

Certified Kubernetes Administrator
(CKA) Exam Guide

Validate your knowledge of Kubernetes and implement it
in a real-life production environment

Mélony Qin

BIRMINGHAM—MUMBAI

Certified Kubernetes Administrator (CKA) Exam Guide
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Rahul Nair
Publishing Product Manager: Niranjan Naikwadi
Senior Editor: Arun Nadar
Content Development Editor: Sujata Tripathi
Technical Editor: Arjun Varma
Copy Editor: Safis Editing
Project Coordinator: Ashwin Dinesh Kharwa
Proofreader: Safis Editing
Indexer: Sejal Dsilva
Production Designer: Vijay Kamble
Marketing Coordinator: Nimisha Dua

First published: November 2022
Production reference: 1071022

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80323-826-5
www.packt.com

http://www.packt.com

Foreword

Over the last decade, Kubernetes has gone mainstream. Builders of cloud applications are expected to be
familiar with cloud-native design tools and techniques. Becoming certified in Kubernetes demonstrates
that you have the knowledge and skills necessary to meet the expectations of businesses, enterprises,
and consumers.

Whether you are a cloud-native expert or a beginner, this book will familiarize you with the tools,
technologies, and terminology in the cloud-native ecosystem. Mélony’s own experience getting involved
in the cloud-native ecosystem and its rapidly changing array of open source projects and cloud-based
products, enable her to write an approachable book that can serve as your guide to the modern way
that today’s applications are built.

The expectations of business, customers, and users of today’s applications have never been greater.
Kubernetes and cloud-native are the skills that will enable you to build applications that meet the
standards necessary to compete in the world of modern application development.

Brendan Burns, co-founder of Kubernetes open source project.

I first met Mélony back in 2018. I’d been speaking at an event in London and when I finished, she
approached the stage to ask a question. That was just a few days before she started working at Microsoft
and I’ve had the pleasure of working with her since then. It’s rare to get to work with such a talented
individual, someone who has a real passion for technology, learning, and helping others to learn.

I’ve been working in technology for over 30 years in roles across operations, engineering, and architecture.
A lot of that time was spent working in large corporations. Containers and Kubernetes have had a
massive effect on the way applications are developed, deployed, and managed. It would have solved
so many problems if I’d had these tools available earlier on in my career. Back in 2014, a colleague of
mine told me to keep a close eye on this “Docker” thing they’d heard about as they were convinced it
was going to be a big deal. I have kept an eye on it and they were right. It has been a big deal!

As your maturity with containers grows, you’ll find yourself involved with Kubernetes. If you’re going
to use Kubernetes, then you really need to understand how it works. It’s complicated and you can
easily get things wrong, so you really, really need to know what you’re doing. Certification exams are
always a great way to build your knowledge, test yourself, and prove that you know your stuff! I’ve sat
all of the current Kubernetes certification exams and I can tell you from personal experience, these
exams are hard. You can’t get away with guessing which multiple-choice answer is the right one. You
can’t wing it. Oh no, you need to actually put the work in to learn Kubernetes before you sit this exam!
And that’s a good thing, because it makes the Kubernetes certification more valuable knowing that
you can’t pass it without putting in the effort.

If you’ve got this book in your hands or on your digital reading device of choice, then you’ve made
a great start! Kubernetes certifications are hard, make no mistake, but you will pass if you put the
work in. Mélony will guide you through the topics you need to learn and help set you up for success.

Good luck. You’ve got this!

Mark Whitby, Cloud-native architecture and engineering lead, principal global black belt (GBB) at Microsoft

Certifications are the best way to show the world your passion, your interests, and your skills, in the
ever competitive and fierce landscape for talent sprung by the adoption of the cloud native paradigm.
Mélony has done an amazing job to demystify the many mysteries of Kubernetes into simple, easy
to understand concepts that will guide you in your studies, and hopefully lead you to a successful
certification. She truly understands the learning journey and the many hurdles of cloud native, and
she’s motivated to make your journey easier.

I met Mélony several years ago at one of the Microsoft OpenHacks events, and her passion for learning
and sharing struck me. So, I’m both glad and proud to write the foreword to her new book, which
undoubtedly will help many cloud native engineers in their own personal learning path.

Alessandro Vozza, Principal Software Engineer at Microsoft, CNCF Ambassador, Founder of Cloud Pirates

Note from the author

Containerization is an approach to managing applications; a container image contains all its deployment
dependencies and configurations. Managing one, or even a couple of containers for dev/testing purposes,
is relatively easy. The real challenge comes when you have to manage hundreds, or even thousands of
containers, especially for enterprise-grade product environments, where you’ll be managing networking,
deployments, configuration, etc. This is where the container orchestrator comes in.

Looking back, many open source container orchestrators have been popular in the market at one
point in time. Although we’re still hearing about Docker Swarm, Mesosphere’s DC/OS, Kubernetes
is by far the most popular container orchestration tool.

We have seen tremendous growth in Kubernetes and its ecosystem over the last 7 years. Yet, the
complexity of managing the tool remains the major blocker for enterprises that prevents them from
taking complete advantage of this fantastic technology. Learning Kubernetes and its ecosystem will help
organizations overcome their challenges in deploying, managing, and operating Kubernetes clusters.

Acquiring a Certified Kubernetes Administrator (CKA) certification is the best way to help you
train the essential skills on working with Kubernetes. In particular, you’ll learn how to manage and
operate Kubernetes.

The Certified Kubernetes Administrator (CKA) certification is founded by Cloud Native Computing
Foundation (CNCF), and it is designed to ensure that certification candidates have the skills and
knowledge to help them establish their credibility and value in the job market, and to support business
growth. It is widely recognized by various sizes of businesses across different industries.

This book is an exam guide and a knowledge book, and it covers all the important aspects required by
the CKA certification. We’ll start with an introduction to Kubernetes architecture, turning to the core
concept of Kubernetes. Then, we will dive deeply into the main Kubernetes primitives, installation
and configuration, cluster management, workload scheduling, networking, and security. We’ll also
cover various ways to troubleshoot Kubernetes.

Each chapter will cover core concepts as well as code samples. It is not a book to read conventionally
– it is a practice guide that requires you to get out of your comfort zone and go break some eggs!

While I was writing this book, I was at the lowest point of my life, having relocated to a new continent,
as well as undergoing surgery for the first time in my life during the first 2 months of relocation. This
all took place alongside many other challenges. I can’t thank my family enough for the huge support
I received from them, especially my beloved mother, Nancy Deng. I also want to thank my lovely
local and remote friends, the Packt team, and other people who supported me during that period.

As a human being, those unprecedented life challenges also made me rethink the definition of living
a meaningful life. Hence, I decided to turn those challenges into something positive and meaningful
by pushing myself to the max to work on this book. This experience also encouraged me to create
the CloudMelon Vis YouTube channel, alongside my website cloud-melon.com that I have been
blogging on for years. Sharing is caring!

Rethinking my community evangelization in the past, I hope to make my life more meaningful by
making a more positive impact on the community. This book aims to help people find their new career
path with Kubernetes, in particular those who lost their jobs during the pandemic. Kubernetes is one
of the most life-changing technologies that empowered my own career path, and I hope it will make
a positive impact on your career, too.

Last but not least, I wish you the best of luck with your CKA exam and hope you will enjoy your
journey in building your future with this book. Thanks!

http://cloud-melon.com

Contributors

About the author
Mélony Qin, aka CloudMelon, is the founder of CloudMelonVision and a product manager at a top
tech company, as well as being the author of Microsoft Azure Infrastructure, the Kubernetes Workshop,
and Certified Kubernetes Administrator (CKA) Exam Guide by Packt Publishing, and the technical
reviewer for Azure for Architects, Third Edition. Her community contribution mainly concerns OSS,
DevOps, Kubernetes, serverless, big data analytics, and IoT on Microsoft Azure. She is also a member
of the Association for Computing Machinery (ACM) and Project Management Institute (PMI).
She can be reached via Twitter using @MelonyQ or @CloudMelonVis, through the Contact
me page of her blog (www.cloud-melon.com), and via her YouTube channel: CloudMelon Vis
https://www.youtube.com/c/CloudMelonVis.

https://www.youtube.com/c/CloudMelonVis

About the reviewers
Erol Kavas has worked in the IT industry for more than 20 years, with 10 years dedicated to infrastructure,
the cloud, and DevOps. He has helped many Canadian and US enterprises and governments to build
their cloud foundations and embark upon their containerization and Kubernetes journeys. He is fully
certified on AWS, Azure, Google Cloud Platform, and Kubernetes in all disciplines. He is a partner
and chief consultant in a DevOps and cloud consulting firm that helps Canadian and US start-ups in
their cloud and DevOps journeys. He is also a Microsoft Certified Trainer (MCT) regional lead for
Canada and trains many new cloud professionals at CloudCamp.ca.

Dustin Specker has been in the tech industry for almost 10 years. He started as a frontend web
developer focused on usability. In the last few years, Dustin has pivoted to developing cloud solutions.
He has used Kubernetes for on-premises environments and public cloud for the last four years. He has
earned the CKAD, CKA, and CKS certifications. He received a Bachelor of Science degree in nuclear
engineering from the Missouri University of Science and Technology, where he discovered that he
enjoyed programming much more than nuclear engineering.

Bruno S. Brasil is a cloud engineer who has used Linux since he was a kid. He started out working in
on-premises environments before living out the migration to cloud solutions and joining the DevOps
culture, choosing Google Cloud Platform as his specialization focus. Since then, he has worked on
projects of this type as a consultant and engineer for several types of businesses, ranging from digital
banks and marketplaces to start-ups. He has always focused on implementing best practices in the
development of infrastructure as code, disseminating the DevOps culture, and implementing SRE
strategies. He is enthusiastic about the open source community and believes that this is the most
important path in terms of the growth of new professionals and new technologies.

Juri Sinar is a senior DevOps engineer working for a London fintech start-up. Kubernetes is the main
platform that he has used to run and integrate infrastructure for the past five years. It helps Juri to
connect and automate a large global network of open banking for his clients in a way that would not
have been possible just 10 years ago.

Preface� xvii

Part 1: Cluster Architecture, Installation,
and Configuration

1
Kubernetes Overview� 3

CKA exam overview� 3
What to expect in your CKA exam � 4
CKA exam tips and tricks � 5

Cluster architecture and components� 8
Kubernetes core concepts� 10
Containerized workloads � 11
Container images � 11
Container registry� 12
Container runtimes� 12

Kubernetes basic workflow� 13

Kubernetes plugin model� 14

Kubernetes API primitives � 16
Sharing a cluster with namespaces� 17
Kubernetes in-market distribution
and ecosystems� 18
Upstream vanilla Kubernetes� 19
Managed Kubernetes� 19
Kubernetes ecosystems� 19

Summary� 20

2
Installing and Configuring Kubernetes Clusters� 21

Technical requirements � 21
Hands-on Kubernetes tooling� 22
Core tools � 22
Deployment tools � 25
Other tools � 26

Installing and configuring
a Kubernetes cluster � 29
Prerequisites for installing
a Kubernetes cluster � 29

Table of Contents

Table of Contentsxii

Using minikube to set up a single
node Kubernetes cluster� 33
Using kubeadm to install
a basic Kubernetes cluster� 36
Setting up a highly available
cluster with kubeadm� 43
Summary� 45

Mock CKA scenario-based
practice test � 46
Scenario 1: � 46
Scenario 2: � 46
Scenario 3 (optional):� 46

FAQs� 46

3
Maintaining Kubernetes Clusters� 47

Demystifying Kubernetes
cluster maintenance� 47
Upgrading a Kubernetes cluster
using kubeadm� 49
Upgrading the master node � 50
Upgrading the worker node � 54

Working with etcd� 56
Exploring the ETCD cluster pod � 56
Listing etcd cluster members� 59
Checking the etcd cluster status� 60
Installing etcd � 61

Backing up etcd � 62
Restoring etcd� 64

Summary� 66
Mock CKA scenario-based
practice test � 66
Scenario 1� 66
Scenario 2� 66
Scenario 3� 66
Scenario 4� 66

FAQs� 67

Part 2: Managing Kubernetes

4
Application Scheduling and Lifecycle Management� 71

Technical requirements � 71
The basics of Kubernetes workloads� 72
Imperative management versus
declarative management� 72
Understanding pods� 72

Deploying and managing applications� 81

Deploying applications� 81

Performing rolling updates
and rollbacks� 86
Rolling updates with kubectl � 86
Rollback� 88

Scaling applications� 90

Table of Contents xiii

ReplicaSets� 90

Workload scheduling � 98
Understanding namespaces� 98
Labels, node selectors, and annotations� 100
Node affinity and anti-affinity� 101
Taints and tolerations� 102

Resource management� 103
Configuring applications� 105
Manifest management with kustomize� 110

Common package management
and templating with Helm� 112

Summary� 114
Mock CKA scenario-based
practice test � 114
Scenario 1� 114
Scenario 2� 114
Scenario 3� 114
Scenario 4� 114
Scenario 5� 114

FAQs� 115

5
Demystifying Kubernetes Storage� 117

Technical requirements � 117
Stateful versus stateless workloads� 118
Kubernetes volumes � 118
Ephemeral storage� 119
Persistent storage� 125

Cracking stateful applications
in Kubernetes� 130
Configuring an application
with mounted storage� 130

Configuring an application
with persistent storage� 134

Summary� 140
Mock CKA scenario-based
practice test � 140
Scenario 1� 140
Scenario 2� 140

FAQs� 141

6
Securing Kubernetes� 143

Technical requirements � 143
Securing Kubernetes in layers� 144
Kubernetes authentication
and authorization� 145
Service accounts versus user accounts � 146
Kubernetes service accounts � 146

Organizing the cluster access
using kubeconfig� 149
Configuring access to multiple clusters� 152
Kubernetes authorization� 154

Kubernetes RBAC� 155

Table of Contentsxiv

Managing the security of
Kubernetes applications � 160
Summary� 163
Mock CKA scenario-based
practice test � 163

Scenario 1 � 163
Scenario 2� 164
Scenario 3 � 164

FAQs� 164

7
Demystifying Kubernetes Networking� 165

Technical requirements � 165
Understanding the Kubernetes
networking model� 166
Container-to-container communication� 166
Pod-to-pod communication� 168
Pod-to-service and external-to-service
communications� 170
Node-to-node communication� 184

Choosing an appropriate Container
Network Interface plugin� 185
CNI networking in Kubernetes � 185
Decision metrics� 186

Configuring Ingress controllers
and Ingress resources� 186
How Ingress and an Ingress controller works� 186
Using multiple Ingress controllers� 187
Work with Ingress resources � 187

Ingress annotations and rewrite-target� 189

Configuring and leveraging
CoreDNS� 190
Check whether the CoreDNS server
is up and running� 190
Pod IPs and DNS hostnames� 196
Service IPs and DNS hostnames� 199

Summary� 202
Mock CKA scenario-based
practice test � 203
Scenario 1 � 203
Scenario 2� 203
Scenario 3� 203
Scenario 4� 203
Scenario 5� 203
Scenario 6� 203

FAQs� 204

Part 3: Troubleshooting

8
Monitoring and Logging Kubernetes Clusters and Applications� 207

Technical requirements � 207
Monitoring on a cluster node� 208
Checking whether Metrics Server is installed� 209

Installing Metrics Server in
your current Kubernetes cluster � 209
Checking out CPU/memory metrics � 213

Table of Contents xv

Monitoring applications
on a Kubernetes cluster� 213
Monitoring the resource usage
of an application� 213
Checking application details� 216
Monitoring cluster events � 219

Managing logs at the cluster
node and Pod levels� 220
Cluster-level logging� 220

Checking out the node details� 221
Checking the node status � 222

Managing container stdout
and stderr logs� 222
Summary� 225
Mock CKA scenario-based
practice test � 225
Scenario 1 � 225

FAQs� 225

9
Troubleshooting Cluster Components and Applications� 227

Technical requirements� 227
General practices in Kubernetes
troubleshooting � 229
Troubleshooting cluster components� 230
Inspecting the cluster� 230
Inspecting the node� 231

Troubleshooting applications� 243

Getting a high-level view� 243
Inspecting namespace events� 244
Troubleshooting failing pods� 245
Troubleshooting init containers� 249

Summary� 251
FAQs� 251

10
Troubleshooting Security and Networking� 253

Technical requirements � 253
Troubleshooting RBAC failures� 254
Initiating a minikube cluster � 254
Managing a minikube cluster � 256

Troubleshooting networking� 258

Troubleshooting a Kubernetes DNS server � 258
Troubleshooting a service in Kubernetes � 260
Get a shell for troubleshooting � 263

Summary� 265
FAQs� 265

Appendix - Mock CKA scenario-based practice test resolutions � 267

Chapter 2 – Installing and
Configuring Kubernetes Clusters� 267
Scenario 1 � 267

Scenario 2 � 268
Scenario 3 (optional)� 269

Table of Contentsxvi

Chapter 3 – Maintaining
Kubernetes Clusters� 269
Scenario 1� 269
Scenario 2� 270
Scenario 3� 271
Scenario 4� 271

Chapter 4 – Application scheduling
and lifecycle management� 272
Scenario 1� 272
Scenario 2� 272
Scenario 3� 272
Scenario 4� 273
Scenario 5� 274

Chapter 5 – Demystifying
Kubernetes Storage� 275
Scenario 1� 275
Scenario 2� 276

Chapter 6 – Securing Kubernetes� 277
Scenario 1� 277
Scenario 2� 277
Scenario 3 � 279

Chapter 7 – Demystifying
Kubernetes networking� 280
Scenario 1 � 280
Scenario 2� 281
Scenario 3� 282
Scenario 4� 282
Scenario 5� 282
Scenario 6� 283

Chapter 8 – Monitoring and
logging Kubernetes Clusters
and Applications� 283
Scenario 1 � 283

Index� 285

Other Books You May Enjoy� 296

Preface

Kubernetes is by far the most popular container orchestration tool, yet the complexities of managing
the tool have led to the rise of fully managed Kubernetes services over the past few years. The Certified
Kubernetes Administrator (CKA) certification is designed to ensure that certification candidates
have the skills and knowledge to help them establish their credibility and value in the job market, to
support business growth.

This book will start with an introduction to the Kubernetes architecture and the core concept of
Kubernetes, and then we will take a deep dive into main Kubernetes primitives with hands-on scenarios
for installation and configuration, cluster management and workload scheduling, networking, and
security. Furthermore, we’ll discuss how to troubleshoot Kubernetes in our daily practice.

By the end of this book, you will be well versed in working with Kubernetes installation and configuration,
and comfortable with the cluster management, storage, network, security-related configurations, and
troubleshooting skills on vanilla Kubernetes.

If you want to learn more about Kubernetes, check out this playlist Kubernetes in 30 days - https://
www.youtube.com/watch?v=csPu6y6A7oY&list=PLyDI9q8xNovlhCqRhouXmSKQ-PP6_
SsIQ

Who this book is for
This book is targeted toward application developers, DevOps engineers, data engineers, and cloud
architects who want to pass the CKA exam to certify their Kubernetes Administrator skills in the
market. A basic knowledge of Kubernetes is recommended.

What this book covers
Chapter 1, Kubernetes Overview, introduces the Kubernetes architecture and its core concepts. It dives
into common Kubernetes tools and gets hands-on with them, showing the big picture of different
distributions and ecosystems of Kubernetes.

Chapter 2, Installing and Configuring Kubernetes Clusters, introduces the different configurations of
Kubernetes and gets your hands dirty by setting up a Kubernetes cluster with a single worker node
and multiple worker nodes using proper tooling.

Chapter 3, Maintaining Kubernetes Clusters, introduces the different approaches while maintaining
Kubernetes clusters, and gets hands-on performing upgrades for Kubernetes clusters, backing up and
restoring ETCD. This chapter covers 25% of the CKA exam content.

https://www.youtube.com/watch?v=csPu6y6A7oY&list=PLyDI9q8xNovlhCqRhouXmSKQ-PP6_SsIQ
https://www.youtube.com/watch?v=csPu6y6A7oY&list=PLyDI9q8xNovlhCqRhouXmSKQ-PP6_SsIQ
https://www.youtube.com/watch?v=csPu6y6A7oY&list=PLyDI9q8xNovlhCqRhouXmSKQ-PP6_SsIQ

Prefacexviii

Chapter 4, Application Scheduling and Lifecycle Management, describes using Kubernetes deployments
to deploy pods, scaling pods, performing rolling updates and rollbacks, resource management, and
using ConfigMaps to configure pods. This chapter covers 15% of the CKA exam content.

Chapter 5, Demystifying Kubernetes Storage, discusses the core concept of Kubernetes storage for
stateful workloads and shows how to configure applications with mounted storage and dynamically
persistent storage. This chapter covers 10% of the CKA exam content.

Chapter 6, Securing Kubernetes, covers how Kubernetes authentication and authorization pattern
works, then dives into Kubernetes role-based access control (RBAC). From there, we’ll put managing
the security of applications deployed on Kubernetes into perspective. This part is less than 5% of the
CKA exam content.

Chapter 7, Demystifying Kubernetes Networking, describes using the Kubernetes networking model and
core concepts, as well as how to configure Kubernetes networking on the cluster nodes and network
policies, configuring Ingress controllers and Ingress resources, configuring and leveraging CoreDNS,
as well as how to choose an appropriate container network interface plugin. This chapter covers 20%
of the CKA exam content.

Chapter 8, Monitoring and Logging Kubernetes Clusters and Applications, describes how to monitor
Kubernetes cluster components and applications, and how to get infrastructure-level, system-level, and
application-level logs to serve as a source of log analytics or for further troubleshooting. Together with
the next two chapters about troubleshooting cluster components and applications and troubleshooting
Kubernetes security and networking, it covers 30% of the CKA exam content.

Chapter 9, Troubleshooting Cluster Components and Applications, describes the general troubleshooting
approaches, and how to troubleshoot errors caused by cluster component failure and issues that
occurred during the application deployments.

Chapter 10, Troubleshooting Security and Networking, follows on from Chapter 9 and provides the
general troubleshooting approaches to troubleshoot errors caused by RBAC restrictions or networking
settings. In Chapter 6, we touched on how to enable Kubernetes RBAC and work with Kubernetes
DNS. Be sure to go back and review those important concepts before diving into this chapter.

To get the most out of this book
This book is a comprehensive hands-on study guide focusing on providing hands-on skills with
scenarios, and at the same time providing core knowledge to help readers warm up. The software and
hardware covered in the book are as follows:

Preface xix

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/AKr3r.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “You can
start by setting up an alias for kubectl using the alias k=kubectl command, and then use the
k get command.”

A block of code is set as follows:

apiVersion: v1

kind: Pod

metadata:

   name: melon-serviceaccount-pod

spec:

   serviceAccountName: melon-serviceaccount

   containers:

   - name: melonapp-svcaccount-container

     image: busybox

     command: ['sh', '-c','echo stay tuned!&& sleep 3600']

Software/hardware covered in the book Operating system requirements

Minikube Windows, macOS, or Linux

kubectl, kubeadm Windows or Linux

Docker Desktop Windows 10 or 11

WSL 2 Windows 10 or 11

https://packt.link/AKr3r

Prefacexx

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

spec:

   serviceAccountName: melon-serviceaccount

   containers:

Any command-line input or output is written as follows:

kubectl delete samelon-serviceaccount

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “This command will return the node
that is now shown as uncordoned.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
https://authors.packtpub.com

Preface xxi

Share Your Thoughts
Once you’ve read Certified Kubernetes Administrator (CKA) Exam Guide , we’d love to hear your thoughts!
Please click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1803238267

Part 1:
Cluster Architecture,

Installation, and Configuration

This part looks at an overview of Kubernetes and explores its concepts and tooling. Furthermore, you
will learn how to install and set up Kubernetes clusters. This part covers 25% of the CKA exam's content.

This part of the book comprises the following chapters:

•	 Chapter 1, Kubernetes Overview

•	 Chapter 2, Installing and Configuring Kubernetes Clusters

•	 Chapter 3, Maintaining Kubernetes Clusters

1
Kubernetes Overview

This chapter is an introduction to the Kubernetes architecture and Kubernetes core concepts. It
dives into common Kubernetes tools and gets hands-on with them, showing the big picture of
the different distributions and ecosystems in Kubernetes. In this chapter, we’re going to cover the
following main topics:

•	 CKA exam overview

•	 Cluster architecture and components

•	 Kubernetes core concepts

•	 Kubernetes in-market distribution and ecosystems

CKA exam overview
Certified Kubernetes Administrator (CKA) certification is a hands-on exam with a set of common
Kubernetes working scenarios. You need to achieve it within a limited time frame. We highly recommend
you work through this book within your environment and make sure that you understand and practice
all the steps until you train your intuition and can perform all the tasks quickly without thinking twice.
Time management is the key to success in this exam.

At the time of writing this book, the CKA exam is based on Kubernetes 1.22. Please check out the official
example page to make sure you’re up to date on any changes in the exam curriculum: https://
www.cncf.io/certification/cka/. To learn more about the changes in Kubernetes, please
check out the community release notes: https://github.com/kubernetes/kubernetes/
releases.

https://www.cncf.io/certification/cka/
https://www.cncf.io/certification/cka/
https://github.com/kubernetes/kubernetes/releases
https://github.com/kubernetes/kubernetes/releases

Kubernetes Overview4

The content of this book is well aligned with the CKA exam curriculum:

•	 Part 1 – Chapters 1 to 3 cover Kubernetes Cluster Architecture, Installation, and Configurations,
which makes up about 25% of the exam.

•	 Part 2 – Chapter 4 covers Workloads and Scheduling, which makes up about 15% of the exam,
Chapter 5 covers Storage Services and Networking, which makes up about 10% of the exam,
chapters 6 and 7 cover Services and Networking, which makes up about 20% of the exam.

•	 Part 3 – Chapters 8 to 10 cover Troubleshooting, which makes up about 30% of the exam.

The goal of the exam curriculum is to help you prepare for the CKA exam and help you get a thorough
understanding of each area, which will help you become skilled Kubernetes administrators later on
in your career. While going through this book, please feel free to jump to the area that you need to
know the most about if you’re already familiar with some other topics.

Note that some Kubernetes security content before November 2020 has gradually moved to the
Certified Kubernetes Security Specialist (CKS) exam. As a well-rounded Kubernetes administrator,
it’s essential to have a deep understanding of Kubernetes security. In fact, it is somewhat difficult to
separate Kubernetes security as a different topic; however, knowledge of topics such as security context
and role-based access control (RBAC) is still required for you to perform certain tasks to be successful
in the exam. Therefore, this book will still cover some key security concepts to lay the groundwork
if you want to pursue the CKS certification later on. To get to know more about different Kubernetes
certifications, check out the FAQs from the Linux Foundation website by navigating to https://
docs.linuxfoundation.org/tc-docs/certification/faq-cka-ckad-cks.

What to expect in your CKA exam

Prior to your exam, you have to make sure the computer you’re going to use during the exam meets
the system requirements defined by the exam provider. A webcam and microphone are mandatory to
turn on during the exam. You’re only allowed to use a single instance of a Chromium-based browser
for the exam. You can find a list of Chromium-based browsers here: https://en.wikipedia.
org/wiki/Chromium_(web_browser).

Please make sure your hardware meets the minimum requirements by running the compatibility check
tool, which you can find here: https://www.examslocal.com/ScheduleExam/Home/
CompatibilityCheck. The detailed system requirements are defined here: https://docs.
linuxfoundation.org/tc-docs/certification/faq-cka-ckad-cks#what-are-
the-system-requirements-to-take-the-exam.

Important note
As this exam is an online remote-proctored exam, you can also check out what the exam is like
here: https://psi.wistia.com/medias/5kidxdd0ry.

https://docs.linuxfoundation.org/tc-docs/certification/faq-cka-ckad-cks
https://docs.linuxfoundation.org/tc-docs/certification/faq-cka-ckad-cks
https://en.wikipedia.org/wiki/Chromium_(web_browser)
https://en.wikipedia.org/wiki/Chromium_(web_browser)
https://www.examslocal.com/ScheduleExam/Home/CompatibilityCheck
https://www.examslocal.com/ScheduleExam/Home/CompatibilityCheck
https://docs.linuxfoundation.org/tc-docs/certification/faq-cka-ckad-cks#what-are-the-system-requirements-to-take-the-exam
https://docs.linuxfoundation.org/tc-docs/certification/faq-cka-ckad-cks#what-are-the-system-requirements-to-take-the-exam
https://docs.linuxfoundation.org/tc-docs/certification/faq-cka-ckad-cks#what-are-the-system-requirements-to-take-the-exam
https://psi.wistia.com/medias/5kidxdd0ry

CKA exam overview 5

During your exam, you’re allowed to check the official Kubernetes documentation including articles and
documents under https://kubernetes.io and https://github.com/kubernetes on
the same browser instance as the exam screen. The CKA exam consists of a set of around 20 scenario-
based tasks to be achieved with a Linux-based shell and a set of predefined Kubernetes clusters. Those
scenario-based tasks are described as a problem to be resolved with additional information. Candidates
are bound to come up with the solutions based on the provided information and perform the solution
promptly. A CKA exam session is about 2 hours, and after that, the exam will be marked as delivered.
You can take the exam with multiple monitors if you wish to, although check out the exam policy
beforehand to make sure you have met all the requirements from the organizer: https://docs.
linuxfoundation.org/tc-docs/certification/faq-cka-ckad-cks#how-is-
the-exam-proctored.

We highly recommend you walk through the sample scenarios provided by killer.sh, an official exam
simulator, and bookmark the official documents that will be useful for you. Go to the killer.sh training
website at https://killer.sh/course/ to test out a simulated exam environment and test
out the scenarios.

For more CKA exam instructions and tricks, please check out https://docs.linuxfoundation.
org/tc-docs/certification/tips-cka-and-ckad.

You need a score of at least 66% to pass the exam, and the results will be emailed to you within
24 to 36 hours of finishing the exam. Accordingly, you will receive the certification in PDF form
with a validity of 3 years, and a badge shortly after that. In case of any questions, you could email
certificationsupport@cncf.io for further help.

CKA exam tips and tricks

Two key factors to help you succeed in the CKA exam or any other Kubernetes certifications are
as follows:

•	 Excellent time management

•	 Practice, as we know that practice makes perfect

Before getting to the exam part, you have to be familiar with Kubernetes; don’t dwell only on
the certification when you’re preparing for this exam. A deep understanding of the Kubernetes
cluster architecture and ecosystem will help set a solid foundation on the way to learning any
exam-related content.

https://kubernetes.io
https://github.com/kubernetes
https://docs.linuxfoundation.org/tc-docs/certification/faq-cka-ckad-cks#how-is-the-exam-proctored
https://docs.linuxfoundation.org/tc-docs/certification/faq-cka-ckad-cks#how-is-the-exam-proctored
https://docs.linuxfoundation.org/tc-docs/certification/faq-cka-ckad-cks#how-is-the-exam-proctored
https://killer.sh/course/
https://docs.linuxfoundation.org/tc-docs/certification/tips-cka-and-ckad
https://docs.linuxfoundation.org/tc-docs/certification/tips-cka-and-ckad

Kubernetes Overview6

Gaining some basic understanding of the Linux shell

Looking at the exam itself, a basic understanding of the Linux shell will assist you in achieving the goal
quicker. The following commands will help you while you’re going through the exercises in this book:

•	 sudo to avoid permission issues as much as possible, and sudo su to get root permission

•	 curl

•	 | grep in the command filtering result

•	 vi/vim/nano or other Linux text editor

•	 cat

•	 cp/mv/mkdir/touch

•	 cp/scp

•	 A good understanding of the json path is a plus, and using jq for JSON parsing would be
a good complement to locating the information that you want to get out of the command.

As we’re going through all the exam topics in this book, we’ll cover most of these commands in the
exercises. Make sure you understand and can confidently perform all the exercises independently
with no rush.

Setting up a kubectl alias to save time

A lot of commands will be used repeatedly while you’re working on various scenarios of the exam,
so a friendly shortcut for kubectl is essential, as it will be used in nearly all of your commands:

alias k=kubectl

alias kg='kubectl get'

alias kgpo='kubectl get pod'

There’s a kubectl-aliases repository on GitHub that you can refer to (https://github.
com/ahmetb/kubectl-aliases). This was created by a contributor who showed some really
good examples of kubectl aliases.

If you don’t want to remember too much, you can try to understand the naming convention for
shortcuts in Kubernetes. These would be things such as svc being short for services such that kubectl
get services can become kubectl get svc, or kubectl get nodes can become k
get no, for example. I have created a melonkube playbook repository, which covers all the
shortcuts for Kubernetes objects (https://github.com/cloudmelon/melonkube/blob/
master/00%20-%20Shortcuts.md).

https://github.com/ahmetb/kubectl-aliases
https://github.com/ahmetb/kubectl-aliases
https://github.com/cloudmelon/melonkube/blob/master/00%20-%20Shortcuts.md
https://github.com/cloudmelon/melonkube/blob/master/00%20-%20Shortcuts.md

CKA exam overview 7

You can refer to that to find what works best for you. However, please keep it simple as your mind
may be get worked up during the actual exam for some reason. Practice and more practice will get
you there sooner.

Setting kubectl autocomplete

You could set autocompletion in your shell; this will usually work in the Linux shell in your exam.
You can achieve this with the following:

source <(kubectl completion bash) # setup autocomplete in bash
into the current shell, bash-completion package should be
installed first.

echo "source <(kubectl completion bash)" >> ~/.bashrc # add
autocomplete permanently to your bash shell.

Working in conjunction with the shortcut, you can do the following:

alias k=kubectl

complete -F __start_kubectl k

Although sometimes it may take more time to look for the right commands from bash
autocompletion, I would say focusing on building a good understanding of the technology
with practice will help you skill up faster.

Bookmarking unfamiliar yet important documentation in your browser

Get yourself familiar with Kubernetes official documentation to know where to find the information
you need. The goal of CKA is not about memorizing but hands-on skills; knowing how to find the
right path and resolving the challenge is the key. You could bookmark the documentation in the
following domains:

•	 Kubernetes official documentation: https://kubernetes.io/docs/

•	 Kubernetes blog: https://kubernetes.io/blog/

•	 Kubernetes GitHub repository: https://github.com/kubernetes/

The first page that I usually recommend people to bookmark is the kubectl cheat sheet: https://
kubernetes.io/docs/reference/kubectl/cheatsheet/. Another good bookmark is
the official documentation search: https://kubernetes.io/search/?q=kubecon.

https://kubernetes.io/docs/
https://kubernetes.io/blog/
https://github.com/kubernetes/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/search/?q=kubecon

Kubernetes Overview8

Be careful with the security context

The context is the most important indicator to let you know which Kubernetes cluster you’re currently
working on. We’ll touch on the security context in more detail later in the book. I suggest you perform
a context check before working on any new questions as you might get confused at times. Note that if
you’re not operating on the target Kubernetes cluster of that question, you will not get scored.

You can use the following command to check out the context:

kubectl config current-context

If you want to go to a specific Kubernetes cluster, you can use the following command:

kubectl config use-context my-current-cluster-name

You can also check out a list of Kubernetes clusters you’ve worked on with the following command
in the actual exam:

kubectl config get-contexts  

Managing your time wisely

Time management is the key to success in the CKA exam, and it is important to manage your time
wisely by switching the task order. In general, all exam tasks are leveled from easy to difficult. When
you reach the last few questions, you may find some tasks are quite time-consuming, but not the most
difficult. You can skip to other questions that you’re confident about and then come back to these
later. That’s why it’s important to be aware of the Kubernetes cluster that you’re currently working on.

Final thoughts

If you have walked through all the exercises in this book and want to gain a deeper understanding
of Kubernetes, I recommend checking out another book that I co-authored back in 2020, called The
Kubernetes Workshop, also published by Packt, which provides lots of Kubernetes exercises to help
you skill up on the technology.

Cluster architecture and components
Kubernetes is a portable, highly extensible, open source orchestration that facilitates managing
containerized workloads and services and orchestrates your containers to achieve the desired status
across different worker nodes. It is worth mentioning that official documentation states that Kubernetes
means pilot in Greek where its name originates from, which is appropriate for its function.

Cluster architecture and components 9

It supports a variety of workloads, such as stateless, stateful, and data-processing workloads. Theoretically,
any application that can be containerized can be up and running on Kubernetes.

A Kubernetes cluster consists of a set of worker nodes; those worker machines run the actual workloads
that are the containerized applications. A Kubernetes cluster can have from 1 up to 5,000 nodes (as
of writing this chapter, we’re on the Kubernetes 1.23 version).

We usually spin up one node for quick testing, whereas, in production environments, a cluster has
multiple worker nodes for high availability and fault torrent.

Kubernetes adopts a master/worker architecture, which is a mechanism where one process acts as
the master component to control one or more other components called slaves, or in our case, worker
nodes. A general Kubernetes cluster architecture would look like the following:

Figure 1.1 – Kubernetes cluster architecture

The Kubernetes master node, or the control plane, is in charge of responding to the cluster events,
and it contains the following components:

•	 API server: This is the core of the Kubernetes control plane. The main implementation of the
API server, also known as kube-apiserver, is to expose the Kubernetes REST API. You
can see it as a communication manager between different Kubernetes components across the
Kubernetes cluster.

Kubernetes Overview10

•	 etcd: This is a distributed key-value store that stores information regarding the cluster information
and all states of objects running on the Kubernetes cluster, such as Kubernetes cluster nodes,
Pods, config maps, secrets, service accounts, roles, and bindings.

•	 Kubernetes scheduler: A Kubernetes scheduler is a part of the control plane. It is responsible
for scheduling Pods to the nodes. kube-scheduler is the default scheduler for Kubernetes.
You can imagine it as a postal officer who sends the Pod’s information to each node and when it
arrives at the target node, the kubelet agent on that node will provide the actual containerized
workloads with the received specification.

•	 Controllers: Controllers are responsible for running Kubernetes toward the desired states. A set
of built-in controllers runs inside kube-controller-manager in Kubernetes. Examples
of those controllers are replication controllers, endpoint controllers, and namespace controllers.

Besides the control plane, every worker node in a Kubernetes cluster running the actual workloads
has the following components:

•	 kubelet: A kubelet is an agent that runs on each worker node. It accepts pod specifications sent
from the API server or locally (for static pod) and provisions the containerized workloads such
as the Pod, StatefulSet, and ReplicaSet on the respective nodes.

•	 Container runtime: This is the software virtualization layer that helps run containers within
the Pods on each node. Docker, CRI-O, and containerd are examples of common container
runtimes working with Kubernetes.

•	 kube-proxy: This runs on each worker node and implements the network rules and traffic
forwarding when a service object is deployed in the Kubernetes cluster.

Knowing about those components and how they work will help you understand the core Kubernetes
core concepts.

Kubernetes core concepts
Before diving into the meat and potatoes of Kubernetes, we’ll explain some key concepts in this section
to help you start the journey with Kubernetes.

Kubernetes core concepts 11

Containerized workloads

A containerized workload means applications running on Kubernetes. Going back to the raw definition
of containerization, a container provides an isolated environment for your application, with higher
density and better utilization of the underlying infrastructure compared to the applications deployed
on the physical server or virtual machines (VMs):

Figure 1.2 – Virtual machine versus containers

The preceding diagram shows the difference between VMs and containers. When compared to VMs,
containers are more efficient and easier to manage.

Container images

A container isolates the application with all its dependencies, libraries, binaries, and configuration files.
The package of the application, together with its dependencies, libraries, binaries, and configurations, is
what we call a container image. Once a container image is built, the content of the image is immutable.
All the code changes and dependencies updates will need to build a new image.

Kubernetes Overview12

Container registry

To store the container image, we need a container registry. The container registry is located on your
local machine, on-premises, or sometimes in the cloud. You need to authenticate to the container
registry to access its content to ensure security. Most public registries, such as DockerHub and quay.
io, allow a wide range of non-gated container image distributions across the board:

Figure 1.3 – Container images

The upside of this entire mechanism is that it allows the developers to focus on coding and configuring,
which is the core value of their job, without worrying about the underlying infrastructure or managing
dependencies and libraries to be installed on the host node, as shown in the preceding diagram.

Container runtimes

The container runtime is in charge of running containers, which is also known as the container
engine. This is a software virtualization layer that runs containers on a host operating system. A
container runtime such as Docker can pull container images from a container registry and manage
the container life cycle using CLI commands, in this case, Docker CLI commands, as the following
diagram describes:

http://quay.io
http://quay.io

Kubernetes basic workflow 13

Figure 1.4 – Managing Docker containers

Besides Docker, Kubernetes supports multiple container runtimes, such as containerd and CRI-O.
In the context of Kubernetes, the container runtime helps get containers up and running within the
Pods on each worker node. We’ll cover how to set up the container runtime in the next chapter as
part of preparation work prior to provisioning a Kubernetes cluster.

Important note
Kubernetes runs the containerized workloads by provisioning Pods run on worker nodes.
A node could be a physical or a virtual machine, on-premises, or in the cloud.

Kubernetes basic workflow
We saw earlier a typical workflow showing how Kubernetes works with Kubernetes components,
and how they collaborate with each other, in the Cluster architecture and components section. When
you’re using kubectl commands, a YAML specification, or another way to invoke an API call, the
API server creates a Pod definition and the scheduler identifies the available node to place the new
Pod on. The scheduler does two things: filtering and scoring. The filtering step finds a set of available
candidate nodes to place the Pod, and the scoring step ranks the most fitting Pod placement.

Kubernetes Overview14

The API server then passes that information to the kubelet agent on the target worker node. The
kubelet then creates the Pod on the node and instructs the container runtime engine to deploy the
application image. Once it’s done, the kubelet communicates the status back to the API server, which
then updates the data in the etcd store, and the user will be notified that the Pod has been created.

This mechanism is repeated every time we perform a task and talk to the Kubernetes cluster, either
by using kubectl commands, deploying a YAML definition file, or using other ways to trigger a
REST API call through the API server.

The following diagram shows the process that we just described:

Figure 1.5 – Kubernetes cluster basic workflow

Knowing the basic Kubernetes workflow will help you understand how Kubernetes cluster components
collaborate with each other and lay the foundation for learning about the Kubernetes plugin model
and API objects.

Kubernetes plugin model

One of the most important reasons for Kubernetes to dominate the market and become the new normal
of the cloud-native ecosystem is that it is flexible, highly configurable, and has a highly extensible
architecture. Kubernetes is highly configurable and extensible on the following layers:

•	 Container runtime: The container runtime is the lowest software virtualization layer running
containers. This layer supports a variety of runtimes in the market thanks to the Container
Runtime Interface (CRI) plugin. The CRI contains a set of protocol buffers, specifications,
a gRPC API, libraries, and tools. We’ll cover how to cooperate with different runtimes when
provisioning the Kubernetes cluster in Chapter 2, Installing and Configuring Kubernetes Clusters.

Kubernetes basic workflow 15

•	 Networking: The networking layer of Kubernetes is defined by kubenet or the Container
Network Interface (CNI), which is responsible for configuring network interfaces for Linux
containers, in our case, mostly Kubernetes Pods. The CNI is actually a Cloud Native Computing
Foundation (CNCF) project that includes CNI specifications, plugins, and libraries. We’ll cover
more details about Kubernetes networking in Chapter 7, Demystifying Kubernetes Networking.

•	 Storage: The storage layer of Kubernetes was one of the most challenging parts at a time prior
to Container Storage Interface (CSI) being introduced as a standard interface for exposing
block and file storage systems. The storage volumes are managed by storage drivers tailored by
storage vendors, this part previously being part of Kubernetes source code. The CSI compatible
volume drivers are served for users to attach or mount the CSI volumes to the Pods running in
the Kubernetes cluster. We’ll cover storage management in Kubernetes in Chapter 5, Demystifying
Kubernetes Storage.

