Payment Total 

0.00 

Payment Date 

NULL 

The values after transaction A executes 
lnvoiceTotal CredHotal PaymentTotal PaymentDate 

L.!.:~.?.~;.!?~r·.·.·.·~:.J 317.40 o.oo NULL 

The values after transaction 8 executes, losing transaction A's updates 
Invoice Total CredH otal 

[5:~.!.~.:.~::.·.·.·.·~:.:-.J 317.40 

Description 

Payment Total 

10658.66 

Payment Date 

2020-{)2.05 

• Concurrency is the ability of a system to support two or more transactions working 
with the same data at the same time. 

• Because small systems have few users, concurrency isn' t generally a problem on 
these systems. On large systems with many users and many transactions, however, 
you may need to account for concurrency in your SQL code. 

• Concurrency is a problem only when the data is being modified. When two or more 
transactions simply read the same data, the transactions don't affect each other. 

• You can avoid some database concurrency problems by using locks, which delay 
the execution of a transaction if it conflicts with a transaction that's already 
running. Then, the second transaction can't use the data until the first transaction 
releases the lock. 

• Although SQL Server automatically enforces locking, you can write more efficient 
code by understanding and customizing locking in your programs. 

Figure 16-5 An introduction to concurrency and locking 



520 Section 4 Advanced SQL skills 

The four concurrency problems 
that locks can prevent 

Figure 16-6 describes the four types of concurrency problems. You 've 
already learned about the first problem: lost updates. In a moment, you'll see 
how locking can be used to prevent all four of these problems. 

Like lost updates, the other three problems may not adversely affect a 
database. That depends on the nature of the data. In fact, for many systems, these 
problems happen infrequently. Then, when they do occur, they can be corrected 
by simply resubmitting the query that caused the problem. On some database 
systems, however, these problems can affect data integrity in a serious way. 

Although locks can prevent the problems listed in this figure, SQL Server's 
default locking behavior won't. If your transaction could adversely affect data 
integrity on your system, then, you should consider changing the default locking 
behavior by setting the transaction isolation level. 



Chapter 16 How to manage transactions and locking 521 

The four types of concurrency problems 

Problem Description 

Lost updates 

Dirty reads 
(uncommitted 
dependencies) 

Nonrepeatable reads 
(inconsistent analysis) 

Phantom reads 

Description 

Occur when two transactions select the same row and then update the row 
based on the values originally selected. Since each transaction is unaware 
of the other, the later update overwrites the earlier update. 

Occur when a transaction selects data that isn' t committed by another 
transaction. For example, transaction A changes a row. Transaction B 
then selects the changed row before transaction A commits the change. If 
transaction A then rolls back the change, transaction B has selected a row 
that doesn' t exist in the database. 

Occur when two SELECT statements of the same data result in different 
values because another transaction has updated the data in the time 
between the two statements. For example, transaction A selects a row. 
Transaction B then updates the row. When transaction A selects the same 
row again, the data is different. 

Occur when you perform an update or delete on a set of rows when another 
transaction is performing an insert or delete that affects one or more rows in 
that same set of rows. For example, transaction A updates the payment total 
for each invoice that has a balance due. Transaction B inserts a new, unpaid 
invoice while transaction A is still running. After transaction A finishes, 
there is still an invoice with a balance due. 

• In a large system with many users, you should expect for these kinds of problems 
to occur. In general, you don' t need to take any action except to anticipate the 
problem. In many cases, if the query is resubmitted, the problem goes away. 

• On some systems, if two transactions overwrite each other, the validity of the 
database is compromised and resubmitting one of the transactions will not 
eliminate the problem. If you're working on such a system, you must anticipate 
these concurrency problems and account for them in your code. 

• You should consider these locking problems as you write your code. If one of these 
problems would affect data integrity, you can change the default locking behavior 
by setting the transaction isolation level as shown in the next figure. 

Figure 16-6 The four concurrency problems that locks can prevent 



522 Section 4 Advanced SQL skills 

How to set the transaction isolation level 

The simplest way to prevent concurrency problems is to reduce concurrency. 
To do that, you need to change SQL Server's default locking behavior. Figure 
16-7 shows you how. 

To change the default locking behavior, you use the SET TRANSACTION 
ISOLATION LEVEL statement to set the transaction isolation level for the 
current session. As you can see, this statement accepts one of five options. The 
table in this figure lists which of the four concurrency problems each option will 
prevent or allow. For example, if you code the SERIALIZABLE option, all four 
concurrency problems will be prevented. 

When you set the isolation level to SERIALIZABLE, each transaction is 
completely isolated from every other transaction and concurrency is severely 
restricted. The server does this by locking each resource, preventing other 
transactions from accessing it. Since each transaction must wait for the previous 
transaction to commit, the transactions are executed serially, one after another. 

Since the SERIALIZABLE isolation level eliminates all possible concur
rency problems, you may think that this is the best option. However, this option 
requires more server overhead to manage all of the locks. In addition, access 
time for each transaction is increased, since only one transaction can work with 
the data at a time. For most systems, this will actually eliminate few concurrency 
problems but will cause severe performance problems. 

The lowest isolation level is READ UNCOMMITTED, which allows all 
four of the concurrency problems to occur. It does this by performing SELECT 
queries without setting any locks and without honoring any existing locks. Since 
this means that your SELECT statements will always execute immediately, this 
setting provides the best performance. Since other transactions can retrieve and 
modify the same data, however, this setting can' t prevent concurrency problems. 

The default isolation level, READ COMMITTED, is acceptable for most 
applications. However, the only concurrency problem it prevents is dirty reads. 
Although it can prevent some lost updates, it doesn' t prevent them all. 

The REPEATABLE READ level allows more concurrency than the 
SERIALIZABLE level but less than the READ COMMITTED level. As you 
might expect, then, it results in faster performance than SERIALIZABLE and 
permits fewer concurrency problems than READ COMMITTED. 

The SNAPSHOT isolation level uses a feature called row versioning. With 
row versioning, any data that's retrieved by a transaction that uses SNAPSHOT 
isolation is consistent with the data that existed at the start of the transaction. To 
accomplish that, SQL Server stores the original version of a row in the tempdb 
database each time it's modified. 

You can also use row versioning with the READ COMMITTED isolation 
level. Then, each statement within a transaction works with a snapshot of the 
data as it existed at the start of the statement. 

When you use row versioning, locks are not required for read operations, 
which improves concurrency. However, the need to maintain row versions 
requires additional resources and can degrade performance. In most cases, then, 
you'll use row versioning only when data consistency is imperative. 



Chapter 16 How to manage transactions and locking 523 

The syntax of the SET TRANSACTION ISOLATION LEVEL statement 
SET TRANSACTION ISOLATION LEVEL 

{READ UNCOMMITTEDIREAD COMMITTEDIREPEATABLE READISNAPSHOTISERIALIZABLE} 

The concurrency problems prevented by each transaction isolation level 
Dirty Lost Nonrepeatable Phantom 

Isolation level reads updates reads reads 

READ UNCOMMITTED Allows Allows Allows Allows 

READ COM\1ITTED Prevents Allows Allows Allows 

REPEATABLE READ Prevents Prevents Prevents Allows 

SNAPSHOT Prevents Prevents Prevents Prevents 

SERIALIZABLE Prevents Prevents Prevents Prevents 

Description 
• Since SQL Server manages locking automatically, you can' t control every aspect of 

locking for your transactions. However, you can set the isolation level in your code. 

• The transaction isolation level controls the degree to which transactions are isolated 
from one another. The server isolates transactions by using more restrictive locking 
behavior. If you isolate your transactions from other transactions, concurrency 
problems are reduced or eliminated. 

• You specify the transaction isolation level by changing the ISOLATION LEVEL 
session setting. The default transaction isolation level is READ COMMITTED. At 
this level, some lost updates can occur, but this is acceptable for most transactions. 

• The READ UNCOMMITTED isolation level doesn' t set any locks and ignores locks 
that are already held. Setting this level results in the highest possible performance for 
your query, but at the risk of every kind of concurrency problem. For this reason, you 
should only use this level for data that is rarely updated. 

• The REPEATABLE READ level places locks on all data that's used in a transaction, 
preventing other users from updating that data. However, this isolation level still 
allows inserts, so phantom reads can occur. 

• The SNAPSHOT level uses row versioning rather than locks to provide read 
consistency. To use this level, you use the ALTER DATABASE statement to set the 
ALLOW _SNAPSHOT_ISOLATION option on. 

• The SERIALIZABLE level places a lock on all data that's used in a transaction. 
Since each transaction must wait for the previous transaction to commit, the 
transactions are handled in sequence. This is the most restrictive of the five isolation 
levels. 

• You can also use row versioning with the READ COMMITTED isolation level. To 
do that, you must set the READ_COMMITTED_SNAPSHOT database option on. 

• With row versioning, each time a transaction modifies a row, SQL Server stores an 
image of the row as it existed before the modification. That way, read operations 
that use row versioning retrieve the row as it existed at the start of the transaction 
(SNAPSHOT) or statement (READ COMMITTED). 

Figure 16-7 How to set the transaction isolation level 



524 Section 4 Advanced SQL skills 

How SQL Server manages locking 
SQL Server automatically manages locking by setting a lock on the data 

used by each transaction. By understanding how this process works, you'll be 
able to write better SQL code. 

Lockable resources and lock escalation 

A transaction like the one shown in figure 16-5 affects only one row in one 
table. By contrast, a transaction that uses DDL statements to change the design 
of a database can affect every object in the database. To accommodate these 
differences, SQL Server can lock data resources at ten different levels. These 
levels are presented in figure 16-8. 

A resource's granularity refers to the relative amount of data it includes. 
For example, a row is a fine-grain resource and has higher granularity than a 
database, which is a coarse-grain resource. As you can see, the resources listed 
in this figure are listed in order of increasing granularity. 

The SQL Server lock manager automatically assigns locks for each 
transaction. Since a coarse-grain lock will lock out more transactions than a 
fine-grain lock, the lock manager always tries to lock resources at the highest 
possible granularity. However, it takes greater server resources to maintain 
several fine-grain locks compared to one coarse-grain lock. For this reason, the 
lock manager detects when several fine-grain locks apply to a single coarse-grain 
resource. Then it converts, or escalates, the fine-grain locks to a single 
coarse-grain lock. 



Chapter 16 How to manage transactions and locking 525 

The ten levels of lockable resources 
Granularity Resource Description 

Coarse 

Fine 

Description 

Database 

Allocation unit 

Metadata 

File 

Table 

Heap orB-tree 

Extent 

Page 

Key 

Row 

Locks an entire database. 

Locks a collection of pages that contains 
a particular type of data. 

Locks the data in the system catalog. 

Locks an entire database file. 

Locks an entire table, including indexes. 

Locks the index pages (B-tree) for a table 
with a clustered index or the data pages 
(heap) for a table with no clustered index. 

Locks a contiguous group of eight pages. 

Locks one page (8 KB) of data. 

Locks a key or range of keys in an index. 

Locks a single row within a table. 

• SQL Server can lock data at various levels, known as lockable resources. The ten 
levels form a hierarchy based on granularity, which refers to the amount of data 
the resource encompasses. A resource that encompasses more data than another 
resource is said to be less granular, or coarser, than the other resource. 

• A coarse-grain lock affects more data than a fine-grain lock. For this reason, more 
transactions are locked out when the lock is less granular. Since this slows database 
performance, the server assigns locks of the finest possible granularity. 

• Locking is automatically enabled and controlled by a SQL Server application called 
the lock manager. This program generates locking events and handles the setting 
and releasing of locks. 

• Maintaining several fine-grain locks requires greater server resources than 
maintaining one coarse-grain lock. For this reason, the lock manager will 
automatically convert multiple fine-grain locks on the same resource into a single 
coarse-grain lock. This is known as lock escalation. 

Figure 16-8 Lockable resources and lock escalation 



526 Section 4 Advanced SQL skills 

Lock modes and lock promotion 

In addition to assigning a resource level, the lock manager also assigns 
a lock mode to your transaction. Figure 16-9 presents the most common lock 
modes used by SQL Server. Although nine different lock modes are listed, each 
mode can be categorized as either a shared lock or an exclusive lock. 

A shared lock doesn't prevent other shared locks from being granted on the 
same resource. For example, if you submit the query 

SELECT * FROM Invoices; 

the lock manager grants your transaction a Shared (S) lock on the Invoices table. 
If, while your query is executing, another user submits a query on the same 
table, your lock doesn't prevent the lock manager from granting a secondS lock 
on the same table. 

An exclusive lock on a resource, however, is granted exclusively to a single 
transaction. If another transaction requests a lock on the same resource, it must 
wait until the transaction that holds the exclusive lock has finished and its lock 
is released. If you submit an INSERT statement against the Invoices table, for 
example, the lock manager requests an Exclusive (X) lock on the Invoices table. 
If no other transaction has an exclusive lock on that table, the lock is granted. 
While that transaction holds that lock, no other transaction can be granted a lock. 

A single transaction can include various SQL statements that each require a 
different lock mode. In that case, a shared lock may need to be promoted to an 
exclusive lock. If, while the transaction is still executing, an exclusive lock can't 
be acquired, the transaction must wait until the lock is available. If the lock never 
becomes available, the transaction can never commit. 

To prevent this problem, an Update (U) lock is assigned for some 
transactions. For example, consider the locks needed for an UPDATE query. 
First, the query must determine which row or rows are being updated based on 
the WHERE clause. For this part of the query, only a shared lock is needed. 
Then, when the actual update takes place, the lock must be promoted to an 
exclusive lock. Since this kind of lock promotion occurs with virtually every 
action query, the lock manager first assigns aU lock, which prevents another 
transaction from gaining a shared lock. 

The Schema lock modes place a lock on a table's design. For this reason, 
they can't be placed at resource levels other than the table level. Interestingly, 
these lock modes represent both the least restrictive and the most restrictive 
mode. A Schema Stability (Sch-S) lock is placed when a query is compiling to 
prevent changes to the table's design. A Schema Modification (Sch-M) lock is 
placed when a query includes DDL statements that modify a table's design. 

If another transaction requests a lock on the same resource but at a lower 
granularity, your finer-grain lock must still be honored. In other words, if your 
transaction holds an X lock on a page of data, you wouldn't want the lock 
manager to grant another transaction an X lock on the entire table. To manage 
this, the three intent lock modes are used as placeholders for locks on 
finer-grained resources. 



Chapter 16 How to manage transactions and locking 527 

Common SQL Server lock modes 
Category Lock mode What the lock owner can do 

Shared 

Exclusive 

Description 

Schema Stability (Sch-S) 

Intent Shared (IS) 

Shared (S) 

Update (U) 

Shared with Intent Exclusive (SIX) 

Intent Exclusive (IX) 

Exclusive (X) 

Bulk Update (BU) 

Schema Modification (Sch-M) 

Compile a query 

Read but not change data 

Read but not change data 

Read but not change data until 
promoted to an Exclusive (X) lock 

Read and change data 

Read and change data 

Read and change data 

Bulk-copy data into a table 

Modify the database schema 

• SQL Server automatically determines the appropriate lock mode for your transaction. 
In general, retrieval operations acquire shared locks, and update operations acquire 
exclusive locks. As a single transaction is being processed, its lock may have to be 
converted, or promoted, from one lock mode to a more exclusive lock mode. 

• An Update (U) lock is acquired during the first part of an update, when the data 
is being read. Later, if the data is changed, the Update lock is promoted to an 
Exclusive (X) lock. This can prevent a common locking problem called a deadlock. 

• An intent lock indicates that SQL Server intends to acquire a shared lock or an 
exclusive lock on a finer-grain resource. For example, an Intent Shared (IS) lock 
acquired at the table level means that the transaction intends to acquire shared locks 
on pages or rows within that table. This prevents another transaction from acquiring 
an exclusive lock on the table containing that page or row. 

• Schema locks are placed on a table's design. Schema Modification (Sch-M) locks 
are acquired when the design is being changed with a DOL statement. Schema 
Stability (Sch-S) locks are acquired when compiling a query to prevent a schema 
change while the query is compiling. 

• The Bulk Update (BU) lock mode is acquired for the BULK INSERT statement 
and by the bulk copy program (bcp). Since these operations are typically done by 
DBAs, neither is presented in this book. 

Figure 16-9 Lock modes and lock promotion 



528 Section 4 Advanced SQL skills 

The three intent locks differ based on the portion of the resource and the 
type of lock that the transaction intends to acquire. An Intent Shared (IS) lock 
indicates that the transaction intends to acquire a shared lock on some, but 
not all, of the finer-grained resource. Likewise, an Intent Exclusive (IX) lock 
indicates an intent to acquire an exclusive lock on some, but not all, of the 
resource. Finally, a Shared with Intent Exclusive (SIX) lock indicates an intent to 
acquire both an exclusive lock on some of the resource and a shared lock on the 
entire resource. 

The Bulk Update (BU) lock mode is used exclusively for copying large 
amounts of data in bulk into a database using either the BULK INSERT 
statement or the bulk copy program. Since bulk copies are usually done by 
DBAs to create databases based on other sources, they're not presented in this 
book. 

Lock mode compatibility 

Figure 16-10 presents a table that shows the compatibility between the 
different lock modes. When a transaction tries to acquire a lock on a resource, 
the lock manager must first determine whether another transaction already holds 
a lock on that resource. If a lock is already in place, the lock manager will grant 
the new lock only if it's compatible with the current lock. Otherwise, the 
transaction will have to wait. 

For example, if a transaction currently holds a U lock on a table and another 
transaction requests a U lock on the same table, the lock manager doesn' t grant 
the second transaction's request. Instead, the second transaction must wait until 
the first transaction commits and releases its lock. 

As you can see, Sch-S lock mode is compatible with every other lock mode 
except Sch-M. For this reason, the only lock that can delay the compilation of a 
query is the lock placed by a DDL statement that's changing the table's design. 

Notice that the IS and S locks are compatible. This means that any number 
of SELECT queries can execute concurrently. All of the other locks, however, 
are incompatible to some extent. That's because each of these other modes 
indicates that data is already being modified by a current transaction. 

Although the intent locks are similar to the standard shared and exclusive 
locks, they result in improved performance. That's because when the lock 
manager grants an intent lock, it locks a resource at a higher level than it 
would if it granted shared or exclusive locks. In other words, it grants a more 
coarse-grained lock. Then, to determine if a resource is already locked, the lock 
manager needs to look only at the coarse-grained resource rather than every 
fine-grained resource it contains. 



Chapter 16 How to manage transactions and locking 529 

Compatibility between lock modes 

Intent Shared 

Shared s 
Update u 
Shared w/lntent Exclusive SIX 

Intent Exclusive IX 

Exclusive X 

Bulk Update BU 

Schema Modification Sch-M 

Description 

• If a resource is already locked by a transaction, a request by another transaction 
to acquire a lock on the same resource will be granted or denied depending on the 
compatibility of the two lock modes. 

• For example, if a transaction has a Shared (S) lock on a table and another 
transaction requests an Exclusive (X) lock on the same table, the lock isn' t granted. 
The second transaction must wait until the first transaction releases its lock. 

• Intent locks can help improve performance since the server only needs to examine 
the high-level locks rather than examining every low-level lock. 

Figure 16-1 0 Lock mode compatibility 



530 Section 4 Advanced SQL skills 

How to prevent deadlocks 
A deadlock occurs when two transactions are simultaneously holding and 

requesting a lock on each other's resource. Since deadlocks can occur more 
frequently at higher isolation levels, you need to understand how they come 
about and how you can prevent them. 

Two transactions that deadlock 

Figure 16-11 presents two transactions that are executed simultaneously. As 
you can see, transaction A queries the InvoiceLineltems table to determine the 
sum of all line item amounts for a specific invoice. Then, the WAITFOR DELAY 
statement causes the transaction to wait five seconds before continuing. (This 
statement is included only so you can actually cause the deadlock to occur.) 
Next, an UPDATE statement updates the InvoiceTotal column in the Invoices 
table with the value retrieved by the SELECT statement. 

When this transaction executes, it requests several different locks. In 
particular, when the SELECT statement is executed, it requests an S lock on 
one page of the InvoiceLineltems table. And when the UPDATE statement is 
executed, it requests an X lock on a page of the Invoices table. 

Now take a look at transaction B, which queries the Invoices table and then 
updates the InvoiceLineltems table for the same invoice as transaction A. In this 
case, the transaction requests an S lock on the Invoices table when the SELECT 
statement is executed, and it requests an X lock on the InvoiceLineltems table 
when the UPDATE statement is executed. Because transaction A has an S lock 
on the InvoiceLineitems table, however, the X lock isn't granted. Similarly, the 
X lock on the Invoices table isn't granted to transaction A because transaction B 
has an S lock on it. Because neither UPDATE can execute, neither transaction 
can commit and neither can release the resource needed by the other. In other 
words, the two transactions are deadlocked. 

SQL Server automatically detects deadlocks and keeps them from tying 
up the system. It does this by selecting one of the transactions as the deadlock 
victim, which is rolled back and receives an error message. The other transaction 
runs to completion and commits. In the example in this figure, transaction B is 
the deadlock victim, as you can see by the system response. 

Note that these two transactions will deadlock only if you set the 
transaction isolation level to REPEATABLE READ or SERIALIZABLE. 
Otherwise, the S lock acquired by each transaction is released after the SELECT 
statement completes. Since this doesn't prevent the other transaction from 
acquiring an X lock, each transaction can commit but causes the other to suffer 
from a dirty read. 



Chapter 16 How to manage transactions and locking 531 

Two transactions that deadlock 

A SET TRANSACTION ISOLATION LEVEL 
REPEATABLE READ; 

DECLARE @InvoiceTotal money; 

BEGIN TRAN; 
SELECT @InvoiceTotal = 

SUM(InvoiceLineitemAmount) 
FROM InvoiceLineitems 
WHERE InvoiceiD = 101; 

WAITFOR DELAY '00 : 00:05'; 

UPDATE Invoices 
SET InvoiceTotal = 

@InvoiceTotal 
WHERE InvoiceiD = 101; 

COMMIT TRAN; 

The response from the system 

I (1 row(s) affected) 

How the deadlock occurs 

8 SET TRANSACTION ISOLATION LEVEL 
REPEATABLE READ; 

DECLARE @InvoiceTotal money; 

BEGIN TRAN; 
SELECT @InvoiceTotal = 

InvoiceTotal 
FROM Invoices 
WHERE InvoiceiD = 101; 

UPDATE InvoiceLineitems 
SET InvoiceLineitemAmount = 

@InvoiceTotal 
WHERE InvoiceiD = 101 AND 

InvoiceSequence = 1; 

COMMIT TRAN; 

Msg 1205, Level 13, State 51, Line 
11 
Transaction (Process ID 53) was 
deadlocked on lock resources with 
another process and has been chosen 
as the deadlock victim. Rerun the 
transaction. 

1. Transaction A requests and acquires a shared lock on the InvoiceLineltems table. 

2. Transaction B requests and acquires a shared lock on the Invoices table. 

3. Transaction A tries to acquire an exclusive lock on the Invoices table to perform the 
update. Since transaction B already holds a shared lock on this table, transaction A 
must wait for the exclusive lock. 

4. Transaction B tries to acquire an exclusive lock on the InvoiceLineltems table, but 
must wait because transaction A holds a shared lock on that table. 

Description 
• A deadlock occurs when neither of two transactions can be committed because they 

each have a lock on a resource needed by the other. 

• SQL Server automatically detects deadlocks and allows one of the transactions to 
commit. The other transaction is rolled back and raises error number 1205. This 
transaction is known as the deadlock victim. 

Note 
• To test this example, you must execute transaction A first and then execute 

transaction B within five seconds. 

Figure 16-11 Two transactions that deadlock 



532 Section 4 Advanced SQL skills 

Coding techniques that prevent deadlocks 

Deadlocks slow system performance and cause transactions to become 
deadlock victims. For these reasons, you should try to avoid deadlocks as much 
as possible. Figure 16-12 presents a summary of the techniques you can use to 
do that. 

First, you shouldn' t leave transactions open any longer than is necessary. 
That's because the longer a transaction remains open and uncommitted, the more 
likely it is that another transaction will need to work with that same resource. 
Second, you shouldn' t use a higher isolation level than you need. That's because 
the higher you set the isolation level, the more likely it is that two transactions 
will be unable to work concurrently on the same resource. Third, you should 
schedule transactions that modify a large number of rows to run when no other 
transactions, or only a small number of other transactions, will be running. That 
way, it's less likely that the transactions will try to change the same rows at the 
same time. 

Finally, you should consider how a program you code could cause a 
deadlock. To illustrate, consider the UPDATE statements shown in this figure 
that transfer money between two accounts. The first example transfers money 
from a savings to a checking account. Notice that the savings account is updated 
first. The second example transfers money from a checking to a savings account. 
In this example, the checking account is updated first, which could cause a 
deadlock if the first transaction already has an X lock on the data. To prevent this 
situation, you should always update the same account first, regardless of which 
is being debited and which is being credited. This is illustrated by the third 
example in this figure. 



Chapter 16 How to manage transactions and locking 533 

Don't allow transactions to remain open for very long 
• Keep transactions short. 

• Keep SELECT statements outside of the transaction except when absolutely 
necessary. 

• Never code requests for user input during an open transaction. 

Use the lowest possible transaction isolation level 
• The default level of READ COMMITTED is almost always sufficient. 

• Reserve the use of higher levels for short transactions that make changes to data 
where integrity is vital. 

Make large changes when you can be assured of nearly exclusive access 
• If you need to change millions ofrows in an active table, don't do so during hours 

of peak usage. 

• If possible, give yourself exclusive access to the database before making large 
changes. 

Consider locking when coding your transactions 
• If you need to code two or more transactions that update the same resources, code 

the updates in the same order in each transaction. 

UPDATE statements that transfer money between two accounts 
From savings to checking 
UPDATE Savings SET Balance = Balance - @TransferAmt; 
UPDATE Checking SET Balance = Balance + @TransferAmt; 

From checking to savings 
UPDATE Checking SET Balance = Balance - @TransferAmt; 
UPDATE Savings SET Balance = Balance + @TransferAmt; 

From checking to savings in reverse order to prevent deadlocks 
UPDATE Savings SET Balance = Balance + @TransferAmt; 
UPDATE Checking SET Balance = Balance - @TransferAmt; 

Figure 16-12 Coding techniques that prevent deadlocks 



534 Section 4 Advanced SQL skills 

Perspective 
In this chapter, you've learned the ways that SQL Server protects your data 

from the problems that can occur on a real-world system. Since the failure of 
one or more related SQL statements can violate data integrity, you learned how 
to prevent these problems by grouping the statements into transactions. Since 
multiple transactions can simultaneously modify the same data, you learned 
how to prevent concurrency problems by setting the transaction isolation level 
to change the default locking behavior. And since changing the isolation level 
can increase the chances of deadlocks, you learned defensive programming 
techniques to prevent deadlocks. 

Terms 

transaction 
commit a transaction 
roll back a transaction 
autocommit mode 
nested transactions 
save point 
concurrency 
locking 
lost update 
dirty read 
nonrepeatable read 
phantom read 
transaction isolation level 
lockable resource 

Exercises 

row vers10nmg 
granularity 
fine-grain lock 
coarse-grain lock 
lock manager 
lock escalation 
lock mode 
shared lock 
exclusive lock 
intent lock 
schema lock 
lock promotion 
deadlock 
deadlock victim 

1. Write a set of action queries coded as a transaction to reflect the following 
change: United Parcel Service has been purchased by Federal Express 
Corporation and the new company is named FedUP. Rename one of the 
vendors and delete the other after updating the VendoriD column in the 
Invoices table. 

2. Write a set of action queries coded as a transaction to move rows from the 
Invoices table to the InvoiceArchive table. Insert all paid invoices from 
Invoices into InvoiceArchive, but only if the invoice doesn't already exist 
in the InvoiceArchive table. Then, delete all paid invoices from the Invoices 
table, but only if the invoice exists in the InvoiceArchive table. 



17 

How to manage 
database security 
If you've been using a stand-alone copy of SQL Server installed on your own 
computer, the security of the system hasn' t been of concern. When you install 
SQL Server for use in a production environment, however, you must configure 
security to prevent misuse of your data. In this chapter, you' lllearn how to do 
that using either the Management Studio or Transact-SQL. 

How to work with SQL Server login 1Ds ........................... 536 
An introduction to SQL Server security ... .... ........................ .... ............ .... .. . 536 
How to change the authentication mode .................... .. ...... ... ......... .... .... ...... 538 
How to create login IDs ...... .. .... .... .... .. .. .. .. .... ................ .... ........ .................. 540 
How to delete or change login IDs or passwords ...... .. .......... ...... ...... ....... ... 542 
How to work with database users .. .... .......... ...... .... .... .. .. .. .. .... ............ .. ....... 544 
How to work with schemas ............ ..... .. .. .. .. .. .. .. .. .... ...... .... .... .... .... .... .... .... .. 546 

How to work with permissions .......................................... 548 
How to grant or revoke object permissions ................................................. 548 
The SQL Server object permissions ............................. .... .... ....... ................ 550 
How to grant or revoke schema permissions ............................... ................ 552 
How to grant or revoke database permissions ............ .. .... .... ....................... 554 
How to grant or revoke server permissions ................................................. 556 

How to work with roles ...................................................... 558 
How to work with the fixed server roles ...... .............. .. .................. .. ...... ...... 558 
How to work with user-defined server roles .......... ................ ................ ...... 560 
How to display information about server roles and role members .. .. .... ...... 562 
How to work with the fixed database roles ............................................ ..... 564 
How to work with user-defined database roles ...... .... .................................. 566 
How to display information about database roles and role members ......... 568 
How to deny permissions granted by role membership .. ............................ 570 
How to work with application roles .. .... .......... .. .. .............. .... .... ......... .... ...... 572 

How to manage security 
using the Management Studio .......................................... 574 
How to work with login IDs ........................................ .. .............................. 574 
How to work with the server roles for a login ID ........................ ................ 576 
How to assign database access and roles by login ID ................................. 578 
How to assign user permissions to database objects ................................... 580 
How to work with database permissions .......................... ........................... 582 

Perspective ......................................................................... 584 



536 Section 4 Advanced SQL skills 

How to work with SQL Server login IDs 
Before a user can work with the data in a database, he must have a valid 

login ID so he can log on to SQL Server. Then, he must have access to the 
database itself. In the topics that follow, you ' ll leam how to work with login IDs 
and how to give a user access to a database. But first, I'll present an overview of 
how SQL Server manages database security. 

An introduction to SQL Server security 

Figure 17-1 illustrates how a user gains access to a SQL Server database. 
First, the user must connect and log on to the server using either an application 
program or the Management Studio. As you can see, the login ID can be 
authenticated in one of two ways, which I'll discuss in a moment. 

Once the user is logged on to SQL Server, the data he has access to and the 
operations he can perform depend on the permissions that have been granted to 
him. You can grant object permissions so the user can perform specific actions 
on a specific database object, you can grant schema permissions so the user can 
perform actions on every object in the schema, you can grant database 
permissions so the user can perform specific database operations, and you can 
grant server permissions so the user can perform specific actions at the server 
level. In addition, you can define a collection of permissions called a role. Then, 
you can assign users to that role to grant them all of the permissions associated 
with that role. This reduces the number of permissions you must grant each user 
and makes it easier to manage security. For this reason, roles are used on most 
systems. 

This figure also summarizes the two ways you can manage SQL Server 
security. First, you can do that by executing SQL statements and system stored 
procedures from the Query Editor or using the SQLCMD utility. Second, you 
can use the graphical interface of the Management Studio. You' lllearn how to 
use both of these techniques in this chapter. The technique you use is mostly 
a matter of preference. However, even if you intend to use the Management 
Studio, you should still read the topics on using the SQL statements and stored 
procedures. These topics will help you understand the underlying structure of 
SQL Server security, which will help you use the Management Studio better. 

Although the Management Studio's graphical interface makes it easier to 
work with security, it can also slow you down. For example, if you need to set up 
a new database with hundreds of users, you' ll have to create those users one at a 
time using the Management Studio. On the other hand, if you've read chapter 14 
and know how to code dynamic SQL, you can code a script that will manage the 
entire process. For this reason, many experienced system administrators prefer to 
manage security using Transact-SQL. 

Before I go on, you should know about two terms that are used frequently 
when talking about security. The first term, principal, refers to a user, group, 
login, or role that has access to a database. The second term, securable, refers 
to a SQL Server entity that can be secured. That includes tables, schemas, 
databases, and the server itself. You' lllearn more about principals and securables 
as you progress through this chapter. 



Chapter 17 How to manage database security 537 

How users gain access to a SQL Server database 

Users Connection and Login 

Windows authentication 

Security 

< (uses Wind:~s login I D) ) 

SQL Server authentication 
(u ses SQL Server login I D) 

Two ways to configure SQL Server security 
Method Description 

Transact-SQL 

Management Studio 

Description 

Use Transact-SQL statements to manage login 
IDs, database users, permissions, and roles. 

Use the Management Studio to configure all 
aspects of system security. 

Database 

Object 

• Typically, a network user must log on to the network at a PC using a login ID and 
password. If the client PC uses Windows, SQL Server can use the Windows login 
ID defined for the user. Otherwise, you can create a separate SQL Server login ID. 

• Once a user is logged on to SQL Server, the security configuration determines 
which database objects the user can work with and which SQL statements the user 
can execute. 

• Permissions determine the actions a user can take on a database object, such as a 
table, view, or stored procedure, on the objects in a schema, on a database, and on a 
server. 

• A role is a collection of permissions that you can assign to a user by assigning the 
user to that role. 

• You can create a collection of users in Windows called a group. Then, you can 
assign permissions and roles either to individual users or to a group of users. 

• The users, groups, logins, and roles that have access to a server are called 
principals. The entities that can be secured on a server, including the server itself, 
are called securables. 

• If you need to set up a new system with many users, it's often easier to code SQL 
scripts using the SQL security statements. The Management Studio is better for 
making changes to an existing system or for setting up a small system. 

• Even if you use the Management Studio to manage security, you should know how 
to manage security with Transact-SQL statements. That will help you understand 
the underlying structure of SQL Server security. 

Figure 17-1 An introduction to SOL Server security 



538 Section 4 Advanced SQL skills 

How to change the authentication mode 

As you learned in chapter 2, you can log on to SQL Server using one of two 
types of login authentication: Windows authentication or SQL Server 
authentication. To accommodate these two types of authentication, a server 
can be configured to run in one of two authentication modes: Windows 
Authentication mode or Mixed mode. Figure 17-2 summarizes these 
authentication modes and shows you how you can change from one to the other. 

When you install SQL Server, Windows Authentication mode is the 
default. Then, when a user logs on to SQL Server, authentication is handled by 
the security that's integrated into Windows. In other words, the login ID and 
password that the user enters to log on to Windows are also used to log on to 
SQL Server. 

If you use Mixed mode authentication, users can log on using either 
Windows authentication or SQL Server authentication. When SQL Server 
authentication is used, the user must enter a SQL Server user ID and password to 
log on to SQL Server. This user ID and password are separate from the Windows 
user ID and password, which means that the user must enter two IDs and 
passwords to access SQL Server. Since non-Windows clients can't use Windows 
authentication, it 's likely that the only time you'll use SQL Server authentication 
is to support access by non-Windows clients. 

To change the authentication mode, you use the Security page of the Server 
Properties dialog box shown in this figure. The two available options are 
listed under the Server Authentication heading. The SQL Server and Windows 
Authentication Mode option corresponds to Mixed mode. 

If you change the authentication mode, the Management Studio warns you 
that the change won't take effect until you stop and restart SQL Server. Before 
you stop SQL Server, though, you'll want to be sure that there aren't any 
transactions currently executing. If there are and you stop SQL Server, those 
transactions won't be committed. If you're working on a desktop server or on a 
new server with no users, this shouldn' t be a problem. If you're working on an 
active server, however, you shouldn' t restart the server until you're sure that no 
users are connected. 

If you install SQL Server with Windows Authentication mode, you should 
know that the default system administrator login ID, sa, is disabled. That's 
because this login can only connect using SQL Server authentication. If you later 
change to Mixed mode, however, the sa login ID isn' t automatically enabled. So 
you'll have to enable it manually. You' ll learn how to enable and disable login 
IDs later in this chapter. 



Chapter 17 How to manage database security 539 

The Security tab of the SQL Server Properties dialog box 
Iii Sorvor Proportios • localhost\SQLEXPRESS 

Select a
/- General 
1- Memo<y 
1- ProcesSOB 

" Bl.!!lrl 
1- Connections 
1- Databaso Settin!ls 
1- hlvanced 
1- Pennissions 

Connedion 

Server: 
local1ost\SQLEXPRESS 

Connection: 
murach'J>me 

vf '®w connectoon D!ODe!!ies 

Pr09SS 

Ready 

Server a<thertic«ion 

@ :i{indows Authert~ mode 

0 ~L Server and Wmows AuthertK:atoon mode 

logon audt.ng 

O None 
® failed logins only 

0 SyccessfU loQins only 

0 J!oth I aied and successfu loQins 

Server proxy acccxrt 

0 Enable seoyer proxy accOlrt 

Options 

0 J;nable C2 auck tradng 

0 !:;ross database ownersl-ip chainin!l 

The two SQL Server authentication modes 

Mode Description 

0 

• 

OK Cancel 

X 

Windows Authentication mode 

Mixed mode 

Only Windows authentication is allowed. This is the default. 

Description 

Both Windows authentication and SQL Server authentication are 
allowed. To use this mode, select the SQL Server and Windows 
Authentication Mode option. If your database needs to be accessed 
by non-Windows clients, you must use Mixed mode. 

• To change the SQL Server authentication mode, right-click on the server in the 
Object Explorer of the Management Studio, select the Properties command to 
display the Server Properties dialog box, then display the Security page. 

