
 i

 Security for
Containers and

Kubernetes
Learn how to implement robust security
measures in containerized environments

Luigi Aversa

www.bpbonline.com

ii

Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor BPB Online or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, BPB Online cannot guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork
119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55518-439

www.bpbonline.com

 iii

Dedicated to

My beloved wife:

Natalya

&

My Parents Rita and Andrea

iv

About the Author

Luigi Aversa has been working in the tech industry for more than 20 years, playing
central roles in numerous projects as a technical leader and security engineer,
delivering projects using Linux technologies, and combining DevOps skills with
security acumen. Currently, he is a Staff Information Security Engineer at Grail. In
the meantime, he successfully got many security certifications in the cyber security
and security compliance fields. Furthermore, the author writes technical articles
on information security, cyber security and related topics.

 v

About the Reviewer

Werner Dijkerman is a freelance cloud, Kubernetes (certified), and DevOps
engineer. He's currently focused on, and working with, cloud-native solutions
and tools including AWS, Ansible, Kubernetes, and Terraform. He is also focused
on Infrastructure as Code and monitoring the correct “thing” with tools such as
Zabbix, Prometheus, and the ELK Stack, with a passion for automating everything
and avoiding doing anything that resembles manual work. He is an active reader,
comics, non-fictional and IT related books, where he is a Technical reviewer for
various books about DevOps, CI/CD and Kubernetes.

vi

Acknowledgement

I want to express my deepest gratitude to my family for their unwavering support
throughout this book's writing, especially my wife Natalya. I also want to thank
my parents Rita and Andrea for their encouragement and love throughout all my
life.

I am also grateful to BPB Publications for their guidance and expertise in bringing
this book to fruition. It was a long journey of revising this book, with valuable
participation and collaboration of reviewers, technical experts, and editors.

I would also like to acknowledge the valuable contributions of my colleagues and
co-worker during many years working in the tech industry and more lately in the
information security field, who have taught me so much and provided valuable
feedback on my work.

Finally, I would like to thank all the readers who have taken an interest in my
book and for their support in making it a reality. Your encouragement has been
invaluable.

 vii

Preface

Building a secure containerized environment is a complex process that requires
a comprehensive understanding of the container stack and the hardware and
software infrastructure on which it is built upon. The recent raise of Kubernetes as a
container orchestrator solution expands the complexity and the security challenges
of the container stack either on premise or in the cloud. Securing both systems
requires a good understanding of the threat landscape, reference to the associated
risks and knowledge of the powerful tools that have become increasingly popular
in the cybersecurity field.

This book is designed to provide a comprehensive guide to understanding security
best-practices for containers and Kubernetes. It covers a wide range of topics,
including the concepts behind the virtualization of the container stack, advanced
topics such as securing container automation and orchestration, and how to secure
the Kubernetes cluster for building secure microservices.

Throughout the book, you will learn about the key concepts and techniques
needed to secure a container platform from the ground up, including hardware
and operating system. You will also learn about best practices and design patterns
to apply security best-practices to application and microservices and you will be
provided with numerous practical coding examples to help you understand and
reproduce the concepts.

This book is intended for security practitioners, DevOps engineers, security
engineers, cloud engineers, platform engineers, and cloud architects who play
a pivotal role in containerization and Kubernetes deployment. This book is also
intended for experienced professionals who want to expand their knowledge with
some peculiar security best-practices or techniques in building robust and secure
container and Kubernetes stacks.

With this book, you will gain the knowledge and skills to visualize the entire
container stack and the security gaps that should be addressed to reduce the
attack surface and increase the security posture of your container and orchestrator
platforms, but also to obtain hands-on strategies for measuring, analyzing and
evaluate the impact of threats and vulnerabilities. I hope you will find this book
informative and helpful.

Chapter 1: Containers and Kubernetes Risk Analysis – provides a high level
overview of the risks associated with the implementation of the container platform

viii

and the Kubernetes orchestrator, including the risks associated with the underlying
hardware and software infrastructure. It also provides a brief overview of the risk
associated with container images and container registries as essential components
of the container stack.

Chapter 2: Hardware and Host OS Security – presents a detailed overview of the
main in-hardware security features that have direct impact on the virtualization
technology and therefore on the container stack. It also presents a detailed
overview of the main operating system security features that can be leveraged by
one or more layer of the container stack including Kubernetes.

Chapter 3: Container Stack Security – provides an overview of the container
systems available today to be integrated with Kubernetes, including Docker, and
the security best-practices needed to reduce the attack surface and strengthening
the network communication in a containerized environment. This chapter presents
also a full secure connection section to enable Docker to use TLS communication
that can be fully implemented to secure CI/CD systems.

Chapter 4: Securing Container Images and Registries – allows the reader to learn
fundamental concepts related to container images and container registries. Image
hardening and file configuration are the baseline upon which enabling a sufficient
security posture, while vulnerability scanning helps to determine the image life
cycle. This chapter also illustrates security strategies to store and retrieve container
image either in private or public registries, and how and when applying security
methodologies such as SAST or DAST.

Chapter 5: Application Container Security – describes in detail the security
aspects of the microservices model by recalling application security frameworks
such as OWASP CSVS and NIST SP-800.190. This chapter analyzes security testing
models such as SAST, DAST, IAST and RASP and when applying these throughout
the phases of the software development life cycle in a containerized environment.

Chapter 6: Secure Container Monitoring – shows an in-depth analysis of how to
secure the container stack at any layer of the container infrastructure. It describes
logic and methodologies behind container workloads, alerting and topology
visualization; it also illustrates how to ingest metrics into the chosen SIEM, and
how to detect a drift in a system behaviour by leveraging machine learning models.

Chapter 7: Kubernetes Hardening – provides a technical overview of the
Kubernetes architecture and how to improve the security of the cluster by applying
hardening to the control plane and data plane layers. This chapter highlights
the importance of securing the network communication within the cluster with

 ix

a detailed walkthrough of the security techniques adopted to secure the cluster
runtime interface and the PODs. It also provides an overview of the common
treats the Kubernetes cluster is exposed to, including the POD escaping technique.

Chapter 8: Kubernetes Orchestration Security – is dedicated to introducing the
readers to the fundamental of the orchestration by discussing the complexity of
the Kubernetes cluster and how to apply security best-practices in high available
scaling environments. This chapter also asserts the importance of securing
fundamental components of the cluster such as the internal API system and the
admission controller, while highlighting the potential threat the orchestrator is
exposed to, and what are the recommended countermeasure.

Chapter 9: Kubernetes Governance – explains how to achieve a robust governance
security layer able to cover the main weakness the Kubernetes cluster by leveraging
policy engines that can propagate network and security policies. The chapter
also describes the admission controller threat model, how to secure resource
management and what are the limitation or missing security features affecting the
cluster today.

Chapter 10: Kubernetes Cloud Security – is dedicated to describing the security
features of the most popular Kubernetes cloud service solutions such as AWS EKS,
Azure AKS, and Google GKE. This chapter discusses the shared responsibility
models typical of the public cloud providers, and the new 4C security model
recently created by the Cloud Native Computing Foundation. This chapter also
describes the security peculiarities of less popular Kubernetes services such as
OpenShift, Rancher and Tanzu.

Chapter 11: Helm Chart Security – explains best-practices to secure the most
popular Kubernetes package manger, how to introduce integrity into external
packages handling by the mean of cryptography, and how to establish a circle of
trust implementing public keys verification into infrastructure as code tools like
Terraform. This chapter also explains how to scan helm charts for vulnerabilities
and how to address supply chain security threats by adopting the SBOM model.

Chapter 12: Service Mesh Security – describes in detail the microservices
architecture and security benefits that the service mesh brings by running in
parallel with the workloads. This chapter explains the container network interface,
why the choice to use the Envoy proxy in the service mesh architecture and how
to secure it, and delves into the security aspects of the mutual TLS system. This
chapter also describes Istio security features, and the zero-trust networking model.

x

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/1i48l0x

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Security-for-Containers-and-Kubernetes.
In case there's an update to the code, it will be updated on the existing GitHub
repository.
We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :
errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :
business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

 xi

Piracy
If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions. We at
BPB can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

xii

Table of Contents

 1. Containers and Kubernetes Risk Analysis .. 1
 Introduction .. 1
 Structure .. 1
 Objectives .. 2
 Host OS risks .. 3
 Attack surface .. 4
 System-level virtualization .. 5
 Component vulnerabilities ... 6
 Authentication ... 6
 File system integrity .. 7
 Image risks .. 7
 Image vulnerabilities ... 8
	 Image	misconfiguration ... 8
 Embedded secrets ... 9
 Embedded malware .. 10
 Untrusted images .. 11
 Registry risks .. 12
 Non-secure connections ... 13
 Stale images ... 14
 Authentication and authorization ... 15
 Container risks ... 15
 Container runtime ... 15
	 Network	traffic ... 16
 The Application layer .. 17
 Rogue containers ... 18
 Orchestrator risks .. 18
 Admin access ... 20
 Unauthorized access .. 20
 Network Segregation ... 21

 xiii

 Workload levels .. 22
 Worker node trust .. 23
 Conclusion .. 23

 2. Hardware and Host OS Security .. 25
 Introduction .. 25
 Structure .. 26
 Objectives .. 26
 Hardware security ... 27
 Secure boot ... 29
 Virtualization-based security ... 30
 TPM ... 31
 Trusted execution environment ... 33
 DICE .. 34
 Host OS Hardening ... 35
 Linux namespaces .. 37
 Control groups ... 39
 Capabilities .. 41
 Security Enhanced Linux .. 43
 AppArmor .. 45
 Seccomp.. 48
 Conclusion .. 50

 3. Container Stack Security ... 51
 Introduction .. 51
 Structure .. 52
 Objectives .. 52
 Container security ... 53
 Containerd ... 57
 CRI-O .. 57
 Docker .. 59
 Least privilege .. 59

 Resource limitation .. 61

xiv

 Container isolation .. 64

 Namespaces ... 65

 AppArmor ... 66

 Seccomp ... 67

 Network security ... 68
 Mirantis container runtime ... 71
 An interesting exclusion .. 72
 Secure connection .. 73
	 Server	certificate .. 77
	 Client	certificate ... 79
 Enable dockerd TLS ... 81
 Secure CI/CD ... 86
 Update life cycle... 94
 Conclusion .. 95

 4. Securing Container Images and Registries .. 97
 Introduction .. 97
 Structure .. 97
 Objectives .. 98
 Container image hardening ... 98
 Building file configuration ... 100
 Multi-stage builds ... 104
 Minimal and distroless images .. 106
 Scanning and verifying images ... 112
 Private and public registries .. 117
 Registry authentication ... 120
 Role-Based Access Control ... 124
 Auditability .. 125
 Image control .. 127
 Vulnerability management ... 130
 Conclusion .. 136

 xv

 5. Application Container Security .. 137
 Introduction .. 137
 Structure .. 139
 Objectives .. 139
 Application Container Security ... 139
 Threat intelligence ... 150
 CI/CD Security integration .. 152
 Shift left ... 153
 Remediation.. 154
 Managing privileges .. 155
 Penetration testing ... 157
 Third-party components ... 160
 Conclusion .. 162

 6. Secure Container Monitoring ... 163
 Introduction .. 163
 Structure .. 164
 Objectives .. 165
 Container activity .. 165
 Docker engine monitoring ... 166
 Containers monitoring .. 168
 Host monitoring .. 171
 Application monitoring ... 173
 Workload observability ... 178
 Anomaly detection .. 182
 Externalise logs .. 187
 Alerting ... 189
 Topology visualization .. 190
 Conclusion .. 192

 7. Kubernetes Hardening ... 193
 Introduction .. 193
 Structure .. 195

xvi

 Objectives .. 195
 Architecture .. 195
 Control plane hardening ... 197
 Worker node hardening .. 212
 Securing network communication .. 213
 Securing container runtime interface .. 215
 POD security .. 219
 POD escaping ... 224
 Hardening tools ... 226
 Updating life cycle ... 230
 Conclusion .. 231

 8. Kubernetes Orchestration Security.. 233
 Introduction .. 233
 Structure .. 234
 Objectives .. 235
 Authentication and authorization ... 235
 API bypass risks ... 241
 RBAC vs ABAC .. 245
 Admission controller ... 247
 Securing secrets .. 251
 Cluster isolation ... 253
 Audit logging ... 255
 POD escaping privilege escalation .. 260
 Assess and verify ... 261
 Conclusion .. 265

 9. Kubernetes Governance ... 267
 Introduction .. 267
 Structure .. 268
 Objectives .. 268
 Policy engines ... 268
 Admission controller threat model ... 282

 xvii

 Network policies .. 286
 Resources management .. 290
 Security policies ... 295
 Limits and limitations ... 302
 Conclusion .. 305

 10. Kubernetes Cloud Security ... 307
 Introduction .. 307
 Structure .. 308
 Objectives .. 308
 Cloud native security model .. 308
 Amazon elastic Kubernetes service .. 312
 Azure Kubernetes Service .. 322
 Google Kubernetes Engine ... 327
 Red Hat OpenShift .. 334
 Rancher .. 337
 Tanzu ... 339
 Conclusion .. 341

 11. Helm Chart Security ... 343
 Introduction .. 343
 Structure .. 344
 Objectives .. 344
 Helm .. 344
 Tiller ... 346
 Integrity ... 349
 IaC trust ... 351
 Chart scanner ... 356
 Dependencies ... 358
 Conclusion .. 362

 12. Service Mesh Security .. 363
 Introduction .. 363

xviii

 Structure .. 365
 Objectives .. 365
 Overview ... 365
 Architecture .. 367
 Container Network Interface ... 369
 Envoy security .. 372
 Secret discovery service .. 378
 Mutual TLS ... 381
 Istio security ... 384
 Zero-Trust networking .. 388
 Conclusion .. 389

 Index ...391-402

Containers and Kubernetes Risk Analysis 1

Chapter 1
Containers and

Kubernetes
Risk Analysis

Introduction
At the time of writing the most popular version control system, GitHub hosts
nearly 143,000 repositories related to containers with over 23 million commits, while
over 106,000 repositories are related to Kubernetes with over 3 million commits.
The Kubernetes repository itself hosts nearly 110,000 commits. Those impressive
numbers are clearly the sign of an exponential growth that highlights how the
microservice age has evolved over the last few years. More than that, it is the sign of
how the need to adopt containerized solutions and how to manage them has become
prominent across the spectrum of the software development life cycle.

As containers and the use of Kubernetes grow, so does the need to secure the systems.
The most common cause of incident is the “known threat”: misconfiguration. Almost
70% companies reported a misconfiguration in their containerized environment,
making “ignoring the basics” the most common type of vulnerability.

Structure
In this chapter, we will discuss the following topics:

•	 Host OS Risks

o Attack Surface

2 Security for Containers and Kubernetes

o System-Level Virtualization

o Component Vulnerabilities

o Authentication

o File System Integrity

•	 Image Risks

o Image Vulnerabilities

o Image Misconfiguration

o Embedded Secrets

o Embedded Malware

o Untrusted Images

•	 Registry risks

o Non-secure connections

o Stales images

o Authentication and Authorization

•	 Container Risks

o Container Runtime

o Network Traffic

o The Application Layer

o Rogue Containers

•	 Orchestrator Risks

o Admin Access

o Unauthorized Access

o Network Segregation

o Workload Levels

o Worker Node Trust

Objectives
This chapter aims to provide a brief but significant overview of the main risks
associated with the implementation of containerized solutions, including the
technical components often forgotten, especially in agile environments where the
DevOps methodology is applied.

Containers and Kubernetes Risk Analysis 3

Host OS risks
First and foremost, what is it a host, and why it is an important part of risk analyzing? A
host OS is the software that interacts with the underlying hardware, and it represents
the first layer of security we should look at from the software standpoint. In Chapter
2, Hardware and Host OS Security, we will also look at the hardware layer and its
intrinsic bond with the operating system. Container and orchestrator technologies
have surfaced along with the adoption of DevOps practices that attempt to improve
the integration between building and running applications; as a result, the Host OS
or operating system is something that is often overlooked due to the shift in focus.
Many readers are already familiar with the difference between the deployment of
applications within containers and virtual machines, but it is helpful recalling the
difference visually in Figure 1.1, Virtual Machines and Containers Structure, facilitating
the understanding of the risk this section aim to address. Refer to the following
figure:

Figure 1.1: Virtual Machines and Containers Structure

Figure 1.1, Virtual Machines and Containers Structure shows that regardless of the
deployment methodology, the operating system is a crucial component of that
deployment, except for some dedicated Cloud services like AWS ECS or Azure
container instances where the burden of maintaining the underneath OS layer shifts
back to the Cloud provider.

Both approaches allow multiple applications to share the same hardware infrastructure,
but while the virtual machines use a hypervisor that provides hardware-abstraction
via a virtual machine manager, the containers approach allows multiple applications
to “share” the same operating system. From the security perspective, the hypervisor
is also responsible for providing hardware-level isolation across virtual machines,

4 Security for Containers and Kubernetes

while the container service is responsible for enabling hardware-level resources for
running containers.

The thoughts about Cloud Managed Services would include a wider argumentation
that is not the objective of this chapter, so it is deferred to Chapter 10, Kubernetes Cloud
Security, for a deeper analysis.

Attack surface
An operating system has an attack surface as much as any other platform or system.
The extension of the attack surface is strictly connected to the type of operating
system and to the technical philosophy behind it. A Linux desktop distro would
potentially have a wider attack surface than a Linux server minimal distro, and a
Windows 11 system would potentially have a wider attack surface than a Windows
Nano server system.

Figure 1.2: Container-specific OS

There are essentially two types of Host OSes: General-purpose OSes, such as Ubuntu,
openSUSE Leap, and RedHat Enterprise Linux; and Container-specific OSes, such
as CoreOS Container Linux (now Fedora CoreOS), openSUSE Leap Micro, and
RancherOS. The former category is the Host OS as we know it, typically used in any
known application environment, while the latter has been specifically designed to
have a minimalistic approach to run containers. In some cases, such as openSUSE
MicroOS, RancherOS or Clear Linux, the Host OS itself is a containerized abstraction
of the operating system, capable of providing atomic updates via rolling release

Containers and Kubernetes Risk Analysis 5

distribution, where any single service, including system service as udev or syslog, is
running as a container.

Adopting container-specific OSes could be initially challenging, but they provide
immediate relief from the security standpoint, as shown in Figure 1.2, Container-
specific OS, their attack surface is minimal, and they are container-optimized; that
means they often provide a read-only filesystem, a basic set of services enabled on
boot, and basic hardening best practices. Container-specific OSs are prone to reduce
and mitigate the typical risks associated with general-purpose OSes distros, where
a costly hardening process should be implemented to achieve an equal security
posture.