They can be easily laid out as shown in the following diagram:

Figure 1.6 – Kubernetes plugin model

A good understanding of the Kubernetes plugin model will help you not only in your daily work as a
Kubernetes administrator but also to lay the foundation to help you quickly learn about Kubernetes
ecosystems and cloud-native community standards.

Kubernetes Overview16

Kubernetes API primitives
All operations and communications between components and external user commands are REST API
calls that the API server handles. Everything in Kubernetes is considered an API object.

In Kubernetes, when you run a kubectl command, the kubectl utility is in fact reaching kube-
apiserver. kube-apiserver first authenticates and validates requests and then updates information
in etcd and retrieves the requested information.

When it comes down to each worker node, the kubelet agent on each node takes Podspecs that
are primarily provided by the API server, provisions the containerized workloads, and ensures (as
described in those Podspecs) that the Pods are running and healthy. A Podspec is the body of the
YAML definition file, which is translated to a JSON object that describes the specification for the
workloads. Kubernetes form an API call going through the API server. And it is then taken into
consideration by the control plane.

Kubernetes API primitives, also known as Kubernetes objects, are the fundamental building blocks
of any containerized workload up and running in the Kubernetes cluster.

The following are the main Kubernetes objects we’re going to use in our daily life while working with
Kubernetes clusters:

•	 Pods: The smallest deployable unit in Kubernetes is a Pod. The worker node hosts the Pods,
which contain the actual application workload. The applications are packaged and deployed
in the containers. A single Pod contains one or more containers.

•	 ReplicaSet: ReplicaSet helps Pods achieve higher availability when users define a certain
number of replicas at a time with a ReplicaSet. The role of the ReplicaSet is to make sure the
cluster will always have an exact number of replicas up and running in the Kubernetes cluster.
If any of them were to fail, new ones will be deployed.

•	 DaemonSet: DaemonSet is like ReplicaSet but it makes sure at least one copy of your Pod is
evenly presented on each node in the Kubernetes cluster. If a new node is added to the cluster,
a replica of that Pod is automatically assigned to that node. Similarly, when a node is removed,
the Pod is automatically removed.

•	 StatefulSet: StatefulSet is used to manage stateful applications. Users can use StatefulSet when
a storage volume is needed to provide persistence for the workload.

•	 Job: A job can be used to reliably execute a workload automatically. When it completes, typically,
a job will create one or more Pods. After the job is finished, the containers will exit and the
Pods will enter the Completed status. An example of using jobs is when we want to run a
workload with a particular purpose and make sure it runs once and succeeds.

Sharing a cluster with namespaces 17

•	 CronJob: CronJobs are based on the capability of a job by adding value to allow users to
execute jobs on a schedule. Users can use a cron expression to define a particular schedule
per requirement.

•	 Deployment: A Deployment is a convenient way where you can define the desired state
Deployment, such as deploying a ReplicaSet with a certain number of replicas, and it is easy
to roll out and roll back to the previous versions.

We’ll cover more details about how to work with those Kubernetes objects in Chapter 4, Application
Scheduling and Lifecycle Management. Stay tuned!

Sharing a cluster with namespaces
Understanding the basic Kubernetes objects will give you a glimpse of how Kubernetes works on a
workload level, and we’ll cover more details and other related objects as we go. Those objects running
on the Kubernetes cluster will work just fine when we’re doing the development or test ourselves or a
quick onboarding exercise, although we’ll need to think about the separation of the workloads when
it comes to the production environment for those enterprise-grade organizations. That’s where the
namespace comes in.

A namespace is a logical separation of all the namespaced objects deployed in a single Kubernetes
cluster. Examples of namespaced objects are Deployments, Services, Secrets, and more. Some other
Kubernetes objects are cluster-wide, such as StorageClasses, Nodes, and PersistentVolumes. The name
of a resource has to be unique within a namespace, but it’s labeled by a namespace name and an object
name across all namespaces.

Namespaces are intended to separate cluster resources between multiple users, which creates the
possibility of sharing a cluster for multiple projects within an organization. We call this model the
Kubernetes multi-tenant model. The multi-tenant model is an effective way to help different projects
and teams share the cluster and get the most use out of the same cluster. The multi-tenant model helps
minimize resource wasting. It comes in handy in particular when working with Kubernetes in the
cloud as there is always a reservation of resources by the cloud vendors. Despite all the upsides, the
multi-tenant model is also bringing extra challenges to resource management and security aspects.
We’ll cover resource management in Chapter 4, Application Scheduling and Lifecycle Management.

Kubernetes Overview18

For better physical isolation, we recommend that organizations use multiple Kubernetes clusters.
It will bring a physical boundary for different projects and teams, although the resources reserved
by the Kubernetes system are also replicated across clusters. Beyond that, working across different
Kubernetes clusters is also challenging, as it involves setting up an effective mechanism by switching
the security context, as well as dealing with the complexity of the networking aspects. We’ll cover
Kubernetes security in Chapter 6, Securing Kubernetes, and Kubernetes networking in Chapter 7,
Demystifying Kubernetes Networking. The following is a diagram showing a Kubernetes multi-tenancy
and multi-cluster comparison:

Figure 1.7 – Kubernetes multi-tenancy versus multi-cluster

Kubernetes in-market distribution and ecosystems
Kubernetes is supported by a fast-growing and vibrant open source community. There are more than
60 known Kubernetes platforms and distributions on the market. On the high level, there are managed
Kubernetes and standard Kubernetes distributions from the upstream community. We’re covering a
high-level wrap-up for Kubernetes and its ecosystem in this section.

Kubernetes in-market distribution and ecosystems 19

Upstream vanilla Kubernetes

Upstream vanilla Kubernetes is commonly used when the organization wants to manage the
Kubernetes cluster and their own on-premises infrastructure or their cloud-based VM. The source
code of Kubernetes distribution comes from the upstream Kubernetes community project. It’s open
for contribution, so feel free to join any Special Interest Group (SIG) groups; here’s the full list of
community groups : https://github.com/kubernetes/community/blob/master/
sig-list.md.

If you have any ideas to share or want to learn from the community: https://kubernetes.io/
docs/contribute/generate-ref-docs/contribute-upstream/.

Managed Kubernetes

Cloud vendor-managed Kubernetes distribution often falls into this category. Managed Kubernetes
distribution is usually based on the vanilla Kubernetes cluster, and different vendors build their features
on top of that and make it more adaptive to their infrastructure. A managed Kubernetes distribution
usually has a control plane managed by the vendor, and users only need to manage the worker nodes
and focus their energy on delivering value based on their core expertise.

Microsoft Azure provides Azure Kubernetes Service (AKS), Amazon Web Service (AWS) has Elastic
Kubernetes Service (EKS), and Google Cloud Platform (GCP) is proud of its Google Kubernetes
Engine (GKE).

Other popular Kubernetes distributions include VMware’s Tanzu, RedHat OpenShift, Canonical’s
Charmed Kubernetes, and Kubernetes from Ranger Lab.

Kubernetes ecosystems

The Kubernetes ecosystem is not limited to provisioning and management tools; it has a wide variety
of tools for security, networking, observability, and more. It covers all the important aspects of working
with Kubernetes. The Kubernetes ecosystem is an important part of the cloud-native landscape. Thanks
to Kubernetes being highly portable and platform-agnostic, we can literally take Kubernetes anywhere.
It is easy to integrate with a security-sensitive disconnected scenario or integrated with the hybrid
scenario as organizations are moving to the cloud. Those tools in the ecosystem are complementary
to each other to boost Kubernetes’ tremendous growth as a cloud-native technology and make a
positive impact in the community and on the different sizes of businesses. Check out the cloud-native
landscape at https://landscape.cncf.io.

Learning about Kubernetes and its ecosystem will help you better understand how to work with
Kubernetes for your organization and how to help your organization get the best out of Kubernetes.

https://github.com/kubernetes/community/blob/master/sig-list.md
https://github.com/kubernetes/community/blob/master/sig-list.md
https://kubernetes.io/docs/contribute/generate-ref-docs/contribute-upstream/
https://kubernetes.io/docs/contribute/generate-ref-docs/contribute-upstream/
https://landscape.cncf.io

Kubernetes Overview20

Summary
This chapter introduced you to some of the core concepts of Kubernetes, and we took a glimpse at the
big picture of all the popular Kubernetes distributions on the market. An exciting journey is about
to start!

In the next chapter, we’ll dive into the details of the installation and configuration of a Kubernetes
cluster. Stay tuned!

2
Installing and Configuring

Kubernetes Clusters

This chapter introduces the different configurations of Kubernetes, which is the first step toward working
with Kubernetes. We’ll get our hands dirty by setting up a Kubernetes cluster with a single worker
node and then multiple worker nodes. This chapter familiarizes you with Kubernetes installations,
which is one of the key skills that will serve in your daily job as a Kubernetes administrator.

In this chapter, we’re going to cover the following topics:

•	 Hands-on Kubernetes tooling

•	 Installing and configuring a Kubernetes cluster

•	 Using minikube to set up a single node Kubernetes cluster

•	 Using kubeadm to install a basic Kubernetes cluster

•	 Setting up a highly available cluster with kubeadm

Technical requirements
To get started, we need to make sure your local machine meets the technical requirements described
as the following:

•	 A compatible Linux host – we recommend a Debian-based Linux distribution such as Ubuntu
18.04 or later.

•	 Make sure your host machine has at least 2 GB RAM, 2 CPU cores, and about 20 GB of free
disk space.

Installing and Configuring Kubernetes Clusters22

Hands-on Kubernetes tooling
There are a handful of Kubernetes tools on the market – we’ll start by covering some widely used
Kubernetes tools to interact with the Kubernetes cluster. We’ll dive into some key tools with hands-on
labs later in this chapter.

Core tools

In this section, we are going to cover tools which are required to work with Kubernetes and containers.

kubectl

kubectl is a Kubernetes command-line tool used to talk to the Kubernetes cluster. It is hands down
the most common and important utility that allows you to run commands against the Kubernetes
cluster. There are a handful of kubectl commands available that will allow users to work with the
Kubernetes cluster, such as deploying a containerized application, managing cluster resources, and
monitoring and visualizing events and logs. We’ll cover most of the common kubectl commands
with examples as we go through the process.

To set up the kubectl utility, if you’re on Red Hat-based distributions such as CentOS or Fedora,
check out the official article for further information: https://kubernetes.io/docs/tasks/
tools/install-kubectl-linux/#install-using-native-package-management.
You can use the following commands:

cat <<EOF | sudo tee /etc/yum.repos.d/kubernetes.repo

[kubernetes]

name=Kubernetes

baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-
el7-x86_64

enabled=1

gpgcheck=1

repo_gpgcheck=1

gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg
https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg

EOF

sudo yum install -y kubectl

https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/#install-using-native-package-management
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/#install-using-native-package-management

Hands-on Kubernetes tooling 23

If you’re on Debian-based distributions such as Ubuntu 18.04, you can follow the following instructions:

1.	 Firstly, you need to update the apt package index – then, you need to install the packages
needed to use the Kubernetes apt repository by running the following commands sequentially:

sudo apt-get update

sudo apt-get install -y apt-transport-https
ca-certificates curl

2.	 Download the Google Cloud public signing key and add the Kubernetes apt repository by
using the following command:

sudo curl -fsSLo /usr/share/keyrings/kubernetes-archive-
keyring.gpg https://packages.cloud.google.com/apt/doc/
apt-key.gpg

echo "deb [signed-by=/usr/share/keyrings/kubernetes-
archive-keyring.gpg] https://apt.kubernetes.io/
kubernetes-xenial main" | sudo tee /etc/apt/sources.
list.d/kubernetes.list

3.	 Now, you’re ready to go. Make sure you update the apt package index with the new repository
again and then install the kubectl utility using the apt-get install command:

sudo apt-get update

sudo apt-get install -y kubectl

4.	 You can verify whether kubectl has been successfully installed by running the following
command upon the completion of the previous steps:

kubectl version --client

You’ll see an output similar to the following if you have installed kubectl successfully:

Figure 2.1 – A successful installation of kubectl

For instructions on installing kubectl in different environments, please refer to https://
kubernetes.io/docs/tasks/tools/.

https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/

Installing and Configuring Kubernetes Clusters24

Container runtimes

Now, we are going to set up containerd as our container runtime by following these instructions:

1.	 Update the apt index, add Docker’s official GPG key, and set up the apt repository by running
the following instructions:

sudo apt-get update

sudo apt-get install \

    ca-certificates \

    curl \

    gnupg \

    lsb-release

curl -fsSL https://download.docker.com/linux/ubuntu/gpg |
sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-
keyring.gpg

echo \

  "deb [arch=$(dpkg --print-architecture) signed-by=/
usr/share/keyrings/docker-archive-keyring.gpg] https://
download.docker.com/linux/ubuntu \

  $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.
list.d/docker.list > /dev/null

2.	 Install the Docker engine and containerd.io:

sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.
io

3.	 Validate that Docker has been installed successfully by using the following commands:

sudo docker ps

#optional - running your first docker container

sudo docker run hello-world

You’ll see an output similar to the following:

Figure 2.2 – Docker is up and running

Hands-on Kubernetes tooling 25

4.	 If you’re about to configure containerd as the container runtime, you can use the following
command and set the configuration to default:

sudo mkdir -p /etc/containerd

containerd config default | sudo tee /etc/containerd/
config.toml

5.	 Restart containerd to make sure the changes take effect:

sudo systemctl restart containerd

If you want to know more about how to set up CRI-O as a runtime, please check out the following link:
https://kubernetes.io/docs/setup/production-environment/container-
runtimes/#cri-o. It will show you how containerd serves as a container runtime in the
context of Kubernetes.

Deployment tools

To bootstrap a Kubernetes cluster, we rely on the deployment tools. There are lots of useful tools on
the market to help spin up a Kubernetes cluster, of which a lot of them are vendor-affinity. Here, we
will cover what’s requested in the CKA exam. That’s the primary reason that we focus on upstream
Kubernetes and these tools will help bootstrap a cluster on-premises. The following tools help you
set up a Kubernetes cluster and we’ll cover the detailed instructions while working with each of them
in the next chapter:

•	 kubeadm: kubeadm is the most important tool to help you crack the exam exercises. It helps
install and set up the Kubernetes cluster with best practices. With kubeadm, you can provision
a single node cluster and, more importantly, multi-node clusters. This is the first choice for
most large organizations that want to manage their own Kubernetes cluster and use their own
on-premises servers.

•	 minikube: minikube is a popular local Kubernetes that can be provisioned on your local
laptop or a virtual machine (VM). It’s very lightweight, focusing on making it easy to learn
and testing Kubernetes quickly.

•	 kind: kind is similar to minikube. It focuses on provisioning local Kubernetes clusters and
some simple CI scenarios and development. It runs local Kubernetes clusters using a Docker
runtime – it can run as a single node Kubernetes cluster or a Kubernetes multi-node cluster.
You can test lots of useful, simple scenarios with kind.

https://kubernetes.io/docs/setup/production-environment/container-runtimes/#cri-o
https://kubernetes.io/docs/setup/production-environment/container-runtimes/#cri-o

Installing and Configuring Kubernetes Clusters26

Other tools

Some of the other tools are not covered in the CKA exam – however, they will still come in handy in
your daily work as a Kubernetes administrator.

Helm

Helm is a management tool for managing packages of pre-configured Kubernetes objects in the form
of charts – we call these Helm charts.

To install helm, you can follow the following instructions for a Debian-based distribution such as
Ubuntu 18.04:

1.	 Update the apt package index:

curl https://baltocdn.com/helm/signing.asc | sudo apt-key
add -

sudo apt-get install apt-transport-https --yes

2.	 Install the packages to use the Helm apt repository with the following command:

echo "deb https://baltocdn.com/helm/stable/debian/ all
main" | sudo tee /etc/apt/sources.list.d/helm-stable-
debian.list

3.	 Make sure you update the apt package index with the new repository again and then install
Helm using the apt-get install command:

sudo apt-get update

sudo apt-get install helm

4.	 Use the following Helm command to validate its successful installation:

helm version

You’ll see output similar to the following:

Figure 2.3 – Successful installation of Helm

To know more ways to install Helm, check out the following link: https://helm.sh/docs/
intro/install/.

https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/

Hands-on Kubernetes tooling 27

Kompose

Most people who work with Docker will know about Docker Compose. Docker Compose is a tool used
to define and run the multi-container applications containerized by Docker. It also uses a YAML file
to define the application specifications. As more and more people are moving away from purely using
Docker Swarm or Docker Desktop to take advantage of the enterprise-scale container orchestration
system, Kompose comes in handy as a conversion tool for Docker Compose to contain orchestrators
such as Kubernetes – the same structure works for Redhat OpenShift too.

You can install Kompose by running the following instructions on your Ubuntu 18.04:

1.	 Fetch the kompose binary:

curl -L https://github.com/kubernetes/kompose/releases/
download/v1.26.0/kompose-linux-amd64 -o kompose

chmod +x kompose

sudo mv ./kompose /usr/local/bin/kompose

2.	 Then, you can fetch a docker compose example file from the official website and test the
kompose convert command as follows:

wget https://raw.githubusercontent.com/kubernetes/
kompose/master/examples/docker-compose-v3.yaml -O docker-
compose.yaml

kompose convert

Your output will look similar to the following:

Figure 2.4 – A kompose convert command translating Docker

compose into Kubernetes-native YAML-defined files

Installing and Configuring Kubernetes Clusters28

3.	 Then, deploy those YAML files to your local Kubernetes cluster by using the following command:

kubectl apply -f .

Your output will look similar to the following:

Figure 2.5 – Kubernetes Pods up and running

The preceding screenshot shows the Redis Pods running in your Kubernetes cluster.

The dashboard

You can install a web-based user interface (UI) to your Kubernetes cluster. It not only displays the
cluster status and shows what’s going on with the Kubernetes cluster but also allows you to deploy
containerized applications, troubleshoot, and manage the cluster and all related resources in the cluster.

The following is a sample dashboard:

Figure 2.6 – The Kubernetes dashboard

The dashboard is sometimes handy for quick monitoring of the cluster states from the UI and user-
friendly for collaborating with people who are not familiar with kubectl commands.

Installing and configuring a Kubernetes cluster 29

Installing and configuring a Kubernetes cluster
This section focuses on the installation of the Kubernetes cluster and the related configurations for it.
With a good understanding gained from Chapter 1, where you learned about the Kubernetes cluster
architecture and Kubernetes toolings, you will perform the Kubernetes cluster installation the hard
way with minikube and kubeadm, and then update the cluster version.

Note that using minikube to spin up a single node cluster is not covered in the CKA exam but it
comes quite handy when you’d like to test out Kubernetes in your local machine. The same goes for
using kubeadm to install a Kubernetes multi-node cluster, as well as setting up a highly available
(HA) Kubernetes cluster.

We expect you to learn both ways while putting more focus on the hands-on lab working with
kubeadm. Starting with the next section, we’ll walk you through the process of installing a new
Kubernetes cluster and configuration.

Prerequisites for installing a Kubernetes cluster

To get started, we need to make sure your local machine meets the following technical requirements
for both minikube and kubeadm:

•	 A compatible Linux host – we recommend a Debian-based Linux distribution such as Ubuntu
18.04 or later.

•	 Make sure your host machine has at least 2 GB RAM, 2 CPU cores, and about 20 GB of free
disk space.

•	 Internet connectivity, as you will need to download dependencies throughout the process.

•	 A container runtime is needed prior to creating a Kubernetes cluster. During the cluster
creation process, the Kubernetes cluster automatically detects an installed container runtime
by scanning through the Unix domain sockets, if there are any, within your local machine. The
Unix domain socket uses Transmission Control Protocol (TCP) as the underlying transport
protocol. It is used for bidirectional data communication happening on the same operating
system. We talked about how to install and configure container runtime in Chapter 1 – please
follow those instructions.

Before we get started, let’s get the following checklist done.

Checking whether swap is disabled

For kubeadm, we have to disable swap in order to make kubelet work correctly, you can disable
swap by doing the following:

sudo swapoff -a

Installing and Configuring Kubernetes Clusters30

Checking the container runtime

You can check the path to the Unix domain socket as instructed to verify your container runtime –
this path is detectable by Kubernetes. Following the instructions to install Docker covered earlier in
this chapter, you will find the Unix domain path under the /var/run/dockershim.sock path
once you have installed the kubelet agent. To validate that Docker has been installed successfully,
run the docker ps command:

sudo docker ps

The outcome of the following command is as follows:

Figure 2.7 – Checking the Docker runtime

If you have installed containerd as the container runtime, which we covered earlier in this
chapter under the Container runtimes section, you will find the Unix domain path under the /run/
containerd/containerd.sock path as the following:

Figure 2.8 – Checking the containerd runtime

kubeadm picks docker over containerd as the container runtime when both the docker and
containerd runtimes are detected. At the time of writing, as announced at the beginning of Jan
2022, Kubernetes is removing dockershim in the upcoming v1.24 release. This is not surprising at
all since it was first announced in Dec 2020 and Kubernetes’ built-in dockershim component was
deprecated in Kubernetes v1.20. In most cases, it won’t affect the applications running in Kubernetes
or the build process of the containerized applications if the following conditions are satisfied:

•	 There’s no privileged root permission applied at the container level while it executes inside the
pods using Docker commands and it restarts docker.service with systemctl

•	 Docker configuration files such as /etc/docker/daemon.json are modified

Installing and configuring a Kubernetes cluster 31

At this point, the official Kubernetes documentation has published this article to help users check
whether dockershim deprecation will impact them. Check it out here for more ways to check the
dependencies on Docker: https://kubernetes.io/docs/tasks/administer-cluster/
migrating-from-dockershim/check-if-dockershim-deprecation-affects-
you/#find-docker-dependencies.

Checking whether the ports required by Kubernetes are opened

We also need to check if certain ports are open on your local machines prior to installing kubeadm.
You can use the telnet command to do so:

telnet 127.0.0.1 6443

You can check the official documentation to make sure the ports and protocols used by Kubernetes
are available by visiting this link: https://kubernetes.io/docs/reference/ports-
and-protocols/.

Ensuring iptables sees bridged traffic

Make sure your Linux node’s iptables is correctly configured to be able to watch the bridged
traffic. You can set the net.bridge.bridge-nf-call-iptables parameter to a value of
1, just as we did here:

cat <<EOF | sudo tee /etc/modules-load.d/k8s.conf

br_netfilter

EOF

cat <<EOF | sudo tee /etc/sysctl.d/k8s.conf

net.bridge.bridge-nf-call-ip6tables = 1

net.bridge.bridge-nf-call-iptables = 1

EOF

sudo sysctl --system

https://kubernetes.io/docs/tasks/administer-cluster/migrating-from-dockershim/check-if-dockershim-deprecation-affects-you/#find-docker-dependencies
https://kubernetes.io/docs/tasks/administer-cluster/migrating-from-dockershim/check-if-dockershim-deprecation-affects-you/#find-docker-dependencies
https://kubernetes.io/docs/tasks/administer-cluster/migrating-from-dockershim/check-if-dockershim-deprecation-affects-you/#find-docker-dependencies
https://kubernetes.io/docs/reference/ports-and-protocols/
https://kubernetes.io/docs/reference/ports-and-protocols/

Installing and Configuring Kubernetes Clusters32

You’ll see an output similar to the following:

Figure 2.9 – iptables watching bridged traffic

The preceding screenshot shows the values in iptables have been updated.

Checking whether you have installed kubectl

kubectl is the command-line utility that you can use to talk to the Kubernetes cluster. Using the
kubectl version command, you can verify whether kubectl has been successfully installed:

kubectl version --client

A successful installation will show an output similar to the following:

Figure 2.10 – Checking the kubectl version

Using minikube to set up a single node Kubernetes cluster 33

Make sure you have completed the checklist in this section before moving on to the next section. These
tools and requirements are essential and you may use them accordingly in the future.

Using minikube to set up a single node Kubernetes cluster
Creating a Kubernetes cluster using minikube is the easiest way to spin up a local Kubernetes cluster
and it can be achieved in a matter of minutes. Here’s what you need to do.

Installing minikube

Follow these steps to install minikube:

1.	 On your local or cloud-based Linux VM, use the curl command to retrieve the minikube
binary, and then install it under /usr/local/bin/minikube as follows:

curl -LO https://storage.googleapis.com/minikube/
releases/latest/minikube-linux-amd64

sudo install minikube-linux-amd64 /usr/local/bin/minikube

2.	 You can go to /usr/local/bin/minikube to check whether you have successfully installed
the minikube binary before moving to the next steps or you can also check by typing the
following command into the terminal:

minikube –-help

Using minikube to provision a single node Kubernetes cluster

Follow these steps to use minikube to provision a single node Kubernetes cluster:

1.	 When using minikube to provision a single node Kubernetes cluster, you can simply use the
minikube start command:

minikube start

2.	 You can also set up the CPU cores and memory to start your minikube cluster by adding a
--memory and --cpus flag as follows:

minikube start --memory 8192 --cpus 4

Installing and Configuring Kubernetes Clusters34

After the command is executed, it kicks off the minikube cluster provisioning process. You’ll see
an output similar to the following:

Figure 2.11 – Spinning up a minikube cluster

By the end, you will see a message telling you we’re ready to use the minikube Kubernetes cluster
(as concluded in the preceding screenshot).

Verifying the minikube cluster installation

Your minikube cluster contains one node that serves as both the control plane and worker node.
That means that once you have it set up, you can start to schedule workloads in your local Kubernetes
cluster. You can use the following command to see whether the node is ready to use:

kubectl get node

You can also use the shortcut of this command:

alias k=kubectl

k get no

The output will show you the following:

•	 The status of the node and whether it’s ready to use

•	 The role of that node

•	 The Kubernetes version

•	 The age of that node since it’s been deployed

Using minikube to set up a single node Kubernetes cluster 35

Here is the output:

Figure 2.12 – Checking the Docker runtime

Configuring the minikube cluster

If you’d like to configure the minikube cluster without reprovisioning a new one, you need to stop
the minikube cluster using the minikube stop command.

The minikube config set command will help you apply the settings such as CPU and memory
that you’ll allocate to the minikube cluster. After configuring the minikube cluster, you need to start
the minikube cluster and from there, you’ll be working on the cluster with the new configurations.

Here’s the process to configure minikube using more memory and CPUs:

minikube stop

minikube config set memory 8192

minikube config set cpus 4

minikube start

After that, you can continue to play with the minikube cluster. In case you have any questions
about how the commands work, use the minikube config - - help command to get help.

Deleting a minikube cluster

The following command deletes all local Kubernetes clusters and all profiles:

minikube delete --all

What you learned from this section can be used repeatedly every time you need a local Kubernetes
cluster. You can replicate what you have learned from this section for quick testing of the latest
Kubernetes release for most of the new features featured in the release note: https://github.
com/kubernetes/kubernetes/releases.

However, most enterprise-grade environments will not be satisfied with a single node cluster. They
are mostly multi-node setups. In the next section, we will dive into creating a Kubernetes multi-node
cluster with kubeadm.

https://github.com/kubernetes/kubernetes/releases
https://github.com/kubernetes/kubernetes/releases

Installing and Configuring Kubernetes Clusters36

Using kubeadm to install a basic Kubernetes cluster
In this section, we will create a multi-node Kubernetes cluster using kubeadm. The following are the
steps we need to achieve the goal:

1.	 Install kubeadm.

2.	 Bootstrap a master node where your control plane will be located

3.	 Install the network plugins (we will get to the detailed supported plugins later in this chapter
and use Calico as an example in that section).

4.	 Bootstrap the worker nodes.

5.	 Join the worker nodes to the control plane.

Before getting started, you need to make sure your master node meets all the technical requirements
listed in this chapter.

We’ll deploy a basic Kubernetes cluster by going through the steps described in this section, as shown
in Figure 2.7:

Figure 2.13 – The workflow of using kubeadm to spin up a basic Kubernetes cluster

Using kubeadm to install a basic Kubernetes cluster 37

The Kubernetes cluster will be similar to the architecture featured in Figure 2.14:

Figure 2.14 – A standard multi-node Kubernetes cluster

From now on, you can follow these instructions to create a multi-node Kubernetes cluster. To create
a Kubernetes cluster using kubeadm, its default settings conform to best practices of setting up a
standard Kubernetes cluster. This set of best practices is encapsulated as Kubernetes Conformance tests.
Check out the details about the Kubernetes Conformance Program here: https://kubernetes.
io/blog/2017/10/software-conformance-certification/.

Installing kubeadm

We introduced setting up docker or containerd as the container runtime – we can then install
kubeadm by following these instructions:

1.	 Update the apt package index, add the Google Cloud public signing key, and set up the
Kubernetes apt repository by running the following instructions:

sudo apt-get update

sudo apt-get install -y apt-transport-https
ca-certificates curl

sudo curl -fsSLo /usr/share/keyrings/kubernetes-archive-
keyring.gpg https://packages.cloud.google.com/apt/doc/

https://kubernetes.io/blog/2017/10/software-conformance-certification/
https://kubernetes.io/blog/2017/10/software-conformance-certification/

Installing and Configuring Kubernetes Clusters38

apt-key.gpg

echo "deb [signed-by=/usr/share/keyrings/kubernetes-
archive-keyring.gpg] https://apt.kubernetes.io/
kubernetes-xenial main" | sudo tee /etc/apt/sources.
list.d/kubernetes.list

2.	 Start by updating the apt package index and then install kubelet and kubeadm:

sudo apt-get update

sudo apt-get install -y kubelet kubeadm

3.	 Here, if you haven’t installed kubectl yet, you can also install kubelet, kubeadm, and
kubectl in one go:

sudo apt-get update

sudo apt-get install -y kubelet kubeadm kubectl

4.	 Use the following command to pin the version of the utilities you’re installing:

sudo apt-mark hold kubelet kubeadm kubectl

The output shows those packages are set on hold as shown in Figure 2.9:

Figure 2.15 – Checking the containerd runtime

5.	 From here, you can check whether kubeadm has been successfully installed by typing kubeadm
into the command shell. Here’s the output of the command:

Using kubeadm to install a basic Kubernetes cluster 39

Figure 2.16 – Checking the containerd runtime

6.	 To verify that kubelet is present on the master node, you can use the which kubelet
command, which returns the location of the kubelet agent:

Figure 2.17 – Checking kubelet’s presence

As you have successfully installed kubeadm and kubelet, you can now start initiating a control plane.

Here, we will show an optional operation where you can use images pull to pre-pull the images
that are required to set up the Kubernetes cluster:

sudo kubeadm config images pull

Installing and Configuring Kubernetes Clusters40

The output should be similar to the following screenshot:

Figure 2.18 – Pre-pulling the images

Note that the preceding operation is optional – you’re free to skip it and go straight to the next section.

Bootstrapping a master node

You can use the kubeadm init command to initiate the control plane as a regular user and gain
sudo privileges from your master node machine by using the following command:

sudo kubeadm init --pod-network-cidr=192.168.0.0/16

You will see an output similar to the following:

Figure 2.19 – The control plane initiated successfully

After your Kubernetes control-plane is initialized successfully, you can execute the following
commands to configure kubectl:

mkdir -p $HOME/.kube

sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

sudo chown $(id -u):$(id -g) $HOME/.kube/config

Using kubeadm to install a basic Kubernetes cluster 41

If you’re a root user, you can use the following:

export KUBECONFIG=/etc/kubernetes/admin.conf

Then, the next step is to deploy a pod network to the Kubernetes cluster.

Installing the networking plugins

In order for the pods to talk to each other, you can deploy the networking by enabling Container
Network Interface (CNI) plugin. The CNI plugins conform to the CNI specification, and as per the
official Kubernetes documentation, Kubernetes follows the v0.4.0 release of the CNI specification.

There’s a wide range of networking plugins working with Kubernetes – we will dive into Kubernetes
networking in Chapter 7, Demystifying Kubernetes Networking. Here are some add-ons options:

•	 Calico

•	 Flannel

•	 Weave Net

For all the possible options acknowledged by the Kubernetes community, please check out the official
documentation: https://kubernetes.io/docs/concepts/cluster-administration/
addons/. You can check out the links from this page to get the installation instructions for the
respective options.

Here, we’re going to use the Calico plugin as the overlay network for our Kubernetes cluster. It is
a Kubernetes CNI networking provider and it allows you to write up the network policies, which
means that it supports a set of networking options to suit your different requirements. Here’s how
we’ll approach it:

1.	 Deploy the Tigera Calico Custom Resource Definitions (CRDs) and operator by using the
kubectl create -f command:

kubectl create -f https://docs.projectcalico.org/
manifests/tigera-operator.yaml

kubectl create -f https://docs.projectcalico.org/
manifests/custom-resources.yaml

2.	 You can use the watch command to monitor the pod status in the process:

watch kubectl get pods -n calico-system

Alternatively, use the following alternative command:

kubectl get pods -n calico-system -w

https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/

Installing and Configuring Kubernetes Clusters42

Now, you can see the pods have a Running status:

Figure 2.20 – The control plane initiated successfully

3.	 For the Kubernetes cluster created by kubeadm, there’s a taint by default for master nodes.
Therefore, we need to remove taints so that the master node is available to schedule pods. To
remove the taint, you can use the following command:

kubectl taint nodes --all node-role.kubernetes.io/master-

The following screenshot shows that the taint on the master node has been successfully removed:

Figure 2.21 – Removing the taint on the master node successfully

4.	 You can use the following command to check out the current nodes that are available:

kubectl get no

5.	 To get more information from the node, you can use the following command:

kubectl get no -o wide

The following screenshot shows the sample output:

Figure 2.22 – The Kubernetes node status

From the preceding command output, you can see the Kubernetes node is operational after enabling
the CNI networking and it has been assigned an internal IP address.

Setting up a highly available cluster with kubeadm 43

Bootstrapping the worker nodes

To add more worker nodes to the Kubernetes cluster, we will SSH to the client machine, and make sure
the worker nodes meet the same technical requirements as the master node. Check out the Prerequisites
for installing a Kubernetes cluster section of this chapter and refer to the information on kubeadm for
more details. Make sure you have installed the container runtime and kubeadm, although kubectl
is optional for worker nodes since we usually use the master node for management.

Joining the worker nodes to the control plane

We can go ahead with installing kubeadm for the master node after making sure that your worker
nodes and local environment meet the technical requirements that we set, as we mentioned earlier
in this section. As introduced in Chapter 1, Kubernetes Overview, the worker nodes are where your
containerized workloads are up and running.

You can use the following command to join the worker nodes to the Kubernetes cluster. This command
can be used repeatedly each time you have to join new worker nodes:

sudo kubeadm join --token <token> <control-plane-
host>:<control-plane-port> --discovery-token-ca-cert-hash
sha256:<hash>

You can actually go back and copy the output of the master node control plane, which would look
similar to the following sample command:

sudo kubeadm join 172.16.16.129:6443 --token k626hm.
oqwyac35h43x80mg   --discovery-token-ca-cert-hash sha256:889983

a6b87643e598b88533dbe3a68643a623b9a0ed9380561c6a7dbb93b3f0

You can use the preceding command to join the worker node to the control plane and set up your
Kubernetes cluster with multiple worker nodes.

Setting up a highly available cluster with kubeadm
In Chapter 1, Kubernetes Overview, we introduced the cluster architecture, which gives us two options:
setting up a single node Kubernetes cluster for dev/test quick testing or setting up a multi-node
Kubernetes cluster for more professional use, or even use in production. A standard configuration
would be one master with multiple worker nodes. As we stated in the previous chapter, the Kubernetes
master node is where the control plane resides. In the event of a master node going down, either the
containerized workloads up and running in the worker nodes will still keep running until the worker
node is off the grid for some reason or there are no available master nodes, meaning no new workloads
will be scheduled to the worker node.

Installing and Configuring Kubernetes Clusters44

There are two options available to build a HA Kubernetes cluster:

•	 Building multiple master nodes: This is the option where the control plane nodes and etcd
members co-exist in the same master nodes. Figure 2.16 shows the stacked etcd topology:

Figure 2.23 – A stacked etcd topology for a HA kubeadm cluster

This topology makes the cluster more resilient compared to the basic Kubernetes cluster
architecture that we built in this chapter, thanks to the redundancy of the master node. In case
one master node goes down, it’s easy to switch to another available master node to ensure the
health of the entire Kubernetes cluster.

However, in some cases where we need to manage the cluster and replicate the cluster information,
the external etcd typology comes in.

•	 Building an external etcd cluster: Compared to the previous option, the key idea of this option is
to decouple the etcd store to a separate infrastructure since the etcd, as we mentioned in Chapter
1, is where Kubernetes stores the cluster and the state information about the Kubernetes objects.
The kubeadm HA topology architecture for an external etcd cluster is shown in Figure 2.24:

Summary 45

Figure 2.24 – The topology for an external etcd HA kubeadm cluster

As shown in Figure 2.24, the external etcd is a cluster and it communicates with the API server of each
control plane. In the event of the control plane node going down, we won’t lose all the information
stored in the etcd store. It also makes the control plane more decoupled and manageable, as we only
need to add more control plane nodes. A loss of the control plane node won’t be as impactful as it
would with the stacked etcd topology.

Summary
This chapter covers the very first job for most Kubernetes administrators who are setting up a Kubernetes
cluster with a single worker node or with multiple worker nodes. The various tools introduced in this
chapter will help your daily routine at work beyond the exam. Nevertheless, this is also one of the most
time-consuming tasks in the CKA exam. Practice, practice, and more practice will help you get the hang
of it. Knowing the HA topology for a Kubernetes cluster will also help you address the requirements
of the organization that you’ll be working for as a Kubernetes administrator. As you master the setup
process for a basic Kubernetes cluster, it will become easier to apply your skills to different typologies.

Installing and Configuring Kubernetes Clusters46

In the next chapter, we’ll talk about Kubernetes cluster maintenance, including some important topics
such as upgrades to Kubernetes components, which is quite an essential task in the daily work of a
Kubernetes administrator. Touching on external etcd typology in this chapter is just a start, as we’ll
dive into more interesting work with etcd in the next chapter. Happy learning!

Mock CKA scenario-based practice test
You have two VMs, master-0 and worker-0. Please complete the following mock scenarios.

Scenario 1:

Install the latest version of kubeadm, then create a basic kubeadm cluster on the master-0 node,
and get the node information.

Scenario 2:

SSH to worker-0 and join it to the master-0 node.

Scenario 3 (optional):

Set up a local minikube cluster and schedule your first workload, called hello Packt

You can find all the scenario resolutions in Appendix - Mock CKA scenario-based practice test resolutions
of this book.

FAQs
•	 Where should I start to test the Kubernetes cluster?

You can start on your local laptop or desktop on Windows, Linux, or Mac OS, and we recommend
using VMware player or Hyper-V to spin up multiple VMs so you can test out a multinode
scenario. Using Multipass from Canonical is also great for creating Ubuntu VMs and it supports
Linux, Mac, and Windows. Check it out here: https://multipass.run/.

Another option is to get a cloud subscription such as Microsoft Azure, AWS, or GCP, using
which you can provision a VM with a click-through experience.

•	 Where can I find the latest Kubernetes release to test out?

The Kubernetes GitHub repository is where you can find all the releases as well as changelogs, and
you can get the latest release and build it by yourself: https://github.com/kubernetes/
kubernetes.

We can also use kubeadm or minikube to get Kubernetes, as they are aligned with the
Kubernetes source code delivery cycle and are up to date.

https://multipass.run/
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes

3
Maintaining Kubernetes

Clusters

Kubernetes has been the most vibrant platform in the community over the past few years and it has
maintained a good release cadence, which makes Kubernetes maintenance important in order to
enable organizations that work with Kubernetes to take advantage of its latest features. This chapter
introduces different approaches for maintaining a Kubernetes cluster while providing practical lessons
on performing upgrades for Kubernetes clusters, etcd backup, and etcd restore. It covers 25% of the
CKA exam content.

In this chapter, we’re going to cover the following main topics:

•	 Demystifying Kubernetes cluster maintenance

•	 Performing a version upgrade on a Kubernetes cluster using kubeadm

•	 Working with etcd

•	 Backing up and restoring etcd

Demystifying Kubernetes cluster maintenance
Before April 2021, Kubernetes had maintained quite a steady and sound cadence of quarterly releases
throughout the year. Despite the strong growth and incredible popularity in the community, this was
reduced to three releases per year. Fewer releases still mean that a regular maintenance window should
be scheduled within the organization for the upgrade of security patches, and to take full advantage
of enhancements and new features.

Maintaining Kubernetes Clusters48

A general maintenance window contains the upgraded Kubernetes cluster version. We can easily break
the task to be performed into two parts:

•	 Upgrading the master node, which contains the control plane

•	 Upgrading the worker node

Upgrading the master node is simple if you have only one master node. However, most enterprise-grade
customers may have a couple of master nodes for better resilience. We should be aware that working
with an organization as a Kubernetes administrator is sometimes more challenging than working with
other ones. A general reference of master node management would be the two typologies of high
availability mentioned in Chapter 2, Installing and Configuring Kubernetes Clusters. The conventional
way to upgrade the master node is to upgrade one at a time regardless of the number of master nodes
in your current cluster. You will need to upgrade the kubeadm and kubectl versions.

When it comes to worker node upgrade, as we mentioned in the previous chapter, the worker node
is where your workloads are actually running; therefore, you need to upgrade both the kubeadm and
kubelet versions. Keep in mind that you need to upgrade one at a time when it comes to multiple
worker nodes available in the current Kubernetes cluster.

If you have a separate etcd cluster set up, you will need to upgrade the etcd store version, which is
not covered in the CKA exam. In general, you need to check out the official documentation to know
more about Kubernetes components and version compatibility here: https://kubernetes.
io/releases/version-skew-policy/.

Another general task for Kubernetes cluster maintenance is backup and restore with the etcd store.
The etcd stores cluster data that includes cluster state information such as pod state data, node state
data, and the configurations critical for Kubernetes. In most cases, as a Kubernetes administrator, you
will need to perform the following two key tasks:

•	 Back up the etcd store regularly

•	 Restore the etcd from cluster failure

https://kubernetes.io/releases/version-skew-policy/
https://kubernetes.io/releases/version-skew-policy/

Upgrading a Kubernetes cluster using kubeadm 49

The following section will firstly walk you through the general process of upgrading the Kubernetes
cluster with kubeadm. This is one of the most time-consuming questions in the actual CKA
exam. Make sure you practice it a few times until you master the general upgrade process as well
as how to perform upgrade tasks by following the official Kubernetes documentation. Note that
update policies vary for managed Kubernetes distributions by cloud vendors. Please check their
respective official documentation.

Furthermore, we’ll take a look at how to back up and restore an etcd cluster.

Upgrading a Kubernetes cluster using kubeadm
Kubernetes versions follow semantic versioning, and are expressed in three parts:

1.	 Major version

2.	 Minor version

3.	 Patch version

For example, Kubernetes version 1.23.3 means that it is Kubernetes 1.23 minor version with patch
number 3. Similarly, 1.22 and 1.21 are both minor versions like 1.23.

At the time of writing this book, Kubernetes 1.19+ has one year of path support. That means for
Kubernetes 1.23, released in January 2022, the end of support will be February 2023. For Kubernetes
1.8 and older, the support patch was shortened to roughly 9 months instead. Special interest group
(SIG) releases manage the Kubernetes release cycle, and the best way to keep track of the release
schedule is to follow them at https://github.com/kubernetes/sig-release/tree/
master/releases and read the change log at https://github.com/kubernetes/
kubernetes/tree/master/CHANGELOG to keep up to date.