• When you use Windows authentication, access to SQL Server is controlled via the 
security integrated into Windows. This simplifies login because Windows users 
only have to log on once. 

• When you use SQL Server authentication, access to SQL Server is controlled via the 
separate security built into SQL Server. The user has a login ID and password that 
are distinct from their Windows login ID and password, so they have to log on twice. 

Figure 17-2 How to change the authentication mode 



540 Section 4 Advanced SQL skills 

How to create login IDs 

When you install SQL Server, it's configured with some built-in IDs. Then, 
to add additional login IDs, you can use the CREATE LOGIN statement shown 
in figure 17-3. As you can see, the syntax you use depends on whether you're 
creating a login for Windows authentication or SQL Server authentication. 

To create a new Windows login ID, you can simply specify the login name 
and the FROM WINDOWS keywords. Then, a login ID with the same name as 
the Windows login ID is created. Note that the name you specify must include 
the Windows domain name along with the user or group name, and the name 
must be enclosed in square brackets. The first CREATE LOGIN statement in this 
figure, for example, creates a login ID for a Windows user named SusanRoberts 
in the Windows domain named Accounting. 

If you're working with SQL Server Express on your own system, the domain 
name is just the name of your computer. In that case, though, you probably 
won't need to set up additional login IDs. The exception is if you have more than 
one user account defined on your system, in which case you can set up a separate 
login for each account. 

In addition to the login name, you can specify the default database and 
language. If you set the default database, the user won' t have to execute a USE 
statement to work with that database. If you don' t specify a default database, the 
system database named master is the default. 

To create a new SQL Server login ID, you must specify a login name and 
password. The second statement in this figure, for example, creates a login ID 
for user JohnDoe with the password "pt8806FG$B". It also sets the default 
database to AP. 

The last two options determine how password policies are enforced. 
If the CHECK_EXPIRATION option is on, users are reminded to change 
passwords, and SQL Server disables IDs that have expired passwords. If 
the CHECK_POLICY option is on, password policies are enforced, and the 
CHECK_EXPIRATION option is also on unless it's explicitly turned off. 

In most cases, you'llleave these options at their defaults so the password 
policies specified for the server are enforced. Among other things, the default 
password policies for SQL Server 2012 and later require that SQL Server logins 
use strong passwords, which are difficult for someone to guess. This figure lists 
the guidelines for coding strong passwords, and the example in this figure that 
creates a SQL Server login ID illustrates a strong password. 

Another option you can use with the CREATE LOGIN statement is 
MUST_CHANGE. If you include this option, the user will be prompted for a 
new password the first time the new login is used. That way, users can set their 
own passwords. If you specify the MUST_CHANGE option, the 
CHECK_EXPIRATION and CHECK_POLICY options must also be on. 

By the way, you should know that the CREATE LOGIN statement, as well 
as many of the other statements presented in this chapter, were introduced 
with SQL Server 2005. These statements replace stored procedures that were 
used in previous versions of SQL Server. Because these stored procedures may 



Chapter 17 How to manage database security 541 

The syntax of the CREATE LOGIN statement 
For Windows authentication 
CREATE LOGIN login_name FROM WINDOWS 

[WITH [DEFAULT_ DATABASE = database] 
[, DEFAULT_ LANGUAGE = language] ] 

For SQL Server authentication 
CREATE LOGIN login_name WITH PASSWORD = 'password' [MUST_CHANGE] 

[, DEFAULT_DATABASE = database ] 
[ , DEFAULT_LANGUAGE = langua ge] 
[, CHECK_EXPIRATION = {ONIOFF}] 
[, CHECK_POLICY = {QN IOFF}] 

A statement that creates a new login ID from a Windows account 
CREATE LOGIN [Accounting\ SusanRoberts] FROM WINDOWS ; 

A statement that creates a new SQL Server login ID 
CREATE LOGIN J ohnDoe WITH PASSWORD= 'pt8806FG$B', 

DEFAULT_ DATABASE = AP ; 

Guidelines for strong passwords 
• Cannot be blank or null or the values "Password", "Admin", "Administrator", "sa", 

or "sysadmin" 

• Cannot be the name of the current user or the machine name 

• Must contain more than 8 characters 

• Must contain at least three of the following: uppercase letters, lowercase letters, 
numbers, and non-alphanumeric characters (#, %, &, etc.) 

Description 
• You use the CREATE LOGIN statement to create a new SQL Server login ID or to 

create a new login ID from a Windows account. 

• If you don' t specify a default database when you create a login, the default is set 
to master. If you don ' t specify a default language, the default is set to the default 
language of the server. Unless it's been changed, the server language default is 
English. 

• The password you specify for a SQL Server login ID should be a strong password. 
A strong password is not easy to guess and cannot easily be hacked. A password 
can have up to 128 characters. 

• If you include the MUST_CHANGE option, SQL Server will prompt the user for a 
new password the first time the login ID is used. 

• The CHECK_EXPIRATION option determines whether SQL Server enforces 
password expiration policy. The CHECK_POLICY option determines if password 
policies, such as strong passwords, are enforced. These options are enforced only if 
SQL Server is running on Windows Server. 

Figure 17-3 How to create login IDs 



542 Section 4 Advanced SQL skills 

be dropped in a future release of SQL Server, you should use the statements 
presented in this chapter instead. 

How to delete or change login IDs or passwords 

To change an existing login ID, you use the ALTER LOGIN statement 
shown in figure 17-4. A common task you can perform with this statement is to 
change the password for a SQL Server Login ID. This is illustrated in the first 
example in this figure. Notice in this example that you can change the password 
without specifying the old password. You can also force the user to enter a new 
password the next time the login is used by coding the MUST_CHANGE option. 

Another common task that you can perform with the ALTER LOGIN 
statement is to disable or enable a login ID as illustrated in the second example. 
Here, the login ID for a Windows account is being disabled. That means that the 
user will no longer have access to SQL Server. 

The third example in this figure shows how you can use the ALTER LOGIN 
statement to change a login name. This is useful if a user's name actually 
changes. It's also useful if one employee replaces another. Then, you can give 
the new employee the same permissions as the old employee simply by changing 
the login name. 

To delete a login ID, you use the DROP LOGIN statement. This is illustrated 
in the fourth example in this figure. 



Chapter 17 How to manage database security 543 

The syntax of the DROP LOGIN statement 
DROP LOGIN login_name 

The syntax of the ALTER LOGIN statement 
For Windows authentication 
ALTER LOGIN login_name {{ENABLEIDISABLE}IWITH 

[NAME = login_name] 
[, DEFAULT_DATABASE = database] 
[, DEFAULT_ LANGUAGE =language]} 

For SQL Server authentication 
ALTER LOGIN login_name {{ENABLEIDISABLE}IWITH 

[PASSWORD= 'password' [OLD_PASSWORD = ' oldpassword'] 
[MUST_ CHANGE] ] 

[, NAME = login_name] 
[, DEFAULT_ DATABASE = database] 
[, DEFAULT_ LANGUAGE = language] 
[ , CHECK_ EXPIRATION = {ONIOFF}] 
[, CHECK_ POLICY = {ONIOFF}]} 

Statements that use the ALTER LOGIN and DROP LOGIN statements 
A statement that changes the password for a SQL Server login ID 
ALTER LOGIN JohnDoe WITH PASSWORD= 'lg22A%G45x'; 

A statement that disables a Windows login ID 
ALTER LOGIN [Accounting\ SusanRoberts] DISABLE; 

A statement that changes a login name 
ALTER LOGIN JohnDoe WITH NAME = JackWilliams; 

A statement that deletes a SQL Server login ID 
DROP LOGIN JackWilliams; 

Description 
• You use the ALTER LOGIN statement to enable or disable a login ID, change the 

name for a login ID, or change the default database or language. For a SQL Server 
login ID, you can also change the password and the password options. 

• You use the DROP LOGIN statement to drop a login ID. 

Figure 17-4 How to delete or change login IDs or passwords 



544 Section 4 Advanced SQL skills 

How to work with database users 

Each database maintains a list of the users that are authorized to access that 
database. This list is distinct from the list of login IDs that's maintained by the 
server. Figure 17-5 presents the SQL statements you use to maintain the list of 
users for a database. 

You use the CREATE USER statement to create a database user. On this 
statement, you code the name of the user, which is usually the same as the login 
name. In that case, you don' t need to specify the login name. This is illustrated 
in the first example in this figure. If you want to use a user name that's different 
from the login name, however, you can include the FOR LOGIN clause to 
specify the login name that the user name is mapped to. 

In most cases, it's not a good idea to use two different names for the same 
user. For this reason, the FOR LOGIN clause is generally omitted. However, 
since login IDs generated from Windows user names include the domain name, 
those login IDs can be quite long. If all of your users are on the same Windows 
domain, then, you may want to use just the user names for the database users. 
This is illustrated in the second example in this figure, which creates a database 
user named SusanRoberts for the login ID Accounting\SusanRoberts. 

You can also specify a default schema for a database user as illustrated in the 
third example in this figure. Then, when SQL Server searches for an object for 
that user, it will look for the object in the user's default schema before it looks in 
the dbo schema. 

After you create a database user, the user can set the database as the current 
database using the USE statement but can' t perform any operations on the 
database or the objects it contains. To do that, the user must be granted object 
and database permissions. You' lllearn how to grant these permissions in a 
moment. 

If you need to change a database user, you can use the ALTER USER 
statement. This statement lets you change the user name or the default schema 
for the user. The fourth statement in this figure, for example, changes the name 
of a database user from SusanRoberts to SusanStanley, and the fifth statement 
changes the default schema for a user to Marketing. 

Finally, if you need to delete a database user, you use the DROP USER 
statement as illustrated in the last example. The only information you specify on 
this statement is the user name. 

Note that all three of these statements work with the current database. For 
this reason, you must be sure to change the database context to the database you 
want to work with before you execute any of these statements. If you don' t, you 
may inadvertently create, change, or delete a user in the wrong database. 



Chapter 17 How to manage database security 545 

The syntax of the CREATE USER statement 
CREATE USER user_name 

[{FOR IFROM} LOGIN login_ name] 
[WITH DEFAULT_ SCHEMA = schema_name] 

The syntax of the ALTER USER statement 
ALTER USER user_name WITH 

[NAME = new_user_name] 
[, DEFAULT_SCHEMA = schema_name] 

The syntax of the DROP USER statement 
DROP USER user_ name 

Statements that work with database users 
A statement that creates a database user with the same name as a login ID 
CREATE USER JohnDoe ; 

A statement that creates a database user for a Windows user account 
CREATE USER SusanRoberts FOR LOGIN [Accounting\ SusanRoberts]; 

A statement that creates a database user and assigns a default schema 
CREATE USER SusanRoberts FOR LOGIN [Accounting\ SusanRoberts] 

WITH DEFAULT_SCHEMA = Account ing; 

A statement that changes a user name 
ALTER USER SusanRobe rts WITH NAME = SusanStanley; 

A statement that assigns a default schema to a user 
ALTER USER JohnDoe WITH DEFAULT_ SCHEMA = Marketing; 

A statement that deletes a database user 
DROP USER JohnDoe; 

Description 
• You use the CREATE USER statement to create a user for a login ID for the current 

database. If the login name is the same as the user name, you can omit the FOR 
LOGIN clause. 

• When you create a database user, you can specify a default schema. Then, SQL 
Server will look in this schema when it searches for objects for the database user 
before it looks in the default schema ( dbo ). 

• The ALTER USER statement lets you change the name of an existing database user 
or change the default schema for a user. 

• You use the DROP USER statement to delete a user from the current database. 

• Since all three of these statements work on the current database, you must change 
the database context using the USE statement before executing any of these 
statements. 

Figure 17-5 How to work with database users 



546 Section 4 Advanced SQL skills 

How to work with schemas 

As you know, the tables, views, functions, and procedures of a database are 
stored in schemas. If you don't specify a schema when you create these objects, 
they're stored in the default schema. 

One advantage of using schemas is that you can grant permissions to all the 
objects in a schema by granting permissions to the schema. Another advantage is 
that users don' t own database objects, they own schemas. Because of that, if you 
need to delete a user, you can just transfer the schemas that user owns to another 
user rather than having to transfer the ownership of each individual object. 

Figure 17-6 presents the SQL statements for working with schemas. To create 
a schema, you use the CREATE SCHEMA statement. The only information you 
must include on this statement is the schema name. This is illustrated in the first 
CREATE SCHEMA statement in this figure, which creates a schema named 
Accounting. 

When you create a schema, you can also create tables and views within 
that schema, and you can grant, revoke, and deny permissions to those tables 
and views. For example, the second CREATE SCHEMA statement shown 
here creates a schema named Marketing. In addition, it creates a table named 
Contacts within the Marketing schema. Notice that because the CREATE 
TABLE statement is coded within the CREATE SCHEMA statement, it isn' t 
necessary to specify the schema on the CREATE TABLE statement. For this to 
work, the CREATE SCHEMA statement must be coded as a separate batch. 

By default, a schema is owned by the owner of the database. In most cases, 
that's what you want. If you want to assign a different owner to a schema, 
however, you can include the AUTHORIZATION clause with the name of the 
user or role you want to own the schema on the CREATE SCHEMA statement. 

The ALTER SCHEMA statement lets you transfer a securable from one 
schema to another. For example, the ALTER SCHEMA statement in this figure 
transfers the Contacts table in the Marketing schema that was created by the 
second statement to the Accounting schema that was created by the first 
statement. Note that you can' t transfer an object to a different schema if any 
views or functions are schema-bound to the object. Because of that, you'll want 
to make sure an object is in the correct schema before you create any views or 
functions that are bound to it. 

To delete a schema from a database, you use the DROP SCHEMA 
statement. The last statement in this figure, for example, deletes the Marketing 
schema. Keep in mind that before you delete a schema, you must delete any 
objects it contains or transfer them to another schema. 



Chapter 17 How to manage database security 547 

The syntax of the CREATE SCHEMA statement 
CREATE SCHEMA schema_ name [AUTHORIZATION owner_name] 

[table_definition] ••• 
[view_definition] ••• 
[grant_statement] ••• 
[revoke_ statement] ••• 
[deny_ statement] ••• 

The syntax of the ALTER SCHEMA statement 
ALTER SCHEMA schema_name TRANSFER securable_name 

The syntax of the DROP SCHEMA statement 
DROP SCHEMA schema_name 

Statements that work with schemas 
A statement that creates a schema 
CREATE SCHEMA Accounting; 

A statement that creates a schema and a table within that schema 
CREATE SCHEMA Marketing 

CREATE TABLE Contacts 
(ContactiD INT NOT NULL IDENTITY PRIMARY KEY, 
ContactName VARCHAR ( SO ) NOT NULL, 
ContactPhone VARCHAR ( SO ) NULL, 
ContactEmail VARCHAR ( SO ) NULL); 

A statement that transfers a table from one schema to another 
ALTER SCHEMA Accounting TRANSFER Marketing.Contacts ; 

A statement that deletes a schema 
DROP SCHEMA Marketing; 

Description 
• You use the CREATE SCHEMA statement to create a schema in the current 

database. You can also create tables and views within the new schema, and you can 
grant, revoke, or deny permissions for those tables and views. 

• After you create a schema, you can create any object within that schema by 
qualifying the object name with the schema name. 

• You use the ALTER SCHEMA statement to transfer an object from one schema to 
another. 

• You can't transfer an object from one schema to another if any views or functions 
are bound to it. 

• When you transfer an object from one schema to another, all the permissions that 
were associated with that object are dropped. 

• You use the DROP SCHEMA statement to delete a schema. The schema you delete 
must not contain any objects. 

Figure 17-6 How to work with schemas 



548 Section 4 Advanced SQL skills 

How to work with permissions 
Now that you understand how to create login IDs and database users, you 

need to learn how to grant users permission to work with a database and the 
objects it contains. That's what you'll learn in the topics that follow. In addition, 
you'll learn how to grant login IDs permission to work with the server. 

How to grant or revoke object permissions 

Figure 17-7 presents the GRANT and REVOKE statements you use to grant 
or revoke permissions to use an object in the current database. In the GRANT 
clause, you list the permissions you want to grant. You'll see a list of the 
standard permissions in the next figure. 

You code the name of the object for which this permission is granted in 
the ON clause. This object can be a table, a view, a stored procedure, or a 
user-defined function. If the object is contained in a schema other than the 
default schema, you must specify the schema name along with the object name. 
Note that you can only grant permissions for a single object with the GRANT 
statement. 

In the TO clause, you code one or more database principal names to 
which you're granting the permission. Typically, this is the database user 
name. The statement in this figure, for example, grants permission for the user 
SusanRoberts to select data from the Invoices table. You can also use this state
ment to assign permissions to a database role. You' lllearn more about database 
roles later in this chapter. 

If you code the GRANT statement with the optional WITH GRANT 
OPTION clause, you delegate to this user the permission to GRANT this 
same permission to others. Since it's simpler to have a single person or group 
managing the security for a database, I don' t recommend that you use this 
option. If you do, however, you should keep good records so you can later 
revoke this permission if you begin to have security problems. 

The syntax of the REVOKE statement is similar to the syntax of the 
GRANT statement. You code a list of the permissions you're revoking in the 
REVOKE clause, the object name in the ON clause, and one or more database 
principal names in the FROM clause. The statement in this figure, for example, 
revokes the SELECT permission for the Invoices table that was granted to user 
SusanRoberts by the GRANT statement. 

You can code two optional clauses in the REVOKE statement. These clauses 
are related to the WITH GRANT OPTION clause you can code in the GRANT 
statement. The GRANT OPTION FOR clause revokes the user's permission to 
grant this permission to others. The CASCADE clause revokes this permission 
from all of the users to whom this user has granted permission. If you avoid 
using the WITH GRANT OPTION clause, you won't have to use these clauses. 



Chapter 17 How to manage database security 549 

How to grant object permissions 
The syntax of the GRANT statement for object permissions 
GRANT permission [, ... ] 
ON [schema_name.]object_name [ (column [, ••. ])] 
TO database_princ ipal [, ••• ] 
[WITH GRANT OPTION] 

A GRANT statement that grants SELECT permission for the Invoices table 
GRANT SELECT 
ON Invoices 
TO SusanRoberts; 

How to revoke object permissions 
The syntax of the REVOKE statement for object permissions 
REVOKE [GRANT OPTION FOR] permission [, • •• ] 
ON [schema_name.]object_name [(column [, ••. ] ) ] 
FROM database_princ ipal [ , •.. ] 
[CASCADE] 

A REVOKE statement that revokes SELECT permission 
REVOKE SELECT 
ON Inv oice s 
FROM Susa nRoberts ; 

Description 
• You use this GRANT statement format to give a user permission to work with a 

database object. This format of the REVOKE statement takes object permissions 
away. See figure 17-8 for a list of the standard permissions that can be granted for 
objects. 

• The object_name argument specifies the object for which the permission is being 
granted or revoked and can specify a table, a view, a stored procedure, or a 
user-defined function. If you specify a table, a view, or a table-valued function, 
you can also list the columns for which SELECT, UPDATE, or REFERENCES 
permissions are granted or revoked. 

• The database_principal argument in the TO and FROM clauses can be the name 
of a database user or a user-defined role. 

• The WITH GRANT OPTION clause gives a user permission to grant this 
permission to other users. 

• The REVOKE statement includes two clauses that undo WITH GRANT OPTION. 
GRANT OPTION FOR revokes the user's permission to grant the permission to 
others. CASCADE revokes the permission from any other users who were given 
the permission by this user. 

• Since both the GRANT and REVOKE statements work on the current database, 
you must first change the database context using the USE statement. 

Figure 17-7 How to grant or revoke object permissions 



550 Section 4 Advanced SQL skills 

The SQL Server object permissions 

Figure 17-8 lists the specific object permissions that you can code in either 
the GRANT or REVOKE statement. The first four permissions let the user 
execute the corresponding SQL statement: SELECT, UPDATE, INSERT, or 
DELETE. The fifth permission, EXECUTE, lets the user run an executable 
database object. 

Each permission can be granted only for certain types of objects. For 
example, you can grant SELECT permission only to an object from which you 
can select data, such as a table or view. Likewise, you can grant EXECUTE 
permission only to an object that you can execute, such as a stored procedure or 
scalar function. 

The REFERENCES permission lets a user refer to an object, even if the 
user doesn' t have permission to use that object directly. For example, to create 
a FOREIGN KEY constraint that refers to another table, the user would need to 
have REFERENCES permission on that other table. Of course, he'd also need 
permission to create a table. You' ll see how to grant permissions like this in a 
moment. 

You also need to assign the REFERENCES permission to objects 
that are referenced by a function or view that's created with the WITH 
SCHEMABINDING clause. Since this permission is only needed for users 
who' ll be creating database objects, you'll probably never assign it individually. 
Instead, you'll include it with other permissions in a database role as you' ll learn 
later in this chapter. 

The last permission, ALTER, lets the user change the definition of an 
object. This permission is typically given to users who are responsible for 
designing a database. That includes database administrators and, in many cases, 
programmers. 

In addition to the permissions shown here, SQL Server 2019 continues 
to support the deprecated ALL permission. Because this permission may not 
work in future versions of SQL Server, you should avoid using it. If you do 
use it, though, you should know that despite its name, this permission doesn' t 
always grant all permissions that are applicable to the object. For example, when 
working with database permissions as shown in figure 17-10, the ALL 
permission doesn' t include the CREATE SCHEMA permission. 



Chapter 17 How to manage database security 551 

The standard permissions for SQL Server objects 
Permission Description Applies to 

SELECT 

UPDATE 

INSERT 

DELETE 

EXECUTE 

REFERENCES 

ALTER 

Lets the user select the data. 

Lets the user update existing data. 

Lets the user insert new data. 

Lets the user delete existing data. 

Lets the user execute a procedure or 
function. 

Lets the user create objects that refer 
to the object. 

Lets the user modify an object. 

Tables, views, and table-valued functions 

Tables, views, and table-valued functions 

Tables, views, and table-valued functions 

Tables, views, and table-valued functions 

Stored procedures and scalar and aggregate 
functions 

Tables, views, and functions 

Tables, procedures, functions, and sequences 

A GRANT statement that grants permission to run action queries 
GRANT INSERT, UPDATE, DELETE 
ON Invoices 
TO SusanRobe rts; 

A REVOKE statement that revokes the DELETE permission 
REVOKE DELETE 
ON Invoices 
FROM SusanRoberts; 

A GRANT statement that grants permission to execute a stored procedure 
GRANT EXECUTE 
ON spinvoiceReport 
TO [Payroll\MarkThomas], JohnDoe, TomAaron; 

A GRANT statement that grants SELECT permission to specific columns 
GRANT SELECT 
ON Vendors (VendorName,VendorAddressl,VendorCity,VendorState,VendorZipCode) 
TO TomAaron, [Payroll\MarkThomas]; 

A GRANT statement that grants REFERENCES permission 
to the Contacts table in the Accounting schema 

GRANT REFERENCES 
ON Accounting . Contacts 
To JohnDoe ; 

A GRANT statement that grants permission to alter a table 
GRANT ALTER 
ON Vendors 
To JoelMurach; 

Description 
• You can only grant permissions that are appropriate for the object or schema. 

• You can grant or revoke SELECT, UPDATE, or REFERENCES permission to 
specific columns in a table, view, or table-valued function. However, a view is 
typically a better way to limit access to specific columns. 

Figure 17-8 The SOL Server object permissions 



552 Section 4 Advanced SQL skills 

How to grant or revoke schema permissions 

In addition to granting or revoking permissions to individual objects in a 
database, you can grant or revoke permissions to all the objects in a schema. To 
do that, you use the formats of the GRANT and REVOKE statements shown in 
figure 17-9. 

The main difference between the formats shown here and the formats shown 
in figure 17-7 is that the ON clause uses a class name and a scope qualifier(::). 
In this case, the class name is SCHEMA. You can also use a class name and 
scope qualifier when you grant or revoke object permissions. For example, I 
could have coded the GRANT statement in figure 17-7 like this: 

GRANT SELECT 
ON OBJECT :: Invoices 
TO SusanRoberts; 

However, because the class name and scope qualifier aren' t required when you 
grant or revoke object permissions, I've omitted them from the syntax of the 
GRANT and REVOKE statements shown in figure 17-7. 

Before you go on, you should realize that to delete an object from a schema, 
a user must have ALTER permission to the schema. A user must also have 
ALTER permission to a schema to create an object in the schema. In addition, 
the user must have permission to create the object in the database. The exception 
is that you can create a sequence simply by granting the CREATE SEQUENCE 
permission to the schema. To alter an object in the schema, the user only needs 
to have ALTER permission on the object. 



Chapter 17 How to manage database security 553 

How to grant schema permissions 
The syntax of the GRANT statement for schema permissions 
GRANT permission [, ... ] 
ON SCHEMA : : schema_name 
TO database_principal [, ••• ] 
[WITH GRANT OPTION] 

A GRANT statement that grants UPDATE permission 
for the Accounting schema 
GRANT UPDATE 
ON SCHEMA :: Accounting 
TO JohnDoe; 

A GRANT statement that grants ALTER permission to a schema 
GRANT ALTER 
ON SCHEMA :: Marketing 
TO JudyTaylor; 

How to revoke schema permissions 
The syntax of the REVOKE statement for schema permissions 
REVOKE [GRANT OPTION FOR] permission [, ••• ] 
ON SCHEMA : : schema_name 
FROM database_principal [, ••. ] 
[CASCADE] 

A REVOKE statement that revokes UPDATE permission 
REVOKE UPDATE 
ON SCHEMA:: Accounting 
FROM JohnDoe; 

Description 
• You use this format of the GRANT statement to give a user permission to work 

with all the objects in a database schema. This format of the REVOKE statement 
takes schema permissions away. These statements work just as they do for object 
pernuss1ons. 

• To create an object in a schema or to delete an object from a schema, the user must 
have ALTER permission to the schema. To create an object, the user must also have 
CREATE permission to the database that contains the object. See figure 17-10 for 
information on database permissions. 

• You can also grant or revoke the CREATE SEQUENCE permission on a schema. 

• The ON clause in the GRANT and REVOKE statements includes a class name 
(SCHEMA) and a scope qualifier(:: ). Although class names and scope qualifiers 
can be used with other Transact-SQL statements, they're not usually required. 

Figure 17-9 How to grant or revoke schema permissions 



554 Section 4 Advanced SQL skills 

How to grant or revoke database permissions 

Figure 17-10 presents the syntax of the GRANT and REVOKE statements 
you use to work with database permissions. In the GRANT clause, you list 
the statements you want to grant a user permission to execute. Some of the 
statements you can include in this list are shown in this figure. Then, in the TO 
clause, you list the users you want to have these permissions. The GRANT 
statement in this figure, for example, grants two users permission to create 
views. Remember that to create a view, though, the user must also have 
permission to alter the schema that contains it. 

The syntax of the REVOKE statement is identical except that you code the 
user names in the FROM clause. The REVOKE statement shown in this figure, 
for example, revokes permission for the specified user to create databases or 
tables. 



Chapter 17 How to manage database security 555 

How to grant database permissions 
The syntax of the GRANT statement for database permissions 
GRANT permission [, ... ] 
TO database_principal [, ••. ] 
[WITH GRANT OPTION] 

A GRANT statement that gives permission to create views 
GRANT CREATE VIEW 
TO JohnDoe, SusanRoberts; 

How to revoke database permissions 
The syntax of the REVOKE statement for database permissions 
REVOKE permission[, ••• ] 
FROM database_principal [, ••• ] 
[CASCADE] 

A REVOKE statement that revokes permission to create databases 
and tables 
REVOKE CREATE DATABASE, CREATE TABLE 
FROM SylviaJones; 

Some of the permissions that can be explicitly permitted 
CREATE DATABASE 
CREATE TABLE 
CREATE VIEW 
CREATE PROCEDURE 
CREATE FUNCTION 
CREATE SCHEMA 

Description 
• In addition to granting or revoking permissions for objects and schemas, you can 

grant or revoke permissions for databases. 

• The list of SQL statements shown above only includes those discussed in this book. 
For a complete list, refer to the "GRANT Database Permissions (Transact-SQL)" 
topic in the SQL Server documentation. 

Figure 17-1 0 How to grant or revoke database permissions 



556 Section 4 Advanced SQL skills 

How to grant or revoke server permissions 

The highest level at which you can grant or revoke permissions is the server 
level. Server permissions are typically reserved for system and database 
administrators. Figure 17-11 lists some of the permissions that are available and 
shows how to grant and revoke them. 

Because the GRANT and REVOKE statements for server permissions are 
similar to the GRANT and REVOKE statements for other types of permissions, 
I'll just point out the main difference here. That is, because the permission is for 
the server and not the current database, the TO and FROM clauses must name a 
server principal instead of a database principal. A server principal can be either a 
login ID or a user-defined server role. In this figure, for example, both statements 
refer to a login ID. You' lllearn more about server roles in just a minute. 



Chapter 17 How to manage database security 557 

How to grant server permissions 
The syntax of the GRANT statement for server permissions 
GRANT permission [, ... ] 
TO server_principal [, ••• ] 
[WITH GRANT OPTION] 

A GRANT statement that gives permission to create, alter, 
and drop databases 
GRANT ALTER ANY DATABASE 
TO JoelMurach; 

How to revoke server permissions 
The syntax of the REVOKE statement for server permissions 
REVOKE permission [, ••• ] 
FROM server_principal [, ••• ] 
[CASCADE] 

A REVOKE statement that revokes permission to create server roles 
REVOKE CREATE SERVER ROLE 
FROM [Administration\ SylviaJones]; 

Some of the permissions that can be explicitly permitted 
Permission Description 

CONTROL SERVER 

CREATE ANY DATABASE 

CREATE SERVER ROLE 

ALTER ANY DATABASE 

ALTER ANY LOGIN 

ALTER ANY SERVER ROLE 

VIEW ANY DATABASE 

Description 

Can perform any activity on the server. 

Can create databases. 

Can create server roles. 

Can create, alter, and drop databases. 

Can create, alter, and drop logins. 

Can create, alter, and drop server roles. 

Can view database properties. 

• You can also use the GRANT and REVOKE statements to grant and revoke 
permissions for the entire server. When you do that, you specify a login or server 
role on the TO or FROM clause. 

• For a complete list of server permissions, refer to the "GRANT Server Permissions 
(Transact-SQL)" topic in the SQL Server documentation. 

Figure 17-11 How to grant or revoke server permissions 



558 Section 4 Advanced SQL skills 

How to work with roles 
Now that you've learned how to grant object and database permissions to 

a user, you can set up security on your database. If a system has many users, 
however, granting and revoking all of these permissions one by one would 
require a lot of coding. To help reduce the amount of coding and to help you 
keep your database security organized, you can use roles. 

As you know, a role is a collection of permissions. When you assign a user 
to a particular role, you grant them all of the permissions associated with that 
role. SQL Server supports two different types of roles: fixed roles and 
user-defined roles. You 'lllearn how to work with both of these types of roles in 
the topics that follow. 

How to work with the fixed server roles 

Fixed roles are roles that are built into SQL Server. These roles can' t be 
deleted and the permissions associated with them can' t be modified. SQL Server 
provides two types of fixed roles: .fixed server roles and .fixed database roles. 
Figure 17-12 shows you how to work with the fixed server roles. You ' II learn 
how to work with the fixed database roles later in this chapter. 

The fixed server roles typically include users who manage the server. 
For example, the sysadmin role is intended for system administrators. For 
this reason, it grants permission to perform any task on the server. If you're a 
member of the Windows BUILTIN\Administrators group, you're a member of 
this role by default. 

The securityadmin role is intended for those users who need to be able to 
manage security. The members of this role are allowed to work with login IDS 
and passwords. The dbcreator role is intended for those users who need to be 
able to work with database objects. The members of this role can create, alter, 
and drop databases. Although SQL Server provides other server roles, these are 
the ones you'll use most often. 

To assign a user to a server role or to remove a user from a server role, you 
use the ALTER SERVER ROLE statement. On this statement, you specify the 
name of the server role. Then, to assign a user to the role, you specify the login 
ID of the user on the ADD MEMBER clause. To remove a user from the role, 
you specify the login ID on the DROP MEMBER clause. The first statement 
in this figure, for example, adds user JohnDoe to the sysadmin server role. The 
second statement drops this user from that role. 

You can also use the ALTER SERVER ROLE statement to rename a server 
role. However, you can't rename fixed server roles, only user-defined server 
roles. You'll see an example of that in the next figure. 

One additional fixed server role you should know about is the public server 
role. Each login that's created on the server is automatically assigned to this role 
and can't be removed. Then, the default permission for this role, VIEW ANY 
DATABASE, lets any login view the properties of any database on the server. If 
that's not what you want, you can revoke this permission from the role. To do 
that, you code the role name on the TO clause of the REVOKE statement. In 
most cases, though, it's not necessary to change the permissions for this role. 



Chapter 17 How to manage database security 559 

The syntax of the ALTER SERVER ROLE statement 
ALTER SERVER ROLE role_name 
{ 

ADD MEMBER server_principal I 
DROP MEMBER server_principal I 
WITH NAME = new_ role_ name 
} 

A statement that assigns a user to a server role 
ALTER SERVER ROLE sysadmin ADD MEMBER JohnDoe; 

A statement that removes a user from a server role 
ALTER SERVER ROLE sysadmin DROP MEMBER JohnDoe; 

Some of the SQL Server fixed server roles 
Role Description 

sysadmin 

securityadmin 

dbcreator 

Description 

Can perform any activity on the server. By default, all members of the 
Windows BUILTIN\Administrators group are members of this role. 

Can manage login IDs and passwords for the server and can grant, 
deny, and revoke database permissions. 

Can create, alter, drop, and restore databases. 

• A role is a collection of permissions you can assign to a user or group of users. By 
assigning a user to a role, you grant that user all of the permissions of the role. You 
can use roles to simplify user and security administration. 

• SQL Server has built-in, or fixed, roles defined at the server level and at the 
database level. In addition, you can create user-defined roles for your server or 
database. 

• Each role is assigned a set of permissions. For example, the dbcreator role can 
execute CREATE DATABASE, ALTER DATABASE, DROP DATABASE, and 
RESTORE DATABASE statements. This role can also add new members to the 
role. 

• You use the ALTER SERVER ROLE statement to add a user to or remove a user 
from a server role. You can also use this statement to rename a user-defined server 
role. 

• The fixed server roles are intended for users who are involved in the administration 
of the server. For a complete list of the fixed server roles, see the "Server-level 
Roles" topic in the SQL Server documentation. 

• The ALTER SERVER ROLE statement was introduced with SQL Server 2012. [n 
previous versions of SQL Server, you used the sp_AddSrvRoleMember system 
stored procedure to add a user to a server role, and you used the 
sp_DropSrvRoleMember procedure to remove a user from a server role. 

Figure 17-12 How to work with the fixed server roles 



560 Section 4 Advanced SQL skills 

How to work with user-defined server roles 

In addition to fixed server roles, SQL Server 2012 and later let you create 
user-defined server roles. Like the fixed server roles, a user-defined server role 
consists of a set of permissions that you can grant to a user by giving them 
membership in that role. Unlike the fixed server roles, you can create your own 
user-defined server roles, you can modify the permissions associated with those 
roles, and you can delete the roles when necessary. Figure 17-13 presents the 
two SQL statements you use to create and delete user-defined server roles. 

The CREATE SERVER ROLE statement creates a new role on the server. 
The role name you specify on this statement must be unique: It can' t be the 
same as another user-defined server role, fixed server role, or login name. The 
first statement in this figure, for example, creates a new server role named 
Consultant. 

By default, a user-defined server role is owned by the login that creates it. If 
that's not what you want, you can include the AUTHORIZATION clause on the 
CREATE SERVER ROLE statement. This clause names the login or fi xed server 
role that will own the new role. 

Once a role is defined, you can use the GRANT statement to grant 
permissions to that role. To do that, you simply code the role name in the TO 
clause instead of a user name. The GRANT statement in this figure, for example, 
grants the Consultant role ALTER ANY LOGIN permission. Note that because 
these permissions can only be assigned at the server level, the current database 
must be set to master when they' re executed. 

The next statement in this figure assigns a user to the new role. That means 
that this user now has the ALTER ANY LOGIN permission that was assigned 
to the role by the previous GRANT statement. In addition, the next statement 
assigns the new role as a member of the dbcreator role. If you look back to 
figure 17-12, you' ll see that this role grants any member of the role permission 
to create, alter, drop, and restore databases. Since the member itself is a role, 
any member of that role now has permission to create, alter, drop, and restore 
databases. 

The next statement shows how to change the name of a user-defined server 
role. To do that, you use the WITH NAME clause of the ALTER SERVER 
ROLE statement. The statement shown here, for example, renames the 
Consultant role to DBConsultant. 

To drop a user-defined server role, you use the DROP SERVER ROLE 
statement. Before you do that, however, you must delete all of the members of 
the role. The last two statements in this figure, for example, drop the member of 
the DBConsultant role and then drop the role. 

Because the fixed server roles that SQL Server provides are adequate for 
most systems, you won' t usually need to create user-defined server roles. That's 
because a limited number of users are typically given permissions at the server 
level. However, many users can be given permissions at the database level. 
Because of that, you're more likely to create user-defined database roles. You' ll 
learn how to do that in a minute. But first, you should know how to display 
information about server roles and how to work with fixed database roles. 