System-level virtualization
This feature has been also described as “shared kernel” capability, leaving the door
open to misinterpretation. Containers are not running the kernel on their own, and
they are not sharing the kernel with the underlying operating system, not in the
way in which the word “sharing” would be intended anyway. On the contrary, the
container daemon is intercepting all the system calls that require kernel executions,
but it is borrowing resources rather than effectively running them.

This technology uses the unique capability of *nix systems to share their kernels
with other processes, achieved via a feature called change root. The chroot feature
was initially thought to provide security isolation to processes running on a system
without limiting the availability of the resources from the system itself; then, it
evolved in what is known as container-based virtualization today. Readers with
less system administrator background can think of this like an enhanced Python
virtualenv where the purpose is not only to create isolated Python environments
with full control on versions and Python modules but also with the capability of
running anything else allowed by Linux. It stands out that being a container capable
of running system calls via kernel execution, it represents a threat to the security of
the system. There are a few basic but effective mitigation techniques applicable to
this use case:

•	 Keep the kernel updated

•	 Use only SSH authentication

•	 Disable SSH password authentication in favor of SSH Keys

•	 Remove the root user

•	 Implement the Kernel Lockdown feature

Of the given list, the least known feature is likely to be the Kernel Lockdown feature.
As per Linux main page description at https://man7.org/linux/man-pages/man7/
kernel_lockdown.7.html.

6 Security for Containers and Kubernetes

Note: The Kernel Lockdown feature is designed to prevent both direct and
indirect access to a running kernel image, attempting to protect against
unauthorized modification of the kernel image and to prevent access to security
and cryptographic data located in the kernel memory while still permitting
driver modules to be loaded.

Component vulnerabilities
The Linux Operating System primarily has three components: the Kernel, the System
Library and the System Utility; this is illustrated in Table 1.1 – Kernel Components:

Component Description
Kernel The Kernel is the core part of Linux. It consists of various modules,

and it interacts directly with the underlying hardware.
System libraries System libraries are non-volatile resources used by applications or

system utilities to access Kernel’s features.
System Utilities System utilities are software tools responsible for executing

individual user-level tasks.

Table 1.1: Kernel Components

Like any other software, these components may present vulnerabilities. And due
to the criticality of their functions and the proximity with low-level code execution,
they can greatly impact the integrity of the system on which they are running. All
the components should be kept updated, not just the kernel.

This is particularly important for the container runtime components, as newer
releases often add security protections beyond simply correcting vulnerabilities.
The immutability guaranteed by the Container-specific OS with no data stored
persistently and no application-level dependencies enhances a stateless operating
mode, significantly increasing the host’s security posture.

Authentication
The operating system is exposed to risk anytime users log in to the system to directly
manage anything that is pertinent with the business objectives. In a post-COVID
world, where working from home is normal, connecting from unsecure networks is,
unfortunately, very common.

Even if most container deployments rely on CI/CD pipelines and orchestrators to
distribute the load across hosts, logging on to the systems is still a very common (not
recommended) practice, especially for troubleshooting purposes.

Containers and Kubernetes Risk Analysis 7

Login sessions should be monitored and audited when needed, sudo limited to a
known number of identified individuals. Interactive user login should be minimized,
and most often forbidden, unless security concerns need to be addressed.

File system integrity
Container misconfigurations can expose host volumes to risk. A container can only
access the files stored as part of the container image, therefore information should
be considered "non-persistent data", in alignment with the ephemeral nature of the
container philosophy. There is no real necessity to share files between Host OS and
containers; it is a bad practice. Containers should run with the minimal set of file
system permissions required.

Image risks
A container image is a static file containing executable code that can be used to
create a running container. Images are efficient because they allow users to include
all the elements required for an application into one package. Each image consists
of a series of layers that can be combined via UnionFS into a single layer. There are
essentially three types of layers:

•	 The base image layer

•	 The image layer

•	 The container layer

Figure 1.3: Image Layers

8 Security for Containers and Kubernetes

Of the mentioned three, only the container layer is writeable; the other two are read-
only, as shown in Figure 1.3 – Image Layers.

Image vulnerabilities
Images are essentially static files containing executable code used to run a specific
application. It is a good practice to use the most recent packages and keep the image
as updated as possible, but we need to keep in mind that the image must have an
assigned life cycle, as the software contained within the image becomes outdated
over time and may contain vulnerabilities. The challenge with images is that the
updates must be made upstream, and it involves triggering a redeployment.

Obtaining visibility into the application framework other than only the base layer
of the image is essential, and it provides a reference policy framework to enforce
quality control on the image creation process.

Image misconfiguration
To address configuration defects and fix configuration files containing misconfigured
code, the framework illustrated in Figure 1.4, Image Misconfiguration Framework can
be adopted:

Figure 1.4: Image Misconfiguration Framework

Preferring minimal base images like Alpine Linux or Windows Nano Server rather
than fully installed operating system distributions is the first security requirement
that should be satisfied. When there is no need for general system libraries, graphic
user interfaces or unused services keeping the image tidy and clean limits the attack
surface. Introduce a validation mechanics of the configuration settings to identify any
drift in the configuration that could cause harm. Monitor the base image modelling

Containers and Kubernetes Risk Analysis 9

framework to identify possible threats and enforce quality control of the image by
introducing a “blessing” procedure. Only images with a minimum set of standards
should be allowed to be created, and those standards should include policies like
including the “run as” for non-root users and disabling SSH. Use the immutable
feature of container systems to execute rolling updates.

Embedded secrets
The key word of this section is “embedded”. It is common practice when building
an image, with configuration file like Dockerfile for example, especially in testing
environments, to provide all the information needed right from the get-go, including
credentials. All the parameters needed to make everything working are embedded
into the code, as the image itself is not really what we are working on; rather, it is
what the image contains we care about.

From the risk assessment standpoint, a secret is any confidential data that would put
information at risk if exposed. Secrets should be stored outside containers, and any
other piece of software for that matter, and should be consumed on a need basis and
rotated at given intervals. Refer to the following figure:

Figure 1.5: Key Management

Container solutions either on premises or in the Cloud can provide key management
systems. Figure 1.5, Key Management, shows a typical key management workflow in
a microservice environment, where the application requests the key from the vault
system, which is decrypted as part of the key management life cycle. The decryption
and encryption mechanisms are provided through API calls managed securely by
the vault system.

For instance, Docker Swarm has its own key management system, and AWS KMS is
likely the most known Cloud Key Management service. However, there are similar

10 Security for Containers and Kubernetes

solutions worth noting, such as Hashicorp Vault or Azure Key Vault. An interesting
tool that can help identify secrets in the code is SecretScanner, and it is available at
https://community.deepfence.io/docs/secretscanner.

Note: Deepfence SecretScanner can find unprotected secrets in container images
or file systems. SecretScanner is a standalone tool that retrieves and searches
container and host filesystems, matching the contents against a database of
approximately 140 secret types.

Embedded malware
Malicious code could be unintentionally or intentionally packaged as any other
software or component of the image, and it would have the same capabilities
and privileges as any other component posing a serious risk to the system and
infrastructure.

Palo Alto Networks Unit 42 researchers have identified several different versions of
Docker images containing XMRig used to mine Monero cryptocurrency. The threat
actor used a Python script called dao.py, which was baked inside the Image and
updated to Docker Hub. The Image was then downloaded 2 million times and was
able to feed a crypto wallet for over $36 million.

Container images should be scanned regularly for known vulnerabilities; tools like
Quay, Clair or Anchore can run static image analyzing even on a layer-by-layer basis,
but those tools have a large footprint.

When considering shift-to-the-left in your DevSecOps pipeline, Static Application
Security Testing (SAST); and Software Composition Analysis (SCA) are the
methodologies that come to mind. Refer to the following figure:

Figure 1.6: Secure Software Development Life Cycle

Adopting a zero-trust security model is implementable, thanks to tools like
MetaDefender Jenkins plugin available at https://plugins.jenkins.io/metadefender.
Figure 1.6, Secure Software Development Life Cycle (SSDLC), illustrates how to
implement scanning tools inside the Software Development Life Cycle (SDLC),
adding the facto a security layer to the CI/CD pipeline.

Containers and Kubernetes Risk Analysis 11

MetaDefender checks Jenkins builds for malware before releasing the build, and it
has the great feature to include over 30 Antivirus (AV) engines and a Proactive Data
Loss Prevention (DLP) system, resulting in great security efficiency for the CI/CD
pipeline. MetaDefender is also available for TeamCity, Kubernetes via Terraform
and Helm Chart or for AWS CloudFormation.

Untrusted images
Untrusted images are identified as non-official images or images downloadable
from third-party repositories. The difficult part is to create a mechanism to identify
“trusted images”:

•	 First of all, avoid the latest tag when an image is pulled; always be declara-
tive in choosing the version of the image needed.

•	 Use an approved image, also called blessed, by an expert of the security team.

•	 Establish a circle of trust by inspecting the base image.

For example, if you run docker inspect on the ubunut:18.04 image, you get the
following:

1. "RootFS": {

2. "Type": "layers",

3. "Layers": [

4. "sha256:49c23cd3c582026251e2ee4adde9217329f67aef-
230298174123b92a7a005395"

5. }

If you build a new image using the ubuntu:18.04 as base image using the following
Dockerfile:

1. FROM ubuntu:18.04

2. RUN apt-get update

3. ADD ciao.txt /home/my-user/ciao.txt

4. WORKDIR /home/my-user

Inspecting the new image will highlight that both images share the same first layer
that belongs to the initial ubuntu:18.04 base image:

1. "RootFS": {

2. "Type": "layers",

3. "Layers": [

12 Security for Containers and Kubernetes

4. "sha256:49c23cd3c582026251e2ee4adde9217329f67aef-
230298174123b92a7a005395",

5. "sha256:52f389ea437ebf444d1c9754d0184b57edb-
45c912345ee86951d9f6afd26035e"

6. }

Another interesting tool for exploring and inspecting container images is dive. It is a
command line tool with some interesting basic feature:

•	 While inspecting image contents broken down by layer, the contents of that
layer combined with all previous layers is shown.

•	 Files that have changed, been modified, added, or removed are indicated
in the file tree. This can be adjusted to show changes for a specific layer or
aggregated changes up to that layer.

•	 Image efficiency estimation: the basic layer info and an experimental metric
to identify how much wasted space the image contains.

•	 Build and analysis cycles: building a Docker image and performing an
immediate analysis with one command: dive build -t some-tag.

Registry risks
A container registry is a repository used to store and access container images.
Container registries can support container-based application development, often as
part of DevOps processes. It is the natural evolution of what system administrators
have known for years to be simple the “repos” to use in conjunction with tools like
rpm, zipper, and apt-get.

Despite the name, a registry is just another server system, with one or more services
exposed to a port listening for connections, and therefore exposed to risks either
by storing compromised images or by granting access to an entity missing the
appropriate level of permissions. There are essentially two types of container
registries:

•	 Public registries are used by individuals or small teams that want to quickly
get up and running. However, this can bring more complex security issues
like patching and access control.

•	 Private registries provide security and privacy implementation into
enterprise container image storage, either hosted remotely or on-premises.

Most cloud providers offer private image registry services:

•	 AWS ECR Elastic Container Registry

Containers and Kubernetes Risk Analysis 13

•	 Microsoft ACR Azure Container Registry

•	 GCR Google Container Registry

Non-secure connections
Registries should allow connections only over secure channels in order to perform
pushes and pulls between trusted endpoints via encryption in transit mechanisms.
Public registries should already have such features in place, where HTTPS and TLS
are the standard nowadays, but essentially, the registry acts like any other publicly
exposed system or website in this case.

Things become quite interesting with private registries where technically, unless the
private registry is deployed via a software as service model, it is necessary to enforce
security. There are enterprise versions, also known as self-hosted systems like JFrog
Container Registry, Docker Registry, Nexus or GitHub Container Registry, where the
exposed service is often running on HTTP only, with no certificates.

Unfortunately, self-hosted services like Jfrog Artifactory running on AWS EC2
Instances with security groups allowing connections on port 80 or teams enabling
the insure-registries feature to avoid the burden of setting up a secure connection are
not uncommon scenarios. A good way around this is to use self-signed certificates
in a few simple steps:

1. Generate your own certificate:

1. $ openssl req \

2. -newkey rsa:4096 -nodes -sha256 -keyout your-dir/domain.key \

3. -addext "subjectAltName = DNS:your-registry.domain.com" \

4. -x509 -days 365 -out your-dir/domain.crt

2. On Linux, copy the domain.crt file to /etc/docker/certs.d/myregistry-
domain.com:5000/ca.crt on every Docker host.

3. On Windows, right-click on the domain.crt file and choose to install certif-
icate. When prompted, select local machine as the store location and place
all certificates in the following store.

4. Click on Browser and select Trusted Root Certificate Authorities.

5. Click Finish and restart Docker.

6. Restart the registry, directing it to use the TLS certificate.

1. $ docker run -d \

2. --restart=always \

14 Security for Containers and Kubernetes

3. --name registry \

4. -v "$(pwd)"/certs:/certs \

5. -e REGISTRY_HTTP_ADDR=0.0.0.0:443 \

6. -e REGISTRY_HTTP_TLS_CERTIFICATE=/certs/domain.crt \

7. -e REGISTRY_HTTP_TLS_KEY=/certs/domain.key \

8. -p 443:443 \

9. registry:2

Please note this is just an example to address the risk of non-secure communication
when using container registries, a full example will be provided in Chapter 4, Secur-
ing Container Images and Registries.

Stale images
There is a wrong tendency in preserving images for long time, sometimes because
the image is the alpha or beta version of today’s RC1, RC2 or stable version, or maybe
because a bug is later introduced in a following version, which was not affecting
the older release. Then, the application evolves, and sooner or later, the previous
versions of the same image are forgotten, or maybe the business has not defined
clear policies about the image life cycle.

The result is that older images become outdated very soon, making software,
components or libraries vulnerable. Those images are not posing a threat for the
simple reason of being stored in the registry only, but they do increase the likelihood
of accidental deployment of risky images.

There are two approaches to mitigate the issue:

•	 Vulnerable images should be pruned at regular intervals, according to the
Software Development Life Cycle cadence and the size of the team working
on the development. If the team deploys a release once a week, it is reason-
able to prune images every quarter, while a different logic can be applied to
different use cases.

•	 Use the tags to identify the correct deployment strategy, ingesting in your
CI/CD pipelines declarative naming convention using immutable versions.
Avoid using the latest tag, and always declare the version needed, so the
commit will highlight moving from version:1.7 to version:1.8 for example,
helping keep the registry tidy and clean.

Containers and Kubernetes Risk Analysis 15

Authentication and authorization
Account federation allow users to use a single account to login onto different
platforms without the need to re-authenticate their identity, tools like OKTA are very
common in modern enterprises, allowing a centralized login system to span over
several technical solutions. All the write access to the registry should be regularly
audited.

Differentiate between who can pull and who can push to the registry; do not assume
that permissions are equally granted. Also, use a segregation approach, the Team A
can push to the repository A but not to repository B and vice versa.

Obtain control on the push logic, implementing the CI process to allow images to be
signed by authorized individuals; in a DevSecOps model, those should be member
of the Security Operations department, so images are pushed to the registry only if
they meet eligible criteria like passing vulnerability scans.

Container risks
In a previous paragraph (Host OS Risks), we learned the difference between Virtual
Machines and Containers. We can recall here that containerization works as
virtualization system at the operating system layer, essentially enabling hardware or
resource abstraction via the container system manager. The Open Web Application
Security Project (OWASP) has established the Container Security Verification
Standard (CSVS), and also created a quick cheat sheet, which comes handy for a
quick read and verification of the basic container security rules:

https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.
html.

Container runtime
The container runtime is the element of a container platform that manages the life
cycle of a container. It is essentially the so-called Linux daemon service that creates,
starts, stops and destroys containers, and also manages the storage and networking
for a container.

Figure 1.7, Container Runtime, illustrates the process chain needed for a containerized
platform to work properly, starting with the Docker Engine that encapsulates several
other child processes to allow containers pre and post processing. The containerd
system is the parent process of many shim child processes. If containerd fails, all

16 Security for Containers and Kubernetes

the child processes will automatically fail as well. This is what we call a “single point
of failure”:

Figure 1.7: Container Runtime

Due to its nature, the runtime is the point of connection between the containerized
platform and the operating system (left panel of Figure 1.7; a compromised container
instance would potentially allow a threat actor to pursue lateral movements,
eventually gaining access to other container instances, or even the underlying
operating system. This threat vector is called container escape. There are two main
reasons why this could happen:

•	 Insecure configurations

•	 Runtime software vulnerabilities

The CIS Docker Benchmark provides a vast range of details and recommended
settings, but operationalizing those is challenging. The opposite approach would
suggest enabling technologies like SELinux or AppArmor to enhance control and
isolation for containers running on Linux, while a good monitoring solution like
Sysdig FALCO would detect unexpected behavior and intrusion detection in real
time. This is also where good governance on the orchestrator side becomes valuable,
for instance, blocking the orchestrator through a security policy to deploy anything
to a vulnerable runtime, as we will discuss in Chapter 9, Kubernetes Governance.

Network traffic
In a containerized platform, the running container is the innermost component; it
is, indeed, the result of the container process. Therefore, in order to communicate
externally, it would generate egress traffic, which is notoriously difficult to manage.

Containers require a network layer, which is the default bridge network. The
better approach is to use a custom bridge network, ensuring that containers cannot
communicate with each other.

Containers and Kubernetes Risk Analysis 17

Figure 1.8: Container Network Traffic

Figure 1.8, Container Network Traffic, shows another layer of the container stack: the
network layer. Due to the use of a bridged network, normal network devices are
usually blind to the container network traffic. It is important to assess the container
networking surface, understanding inbound ports and process-port bindings, but it
also important to have a proper network monitoring system in place to detect traffic
flows between containers and other network entities or between themselves.

The Application layer
An often-underestimated issue is the consideration of the application that the
container is running. This is not a problem with the container itself, clearly, but it is a
typical flaw of container environments. While this extends the scope of the security
argument indefinitely, it is good to understand that the container environment is not
the only aspect of the security landscape we need to look at. Readers interested in
how to secure applications can refer to the OWASP TOP 10; it is a very good place
to start.

A web application could be vulnerable to cross-site scripting and could be used as an
attack vector to compromise the container. It is needed to detect abnormal behavior
in applications in order to take corrective action and prevent incidents. The Mitre
provides a comprehensive list of attack tactics and techniques, which are useful

18 Security for Containers and Kubernetes

when it comes to applying countermeasures and to analyzing the application’s
activity; visit https://attack.mitre.org for a comprehensive overview. The focus in
relation to the current argument is on the following detections:

•	 Forbidden system calls

•	 Forbidden process execution

•	 Changes to configurations files or executables

•	 Write attempts to forbidden locations

•	 Network traffic to unexpected network destinations

Applications should be “contained” in a separate filesystem, keeping the root
filesystem in read-only mode, to provide isolation between the container itself and
the application.