If you would like to upgrade a cluster to a targeted version, check out supported versions at https://
kubernetes.io/releases/version-skew-policy/#supported-versions.

https://github.com/kubernetes/sig-release/tree/master/releases
https://github.com/kubernetes/sig-release/tree/master/releases
https://github.com/kubernetes/kubernetes/tree/master/CHANGELOG
https://github.com/kubernetes/kubernetes/tree/master/CHANGELOG
https://kubernetes.io/releases/version-skew-policy/#supported-versions
https://kubernetes.io/releases/version-skew-policy/#supported-versions

Maintaining Kubernetes Clusters50

Upgrading the master node

Before you upgrade the master node, make sure you know the purpose of your upgrade and have
backed up any important components. It is recommended that you start with checking out the current
version and then determining which version to upgrade to. Once decided, we’ll perform the following
actions to upgrade the master node as depicted in Figure 2.1, including upgrading with kubeadm and
interacting with Kubernetes nodes:

Figure 3.1 – Master node upgrade process

Upgrading a Kubernetes cluster using kubeadm 51

Let’s start by checking out the current version with the following commands once we’re in the
master node:

   kubeadm version

   kubectl version

From the output, we know that we are currently on Kubernetes 2.23.2:

Client Version: version.Info{Major:"1",
Minor:"23", GitVersion:"v1.23.2",
GitCommit:"e6c093d87ea4cbb530a7b2ae91e54c0842d8308a",
GitTreeState:"clean", BuildDate:"2022-02-16T12:38:05Z",
GoVersion:"go1.17.7", Compiler:"gc", Platform:"linux/amd64"}

Let’s check out the latest versions available with the following commands:

  apt update

  apt-cache madison kubeadm

Now we know the latest versions available:

Figure 3.2 – Available versions

Once we have made up our mind about which version we want to upgrade to, let’s start prepping for
the upgrade process:

1.	 We will start by upgrading kubeadm where we will need to use the following command to
replace x in 1.23.x-00 with the latest patch version, which is 1.23.3 in our case:

apt-mark unhold kubeadm && \

apt-get update && apt-get install -y kubeadm=1.23.3-00 && \

apt-mark hold kubeadm

The output of the apt-mark command is the following:

kubeadm set on hold.

Maintaining Kubernetes Clusters52

2.	 Now we can check the version of kubeadm with the kubeadm version command and see
whether it’s 1.23.3:

Client Version: version.Info{Major:"1",
Minor:"23", GitVersion:"v1.23.2",
GitCommit:"e6c093d87ea4cbb530a7b2ae91e54c0842d8308a",
GitTreeState:"clean", BuildDate:"2022-02-16T12:38:05Z",
GoVersion:"go1.17.7", Compiler:"gc", Platform:"linux/amd64"}

3.	 We use the kubeadm upgrade plan command to check whether the current cluster can
be upgraded and the available versions that it can be upgraded to:

    kubeadm upgrade plan

As shown in Figure 3.3, I can upgrade the kubelet and control plane components such as the
API server, scheduler, and controller manager from 1.23.2 to 1.23.3:

Figure 3.3 – kubeadm upgrade plan

4.	 If we decide to take action to upgrade the current cluster from 1.23.2 to 1.23.3, we can use the
following command. Note that after apply, you just replace 1.23.3 for any future available
versions that you wish to upgrade to:

    kubeadm upgrade apply v1.23.3

Important Note
To perform the upgrade operation smoothly, we recommend you get root permission in the
exam by running the sudo su command.

In your daily upgrade task, you can use sudo and input your password to perform this operation.

Once you have given the command, you will get a message stating that the upgrade was
a success:

Upgrading a Kubernetes cluster using kubeadm 53

Figure 3.4 – Control plane successfully upgraded

5.	 We then need to cordon the node, so we drain the workloads to prepare the node for maintenance.
We cordon a node called cloudmelonplaysrv with the following command:

kubectl drain cloudmelonplaysrv --ignore-daemonsets

It will display a bunch of pods being evicted, which means those pods are being eliminated from the
cordoned worker nodes:

Figure 3.5 – Draining workloads on the node

If you’re using the kubectl get no command, the node will be marked as
schedulingDisabled.

6.	 We use the following command to upgrade the kubelet and kubectl:

apt-mark unhold kubelet kubectl && \

apt-get update && apt-get install -y kubelet=1.23.3-00
kubectl=1.23.3-00 && \

apt-mark hold kubelet kubectl

7.	 Restart the kubelet:

sudo systemctl daemon-reload

sudo systemctl restart kubelet

8.	 Now we can uncordon the node and it will make the workloads schedulable again on the node
that’s being upgraded, called cloudmelonplaysrv:

kubectl uncordon cloudmelonplaysrv

This command will return the node that is now shown as uncordoned.

Maintaining Kubernetes Clusters54

Upgrading the worker node

Since the worker node is where your workloads are actually up and running, we need to perform an
upgrade one at a time and then replicate the same operation to all the other worker nodes available
in the current Kubernetes cluster. Figure 3.6 depicts the general upgrade workflow:

Figure 3.6 – Draining workloads on the node

Upgrading a Kubernetes cluster using kubeadm 55

1.	 Let’s start with upgrading the kubeadm from 1.23.2 to 1.23.3 with the following command:

  apt-mark unhold kubeadm && \

  apt-get update && apt-get install -y kubeadm=1.23.3-00 && \

  apt-mark hold kubeadm

2.	 For a worker node, we upgrade the kubelet, which also upgrades the local kubelet configuration,
with the following command:

  sudo kubeadm upgrade node

3.	 Similarly, we need to cordon the node so we drain the workloads to prepare the node for
maintenance. Here, we are cordoning a node called cloudmelonplayclient using the
following command:

kubectl drain cloudmelonplayclient --ignore-daemonsets

We can then use the kubectl get no command to check the node status. It will be marked
as schedulingDisabled.

4.	 We use the following command to upgrade the kubelet and kubectl just as we did for the
master node:

apt-mark unhold kubelet kubectl && \

apt-get update && apt-get install -y kubelet=1.23.3-00
kubectl=1.23.3-00 && \

apt-mark hold kubelet kubectl

5.	 Restart the kubelet for the changes to take effect:

sudo systemctl daemon-reload

sudo systemctl restart kubelet

6.	 Finally, we can uncordon the node and it will make the workloads schedulable again on
the node called cloudmelonplayclient. It will return the node that is now shown as
uncordoned:

kubectl uncordon cloudmelonplayclient

We have now concluded the upgrade process for worker nodes. After the upgrade process, please make
sure you use the kubectl get nodes command to make sure all the nodes have the ready status.

Maintaining Kubernetes Clusters56

Working with etcd
Cluster data is stored in a key-value store in a Kubernetes cluster called etcd. The cluster data includes
cluster state information such as pod state data, node state data, and configurations. As this data is
critical for Kubernetes to orchestrate the workloads to the desired state, it stands to reason that it
should be backed up periodically.

To access the etcd cluster inside the Kubernetes cluster, we can run the following command:

  kubectl get po -n kube-system

This will list all the pods currently running in the kube-system namespace:

Figure 3.7 – Check the current etcd pod status

In the following sections, we’ll take a closer look at the etcd cluster pod and learn all the related
information that will be useful in the actual CKA exam.

Exploring the ETCD cluster pod

To get a closer look at the etcd pod that we have, use the following command:

  kubectl describe po <etcd-podname> -n kube-system

For example, to get detailed information for an etcd pod called etcd-cloudmelonplaysrv, the
command would be as follows:

  kubectl describe po etcd-cloudmelonplaysrv -n kube-system

Working with etcd 57

It returns the following output:

Figure 3.8 – Check the current etcd pod

Maintaining Kubernetes Clusters58

In the figure, you can see the following important information about etcd:

      etcd

      --advertise-client-urls=https://172.16.16.129:2379

      --cert-file=/etc/ubernetes/pki/etcd/server.crt

      --client-cert-auth=true

      --data-dir=/var/lib/etcd

      --initial-advertise-peer-urls=https://172.16.16.129:2380

      --initial-cluster=cloudmelonplaysrv=htt
ps://172.16.16.129:2380

      --key-file=/etc/ubernetes/pki/etcd/server.key

      --listen-client-urls=https://127.0.0.1:2379,htt
ps://172.16.16.129:2379

      --listen-metrics-urls=http://127.0.0.1:2381

      --listen-peer-urls=https://172.16.16.129:2380

      --name=cloudmelonplaysrv

      --peer-cert-file=/etc/ubernetes/pki/etcd/peer.crt

      --peer-client-cert-auth=true

      --peer-key-file=/etc/ubernetes/pki/etcd/peer.key

      --peer-trusted-ca-file=/etc/ubernetes/pki/etcd/ca.crt

      --snapshot-count=10000

      --trusted-ca-file=/etc/ubernetes/pki/etcd/ca.crt

    State:          Running

Among all the configurable parameters, the following will come in handy in your daily work with etcd:

•	 --advertise-client-urls tells etcd to accept incoming requests from the clients. It
accepts a list of URLs.

•	 --cert-file is where we specify the client server TLS cert file path.

•	 --key-file is where we specify the client server TLS key file path.

•	 - -trusted-ca-file is where we specify the client server TLS trusted CA cert
file path.

These are key flags that will authenticate your request from the client with secure communication.
You will need them to check the etcd status, backup, and restore etcd cluster.

Working with etcd 59

Important Note
Access to etcd is equivalent to getting root permission in the cluster. We make sure the
authentication request is only going through the API server.

To know more about other configurable parameters, please check out https://etcd.io/docs/
v3.5/op-guide/configuration/.

Listing etcd cluster members

With the information that we acquired from the kubectl describe pod command, we can list
the members of the etcd cluster:

   kubectl exec etcd-cloudmelonplaysrv -n kube-system --
sh -c "ETCDCTL_API=3 etcdctl member list --endpoints=ht
tps://127.0.0.1:2379 --cacert=/etc/kubernetes/pki/etcd/
ca.crt --cert=/etc/kubernetes/pki/etcd/server.crt --key=/etc/
kubernetes/pki/etcd/server.key"

It returns the information about members. In our case, we have only one result because we are working
with a single master node. Our command will look like the following:

8d1f17827821818f, started, cloudmelonplaysrv,
https://172.16.16.129:2380, https://172.16.16.129:2379, false

The output describes columns such as ID and Status of the etcd cluster, the etcd cluster name, and
the peer and client address.

You can form the output automatically in tabular form with --write-out=table. It will look
like this:

Figure 3.9 – The current etcd member list

Notice that the client address is the same as the value of the --advertise-client-urls URL
in the output of kubectl describe pod.

https://etcd.io/docs/v3.5/op-guide/configuration/
https://etcd.io/docs/v3.5/op-guide/configuration/

Maintaining Kubernetes Clusters60

Checking the etcd cluster status

You can use the following command to check the etcd cluster status and write the output in tabular
form. Note that using the correct etcdctl API version, we’re on API version 3 in the following example:

ETCDCTL_API=3 etcdctl endpoint status

The following command is used to access an etcd pod from the Kubernetes cluster and check out the
status of the etcd pod in the multi-node etcd cluster:

  kubectl -n kube-system exec <etcd-podname> -- sh -c "ETCDCTL_
API=3 etcdctl endpoint status --write-out=table --endpoint
s=https://<IP1>:2379,https://<IP2>:2379,https://<IP3>:2379
--cacert=/etc/kubernetes/pki/etcd/ca.crt --cert=/etc/
kubernetes/pki/etcd/server.crt --key=/etc/kubernetes/pki/etcd/
server.key"

You can use the information that you acquired from etcdctl member list in this command:

•	 ETCDCTL_API is the etcdctl version.

•	 - - endpoints are the client addresses of your etcd members if you have multiple
master nodes.

In this chapter, however, we are showing off a single master node and it contains only one etcd member.
Therefore, this command to access an etcd pod called etcd-cloudmelonplaysrv from the
Kubernetes cluster and check out the status of the etcd pod will look like this:

  kubectl -n kube-system exec etcd-cloudmelonplaysrv -- sh
-c "ETCDCTL_API=3 etcdctl endpoint status --endpoints=ht
tps://172.16.16.129:2379 --cacert=/etc/kubernetes/pki/etcd/
ca.crt --cert=/etc/kubernetes/pki/etcd/server.crt --key=/etc/
kubernetes/pki/etcd/server.key --write-out=table"

It will look like the following output:

Figure 3.10 – The current etcd member list

From the output of kubectl describe pod < etcd-podname>, we also learn that we have
two listen client IPs:

  --listen-client-urls=https://127.0.0.1:2379,ht
tps://172.16.16.129:2379

Working with etcd 61

As we’re checking the etcd cluster status inside the Kubernetes cluster, we can also use the internal
endpoint address https://127.0.0.1:2379 to check the etcd cluster status. The following
command can be used to access an etcd pod named etcd-cloudmelonplaysrv from the
Kubernetes cluster and check out the status of the etcd pod with the internal endpoint:

  kubectl -n kube-system exec etcd-cloudmelonplaysrv -- sh
-c "ETCDCTL_API=3 etcdctl endpoint status --endpoints=h
ttps://127.0.0.1:2379 --cacert=/etc/kubernetes/pki/etcd/
ca.crt --cert=/etc/kubernetes/pki/etcd/server.crt --key=/etc/
kubernetes/pki/etcd/server.key --write-out=table"

And it returns the information regarding the etcd cluster:

Figure 3.11 – The current etcd member list

In the following section, we’ll explore interacting with the etcd cluster from the client outside of the
Kubernetes cluster.

Installing etcd

To access etcd outside of the Kubernetes cluster, you will need to install etcdctl. You can do so by
following the instructions in this section. Please note, however, that this is not part of the CKA exam.

To get started, we’ll need to get the etcd binary:

 wget https://github.com/etcd-io/etcd/releases/download/
v3.4.18/etcd-v3.4.18-linux-amd64.tar.gz

tar xvf etcd-v3.4.18-linux-amd64.tar.gz

sudo mv etcd-v3.4.18-linux-amd64/etcd* /usr/local/bin

Once you finish the installation, you can use the following command to verify the current version:

    etcdctl version

The command returns the current etcdctl client version and the API version in the following manner:

Figure 3.12 – Check the current etcdctl version outside of the Kubernetes cluster

Maintaining Kubernetes Clusters62

Similarly, you can use the following command to check the kubectl version in the Kubernetes cluster.
When you’re using the kubectl exec command, it executes directly on the pod named etcd-
cloudmelonplaysrv located in the kube-system namespace. We can use the following
command to execute the etcdctl version Bash command to get the version of the etcd store:

    kubectl exec etcd-cloudmelonplaysrv -n kube-system -- sh -c
"etcdctl version"

The returned result is similar to the etcdctl client version and the API version:

Figure 3.13 – Check the current etcdctl version in the Kubernetes cluster

Similarly, once you have etcdctl installed, you can check the etcd store status by running the following
command and you’ll get the endpoint status:

     kubectl exec etcd-cloudmelonplaysrv -n kube-system -- sh
-c " etcdctl --write-out=table --endpoints=$ENDPOINTS endpoint
status "

If you want to make sure the etcd store is healthy, using the
following command with the endpoint from the Previous command :

   kubectl exec etcd-cloudmelonplaysrv -n kube-system -- sh -c
" etcdctl --endpoints=$ENDPOINTS endpoint health "

Backing up etcd

With all the groundwork we have laid out in the previous sections, we can generalize the backup etcd
process as follows:

1.	 SSH to the etcd cluster node. It could be a separate node or the same as the master node. In
the CKA exam, it’s likely you’ll be starting in the master node, where etcdctl is installed; thus,
this step is optional.

2.	 Check out the etcd status. You could acquire the necessary information from the kubectl
describe <etcd-podname> command.

3.	 Perform the etcd backup.

4.	 Exit the master node. This may not be necessary in the actual CKA exam.

Working with etcd 63

The general process is captured in the following diagram:

Figure 3.14 – Backup etcd process

Now let’s look at the detailed process of how to back up etcd:

1.	 If you need to connect to the master node or the etcd cluster node, you can use the ssh
master-0 command or the ssh username@<nodeIP> command. Please note that this
step is optional. Following is an example of a user named packtuser using ssh to connect
to a node with the IP address 10.10.11.20:

 ssh packtuser@10.10.11.20

2.	 Check the etcd status using the following command from outside the cluster:

sudo ETCDCTL_API=3 etcdctl endpoint status --endpoints=ht
tps://172.16.16.129:2379 --cacert=/etc/kubernetes/pki/etcd/
ca.crt --cert=/etc/kubernetes/pki/etcd/server.crt --key=/etc/
kubernetes/pki/etcd/server.key --write-out=table

The output returned will be as follows:

Figure 3.15 – Check the etcd status from outside of the cluster

Maintaining Kubernetes Clusters64

3.	 Back up the etcd cluster using the etcdctl snapshot save command. It will look like this:

sudo ETCDCTL_API=3 etcdctl --endpoints $ENDPOINT snapshot save
snapshotdb

You will need to authenticate from the API server with secure communication as you’re backing
up from outside the Kubernetes cluster. For this, you can use the following command:

sudo ETCDCTL_API=3 etcdctl snapshot save snapshotdb

--endpoints=https://172.16.16.129:2379

--cacert=/etc/kubernetes/pki/etcd/ca.crt --cert=/etc/
kubernetes/pki/etcd/server.crt --key=/etc/kubernetes/pki/etcd/
server.key

The returned output shows that you have backed up the etcd store successfully:

Figure 3.16 – Backup etcd store

4.	 Verify the snapshot via the following command:

sudo ETCDCTL_API=3 etcdctl snapshot status snapshotdb --endpo
ints=https://172.16.16.129:2379 --cacert=/etc/kubernetes/pki/
etcd/ca.crt --cert=/etc/kubernetes/pki/etcd/server.crt --key=/
etc/kubernetes/pki/etcd/server.key --write-out=table

The following figure shows the status of the etcd cluster:

Figure 3.17 – Check the etcd store with the snapshot backup

Restoring etcd

To restore etcd clusters, you can follow the process depicted in Figure 3.18. Note that if you have any
API server instances running, you need to stop them before performing the restore operation. You
may restart the API server instances after the etcd is restored:

1.	 SSH to the etcd cluster node.

2.	 Check the etcd status.

Working with etcd 65

3.	 Restore the etcd backup.

4.	 Exit the master node:

Figure 3.18 – Restore etcd process

Once you have a snapshot present, you can restore etcd from the previous backup operation using
the following command:

sudo ETCDCTL_API=3 etcdctl --endpoints 172.16.16.129:2379
snapshot restore snapshotdb

The returned output shows that the etcd store has been restored successfully:

Figure 3.19 – Restored etcd store with an existing snapshot

You have now completed the etcd restore process.

Note that this approach can be used if you want to restore the etcd cluster from a different patch
version. It is important to back up etcd regularly, then perform the restore operation to recover the
cluster data from a failed cluster. To learn more about etcd cluster backup and restore for Kubernetes,
please check out https://kubernetes.io/docs/tasks/administer-cluster/
configure-upgrade-etcd/.

https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/

Maintaining Kubernetes Clusters66

Summary
This chapter covers one of the most common jobs of a Kubernetes administrator – that is, maintaining
and upgrading Kubernetes clusters. Similar to cluster installation, this is also one of the most time-
consuming tasks in the CKA exam. Again, practice makes perfect. The HA topology for a Kubernetes
cluster in Chapter 2, Installing and Configuring Kubernetes Cluster, helps you understand what you are
going to upgrade and how to do it. If needed, go back to Chapter 1, Kubernetes Overview, and make
sure that you have a good understanding of the Kubernetes components. This way, you will know
how and what’s needed to upgrade the control plane and worker nodes.

Compared to cluster upgrades, backup and restore etcd is one of the best-in-value questions in the
CKA exam as it is simple to answer with a high-value score. Thoroughly practicing what we’ve learned
in this chapter will help you overcome any challenges in the exam.

In the next chapter, we’ll talk about application scheduling and life cycle management, where we will
revisit some important Kubernetes objects and concepts, and touch upon how they play out both in
the CKA exam and in real life. Stay tuned!

Mock CKA scenario-based practice test
You have two virtual machines, master-0 and worker-0. Please complete the following
mock scenarios:

Scenario 1

SSH to the master-0 node, check the current kubeadm version, and upgrade to the latest kubeadm
version. Check out the current kubectl version, and upgrade to the latest kubectl version.

Scenario 2

SSH to worker-0 node, check out the current kubeadm version, and upgrade to the latest kubeadm
version. Check out the current kubelet version, and upgrade to the latest kubelet version.

Scenario 3

SSH to the master-0 node and back up the etcd store.

Scenario 4

SSH to the master-0 node and restore the etcd store to the previous backup.

You can find all the scenario resolutions in Appendix - Mock CKA scenario-based practice test resolutions
of this book.

FAQs 67

FAQs
1.	 Where can I find out about the compatible version of Kubernetes components with each release?

Go to the Kubernetes official documentation to learn about the version skew policy: https://
kubernetes.io/releases/version-skew-policy/.

2.	 Where can I learn about the latest developments of the etcd store?

Go to https://etcd.io/, where you will find the latest developments of the etcd store. For
daemons and guidance on how to get started with etcd, please go to the official documentation:
https://etcd.io/docs/.

3.	 What is a recommended official Kubernetes article for upgrading a Kubernetes cluster?

I recommend bookmarking the article Upgrading the kubeadm, where you will find most key
commands and processes: https://kubernetes.io/docs/tasks/administer-
cluster/kubeadm/kubeadm-upgrade/.

4.	 What is a recommended official Kubernetes article for backup and restore etcd?

I recommend bookmarking the article Operating etcd clusters for Kubernetes, where you will
find all the key commands for etcd backup and restore: https://kubernetes.io/docs/
tasks/administer-cluster/configure-upgrade-etcd/.

https://kubernetes.io/releases/version-skew-policy/
https://kubernetes.io/releases/version-skew-policy/
https://etcd.io/
https://etcd.io/docs/
https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade/
https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/

Part 2:
Managing Kubernetes

This part describes how to manage workloads deployed on top of Kubernetes, and how to manage the
security and networking of Kubernetes clusters to fulfil enterprise requirements.

This part of the book comprises the following chapters:

•	 Chapter 4, Application Scheduling and Lifecycle Management

•	 Chapter 5, Demystifying Kubernetes Storage

•	 Chapter 6, Securing Kubernetes

•	 Chapter 7, Demystifying Kubernetes Networking

4
Application Scheduling and

Lifecycle Management

This chapter describes how to use Kubernetes deployments to deploy pods, scale pods, perform rolling
updates and rollbacks, carry out resource management, and use ConfigMaps to configure pods using
kubectl commands and YAML definitions. This chapter covers 15% of the CKA exam content.

In this chapter, we’re going to cover the following main topics:

•	 The basics of Kubernetes workloads

•	 Deploying and managing applications

•	 Scaling applications

•	 Performing rolling updates and rollbacks

•	 Resource management

•	 Workload scheduling

•	 Configuring applications

Technical requirements
To get started, we need to make sure your local machine meets the following technical requirements:

•	 A compatible Linux host – we recommend a Debian-based Linux distribution such as Ubuntu
18.04 or later

•	 Make sure your host machine has at least 2 GB RAM, 2 CPU cores, and about 20 GB of free
disk space

Application Scheduling and Lifecycle Management72

The basics of Kubernetes workloads
Kubernetes orchestrates your workloads to achieve the desired status – a containerized workload with
applications running on Kubernetes, including stateless, stateful, and data-processing applications.
In terms of cloud-native applications, there’s an interesting white paper that introduced the notion
of cloud-native applications and design patterns thoroughly, which you can check out here if you’re
interested: https://www.redhat.com/en/resources/cloud-native-container-
design-whitepaper.

The fundamental building blocks of any containerized workload up and running in the Kubernetes
cluster are called Kubernetes API primitives or Kubernetes objects. They are the API resource types
defined in Kubernetes, including pods, ReplicaSets, DaemonSets, StatefulSets, Job and CronJob objects,
and Deployments, among others mentioned in Chapter 1, Kubernetes Overview.

The CKA exam covers some of the main Kubernetes objects such as Pods, Deployments, ReplicaSets,
and DaemonSets while working with Kubernetes clusters and we’ll dive into further detail in the
following section of this chapter.

Please make sure your local machine meets the required technical requirements before diving into
the practice.

Imperative management versus declarative management

There are a few ways to communicate with API servers in Kubernetes – mainly, they can be categorized
as either imperative management or declarative management. You will need to use both kubectl
and YAML definitions to manage Kubernetes objects. The kubectl utilities can support all the
management techniques for managing Kubernetes objects, as Kubernetes is intended to be a desired
state manager. After executing a kubectl command, as a result, it moves the current workload
running in Kubernetes from its actual state to the desired state, which is defined in the command-line
parameters or YAML-defined specifications.

Time management is the key to success in the CKA exam. Getting familiar with kubectl commands
will help you save a lot of time when it comes to a new deployment. A good understanding of YAML
definition will help you update the configurations quickly.

Understanding pods

The smallest deployable unit in Kubernetes is a pod. The pod contains the actual application workload
– it could be one or multiple containers. A pod in Kubernetes has a defined lifecycle. We’ll cover the
following topic about pods:

•	 Understanding pods

•	 Understanding health probing for pods

https://www.redhat.com/en/resources/cloud-native-container-design-whitepaper
https://www.redhat.com/en/resources/cloud-native-container-design-whitepaper

The basics of Kubernetes workloads 73

•	 Understanding a multi-container pod

•	 Understanding an init container

•	 Understanding a static pod

Let’s take a look at the pod first. You can create a pod using an imperative command as follows:

kubectl run <pod-name> --image=<image-name:image-tag>

This is an example of running a pod named ngin-pod with the image as nginx and the image
tag as alpine:

kubectl run nginx-pod --image=nginx:alpine

You will see the output is returned as created, as follows, to indicate that your pod has been
created successfully:

pod/nginx-pod created

In the process, you will see pod has the ContainerCreating status, indicating that the container
is being created, and you can use kubectl to describe a pod command to see what’s going on. The
following command is what we can use to check the pod’s current status:

kubectl describe pod nginx-pod

At the bottom of the describe command, you will see the events – this is helpful information
for you to use to check whether anything is going wrong during your deployment. We will explore
troubleshooting pods further in Chapter 8, Monitoring and Logging Kubernetes Clusters and Applications:

Figure 4.1 – The pod events

The same pod can be YAML-defined, as follows, which will give you the same result:

apiVersion: v1

kind: Pod

metadata:

  name: nginx

spec:

Application Scheduling and Lifecycle Management74

  containers:

  - name: nginx

    image: nginx:alpine

    ports:

    - containerPort: 80

You can use the following command to deploy a YAML definition:

kubectl apply -f <your-spec>.yaml

Similarly, we can run a BusyBox image with a single command, such as the following:

kubectl run busybox --rm -it --image=busybox /bin/sh

You can also deploy a nginx image and then export the YAML definition by using the -o yaml flag :

kubectl run nginx --image=nginx --dry-run -o yaml > pod-sample.
yaml

After running this command, a sample yaml file will be exported to your local PC – you can edit this
yaml file to make changes locally if needed.

Understanding liveness, readiness, and startup probes

To explore the health status of the pods further, let’s talk about health probes. Probes allow you to know
how Kubernetes determines the states of your containers. Let’s have look at each of them one by one:

•	 Liveness probes indicate whether the container is running properly, as they govern when the
cluster will decide to restart the container automatically.

•	 Readiness probes indicate whether the container is ready to accept requests.

•	 Startup probes check when a container starts and are very handy for containers that require
an additional startup time on their first initialization, preventing them from being killed by
kubelet before they get on their feet. Once configured, they disable liveness and readiness
checkers until they’re complete.

We’ll have a look at these in more detail in Chapter 8, Monitoring and Logging Kubernetes Clusters
and Applications. You can find further details about health probes at the following link: https://
kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-
readiness-startup-probes/.

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-start﻿up-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-start﻿up-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-start﻿up-probes/

The basics of Kubernetes workloads 75

Understanding a multi-container pod

Multi-container pods are simply pods with more than one container working together as a single
unit. When it comes to multiple containers residing in a pod, a container interacts with another in
the following two ways:

•	 Shared networking: When two containers are running on the same host when they are in
the same pod, they can access each other by simply using localhost. All the listening ports are
accessible to other containers in the pod, even if they’re not exposed outside the pod.

Figure 4.2 shows how multiple containers in the same pod share a local network with each other:

Figure 4.2 – A multi-container pod’s shared network

•	 Shared storage volumes: We can mount the same volume to two different containers so that
they can both interact with the same data – it is possible to have one container write data to the
volume and the other container read that data from the same volume. Some volumes even allow
concurrent reading and writing. We’ll dive deeper into how storage works for multi-container
pods in Chapter 5, Demystifying Kubernetes Storage.

Application Scheduling and Lifecycle Management76

Figure 4.3 shows how multiple containers in the same pod share local storage with each other:

Figure 4.3 – A multi-container pod’s shared storage volume

The following is an example of how to create multiple containers in a pod:

apiVersion: v1

kind: Pod

metadata:

  name: multi-app-pod

  labels:

      app: multi-app

spec:

  containers:

  - name: nginx

    image: nginx

    ports:

    - containerPort: 80

  - name: busybox-sidecar

    image: busybox

    command: ['sh', '-c', 'while true; do sleep 3600; done;']

The basics of Kubernetes workloads 77

In general, it is good to have a one-to-one relationship between a container and a pod, which follows
the principles of building microservices by keeping each module independent. The real world is
sometimes more complicated than it may seem, let’s take a look at multi-container pods.

Understanding an init container

An init container is configured in a pod to execute before the container host starts. It is specified
inside an initContainers section, as in the following example. You can configure multiple init
containers too, which will allow each init container to complete one at a time in sequential order:

apiVersion: v1

kind: Pod

metadata:

  name: melon-pod

  labels:

    app: melonapp

spec:

  containers:

  - name: melonapp-container

    image: busybox:latest

    command: ['sh', '-c', 'echo The melonapp is running! &&
sleep 3600']

  initContainers:

  - name: init-melonservice

    image: busybox:latest

    command: ['sh', '-c', 'until nslookup melonservice; do echo
waiting for melonservice; sleep 2; done;']

  - name: init-melondb

    image: busybox:latest

    command: ['sh', '-c', 'until nslookup melondb; do echo
waiting for melondb; sleep 2; done;']

In the case that any of the init containers fail to complete, Kubernetes will restart the pod repeatedly until
the init container succeeds. To learn more about init containers, visit the following link: https://
kubernetes.io/docs/concepts/workloads/pods/init-containers/.

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

Application Scheduling and Lifecycle Management78

Understanding a static Pod

As the captain of a worker node, the kubelet agent can manage a node independently, and it can
create pods. The pods that are managed directly by the kubelet daemon and bound to a specific
node are called static pods. As opposed to pods that are managed by the Kubernetes master, static
pods are watched by the kubelet agent, and it restarts in the case of failure.

The way to configure kubelet so that it reads the pod definition files is to add a YAML specification
under the following directory where the static pod information is stored:

 /etc/kubernetes/manifests

kubelet checks this directory periodically. This path can be configured in kubelet.service.

Understanding Job and CronJob objects

Jobs can be used to reliably execute a workload and define when it completes – typically, a Job will
create one or more pods. After the Job is finished, the containers will exit and the pods will enter the
Completed status.

Jobs can be used to reliably execute a workload until it completes. The Job will create one or more
pods. When the Job is finished, the containers will exit and the pods will enter the Completed
status. An example use of Jobs is when we want to run a particular workload and make sure that it
runs once and succeeds.

1.	 You can create a Job with a YAML description:

apiVersion: batch/v1

kind: Job

metadata:

  name: pi

spec:

  template:

    spec:

      containers:

      - name: pi

        image: perl

        command: ["perl",  "-Mbignum=bpi", "-wle", "print
bpi(2000)"]

      restartPolicy: Never

  backoffLimit: 4

The basics of Kubernetes workloads 79

The backoffLimit parameter means that, if it fails 4 times, this is the limit. All the Job does
the same as it is while creating a pod under the hood. Although a normal pod is constantly
running, when a Job is complete, it goes into the Completed status. This means that the
container is no longer running, so the pod still exists, but the container is complete.

2.	 You can use the following command to deploy a YAML definition:

kubectl apply -f melon-job.yaml

3.	 You can run the following command to check the Job’s status:

kubectl get job

4.	 When the Job is still running, you can see the Running status. When the Job is finished, you
can see that it is complete from the following:

Figure 4.4 – The Job is complete

CronJobs, based on the capability of a Job, add value by allowing users to execute Jobs on a schedule.
Users can use cron expressions to define a particular schedule as per their requirements. The following
is an example of a CronJob YAML definition:

apiVersion: batch/v1

kind: CronJob

metadata:

 name: hello

spec:

 schedule: "*/1 * * * *"

 jobTemplate:

   spec:

     template:

       spec:

         containers:

         - name: hello

           image: busybox

Application Scheduling and Lifecycle Management80

           args:

           - /bin/sh

           - -c

           - date; echo Hello from the Kubernetes cluster

         restartPolicy: OnFailure

5.	 You can use the following command to deploy a YAML definition:

kubectl apply -f melon-cronjob.yaml

You can use the following command to check the cron job’s status:

kubectl get cronjob

You’ll get an output as follows:

Figure 4.5 – The cron job shown as complete

This cron job creates a few pods name hello, so we will use the following command to check the
log of the Job:

kubectl get pods | grep hello

You’ll get an output as follows:

Figure 4.6 – The completed cron job pods

We can check the logs of these pods with the following command:

kubectl logs hello-xxxx

Deploying and managing applications 81

We can see that the cron job has been executed:

Figure 4.7 – The logs showing how the cron job was completed

If you want to delete cron jobs, you can use the following command:

kubectl delete cronjobs hello

Then, you will see the following output indicating that your cron job has been deleted:

cronjob.batch "hello" deleted

CronJobs were promoted to general availability in Kubernetes v1.21. You can find a great article about
running automated tasks using a CronJob here: https://kubernetes.io/docs/tasks/
job/automated-tasks-with-cron-jobs.

Deploying and managing applications
The following sections of this chapter will take you through practical exercises with concrete examples
that you would encounter in your real CKA exam, including how to deploy and scale applications,
perform rolling updates and rollbacks for those applications, manage and govern the resource
consumption for these applications, and configure them.

Deploying applications

Deploying applications can be achieved in various ways, such as deploying a pod with kubectl or
a YAML definition, as we did in the The basics of Kubernetes workloads section of this chapter. Now,
we’ll take a look at a more effective way of using Deployments. In this section, let’s get into how to
deploy and scale applications.

https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs
https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs

Application Scheduling and Lifecycle Management82

Deployments

A Deployment is a convenient way to define the desired state deployment – it provides us with a better
way of upgrading the underlying instances seamlessly using rolling updates, undoing changes, and
pausing and resuming changes as required. For example, things such as deploying a ReplicaSet with a
certain number of replicas are easy to roll out and roll back, and more effective. The following figure
depicts how a Deployment looks conceptually:

Figure 4.8 – A Deployment

Deployments provide a way to define a desired state for the replica pod. You can use a YAML definition
as follows to define a Deployment:

apiVersion: apps/v1

kind: Deployment

metadata:

  name: nginx-deployment

  labels:

    app: nginx

spec:

  replicas: 3

  selector:

    matchLabels:

      app: nginx

  template:

    metadata:

Deploying and managing applications 83

      labels:

        app: nginx

    spec:

      containers:

      - name: nginx

        image: nginx:latest

        ports:

        - containerPort: 80

The following attributes are important to help you understand the preceding YAML definition:

•	 spec.replicas gives us the number of replica pods

•	 spec.template is the template pod descriptor that defines the pods that will be created

•	 spec.selector is the deployment that will manage all pods whose labels match this selector

We can create a Deployment using the following kubectl command:

kubectl create deployment kubeserve --image=nginx:latest

After running the preceding command, you will then get the following output:

deployment.apps/kubeserve created

You can use kubectl get deploy to query all the Deployments in the current namespace
as follows:

kubectl get deployments

You will see the following Deployment status in the output:

Figure 4.9 – kubectl getting the Deployments

If you know the name of a Deployment, you can use the following command to get that Deployment:

kubectl get deployment kubeserve

Application Scheduling and Lifecycle Management84

You will see the following output:

Figure 4.10 – kubectl getting a Deployment by name

The following command allows you to get the details of the Deployment:

kubectl describe deployment kubeserve

This command will help you understand the configurations in the Deployment, where you will see
the following output:

Figure 4.11 – kubectl describing a Deployment

The following command allows you to live-edit the Deployments:

kubectl edit deployment kubeserve

The preceding command is a magical one that will allow you to live-edit a Deployment. The following
is the sample output and you can edit it live – it works similarly to when you create a pod using the
vim editor. You can live-edit the Deployment here, and then save and quit using wq!:

Deploying and managing applications 85

Figure 4.12 – kubectl describing a Deployment for live-editing

Application Scheduling and Lifecycle Management86

Then, you can also delete Deployments if you don’t need them anymore with the kubectl
delete command:

kubectl delete deployment melon-serve

The following output shows that the Deployment has been deleted successfully:

deployment.apps "kubeserve" deleted

With the deletion of the Deployment, the objects defined in that Deployment are also deleted, as they
share the same lifecycle. In our third example, the deployed nginx pods are deleted, as we delete the
kubeserve Deployment.

Learning about Deployments allows you to manage your application in a more effective way, update
it as an entity easier, and roll it back to its previous versions. In the next section, we’ll have a look at
rolling updates and rollbacks.

Performing rolling updates and rollbacks
Rolling updates provide a way to update a Deployment to a newer version more effectively and efficiently.
This way, you can update Kubernetes objects such as replicas and pods gradually with nearly zero
downtime. In a nutshell, you may consider either using the kubectl set image command or
going straight to updating a YAML manifest file. In this section, we will introduce kubectl set
image, as it is very effective and handy to use in your actual CKA exam.

Rolling updates with kubectl

From here, we’ll go through the steps of rolling updates with kubectl:

1.	 You can spin up a new Deployment, kubeserve, using the following command:

kubectl create deployment kubeserve --image=nginx:latest

2.	 You can use kubectl to update the container image as follows:

kubectl set image deployment/kubeserve nginx=nginx:1.18.0
--record

Important note
--record flag records information about the updates so that it can be rolled back later.
You can either use --record flag or --record=true flag.

Performing rolling updates and rollbacks 87

With the preceding command, you will see the following output:

deployment.apps/kubeserve image updated

3.	 You can use the kubectl describe command to double-check whether your container
image has updated successfully by typing the following command:

kubectl describe deploy kubeserve

Your output should be similar to the following, in Figure 4.14, where you can see that the image is
set to nginx:1.18.0:

Figure 4.13 – kubectl describing kubeserve after updating the image

The kubectl describe deploy command comes in very handy when we are trying to check
key information such as the container image, ports, and deployment-related events. This is also the
case in the actual CKA exam – make sure you master the shortcut of this command, k describe
deploy, which will help you work more effectively in the exam.

Application Scheduling and Lifecycle Management88

Rollback

Rollback allows us to revert to a previous state and a Deployment makes this super easy to achieve:

1.	 You can use the following kubectl rollout command to quickly recover if you need to
perform a rollback:

kubectl rollout undo deployments kubeserve

Your output should look as follows:

deployment.apps/kubeserve rolled back

2.	 Now, if you use the kubectl describe deploy kubeserve command, you will see
the following output indicating that the image has been rolled back:

Figure 4.14 – kubectl describing kubeserve after a rollback

3.	 Now, you may be very curious as to whether we can keep a track of the history of our Deployments.
You can use the following command:

kubectl rollout history deployment kubeserve

Performing rolling updates and rollbacks 89

The output would look as follows:

Figure 4.15 – kubectl describing kubeserve

4.	 In the case that you want to go back to a specific revision, you can use the --to-revision
flag. You can see in Figure 4.16 that we have revision 2 available thanks to using the --record
flag when setting the image version. The following command is an example of undoing a
Deployment and reverting to revision 2:

kubectl rollout undo deployment kubeserve --to-revision=2

Your output should look as follows:

deployment.apps/kubeserve rolled back

5.	 Now, if you use the kubectl describe deploy kubeserve command, you will see
the following output indicating that the image has been rolled back to revision 2:

Figure 4.16 – kubectl describing kubeserve

Application Scheduling and Lifecycle Management90

Deployments not only make the rolling update and rollback process much easier but also help us scale
up and down with ease – we’ll take a look at how to scale applications, as well as all the viable options
when doing so, in the next section.

Scaling applications
When our application becomes popular, in order to handle increasingly on-demand requests, we need
to spin up multiple instances of applications to satisfy the workload requirements.

When you have a Deployment, scaling is achieved by changing the number of replicas. Here, you can
scale a Deployment using the kubectl scale command to make this happen:

kubectl scale deployment kubeserve --replicas=6

Your output should look as follows:

deployment.apps/kubeserve scaled

If you use the kubectl get pods command now, you will see that some more copies of the pods
are spinning up, as shown in the following output:

Figure 4.17 – kubectl getting the pods and showing more copies of them

Aside from manually scaling the Deployments with the kubectl scale command, we also have
another way of scaling a Deployment and its ReplicaSets, which is HorizontalPodAutoscaler (HPA).
Let’s take a look at the ReplicaSets first.

ReplicaSets

ReplicaSets help pods achieve higher availability since users can define a certain number of replicas using
a ReplicaSet. The main capability of a ReplicaSet is to make sure the cluster keeps the exact number of
replicas running in the Kubernetes cluster. If any of them were to fail, new ones would be deployed.

Scaling applications 91

The following is an example of the YAML definition of a ReplicaSet:

apiVersion: apps/v1

kind: ReplicaSet

metadata:

  name: frontend

  labels:

    app: melonapp-rs

spec:

  replicas: 3

  selector:

    matchLabels:

      app: melonapp-rs

  template:

    metadata:

      labels:

        app: melonapp-rs

    spec:

      containers:

      - name: nginx

        image: nginx

The matchLabels selector simply matches the labels specified under it to the labels on the pods.
To check your ReplicaSet, use the following command:

kubectl get replicaset

Alternatively, you can also use the following command:

kubectl get rs

Then, you will see the output indicating the number of DESIRED replica counts and how many of
them are in a READY state:

Figure 4.18 – The kubectl get rs command showing the state of the ReplicaSet

Application Scheduling and Lifecycle Management92

Once the ReplicaSet is deployed, update the number of ReplicaSets by using the following command:

kubectl scale replicaset frontend --replicas=6

Your output should look as follows:

replicaset.apps/frontend scaled

Alternatively, you can specify it in a YAML definition with the following command:

kubectl scale --replicas=6 -f replicas.yaml

Your output should look as follows:

replicaset.apps/frontend scaled

Now, if you want to check whether the number of ReplicaSets has increased, you can use the kubectl
get rs command again and you will be able to see the following output:

Figure 4.19 – kubectl getting the ReplicaSets

In the case that you want to delete a ReplicaSet, you can use the kubectl delete command – in
this case, we can use it to delete a ReplicaSet named frontend:

kubectl delete replicaset frontend

Your output should look as follows:

replicaset.apps "frontend" deleted

Using ReplicaSets directly is not the only way to scale the applications. Let’s take a look at the alternative
next, HPA.

HPA

To update a workload resource such as a Deployment or a StatefulSet, we can also use HPA – this is
a Kubernetes API primitive that scales the workloads automatically based on your demands. Figure
4.18 explains how HPA works in the context of application scaling:

Scaling applications 93

Figure 4.20 – HPA

From the previous diagram, we can see that HPA is configured to fetch metrics provided by a metrics
server based on the CPU and memory usage. These metrics are fetched from kubelet by the metrics
server, which then exposes them to the API server using a metrics API. HPA scales the Deployment
by increasing or decreasing the count of replicas, which is managed underneath by a ReplicaSet.

As on-demand resource requests increase, HPA scales out the Deployment and the number of replicas
increases. Conversely, when the resource requests decrease, the number of replicas decreases.