Chapter 17 How to manage database security 561 

The syntax of the CREATE SERVER ROLE statement 
CREATE SERVER ROLE role_name [AUTHORIZATION server_principal] 

The syntax of the DROP SERVER ROLE statement 
DROP SERVER ROLE role_name 

Statements that work with a user-defined server role 
A statement that creates a new server role 
CREATE SERVER ROLE Consultant; 

A statement that grants permissions to the new role 
GRANT ALTER ANY LOGIN 
TO Consultant; 

A statement that assigns a user to the new role 
ALTER SERVER ROLE Consultant ADD MEMBER JohnDoe; 

A statement that assigns the new role to a fixed server role 
ALTER SERVER ROLE dbcreator ADD MEMBER Consultant; 

A statement that changes the name of the new role 
ALTER SERVER ROLE Consultant WITH NAME = DBConsultant; 

Statements that delete the new role 
ALTER SERVER ROLE DBConsultant DROP MEMBER JohnDoe; 
DROP SERVER ROLE DBConsultant; 

Description 
• You use the CREATE SERVER ROLE statement to create a user-defined server 

role. Role names can be up to 128 characters in length and can include letters, 
symbols, and numbers, but not the backslash (\) character. 

• The AUTHORIZATION clause lets you specify a login or fixed server role that 
owns the user-defined role. If you omit this clause, the role will be owned by the 
login that executes the statement. 

• Once you create a server role, you can grant permissions to or revoke permissions 
from the role. To do that, the current database must be master. 

• To add members to a user-defined server role or delete members from the role, you 
use the ALTER SERVER ROLE statement shown in figure 17-12. 

• You use the DROP SERVER ROLE statement to delete a user-defined server role. 
You can' t delete a fixed server role or the public server role. 

• Before you can delete a server role, you must delete all of its members. To find out 
how to list the members of a role, see figure 17-14. 

• The CREATE SERVER ROLE and DROP SERVER ROLE statements were 
introduced with SQL Server 2012. 

Figure 17-1 3 How to work with user-defined server roles 



562 Section 4 Advanced SQL skills 

How to display information about server roles 
and role members 

After you set the role membership for the fixed and user-defined server roles, 
you may want to review the role and membership information. One way to do 
that is to use the Management Studio. However, SQL Server also provides two 
catalog views that contain information about server roles and members. Figure 
17-14 illustrates how you can use these catalog views. 

To start, you can use the sys.server_principals catalog view to get a list of 
the server roles. In the first example in this figure, for instance, I used a SELECT 
statement to retrieve the name, principal_id, and is_fixed_role columns from 
this table. I also restricted the rows that were retrieved to roles (type = 'R'), 
since logins and Windows groups are also server principals. In the result set, 
you can see that all of the roles except for the first one and the last one are fixed 
roles. The first role is the public server role, and the last role is the user-defined 
Consultant role that I created in figure 17-13. 

To list the members of a role, you have to join the sys.server_role_members 
catalog view with the sys.server_principals catalog view. The 
sys.server_role_members view contains every combination of server role 
principal ID and member principal ID. Then, you can join the 
member_principal_id column in that view with the principal_id column in the 
sys.server_principals view to get results like those shown in the second example 
in this figure. 

If you only need to get information about fixed server roles and members, 
you can use two system stored procedures instead of the catalog views. The 
third example in this fi gure shows how to use the sp_HelpSrvRole procedure to 
get information about the server roles. That information includes the name and 
description for each server role. Although you can code a role name as a 
parameter so information for a single role is displayed, you're more likely to 
omit this parameter. 

To get information about the members of a fixed server role, you can use 
the sp_HelpSrvRoleMember stored procedure. In this figure, for example, the 
stored procedure will return information about the members of the sysadmin 
role. If you omit the role name, this procedure will return information about the 
members in all of the fixed server roles that have at least one member. 



Chapter 17 How to manage database security 563 

How to display information for any server role 
SELECT name, principal_ id, is_fixed_ role 
FROM sys . server_principals 
WHERE type = 'R'; 

name principal_id Is _fixed _role 
['~''"'''"'''"'''_'"] 2 0 

2 sysadmin 3 

3 securtyadmin 4 

4 serveflldmin 5 

5 setup!ldmin 6 

6 process11dmin 7 

7 disk11dmin 8 

8 dbcrecllor 9 

9 bu'k!ldmin 10 1 

10 Consultant 271 0 

How to display member information for any server role 
SELECT member_principal_ id, name 
FROM sys.server_ role_members AS srm 
JOIN sys.server_principals AS sp 

ON srm. member_princ ipal_ id = sp.princ ipal_ id 
WHERE srm. role_princ ipal_ id = 271; 

How to display information for fixed server roles 
The syntax for sp_HelpSrvRole 
sp_HelpSrvRole [[@srvrolename = ] •server_ role_name'] 

A statement that lists the fixed server roles 
EXEC sp_HelpSrvRole; 

How to display member information for fixed server roles 
The syntax for sp_HelpSrvRoleMember 
sp_HelpSrvRole Member [[@srvrolename = ] •server_ role_ name'] 

A statement that lists the members of the sysadmin role 
EXEC sp_HelpSrvRoleMember sysadmin; 

Description 
• The sys.server_principals catalog view contains information about each principal 

defined on the server. To display information about just the server roles, use a 
SELECT statement with a WHERE clause that checks for a type of 'R'. 

• The sys.server_role_members catalog view contains a list of each role 
principal/member principal combination. To display information about the 
members of a server role, join this view with the sys.server_role_member view 
and restrict the results to the principal ID of the role whose members you want to 
display. 

• To display information about just the fixed server roles and members, you can use 
the sp_HelpSrvRole and sp_HelpSrvRoleMember system stored procedures. 

Figure 17-14 How to display information about server roles and role members 



564 Section 4 Advanced SQL skills 

How to work with the fixed database roles 

Figure 17-15 lists the fixed database roles and shows you how to work with 
them. These roles are added automatically to each new database you create. 
In addition, when you create a database, you 're automatically added to the 
db_owner database role. 

To add a member to a database role or to delete a member from a database 
role, you use the ALTER ROLE statement. This statement is similar to the 
ALTER SERVER ROLE statement you saw earlier in this chapter. The main 
difference is that you specify a database principal on the ADD MEMBER 
and DROP MEMBER clauses. A database principal can be a database user, a 
Windows user or group name, or a user-defined database role. You' ll see how 
to create user-defined database roles in a moment. For now, just realize that the 
ability to assign user-defined database roles as members of fixed database roles 
makes assigning permissions flexible and convenient. 

Like the ALTER SERVER ROLE statement, you can also use the ALTER 
ROLE statement to rename a user-defined database role. You' ll see an example 
of that in the next figure. 

In addition to the fixed database roles listed in this figure, SQL Server 
includes a special fixed database role named public. This role is included in 
every database, and every database user is automatically a member of this 
role. This role has no permissions by default, however, so you don' t need to be 
concerned about security violations due to the existence of this role. You can' t 
add or drop members from this role, nor can you delete the role from a database. 
If you want all users to have some basic permissions on a database, however, you 
can assign those permissions to this role. 



Chapter 17 How to manage database security 565 

The syntax of the ALTER ROLE statement 
ALTER ROLE role_name 
{ 

ADD MEMBER database_principal I 
DROP MEMBER d a tabase_principal I 
WITH NAME = new_name 
} 

A statement that assigns a user to a database role 
ALTER ROLE db_ owner ADD MEMBER JohnDoe; 

A statement that removes a user from a database role 
ALTER ROLE db_owner DROP MEMBER JohnDoe; 

The SQL Server fixed database roles 
Role Description 
db_owner 

db_accessadmin 

db_ securit yadmin 

db_ddla dmin 

db_datawriter 

db_ da t a r eader 

db_ denydat awriter 

db_ denydatareader 

db_b a ckupop era t o r 

Description 

Has all permissions for the database. 

Can add or remove login IDs for the database. 

Can manage object permissions, database permissions, roles, and role 
memberships. 

Can issue all DDL statements except GRANT, REVOKE, and DENY. 

Can insert, delete, or update data from any user table in the database. 

Can select data from any user table in the database. 

Can' t insert, delete, or update data from any user table in the database. 

Can't select data from any user table in the database. 

Can back up the database and run consistency checks on the database. 

• The fixed database roles are added to each database you create. You can add and 
delete members from these roles, but you can't delete the roles. 

• You use the ALTER ROLE statement to assign a user to or remove a user from a 
database role in the current database. You can also use this statement to change the 
name of a user-defined database role. 

• The database_principal parameter can be the name of a database user, a 
user-defined database role, or a Windows login or group. If you specify a Windows 
login or group that doesn't have a corresponding database user, a database user is 
created. 

• The users you specify are assigned to or removed from the role you name in the 
current database. Because of that, you should be sure to change the database 
context before executing one of these stored procedures. 

• SQL Server also provides a public database role. Any user that's not given specific 
permissions on a securable is given the permissions assigned to the public role. 

• Prior to SQL Server 2012, you could use the ALTER ROLE statement only to 
change the name of a user-defined database role. To add or drop a role, you used 
the sp_AddRoleMember or sp_DropRoleMember system stored procedure. 

Figure 17-1 5 How to work with the fixed database roles 



566 Section 4 Advanced SQL skills 

How to work with user-defined database roles 

Figure 17-16 presents the two SQL statements you use to create and delete 
user-defined database roles. If you compare these statements with the state
ments for creating and deleting user-defined server roles, you' ll see that they're 
almost identical. The only difference is that you can specify a user name or role 
on the AUTHORIZATION clause of the CREATE ROLE statement to indicate 
the owner of the role. If you omit this clause, the role is owned by the user who 
creates it. 

The CREATE ROLE statement creates a new role in the current database. 
The role name you specify on this statement must be unique: It can' t be the 
same as another user-defined database role, fixed database role, or database user 
name. The first statement in this figure, for example, creates a new role named 
InvoiceEntry. 

To grant permissions to a user-defined database role, you use the GRANT 
statement. The two GRANT statements in this figure, for example, grant the 
InvoiceEntry role INSERT and UPDATE permissions to the Invoices and 
InvoiceLineltems tables in the AP database. (You can assume that AP is the 
current database for these examples.) 

The next two statements in this figure assign two users to the new role. That 
means that these two users now have the INSERT and UPDATE permissions 
that were assigned to the role. Then, the next statement assigns the new role as 
a member of the db_datareader role. This role grants any member of the role 
permission to select data from any user table in the database. Since the member 
itself is a role, any member of that role now has permission to select data from 
the database. 

The next statement in this figure uses the ALTER ROLE statement to rename 
the InvoiceEntry role to InvEntry. Then, the last group of statements deletes the 
two members from this role and then deletes the role. 

As you can see, using roles can significantly simplify security management. 
If you assign roles as members of other roles, however, managing the various 
roles and permissions can quickly get out of hand. For example, suppose you 
added a new table to the AP database. Then, the two users that are members of 
the InvoiceEntry role would automatically be able to select data from that table 
because the InvoiceEntry role is a member of the db_datareader role. If that's 
not what you want, you'd need to remove InvoiceEntry from the db_datareader 
role and then grant SELECT permission to that role for each of the tables in the 
database that you want the users to have access to. If you plan to assign roles to 
other roles, then, you' ll want to plan it out carefully to avoid having to redesign 
the security in the future. 



Chapter 17 How to manage database security 567 

The syntax of the CREATE ROLE statement 
CREATE ROLE role_name [AUTHORIZATION owner_ name] 

The syntax of the DROP ROLE statement 
DROP ROLE role_name 

Statements that work with user-defined database roles 
A statement that creates a new user-defined database role 
CREATE ROLE InvoiceEntry; 

Statements that grant permissions to the new role 
GRANT INSERT, UPDATE 
ON Invoices 
TO InvoiceEntry; 

GRANT INSERT, UPDATE 
ON InvoiceLineitems 
TO InvoiceEntry; 

Statements that assign users to the new role 
ALTER ROLE InvoiceEntry ADD MEMBER JohnDoe; 
ALTER ROLE InvoiceEntry ADD MEMBER SusanRoberts; 

A statement that assigns the new role to a fixed database role 
ALTER ROLE db_datareader ADD MEMBER InvoiceEntry; 

A statement that changes the name of the new role 
ALTER ROLE InvoiceEntry WITH NAME = InvEntry; 

Statements that delete the new role 
ALTER ROLE InvEntry DROP MEMBER JohnDoe; 
ALTER ROLE InvEntry DROP MEMBER SusanRoberts; 
DROP ROLE InvEntry; 

Description 
• You use the CREATE ROLE statement to create a user-defined database role. Role 

names can be up to 128 characters in length and can include letters, symbols, and 
numbers, but not the backslash (\) character. 

• Once you create a database role, you can grant permissions to or revoke 
permissions from the role. Then, you grant or revoke permissions for every member 
of the role. 

• To add members to a user-defined database role, delete members from the role, or 
rename the role, you use the ALTER ROLE statement shown in figure 17-15. 

• You use the DROP ROLE statement to delete user-defined database roles. You can't 
delete a fixed database role or the public database role. 

• Before you can delete a database role, you must delete all of its members. To find 
out how to list the members of a role, see figure 17-17. 

Figure 17-16 How to work with user-defined database roles 



568 Section 4 Advanced SQL skills 

How to display information 
about database roles and role members 

As you might expect, most systems have many database users and many 
database roles. Some users belong to several roles, and some roles belong to 
other roles. For this reason, keeping track of security permissions can be a 
complex task. Since the Management Studio provides an easy way to examine 
current role settings, most security managers use this tool rather than using 
Transact-SQL. However, SQL Server provides some system stored procedures 
that can be helpful for managing database roles. Figure 17-17 presents two of 
these procedures. 

The sp_HelpRole procedure returns information about the database roles 
defined for the current database. If you code a valid role name as a parameter, 
this procedure returns information about that one role. Otherwise it returns 
information about all the roles in the database. That includes both user-defined 
database roles and fixed database roles. In most cases, you' ll use this function 
just to list the roles in a database, so you'll omit the role name. 

The information that's returned by this procedure includes the role name, the 
role ID, and an indication of whether or not the role is an application role. The 
role ID is the internal object identification number that's assigned to the role. An 
application role is a special kind of role that's typically used to provide secure 
access to an application program rather than a user. You'lllearn more about 
application roles later in this chapter. 

The sp_HelpRoleMember stored procedure returns information about the 
current members of a database role. If you include a role name as a parameter, 
it returns information about the members of that role. Otherwise, it returns 
information about the members in all the roles in the current database that have 
at least one member. 

In most cases, the information provided by the sp_HelpRole and 
sp_HelpRoleMember stored procedures is all you need. If you need additional 
information, though, you can find it in the sys.database_principals and 
sys.database_role_members catalog views. These catalog views are similar to 
the catalog views that you use to get information about server roles and role 
members as shown in figure 17-14. To learn more about these catalog views, see 
the SQL Server documentation. 



Chapter 17 How to manage database security 569 

How to display database role information 
The syntax for sp_HelpRole 
sp_HelpRole [[@rolename = ] 'database_role_ name'] 

A statement that lists the roles for the current database 
EXEC sp_HelpRole; 

The response from the system 
Role Name Roleld lsAppRole 

1 r.·~~.·.·:.·.·.·::.·.·.·::.·.·.·:::.··.·::.··:::.·.·::J 0 0 

2 Invoice Entry 6 0 

3 .App lnvoiceOue!y 8 

4 db_owner 16384 0 

5 db _accessaanm 16385 0 

6 db _securityadmin 16386 0 

7 db _ddladmin 16387 0 

8 db_backupopermor 16389 0 

9 db_datareader 16390 0 

10 db _datawriter 16391 0 

11 db _denydatareader 16392 0 

12 db_ denydatl!writer 16393 0 

How to display database role member information 
The syntax for sp_HelpRoleMember 
sp_HelpRoleMember [[@rolename = ] database_ role_name ' ] 

A statement that lists the members of the lnvoiceEntry role 
EXEC sp_HelpRoleMember InvoiceEntry; 

The response from the system 
DbRole MemberName MemberSID 

1 [0.~.~.~~:~.i. .. ] JohnDoe ()(7E388643D227244AA02DA421X:OC9978 
2 lnvoiceEntry MartinRey ()(4.33JE01D011965459F4.5A85D3F956780 

Description 

111 

• To display information about the roles defined in the current database, use the 
sp_HelpRole system stored procedure. If you don' t specify a role name on this 
procedure, information about all of the roles in the database is returned. 

• To display information about the members of a database role, use the 
sp_HelpRoleMember system stored procedure. If you don' t specify the role name 
on this procedure, information about the members of all of the roles in the database 
that have at least one member is returned. 

• You can display additional information about database roles using the 
sys.database_principals and sys.database_role_members catalog views. These 
views are similar to the sys.server_principals and sys.server_role_members views 
described in figure 17-14. 

Figure 17-1 7 How to display information about database roles and role members 



570 Section 4 Advanced SQL skills 

How to deny permissions granted 
by role membership 

A user's permissions include those that are granted explicitly to that user 
plus permissions that are granted by that user's membership in one or more 
roles. That means that if you revoke a permission from the user but the same 
permission is granted by a role to which the user belongs, the user still has that 
permission. Since this might not be what you want, SQL Server provides a 
DENY statement that you can use to deny a user permission that's granted by the 
user's membership in a role. This statement is presented in figure 17-18. 

The syntax of the DENY statement is similar to the syntax of the REVOKE 
statement. To deny object permissions, you specify the permissions you want to 
deny, the object to which you want to deny permissions, and the users and roles 
whose permissions you want to deny. To deny permissions to all of the objects 
in the schema, you specify the permissions you want to deny, the schema that 
contains the objects to which you want to deny permissions, and the users and 
roles whose permissions you want to deny. To deny database permissions, you 
specify the permissions you want to deny and the users and roles whose 
permissions you want to deny. And to deny server permissions, you specify the 
permissions you want to deny and the login IDs and roles whose permissions 
you want to deny. 

The two examples in this figure illustrate how this works. The script in the 
first example adds the user named MartinRey to the InvoiceEntry role. Since 
InvoiceEntry is a member of the db_datareaders fixed database role, MartinRey 
can retrieve data from any table in the database. This is illustrated by the 
successful completion of the SELECT statement that follows, which retrieves 
data from the GLAccounts table. 

The script in the second example uses a DENY statement to deny the user 
named MartinRey SELECT permission on the GLAccounts table. As a result, 
when this user executes a SELECT statement against the GLAccounts table, the 
system responds with an error. That's because the DENY statement specifically 
denied this user permission to retrieve data from this table even though that 
permission is granted by the db_datareaders role. 



Chapter 17 How to manage database security 571 

The syntax of the DENY statement for object permissions 
DENY per.mission [, ••• ] 
ON [schema_name.]object_name [(column [, ••• ])] 
TO database_principal [, ••• ] 
[CASCADE] 

The syntax of the DENY statement for schema permissions 
DENY per.mission [, ••• ] 
ON SCHEMA : : schema_name 
TO database_principal [, ••• ] 
[CASCADE] 

The syntax of the DENY statement for database permissions 
DENY per.mission [, ••• ] 
TO database_principal [, ••• ] 
[CASCADE] 

The syntax of the DENY statement for server permissions 
DENY per.mission [, ••• ] 
TO server_principal [, •• • ] 
[CASCADE] 

A script that assigns membership to the lnvoiceEntry role 
ALTER ROLE InvoiceEntry ADD MEMBER MartinRey; 

A SELECT statement entered by the user 
SELECT * FROM GLAccounts; 

The response from the system 
Account No Account Description 

1 r.·.;~~.·.:.·.·.·.:.·.·.·.:.·.·.·.:.·.·] Cash 
2 110 Accounts Receivable 

3 120 Book lnventol)' 

' 
A script that denies SELECT permission to GLAccounts 

DENY SELECT 
ON GLAccounts 
TO MartinRey; 

A SELECT statement entered by the user 
SELECT * FROM GLAccounts; 

The response from the system 
Server: Msg 229, Level 14, State 5, Line 1 
SELECT permission was denied on object 'GLAccounts', database 'AP', schema ' dbo'. 

Description 
• The permissions granted to individual users are granted by two sources: permissions 

granted to their user names or login IDs and permissions granted through any roles to 
which they are members. 

• The DENY statement differs from the REVOKE statement in that DENY prevents the 
permission from being granted by role membership. A denied permission can't be granted 
by role membership, but a revoked permission can. 

Figure 17-18 How to deny permissions granted by role membership 



572 Section 4 Advanced SQL skills 

How to work with application roles 

An application role is a special kind of user-defined database role. Unlike 
other roles, you can' t assign members to an application role. Instead, you 
activate the role for a connection. Then, the normal security for the login ID that 
was used to open the connection is replaced by the security that's specified by 
the application role. 

Figure 17-19 presents SQL statements and system stored procedures for 
working with application roles. To create a new application role, you use the 
CREATE APPLICATION ROLE statement. This statement requires a role name 
and a password. The first statement in this figure, for example, creates an 
application role named ApplnvoiceQuery that has a password of "appqrypw". 
You can also specify a default schema for an application role. 

After you create an application role, you can use it in GRANT, REVOKE, or 
DENY statements just as you would any other role. The second statement in this 
figure, for example, grants the application role permission to retrieve data from 
the Invoices table. 

To activate an application role, you execute the sp_SetAppRole procedure. 
Once activated, the connection is granted the permissions associated with the 
application role instead of the permissions associated with the login ID. Since 
the connection takes on an entirely new set of permissions, it's almost as if the 
user logged off and then logged back on under a different login ID. 

You can see how this works in the script in this figure. First, assume 
that the login ID that was used to log on to the server doesn' t have SELECT 
permission for the Invoices table. For this reason, the first SELECT statement 
in this script fails and returns an error message. Next, the script activates the 
ApplnvoiceQuery application role. Because this role has permission to select 
data from the Invoices table, the SELECT statement that follows now succeeds. 

Notice that you can also create a cookie when you activate an application 
role. This cookie is stored in an OUTPUT parameter that must be defined as 
VARBINARY(8000). If you create a cookie, you can use the sp_UnsetAppRole 
stored procedure to deactivate the application role. Otherwise, the role remains 
in effect until the connection is closed. 

Application roles are intended for use by application programs that manage 
their own security. Typically, an application like this will open a limited number 
of connections to a database and then share those connections among many 
application users. Then, the application role controls the application's access to 
the database, and the application controls the users that are allowed to use the 
connections it establishes. 

You can also use application roles to provide for more flexible security. 
For example, suppose a user needs to access a database both through the 
Management Studio and through an application. Also suppose that the user 
needs broader permissions to use the application than you want to give him 
through the Management Studio. To do that, you could assign the user standard 
permissions through his login ID and role memberships, and you could give the 
application enhanced permissions through an application role. 



Chapter 17 How to manage database security 573 

SQL statements for working with application roles 
The syntax of the CREATE APPLICATION ROLE statement 
CREATE APPLICATION ROLE role_name WITH PASSWORD = 'password' 

[, DEFAULT_SCHEMA = schem.a_name] 

The syntax of the DROP APPLICATION ROLE statement 
DROP APPLICATION ROLE role_name 

System stored procedures for working with application roles 
The syntax for sp_SetAppRole 
sp_ SetAppRole [@rolename =] 'role_name', 

[@password = ] 'password ' 
[, [@fCreateCookie = ] {TrueiFalse}] 
[, [@cookie = ] @cookie OUTPUT] 

The syntax for sp_UnsetAppRole 
sp_Un setAppRole @cookie 

Statements that create an application role and give it permissions 
CREATE APPLICATION ROLE AppinvoiceQuery WITH PASSWORD= 'AppQry2720'; 

GRANT SELECT 
ON Invoices 
TO AppinvoiceQuery; 

A script that tests the application role 
SELECT * FROM Inv oices ; 
EXEC sp_ SetAppRole AppinvoiceQuery, AppQry2720 ; 
SELECT * FROM Invoices; 

The response from the system 
Server: Msg 229 , Level 14 , State 5, Line 1 
SELECT permission was denied on object 'Invoices', database 'AP', schema ' dbo'. 

lnvoiceiD VendoriD Invoice Number Invoice Date Invoice Total Payment Total CreditT otal "' 
1 

!"., ........................ ! 
122 989319-457 2019-10-08 3813.33 3813.33 0.00 

'·····························' 

~II 2 2 123 263253241 2019-10-10 40.20 40.20 0.00 
~ 

Description 
• An application role is a special type of user-define database role. It can' t contain any 

members, but it's activated when a connection executes the sp_SetAppRole system 
stored procedure. 

• Once the connection activates an application role, the normal security for the login ID set 
by the permissions for the ID and its roles is ignored. Instead, the connection assumes a 
new security profile as defined by the permissions for the application role. 

• Once a connection activates an application role, the application role remains in effect 
until the connection is closed or until the sp_UnsetAppRole procedure is executed. To 
use sp_UnsetAppRole, you must create a cookie when you execute sp_SetAppRole. 

• Application roles are typically used by application programs that manage their own 
security. Then, those programs can control the users that can log on to the server. 

Figure 17-1 9 How to work with application roles 



57 4 Section 4 Advanced SQL skills 

How to manage security 
using the Management Studio 

Now that you understand how SQL Server security works, you're ready to 
learn how to manage security using the Management Studio. The topics that 
follow present the basic skills for doing that. If you want to learn additional 
skills, you shouldn't have any trouble doing that on your own. 

How to work with login IDs 

Figure 17-20 presents the General page of the Login- New dialog box. You 
use this page to specify the basic settings for a new login. To start, you select 
which type of authentication you want to use. If you select Windows 
authentication, you can click the Search button to the right of the Login N arne 
box to select a domain and a user or group. Alternatively, you can enter a domain 
name and a user or group name in the Login Name box. 

If you select SQL Server authentication, you must enter the new login name 
in the Login Name box. In addition, you must enter a password for the user 
in both the Password and Confirm Password boxes. You can also set the three 
password options shown here. These options are equivalent to the 
CHECK_POLICY, CHECK_EXPIRATION, and MUST_CHANGE options that 
you can include on the CREATE LOGIN statement. 

In addition to setting the authentication mode and password options, you can 
use this page to set the default database and the default language for the user. If 
you don' t select another database, the master database is used. And if you don't 
select a specific language, the default language for the server is used. 

After you create a login ID, you can modify it using the Login Properties 
dialog box. The General page of this dialog box is almost identical to the 
General page of the Login - New dialog box shown in this figure. The main 
difference is that you can't change the type of authentication that's used from 
this page. To do that, you have to delete the login ID and create a new one with 
the authentication you want. 

The Status page of the Login Properties dialog box lets you grant or deny 
a login ID permission to connect to SQL Server. It also lets you enable or 
disable a login ID. Although these options are similar, they differ in how they're 
implemented. 



Chapter 17 How to manage database security 575 

The General page of the Login - New dialog box 
Iii Login· N<w 

Select a-
/- Gerwal 

0 X 

1- Ser.ler Roles 
/- User Mapping 
1- Seaxables 
1- Status 

~a~e: ~~~--~--------------~ 

Connedion 

Ser.ler: 
local1ost\SQLEXPRESS 

Connection: 
murach'J>me 

vf '®w connect!OO o!ODe!!ies 

Pr09SS 

Ready 

Description 

0 ~ondows ao..thertication 

@ SOL Ser.ler authentication 

fassword : I·········· 
l::orfm password: 1··········1 

0 Enforce password policy 

0 Enforce password ey>ration 

0 ),!ser must change password at next logn 

0 Mapped to ce[lf~eate 

0 Mapped to asymmetric key 

0 Map to Credential 

Mapped Credertials 

Def.ut !latabase: 

Credential 

master 

I 
I 

8dd 

Provider 

l 
Rernol(.e 

OK Cancel 

• To create a new login ID, expand the Security folder for the server in the Object 
Explorer. Then, right-click the Logins folder and select New Login to display the 
Login - New dialog box. 

• Select the type of authentication you want to use and then specify the appropriate 
settings. The settings that are available depend on whether you select Windows or 
SQL Server authentication. 

• To modify a login ID, right-click the ID in the Object Explorer and select 
Properties to display the Login Properties dialog box. The General page of this 
dialog box lets you change all the settings for the login ID except for the login 
name and the authentication mode. 

• You can use the options on the Status page of the Login Properties dialog box to 
deny or grant a login ID permission to connect to SQL Server. You can also disable 
or enable a login ID. 

• To delete a login ID, right-click the ID in the Object Explorer and select Delete to 
display the Delete Object dialog box. Click the OK button to delete the login ID. 

Figure 17-20 How to work with login IDs 



576 Section 4 Advanced SQL skills 

How to work with the server roles for a login ID --
Figure 17-21 shows how to work with the server roles for a specific login 

ID. To do that, you use the Server Roles page of the Login Properties dialog box. 
This page lists all of the server roles and lets you select the ones you want the 
login ID assigned to. Note that this page lists user-defined server roles as well as 
fixed server roles. In this figure, for example, you can see the user-defined role 
named Consultant. 



Chapter 17 How to manage database security 577 

The dialog box for working with server roles 
Iii Login Prop<rti•s • JohnDo• 

Select a 
/- General 
/1 p,.:,_a;mm 
/- User Mapping 
1- Seaxables 
1- Status 

Connedion 

Server: 
local1ost\SQLEXPRESS 

Connection: 
murach'J>me 

vf '®w conn<et100 D!ODe!!ies 

Pr09SS 

R.ady 

Description 

Server role is used to grant server-wide seCl.lity privleges to a user. 

Server roles: 

0 btA<admil 
0Condant 
0 clx:reator 
0 cbkadmin 
0 processadmin 
0public 
0 secuitya<*nin 
0 serveradmn 
0 setupadmin 
0 sysadmin 

0 X 

OK Cancel 

• To work with the server roles for a login ID, right-click the ID in the Object 
Explorer and select Properties to display the Login Properties dialog box. Then, 
display the Server Roles page. The roles that the login ID is currently assigned to 
are checked in the list that's displayed. 

• To add or remove a login ID from a server role, select or deselect the role. 

Figure 17-21 How to work with the server roles for a login ID 



578 Section 4 Advanced SQL skills 

How to assign database access and roles 
by login ID 

Figure 17-22 presents the User Mapping page of the Login Properties dialog 
box. This page lists all of the databases on the server and all of the database 
roles defined for the highlighted database. You can use this dialog box to grant 
database access to a login ID and to assign a login ID membership in one or 
more database roles. 

To grant or revoke database access, simply select or deselect the check box 
to the left of the database name. If you grant a login ID access to a database, the 
name of the associated database user is displayed in the User column, and the 
default schema for the user is displayed in the Default Schema column. If no user 
is associated with the login ID, the user name is set to the login name by default 
and no default schema is specified. If that's not what you want, you can enter a 
different name for the user and select a schema. Then, when you click the OK 
button, a new user is created with the name and default schema you specified. 
This is a quick and easy way to create a user at the same time that you grant 
database access. 

If you want to create a user before granting access to one or more databases, 
you can do that using the Database User- New dialog box. To display this dialog 
box, expand the database in the Object Explorer, right-click on the Users folder, 
and select New User. 

After you grant a user access to a database, you can add that user as a 
member of any of the database roles defined for the database. That includes both 
the fixed database roles and any user-defined roles. To do that, just highlight the 
database and then select the check boxes to the left of the database roles to add 
the user to those roles. 



Chapter 17 How to manage database security 579 

The User Mapping page of the Login Properties dialog box 
Iii Login Prop<rti•s • JohnDo• 

Select a
/- General 
1- Ser.ler Roles 
/- User Mapping 
1- Seaxables 
1- Status 

Connedion 

Ser.ler: 
local1ost\SQLEXPRESS 

Connection: 
murach'J>me 

vf '®w conn<et100 o!ODe!!ies 

Pr09SS 

R.ady 

Users mappeq to this login: 

Map Database User 

0 [~~~~~~:~~:~::::::::::::::::=] h'lnDoe 
0 Ex~es 
0 master 

0 model 
0 msdb 

0 New_AP 

0 Produc:IOrders 

0 terTl><i> 

Database LOie membership for: AP 

0 cll_accessadmin 
0 cll_backupoperator 
0 <ll_datareader 
0 cll_datawriter 
0 <ll_ddadmil 
0 cll_denydatareader 
0 cll_denydatawlier 
0 cll_owner 
0 <ll_secuityadrnin 
0 ~woiceErtry 
0 public 

Def aUt Schema 

<l>o 

0 X 

OK Cancel 

How to grant or revoke database access for a user 
• To grant or revoke access to a database, display the User Mapping page of the 

Login Properties dialog box. Then, select or deselect the Map check box for that 
database. 

• If you grant access to a login ID that's not associated with a database user, a user is 
created automatically when you complete the dialog box. By default, the user name 
is set to the login ID, but you can change this name in the User column. 

• By default, the default schema for a new user is set to dbo. If you want to specify 
a different schema, click the button with the ellipsis on it in the Default Schema 
column and select the schema from the dialog box that's displayed. 

How to add or remove a user from a database role 
• If the user has access to a database, you can add or remove the user from the 

database roles for that database. To do that, highlight the database to display the 
database roles in the lower portion of the dialog box. Then, select or deselect the 
roles. 

Figure 17-22 How to assign database access and roles by login ID 



580 Section 4 Advanced SQL skills 

How to assign user permissions 
to database objects 

To set the permissions for a user, you use the Securables page of the 
Database User dialog box shown in figure 17-23. The top of this dialog box lists 
the securables for which you can set permissions. When you first display this 
page, this list is empty. Then, you can use the Search button to add the 
securables you want to work with. The dialog box that's displayed when you 
click this button lets you add specific database objects, all the objects of one or 
more types, or all the objects in a selected schema. In this figure, three tables in 
the dbo schema are included in the list. 

Once you add objects to the list of securables, the permissions for the 
highlighted securable are displayed in the list at the bottom of the page. Then, to 
grant the user a permission, you can select the Grant option for that permission. 
When you do that, you can also select the With Grant option to give the user 
permission to grant the same permission to other users. 

If the user already has permission to an object, you can revoke that 
permission by deselecting the Grant option. You can also deny the user a 
permission that's granted by membership in a role by selecting the Deny option 
for the permission. 

If you highlight a table, view, or table-valued function and then highlight 
the Select, References, or Update permission, you'll notice that the Column 
Permissions button becomes available. If you click on this button, a dialog box is 
displayed that lists the columns in that table, view, or function. You can use this 
dialog box to set the permissions for individual columns. 

After you set the explicit permissions for a user from this dialog box, you 
might want to know what the user permissions are when the explicit permissions 
are combined with any permissions granted by role membership. To do that, you 
can highlight a securable and then display the Effective tab. This tab lists the 
permissions the user has for the securable, including column permissions for a 
table, view, or table-valued function. 



Chapter 17 How to manage database security 581 

The Securables page of the Database User dialog box 

iii Data bas< Us<r • JohnDoo 

Seleclallilgl! 

" General 
1- Owned Schemas 
1- Merrbershp 
1- Secuables 
1- Extended Properties 

Conneclion 

Server. 
~aho-\SQLEXPRESS 

Connection: 
murach\Ame 

'f'i \1ew COMec!ion Drwerties 

Pr119"11S 

Ready 

Description 

0 X 

.D' Scr1X T @ ~ 

t Useruame: r-1Jom-Do<----------------, 

~abies: 

Schema 

!mdbo 
Name 

lnvoicel.Jnekems 

femissions lor dbo.Vendoo: 

Explicl Effective 

Pemission 

Aller 

Cortrol 

Delete 

Insert 

References 

Grantor 

Type 

Table 

Table 

Table 

~UIM Pennissions ... 

Grant With Grant Deny " 

D D D 
D D D 
D D D 
D D D 
D D D 

~~·--~~===========l~~=~~·:~~~=·~=~=~-~0~~--0~ v 
< ~ > 

OK Cancel 

• To display the Database User dialog box, expand the database in the Object 
Explorer, expand the Security and Users folders, right-click the user name, and 
select Properties. 

• To work with the permissions for a user, display the Securables page. Then, click 
the Search button and use it to select the securables you want to work with. 

• To grant the user permission to a securable, select the securable and then select the 
Grant option for the permission. You can also select the With Grant option. 

• To revoke the user permission to a securable, deselect the Grant option. 

• To deny the user permission to a securable, select the Deny option. 

• To set the permissions for the columns in a table, view, or table-valued function, 
highlight the securable and permission. Then, click the Column Permissions button. 

• The permissions that are available change depending on the type of securable that's 
selected. 

• To display the combination of the permissions granted with this dialog box and the 
permissions granted through roles to a securable, display the Effective tab. 

Figure 17-23 How to assign user permissions to database objects 



582 Section 4 Advanced SQL skills 

How to work with database permissions 

To work with the database permissions for the users and roles in a database, 
you use the Permissions page of the Database Properties dialog box shown in 
figure 17-24. As you can see, this page is similar to the Securables page of the 
Database User dialog box you saw in figure 17-23. Instead of listing securables, 
however, it lists users and roles. And instead of listing object permissions, it lists 
database permissions. Then, you can select a user or role and grant, revoke, or 
deny permissions to perform specific database operations. 



Chapter 17 How to manage database security 583 

The Permissions page of the Database Properties dialog box 

iii Databaso Prop<rti<s • AP 

Select a-
/- General 
1- Fles 

~- ~· 
1- D!Xions 
1- 0.Mge Trackin<;l 
1- Permissions 
1- Extended Properties 
1- Ouety Store 

Connedion 

Server: 
local1ost\SQLEXPRESS 

Connection: 
murach'J>me 

vf '®w connect!OO D!ODe!!ies 

Pr09SS 

Ready 

Description 

S.erver name: 

View server oermissjons 

Database 11ame: 

l.!sers or rnles: 

Name 

I !:J ~lnvoiceOuety 

1:~~.1 ::.Ert~ 
~ MartnRey 

:i pubic 

f'.enrissions for Joi-n Doe: 

Explicit 8fective 

Permssion 

Create syrronetnc ... 

Create synonym 

Create table 

Create type 

Create view 

Create XML sche ... 

Delete 
~-... 

Grantor 

~MAl~LEXPRESS 

lAP 

0 
0 
0 
0 

[:J~[~J ---- 0 

0 
n 

WlhGrant 

0 
0 
0 
0 
0 
0 
0 
n 

0 

5§,arch ... 