Rogue containers
Rogue containers are unplanned or unexpected containers deployed in a container
platform. This is quite common in staging or testing environments. Separate
environments for development, testing, and production are highly recommended,
with specific controls to provide Role Based Access Control (RBAC). Institute a
triage process to act as incident response to any malicious container deployed:

•	 Information gathering

•	 Forensic analysis

•	 Lesson learned

Container creation should be associated with individual user identities and logged
to provide auditing of activities when needed.

Orchestrator risks
In computing, orchestration is the capability of a system to automate configuration,
deployment, and management of computer systems and software. Containers can
provide microservice-based applications, which is a deployment unit and self-
contained executable environment. Containerized microservices are much easier
to orchestrate because they include storage, networking and security in a single
operative instance. Therefore, container orchestration is the capability of a system to
automate deployment, life cycle and networking of containers. Google introduced
the open-source Kubernetes platform in 2015, largely based on their internal
orchestrator project called Borg. Since the beginning, Kubernetes has been the most
popular container orchestrator. Kubernetes runs workloads by placing containers

Containers and Kubernetes Risk Analysis 19

into Pods running on Nodes. A node may be a virtual or physical machine, depending
on the cluster. Each node is managed by the control plane and contains the services
necessary to run Pods.

There are two areas of concern for securing Kubernetes:

•	 Securing the cluster components that are configurable

•	 Securing the applications that run in the cluster

Securing the applications is not in scope for the current analysis, but it will be subject
to a deep review in Chapter 5, Application Container Security. The following diagram
provides an overview of the Kubernetes Orchestrator:

Figure 1.9: Kubernetes

Figure 1.9, Kubernetes, provides a high-level overview of the main components of the
Kubernetes Orchestrator.

Despite Kubernetes being the most popular open-source container orchestrator, it
is worth nothing that it is not the only one available; a few alternatives are given as
follows:

•	 Docker Swarm is an open-source orchestrator built on the Docker runtime
engine.

20 Security for Containers and Kubernetes

•	 Apache Mesos is a UC Berkeley project. It is the go-to option for companies
like Airbnb, Apple and Twitter.

•	 Red Hat OpenShift is a platform-as-a-service (PaaS) built on Kubernetes.

•	 HashiCorp Nomad is a platform focused on scheduling and management
processes.

•	 Rancher is an open-source platform that provides a manageable, observable,
and scalable solution for managing multiple Kubernetes clusters.

The focus of this section is to try to abstract the security concerns common to the
most popular container orchestrator solutions on the market today, trying to identify
common patterns that would potentially affect any individual orchestrator. We will
then shift the focus solely on Kubernetes in Chapter 7, Kubernetes Hardening, Chapter
8, Kubernetes Orchestration Security, and Chapter 9, Kubernetes Governance.

Admin access
Many container orchestrators were designed with the assumption that users would
be administrators. This is a typical pattern in complex system where the permissions
are left wide open to facilitate the development. However, a single orchestrator
usually runs several applications, each belonging to a different team. It is necessary
scoping out and tailoring specific permissions for each team using the following:

•	 The least privileged model

•	 Minimizing distribution of privileged tokens

•	 Implementing a role-based access control model

•	 Forbid access to secrets

Specifying a role and a corresponding RoleBinding for the account ensures that only
legitimated API resources are accessed when needed.

Unauthorized access
Lack of visibility into account access governance within the cluster is a key risk.
Compromise of system credentials or secrets maintained within the container
orchestrator may result in generation of false identities. Container orchestrators
often include their own authentication directory service; this can lead to bad account
management practices.

Container may run on any given node, so data required by the application must be
available to the container regardless of which host it has been deployed on. Data
must be encrypted at rest to prevent unauthorized access. Access to cluster-wide

Containers and Kubernetes Risk Analysis 21

accounts should be tightly controlled, and it should implement single sign-on to the
existing directory systems.

Network Segregation
Traffic between nodes can be compared to traffic between containers; the difference
here is the higher degree of complexity ingested via the consideration that multiple
PODs on Node A could potentially talk or communicate with multiple PODs on
Node B. Encrypting the “internal network traffic” increases the level of difficulty
in gaining visibility, leaving any monitoring tool blind to what the orchestrator is
doing internally, as we will see in Chapter 12, Service Mesh Security.

Container orchestrators should be configured to separate network traffic by applying
network segregation. This concept is very similar to the application of the VLANs.
The criteria or logic applied really depends on the specific use case, but to provide
some context, containers should ideally be grouped by functionality.

Figure 1.10: Network Segmentation Logic

All the WEB PODs have no reason to share the same network segment of the API
PODs; similarly, all the MySQL PODs have no reason to sit on the same network
segment of the WEB PODs. This approach is called per-app segmentation. The per-app
segmentation model is shown in Figure 1.10, Network Segmentation Logic.

Another approach highlights the localization of the applications in relation with
their allocated network location. For instance, public-facing apps should sit in a
virtual network that is separated by applications classified as “internal”, which do
not need to be exposed and are serving only internal processes.

22 Security for Containers and Kubernetes

Another approach is to define virtual networks based on the sensitivity level,
depending on what kind of data the applications are able to access or on the stage
of the software development life cycle the applications are on. Therefore, in the last
case, all the staging applications should sit in one network that is separated from all
the production applications.

From the Software Development Life Cycle (SDLC) perspective, it is not unusual
to have deployment in code with tools like Terraform, Azure Resource Manager or
CloudFormation; so, it is useful to have a tool like CheckOV that can scan flat files.
It is available at https://www.checkov.io and can provide static code analysis for
scanning Infrastructure as Code (IaC) for misconfigurations.

Readers may argue that having all the production applications running in one virtual
network is not recommended, and that is when a combination of one or more of the
logic approaches explained earlier is applied.

Workload levels
Container orchestrators are primarily driving the scale and density of workloads.
That is their main focus. Usually, the orchestrator is blind to the functionality
attributed to a container; the only thing that the container understands is to place a
new resource request on a node that has the most available resources at any given
moment, which contravene the logic expressed in the previous section.

Sensitivity level is the process of labelling container according to the functionality
or purposed destination they have to offer. Orchestrator should be configured to
take advantage of the sensitivity level right from the beginning. The general model
is to define rules that block high sensitivity workloads from being deployed on the
same host as those running lower sensitivity workloads. Segmenting containers by
purpose, sensitivity, and threat posture provides additional defense-in-depth.

To increase the security posture, an interesting tool comes to help: Kube-Scan. Kube-
Scan is a Kubernetes risk assessment tool created by OctarineSec with the purpose of
scanning the workloads that are currently running on the cluster, showing the risk
score and the risk details in a user-friendly web UI. The risk score lies between 0 and
10. The tools is still free available under the Massachusetts Institute of Technology
(MIT) License on GitHub, but the company was later acquired by VMWare as part
of the VMware Carbon Black Cloud team, a cybersecurity company focused on
developing cloud-native endpoint security applications.

A best practice is to group containers by relative sensitivity and ensure that a given
host only runs containers of a given sensitivity level. This can be achieved by using
multiple physical servers or by deploying more than one container orchestrator, each
of them created for serving a specific sensitivity level. An attacker compromising
a single host would have limited capabilities to perform reconnaissance on other

Containers and Kubernetes Risk Analysis 23

containers of a similar sensitivity level, achieving network isolation and containment
at the same time.

Worker node trust
The trust relationship for nodes in an orchestrated environment is utterly important
and represents another risk factor that should be taken into consideration. Nodes
should be securely introduced to the cluster, have a persistent identity throughout
their life cycle, and should also be able to provide their connectivity states. Mkit is
an interesting tool that can audit the cluster and the node configuration, and it is
available at https://mkit.darkbit.io.

An orchestrator should be resilient to the compromise of individual nodes without
affecting the overall security of the cluster. A compromised node should be isolated
and removed from the cluster seamlessly. Container orchestrators should provide
mutually authenticated network connections between cluster members and end-to-
end encryption of intra-cluster traffic.

Conclusion
In this chapter, we explored the basic concepts of the risks and vulnerabilities related
to containers and Kubernetes. We also analyzed concepts related to the underlying
platforms and systems that support container deployment from the security
standpoint. This chapter provided an overview of the security concerns related
to microservices and the management platform that withstand the deployment
processes in a DevSecOps environment.

In the next chapter, we will learn about the security concerns related to the Hardware
and Host OS. Although this seems an approach going back in time, readers would
be surprised to learn that some of these concerns are directly related to containers
security and orchestrators and cloud solutions.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

24 Security for Containers and Kubernetes

Hardware and Host OS Security 25

Chapter 2
Hardware and

Host OS
Security

Introduction
The National Institute of Standard and Technology (NIST) has defined an
interesting concept: “The Container Technology Stack”. This stack aims to define
the functional layers involved in the deployment of a container platform. Refer to
the following figure:

 Figure 2.1: NIST Container Technology Stack

26 Security for Containers and Kubernetes

As illustrated in Figure 2.1, the Security Layer (right side of the picture) spreads across
the technological layers of the Container Technology Stack, including the Physical Host
and Container OS; indeed, no technological layer is excluded from the Security Layer.

This kind of approach helps reconcile the reason for which security is applicable not
only to the Host OS Layer but also to the Hardware Layer, even when considering
Microservices technologies like the Container Stack. The readers may argue that
this concept is difficult to apply to Cloud environments, but in consideration of the
Shared Responsibility Model (refer to Chapter 10, Kubernetes Cloud Security), the
Public Cloud Provider is responsible for the entire security related to the Hardware
stack and the Virtualization Environment of their Infrastructure.

For example, AWS is known to be using XEN Hypervisor as virtualization layer of
their infrastructure, so all the security patches related to that environment and the
physical layer underneath must be applied in accordance with security best practices.

Structure
In this chapter, we will discuss the following topics:

•	 Hardware security

o Secure Boot

o Virtualization-Based Security

o TPM

o Trusted Execution Environment

o DICE

•	 Host Hardening

o Linux Namespace

o Control Groups

o Capabilities

o SELinux

o AppArmor

o Seccomp

Objectives
This chapter aims to provide a complete analysis of the most common hardware and
operating system security features, and of the implementation of best practices to
elevate the security posture of the technological stack from the ground up.

Hardware and Host OS Security 27

Hardware security
The Firmware Supply Chain has significantly evolved over the past 2 years.
Nowadays, it is highly unlikely that a chip manufacturer like Intel or AMD develops
all the components presents in its products. Intel has recently started going in the
opposite direction with its Intel Foundry Service with the Landmark investment in
Ohio and spanning across Europe. Nevertheless, many of the components of the big
chip makers are still outsourced, including the firmware line.

Figure 2.2: Firmware Supply Chain

As more parties are involved in the process, refer to Figure 2.2, Firmware Supply Chain,
it becomes increasingly difficult to control the firmware development, and therefore,
the security related to each component.

The impact of a vulnerability differs based on the business implementation. The
BIOS DoS vulnerability DSA-2021-103, available at https://www.dell.com/support/
kbdoc/en-us/000187958/dsa-2021-103-dell-emc-poweredge-server-security-
update-for-bios-vulnerabilities, affecting some of the Dell PowerEdge Server
firmware, can lead to significant disruption, but it is considered a medium severity.

Nevertheless, if the device is part of an IoT, such as a camera system or a medical
device, the disruption can have a much more significant impact. For instance, this
was the root cause of the Ukraine Power Grid attack in December 2015, where
hackers were able to compromise serial-to-ethernet converter devices to gain access
to the Ukrainian’s Power Grid systems.

Firmware’s main purpose is to interface hardware resources with the Operating
System at the first layer, and supplying information about each resources, like

28 Security for Containers and Kubernetes

CPU, RAM, Hard Drive and so on and so forth. Each of those resources has its own
firmware embedded, contributing to expand the Hardware Attack Surface. Figure
2.3, Boot Sequence, illustrates the various steps needed to reach a “system up and
running” state from the Power On phase.

Figure 2.3: Boot Sequence

The most famous type of firmware is the Basic Input Output System, also known
as BIOS, successively replaced by the UEFI solution, which stands for Unified
Extensible Firmware Interface. At the beginning of the 2022, Binarly discovered
several vulnerabilities affecting the InsydeH2O UEFI system, one of the most famous
firmware hardware brands adopted by firms like Intel, Dell, Lenovo, Microsoft, and
HP.

InsydeH2O is an UEFI software developed by the Chinese Insyde Software, a
company that is specialized in UEFI system firmware and engineering support
services, primarily for Original Equipment Manufacturers (OEM) and Original
Device Manufacturers (ODM) computer and part device manufacturers. These
vulnerabilities are particularly dangerous because UEFI/BIOS-based attacks can
bypass firmware-based security mechanisms. Among those attacks, it is worth
recalling the “SMM allout” (System Management Mode) or privilege escalation,
SMM memory corruption, and DXE (Driver eXecution Environment) memory
corruption.

Binarly developed the FwHunt application, a rule format system to detect vulnerable
code patterns within the UFEI system. The security risk posed by those vulnerabilities
is significant because they can be used by attackers to bypass hardware-based
security features like secure boot, virtualization-based security (VBS), and trusted

Hardware and Host OS Security 29

platform modules (TPM). The National Security Agency has published an extensive
Technical Report that has valuable information with regard to UEFI Boot Security.
The document is available here:

https://media.defense.gov/2020/Sep/15/2002497594/-1/-1/0/CTR-UEFI-Secure-
Boot-Customization-UOO168873-20.PDF

Secure boot
Secure Boot is one the secure features of the Unified Extensible Firmware Interface
version 2.3.1 (also known as Errata C). When Secure Boot is enabled and configured,
it helps in increasing the security posture of a computer. Secure Boot detects
boot loaders alternations, key operating system files, and non-authorized Read
Only Memory coding by validating their digital signatures, creating a Trust Boot
Architecture. Readers familiar with solutions like private and public key pairs
will find the following presentation published on uefi.org interesting: https://uefi.
org/sites/default/files/resources/1_-_UEFI_Summit_Deploying_Secure_Boot_
July_2012_0.pdf

Figure 2.4: Chain of Trust

Figure 2.4, Chain of Trust, illustrates what is known as the Chain of Trust. In essence,
when Secure Boot is enabled, the boot process is secured by preventing the loading
of boot managers that are not signed with a digital signature. The public key
generated by the Secure Boot system, also known as the “platform key”, is saved
directly in the firmware. The Secure Boot system then enters the “user mode”, where
only operating system boot loaders signed with the platform key are allowed. Linux
distributions and Microsoft have developed different implementations for Secure
Boot. Microsoft has, of course, a significant footprint on the Original Equipment

30 Security for Containers and Kubernetes

Manufacturers market (OEM), and it has requested manufacturers to generate the
platform key at the firmware level (effectively creating the first application of the
Windows Hardware Quality Labs), but Linux, with less ties to the hardware world,
had to find workarounds at the software level: Canonical, for instance, was one
of the first Linux distros to introduce a signed bootloader (shim) that checks for
vendor-signed known keys. With respect to Figure 2.3, Boot Sequence, this practice
was working only from the Boot Manager to the User Mode. Later, that evolved in
what is today known as Unified Extensible Firmware Interface Secure Boot.

The Unified Extensible Firmware Interface Secure Boot ensures that only signed
software are loaded at the boot time. It uses digital signatures stored in the Allow
DB database, and it preserves a list of revoked digital signatures within the Disallow
DB. The digital signature package is updated as part of the firmware update process.
In 2020, a new high vulnerability was discovered, CVE-2020-10713; it is also known
as the BootHole, a buffer overflow vulnerability in GRUB2.

As far as this seems anachronistic, readers would note that UEFI Secure Boot is still a
security feature claimed in many virtualized environments like VMware ESXi, AWS
EC2 Instances, Google Cloud Shielded VMs, and generation 2 “Trusted Launch” of
Azure Virtual Machines.

Virtualization-based security
Virtualization-based security, or VBS, uses CPUs hardware virtualization capability
to create and isolate a portion of the memory specifically for the operating system.
Refer to the following figure:

Figure 2.5: Hypervisor Code Integrity

Hardware and Host OS Security 31

The segmentation of the memory is exclusively allocated to the Host OS, and it can
use the "virtual secure mode" to load or embed several security solutions, providing
them enhanced protection from vulnerabilities and also preventing the use of exploit
attempts for bypassing those protections. Virtualization-based security leverages
modern CPU hardware capabilities like Intel and AMD with their respective Intel-VT
and AMD-V features. The Microsoft hypervisor security solution for virtualization-
based security is called HVCI, which is the acronym for Hypervisor-Enforced Code
Integrity, commonly referred to as Memory integrity and used to strengthen code
integrity policy enforcement. Kernel mode code integrity checks all kernel mode
drivers and binaries before they are started and prevents unsigned drivers or system
files from being loaded into system memory.

Figure 2.5, Hypervisor Code Integrity, shows how Microsoft implemented VBS
in Windows 10 with the introduction of Windows Defender Device Guard and
Credential Guard features. Device Guard is a set of three components that prevent
untrusted code from running on Windows 10. These features are enforcing only the
execution of trusted, signed and verified firmware on the device.

Black Hat has published an interesting analysis of the attack surface of Windows
10 virtualization security based on VBS architecture in 2016. The presenter was
an engineer from Bromium, a company later acquired by HP (Hewlett Packard).
Bromium “micro-virtualization” technology was designed to protect computers
from malicious code execution, such as rogue web links, email attachments and
downloaded files.

The link for the material is at https://www.blackhat.com/docs/us-16/materials/us-
16-Wojtczuk-Analysis-Of-The-Attack-Surface-Of-Windows-10-Virtualization-
Based-Security-wp.pdf.

TPM
Trusted Platform Module (TPM) is designed to provide security-related functions
at the hardware layer. A TPM chip is a secure crypto processor that is designed to
execute cryptographic operations. The chip includes multiple physical security
mechanisms to make it tamper-resilient. The latest version of TPM is 2.0. It offers
device encryption and a few other features not available in the previous version, but
also much stronger crypto algorithms like SHA-256 and ECC P256.

The most common TPM functions are used for system integrity and key management.
During the boot process of a system, the boot code that is loaded (including firmware
and the operating system components) can be measured and recorded into the TPM
chip.