To create an HPA, you can use the kubectl autoscale deployment command with the
following flags for the requirements:

•	 cpu-percent indicates the average CPU utilization usage across all pods

•	 min provides the minimum number of replicas

•	 max provides the maximum number of replicas

You can use the following command to create an HPA with a CPU utilization usage of 50% and ensure
a minimum of 3 copies and a maximum of up to 10 copies:

kubectl autoscale deployment kubeserve --cpu-percent=50 --min=3
--max=10

Application Scheduling and Lifecycle Management94

Your output should look as follows:

horizontalpodautoscaler.autoscaling/kubeserve autoscaled

To check how many HPAs we currently have in the default namespace, use the following command:

kubectl get hpa

The output would look as follows

Figure 4.21 – Getting the HPAs in the default namespace

You can also use the following YAML definition to deploy an HPA, which will help you achieve the
same goal:

apiVersion: autoscaling/v2

kind: HorizontalPodAutoscaler

metadata:

  name: kubeserve

spec:

  scaleTargetRef:

    apiVersion: apps/v1

    kind: Deployment

    name: kubeserve

  minReplicas: 3

  maxReplicas: 10

  metrics:

  - type: Resource

    resource:

      name: cpu

      target:

        type: Utilization

        averageUtilization: 50

Scaling applications 95

In the case that you want to delete an HPA, use a kubectl delete command. Here, we can delete
an HPA named kubeserve as follows:

kubectl delete hpa kubeserve

Your output will look as follows:

horizontalpodautoscaler.autoscaling "kubeserve" deleted

Another concept that we will cover is DaemonSets, which come in handier in real life, particularly
in scenarios where at least one replica of the pod needs to be evenly distributed across the worker
nodes. Let’s get right into it.

DaemonSets

We have learned about how ReplicaSets and Deployments help us ensure that multiple copies of our
applications are up and running across various worker nodes. DaemonSets create a couple of copies
of a pod, meanwhile making sure that at least one copy of the pod is evenly on each node in the
Kubernetes cluster, as shown in Figure 4.23.

If a new node is added to the cluster, a replica of that pod is automatically assigned to that node.
Similarly, when a node is removed, the pod is automatically removed.

Figure 4.22 – DaemonSets

Application Scheduling and Lifecycle Management96

You can define a DaemonSet using the following YAML definition:

apiVersion: apps/v1

kind: DaemonSet

metadata:

  name: fluentd

  namespace: kube-system

  labels:

    k8s-app: fluentd

spec:

  selector:

    matchLabels:

      name: fluentd

  template:

    metadata:

      labels:

        name: fluentd

    spec:

      containers:

      - name: fluentd

        image: fluentd:latest

Your output would look as follows:

daemonset.apps/fluentd created

Notice that we have created this DaemonSet in a namespace called kube-system this time – this
is a namespace usually reserved for Kubernetes objects created by the Kubernetes system. We’ll get
to talking about the namespace in a heartbeat. For now, you can check that the DaemonSet has been
created using the following command:

kubectl get daemonsets -n kube-system

Alternatively, we can simplify the command:

kubectl get ds -n kube-system

Scaling applications 97

Your output will look as follows:

Figure 4.23 – Checking out the DaemonSets in the kube-system namespace

Don’t forget to check the details of the DaemonSets by using the following:

kubectl describe daemonsets fluentd -n kube-system

Your output would look as follows:

Figure 4.24 – kubectl describing the DaemonSets

In case you want to delete a DaemonSet, use the kubectl delete command. Here, we can delete
a DaemonSet named fluentd in the kube-system namespace as follows:

kubectl delete ds fluentd -n kube-system

Application Scheduling and Lifecycle Management98

Your output should look as follows:

daemonset.apps "fluentd" deleted

The main use case of DaemonSets is to use them as a monitoring agent or a logs collector on every
node, or in other cases, to run a cluster storage daemon across all the worker nodes.

With DaemonSets, you don’t have to worry about removing or adding new nodes that will impact
the monitoring agents on these nodes. A real-life use case, such as fluentd, requires an agent to be
deployed on each node in the cluster.

Workload scheduling
Understanding the workload scheduling and how it works with the Kubernetes scheduler will be
useful in your daily life as a Kubernetes Administrator. Kubernetes allows you to define node affinity
rules, taints, and tolerations with the good use of labels, selectors, and annotations leading your way.
Let’s first start with the notion of namespaces.

Understanding namespaces

Thinking about the separation of the workloads, namespaces come in handy. A namespace is a logical
separation of all the namespaced objects deployed in a single Kubernetes cluster. Deployments, Services,
and Secrets are all namespaced. Otherwise, some Kubernetes objects are cluster-wide, such as Nodes,
StorageClass, and PersistentVolume. The name of a resource has to be unique within a namespace.

You can get all namespaces using the following command:

kubectl get namespaces

Alternatively, you can use this command:

kubectl get ns

You will see that the output gets all the namespace currently in our Kubernetes cluster:

Figure 4.25 – kubectl getting the namespaces

Workload scheduling 99

When you define a pod or any namespaced Kubernetes object, you can specify the namespace in the
YAML definition as follows:

   apiVersion: v1

   kind: Pod

   metadata:

    name: k8s-ns-pod

    namespace: k8s-ns

    labels:

      app: k8sapp

   spec:

    containers:

    - name: k8sapp-container

      image: busybox

      command: ['sh', '-c', 'echo Salut K8S! && sleep 3600']

If you create that pod and specify the namespace that the pod belongs to, you can add the -n flag
when querying this pod using the kubectl get pods command. The following is an example:

kubectl get pods -n k8s-ns

Similarly, if the pod has been created in that namespace, you can use the following command to
check it out:

kubectl describe pod k8s-ms-pod -n k8s-ns

In the case that the pods are not in the default namespace, you don’t have to specify the namespace
option anymore. In the following example, you want to set a namespace named dev, and then use
the kubectl get command without the -n flag:

kubectl config set-context &(kubectl config current-context)
--namespace=dev

You can then simply run the following command without the namespace option to list the pods:

kubectl get pods

Understanding namespaces will further help you when you need to define the namespace-scoped
permissions where Kubernetes objects are grouped. We’ll elaborate on this further in Chapter 6,
Securing Kubernetes.

Application Scheduling and Lifecycle Management100

Labels, node selectors, and annotations

Labels, selectors, and annotations are useful notions when it comes to workload scheduling. Labels are
key-value pairs attached to Kubernetes objects that can be listed in the metadata.labels section
of an object descriptor. Selectors are used for identifying and selecting a group of objects using their
labels. See the following examples of some quality-based selectors:

kubectl get pods -l app=my-app

kubectl get pods -l environment=production

When it comes to inequality, you can use the following:

kubectl get pods -l environment!=production

The following example involves chaining multiple selectors together using a comma-delimited list:

kubectl get pods -l app=myapp.environment=production

To assign a pod to nodes, we can use node selectors. You can specify a map of key-value pairs in the
PodSpec field:

You can start by labeling the worker nodes using the following command:

kubectl label node cloudmelonplayground env=dev

The output should be as follows:

node/cloudmelonplayground labeled

You can use the following command to show the label of worker nodes:

kubectl get nodes --show-labels

Then, we should get the following output:

Figure 4.26 – Getting the node labels

Then, you can add the node selector in the YAML definition as follows:

apiVersion: v1

kind: Pod

metadata:

Workload scheduling 101

  name: nginx

  labels:

    env: test

spec:

  containers:

  - name: nginx

    image: nginx

  nodeSelector:

    env: dev

We can attach annotations to objects using the metadata.annotations section, as with the
following configuration file that has the annotation imageregistry: "http://hub.docker.
com/":

    

apiVersion: v1

kind: Pod

metadata:

  name: melon-annotation

  annotations:

    imageregistry: "https://hub.docker.com/"

spec:

  containers:

  - name: nginx

    image: nginx:latest

    ports:

    - containerPort: 80

Annotations are similar to labels and they can be used to store custom metadata about objects.

Node affinity and anti-affinity

Node affinity and anti-affinity are simply ways to help pods be assigned to the right node. Compare
this to nodeSelector, which is designed for assigning a pod directly to the worker nodes. The
following is an example of node affinity and anti-affinity in the YAML specification:

 spec:

  affinity:

    podAffinity:

Application Scheduling and Lifecycle Management102

      requiredDuringSchedulingIgnoredDuringExecution:

      - labelSelector:

          matchExpressions:

          - key: security

            operator: In

            values:

            - S1

        topologyKey: topology.kubernetes.io/zone

    podAntiAffinity:

      preferredDuringSchedulingIgnoredDuringExecution:

      - weight: 100

        podAffinityTerm:

          labelSelector:

            matchExpressions:

            - key: security

              operator: In

              values:

              - S2

          topologyKey: topology.kubernetes.io/zone

With particular labels, node affinity and anti-affinity allow us to create matching rules with logic
and operations.

Taints and tolerations

Aside from node affinity and anti-affinity, we can also assign taints on the node and tolerations on the
pods by tainting the nodes and ensuring that no pods will be scheduled to that node.

You can use the following command to taint a node:

kubectl taint nodes melonnode app=melonapp:NoSchedule

The preceding definition can be translated into a pod YAML definition file to achieve the same
outcome as follows:

  apiVersion: v1

  kind: Pod

  metadata:

   name: melon-ns-pod

   namespace: melon-ns

Resource management 103

   labels:

     app: melonapp

  spec:

   containers:

   - name: melonapp-container

     image: busybox

     command: ['sh', '-c', 'echo Salut K8S! && sleep 3600']

   tolerations:

   - key: "app"

     operator: "Equal"

     value: "melonapp"

     effect: "NoSchedule"

If you want to un-taint a node, you can use the following command:

kubectl taint nodes yourworkernode   node-role.kubernetes.io/
yourworkernode:NoSchedule-

We have learned how to taint certain nodes when you want to evict workloads from a node in this
section. Now, let’s look at resource management.

Resource management
Kubernetes allows us to specify the resource requirements of a container in the pod specification,
which basically refers to how many resources a container needs.

kube-scheduler uses the resource request information that you specify for a container in a pod
to decide on which worker node to schedule the pod. It’s up to kubelet to enforce these resource
limits when you specify them for the containers in the pod so that the running container goes beyond
a set limit, as well as reserves at least the requested amount of a system resource for a container to use.

It usually gives us the following values:

•	 resources.limits.cpu is the resource limit set on CPU usage.

•	 resources.limits.memory is the resource limit set on memory usage.

•	 resources.requests.cpu is the minimum CPU usage requested to allow your application
to be up and running.

Application Scheduling and Lifecycle Management104

•	 resources.requests.memory is the minimum memory usage requested to allow your
application to be up and running. In the case that a container exceeds its memory request, the
worker node that it runs on becomes short on overall memory at the same time, and the pod
that the container belongs to is likely to be evicted too.

•	 resources.limits.ephemeral-storage is the limit on ephemeral storage resources.

•	 resources.limits.hugepages-<size> is the limit on the allocation and consumption
of pre-allocated huge pages by any applications in a pod.

A resource request refers to the amount of resources that are necessary to run a container, and what
they do is govern on which worker node the containers will actually be scheduled. So, when Kubernetes
is getting ready to run a particular pod, it’s going to choose a worker node based on the resource
requests of that pod’s containers. Kubernetes will use these values to ensure that it chooses a node
that actually has enough resources available to run that pod. A pod will only run on a node that has
enough available resources to run the pod’s containers. The following is a YAML example of defining
resource request and limits:

apiVersion: v1

kind: Pod

metadata:

 name: melonapp-pod

spec:

 containers:

 - name: melonapp-container

   image: busybox

   command: ['sh', '-c', 'echo stay tuned! && sleep 3600']

   resources:

     requests:

       memory: "64Mi"   # 64 Megabytes

       cpu: "250m"

     limits:

       memory: "128Mi"

       cpu: "500m"

You can use the kubectl describe node command to check the allocation resources of
that node to see whether your requests or limits definitions correspond to what is needed in the
current circumstances:

Configuring applications 105

Figure 4.27 – kubectl describing the node resources

You can use the kubectl top command in the case that you have a metrics server installed in your
cluster to check the actual resource usage of the node or pod.

Configuring applications
Configuring an application is a simple and straightforward experience thanks to ConfigMaps and
Secrets. Let’s take a look at each of them.

Understanding ConfigMaps

A ConfigMap is simply a Kubernetes object that stores configuration data in key-value pairs. This
configuration data can then be used to configure the software running in a container by configuring
a pod to consume ConfigMaps using environment variables, command-line arguments, or mounting
a volume with configuration files.

You can also use a YAML definition to define configmap as follows:

  apiVersion: v1

  kind: ConfigMap

  metadata:

    name: melon-configmap

  data:

    myKey: myValue

    myFav: myHome

Your output should look as follows:

configmap/melon-configmap created

Application Scheduling and Lifecycle Management106

You can check configmap using the following command:

kubectl get configmap

Alternatively, you can use this command:

kubectl get cm

Your output will be as follows:

Figure 4.28 – kubectl getting configmap

You can check the binary data of configmap using the following command:

k describe configmap melon-configmap

The following screenshot is the output of the preceding command:

Figure 4.29 – The configmap binary data

Configuring applications 107

Once you have configmap ready, here’s how to configure the pod to consume it:

1.	 Create a pod that can use the configmap data by using environment variables:

apiVersion: v1

kind: Pod

metadata:

  name: melon-configmap

spec:

  containers:

  - name: melonapp-container

image: busybox

    command: ['sh', '-c', "echo $(MY_VAR) && sleep 3600"]

    env:

    - name: MY_VAR

      valueFrom:

        configMapKeyRef:

          name: melon-configmap

          key: myKey

You can use the following command to check the configmap value:

 kubectl logs melon-configmap

The output will be similar to the following:

Figure 4.30 – The configmap mounted value

2.	 You can create a pod to use configmap data via a volume. The following is an example of a
YAML definition:

apiVersion: v1

kind: Pod

metadata:

  name: melon-volume-pod

spec:

  containers:

   - name: myapp-container

Application Scheduling and Lifecycle Management108

     image: busybox

     command: ['sh', '-c', "echo $(cat /etc/config/myKey)
&& sleep 3600"]

     volumeMounts:

       - name: config-volume

         mountPath: /etc/config

  volumes:

    - name: config-volume

      configMap:

        name: melon-configmap

You can use the kubectl logs command to check the pod for the mounted data value, or
use the following command to check the configmap:

kubectl exec melon-volume-pod -- ls /etc/config

The output will look as follows:

Figure 4.31 – The configmap mounted value

In the case that you want to delete a configmap, use the kubectl delete command:

kubectl delete cm melon-configmap

Your output would look as follows:

configmap "melon-configmap" deleted

Here, we have shown how we can work with ConfigMaps in Kubernetes. Once you feel comfortable
with ConfigMaps, you’ll find a lot of similarities when it comes to working with Secrets. Next, we will
have a look at how to work with Kubernetes Secrets so that they can be consumed by your application.

Understanding Secrets

A Kubernetes Secret is an object containing sensitive data such as a password, an API token, or a key,
which is passed to a pod rather than stored in a PodSpec field or in the container itself:

kubectl create melon-secret --from-literal=username=packtuser

  --from-literal=password='S!B*d$zDsb='

Configuring applications 109

You can also use a YAML definition to define configmap as the following with base64:

apiVersion: v1

kind: Secret

metadata:

  name: melon-secret

type: Opaque

data:

  USER_NAME: bXl1c2VybmFtZQo=

  PASSWORD: bXlwYXNzd29yZAo=

You can check the Secrets by using the following command:

kubectl get secrets

Your output would look as follows:

Figure 4.32 – kubectl getting Secrets

Once you have created the Secret, you may want to attach the Secret to an application. That’s where
you need to create a pod to consume the Secret by following these steps:

1.	 You can create a pod to consume the Secret using environment variables:

apiVersion: v1

kind: Pod

metadata:

  name: melon-secret-pod

spec:

  containers:

    - name: test-container

      image: busybox:latest

      command: ["/bin/sh", "-c", "env"]

      envFrom:

      - secretRef:

          name: melon-secret

  restartPolicy: Never

Application Scheduling and Lifecycle Management110

2.	 You can also consume a Secret as a volume, as shown here – you will define a secret-volume
and then mount the secret-volume to the /etc/secret-volume path:

  volumes:

  - name: secret-volume

    secret:

      secretName: melon-secret

  containers:

  - name: mybusybox

    image: busybox:latest

    command: ["/bin/sh", "-c", "env"]

    volumeMounts:

    - name: secret-volume

      readOnly: true

      mountPath: "/etc/secret-volume"

If you want to delete a Secret, use the kubectl delete command as follows:

kubectl delete secret melon-secret

Your output will look as follows:

secret "melon-secret" deleted

Note that if you delete a Secret, make sure to update the PodSpec field for your application to avoid
exceptions. You can do this by creating a new Secret, then attaching it to your pod, or updating your
application so it doesn’t need the Secret anymore.

Manifest management with kustomize

Starting from Kubernetes 1.14, customization files became available to facilitate smoother Kubernetes
management. It supports the following use cases:

•	 Generation of YAML definitions from other resources, such as generating a Kubernetes Secret
and its YAML definition

•	 Common configuration across multiple YAML definitions, such as adding namespace for a
group of resources

•	 Composing and customizing a collection of YAML definitions, such as setting resource requests
and limits for multiple Kubernetes objects

Configuring applications 111

This can be achieved using a central file called Kustomization.yaml. You can use the following
command to view the resources found in the directory that are contained in a customization file:

kubectl kustomize <targeting_kustomization_directory>

You can then apply those resources by running the following command:

kubectl apply -k <targeting_kustomization_directory>

Let’s take Secret generation as an example and generate a Secret manifest file:

Create a password.txt file

cat <<EOF >./password.txt

username=admin

password=secret

EOF

cat <<EOF >deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: my-app

  labels:

    app: my-app

spec:

  selector:

    matchLabels:

      app: my-app

  template:

    metadata:

      labels:

        app: my-app

    spec:

      containers:

      - name: app

        image: my-app

        volumeMounts:

        - name: password

          mountPath: /secrets

      volumes:

Application Scheduling and Lifecycle Management112

      - name: password

        secret:

          secretName: example-secret-1

EOF

cat <<EOF >./kustomization.yaml

resources:

- deployment.yaml

secretGenerator:

- name: example-secret-1

  files:

  - password.txt

EOF

Then, you will be able to see that you have two files created after executing the previous steps:

kustomization.yaml  password.txt

If you want to check out the content of the customization.yaml file, you can use cat
customization.yaml and you will see the following output:

secretGenerator:

- name: example-secret-1

  files:

  - password.txt

Then, you can use the kubectl apply command to deploy the pod with the Secret mounted:

kubectl apply -f ./test

Kustomize is a good way to customize your application configuration and now that it is built into
kubectl apply -k, you can gain a greater understanding of the use cases of Kustomize by visiting
the official documentation site: https://kubectl.docs.kubernetes.io/guides/.

Common package management and templating with Helm

Helm is a management tool for managing packages of pre-configured Kubernetes objects in the form
of charts – we call these Helm charts. Helm charts allow users to install and manage Kubernetes
applications more reproducibly and effectively. Furthermore, you can find popular Helm charts from
the community or share your own applications with the Helm community at this link: https://
artifacthub.io/packages/search.

https://kubectl.docs.kubernetes.io/guides/
https://artifacthub.io/packages/search
https://artifacthub.io/packages/search

Configuring applications 113

The standard file structure of a chart is as follows:

•	 Charts – (the folder)

•	 Chart.yaml # – A .yaml file that contains the information about the chart

•	 README.md

•	 requirements.lock

•	 requirements.yaml – an optional file that lists the dependencies for a chart (the dependencies
are actually packaged in the Charts folder)

•	 templates – a directory of templates that combine with values to generate Kubernetes
manifest files

•	 values.yaml – contains the default configuration values for the chart (this is where Helm
grabs the values for the manifest template that contains the reference values)

To query the Helm charts that have been deployed, use the following command:

helm install stable/melonchart

If you need to search for a chart, you can use the following command:

helm search chartname

Delete a Helm chart that has been deployed using the following command:

helm delete melonchart

Whenever you install a chart, a new release is created. So, one chart can be installed multiple times
into the same cluster. Each can be independently managed and upgraded. To upgrade a release to a
specified version of a chart or update the chart values, run the following:

helm upgrade [RELEASE] [CHART_path] [flags]

To roll back to a specific version, you can use the following command:

helm rollback melon-release 2

Helm charts help you manage, install, and upgrade Kubernetes-native applications. You can learn
more about Helm by visiting their official documentation website: https://helm.sh/docs/.

https://helm.sh/docs/

Application Scheduling and Lifecycle Management114

Summary
In this chapter, we covered one of the most common tasks for both Kubernetes Administrators and
Developers – application scheduling and managing the application lifecycle. Even though this chapter
covers about 15% of the content of the CKA exam, working with Kubernetes objects is one of the most
important daily tasks as a Kubernetes Administrator. Ensure that you practice enough and master the
shortcuts of the kubectl commands before moving on.

In the next chapter, we’ll talk about Kubernetes storage. The content and the questions covered in
Chapter 4, Application Scheduling and Lifecycle Management and Chapter 5, Demystifying Kubernetes
Storage are considered very high-value and less time-consuming within the scheme of the actual CKA
exam. Stay tuned and keep learning!

Mock CKA scenario-based practice test
You have two virtual machines, master-0 and worker-0. Please complete the following
mock scenarios.

Scenario 1

SSH into the worker-0 node and provision a new pod called ngnix with a single container, nginx.

Scenario 2

SSH to worker-0 and then scale nginx to 5 copies.

Scenario 3

SSH to worker-0, set a ConfigMap with a username and password, and then attach a new pod to
BusyBox.

Scenario 4

SSH to worker-0 and create a nginx pod with an init container called busybox.

Scenario 5

SSH to worker-0, create a nginx pod, and then a busybox container in the same pod.

You can find all the scenario resolutions in Appendix - Mock CKA scenario-based practice test resolutions
of this book.

FAQs 115

FAQs
•	 Where can I find out about Helm charts?

Go to Helm’s official documentation to learn more about Helm: https://helm.sh/docs/
howto/charts_tips_and_tricks/.

•	 Where can I find out about Kustomize?

Go to Helm’s official documentation to learn more about Kustomize: https://kubectl.
docs.kubernetes.io/references/kustomize/.

•	 What is the recommended official Kubernetes article about init containers?

I recommend bookmarking this article, Init Containers: https://kubernetes.io/
docs/concepts/workloads/pods/init-containers/.

•	 What is your recommended Kubernetes official article for ConfigMaps?

I recommend bookmarking an article, ConfigMaps: https://kubernetes.io/docs/
concepts/configuration/configmap/.

•	 What is your recommended official Kubernetes article for resource management?

I recommend bookmarking this article, Resource Management for Pods and Containers: https://
kubernetes.io/docs/concepts/configuration/manage-resources-
containers/.

https://helm.sh/docs/howto/charts_tips_and_tricks/
https://helm.sh/docs/howto/charts_tips_and_tricks/
https://kubectl.docs.kubernetes.io/references/kustomize/
https://kubectl.docs.kubernetes.io/references/kustomize/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

5
Demystifying Kubernetes

Storage

In this chapter, we will discuss the core concept of Kubernetes storage for stateful workloads and shows
how to configure applications with mounted storage and dynamically persistent storage. This chapter
covers 10% of the Certified Kubernetes Administrator (CKA) exam content.

In this chapter, we’re going to cover the following main topics:

•	 Stateful versus stateless workloads

•	 Kubernetes volumes

•	 Kubernetes StorageClasses

•	 Volume modes, access modes, and reclaim policies for volumes

•	 Configuring an application with mounted storage

•	 Configuring an application with persistent storage

Technical requirements
To get started, we need to make sure your local machine meets the following technical requirements:

•	 A compatible Linux host – we recommend a Debian-based Linux distribution such as Ubuntu
18.04 or later

•	 Make sure your host machine has at least 2 GB RAM, 2 CPU cores, and about 20 GB of free
disk space

Demystifying Kubernetes Storage118

Stateful versus stateless workloads
Kubernetes is designed for both stateful and stateless applications. To maintain stateless workloads in
Kubernetes, we can freely delete and replace containers without any additional concerns. The stateful
application usually has storage attached either locally or in a remote location, as it needs to hold client
data. That data could be short-lived or non-persistent storage, which means that it is just maintained
until the expiration of a session. An example of this is the Redis cache on Kubernetes. Another use
case is when the data needs to be held for long enough by using persistent storage so that it can be
used on-demand. An example of the latter is the MongoDB operator for Kubernetes. The whole story
is much more complicated than it seems but it all starts with Kubernetes volumes.

Kubernetes volumes represent the concept of storage in Kubernetes. As mentioned in Chapter 1,
Kubernetes Overview, the volumes in Kubernetes are managed by storage drivers tailored by storage
vendors. This part is no longer part of Kubernetes source code after the Container Storage Interface
(CSI) was introduced.

A volume can support local storage, on-premises software-defined storage, cloud-based storage (such
as blob, block, or file storage), or a network file system (NFS) as shown in Figure 5.1:

Figure 5.1 – A CSI

Then, users can use CSI-compatible volume drivers and CSI volumes to attach or directly mount the
pods up and running in the Kubernetes cluster.

Kubernetes volumes
Ephemeral volumes and persistent volumes are two main types of volumes in Kubernetes. We’ll take
a look at each of them. Some of them may not be covered in the CKA exam, but it is important to
know, as whichever organization you work in will have embarked on its journey with one of those
public cloud providers.

Kubernetes volumes 119

Ephemeral storage

Ephemeral volumes targeted to the application need to hold the data, but they don’t care about data
loss in the case that the pod fails or restarts – the lifecycle of the ephemeral volume is aligned with the
pod lifecycle. With that in mind, mounted storage is usually ephemeral, as it shares the same lifecycle
as your containers. As long as the container is stopped or destroyed during the process of restarting
the pod, any internal storage is completely removed.

Another use case is when a pod contains multiple containers. It is possible to mount that storage to
the containers and allow those containers to share the same volume so that they interact with the
same shared filesystem.

Ephemeral volumes have several types, which we will cover one by one.

emptyDir

emptyDir is one of the most common types of ephemeral storage and will appear in the CKA exam.
It usually serves as an empty directory when the pod starts, and it shares the same lifecycle with the
Pod, meaning it only exists as long as a pod is up and running, and the data in the emptyDir is deleted
permanently when the pod stops or restarts.

When it comes to multi-containers in the same pod, it can be shared across containers, although each
container can mount the emptyDir in a different repository, as shown in Figure 5.2:

Figure 5.2 – Multi-containers in a pod sharing storage volumes

Demystifying Kubernetes Storage120

The following is an example YAML definition of an emptyDir mounted to a pod:

apiVersion: v1

kind: Pod

metadata:

  name: multi-containers

spec:

  restartPolicy: Never

  volumes:

  - name: shared-data

    emptyDir: {}

  containers:

  - name: busybox-pod

    image: busybox

    command: ["/bin/sh","-c","while true; do sleep 3600; done"]

    volumeMounts:

    - name: shared-data

      mountPath: /tmp/data

  - name: nginx-pod

    image: nginx

    volumeMounts:

    - name: shared-data

      mountPath: /data

Through the preceding example, you can see how to mount shared volumes between two containers,
which would come in handy when you want those two containers to consume the same data source.

CSI ephemeral volumes

CSI ephemeral volumes are CSI driver-compatible volumes that serve as temporary storage. For a very
long time in the past, CSI volumes provided by an external storage driver in Kubernetes were used
as persistent volumes, with the goal of not sharing a lifecycle with the pod. Starting from Kubernetes
1.15, CSI drivers can also be used for such ephemeral inline volumes. The following is an example of
using CSI ephemeral volumes:

kind: Pod

apiVersion: v1

metadata:

  name: my-csi-pod

Kubernetes volumes 121

spec:

  containers:

    - name: my-frontend

      image: busybox

      volumeMounts:

      - mountPath: "/data"

        name: my-csi-vol

      command: ["sleep", "1000000"]

  volumes:

    - name: my-csi-vol

      csi:

        driver: inline.storage.kubernetes.io

        volumeAttributes:

          foo: bar

These CSI storage drivers are generally third-party, such as Azure Disk, Azure File, AWS EBS, and
DellEMC unity – you can find a complete list of CSI drivers at https://kubernetes-csi.
github.io/docs/drivers.html.

Generic ephemeral volumes

Generic ephemeral volumes are general drivers with some additional features available such as
snapshotting, storage cloning, storage resizing, and storage capacity tracking. The following is an
example of using CSI ephemeral volumes:

kind: Pod

apiVersion: v1

metadata:

  name: my-app

spec:

  containers:

    - name: my-frontend

      image: busybox

      volumeMounts:

      - mountPath: "/cache"

        name: cache-volume

      command: ["sleep", "1000000"]

  volumes:

    - name: scratch-volume

https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html

Demystifying Kubernetes Storage122

      ephemeral:

        volumeClaimTemplate:

          metadata:

            labels:

              type: my-cache-volume

          spec:

            accessModes: ["ReadWriteOnce"]

            storageClassName: "my-cache-storage-class"

            resources:

              requests:

                storage: 1Gi

Generic ephemeral volumes work with all storage drivers that support dynamic provisioning, including
some third-party CSI storage drivers. Now that we have a good understanding of ephemeral volumes,
we’ll have a look at projected volumes and see how they work with Kubernetes.

Projected volumes

Configuration data is mounted to the Kubernetes pods – this data was injected into a pod through the
sidecar pattern. We covered ConfigMap and Secret objects in Chapter 4, Application Scheduling and
Lifecycle Management, which fall under this category. More specifically, they are also called projected
volumes because they represent a volume that maps several existing volumes into the same directory.

Besides ConfigMap and Secret, projected volumes also consist of downwardAPI volumes and service
account tokens. We’ll take a closer look at them here with some examples.

A downwardAPI volume is designed to make downward API data available to applications. Similarly,
it also mounts as a directory and then writes the data in plain-text files. The downward API allows
containers to consume cluster or pod information without using the Kubernetes API server or through
the client.

The following example shows you how to mount downwardAPI as a projected volume:

apiVersion: v1

kind: Pod

metadata:

  name: volume-test

spec:

  containers:

  - name: container-test

    image: busybox

Kubernetes volumes 123

    volumeMounts:

    - name: all-in-one

      mountPath: "/projected-volume"

      readOnly: true

  volumes:

  - name: all-in-one

    projected:

      sources:

      - downwardAPI:

          items:

            - path: "labels"

              fieldRef:

                fieldPath: metadata.labels

            - path: "cpu_limit"

              resourceFieldRef:

                containerName: container-test

                resource: limits.cpu

A service account token type of projected volume is designed to make downward API data available
to applications. Similarly, it also mounts as a directory and then writes the data in plain-text files.

The following example shows you how to mount a service account token as a projected volume:

apiVersion: v1

kind: Pod

metadata:

  name: volume-test

spec:

  containers:

  - name: container-test

    image: busybox

    volumeMounts:

    - name: all-in-one

      mountPath: "/projected-volume"

      readOnly: true

  volumes:

  - name: all-in-one

    projected:

Demystifying Kubernetes Storage124

      sources:

      - serviceAccountToken:

          audience: api

          expirationSeconds: 3600

          path: token

Let’s wrap up what we covered in this section about downwardAPI and service account token
volumes, as well as recall what we learned about ConfigMap and Secret objects in Chapter 4, Application
Scheduling and Lifecycle Management, by looking at the following. This is an all-in-one example to
help you understand how to work with all of them in one encounter:

apiVersion: v1

kind: Pod

metadata:

  name: volume-test

spec:

  containers:

  - name: container-test

    image: busybox

    volumeMounts:

    - name: all-in-one

      mountPath: "/projected-volume"

      readOnly: true

  volumes:

  - name: all-in-one

    projected:

      sources:

      - secret:

          name: mysecret

          items:

            - key: username

              path: my-group/my-username

      - downwardAPI:

          items:

            - path: "labels"

              fieldRef:

                fieldPath: metadata.labels

Kubernetes volumes 125

            - path: "cpu_limit"

              resourceFieldRef:

                containerName: container-test

                resource: limits.cpu

      - configMap:

          name: myconfigmap

          items:

            - key: config

              path: my-group/my-config

      - serviceAccountToken:

          audience: api

          expirationSeconds: 3600

          path: token

All the projected volumes, configMap, downwardAPI, secret, plus emptyDir, are provided
as local ephemeral storage. On each node, kubelet is in charge of provisioning and managing pods,
and managing the local ephemeral storage.

Aside from the mounted storage serving as internal storage, in some use cases, we also need persistent
data outside the life of the container itself that continues to exist even if the container stops or is
replaced. This raises the requirement to have permanent external storage assigned to our pods. We’ll
take a look at persistent volumes in the next section.

Persistent storage

Compared to ephemeral volumes, persistent volumes have a lifecycle that is independent of the
Kubernetes pods. State persistence means keeping some data or information to continue beyond the
life of the container when the container is deleted or replaced. However, it can be modified or updated
by the containers while it’s running.

The mechanism of working with persistent volume in Kubernetes takes advantage of the exposed API,
which abstracts technical details of how the external storage is provided, as well as how it is consumed.
Kubernetes allows us to work with persistent storage through the notion of persistent volumes and
persistent volume claims:

•	 A PersistentVolume (PV) is a storage resources provisioned dynamically based on the storage
classes with a set of features to fulfill the user’s requirements.

•	 A PersistentVolumeClaim (PVC) is the abstraction layer between the pod and the PV
requested by the user, with a set of requirements including the specific level of resources
and the access modes.

Demystifying Kubernetes Storage126

As shown in the following, Figure 5.3, the PV and PVC are defined in the Kubernetes cluster, while
the physical storage is outside of the Kubernetes cluster:

Figure 5.3 – The PV and PVC

Equally, note that the PV can be bound to a PVC, and it is a cluster-wide resource, while the
PVC is namespaced.

Let’s cover some other important concepts with regards to working with a PV and PVC before we
dive into how.

The StorageClass

The StorageClass resource in Kubernetes classifies the Kubernetes storage class. As a matter of
fact, a StorageClass contains a provisioner, parameters, and reclaimPolicy field.

The provisioner represents which CSI volume plugin is being used to provision the PVs. Examples
of different provisioners are Azure Disk, AWS EBS, and Glusterfs. You can find a complete list of
supported StorageClass resources here: https://kubernetes.io/docs/concepts/
storage/storage-classes/.

We need to define the storage class in the PVC and the definition of storage classes includes the
provisioner and the reclaim policy. Their relationship is shown in Figure 5.3:

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/

Kubernetes volumes 127

Figure 5.4 – A StorageClass resource

Notice that when the reclaim policy is not specified, it defaults to Delete, which means if a user
deletes the PVC that is bound to this PV, the PVC itself gets deleted too. You can also set it to Retain,
which means it will be retained and that you will need to manually delete the data that resides in it.
Another case would be to set it to Recycle. In this case, the PV will be recycled, deprecated, and
replaced by dynamic provisioning, which will depend on the provisioner. The DefaultStorageClass
admission controller on the Kubernetes API server will also need to be enabled – this is out of the
scope of the CKA exam but I think it’s still worth a mention here.

The following is an example StorageClass definition, using an Azure Disk-managed disk to define
a StorageClass resource with a YAML definition:

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: slow

provisioner: kubernetes.io/azure-disk

parameters:

  storageaccounttype: Standard_LRS

  kind: managed

Demystifying Kubernetes Storage128

Interestingly, despite the fact that local volumes don’t support dynamic provisioning, they can
still be created and bound when the pod is scheduled. We can set volumeBindingMode to
WaitForFirstConsumer, which is shown as follows:

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: local-storage

commissions: kubernetes.io/no commissions

volumeBindingMode: WaitForFirstConsumer

Learning about storage class in Kubernetes will help you work with different storage in real life,
going above and beyond what’s required in the current CKA exam. Please feel free to check out the
official documentation – it will be updated whenever a new supported storage class is added and
will provide useful examples: https://kubernetes.io/docs/concepts/storage/
storage-classes/.

Now, let’s take a look at another important concept called volume modes next.

Volume modes

Volume modes indicate the type of consumption of the volume – this can either be a filesystem or a
block device. When volumeMode is set to Filesystem, it mounts into the pods as a directory.
When volumeMode is set to Block, we use it as a raw block.

Access modes

When a PV is mounted to a pod, we can specify different access modes. The access modes represent
the way that the data in the storage resources is being consumed. They can be summarized as shown
in the following table:

Access modes Definition Abbreviated

ReadWriteOnce The volume can be mounted as read-write by one node. RWO

ReadOnlyMany The volume can be mounted as read-only by multiple nodes. ROX

ReadWriteMany The volume can be mounted as read-write by multiple nodes. RWX

ReadWriteOncePod The volume can be mounted as read-write by one pod.
This is a feature supported by Kubernetes, starting from
Kubernetes 1.22.

RWOP

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/

Kubernetes volumes 129

To learn more about access modes, you can find the official documentation here: https://
kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes.

Knowing the access modes is important, as they’re used all the time when working with Kubernetes
storage. Now, let’s take a look at the PV and PVC next, and see how these concepts work together
with Kubernetes.

A PV

Let’s first take a look at how to create a PV. You do so using the following YAML definition:

  apiVersion: v1

  kind: PersistentVolume

  metadata:

    name: my-pv

  spec:

    storageClassName: local-storage

    capacity:

      storage: 1Gi

    accessModes:

      - ReadWriteOnce

   

To learn more about how PVs work with Kubernetes, check out this article: https://kubernetes.
io/docs/concepts/storage/persistent-volumes/#persistent-volumes.

Knowing about PVs on their own is not enough – we need to learn about how PVCs work alongside
them within Kubernetes storage, which is what we’ll get into next.

PVCs

One of the most interesting things about the PVC is that users don’t need to worry about the details of
where the storage is located. They only need to know about the StorageClass and accessMode.
PVCs will automatically bind themselves to a PV that has a compatible StorageClass and
accessMode. The following is an example of a PVC:

 apiVersion: v1

 kind: PersistentVolumeClaim

 metadata:

   name: my-pvc

 spec:

   storageClassName: local-storage

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistent-volumes

Demystifying Kubernetes Storage130

   accessModes:

       - ReadWriteOnce

   resources:

     requests:

        storage: 512Mi

You can learn more about the PVC from the official Kubernetes documentation here: https://
kubernetes.io/docs/concepts/storage/persistent-volumes/#lifecycle-
of-a-volume-and-claim.

Once you have a PV and PVC that will define the Kubernetes storage, the next step is to assign the
storage to your applications deployed on top of Kubernetes. As we explained, Kubernetes is also
capable of dealing with stateful workloads, so we’ll have a look at how to mount storage to a stateful
application in Kubernetes.

Cracking stateful applications in Kubernetes
In this section, we will learn about how to work with storage for stateful applications in Kubernetes.
The considerations within this part are often seen as high-value and low-effort in terms of the CKA
exam. Make sure you keep practicing them until you feel you know them confidently:

•	 Mounting storage to a stateful application

•	 Dynamically provisioning storage to a stateful application

Configuring an application with mounted storage

You need to create a new YAML definition where you write up the specification of the Kubernetes
pod and then set up emptyDir volumes for the pod. Kubernetes creates empty storage on a node after
the pod is scheduled to a specific worker node:

1.	 Check whether you currently have any nodes available to schedule a pod by using the
following command:

kubectl get nodes

Alternatively, you can use the simplified version of the previous command:

alias k=kubectl

k get no

If the status of any of your nodes shows Ready, as in the following figure, that means you can
proceed to the next step:

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#lifecycle-of-a-volume-and-claim
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#lifecycle-of-a-volume-and-claim
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#lifecycle-of-a-volume-and-claim

Cracking stateful applications in Kubernetes 131

Figure 5.5 – Checking the available nodes

2.	 Use the Vim editor to create a new YAML definition file called pod-volume.yaml, and
when you enter Vim, press the Insert key on your keyboard and let the current edit mode
switch to INSERT:

Figure 5.6 – Inserting a YAML spec with Vim

3.	 Then, put the following in the YAML definition:

apiVersion: v1

kind: Pod

metadata:

  name: my-volume-pod

spec:

  containers:

  - image: busybox

    name: busybox

Demystifying Kubernetes Storage132

    command: ["/bin/sh","-c","while true; do sleep
3600;  done"]

    volumeMounts:

    - name: my-volume

      mountPath: /tmp/storage

  volumes:

  - name: my-volume

    emptyDir: {}

4.	 Then, save your edits and quit Vim. Press the Esc key, type :wq! at the bottom of the editor,
and then press Enter to take you back to the terminal:

Figure 5.7 – Saving the YAML definition in Vim

5.	 When you’re on the terminal, use the following command to deploy the .yaml file:

kubectl apply -f pod-volume.yaml

Then, it should display a message that the pod has been created successfully, something similar
to the following:

pod/my-volume-pod created

Cracking stateful applications in Kubernetes 133

You can go ahead and check whether the pod is now running by using the kubectl get
pods command and the command comes back with the following output:

Figure 5.8 – Checking whether the pod is running

Now, you have deployed a pod with mounted storage. If you run the following command, you’ll be
able to check out further details, including configuration information, resource requirements, the
labels of the pods, and events information about this pod and the mounted storage:

kubectl describe pod my-volume-pod

The output of this command should be similar to the following:

Figure 5.9 – Checking the pod configurations and status

Demystifying Kubernetes Storage134

From the output, we can see the pod has been mounted on a volume called my-volume just as
we specified in the YAML definition. Type has been specified as EmptyDir, so it’s a temporary
directory that shares the pod’s lifecycle. The bottom of the screenshot also shows the relevant events
when provisioning this pod.

Configuring an application with persistent storage

In this case, you need to create a new YAML definition where you write up the specification of the
Kubernetes PV – Kubernetes will assign the storage based on the PVC bound to the PV on a node
after the pod has been scheduled to a specific worker node.

Creating your PV

You can start by checking whether you currently have any nodes available to schedule a pod by using
kubectl get nodes or kubectl get no. Make sure that the status of one of your nodes is
Ready, as in the following:

Figure 5.10 – Checking the available nodes

From here, we’re creating a new PV by going through the following steps:

1.	 Use Vim to write up the following YAML definition called data-pv.yaml:

  apiVersion: v1

  kind: PersistentVolume

  metadata:

    name: data-pv

  spec:

    storageClassName: local-storage

    capacity:

      storage: 1Gi

    accessModes:

      - ReadWriteOnce

    hostPath:

      path: "/mnt/data"

Cracking stateful applications in Kubernetes 135

2.	 When you’re on the terminal, use the following command to deploy the .yaml file:

kubectl apply -f data-pv.yaml

Then, it will display a message that the PV has been created successfully, something similar
to the following:

persistentvolume/data-pv created

The preceding YAML definition means that there is 1 GB of storage allocated as local storage.
You can define a PVC of 1 G storage bound to that PV. However, in the theoretical case that
you had two claims of 500 MB each, the PV could also be split during the allocation process.
Under the hood, those two PVCs are bound to the same PV, and from there, they share the
amount of storage.

3.	 Use the following command to check the PV’s status:

kubectl get pv

You’ll get the following output:

Figure 5.11 – Checking whether the PV is available

Notice that the status is available, meaning that this PV is currently not bound to a PVC and is
available to be bound with a new PVC, which we’re about to create in the next step.