T~ 

lwhcation role 

Database role 

User 
User 

Database role 

~ 

0 
0 
0 
0 
0 
0 
0 
n 

OK Cancel 

X 

l 

• To display the permissions for a database, right-click the database in the Object 
Explorer, select Properties to display the Database Properties dialog box, and 
display the Permissions page. 

• By default, all database users except for guest are included in the Users or roles list 
To add the guest user or any system or user-defined roles, click the Search button 
and select the users and roles from the dialog box that's displayed. 

• To grant a user or role permission to perform a database operation, select the user 
or role and then select the Grant option for the permission. You can also select the 
With Grant option to allow the user or role to grant the permission to other users 
and roles. 

• To revoke a user or role permission to perform a database operation, deselect the 
Grant option. 

• To deny the user permission to a database operation, select the Deny option. 

Figure 17-24 How to work with database permissions 



584 Section 4 Advanced SQL skills 

Perspective 
Although managing security on a server can be complex, SQL Server 

provides useful tools to simplify the job. In this chapter, you've learned how to 
manage security for your server and database using both Transact-SQL and the 
Management Studio. Once you're familiar with both of these techniques, you 
can use the one that's easiest for the security task at hand. 

Unfortunately, the techniques presented in this chapter don't secure your 
data when it's "at rest" on a hard drive that contains the data files for the 
database. In that case, if a thief steals the database files, he or she can attach the 
data files to a different server and gain access to the data. To close this security 
hole, you can encrypt the data files and store the encryption key in a different 
location. This encrypts every column of every table. That way, even if the data 
files are stolen, the thief won' t be able to open them without the key. To encrypt 
data files, you can use Transparent Data Encryption (TDE). TDE makes it easy 
to encrypt the entire database without affecting existing applications. For more 
information about TOE, you can refer to the SQL Server documentation. 

However, TOE doesn' t protect your data when it's "alive" in a database 
that's running on a server or when it's "in transit" between the client and the 
server. To do that, SQL Server 2016 introduced the Always Encrypted feature. 
This feature encrypts data for sensitive columns such as columns that store 
credit card numbers. When you use it, the client application uses an enhanced 
library to encrypt this data when it's "in transit" . Then, this encrypted data 
is used by the database when it's "alive" and "at rest" . As a result, the data 
is always encrypted. Since the encryption key is stored on the client, the 
unencrypted data is only available to the users of the client application, not 
to database administrators. This eases security concerns when storing data in 
a database that's running in the cloud. For more information about Always 
Encrypted, you can refer to the SQL Server documentation. 

Terms 

login 10 
perrrusswns 
object permissions 
schema permissions 
database permissions 
server permissions 
role 
group 
principal 
securable 
authentication mode 

Windows authentication 
SQL Server authentication 
strong password 
scope qualifier 
fixed role 
fixed server role 
user-defined server role 
fixed database role 
user-defined database role 
application role 



Chapter 17 How to manage database security 585 

Exercises 
1. Write a script that creates a user-defined database role named PaymentEntry 

in the AP database. Give UPDATE permission to the new role for the Invoices 
table, UPDATE and INSERT permission for the InvoiceLineitems table, and 
SELECT permission for all user tables. 

2. Write a script that (1) creates a login ID named "AAaron" with the password 
"AAar99999"; (2) sets the default database for the login to the AP database; 
(3) creates a user named "Aaron" for the login; and (4) assigns the user to the 
PaymentEntry role you created in exercise 1. 

3. Write a script that creates four login IDs based on the contents of a new table 
named NewLogins: 

CREATE TABLE NewLogins 
(LoginName varchar(128)); 
INSERT NewLogins 
VALUES ('BBrown'), ('CChaplin'), ('DDyer'), ('EEbbers'); 

Use dynamic SQL and a cursor to perform four actions for each row in this 
table: (1) create a login with a temporary password that's based on the first 
four letters of the login name followed by "99999"; (2) set the default database 
to the AP database; (3) create a user for the login with the same name as the 
login; and (4) assign the user to the PaymentEntry role you created in exercise 
1. 

4. Using the Management Studio, create a login ID named "FFalk" with the 
password "FFal99999," and set the default database to the AP database. Then, 
grant the login ID access to the AP database, create a user for the login ID 
named "FFalk", and assign the user to the PaymentEntry role you created in 
exercise 1. 

Note: If you get an error that says "The MUST_ CHANGE option is not 
supported", you can deselect the "Enforce password policy" option for the 
login ID. 

5. Write a script that removes the user-defined database role named 
PaymentEntry. (Hint: This script should begin by removing all users from this 
role.) 

6. Write a script that (1) creates a schema named Admin, (2) transfers the table 
named ContactUpdates from the dbo schema to the Admin schema, (3) 
assigns the Admin schema as the default schema for the user named Aaron 
that you created in exercise 2, and ( 4) grants all standard privileges except for 
REFERENCES and ALTER to AAaron for the Admin schema. 





18 

How to work with XML 
In this chapter, you'lllearn how to use SQL Server to work with XML data. 
That includes using the xml data type, using an XML schema to validate the 
data that's stored in an xml type, and converting relational data to XML and 
XML to relational data. These features make it easier to work with XML. 

An introduction to XML ...................................................... 588 
An XML document.. ........... ...... ........ .......................... ...... .... ........ .... ........... 588 
An XML schema ...... ..... ................... ...... ...... .... ..... ............... ................ ...... . 590 

How to work with the xml data type ................................. 592 
How to store data in the xml data type ........................ .... ...... ...... .... ............ 592 
How to work with the XML Editor ...................................................... ....... 594 
How to use the methods of the xml data type ........ ..... .... ............................ 596 
An example that parses the xml data type ................................................. 600 
Another example that parses the xm I data type .............. ..... ............. .... ..... 602 

How to work with XML schemas ....................................... 604 
How to add an XML schema to a database .. ......... .... .. .. .. ...... ... .... ... .. ......... 604 
How to use an XML schema to validate the xml data type .............. .... ..... 606 
How to view an XML schema .. .... .... .. .. .. .. .................... .... .... .... ........ ........ .. 608 
How to drop an XML schema .. .... .... .... .. ...... .. .. .. .... ...... .... .... .... .... .... .... .... .. 608 

Two more skills for working with XML ............................. 610 
How to use the FOR XML clause of the SELECT statement ..................... 610 
How to use the OPENXML statement.. ... .... .. .. .. .... .......... .... ............ ..... ...... 614 

Perspective ......................................................................... 616 



588 Section 4 Advanced SQL skills 

An introduction to XML 
Before you learn how to use SQL Server to work with XML, you need to 

understand some basic XML concepts. In particular, you need to understand how 
XML can be used to structure data, and you need to understand how an XML 
schema can be used to validate XML data. 

An XML document 

XML (Extensible Markup Language) can be used to create an XML 
document that contains data that has been structured with XML tags. For 
example, figure 18-1 shows an XML document that contains data about an event 
that caused a DDL trigger to fire. You learned how to return an XML document 
like this one in chapter 15 using the EVENTDATA function within a DDL 
trigger. 

Within an XML document, an element begins with a start tag and ends with 
an end tag. In this figure, for example, the <EventType> tag marks the start of 
the EventType element, and the </EventType> tag marks the end of this element. 

Within a start tag, one or more attributes can be coded. In this figure, for 
example, the start tag for the SetOptions element contains five attributes: 
ANSI_NULLS, ANSI_NULL_DEFAULT, ANSI_PADDING, 
QUOTED_IDENTIFIER, and ENCRYPTED. Here, each attribute consists of an 
attribute name, an equal sign, and a string value in quotes. 

Although values can be assigned to attributes, a value can also be coded 
between the start and end tags for an element. That's the case with most of the 
elements in this figure. The EventType element, for example, contains the string 
value "CREATE_ TABLE." 

Elements can also contain other elements. An element that's contained 
within another element is known as a child element. Conversely, the element that 
contains a child element is known as the child's parent element. In this figure, 
for example, the SetOptions element is a child element of the TSQLComrnand 
element, and the TSQLCommand element is the parent element of the 
SetOptions element. Although it's not shown here, a child element can also 
repeat within a parent element. 

The highest-level element in an XML document is known as the root 
element. In this fi gure, the EVENT_INSTANCE element is the root element. A 
well-formed XML document can have only one root element. 



An XML document 
<EVENT_ INSTANCE> 

<EventType>CREATE_TABLE</EventType> 
<PostTime>2020-02-10T12:38:23.147</PostTime> 
<SPID>54</SPID> 
<ServerName>MMA17\SQLEXPRESS</ServerName> 
<LoginName>murach\anne</LoginName> 
<UserName>dbo</UserName> 
<DatabaseName>AP</DatabaseName> 
<SchemaName>dbo</SchemaName> 
<ObjectName>VendorsTest</ObjectName> 
<ObjectType>TABLE</ObjectType> 
<TSQLCommand> 

Chapter 18 How to work with XML 589 

<SetOptions ANSI_ NULLS="ON" ANSI_ NULL_ DEFAULT="ON" ANSI_ PADDING="ON" 
QUOTED_ IDENTIFIER="ON" ENCRYPTED="FALSE" /> 

<CommandText> 
CREATE TABLE VendorsTest 
(VendoriD int, VendorName varchar(SO)); 

</CommandText> 
</TSQLCommand> 

</EVENT_ INSTANCE> 

Description 

• XML (Extensible Markup Language) is used to structure data using XML tags. An 
XML tag begins with< and ends with>. 

• An XML document contains data that has been structured with XML tags. 

• An element begins with a start tag and ends with an end tag. The start tag provides 
the name of the element and can contain one or more attributes. An attribute 
consists of an attribute name, an equal sign, and a string value in quotes. The end 
tag repeats the name, prefixed with a slash (/). 

• Text can also be coded between an element's start and end tags. This text is referred 
to as the element's content. 

• Elements can contain other elements. An element that's contained within another 
element is known as a child element. The element that contains a child element is 
known as the child's parent element. Child elements can also repeat within a parent 
element. 

• The highest-level element in an XML document is known as the root element. An 
XML document can have only one root element. 

• The EVENTDATA function described in chapter 15 returns an xml data type that 
contains an XML document like the one shown in this figure . 

Figure 18-1 An XML document 



590 Section 4 Advanced SQL skills 

An XML schema 

The XML Schema Definition (XSD) language can be used to define an XML 
schema, which is a set of rules that an XML document must follow to be valid. 
Although there are several languages for defining XML schemas, the XSD 
language is the only one that you can use with SQL Server. Figure 18-2 shows 
an XML schema that can be used to validate the XML document shown in figure 
18-1. In addition, you may notice that the schema itself is an XML document. 

To start, this XML schema uses the schema element to specify some attributes 
that apply to the entire schema. That includes the xmlns attribute that defines the 
prefix for the XML namespace that's used throughout the rest of the schema to 
qualify the name of each element. Then, this schema defines each of the elements 
and attributes that are used by the XML document shown in fi gure 18-1. This 
definition specifies whether an element can contain other elements, the sequence 
of the elements, and the name and data type of each element. 

Unfortunately, the details of the XSD language are beyond the scope of 
this book. As a result, the examples in this chapter only use the XML schema 
presented in this figure. Fortunately, if you' re working with an industry standard 
XML document, an XSD has probably already been created for it. As a result, 
you may be able to get the XSD from a colleague, or you may be able to find the 
XSD by searching the Internet. 

If you need to create an XML schema for an XML document, you can use the 
Management Studio's XML Editor to generate one as described in figure 18-4. 
Then, if necessary, you can edit the generated XML schema so it 's appropriate 
for your XML document. To do that, however, you may need to learn more about 
the XSD language by searching the Internet or by getting a book about working 
with XML. 



Chapter 18 How to work with XML 

An XML Schema Definition (XSD) 
<?xml version="l.O" encoding="utf-8"?> 
<xs:schema attributeFormDefault="unqualified" 
elementFormDefault="qualified" 
xmlns:xs="http://www.w3.org/2001/XMLSchema" > 

<xs:element name="EVENT_ INSTANCE"> 
<xs:complexType> 

<xs:sequence> 
<xs:element name="EventType" type="xs:string" /> 
<xs:element name="PostTime" type="xs:dateTime" /> 
<xs:element name="SPID" type="xs:unsignedByte" /> 
<xs:element name="ServerName" type="xs:string" /> 
<xs:element name="LoginName" type="xs:string" /> 
<xs:element name="UserName" type="xs:string" /> 
<xs:element name="DatabaseName" type="xs:string" /> 
<xs:element name="SchemaName" type="xs:string" /> 
<xs:element name="ObjectName" type="xs:string" /> 
<xs:element name="ObjectType" type="xs:string" /> 
<xs:element name="TSQLConunand"> 

<xs:complexType> 
<xs:sequence> 

<xs:element name="SetOptions"> 
<xs:complexType> 

<xs:attribute name="ANSI_NULLS" 
type="xs:string" use="required" /> 

<xs:attribute name="ANSI_NULL_DEFAULT" 
type="xs:string" use="required" /> 

<xs:attribute name="ANSI_PADDING" 
type="xs:string" use="required" /> 

<xs:attribute name="QUOTED_ IDENTIFIER" 
type="xs:string" use="required" /> 

<xs:attribute name="ENCRYPTED" 
type="xs:string" use="required" /> 

</xs:complexType> 
</xs:element> 
<xs:element name="ConunandText" type="xs:string" /> 

</xs:sequence> 
</xs:complexType> 

</xs:element> 
</xs:sequence> 

</xs:complexType> 
</xs:element> 

</xs:schema> 

Description 
• The XML Schema Definition (XSD) language can be used to define an XML schema, 

which is a set of rules that an XML document must follow to be valid. 

• You may be able to find an XSD for some types of XML documents by searching 
the Internet. If not, you can use the Management Studio's XML Editor to generate 
an XSD for an XML document as described in figure 18-4. The details for working 
with the XSD language are beyond the scope of this book. 

• SQL Server can use the XML schema shown in this figure to validate the XML 
document shown in figure 18-1. 

Figure 18-2 An XML schema 

591 



592 Section 4 Advanced SQL skills 

How to work with the xml data type 
Now that you understand how XML works, you're ready to learn how to 

work with the xml data type. To get started quickly, the following topics show 
how to use the xml type without an XML schema. Since that means that the data 
that's stored in the xml type isn' t validated, this data is known as untyped XML. 

How to store data in the xml data type 

Figure 18-3 shows how to store XML data in the xml type. For the most 
part, these examples show that you can use the xml data type just as you use 
most other SQL Server data types. In particular, you can use it as the type for a 
column in a table or a variable in a script, procedure, function, or trigger. 

The first example shows how you can use the xml type to specify the data 
type for a column in a table. Here, the CREATE TABLE statement is used to 
create a table named DDLActivityLog that has two columns. The first column, 
named EventiD, is an identity column that stores an int value. The second 
column, named EventData, stores XML data. 

The second example shows a DOL trigger that inserts XML data into the 
second column of the DDLActivityLog table. Since a trigger like this one was 
described in chapter 15, you should understand that this trigger fires any time 
a CREATE TABLE or DROP TABLE statement is executed on the current 
database. After the AS keyword, the first statement declares a variable named 
@ EventData with the xml type. Then, the second statement uses the 
EVENTDATA function to store an XML document like the one shown in figure 
18-1 in the @EventData variable. Finally, the third statement uses an INSERT 
statement to insert a row with the data in the @EventData variable into the 
DDLActivityLog table. 

The third example shows a CREATE TABLE statement that fires the trigger 
in the second example. This statement creates a table named VendorsTest that 
has two columns. 

The fourth example shows a SELECT statement that retrieves all rows and 
columns from the DDLActivityLog table. The result set contains a single row 
that was inserted when the VendorsTest table was created. The first column is the 
identity value that's automatically generated, and the second column is the XML 
document that was returned by the EVENTDATA function. 

The fifth and sixth examples show two INSERT statements that can be used 
to insert a row into the DDLActivityLog table. These statements show that SQL 
Server can implicitly cast a string to the xml type. As a result, when you're 
working with untyped XML, it's possible to insert any string into the xml type, 
regardless of whether the string contains well-formed XML. If you want SQL 
Server to enforce a specified schema for an xml type, you can use the techniques 
that are described later in this chapter. 



A log table with a column of the xml data type 
CREATE TABLE DDLActivityLog 
(EventiD int NOT NULL IDENTITY PRIMARY KEY, 
EventData xml NOT NULL); 

Chapter 18 How to work with XML 593 

A trigger that inserts an XML document into the xml column 
CREATE TRIGGER Database_CreateTable_ DropTable 

ON DATABASE 
AFTER CREATE_ TABLE, DROP_ TABLE 

AS 
DECLARE @EventData xml; 
SELECT @EventData = EVENTDATA(); 
INSERT INTO DDLActivityLog VALUES (@EventData); 

A CREATE TABLE statement that fires the trigger 
CREATE TABLE VendorsTest 
(VendoriD int, VendorName varchar(SO)); 

A SELECT statement that retrieves data from the table 
SELECT * FROM DDLActivityLog; 

The result set 
EventiD Event Data 

1 [_'_!·.·.·.·~·.·.·.·~··.·~~··.·~~] <EVENT INSTANCE><EventType>CREATE TABLE</EventTvoe>• PostTII11e>2020-02·10T15 

An INSERT statement that inserts a row into the table 
INSERT INTO DDLActivityLog VALUES ('<root><elementl>test</elementl></root>'); 

Another INSERT statement that inserts a row into the table 
INSERT INTO DDLActivityLog VALUES ('this is not xml'); 

Description 
• You can use the xml data type just as you use most other SQL Server data types. In 

particular, you can use it as the type for a column in a table or a variable in a script, 
procedure, function, or trigger. 

• Within a DDL trigger, the EVENTDATA function returns an XML document like 
the one shown in figure 18-1. 

• The xml type is implicitly cast to a string when necessary and a string is implicitly 
cast to the xml type. 

Figure 18-3 How to store data in the xml data type 



594 Section 4 Advanced SQL skills 

How to work with the XML Editor 

When you use the Query Editor to run a query that returns an xml type, the 
Management Studio displays the result set as it normally does. However, the 
XML data is displayed in blue with underlining to indicate that it is a link. If 
you want to view the complete XML data, you can click on this link. Then, the 
XML data will be displayed in the Management Studio's XML Editor as shown 
in figure 18-4. 

Although the XML Editor works much like the Query Editor, its IntelliSense 
and color coding are designed to work with XML. In addition, you can use 
the tree that's displayed to the left of the XML to collapse or expand parent 
elements. As a result, it's easy to edit the XML whenever that's necessary. 

Once you display an XML document in the XML Editor, you can generate 
an XML schema for the document by clicking on the Create Schema button 
in the XML Editor toolbar. If this toolbar isn' t displayed, you can display it as 
described in this figure. When you click the Create Schema button, the XML 
Editor will generate the XSD for the current XML document and display it in a 
new window. Then, you can add this schema to the database so you can use it to 
validate other instances of the current XML document. You' lllearn how to add 
an XML schema to a database later in this chapter. 

You can also use the XML Editor to work with existing XML files and 
related files such as XSD files. To do that, just use the Management Studio 
to open these files. When you do, the Management Studio will automatically 
display the file in the XML Editor. 



Chapter 18 How to work with XML 

A result set that returns XML data 
EventiD Event Oat~ 

1"'i ..................... ] <EVENT INSTANCE><EventTvoe>CREATE TABLE<IEventTvoe><Postl1me>202().02-10T15 
t ...... .................... : 

An xml data type displayed in the Management Studio's XML Editor 
L ,J Event0ata6.xml -Microsoft SQL Server Management Studio Outek Launch (Ctri•Q) p - c:l X 

file J;dit ~iew !'.roject Iools Window I:Jelp 

0 . 

Object Explorer • ~ X EventData6.xml ..P X Frgure 18-03d.sql • .. (murach\Anne (61)) • 

Connect · 'f ' 'f G -Jo. 

8 l5 localhost\ SQLEXPRESS (SQL Server 15.( 

IB Databas6 

IB Security 

IB Server Objects 

IB Replication 

IB PolyBase 
00 Management 
IB EJ XEvent Profiler 

• ~EVHIT_INSTANCE> 
< EventType >CREATE_ TABLE< / EventType > 
<Pos tTiiOe>2020·02 ·10T15: 12: 30. 333</PostTime> 
<SPID>71</SPID> 
<ServerName >lf-V<17\ SQLEXPRESS< / Serverflame > 
<LoginName>murach\anne</Logint~ame> 

<UserNar~e>dbo</UserNaR> 

<Databaset4ame>AP</Oatabaset4aM> 
<Schefl'!at~ame>dbo</SchelllaName> 

<Obj ec Ula""' >Vendors Test </Obj ec Ula""' > 
<Obj ec tType >TABLE </Obj ec tType > 

t;J <TSQLCOtlllland> 
<SetOptions AIISI_UULLS• "ON" AIISI_NULL_OEFAUL T• "ON" AIISI_PAOOIIIG• "ON" QUOTED_IOE~ 

,:] <CoonandText>CREATE TABLE Vendor sTest 

t 
(Vendor i O int, Vendorflame varchar(50))</COIIIIIandText> 

</TSQLCOtlllland> 
</EVEUT_INSTANCE> 

0 Ready Ln 1 Coil Ch 1 INS 

Description 
• To view XML in the XML Editor, run a query that returns the XML that you want 

to view and then click on the cell that contains the XML. When you do, the XML 
will be displayed in the XML Editor. 

• To work with the data in the XML Editor, you can display the XML Editor toolbar. 
To do that, right-click on a blank space in the toolbar area and select XML Editor. 

• To create an XML Schema Definition for an XML document, display the XML 
document in the XML Editor and then click on the Create Schema button in the 
XML Editor toolbar. 

Figure 18-4 How to work with the XML Editor 

595 



596 Section 4 Advanced SQL skills 

How to use the methods of the xml data type 

After you store data in the xml type, you can use the five methods shown in 
figure 18-5 to work with that data. In case you're not familiar with methods, you 
can use them to perform operations on objects. In this case, you can use them 
to perform operations on an xml data type. To call a method for an xml type, 
you code the column or variable name that holds the type, followed by a period, 
followed by the name of the method, followed by a set of parentheses. Within 
the parentheses, you code the arguments that are required for the method. 

Of the five methods shown here, four take a string argument that specifies an 
XQuery. XQuery is a language that's designed to query an XML document. The 
only method that doesn' t take an XQuery string as an argument is the modify() 
method. This method takes a string argument that specifies an XML Data 
Manipulation Language (XML DML) statement. XML DML is a language that's 
designed to insert, update, or delete nodes from an XML document. 

The first example shows how to use the query() method to return an xml 
type that contains the SetOptions element. To accomplish this, the XQuery 
argument specifies the root element of the XML document, followed by the 
TSQLCommand element, followed by the SetOptions element. Note that 
since the TSQLCommand element contains a single SetOptions element, it's 
not necessary to code an attribute number. Because of that, you don' t need to 
enclose the X Query path in parentheses. However, if two or more SetOptions 
elements were included within the TSQLCommand element and you wanted to 
retrieve only the first element, you could do that by enclosing the XQuery path 
in parentheses and using square brackets to specify the element number like this: 

1 {/EVENT_ INSTANCE/ TSQLCommand/SetOptions) [ 1 ] 1 

You can use the same coding technique with attributes, although a well-formed 
XML document shouldn' t have more than one attribute with the same name. 

The second example shows how to use the exist() method to return an int 
value that indicates whether the element or attribute specified by the XQuery 
exists and contains data. To start, this example declares a variable of the xrnl 
type and uses a SELECT statement to store an XML document in this variable. 
Then, it uses an IF statement to check if the variable has an EventType element 
that contains data. To accomplish this, the IF statement checks if the int value 
returned by the exist() method is equal to 1. If so, it prints a message that 
indicates that the EventType element exists and contains data. 

If you want to check an attribute instead of an element, you can use the same 
skills. However, you must prefix the name of the attribute with an at sign (@) 
like this: 

I F ~EventData . exist( 
1 /EVENT_ I NSTANCE/TSQLCommand/SetOptions/@ANSI_ NULLS 1

) = 1 



Chapter 18 How to work with XML 597 

The methods of the xml type 
Method Description 

query(XQuery) 

exist(XQuery) 

value(XQuery, SqlType ) 

modify(XML_ DML) 

nodes(XQuery) AS Table (Column ) 

The simplified XQuery syntax 

Perform s an XQuery and returns an xml type that 
contains the XML fragment specified by the XQuery. 

Returns a value of 1 if the X Query returns a result set. 
Otherwise, returns a value of 0. 

Performs an X Query and returns a scalar value of the 
speci fied SQL data type. 

Uses an XML DML statement to insert, update, or 
delete nodes from the current xml type. 

Splits the nodes of the current xrnl data type into 
rows. You can often use the OPENXML statement 
described in figure 18- 12 to achieve similar results. 

{/rootElement/element1/element2/@attribute)[element0rAttributeNumber] 

A SELECT statement that uses the query() method 
SELECT EventData.query('/EVENT_ INSTANCE/TSQLCommand/SetOptions') 

AS SetOptions 
FROM DDLActivityLog 
WHERE EventiD = 1; 

The XML data that's returned 
<SetOptions ANSI_ NULLS="ON" ANSI_ NULL_DEFAULT="ON" ANSI_PADDING="ON" 

QUOTED_ IDENTIFIER="ON" ENCRYPTED= "FALSE" / > 

A script that uses the exist() method 
DECLARE @EventData xml; 
SELECT @EventData = EventData 
FROM DDLActivityLog 
WHERE EventiD = 1; 

IF @EventData . exist('/EVENT_ INSTANCE/EventType') = 1 
PRINT 'The EventType element exists and contains data.'; 

The response from the system 
The EventType element exists and contains data. 

Rules for coding an XQuery 
• Start each XQuery with a front slash (/). 

• Use a front slash (/) to separate elements and attributes. 

• Use an at symbol (@) to identify attributes. 

• When necessary, use square brackets ([]) to specify an element or attribute instance. 

• If you specify an element or attribute instance, you must code parentheses around 
the path specification for the element or attribute. Otherwise the parentheses are 
optional. 

Figure 18-5 How to use the methods of the xml data type (part 1 of 2) 



598 Section 4 Advanced SQL skills 

The third example shows how to use the value() method to return the value 
of the specified element or attribute. To do that, you use the first argument of 
the value() method to specify the XQuery string for the element or attribute. 
Then, you use the second argument to specify the SQL Server data type that you 
want to return. In this figure, for example, the varchar data type is used to store 
the data for the EventType element and for the ANSI_NULLS attribute of the 
SetOptions element. Since the value() method returns a single value, this method 
requires its XQuery argument to specify the element or attribute number within 
square brackets, even if the xml type contains only one attribute or element with 
the specified name. As a result, the XQuery path must be enclosed in parentheses 
whenever you use the value() method. 

The fourth example shows how to use the modify() method to update the 
data that's stored in an xml type. To start, this example declares a variable of 
the xml type and uses a SELECT statement to store an XML document in this 
variable. Then, it uses a SET statement to replace the value that's stored in the 
EventType element of the xml variable with a string value of "TEST". To do 
that, it uses the modify() method with an XML DML "replace value of' state
ment. In addition, it uses the text() function to retrieve the string value that's 
stored in the EventType element. Finally, a SELECT statement is used to retrieve 
the modified value of the xrnl variable. Although you don' t typically use a 
SELECT statement like this, you shouldn' t have any trouble understanding how 
it works. 

In addition to the "replace value of ' statement, you can use the XML 
DML insert and delete statements to insert nodes into and delete nodes from an 
xml type. To learn more about these statements, you can begin by looking up 
"modify() Method (xml data type)" in the SQL Server documentation. Then, you 
can follow the links to learn more about the XML DML statements. 

Although you can use the modify() method to modify the data that's stored 
in an xml data type, you should avoid extensive use of this method whenever 
possible. Instead, you should consider storing the data in one or more tables. 
Then, you can use the DML statements that are available from SQL to insert, 
update, and delete the data in those tables. 



Chapter 18 How to work with XML 599 

A SELECT statement that uses the value() method 
SELECT 

EventData.value( 
'(/EVENT_ INSTANCE/EventType)[l] ', 
•varchar(40)') AS EventType, 

EventData.value( 
'(/EVENT_ INSTANCE/TSQLCommand/SetOptions/@ANSI_NULLS)[1]', 
'varchar(40)') AS ANSI_ NULLS_ SETTING 

FROM DDLActivityLog 
WHERE EventiD = 1; 

The result set 

A SET statement that uses the modify() method 
DECLARE @EventData xml; 
SELECT @EventData = EventData 
FROM DDLActivityLog 
WHERE EventiD = 1; 

SET @EventData.modify 
('replace value of (/EVENT_ INSTANCE/EventType/text())[1] with "TEST"'); 

SELECT @EventData AS ModifiedEventData; 

The result set 
Moddied Event Data 

L~_g.;_~-~f~·iHs·r.~.~s~g_>.~.~~-~~i:t'i>..f.'gs..!..~~~;;ij_!.\.i?.e.·~-~~~~g~~-~~~~~~J 

Description 
• XQuery is a language that's designed to query an XML document. 

• XML Data Manipulation Language (XML DML) is a language that's designed to 
insert, update, or delete nodes from an XML document. 

Figure 18-5 How to use the methods of the xml data type (part 2 of 2) 



600 Section 4 Advanced SQL skills 

An example that parses the xml data type 

If you use an xml type to define a column, you may occasionally need 
to use the value() method to parse the xml type into a relational result set as 
shown in figure 18-6. The code in this figure starts by using a SELECT state
ment to retrieve the EventiD column of the DDLActivityLog table. Then, this 
code uses the value() method to retrieve the values of four elements from the 
EventData column. Here, the value() method specifies the smalldatetime type 
for the PostTime element, and it specifies the varchar type for the EventType, 
LoginName, and ObjectName elements. 

In addition, the WHERE clause uses the value() method to specify that 
the SELECT statement should only return rows where the value stored in the 
EventType element is equal to "DROP _TABLE". In this figure, for example, 
the result set shows three rows that meet that condition. However, the result set 
that's displayed by your system may be different, depending on how many tables 
you have dropped since creating the trigger described in figure 18-3. 



Chapter 18 How to work with XML 601 

An example that parses an xml column into a relational result set 
SELECT 

Even tiD, 
EventData.value(' (/EVENT_ INSTANCE/EventType) [1] • , •varchar(40) ') 

AS EventType, 
EventData.value(' ( / EVENT_ INSTANCE/ PostTime) [1] ', 'smalldatetime') 

AS PostTime, 
EventData.value(' (/EVENT_ INSTANCE/LoginName) [1] ' , •varchar(40) ') 

AS LoginName, 
EventData . value(' (/EVENT_ INSTANCE/ObjectName) [1] ', •varchar(40)') 

AS ObjectName 
FROM DDLActivityLog 
WHERE 

EventData.value(' ( / EVENT_ INSTANCE/EventType) [1] ', •varchar(40) ') 
= 'DROP_ TABLE'; 

The result set 

1 

2 

EventiD EventType PostTIITle l.oginName ObjectName 
!"'2 .................... ] DROP_TABLE 202().()2-10 15:28:00 mlXach\anne VendooTest 
!.. ........................ , 

4 DROP _TABLE 202().()2-10 15:29:00 mlXach\anne VendooTest 

' 

Description 
• You can use the value() method to parse an xml data type that has been stored in a 

database into multiple columns. 

Figure 18-6 An example that parses the xml data type 



602 Section 4 Advanced SQL skills 

Another example that parses the xml data type --
If you find that you often need to write code like the code shown in figure 

18-6, you might want to consider parsing the XML data before you store it in the 
database. Then, you can store the data in the database as relational data, and you 
can use SQL to query the database as shown in figure 18-7. Before you do that, 
though, you must determine the structure of the table or tables that will store the 
XML data, and you must create those tables. 

The examples in this figure illustrate how this works. To start, the code in 
the first example creates a table named DDLActivityLog2 that contains five 
columns. Of these five columns, the last four get their data from the XML 
document that's returned by the EVENTDATA function. 

Then, the code in the second example creates a trigger named 
Database_CreateTable_DropTable2. This trigger starts by using the 
EVENTDATA function to return an XML document that describes the event that 
caused the trigger to fire. Then, it uses the value() method to insert the values 
for the EventType, PostTime, LoginName, and ObjectName elements into the 
DDLActivityLog2 table. 

Finally, the last example uses a SELECT statement to return all rows where 
the EventType column contains a value of "DROP _TABLE." If you compare 
this SELECT statement with the one in figure 18-6, you' ll see that it's shorter 
and easier to write. If necessary, it would also be efficient and easy to create a 
join between this table and another table on any of the columns in this table. By 
contrast, it would require more complex code to join the DDLActivityLog table 
shown in figure 18-3 to another table, and the join wouldn't run as efficiently. 
As a result, if you frequently need to query an xm1 type, and you need to join the 
xml type with other tables, you should probably parse the XML data before you 
store it in the database as shown in this figure. 



A log table that doesn't use the xml data type 
CREATE TABLE DDLActivityLog2 
( 

) ; 

EventiD int NOT NULL IDENTITY PRIMARY KEY, 
EventType varchar(40) NOT NULL, 
PostTime smalldatetime NOT NULL, 
LoginName varchar(40) NOT NULL, 
ObjectName varchar(40) NOT NULL 

Chapter 18 How to work with XML 603 

A trigger that parses XML data and inserts it into the table 
CREATE TRIGGER Database_CreateTable_ DropTable2 

ON DATABASE 

AS 
AFTER CREATE_ TABLE, DROP_ TABLE 

DECLARE @EventData xml; 
SELECT @EventData = EVENTDATA(); 
INSERT INTO DDLActivityLog2 VALUES 
( 

@EventData.value( 1 (/EVENT_INSTANCE/EventType) [1] 1
, 

1 varchar(40) 1
), 

@EventData.value( 1 (/EVENT_INSTANCE/PostTime) [1] 1
, 

1 Varchar(40) 1
), 

@EventData.value( 1 (/EVENT_INSTANCE/LoginName) [1] 1
, 

1 varchar(40) 1
), 

@EventData.value( 1 (/EVENT_ INSTANCE/ObjectName) [1] 1
, 1 varchar(40) 1

) 

) ; 

A SELECT statement that retrieves data from the table 
SELECT * FROM DDLActivityLog2 
WHERE Event Type = 1 DROP _TABLE 1 

; 

The result set 
EventiD Event Type PosiT me 

1 ~···2····················] DROP _TABLE 202().{)2-1 0 15:28:00 .•................•...•... : 
2 4 DROP_TABLE 202().{)2-10 15:29:00 

3 6 DROP_TABLE 202().{)2-1 0 15:31 :00 
= 

Description 

login Name Object Name 

murach\anne Vendro Test 

mLrach\anne Vendro Test 

murach\anne Vendro Test 

• You can use the value() method to parse an xml data type into multiple columns 
before you store it in the database. 

Figure 18-7 Another example that parses the xml data type 



604 Section 4 Advanced SQL skills 

How to work with XML schemas 
Now that you understand the basics for working with the xml data type, 

you' re ready to learn how to use an XML schema with this data type. Since an 
XML schema validates the data that's stored in an xml type, this data is known 
as typed XML. 

How to add an XML schema to a database 

Before you can use an XML schema with the xml data type, you must 
add the XML Schema Definition to the database. To do that, you can use 
the CREATE XML SCHEMA COLLECTION statement. In figure 18-8, for 
example, this statement is used to add the XML schema presented in figure 18-2 
to the database. Although this looks like a lot of code at first glance, most of it is 
the string that defines the XML schema. As I've already mentioned, you may be 
able to get this information from a colleague or from the Internet. Or, if you have 
a document that the schema will be based on, you can use the XML Editor to 
generate the XML schema. 

The first line of code contains the CREATE XML SCHEMA COLLECTION 
clause. This clause specifies EventDataSchema as the name of the schema. Since 
the optional database schema name isn' t specified, the XML schema will be 
stored in the default database schema (dbo). The second line of code contains the 
AS clause that indicates that the expression that follows will specify the XML 
schema. This expression can be coded as a string literal as shown in this figure or 
as a variable of the varchar, nvarchar, or xml types. 

When you use the CREATE XML SCHEMA COLLECTION statement, 
you're actually adding the XML schema to a collection of XML schemas. 
In other words, you can add multiple XML schemas to the same collection. 
However, for this to work correctly, you must add a targetNamespace attribute 
to the XML schema that uniquely identifies each schema. Since this is more 
complicated than using one XML schema per collection, it's a common practice 
to only store one XML schema per collection as shown in this figure. In that 
case, you can think of the collection and the XML schema as being the same 
database object. 

After you add a schema to a database, you can see it in the Object Explorer 
of the Management Studio. To do that, just expand the Programmability, Types, 
and XML Schema Collections folders. Then, you can use the menu that's 
displayed when you right-click on a schema to create scripts for creating and 
dropping the schema, to display the dependencies for the schema, and to delete 
the schema. This works just like it does for other database objects. 