Like any other device or software, TPM has its own life cycle and age. In 2021,
researchers from the Dolos Group demonstrated that a TPM platform is hackable

32 Security for Containers and Kubernetes

with few ad-hoc tools. The Trusted Platform Module communicates with the Central
Processing Unit using the serial peripheral interface (SPI), a communications
protocol for embedded systems. The serial peripheral interface firmware provides
no encryption capabilities, so any encryption must be handled by the devices the
Trusted Platform Module is communicating with. By connecting a Saleae logic
analyser to the CMOS, the researchers were able to extract every byte moving
through the chip, perpetuating an Evil-Maid attack, no soldering was required.
The last step was using the bitlocker-spi-toolkit to isolate the key inside the data
extracted by the serial peripheral interface.

The most common TPM practical application is related to Certificates installation
or creation. After a computer is provisioned, the RSA private key for a certificate
is bound to the TPM and cannot be altered. Figure 2.6, TPM Input Output Logic,
highlights how the coding section in the top-right corner of the image interacts with
the TPM platform through the Input/Output logic, and how the TPM platform
releases an encryption mechanism to secure the software-hardware interaction.

Figure 2.6: TPM Input Output Logic

Anti-malware software can use the boot measurements of the operating system start
state to prove the integrity of a computer. These measurements include the use of
virtualization platforms like VMWare, XEN, and Hyper-V to test that data centers
using virtualized hardware are not running untrusted hypervisors.

Of the most common hardware vendors, only Apple has a different approach to
hardware security: the T2 Chip. This is obviously related to Apple’s choice to move
away from the Intel platform adopting the Apple Silicon solution, but the T2 Chip
has similar capabilities.

When combining technologies together is the only way to overcome platform
limitation, such as in the case of Parallel and Apple, vTPM (virtual TPM) represents
the optimal solution. vTPM is a software abstraction of the hardware TPM Chip,
and it allows performing cryptographic coprocessor capabilities within the software
layer. That explains why Parallel can run Windows on a MacBook and why VMWare

Hardware and Host OS Security 33

can do the same with the Microsoft operating systems using vSphere rather than
Hyper-V.

To enforce trusted security and filesystem encryption, those measurements can be
leveraged through the virtualized environment with tools like BitLocker, TrueCrypt
or VeraCrypt, and LUKS. Each of those cryptographic solutions has its own pros and
cons, but it’s sufficient to say that with TPM functionality, it is possible to bind the
encryption of a virtualized platform with the underneath physical layer.

BitLocker cannot handle native containers encryption; it needs to encrypt the entire
partition on which the containers are running, and it is a Microsoft solution for the
Microsoft world, but technically valid. TrueCrypt made history some years ago
following an FBI failed 1-year attempt to decrypt five seized hard drives of a Brazilian
banker accused of financial crimes. The article is available at https://g1.globo.com/
English/noticia/2010/06/not-even-fbi-can-de-crypt-files-daniel-dantas.html.

LUKS can communicate with TPM 2.0 natively and can be used in combination with
Docker as well, providing an end-to-end solution from the hardware layer up to the
container layer.

Finally, the joint effort between Intel and Docker promoting trusted containers, where
all the aspects of the container stack, are authenticated through TPM to provide
enterprise-level security. The article was published on the Intel website a few years
ago and is still available at https://www.intel.com/content/www/us/en/developer/
articles/technical/secure-the-iot-edge-with-trusted-docker-containers.html.

Trusted execution environment
With the extreme complexity of modern technology, and the increased difficulty
of securing complex hardware platforms, a new concept arose a few years ago:
the Trusted Execution Environment. The Trusted Execution Environment (TEE)
protects the area of the hardware where the code is executed by applying hardware
isolation. To be considered a Trusted Execution Environment, a hardware platform
must satisfy the following three requirements:

•	 Data Confidentiality: Unauthorised entities cannot view the data in the TEE.

•	 Data Integrity: Unauthorised entities cannot add, remove, or alter the data
in the TEE.

•	 Code Integrity: Unauthorised entities cannot add, remove, or alter code
executing in the TEE.

The rise of the trusted execution environment is to satisfy the need to process the
new kind of data generated beyond the use of a simple password, like facial scans
or fingerprints: biometrics. Let us think of registering the fingerprint on a mobile

34 Security for Containers and Kubernetes

device. Upon a login attempt the fingerprint provided for identification by the user
is verified against the fingerprint stored on the device. Biometric data is generated
by what in security terms is called “something you are”, and must be stored in a
segregated environment although maintaining the needed availability.

Two of the most prominent implementations of the Trusted Execution Environments
are TrustZone developed by ARM, and SGX developed by Intel, as shown in Figure
2.7, Intel SGX. Refer to the following figure:

Figure 2.7: Intel SGX

For instance, the popular messaging application Signal uses the Intel Software
Guard Extension (SGX). That is a good example of how Intel technology provides
a mechanism to apply security all the way from the hardware layer up to the
application layer. The interesting fact is that Intel has found a way to containerize a
portion of the memory, so-called “enclaves,” the data is executed securely because
each enclave is verified by a cryptographic attestation key and a hardware root of
trust.

DICE
Device Identifier Composition Engine (DICE) is a hardware security standard
created by the Trusted Computing Group designed specifically for the security of
the Internet of Things (IoT) devices, targeting products like Micro Controller Unit

Hardware and Host OS Security 35

(MCU), and systems on chip (SoC), where a TPM hardware device would be too
expensive to implement in terms of transistor and power consumption. DICE works
by organizing the boot phases (Power ON, Hardware INIT, Disk0 MBR, Boot sector,
Bootloader) into logical layers with a unique assigned secret, called the Unique
Device Secret (UDS). When a new code is booted, at any point in the boot sequence
chain, any logical boot layer will have a different secret. Each layer is isolated from
the others, keeping the secret it receives completely confidential. Any change of code
in the boot sequence will automatically trigger a secret rotation. System On Chip
contains non-volatile memory, which is not a Trusted Platform Module, due to space
constraints on the motherboard; it can be used to store cryptographic keys. The risk
associated with this approach is that if the code stored in the non-volatile memory
is compromised, the secret key could leak. ARM processors, as a workaround, have
implemented Trust Zone™ to limit non-volatile memory access to Trusted Execution
Environments (TEEs) only.

Host OS Hardening
In computer security, host hardening is the process of reducing the attack surface of
system by using two methodologies: removing all the unnecessary packages, services
and libraries, and enforcing all the security features a system makes available, as
shown in Figure 2.8, Host Hardening, aiming to reduce security risks and minimize or
remove potential attack vectors.

Figure 2.8: Host Hardening

36 Security for Containers and Kubernetes

A comprehensive list of all the possible features applicable to any system or
application is available on the Center for Internet Security website at https://www.
cisecurity.org, which includes not only the various Linux distributions like RedHat,
Ubuntu, OpenSUSE, CentOS or server system such as Apache, NGINX, MySQL but
also hardening guides for entire cloud platforms. The aim of this paragraph is not to
exhaustively treat a single aspect of any operating system; that would be impossible.
Rather, it is to linger on the most important aspects of a system that directly impact
our journey toward the Security for Containers and Kubernetes.

In the DevSecOps world, it is worth mentioning that today it is easy to find ready-to-
go scripts or checklists that can provide a baseline to apply hardening principles to
a system, but those principles may vary from distro to distro. In this sense, a couple
of resources should be considered:

•	 The DevSec Hardening Framework

•	 STIG

•	 Lynis

The DevSec Hardening Framework offers various hardening collections with
respect to the most up-to-date security frameworks, including the CIS mentioned
earlier. Automation systems are also considered, such as Ansible, Puppet or Chef,
but prominent server systems like Apache or MySQL are not neglected, and of
course there’s Docker.

STIG stands for Security Technical Implementation Guide; it is a configuration
standard of cybersecurity requirements promoted by the Defense Information
Systems Agency (DISA), available at https://public.cyber.mil/stigs. Readers would
appreciate that applying hardware measures at the STIG level would guarantee the
maximum layer of security achievable in any given system, but it will also reduce
drastically the availability of the same system to the minimum acceptable. Dell is
one of the few computer manufacturers offering this kind of hardening solution:
https://www.dell.com/en-us/dt/services/deployment-services/STIG.htm.

Lynis is a security tool for system running *-nix based operating systems (including
macOS), aiming to audit, via an extensive health scan, systems based on the
components that are actually installed and configured.

Note: If Lynis detects the httpd daemon running for example, it will perform
a series of tests related to web server configurations. If it detects SSL/TLS
configuration during the initial tests, it will perform additional auditing steps
based on the SSL/TLS configuration, for example collecting any certificates
loaded on the server, so that they can also be scanned via additional certificates
tests.

Hardware and Host OS Security 37

Lynis is available at https://cisofy.com/lynis/ and is prone to automation
implementation through CI/CD pipelines.

Linux namespaces
Namespaces are a particular feature of the Linux kernel that allows processes to be
loaded in a “containerized” environment, meaning that a Linux process can only
access compute resources within the confinement of its own namespace; it can’t
intercept or interfere with another process’s resources.

Figure 2.9: chroot

Figure 2.9, chroot, illustrates the chroot principle; refer to the System Level Virtualization
section in Chapter 1, Containers and Kubernetes Risk Analysis. The fundamental
difference with the namespace mechanism is the Linux kernel isolated kernel
processes, identified as PID, also known as Process Identification Number. Readers
can think of namespace-like kernel-enforced user space views.

As explained in Figure 2.10, Namespaces, PID1 is root and is generated by the actual
running process. It assumes the Parent PID characteristic when a PID in the chain, in
this case, PID 8 launches sub-processes, then becoming the Child PID. Processes in

38 Security for Containers and Kubernetes

the Child PID space never interact with the Parent PID, but it is true otherwise, that
Parent PID processes can access Child PID processes.

Figure 2.10: Namespaces

There are other namespaces defined in the Linux Kernel, as shown in the Table 2.1,
Namespaces:

Namespace Isolates
PID Processes
Network Network devices, stacks, ports
User User and Group IDs
MOUNT Mount points
IPC System V IPC
UTS HOST and NIS domain name
Control Group Cgroup root directory
Time Boot and monotonic clocks

Table 2.1: Namespaces

Namespace tools like Docker allow control on the usage of the processes’ resources.
Example of applications or services using this solution natively are Heroku and Google
App Engine to isolate and run multiple server applications on the same underlying
hardware. Linux namespaces are considered fairly secure; they isolate host system
resources from independent processes running on top of it, and they are also
considered the underlying technology behind container solutions, as they apply the
same principle to containers’ interaction: a container should not be allowed to obtain
control over another container or its resources. In essence, when a new container is
created, a specific namespace should be assigned to it.

Hardware and Host OS Security 39

Note: There is no relationship between Kubernetes namespaces and Linux
namespaces. Kubernetes namespace is a logical construct to segregate cluster
resources, such as pods, between multiple users. You can apply RBAC using
Role and RoleBinding, which defines who can do what in any given namespace.
Linux namespaces are applied at the HOST layer, and they do not depend on
any cluster interaction.

The drawback in systems like Kubernetes is that the orchestrator was originally
designed without security tenancy or segmentation, exposing Linux kernel
namespaces as shared resources, especially in components like kubelet, etcd,
kube-proxy and the API server. Therefore, if a malicious actor gains access to
the API server, it means the attack vector has already bypassed the Kubernetes
Namespace. The later movement from the API server to the etcd datastore or to the
kube-controller-manager will depend on whether or not Linux Namespaces have
been applied correctly. Refer to the following figure:

Figure 2.11: Linux and Kubernetes namespaces

Figure 2.11, Linux and Kubernetes namespaces, recalls Figure 1.12, Container-specific
OS, from the Chapter 1, Containers and Kubernetes Risk Analysis, but it highlights the
belonging domains of applicability with regard to the namespaces feature.

Control groups
Control groups, abbreviated in Cgroups, are Linux namespaces complementary
features. They are the allocation of a specific amount of resources to any given
process.

A cgroup enables a Linux process with a mechanism to aggregate a set of tasks,
including parent and children tasks, into hierarchical groups for one or more
subsystems, as briefly described in Table 2.2, Cgroups Definitions. The main purpose

40 Security for Containers and Kubernetes

of the Cgroups is to limit, isolate and account for the amount of physical resources
in terms of central processing unit, memory, disk input and output, and network to
any given software process.

Feature Description
subsystem It is a module that enables group aggregation, typically used as

a resource controller, to apply resource limits to the scheduled
resources. It is also acts as a virtualization subsystem.

hierarchy The cgroups are arranged hierarchically in a parent-children
fashion.

Table 2.2: Cgroups Definitions

Table 2.3, Control Groups, shows the four main Control Groups features:

Feature Description
Resource limiting Cgroups can be set to not exceed a configured memory limit
Prioritization Some groups may be released a larger share of CPU utilization

or disk I/O throughput
Accounting Measures a Control group's resource usage
Control Freezing Cgroups of processes, their checkpointing and

restarting

Table 2.3: Control Groups

In Linux distributions, the cgroups is mounted as read-only filesystem via tmpfs, and
it is located in the /sys/fs/cgroup folder, where the cgroups resources can be invoked.
Resources are identified as a set of cpu, cpuset, hugetlb, io, memory, and pid. A
typical application of a Control Group can be invoked through the echo command
as per the following example code, where the amended cgroup task can access only
CPUs 2 and 4, and Memory Node 2.

1. $ echo 2-4 > cpuset.cpus

2. $ echo 2 > cpuset.mems

3. $ echo $$ > tasks

The translation of the preceding methodology can be executed manually through
the Docker command when running the container, for example, the following string
aims to start the my-ubuntu container with access to maximum two CPUs and
limiting the memory access up to 1 GB of RAM with a RAM reservation of 256 MB.

Hardware and Host OS Security 41

1. $ docker run -it -d --cpus=2 -m 1024m --memory-
reservation=256m --name my-ubuntu ubuntu:22.04

The preceding command can be also invoked in the following example for resources
limitation on a Dockerfile for the Apache web server httpd. The same principle is
applicable to Kubernetes deployments.

1. services:

2. service:

3. image: httpd

4. deploy:

5. resources:

6. limits:

7. cpus: 2.00

8. memory: 1024M

9. reservations:

10. cpus: 0.50

11. memory: 256M

At the beginning of 2022, a Unit 42 researcher at Palo Alto Network discovered
what would later be classified as CVE-2022-0492. The CVE-2022-0492 is a privilege
escalation vulnerability. It highlights a logical bug in control groups because the
Linux kernel mistakenly exposes a privileged operation to unprivileged users.
The default security hardenings in most container environments are not sufficient
to prevent container escape, but for those running with AppArmor, SELinux or
Seccomp, there is no risk. The root cause analysis revealed that when a process is
terminated, the kernel checks whether the related cgroups had “notify_on_release”
enabled, and if so, spawns the configured “release_agent” binary.

1. /sys/fs/cgroup/memory/release_agent

The release agent runs with the highest possible permissions: a root process with
all capabilities in the initial namespaces; as such, the release agent is considered
a privileged operation, as it allows you to decide which binary can run with root
permissions.

Capabilities
The root user, or any ID with UID of 0 for that matter, has special “powers” when
running processes. The kernel and applications are programmed to disregard the
restriction related to some activities when processing requests with user ID equal to

42 Security for Containers and Kubernetes

0. In other words, the root user is allowed to do anything; it is, indeed, also known
as the “super user”. Applying “capabilities”, we can strengthen applications and
containers security. Unfortunately, this powerful tool is still underutilized.

Any non-root user is a non-privileged user. A non-root user can only access data or
execute commands owned by itself or the group it belongs to, or when that data is
marked for access by all users. The latter is also translated in Linux permissions as
777. When the process related to non-root data requires more permissions, like when
opening a network socket, the process needs to escalate privileges and become a
temporary privileged user. This is where a command like sudo is utilized.

There is a common misconception about the Super User DO (sudo) command. It
is considered secure by default, which is not completely true; most of the time,
it depends from the level of secure configuration applied to the /etc/sudoers file,
especially in environments where the sudo rules are centralized through Lightweight
Directory Access Protocol, also known as LDAP. Also, it is hard to imagine that
DevOps team running CI/CD pipelines for EC2 (Elastic Compute Cloud) instances
rotation of the web servers fleet are using sudoers configured in LDAP. In this
scenario, often machine users are implemented, also known as service accounts.
These are used to replace a real human interaction with the automation system to
facilitate the user access from system to system or application to application. An
interesting tool to verify the exploitability of the Linux sudo rules is FallOfSudo.

Capabilities finds its way in this scenario: the web server service of the previous
example will be able to establish the network socket on the port 80 because a
capability like CAP_NET_BIND_SERVICE is set on the related httpd binary file. The
web service won’t need any human input in granting a higher level of permissions,
so sudo won’t be needed. For a full list of capabilities and their applications, refer
to https://man7.org/linux/man-pages/man7/capabilities.7.html. Capabilities are a
per-thread attribute or a per-file attribute, and as such, every thread or file has the
following capability set, as shown in Table 2.4 - Capabilities:

Feature Thread File
Permitted Set Yes Yes
Inheritable Set Yes Yes
Effective Set Yes Yes
Bounding Set Yes No
Ambient Set Yes No

Table 2.4: Capabilities

Container runtimes have some of these capabilities enabled by default, for example,
it is possible to check the default capabilities enabled by the CRI-O runtime on its
latest version. When running containers with UID 0, default capabilities configured

Hardware and Host OS Security 43

by the runtime will be configured in the effective set for the container thread.
When running containers with non-root UID, default capabilities configured by the
runtime are dropped. This means that containers running non-root UID, which is
the preferred way, will be able to establish a network socket connection only if the
related capability is defined. Refer to the following code:

1. version: ‘3’

2. services:

3. web:

4. cap_add:

5. – NET_BIND_SERVICE

Similarly, Kubernetes has adopted a mechanism that achieves the same goal
leveraging the privileged flag on the Security Context for PODs. The code for this
achievement is as follows:

1. apiVersion: v1

2. kind: Pod

3. metadata:

4. name: security-context-cap-admin

5. spec:

6. containers:

7. – name: sec-ctx-cap-admin

8. image: gcr.io/google-samples/node-hello:1.0

9. securityContext:

10. capabilities:

11. add: [“NET_ADMIN”, “SYS_TIME”]

Security Enhanced Linux
Security Enhanced Linux is a security enhancement to Linux originally developed
by the United States National Security Agency (NSA), which allows users and
administrators more granular control over access control. SELinux defines access

44 Security for Containers and Kubernetes

controls for the applications, processes, and files on a system. It uses security policies,
which are a set of rules that instruct SELinux on what can or can’t be accessed.

Figure 2.12: SELinux

When an application or process makes a request to access an object, SELinux sends
the request to the security server, the security server checks for the security context
of the app or process and the file. Security context is applied from the SELinux policy
database. If the permissions are cached for subjects and objects, SELinux checks with
the Access Vector Cache (AVC) and behaves accordingly. Permission is then granted
or denied. Figure 2.12, SELinux, illustrates a typical policy check scenario.