Creating your PVC

From here, we’re creating a new PVC by going through the following steps:

1.	 Use Vim to write up the following YAML definition called data-pvc.yaml:

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  name: data-pvc

spec:

  storageClassName: local-storage

  accessModes:

    - ReadWriteOnce

  resources:

    requests:

      storage: 512Mi

Demystifying Kubernetes Storage136

2.	 When you’re on the terminal, use the following command to deploy the yaml file:

kubectl apply -f data-pvc.yaml

The PVC is created successfully and gives an output similar to the following:

persistentvolumeclaim/data-pvc created

3.	 Use the following command to check the PVC’s status:

kubectl get pvc

You’ll get the following output:

Figure 5.12 – Checking the PVC

You may notice that the status of this PVC is Bound, which means that it is bound to a PV.

To double-check whether it is bound to the PV that you desire, you can use kubectl get pv
command to check back:

Figure 5.13 – Check whether the PVC is bound to the PV

The preceding figure shows the Bound status of our PV, which means it has been bound successfully.

Configuring the pod to consume the PV

From here, we’re configuring the pod to consume the PV by going through the following steps:

1.	 Use Vim to write up the following YAML definition called data-pod.yaml where we’re
about to create a pod to consume the targeted PV:

 apiVersion: v1

 kind: Pod

 metadata:

   name: data-pod

 spec:

   containers:

     - name: busybox

Cracking stateful applications in Kubernetes 137

       image: busybox

       command: ["/bin/sh", "-c","while true; do sleep
3600;  done"]

       volumeMounts:

       - name: temp-data

         mountPath: /tmp/data

   volumes:

     - name: temp-data

       persistentVolumeClaim:

         claimName: data-pvc

   restartPolicy: Always

2.	 2. When you’re on the terminal, use the following command to deploy the yaml file:

kubectl apply -f data-pod.yaml

The pod is successfully created with an output similar to the following:

pod/data-pod created

You can use the kubectl get pods command to verify whether your pod is up and running. If
you want your command to watch the status of the pod, you can use the -w flag in your command;
it should look as follows:

kubectl get pods -w

The output would look as follows:

Figure 5.14 – Checking whether the pod is up and running

You can use the following command to check out further details, including configuration information,
resource requirements, labels of the pods, and event information about this pod and the dynamically
allocated storage:

kubectl describe pod data-pod

Demystifying Kubernetes Storage138

The output of this command should be similar to the following:

Figure 5.15 – Checking the pod’s detailed configuration and events

From the output, we can see the pod has been dynamically attached to persistent storage called temp-
data, which was expected, as we defined it in the YAML definition. The bottom of the screenshot
also shows the relevant events while provisioning this pod.

Cracking stateful applications in Kubernetes 139

The preceding is an example of using a PVC as a volume – this allows pods to access storage by using
the claim as a volume. In that case, the claim must exist in the same namespace in which the pods
will be using them.

We also noticed that, in some cases, people use hostPath to mount volumes, which simply allocates
local storage of that node of the cluster so that the pod consumes the storage where the pod lives.

Important note
hostPath also easily causes security issues, so we should avoid using it as much as possible.
While using it, we can specify volumeMounts as ReadOnly and only make it available to
a specific file or repository.

The following is an example of this:

apiVersion: v1

kind: Pod

metadata:

  name: my-pv

  namespace: default

spec:

  restartPolicy: Never

  volumes:

  - name: vol

    hostPath:

      path: /tmp/data

  containers:

  - name: my-pv-hostpath

    image: "busybox"

    command: ["/bin/sh", "-c","while true; do sleep
3600;  done"]

    volumeMounts:

    - name: vol

      mountPath: /scrub

Note that hostPath works for a single node only, and if you’re on a multi-node cluster, a local
volume is the way to go. You can find more details about local storage at https://kubernetes.
io/docs/concepts/storage/volumes/#local.

https://kubernetes.io/docs/concepts/storage/volumes/#local
https://kubernetes.io/docs/concepts/storage/volumes/#local

Demystifying Kubernetes Storage140

Summary
This chapter covers one of the highest-value topics in the CKA exam, which is Kubernetes storage.
Over the last three years, the CKA exam has raised more and more attention toward Kubernetes
storage, where it previously only scratched the surface and now focuses on various use cases of the
stateful application deployment. Learning this part may not seem the most crucial for Kubernetes
administrators at the moment, but it will take off more quickly once we have more and more cloud-
native databases adopted by enterprise-grade customers. Having a solid knowledge of storage will add
value to your existing Kubernetes administration skills. If you can confidently play with the exercises
in this chapter, it will increase your success rate in the actual CKA exam, as storage-related questions
are usually simpler but higher value compared to other cluster maintenance task-related questions
in the previous chapters.

In the next chapter, Securing Kubernetes, we will dive into some important Kubernetes security concepts,
which will help you not only set up a solid foundation for the CKA exam but also potentially help you
for the Certified Kubernetes Security Specialist (CKS) exam in the future – stay tuned!

Mock CKA scenario-based practice test
You have two virtual machines, master-0 and worker-0. Please complete the following
mock scenarios.

Scenario 1

Create a new PV called packt-data-pv to store 2 GB, and two PVCs each requesting 1 GB
of local storage.

Scenario 2

Provision a new pod called pack-storage-pod and assign an available PV to this Pod.

You can find all the scenario resolutions in Appendix - Mock CKA scenario-based practice test resolutions
of this book.

FAQs 141

FAQs
•	 Where can I find the latest updates about the supported CSI drivers while working with Kubernetes?

The Kubernetes CSI Special Interest Group (SIG) has a GitHub-based documentation website
where you can find all the latest drivers, with tutorials from their main page: https://
kubernetes-csi.github.io/docs. More specifically, you can find all available
supported CSI drivers at the following link: https://kubernetes-csi.github.io/
docs/drivers.html.

•	 What is the recommended official Kubernetes article to refer to for configuring ephemeral storage?

I recommend bookmarking the official documentation about ephemeral volumes: https://
kubernetes.io/docs/concepts/storage/ephemeral-volumes/.

•	 What is the recommended official Kubernetes article to refer to for configuring persistent storage?

I recommend bookmarking this article, Configure a Pod to Use a Persistent Volume for Storage,
where you can find all the key steps and processes: https://kubernetes.io/docs/
tasks/configure-pod-container/configure-persistent-volume-storage/.

https://kubernetes-csi.github.io/docs
https://kubernetes-csi.github.io/docs
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/
https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-persistent-volume-storage/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-persistent-volume-storage/

6
Securing Kubernetes

This chapter will cover how Kubernetes authentication and authorization patterns work and dive
into Kubernetes role-based access control (RBAC). We’ll also learn about managing the security of
applications deployed on Kubernetes.

Since most of the Kubernetes security-related content released prior to November 2020 has gradually
moved to the Certified Kubernetes Security Specialist (CKS) exam instead, this chapter will just cover
the essentials to help you to learn about Kubernetes security. We’ll specifically focus on Kubernetes
RBAC since it is close to 5% of the CKA exam content.

Nonetheless, a good understanding of the Kubernetes security fundamentals will be a great help for
the CKA exam and prepare you for further development in the Kubernetes space.

In this chapter, we’re going to cover the following main topics:

•	 Securing Kubernetes in layers

•	 Kubernetes authentication and authorization

•	 Kubernetes RBAC

•	 Managing the security of Kubernetes applications

Technical requirements
To get started, you will need to make sure that your local machine meets the technical requirements
described as follows:

•	 A compatible Linux host – we recommend a Debian-based Linux distribution such as Ubuntu
18.04 or later.

•	 Make sure that your host machine has at least 2 GB of RAM, 2 CPU cores, and about 20 GB
of free disk space.

Securing Kubernetes144

Securing Kubernetes in layers
Kubernetes security is a broad topic due to the sophistication of the platform. It includes secure
Kubernetes nodes, networks, and Kubernetes objects such as Pods. The Cloud Native Computing
Foundation (CNCF) defines Kubernetes security in layers, which they call the four Cs of cloud-native
security, taking the topic of security beyond Kubernetes and its ecosystem. The four Cs stand for
Cloud, Cluster, Container, and Code, as shown in the following diagram:

Figure 6.1 – The different layers in Kubernetes

From the preceding diagram, we can see the following:

•	 The Cloud layer is based on the underlying infrastructure where the Kubernetes cluster is
deployed – it is managed by the cloud provider when it is in the cloud or by the organization
when it comes to a private data center.

•	 The Cluster layer is more about securing the Kubernetes cluster components, ensuring each
component is secured and conjured correctly. Looking back at Chapter 1, Kubernetes Overview,
will help you understand how those components work together.

•	 The Container layer includes container vulnerability scanning, hosted OS scaling, and container
privileged users.

•	 The Code layer is focused on the application code. Different from traditional application
security approaches, it now works with DevSecOps and vulnerability assessment tools. This
layer is relevant but outside of the scope of Kubernetes security.

Kubernetes authentication and authorization 145

Cloud-native security or, more specifically, Kubernetes security requires organizations to address each
layer. In this chapter, we’ll focus on the following topics:

•	 Kubernetes API security with an admission controller

•	 Kubernetes authentication and authorization with RBAC, Attribute-Based Access Control
(ABAC), and node authorization

•	 Managing the security of Kubernetes applications with security contexts

The preceding topics are either part of cluster-layer or container-layer security, and they help us run
our Kubernetes application securely. We’ll cover Kubernetes network security and dive deeper into
network policies in Chapter 7, Demystifying Kubernetes Networking.

Kubernetes authentication and authorization
In Chapter 1, Kubernetes Overview, we talked about a typical workflow of Kubernetes components
collaborating with each other. In this workflow, when a request comes through the Kubernetes API
server, it invokes an API call. This API request now needs to be authenticated and authorized by the
API server before a request is made to a Kubernetes API resource. As a result, the request can either
be allowed or denied. The authentication process can be depicted as in Figure 6.2:

Figure 6.2 – API Kubernetes authentication

You can refer to the following article to get an overview of how the Kubernetes authentication
process works: https://kubernetes.io/docs/reference/access-authn-authz/
authentication/.

Before getting into authentication and authorization, let’s take a look at the user accounts and service
accounts in Kubernetes.

https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/

Securing Kubernetes146

Service accounts versus user accounts

In Kubernetes, we have a distinction between normal user accounts and service accounts managed
by Kubernetes. An account represents an identity for a user or a service process. The main difference
between a user account and a service account is as follows:

•	 User accounts are for normal human users. In Kubernetes, the RBAC subsystem is used to
determine whether the user is authorized to perform a specific operation on a specific scope.
We’ll look into this further in the Kubernetes RBAC section later in this chapter.

•	 Service accounts are for services or processes running in a Pod in the Kubernetes cluster. The
service accounts are users managed by the Kubernetes API. In Kubernetes, it is possible to use
client certificates, bearer tokens, or even an authenticating proxy to authenticate API requests
through an API server.

We’ll take a closer look at the following things from hereon:

•	 Kubernetes service accounts and how to work with them

•	 How to organize cluster access using kubeconfig as a Kubernetes user

•	 How to configure access to multiple clusters as a Kubernetes user

Let’s take a look at the Kubernetes service account first.

Kubernetes service accounts

Back in the previous chapter, we created a new Pod with kubectl, although there is a default service
account in the default namespace, which the Pod was actually automatically assigned to. Now, let’s
have a look at how to work with a service account in Kubernetes.

Managing service accounts

You can use the following command to get the current service account in the default namespace:

kubectl get serviceaccounts

Alternatively, you can simply use the shortcut command as follows:

kubectl get sa

The output will return the default service account in the default namespace:

NAME      SECRETS   AGE

default   1         5d

Kubernetes authentication and authorization 147

The service account is a namespaced resource – you can use the following command to check out all
the service accounts in the current cluster:

k get sa -A

Alternatively, you can use the complete command as follows:

k get serviceaccounts --all-namespaces

The output of the preceding commands will list the service account information by namespace, similar
to the following in Figure 6.3:

Figure 6.3 – The service account information by namespace

Securing Kubernetes148

This also means we can get the service account information by namespace using the kubectl get
sa command and then by specifying the -n flag with namespace name to get the service account
with that particular namespace. For example, using kubectl get sa -n with kube-system
will only return the service account in the kube-system namespace.

The kubectl create sa command

You can use the kubectl create command to create a new service account, the following being
an example:

kubectl create serviceaccount melon-serviceaccount

The following output will show that the service account is created successfully:

serviceaccount/melon-serviceaccount created

We can also create the service account in a different namespace using the kubectl create command
by specifying the -n flag. Additionally, we also need to make sure that the namespace exists prior
to creating a service account in that namespace. The following is an example of using a kubectl
create command to create a service account named melonsa in a namespace called melon-ns:

kubectl create ns melon-ns

kubectl create sa melonsa -n melon-ns

The preceding output displays that you have created the service account successfully. You can also use
the following command to check that the service account has just been created:

k get –n melon-ns serviceaccounts

The following output lists the service account and how long it’s been created:

NAME                   SECRETS   AGE

melon-ssa   1         46s

Similarly, if you want to check out the service account in another namespace, you can use the kubectl
get sa <service account name> command and then add the -n flag, for example, k get
sa melonsa -n melon-ns.

Kubernetes authentication and authorization 149

Assigning a service account to a Pod

The purpose of having a service account is to provide an identity to serve the process running in the
Pod. To determine the service account that a Pod will use, you can specify a serviceAccountName
field in the Pod YAML specification called sa-pod.yaml, as shown here:

apiVersion: v1

kind: Pod

metadata:

   name: melon-serviceaccount-pod

spec:

   serviceAccountName: melon-serviceaccount

   containers:

   - name: melonapp-svcaccount-container

     image: busybox

     command: ['sh', '-c','echo stay tuned!&& sleep 3600']

Then, when we use the kubectl apply -f sa-pod.yaml command to deploy this YAML
file, we’ll be able to see a Pod spinning up.

The kubectl delete sa command

You can delete a service account using the kubectl delete sa <account name > command:

kubectl delete sa melon-serviceaccount

The output comes back showing that the service account was deleted:

serviceaccount "melon-serviceaccount" deleted

Hopefully, you now have a better idea of how to work with a Kubernetes service account using what you
learned in this section. Now, let’s take a look at how to organize the cluster access using kubeconfig.

Organizing the cluster access using kubeconfig

As a Kubernetes user, when you deploy the Kubernetes cluster with kubeadm, you will find a file
called config in the $HOME/.kube directory:

cloudmelon@cloudmelonplayground:~$ cd $HOME/.kube

cloudmelon@cloudmelonplayground:~/.kube$ ls

cache/  config

Securing Kubernetes150

In other cases, this kubeconfig file can be set up as a KUBECONFIG environment variable or a
--kubeconfig flag. You can find detailed instructions in the official documentation: https://
kubernetes.io/docs/tasks/access-application-cluster/configure-access-
multiple-clusters/.

The kubeconfig files help organize information clusters, users, and namespaces. From the
kubectl utility point of view, it reads kubeconfig files to locate the information of the cluster
and communicate with the API server of that Kubernetes cluster.

The following is an example of a kubeconfig file:

apiVersion: v1

clusters:

- cluster:

    certificate-authority: /home/cloudmelon/.minikube/ca.crt

    extensions:

    - extension:

        last-update: Wed, 11 May 2022 23:47:43 UTC

        provider: minikube.sigs.k8s.io

        version: v1.25.2

      name: cluster_info

    server: https://192.168.49.2:8443

  name: minikube

contexts:

- context:

    cluster: minikube

    extensions:

    - extension:

        last-update: Wed, 11 May 2022 23:47:43 UTC

        provider: minikube.sigs.k8s.io

        version: v1.25.2

      name: context_info

    namespace: default

    user: minikube

  name: minikube

current-context: minikube

kind: Config

preferences: {}

users:

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

Kubernetes authentication and authorization 151

- name: minikube

  user:

    client-certificate: /home/cloudmelon/.minikube/profiles/
minikube/client.crt

    client-key: /home/cloudmelon/.minikube/profiles/minikube/
client.key

You can see config by using the following command:

kubectl config view

The output should look as follows:

Figure 6.4 – The kubectl config view output

Securing Kubernetes152

You can use the kubectl config command to display current-context:

kubectl config current-context

The returned output will be the current context – in my case, it is minikube. You may notice that it
is the same as current-context shown in the aforementioned config file:

minikube

To know more about how to organize the cluster access using kubeconfig, refer to the official
article to learn more:

https://kubernetes.io/docs/concepts/configuration/organize-cluster-
access-kubeconfig/

Configuring access to multiple clusters

As a Kubernetes user, when it comes to multiple clusters, we can also use the kubectl config
command to configure the current context to switch between different Kubernetes clusters. To find
all the commands provided by kubectl config, use this command:

kubectl config --help

The following is an example of how kubeconfig contains the access information of two different
Kubernetes clusters:

apiVersion: v1

clusters:

- cluster:

    certificate-authority-data:

 < authority data >

    server: https://xx.xx.xx.xx

  name: gke_cluster

- cluster:

    certificate-authority-data:

 < authority data >

    server: https://xx.xx.xx.xx

  name: arctestaks

contexts:

- context:

    cluster: gke_cluster

https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/

Kubernetes authentication and authorization 153

    user: gke_cluster

  name: gke_cluster

- context:

    cluster: arctestaks

    user: clusterUser_akscluster

  name: akscluster

current-context: akscluster

kind: Config

preferences: {}

users:

- name: gke_cluster

  user:

    auth-provider:

      config:

        access-token:

 < token data >

        cmd-args: config config-helper --format=json

        cmd-path: C:\Program Files (x86)\Google\Cloud SDK\
google-cloud-sdk\bin\gcloud.cmd

        expiry: '2022-05-12T00:28:06Z'

        expiry-key: '{.credential.token_expiry}'

        token-key: '{.credential.access_token}'

      name: gcp

- name: clusterUser_akscluster

  user:

    client-certificate-data: <data>

    client-key-data: <data>

    token:

 < token >

We could use the kubectl config current-context command to see the cluster that I am
working on and it would be displayed as the following:

 gke-cluster

Securing Kubernetes154

The preceding output indicates that I am on a Kubernetes cluster called gke-cluster and that I
am using the following command to switch my default context to another Kubernetes cluster called
akscluster:

kubectl config use-context akscluster     

We could use the kubectl config current-context command to check my current working
Kubernetes cluster and it would be displayed as the following:

aks-cluster

Switching context is an important technique that you can apply during your actual CKA exam and
it’s important to perform tasks in the targeting Kubernetes cluster so that you’ll be scored accurately.
It also comes in handy in your real life working as a Kubernetes administrator, as often, you’ll be
working on multiple Kubernetes clusters.

To know more about how to configure access to multiple clusters, check the official article: https://
kubernetes.io/docs/tasks/access-application-cluster/configure-access-
multiple-clusters/

Kubernetes authorization

In Kubernetes, a request must be authenticated before it can be authorized with permissions granted
to access the Kubernetes cluster resources.

There are four authorization modes in Kubernetes:

•	 RBAC authorization: Kubernetes RBAC is more about regulating access to Kubernetes resources
according to the roles with specific permissions to perform a specific task, such as reading,
creating, or modifying through an API request. We’ll focus on Kubernetes RBAC in this section.

•	 Node authorization: As the name suggests, this grants permissions to the API requests made
by kubelets agent. This is a special - purpose authorization mode not covered in the CKA
exam. You can check out the official documentation about node authorization to find out more:
https://kubernetes.io/docs/reference/access-authn-authz/node/.

•	 ABAC authorization: ABAC is an access control granted to users by policies and attributes such
as user attributes, resource attributes, and objects. This topic is not covered in the current CKA
exam. If you want to learn more about using the ABAC mode, you can refer to the official article:
https://kubernetes.io/docs/reference/access-authn-authz/abac/.

•	 Webhook authorization: Webhook authorization through WebHooks is an HTTP POST
triggered by an event. An example of this is that the Webhook will react to a URL when triggered
by certain actions. This topic is not covered in the current CKA exam. You can explore the
following article if you want to know more about it: https://kubernetes.io/docs/
reference/access-authn-authz/webhook/.

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://kubernetes.io/docs/reference/access-authn-authz/node/
https://kubernetes.io/docs/reference/access-authn-authz/abac/
https://kubernetes.io/docs/reference/access-authn-authz/webhook/
https://kubernetes.io/docs/reference/access-authn-authz/webhook/

Kubernetes RBAC 155

Let’s take a look at what the key areas covered in the CKA exam are, starting with Kubernetes RBAC.

Kubernetes RBAC
Kubernetes RBAC aims to regulate access to Kubernetes resources according to the roles with specific
permissions to perform a specific task.

Once specified, RBAC checks the rbac.authorization.k8s.io API group membership to
see whether it is allowed through the Kubernetes API.

Let’s take a look at the different Roles and RoleBindings in Kubernetes.

Roles versus ClusterRoles and their RoleBindings

In Kubernetes, we have Roles and ClusterRoles. A Kubernetes RBAC Role or ClusterRole represents
a role with a set of permissions. In a nutshell, they differ by the scope of these permissions:

•	 A Role represents permissions within a particular namespace

•	 A ClusterRole represents permissions within the cluster – it could be cluster-wide, across
multiple namespaces, or individual namespaces

With Roles and ClusterRoles, we have the concept of RoleBinding and ClusterRoleBinding. The
bindings bind the role to a list of subjects such as users, groups, or service accounts, as can be seen
in the following figure:

Figure 6.5 – Kubernetes RBAC

Securing Kubernetes156

Let’s define a new role called dev-user in a namespace called dev. We can use the following
command to do this:

kubectl create role dev-user --verb=get --verb=list
--resource=pods --namespace=dev

The preceding command is the same as the following YAML definition:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

  namespace: dev

  name: dev-user

rules:

- apiGroups: [""]

  resources: ["pods"]

  verbs: ["get", "list"]

The output of the preceding command is the following:

role.rbac.authorization.k8s.io/dev-user created

Then, we can use the kubectl get role command to check the role that we have just created:

cloudmelon@cloudmelonplayground:~$ k get role -n dev

NAME       CREATED AT

dev-user   2022-05-13T04:14:59Z

We then need to create the RoleBinding to bind this role to the subjects as follows:

kubectl create rolebinding dev-pods-binding --role=dev-user -
-user=melon-dev --namespace=dev

Alternatively, we could also use the following YAML file:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: dev-pods-binding

  namespace: dev

subjects:

- kind: User

Kubernetes RBAC 157

  apiGroup: rbac.authorization.k8s.io

  name:melon-dev

roleRef:

  kind: Role

  name: dev-user

  apiGroup: rbac.authorization.k8s.io

Let’s define a new ClusterRole called secret-reader – note that the ClusterRole is not namespaced.
We could use the following YAML definition:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: secret-reader

rules:

- apiGroups: [""]

  resources: ["secrets"]

  verbs: ["get", "list"]

Then, we need to create the RoleBinding to bind this role to the subjects, as shown in the following
YAML definition:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: read-secrets

  namespace: development

subjects:

- kind: Group

  name: manager

  apiGroup: rbac.authorization.k8s.io

roleRef:

  kind: ClusterRole

  name: secret-reader

  apiGroup: rbac.authorization.k8s.io

Securing Kubernetes158

We can use the following command to get all the roles across all the namespaces:

cloudmelon@cloudmelonplayground:~$ kubectl get roles -A

NAMESPACE          NAME                                 CREATED
AT

dev                dev-user  

kube-public        kubeadm:bootstrap-signer-clusterinfo             

kube-public        system:controller:bootstrap-signer               

kube-system        extension-apiserver-authentication-reader        

kube-system        kube-proxy                                       

kube-system        kubeadm:kubelet-config-1.23                      

kube-system        kubeadm:nodes-kubeadm-config                     

kube-system        system::leader-locking-kube-controller-
manager   

kube-system        system::leader-locking-kube-scheduler            

kube-system        system:controller:bootstrap-signer               

kube-system        system:controller:cloud-provider                 

kube-system        system:controller:token-cleaner                  

kube-system        system:persistent-volume-provisioner             

We can use the following command to get all the RoleBindings across all the namespaces:

cloudmelon@cloudmelonplayground:~$ kubectl get rolebindings -A

NAMESPACE          NAME  

ROLE  AGE

dev                dev-pods-binding                                    

Role/dev-user   15s

kube-public        kubeadm:bootstrap-signer-clusterinfo                

Role/kubeadm:bootstrap-signer-clusterinfo             6d

kube-public        system:controller:bootstrap-signer                  

Role/system:controller:bootstrap-signer               6d

kube-system        kube-proxy  

Role/kube-proxy                                       6d

kube-system        kubeadm:kubelet-config-1.23                         

Role/kubeadm:kubelet-config-1.23                      6d

kube-system        kubeadm:nodes-kubeadm-config                        

Role/kubeadm:nodes-kubeadm-config                     6d

kube-system        metrics-server-auth-reader                          

Role/extension-apiserver-authentication-reader        3h

Kubernetes RBAC 159

kube-system        system::extension-apiserver-authentication-
reader   Role/extension-apiserver-authentication-reader        

6d

kube-system        system::leader-locking-kube-controller-
manager      Role/system::leader-locking-kube-controller-
manager   6d

kube-system        system::leader-locking-kube-scheduler               

Role/system::leader-locking-kube-scheduler            6d

kube-system        system:controller:bootstrap-signer                  

Role/system:controller:bootstrap-signer               6d

kube-system        system:controller:cloud-provider                    

Role/system:controller:cloud-provider                 6d

kube-system        system:controller:token-cleaner                     

Role/system:controller:token-cleaner                  6d

kube-system        system:persistent-volume-provisioner                

Role/system:persistent-volume-provisioner             6d

Knowing the ways that Roles and RoleBindings work in Kubernetes, let’s now take a look at how to
implement your own Kubernetes RBAC Roles and RoleBindings.

Implementing Kubernetes RBAC

To enable RBAC, set apiserver –authorization-mode to RBAC, which defaults to
AlwaysAllow. The other possible values include node, ABAC, Always deny, and webhook.
In the following command, we’re showing an example of setting it to use Kubernetes RBAC:

kube-apiserver –authorization-mode=RBAC

To know more about how to set up authorization mode, visit the following link: https://
kubernetes.io/docs/reference/command-line-tools-reference/kube-
apiserver/

Let’s start by creating a new deployment using our current context, which is minikube:

kubectl create deployment mybusybox –-image=busybox

Then, switch to the context for dev-user:

kubectl config use-context dev-user

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/

Securing Kubernetes160

As our dev-user only has list and get permissions, let’s try to use this profile to delete
the deployment:

cloudmelon@cloudmelonplayground:~$ kubectl delete deployment
mybusybox

Error from server (Forbidden): deployments.apps is forbidden:
User "dev-user" cannot delete resource "deployments" in API
group "apps" in the namespace "t

Now that we have learned how to manage our own Kubernetes RBAC roles, let’s take a look at how
to manage the security of Kubernetes applications.

Managing the security of Kubernetes applications
A securityContext field defines the privilege and access control settings for a Pod in the Pod
YAML specification. We need to configure the security context in case a Pod or container needs to
interact with the security mechanisms of the underlying operating system unconventionally, and in
this section, we’ll introduce how to configure a security context for a Pod or container.

As a part of your prep work, you can create a new user and a new group as shown in the following:

sudo useradd -u 2000 container-user-0

sudo groupadd -g 3000 container-group-0

We will now log in to the worker node and create a new .txt file called message.txt:

sudo mkdir -p /etc/message

echo "hello Packt" | sudo tee -a /etc/message/message.txt

From here, you’ll see the message that we input from the terminal:

 hello Packt

Now, we need to adjust the permission to limit the permission for testing purposes, which is shown
as the following:

sudo chown 2000:3000 /etc/message/message.txt

sudo chmod 640 /etc/message/message.txt

Managing the security of Kubernetes applications 161

Finally, we could deploy a new Pod in our current Kubernetes cluster to test it out. The
securityContext field is defined as part of a Pod’s YAML spec called pod-permission.yaml.
With a section called securityContext, we can specify the security permissions information, as
in the following YAML file:

  apiVersion: v1

  kind: Pod

  metadata:

    name: melon-securitycontext-pod

  spec:

    securityContext:

      runAsUser: 2000

      fsGroup: 3000

    containers:

    - name: melonapp-secret-container

      image: busybox

      command: ['sh', '-c','cat /message/message.txt && sleep
3600']

      volumeMounts:

      - name: message-volume

        mountPath: /message

    volumes:

    - name: message-volume

      hostPath:

        path: /etc/message

  

In the preceding YAML definition file, the runAsUser field means that for any container in this
Pod, all processes run with a user ID of 2000. The fsGroup field is 2000, which means that all
the processes of the container are also part of the supplementary group, ID 2000. The owner for
volume/message and any files created in that volume will be the ID 2000 group.

Let’s go ahead and deploy this YAML file as follows:

kubectl apply -f pod-permission.yaml

Securing Kubernetes162

Then, we’ll see the Pod is spinning up but will quickly encounter the following error:

NAME                        READY   STATUS          RESTARTS    

AGE

melon-securitycontext-pod 0/1     CrashLoopBackOff   1 5m

From the preceding example, we can see the Pod is BackOff due to the lack of permission. Now,
let’s pull a similar example to see whether we can fix this. Let’s configure a YAML file with a similar
configuration to the following:

securityContext:

    runAsUser: 1000

    runAsGroup: 3000

    fsGroup: 2000

Let’s deploy this using the following YAML example:

apiVersion: v1

kind: Pod

metadata:

  name: security-context-message

spec:

  securityContext:

    runAsUser: 1000

    runAsGroup: 3000

    fsGroup: 2000

  volumes:

  - name: sec-ctx-msg

    emptyDir: {}

  containers:

  - name: sec-ctx-msg

    image: busybox:1.28

    command: ["sh", "-c", "sleep 1h"]

    volumeMounts:

    - name: sec-ctx-msg

      mountPath: /message

    securityContext:

      allowPrivilegeEscalation: false

Summary 163

We can see this example is now up and running in my local Kubernetes cluster:

cloudmelon@cloudmelonplayground:/$ kubectl get pod security-
context-demo

NAME                    READY   STATUS    RESTARTS   AGE

security-context-message  1/1     Running   0          3m4s

Let’s get inside this running pod:

kubectl exec -it security-context-message -- sh

Then, we’ll get into the interactive shell, input id, and we’ll get the following output:

/ $ id

uid=1000 gid=3000 groups=2000

From the output, we can see that uid is 1000, the same as the runAsUser field; the gid is 3000,
the same as the runAsGroup field; and the fsGroup is 2000.

To learn more about the security context, check out the official documentation here: https://
kubernetes.io/docs/tasks/configure-pod-container/security-context/

Summary
This chapter gave an overview of Kubernetes security with a focus on three key topics about container
security, RBAC, and the security context. You can use this chapter to assist you with laying the
foundations for your CKS exam. With the addition of the next chapter, Demystifying Kubernetes
Networking, you will get a complete view of working with Kubernetes networking security-related
concepts and practice examples to help in your daily work as a Kubernetes administrator, and this
will all cover 20% of the CKA exam content. Let’s stay tuned!

Mock CKA scenario-based practice test
You have two virtual machines, master-0 and worker-0 – please complete the following
mock scenarios.

Scenario 1

Create a new service account named packt-sa in a new namespace called packt-ns.

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

Securing Kubernetes164

Scenario 2

Create a Role named packtrole and bind it with the RoleBinding packt-clusterbinding.
Map the packt-sa service account with list and get permissions.

Scenario 3

Create a new pod named packt-pod with the busybox:1.28 image in the packt-ns namespace.
Expose port 80. Then, assign the packt-sa service account to the Pod.

You can find all the scenario resolutions in Appendix - Mock CKA scenario-based practice test resolutions
of this book.

FAQs
•	 Where can I find the latest updates about Kubernetes security while working with Kubernetes?

The Kubernetes Security Special Interest Group (SIG) has a GitHub repository, which you
can find here: https://github.com/kubernetes/community/tree/master/
sig-security.

•	 What is the recommended Kubernetes official article for configuring the ephemeral storage?

I recommend bookmarking the official documentation about Kubernetes RBAC, which you
can find here: https://kubernetes.io/docs/reference/access-authn-
authz/rbac/.

https://github.com/kubernetes/community/tree/master/sig-security
https://github.com/kubernetes/community/tree/master/sig-security
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

7
Demystifying Kubernetes

Networking

This chapter will use the Kubernetes networking model to describe some core concepts, as well as how
to configure Kubernetes networking on the cluster nodes and network policies. We will also learn about
how to configure Ingress controllers and Ingress resources, how to configure and leverage CoreDNS,
and how to choose an appropriate container network interface plugin. This content covered in this
chapter makes up about 20% of the CKA exam.

In this chapter, we’re going to cover the following topics:

•	 Understanding the Kubernetes networking model

•	 Configuring Kubernetes networking on the cluster nodes

•	 Configuring network policies

•	 Configuring Ingress controllers and Ingress resources

•	 Configuring and leveraging CoreDNS

•	 Choosing an appropriate container network interface plugin

Technical requirements
To get started, we need to make sure your local machine meets the following technical requirements:

•	 A compatible Linux host. We recommend a Debian-based Linux distribution such as Ubuntu
18.04 or later.

•	 Make sure your host machine has at least 2 GB RAM, 2 CPU cores, and about 20 GB of free
disk space.

Demystifying Kubernetes Networking166

Understanding the Kubernetes networking model
Kubernetes is designed to facilitate the desired state management to host containerized workloads –
these workloads take advantage of sharable compute resources. Kubernetes networking resolves the
challenge of how to allow different Kubernetes components to communicate with each other and
applications on Kubernetes to communicate with other applications, as well as the services outside
of the Kubernetes cluster.

Hence, the official documentation summarizes those networking challenges as container-to-container,
pod-to-pod, pod-to-service, external-to-service, and node-to-node communications. Now, we are
going to break them down one-by-one in this section.

Container-to-container communication

Container-to-container communication mainly refers to the communication between containers inside
a pod – a multi-container pod is a good example of this. A multi-container pod is a pod that contains
multiple containers and is seen as a single unit. Within a pod, every container shares the networking,
which includes the IP address and network ports so that those containers can communicate with one
another through localhost or standard inter-process communications (IPC) such as SystemV
semaphores or POSIX shared memory. All listening ports are accessible to other containers in the
pod even if they’re not exposed outside the pod.

The following figure shows how those containers share a local network with each other inside the
same pod:

Figure 7.1 – Multiple containers sharing the pod networking

Understanding the Kubernetes networking model 167

The following is an example called multi-container-pod.yaml that shows how to create
multi-containers in a pod. In this pod, it contains nginx and busybox – two containers where
busybox is a sidecar container that calls nginx through port 80 on localhost:

apiVersion: v1

kind: Pod

metadata:

  name: multi-container-pod

  labels:

      app: multi-container

spec:

  containers:

  - name: nginx

    image: nginx:latest

    ports:

    - containerPort: 80

  - name: busybox-sidecar

    image: busybox:latest

    command: ['sh', '-c', 'while true; do sleep 3600; done;']

Let’s deploy this yaml file by using the kubectl apply -f multi-container-pod.yaml
command, and the following shows the pod has been created:

pod/multi-container-pod created

We can use the following command to check whether we could talk to the nginx container from
the sidecar busybox container:

kubectl exec multi-container-pod -c busybox-sidecar -- wget
http://localhost:80

The following output proves that both containers can talk to each other:

Figure 7.2 – Connecting to the nginx container from the busybox sidecar

Demystifying Kubernetes Networking168

Important Note
A quicker way to create a single container pod by command is by using the following command:

kubectl run nginx --image=nginx:latest --port=80

Then, you can use the kubectl get pods –o yaml command to export the YAML
content, and edit the yaml file to add another container.

To double-check that we did indeed get the nginx main page from the busybox sidecar container,
we will use the following command:

kubectl exec multi-container-pod -c busybox-sidecar -- cat
index.html

The output should look similar to what is shown in Figure 7.3:

Figure 7.3 – Checking out the downloaded html page in the busybox container

To learn more about multi-container pods to see how those containers share storage and networking,
refer to Chapter 4, Application Scheduling and Lifecycle Management.

Pod-to-pod communication

In Kubernetes, each pod has been given a unique IP address based on the podCIDR range of that
worker node. Although this IP assignment is not permanent, as the pod eventually fails or restarts,
the new pod will be assigned a new IP address. By default, pods can communicate with all pods on
all nodes through pod networking without setting up Network Address Translation (NAT). This
is also where we set up host networking. All pods can communicate with each other without NAT.

Understanding the Kubernetes networking model 169

Let’s deploy a nginx pod by using the following command:

kubectl run nginx --image=nginx –-port=8080

The following output shows the pod has been created:

pod/nginx created

To verify whether the pod has been assigned an IP address, you can use the kubectl get pod
nginx -o wide command to check the IP address of the nginx pod. The output is similar to
the following:

  NAME    READY   STATUS             RESTARTS   AGE   IP           

NODE       NOMINATED NODE   READINESS GATES

nginx   1/1     running   0          34s   172.17.0.4   

minikube   <none>           <none>

You can use the following command to check all pods available in the default namespace and their
assigned IP addresses:

k get pods -o wide

Notice the IP column in the following output – it indicates an IP address of 172.17.0.3 for the
multi-container-pod pod and 172.17.0.4 for the nginx pod. These IP addresses assigned
to those pods are in the same podCIDR:

Figure 7.4 – Checking out the IP addresses of the pods

The preceding screenshot also indicates that both pods are on the same node, minikube, according to
the NODE column. We could check the podCIDR assigned to the pod by using the following command:

kubectl get node minikube -o json | jq .spec.podCIDR

The output, which looks as follows, shows the podCIDR:

10.244.0.0/24

Demystifying Kubernetes Networking170

From the preceding command output, we can see it does not have the same CIDR as the pods. That’s
because we tested on a minikube cluster. When we start a vanilla minikube installation with the
minikube start command without specifying additional parameters for the CNI network plugin,
it sets the default value as auto. It chooses a kindnet plugin to use, which creates a bridge and
then adds the host and the container to it. We’ll get to know how to set up a CNI plugin and network
policy later in this chapter. To get to know more about kindnet, visit the following link: https://
github.com/aojea/kindnet.

Kubernetes components such as system daemons and kubelet can communicate with all pods on the
same node. Understanding the connectivity between pods is required for the CKA exam. You can check
out the official documentation about cluster networking if you want to learn more here: https://
kubernetes.io/docs/concepts/cluster-administration/networking/#the-
kubernetes-network-model.

Pod-to-service and external-to-service communications

Effective communication between pods and services entails letting the service expose an application
running on a set of pods. The service accepts traffic from both inside and outside of the cluster. The
set of pods can load - balance across them – each pod is assigned its own IP address and a single DNS.

Similar to pod-to-service, the challenge with external-to-service communication challenge is also
resolved by the service. Service types such as a NodePort or a LoadBalancer can receive traffic
from outside the Kubernetes cluster.

Let’s now take a look at different service types and endpoints.

An overview of Kubernetes service types

There are a few types of publishing services in the Kubernetes networking space that are very
important. This is different from a headless service. You can visit this link if you want to learn about
headless services, which is out of the scope of the CKA exam: https://kubernetes.io/docs/
concepts/services-networking/service/#headless-services.

The following are the most important types of publishing services that frequently appear in the
CKA exam:

https://github.com/aojea/kindnet
https://github.com/aojea/kindnet
https://kubernetes.io/docs/concepts/cluster-administration/networking/#the-kubernetes-network-model
https://kubernetes.io/docs/concepts/cluster-administration/networking/#the-kubernetes-network-model
https://kubernetes.io/docs/concepts/cluster-administration/networking/#the-kubernetes-network-model
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services

Understanding the Kubernetes networking model 171

Service type Description Example

ClusterIP A default service type for Kubernetes.
For internal communications, exposing
the service makes it reachable within
the cluster.

Checking out the pod address by
using the kubectl get pod
mypod -o wide – the internal
IP is 172.17.0.4

NodePort For both internal and external
communication. NodePort exposes the
service on a static port on each worker
node – meanwhile, a ClusterIP is
created for it, and it is used for internal
communication, requesting the IP
address of the node with an open port
– for example, <nodeIP>:<port>
for external communication.

Connecting to a worker node
VM with the public IP address
192.0.2.0 from port 80

LoadBalancer This works for cloud providers, as it’s
backed by their respective load balancer
offerings. Underneath LoadBalancer,
ClusterIP and NodePort are
created, which are used for internal and
external communication.

Checking out the services for
a Kubernetes distribution from
a cloud provider such as Azure
Kubernetes Service (AKS) or
Google Kubernetes Engine
(GKE) by using kubectl
get service mysvc -n
mynamespace – the internal IP
is 172.17.0.4

ExternalName Maps the service to the contents with a
CNAME record with its value. It allows
external traffic access through it.

For example, my.packt.
example.com

To learn more about the differences between publishing services and headless services, check
here: https://kubernetes.io/docs/concepts/services-networking/
service/#publishing-services-service-types. Now, let’s take a look at each of
those services in this section.

Demystifying Kubernetes Networking172

ClusterIP

ClusterIP is the default Kubernetes service type for internal communications. In the case of a
pod or ClusterIP, the pod is reachable inside the Kubernetes cluster. However, it is still possible
to allow external traffic to access the ClusterIP via kube-proxy, which creates iptables
entries. It comes in handy in some use cases, such as displaying Kubernetes dashboards. Figure 7.5
describes how the network traffic load - balances (round-robin) and routes to the pod. Then, it goes
through ClusterIP or other services before hitting the pods:

Figure 7.5 – ClusterIP and kube-proxy

Through the preceding diagram, we get a first look at how the service works with the pods. Let’s go
ahead and deploy an application and do a deeper dive. To create a deployment called nginx and
with the replicas number of 2, use the following command:

kubectl create deployment nginx --image=nginx --replicas=2

We can track down the process of deployment by the following command:

kubectl get deploy nginx -o wide

Once we do, we should be able to see the following output:

Figure 7.6 – The available nginx replica counts

From the preceding output, we can see that two copies of the nginx pod are up and running, just
to get a better understanding of those pods. We can see how those nginx pods are presented in the
default namespace.

Understanding the Kubernetes networking model 173

Note that we’re doing the test in the default namespace for simplicity. You can add the -n flag to
work with deployment and pods in a different namespace. Refer to Chapter 4, Application Scheduling
and Lifecycle Management, to see how the application deployment in Kubernetes works. Go and try
the following command:

kubectl get pods

The output will return all the available pods in the default namespace:

Figure 7.7 – The available nginx pods in the default namespace

Now, we’re exposing these pods to the Kubernetes cluster. We’re using the following command to
create a service called melon-service:

 kubectl expose deployment nginx --type=ClusterIP --port 8080
--name=melon-service --target-port 80

From the preceding command, we can see that we have created a ClusterIP type of service. We
can specify the following flags:

•	 type is the type of service – in our case, it is ClusterIP. We’ll take a look at NodePort
and LoadBalancer in the next sections of this chapter.

•	 port is the port that the service serves on.

•	 target-port is the port on the container to which the service redirects the traffic.

Important Note
Understanding those command flags will help you use them smoothly; I recommend remembering
this command so that you can quickly recall it during the actual CKA exam. You can also refer
to the following link (https://kubernetes.io/docs/reference/generated/
kubectl/kubectl-commands#expose) to understand whether other flags will help
you along the way.

The output of the previous command should look similar to the following:

service/melon-service exposed

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#expose
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#expose

Demystifying Kubernetes Networking174

The preceding command is executed successfully based on this output. Now, let’s go to the default
namespace and check out all the available services using the kubectl get svc command – this
will give you the following output:

Figure 7.8 – The available nginx pods in the default namespace

The preceding output shows the ClusterIP type has been created with an IP address of
10.102.194.57 and this service serves on a port of 8080.