Chapter 18 How to work with XML 

The syntax for the CREATE XML SCHEMA COLLECTION statement 
CREATE XML SCHEMA COLLECTION [database_ schema_ name.]xml_ schema_name 
AS xml_ schema_ expression 

An example that creates a schema 
CREATE XML SCHEMA COLLECTION EventDataSchema 
AS 

<xs:schema attributeFormDefault="unqualified" 
elementFormDefault="qualified" 
xmlns:xs="http://www.w3.org/2001/XMLSchema" > 

<xs:element name="EVENT_ INSTANCE" > 
<xs:complexType> 

<xs:sequence> 
<xs : element name="EventType" type="xs:string" / > 
<xs : element name="PostTime" type="xs:dateTime" / > 
<xs : element name="SPID" type="xs:unsignedByte" / > 
<xs:element name="ServerName" type="xs:string" / > 
<xs:element name="LoginName" type="xs:string" / > 
<xs:element name="UserName" type="xs:string" / > 
<xs:element name="DatabaseName" type="xs:string" / > 
<xs:element name="SchemaName" type="xs:string" / > 
<xs:element name="ObjectName" type="xs:string" / > 
<xs:element name="ObjectType" type="xs:string" /> 
<xs:element name="TSQLCommand" > 

<xs : complex Type> 
<xs:sequence> 

<xs:element name="SetOptions"> 
<xs:complexType> 

<xs:attribute name="ANSI_ NULLS" 
type="xs:string" use="required" /> 

<xs:attribute name="ANSI_ NULL_ DEFAULT" 
type="xs:string" use="required" / > 

<xs:attribute name="ANSI_ PADDING" 
type="xs:string" use="required" / > 

<xs:attribute name="QUOTED_IDENTIFIER" 
type="xs:string" use="required" / > 

<xs:attribute name="ENCRYPTED" 
type="xs:string" use="required" /> 

</xs:complexType> 
</xs:element > 
<xs:element name="ConunandText" type="xs:string" / > 

</xs:sequence> 
</xs:complexType> 

</xs:element> 
</xs : sequence> 

</xs : complexType> 
</xs:element> 

</xs:schema> 
I • 

I 

Description 
• Before you can use an XML Schema Definition with the xml data type, you must 

add the XSD to the database. To do that, you can use the CREATE XML SCHEMA 
COLLECTION statement. 

Figure 18-8 How to add an XML schema to a database 

605 



606 Section 4 Advanced SQL skills 

How to use an XML schema 
to validate the xml data type 

Figure 18-9 shows how to use an XML schema to validate the xml type. To 
do that, you code the name of the XML schema in parentheses immediately after 
you specify the xml type for a column or a variable. In this figure, for example, 
the CREATE TABLE statement specifies the EventDataSchema XML schema 
that was added to the database in figure 18-8 as the schema for the EventData 
column. As a result, any time an INSERT statement attempts to insert data 
into this column, SQL Server will use this XML schema to validate the data. 
Since this provides a standard way to validate XML data, it is known as XML 
validation. 

If the data doesn' t conform to the XML schema, SQL Server will raise an 
appropriate error. This is illustrated by the three INSERT statements in this 
figure. For example, the first INSERT statement contains a string that doesn' t use 
XML tags. As a result, SQL Server raises an error that indicates that this isn't 
allowed by the XML schema. 

Although the second INSERT statement specifies a well-formed XML 
document, the tags for this document don't match the tags specified by the XML 
schema. As a result, SQL Server raises an error that indicates that no 
declaration was found for the MyRoot element, which is the first element of the 
XML document that raised an error. 

The third INSERT statement also specifies a well-formed XML document. 
However, this document only contains the first two elements specified by the 
XML schema. As a result, SQL Server raises an error that indicates that it 
expected the third element in the XML document, the PostTime element. 

Although all of the examples in this figure work with a column in a table, 
you can also use an XML schema to validate a variable. In the last example in 
this figure, for instance, you could declare the @CreateTableEvent variable like 
this: 

DECLARE @Creat e TableEvent xml (EventDa t aSc he ma) 

Then, SQL Server would raise an error like the one shown here when the SET 
statement in this figure attempted to store the invalid XML data in the variable. 
In other words, the XML data would be validated before you even attempted to 
store it in the table. 



Chapter 18 How to work with XML 607 

The syntax for declaring XML schema validation 
column_or_variable_name XML ([database_ schema_ name.]xml_ schema_ name) 

A log table with a column that specifies an XML schema 
CREATE TABLE DDLActivityLog3 
(EventiD int NOT NULL IDENTITY PRIMARY KEY, 
EventData xml (EventDataSchema) NOT NULL); 

An INSERT statement that attempts to insert non-XML data 
INSERT INTO DDLActivityLog3 VALUES ('this is not xml'); 

The response from the system 
Msg 6909, Level 16, State 1, Line 1 
XML Validation: Text node is not allowed at this location, the type was defined 
with element only content or with simple content. 
Location: I 

An INSERT statement that attempts to insert XML data 
whose tags don't match the tags in the schema 

INSERT INTO DDLAc tivityLog3 
VALUES ('<MyRoot><MyElement>test</MyElement></MyRoot>'); 

The response from the system 
Msg 6913, Level 16, State 1, Line 1 
XML Validation: Declaration not found for element 'MyRoot•. 
Location: /*:MyRoot[1] 

An INSERT statement that attempts to insert XML data 
that doesn't contain all the elements specified by the schema 

DECLARE @CreateTableEvent xml; 
SET @CreateTableEvent = • 
<EVENT_ INSTANCE> 

<EventType>CREATE_ TABLE</EventType> 
</EVENT_INSTANCE> 
I • 

I 

INSERT INTO DDLActivityLog3 
VALUES (@CreateTableEvent); 

The response from the system 
Msg 6908, Level 16, State 1, Line 2 
XML Validation: Invalid content. Expected element(s): PostTime. 
Location: /*: EVENT_ INSTANCE[1] 

Description 
• To provide XML validation, you can specify an XSD for the xml data type when you 

use it to define a column or a variable. Then, when you attempt to store data in the xml 
data type, SQL Server will use the XSD to make sure the data is valid. If the data isn' t 
valid, SQL Server will display an appropriate error message. 

Figure 18-9 How to use an XML schema to validate the xml data type 



608 Section 4 Advanced SQL skills 

How to view an XML schema 

Figure 18-10 shows how to view the XML schemas that have been added 
to the database. If you know the name of the XML schema, you can use the 
XML_SCHEMA_NAMESPACE function to return an xml type that contains the 
XML schema. In this figure, for instance, the first example uses a SELECT 
statement to return an xml type that contains the EventDataSchema that was 
added to the database in fi gure 18-8. Then, you can view this schema in the 
XML Editor by clicking on the link for the XML schema. 

You can also use the sys.xml_schema_collections catalog view to get 
information about an XML schema. If you don' t know the name of an XML 
schema, for example you can code a query like this: 

SELECT name FROM sys . xml _ schema_c ollections ; 

Then, you can find the name of the XML schema you want to view and use the 
XML_SCHEMA_NAMESPACE function to view it. 

How to drop an XML schema 

Figure 18-10 also shows how to drop an XML schema from the database. To 
do that, you can use the DROP XML SCHEMA COLLECTION statement. In 
this figure, for instance, the last example drops the EventDataSchema collection. 
But first, it queries the sys.xml_schema_collections catalog view to make sure 
that the EventDataSchema collection exists. 

Note that you can't drop an XML schema if it's being used by another 
object. For example, you can' t drop a schema if it's being used to validate a 
column in a table. To do that, you must first alter the table so the column doesn' t 
name the schema. 



Chapter 18 How to work with XML 609 

The syntax for the XML_SCHEMA_NAMESPACE function 
XML_ SCHEMA_NAMESPACE( ' database_ schema_name•, 'xml_ schema_ name') 

A statement that returns the XML schema 
SELECT XML_SCHEMA_NAMESPACE('dbo', 'EventDataSchema'); 

The result set 

The syntax for the DROP XML SCHEMA COLLECTION statement 
DROP XML SCHEMA COLLECTION [database_schema_name.]xml_schema_name 

An example that drops a schema 
IF EXISTS 

(SELECT * FROM sys.xml_ schema_collections 
WHERE name= 'EventDataSchema') 

BEGIN 
DROP XML SCHEMA COLLECTION EventDataSchema; 

END; 

Description 
• To view an XML schema that has been added to the database, you can use the 

XML_SCHEMA_NAMESPACE function. 

• To get information about XML schemas that have been added to the database, you 
can query the sys.xml_schema_collections catalog view. 

• To drop an XML schema from the database, you can use the DROP XML 
SCHEMA COLLECTION statement. You can' t drop an XML schema if it's being 
used by another object. 

Figure 18-10 How to view or drop an XML schema 



61 0 Section 4 Advanced SQL skills 

Two more skills for working with XML 
When you work with XML, you may occasionally need to convert it to 

relational data. Conversely, you may occasionally need to convert relational data 
to XML. To do that, you use the skills that follow. 

How to use the FOR XML clause 
of the SELECT statement 

If you need to convert relational data that's stored in your database to XML, 
you can usually accomplish this by using the FOR XML clause of the SELECT 
statement as shown in figure 18-11. To use this clause, you use the SELECT 
statement to retrieve the data that you want to convert to XML. Then, you add a 
FOR XML clause after the SELECT statement to specify how the relational data 
should be converted to XML. 

The first example shows how to use the FOR XML clause with the RAW 
and ROOT keywords. To start, the SELECT statement uses a join to select 
the VendorName column from the Vendors table and the InvoiceNumber and 
InvoiceTotal columns from the Invoices table. In addition, this SELECT 
statement uses the TOP 5 clause so it only returns 5 rows. Then, the FOR XML 
clause uses the RAW keyword, which returns one element named row for each 
row in the result set. In addition, the ROOT keyword is used to specify the name 
of the root element for the XML document. In this example, the root element 
is named Vendorlnvoices. Although the ROOT keyword isn' t required, all valid 
XML documents must have a root element. As a result, if you want to return a 
complete XML document, you' ll need to specify a root element. 

The second example is similar, but it uses the AUTO keyword instead of 
the RAW keyword. The AUTO keyword causes the relationships between the 
Vendors and Invoices tables to be maintained in the XML document. As a result, 
one Vendor element is returned for each vendor, one Invoice element is returned 
for each invoice, and each Invoice element is stored within its related Vendor 
element. That means that the vendor name isn' t repeated for each invoice as in 
the first example. Notice that to make this work more elegantly, the SELECT 
statement in this example uses correlation names for the Vendors and Invoices 
tables to make them singular instead of plural. That way, the data for a vendor 
is stored in an element named Vendor instead of an element named Vendors, 
and the data for an invoice is stored in an element named Invoice instead of an 
element named Invoices. 



Chapter 18 How to work with XML 611 

The simplified syntax of the FOR XML clause 
select_ statement 
FOR XML {RAWIAUTO} [, ROOT ('RootName')] [, ELEMENTS 

A SELECT statement that uses the RAW keyword 
SELECT TOP 5 VendorName, InvoiceNumber, InvoiceTotal 
FROM Vendors JOIN Invoices 

ON Vendors.VendoriD = Invoices.VendoriD 
ORDER BY VendorName 
FOR XML RAW, ROOT ('Vendorinvoices'); 

The XML document that's returned 
<Vendorinvoices> 

<row VendorName="Abbey Office Furnishings" 
InvoiceNumber="203339-13" InvoiceTotal="17.5000" / > 

<row VendorName="Bertelsmann Industry Svcs. Inc " 
InvoiceNumber="509786" InvoiceTotal="6940.2500" / > 

<row VendorName="Blue Cross" 
InvoiceNumber=" 547481328" InvoiceTotal="224.0000" / > 

<row VendorName="Blue Cross" 
InvoiceNumber="547479217" InvoiceTotal="116.0000" / > 

<row VendorName="Blue Cross" 
InvoiceNumber="547480102" InvoiceTotal="224.0000" / > 

</Vendorinvoices> 

A SELECT statement that uses the AUTO keyword 
SELECT TOP 5 VendorName, InvoiceNumber, InvoiceTotal 
FROM Vendors AS Vendor JOIN Invoices AS Invoice 

ON Vendor.VendoriD = Invoice.VendoriD 
ORDER BY VendorName 
FOR XML AUTO, ROOT ('Vendorinvoices ' ); 

The XML document that's returned 
<Vendorinvoices> 

<Vendor VendorName="Abbey Office Furnishings"> 
<Invoice InvoiceNumber="203339-13" InvoiceTotal="17.5000" / > 

</Vendor> 
<Vendor VendorName="Bertelsmann Industry Svcs. Inc" > 

<Invoice InvoiceNumber="509786" InvoiceTotal="6940.2500" / > 
</Vendor> 
<Vendor VendorName="Blue Cross" > 

<Invoice InvoiceNumber="547481328" InvoiceTotal="224.0000" / > 
<Invoice InvoiceNumber="547479217" InvoiceTotal="116.0000" / > 
<Invoice InvoiceNumber="547480102" InvoiceTotal="224.0000" / > 

</Vendor> 
</Vendorinvoices> 

Description 
• To specify the name of the root element for the XML document, use the ROOT 

keyword. 

• To return one XML element for each row, use the RAW keyword. 

• To automatically parse the rows of the result set so the elements reflect the structure 
of the tables in the database, use the AUTO keyword. 

Figure 18-11 How to use the FOR XML clause of the SELECT statement (part 1 of 2) 



612 Section 4 Advanced SQL skills 

As you saw in the first two examples in figure 18-11, the data for each 
column that's returned by a SELECT statement that includes the FOR XML 
clause is stored in attributes. However, if you want to store the data for each 
column in XML elements instead, you can add the ELEMENTS keyword to the 
FOR XML clause. The third example in this figure, for instance, is identical to 
the second example except that it includes the ELEMENTS keyword. Although 
the XML document that's returned by this example is longer than in the previous 
example, it's also easier to read because it uses elements instead of attributes. In 
some cases, you may prefer to use this type of XML document. 

Most of the time, the skills presented in this figure are all you need to use 
the FOR XML clause to create XML documents from the relational data in a 
database. However, several other options are available from this clause that give 
you even more control over the format of the XML document that's returned 
by the SELECT statement. For more information, look up "FOR XML (SQL 
Server)" in the SQL Server documentation. 



Chapter 18 How to work with XML 613 

A SELECT statement that uses the AUTO and ELEMENTS keywords 
SELECT TOP 5 VendorName, InvoiceNumber, InvoiceTotal 
FROM Vendors AS Vendor JOIN Invoices AS Invoice 

ON Vendor.VendoriD = Invoice.VendoriD 
ORDER BY VendorName 
FOR XML AUTO, ROOT ('Vendorinvoices'), ELEMENTS; 

The XML document that's returned 
<Vendorinvoices> 

<Vendor> 
<VendorName>Abbey Office Furnishings</VendorName> 
<Invoice> 

<InvoiceNumber>203339-13</InvoiceNumber> 
<InvoiceTota1>17.5000</InvoiceTotal> 

</Invoice> 
</Vendor> 
<Vendor> 

<VendorName>Bertelsmann Industry Svcs. Inc</VendorName> 
<Invoice> 

<InvoiceNumber>509786</InvoiceNumber> 
<InvoiceTotal>6940.2500</InvoiceTotal> 

</Invoice> 
</Vendor> 
<Vendor> 

<VendorName>Blue Cross</VendorName> 
<Invoice> 

<InvoiceNumber>547481328</InvoiceNumber> 
<InvoiceTotal>224.0000</InvoiceTotal> 

</Invoice> 
<Invoice> 

<InvoiceNumber>547479217</InvoiceNumber> 
<InvoiceTotal>116.0000</InvoiceTotal> 

</Invoice> 
<Invoice> 

<InvoiceNumber>547480102</InvoiceNumber> 
<InvoiceTotal>224.0000</InvoiceTotal> 

</Invoice> 
</Vendor> 

</Vendorinvoices> 

Description 
• By default, the data that's stored in a database column is stored in an XML 

attribute. To store data in XML elements instead, use the ELEMENTS keyword. 

• The names that are used for elements and attributes correspond to the names of the 
tables and columns that are used in the query. However, you can specify correlation 
names for the tables and columns in your query to modify these names whenever 
that's necessary. 

Figure 18-11 How to use the FOR XML clause of the SELECT statement (part 2 of 2) 



614 Section 4 Advanced SQL skills 

How to use the OPENXML statement 

If you need to convert XML data into relational data, you can usually 
accomplish this by using the OPENXML statement to open the XML data as a 
result set. The example in fi gure 18-12 shows how this works. 

Before you can use the OPENXML statement, you must read the XML 
document into memory and get a handle that points to that document. This 
handle is a unique integer value that SQL Server can use to refer to the XML 
document. In the example in this figure, the code starts by declaring a variable 
to store this handle. Then, it declares a variable to store the XML, and it sets this 
variable to the XML shown in part 2 of figure 18-11. Next, it calls the 
sp_Xml_PrepareDocument procedure to read the XML document into memory 
and return the handle to this document. 

Once you execute the sp_Xml_PrepareDocument procedure, you can use the 
OPENXML statement to open an xml data type as a result set. Since this state
ment returns a result set, it's coded in the FROM clause of a SELECT statement 
as shown in this example. 

The OPENXML statement begins by accepting an integer argument that 
specifies the handle to the XML document that was prepared by the 
sp_Xml_PrepareDocument procedure. Then, the second argument uses an XPath 
string to identify the XML elements to be processed. XPath is an XML query 
language similar to XQuery. As a result, you should be able to understand how 
it works. In this figure, for example, the XPath argument specifies that the table 
should have one row for each Invoice element in the XML document. 

The WITH clause of the OPENXML statement allows you to specify a 
definition for the table. To start, you specify the name and data type for each 
column in the table just as you would with a CREATE TABLE statement. Then, 
you specify an XPath string that identifies the element or attribute in the XML 
document that contains the data for the column. If necessary, this XPath string 
can use two dots ( .. ) to navigate back one level in the XML hierarchy. In this 
figure, for example, the XPath string for the VendorName column uses two dots 
to navigate from the Invoice element to the Vendor element. 

After you use the OPENXML statement, you should use the 
sp_Xml_RemoveDocument procedure to remove the XML document from 
memory. This frees system resources and allows SQL Server to run more 
efficiently. 

Although this figure should get you started quickly with the OPENXML 
statement, it's only intended to be an introduction to this feature. For more 
information, look up "OPENXML (Transact-SQL)" in the SQL Server 
documentation. 



Chapter 18 How to work with XML 615 

The simplified syntax for the OPENXML statement 
OPENXML (xml_document_handle_ int, x_path) 
WITH ( table_definition ) 

The simplified syntax for the sp_Xmi_PrepareDocument procedure 
EXEC sp_Xml_PrepareDocument xml_document_handle_int OUTPUT, xml_document 

The simplified syntax for the sp_Xmi_RemoveDocument procedure 
EXEC sp_Xml_RemoveDocument xml_ document_handle_ int 

Code that uses the OPENXML statement to parse XML 
-- Declare an int variable that's a handle for the internal XML document 
DECLARE @VendorinvoicesHandle int; 

-- Create an xml variable that stores the XML document 
DECLARE @Vendorinvoices xml; 
SET @Vendorinvoices = ' xml from part 2 of 18-11 goes here •; 

-- Prepare the internal XML document 
EXEC sp_Xml_ PrepareDocument @VendorinvoicesHandle OUTPUT, @Vendorinvoices; 

-- SELECT the data from the table returned by the OPENXML statement 
SELECT * 
FROM OPENXML (@VendorinvoicesHandle, '/Vendorinvoices/Vendor/Invoice') 
WITH 
( 

) ; 

VendorName varchar(SO) 
InvoiceNumber varchar(SO) 
InvoiceTotal money 

' •• /VendorName' , 
'InvoiceNumber•, 
'InvoiceTotal' 

Remove the internal XML document 
EXEC sp_Xml_RemoveDocument @VendorinvoicesHandle; 

The result set 
Vendor Name k'woice Nunber Invoice Total 

r.·~.~·§i"fi~~:-~;~~··::···::···:···] 20lll9-1l 17.50 

2 Bertelsmam hdustJY Svcs. Inc 509786 6940.25 

3 Blue Cross 547479217 116.00 

4 Blue Cross 547480102 224.00 

5 Blue Cross 547481l28 224.00 

Description 
• Before you can use the OPENXML statement, you must use the 

sp_Xml_PrepareDocument procedure to read the XML document into memory and 
return a handle to this document. 

• You can use the OPENXML statement to open an xml data type as a result set. In 
the WITH clause, you can use two dots( .. ) to navigate back one level in the XML 
hierarchy. 

• After you use the OPENXML statement, you should use the 
sp_Xml_RemoveDocument procedure to remove the XML document from 
memory. 

Figure 18-12 How to use the OPENXML statement 



616 Section 4 Advanced SQL skills 

Perspective 
XML is a useful technology for storing and transferring data, and the 

features that SQL Server provides make it easy to work with XML. Of course, 
SQL Server is a relational database that is primarily designed to work with 
relational data. As a result, you should think twice before using the xml data 
type to store XML data in a table. 

Instead, whenever possible, you should parse the XML data and store 
it in one or more tables. That way, you can still use SQL to easily retrieve 
and update the data. However, if the data is structured in a way that makes it 
difficult to store in tables, or if you won' t need to retrieve or update the data 
very often, you can use the skills presented in this chapter to store and work 
with that data. 

Terms 

Extensible Markup Language (XML) 
XML document 
tag 
element 
start tag 
end tag 
attribute 
content 
child element 
parent element 
root element 

XML Schema Definition (XSD) 
XML schema 
untyped XML 
XMLEditor 
method 
X Query 
XML Data Manipulation Language 

(XMLDML) 
typedXML 
XML validation 
XPath 



Chapter 18 How to work with XML 617 

Exercises 
1. Write a SELECT statement that returns an XML document that contains 

all of the invoices in the Invoices table that have more than one line item. 
This document should include one element for each of these columns: 
InvoiceNumber, InvoiceDate, InvoiceTotal, InvoiceLineltemDescription, and 
InvoiceLineltemAmount. Then, save the XML document that's returned in a 
file named MultipleLineitems.xml. Finally, generate an XML schema for the 
file and save it in a file named MultipleLineltems.xsd. 

2. Write a script that uses the XML document shown below to update the contact 
information in the Vendors table. 

<ContactUpdates> 
<Contact VendoriD="4"> 

<LastName>McCrystle</LastName> 
<FirstName>Timothy</FirstName> 

</Contact> 
<Contact VendoriD="10"> 

<LastName>Flynn</LastName> 
<FirstName>Erin</FirstName> 

</Contact> 
</ContactUpdates> 

To accomplish this, begin by storing this XML document in a variable of the 
XML type. Then, you can use two UPDATE statements to update the Vendors 
table. 

3. Write a script that returns a result set that contains all of the data stored in the 
XML document in exercise 2. 

4. Write a script that (1) creates a table named Instructions, (2) inserts the XML 
document shown below into the table, and (3) selects all rows from this table. 
The Instructions table should have two columns. The first column should be 
an identity column named InstructionsiD, and the second column should be 
an xml column named Instructions. 
<Instructions> 

<Step> 
<Description>This is the first step.</Description> 
<SubStep>This is the first substep . <SubStep> 
<SubStep>This is the second substep.<SubStep> 
</Step> 
<Step> 
<Description>This is the second step.</Description> 
</Step> 
<Step> 
<Description>This is the third step. </Description> 
</Step> 

</Instructions> 





19 

How to work with BLOBs 
In chapter 8, you were introduced to the data types for working with large 
values, including the varbinary(max) data type that's used to work with large 
binary values such as images, sound, and video. In this chapter, you'll learn 
how to use SQL and a .NET application to work with large binary values, 
which are often referred to as binary large objects (BLOBs). Then, you'lllearn 
how to use a feature known as FILESTREAM storage. This feature provides 
some enhancements that you can use to efficiently work with BLOBs that are 
larger than 1 megabyte. 

An introduction to BLOBs ................................................. 620 
Pros and cons of storing BLOBs in fi les ..................................................... 620 
Pros and cons of storing BLOBs in a column .............. .................... ........... 620 
When to use FTLESTREAM storage for BL0Bs ........................................ 620 

How to use SQL to work 
with a varbinary(max) column .......................................... 622 
How to create a table with a varbinary(max) column ................................. 622 
How to insert, update, and delete binary data .......................................... ... 622 
How to retrieve binary data ......................................................................... 622 

A .NET application 
that uses a varbinary(max) column .................................. 624 
The user interface for the application ............... ................................. .......... 624 
The event handlers for the form .................................................................. . 626 
A data access class that reads and writes binary data ................................. 628 

How to use FILESTREAM storage .................................... 634 
How to enable FILESTREAM storage on the server ...... ........................... 634 
How to create a database with FILESTREAM storage .............................. 636 
How to create a table with a FILESTREAM column ................................. 638 
How to insert, update, and delete FILESTREAM data .............................. 638 
How to retrieve FILESTREAM data .......................................................... 638 
A data access class that uses FILESTREAM storage ................................ 640 

Perspective ......................................................................... 646 



620 Section 4 Advanced SQL skills 

An introduction to BLOBs 
Figure 19-1 describes the pros and cons of three approaches that you can use 

for working with large binary values, which are often referred to as binary large 
objects (BLOBs). 

Pros and cons of storing BLOBs in files 

The first approach is the oldest approach and was commonly used prior to 
SQL Server 2005. This approach stores a string value in a database column that 
points to a binary file that's stored on the file system. For an image, for example, 
you can include a column with a string value such as "8601_cover.jpg" that 
points to a JPG image file. If necessary, you can also store a relative path or 
absolute path to the file within the database. 

There are two advantages to this approach. First, there is no limit on the size 
of the BLOB unless the file system begins to run out of disk space. Second, the 
file system provides fast access to the BLOB. 

There are also a couple of disadvantages to this approach. First, the BLOB 
is not backed up as part of the database backup. Second, access to the BLOB is 
controlled by network permissions, not by database permissions. This can create 
additional work for the network administrator, and it can lead to data consistency 
and security issues. 

Pros and cons of storing BLOBs in a column 
--~--

The second approach was introduced with SQL Server 2005, and it 
solves the problems of storing a pointer to a file by storing the binary data in 
a varbinary(max) column within the database. As a result, the binary data is 
backed up when the database is backed up, and access to this data is controlled 
by database permissions. 

However, this approach has two limitations. First, the binary data must be 
less than 2 gigabytes (GB). Second, database access is not as fast as file system 
access. As a result, you can' t use this approach if you need to store a BLOB 
that's larger than 2GB, and you won' t want to use it if fast access to your BLOBs 
is critical to your application. 

When to use FILESTREAM storage for BLOBs 

The third approach, which is known as FILESTREAM storage, was 
introduced with SQL Server 2008. This approach overcomes all of the limitations 
of the first two approaches. However, it also requires more work to set up and to 
use. As a result, you' ll only want to use this approach when most of the BLOBs 
that you need to store are larger than 1 megabyte (MB) and when fast read access 
is critical. Otherwise, the second approach usually provides adequate performance 
without requiring any additional work. 



Chapter 19 How to work with BLOBs 621 

Three approaches to storing binary data 
• Use a varchar column in the database to store a string that points to a file in the file 

system that contains the binary data. 

• Use a varbinary(max) column to store the binary data in the database. 

• Use a varbinary(max) column with the FILESTREAM attribute to store the binary 
data. 

Pros and cons of using a pointer to a binary file 
Pros 
- There is no limit on the size of the BLOB. 

- The file system provides fast access to the BLOB. 

Cons 
- The BLOB is not backed up with the database. 
- Access to the BLOB is controlled by network security, not database security. 

Pros and cons of using the varbinary(max) data type 
Pros 
- The BLOB is backed up with the database. 
- Database security can be used to control access to the BLOB. 

Cons 
- The BLOB must be smaller than 2GB. 

- Database access is not as fast as file system access. 

Pros and cons of using FILESTREAM storage 
Pros 
- The BLOB can be larger than 2GB. 
- The BLOB access is as fast as file system access. 

- The BLOB is backed up with the database. 
- Database security can be used to control access to the BLOB. 

When to use FILESTREAM storage 
• When most of the BLOBs in the column are larger than 1MB. 

• When fast read access is critical to the application. 

Description 
• With SQL Server 2008 and later, you can use a feature known as FILESTREAM 

storage to overcome several limitations for working with binary large objects 
(BLOBs) that existed in previous versions of SQL Server. 

• To be able to use FILESTREAM storage, the drive that stores the files must be in 
NTFS format. 

Figure 19-1 An introduction to working with BLOBs 



622 Section 4 Advanced SQL skills 

How to use SQL to work 
with a varbinary(max) column 

Since using a varbinary(max) column is adequate for storing binary data in 
many situations, this topic shows how to use this approach. To start, figure 19-2 
shows how to use SQL to work with a varbinary(max) column of a table. 

How to create a table 
with a varbinary(max) column 

To create a table that has a varbinary(max) column, you can specify 
varbinary(max) as the data type for a column within a CREATE TABLE 
statement as shown in this figure. Here, the first column is the primary key 
for the table. This column stores an ID value for an image, and this value is 
automatically generated by the database. Then, the second column stores an ID 
value for a product. This value can be used as a foreign key to relate an image to 
a product. Finally, the third column uses the varbinary(max) data type to store 
the binary data for the image. 

To keep this example simple, I only included three columns. However, a 
table like this might include additional columns such as a name for the image. 

How to insert, update, and delete binary data 

To work with binary data, you can use INSERT, UPDATE, and DELETE 
statements just as you would for other types of data. In this figure, for example, 
the three INSERT statements insert three rows into the Productimages table. 
Here, the first statement uses the NULL keyword to insert a NULL value into 
the Productlmage column. Then, the second statement inserts an integer value of 
zero. Finally, the third statement uses the CAST function to convert a hexadecimal 
string to a varbinary(max) value. 

Although these statements show how the INSERT statement works, the data 
that's stored in the Productlmage column is not valid data for an image. To insert 
valid data, you can use a .NET application like the one shown in the next figure 
to upload data from the file system to the database. 

How to retrieve binary data 

To retrieve binary data, you can use a SELECT statement just as you would 
for other types of data. In this figure, for example, the SELECT statement 
selects all columns and rows from the Productlmages table. This shows the data 
that was inserted by the three INSERT statements. Here, the first row in the 
Productimage column stores a NULL value and the next two rows store binary 
data. 



Chapter 19 How to work with BLOBs 623 

How to create a table with a varbinary(max) column 
CREATE TABLE Productimages 
( 

ImageiD int PRIMARY KEY IDENTITY, 
ProductiD int NOT NULL, 
Productimage varbinary(max) 

) ; 

Three INSERT statements that insert rows into the table 
INSERT INTO Productimages VALUES (1, NULL); 

INSERT INTO Productimages VALUES (2, 0); 

INSERT INTO Productimages 
VALUES (3, CAST('0123456789ABCDEF' AS varbinary(max))); 

A statement that displays the values in the table 
SELECT * FROM Productimages; 

The result set 
Image I D Produd I D Produdlmage 

1 r ;······················i 1 
l-···-·······-···-·····; 

NULL 

2 2 2 Qd)()()()()()() 

3 3 3 Ox30313233343536373839414243444546 

Description 
• You can use the varbinary(max) data type for a column that stores binary data. 

Figure 19-2 How to create a table and insert binary data 



624 Section 4 Advanced SQL skills 

A .NET application 
that uses a varbinary(max) column 

Once you understand how to use SQL to work with binary data that's stored 
in a varbinary(max) column, you can use a .NET application to write binary data 
that's in a file to a column in a database. Then, you can use a .NET application 
to present binary data in a way that's meaningful to the user. In this chapter, for 
example, you'lllearn how to read binary data for an image from a column in the 
database and display it in a picture box control on a Windows form. 

This topic presents a simple application that uses C# to work with BLOBs. 
All of the principles in this application apply to Visual Basic and the other .NET 
languages. The differences mainly have to do with the syntax of each language. 
If you prefer to use Visual Basic, you can download the Visual Basic code for 
this application from our website (see appendix A). 

If you have some C# programming experience, you shouldn' t have much 
trouble understanding this code. If you don' t have C# experience, that 's fine 
too. In that case, you can focus on how this code uses the .NET Framework to 
execute SQL statements against a database. Then, if you want to learn more 
about writing C# applications, we recommend our current book on C#. For more 
information, please see www.murach.com. 

The user interface for the application 

Figure 19-3 shows the user interface for the Product Image Manager 
application that's presented in this topic. You can use this application to view the 
images that have been stored in the database. To do that, you select the ID for 
the image from the combo box that's displayed at the top of the form. Then, the 
application displays the image in a picture box control to the right of the combo 
box. 

You can also use this application to upload images from the file system to 
the database. To do that, you enter a filename for the image, and an ID for the 
product. In this figure, for example, an image file named "pf02_cover.jpg" with a 
product ID of 4 has just been added to the database. Note that this only works if 
the image is stored in the directory that's listed at the bottom of the form. 



Chapter 19 How to work with BLOBs 625 

The user interface 

"' Product lmag• Manag•r D X 

Ditplay images 

lmaoeiD: ~ 

Padd .. foot 

Upload new inages 
Flename: "lpt0:-:-2_-co-ver_jp_g------, 

Product 10: ~ 

Upload 

Note: The mage fie rrust be in the C:/IIUac:h/ SQL Se<ver 2019/lmages chctory 

Description 

• To view an image, select the ID for the image from the combo box. 

• To upload an image, enter a filename and a product ID for the image, and click on 
the Upload button. 

Figure 19-3 The user interface for the Product Image Manager application 



626 Section 4 Advanced SQL skills 

The event handlers for the form 

Figure 19-4 presents the event handlers for the form. To start, the event 
handler for the Load event of the form calls the LoadimageiDComboBox() 
method. This method reads all image IDs from the database and adds them 
to the Image ID combo box. To accomplish this task, this method calls the 
GetimageiDList() method of the ProductDB class that's presented in the next 
figure. After loading the combo box, the event handler for the Load event calls 
the event handler for the SelectedlndexChanged event of the combo box. This 
causes the first image in the database to be displayed on the form when the form 
is loaded. 

The event handler for the SelectedindexChanged event of the combo box 
begins by getting the image ID that's selected in the combo box and converting 
this ID from a string type to an int type. Then, this event handler uses the 
Readimage() method of the ProductDB class to get an array of bytes for the 
image. Next, it converts the array of bytes to a MemoryStream object. Finally, 
it sets the Image property of the picture box on the form to the image that's 
returned by the static FromStream() method of the System.Drawing.Image class. 
If this event handler encounters an error, it uses a dialog box to display an error 
message. 

The event handler for the Click event of the Upload button begins by getting 
the product ID that's entered into the Product ID text box on the form and 
converting this ID from a string type to an int type. Then, it gets the filename 
from the Filename text box on the form. After that, it uses the Writelmage() 
method of the ProductDB class to write the image from the specified file to 
the database, and it displays a dialog box to confirm that the image has been 
successfully uploaded. Finally, this event handler clears all image ID values 
from the Image ID combo box and calls the private LoadimageiDComboBox() 
method to load this combo box with fresh values that include the ID for the new 
image that was uploaded. Like the previous event handler, this event handler 
displays a dialog box that displays an error message if it encounters an error. 

Although you can't see it here, you should know that the program.cs file for 
this application contains code that writes three rows to the Productlmages table 
if the table doesn' t contain any rows. This code is executed before the Load 
event for the form. That way, the combo box on the form will contain at least 
three rows when it's first displayed. 



Chapter 19 How to work with BLOBs 

The event handlers for the form 
private void ImageManagerFor.m_ Load(object sender, EventArgs e) 
{ 

} 

this.LoadimageiDComboBox(); 
imageiDComboBox_ SelectedindexChanged(sender, e); 

private void LoadimageiDComboBox() 
{ 

} 

II load the combo box 
List<int> imageiDList = ProductDB.GetimageiDList(); 
foreach (int i in imageiDList) 

imageiDComboBox.Items.Add(i); 

private void imageiDComboBox_ SelectedindexChanged( 
object sender, EventArgs e) 

{ 

} 

try 
{ 

} 

int imageiD = Convert.Toint32(imageiDComboBox.Text); 

II read image bytes from the database and display in picture box 
Byte[] imageByteArray = ProductDB.Readimage(imageiD); 
MemoryStream ms =new MemoryStream(imageByteArray); 
imagePictureBox.Image = System.Drawing.Image.FromStream(ms); 
ms .Close (); 

catch (Exception ex) 
{ 

MessageBox.Show(this, ex.Message, "Error"); 
} 

private void uploadButton_ Click(object sender, EventArgs e) 
{ 

} 

try 
{ 

} 

int productiD = Convert.Toint32(productiDTextBox.Text); 
string filename = filenameTextBox.Text; 
ProductDB.Writeimage(productiD, filename); 
MessageBox.Show(this, "Image upload was successful!", 

"Upload Confirmation"); 

II refresh combo box 
imageiDComboBox.Items.Clear(); 
this.LoadimageiDComboBox(); 

catch (Exception ex) 
{ 

MessageBox.Show(this, ex.Message, "Error"); 
} 

Figure 19-4 The event handlers for the Product Image Manager form 

627 



628 Section 4 Advanced SQL skills 

A data access class 
that reads and writes binary data 

Figure 19-5 shows the ProductDB class that's used to read and write binary 
data from the Productlmage column of the Productlmages table. To start, this 
class defines a string that points to the directory for the image files that are 
going to be uploaded into the database. As a result, this class only allows you 
to upload image files that are stored in this directory. Of course, this class could 
be enhanced to allow the user to specify the directory for the file that he or she 
wants to upload. 

The static Writeimage() method writes the specified image file to the 
database. To start, this method accepts two parameters. The first parameter is 
an int value for the product ID that's stored in the same row as the image. The 
second parameter is a string value that specifies the name of the file . 

The body of the Writeimage() method begins by reading the specified file 
into an array of bytes. To start, this code creates a variable named filepath that 
contains an absolute path that points to the file for the image. Then, the static 
Exists() method of the File class is used to check whether the specified file exists. 
If it doesn' t exist, this code throws an exception and skips directly to the catch 
block. If the file does exist, this code continues by creating a FileStream object 
named sourceStream that's used to read the file from the file system into an 
array of bytes. To do that, this code uses the Read() method of the sourceStream 
object to read an array of bytes from the specified file into a variable named 
productimage. 