Traditionally, *-nix systems have used Discretionary Access Control (DAC), where
files and processes have owners. The root user has full access control with a DAC
system. SELinux has a different approach to security; it uses a Mandatory Access
Control (MAC) methodology where there is an administrative policy set around
access.

Let’s go back to the web server example in the previous paragraph, where the
webserver, thanks to the Linux Capabilities, was able to establish a network socket
on port 80. In this case, through the SELinux policy system, the web server will
be able to serve web pages because it has read permissions on the document root.
However, SELinux will block any write attempt to any directory other than the one
the SELinux policy allows Secure File Transfer Protocol (SFTP) connections to.

Hardware and Host OS Security 45

In 2019, a flaw in runc (CVE-2019-5736) allowed container processes to "escape" the
container layer and execute process on the operating system itself. The attacker’s
executable was able to overwrite the runc command on the operating system, giving
the attacker access to the underling host, in essence “tampering” the /proc/self/
exe file that was pointing to runc, assuming containers running as root. Container
processes are executed as type container_t. SELinux policy states that only files of
container_t types can have write permissions and must be labelled as container_
file_t. The default file label in SELinux of runc is container_runtime_exec_t, so
container_t types have forbidden writing permissions.

The same principle is applicable to Kubernetes, and the same vulnerability was
documented in the Kubernetes Blog at https://kubernetes.io/blog/2019/02/11/runc-
and-cve-2019-5736/. SELinux can be enabled into Kubernetes with security features
seLinuxOptions declared in the securityContext section of the manifest file, under
the POD configuration, as the following code illustrates:

1. ...

2. securityContext:

3. seLinuxOptions:

4. level: "{SeLinuxOptions}"

Historically, SELinux has been addressed as a complex system, and it still feels the
same, where the configuration burden is too heavy to be satisfied. Interestingly,
solutions like UDICA, an SELinux policy generator for Containers, are more efficient
in virtualized environments.

AppArmor
AppArmor is a Linux application security system designed to protect operating
systems and applications from a platform’s external or internal threats, including
zero-day attacks. It replaces the user- and group-based permissions, classic of the
Linux system, to enclose programs to a limited set of resources; indeed, AppArmor
security model is to bind access control attributes to programs rather than to users.
AppArmor confinement is provided via profiles loaded into the kernel, typically on
boot. As shown in Table 2.5, AppArmor Modes operates in two types:

Mode Description
Enforced In enforce mode, AppArmor enforces the rules and logs the violation

attempts in syslog or auditd, blocking any process that is not
matching the rules.

Complain In complain mode, AppArmor does not enforce the rules. It will only
log any security event detected as a violation.

Table 2.5: AppArmor Modes

46 Security for Containers and Kubernetes

It is possible to check the AppArmor system status by executing in the console the
following command:

1. $ sudo apparmor_status

2. apparmor module is loaded.

3. 6 profiles are loaded.

4. 6 profiles are in enforce mode.

5. /sbin/dhclient

6. /usr/lib/NetworkManager/nm-dhcp-client.action

7. /usr/sbin/httpd

8. /usr/sbin/mysqld

9. /usr/sbin/tcpdump

10. 0 profiles are in complain mode.

11. 3 processes have profiles defined.

12. 3 processes are in enforce mode.

13. /sbin/dhclient (352)

14. /usr/sbin/httpd (842)

15. /usr/sbin/mysqld (499)

16. 0 processes are in complain mode.

17. 0 processes are unconfined but have a profile defined.

When applying AppArmor policies to containers, an AppArmor security profile
must be associated with each program. Docker expects to find an AppArmor policy
loaded and enforced, and it automatically generates and loads a default profile for
containers named docker-default. An example of AppArmor profile for MySQL is
as follows:

1. # vim:syntax=apparmor

2. #include <tunables/global>

3.

4. /usr/sbin/mysqld {

5. #include <abstractions/base>

6. #include <abstractions/nameservice>

7. #include <abstractions/user-tmp>

8. #include <abstractions/mysql>

Hardware and Host OS Security 47

9. #include <abstractions/winbind>

10.

11. # Allow system resource access

12. /sys/devices/system/cpu/ r,

13. capability sys_resource,

14. capability dac_override,

15. capability setuid,

16. capability setgid,

17.

18. # Allow network access

19. network tcp,

20.

21. /etc/hosts.allow r,

22. /etc/hosts.deny r,

23.

24. # Allow config access

25. /etc/mysql/** r,

26.

27. # Allow pid, socket, socket lock file access

28. /var/run/mysqld/mysqld.pid rw,

29. /var/run/mysqld/mysqld.sock rw,

30. /var/run/mysqld/mysqld.sock.lock rw,

31. /run/mysqld/mysqld.pid rw,

32. /run/mysqld/mysqld.sock rw,

33. /run/mysqld/mysqld.sock.lock rw,

34.

35. # Allow execution of server binary

36. /usr/sbin/mysqld mr,

37. /usr/sbin/mysqld-debug mr,

38. }

48 Security for Containers and Kubernetes

AppArmor is supported by all common Kubernetes container runtimes, including
Docker, CRI-O and containerd. AppArmor will be defined in the Kubernetes Pod
manifest section by specifying an AppArmor profile that any given container should
be run with. In order to apply the AppArmor profile, the Pod will need an annotation
metadata, such as the following:

1. container.apparmor.security.beta.kubernetes.io/<container_
name>: <profile_ref>

The whole process to manage AppArmor profiles can be cumbersome and time
consuming. Although AppArmor provides a set of pre-defined profiles for the most
popular applications or services, there would be the need, according to the specific
environment, to create, edit or manage multiple profiles. This is the scenario where
tools like Kube-apparmor-manager is appreciated.

With Kube-apparmor-manager, the AppArmor profile becomes a Kubernetes
object that can be saved into the etcd database, synchronized between nodes, and
therefore, distributed at scale. We will look at some of these methodologies in Chapter
7, Kubernetes Hardening.

Seccomp
Secure Computing Mode is a Linux kernel feature aiming to restrict the syscall a
Linux process is allowed to do. Figure 2.13, SECCOMP Logic, shows the Secure
Computing Mode logic:

Figure 2.13: SECCOMP Logic

The kernel is essentially sandboxing a process when seccomp is enabled, limiting the
system calls only to exit(), read(), sigreturn(), and write(). Many software
projects, such as Android, Chrome, and Firefox, use seccomp to tighten security
further.

The concept behind SECCOMP is simple: the user space processes do not need to
be exposed to all the system calls available to the kernel; most often, such processes
will use a limited number of those calls. It is dangerous, anyway, to leave the door

Hardware and Host OS Security 49

open for those processes to eventually be able to make system calls, because they can
become an attack vector for malicious code. If a process is compromised, it could run
syscalls that usually are not executed in a normal execution mode, such as execve().

At the beginning of 2022, the Deepwatch Threat Intel Team published CVE-2022-
20699, affecting Cisco RV340/RV345 series SSL VPN devices. The shellcode uses
“execve()” to execute /bin/sh. It allows the attacker to specify host and port to
establish interactive communication with the compromised device via a reverse
shell.

Figure 2.14, SECCOMP Container Workflow, illustrates the process chain needed to
reach the kernel syscall. The default Docker profile is usually sufficient to cover
most common scenarios, but a custom profile option is available. Kubernetes
integrates SECCOMP as a measure of secure computing for the cluster environment.
The SECCOMP profiles can be applied either at the node level or pod level and
distributed to the cluster. Refer to the following figure:

Figure 2.14: SECCOMP Container Workflow

Kubernetes also makes available observability processes to audit syscall made by a
specific container, and it detects behaviour when a missing profile is specified or a
violation of a SECCOMP profile.

1. apiVersion: v1

2. kind: Pod

3. metadata:

4. name: audit-pod

5. labels:

6. app: audit-pod

7. spec:

8. securityContext:

9. seccompProfile:

10. type: Localhost

11. localhostProfile: profiles/audit.json

12. containers:

50 Security for Containers and Kubernetes

13. - name: test-container

14. image: hashicorp/http-echo:0.2.3

15. args:

16. - "-text=just made some syscalls!"

17. securityContext:

18. allowPrivilegeEscalation: false

The auditing process is likely one of the most interesting ones; Kubernetes will create
an “audit” POD via the audit.json manifest mentioned earlier. Kubernetes Security
Profile Operator is likely the most active project in the community for promoting
security for the orchestrator platform. The project promotes the application of three
of the main security principles discussed in this chapter: SECCOMP, SELinux and
AppArmor.

Conclusion
In this chapter, we acknowledged that even in the age of the Cloud Native applications,
hardware and operating systems are still active part of the security landscape, and
they can help significantly to reduce the attack surface due to the deep integration
and interaction between all the layers of the Container Stack. We also analyzed the
main security hardware technologies and their capability to bind the upper-level
software security layer. Moving on, we discussed the operating system security
features that can be leveraged by the container and the orchestrator layers.

In the next chapter, we will learn about Container Stack Security and the best
practices to secure a container environment.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Container Stack Security 51

Chapter 3
Container Stack

Security

Introduction
There was a time when speaking of containers would have meant speaking of
Docker. It’s the same today, but the container stack evolution has gone very far
since the rise of the Cloud Native Computing Foundation. The biggest sign of such
a change was announced by the Kubernetes version 1.20, the so called Raddest
Release in December 2020, where the dockershim component – what Kubernetes calls
a “special direct integration” – was removed starting from the Kubernetes release
v1.24.

From Kubernetes v1.25, dockershim is not the default installed container runtime
anymore, and it is necessary to install a runtime that will interface with the Container
Runtime Interface (CRI). The change is significant because Kubernetes v1.25
expects that the container runtime installed on the nodes will support the container
runtime interface, with a minimum version of v1alpha2. It makes sense then, within
the scope of the book, to consider the container runtimes supported by Kubernetes
at the time of writing, and the necessary steps to elevate such important components
of the containerized stack to a sufficient level of security:

•	 Containerd

•	 CRI-O

52 Security for Containers and Kubernetes

•	 Docker Engine

•	 Mirantis Container Runtime

A quick note about Mirantis for the readers less familiar with commercially available
software, and why it could be a valid choice for some businesses. Mirantis is a
commercial container runtime that was previously known as Docker Enterprise
Edition. The Mirantis Container Runtime (MCR) can interface with Kubernetes
via the open-source component cri-dockerd, which is also used by the Docker Engine.
Readers can think of the Mirantis Container Runtime as the Docker Engine’s
commercial version.

Structure
In this chapter, we will discuss the following topics:

•	 Container security

o Containerd

o CRI-O

o Docker

	 Least Privilege

	 Resource Limitation

	 Container Isolation

•	 Network Security

o Mirantis Container Runtime

o An interesting exclusion

•	 Secure connection

o Server Certificate

o Client Certificate

o Enable dockerd TLS

o Secure CI/CD

•	 Update life cycle

Objectives
This chapter aims to provide a complete overview for the most common container
services security best practices, including the Docker Engine. Despite being

Container Stack Security 53

deprecated in the Kubernetes v1.24, Docker Engine is still a prominent container
runtime and the most wildly used container runtime service.

Container security
Many names in a container stack have similar nomenclature and meaning. The
vast world of containers can be challenging and confusing. Applying security best
practices at the appropriate layer of the container stack is vital to protect the container
ecosystem. Thinking of a container like a standalone process is a good start, but the
real challenge is to address a containerization process as the child process of a chain
of interconnected Linux sub-services. Abstracting physical resources like CPU, RAM,
Storage, and Network into virtualized resources that the container can understand
and process as its own requires indeed multiple intermediate processing. Kubernetes
has introduced an additional layer of complexity, where distinguishing between the
container system and the orchestrator system has become even more difficult.

As discussed in Chapter 2, Hardware and Host OS Security, a container platform is
not immune to hardware security issues or operating systems security issues, but
while the physical layer is only the start of the security journey, the abstraction of
the physical resources into virtualized or containerized resources brings far more
complexity into applying safeguards and security best practices to the container
stack. Refer to the following figure:

Figure 3.1: Docker Container Processes

To demonstrate such complexity, Figure 3.1, Docker Container Processes, illustrates
the sequence of elements involved in the Docker containerization process, and also
illustrates, from left to right, how a container is created, including all the intermediate

54 Security for Containers and Kubernetes

required steps, like a sequence of folding processes. Let’s abstract Figure 3.1, Docker
Container Processes, in the following image:

Figure 3.2: Abstract Container Processes

Figure 3.2, Abstract Container Processes, shows the containerization from a different
angle: the one that is applicable as a general concept to any other container platform.
As readers might remember, in Chapter 2, Hardware and Host OS Security, Figure 2.1,
NIST Container Technology Stack, the National Institute of Standard and Technology
does not refer specifically to Docker, it is indeed referring to any container technology
from the security standpoint. Figure 3.3, Description of Container Processes, aims to
describe each single component involved in the containerization process. Container
Engines execute virtualization at the operating system layer providing a “control
center” environment for running applications and their dependencies. It is the first
level in the chain of Linux processes that constitutes a container platform. Refer to
the following figure:

Figure 3.3: Description of Container Processes

Container Stack Security 55

Container engines usually run as a Linux daemon on the host platform, offering
various interaction methodologies like a command line interface or an API system.
Container Managers are components of a container platform sitting behind a
container engine. They receive and interpret the parameters used to manage the
containers’ life cycle, keeping track of the container status. The Container Manager
creates, destroys, starts, and stops containers at a higher level; it manages the
interaction with the registry pulling or pushing images, and it also manages the
network communications. The Docker platform is the oldest and more complex
container system on the market, with several moving parts, in contrast with younger
technologies that have, in general, a much smaller footprint and the tendency to
incorporate components. Systems such as containerd or CRI-O have done a
remarkable job reducing their computing footprint, and containerd has been able also
to incorporate an API system. Figure 3.4, Container Engines and Managers, provides
a quick distinction of the most common platform in their respective sections. As
explained previously, some systems can assume more than a single function.

Figure 3.4: Container Engines and Managers

Figure 3.5, Comparing Container Runtimes, aims to explain the container processing
among the Container Runtimes supported by Kubernetes today. The Mirantis
Container Runtime has been purposefully excluded because it is based on the
Docker Enterprise Engine; therefore, it has a container processing mechanism like
the Dockershim container runtime.

Figure 3.5: Comparing Container Runtimes

56 Security for Containers and Kubernetes

The distinction between the three contenders is visible at eye, and those differences
are also a sign of the complexity around each of the project, and consequently, the
need to apply security is proportionated to the extension of the attack surface. The
more systems or parts of a system are exposed, the more layers of security would
need to be applied.

As an interesting anomaly, the CoreOS rkt (pronounced “rocket”) project development
has been halted at the beginning of the 2020, 2 years after RedHat acquisition and
announcement of the transition of the overall platform in what is now known as
the Fedora CoreOS project. It is interesting to note that rkt was developed with
the principle of secure-by-default in mind, including a series of remarkable security
features like SELinux, TPM (refer to the TPM section in Chapter 2, Hardware and
Host OS Security) and hardware-isolated containers from the underlying operating
system using a namespaced POD concept similar to the one in Kubernetes.

This is in contrast with the common assumption that containers are running on
“shared” resources consumed through the host on which they are running. The
rocket project is a non-common containerization model, and curious readers will
find the hardware-isolated container concepts interesting. To achieve container
isolation, CoreOS rkt uses the systemd-nspawn container runtime feature, a layer of
the systemd software suite developed by Red Hat. By bringing the containerization
mechanism into systemd, CoreOS rkt provides configuration consistency across the
various flavors of the Linux distributions.

Figure 3.6: CoreOS rkt Models

Container Stack Security 57

The systemd-nspawn is conceptually similar to chroot but much more powerful
because it can achieve container isolation through namespaces, implementing full
virtualization of the process tree, including filesystem and user IDs. Interestingly,
CoreOS rkt can also implement virtualization through a full KVM hypervisor system
like QEMU or LKVM, on top of which it injects application running containers in a
full Virtual Machine. The security advantage of this approach is that the hypervisor
will create a separate kernel instance for each virtual machine, eliminating the classic
shared kernel security issue of modern container platforms, as illustrated in Figure
3.6, CoreOS rkt Models:

Containerd
Containerd was initially developed by Docker as a subset of its original Docker
Engine, and then it was donated to the Cloud Native Computing Foundation (CNCF)
for the purpose of supporting the standards established by the Open Container
Initiative (OCI). Readers willing to dig into the OCI project can use this URL: https://
opencontainers.org. The technical goal initially pursued by the Docker’s developers
was abstracting system calls or OS-specific functionalities. When the Cloud Native
Computing Foundation graduated in the early 2019, containerd moved from being a
component of the Docker ecosystem to a full standalone container runtime process.

It is important to note that, in principle, containerd share a very similar attack
surface with Docker. It does not offer all the refined tools and features that its parent
project has, but still, users with access to the socket file are able to download crictl or
nerdctl commands that can be used as debugging tools to gather information about
the environment or curl the socket to accomplish any desired actions, including
malicious or otherwise. For a deep look at the security requirements needed, you can
refer to Chapter 7, Kubernetes Hardening. At the time of writing containerd is known
to be used in systems like Google Kubernetes Engine (GKE), IBM Kubernetes
Service, and Alibaba Cloud.

CRI-O
As the name suggests, Container Runtime Interface for Open Container Initiative,
abbreviated to CRI-O, has adopted the security requirement provided by the Open
Container Initiative framework. The security specification that CRI-O has completely
adopted via the OCI framework are partially recalled in the Host Hardening section
of Chapter 2, Hardware and Host OS Security. For a better understanding of those
requirements and a more detailed description of what has not been addressed or has
been partially addressed, refer to Table 3.1, OCI Requirements:

58 Security for Containers and Kubernetes

OCI Requirement Description
Namespaces Allows processes isolation
User Namespace
Mapping

Adds to the previous feature mapping of the user UID from the
host to the container

Devices List of devices that MUST be available in the container
Default Devices Default devices list provided to the container from the host
Control Groups Allocation of a specific number of resources to any given process
Cgroups Path Control the Control Groups hierarchy inside the container
Control Groups
Ownership

Used to control the Cgroups delegation and forbid change of the
ownership for a container cgroups

Device List List of allowed devices inherited by the container from the host
Memory Enables Cgroups to set the memory usage limits for the container
CPU Like the Memory Requirement but for CPU
BLOCK IO Implements the Cgroups block input and output controller
Huge Page Limits Implements the Cgroups controller to limit HugeTLB
Network Implements the Cgroups subsystem for Network Classifier
PIDs Implements the Cgroups subsystem for Process Number

Controller
RDMA Limits specific resources that a given process can use
Unified Allows version 2 of Cgroups to be set for the container
IntelRdt Container runtime writes the container process ID into a task file
Sysctl Runtime can modify container kernel parameters
Seccomp Process syscall restrictions
Process State Container must notify its state
Rootfs Mount Sets the status of the rootfs mount propagation to containers
Masked Paths Masks paths within the container
Read-only Paths Sets paths within the container to read-only
Mount Label Implements SELinux for the mount points in the container
Personality Implements process execution domain

Table 3.1: OCI Requirements

For an exhaustive description of the previous characteristic, remember that the
Control Groups are Linux Kernel features, information from the Linux documentation
is available at https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1,
and their implementation has been described in Chapter 2, Hardware and Host OS
Security. In this chapter, Cgroups are discussed in the Resource Limitation section.