What we did in this section to create a new ClusterIP service by using the kubectl expose
command can also be done using the following YAML manifest file:

 apiVersion: v1

 kind: Service

 metadata:

   name: melon-service

 spec:

   type: ClusterIP

   selector:

     app: nginx

  ports:

  - protocol: TCP

    port: 8080

    targetPort: 80

From the preceding YAML definition, we can see there’s a section called selector. This section
has a key-value pair, app:nginx, that has a label sector. Usually, we use a selector to map the
service with the pods. Here’s the YAML definition of the nginx deployment if we didn’t go for
the kubectl command:

apiVersion: apps/v1

kind: Deployment

metadata:

  name: nginx

spec:

  selector:

    matchLabels:

Understanding the Kubernetes networking model 175

      app: nginx

  replicas: 2

  template:

    metadata:

      labels:

        app: nginx

    spec:

      containers:

      - name: nginx

        image: nginx

        ports:

        - containerPort: 80

From the preceding YAML definition, we can see that there is a section to specify the selector and
we used the same key-value pair, app: nginx, to map the ClusterIP specification so that it
worked as expected. Refer to Chapter 4, Application Scheduling and Lifecycle Management, to learn
more about label sectors.

Important Note
As we mentioned before, the CKA exam is about time management, so it will be much more
efficient to use commands to achieve the goal.

A corresponding endpoints object can achieve what we have discussed without using a selector. You
can use the following commands to get the endpoints of melon-service:

k get ep melon-service

The following is the output of the preceding command:

Figure 7.9 – Display the endpoints of the nginx pods in the default namespace

As you can see, there’s nothing specific in the YAML definition file that we defined here. We can
compare the service definition by exporting its YAML definition using the following command:

kubectl get svc  melon-service -o yaml

Demystifying Kubernetes Networking176

We will be able to see the exported output as follows:

Figure 7.10 – The definition of the nginx service in the default namespace

Comparing this exported definition with what we have walked through in this section using kubectl
and a YAML definition will help you understand the services in Kubernetes better. Now, let’s take a
look at another important service in Kubernetes, called NodePort.

NodePort

NodePort opens ports on the Kubernetes nodes, which usually are de facto virtual machines.
NodePort exposes access through the IP of the nodes and, with the opened port, makes the application
accessible from outside of the Kubernetes cluster. The network traffic is forwarded from the ports to
the service. kube-proxy allocates a port in the range 30000 to 32767 on every node – it works
as shown in the following figure:

Understanding the Kubernetes networking model 177

Figure 7.11 – A NodePort in Kubernetes

With the preceding diagram, we get a closer look at how NodePort works with the pods. Let’s go
ahead and create a deployment called webfront-app with a replicas number of 2 using the
following command:

kubectl create deployment webfront-app --image=nginx
--replicas=2

If it’s created successfully, you will see the following output:

deployment.apps/webfront-app created

Then, we can go ahead and use the following command to expose a web frontend using NodePort:

kubectl expose deployment webfront-app --port=8080 --target-
port=80 --type=NodePort

The following output shows that we have exposed webfront-app successfully:

service/webfront-app exposed

Demystifying Kubernetes Networking178

Note that if you don’t provide a target port, it is assumed to be the same as the container port. Also
note that if you don’t provide a node port, a free port in the range between 30000 and 32767 is
automatically allocated.

Now, let’s check all the services that we have just created. As we didn’t specify the name in the previous
command, the service name is presumed to be the same as the application name:

kubectl get svc webfront-app -o wide

The output should look as follows:

Figure 7.12 – The webfront-app NodePort in the default namespace

From the preceding output, we can see the port is exposed at 31400, which is in the range of 30000
to 32767 on the node, and the target port is 80, which is opened at the container level. So, let’s get
the node IP by using the following command:

kubectl get node -o wide

The key part of your output is as follows:

Figure 7.13 – The internal IP of the webfront-app NodePort

From the preceding output, we are getting the internal IP of the node, as we’re testing locally, so we
can use the internal IP and port in conjunction to connect to webfront-app:

192.168.65.4:31400

Let’s deploy a new nginx pod called sandbox-nginx to test out the connectivity by using the
following command:

kubectl run -it sandbox --image=nginx --rm --restart=Never --
curl -Is http://192.168.65.4:31400

Understanding the Kubernetes networking model 179

The output is similar to the following:

Figure 7.14 – The internal IP of the webfront-app NodePort

In the actual CKA exam, you’ll be working on a few different VMs. In case you need to connect to
the application deployed on that node, you can use the following command to get the external IPs
of all nodes:

 kubectl get nodes -o jsonpath='{.items[*].status.addresses[?(
@.type=="ExternalIP")].address}'

Similarly, if you want to get the internal IPs of all nodes, you can use the following command:

 kubectl get nodes -o jsonpath='{.items[*].status.addresses[?(
@.type==" InternalIP ")].address}'

In the actual exam, you can also connect to that node using the internal IP, and then use the following
command, which will give you the same result:

curl -Is http://192.168.65.4:31400

In the case that you have a public IP address of the node VM that you can ping from your local
environment, you can use the following command:

curl -Is http://<node external IP>:<node port>

Tips and Tricks
Some important JSONPath commands can be found on the Kubernetes cheat sheets here
if you need some help: https://kubernetes.io/docs/reference/kubectl/
cheatsheet/#viewing-finding-resources.

https://kubernetes.io/docs/reference/kubectl/cheatsheet/#viewing-finding-resources
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#viewing-finding-resources

Demystifying Kubernetes Networking180

What we did in this section to create a new NodePort service by using the kubectl expose
command can also be done using the following YAML manifest file:

apiVersion: v1

kind: Service

metadata:

  name: webfront-app

  labels:

    app: webfront-app

spec:

  ports:

  - port: 8080

    targetPort: 80

  selector:

    app: webfrontapp

  type: NodePort

Public cloud providers often support an external load balancer, which we can define as LoadBalancer
when working with Kubernetes. Now, let’s take a look at it in the following section.

LoadBalancer

LoadBalancer is a standard way to connect a service from outside of the cluster. In this case,
a network load balancer redirects all external traffic to a service, as shown in the following figure,
and each service gets its own IP address. It allows the service to load - balance the network traffic
across applications:

Figure 7.15 – LoadBalancer in Kubernetes

Understanding the Kubernetes networking model 181

LoadBalancer is not a popular topic in the CKA exam, as it only works in a cloud environment
or another environment that supports external load balancers. Deploying the LoadBalancer
service to get a public IP is commonly used in managed Kubernetes distributions such as Azure
Kubernetes Service (AKS), Elastic Kubernetes Service (EKS), and Google Kubernetes Engine
(GKE). LoadBalancer is the default outbound type for AKS – the following is a sample YAML
definition in that regard:

apiVersion: v1

kind: Service

metadata:

  name: packt-svc

spec:

  type: LoadBalancer

  ports:

  - port: 80

    targetPort: 8080

  selector:

    app: my-packt-app

We could also use the kubectl expose command to do so:

kubectl expose deployment nginx --port=80 --target-port=8080 \

        --name=packt-svc --type=LoadBalancer

The output of the preceding command is as follows:

Figure 7.16 – LoadBalancer output in Kubernetes

Since I was testing LoadBalancer in Docker Desktop with WSL2, it was not supported – the preceding
output shows that EXTERNAL-IP is localhost. Although, when I was working on AKS, it showed
the real public IP address. Refer to this link to see what worked out for me: https://docs.
microsoft.com/en-us/azure/aks/load-balancer-standard.

https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard

Demystifying Kubernetes Networking182

ExternalName

ExternalName maps the service to the contents with a CNAME record with its value. It allows
external traffic to access it. The following is the sample YAML definition for ExternalName:

apiVersion: v1

kind: Service

metadata:

  name: my-packt-svc

  namespace: prod

spec:

  type: ExternalName

  externalName: my.melonapp.packt.com

Note that the preceding ExternalName type is defined as my.melonapp.packt.com – we
could use the nslookup command to check my-packt-svc.default,svc.cluster.
local. This returns the CNAME record for my.melonapp.packt.com. We’ll dive deeper into
how the DNS in Kubernetes works later in this chapter.

Check services and endpoints

In this section, we have worked on all four of the common service types in Kubernetes. In case we
need to quickly check all the services across all namespaces, we can use the following command:

kubectl get services --all-namespaces

Alternatively, we can use the following command:

kubectl get svcs -A

The following shows the output for the preceding command:

Figure 7.17 – Getting all the services across different namespaces

The preceding screenshot lists services across namespaces, as well as their ClusterIP and port
information. If you want to check out a specific service, you can use the following:

kubectl get svc <service-name> -n <namespace>

Understanding the Kubernetes networking model 183

The example of the preceding command is kubectl get svc kube-dns -n kube-system,
which will give you the service information. You can also go one step further to check the details by
using the kubectl describe svc command:

kubectl describe svc kube-dns -n kube-system

The output of the preceding command is as follows:

Figure 7.18 – Checking the service details

For the endpoints, we can use the following command to check the endpoint of the service:

kubectl get endpoints melon-service

It can also be as follows:

NAME            ENDPOINTS                   AGE

melon-service   10.1.0.32:80,10.1.0.33:80   5h7m

In case we’d like to check out all the endpoints across the different namespaces, we have the following:

kubectl get ep --all-namespaces

Demystifying Kubernetes Networking184

The output of the preceding command will list all the endpoints across different namespaces:

Figure 7.19 – Getting all the endpoints across different namespaces

The same principle also applies to listing all the endpoints by namespace. When you want to check
out a specific service, you can use the following:

kubectl get ep <service-name> -n <namespace>

We have talked about how to work with services and endpoints in Kubernetes, which covers pod-to-
service communication. Now, let’s get into node-to-node communication in the next section.

Node-to-node communication

Within a cluster, each node is registered by the kubelet agent to the master node, and each node
is assigned a node IP address so they can communicate with each other.

To verify this, you can use the kubectl get node -o wide command to check the internal
IP of each node. The output is similar to the following, in which you’ll notice an internal-IP for
the worker node:

Figure 7.20 – Checking out the node IP and further information

From the preceding screenshot, we can see the internal IP of the current node is 192.168.49.2. In
the case that we have multiple nodes, we can ping each node from the node within the same network.
We need to ensure the connectivity between master nodes and worker nodes, so the workloads get
to be scheduled to the worker node. In this regard, a good understanding of how to configure the
hosting network for Kubernetes nodes is very important. So, let’s have a look at the container network
interface plugin next.

Choosing an appropriate Container Network Interface plugin 185

Choosing an appropriate Container Network Interface
plugin
In Chapter 2, Installing and Configuring Kubernetes Clusters, we talked about how to use the Calico
plugin as the overlay network for our Kubernetes cluster. We can enable the Container Network
Interface (CNI) for pod-to-pod communication. The CNI plugins conform to the CNI specification.
Once the CNI is set up on the Kubernetes cluster, it will allocate the IP address per pod.

CNI networking in Kubernetes

There’s a wide range of networking plugins working with Kubernetes on today’s market, including
popular open source frameworks such as Calico, Flannel, Weave Net, and more. For more options,
check out the official documentation here: https://kubernetes.io/docs/concepts/
cluster-administration/addons/.

Taking Flannel as an example, Flannel is focused on configuring a Layer 3 network fabric designed
for Kubernetes, mainly for routing packets among different containers. Flannel runs a single binary
agent called flanneld on each host, which is responsible for allocating a subnet preconfigured
address space to each host, as in the following:

Figure 7.21 – CNI networking in Kubernetes

https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/

Demystifying Kubernetes Networking186

The preceding figure demonstrates how Flannel CNI networking works. There are many options in
the community – let’s take a look at the decision metrics about choosing the CNI plugin.

Decision metrics

To make a good choice of an appropriate CNI plugin that fits your requirements, you can refer to the
following table of different features from each of the CNI providers mentioned:

Provider
networking

Encapsulation
and routing

Support
for
network
policies

Datastore Encryption Ingress
/ Egress

Flannel Layer 3 VxLAN No ETCD Yes No

Calico Layer 3 BGP, eBPF Yes ETCD Yes Yes

Weavenet Layer 2 VxLAN Yes NO Yes Yes

Canal Layer 2 VxLAN Yes ETCD No Yes

For quick testing, Flannel is simple to set up. Calico and Weave Net are better options for enterprise-
grade customers, as they have a wide range of capabilities. In real life, it is possible to use multiple
CNI solutions in a single environment to fulfill some complex networking requirements. However,
that’s out of reach of the CKA certification exam.

Now let’s take a look at the Ingress controller in the next section.

Configuring Ingress controllers and Ingress resources
One of the challenges of Kubernetes networking is about managing internal traffic, which is also
known as east-west traffic, and external traffic, which is known as north-south traffic.

There are a few different ways of getting external traffic into a Kubernetes cluster. When it comes to
Layer 7 networking, Ingress exposes HTTP and HTTPS at Layer 7 routes from outside the cluster to
the services within the cluster.

How Ingress and an Ingress controller works

Ingress acts as a router to route traffic to services via an Ingress-managed load balancer – then, the
service distributes the traffic to different pods. From that point of view, the same IP address can be
used to expose multiple services. However, our application can become more complex, especially
when we need to redirect the traffic to its subdomain or even a wild domain. Ingress is here to address
these challenges.

Configuring Ingress controllers and Ingress resources 187

Ingress works with an Ingress controller to evaluate the defined traffic rules and then determine how
the traffic is being routed. The process works as shown in Figure 7.22:

Figure 7.22 – Ingress resources in Kubernetes

In addition to what we see here in Figure 7.22, Ingress also provides some key capabilities such as load
balancing, SSL termination, and name-based virtual hosting.

We need to deploy an Ingress controller in the Kubernetes cluster and then create Ingress resources.
We are using ingress-nginx as an example in this section. We have a wide range of options
for Ingress controllers on the market nowadays. Check out the official documentation here to get
more details: https://kubernetes.io/docs/concepts/services-networking/
ingress-controllers/.

Using multiple Ingress controllers

Note that it is also possible to deploy multiple Ingress controllers by using the Ingress class within a
Kubernetes cluster. Refer to this article to get more details: https://kubernetes.io/docs/
concepts/services-networking/ingress-controllers/#using-multiple-
ingress-controllers.

Work with Ingress resources

As mentioned, the nginx Ingress controller is one of the most popular in today’s market, so we are
using it as the main example in this section. We need to deploy an Ingress controller in the Kubernetes
cluster and create Ingress resources.

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/#using-multiple-ingress-controllers
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/#using-multiple-ingress-controllers
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/#using-multiple-ingress-controllers

Demystifying Kubernetes Networking188

Here, we are defining a minimal nginx resource with the following YAML definition:

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

  name: minimal-ingress

  annotations:

    nginx.ingress.kubernetes.io/rewrite-target: /

spec:

  ingressClassName: packt-nginx

  rules:

  - http:

      paths:

      - path: /packs

        pathType: Prefix

        backend:

          service:

            name: test

            port:

              number: 80

From the preceding YAML definition, we know that the apiVersion, kind, metadata, and spec
fields are mandatory. Then, we also need an Ingress object, which contains a valid DNS subdomain name.

A default IngressClass would look as follows:

apiVersion: networking.k8s.io/v1

kind: IngressClass

metadata:

  labels:

    app.kubernetes.io/component: controller

  name: nginx-example

  annotations:

    ingressclass.kubernetes.io/is-default-class: "true"

spec:

  controller: k8s.io/ingress-nginx

To learn more about how to work with Ingress, check out the official documentation: https://
kubernetes.io/docs/concepts/services-networking/ingress/.

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/

Configuring Ingress controllers and Ingress resources 189

Ingress annotations and rewrite-target

You can add Kubernetes annotations to specific Ingress objects so that you can customize their
behaviors. These annotation keys and values can only be strings. The following is an example of how
to add annotations to Ingress resources using nginx as an example:

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

  annotations:

    nginx.ingress.kubernetes.io/rewrite-target: /

  name: packt-ingress

spec:

  ingressClassName: nginx

  rules:

  - host: book.packt.com

    http:

      paths:

      - path: /packt-book

        pathType: Prefix

        backend:

          service:

            name: packt-svc

            port:

              number: 80

There are many annotations available for nginx – you can check them out by visiting the following
page: https://kubernetes.github.io/ingress-nginx/user-guide/nginx-
configuration/annotations/.

Different Ingress controllers provide different capabilities, often using annotations and rewrite-
target to rewrite the default behavior. You can check out here to learn how to rewrite behaviors
for nginx Ingress controllers: https://kubernetes.github.io/ingress-nginx/
examples/rewrite/#rewrite-target.

We touched on the domain name and subdomain name in this section. Now, it’s a good time to talk
about how the DNS domain hostname works in Kubernetes. Let’s get right into it in the next section:

https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/
https://kubernetes.github.io/ingress-nginx/examples/rewrite/#rewrite-target
https://kubernetes.github.io/ingress-nginx/examples/rewrite/#rewrite-target

Demystifying Kubernetes Networking190

Configuring and leveraging CoreDNS
As mentioned earlier in this chapter, nodes, pods, and services are assigned their own IP addresses in
the Kubernetes cluster. Kubernetes runs a Domain Name System (DNS) server implementation that
maps the name of the service to its IP address via DNS records. So, you can reach out to the services
with a consistent DNS name instead of using its IP address. This comes in very handy in the context of
microservices. All microservices running in the current Kubernetes cluster can reference the service
name to communicate with each other.

The DNS server mainly supports the following three types of DNS records, which are also the most
common ones:

•	 A or AAAA records for forward lookups that map a DNS name to an IP address. A record
maps a DNS name to an IPv4 address, whereas an AAAA record allows mapping a DNS name
to an IPv6 address.

•	 SRV records for port lookups so that connections are established between a service and a
hostname.

•	 PTR records for reversing IP address lookups, which is the opposite function of A and AAAA
records. It matches IP addresses to a DNS name. For example, a PTR record for an IP address
of 172.0. 0.10 would be stored under the 10.0. 0.172.in-addr.arpa DNS zone.

Knowing these basic DNS concepts will help us get a better understanding of DNS in Kubernetes.

In Kubernetes 1.21, kubeadm removed support for kube-dns for DNS replication. CoreDNS is now
becoming the default DNS service. CoreDNS is an extensible DNS server that can serve as a Kubernetes
cluster DNS. It is a Cloud-Native Computing Foundation (CNCF) graduated project, as it’s stable and
already has use cases running in a production environment successfully. You can check out the version
of CoreDNS installed by kubeadm for Kubernetes in the past from here: https://github.com/
coredns/deployment/blob/master/kubernetes/CoreDNS-k8s_version.md.

If your Kubernetes cluster is not on CoreDNS yet, here is an official end-to-end guide to help you migrate
to CoreDNS smoothly and avoid backward - incompatible configuration issues: https://github.
com/coredns/deployment/blob/master/kubernetes/Upgrading_CoreDNS.md.

Check whether the CoreDNS server is up and running

The Kubernetes DNS server schedules a DNS pod and service on the Kubernetes cluster to check
whether the DNS server is up and running on your cluster. To do this, you can simply use the
following command:

kubectl get pods -n kube-system

https://github.com/coredns/deployment/blob/master/kubernetes/CoreDNS-k8s_version.md
https://github.com/coredns/deployment/blob/master/kubernetes/CoreDNS-k8s_version.md
https://github.com/coredns/deployment/blob/master/kubernetes/Upgrading_CoreDNS.md
https://github.com/coredns/deployment/blob/master/kubernetes/Upgrading_CoreDNS.md

Configuring and leveraging CoreDNS 191

Normally, you should be able to see an output similar to the following:

Figure 7.23 – When multi-container pods share a network

When you’re certain that you’re on CoreDNS, you can also use the following command:

kubectl get pods -n kube-system | grep coredns

The output is similar to the following:

 coredns-6d4b75cb6d-
4xcmf          1/1     Running   0          82m

 coredns-6d4b75cb6d-
kj6cq          1/1     Running   0          82m

From the previous output, you may have noticed that we have two replicas of the CoreDNS pod. The
intention was to set the default value to two copies for high availability when installing CoreDNS. To
prove this, you can check out the CoreDNS deployment settings by using the kubectl describe
command as follows:

kubectl describe deploy coredns -n kube-system

Demystifying Kubernetes Networking192

The output should look similar to the following:

Figure 7.24 – When multi-container pods share a network

As it’s a deployment, we could use a typical kubectl scale command to scale the CoreDNS
deployment out and in. This comes in handy when you want to economize some cluster resources.
You can scale it down to one replica using the following command:

kubectl scale deploy coredns -n kube-system --replicas=1

The output should look as follows:

deployment.apps/coredns scaled

Configuring and leveraging CoreDNS 193

You can then use the kubectl get deploy command to check out the number of replicas
currently available in the cluster:

NAME      READY   UP-TO-DATE   AVAILABLE   AGE

coredns   1/1 1 1 11h

Similarly, when you want it to be more resilient by scheduling more replicas, you can use the following
command to get more replicas:

kubectl scale deploy coredns -n kube-system --replicas=4

Alternatively, we can go back to check the number of the replicas by using the following command:

kubectl get pods -n kube-system

As the following screenshot shows, we managed to increase the number of replicas of coredns
from one to four:

Figure 7.25 – When multi-container pods share a network

The previous examples also demonstrate that those four replicas of CoreDNS are identical. We can use
the kubectl describe command to take a closer look at either of those four coredns pods.
The following command is an example:

k describe pod coredns-6d4b75cb6d-4h89j -n kube-system

Demystifying Kubernetes Networking194

The output should look as follows:

Figure 7.26 – When multi-container pods share a network

From the preceding output, we can see CoreDNS using Corefile for configurations. It is located
in the following location:

/etc/coredns/Corefile

We can use the kubectl get configmaps command to inspect the content of Corefile.
Here’s how it can be done:

kubectl get configmaps -n kube-system

Configuring and leveraging CoreDNS 195

The output should be as follows:

Figure 7.27 – When multi-container pods share a network

The preceding command shows there is configmap named coredns, so let’s use the kubectl
describe configmap command to check out its content:

k describe configmap coredns -n kube-system

The following output will show how Corefile looks:

Figure 7.28 – Corefile for CoreDNS

Demystifying Kubernetes Networking196

Corefile is very useful when you need to customize the DNS resolution process in your
Kubernetes cluster. Check out the official documentation about customizing the DNS service here:
https://kubernetes.io/docs/tasks/administer-cluster/dns-custom-
nameservers/#coredns-configmap-options.

Note that the Kubernetes DNS service is registered to the kubelet agent, so the Pods running on
the cluster use the DNS server’s IP address to resolve the DNS names. kubelet sets the /etc/
resolv.conf file for each pod – a DNS query for a myapp pod from the my-packt-apps
namespace can be resolved using either myapp.my-packt-apps or myapp.my-packt-apps.
svc.cluster.local. Now, let’s take a closer look at how the DNS hostname works for a pod in
a Kubernetes cluster.

Pod IPs and DNS hostnames

Kubernetes creates DNS records for pods. You can contact a pod with fully qualified, consistent DNS
hostnames instead of its IP address. For a pod in Kubernetes, the DNS name follows this pattern:

<your-pod-ip-address>.<namespace-name>.pod.cluster.local

Let’s deploy a pod named nginx using the following command:

kubectl run nginx --image=nginx –-port=8080

We’ll see that the pod has been deployed successfully if you have an output similar to the following:

NAME                  READY   STATUS    RESTARTS   AGE

nginx                 1/1     Running   0          3s

Let’s take a closer look at this pod:

kubectl get pod nginx -o wide

The output should look as follows:

Figure 7.29 – When a multi-container pod shares a network

From the figure, we know the IP address for the nginx pod is 10.1.0.9 within the cluster. From
the preceding pattern, we could assume that the DNS name of this pod would look as follows:

10-1-0-9.default.pod.cluster.local

https://kubernetes.io/docs/tasks/administer-cluster/dns-custom-nameservers/#coredns-configmap-options
https://kubernetes.io/docs/tasks/administer-cluster/dns-custom-nameservers/#coredns-configmap-options

Configuring and leveraging CoreDNS 197

Important Note
Note that in practice, each pod in a StatefulSet derives the hostname from the StatefulSet name.
The name domain managed by this service follows this pattern:

$(service name).$(namespace).svc.cluster.local

Check out the official documentation to know more: https://kubernetes.io/docs/
concepts/workloads/controllers/statefulset/#stable-network-id.

Alternatively, in order to get the IP address of the nginx pod, you can use the kubectl describe
pod nginx command, which will open the live detailed spec of your nginx pod. The section called
IP is where you can find the pod’s IP, as in the following figure:

Figure 7.30 – When multi-container pods share a network

You can deploy a pod named busybox with the latest Busybox container image in the default
namespace and then execute the nslookup command to check out the DNS address of the nginx
pod, as shown in the following:

kubectl run -it busybox --image=busybox:latest

kubect exec busybox -- nslookup 10.1.0.9

The output should look as follows:

Figure 7.31 – When multi-container pods share a network

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#stable-network-id
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#stable-network-id

Demystifying Kubernetes Networking198

Alternatively, you can also use the following command to achieve the same outcome. Note that we
are adding two rm flags in the command, which will make sure the pod is deleted once we exit the
shell. We also use -- to execute the nslookup command directly. In this way, it allows us to do a
quick test, which comes in very handy in the actual CKA exam. The command would look as follows:

kubectl run -it sandbox --image=busybox:latest --rm
--restart=Never -- nslookup 10.1.0.9

The output should look as follows:

Figure 7.32 – When multi-container pods share a network

We notice that the only difference is that we get the pod "sandbox" deleted message, which
indicates a pod named sandbox gets deleted once we exit the shell. The preceding output shows
the DNS name of the nginx pod with the IP address 10.96.0. 10. The PTR record returns the
DNS name of this pod as 10-1-0-9.default.pod.cluster.local just as we expected.

Now, let’s get the A record of the nginx pod in the default namespace by using the following
command:

kubectl run -it sandbox --image=busybox:latest --rm
--restart=Never -- nslookup 10-1-0-9.default.pod.cluster.local

The output is as follows:

Server:    10.96.0.10

Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local

Name:      10-1-0-9.default.pod.cluster.local

Address 1: 10.1.0.9

pod "sandbox" deleted

The preceding output proves that the DNS server returns the A record of the nginx pod. Let’s deploy
a new nginx pod called test-nginx to test out the connectivity by using the following command:

$ kubectl run -it test-nginx --image=nginx --rm --restart=Never
-- curl -Is 10-1-0-9.default.pod.cluster.local

Configuring and leveraging CoreDNS 199

The output will look as follows:

Figure 7.33 – When multi-container pods share a network

The preceding screenshot with 200 responses proves that the connectivity between the test-nginx
pod and nginx pod is good and we managed to use the curl command on the main page of nginx
with the DNS name of the nginx pod.

Up until this point, we have done a thorough run-through of how IP addresses and DNS work for
the pods in a Kubernetes cluster. As we mentioned earlier in this chapter, Kubernetes creates DNS
records not only for pods but also for services. Now, let’s take a look at how the service IP and DNS
work in Kubernetes in the next section.

Service IPs and DNS hostnames

The DNS service in Kubernetes creates DNS records for services so you can contact services with
consistent fully qualified DNS hostnames instead of IP addresses. Similarly, for a service in Kubernetes,
the DNS follows the following pattern:

<service-name>.<namespace-name>.svc.cluster.local

Knowing that the DNS server is located in the kube-system namespace, we can check it out by
using the following command:

kubectl get svc -n kube-system

The output is as follows, where we can get a look at the IP address of the DNS server in Kubernetes:

Figure 7.34 – When multi-container pods share a network

Demystifying Kubernetes Networking200

The preceding screenshot shows the IP address of the DNS server is 10.96.0.10. Now, let’s check
out whether we can get the DNS name of the current DNS server by using the following command:

kubectl run -it sandbox --image=busybox:latest --rm
--restart=Never -- nslookup 10.96.0.10

The output should be as follows:

Figure 7.35 – When multi-container pods share a network

The preceding screenshot proves that the DNS name for the DNS server follows the aforementioned
pattern from this section. Here is how it looks:

kube-dns.kube-system.svc.cluster.local

Let’s now take a look at exposing a service for the nginx pod. We’re using the following command
to expose the ClusterIP service of the nginx pod on port 80:

kubectl expose pod nginx --name=nginx-svc --port 80

The following output shows that it has been exposed successfully:

service/nginx-svc exposed

Based on the previous experiment with the kube-dns service DNS name, we can expect the nginx-
svc service to follow the general service DNS name pattern, which will look as follows:

nginx-svc.default.svc.cluster.local

Now, let’s take a look at the services currently in the default namespace of our Kubernetes cluster
by using the following command:

kubectl get svc

We can see an output similar to the following:

Figure 7.36 – The services in the Kubernetes default namespace

Configuring and leveraging CoreDNS 201

From the preceding output, we can get a closer look at nginx-svc by using the kubectl get
svc nginx-svc -o wide command. The output is as follows:

NAME        TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)   

AGE   SELECTOR

nginx-svc   ClusterIP   10.107.75.83   <none>        80/TCP    

59m  run=nginx

The preceding command shows that the IP address of nginx-svc is 10.107.75.83, so let’s use
the nslookup command to check out its DNS name. Use the following command:

kubectl run -it sandbox --image=busybox:latest --rm
--restart=Never -- nslookup 10.107.75.83

The preceding command will give you the following output:

Figure 7.37 – Returning the DNS name for nginx-svc by looking up the IP address

Based on the preceding output, we can see that the DNS name for nginx-svc is nginx-svc.
default.svc.cluster.local, which proves our assumption. Let’s get the DNS A record of
nginx-service from the default namespace using the following command:

kubectl run -it sandbox --image=busybox:latest --rm
--restart=Never -- nslookup nginx-svc.default.svc.cluster.local

You’ll see the output is similar to the following:

Server:    10.96.0.10

Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local

Name:      nginx-svc.default.svc.cluster.local

Address 1: 10.107.75.83 nginx-svc.default.svc.cluster.local

pod "sandbox" deleted

The preceding output shows the DNS server, which was what we saw earlier in this section – the kube-
dns service with the IP address 10.96.0.10 and under the kube-dns.kube-system.svc.
cluster.local DNS name. Also, for our nginx-svc, we get an IP address of 10.107.75.83
in return.

Demystifying Kubernetes Networking202

Now, similar to how we tested the nginx pod, let’s test out the connectivity of the nginx service. We
can use a pod called challenge-nginx and then run the curl command to see what’s coming
back. The complete command is as follows:

kubectl run -it challenge-nginx --image=nginx --rm
--restart=Never -- curl -Is http://nginx-svc.default.svc.
cluster.local

The preceding command leads to the following output:

Figure 7.38 – Returning the DNS name for nginx-svc by looking up the IP address

The preceding screenshot with 200 responses proves the connectivity between the nginx-challenge
pod and the nginx-svc service is good, and we managed to use the curl command on the main
page of nginx with the DNS name of the nginx service. Knowing the nginx service is exposed
from a nginx pod, in real life, we could deploy a number of replicas of this nginx pod, and expose
them with one service. The traffic is distributed through the service to each pod.

Summary
This chapter covered Kubernetes networking. It covered the Kubernetes networking model and core
networking concepts, as well as how to choose CNI plugins. Working with the Ingress controller and
configuring and leveraging CoreDNS in Kubernetes helps you understand how to manage cluster
networking and controller access to the applications in Kubernetes.

Make sure you have practiced these examples as you will encounter them often. Notice that this
chapter covers 20% of the CKA exam content. Practicing the kubectl commands will help you
with better time management, which leads to a greater chance of success in the CKA exam. Together
with what we’ll talk about in the next chapter about monitoring and logging Kubernetes clusters and
applications, you will get a better idea of how to manage Kubernetes clusters in your daily job as a
Kubernetes administrator. Stay tuned!

Mock CKA scenario-based practice test 203

Mock CKA scenario-based practice test
You have two virtual machines, master-0 and worker-0; please complete the following mock
scenarios.

Scenario 1

Deploy a new deployment, nginx, with the latest image of nginx for two replicas in a namespace
called packt-app. The container is exposed on port 80. Create a service type of ClusterIP
within the same namespace. Deploy a sandbox-nginx pod and make a call using curl to verify
the connectivity to the nginx service.

Scenario 2

Expose the nginx deployment with the NodePort service type; the container is exposed on port 80.
Use the test-nginx pod to make a call using curl to verify the connectivity to the nginx service.

Scenario 3

Make a call using wget or curl from the machine within the same network as that node, to verify
the connectivity with the nginx NodePort service through the correct port.

Scenario 4

Use the sandbox-nginx pod and nslookup for the IP address of the nginx NodePort service.
See what is returned.

Scenario 5

Use the sandbox-nginx pod and nslookup for the DNS domain hostname of the nginx
NodePort service. See what is returned.

Scenario 6

Use the sandbox-nginx pod and nslookup for the DNS domain hostname of the nginx pod.
See what is returned.

You can find all the scenario resolutions in Appendix - Mock CKA scenario-based practice test resolutions
of this book.

Demystifying Kubernetes Networking204

FAQs
•	 Where can I find the latest updates about Kubernetes networking while working with Kubernetes?

The Kubernetes networking Special Interest Group (SIG) has a GitHub repository that you
can follow here: https://github.com/kubernetes/community/blob/master/
sig-network/README.md.

•	 What is the recommended official Kubernetes article for Kubernetes networking?

I recommend bookmarking the official documentation about the following topics:

	� Network policy: https://kubernetes.io/docs/concepts/services-
networking/service/

	� Ingress: https://kubernetes.io/docs/concepts/services-networking/
ingress/

https://github.com/kubernetes/community/blob/master/sig-network/README.md
https://github.com/kubernetes/community/blob/master/sig-network/README.md
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/

Part 3:
Troubleshooting

This part covers Kubernetes troubleshooting-related topics ranging from cluster- and application-
level logging and monitoring to cluster components and application troubleshooting, security, and
networking troubleshooting. This part covers about 30% of the CKA exam's content.

This part of the book comprises the following chapters:

•	 Chapter 8, Monitoring and Logging Kubernetes Clusters and Applications

•	 Chapter 9, Troubleshooting Cluster Components and Applications

•	 Chapter 10, Troubleshooting Security and Networking

8
Monitoring and Logging
Kubernetes Clusters and

Applications

This chapter describes how to monitor Kubernetes cluster components and applications and get
infrastructure-level, system-level, and application-level logs to serve as a source for log analytics or
further troubleshooting. Together with the next two chapters about troubleshooting cluster components
and applications and troubleshooting Kubernetes security and networking, it covers 30% of the CKA
exam content.

In this chapter, we’re going to cover the following topics:

•	 Monitoring on a cluster node

•	 Monitoring applications on a Kubernetes cluster

•	 Managing logs at the cluster node and pod levels

•	 Managing container stdout and stderr logs

Technical requirements
To get started, you need to make sure your local machine meets the following technical requirements:

•	 A compatible Linux host. We recommend a Debian-based Linux distribution such as Ubuntu
18.04 or later.

•	 Make sure your host machine has at least 2 GB of RAM, 2 CPU cores, and about 20 GB of free
disk space.

Monitoring and Logging Kubernetes Clusters and Applications208

Monitoring on a cluster node
Monitoring is essential for Kubernetes administrators when it comes to getting a clear understanding
of what’s going on in your Kubernetes cluster. You need to know all of the different metrics to help
you get on track in terms of the health of your Kubernetes cluster components. You also need to
make sure that your components are operating as expected and that all workloads that are deployed
on your worker nodes are functional and have enough resources, such as CPU, memory, and storage.
Moreover, you should also check whether any worker nodes are available and have sufficient resources
to scale or schedule more workloads.

In Kubernetes, Metrics Server collects CPU/memory metrics and to some extent adjusts the resources
needed by containers automatically. Metrics Server collects those metrics every 15 seconds from the
kubelet agent and then exposes them in the API server of the Kubernetes master via the Metrics API.
This process is described in the following figure:

Figure 8.1 – How Metrics Server works in a Kubernetes cluster

Users can use the kubectl top command to access metrics collected by Metrics Server. At the time
of writing this chapter, Metrics Server supports scaling up to 5,000 Kubernetes worker nodes, which
is the maximum number of nodes that Kubernetes currently supports (Kubernetes v1.24 supports
clusters with up to 5,000 nodes). For more details about large Kubernetes clusters, check out this official
article: https://kubernetes.io/docs/setup/best-practices/cluster-large/.

https://kubernetes.io/docs/setup/best-practices/cluster-large/

Monitoring on a cluster node 209

Checking whether Metrics Server is installed

From your Kubernetes cluster, you can take the following steps to check whether you have Metrics
Server available in your current cluster. You can start by setting up an alias for kubectl using the
alias k=kubectl command and then use the k get command, as follows, to check out the
worker nodes that are currently available:

    alias k=kubectl

    k get nodes

The preceding command will show the available worker nodes of your current cluster. The output is
similar to the following:

NAME       STATUS   ROLES                  AGE   VERSION

minikube   Ready    control-plane,master   5d   v1.23.3

You can use the k top node command to check the metrics for the worker node called minikube,
as follows:

k top node minikube

The output of the preceding command will show the resource usage of the minikube node if you
have Metrics Server installed. Alternatively, you will see the following, which only appears when
Metrics Server is not available in your current Kubernetes cluster, which means you need to install
Metrics Server:

error: Metrics API not available

Alternatively, you can use the following command directly to see whether there will be any output:

kubectl get pods -n kube-system | grep metrics-server

The CKA exam will usually have Metrics Server pre-installed, so you could jump to step 3 to check
out the use cases for the kubectl top command.

Installing Metrics Server in your current Kubernetes cluster

If you’re on a vanilla Kubernetes cluster, you can install Metrics Server by deploying a YAML definition
or through Helm charts; the latter will require Helm to be installed. To get the latest release and
instructions, you can go to their GitHub repo: https://github.com/kubernetes-sigs/
metrics-server.

https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/metrics-server

Monitoring and Logging Kubernetes Clusters and Applications210

Using a YAML manifest file

You can use the kubectl apply -f command to deploy Metrics Server using the official YAML
manifest file as follows:

kubectl apply -f https://github.com/kubernetes-sigs/metrics-
server/releases/latest/download/components.yaml

Starting from the end of February 2022, there’s also a high-availability (HA) version that bumps up
the replica count from one to two for Metrics Server. If you’re on a cluster with at least two nodes,
you can use the following file:

kubectl apply -f https://github.com/kubernetes-sigs/metrics-
server/releases/latest/download/high-availability.yaml

You can get more information about Metrics Server here: https://github.com/kubernetes-
sigs/metrics-server/releases

Using Helm charts

To install Metrics Server using Helm charts, you can go to Artifact Hub and then find the Metrics
Server Helm charts at https://artifacthub.io/packages/helm/metrics-server/
metrics-server

Since Helm 3 is widely used nowadays, you will need to add the Metrics Server Helm charts
repo to Helm:

helm repo add metrics-server https://kubernetes-sigs.github.io/
metrics-server/

It will show the following to confirm that the repo has been added successfully:

"metrics-server" has been added to your repositories

After adding the repo, you can install the Helm charts through the following command:

helm upgrade --install metrics-server metrics-server/metrics-
server

The output of the preceding command will show you whether it’s been installed successfully.

https://github.com/kubernetes-sigs/metrics-server/releases
https://github.com/kubernetes-sigs/metrics-server/releases
https://artifacthub.io/packages/helm/metrics-server/metrics-server
https://artifacthub.io/packages/helm/metrics-server/metrics-server

Monitoring on a cluster node 211

Using minikube add-ons

If you’re using a minikube cluster, Metrics Server comes in the form of a built-in add-on that can be
enabled and disabled via the minikube addons command. You can use the following to list the
currently supported add-ons:

   minikube addons list

The output is similar to what is shown in the following screenshot:

Figure 8.2 – minikube add-ons list

From the preceding screenshot, we can see the metrics-server add-on is disabled. You
canalso use the following command to get a clearer view:

   minikube addons list | grep metrics-server

Monitoring and Logging Kubernetes Clusters and Applications212

The following output shows that currently, the minikube add-on is disabled:

| metrics-server              | minikube | disabled     |
kubernetes

You can use the minikube addon enable command to enable Metrics Server:

   minikube addons enable metrics-server

The following output shows that the Metrics Server add-on was successfully enabled:

   ▪ Using image k8s.gcr.io/metrics-server/metrics-
server:v0.4.2

🌟  The 'metrics-server' addon is enabled

Now if you use the kubectl get command, you’ll see that the Pods and Services related to Metrics
Server are up and running in the kube-system namespace:

   kubectl get pod,svc -n kube-system

The output should look like the following:

Figure 8.3 – Metrics Server Pods and Services in the kube-system namespace

Another command you can use is the following:

  kubectl get pods -n kube-system | grep metrics-server

The output should look like the following:

metrics-server-6b76bd68b6-
rwlb9    1/1     Running   0         17h

As you can see from the output, the Metrics Server pod is up and running, which means you can now
use the kubectl top command. Let’s now take a look at what it does.

Monitoring applications on a Kubernetes cluster 213

Checking out CPU/memory metrics

You can use the kubectl top command to top the worker node that you want to get metrics details
from. The following is an example where we top a worker node called minikube:

k top node minikube

The output is as follows, where we can see the number of CPU cores and the amount of memory used:

NAME       CPU(cores)   CPU%   MEMORY(bytes)   MEMORY%   

minikube 232m 11% 961Mi 24%  

This also applies to the use case where your Kubernetes cluster has multiple worker nodes. Using
the kubectl top node <node name> command will help you see the resource usage of that
specific node.

Monitoring applications on a Kubernetes cluster
A standard end-to-end monitoring solution covers infrastructure monitoring and application
monitoring. In Kubernetes, Metrics Server is not only used to monitor the Kubernetes worker nodes
but also Kubernetes Pods and containers.

We can test out application monitoring by deploying a new pod in the default namespace as follows:

kubectl run nginx --image=nginx

After executing the preceding command, make sure that your nginx pod is up and running before
going to the next section. To check out the status of the pod, you can use the kubectl get pod
nginx command.

Monitoring the resource usage of an application

You can use the kubectl top pod <podname> command to check out the metrics collected
for that pod, including the resource consumption of the pod:

kubectl top pod nginx

The output should look as follows, where you can see the CPU and memory usage of the pod:

NAME    CPU(cores)   MEMORY(bytes)

nginx 0m 9Mi

Monitoring and Logging Kubernetes Clusters and Applications214

In our case, we deployed a single-container pod, but it’s important to know that we could also check
out the CPU and memory usage for a multi-container pod by using the following command:

k top pod < pod name > --containers

Let’s use the same kubectl top command to show the metrics for the nginx pod and all
its containers:

k top pod nginx --containers

The output should look like the following as it’s a single-container pod:

POD     NAME    CPU(cores)   MEMORY(bytes)

nginx nginx 0m 9Mi

If there are multiple containers, it will list the name of the containers in that pod and show their CPU
and memory usage respectively.