After reading the image from the file into an array of bytes, the Writeimage() 
method continues by writing the product ID and image to the database. To do 
that, this method calls the GetConnection() method to get a connection to the 
database. You' ll see the code for this method in just a minute. Next, this method 
creates a SqlCommand object that contains an INSERT statement like the one 
shown in figure 19-2. However, instead of hard-coding values, this INSERT 
statement accepts two parameters: @ProductiD and @Productlmage. These 
parameters are then added to the Parameters collection of the SqlComrnand 
object. The @ ProductiD parameter is given the value of the productiD parameter 
that was passed to the method, and the @ Productlmage parameter is given the 
value of the image that was retrieved from the file. Finally, this method calls 
the Open() method to open the connection, and it calls the ExecuteNonQuery() 
method to execute the INSERT statement that's stored in the SqlCommand 
object. 

If the method causes an exception to be thrown, the catch block throws the 
exception again. In most cases, this causes the exception to be caught by one of 
the catch blocks in the event handlers for the form. 

Whether or not this method executes cleanly or throws an exception, the 
finally block attempts to close the Connection object that was opened. To do 
that, this code first checks to make sure that the connection object is not null. If 
it isn' t, it closes the open connection. 



Chapter 19 How to work with BLOBs 

The ProductDB class 
using System; 
using System.Collections.Generic; 
using System.Data.SqlClient; 
using System. IO; 

namespace MusicStoreimageManager 
{ 

class ProductDB 
{ 

II The directory for the images 

Part 1 

static string imagesPath = "C:IMurachiSQL Server 20191Imagesl"; 

Figure 19-5 

public static void Writeimage(int productiD, string imageName) 
{ 

} 

SqlConnection connection = null; 
try 
{ 

} 

II 1. Read image from file 
string filepath = imagesPath + imageName; 
if (File.Exists(filepath) == false) 

throw new Exception("File Not Found: " + filepath); 
FileStream sourceStream = new FileStream( 

filepath, 
FileMode.OpenOrCreate, 
FileAccess.Read) ; 

int streamLength = (int) sourceStream.Length; 
Byte[] productimage =new Byte[streamLength]; 
sourceStream.Read(productimage, 0, streamLength); 
sourceStream. Close(); 

II 2. Write image to database 
connection= GetConnection ( ); 

SqlCommand command= new SqlCommand(); 
command.Connection = connection; 
command. CommandText = 

"INSERT INTO Productimages " + 
"VALUES (@ProductiD, @Productimage)"; 

command.Parameters .AddWithValue ( "@ProductiD", productiD); 
command.Parameters.AddWithValue("@Produc timage", productimage); 

connection.Open(); 
command.Exec uteNonQuery(); 

catch (Exception e) 
{ 

throw e; 
} 

finally 
{ 

} 

if (connection != null) 
connection.Close(); 

The ProductDB class for varbinary(max) storage (part 1 of 3) 

629 



630 Section 4 Advanced SQL skills 

The Readlmage() method of the ProductDB class returns an array of 
bytes for the specified image. To start, this method accepts a single parameter 
named imageiD that's used to specify the image to be read. Then, the body 
of this method begins by getting a connection to the database. Next, it creates 
a SqlCommand object that contains a SELECT statement that retrieves the 
Productimage column for the specified imageiD value. This SELECT statement 
accepts a single parameter named @ImageiD. After creating the SqlCommand 
object, this method adds a parameter to that object with the value that was 
passed to the method. Finally, this method opens the connection and calls the 
ExecuteReader() method to execute the SELECT statement that's stored in the 
SqlCommand object and return a SqlDataReader object. 

Once the SqlDataReader object is returned, the Readlmage() method 
reads the image that's stored within this object. This is easy because the 
SqlDataReader object only contains a single row and a single column. In other 
words the SqlDataReader object only contains the binary data for the specified 
image. To start, the Read() method of the SqlDataReader object is called to 
move the cursor onto the first and only row in the result set. If the Read() method 
isn' t able to move to this row, an exception is thrown and execution skips into 
the catch block. Otherwise, the SqlDataReader object is used to return the first 
column in the result set and to convert it to an array of bytes. Finally, this code 
closes the SqlDataReader object and returns the array of bytes for the image. 



Chapter 19 How to work with BLOBs 631 

The ProductDB class 

Figure 19-5 

public static Byte[] Readimage(int imageiD) 
{ 

} 

SqlConnection connection = null; 
try 
{ 

} 

connection= GetConnection(); 

SqlCommand command= new SqlCommand(); 
command.Connection = connection; 
command.CommandText = 

"SELECT Productimage " + 
"FROM Productimages " + 
"WHERE ImageiD = @ImageiD"; 

command.Parameters .AddWithValue ( "@ImageiD", imageiD); 

connection.Open(); 
SqlDataReader reader = command.ExecuteReader(); 

Byte[] imageByteArray = null; 
if (reader.Read() == false) 

throw new Exception("Unable to read image."); 
imageByteArray = (Byte[]) reader[O]; 
reader.Close(); 

return imageByteArray; 

catch (Exception e) 
{ 

throw e; 
} 
finally 
{ 

} 

if (connection I= null ) 
connection.Close(); 

The ProductDB class for varbinary(max) storage (part 2 of 3) 

Part 2 



632 Section 4 Advanced SQL skills 

The GetimageiDList() method of the ProductDB class reads all image £D 
values from the database and returns them as a List<int> object. Although this 
method doesn' t contain any code that's used to work with binary values, it is 
needed by the form for this application. 

To start, the body of this method gets a connection. Then, it creates a 
SqlCommand object that contains a SELECT statement that returns a list of all 
image IDs that are stored in the database. Since this SELECT statement doesn' t 
contain any parameters, this SqlCommand object is easy to create. Next, it opens 
the connection and uses the ExecuteReader() method of the SqlCommand object 
to return a SqlDataReader object for the result set. 

After the SqlDataReader object has been created, the code uses a while loop 
to read each image ID value that's stored in the reader object and store it in a 
List<int> object named imageiDList. Finally, this code closes the reader object 
and returns the List<int> object. 

The static GetConnection() method that's used by all three of the other 
methods in this class returns a SqlConnection object for a SQL Server instance 
named SqlExpress that's running on the same computer as the ProductDB class. 
In addition, the code within this method uses the Examples database that's 
running on the server, and it uses integrated security to connect to this database. 



Chapter 19 How to work with BLOBs 633 

The ProductDB class Part 3 

} 

} 

Figure 19-5 

public static List<int> GetimageiDList() 
{ 

} 

SqlConnection connection = null; 
try 
{ 

} 

connection= GetConnection(); 

SqlCommand command= new SqlCommand(); 
command.Connection = connection; 
command.CommandText = 

"SELECT ImageiD FROM Productimages " + 
"ORDER BY ImageiD"; 

connection.Open(); 
SqlDataReader reader = command.ExecuteReader(); 

List<int> imageiDList =new List<int>(); 
while (reader.Read()) 
{ 

int imageiD = (int)reader[O]; 
imageiDList.Add(imageiD); 

} 

reader.Close(); 

return imageiDList; 

catch (Exception e) 
{ 

throw e; 
} 
finally 
{ 

} 

if (connection I= null) 
connection.Close(); 

public static SqlConnection GetConnection() 
{ 

} 

SqlConnection connection= new SqlConnection(); 
connection.ConnectionString = 

"Data Source=localhost\\SqlExpress;" + 
"Initial Catalog=Examples;Integrated Security=True"; 

return connection; 

The ProductDB class for varbinary(max) storage (part 3 of 3) 



634 Section 4 Advanced SQL skills 

How to use FILESTREAM storage 
Now that you know how to use a varbinary(max) column to store 

binary data, you're ready to learn how to add FILESTREAM support to 
a varbinary(max) column. Although adding FILESTREAM support adds 
complexity to the database and to the applications that work with the binary data 
in the database, remember that this provides two benefits. First, it lets you store 
BLOBs that are larger than 2GB. Second, it improves performance, especially 
for BLOBs that are larger than 1MB. 

How to enable FILESTREAM storage 
on the server 

By default, FILESTREAM storage is disabled for the server. As a result, 
if you want to use FILESTREAM storage, you must enable it for the server as 
shown in figure 19-6. Here, I enabled all three levels of FILESTREAM access 
for the only instance of SQL Server that's running on my computer, which is 
named SQLEXPRESS. 

If you want to allow a .NET application to work with the database, you 
need to allow at least the first two levels. In other words, you need to select the 
"Enable FILESTREAM for Transact-SQL access" check box, and you need 
to select the "Enable FILESTREAM for file 110 access" check box. For some 
applications, that's all you need to do. However, if you want to allow remote 
clients to access the FILESTREAM data, you'll also need to select the "Allow 
remote clients access to FILESTREAM data" check box. 

After you set the server properties for enabling FILESTREAM storage, 
you have to set the filestream_access_level server configuration option before 
you can access FILESTREAM data. To do that, you execute the sp_configure 
stored procedure as shown in this figure. Here, the access level is set to 2 so 
FILESTREAM storage can be used from both Transact-SQL and Windows 
applications. Then, the RECONFIGURE statement applies the new setting to the 
server instance. 



Chapter 19 How to work with BLOBs 635 

The FILESTREAM tab of the SQL Server Properties dialog box 
SQL Serv<r (SQLEXPRESS) Properti.s X 

Always On Avalab~ty Groups Star1up Parametf:rs Advan<~ 

Log On Service FILESTREAM 

!" Enable Fll.ESlREAM for Transact·SQL access 

f" Enable FILESTREAM for file l/0 access 

Windows share name: I SQLEXPRESS 

!" Allow remote clients access to FILESTREAM data 

OK Cancel Apply 

How to enable FILESTREAM storage 
1. Start the SQL Server Configuration Manager tool, and select the SQL Server 

Services node to display the services that are available to your computer. 

2. Right-click on the instance of SQL Server that you want to use and select the 
Properties command to display the Properties dialog box. 

3. Select the FILESTREAM tab. 

4. Select the "Enable FILESTREAM for Transact-SQL access" check box. 
- If you want to read and write FILESTREAM data from Windows, select the 

"Enable FILESTREAM for fi le I/0 access" check box and enter the name of 
the Windows share in the Windows Share Name box. 

- If you want to allow remote clients to access the FILESTREAM data, select the 
"Allow remote clients access to FILESTREAM data" check box. 

5. Select OK. 

6. Execute these statements in the Management Studio: 
EXEC sp_ configure filestream_ acc ess_ level, 2 ; 
RECONFIGURE; 

7. Use the Configuration Manager to stop and then restart the SQL Server service. 

8. Close and reopen the Management Studio. 

Description 
• By default, FILESTREAM storage is disabled for the server. 

Figure 19-6 How to enable FILESTREAM storage on the server 



636 Section 4 Advanced SQL skills 

How to create a database 
with FILESTREAM storage 

Before you can use FILESTREAM storage, you must create a database that 
provides for it. To do that, you can use the CREATE DATABASE statement as 
shown in figure 19-7. This CREATE DATABASE statement works somewhat 
like the CREATE DATABASE statements described in chapter 11, but it also 
specifies a file group that provides for FILESTREAM storage. 

To start, you specify a name for the database, and you specify the primary 
data file (an mdf file) for the database. In this figure, for example, the 
statement creates a database named MusicStore with a primary data file named 
MusicStore. mdf. 

To provide for FILESTREAM storage, you must also specify a file group for 
the files that have FILESTREAM access. To do that, you type a comma after the 
closing parenthesis for the primary data fi le. Then, you code the FILEGROUP 
keyword, followed by a name for the file group. Next, you code the CONTAINS 
FILESTREAM DEFAULT keywords, followed by a set of parentheses. Within 
the parentheses, you code a name for the file group directory, and you code a 
path to the directory that will store the binary files. In this figure, for example, 
the binary fi les will be stored in the MusicStore_images directory. 

If you prefer using the Management Studio to create a database as described 
in chapter 12, you can also use that tool to create a database that provides for 
FILESTREAM storage. In that case, you can use the New Database dialog box 
to add a FILESTREAM file group. Once you understand the code in this figure, 
you shouldn't have any trouble doing that. 



Chapter 19 How to work with BLOBs 637 

How to create a database with FILESTREAM storage 
CREATE DATABASE MusicStore 
ON PRIMARY 
( 

NAME = MusicStore, 
FILENAME= 'C:\Murach\SQL Server 2019\Databases\MusicStore.mdf' 

) I 

FILEGROUP FileStreamimages CONTAINS FILESTREAM DEFAULT 
( 

NAME = MusicStoreimages, 
FILENAME= 'C:\Murach\SQL Server 2019\Databases\MusicStore_ images' 

) ; 

Description 
• If you want to use the FILESTREAM feature, you must create a database that 

includes a fi le group that provides for FILESTREAM storage. 

Figure 19-7 How to create a database with FILESTREAM storage 



638 Section 4 Advanced SQL skills 

How to create a table with a FILESTREAM column 

Once you've created a database that provides for FILESTREAM storage, 
you must create a table that provides for FILESTREAM storage as shown 
in figure 19-8. If you compare this table with the table shown in figure 19-2, 
you' ll see that they're similar. However, the Productlmage column includes the 
FILESTREAM attribute that enables FILESTREAM storage for this column. 

In addition, this table includes a column named RowiD. This column stores 
a globally unique identifier (GUID), which is a value that's unique within the 
current database and other networked versions of the database around the globe. 
This column is required for FILESTREAM storage, and SQL Server uses it to 
locate the file that stores the data for the Productlmage column. Note that this 
column uses the uniqueidentifier data type and the ROWGUIDCOL property. In 
addition, this column uses the NEWID function to return a globally unique value 
for the column. As a result, if you don' t specify a value for this column, the 
NEWID function will automatically return a value. 

How to insert, update, 
and delete FILESTREAM data 

Once you create a table that provides for FILESTREAM storage, you can 
use INSERT, UPDATE, and DELETE statements just as you would for other 
types of data. However, you may need to use the NEWID function to return 
a globally unique value for the GUID column. In this figure, for example, the 
three INSERT statements insert three rows into the Productimages table. Here, 
the first statement doesn' t specify a value for the GUID column. As a result, the 
table uses the NEWID function to generate this value. By contrast, the second 
and third statements use the NEWID function explicitly. 

How to retrieve FILESTREAM data 

To retrieve FILESTREAM data, you can use a SELECT statement just as 
you would for other types of data. In this figure, for example, the first SELECT 
statement selects all columns and rows from the Productlmages table. This 
shows the data that was inserted by the three INSERT statements. Here, the first 
two rows in the Productimage column store a binary value of zero and the third 
row stores a longer binary value. 

When you use FILESTREAM storage, you can use the PathName function 
to return the path to the binary file stream. Unlike most functions, this function 
is case sensitive. As a result, you must use the capitalization shown in the second 
SELECT statement. Here, the SELECT statement displays the ImageiD value 
and the path to the binary file stream. In the next figure, you' ll learn how to use 
this function in a .NET data access class to read and write binary data to the file 
stream that's returned by this method. 

When you use an INSERT statement to insert a row that contains 
FILESTREAM data, it's important to insert a zero value instead of a NULL 
value to initialize the FILESTREAM column. Otherwise, the PathName function 



Chapter 19 How to work with BLOBs 639 

How to create a table with FILESTREAM storage 
CREATE TABLE Productimages 
( 

) ; 

ImageiD int PRIMARY KEY IDENTITY, 
ProductiD int NOT NULL, 
RowiD uniqueidentifier ROWGUIDCOL NOT NULL UNIQUE DEFAULT NEWID(), 
Productimage varbinary(max) FILESTREAM NOT NULL 

Three INSERT statements that insert rows into the table 
INSERT INTO Productimages (ProductiD, Productimage) 
VALUES (1, 0); 

INSERT INTO Productimages 
VALUES (2, NEWID(), 0); 

INSERT INTO Productimages 
VALUES (3, NEWID(), CAST('0123456789ABC' AS varbinary(max))); 

A statement that displays the values in the table 
SELECT * FROM Productimages; 

The result set 

1 

2 

3 

lma~;~eiD ProductiD 
i""i ······················i 1 
t •..•..•..•..•..••.••.••••• ; 

2 2 

3 3 

RowiD Productlma~;~e 

9FC421 D5-FOB6-4BE5-8F6C-AFED731 BM66 OxOOOOOOOO 

6142A789-154F-45E5-9A9A-&.B3181 n387 OxOOOOOOOO 

ECF80860-28FB-414D-809A·99CJC46FD1 89 Ox30313233343536373839414243 

A SELECT statement that displays the filepath 
SELECT ImageiD, Productimage.PathName() AS FileStreamPath 
FROM Productimages; 

The result set 
lma~;~eiD RleStreamPath 

1 c·.i.·.·~.·.·~.·.·~.·.·~~.·~~.·~~.J \\MMA 17\SQLEXP RESS\v02·A60EC2F8-2824-11 DF·9CCJ.AF2E56D89593\MusicStore\dbo \Product I. .. 

2 2 \\MMA 17\SQLEXPRESS\v02·A60EC2F8-2824·11 DF·9CCJ.AF2E56D89593\MusicStore\dbo\Productl... 

3 3 \\MMA 17\SQLEXPRESS\v02-A60EC2F8-2824.·11 DF-9CCJ.AF2E56D89593\MusicStore\dbo\Productl... 

Description 
• To create a table that provides for FILESTREAM storage, you include a column 

definition that contains the FILESTREAM keyword. In addition, you create a 
column with a globally unique identifier (GUJD) that's used to locate the fi le that 
stores the FILESTREAM data. 

• A GUID is a value that's unique within the current database and other networked 
versions of the database around the globe. To define a column that contains a 
GUID, you specify the uniqueidentifier data type for the column, and you specify 
the ROWGUIDCOL property for the column. 

• You can use the NEWID function to generate a globally unique value. 

• You can use the PathName function to return the path to the binary file stream. This 
function is case sensitive, so you must use exact capitalization. 

Figure 19-8 How to create a table and insert FILESTREAM data 



640 Section 4 Advanced SQL skills 

won' t return a path to the file stream, and the application won' t be able to write 
data to the file stream. 

A data access class 
that uses FILESTREAM storage 

Figure 19-9 shows a data access class named ProductDB that uses 
FILESTREAM storage. If you compare this class with the ProductDB class 
presented in figure 19-5, you' ll see that it contains the same methods and 
performs the same tasks. As a result, you can use the ProductDB class shown in 
this figure with an application like the Product Image Manager application that 
was presented earlier in this chapter. 

Within the ProductDB class, the code begins by defining a string for 
the directory for the images. Then, the GetConnection() method returns a 
SqlConnection object. Since this works like the GetConnection() method 
presented earlier in this chapter, you shouldn' t have much trouble understanding 
how it works. However, the method shown in this figure uses the MusicStore 
database that was created by the SQL statement presented in figure 19-7. 

The Writelmage() method works much like the Writelrnage() method 
presented earlier in this chapter. However, since this method uses FILESTREAM 
storage, it's more complex. For instance, you must use the NewGuid() method 
of the Guid class to return a globally unique identifier for the row. This has the 
same effect as using the NEWID function in SQL, but it allows you to use the 
globally unique identifier again later in this method. 



Chapter 19 How to work with BLOBs 

The ProductDB class 
using System; 
using System.Collections.Generic; 
using System.Data.SqlClient; 
using System. Data.SqlTypes; 
using System.IO; 

namespace MusicStoreimageManager 
{ 

class ProductDB 
{ 

II define the directory for the images 

Part 1 

static string imagesPath = "C:IMurachiSQL Server 20191Imagesl"; 

Figure 19-9 

public static SqlConnection GetConnection() { 
SqlConnection connection= new SqlConnection(); 
connection.ConnectionString = 

} 

"Data Source=localhost\\SqlExpress;" + 
"Initial Catalog=MusicStore;Integrated Security=True"; 

return connection; 

public static void Writeimage(int productiD1 string imageName) { 
SqlConnection connection = null; 
SqlTransaction transaction = null; 
try { 

II 1. Set up the input stream from the image file 
string filepath = imagesPath + imageName; 
if (File.Exists(filepath) == false) 

throw new Exception("File Not Found: " + filepath); 

FileStream sourceStream = new FileStream( 
filepath1 
FileMode.Openl 
FileAccess.Read); 

II 2. Initialize the row in the table 
connection= GetConnection(); 

SqlCommand command= new SqlCommand(); 
command.Connection = connection; 
command.CommandText = 

"INSERT INTO Productimages " + 
"VALUES (@ProductiD1 " + 
" CAST(@RowiD AS uniqueidentifier) 1 0)"; 

Guid rowiD Guid. NewGuid ( ) ; 
command.Parameters .AddWithValue ( "@ProductiD" 1 productiD); 
command.Parameters .AddWithValue ( "@RowiD" 1 rowiD); 

connection.Open(); 
command.ExecuteNonQuery(); 

The ProductDB class for FILESTREAM storage (part 1 of 3) 

641 



642 Section 4 Advanced SQL skills 

After executing the query that inserts the row into the database, you must 
get a reference to the file stream for the BLOB. To do that, you begin by 
defining a SELECT statement that returns two columns. The first column uses 
the PathName function to return the path to the file stream. The second column 
uses the GET_FILESTREAM_TRANSACTION_CONTEXT function to get the 
context for the transaction. Note that the GUID value that was created earlier in 
this method is used in the WHERE clause of this SELECT statement to specify 
the row that was inserted by the INSERT statement earlier in the same method. 

After the SELECT statement is defined, this code executes this statement. 
Then, it uses the reader object that's returned to check whether the result set 
contains data. If so, the first column is stored in a variable named path, and the 
second column is stored in a variable named context. Finally, this code closes the 
reader object. 

At this point, the Writeimage() method has all the data it needs to set up 
an output stream to the database. To do that, it creates a FileStream object with 
write access. 

Now that the Writeimage() method has an input stream and an output 
stream, it's ready to read data from the input stream (the image file) and write 
data to the output stream (the BLOB in the database). To do that, this code 
defines a block size of half a megabyte (524,288 bytes), a size that's usually 
efficient for working with streams. Then, this code defines a buffer variable that 
stores this array of bytes. Finally, it uses a loop to read from the input stream and 
write to the output stream. 

Note that this allows this class to read half of a megabyte into memory at a 
time. For example, let's assume that you have an image file that's 4 megabytes. 
In that case, it would take eight trips through the loop to write the file to the 
database. On the other hand, the Writeimage() method presented earlier in this 
chapter reads the entire file into memory before it begins to write the file. As a 
result, it can use a lot of memory if you use it with images that are larger than 1 
megabyte. 

Note also that this method uses a transaction. If the method completes 
successfully, the last statement in the try block commits the transaction, and the 
image is written to the database. However, if the method encounters an error, 
the catch block rolls back the transaction, and the image is not written to the 
database. 



Chapter 19 How to work with BLOBs 643 

The ProductDB class Part 2 

} 

Figure 19-9 

} 

II 3. Get a reference to the BLOB 
transaction= connection.BeginTransaction(); 
command.Transaction = transaction; 
command.CommandText = 

"SELECT Productimage.PathName (), " + 
GET_ FILESTREAM_ TRANSACTION_CONTEXT() " + 

"FROM Productimages " + 
"WHERE RowiD = CAST(@RowiD AS uniqueidentifier)"; 

command.Parameters.Clear(); 
co:mmand.Parameters .AddWithValue ( "@RowiD", rowiD); 

SqlDataReader reader = co:mmand.ExecuteReader(); 
if (reader.Read() == false) 

throw new Exception( 
"Unable to get path and context for BLOB."); 

string path= (string)reader[O]; 
byte[] context= (byte[])reader[1]; 
reader.Close(); 

II 4. Set up the output stream to the database 
SqlFileStream targetStream = 

new SqlFileStream(path, context, FileAccess.Write); 

II 5. Read from file and write to database 
int blockSize = 1024 * 512; 
byte[] buffer= new byte[blockSize]; 
int bytesRead = sourceStream.Read(buffer, 0, buffer.Length) ; 
while (bytesRead > 0) { 

targetStream.Write(buffer, 0, bytesRead); 
bytesRead = sourceStream. Read(buffer, 0, buffer . Length); 

} 

targetStream.Close(); 
sourceStream.Close(); 
transaction.Commit(); 

catch (Exception e) { 

} 

if (transaction != null) 
transaction.Rollback(); 

throw e; 

finally { 

} 

if (connection != null) 
connection.Close(); 

The ProductDB class for FILESTREAM storage (part 2 of 3) 



644 Section 4 Advanced SQL skills 

The Readlmage() method works much like the Readlmage() method 
presented earlier in this chapter. However, since this method uses FILESTREAM 
storage, it's more complex. To start, this method executes a SELECT statement 
to get a path to the file stream and the transaction context. Then, it sets up a file 
stream for the BLOB by creating a FileStream object with read access. Since 
this works much like the SELECT statement of the Writelmage() method that's 
presented in part 2 of this figure, you shouldn' t have much trouble understanding 
how it works. 

After setting up the input fi le stream, this code uses a loop to read the binary 
data from the database and stores this data in a List<byte> object named 
imageBytes. Then, it converts the List<byte> object to an array of byte values 
and returns it. 

This loop works similarly to the loop in the Writelmage() method that reads 
from one stream and writes to another. However, instead of writing to a stream, 
this code stores the entire stream in the List<byte> object. The advantage to this 
approach is that it allows you to separate the data access layer (the ProductDB 
class) from the presentation layer (the form). The disadvantage of this approach 
is that the entire image is stored in memory. If this isn' t satisfactory for your 
application, you can add a PictureBox control as a second argument of the 
Readlmage() method. Then, this method can stream the data from the BLOB in 
the database to the PictureBox control that displays the image. 

For this ProductDB class to work with the Product Image Manager 
application presented earlier in this chapter, it must include a GetlmageiDList() 
method. However, the code for this method is the same as the code presented in 
part 3 of figure 19-5. To save space, it isn' t presented here. 



Chapter 19 How to work with BLOBs 645 

The ProductDB class Part 3 

} 

} 

Figure 19-9 

public static Byte[] Readimage(int imageiD) { 
SqlConnection connection = null; 
SqlTransaction transaction = null; 

} 

try { 

} 

connection= GetConnection(); 
connection.Open(); 
transaction= connection.BeginTransaction(); 

SqlCommand command= new SqlCommand(); 
command.Connection = connection; 
command. Transaction = transaction; 
command.CommandText = 

"SELECT Productimage.PathName(), " + 
GET_ FILESTREAM_ TRANSACTION_CONTEXT() " + 

"FROM Productimages " + 
"WHERE ImageiD = @ImageiD"; 

command. Parameters. AddWi thValue ( "@ImageiD", imageiD) ; 

SqlDataReader reader = command.ExecuteReader(); 
if (reader.Read() == false) 

throw new Exception( 
"Unable to get path and context for BLOB."); 

string path= (string)reader[O]; 
byte[] context= (byte[])reader[1]; 
reader.Close(); 

SqlFileStream sourceStream = 
new SqlFileStream(path, context, FileAccess.Read); 

int blockSize = 1024 * 512; 
byte[] buffer= new byte[blockSize]; 
List<byte> imageBytes = new List<byte> (); 
int bytesRead = sourceStream.Read(buffer, 0, buffer . Length); 
while (bytesRead > 0) { 

bytesRead = sourceStream.Read(buffer, 0, buffer . Length); 
foreach(byte b in buffer) 

imageBytes.Add(b); 
} 

sourceStream.Close(); 
return imageBytes . ToArray(); 

catch (Exception e) { 
throw e; 

} 

finally { 

} 

if (connection != null) 
connection.Close(); 

public static List<int> GetimageiDList() { 
II same as part 3 of figure 19-5 

} 

The ProductDB class for FILESTREAM storage (part 3 of 3) 



646 Section 4 Advanced SQL skills 

Perspective 
In this chapter, you learned how to write BLOBs to a database table and 

to read BLOBs from a database table. In addition, you learned how to use the 
FILESTREAM storage feature. At this point, you have the core concepts and 
skills for working with BLOBs. 

Now, if you want to develop a more sophisticated application for working 
with BLOBs, you should be able to do that. For example, you may want to 
enhance the application presented in this chapter so it can be used to update 
or delete an existing image. Or, you may want to enhance this application so it 
works more efficiently. 

Terms 

binary large object (BLOB) 
FILESTREAM storage 
globally unique identifier (GUID) 

1. Modify the first ProductDB class presented in this chapter so the Readimage() 
method accepts a PictureBox control as a second argument like this: 

public static void Readimage(int imageiD, PictureBox pictureBox) 

Then, modify the Readimage() method so it streams data from the database to 
the PictureBox control, and modify the code for the form so it works with this 
new method. To do this, you can begin by copying code from the form into 
the ProductDB class. 

2. Modify the second ProductDB class so it works as described in exercise 1. 



Appendix A 

How to set up your 
computer for this book 
To run the SQL statements described in chapters 1 through 18 of this book, 
you only need to have two software products installed: the SQL Server 2019 
database engine and the SQL Server Management Studio (SSMS). Both 
of these products are available from Microsoft's website for free, and you 
can download and install them both on your computer as described in this 
appendix. 

Once you install these software products, you can install the files for this 
book. To do that, you can download these files from www.murach.com. Then, 
you can use the Management Studio to create the databases for this book. 
After that, you can start experimenting with the SQL scripts for this book. 

To use a .NET language such as C# or VB to work with BLOBs as 
described in chapter 19, you can use Visual Studio. If you don' t already have 
Visual Studio installed on your system, you can install Visual Studio 2019 
Community as described in this appendix. This product is also available from 
Microsoft's website for free. 

Three editions of SQL Server 2019 Express ................................. ... .... ...... 648 
The tool for working with all editions of SQL Server ......................... ...... 648 
How to install SQL Server 2019 Express .................................... ...... .......... 650 
How to install SQL Server Management Studio ......................................... 650 
How to install the fi les for this book ................................................. .... ...... 652 
How to create the databases for this book ......................................... .. .. ...... 654 
How to restore the databases for this book ............................................ ...... 654 
How to install Visual Studio 20 19 Community .......................... .. .. .. .. .. ...... 656 



648 Appendix A How to set up your computer for this book 

Three editions of SQL Server 2019 Express 

Figure A-1 describes three editions of SQL Server 2019 Express. Of the 
three editions listed in this figure, we recommend that you install SQL Server 
2019 Express. This edition includes the database engine that provides for all of 
the features covered in this book. 

The Express with Advanced Services edition includes all of the features of 
the Express edition, plus two additional features that aren't covered in this book. 
If you eventually want to learn about these features, you can install this edition 
and use it with this book. However, it requires more system resources than the 
Express edition. 

The LocalDB edition also has the same features as the Express edition, but 
it's designed to be embedded within an application. As a result, you should be 
aware of this edition in case you ever need to embed a database into an 
application. It has the same features as the Express edition, but it doesn' t accept 
remote connections and can't be administered remotely. 

The tool for working with all editions 
of SQL Server 

This figure also describes a tool named SQL Server Management Studio 
(SSMS). You can use this tool to work with any edition of SQL Server, including 
non-Express editions of SQL Server such as the Enterprise edition. 



Appendix A How to set up your computer for this book 649 

Three editions of SQL Server 2019 Express 
Edition Description 

LocaiDB 

Express 

Express with Advanced Services 

A lightweight version of Express that can be embedded 
into an application. Doesn't accept remote connections 
and can' t be administered remotely. 

The core Express database server. Contains only the 
database engine. Accepts remote connections and can 
be administered remotely. 

Contains the Full Text Search and Reporting Services 
features in addition to the database engine. These 
features aren' t covered in this book. 

The tool for working with all editions of SQL Server 
Tool Description 
SQL Server Management Studio (SSMS) You can use the Management Studio to connect 

to SQL Server and work with its databases. 

Description 
• For this book, we recommend that you install the Express edition of SQL Server 

2019, but you can install the Express with Advanced Services edition if you want to 
install the advanced features and don' t mind a larger download and install. 

Figure A-1 Three editions of SQL Server 2019 Express 



650 Appendix A How to set up your computer for this book 

How to install SQL Server 2019 Express 

Figure A-2 shows how to install SQL Server 2019 Express. Before you 
get started, you should know that SQL Server 2019 only runs on Windows 10 
and later. As a result, if you're still using an older version of Windows, such as 
Windows 8, you need to upgrade to Windows 10 or later. 

If you don' t already have an instance of SQL Server Express installed on 
your system, the procedure in this figure installs SQL Server 2019 Express with 
an instance name of SQLEXPRESS, which is what you want for this book. 
However, it's possible that you may have an older instance of SQL Server 
Express, such as SQL Server 2016 Express, on your computer. If you do, the 
older instance of SQL Server is probably named SQLEXPRESS. As a result, the 
2019 instance can't use this name. 

In that case, the procedure in this figure leaves the old instance of SQL 
Server on your computer and installs the 2019 instance of the database engine 
with a new name such as SQLEXPRESSOl. That's what the Basic installation 
does automatically. However, the examples in this book assume that SQL Server 
2019 Express has an instance name of SQLEXPRESS. As a result, if you choose 
this approach, you may have to modify some of the examples in this book to get 
them to run successfully on your computer. 

If an older instance of SQL Server is installed on your computer, you also 
have two other options. First, you may be able to upgrade the database server by 
selecting the Custom installation in step 4 instead of selecting the Basic 
installation. Then, you can select the "Upgrade" option. This will upgrade the 
old instance to 2019, but it will run the existing databases as if they are running 
on the earlier version. In that case, if you want to update a database so it can use 
the features of SQL Server 2019, you can change its compatibility level. For 
information on how to do that, see chapter 2. 

Second, if you can' t upgrade the old instance of SQL Server Express, you 
can uninstall it. Then, you can install a 2019 instance. That way, you can use the 
default name of SQLEXPRESS for the 2019 instance. To do that, you should start 
by backing up any databases that are running on the older SQL Server instance. 
One way to do that is to detach them from the server and copy the data (mdf) 
and log (ldf) files for the databases to a safe location. Then, you can uninstall all 
components of SQL Server Express, including the Management Studio 
components. Next, you can install SQL Server 2019 Express as described in this 
figure. Finally, you can attach the databases that you backed up to this server. For 
more information about detaching and attaching databases, see chapter 2. 

How to install SQL Server Management Studio 

This figure also shows how to install SQL Server Management Studio 
(SSMS), the main tool for working with databases. If you already have SQL 
Server 2019 Express installed on your computer, you only need to install 
Management Studio. To do that, you can skip the steps for installing SQL Server 
and just follow the steps for installing the Management Studio. 



Appendix A How to set up your computer for this book 651 

How to install SQL Server 2019 Express 

1. Search the Internet for "SQL Server 2019 Express download". 

2. Follow the links to the official download page for SQL Server 2019 Express at 
Microsoft's website (www.microsoft.com). 

3. Download the setup program for SQL Server 2019 Express. This program should 
be stored in a file named SQL2019-SSEI-Expr.exe. 

4. Start the setup program and select the Basic installation. Then, respond to the 
resulting prompts and dialogs. 

5. At the last dialog (the "Installation has completed successfully" dialog), make a 
note of the instance name for the server. 

- If SQL Server Express wasn' t already installed on your computer, the instance 
name should be SQLEXPRESS. 

- If SQL Server Express was already installed on your computer, the instance 
name might be slightly different such as SQLEXPRESS01. 

6. At the last dialog, click the Install SSMS button to go to the web page for 
downloading SQL Server Management Studio. 

How to install the Management Studio 

7. At the web page for downloading the Management Studio, follow the links to 
download the setup program. This program should be stored in a file named 
SSMS-Setup-ENU .ex e. 

8. Start the setup program and respond to the resulting prompts and dialogs. 

Notes 

• This book assumes that an instance of SQL Server 2019 Express is installed with a 
name of SQLEXPRESS. If it's installed on your system with a different name, you 
may have to modify some of the examples to get them to run successfully on your 
computer. 

• SQL Server 2019 supports Windows 10 and later. Support for Windows 8 has been 
dropped. 

Figure A-2 How to install SOL Server 2019 Express 



652 Appendix A How to set up your computer for this book 

Chapter 2 presents the basic techniques for using the Management Studio. 
You can use it to develop and run all of the SQL statements in this book. 

How to install the files for this book 

Figure A-3 begins by describing the files for this book that are contained in 
the self-extracting zip file (an exe fi le) that you can download from 
www.murach.com. When you download and execute this zip file, it will unzip 
the five directories described in this figure into this directory: 

C:\Murac h \SQL Server 2019 

The Databases directory contains the SQL scripts used to create the three 
databases that are used throughout the book. To do that, you can use the 
Management Studio to open and execute these scripts as described in the next 
figure. 

The Scripts directory contains the SQL code that's described throughout 
this book. You can use the Management Studio to open these scripts. Then, you 
can run them to view the results. Or, you can experiment with these scripts by 
modifying them before you run them. 

The Exercises directory contains the solutions to the exercises that are 
presented at the end of each chapter. You can use these solutions to check that 
the solutions you develop are correct. You can also use these solutions to find out 
how to solve an exercise if you're unable to do it on your own. Keep in mind, 
though, that you' ll get more out of the exercises if you try to solve them on your 
own first. 

The Projects directory contains two subdirectories that contain the Visual 
Studio projects for chapters 1 and 19. These projects are available in two 
versions: a C# version and a Visual Basic version. You can use Visual Studio 
Community to open these projects. 



Appendix A How to set up your computer for this book 653 

The files for this book 
Directory Description 

Databases 

Scripts 

Exercises 

Projects 

Images 

The SQL scripts that create the databases for this book. 

The SQL scripts for the examples shown throughout this book. 

The solutions to the exercises at the end of each chapter. 

The Visual Studio projects for chapters I and 19. These projects 
use C# and Visual Basic code to work with SQL Server. 

The image files that are used by the application presented in chapter 19. 

The databases for this book 

Database Description 

AP 

ProductOrders 

Examples 

The Accounts Payable (AP) database that's used in the examples 
throughout this book. This database only includes tables so you can 
add other objects such as views and stored procedures yourself. 