Container Stack Security 59

CRI-O container runtime is a new development; it was explicitly built to talk with
Kubernetes and has limited use on its own. The logic behind CRI-O is to remove
all the interdependency processes between the kubelet system and the runc system,
achieving a lightweight, efficient and full OCI implementation of Kubernetes
Container Runtime. At the time of writing this book, CRI-O is known to be used in
systems like RedHat OpenShift and its various shapes and forms, either on Microsoft
Azure or IBM Cloud, and in SUSE Container as a Service.

Docker
There are limitless resources on the web that can help in reducing Docker’s attack
surface. Many have also become a set of standards, such the CIS Docker Benchmark,
but many of these sets are sometimes just a checklist or a mix of different parts of the
container platform.

The focus of this section is to identify the most common security features any
Docker system should have and provide the rationale behind the choice of adopting
that solution or characteristic. Topics of a larger footprint like secure containers
connection or updating container life cycle are discussed later in this chapter.

To start this section, you should take a look at Docker Bench for Security, a script that
checks for many Docker security best practices. The script represents a good starting
point in understanding the initial security posture of the Docker deployment. It is
based on the CIS Docker Benchmark, version 1.4.0 at the time of writing.

Least privilege
Docker daemon provides a non-root user mode, also known as the “rootless mode”.
The rootless mode does not need root privileges, neither to run Docker daemons nor
to run containers. This is a very important feature that should always be considered.
It mitigates any vulnerability in the Docker daemon and within the container
runtime processes. The main principle is that the rootless mode executes any Docker
process inside the user namespace.

For the rootless mode to work, the host must have installed the uidmap package.
Also, the user should have at least 65,536 subordinates for UID and GID. It is possible
to verify this by inspecting /etc/subuid and /etc/subgid. To verify that the user has
those requirements, take a look at the following code:

1. $ id -u

2. 1000

3. $ whoami

4. dockeruser

60 Security for Containers and Kubernetes

5. $ grep ^$(whoami): /etc/subuid

6. dockeruser:231072:65536

7. $ grep ^$(whoami): /etc/subgid

8. dockeruser:231072:65536

Docker rootless mode comes with the docker-ce-rootless-extras package in any
major Linux distro repository. To install the rootless package, run the following
command from a non-root user shell.

1. $ /usr/bin/dockerd-rootless-setuptool.sh install

2. [INFO] Creating /home/dockeruser/.config/systemd/user/docker.service

3. …

4. [INFO]Installed docker.service successfully

5. [INFO] To control docker.service, run: `systemctl --user
(start|stop|restart) docker.service`

6. [INFO] To run docker.service on system startup, run: `sudo loginctl
enable-linger dockeruser`

The following environment variables must be set:

1. $ export PATH=/usr/bin:$PATH

2. $ export DOCKER_HOST=unix:///run/user/1000/docker.sock

To enable docker.service on startup and run the Docker daemon when the system
starts:

1. $ systemctl --user enable docker

2. $ sudo loginctl enable-linger dockeruser

The major limitations of the rootless mode are as follows:

•	 AppArmor is not supported

•	 Overlay network is not supported

•	 Cgroups is supported only with version 2 and systemd

•	 Docker inspect has visibility inside RootlessKit’s network namespace

When the rootless mode is enabled, the containers that the dockerd daemon is
running should run with rootless privileges. To verify a container privilege mode,
run the following:

Container Stack Security 61

1. $ docker container inspect \

2. --format='{{.HostConfig.Privileged}}' \

3. [container_id]

If it returns “true”, the container is having privileged permissions, otherwise it will
return “false”, confirming that the container is not running in privileged mode.
Containers running with root privileges are a serious risk to any container platform,
allowing attackers to escalate privileges when the container is compromised. As a
security measure, Docker has defaulted containers to unprivileged.

Option Description
--cap-add Add Linux capabilities
--cap-drop Drop Linux capabilities
--privileged Give extended privileges to this container
--device=[] Allows to run devices inside the container without the --privileged

flag

Table 3.2: Docker Runtime Privilege

Table 3.2, Docker Runtime Privilege, provides the four options available to manage
privileged containers. When the docker run command has the “--privileged” flag, the
container will have access to all the devices on the host plus the set of configurations
in AppArmor and SELinux.

Resource limitation
As per Docker design, containers have no limitations on the hardware resources
they can use; that’s why supporting the Linux Cgroups features is essential. Linux
Cgroups have been discussed in Chapter 2, Hardware and Host OS Security. The
reason behind this choice is obvious; the container does not know which service or
application is going to run, so it won’t be able to predict the quantity of resources to
be allocated for that specific task. This kind of intelligent mechanism is achievable
only in complex environments using Artificial Intelligence (AI) or with advanced
governance methodologies.

If a container is compromised, the attacker can use all the hardware resources the
container engine can provide; if the container escape is successful, the attacker could
get access to the underlying host resources, so it could bring lateral movements and
the compromise of the network. It is a good practice to set a resource quota for
containers to put resources constraints in place where those are missing by design.
Many of these features are directly related to the Linux kernel capabilities; to verify
that the host is not supporting those, the docker info command will reveal it, issuing
a warning: “WARNING: No swap limit support”.

62 Security for Containers and Kubernetes

Option Description
--memory max memory allocated to a container
--memory-swap max memory a container can swap to disk
-- memory-swappiness percentage of memory page a container can swap
-- memory-reservation soft limit smaller than –memory used as reserved
--kernel-memory max kernel memory allocated to a container
--oom-kill-disable forbid the kernel from killing container when out-of-

memory

Table 3.3: RAM parameters

Memory resource is one of the two computational resources of extreme relevance;
a missing constraint could lead to an Out Of Memory Exception (OOME) that
could potentially bring down the host. Docker can set memory limitation, which
enable the container to consume only the allocated memory; this methodology is
also known as hard limit. Alternatively, Docker can allow container to consume
as much memory as it needs, but only if certain conditions are met, also known
as soft limit, as per Table 3.3, RAM parameters. The Central Processing Unit CPU
resource is the second important factor when considering computational resources.
Similarly, by Docker design, containers access the host hardware’s CPU resources
are potentially unlimited. There are two ways to configure Central Processing Unit
resources constraints to containers:

•	 CFS Scheduler

•	 Realtime Scheduler

The Completely Fair Scheduler (CFS) is a feature of the Linux Kernel that allocates
and handles CPU resources for processes execution. The main purpose of the CFS is
to maximize the overall CPU efficiency in term of process handling. As illustrated
in Table 3.4, CFS Parameters, Docker can modify the Cgroups setting for containers
using the following flags:

Option Description
--cpus=<value> Allocates the available host CPU resources to container
--cpu-period=<value> Defines the CPU CFS Scheduler period and is used with

–cpu-quota
--cpu-quota=<value> Sets a CFS quota on the container that represents the

microseconds per each –cpu-period limitations
--cpuset-cpus Sets a limit to the number of CPUs or Cores a container can

use; the first CPU has value 0

Container Stack Security 63

--cpu-shares Default value is 1024 and can be increased or decreased to
increase or decrease the weight of the container in relation
to the CPU cycles

Table 3.4: CFS parameters

Let’s apply a security scenario to the use of the CFS scheduler. In a scenario where the
host has 1 CPU only, the container could, according to the application it is serving,
consume much more CPU cycles than the host on which it resides. This could lead
the host to be unstable and eventually crash or be abused by an attacker. With the
following, a quota of maximum 50% of the CPU every second is assigned to the
container preserving the stability of the host:

1. $ docker run -it --cpu-period=100000 --cpu-quota=50000 debian /bin/
bash

In Docker, the Realtime Scheduler is often used for configuring tasks that cannot
use the CFS Scheduler. As the name suggests, the Realtime Scheduler is used at
the Kernel level to execute processes when a dedicated portion of the CPU time is
available for the complete execution of the assigned tasks. If CPU cycles are used
for other processes, and the Kernel determines that the CPU has not enough time
available to fulfil the tasks processing via the Realtime Scheduler, this won’t start.
Requirements for getting the Realtime Scheduler working properly with Docker are
as follows:

•	 Verify that the host’s kernel CONFIG_RT_GROUP_SCHED is enabled by checking
whether the file /sys/fs/cgroup/cpu.rt_runtime_us has been created.

•	 Verify the dockerd has the flag --cpu-rt-runtime set, and it also has an
appropriate value. The default value is 1000000 microseconds, so check that
the containers using the Realtime Scheduler can run for at least the period
assigned as the value.

•	 Set appropriate configurations to individual containers to use the Realtime
Scheduler.

Table 3.5, Realtime Scheduler, highlights the flag needed for a container to use the
Realtime Scheduler:

Option Description
--cap-add=sys_nice Enable the CAP_SYS_NICE capability to the container
--cpu-rt-runtime=<value> Max time the container can use the Realtime Scheduler
--ulimit rtprio=<value> Max time the container can use Realtime priority

Table 3.5: Realtime Scheduler parameters

64 Security for Containers and Kubernetes

The following command describes how to use a container with Realtime Scheduler
capability:

1. # Verify the host kernel supports the CPU real-time scheduler

2. $ zcat /proc/config.gz | grep CONFIG_RT_GROUP_SCHED

3. CONFIG_RT_GROUP_SCHED=y

4. $ docker run -it \

5. --cpu-rt-runtime=950000 \

6. --ulimit rtprio=99 \

7. --cap-add=sys_nice \

8. --name my-ubuntu \

9. ubuntu:22.04

There are scenarios in which some application needs to run process at a given time,
for a certain period. These processes can alter the normal usage of the resources and
could lead to instability. In the previous example, where the host has 1 CPU only, a
quota is settled within the container, so the container knows how many CPU cycles
it can use at any given time.

Note: The CPU Realtime Scheduler is an advanced feature of the Linux Kernel,
and it needs special attention, especially when used for scoping security
scenarios.

In this scenario, the container is allowed to process tasks for the CPU cycles within
the Realtime Scheduler, given a fixed amount of time in which the task must be
completed. This means that with resource constrains, no exploitation or compromise
of the container would lead to an escalation of privileges, as the tasks are confined in
a determined set of CPU cycles.

Container isolation
Sysadmins should create an ad-hoc environment to run containers. From the
security standpoint, the host would be hardened as per the description in Chapter 2,
Hardware and Host OS Security, but the operating system should also be configured
with sufficient security features to preserve the host machine from containers escape
and forbid mutual influence.

This is a critical part of the container security process due to the very nature of
the containerization system, where the kernel is shared between the host and the
containers. Refer to Chapter 1, Containers and Kubernetes Risk Analysis, for System
Level Virtualization and more info. Docker can leverage the following Linux kernel
features (see Chapter 2, Hardware and Host OS Security):

Container Stack Security 65

•	 Namespaces

•	 AppArmor

•	 Seccomp

Namespaces
Process isolation is one of the most effective ways to prevent privilege-escalation
attacks. This feature is very well integrated with the Least Privilege topic discussed
in the previous section, and it is pursued through user remapping and subordinate.
Where root privileges are still needed, remapping the user to a less privileged one
would mean that the user can still communicate with the Docker system but has no
privileges on the host itself.

Docker provides a default remapped user called dockermap, which has effectively
that purpose, but as explained in the Least Privilege section of this chapter, a custom
user can be created with the characteristic set by /etc/subuid and /etc/subgid.

The customer user must already exist, which means /etc/passwd and /etc/group
are already populated with the relevant entries. It is possible to verify this by running
the following command:

1. $ id myremapuser

2. uid=1010(myremapuser) gid=1010(myremapuser) groups=1010(myremapuser)

To verify that myremapuser has entries in both /etc/subuid and /etc/subgid, it is
possible to inspect the respective files, such as in the following example:

1. $ cat /etc/subuid

2. myremapuser:152064:65536

3. $ cat /etc/subgid

4. myremapuser:152064:65536

This functionality is enabled via the --userns-remap flag of the dockerd daemon
or via the daemon.json file. A simple command like the following would enable the
remap feature via command line command:

5. $ dockerd --userns-remap="myremapuser:myremapuser"

Or editing the /etc/docker/daemon.json file:

1. {

2. "userns-remap": "myremapuser"

3. }

66 Security for Containers and Kubernetes

To use the default dockermap user, just replace myremapuser with default. To
verify that the namespace is applied, start a new container and list the directory in /
var/lib/docker; the namespaced directory would be equal to {subuid. subuid}; for
example, let’s assume that the subuid and subgid values for the user myremapuser
are as follows:

1. myremapuser:152064:65536

Then, listing the folder in the container would return the following:

1. $ sudo ls -l /var/lib/docker/152064.152064/

2.

3. total 14

4. drwx------ 5 152064 152064 5 Jun 21 21:19 aufs

5. drwx------ 3 152064 152064 3 Jun 21 21:21 containers

6. drwx------ 3 root root 3 Jun 21 21:19 image

7. drwxr-x--- 3 root root 3 Jun 21 21:19 network

8. drwx------ 4 root root 4 Jun 21 21:19 plugins

9. drwx------ 2 root root 2 Jun 21 21:19 swarm

10. drwx------ 2 152064 152064 2 Jun 21 21:21 tmp

11. drwx------ 2 root root 2 Jun 21 21:19 trust

12. drwx------ 2 152064 152064 3 Jun 21 21:19 volumes

AppArmor
Not many may know that Docker generates a default AppArmor profile that can
be applied to containers, called docker-default. The AppArmor logic has been
explained in Chapter 2, Hardware and Host OS Security but to recall the concepts,
AppArmor provides application security profiles via policies. It is worth noting that
the docker-default profile is applied only to the containers and not to the Docker
Engine itself, even though a Docker Engine AppArmor profile does exist.

The Docker AppArmor default profile is likely to be considered a moderate
protection profile; it provides security but also permits application compatibility.
The template from which the profile is generated has been published on the Docker
GitHub repository.

When a container starts, Docker uses the docker-default policy unless specified
otherwise via the security-opt parameter:

1. $ docker run --rm -it --security-opt apparmor=my-apparmor-
policy hello-world

Container Stack Security 67

To generate new profiles that satisfy specific security requirements, GitLab hosts
a quick guide for QuickProfileLanguage in their AppArmor Wiki document
page, which is available at https://gitlab.com/apparmor/apparmor/-/wikis/
QuickProfileLanguage.

Save the new profile in the /etc/apparmor.d/containers/my-docker-apparmor
file and then load it into AppArmor via parser:

1. $ sudo apparmor_parser -r -W /etc/apparmor.d/containers/my-docker-
apparmor

Start a new container with the newly created AppArmor profile:

1. $ docker run --security-opt "apparmor=my-docker-apparmor" \

2. -p 80:80 -d --name apparmor-nginx nginx

Exec into the container will eventually confirm that the profile has been applied and
is denying application to be executed:

1. root@6da5b2c830b1:~# ping 8.8.8.8

2. ping: Lacking privilege for raw socket.

3.

4. root@6da5b2c830b1:/# top

5. bash: /usr/bin/top: Permission denied

6.

7. root@6da5b2c830b1:~# touch ~/some-file

8. touch: cannot touch 'thing': Permission denied

Both dmesg and aa-status can be used for debugging.

Seccomp
Secure Computing Mode is a feature of the Linux kernel aiming to restrict the syscalls
a process is allowed to perform. A deeper tech note is in Chapter 2, Hardware and Host
OS Security. To use this feature in Docker, dockerd must be built with the seccomp
flag and the kernel must support it via CONFIG_SECCOMP.

To verify that the kernel has SECCOMP enabled, run the following:

1. $ grep CONFIG_SECCOMP= /boot/config-$(uname -r)

2. CONFIG_SECCOMP=y

As per AppArmor, Docker provides a default seccomp profile that disables 44 syscalls
out of 300, again a moderately secure policy that allows application compatibility.

68 Security for Containers and Kubernetes

The default Docker Seccomp profile works by defining a defaultAction for SCMP_
ACT_ERRNO, which returns a Permission Denied error unless a specific syscall is
allowed. The default profile can be replaced using the –security-opt flag.

1. $ docker run --rm -it \

2. --security-opt seccomp=/path/to/seccomp/my-profile.json hello-
world

Network security
Docker has an in-house security solution often not very well known. While the
principle of network segregation is always valid, even and much more at the
container level, it is not always recognized as a best practice. Docker provides a
default bridge network, and when a new container starts, it automatically connects
to it unless specified otherwise. The idea is to treat the container network as any
other Virtual Local Area Network (VLAN) to generate a natural separation between
any other corporate vertical. The Docker network is no different from the accounting
network, the developer network or the lab network; each of these networks must
exist independently from the others.

When there is a reason for which a container should talk to another container, let’s
say the web container talking to the database container, both should live only
within the environment they belong to. There is no reason for which the staging
web container should talk to the production database container or vice versa, and
it is also recommended not to publicly expose container without providing the
necessary security guardrails. As far as logic approach is concerned, in this section,
we are going to look at something a little different, which applies one of the most
relevant security principles to the Docker network mechanism creating a Docker
encrypted network.

Note: This small lab requires two Linux Docker Hosts member of a Docker
Swarm with one manager node and one worker node.

On systems with more than one network card, Docker Swarm will ask for the IP
address to be specified; with --advertise-addr, creating a Docker Swarm is as
simple as running:

1. $ docker swarm init --advertise-addr 192.168.1.226

2. Swarm initialized: current node (p6khjpzdi76dopd76zyysy-
d2z) is now a manager.

3. To add a worker to this swarm, run the following command:

4.

Container Stack Security 69

5. docker swarm join \

6. --token SWMTKN-1-{a-very-long-token} 192.168.1.226:2377

7. ...

Docker Swarm nodes can be listed with the docker node ls command. Docker
overlay network encrypts control plane traffic by default, and then the purpose of
this small exercise is to get the data plane traffic encrypted as well; it is not encrypted
by default. The encryption mechanism relies on the encrypted option flag with the
docker network command. To start, it is necessary to create a Docker network type
overlay, adding the encryption parameter, such as the following example:

1. $ sudo docker network create --driver overlay --opt encrypted my-
encrypted-network

Note: The Docker network create command will not work without the Docker
Swarm.