With that in mind, we could use kubectl top pod, adding the -A flag or –all-namespaces,
to show all the metrics of all the Pods across different namespaces. The following command is used
in this case:

k top pod -A

Alternatively, you can also use the full flag as follows:

k top pod --all-namespaces

The output should look like the following, where you have all the Pods listed along with their CPU
and memory usage respectively:

NAMESPACE     NAME                       CPU(cores)   

MEMORY(bytes)

default       nginx                                 0m           

9Mi

kube-system   kube-proxy-64jzv                      1m          

32Mi

kube-system   kube-proxy-hplp5                      1m          

28Mi

kube-system   kube-proxy-kvb96                      2m          

31Mi

kube-system   kube-proxy-kvjwh                      1m          

28Mi

kube-system   kube-proxy-rmw2r                      1m          

Monitoring applications on a Kubernetes cluster 215

31Mi

kube-system   kube-proxy-tcz5m                      1m          

26Mi

kube-system   metrics-server-6576d9ccf8-z8mlg       6m           

37M

There’s a good chance that the CKA exam will ask you what pod consumes the most compute resources
in a list of pods, or any other task of this nature – that’s where the –sort-by flag comes into play.
The --sort-by flag accepts either cpu or memory as a value, and as a result it will return the result
asc or desc. The command looks as in the following examples:

kubectl top pod --sort-by=cpu

kubectl top pod –-sort-by=memory

It makes more sense when we have a large list of pods and you have requested to sort them by the
memory or CPU resources consumed, from most to least. We can use the following command to do this:

kubectl top pod -A --sort-by=memory

The output should look as follows, with all the pods across all the namespaces in your current Kubernetes
cluster listed according to resource usage:

kube-system   metrics-server-6576d9ccf8-z8mlg       7m          

37Mi

kube-system   kube-proxy-64jzv                      1m          

32Mi

kube-system   kube-proxy-rmw2r                      1m          

31Mi

kube-system   kube-proxy-kvb96                      1m          

31Mi

kube-system   kube-proxy-kvjwh                      1m          

28Mi

kube-system   kube-proxy-hplp5                      1m          

28Mi

kube-system   kube-proxy-tcz5m                      1m          

25Mi

default       nginx                                 0m           

9Mi

This command works in a similar way when using –sort-by cpu flag. The output lists the pods
in the order of most CPU consumed to least.

Monitoring and Logging Kubernetes Clusters and Applications216

Checking application details

You can use the kubectl describe pod <podname> command to find out status information
regarding the allocated CPUs and memory usage and some other information, such as runtime versions,
system information, capacity, labels, and annotations:

kubectl describe pod nginx

The output should look like the following:

Figure 8.4 – kubectl describe pod nginx

Monitoring applications on a Kubernetes cluster 217

Note that there’s an Events section at the bottom of the preceding screenshot that shows a log of
recent events related to this pod. We’ll take a closer look at the Events section:

Figure 8.5 – Events of the nginx pod

The events here include a series of events in Kubernetes, such as these:

1.	 The pod gets scheduled to the worker node called minikube.

2.	 The container image is pulled from the container registry.

3.	 The kubelet agent provisions the pod containing an nginx container.

4.	 Kubelet starts the pod and the nginx container starts to accept traffic.

Analyzing those events helps us to understand what’s going on during the pod provisioning process,
and it could give us clues as to whether any exceptions happened and why, allowing us to come up
with potential solutions. We’ll take a closer look at the events in the next section of this chapter.

If a pod is in a namespace other than the default namespace, you can specify the -n flag in the kubectl
describe command to add the namespace. The following is an example using this command to
describe a pod named coredns-64897985d-brqfl in the kube-system namespace:

kubectl describe pod coredns-64897985d-brqfl -n kube-system

Monitoring and Logging Kubernetes Clusters and Applications218

The output should look like the following:

Figure 8.6 – kubectl describe coredns pod in the kube-system namespace

Even though the preceding screenshots contain similar chunks of information, the details differ
from pod to pod. You could add > mypod.yaml to the end of the command to export the pod
information for further analysis:

kubectl describe pod nginx > mypod.yaml

You will get a YAML file called mypod.yaml containing critical pod information.

Monitoring applications on a Kubernetes cluster 219

Monitoring cluster events

We can get Kubernetes events by using the following command:

kubectl get events

We can get events logged in the current cluster, which includes events logged previously in the Events
section, when we use the kubectl describe pod command. The following is a sample output
after running the kubectl get events command:

Figure 8.7 – kubectl get events

You can use the following command to list the events sorted by timestamp:

kubectl get events --sort-by=.metadata.creationTimestamp

If you want to collect the events during a deployment, you can run the following command on the side:

kubectl get events --watch

Monitoring and Logging Kubernetes Clusters and Applications220

The commands will give you a good idea of what’s going on during the deployment process if you’re
not using Kubernetes Dashboard or any third-party monitoring frameworks such as Prometheus with
Grafana Dashboard. Knowing about what happens at the application level by monitoring sometimes
comes in handy, especially when it comes to troubleshooting. Often we get a better understanding
by analyzing logs and tracking exceptions. Let’s take a look at how to manage logs at the cluster node
and pod levels.

Managing logs at the cluster node and Pod levels
Logs are very handy when it comes to troubleshooting issues. The information collected in a log is
usually helpful in understanding what has happened, figuring out why certain issues happened, and
finding remediations to prevent them from happening again later on.

Cluster-level logging

In Kubernetes, the notion of cluster-level logging is widely recognized. This means logs are meant to
be stored in a separate backend, so the lifecycles of those logs are independent of what’s been logged
down to the worker node, pod, or even container level.

Kubernetes itself does not provide a comprehensive native logging framework, but it can be integrated
with lots of third-party open source logging solutions in the community, such as Grafana Loki or the
EFK stack, which includes Elasticsearch, Fluentd, and Kibana for log searching, querying, and tracing.

Logging in Kubernetes involves a set of patterns that are implemented by the community with different
open source solutions. There are the following three patterns:

•	 Using a node-level logging agent that runs on every node: The agent is often in a DaemonSet
so it will be evenly distributed on each node, and this agent pushes the logs to a backend. In
this case, there are no code changes for the application.

•	 Using a dedicated sidecar container to log information from the application in the same
Pod: This case can be in conjunction with a logging agent running on the node or streaming
the logs out, and it is usually recommended to write log entries with the same formats to the
same log stream for convenient processing.

•	 Directly streaming the logs from the application to an external backend: This can work with
external object storage, as such storage supports lifecycle policies, which allows the setup of data
retention policies and the archiving of old logs based on the policy. Most object storage also
works with a search framework, where logs are indexed and so are easy to search and query.

To learn more about the Kubernetes logging architecture, check this article out: https://kubernetes.
io/docs/concepts/cluster-administration/logging/

https://kubernetes.io/docs/concepts/cluster-administration/logging/
https://kubernetes.io/docs/concepts/cluster-administration/logging/

Managing logs at the cluster node and Pod levels 221

Checking out the node details

With native Kubernetes, you can use the kubectl describe node <nodename> command
to find out the status information regarding the allocated CPUs and memory usage as well as some
other information, such as runtime versions, system information, capacity, labels, and annotations.
We can use the following command to describe a worker node named minikube:

kubectl describe node minikube

The output is similar to the following:

Figure 8.8 – kubectl describe node minikube

Monitoring and Logging Kubernetes Clusters and Applications222

Gettting to know the node specification will give you an understanding of how your node was
previously configured. Let’s now take a look at how to get some quick but handy information using
the kubectl describe node command.

Checking the node status

With the kubectl describe command, we get some general information about a node. Notice
that it also contains an events section that usually logs node events. To get more status information
from a node, we usually use the following command, taking a node named minikube as an example:

kubectl get node minikube -o wide

The output is similar to the following:

Figure 8.9 – kubectl get node output

From the preceding screenshot, if you compare the kubectl get node command with the one
with the -o wide flag, you’ll see that it gives extra information about the image and kernel version
as well as the container runtime, which is quite handy when we need to get information quickly.

Managing container stdout and stderr logs
In the Unix and Linux OSs, there are three I/O streams, called STDIN, STDOUT, and STDERR. Here,
we’ll talk about STDOUT and STERR in Linux containers, which are typically what the kubectl
logs command shows to us.

STDOUT is usually a command’s normal output, and STDERR is typically used to output error messages.
Kubernetes uses the kubectl logs <podname> command to log STDOUT and STDERR. It looks
like the following when we use the command to log the nginx pod that we deployed in this chapter:

kubectl logs nginx

Managing container stdout and stderr logs 223

The output should look like the following:

Figure 8.10 – kubectl logs nginx pod

Now, we’ll use a container to write text to the standard output stream with a frequency of once per
second. We can do this by deploying a new pod. The following is an example of a YAML manifest
for this pod:

apiVersion: v1

kind: Pod

metadata:

  name: logger

spec:

  containers:

  - name: packs

    image: busybox:1.28

    args: [/bin/sh, -c,

            'i=0; while true; do echo "$i: $(date)";
i=$((i+1)); sleep 1; done']

You can use the kubectl logs command to retrieve the logs from the logger Pod as follows:

k logs logger

The log would look as follows:

0: Thu May 12 04:34:40 UTC 2022

1: Thu May 12 04:34:41 UTC 2022

2: Thu May 12 04:34:42 UTC 2022

3: Thu May 12 04:34:43 UTC 2022

Monitoring and Logging Kubernetes Clusters and Applications224

We can get into the pod to retrieve the specific container log by using the -c flag. Let’s check out the
log for a container called packt in the logger pod using the following command:

k logs logger -c packt

The following output is the logs retrieved from the packt container:

Figure 8.11 – Logs from the packt container

If you want to stream the logs, you can use the kubectl logs -f command, as follows:

kubectl logs -f logger

You should be able to see an output like the following:

Figure 8.12 – kubectl logs for the nginx pod

Summary 225

Use the following command if you want to return logs newer than a certain duration, such as
within 1 hour:

kubectl logs --since=1h

You can modify the value after the –since flag as per your requirements.

Summary
This chapter covered monitoring and logging for Kubernetes on three levels – cluster, node, and pod.
This chapter laid the groundwork for the next two chapters, where we will focus on troubleshooting
cluster components and application failures, as well as exploring some other challenges around
Kubernetes security restrictions and container networking by providing more specific troubleshooting
use cases and end-to-end troubleshooting scenarios. Stay tuned!

Mock CKA scenario-based practice test
You have two virtual machines, master-0 and worker-0: please complete the following
mock scenarios.

Scenario 1

List all the available Pods in your current cluster, identify the ones with the highest CPU consumption,
and write their names to a max-cpu.txt file.

You can find all the scenario resolutions in Appendix - Mock CKA scenario-based practice test resolutions
of this book.

FAQs
•	 Where can I find out about the latest updates on Kubernetes Metrics Server?

Kubernetes Metrics Server has a GitHub repository at https://github.com/kubernetes-
sigs/metrics-server.

•	 Where can I find the latest information on Kubernetes cluster logging architecture?

Go to the official Kubernetes documentation at https://kubernetes.io/docs/
concepts/cluster-administration/logging/.

•	 Where can I find the metrics for Kubernetes system components?

You can bookmark this page to get more information: https://kubernetes.io/docs/
concepts/cluster-administration/system-metrics/.

https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/metrics-server
https://kubernetes.io/docs/concepts/cluster-administration/logging/
https://kubernetes.io/docs/concepts/cluster-administration/logging/
https://kubernetes.io/docs/concepts/cluster-administration/system-metrics/
https://kubernetes.io/docs/concepts/cluster-administration/system-metrics/

9
Troubleshooting Cluster

Components and Applications

Troubleshooting is one of the main tasks performed during your daily work as a Kubernetes administrator.
This chapter introduces the general approaches to troubleshooting errors caused by cluster component
failure and the issues that can occur during application deployments.

In this chapter, we’re going to cover the following topics:

•	 Kubernetes troubleshooting general practices

•	 Troubleshooting cluster components

•	 Troubleshooting applications

Technical requirements
To get started, we need to make sure our local machine meets the technical requirements described
as follows.

In case you’re on Linux, see the following:

•	 A compatible Linux host. We recommend a Debian-based Linux distribution such as Ubuntu
18.04 or later.

•	 Make sure your host machine has at least 2 GB RAM, 2 CPU cores, and about 20 GB of free
disk space.

In case you’re on Windows 10 or Windows 11, see the following:

•	 We recommend updating Docker Desktop to the latest version and creating a Docker Desktop
local Kubernetes cluster. Check out this article to learn about how to set up a local Kubernetes
cluster with Docker Desktop: https://docs.docker.com/desktop/kubernetes/.

https://docs.docker.com/desktop/kubernetes/

Troubleshooting Cluster Components and Applications228

•	 We also recommend using Windows Subsystem for Linux 2 (WSL 2) to test the environment.
Refer to this article to see how to install WSL (https://docs.microsoft.com/en-us/
windows/wsl/install) and the following article to see how to set up the Docker Desktop
WSL 2 backend: https://docs.docker.com/desktop/windows/wsl/.

Once you’re set up, you can check whether you’re currently set to the correct Kubernetes cluster using
the following command:

alias k=kubectlk config current-context

The preceding command will print out the current cluster in the output. In our case, it was similar
to the following, as we’re on Windows with a Kubernetes local cluster created by Docker Desktop:

docker desktop

If you’ve been following our demonstration along the way in this book, you’ll have noticed that most
of the demonstration was on a minikube cluster. In this case, the output would be the following:

minikube

You may have used your local machine to connect with a few different Kubernetes clusters – you can
use kubectl config view to check which is the current cluster:

Figure 9.1 – Local cluster context information

To learn more about how to organize cluster access using kubeconfig and how to configure access
to multiple clusters, refer to Chapter 6, Securing Kubernetes.

https://docs.microsoft.com/en-us/windows/wsl/install
https://docs.microsoft.com/en-us/windows/wsl/install
https://docs.docker.com/desktop/windows/wsl/

General practices in Kubernetes troubleshooting 229

In this chapter, we will use docker-desktop to understand how to troubleshoot local Kubernetes
clusters. Note that the same set of commands is also applied to minikube. Let’s start by talking about
the general practice of Kubernetes troubleshooting.

General practices in Kubernetes troubleshooting
We have talked about the common tasks performed as a part of the daily job as a Kubernetes
administrator a lot in this book, especially in the previous chapters. In real life, upon the stage of the
project that you’re involved in, a Kubernetes administrator is likely to be involved in the installation
and set-up of Kubernetes cluster phase, applications deployment, and managing the security and
networking aspects of things for Kubernetes. In addition to the aforementioned tasks, operating and
maintaining Kubernetes clusters and applications deployed on the cluster also form some of the key
responsibilities of a Kubernetes administrator. Therefore, acquiring good troubleshooting skills will
greatly help in this scenario.

Troubleshooting Kubernetes clusters is a combination of identifying, diagnosing, and remediating
an issue – the problem statement covers Kubernetes cluster components, nodes, networking, and
security. Additionally, the problem statement also covers the application level, such as pods, or even
the container level. We’ll cover troubleshooting Kubernetes cluster components and the application
level, including pods and containers, in this chapter.

It’s important to take an outside-in approach and gradually narrow down the scope to identify the root
cause of an issue. This means we can rationalize the process using the following recommendations:

•	 Monitoring plays a vital role in identifying potential problems and finding their root causes.
In Chapter 8, Monitoring and Logging Kubernetes Clusters and Applications, we covered how to
monitor Kubernetes cluster components, as well as applications, together with the instructions
about logging, which helps you make your first steps.

•	 Metrics analysis is the first step shortly after you detect a potential issue. Although sometimes
the problem statements may not be as they seem, you can make the troubleshooting easier by
starting with analyzing metrics from the cluster and node level to get a high-level view, then
moving down to the application.

•	 Sometimes, metrics may not tell you the whole story. In this case, analyzing the logs will help
you piece the information together better. At this point, if you find that you have a better idea
about the issue that occurred, it’s about time to dive deep into those logs and find the root
cause, as compared to the one you thought was the culprit. However, it’s still a good idea to go
back one level higher to see whether anything in the process was missing.

Troubleshooting Cluster Components and Applications230

•	 Once you have found the issue, an actionable remediation plan is required if you want to prevent
the issue from ever happening again, rather than just applying a quick fix to the issue. This
step will contribute to your future success and make your daily job much easier. Maintenance
and troubleshooting work becomes a daily operation task after the initial setup – it is a key
component of your daily job as a Kubernetes administrator.

In the actual CKA exam, troubleshooting holds more weight and some of the given scenarios are
quite time-consuming, as it is usually stressful to find the root cause within a limited time window.
However, as a candidate, you can confidently plan your time ahead once you’re certain about the fact
that you have done an overall great job with the other high-value questions, such as the ones about
application deployment, networking, and backup etcd storage. The troubleshooting exam questions
usually appear in the second half of the CKA exam – you can usually start by analyzing the Kubernetes
cluster components. There is a higher chance the questions will be about kubelet on the worker
node and then escalate to the application level. Be mindful of performing the troubleshooting and
fixing the issue on the correct node before moving on.

Based on the aforementioned outside-in approach, let’s talk about troubleshooting the cluster
component first.

Troubleshooting cluster components
Troubleshooting cluster components includes the Kubernetes system processes on the master node
and worker node. We’ll take a look at some common troubleshooting scenarios in this section and
will be starting from a higher-level view.

Inspecting the cluster

Inspecting the cluster and node is usually the first step toward detecting the issues on the control
plane. We can do that using the following command:

kubectl cluster-info

The output renders the addresses of the control plane components and services:

Figure 9.2 – Rendering the cluster information

If you want further information for debugging and diagnosis, use the following command:

kubectl cluster-info dump

Troubleshooting cluster components 231

The preceding command gives an output that is huge and contains a lot of information – hence, we’ve
only displayed the key part in the following screenshot:

Figure 9.3 – The Kubernetes cluster logs

The preceding screenshot shows the log information and is very helpful for finding the root causes.
Although we could get good information out of the control plane and cluster logs, you’ll get errors for
the workloads running on top of it quite often, which can happen because of the node availability or
capability. Let’s take a look at troubleshooting approaches with the node in the next section.

Inspecting the node

Inspecting the node using the following command will help you get the current state of your current
cluster and nodes:

kubectl get nodes

The output should look as follows:

Figure 9.4 – The Kubernetes node information

Troubleshooting Cluster Components and Applications232

The preceding screenshot shows that the only worker node that we have here is in the Ready status.
When you have multiple nodes, you will see a list of nodes in the output.

The ROLES column shows the role of your node – it could be a control-plane, etcd, or worker:

•	 The control-plane role runs the Kubernetes master components, besides etcd.

•	 The etcd role runs the etcd store. Refer to Chapter 3, Maintaining Kubernetes Clusters, to
learn more about the etcd store.

•	 The worker role runs the Kubernetes worker node – that’s where your containerized
workloads land.

The STATUS column shows the current condition of the running nodes – the ideal status that we all
love is Ready. Examples of the possible conditions are listed in the following table:

Node condition What does that mean?

Ready The node is healthy and ready to accept pods.

DiskPressure The disk capacity is low.

MemoryPressure The node memory is low.

PIDPressure Too many processes are running on the node.

NetworkUnavailable The networking is incorrectly configured.

SchedulingDisabled This is not a condition in the Kubernetes API but it appears after you
cordon a node. Refer to Chapter 3, Maintaining Kubernetes Clusters,
to learn about how to perform a version upgrade on a Kubernetes
cluster using kubeadm when you need to cordon the nodes.

Table 9.1 - Different node conditions and what they mean

Another column that is very interesting from the aforementioned output is the VERSION column
– this one shows the Kubernetes version running on this node. Kubernetes versions here mean the
Kubernetes master components version, the etcd version, or kubelet version, vary from node role
to node role. Refer to Chapter 3, Maintaining Kubernetes Clusters, to learn about upgrading versions
on the Kubernetes nodes.

In case you do have suspicions about the node, you can use the following command to inspect the
node information:

kubectl describe node docker-desktop

Troubleshooting cluster components 233

The output should be similar to the following. As you can see, you can get more detailed information
from this as compared to the kubectl get node command:

Figure 9.5 – The kubectl describe node output information

To get the most value out of the preceding command, we could check out the Conditions section,
which should look as follows:

Figure 9.6 – Getting the node condition information

Troubleshooting Cluster Components and Applications234

The preceding screenshots show the detailed node condition information, as we explained earlier in
this chapter. It is also possible to get the allocated resource information from the same output, which
shows the following:

Figure 9.7 – Getting the node resource consumption information

The value from the preceding screenshot is to understand the current consumption of the cluster in
terms of CPU, memory, and storage.

The same output also helps you get an overview of the resource requests and limits from the individual
pods running in the current cluster, as shown in the following screenshot:

Figure 9.8 – Get the pod resource consumption information

If you want to envision this output in a more structured way, you can use the following command to
make it look more similar to a yaml file:

kubectl get node docker-desktop -o yaml

Troubleshooting cluster components 235

The output is as follows:

Figure 9.9 – Getting the node information in YAML

Troubleshooting Cluster Components and Applications236

With the preceding output, pay attention in particular to the section called nodeInfo, which gives
you an overview of the OS image, architecture, kernel version, kubeProxy version, kubelet
version, and os:

Figure 9.10 – Getting pod resource consumption information

In case you don’t want that full overview of the Kubernetes node and want to focus on getting the
memory of the current running process in your Kubernetes cluster, you can run the following command
within the Kubernetes node:

top

The output is refined and should look similar to the following:

Figure 9.11 – Checking on the consumption information of the processes

Troubleshooting cluster components 237

As we explained earlier in this chapter, DiskPressure is also a key factor in the health status of
the worker node. You can use the following command to check the available disk storage:

df -h

The output looks similar to the following:

Figure 9.12 – The available disk information

After checking on the cluster and node information, we can go to the next step, which is checking on
the Kubernetes components.

Inspecting the Kubernetes components

We could make this checking easier and more effective by examining the processes in the kube-
system namespace – that’s where you’ll find most of them and be able to export some handy
information such as configurations, diagnosis logs, and so on.

Troubleshooting a system-reserved process

Check for errors in a system-reserved process using the following command:

kubectl get pods -n kube-system

In case you have multiple nodes, you can add the -o wide flag to see which pods are running on
which node:

kubectl get pods -n kube-system -o wide

Troubleshooting Cluster Components and Applications238

As you may already know from the previous chapters, this command will print out the system-
reserved processes:

Figure 9.13 – The system-reserved process

When you see any process that is not in the Running status, it means that it was unhealthy – you
can use the kubectl describe pod command to check on it. The following is an example to
check out the kube-proxy status:

k describe pod kube-proxy-9rfxs -n kube-system

The preceding command will print out the full descriptive information of the kube-proxy-9rfxs
pod. However, as this pod presents the kube-proxy component, we can narrow the pod information
down further by using the following command:

k describe pod kube-proxy-9rfxs -n kube-system |  grep Node:

The output prints out the node name and its allocated IP address:

Node:                 docker-desktop/192.168.65.4

You can double-check this by using the kubectl get node -o wide command, which will
print out the IP address of the docker-desktop node too. It provides the same IP address as the
following (here is a partial output):

Figure 9.14 – Node-related information

From the output of the kubectl describe pod, kube-proxy-9rfxs -n kubectl, we
know the kube-proxy is a DaemonSet – refer to Chapter 4, Application Scheduling and Lifecycle
Management, to refresh the details about DaemonSets. In the case that you have multiple nodes and
want to see which pod is on which node, you can also use the following command to check out your
kube-proxy DaemonSet:

kubectl describe daemonset kube-proxy -n kube-system

Troubleshooting cluster components 239

The output is similar to the following, in which you can find useful information such as Pod Status
and pod template, which shows you the details of this pod:

Figure 9.15 – The kube-proxy DaemonSet information

Troubleshooting Cluster Components and Applications240

Knowing the pod configuration from the preceding output is not enough. When the pod is not up and
running for some reason, the logs are much handier, especially when the Events section is none (as
can be seen in the preceding screenshot). We can use the following command to check the pod logs:

kubectl logs kube-proxy-9rfxs -n kube-system

The preceding command prints out logs similar to the following, which will give you more details
about what has happened:

Figure 9.16 – The pod logs information

After covering master node troubleshooting, when troubleshooting is needed in the worker node, we
should start by troubleshooting the kubelet agent – let’s get into this in the next section.

Troubleshooting the kubelet agent

After checking on the node status, we could SSH to that worker node if you’re not there already, and
use the following command to check on the kubelet status:

systemctl status kubelet

Troubleshooting cluster components 241

The output should look as follows:

Figure 9.17 – The kubelet agent status and logs

The important part of the preceding screenshot is the status of kubelet, as can be seen in the
following screenshot:

Figure 9.18 – The kubelet agent status

In the case that the status is not active (running), we could use journalctl to obtain the
logs on the kubelet service on the worker node. The following command shows how to do so:

journalctl -u kubelet.service

Troubleshooting Cluster Components and Applications242

The output will print out log details similar to the following:

Figure 9.19 – The kubelet service detailed logs

Then, it’s up to you to find out what the main issue in the logs is. The following shows an example of
the problem statement:

Figure 9.20 – A sample kubelet agent error in the logs

Refer to Chapter 6, Securing Kubernetes, to learn about how to organize cluster access using kubeconfig.
Once you have fixed the issue, you should restart the kubelet agent using the following command:

systemctl restart kubelet

Note that in the CKA exam, sometimes there isn’t any real issue. After you have checked on the lost
logs using the journalctl -u kubelet.service command, you could use some help from
systemctl restart kubelet to reboot the kubelet agent to fix the issue.

Troubleshooting applications 243

Aside from issues with the cluster components, we often encounter application failures, the latter
perhaps more often in the daily routine of working with Kubernetes clusters. So, let’s now take a look
at troubleshooting applications.

Troubleshooting applications
In this section, we’ll focus on troubleshooting containerized applications deployed on the Kubernetes
cluster. This commonly covers issues with containerized-application-related Kubernetes objects,
including pods, containers, services, and StatefulSets. The troubleshooting skill that you will learn in
this section will be helpful throughout your CKA exam.

Getting a high-level view

To troubleshoot the application failures, we have to start by getting a high-level view. The following
command is the best way to get all the information at once:

kubectl get pods --all-namespaces

Alternatively, we can use the following:

kubectl get pods -A

The following output shows the pods up and running per namespace, within which you can easily
find which pods have failed:

Figure 9.21 – Listing pods per namespace

To get the most out of the output information, note the NAMESPACE, READY, and STATUS columns
– they will tell you in which namespace pods are up and running and how many copies. If you’re
certain about the failures that are happening on certain pods in a certain namespace, then you can
move on to the next section to inspect the namespace events.

Troubleshooting Cluster Components and Applications244

Inspecting namespace events

To inspect the namespace events, you can use the following command to find out what happened to
the applications that were deployed in the default namespace:

kubectl get events

The output should look as follows:

Figure 9.22 – The Kubernetes events

Within the preceding screenshot, we have some valuable columns:

•	 The TYPE column shows the event type – it could be Normal or Warning.

•	 The REASON column is tied to the behaviors of the events.

•	 The OBJECT column shows to which object this event is attached.

•	 The MESSAGE column shows what happened to a specific pod or container.

To know more about events, check out this blog to help you extract value from the Kubernetes event
feed: https://www.cncf.io/blog/2021/12/21/extracting-value-from-the-
kubernetes-events-feed/.

You can also sort the events list by most recent by using the following command:

kubectl get events --sort-by=.metadata.creationTimestamp

It will return the events sorted by their creation timestamp as follows:

Figure 9.23 – The Kubernetes events by timestamp

https://www.cncf.io/blog/2021/12/21/extracting-value-from-the-kubernetes-events-feed/
https://www.cncf.io/blog/2021/12/21/extracting-value-from-the-kubernetes-events-feed/

Troubleshooting applications 245

Similarly, if we wanted to check out the events in a namespace called app, we could use the
following command:

kubectl get events -n app --sort-by=.metadata.creationTimestamp

The output should look as follows:

Figure 9.24 – The Kubernetes events per namespace by timestamp

The preceding output proves that we’re able to print out the events per namespace and sort them by
creation time stamp.

Up until this point, we’re certain about which pod or container the issue occurred in. Now, let’s take
a closer look at the failing pods.

Troubleshooting failing pods

Once we narrow things down to the point where we know which pod is failing, we can use a command
to get the pod status running in that namespace. The following is the command to get a failing pod
called old-busybox in a namespace called app:

kubectl get pod old-busybox -n app

Your output will be similar to the following:

Figure 9.25 – Getting the failing pod in the namespace

We may notice that the STATUS shows there is an image error (ErrImagePull). Now, we can use
the kubectl describe pod command to get more details:

kubectl describe pod old-busybox -n app

Troubleshooting Cluster Components and Applications246

The preceding command prints an overview of the failing part, as shown in the following screenshot:

Figure 9.26 – Describing the failing pods in a namespace

You may notice there is a section called Events where the events related to this pod are displayed
as follows:

Figure 9.27 – The failing pod events

We can also use kubectl logs to get some information about the erroneous pod and the output
will give you more detailed information. Let’s use the same example to get the logs of a pod called
old-busybox, as shown in the following command:

kubectl logs old-busybox -n app

The output is the following:

Error from server (BadRequest): container "old-busybox" in pod
"old-busybox" is waiting to start: trying and failing to pull
image

Troubleshooting applications 247

From the previous few outputs, we know the image was not correct. As this is a pod, we can use the
following command to export the pod definition to a yaml file called my-old-pod.yaml:

kubectl get pod old-busybox -n app -o yaml > my-old-pod.yaml

We can also examine the content of this yaml file using the following command:

cat my-old-pod.yaml

The preceding command gives us the full configuration of the pod called old-busybox. However,
we found the key part of this file is the section called image, as shown in the following:

Figure 9.28 – The failing pod specification

Troubleshooting Cluster Components and Applications248

We can edit this exported file locally using the following command:

vim my-old-pod.yaml

You’ll see that you can edit the YAML file when you’re in EDIT mode as follows:

Figure 9.29 – Editing the pod-exported YAML specification

After you’re done with the editing, you need to delete the old pod using the kubectl delete
command, as follows:

kubectl delete pod old-busybox -n app

Then, deploy my-old-pod using the kubectl apply -f command, and then you’ll see the
pod is up and running again:

   NAME          READY   STATUS      RESTARTS         AGE

   old-busybox   1/1     Running     3(36s ago)       51s

Important note
For a failing pod that was initiated by deployment, you can use kubectl edit deploy
< your deployment > to live-edit the pod and fix the error. It helps to quickly fix a
range of errors. To learn more about how the deployment live-edit works, refer to Chapter 4,
Application Scheduling and Lifecycle Management.

Troubleshooting applications 249

The failing pods include the following cases:

Failing type How to debug?

Pending Use the kubectl describe command – sometimes, it is a scheduling
issue because of no available nodes or exceeding the resource. Make sure
you check the node status and use the top command to check out the
resource allocation.

CrashLoopBackOff Use the kubectl describe and kubectl log commands – sometimes,
it was caused by cluster components, so make sure you narrow the error
down by using the outside-in approach.

Completed Use the kubectl describe command to find out why it happened
and then fix it.

Error Use the kubectl describe command to find out why it happened
and then fix it.

ImagePullBackOff kubectl describes and mostly needs to export the YAML file, then update
the image. Also possible to use the set image command.

Table 9.2 - Failing pods and how to fix them

Knowing about pod troubleshooting comes in handy and applies to most cases, in particular in the
microservices architecture where there is mainly one container per pod. When it comes to multiple
containers in a pod or a pod containing init containers, we’ll need to execute a command on the pod
to troubleshoot – let’s take a look at those cases now.

Troubleshooting init containers

In Chapter 4, Application Scheduling and Lifecycle Management, of this book, we learned about init
containers, as we deployed init containers in the following example:

apiVersion: v1

kind: Pod

metadata:

  name: packt-pod

  labels:

    app: packtapp

Troubleshooting Cluster Components and Applications250

spec:

  containers:

  - name: packtapp-container

    image: busybox:latest

    command: ['sh', '-c', 'echo The packtapp is running! &&
sleep 3600']

  initContainers:

  - name: init-packtsvc

    image: busybox:latest

    command: ['sh', '-c', 'until nslookup init-packtsvc; do
echo waiting for init-packtsvc;  sleep 2;  done;']

We can use the following command to check the status for the initContainer of this pod:

kubectl get pod packt-pod --template '{{. status.
initContainerStatuses}}'

In my case, the printed output looks as follows:

[map[containerID:docker://016f1176608e521b3eecde33c35dce3596

a46a483f38a69ba94ed48b8dd91f13 image:busybox:latest imageID:

docker-pullable://busybox@sha256:3614ca5eacf0a3a1bcc361c939202

a974b4902b9334ff36eb29ffe9011aaad83 lastState:map[] name:

init-packtsvc ready:false restartCount:0  state:map[running:map

[startedAt:2022-06-23T04:57:47Z]]]]

The preceding output shows that the initContainer is not ready.

We can use the following command to check the logs for the initContainer of the pod to
understand why and fix the issue:

kubectl logs packt-pod -c init-packtsvc

Similarly, initContainer also has its status – the following are the common ones:

Summary 251

Failing type What does that mean?

Init: X/Y The pod has Y init containers in total and X of them are completed

Init: Error initContainer failed to execute correctly

Init:CrashLoopBackOff initContainer is failing repeatedly

Pending The pod is pending, so it has not started the initContainer
execution yet

PodInitializing The initContainer is executed and now the pod is initiating

Running The initContainer is executed and now the pod is up
and running

Familiarity with these statuses will help you define when and how to take further steps to
debug containers.

Summary
This chapter covered cluster troubleshooting and application troubleshooting from the cluster, the
node, and then down to the pod level – this is an end-to-end, outside-in approach. As a Kubernetes
administrator, acquiring good troubleshooting skills will help you to provide better value to your
organization greatly.

In the next chapter, we’ll focus on Kubernetes security, networking troubleshooting use cases, and
some more end-to-end troubleshooting scenarios. Stay tuned!

FAQs
•	 Where can I find a comprehensive guide to troubleshooting the clusters?

You can find the updated information from the official Kubernetes documentation:

https://kubernetes.io/docs/tasks/debug/debug-cluster/

•	 Where can I find a comprehensive guide to troubleshooting the applications?

You can find the updated information from the official Kubernetes documentation:

https://kubernetes.io/docs/tasks/debug/debug-application/

https://kubernetes.io/docs/tasks/debug/debug-cluster/
https://kubernetes.io/docs/tasks/debug/debug-application/

10
Troubleshooting Security

and Networking

So far in this book, we have talked about Kubernetes architecture, the application life cycle, security, and
networking. I hope that since this is the last chapter, we can follow on from Chapter 9, Troubleshooting
Cluster Components and Applications, to talk about security and networking troubleshooting. This
chapter provides the general troubleshooting approaches for troubleshooting errors caused by RBAC
restrictions or networking settings. We have touched upon how to enable Kubernetes RBAC in Chapter
6, Securing Kubernetes, and upon working with Kubernetes DNS in Chapter 7, Demystifying Kubernetes
Networking. Be sure to go back to these chapters and review the important concepts before diving into
this chapter. We’re going to cover the following main topics in this chapter:

•	 Troubleshooting RBAC failures

•	 Troubleshooting networking

Technical requirements
To get started, we need to make sure your local machine meets the following technical requirements.

In case you’re on Linux, we’re demonstrating examples with a minikube cluster – check out Chapter
2, Installing and Configuring Kubernetes Clusters. Make sure that your test environment meets the
following requirements:

•	 A compatible Linux host. We recommend a Debian-based Linux distribution such as Ubuntu
18.04 or later.

•	 Make sure that your host machine has at least 2 GB of RAM, 2 CPU cores, and about 20 GB
of free disk space.

Troubleshooting Security and Networking254

In case you’re on Windows 10 or Windows 11, make note of the following:

•	 We recommend updating Docker Desktop to the latest version and creating a local docker-
desktop Kubernetes cluster. Refer to this article to understand how to set up a local Kubernetes
cluster with Docker Desktop: https://docs.docker.com/desktop/kubernetes/.

•	 We also recommend using Windows Subsystem for Linux 2 (WSL 2) to test the environment
– refer to this article to see how to install WSL 2 (https://docs.microsoft.com/
en-us/windows/wsl/install) and the following article to see how to set up the Docker
Desktop WSL 2 backend (https://docs.docker.com/desktop/windows/wsl/).

Troubleshooting RBAC failures
Troubleshooting any issues related to Kubernetes security seems a bit contradictory. As a matter of fact,
most of the security layers of Kubernetes involve working with tooling that helps secure the 4C layers
of Kubernetes, which involves security scanning, managing, and protection. To learn more about the
4C layers, please refer to Chapter 6, Securing Kubernetes. When it comes to troubleshooting security,
the CKA exam is most often about the Kubernetes RBAC issue. Therefore, we’ll focus on showing an
example of troubleshooting RBAC failures in Kubernetes in this section.

Initiating a minikube cluster

This part is not covered by the CKA exam, but you may encounter this if you’re trying to deploy the
minikube cluster by yourself following the instructions in Chapter 2, Installing and Configuring the
Kubernetes Cluster. You will need to apply what we discussed in that chapter of the book whenever
you’re trying to install a new minikube cluster in a virgin Linux VM.

After you have installed the minikube tools, you can start to spin up your local cluster using the
following command:

minikube start

You may see the following error in your output:

Figure 10.1 – The drivers are not healthy

https://docs.docker.com/desktop/kubernetes/

https://docs.microsoft.com/en-us/windows/wsl/install
https://docs.microsoft.com/en-us/windows/wsl/install
https://docs.docker.com/desktop/windows/wsl/

Troubleshooting RBAC failures 255

Your first instinct is to choose the correct drive and use the sudo command, as in the following:

sudo minikube start --driver=docker

As a result, you may see the following output:

Figure 10.2 – The service account per namespace

The preceding output was because of the Docker root privileges issue. The best practice is to manage
Docker as a non-root user to avoid this issue. In order to achieve this, we need to add a user to a
group called docker:

1.	 Create the docker group:

sudo groupadd docker

2.	 Add your user to the group called docker:

sudo usermod -aG docker $USER

3.	 From here you need to log in again or restart the Docker server so that your group membership
is re-evaluated. However, we should activate the changes to the group by using the following
command when we’re on the Linux OS:

newgrp docker

4.	 The next time, when you log in, use the following command if you want Docker to start on boot:

sudo systemctl enable docker.service

sudo systemctl enable containerd.service

5.	 After the preceding steps, you should be able to start minikube with the Docker driver by
using the following command:

minikube start --driver=docker

Troubleshooting Security and Networking256

The preceding minikube start command has created a minikube cluster successfully if you
are able to see an output similar to the following:

Figure 10.3 – Starting the minikube cluster successfully

Although this section is not covered in the CKA exam, it’s highly recommended to get familiar with
it in case you’re stuck when creating a minikube cluster. Once you get your minikube cluster up
and running, we can get into managing a minikube cluster and troubleshooting RBAC as needed.

Managing a minikube cluster

When it comes to managing a minikube cluster, we learned in Chapter 6, Securing Kubernetes, that
we need to set apiserver --authorization-mode to RBAC in order to enable Kubernetes
RBAC, as shown in the following example:

kube-apiserver --authorization-mode=RBAC

Make sure that our current context uses our default minikube and then use the following commands
to create a new deployment in a specific namespace:

kubectl create ns app

kubectl create deployment rbac-nginx –-image=nginx -n app

The preceding two commands create a namespace called app, and a new deployment called rbac-
nginx within the app namespace.

Let’s define a new role called rbac-user in a namespace called app by using the following command:

kubectl create role rbac-user --verb=get --verb=list
--resource=pods --namespace=app

Troubleshooting RBAC failures 257

We then need to create rolebinding to bind this role to the subjects, as is shown in the following
command:

kubectl create rolebinding rbac-pods-binding --role=rbac-user
--user=rbac-dev --namespace=app

As rbac-user only has to list and get permissions for pods, let’s try to use this profile for user
impersonation to delete the deployment:

kubectl auth can-i delete deployment --as=rbac-user

The output should look as follows:

No

You can learn more about user impersonation from the official documentation here: https://
kubernetes.io/docs/reference/access-authn-authz/authentication/#user-
impersonation

To resolve the issue, we could update the role for rbac-user in the YAML definition, as in the
following:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

  namespace: app

  name: rbac-user

rules:

- apiGroups: ["extensions", "apps"]

  resources: ["deployments"]

  verbs: ["get", "list", "watch", "create", "update", "patch",
"delete"]

We could use the kubectl auth reconcile command to create or update a YAML manifest
file containing RBAC objects. Check the official documentation for more information (https://
kubernetes.io/docs/reference/access-authn-authz/rbac/#kubectl-auth-
reconcile):

kubectl auth reconcile -f my-rbac-rules.yaml

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#user-impersonation
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#user-impersonation
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#user-impersonation
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#kubectl-auth-reconcile
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#kubectl-auth-reconcile
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#kubectl-auth-reconcile

Troubleshooting Security and Networking258

The RBAC issue applies in the use case where different dev teams are sharing the cluster resources – as
a Kubernetes administrator, you’re likely to access the cluster with full permission. Understanding this
part will help you better govern the permissions among the dev team members for a better standard
of security and compliance.

Troubleshooting networking
In Chapter 7, Demystifying Kubernetes Networking, we learned that the Kubernetes DNS server creates
DNS records (A/AAAA, SRV, and PTR records) for services and pods in Kubernetes. Those efforts
allow you to contact Services with consistent DNS names in place of the IP addresses. The Kubernetes
DNS server does this by scheduling a few copies of DNS pods and services on the Kubernetes cluster.

In the following section, let’s talk about how to troubleshoot the Kubernetes DNS service.

Troubleshooting a Kubernetes DNS server

To troubleshoot the networking of Kubernetes, we start by checking the status of the DNS server.
Using minikube as a local cluster this time, we use the following command to check whether the
DNS server is up and running on your cluster:

kubectl get pods -n kube-system | grep dns

The output should be similar to the following:

coredns-64897985d-brqfl 1/1 Running 1 (2d ago) 2d

From the preceding output, we can see that the CoreDNS is up and running in our current minikube
cluster. We can also do this by using the kubectl get deploy core-dns -n kube-system
command.

To get further details, we check out the CoreDNS deployment settings by using the kubectl
describe command, as in the following:

kubectl describe deploy coredns -n kube-system

Troubleshooting networking 259

The output is as follows:

Figure 10.4 – The minikube CoreDNS configurations

As we said, the Kubernetes DNS service creates DNS records for services, so you contact services
with a consistent DNS fully qualified hostnames instead of IP addresses. As it is located in the kube-
system namespace, we can check it out by using the following command for our minikube cluster:

kubectl get svc -n kube-system

Troubleshooting Security and Networking260

The output is as follows, which gives us the cluster IP of kube-dns:

NAME       TYPE     CLUSTER-IP   EXTERNAL-IP      PORT(S)        

AGE

kube-dns   ClusterIP 10.96.0.10  <none>   53/UDP,53/TCP,9153/
TCP 2d

To troubleshoot issues with the DNS server, we can use the kubectl logs command:

kubectl logs coredns-64897985d-brqfl -n kube-system

The preceding kubectl logs command shows the logs for a coredns pod named coredns-
64897985d-brqfl and the output is similar to the following:

Figure 10.5 – The minikube CoreDNS logs

The output shows whether the DNS server is up or not, and will log abnormal events if any exist. Once
we know that the DNS server is up, we can take a look at how to troubleshoot the services deployed
in the Kubernetes cluster in the following section.

Troubleshooting a service in Kubernetes

To troubleshoot a service, let’s first deploy a new deployment called svc-nginx:

kubectl create deployment svc-nginx –-image=nginx -n app

The following output shows that it has been created successfully:

deployment.apps/svc-nginx created

Let’s now take a look at exposing a service for the svc-nginx deployment. We’re using the following
command to expose the NodePort service of the nginx pod on port 80:

kubectl expose deploy svc-nginx --type=NodePort --name=nginx-
svc --port 80 -n app

Troubleshooting networking 261

The following output shows that it has been exposed successfully:

service/nginx-svc exposed

As we learned from Chapter 7, Demystifying Kubernetes Networking, we know that we can expect the
nginx-svc service to follow the general service DNS name pattern, which would be as follows:

nginx-svc.app.svc.cluster.local

Now, let’s take a look at the services currently in the app namespace of our Kubernetes cluster by
using the following command:

kubectl get svc -n app

We can see an output similar to the following:

Figure 10.6 – A nginx-svc service in the Kubernetes app namespace

From the preceding output, we can get a closer look at nginx-svc by using the following command:

kubectl get svc nginx-svc –n app -o wide

The output of the preceding command is the following:

Figure 10.7 – A closer look at the nginx-svc service

The preceding command shows that the IP address of the nginx-svc service is 10.101.34.154,
so let’s use the nslookup command to check out its DNS name:

kubectl run -it sandbox --image=busybox:latest --rm
--restart=Never -- nslookup 10.101.34.154

Troubleshooting Security and Networking262

Important Note
The preceding command creates a busybox pod in the default namespace. As by default,
pods in the Kubernetes cluster can talk to each other, we could use a sandbox pod to test the
connectivity to a different namespace.