The Product Orders database that's used in some of the examples in 
this book. 

A database that contains several small tables that are used in some 
of the examples for which the AP database couldn't be used. 

How to install the files for this book 
1. Go to www.murach.com. 

2. Find the page for Murach 's SQL Server 2019 for Developers. 

3. If necessary, scroll down. Then, click the "FREE Downloads" tab. 

4. Click the link to download the exe file for the book examples and exercises. Then, 
respond to the resulting pages and dialog boxes. This should download an installer 
file named sq19_allfiles.exe. 

5. Double-click this file and respond to the dialog boxes that follow. If you accept the 
defaults, this installs the files into the directory shown below. 

The default installation directory 
C:\Murach\SQL Server 2019 

Description 
• All of the files for the databases and code described in this book are contained in a 

self-extracting zip file (an exe file) that can be downloaded from www.murach.com. 

Figure A-3 How to install the files for this book 



654 Appendix A How to set up your computer for this book 

How to create the databases for this book 

Before you can run the SQL statements presented in this book, you need to 
create the three databases described in the previous figure. The easiest way to 
do that is to use the SQL Server Management Studio to run the SQL scripts that 
create the databases. For example, the create_ap.sql script creates the AP 
database. The procedure for running these scripts is described in figure A-4. 

To determine if a script ran successfully, you can review the results in the 
Messages tab. In this figure, for example, the Messages tab shows a series of 
statements that have executed successfully. In addition, the Object Explorer 
window shows the three databases. 

If the script encounters problems, the SQL Server Management Studio 
displays one or more errors in the Messages tab. Then, you can read these errors 
to figure out why the script didn' t execute correctly. 

Before you can run the SQL scripts that create the databases, the database 
server must be running. By default, the database server is automatically started 
when you start your computer, so this usually isn' t a problem. However, if it isn' t 
running on your system, you can start it as described in chapter 2. 

How to restore the databases for this book 

As you work with the examples in this book, you may make changes to the 
databases or tables that you don' t intend to make. In that case, you may want 
to restore a database to its original state. To do that, you can run the script that 
creates the database again. This will drop the database and recreate it. 



Appendix A How to set up your computer for this book 655 

The directory that contains the scripts for creating the databases 
C: \ Murach\SQL Serv er 2 019 \ Data b ase s 

The Management Studio after executing the three database scripts 

Open File button Execute button 

L.; creat~_ap ql- loulhost:\ SQLEXPRESS.master (murach ne (53))- Microsoft SOL Se:rver Manageme:nt St... Quick launch (Ctri•Q) 

File Edrt V Query ProJect Tools W1nd Help 

C • t.) • <' Iii tJ' .~ NrwQu ,Iii~~,~ ,'f?, ,l(, OJ 6j ~ p VB 

'~ master .J rg ~~ r' ~ iJl ~~.I) "J ?J ~~ '!:~ "'4 ; 

Object Exploref • L1 X 

Connect • ¥ ' ¥ G ""'-
8 i} locolhost\SQlEXPRESS (SQl S.rv01 I~ 

8 Databases 
rB System D~tabases 

rt Database Snapshots 
mii AP 
"' ij Examples 
m ij ProductOrdO<s 

IE Security 
IE Server Objects 
(!] Replication 
IE PolyBose 
III Management 
III [!] XEvent Profller 

creatt_lp.sqt - loc ... (murech\Annt (53)) t~ X 
USE lftester 
GO 

1•••••• Object: Datebase AP 
8 IF De ID( 'AP' ) IS llOT NULL 
' DROP DATABASE AF 

GO 

CREATE DATABASE AF 
GO 

USE (APJ 
GO 

ru••• Object: Tabb (dbo]. (ContactUpdates] Script Date: 2/14/2929 12:45:55 PM • 
SET AIISI_NULLS ON 

100% ... ~ 

llll Metsages 

C1 row •f! ected) 

C1 row e ffec~ed) 

C1 row ettecud) 

1110% • 

> (!) Qutry executed succ6sfully. localhost\SQlEXPRESS (15.0 ... murach\Anne ($3) master 00:00:02 0 rows 

0 Ready ln I Coli Ch 1 INS 

How to create the databases 
1. Start the SQL Server Management Studio. 

2. Connect to the database server as shown in chapter 2. 

+ 

3. Open a script fi le by clicking the Open File button and then using the resulting 
dialog box to locate the script that creates the database. To create the AP database, 
for example, open the create_ap.sql fi le. When you do, the Management Studio 
displays this script in a Query window. 

4. Execute the script by clicking the Execute button. When you do, the Messages tab 
indicates whether the script executed successfully. 

5. Repeat steps 3 and 4 until you have created all three databases. 

How to restore a database 
• Run the create database script again to drop the database and recreate it. 

Description 
• For these scripts to work, the database server must be running. By default, the 

database server is automatically started when you start your system. If it isn' t 
running on your system, you can start it as described in chapter 2. 

Figure A-4 How to create and restore the databases for this book 



656 Appendix A How to set up your computer for this book 

How to install Visual Studio 2019 Community 

You only need Visual Studio for chapter 19 of this book. As a result, if 
Visual Studio isn' t already installed on your computer, you can wait until you get 
to chapter 19 to install it. Then, you can install Visual Studio 2019 Community 
as shown in figure A-5. This edition of Visual Studio is available for free from 
Microsoft's website. 



Appendix A How to set up your computer for this book 657 

How to install Visual Studio 2019 Community 
1. Search the Internet for "Visual Studio 2019 Community download" . 

2. Follow the links to the download page for Visual Studio 2019 Community at the 
Visual Studio website (visualstudio.microsoft.com). 

3. Follow the directions to download the setup program for Visual Studio 2019 
Community. 

4. Run the setup program, select the ".NET desktop development" workload, and 
click the Install button. 

Description 
• You only need to install Visual Studio for chapter 19 of this book. If you don' t 

already have Visual Studio installed on your system, you can install Visual Studio 
Community, which is available for free from Microsoft. 

Figure A-5 How to install Visual Studio 2019 Community 





Index 
--characters (comment), 32, 33 
-operator (subtraction), 97 
- wildcard character, 112, 11 3 
#character (local temporary name), 426, 427, 462, 463 
##characters (global temporary name), 426, 427, 462, 

463 
% operator, 97 
%wildcard character, 112, 11 3 
*operator 

all columns, 90, 91 
multiplication, 97 

*=operator, 140, 141 
.bak file, 60, 61 
.NET data provider, 40, 4 1 
I operator, 97 
/* ... *!characters (block comment), 32, 33 
:: scope qualifier, SS2, SS3 
@character 

parameter name, 464, 46S 
variable name, 422, 423 

@@ERROR system function, 442, 443 
@@FETCH_STATUS system function, 436,437 
@@IDENTITY system function, 442,443 
@@ ROWCOUNT system function, 442, 443, S 12, S 13 
@@SERVERNAME system function, 442,443 
@ @TRANCOUNT system function, S 14, SIS 
[ ] characters 

delimiter, 336, 337 
in column name, 92, 93 
wildcard, 112, 113 

11 wildcard character, 112, 113 
wildcard character, 112, I 13 

+operator 
addition, 97 
concatenation, 94, 9S 

< operator, I 04, I OS 
<= operator, I 04, I 05 
<>operator, 104, 105, 444, 44S 
=operator 

assign column alias, 92, 93 
assign variable value, 423 
comparison, 104, lOS, 11 4, liS, 444, 44S 
rename column, 92, 93 

=*operator, 140, 141 
> operator, I 04, I OS 
>= operator, 104, lOS 
1N~2N~3N~4NRSN~6N~TIO,TI I 

A 
ABS function, 268, 269 
Action query, 30, 31 
Ad hoc relationship, 126, 127 
Addition operator, 97 
ADO.NET, 38-43 

with C# code, 44, 4S 
with Visual Basic code, 42, 43 

AFTER trigger, 494-497 
Aggregate 

in view, 404, 40S 

ASC keyword (ORDER BY) 659 

query, 160-163 
Aggregate function, 160-163 
AlX operating system, 21 
Alias 

column, 92, 93 
column and ORDER BY, 11 8, 119 
table, 128, 129 

All columns operator, 90, 91 
ALL keyword, 90,91 

and subquery, 192, 193 
in aggregate function, 160- 163 
in SELECT clause, 100, 101 
with union, ISO, 1S1 

ALL SERVER keyword, S02, S03 
ALTER COLUMN clause, 3S4, 3SS 
ALTER FUNCTION statement, 33S, 492, 493 
ALTER LOGIN statement, S42, S43 
ALTER PROC statement, 33S, 480, 48 1 
ALTER ROLE statement, S64-S97 
ALTER SCHEMA statement, S46, S47 
ALTER SEQUENCE statement, 3S8, 359 
ALTER SERVER ROLE statement, SS8-S61 
ALTER TABLE statement, 2S, 33S, 3S2-355 
ALTER TRIGGER statement, 33S, 504, 505 
ALTER USER statement, 544, 545 
ALTER VIEW statement, 335, 406, 407 
Always Encrypted feature, 584 
Ambiguous column name, 126, 127 
American National Standards Institute (ANSI), 18, 19 
American Standard Code for Information Interchange, 

see ASCII 
Analytic functions, 296-299 
Anchor member (recursive CTE), 2 10, 211 
AND operator, I 06, 107 
ANSI, 18, 19 
ANSVISO SQL, 18, 19 
ANSJ_NULLS system option, 444, 445 
ANS!_pADDING system option, 44S 
ANSI-standard data type, 240, 241 
ANSI-standard SQL, 18, 19 
ANY keyword, 194, 19S 
AP database (script), 368-37 1 
API, 6, 7 
Application 

server, 8, 9 
web, 8, 9 

Application program, 38-4S 
Application programming interface (API), 6, 7 
Application role, S72, S73 
Application software, 6, 7 
Approximate numeric data type, 242, 243 
Argument, 98, 99 
Arithmetic expression, 96, 97 
Arithmetic operator, 96, 97 
AS keyword 

in CAST function, 252, 2S3 
in FROM clause, 128, 129 
in SELECT clause, 90-93 

ASC keyword (ORDER BY), 116, 11 7 



660 ASCII 

ASCII, 244 
character set, 360, 36 1 
control character, 258, 259 
function, 258, 259 

Associate table, 312, 313 
Attach database, 58, 59, 338, 339 
Attribute 

SQL, 10, II, 304, 305, 340, 341 
XML, 588, 589 

Authentication 
login, 54, 55 
mode, 538, 539 

AUTHORIZATION clause, 546, 547 
AUTO keyword (FOR XML clause), 610-613 
Autocommit mode, 512, 513 
AYG function, 160-163 

B 
Back end, 6, 7 
Back up database, 60, 61 
Base table, 26, 27, 396, 397 
Base view, 412, 413 
Ba~h.368, 369,41 8,41 9 

stored procedure, 462, 463 
BCNF, 320, 321 
bcp,527,528 
BEGIN keyword, 421 
BEGIN TRAN statement, 512, 5 13 
BEGIN ... END block, 430, 431 , 486,487 
BEGIN . .. END statement, 420, 421,440,441 
BETWEEN phrase, II 0, Il l 
bigint data type, 242, 243 
Binary data, 620-645 
Binary fi le pointer, 620, 621 
Binary large objects (BLOBs), 620-645 
binary varying data type, 241 
Bit, 244,361 
bit data type, 242, 243 
BLOBs, 620-645 
Block comment, 32, 33 
Book fi les (downloading), 650, 65 I 
Boolean expression, 86, 87 
Boyce-Codd normal form, 320, 321 
BREAK statement, 42 1, 434, 435 
Browser (web), 8, 9 
Bulk copy program (bcp), 527, 528 
BULK INSERT statement, 527, 528 
Bulk Update (BU) lock, 527, 528 
Business component, 8, 9 
Byte-pair, 245 

c 
C# code (with ADO.NET), 44, 45 
CACHE keyword, 356, 357 
Calculated column, 26, 27, 90, 9 1-93 

assigning name, 92, 93 
in view, 402-405 

Call a function, 484, 485 
Call a procedure, 460, 461, 466, 467 

Cartesian product, 148, 149 
CASCADE clause 

DENY, 570, 571 
REVOKE, 548, 549 

CASCADE keyword, 350, 35 1 

Column 

Cascading deletes and updates, 350,351,380,381,499 
CASE function, 284, 285 
Case sensitivity, 104, I 05 
CASE software tool, 310, 31 I 
Cast as data type, 252, 253 
CAST function, 252, 253, 266, 267, 278. 279 
Catalog (system), 412, 413 
Catalog views, 412, 413 

database roles, 568, 569 
server roles, 562, 563 
XML schema information, 608, 609 

CATCH block, 438, 439, 470, 471 
CEILING function, 268, 269 
Cell, 10, II 
Change script (saving), 390, 391 
char data type, 241, 244, 245 
CHAR function, 258, 259 
char varying data type, 241 
character data type, 241 
character set, 360-361 
character varying data type, 241 
CHARINDEX function, 262-267 
check constraint, 346-349, 384, 385 
CHECK_EXPIRATION option, 540, 541 
CHECK_POLICY option, 540,541 
Child element (XML), 588, 589 
CHOOSE function, 286, 287 
Client, 4, 5 

software, 6, 7 
Client tools, 50, 51 
Client/server system, 4, 5 

architectures, 7, 8, 9 
compared to fi le-handling system, 6, 7 

Clustered index, 318,319,382,383 
CLUSTERED keyword, 342, 343 
COALESCE function, 288, 289 
Coarse-grain lock, 524, 525 
Codd, E.F. , 10, 18, 19 
Coding guidelines, 32, 33 
COLLATE clause, 366, 367 
Collation, 244, 245, 362-367 

specifying, 366, 367 
viewing, 364, 365 

Collation options, 362, 363 
Collation sets, 362, 363 
Column, I 0, I I 

alias, 92, 93 
alias and ORDER BY, 11 8, 11 9 
ambiguous name, 126, 127 
attribute, 340, 341 
column-level constraint, 340, 341 
definition, 14, 15, 66, 67 
function, 160, 161 
list (with INSERT), 218, 2 19 
name, 92, 93 
order, 368, 369 
position (ORDER BY), 118, 11 9 



Column (continued) 

properties, 66, 67, 378, 379 
qualified name, 126, 127 
specification, 90, 9 1 

Column-level constraint, 346, 347 
Command line switches, 452, 453 
Command object (ADO.NET), 40, 41 
Command prompt utilities, 452, 453 
Comment, 32, 33 
Commit a transaction, 510, 5 11 
COMMITTRAN statement, 512-517 
Common table expressions (CTE), 208-2 11 
Comparison operator, I 04, I 05 
Compatibility level (database), 62, 63 
Compile, 460, 461 
Completion list, 70, 71 
Complex query, 204-207 
Complex search condition, 170, 171 
Component (business), 8, 9 
Components (client/server system), 4-7 
Composite index, 318, 3 19 
Composite primary key, 10, 11 
Compound condition, 106, 107 
Compound join condition, 132, 133 
Compound search condition, I 06, 107, 170, 171 
Computer-aided software engineering (CASE), 310, 311 
CON CAT function, 262-265 
CONCAT_ WS function, 262-265 
Concatenation, 94, 95 
Concurrency, 518-523 

defined, 5 19 
problems with, 520, 52 1 

Condition 
compound, 106, 107 
compound join, 132, 133 
join, 126, 127 

Conditional processing, 430, 431 
Configuration (network), 52, 53 
Configuration Manager, 50-53 
Conformance with SQL-92, 18, 19 
Connect to server, 54, 55 
Connecting table, 312, 313 
Connection object (ADO.NET), 40, 41 
Consistency (data), 500, 501 
Constant, see Literal 
Constraint, 346, 347 

column-level, 340, 341 
compared to trigger, 500, 501 
FOREIGN KEY, 314, 315 
NOT NULL, 340, 34 1 
PRIMARY KEY, 340, 341 
table-level, 340, 341 
UNIQUE, 340, 341 

Content (XML), 589 
CONTINUE statement, 421, 434, 435 
Control character, 258, 259 
Control-of-flow language, 36, 37 
Conventional file system, 16, 17 
Conversion (data type), 250-257 
CONVERT function, 98, 99, 254, 255 
Core specification (SQL-99 standard), 18, 19 

Correlated subquery, 196, 197, 202, 203 
Correlation name, 128, 129, 196, 197 
COUNT function, 160-163 
Covering index, 318 

Data type 

CREATE APPLICATION ROLE statement, 572, 573 
CREATE DATABASE statement, 25, 335, 338, 339 
CREATE FUNCTION statement, 335, 486-491 
CREATE INDEX statement, 25, 335,342,343 
CREATE LOGIN statement, 540,541 
CREATE PROC statement, 462-467 
CREATE PROCEDURE statement, 36, 37, 335 
CREATE ROLE statement, 566, 567 
CREATE SCHEMA statement, 546, 547 
CREATE SEQUENCE statement, 356, 357 
CREATE SERVER ROLE statement, 560, 561 
CREATE TABLE statement, 25, 335, 340, 341 
CREATE TRIGGER statement, 335, 494, 495 
CREATE TYPE statement, 478, 479 
CREATE USER statement, 544, 545 
CREATE VIEW statement, 34, 35, 335, 396, 397, 

400-403 
CREATE XML SCHEMA COLLECTION statement, 

604,605 
Criteria pane, 76, 77 
CROSS JOIN keywords, 148, 149 
CTE, 208-211 

recursive, 210, 211 
CUBE operator, 174, 175 
CUME_DIST function, 296-299 
Cumulative total, 178, 179 
Cursor, 436, 437 
CYCLE keyword 

D 
Data 

consistency, 500, 501 
derived, 326, 327 
redundancy, 316, 317 
structure, 304, 305, 3 16, 3 17, 328, 329 
validation, 470-477 

Data access API, 6, 7 
Data access model, 38, 39 
Data adapter (ADO.NET), 40, 4 1 
Data definition language (DOL), 22, 23, 334, 335 
Data element, 306-309 

subdivide, 308, 309 
Data files for a database, 376, 377 
Data integrity, 5 10, 5 11 
Data manipulation language (DML), 22, 23 
Data reader, 40, 41 
Data table (ADO.NET), 40, 41 
Data type, 14, 15, 240-249 

and disk storage, 14 
and performance, 14 
ANSI-standard, 240, 241 
comparing expressions, 106 
conversion, 250, 25 1 
order of precedence, 250, 25 I 

661 



662 Database 

Database 
administrator, 22, 23 
attach, 58,59 
back up, 60, 61 
compatibility level, 62, 63 
copy, 2 16,2 17 
create, 338, 339, 376, 377, 654, 655 
definition, 64, 65 
delete, 352, 353, 376, 377 
design, 304-329 
detach, 58, 59 
diagram, 64, 65 
engine, 50-53 
hierarchical, 16, 17 
lock, 524, 525 
name, 130, 131 
network, 16, 17 
object, 16, 334, 432, 433 
relational, I 0, I I, 16, 17 
restore, 60, 61, 654, 655 
schema, 400, 40 l 
schema (of a function), 484, 485 
server, 4, 5, 50, 5 1, 54, 55 
summarize, 448, 449 
table, lO, II 
user, 544, 545 

Database access 
grant, 578, 579 
revoke, 578, 579 

DATABASE keyword, 502, 503 
Database management system (DBMS), 6, 7 
Database objects, 24, 25 

navigate, 56, 57 
permissions, 580, 581 

Database permission, 536, 554, 555, 582, 583 
DENY, 570,571 

Database role, 578, 579 
fixed, 564, 565 
information, 568, 569 
user-defined, 566, 567 

Database system, 20, 2 1 
DB2, 18, 19 
open-source, 20, 21 
Oracle, 18, 19 
SQLIDS, 18, 19 

Dataset (ADO.NET), 40, 4 1 
Date 

format, 444, 445 
literal, l04, lOS 
part abbreviations, 274, 275 
part values, 274, 275 
search , 280, 281 

date data type, 246, 247 
Date/time data type, 240, 241, 246, 247, 272-275 
DATEADD function, 272-275, 278, 279 
DATEDIFF function, 98, 99, 272, 273, 278, 279 
DATEFORMAT system option, 444, 445 
DATENAME function, 272-277 
DATEPART function, 272-277 
datetime2 data type, 246, 24 7 

datetimeoffset data type, 246, 247 
DAY function, 272, 273, 276, 277 
DB_ID function, 432, 433 
DB2 database system, 18-2 1 
DBA, 22,23 
dbcreator role, 558, 559 
DBMS, 6, 7 
dbo schema, 544, 545 
DOL, 22, 23, 334, 335 
DOL statement, 24, 25 
Deadlock, 530, 531 

preventing, 532, 533 
dec data type, 241 
decimal data type, 240-243 

DISTINCT keyword 

Declarative referential integrity (DRl), 314, 315 
DECLARE statement, 42 1-425 

for a table variable, 424, 425 
Declare (parameter), 464, 465 
Default backup directory, 60, 61 
Default column order, 368, 369 
Default data directory, 58, 59 
Default database for login, 540, 541 
DEFAULT keyword, 220,221,340,341 

and function, 486, 487 
and UPDATE, 224, 225 

Default schema, 56 
for database, 546, 547 
for user, 544, 545 

Default value, 14, 15 
and INSERT, 220, 221 

DELETE statement, 30, 31, 230-233 
in trigger, 494, 495 
multiple rows with subquery, 232, 233 
through view, 4 1 0, 4 1 I 
with join, 232, 233 

Deleted table, 494, 495 
Deletion anomaly, 3 15 
Delimited identifier, 336, 337 
Delimiter, 336, 337 
Denormalization, 328, 329 
DENSE_RANK function, 292-295 
DENY statement, 570, 571 
Dependency,320,321,386,387, 504,505 
Derived data, 326, 327 
Derived table, 200, 201, 428, 429 
Derived view, 4 12,413 
DESC keyword (ORDER BY), 116, 117 
Design a database, 304-329 
Detach a database, 58, 59 
Diagram (database), 64, 65 
Diagram pane (Query Designer), 76, 77 
Dialect (SQL), 18, 19 
Dirty read, 520-523 
Disconnected data architecture, 38-41 
DISTINCT keyword, 90, 9 1 

and self-joins, 134, 135 
in aggregate function, 160-163 
in SELECT clause, I 00, I 0 l 
in view, 404, 405 
with CUBE, 174, 175 
with ROLLUP, 172, 173 



Division (integer) 

Division (integer), 252, 253 
Division operator, 97 
DKNF, 320, 321 
DML, 22, 23 
Document (XML), 588, 589 
Domain, 320, 321 
Domain-key normal form, 320, 321 
double precision data type, 241 
Double precision number, 242, 243 
Double quotes 

delimiter, 336, 337 
in column name, 92, 93 

Downloadable files (install ing), 652, 653 
DRI,3 14,3 15 
Driver, 38, 39 
DROP APPLICATION ROLE statement, 572, 573 
DROP DATABASE statement, 335, 352, 353 
DROP FUNCTION statement, 335, 492, 493 
DROP INDEX statement, 335, 352, 353 
DROP LOGIN statement, 542, 543 
DROP PROC statement, 335, 480, 481 
DROP ROLE statement, 566, 567 
DROP SCHEMA statement, 546, 547 
DROP SEQUENCE, 358, 359 
DROP SERVER ROLE statement, 560, 56 1 
DROP TABLE statement, 335, 352, 353 
DROP TRIGGER statement, 335, 504, 505 
DROP USER statement, 544, 545 
DROP VIEW statement, 335, 406, 407 
DROP XML SCHEMA COLLECTION statement, 

608, 609 
Duplicate rows (eliminating), 100, 101 
Dynamic SQL, 446, 447 

E 
Edit table data, 68, 69 
Editions (SQL Server 2019 Express), 648, 649 
Element 

data, 306-309 
XML, 588, 589 

ELEMENTS keyword (FOR XML clause), 610-613 
ELSE clause, 421 , 430, 43 1 
Enable remote connection, 52, 53 
Encoding, 360-361 
Encryption, 584 
ENCRYPTION clause 

in stored procedure, 462, 463 
in scalar-valued function, 486, 487 
in trigger, 494, 495 

END clause, 421 
End tag (XML), 588, 589 
Engine (database), 50, 51 
Enterprise system, 4, 5 
Entity, 304, 305 
Entity Framework (EF), 38, 39 
Entity-relationship (ER) modeling, 304, 305 
Entry level of conformance (SQL-92), 18, 19 
EOMONTH function, 272-275 
Equal operator, 104, 105 

ER modeling, 304, 305 
Error 

handling, 438, 439 
number, 438-441 
query, 72, 73 
syntax, 72, 73 

FIRST_ VALUE function 

ERROR_MESSAGE function, 438, 439 
ERROR_NUMBER function, 438, 439 
ERROR_SEVERITY function, 438, 439 
ERROR_STATE function, 438, 439 
Escalation (lock), 524, 525 
EVENTDATA function , 502, 503, 592, 593 
Exact numeric data type, 242, 243 
EXCEPT operator, 154, 155 
Exception, 438, 439 
Exclusive (X) lock, 526, 527 
EXEC statement, 36, 37, 421 , 446, 44 7, 460, 461 
EXECUTE AS clause, 462, 463, 480, 481 , 486, 487, 

494,495 
Execution plan, 460, 461 
exist() method (xml data type), 596, 597 
EXISTS operator 

IF statement, 500, 501 
WHERE clause, 198, 199 

Explicit 
cross join syntax, 148, 149 
data type conversion, 250, 251 
inner join syntax, 126, 127 
outer join, 140, 141 
transaction, 510-513 

Express Edition (SQL Server), 50, 51 
Expression, 90, 91 

arithmetic, 96, 97 
common table, 208-2 11 
string, 94, 95 

Extensible Markup Language (XML), 588, 589 
Extension (SQL), 18, 19 
Extent lock, 524, 525 

F 
FETCH clause, 120, 121 
FETCH statement, 436, 437 
Field, 10, I I 
Fifth normal form, 320, 321, 328, 329 
File system, 16, 17 
File-handling system (compared to client/server 

system), 6, 7 
FlLEGROUP clause (CREATE DATABASE), 636, 637 
Files for this book (installing), 652, 653 
FILESTREAM storage, 634-645 

enabling, 634, 635 
pros and cons, 620, 621 

Filter, 86, 87 
Filtered index, 342, 343 
Fine-grain lock, 524, 525 
Fire a trigger, 494, 495 
First normal form, 320-323 
FIRST_ VALUE function, 296, 297 

663 



664 Fixed role 

Fixed role 
database, 564, 565 
server, 558, 559 

Fixed-length encoding, 361 
Fixed-length string, 244, 243 
float data type, 240-243 
Floating-point number, 242, 243 
FLOOR function, 268, 269 
FOR ATTACH clause, 338, 339 
FOR LOGIN clause, 544, 545 
FOR trigger, 494, 495 
FOR XML clause, 610-6 13 
Foreign key, 12, 13 

constraint, 3 14,315,346,347,350,351 
how to identify, 312, 313 
referential integrity, 314, 3 15 
relationship, 380, 381 

Form (normal), 316,317,320,321,444,445 
Formatting object identifiers, 336, 337 
Fourth normal form, 320, 32 1 
FROM clause, 86, 87, 126-149 

and subquery, 200, 201 
Frontend,6, 7 
FULLJOIN keyword, 140-145 
Full level of conformance (SQL-92), 18, 19 
Full outer join, 140-145 
Full-table index, 342, 343 
Full-Text Search, 112 
Fully-qualified object name, 130, 13 1 
Function, 98, 99, 484, 485 

aggregate, 160-163 
cal1, 484, 485 
change, 492, 493 
column, 160, 161 
data conversion, 252-259 
delete, 492, 493 
invoke, 484, 485 
scalar-valued, 160, 484-487 
table-valued, 484, 485, 488-491 
user-defined, 484-493 

Functions 
@@ERROR, 442,443 
@@FETCH_STATUS, 436,437 
@@IDENTITY, 442, 443 
@@ROWCOUNT, 442,443,512, 513 
@@SERVERNAME, 442,443 
@@TRANCOUNT, 5 14,515 
ABS, 268,269 
Aggregate, 160-163 
Analytic, 296-299 
ASCII, 258, 259 
AVG, 160-163 
CASE, 284, 285 
CAST, 252, 253, 266, 267, 278, 279 
CEILING, 268, 269 
CHAR, 258, 259 
CHARINDEX, 262-267 
CHOOSE, 286, 287 
COALESCE, 288, 289 
CONCAT, 262-265 

CONCAT_WS, 262-265 
CONVERT, 98, 99, 254, 255 
COUNT, 160-163 
CUME_DIST, 296-299 
date/time, 273-391 
DATEADD, 272-275, 278, 279 
DATEDIFF, 98, 99, 272, 273, 278, 279 
DATENAME, 272-277 
DATEPART, 272-277 
DA¥,272,273,276,277 
DB_lD, 432, 433 
DENSE_RANK, 292-295 
EOMONTH, 272-275 
ERROR_MESSAGE, 438, 439 
ERROR_NUMBER, 438, 439 
ERROR_SEVERITY, 438, 439 
ERROR_STATE, 438, 439 
EVENTDATA, 502, 503, 592, 593 
FIRST_ VALUE, 296, 297 
FLOOR, 268, 269 
GETDATE, 98, 99, 272-275 
GETUTCDATE, 272-275 
GROUPING, 172, 173, 290, 291 
HOST_NAME, 442,443 
IDENT_CURRENT, 442, 443 
IIF, 286, 287 
ISDATE, 272, 273 
ISNULL, 288, 289 
ISNUMERIC, 268, 269 
LAG, 296-299 
LAST_ VALUE, 296,297 
LEAD, 296-299 
LEFT, 98, 99, 262-267 
LEN, 262-267 
LOWER, 262-265 
LTRIM, 262-265 
MAX, 160-163 
MIN, 160-163 
MONTH, 272-277 
NCHAR, 258, 259 
NEWill, 638, 639 
NEXT VALUE FOR, 356, 357 
NTILE, 293-295 
numeric, 268, 269 
OBJECT_lD, 432, 433 
PathName, 638, 639 
PATINDEX, 262-265 
PERCENT_RANK, 296-299 
PERCENTILE_CONT, 296-299 
PERCENTILE_DISC, 296-299 
RAND, 268, 269 
RANK, 292-295 
ranking, 292-295 
REPLACE, 262-265 
REVERSE, 262, 263 
RIGHT, 262-267 
ROUND, 268, 269 
ROW _NUMBER, 292, 293 
RTRIM, 262-265 
SPACE, 262, 263 

Functions 



Functions (continued) 

G 

SQRT, 268, 269 
SQUARE, 268, 269 
STR, 258, 259 
SUBSTRING, 262-265 
SUM, 160-163 
SWITCHOFFSET, 272, 273 
SYSDATETIME, 272-275 
SYSDATETIMEOFFSET, 272-275 
SYSTEM_ USER, 442, 443 
SYSUTCDATETIME, 272-275 
TODATETIMEOFFSET, 272, 273 
TRANSLATE, 262-265 
TRIM, 262-265 
TRY _CONVERT, 256, 257 
UNICODE, 258, 259 
UPPER, 262-265 
XML_SCHEMA_NAMESPACE, 608, 609 
YEAR, 272, 273, 276, 277 

Generate a script, 388-39 1 
geography data type, 240, 241 
geometry data type, 240, 241 
GETDATE function, 98, 99, 272-275 
GETUTCDATE function, 272-275 
Global 

temporary table, 426, 427 
variable, 422, 442, 443 
temporary procedure, 462, 463 

Globally unique identifier (GUlD), 638, 639 
GMT, 246, 272 
GO command, 368, 369, 418, 4 19 
GOTO statement, 420, 421 
Grant database access, 578, 579 
Grant statement, 548-557 

database permissions, 554, 555 
object permissions, 548-551 
schema permissions, 552, 553 
server permissions, 556, 557 
user-defined database roles, 566, 567 
user-defined server roles, 560, 561 

Granularity, 524, 525 
Greater than operator, 1 04, I 05 
Greater than or equal to operator, I 04, I 05 
Greenwich Mean Time (GMT), 246, 272 
Group (Windows), 537 
GROUP BY clause, 164-167 

in view, 404, 405 
GROUPING function, 290, 291 

with ROLLUP, 172, 173 
GROUPING SETS operator, 176, 177 
GUlD (Globally unique identifier), 638, 639 
Guidelines 

coding, 32, 33 
complex query, 204-207 
object identifier, 336, 337 
procedure name, 462, 463 

INSERT statement 

H 
Hardware components (client/server system), 4, 5 
HAVING clause, 164-169 

compared to WHERE clause, 168, 169 
in view, 404, 405 

Help system, see SQL Server documentation 
Hibernate, 38, 39 
Hierarchical database model, 16, 17 
hierarchyid data type, 240, 241 
HOST_NAME function, 442, 443 

I 
IBM, 18, 19 
10 (login), 540-543, 574, 575 
lDENT_CURRENT function, 442, 443 
Identifier (object), 336, 337 
Identity column, 14, 15,442,443 

and INSERT, 220, 221 
IDENTITY keyword, 340,341 
IF clause, 430, 43 1 
IF EXISTS clause, 432, 433 
IF statement, 440, 441 
IF ... ELSE statement, 421,430, 431 
llF function, 286, 287 
image data type, 248, 249 
Implicit 

cross join syntax, 148, 149 
data type conversion, 250, 251 
inner join syntax , 138, 139 
transaction, 512, 5 13 

IN phrase, 1 08, I 09 
and subquery, 188, 189 

INCREMENT BY clause, 356,357 
Index, 10, II , 318, 319, 382, 383 

clustered, 382, 383 
create, 342, 343 
database, 10, II 
delete, 352, 353 
fi ltered, 342, 343 
full-table, 342, 343 
identifying columns, 318, 319 
nonclustered, 382, 383 

Information schema view, 4 12 
lnline table-valued function, 488, 489 
Inner join, 28, 29, 126- 139 

combined with outer join, 146, 147 
explicit syntax, 126, 127 
implicit syntax, 138, 139 
SQL-92 syntax, 126, 127 

INNER keyword, 126, 127 
Input parameter, 36, 464-467, 484 
INSERT statement, 30, 31, 2 18-223 

column list, 218, 219 
default value, 220, 221 
identity value, 220, 221 
multiple rows, 218,2 19 

665 



666 INSERT statement (continued) 

multiple rows from subquery, 222, 223, 
null value, 220, 221 
through view, 404, 405, 4 10, 411 
and trigger, 494, 495 

Inserted table, 494, 495 
Insertion anomaly, 315 
Instance, 304, 305 
INSTEAD OF trigger, 404, 405, 494, 495, 498, 499 
int data type, 240-243 
integer data type, 240-243 
Integer division, 252, 253 
Integrity (referential), 314, 315, 496, 497 
IntelliSense feature, 70, 7 1 
Intent Exclusive (IX) lock, 527, 528 
Intent locks, 527, 528 
Intent Shared (IS) lock, 527, 528 
Interim result set, 136, 137 
Interim table, 136, 137 
Intermediate level of conformance (SQL-92), 18, 19 
INTERSECT operator, 154, 155 
INTO clause 

in INSERT, 2 18, 219 
in SELECT, 2 16, 2 17 

Introduce a subquery, 184, 185 
Invoke a function, 484, 485 
IS NULL clause, 114, 115,444,445 
ISDATE function, 272, 273 
ISNULL function, 288, 289 
ISNUMERIC function, 268, 269 
ISO, 19 
Isolation level 

J 

deadlocks, 532, 533 
SERIALIZABLE, 120 
SNAPSHOT, 120 
transaction, 522, 523 

Java Database Connectivity (JDBC), 38, 39 
JavaScript Object Notation (JSON), 616 
JDBC, 38, 39 
Join, 28, 29, 126-149 

compared to subquery, 186, 187 
compound condition, 132, 133 
condition, 126, 127 
cross, 28, 148, 149 
explicit syntax, 126, 127 
in DELETE statement, 232, 233 
in UPDATE statement, 228, 229 
inner, 28, 29, 126-139 
inner and outer combined, 146, 147 
keyword, 126-149 
more than two tables, 136, 137 
outer, 28, 29, 140-145 
se lf, 134, 135 
SQL-92 syntax, 126, 127 

JSON (JavaScript Object Notation), 616 

K 
Key, 382, 383 

composite primary, I 0, I I 
foreign, 12, 13 
identify, 3 12, 3 13 
lock, 524, 525 
non-primary, 10, 11 
primary, I 0, II 
unique, 10, 11 

Keyword, 86, 87 

L 
LAG function, 296-299 
LAN, 4, 5 
Large value data types, 248, 249 
LAST_ VALUE function, 296, 297 
Latin I encoding, 360, 361 
LEAD function, 296-299 
LEFT function, 98, 99, 262-267 
LEFT JOIN keyword, 140-145 
Left operator, 140, 14 1 
Left outer join, 140-145 
LEN function, 262-267 
Less than operator, 104, 105 
Less than or equal to operator, 104, 105 
Levels of conformance (SQL-92 standard), 18, 19 
LIKE operator, I 12, I 13 
Linked server, 130, 131 
Linking table, 312, 313 
Linux operating system, 20, 21 
Literal 

date, 104, 105 
numeric, 104, 105 
string, 94, 95 
Unicode, 258, 259 
value, 94, 95 

Local 
temporary procedure, 462, 463 
temporary table, 426, 427 
variable, 422, 423 

Local area network (LAN), 4, 5 
Lock, 518, 519 

escalation, 524, 525 
granu larity, 524, 525 
manager, 524, 525 
mode compatibility, 528, 529 
modes, 526, 527 
promotion, 526, 527 