Inspect my-encrypted-network to check for the encrypted flag at line 21:

1. [

2. {

3. "Name": "my-encrypted-network",

4. "Id": "klx0f6g300vv861xs4coawyci",

5. "Created": "2023-03-05T19:00:23.583326803Z",

6. "Scope": "swarm",

7. "Driver": "overlay",

8. "EnableIPv6": false,

9. "IPAM": {

10. "Driver": "default",

11. "Options": null,

12. "Config": [

13. {

14. "Subnet": "10.0.2.0/24",

15. "Gateway": "10.0.2.1"

16. }

17.]

18. },

70 Security for Containers and Kubernetes

19. "Options": {

20. "com.docker.network.driver.overlay.vxlanid_
list": "4098",

21. "encrypted": ""

22. },

23. "Labels": null

24. }

25.]

The flag VXLAN ID at line 20 indicates that the application traffic on the data plane
traffic is encrypted. When listing the networks from the manager node, the encrypted
network will be visible:

1. manager$ sudo docker network ls

2. NETWORK ID NAME DRIVER SCOPE

3. klx0f6g300vv my-encrypted-network overlay swarm

To let the node join Docker Swarm, log in to the worker node and run the following
command:

1. $ sudo docker swarm join --token SWMTKN-1--{a-very-long-
token} 192.168.1.226:2377

2. This node joined a swarm as a worker.

But the worker node won’t have to access to the encrypted network because a worker
node is able to identify a network only if runs a container that requires that network,
as per the following example:

1. node$ sudo docker network ls

2. NETWORK ID NAME DRIVER SCOPE

3.

Let’s then deploy a service on my-encrypted-network so that the worker node can
create a container that will be able to connect to the encrypted network:

1. $ sudo docker service create --name service1 \

2. --network=my-encrypted-network --replicas=4 \

3. alpine:latest sleep 1d

Container Stack Security 71

4.

5. c6e97a29h3bz

and verify that the service has been deployed successfully on the worker node:

1. $ sudo docker service ls

2. ID NAME MODE REPLICAS IMAGE

3. c6e97a29h3bz service1 replicated 4/4 alpine:latest

Listing the network from the worker node:

1. node$ sudo docker network ls

2. NETWORK ID NAME DRIVER SCOPE

3. klx0f6g300vv my-encrypted-network overlay swarm

This will successfully return the entry with the encrypted network, meaning that
the data plane has been encrypted and the containers on the worker nodes are
communicating within a secure encrypted channel.

Mirantis container runtime
Mirantis is the only container runtime claiming to be STIG complaint. STIG stands
for Security Technical Implementation Guide, and it is a security framework
created by the DISA, Defense Information System Agency aimed to provide security
guidelines for the US military systems.

Peculiarity of the Mirantis Container Runtime and of all the Mirantis’ software
suite is the target audience: a secure, trusted container runtime for mission-critical
workloads and business-critical applications providing in-house solutions like
Secure and Validated Containers, and Secure Validated Encryption for regulated
industries that need to meet federal regulations with encryption standards like
Federal Information Processing Standard (FIPS) 140-2.

Federal Information Processing Standard (FIPS) 140-2 is a United States Federal
set of security requirements to be satisfied by a cryptographic module for federal
applications. The cryptographic module must satisfy those requirements to be
considered a viable solution for protecting data within the US Federal System.
Readers with interest in security elevation standards will find the National Institute
of Standards and Technology (NIST) publication about the FIPS encryption
standard mechanism for federal agencies available at https://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.140-2.pdf.

72 Security for Containers and Kubernetes

An interesting exclusion
In the Container Manager List, Figure 3.4, Container Engines and Managers, readers
would have probably noted a container system that Kubernetes has excluded from
the Container Runtime Interface list: Podman. Although it is possible use Podman
with Kubernetes, that’s not really where the industry is going today; nevertheless, for
the scope of this chapter and to demonstrate the potentiality of the Podman system,
following a description of a possible security scenario for Podman, that readers may
find interesting.

The main technical difference between Podman and other container systems like
Docker is that Podman works on a fork/exec model rather than a client-server
model. This essentially means that Podman has no daemon service running on
the computer that “answers” or “interprets” the command and parameters input
from a command line tool or API client; rather, it creates sub-processes of the main
process, like what Apache Web Server is doing with its httpd daemon, creating an
intrinsically more secure environment.

This can help in many ways, but for the sake of this argument, let’s introduce one
of the features of the Linux Kernel, the so-called audit security feature. The audit
feature is one of the system administrator’s favorite as it allows the tracking of
security events and logs them to the audit.log file. The audit.log file can be stored
on the same Linux box, and as a very useful option for containers, can be stored
remotely to preserve the log integrity.

Thanks to the audit system, it is possible to track down, the user activities among
other things. When users access, modify or delete system files, such as the shadow
file, the audit system records this activity. Two of the parameters that audit records is
the Process ID and the User ID (UID), so the logs can show the association between
the user and the process. The key difference between Podman and Docker is how
audit logs the information through the container platform.

Docker Podman
O_NONBLOCK a3=0x1b6 items=2
ppid=12763 pid=12782 auid=unset
uid=root gid=root

O_NONBLOCK a3=0x1b6 items=2
ppid=10571 pid=10583 auid=luigi uid=root
gid=root

Table 3.6: Docker and Podman

Table 3.6, Docker and Podman, shows the audit logs for user activities. While Podman
preserves the AUID, Docker’s audit log for AUID is unset. Since the container is a
child process of the Docker daemon, which is a child process of the systemd system,
the Process ID that audit.log can record is the same for all the three subsystems of the
init system, making it impossible for Docker to determine the User ID. This means
that the auditor or security analyst looking at those logs might know that a file has

Container Stack Security 73

been modified, but the user identity would be lost. On the other hand, Podman, with
its fork/exec model for containers, can provide the information about the User ID,
because by kernel design, a forked process is executed from the initial login process,
and therefore, the container would inherit the same login UID as its parent process.

Secure connection
The Docker daemon or dockerd can listen through three different sockets: unix, tcp,
and fd. The default socket for dockerd is unix, and it runs with root permissions
or docker group membership. Being the unix socket a localhost socket, when in a
corporate environment, dockerd needs to be accessed remotely; the tcp socket must
be enabled. In doing so, the security risk associated with the socket exposure will
increase drastically.

Enabling the tcp socket is translated into the capability to communicate with the
Docker Engine API. The Docker Engine API is a RESTful API system running
within the Docker Engine platform, similar to what kube-apiserver is to Kubernetes.
The footprint of the Docker API system is the same as that of the Docker command
line interface, but while the docker-cli is a client-server system interacting with the
Linux Docker daemon, the Docker API is network system accessed by an HTTP
client, expanding the attack surface.

In the following exercise, readers will understand how to secure the Docker API
by creating and implementing a signed certificate into the API system that an API
client can consume, securing the overall network communication. The main benefit
of using the Docker Engine API is in conjuction with CI/CD pipelines, with a system
like Jenkins for example. Table 3.7, Docker API requirements, summarizes the Docker
API characteristics and features.

Information Description
TCP Socket /var/run/docker.sock
TCP Port 2375 non-encrypted connections
TCP Port 2376 encrypted connections
Docker daemon file /etc/docker/daemon.json
Configuration override /etc/systemd/system/docker.service.d/override.conf
openssl Linux toolkit to handle encryption

Table 3.7: Docker API Requirements

To enable the Docker API tcp socket on Ubuntu, if Docker has been installed as
part of the installation of the operating system, usually the configuration file can
be modified through the snap command. To verify that Docker is part of the snap
system, run the following command:

74 Security for Containers and Kubernetes

1. $ snap list

2. Name Version Rev Tracking Publisher Notes

3. core18 20230207 2697 latest/stable canonical✓ base

4. core20 20230207 1828 latest/stable canonical✓ base

5. docker 20.10.17 2746 latest/stable canonical✓ -

6. lxd 5.0.2-838e1b2 24322 5.0/stable/… canonical✓ -

7. snapd 2.58.2 18357 latest/stable canonical✓ snapd

In this scenario, the Docker daemon.json file is located in /var/snap/docker/
current/config and can be edited to enable the TCP socket by appending line 4
of the following code to the original file configuration settings, including the hosts
parameters to open a socket connection with an assigned IP address. Usually, this
would be the IP address of the system where dockerd is running, but it is initially
recommended to use the localhost IP only to limit the connection to the host machine
using a non-encrypted connection port, given that a TLS certificate is yet to be
created.

1. {

2. "log-level": "error",

3. "storage-driver": "overlay2",

4. "hosts": ["tcp://127.0.0.1:2375", "unix:///var/run/docker.sock"]

5. }

To reload the new configuration via snap, you can run sudo snap restart docker,
and once restarted, the new configuration is verifiable using the following netstat
command:

1. $ sudo netstat -lntp | grep dockerd

2. Proto Recv-Q Send-Q Local Address Foreign Address State PID/
Program name

3. tcp 0 0 127.0.0.1:2375 0.0.0.0:* LISTEN 33941/
dockerd

Similarly, in any other Linux distribution it is possible to open, edit if already
present, or create the /etc/docker/daemon.json, and enabling the tcp socket with
the following code:

1. {

2. "hosts": ["unix:///var/run/docker.sock", "tcp://127.0.0.1:2375"]

3. }

Container Stack Security 75

In systemd-based operating systems, this is likely to cause a conflict because the
dockerd daemon cannot execute the same option twice from two different places;
therefore, this approach is not recommended. However, for providing a visual
output of the command, it is possible to override systemd with the --config-file
parameter, which will start a standalone instance of the dockerd system and fail the
dockerd systemd unit, as illustrated in the following example:

1. $ sudo dockerd --config-file /etc/docker/daemon.json

2. INFO[2023-03-06T21:54:54.733800526Z] Starting up

3. WARN[2023-03-06T21:54:54.734946794Z] Binding to IP ad-
dress without --tlsverify is insecure and gives root ac-
cess on this machine to everyone who has access to your net-
work. host="tcp://127.0.0.1:2375"

4. WARN[2023-03-06T21:54:54.735034466Z] Binding to an IP ad-
dress, even on localhost, can also give ac-
cess to scripts run in a browser. Be safe out there!-
 host="tcp://127.0.0.1:2375"

5. ...

6. # TLDR - Omitted

7. # TLDR - Omitted

8. ...

9. INFO[2023-03-06T21:54:55.976365909Z] Loading containers: start.

10. INFO[2023-03-06T21:54:56.741562573Z] Default bridge (docker0) is as-
signed with an IP address 172.17.0.0/16.

11. INFO[2023-03-
06T21:54:56.990946147Z] Daemon has completed initialization

12. INFO[2023-03-06T21:54:57.131262701Z] API listen on 127.0.0.1:2375

13. INFO[2023-03-06T21:54:57.155290037Z] API listen on /var/run/docker.
sock

Note that the majority of the output in the previous command has been omitted for
obvious reasons, but the significant piece, in relation to the security discussed in this
part of the chapter, has been kept, because it can provide valuable insights.

Note: Changing configuration on both the Docker systemd unit and the daemon.
json files is cause of conflict and will stop Docker daemon from starting.
Therefore, it is recommended to choose only one of the options, and if systemd
is preferred, delete the daemon.json file from the /etc/docker folder.

76 Security for Containers and Kubernetes

More broadly, to enable the Docker API tcp socket through systemd unit file
configuration, edit the override.conf file located in the /etc/systemd/system/
docker.service.d/ folder. Note that the [Service] section is initially commented
out; remove the comment and edit the file to look like the following code:

1. [Service]

2. ExecStart=

3. ExecStart=/usr/bin/dockerd -H fd:// -H tcp://127.0.0.1:2375

The systemd unit needs the empty ExecStart at line two to honor the original
configuration and the ExecStart at line three to initialize the Docker API Engine,
missing any of the two directives would return an error, type “oneshot services”.
Reload systemctl and restart the Docker service with the following commands:

1. $ sudo systemctl daemon-reload

2. $ sudo systemctl restart docker.service

Then, verify that the Docker daemon picked up the new configuration a simple sudo
systemctl status docker.service will return:

1. $ sudo systemctl status docker.service

2. ● docker.service - Docker Application Container Engine

3. Loaded: loaded (/lib/systemd/system/docker.
service; enabled; vendor preset: enabled)

4. Drop-In: /etc/systemd/system/docker.service.d

5. └─override.conf

6. Active: active (running) since Wed 2023-03-
08 00:13:55 UTC; 1min 55s ago

7. TriggeredBy: ● docker.socket

8. ...

9. CGroup: /system.slice/docker.service

10. └─89548 /usr/bin/
dockerd -H fd:// -H tcp://127.0.0.1:2375

The three approaches explained in this section are all valid with the recommendation
to use snap on Ubuntu systems and the override.conf file on systemd-based Linux
systems. Both methodologies are persistent on reboot.

Container Stack Security 77

Server certificate
With the Docker daemon listening on the localhost port 2375, it is possible to
configure a TLS connection using a self-signed certificate to secure the communication
with the Docker API Engine. This step requires having installed on the operating
system the openssl package, which is quite common among the Linux distributions.
The first step is to generate self-signed certificate private and public keys on the
Docker host. When requested, enter the pass phrase (also known as password) for
the private key:

1. $ sudo openssl genrsa -aes256 -out ca-private-key.pem 4096

2. Enter PEM pass phrase:

3. Verifying - Enter PEM pass phrase:

Once the private key is obtained, it is possible to generate the public key using the
private key as an input. Verify that the Common Name at point 15 matches the
hostname of the host; this must also be used when creating the Certificate Signing
Request (CSR).

1. $ sudo openssl req -new -x509 -days 365 -key ca-private-key.
pem -sha256 -out ca-public-key.pem

2. Enter pass phrase for ca-private-key.pem:

3. You are about to be asked to enter information that will be incorpo-
rated

4. into your certificate request.

5. What you are about to enter is what is called a Distin-
guished Name or a DN.

6. There are quite a few fields, but you can leave some blank

7. For some fields there will be a default value,

8. If you enter '.', the field will be left blank.

9. -----

10. Country Name (2 letter code) [AU]:UK

11. State or Province Name (full name) [Some-State]:Hants

12. Locality Name (eg, city) []:.

13. Organization Name (eg, company) [Internet Widgits Pty Ltd]:.

14. Organizational Unit Name (eg, section) []:.

15. Common Name (e.g. server FQDN or YOUR name) []:server

16. Email Address []:.

78 Security for Containers and Kubernetes

The next step is to create the server key:

1. $ sudo openssl genrsa -out server-key.pem 4096

And with the server key as input, we can create the Certificate Signing Request
(CSR):

1. $ sudo openssl req -subj "/CN=server" -sha256 -new -key server-key.
pem -out server.csr

TLS connections can be established via IP address or DNS name, but the IP must be
specified when creating the certificate. For the purpose of this exercise, we are going
to use 192.168.1.226 as a LAN IP address through the creation of the extfile.cnf file.
The IP might be different according to the various network scenarios, all of which
are not reproducible in this example.

1. $ echo subjectAltName = DNS:server,IP:192.168.1.226,
IP:127.0.0.1 >> extfile.cnf

Then, configure extfile.cnf to use the Docker daemon key for server authentication.

1. $ echo extendedKeyUsage = serverAuth >> extfile.cnf

So far, the following five files have been created:

1. $ ls -l

2. -rw------- 1 luigi luigi 3434 Mar 8 18:44 ca-private-key.pem

3. -rw-rw-r-- 1 luigi luigi 2033 Mar 8 18:52 ca-public-key.pem

4. -rw-rw-r-- 1 luigi luigi 88 Mar 8 21:10 extfile.cnf

5. -rw-rw-r-- 1 luigi luigi 1582 Mar 8 19:47 server.csr

6. -rw------- 1 luigi luigi 3268 Mar 8 19:46 server-key.pem

The last step on the server certificate topic is to generate the signed certificate. If the
process is progressing as expected, the subject=CN = server is auto populated,
and the only input requested by the command will be the pass phrase chosen at the
very first step, when creating the private key.

1. $ sudo openssl x509 -req -days 365 -sha256 -in server.csr -CA ca-
public-key.pem \

2. -CAkey ca-private-key.pem -CAcreateserial -out server-cert.pem \

3. -extfile extfile.cnf

4. Certificate request self-signature ok

5. subject=CN = server

6. Enter pass phrase for ca-private-key.pem:

Container Stack Security 79

The outcome of the server certificate process to be considered for the purpose of this
exercise is the server-cert.pem certificate file.

Figure 3.7: Server Certificate Process

This topic is considered an advanced concept, so Figure 3.7, Server Certificate Process,
can help readers visualize the overall process.

Client certificate
With the server certificate ready, a client certificate must be generated to allow
the client to securely consume the Docker API Engine. Eventually, it is possible to
generate the client key and client certificate signing request on the same host where
the server certificate has been generated. To generate the client key, use the following
example command:

1. $ sudo openssl genrsa -out client-key.pem 4096

80 Security for Containers and Kubernetes

The client-key.pem will be then used as an input to generate the Certificate
Signing Request (CSR).

1. $ sudo openssl req -subj '/CN=client' -new -key client-key.
pem -out client.csr

To enable the client key to sustain client authentication, modify the extension file to
use the following parameter:

1. $ echo extendedKeyUsage = clientAuth > extfile-client.cnf

The extfile-client.cnf, as the name suggests, is related to the client certificate
creation and differs from extfile.cnf used during the server certificate process
creation. With the client key, the client certificate signing request ready, and the input
of the server private and public key, the next step is to generate the client signed
certificate:
1. $ sudo openssl x509 -req -days 365 -sha256 -in client.csr -CA ca-

public-key.pem \

2. -CAkey ca-private-key.pem -CAcreateserial -out client-cert.pem \

3. -extfile extfile-client.cnf

4. Signature ok

5. subject=CN = client

6. Getting CA Private Key

7. Enter pass phrase for ca-private-key.pem:

The outcome of the client certificate process to be considered for the purpose of this
exercise is the client-cert.pem certificate.

Figure 3.8: Client Certificate Process

Container Stack Security 81

Figure 3.8, Client Certificate Process, helps in recalling the paths of some of the server
certificate files needed to generate the client certificate.