The preceding command will give you the following output:

Figure 10.8 – Returning back the DNS name for nginx-svc

If you want to test the connectivity by using a pod in the same namespace as nginx-svc, use the
following command:

kubectl run -it sandbox -n app --image=busybox:latest --rm
--restart=Never -- nslookup 10.101.34.154

Based on the preceding output, we can see the DNS name for nginx-svc is nginx-svc.app.
svc.cluster.local. Now, let’s get the DNS record of the nginx-svc service from the app
namespace using the following command:

kubectl run -it sandbox --image=busybox:latest --rm
--restart=Never -- nslookup nginx-svc.app.svc.cluster.local

You’ll see that the output is similar to the following:

Server:    10.96.0.10

Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local

Name:      nginx-svc.app.svc.cluster.local

Address 1: 10.101.34.154 nginx-svc.app.svc.cluster.local

pod "sandbox" deleted

Now, let’s test out the connectivity of the nginx-svc service. We can use the nginx-beta
deployment to see what’s coming back using curl. The complete command is as follows:

kubectl run -it nginx-beta -n app --image=nginx --rm
--restart=Never -- curl -Is http://nginx-svc.app.svc.cluster.
local

Troubleshooting networking 263

The output is as follows:

Figure 10.9 – Returning the nginx main page

The preceding screenshot with 200 responses proves that the connectivity between the nginx-beta
pod and the nginx-svc Service is OK, and that we managed to use curl on the main page of
nginx with the DNS name of the nginx service.

The approach that we discussed in this section works well when we want to quickly test the connectivity
within the same namespace or to a different namespace. The latter would also work in a scenario where
the network policy is deployed to restrict the connectivity between pods in different namespaces. Now,
in the following section, let’s take a look at how to get a shell to debug the Kubernetes networking in
case we need a longer session.

Get a shell for troubleshooting

Given the same scenario with the svc-nginx deployment in the app namespace, now let’s use the
interactive shell to troubleshoot the networking.

After we find the IP address of nginx-svc, 10.101.34.154, let’s use the nslookup command
to check out its DNS name – use the following command:

kubectl run -it sandbox --image=busybox:latest --rm
--restart=Never --

We’re now getting into the interactive shell:

If you don't see a command prompt, try pressing enter.

/ # whoami

root

Troubleshooting Security and Networking264

In this interactive shell, we log in as root, and we can use nslookup or another valid command to
troubleshoot the networking:

nslookup 10.101.34.154

The output is as follows:

Figure 10.10 – An interactive shell in BusyBox

There’s a handful of commands available in BusyBox, though curl isn’t one of them. So, let’s now
get an nginx image with curl available. To know what the shell commands available in BusyBox
are, refer to the following page: https://hub.docker.com/_/busybox.

We can use the following command to get to the interactive shell of the nginx pod and find the
nginx pod:

kubectl get pods -n app | grep svc-nginx

Then, it will come back with the full name of the pod that the svc-nginx deployment created:

svc-nginx-77cbfd944c-
9wp6s    1/1     Running     0          4h14m

Let’s use the kubectl exec command to get the interactive shell:

kubectl exec -i -t svc-nginx-77cbfd944c-9wp6s --container nginx
-n app -- /bin/bash

The preceding command will get you the interactive shell access, and then we can use the same curl
command to test the connectivity:

root@svc-nginx-77cbfd944c-9wp6s:/#

curl -Is http://nginx-svc.app.svc.cluster.local

This technique comes in extremely handy in a case where a pod has one or more containers. Refer
to this article to get more tips: https://kubernetes.io/docs/tasks/debug/debug-
application/get-shell-running-container/.

https://hub.docker.com/_/busybox
https://kubernetes.io/docs/tasks/debug/debug-application/get-shell-running-container/
https://kubernetes.io/docs/tasks/debug/debug-application/get-shell-running-container/

Summary 265

In this section, we have covered troubleshooting networking – the commands presented in this section
are references that you can leverage in your real-life debugging session. Go back and practice a few
times, make sure you get a proper understanding, and it will pay off.

Summary
This chapter has covered the approaches and use cases for Kubernetes RBAC and networking
troubleshooting. Together with Chapter 8, Monitoring and Logging Kubernetes Clusters and Applications,
and Chapter 9, Troubleshooting Cluster Components and Applications, that covers 30% of the CKA
content.

To get the most out of this chapter, go back and refer to Chapter 6, Securing Kubernetes, especially the
section on how to enable Kubernetes RBAC, and to Chapter 7, Demystifying Kubernetes, to refresh
how to work with Kubernetes DNS. Knowing how to work with Kubernetes DNS will help you lay
the foundations for understanding other important concepts.

Make sure that you check out the FAQs section in all the chapters for further references, as well as
reading all the recommended documentation and articles. A good understanding of these materials
will help you become more confident in your daily job as a Kubernetes administrator.

Let’s stay tuned!

FAQs
•	 Where can I find a comprehensive guide to troubleshooting the Kubernetes services?

You can find the updated documentation within the official Kubernetes documentation:

https://kubernetes.io/docs/tasks/debug/debug-application/debug-
service/

Also highly recommended is focusing on this chapter together with Chapter 9, Troubleshooting
Cluster Components and Applications, as a complementary resource. This will help you gather
a full view of the Kubernetes troubleshooting story.

•	 Where can I find a comprehensive guide to Kubernetes networking?

Chapter 7 of this book, Demystifying Kubernetes Networking, touches upon most of the Kubernetes
networking concepts, as well as troubleshooting examples – together with this chapter, this will
help you work confidently on questions that could appear in the actual CKA exam. You can
also bookmark the following article from the official Kubernetes documentation:

https://kubernetes.io/docs/concepts/cluster-administration/
networking/

https://kubernetes.io/docs/tasks/debug/debug-application/debug-service/
https://kubernetes.io/docs/tasks/debug/debug-application/debug-service/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/

Appendix - Mock CKA scenario-
based practice test resolutions

Chapter 2 – Installing and Configuring Kubernetes Clusters
You have two virtual machines: master-0 and worker-0. Please complete the following mock
scenarios.

Scenario 1

Install the latest version of kubeadm , then create a basic kubeadm cluster on the master-0 node,
and get the node information.

1.	 Update the apt package index, add a Google Cloud public signing key, and set up the
Kubernetes apt repository by running the following instructions:

sudo apt-get update

sudo apt-get install -y apt-transport-https
ca-certificates curl

sudo curl -fsSLo /usr/share/keyrings/kubernetes-archive-
keyring.gpg https://packages.cloud.google.com/apt/doc/
apt-key.gpg

echo "deb [signed-by=/usr/share/keyrings/kubernetes-
archive-keyring.gpg] https://apt.kubernetes.io/
kubernetes-xenial main" | sudo tee /etc/apt/sources.
list.d/kubernetes.list

Appendix - Mock CKA scenario-based practice test resolutions 268

2.	 Start by updating the apt package index, then install kubelet and kubeadm:

sudo apt-get update

sudo apt-get install -y kubelet kubeadm

3.	 At this point, if you haven’t installed kubectl yet, you can also install kubelet, kubeadm,
and kubectl in one go:

sudo apt-get update

sudo apt-get install -y kubelet kubeadm kubectl

4.	 Use the following command to pin the version of the utilities you’re installing:

sudo apt-mark hold kubelet kubeadm kubectl

5.	 You can use the kubeadm init command to initialize the control-plane like a regular user,
and gain sudo privileges from your master node machine by using the following command:

  sudo kubeadm init --pod-network-cidr=192.168.0.0/16

6.	 After your Kubernetes control-plane is initialized successfully, you can execute the following
commands to configure kubectl:

 mkdir -p $HOME/.kube

 sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

 sudo chown $(id -u):$(id -g) $HOME/.kube/config

Scenario 2

SSH to worker-0 and join it to the master-0 node.

You can use the following command to join the worker nodes to the Kubernetes cluster. This command
can be used repeatedly each time you have new worker nodes to join with the token that you acquired
from the output of the kubeadm control-plane:

sudo kubeadm join --token <token>  <control-plane-
host>:<control-plane-port> --discovery-token-ca-cert-hash
sha256:<hash>

Chapter 3 – Maintaining Kubernetes Clusters 269

Scenario 3 (optional)

Set up a local minikube cluster, and schedule your first workload called hello Packt.

Note
Check out the Installing and configuring Kubernetes cluster section in Chapter 2, to set up a
single node minikube cluster.

Let’s quickly run an app on the cluster called helloPackt using busybox:

kubectl run helloPackt --image=busybox

Chapter 3 – Maintaining Kubernetes Clusters
You have two virtual machines: master-0 and worker-0. Please complete the following mock
scenarios.

Scenario 1

SSH to the master-0 node, check the current kubeadm version, and upgrade to the latest kubeadm
version. Check the current kubectl version, and upgrade to the latest kubectl version.

Start by checking the current version with the following commands once we’re in the master node:

   kubeadm version

   kubectl version  

Check out the latest available versions:

  apt update

  apt-cache madison kubeadm

Upgrade the kubeadm using the following command:

apt-mark unhold kubeadm && \

apt-get update && apt-get install -y kubeadm=1.xx.x-00 && \

apt-mark hold kubeadm

Check if your cluster can be upgraded, and the available versions that your cluster can be upgraded
to by using the following command:

 kubeadm upgrade plan

Appendix - Mock CKA scenario-based practice test resolutions 270

Use the following command to upgrade the kubeadm:

 kubeadm upgrade apply v1.xx.y

Scenario 2

SSH to worker-0 node, check the current kubeadm version, and upgrade to the latest kubeadm
version. Check the current kubelet version, and upgrade to the latest kubelet version.

Start by checking the current version with the following commands once we’re in the master node:

   kubeadm version

   kubectl version  

Check what the latest versions available are:

  apt update

  apt-cache madison kubeadm

Upgrade the kubelet (which also upgrades the local kubelet configuration) with the following
command:

  sudo kubeadm upgrade node

Cordon the node so that we drain the workloads of preparing the node for maintenance using the
following command:

kubectl drain worker-0 --ignore-daemonsets

Upgrade the kubeadm by using the following command:

apt-mark unhold kubeadm && \

apt-get update && apt-get install -y kubeadm=1.xx.x-00 && \

apt-mark hold kubeadm

Check if your cluster can be upgraded and the available versions that your cluster can be upgraded
to by using the following command:

 kubeadm upgrade plan

Use the following command to upgrade the kubeadm:

 kubeadm upgrade apply v1.xx.y

Chapter 3 – Maintaining Kubernetes Clusters 271

Restart the kubelet for the changes to take effect:

sudo systemctl daemon-reload

sudo systemctl restart kubelet

Finally, we can uncordon the worker node and it will return the node that is now shown as uncordoned:

kubectl uncordon worker-0

Scenario 3

SSH to the master-0 node, and backup the etcd store.

Use the following command to check the endpoint status:

sudo ETCDCTL_API=3 etcdctl endpoint status --endpoints=ht
tps://172.16.16.129:2379 --cacert=/etc/kubernetes/pki/etcd/
ca.crt --cert=/etc/kubernetes/pki/etcd/server.crt --key=/etc/
kubernetes/pki/etcd/server.key --write-out=table

Use the following command to backup etcd:

sudo ETCDCTL_API=3 etcdctl snapshot save snapshotdb

--endpoints=https://172.16.16.129:2379

--cacert=/etc/kubernetes/pki/etcd/ca.crt --cert=/etc/
kubernetes/pki/etcd/server.crt --key=/etc/kubernetes/pki/etcd/
server.key

Scenario 4

SSH to the master-0 node, and restore the etcd store to the previous backup.

Restore the etcd from a previous backup operation using the following command:

sudo ETCDCTL_API=3 etcdctl --endpoints 172.16.16.129:2379
snapshot restore snapshotdb

Appendix - Mock CKA scenario-based practice test resolutions 272

Chapter 4 – Application scheduling and lifecycle
management
You have two virtual machines: master-0 and worker-0, please complete the following mock
scenarios.

Scenario 1

SSH to the worker-0 node, and provision a new pod called ngnix with a single container nginx.

Use the following command:

kubectl run nginx --image=nginx:alpine

Scenario 2

SSH to worker-0, and then scale the nginx to 5 copies.

Use the following command:

kubectl scale deployment nginx --replicas=5

Scenario 3

SSH to worker-0, set a configMap with a username and password, then attach a new pod with
a busybox.

Create a yaml definition called packt-cm.yaml to define ConfigMap as the following:

  apiVersion: v1

  kind: ConfigMap

  metadata:

    name: packt-configmap

  data:

    myKey: packtUsername

    myFav: packtPassword

Use the following command to deploy the yaml manifest:

kubectl apply -f packt-cm.yaml

Chapter 4 – Application scheduling and lifecycle management 273

Verify the configMap by using the following command:

kubectl get configmap

Once you have configMap ready, create a yaml definition file to config the pod to consume the
configMap as the following:

apiVersion: v1

kind: Pod

metadata:

  name: packt-configmap

spec:

  containers:

  - name: packt-container

    image: busybox

    command: ['sh', '-c', "echo $(MY_VAR) && sleep 3600"]

    env:

    - name: MY_VAR

      valueFrom:

        configMapKeyRef:

          name: packt-configmap

          key: myKey

Use the following command to verify the configMap value:

kubectl logs packt-configmap

Scenario 4

SSH to worker-0, and create a nginx pod with an initContainer called busybox.

Create a yaml definition called packt-pod.yaml shown as follows:

apiVersion: v1

kind: Pod

metadata:

  name: packtpod

  labels:

    app: packtapp

Appendix - Mock CKA scenario-based practice test resolutions 274

spec:

  containers:

  - name: packtapp-container

    image: busybox:latest

    command: ['sh', '-c', 'echo The packtapp is running! &&
sleep 3600']

  initContainers:

  - name: init-pservice

    image: busybox:latest

    command: ['sh', '-c', 'until nslookup packtservice; do echo
waiting for packtservice; sleep 2; done;']

Use the following command to deploy the yaml manifest:

kubectl apply -f packt-pod.yaml

Use the following command to see if the pod is up and running:

kubectl get podpackt

Scenario 5

SSH to worker-0, and create a nginx pod and then a busybox container in the same pod.

Create a yaml definition called packt-pod.yaml shown as follows:

apiVersion: v1

kind: Pod

metadata:

  name: pactk-multi-pod

  labels:

      app: multi-app

spec:

  containers:

  - name: nginx

    image: nginx

    ports:

    - containerPort: 80

  - name: busybox-sidecar

    image: busybox

    command: ['sh', '-c', 'while true; do sleep 3600; done;']

Chapter 5 – Demystifying Kubernetes Storage 275

Use the following command to deploy the yaml manifest:

kubectl apply -f packt-pod.yaml

Use the following command to see if the pod is up and running:

kubectl get pod pactk-multi-pod

Chapter 5 – Demystifying Kubernetes Storage
You have two virtual machines: master-0 and worker-0. Please complete the following mock
scenarios.

Scenario 1

Create a new PV called packt-data-pv with a storage of 2GB, and two persistent volume claims
(PVCs) requiring 1GB local storage each.

Create a yaml definition called packt-data-pv.yaml for persistent volume as the following:

  apiVersion: v1

  kind: PersistentVolume

  metadata:

    name: packt-data-pv

  spec:

    storageClassName: local-storage

    capacity:

      storage: 2Gi

    accessModes:

      - ReadWriteOnce

Use the following command to deploy the yaml manifest:

kubectl apply -f packt-data-pv.yaml

Create a yaml definition called packt-data-pvc1.yaml for persistent volume claim as the following:

apiVersion: v1

 kind: PersistentVolumeClaim

 metadata:

   name: packt-data-pvc1

 spec:

   storageClassName: local-storage

Appendix - Mock CKA scenario-based practice test resolutions 276

   accessModes:

       - ReadWriteOnce

   resources:

     requests:

        storage: 1Gi

Create a yaml definition called packt-data-pvc2.yaml for persistent volume claim as the following:

apiVersion: v1

 kind: PersistentVolumeClaim

 metadata:

   name: packt-data-pvc2

 spec:

   storageClassName: local-storage

   accessModes:

       - ReadWriteOnce

   resources:

     requests:

        storage: 1Gi

Use the following command to deploy the yaml manifest:

kubectl apply -f packt-data-pv1.yaml,packt-data-pv2.yaml

Scenario 2

Provision a new pod called packt-storage-pod, and assign an available PV to this pod.

Create a yaml definition called packt-data-pod.yaml shown as follows:

apiVersion: v1

 kind: Pod

 metadata:

   name: packt-data-pod

 spec:

   containers:

     - name: busybox

       image: busybox

Chapter 6 – Securing Kubernetes 277

       command: ["/bin/sh", "-c","while true; do sleep
3600;  done"]

       volumeMounts:

       - name: temp-data

         mountPath: /tmp/data

   volumes:

     - name: temp-data

       persistentVolumeClaim:

         claimName: packt-data-pv1

   restartPolicy: Always

Use the following command to deploy the yaml manifest:

kubectl apply -f packt-data-pod.yaml

Use the following command to see if the pod is up and running:

kubectl get pod packt-data-pod

Chapter 6 – Securing Kubernetes
You have two virtual machines: master-0 and worker-0, please complete the following mock
scenarios.

Scenario 1

Create a new service account named packt-sa in a new namespace called packt-ns.

Use the following command to create a new service account in the targeting namespace:

kubectl create sa packt-sa -n packt-ns

Scenario 2

Create a Role named packt-role and bind it with the RoleBinding packt-rolebinding. Map
the packt-sa service account with list and get permissions.

Use the following command to create a cluster role in the targeting namespace:

kubectl create role packt-role --verb=get --verb=list
--resource=pods --namespace=packt-ns

Appendix - Mock CKA scenario-based practice test resolutions 278

Use the following command to create a Role binding in the targeting namespace:

kubectl create rolebinding packt-pods-binding --role=packt-role
--user=packt-user -- namespace=packt-ns

To achieve the same result, you can create a yamldefinition called packt-role.yaml:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

  namespace: packt-ns

  name: packt-clusterrole

rules:

- apiGroups: [""]  

  resources: ["pods"]

  verbs: ["get", "list"]

Create another yaml definition called packt-pods-binding.yaml:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: packt-pods-binding

  namespace: packt-ns

Chapter 6 – Securing Kubernetes 279

subjects:

- kind: User

  apiGroup: rbac.authorization.k8s.io

  name:packt-user

roleRef:

  kind: Role  

  name: packt-role

  apiGroup: rbac.authorization.k8s.io

Use the following command to deploy the yaml manifest:

kubectl apply -f packt-role.yaml,packt-pods-binding.yaml

Verify the Role using the following command:

kubectl get roles -n packt-ns

Verify the rolebindings by using the following command:

kubectl get rolebindings -n packt-ns

Scenario 3

Create a new pod named packt-pod with the image busybox:1.28 in the namespace packt-ns.
Expose port 80. Then assign the service account packt-sa to the pod.

Use the following command to create a deployment:

kubectl create deployment packtbusybox –-image=busybox:1.28 -n
packt-ns –port 80

Export the deployment information in yaml specification form:

kubectl describe deployment packtbusybox -n packt-ns -o yaml >
packt-busybox.yaml

Appendix - Mock CKA scenario-based practice test resolutions 280

Edit the yaml specification to reference the service account:

apiVersion: v1

kind: Deployment

metadata:

  name: packtbusybox

  namespace : packt-ns

spec:

  containers:

  - image: busybox

    name: packtbusybox

    volumeMounts:

    - mountPath: /var/run/secrets/tokens

      name: vault-token

  serviceAccountName: packt-sa

  volumes:

  - name: vault-token

    projected:

      sources:

      - serviceAccountToken:

          path: vault-token

          expirationSeconds: 7200

          audience: vault

Check out the Implementing Kubernetes RBAC section in Chapter 6, Securing Kubernetes to get further
information about how to implement RBAC.

Chapter 7 – Demystifying Kubernetes networking
You have two virtual machines: master-0 and worker-0. Please complete the following mock
scenarios.

Scenario 1

Deploy a new deployment nginx with the latest image of nginx for 2 replicas, in a namespace called
packt-app. The container is exposed on port 80. Create a service type ClusterIP within the same
namespace. Deploy a sandbox-nginx pod and make a call using curl to verify the connectivity to
the nginx service.

Chapter 7 – Demystifying Kubernetes networking 281

Use the following command to create nginx deployment in the targeting namespace:

kubectl create deployment nginx --image=nginx --replicas=2 -n
packt-app

Use the following command to expose nginx deployment with a ClusterIP service in the targeting
namespace:

kubectl expose deployment nginx --type=ClusterIP --port 8080
--name=packt-svc --target-port 80 -n packt-app

Use the following command to get the internal IP:

kubectl get nodes -o jsonpath='{.items[*].status.addresses[?(
@.type=="INTERNAL-IP")].address}'

Use the following command to get the endpoint:

kubectl get svc packt-svc -n packt-app -o wide

Use the following command to deploy a sandbox-nginx pod in the targeting namespace using
your endpoint:

kubectl run -it sandbox-nginx --image=nginx -n packt-app --rm
--restart=Never -- curl -Is http://192.168.xx.x (internal IP
):31400 (endpoint)

Scenario 2

Expose the nginx deployment with the NodePort service type; the container is exposed on port 80.
Use the test-nginx pod to make a call using curl to verify the connectivity to the nginx service.

Use the following command to create nginx deployment in the targeting namespace:

kubectl expose deployment nginx --type=NodePort --port 8080
--name=packt-svc --target-port 80 -n packt-app

Use the following command to get the internal IP:

kubectl get nodes -o jsonpath='{.items[*].status.addresses[?(
@.type=="INTERNAL-IP")].address}'

Use the following command to get the endpoint:

kubectl get svc packt-svc -n packt-app -o wide

Appendix - Mock CKA scenario-based practice test resolutions 282

Use the following command to deploy a test-nginx pod in the targeting namespace using your endpoint:

kubectl run -it test-nginx --image=nginx -n packt-app --rm
--restart=Never -- curl -Is http://192.168.xx.x (internal IP
):31400 (endpoint)

Scenario 3

Make a call using wget or curl from the machine within the same network with that node, to verify
the connectivity with the nginx NodePort service through the correct port.

Call from worker-2 using the following command:

curl -Is http://192.168.xx.x (internal IP of the worker 2
):31400 (the port of that node  )

Alternatively, we can use wget as the following command:

wget http://192.168.xx.x (internal IP of the worker 2):31400 (
the port of that node  )

Scenario 4

Use the sandbox-nginx pod to nslookup the IP address of nginx NodePort service. See what is
returned.

Use the following command:

kubectl run -it sandbox-nginx --image=busybox:latest

kubect exec sandbox-nginx -- nslookup <ip address of nginx
Nodeport>

Scenario 5

Use the sandbox-nginx pod to nslookup the DNS domain hostname of nginx NodePort service.
See what is returned.

Use the following command:

kubectl run -it sandbox-nginx --image=busybox:latest

kubect exec sandbox-nginx -- nslookup <hostname of nginx
Nodeport>

Chapter 8 – Monitoring and logging Kubernetes Clusters and Applications 283

Scenario 6

Use the sandbox-nginx pod to nslookup the DNS domain hostname of nginx pod. See what is
returned.

Use the following command:

kubectl run -it sandbox-nginx --image=busybox:latest

kubect exec sandbox-nginx -- nslookup x-1-0-9(pod ip address).
pack-app.pod.cluster.local

Chapter 8 – Monitoring and logging Kubernetes Clusters
and Applications
You have two virtual machines: master-0 and worker-0. Please complete the following mock
scenarios.

Scenario 1

List all the available pods in your current cluster and find what the most CPU-consuming pods are.
Write the name to the max-cpu.txt file.

Use the following command:

kubectl top pod -- all-namespaces --sort-by=cpu > max-cpu.txt

Index

A
AAAA records 190
ABAC authorization

about 154
reference link 154

access modes
about 128
reference link 129

addons, installing
reference link 41

Amazon Web Service (AWS) 19
annotations 101
anti-affinity 101, 102
API server 9
applications

cluster events, monitoring 219, 220
configuring 105
deploying 81
details, checking 216-218
managing 81
monitoring, on Kubernetes cluster 213
resource usage, monitoring 213-215
scaling 90

Attribute-Based Access Control (ABAC) 145
Azure Kubernetes Service (AKS) 19, 181

B
browser

important documentation, bookmarking 7
BusyBox

reference link 264

C
Certified Kubernetes

Administrator (CKA) 3
Certified Kubernetes Security

Specialist (CKS) 4
check services 182-184
CKA exam

overview 3, 4
system requirements 4, 5
tips and tricks 5-8

Cloud layer 144
Cloud Native Computing Foundation

(CNCF) 15, 144, 190
cloud-native landscape

URL 19
cluster

inspecting 230, 231
sharing, with namespaces 17

Index286

cluster components
node, inspecting 231-237
troubleshooting 230

ClusterIP 172-176
Cluster layer 144
cluster-level logging

about 220
patterns 220

cluster node
CPU/memory metrics, checking 213
details, checking 221, 222
logs, managing 220
monitoring 208
status, checking 222

ClusterRoleBinding 155
ClusterRoles

about 155
versus Roles 155-158

CNI plugins
decision metrics 186
networking in Kubernetes 185, 186
selecting 185

Code layer 144
ConfigMap 105-108
container engine 12
container images 11
containerized applications

failing pods, troubleshooting 245-249
high-level view, obtaining 243
init containers, troubleshooting 249-251
namespace events, inspecting 244, 245
troubleshooting 243

containerized workloads 11
Container layer 144
Container Network Interface

(CNI) 15, 41, 185
container registry 12
container runtime 10, 14

Container Runtime Interface
(CRI) plugin 14

container runtimes 12
container stderr log

managing 222-225
container stdout log

managing 222-225
Container Storage Interface (CSI) 15, 118
container-to-container

communication 166-168
controllers 10
CoreDNS

configuring 190
leveraging 190
pod IPs and DNS hostnames 196-199
service IPs and DNS hostnames 199-202

CoreDNS server
checking, up and running on

cluster 190-196
core tools, Kubernetes

container runtime 24, 25
kubectl 22, 23

CRI-O
reference link 25

CronJobs
about 17, 79, 80
reference link 81

CSI drivers
reference link 121

CSI ephemeral volumes 120, 121
Custom Resource Definitions (CRDs) 41

D
DaemonSet
DaemonSets 16, 95-98
dashboard 28
decision metrics 186

Index 287

declarative management
versus imperative management 72

dependencies, on Docker
reference link 31

Deployment 17, 82-86
deployment tools, Kubernetes 25
DNS records

AAAA records 190
PTR records 190
SRV records 190
types 190

Domain Name System (DNS) 190
downwardAPI 122

E
Elastic Kubernetes Service (EKS) 19, 181
emptyDir 119, 120
endpoints 182-184
ephemeral volumes

about 119
CSI ephemeral volumes 120, 121
emptyDir 119, 120
generic ephemeral volumes 121, 122
projected volumes 122-125

etcd
about 10
backing up 62-64
installing 61, 62
restoring 64, 65
working with 56

etcd cluster backup and restore,
for Kubernetes

reference link 65
etcd cluster members

listing 59

ETCD cluster pod
exploring 56-58

etcd cluster status
checking 60, 61

ExternalName 182
external-to-service communications 170

G
generic ephemeral volumes 121, 122
Google Cloud Platform (GCP) 19
Google Kubernetes Engine (GKE) 19, 181

H
health probes

reference link 74
Helm

about 26, 112
common package management 113
installing 26
templating with 113
URL 113

Helm, installation guide
reference link 26

highly available (HA) Kubernetes cluster
about 29
external etcd cluster, building 44
multiple master nodes, building 44
setting up, with kubeadm 43-45

HorizontalPodAutoscaler (HPA) 90-95
hostPath 139

Index288

I
imperative management

versus declarative management 72
Ingress

annotations 189
rewrite-target 189
working with 186, 187

Ingress controllers
configuring 186
working with 186, 187

Ingress resources
about 186
working with 187, 188

init container
about 77
reference link 77

inter-process communications (IPC) 166

J
Jobs 16, 78, 79

K
killer.sh 5
kind 25
Kompose

about 27
installing 27, 28

kubeadm
about 25
installing 37-40
master node, bootstrapping 40, 41
networking plugins, installing 41, 42
used, for installing Kubernetes cluster 36, 37
used, for setting up HA cluster 43-45

worker nodes, bootstrapping 43
worker nodes, joining to control plane 43

kubeconfig
used, for organizing cluster access 149-152

kubectl
about 22, 23
setting, autocomplete 7
using, for rolling updates 86, 87

kubectl alias
setting up, to save time 6

kubectl create command
using, to create service account 148

kubectl delete sa command
using, to delete sa command 149

kubelet 10
kube-proxy 10
Kubernetes

access, configuring to multiple
clusters 152, 153

authentication 145
authorization 145
cluster access, organizing with

kubeconfig 149-152
CNI networking 185, 186
concepts 10
ecosystems 18
in-market distribution 18
reference link, for Configure Access

to Multiple Clusters 150
reference link, for Organizing Cluster

Access with kubeconfig Files 152
reference link, for security context 163
securing, in layers 144, 145
service accounts, assigning to Pod 149
service accounts, creating 148
service accounts, deleting 149
service accounts, managing 146-148

Index 289

service accounts, versus user accounts 146
stateful applications 130
upstream vanilla Kubernetes 19
workflow 13, 14

Kubernetes administrator 229
Kubernetes API primitives 16, 17
Kubernetes authentication process

reference link 145
Kubernetes authorization, modes

ABAC authorization 154
Node authorization 154
RBAC authorization 154

Kubernetes cluster
applications, monitoring 213
architecture and components 8-10
configuring 29
installing 29
installing, with kubeadm 36, 37
maintenance 47, 49
Metrics Server installation, checking 209
Metrics Server, installing 209
Metrics Server, working 208
objects 16, 17
prerequisites, for installing 29-33
troubleshooting 229, 230

Kubernetes cluster, upgrading with kubeadm
about 49
master node, upgrading 50-53
worker node, upgrading 54, 55

Kubernetes, concepts
container images 11
containerized workload 11
container registry 12
container runtimes 12, 13

Kubernetes Conformance Program
reference link 37

Kubernetes DNS server
troubleshooting 258-260

Kubernetes ecosystems 19
Kubernetes event feed

reference link 244
Kubernetes, installing with native

package management
reference link 22

Kubernetes, layers
Cloud layer 144
Cluster layer 144
Code layer 144
Container layer 144

Kubernetes logging architecture
reference link 220

Kubernetes multi-tenant model 17
Kubernetes networking model

about 166
container-to-container

communication 166-168
external-to-service communications 170
node-to-node communication 184
pod-to-pod communication 168-170
pod-to-service communication 170

Kubernetes plugin model
about 14, 15
layers 14

Kubernetes RBAC
about 155
roles, versus ClusterRoles 155-158

Kubernetes scheduler 10
Kubernetes service accounts 146
Kubernetes service types

check services 182-184
ClusterIP 172-176
endpoints 182-184
ExternalName 182
LoadBalancer 180, 181
NodePort 176-180
overview 170, 171

Index290

Kubernetes tools
about 22
core tools 22
dashboard 28
deployment tools 25
Helm 26
Kompose 27, 28

Kubernetes volumes
about 118
ephemeral volumes 119
PV 125, 126
reference link 139

Kubernetes workloads
basics 72

kustomize
manifest management 110, 112
reference link 112

L
labels 100
large clusters, considerations

reference link 208
layers

Kubernetes, securing 144, 145
layers, Kubernetes plugin model

container runtime 14
networking layer 15
storage layer 15

Linux shell 6
liveness probes 74
LoadBalancer 180, 181
logs

managing, at cluster node 220
managing, at Pod levels 220

M
managed Kubernetes 19
manifest management

with kustomize 110, 112
master node

bootstrapping 40, 41
MESSAGE column 244
Metrics Server

installation, checking 209
installing, in Kubernetes cluster 209
installing, with Helm charts 210
installing, with minikube add-ons 211, 212
installing, with YAML manifest file 210

Metrics Server Helm charts
reference link 210

Microsoft Azure 19
minikube

about 25
installing 33
using, to provision single node

Kubernetes cluster 33, 34
using, to set up single node

Kubernetes cluster 33
minikube cluster

configuring 35
deleting 35
installation, verifying 34

mock CKA scenario-based practice test 114
mounted storage

used, for configuring stateful
applications 130-134

multi-container pod
about 75
shared networking 75
shared storage volumes 75, 76

multiple Ingress controllers
using 187

Index 291

N
namespaces

about 98, 99
cluster, sharing with 17

Network Address Translation (NAT) 168
network file system (NFS) 118
networking layer 15
networking plugins

installing 41, 42
networking, troubleshooting

Kubernetes DNS server,
troubleshooting 258-260

service, troubleshooting 260-262
shell, obtaining 263, 264

nginx
reference link 189

node
inspecting 231-237
kubelet agent, troubleshooting 240-242
Kubernetes components, inspecting 237
system-reserved process,

troubleshooting 237-240
node affinity 101
node authorization

about 154
reference link 154

NodePort 176-180
node selectors 100
node-to-node communication 184

O
OBJECT column 244

P
package management

with Helm 113
persistent storage

used, for configuring stateful
applications 134

PersistentVolumeClaim (PVC) 125, 129, 130
PersistentVolume (PV)

about 125, 126, 129
access modes 128
reference link 129
StorageClass 126-128
volume modes 128

Pod
Kubernets service accounts, assigning to 149

pod events 73
Pod levels

logs, managing 220
pods 72
Pods 16
pod-to-pod communication 168-170
pod-to-service communications 170
ports and protocols

reference link 31
probes

about 74
liveness 74
readiness 74
startup 74

projected volumes 122-125
PTR records 190

Index292

R
RBAC authorization 154
RBAC failures, troubleshooting

minikube cluster, initiating 254-256
minikube cluster, managing 256, 257

readiness probes 74
REASON column 244
ReplicaSets 16, 90-92
resource management 103, 104
rewrite-target

reference link 189
role-based access control (RBAC) 4
RoleBinding 155
roles

about 155
versus ClusterRoles 155-159

ROLES column
about 232
control-plane role 232
etcd role 232
worker role 232

rollback 88, 89
rolling updates

about 86
with kubectl 86, 87

S
Secrets 108-110
security context 8
selectors 100
service accounts

about 146
versus user accounts 146

service account tokens 122, 123
service, in Kubernetes

troubleshooting 260-262

shell
obtaining, for troubleshooting 263, 264

single node Kubernetes cluster
setting up, with minikube 33

special interest group (SIG) 19, 49
SRV records 190
startup probes 74
stateful

versus stateless workloads 118
stateful applications

configuring, with mounted storage 130-134
configuring, with persistent storage 134
in Kubernetes 130
pod, configuring to consume PV 136-139
PVC, creating 135, 136
PV, creating 134, 135

StatefulSet 16
static Pod 78
STATUS column 232
StorageClass

about 126-128
reference link 126

storage layer 15

T
taints 102
templating

with Helm 113
time management 8
tolerations 102
tools

installation link 23
Transmission Control Protocol (TCP) 29
troubleshooting

networking 258
RBAC failures 254

TYPE column 244

Index 293

U
Unix domain socket 29
upstream vanilla Kubernetes 19
user accounts

about 146
versus service accounts 146

user impersonation
reference link 257

V
virtual machines (VMs) 11
volume modes 128

W
Webhook authorization 154
Webhook Mode

reference link 154
worker nodes

bootstrapping 43
joining, to control plane 43

workload scheduling 98

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packt.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packt.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

End-to-End Automation with Kubernetes and Crossplane

Arun Ramakani

ISBN: 9781801811545

•	 Understand the context of Kubernetes-based infrastructure automation

•	 Get to grips with Crossplane concepts with the help of practical examples

•	 Extend Crossplane to build a modern infrastructure automation platform

•	 Use the right configuration management tools in the Kubernetes environment

•	 Explore patterns to unify application and infrastructure automation

•	 Discover top engineering practices for infrastructure platform as a product

https://www.packtpub.com/product/end-to-end-automation-with-kubernetes-and-crossplane/9781801811545?_ga=2.246549636.140957708.1664458415-1871859455.1626436079

297Other Books You May Enjoy

The Kubernetes Bible

Nassim Kebbani, Piotr Tylenda, Russ McKendrick

ISBN: 9781838827694

•	 Manage containerized applications with Kubernetes

•	 Understand Kubernetes architecture and the responsibilities of each component

•	 Set up Kubernetes on Amazon Elastic Kubernetes Service, Google Kubernetes Engine, and
Microsoft Azure Kubernetes Service

•	 Deploy cloud applications such as Prometheus and Elasticsearch using Helm charts

•	 Discover advanced techniques for Pod scheduling and auto-scaling the cluster

•	 Understand possible approaches to traffic routing in Kubernetes

https://www.packtpub.com/product/the-kubernetes-bible/9781838827694?_ga=2.182173991.140957708.1664458415-1871859455.1626436079

298

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Certified Kubernetes Administrator (CKA) Exam Guide , we’d love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to the Amazon review
page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1803238267
https://packt.link/r/1803238267

	Cover
	Title Page
	Copyright and Credits
	Foreword
	Contributors
	Table of Contents
	Preface
	Part 1:
Cluster Architecture, Installation, and Configuration
	Chapter 1: Kubernetes Overview
	CKA exam overview
	What to expect in your CKA exam
	CKA exam tips and tricks

	Cluster architecture and components
	Kubernetes core concepts
	Containerized workloads
	Container images
	Container registry
	Container runtimes

	Kubernetes basic workflow
	Kubernetes plugin model

	Kubernetes API primitives
	Sharing a cluster with namespaces
	Kubernetes in-market distribution and ecosystems
	Upstream vanilla Kubernetes
	Managed Kubernetes
	Kubernetes ecosystems

	Summary

	Chapter 2: Installing and Configuring Kubernetes Clusters
	Technical requirements
	Hands-on Kubernetes tooling
	Core tools
	Deployment tools
	Other tools

	Installing and configuring a Kubernetes cluster
	Prerequisites for installing a Kubernetes cluster

	Using minikube to set up a single node Kubernetes cluster
	Using kubeadm to install a basic Kubernetes cluster
	Setting up a highly available cluster with kubeadm
	Summary
	Mock CKA scenario-based practice test
	Scenario 1:
	Scenario 2:
	Scenario 3 (optional):

	FAQs

	Chapter 3: Maintaining Kubernetes Clusters
	Demystifying Kubernetes cluster maintenance
	Upgrading a Kubernetes cluster using kubeadm
	Upgrading the master node
	Upgrading the worker node

	Working with etcd
	Exploring the ETCD cluster pod
	Listing etcd cluster members
	Checking the etcd cluster status
	Installing etcd
	Backing up etcd
	Restoring etcd

	Summary
	Mock CKA scenario-based practice test
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4

	FAQs

	Part 2:
Managing Kubernetes
	Chapter 4: Application Scheduling and Lifecycle Management
	Technical requirements
	The basics of Kubernetes workloads
	Imperative management versus declarative management
	Understanding pods

	Deploying and managing applications
	Deploying applications

	Performing rolling updates and rollbacks
	Rolling updates with kubectl
	Rollback

	Scaling applications
	ReplicaSets

	Workload scheduling
	Understanding namespaces
	Labels, node selectors, and annotations
	Node affinity and anti-affinity
	Taints and tolerations

	Resource management
	Configuring applications
	Manifest management with kustomize
	Common package management and templating with Helm

	Summary
	Mock CKA scenario-based practice test
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4
	Scenario 5

	FAQs

	Chapter 5: Demystifying Kubernetes Storage
	Technical requirements
	Stateful versus stateless workloads
	Kubernetes volumes
	Ephemeral storage
	Persistent storage

	Cracking stateful applications in Kubernetes
	Configuring an application with mounted storage
	Configuring an application with persistent storage

	Summary
	Mock CKA scenario-based practice test
	Scenario 1
	Scenario 2

	FAQs

	Chapter 6: Securing Kubernetes
	Technical requirements
	Securing Kubernetes in layers
	Kubernetes authentication and authorization
	Service accounts versus user accounts
	Kubernetes service accounts
	Organizing the cluster access using kubeconfig
	Configuring access to multiple clusters
	Kubernetes authorization

	Kubernetes RBAC
	Managing the security of Kubernetes applications
	Summary
	Mock CKA scenario-based practice test
	Scenario 1
	Scenario 2
	Scenario 3

	FAQs

	Chapter 7: Demystifying Kubernetes Networking
	Technical requirements
	Understanding the Kubernetes networking model
	Container-to-container communication
	Pod-to-pod communication
	Pod-to-service and external-to-service communications
	Node-to-node communication

	Choosing an appropriate Container Network Interface plugin
	CNI networking in Kubernetes
	Decision metrics

	Configuring Ingress controllers and Ingress resources
	How Ingress and an Ingress controller works
	Using multiple Ingress controllers
	Work with Ingress resources
	Ingress annotations and rewrite-target

	Configuring and leveraging CoreDNS
	Check whether the CoreDNS server is up and running
	Pod IPs and DNS hostnames
	Service IPs and DNS hostnames

	Summary
	Mock CKA scenario-based practice test
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4
	Scenario 5
	Scenario 6

	FAQs

	Part 3:
Troubleshooting
	Chapter 8: Monitoring and Logging Kubernetes Clusters and Applications
	Technical requirements
	Monitoring on a cluster node
	Checking whether Metrics Server is installed
	Installing Metrics Server in your current Kubernetes cluster
	Checking out CPU/memory metrics

	Monitoring applications on a Kubernetes cluster
	Monitoring the resource usage of an application
	Checking application details
	Monitoring cluster events

	Managing logs at the cluster node and Pod levels
	Cluster-level logging
	Checking out the node details
	Checking the node status

	Managing container stdout and stderr logs
	Summary
	Mock CKA scenario-based practice test
	Scenario 1

	FAQs

	Chapter 9: Troubleshooting Cluster Components and Applications
	Technical requirements
	General practices in Kubernetes troubleshooting
	Troubleshooting cluster components
	Inspecting the cluster
	Inspecting the node

	Troubleshooting applications
	Getting a high-level view
	Inspecting namespace events
	Troubleshooting failing pods
	Troubleshooting init containers

	Summary
	FAQs

	Chapter 10: Troubleshooting Security
and Networking
	Technical requirements
	Troubleshooting RBAC failures
	Initiating a minikube cluster
	Managing a minikube cluster

	Troubleshooting networking
	Troubleshooting a Kubernetes DNS server
	Troubleshooting a service in Kubernetes
	Get a shell for troubleshooting

	Summary
	FAQs

	Appendix - Mock CKA scenario-based practice test resolutions
	Chapter 2 – Installing and Configuring Kubernetes Clusters
	Scenario 1
	Scenario 2
	Scenario 3 (optional)

	Chapter 3 – Maintaining Kubernetes Clusters
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4

	Chapter 4 – Application scheduling and lifecycle management
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4
	Scenario 5

	Chapter 5 – Demystifying Kubernetes Storage
	Scenario 1
	Scenario 2

	Chapter 6 – Securing Kubernetes
	Scenario 1
	Scenario 2
	Scenario 3

	Chapter 7 – Demystifying Kubernetes networking
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4
	Scenario 5
	Scenario 6

	Chapter 8 – Monitoring and logging Kubernetes Clusters and Applications
	Scenario 1

	Index
	Other Books You May Enjoy