Lockable resource, 524, 525 
Locking, 518-523 
Log fi le 

database, 376, 377 
transaction, 338, 339 

Logical operator, 106, 107 
Login, 54, 55 

creating, 540, 541, 574, 575 
deleting, 542, 543, 574, 575 

Login 



Login (continued) 

10,536, 537, 574, 575 
modifying, 542, 543, 574, 575 

Loop, 434, 435 
Lost update, 518-523 
LOWER function, 262-265 
LTRJM function, 262-265 

M 
Management Studio, 50, 5 1, 54-77, 376-39 1 

installing, 650, 65 I 
security, 536, 537, 574-583 
Object Explorer, 56, 57 
Query Designer, 76, 77 
View Designer, 4 14, 415 

Many-to-many relationship, 12, 13, 3 12, 313 
Mask, 112, 113 
MAX function, 160- 163 
Member informat ion 

database role, 568, 569 
server role, 562, 563 
fixed server role, 558, 559 

MERGE statement, 234, 235 
Method (xml data type), 596-599 
Microsoft SQL Server, see SQL Server 
Microsoft Windows PowerS hell , 452 
MI N function, 160-163 
Mixed mode, 538, 539 
Model 

data access, 38, 39 
database, 16, 17 

modify() method (xml data type), 596-599 
Modify table data, 68, 69, 378, 379 
Modulo operator, 97 
money data type, 242, 243 
MONTH function, 272-277 
Moving average, 178, 179 
MSDE,50 
Multi-statement table-valued function, 484, 485, 490, 49 1 
Multiple rows (and INSERT), 2 18,2 19 
Multiplication operator, 97 
Multivalued dependency, 320, 321 
MUST _CHANGE option, 540, 541 
MySQL database system, 20, 21 

N 
Name 

column, 92, 93 
correlation, 128, 129, 196, 197 
passing parameters by, 466, 467 
rules, 336, 337 

national char data type, 241 
national char varying data type, 241 
national character data type, 241 
national character varying data type, 241 
National character, 244, 243 
national text data type, 24 1 
nchar data type, 24 1, 244, 245 
NCHAR function, 258, 259 

Nested 
IF ... ELSE statements, 430, 43 1 
sort, 116, 117 
subqueries, 184, 185 
transactions, 5 14, 515 
views, 400, 40 I 

Network, 4, 5 
Network database model, 16, 17 
Network configuration, 52, 53 
Network operating system, 6 
New Database dialog box, 376, 377 
NEWID function, 638, 639 
NEXT VALUE FOR function, 356, 357 
NO ACTION keyword, 350, 351 
NOCOUNT system option, 445 

OFFSET clause 

nodes() method (xml data type), 596, 597 
Nonclustered index, 318, 319, 382, 383 
NONCLUSTERED keyword, 342, 343 
Noncorrelated subquery, 196, 197 
Non-primary key, I 0, I I 
Nonrepeatable read, 520-523 
Normal form, 3 16, 3 17, 320, 321 
Normalization, 316, 317, 320-329 
Normalized data structure, 3 16, 317 
Not equal operator, 104, 105 
NOT IN phrase (and subquery), 188, 189 
NOT NULL constraint, 340,34 1,346,347 
NOTOPERATOR, I04- 11 5 

with ISNULL, 114, 11 5 
ntext data type, 241, 248, 249 
NTILE function, 293-295 
Null, 14, 15, 114, 115 

and aggregate function, 160-163 
and INSERT, 220, 221 
functions, 288-291 
searching, 114, 11 5 

NULL keyword 
and CREATE TABLE, 340, 341 
and INSERT, 220, 221 
and UPDATE, 224, 225 

Numeric data, 262-27 1 
common problems, 270, 27 1 
data type, 240, 241 
functions, 268, 269 
literal, 104, I 05 

nvarchar data type, 241, 244, 245, 248, 249 

0 ----------
Object 

dependencies, 386, 387 
identification number, 432, 433 
identifier, 336, 337 
name, 130, 131, 336, 337 
permissions, 536, 550-55 1, 570, 57 1 

Object database, 16, 56, 57, 334, 338, 339 
Object Explorer (Management Studio), 56, 57 
Object relational mapping (ORM) framework, 38, 39 
OBJECT _ID function, 432, 433 
OFFSETclause, 120, 121 

667 



668 ON clause 

ON clause 
MERGE statement, 234, 235 
trigger, 494, 495 

ON DELETE clause, 350, 35 1 
ON phrase, 126, 127 
ON PRIMARY clause, 338, 339 
ON UPDATE clause, 350, 35 1 
One-to-many relationship, 12, 13, 3 12, 313 
One-to-one relationship, 12, 13,3 12,313 
Online help, see SQL Server documentation 
Open-source database, 20, 21 
OPENXML statement, 6 14, 615 
Operating system 

AIX, 2 1 
Linux, 20, 2 1 
Unix, 20, 2 1 
Windows, 20,21 
zJOS, 21 

Operators 
addition, 97 
AND, 106, 107 
arithmetic, 96, 97 
comparison, l 04, I 05 
concatenation, 94, 95 
division, 97 
equal, 104, 105 
greater than , 104, 105 
greater than or equal to, 104, 105 
less than, 104, I 05 
less than or equal to, 104, 105 
logical, 106, 107 
modulo, 97 
mul tiplication, 97 
NOT, 106- 11 5 
not equal, I 04, I 05 
OR, 106, 107 
order of precedence, 96, 97, I 06, I 07 
string, 94, 95 
subtraction, 97 
UNION, 150, 151, 404, 405 

Optional parameter, 464-467 
OR operator, 106, 107 
Oracle, 18-2 1 
ORDER BY clause, 86, 87, 102, 103, 11 6- 12 1 

by string column, 266, 267 
in view, 400-403 
of a ranking function, 292-295 

Order of precedence 
data types, 250, 25 1 
operators, 96, 97 

ORM framework, 38, 39 
Orphan, 3 14, 315 
OS/390 operating system 20, 21 
OSQL utility, 452, 453 
Outer join, 28, 29, 140-145 

combined with inner join, 146, 147 
examples, 142, 143 
explicit syntax, 140, 141 
more than two tables, 144, 145 

Output parameter, 36, 464-467 
OYER clause, 178, 179 

p 

Package (SQL-99 standard), 18, 19 
Page lock, 524, 525 
Parameter, 98, 99, 458,459, 462-467, 484 

pass a table, 478, 479 
pass a value, 466, 467 
stored procedure, 36 

Parent element (XML), 588, 589 
Parent/child relationship, 16, 17 
Parentheses, 96, 97, 106, 107 
Parsing, 266, 267 
Partially-quali fied object name, 130, 131 
PARTITION BY clause 

aggregate function, 178, 179 
analytic function, 296, 297 
ranking function, 292, 293 

Pass a parameter, 466, 467 
Password (strong), 540, 541 
PathName function, 638, 639 
PATINDEX function, 262-265 
Pattern (string), 112, 113 
PERCENT keyword, I 02, 103 
PERCENT _RANK function, 296-299 
PERCENTILE_CONT function, 296-299 
PERCENTILE_DISC function, 296-299 
Permission (defined), 536, 537 
Permissions, 548-557 

database, 554, 555, 582, 583 
object, 550, 55 1 
schema, 552, 553 
server, 556, 557 

Phantom read, 520-523 
Position (passing parameters by), 466, 467 
PostgreSQL database system, 20 
PowerShell (Windows), 452 
Precedence, 96, 97 
Precision, 242, 243 
Precompile, 460, 461 
Predicate, 86, 87 

subquery, 184, 185 
Primary key, I 0, I I, 382, 383 

and referential integrity, 3 14, 315 
composite, 10, ll 
constraint, 340, 34 1,346, 347 
how to identify, 312, 313 

PRINT statement, 420, 421 
Procedural programming, 458, 459 
Promote a lock, 526, 527 
Properties of a column, 66, 67 
Pseudocode, 206, 207 
Public database role, 564, 565 
public server role, 558 

Q 
Qualified column name, 126, 127 
Qualified object name, 130, 131 
Qualifier (scope), 552, 553 

qualifier 



Query 

Query, 27, 30, 31 
action, 30, 3 1 
aggregate, 160-163 
complex, 204, 205 
enter and execute, 70, 7 1 
error, 72, 73 
open and save, 74, 75 
recursive, 210, 2 11 
SQL, 6, 7 
summary, 160-177 

Query Designer (Management Studio), 76, 77 
Query Editor (Management Studio), 70-73 
query() method (xml data type), 596, 597 
Query results, 7 
Quotes 

R 

delimiter, 336, 337 
for string literal, 94, 95 
in column name, 92, 93 
within string literal, 94, 95 

RAISERROR statement, 470-472 
RAND function, 268, 269 
RANGE clause, 296, 297 
RANK function, 292-295 
Ranking functions, 292-295 
RAW keyword (FOR XML clause), 610, 61 1 
RDBMS, 18 
READ COMMITIED keyword, 522, 523 
READ UNCOMMITTED keyword, 522, 523 
READONLY keyword, 478, 479 
Read-only view, 404, 405 
real data type, 240-243 
Real numeric value, 270, 271 
Recommendations 

coding, 32, 33 
procedure name, 462, 463 

RECOMPILE keyword, 462, 463 
Record, 10, II 
Recursion, 461 
Recursive call, 461 
Recursive CTE, 2 10, 2 11 
Recursive member, 210, 211 
Recursive query, 2 10, 21 1 
Redundant data, 316, 3 17 
Reference constraint, 350, 351 
Reference manual, see SQL Server documentation 
REFERENCES clause, 25, 346, 347, 350, 35 1 
Referential integrity, 3 14, 315 
Regular identifier, 336, 337, 496, 497 
Related tables, 12, 13 
Relational database management system (RDBMS), 18 
Relational database, I 0, 11 

advantages, 10, 16, 17 
compared to other data models, 16, 17 

Relational Software, Inc., 18, 19 
Relationship 

ad hoc, 126, 127 
between tables, 12, 13, 312, 313 

RTRIM function 

Remote connection, (enable), 52, 53 
REPEATABLE READ keyword, 522, 523 
Repetitive processing, 434, 435 
REPLACE function, 262-265 
Replication, 380, 381 
Required parameter, 464-467 
Resources 

lockable, 524, 525 
RESTART clause, 358, 359 
Restore database, 60, 61, 654, 655 
Result set, 26, 27 

interim, 136, 137 
Result table, 26, 27 
Results (query), 7 
RETURN statement, 420, 421 

in function, 484, 486-491 
in procedure, 468, 469 

Return value, 468, 469 
REVERSE function, 262, 263 
Revoke database access, 578, 579 
Revoke permissions, 548-557 
REVOKE statement 

database permissions, 554, 555 
object permissions, 548-551 
schema permissions, 552, 553 
server permissions, 556, 557 

RIGHT function, 262-267 
RIGHT JOIN keyword, 140-145 
Right operator, 140, 141 
Right outer join, 140, 141 
Role, 558-573 

application, 572, 573 
database, 578, 579 
defined, 536, 537 
fixed database, 564, 565 
fixed server, 558, 559 
server, 576, 577 
user-defined database, 566, 567 
user-defined server, 560, 561 

Role information 
database, 568, 569 
server, 562, 563 

Roll back a transaction, 510, 5 11 
ROLLBACK TRAN statement, 5 12-5 17 

in trigger, 496, 497 
ROLLUP operator, 172, 173 
Root e lement (XML), 588, 589 
ROOT keyword (FOR XML clause), 610-613 
ROUND function, 268, 269 
Row, 10, 11 
Row count, 442, 443 
Row lock, 524, 525 
Row versioning, 522, 523 
ROW NUMBER function, 292, 293 
ROWCOUNT system option, 444, 445 
ROWGUIDCOL property, 638, 639 
ROWS clause, 296, 297 
rowversion data type, 240, 241 
RTRlM function, 262-265 

669 



670 Save a change script 

s 
Save a change script, 390, 391 
Save point, 5 12, 513, 5 16, 5 17 
SAVE TRAN statement, 512, 5 13 
Scalar aggregate, 164, 165 
Scalar function, 160 
Scalar variable, 422, 423 
Scalar-valued function (user-defined), 484-487 
Scale, 242, 243 
Scan (table), 318 
Schema, 400, 40 I 

default, 56 
lock, 526, 527 
name, 130, 131 
permission, 536, 552, 553 
view, 41 2, 41 3 
working with, 546, 547 

Schema (XML), 590,591 
Schema Modification (Sch-M) lock, 526, 527 
Schema permissions (DENY), 570, 571 
Schema Stability (Sch-S) lock, 526, 527 
SCHEMABINDING keyword, 

UDF, 486, 487 
view, 400-403, 406, 407 

Scientific notation, 242 
Scope 

table objects, 428, 429 
variable, 422 

Scope quali fier, 552, 553 
Script, 368-371 , 4 18-447,458,459 

change,390,391 
generating, 388-39 1 

Script to create the AP database, 368-37 1 
Search 

by date value, 280, 281 
by time value, 282, 283 
for null, 114, 115 
for real numeric value, 270, 27 1 

Search condition, 86, 87 
compound, I 06, I 07, 170, 17 1 
subquery, 188-199 

Second normal form, 320, 32 1, 324, 325 
Securables, 536, 537 
Security, 536-583 

Transact-SQL compared to Management Studio, 
536,537 

using view, 398, 399 
securityadmin role, 558, 559 
SELECT clause, 86-10 I 
SELECT statement, 26, 27, 86- 1 19 

and subquery, 202, 203 
in view, 400, 40 I 
INTO, 2 16, 217, 448, 449 
variable assignment, 422, 423 

Self-join, 134, 135 
SEQUEL, 18, 19 
Sequence,356-359 
SERlALIZABLE keyword, 522, 523 

Server, 4, 5 
application , 8, 9 
connect, 54, 55 
database, 50, 51 
linked, 130, 131 
login, 54, 55 
permissions, 556, 557 
software, 6, 7 
web, 8, 9 

Server authentication, 54, 55 
Server name, 130, 131 
Server permission, 536 
Server permissions (DENY), 570, 57 1 
Server role, 576, 577 

fi xed,558,559 
information, 562, 563 
user-defined, 560, 56 1 

Service (web), 8, 9 
Service Manager, 50, 51 
Services (SQL Server), 52, 53 
Session setting, 444, 445 
Set (result), 26, 27 
SET clause (UPDATE), 224, 225 
SET statement, 421-423 

ANSI_NULLS, 444, 445 
ANSI_PADDING, 445 
DATEFORMAT, 444, 445 
NOCOUNT, 445 
ROWCOUNT, 444, 445 

sp_Help 

TRANSACTION ISOLATION LEVEL, 522, 523 
Shared (S) lock, 526, 527 
Shared locks, 526, 527 
Shared with Intent Exclusive (SIX) lock, 527, 528 
Significant digit, 242, 243 
Simple table-valued function, 484, 485, 488, 489 
Single precision number, 242, 243 
Single quotes 

for string literal, 94, 95 
in column name, 92, 93 
within string literal, 94, 95 

Single- line comment, 32, 33 
Sixth normal form, 320, 321 
smalldatetime data type, 246, 247 
smallint data type, 242, 243 
smallmoney data type, 242, 243 
SNAPSHOT isolation level, 120 
SNAPSHOT keyword, 522, 523 
Snippets, 344, 345 

surround-with, 440, 441 
Software components (client/server system), 6, 7 
SOME keyword, 194, 195 
Sort, see ORDER BY clause 
sp_AddLinked Server, 130, 131 
sp_AddRoleMember, 565 
sp_AddSrvRoleMember, 559 
sp_Columns, 483 
sp_DropRoleMember, 565 
sp_DropServer, 13 1, 132 
sp_DropSrvRoleMember, 559 
sp_Help, 483 



sp_HelpDb 

sp_HelpDb, 483 
sp_HelpRole, 568, 569 
sp_HelpRoleMember, 568, 569 
sp_HelpSrvRole, 562, 563 
sp_HelpSrvRoleMember, 562, 563 
sp_HelpText, 483 
sp_SetAppRole, 572, 573 
sp_UnsetAppRole, 572, 573 
sp_Who, 483 
sp_Xmi_PrepareDocument, 614, 615 
sp_Xmi_RemoveDocument, 614, 615 
SPACE function, 262, 263 
SPARSE attribute, 340, 341 
Specification (column), 90, 9 1 
Sproc, 460-481 

name, 462, 463 
SQL, 6, 7 

ANSI-standards, 18, 19 
batch, 418, 419 
coding guidelines, 32, 33 
dialect, 18, 19 
dynamic, 446, 447 
extensions to, 18, 19 
script, 418-447, 458, 459 
standards, 18, 19 
variant, 18, 19 

SQL Anywhere database system, 20 
SQL query, 6, 7 
SQL Server, 18, 19 

authentication, 54, 55 
compared to Oracle, MySQL, and DB2, 20, 2 1 
Configuration Manager, 50-53 
data types, 14, 15, 240-249 
default backup directory, 60, 6 1 
default data directory, 58, 59 
documentation, 78, 79 
editions, 648, 649 
Express Edition, 50, 5 1 
login authentication, 54, 55 
login ID, 540, 541 
Management Studio, 50, 51, 54-77, 376-39 1 
when first released, 19 

SQL Server 2019 Express (installing), 650, 651 
SQL Server authentication, 538, 539 
SQL Server documentation, 50, 51, 78, 79 
SQL Server Management Studio, see Management Studio 
SQL Server Services, 52, 53 
SQL statements, 22, 23 
SQL!DS (SQL/Data System), 18, 19 
SQL-92 syntax, 126, 127 
SQLCMD utility, 452, 453, 458, 459 
SQRT function, 268, 269 
SQUARE function, 268, 269 
Standard table, 428, 429 
Start database engine, 52, 53 
Start tag (XML), 588, 589 
START WITH clause, 356, 357 
State argument, 470, 471 
Statements 

ALTER FUNCTION, 335, 492, 493 
ALTER LOGIN, 542, 543 

ALTER PROC, 335, 480, 48 1 
ALTER ROLE, 564-597 
ALTER SCHEMA, 546, 547 
ALTER SEQUENCE, 358, 359 
ALTER SERVER ROLE, 558-561 
ALTER TABLE, 25, 335, 352-355 
ALTER TRIGGER, 335, 504, 505 
ALTER USER, 544, 545 
ALTER VIEW, 335, 406, 407 
BEGIN TRAN, 512, 513 
BULK INSERT, 527, 528 
COMMITTRAN, 512-517 
CONTINUE, 421 , 434, 435 

Statements 

CREATE APPLICATION ROLE, 572, 573 
CREATE INDEX, 25, 335, 342, 343 
CREATE LOGIN, 540, 541 
CREATE PROC, 466, 467 
CREATE PROCEDURE, 335 
CREATE ROLE, 566, 567 
CREATE SCHEMA, 546, 547 
CREATE SEQUENCE, 356, 357 
CREATE SERVER ROLE, 560, 561 
CREATE TYPE, 478, 479 
CREATE USER, 544, 545 
CREATE VIEW, 34, 35, 335, 396, 397, 400-403 
CREATE XML SCHEMA COLLECTION, 604, 605 
DECLARE, 421-425 
DELETE, 30, 31, 230-233 
DENY, 570, 571 
DROP APPLICATION ROLE, 572, 573 
DROP DATABASE, 335, 352, 353 
DROP FUNCTION, 335, 492, 493 
DROP INDEX, 335, 352, 353 
DROP LOGIN, 542, 543 
DROP PROC, 335, 480, 481 
DROP ROLE, 566, 567 
DROP SCHEMA, 546, 547 
DROP SEQUENCE, 358, 359 
DROP SERVER ROLE, 560, 561 
DROP TABLE, 335, 352, 353 
DROP TRIGGER, 335, 504, 505 
DROP USER, 544, 545 
DROP VIEW, 335, 406, 407 
DROP XML SCHEMA COLLECTIOr\, 608, 609 
EXEC, 36,37, 421, 446, 447,460, 461 
FETCH, 436, 437 
GOTO, 420, 42 1 
GRANT, 548-557 
IF ... ELSE, 421, 430, 431 
INSERT, 30, 31, 21 8-223, 404, 405, 410, 411 , 494, 

495 
MERGE, 234, 235 
OPENXML, 614,615 
PRINT, 420, 421 
RAISERROR, 470-472 
RETURN, 420, 421 , 468, 469, 484, 485, 488-49 1 
REVOKE, 548-557 
ROLLBACK TRAN, 512-517 
SAVE TRAN, 512, 513 
SELECT, 26, 27, 86- 119, 202, 203,422, 423 

671 



672 Statements (continued) 

SELECT INTO, 216, 21 7, 448, 449 
SET, 421-423, 444, 445 
THROW, 470-472 
TRY. .. CATCH, 421, 438, 439, 470, 471 
UPDATE, 30, 31, 224-229, 404, 405, 408, 409, 494, 

495 
Upsert, 234, 235 
USE,368,369,420,421,432, 433 
WAlTFOR DELAY, 530,531 
WHILE,421,434,435,440,441,450, 451 

Stop database engine, 52, 53 
Stored procedure, 458-481 

change, 480, 481 
defined,36,37 
delete, 480, 481 
name, 462, 463 
system, 482, 483 

STR function, 258, 259 
String 

common problems, 266, 267 
constant, 94, 95 
data types, 240, 241, 244, 245 
expression, 94, 95 
functions, 262-267 
literal, 94, 95, 104, 105 
parsing, 266, 267 
pattern, 112, 113 

Strong password, 540, 541 
Structure (data), 304, 305 
Structured English Query Language (SEQUEL), 18, 19 
Structured Query Language, see SQL 
Style code (data conversion), 254, 255 
Subdivide data element, 308, 309 
Subquery, 108, 109, 184-211 

and ALL keyword, 192, 193 
and ANY keyword, 194, 195 
and comparison operator, 190, 191 
and EXISTS operator, 198, 199 
and IN phrase, 188, 189 
and NOT IN phrase, 188, 189 
and SOME keyword, 194, 195 
compared to join, 186, 187 
correlated, 196, 197, 202, 203 
in DELETE statement, 232, 233 
in FROM clause, 200, 20 l 
in INSERT statement, 222, 223 
in SELECT clause, 202, 203 
in UPDATE statement, 226, 227 
in WHERE clause, 188-199 
nested, 184, 185 
noncorrelated, 196, 197 
procedure for coding, 204-207 
search condition, 188-199 

Subquery predicate, 184, 185 
Subquery search condition, 184, 185 
Substitute name, 92, 93 
SUBSTRING function, 262-265 
Subtraction operator, 97 
SUM function, 160-163 
Summary query, 160-177 

Table-valued function 

Supplementary characters, 360, 361 
Surround-with snippets, 440, 441 
SWITCH OFFSET function, 272, 273 
Symbols (wildcard), 112, 113 
Syntax conventions, 86, 87 
Syntax error (query), 72, 73 
sysadmin role, 558, 559 
SYSDATETIME function, 272-275 
SYSDATETIMEOFFSET function, 272-275 
System catalog, 412,413 
System function, 422, 423, 442, 443 
System stored procedure, 482, 483 
System/R, 18, 19 
SYSTEM_ USER function, 442, 443 
SYSUTCDATETIME function, 272-275 

T 
T-SQL, see Transact-SQL 
Table, 10, II 

alias, 128, 129 
associate, 3 12, 313 
attribute, 340, 341 
base, 26, 27 
change,352-355 
column properties, 378, 379 
connecting, 312,313 
create, 340, 341, 378, 379 
data type, 424, 425, 488-491 
database, I 0, II 
delete, 352, 353, 378, 379 
Deleted, 494, 495 
dependenc~ 386, 387 
derived, 200, 201, 428, 429 
foreign key, 380, 381 
Inserted, 494, 495 
interim, 136, 137 
linking, 312, 3 13 
lock, 524, 525 
modify, 378, 379 
name, 130, 131 
objects, 428, 429 
primary key, 378, 379 
relationships between, 12, 13 
scan,3 18 
standard, 428, 429 
table-level constraint, 340, 341 
temporary, 426-429 
test, 216, 2 17 
user-defined function, 484, 485 
variable, 424, 425, 428, 429 

Table data 
modify, 68, 69 
view, 68,69 

Table Designer, 378, 379 
Table-level constraint, 346, 347 
Table-type parameter, 478, 479 
Table-valued function 

multi-statement, 490, 491 
user-defined, 488-491 



TDE (Transparent Data Encryption) 

TOE (Transparent Data Encryption), 584 
Temporal data type, see Date/time data type 
Temporary stored procedure, 462, 463 
Temporary table, 426-429 
Test for database object, 432, 433 
Test table, 2 16, 2 17 
text data type, 248, 249 
Theta syntax, 138, 139 
Thin client, 8 
Third normal form, 320, 321, 326, 327 
THROW statement, 470-472 
time data type, 246, 247 
Time search, 282, 283 
Times (parsing), 276, 277 
timestamp data type, 240, 241 
tinyint data type, 242, 243 
TODATETIMEOFFSET function, 272, 273 
Tools 

client, 50, 51 
SQL Server, 50, 5 I 

TOP clause, 90, 91, 102, 103, 444, 445 
in view, 400-405 

Transact-SQL, 19, 22, 23,420,421 
and security, 536, 537 
programming, 458, 459 
table objects, 428, 429 

Transaction, 496, 497, 510-5 17 
nested, 514,515 
when to use, 5 11 

Transaction isolation level, 522, 523 
deadlocks, 532, 533 

Transaction log file, 338, 339 
Transitional level of conformance (SQL-92), 18, 19 
Transitive dependency, 320, 321 
TRANSLATE function, 262-265 
Transparent Data Encryption (TOE), 584 
Trigger, 458, 459, 494-505 

AFfER, 494-497 
and referential integrity, 314, 3 15, 496, 497 
change,504,505 
compared to constraint, 500, 501 
data consistency, 500, 501 
defined,36,37 
delete, 504, 505 
FOR, 494, 495 
INSTEAD OF, 404, 405, 494, 495, 498, 499 
with DOL statements, 502, 503 

TRIM function, 262-265 
TRY ... CATCH statement, 421 , 438, 439, 470, 47 1 
TRY _CONVERT function, 256, 257 
Typed XML, 604-609 

u 
UCS-2 encoding, 360, 361 
UDF (user-defined function), 36, 37, 458,459, 484-493 
Unicode 

character, 244, 245 
character set, 360, 361 
literal, 258, 259 

UNICODE function, 258, 259 
UNION, 150-153 

keyword, 150, 151 
in view, 404, 405 
with same table, 152, 153 

UNIQUE constraint, 340,341,346,347 
Unique key, 10, 11, 382, 383 
Universal Time Coordinate (UTC), 246, 272 
Unix operating system, 20, 2I 
U nnormalized data structure, 316, 317 
Untyped XML, 592-603 
Updatable view, 404, 405, 408-4I1 , 498, 499 
Update (lost), 518-523 
Update anomaly, 315 
UPDATE clause, 224, 225 
Update (U) lock, 526, 527 
UPDATE statement, 30, 31, 224-229 

and trigger, 494, 495 
default value, 224, 225 
multiple rows with subquery, 226, 227 
null value, 224, 225 
through view, 404, 405, 408, 409 
with join, 228, 229 

UPPER function, 262-265 
Upsert statement, 234, 235 
USE statement, 368, 369, 420, 421, 432, 433 
User database, 544, 545 
User permissions, 580, 581 

Variable 

User-defined function (UDF), 36, 37, 458,459,484-493 
User-defined role 

database, 566, 567 
server, 560, 561 

User-defined table type, 478, 479 
USING clause (MERGE statement), 234, 235 
UTC, 245, 272 
UTF-16 encoding, 360, 361 
UTF-8 encoding, 360, 361 
Utility 

v 

OSQL, 452, 453 
SQLCMD, 452, 453 

Validate data, 470-477 
Validation (XML), 606, 607 
Value 

literal, 94, 95 
null, 114, 115 
return, 468, 469 

value() method (xml data type), 596-603 
VALUES clause, 30, 31, 220, 221 

and INSERT, 218, 219 
varbinary data type, 241, 248, 249 
varbinary(max) data type, 620-633 
varchar data type, 241, 244, 245, 248, 249 
Variable, 422, 423 

global, 422, 423, 442, 443 
local, 422, 423 
scalar, 422, 423 
table, 424, 425, 428, 429 

673 



674 Variable-length encoding 

Variable-length encoding, 36 1 
Variable-length string, 244, 243 
Variant (SQL), 18, 19 
Vector aggregate, 164, 165 
Yersioning (row), 522, 523 
Victim (deadlock), 530, 531 
View, 396-415,428, 429 

benefits, 398, 399 
catalog, 412,413 
change, 406, 407 
defined, 35 
delete, 406, 407 
information schema, 412, 4 13, 
nested, 400, 401 
read-only, 404, 405 
restrictions on SELECT, 400-403 
updatable, 404, 405, 408-4 11 , 498, 499 

View Designer (Management Studio), 414, 415 
View table data, 68, 69 
Viewed table, 34, 35, 397 
Violate referential integrity, 3 14, 3 15 
Virtual table, 35 
Visual Basic code (with ADO.NET), 42, 43 
Visual Studio 2019 Community (installing), 656, 657 

w 
WAITFOR DELAY statement, 530, 53 1 
WAN, 4, 5 
Web application, 8, 9 
Web browser, 8, 9 
Web services, 8, 9 
Web-based systems, 8, 9 
WHEN clause (MERGE statement), 234, 235 
WHERE clause, 86-88, 104-115 

and DELETE, 230, 231 
and subquery, 188-199 
and UPDATE, 224, 225 
compared to HAYING clause, 168, 169 

WHILE statement, 421, 434, 435, 440, 441, 450, 45 1 
Wide-area network (WAN), 4, 5 
Wildcard symbols (LIKE phrase), 112, 11 3 
Windows 

account (login ID), 540, 541 
authentication, 538, 539 
login authentication, 54, 55 
operating system, 20, 21 
PowerShell, 452 

WITH CHECK keyword (ALTER TABLE), 354, 355 
WITH CHECK OPTION clause, 406-409 

in view, 400, 401 
WITH CUBE phrase, 174, 175 
WITH ENCRYPTION clause, 482 

in trigger, 494, 495 
in view, 400,401,406,407 

WITH GRANT OPTION clause (GRANT), 548, 549 
WITH keyword, 208, 209 
WITH NOCHECK keyword (ALTER TABLE), 354, 355 

z/OS operating system 

WITH ROLLUP phrase, 172, 173 
WITH SCHEMABLNDLNG clause (view), 400-403, 

406,407 
WITH TIES keyword, 102, 103 

X 
XML, 588-615 

attribute, 588, 589 
create schema, 594, 595 
defined, 588, 589 
document, 588, 589 
element, 588, 589 
tags, 588, 589 
typed, 604-609 
untyped, 592-603 
validate against schema, 606, 607 
view in editor, 594, 595 
with CREATE TABLE, 592, 593 
with DECLARE, 592, 593 
with INSERT, 592, 593 
with SELECT, 592, 593, 6 10-613 

XML Data Manipulation Language (DML), 596-599 
xml data type, 592-603 

methods, 596-599 
parsing, 600-603 

XML DML, 596-599 
XML Editor, 594, 595 
XML schema, 590, 59 1, 604-609 
XML Schema Definition (XSD), 590, 591 
XML_SCHEMA_NAMESPACE function, 608, 609 
XPath, 6 14, 6 15 
XQuery, 596-599 
XSD, 590, 591 

YZ 
YEAR function, 272, 273, 276, 277 
z/OS operati ng system 20, 2 1 



100°/o Guarantee 
When you order directly from us, you must be satisfied. Try our books for 30 

days or our eBooks for 14 days. They must work better than any other programming training you've 
ever used, or you can return them for a prompt refund. No questions asked! 

NV\~ ~~ 
Mike Murach, Publisher Ben Murach, President 

Books for .NET developers 
Murach's C# 2015 $57.50 

Murach's ASP.NET 4.6 Web Programming with C# 2015 59.50 
Murach's ASP.NET Core MVC 59.50 

Books for database developers 
Murach's SQL Server 2019 for Developers 

Murach's MySQL (J'd Ed.) 

Murach's Oracle SQL and PLISQL for Developers (2"d Ed.) 

Books for Python, C++, 

Become a 
.NET programmer 

~ and Java developers ___ _ 

This book gives you the 
core language, .NET, and 

Visual Studio ski lls you need 
to create any C# application. 
You'll soon see how knowing 
SQL lets you code database 

applications more easily. 

Murach's Python Programming 
Murach's (++ Programming 

Murach's Java Programming (51h Ed.) 

Murach's Java Servlets and JSP (J'd Ed.) 

Books for web developers 
Murach's HTML5 and CSS3 (41h Ed.) 
Murach's JavaScript and jQuery (J'd Ed.) 

Murach's PHP and MySQL (J'd Ed.) 

$59.50 

57.50 

54.50 

$57.50 
59.50 

59.50 

57.50 

$59.50 
57.50 

57.50 
•Prices and availability are subject to change. Please visit our website or call for current information. 

We want to hear from you 
Do you have any comments, questions, or compliments to pass on to us? It would be great 

to hear from you! Please share your feedback in whatever way works best. 

~ www.murach.com rl twitter.com/MurachBooks 

(I ~ facebook.com/murachbooks 
1-800-221-5528 
(Weekdays, 8 am to 4 pm Pacific Time) 1m linkedin.com/company/ 

cqw mike-murach-&-associates 

murachbooks@murach.com (® instagram.com/murachbooks 



The software for this book 

SQL Server 2019 Express (a free download) 

SQL Server Management Studio (a free download) 

Visual Studio Community (a free download) 

SQL Server 2019 only runs on Windows 10 and later. As a result, if you're using 
Windows 8, you'll need to upgrade your operating system before you can install 
SQL Server 2019 Express. 

For information about downloading and installing these products, please see 
appendix A. 

The source code for this book 

Scripts that create the databases for this book 

Scripts for the SQL statements presented throughout this book 

Solutions to the exercises that are at the end of each chapter 

C# and Visual Basic projects for the application presented in chapter 19 

How to download and install the source code 

1. Go to www.murach.com. 

2. Navigate to the page for Murach's SQL Server 2019 for Developers. 

3. Follow the instructions to download the exe file. 

4. Double-click on the exe file to run it. 

For details, please see appendix A. 

How to create the databases 

1. Start the SQL Server Management Studio and connect to the database server. 

2. Use the Management Studio to run the three scripts in this directory: 
C: \Murach \ SQL Server 2019\Databases 

For details, please see appendix A. 



During the last 46 years, many customers have asked me how it is that a small publisher in Fresno can make 
the best programming books. The short answer is that no other publisher works the way we do. 

Instead of using freelance writers who get no training, we usc a small staff of programmers who arc trained 
in our proven writing and teaching methods. Instead of publishing 40+ books each year, we focus on just a few. 
Instead of showing pieces of code, we pro,~de complete applications that have been checked and re-checked 
for accuracy. And instead of rushing books to market, we refiJse to let schedule or budget interfere with quality. 
As I see it, that's the only way to make sure that every book we publish is the best one on its subject. 

That's why people often tell me that our books are the ones that they look for first whenever they need to 
learn a new subject. Why not U)' dus book and see for yourselF. Mike Murach 

Publisher 

SQL Server 2019 contents 

Get started fast 
• The concepts and terms you need for working with relational 

databases and SQL 

• How to use the Management Studio to work with a SQL Server 
database 

Master the SQL that you'll use every day 
• How to write SQL statements that retrieve and update the data 

in a database 

• How to work with inner and outer joins, summary queries, and 
subqueries ... it's all here 

• How to use data types and built-in functions to handle everyday 
challenges like manipulating character data, rounding numbers, 
and working with date/time values 

Learn how to design and create a database 
• How to design a database ... the first step toward becoming a 

database administrator 

• How to create a database and its tables using SQL statements or 
the Management Studio ... valuable skills, whether you're on the 
DBA track or not 

• How to use a sequence to generate a complex series of integers 
that you can assign to a column 

• How to usc collations and UTF-8 encoding to provide for 
multi lingual database applications 

Master advanced SQL features 
• How to work with views, sctipts, stored procedures, functions, 

table-valued parameters, uiggers, cursors, transactions, locking, 
security, and XML ... everything you need to complete yom 
mastery ofSQL 

• How to use the FILESTREAM storage feamre to work \\~th large 
amounts of binary data, such as image, sound, and video files 

Download the code for the book examples 
and exercise solutions 

(see the last page of this book for details) 

www.murach.com fm m 
ltMurachBooks 

What developers have said 
about previous editions 
"Looking to get started with SQL Server? This is a 
fantastic place to start. Looking for a solid reference as 
you polish your SQL? Grab a copy." 

Stephen Wynkoop, SQL SeNer Worldwide Users Group 

"If you're new to using SQL Server in your applications, 
this book will save you a lot of time. It teaches you about 
SQL, database design, a lot about ad min (which many 
developers have to do, not everywhere has dedicated 
DBAs), and the advanced SQL is excellent. Highly 
recommended." 

David Bolton, Guide for About.com CIC++IC# 

"Although I have used SQL Server on a daily basis for 
over 15 years, I was amazed at the number of new 
things that I learned. I used a couple of the ideas to 
create a noticeable improvement in response time for 
one of my client/server projects." 

Brian Mishler, Orlando .NET User Group 

"This is the best book on SQL Server I have seen .... I love 
the format .... " 

Andrew Katz, Programmer & Instructor, New York 

"Murach's SQL Server surprised me. It is extremely easy 
to read, and I was impressed by its coverage of SQL 
fundamentals .... This is an excellent first book on SQL 
for those new to the art, and can provide a complete 
reference for people who have years of experience." 

Glenn Gordon, Mgr. of New Sys. Development, New York 

"This SQL Server book really saves me time and effort." 
Jian Huang, Lower Alabama .NET Users Group 

$59.50 USA 
Shelving: Programming/Database/SOL 

ISBN: 978-1-943872-57-2 
55950 