1. $ ls -l

2. -rw------- 1 luigi luigi 3434 Mar 8 18:44 ca-private-key.pem

3. -rw-rw-r-- 1 luigi luigi 2033 Mar 8 18:52 ca-public-key.pem

4. -rw-rw-r-- 1 luigi luigi 1919 Mar 8 21:54 client-cert.pem

5. -rw-rw-r-- 1 luigi luigi 1582 Mar 8 21:48 client.csr

6. -rw------- 1 luigi luigi 3268 Mar 8 21:44 client-key.pem

7. -rw-rw-r-- 1 luigi luigi 30 Mar 8 21:50 extfile-client.cnf

8. -rw-rw-r-- 1 luigi luigi 88 Mar 8 21:10 extfile.cnf

9. -rw-rw-r-- 1 luigi luigi 1964 Mar 8 21:22 server-cert.pem

10. -rw-rw-r-- 1 luigi luigi 1582 Mar 8 19:47 server.csr

11. -rw------- 1 luigi luigi 3268 Mar 8 19:46 server-key.pem

In addition to the list of files generated for the server certificate process, the previous
updated list includes the client certificate files.

Enable dockerd TLS
Once you have obtained the server-cert.pem and the client-cert.pem files, it is
possible to safely delete the two extensions files and the two CSR files as part of an
initial cleanup process:

1. $ rm server.csr client.csr extfile.cnf extfile-client.cnf

It is recommended to change permissions on the key files to make them readable only
to the legitimate owner. While certificate files are meant to be openly distributable,
it is anyway recommended to secure them from accidental overwrite or damage
changing the file permissions:

1. $ chmod 0400 ca-private-key.pem client-key.pem server-key.pem

2. $ chmod 0444 ca-public-key.pem server-cert.pem client-cert.pem

With the preceding reviewed files permissions, the directory listing should look as
follows:

1. $ ls -l

2. -r-------- 1 luigi luigi 3434 Mar 8 18:44 ca-private-key.pem

3. -r--r--r-- 1 luigi luigi 2033 Mar 8 18:52 ca-public-key.pem

82 Security for Containers and Kubernetes

4. -r--r--r-- 1 luigi luigi 1919 Mar 8 21:54 client-cert.pem

5. -r-------- 1 luigi luigi 3268 Mar 8 21:44 client-key.pem

6. -r--r--r-- 1 luigi luigi 1964 Mar 8 21:22 server-cert.pem

7. -r-------- 1 luigi luigi 3268 Mar 8 19:46 server-key.pem

When the server certificate is obtained, the dockerd daemon would need to be
updated to use the certificate files, and the listening port should be changed from
2375 to 2376. For a quick verification of the outcome of the entire process, if the
Docker daemon is running, stop it by executing sudo snap stop docker on Ubuntu
machines or using sudo systemctl stop docker.service on systemd-based
Linux distributions, and then run the following command:

1. $ sudo dockerd \

2. --tlsverify \

3. --tlscacert=ca-public-key.pem \

4. --tlscert=server-cert.pem \

5. --tlskey=server-key.pem \

6. -H=0.0.0.0:2376

The preceding command should start an instance of the dockerd daemon within the
bash console with an output similar to the following:

1. INFO[2023-03-08T23:14:09.848617553Z] Starting up

2. INFO[2023-03-08T23:14:09.880586191Z] detected 127.0.0.53 nameserver, assum-
ing systemd-resolved, so using resolv.conf: /run/systemd/resolve/resolv.conf

3. ...

4. INFO[2023-03-08T23:14:10.285920627Z] Loading containers: start.

5. INFO[2023-03-08T23:14:10.976319524Z] Default bridge (docker0) is as-
signed with an IP address 172.17.0.0/16. D

6. INFO[2023-03-08T23:14:11.191231310Z] Loading containers: done.

7. INFO[2023-03-
08T23:14:11.252291147Z] Daemon has completed initialization

8. INFO[2023-03-08T23:14:11.445213032Z] API listen on [::]:2376

Since the Docker daemon is listening on 0.0.0.0:2376, every machine on the same
network can communicate on port 2376 as far as it has been provided with the
following TLS certificates: ca-public-key.pem, client-cert.pem and client-
key.pem. It is possible to verify that the secure connection with the Docker API has
been established by running on the client system:

Container Stack Security 83

1. $ sudo docker --tlsverify \

2. --tlscacert=ca-public-key.pem \

3. --tlscert=client-cert.pem \

4. --tlskey=client-key.pem \

5. -H=192.168.1.226:2376 version

6. #Client:

7. # Cloud integration: v1.0.31

8. # Omitted

9. Server:

10. Engine:

11. Version: 20.10.12

12. API version: 1.41 (minimum version 1.12)

13. Go version: go1.17.3

14. Git commit: 20.10.12-0ubuntu4

15. Built: Mon Mar 7 15:57:50 2022

16. OS/Arch: linux/amd64

17. Experimental: false

18. containerd:

19. Version: 1.5.9-0ubuntu3.1

20. GitCommit:

21. runc:

22. Version: 1.1.0-0ubuntu1.1

23. GitCommit:

24. docker-init:

25. Version: 0.19.0

26. GitCommit:

The counter verification confirms that the Docker daemon running on the remote
server refuses connections that are not presenting the TLS certification and key files:

1. $ sudo docker -H=192.168.1.226:2376 version

2. Error response from daemon: Client sent an HTTP re-
quest to an HTTPS server.

84 Security for Containers and Kubernetes

To make changes permanent, the preferred methodology is to edit the systemd
override.conf file located in the /etc/systemd/system/docker.service.d/
folder, adding the tcp socket on port 2376 and the TLS parameters as per the follow-
ing example code:

1. [Service]

2. ExecStart=

3. ExecStart=/usr/bin/dockerd -H fd:// -H tcp://0.0.0.0:2376 --tlsveri-
fy --tlscacert=/home/luigi/ca-public-key.pem --tlscert=/home/luigi/
server-cert.pem --tlskey=/home/luigi/server-key.pem

Reload systemctl and restart the Docker service with the following commands:
1. $ sudo systemctl daemon-reload

2. $ sudo systemctl restart docker.service

Then, verify if the Docker daemon picked up the new configuration by a simple
executing sudo systemctl status docker.service in the terminal. This command
will confirm that the dockerd daemon API is listening on [::]:2376. The Docker
client command used for the previous verification can be invoked again to verify
that the connectivity from the client machine is working as expected. Of course,
working with a remote Docker API Engine in need of additional parameters even for
simple command like the following example can impact the user experience:

1. $ sudo docker --tlsverify --tlscacert=ca-public-key.pem \

2. --tlscert=client-cert.pem --tlskey=client-key.pem \

3. -H=192.168.1.226:2376 images

4. REPOSITORY TAG IMAGE ID CREATED SIZE

5. jenkins/jenkins latest f72705c021e2 2 days ago 471MB

6. grafana/grafana latest 944e84f25bc7 7 days ago 329MB

7. hashicorp/vault latest 166e81af0b3c 9 days ago 187MB

To simplify the connection from any client machine with the Docker API Engine, it
is possible to apply the secure by default methodology suggested by Docker. Since
Docker expects to find in the ~/.docker folder a specific nomenclature for the
key files provided, Table 3.8, Docker Secure by Default Keys, illustrates the mapping
between the key used in this chapter and the key expected by the Docker client.

Key Docker default keys
ca-public-key.pem ca.pem
client-cert.pem cert.pem
client-key.pem key.pem

Table 3.8: Docker Secure by Default Keys

Container Stack Security 85

With the following simple commands, on any client machine that needs connectivity
to the Docker API Engine, it is possible to leverage the API mechanism remotely as
we would do locally, but through a TLS secure channel.

1. $ cp ca-public-key.pem ~/.docker/ca.pem

2. $ cp client-cert.pem ~/.docker/cert.pem

3. $ cp client-key.pem ~/.docker/key.pem

4. $ export DOCKER_HOST=tcp://192.168.1.226:2376 DOCKER_TLS_VERIFY=1

5. # Connection to 192.168.1.226 without declaring the TLS parameters.

6. # The docker command looks into the ~/.docker folder for the key
files.

7. $ docker images

8. REPOSITORY TAG IMAGE ID CREATED SIZE

9. jenkins/jenkins latest f72705c021e2 2 days ago 471MB

10. grafana/grafana latest 944e84f25bc7 8 days ago 329MB

11. hashicorp/vault latest 166e81af0b3c 9 days ago 187MB

Eventually, the curl command can be used to verify the full interaction with the
Docker API Engine as per the following example:

1. $ curl https://192.168.1.226:2376/images/json \

2. --cert ~/.docker/cert.pem \

3. --key ~/.docker/key.pem \

4. --cacert ~/.docker/ca.pem

5. [{"Containers":-1,"Created":1678280611,"Id":"sha256:f72705c021e29072
0ba23cfc0211e6b0ac979db21c205669eb68b8b8731dc04a"]},

The curl output has been truncated to the first image listing since the purpose of
the command is only to verify the effectiveness of the communication established
over TLS with the Docker API Engine. While proceeding to the next section, it is
recommended to disconnect the local Docker system from the remote Docker API
Engine by simply removing the following two environment variables:

1. $ unset DOCKER_HOST

2. $ unset DOCKER_TLS_VERIFY

The unsetting of the two preceding variables will allow you to continue the
implementation of the TLS mechanism into the next topic.

86 Security for Containers and Kubernetes

Secure CI/CD
The readers familiar with DevOps methodologies would appreciate the previous
exercise because it makes integrating containers into Continuous Integration (CI)
and Continuous Delivery (CD) systems more efficient and secure. For instance,
Jenkins, the well-known leading open-source automation server, available at https://
www.jenkins.io, offers support for several tools, tasks automation aiming to create
development and deployment pipelines. It can also integrate popular version
control systems like git, and can also communicate securely with a Docker API
Engine throughout a TLS connection. The security aspects of the Jenkins system
itself, including topics like access control, controller isolation, securing builds,
Cross Site Request Forgery (CSRF) protection, exposed service ports, and access
control to builds, are outside the scope of this book. To enhance Jenkins security
best practices on the various aspects mentioned earlier, follow the recommendations
listed at https://www.jenkins.io/doc/book/security/.

Figure 3.9: Jenkins Docker TLS Overview Process

Normally, the Jenkins installation process would be considered out of scope; a tutorial
on this topic would require too many screenshots, and it will not be as beneficial as
using coding examples, the process in Figure 3.9, Jenkins Docker TLS Overview Process,
aims to define a series of steps to obtain a Jenkins server running into a Docker
container by leveraging a custom Dockerfile that passes key configuration elements
through the Jenkins Configuration as a Code plugin, also known as CasC, that can
remotely execute container jobs by connecting with an external Docker API Engine
over TLS secure communication. A summary of the elements needed for this lab are
described in Table 3.9, Secure CI/CD Elements:

Container Stack Security 87

Element Description
jenkins:lts The latest Jenkins Docker container image
Dockerfile Build a Jenkins ad-hoc container image
CasC file Custom YAML file to personalize the Jenkins server upon launch
docker-plugin Jenkins plugin to execute containerized pipelines
CasC plugin Jenkins configuration-as-a-code plugin
Job-DSL plugin Define Jenkins jobs by using declarative code
Docker API The Docker API Engine as shown in the previous section of this

chapter
TLS Set of keys and certificates to enable secure communication as per

Table 3.8 – Docker Secure by Default Keys

Table 3.9: Secure CI/CD Elements

The first step is to rebuild the latest Jenkins Docker image to include plugins that
are not present in the default container image. Usually, when running Jenkins for
the first time, users are asked to go through the installation process, which would
include choosing login credentials and the initial plugin installation options. This
is where the configuration as a code plugin helps eliminate a series of intermediate
steps by eliminating the initial setup wizard and providing a set of parameters that
can be consumed beforehand by the system to get as close as possible to a final,
ready-to-use Jenkins system. The provided Dockerfile contains comments to help
understand the logic behind this approach.

1. # syntax=docker/dockerfile:1

2. FROM jenkins/jenkins:lts

3. # Elevate permissions to install additional plugins

4. USER root

5. # Disable interactive installation wizard

6. ENV JAVA_OPTS -Djenkins.install.runSetupWizard=false

7. # set the CasC file var

8. ENV CASC_JENKINS_CONFIG /var/jenkins_home/casc.yaml

9. # Install additional plugins

10. RUN jenkins-plugin-cli --plugins docker-plugin:1.3.0 configuration-
as-code:latest job-dsl:latest

11. # Copy the casc.yaml file

12. COPY casc.yaml /var/jenkins_home/casc.yaml

88 Security for Containers and Kubernetes

13. # Drop back permissions to the regular jenkins user

14. USER jenkins

In the same folder where the Dockerfile has been saved, create the casc.yaml file
that will supply configuration as a code to the Jenkins server. The Configuration as
a Code file in this section mainly has three root elements:

•	 The credentials configuration allows the Jenkins server to communicate
with a remote Docker API Engine via TLS.

•	 The jenkins configuration for the Jenkins server itself, including the local
Docker container system under the cloud section.

•	 A simple script under the job definition will be able to execute a shell echo
command on a remote container by connecting to the remote Docker API
Engine.

All the lines starting with hash (#) sign in the following casc.yaml provide a brief
comment to help edit the configuration as a code input for the Jenkins server:

1. # Generate the X.509 certificate by using a combination of the

2. # client-cert.pem, client-key.pem, and ca-public-key.pem files

3. credentials:

4. system:

5. domainCredentials:

6. - credentials:

7. - x509ClientCert:

8. clientCertificate: |-

9. -----BEGIN CERTIFICATE-----

10. # Paste here the content of the client-cert.pem file

11. # Do not duplicate the BEGIN and END CERTIFICATE lines

12. # they just show the exact indentation.

13. -----END CERTIFICATE-----

14. clientKeySecret: |-

15. -----BEGIN PRIVATE KEY-----

16. # Paste here the content of the client-key.pem file

17. # Do not duplicate the BEGIN and END CERTIFICATE lines

18. # they just show the exact indentation.

Container Stack Security 89

19. -----END PRIVATE KEY-----

20. serverCaCertificate: |-

21. -----BEGIN CERTIFICATE-----

22. # Paste here the content of the ca-public-key.pem file

23. # Do not duplicate the BEGIN and END CERTIFICATE lines

24. # they just show the exact indentation.

25. -----END CERTIFICATE-----

26. description: "TLS Certificate"

27. # ID To be referred into the Cloud section below

28. id: "1"

29. scope: GLOBAL

30. jenkins:

31. agentProtocols:

32. - "JNLP4-connect"

33. - "Ping"

34. authorizationStrategy:

35. loggedInUsersCanDoAnything:

36. allowAnonymousRead: false

37. systemMessage: "Jenkins custom image with Docker and CasC plugins\
n\n"

38. securityRealm:

39. local:

40. allowsSignup: false

41. # since there is no setup process, user credentials

42. # are provided on docker run command

43. users:

44. - id: ${JENKINS_ADMIN_ID}

45. password: ${JENKINS_ADMIN_PASSWORD}

46. # Docker Configuration

47. clouds:

48. - docker:

49. name: "docker"

90 Security for Containers and Kubernetes

50. dockerApi:

51. dockerHost:

52. # As per above x509ClientCert ID

53. credentialsId: "1"

54. # Replace this according to the current network configu-
ration

55. uri: "tcp://192.168.1.226:2376"

56. templates:

57. # Label to be used for the pipeline creation

58. - labelString: "my-docker-agent"

59. dockerTemplateBase:

60. image: "jenkins/inbound-agent"

61. remoteFs: "/home/jenkins"

62. connector:

63. attach:

64. user: "jenkins"

65. instanceCapStr: "2"

66. # Create a test job using the Cloud configuration

67. # through the labelString parameter

68. jobs:

69. - script: >

70. job(‹Test Docker Pipeline›) {

71. label(‹my-docker-agent›). # Matches the labelStrings
line 58

72. steps {

73. shell(‹echo Hello Docker!›)

74. }

75. }

From the security standpoint, credentials should be stored to be preserved securely.
The client-cert.pem and ca-public-key.pem files have been created to be
publicly distributable; therefore, it makes sense that the clientCertificate and
serverCaCertificate parameters are stored in plain text on the Jenkins system,
and they can be retrieved by simply reading the credentials.xml file, while

Container Stack Security 91

the client-key.pem will be encrypted with the Jenkins master key masking the
clientKeySecret parameter from being retrieved.

Note: As far as this is an acceptable use case for testing purposes, it is not the
best option. Storing credentials should be done by adopting a secret mechanism.
Jenkins supports many tools that can serve the purpose, such as Docker Secrets
via Swarm, Kubernetes Secrets, HashiCorp Vault, Azure Key Vault, AWS Secrets
Manager and Parameter Store, and CyberARK; therefore, the current approach
is considered an excellent starting point but is not sufficient for a production
environment.

The next step is to build the new Jenkins image by invoking the Docker build
command; the --no-cache parameter is useful in the case of multiple builds of the
same image. It helps not to bring cached elements that could affect the outcome
of the latest build, and the -t parameter allows you to tag the new image with a
significant name that must be recalled by the Docker run command.

1. $ docker build --no-cache -t jenkins-docker:tls .

The jenkins-docker:tls image is now added to the local Docker system and can
be listed with a simple docker images command. In the beginning, it could be
useful not to run the detached mode; it can help in troubleshooting errors. Since the
YAML files are very sensitive to indentation, verify that the casc.yaml is properly
set.

1. $ docker run \

2. --name jenkins \

3. --rm \ # destroy the container
on exit

4. -p 8080:8080 \

5. --env JENKINS_ADMIN_ID=choose-an-user \ # casc.yaml line 44

6. --env JENKINS_ADMIN_PASSWORD=chose-a-password \ # casc.yaml
line 45

7. jenkins-docker:tls # docker
build tag

92 Security for Containers and Kubernetes

With the Jenkins server finally up and running in a Docker container, open the web
interface at http://localhost:8080 and log in using the environment variables at line
five and six of the preceding code.

Figure 3.10: Jenkins Docker Test TLS Connection

Before building the job, let’s verify that under Manage Jenkins | Manage Nodes and
Clouds |Configure Clouds | Docker Cloud details | Test Connection, the Jenkins server can
communicate with the remote Docker API Engine hosted at 192.168.1.226:2376 over
TLS secure protocol, as illustrated in Figure 3.10, Jenkins Docker Test TLS Connection.

If something went wrong, the message returned will instead be “Error response
from daemon: Client sent an HTTP request to an HTTPS server.” To be sure to
have matched the TLS key with the correct nomenclature provided by the Jenkins
system, verify Table 3.10, Jenkins Docker X.509 Client Certificate:

Container Stack Security 93

Key Jenkins
ca-public-key.pem serverCACertificate
client-cert.pem clientCertificate
client-key.pem clientKeySecret

Table 3.10: Jenkins Docker X.509 Client Certificate

According to casc.yaml file, a job named Test Docker Pipeline should be in place.
This job can connect to a remote Docker API Engine over TLS and use the remote
Docker system as build agent to spin up on-the-fly remote containers to execute
jobs securely. By clicking on Build Now, the Build Queue will be populated with a
Test Docker Pipeline job, while on the remote Docker system, by executing docker
ps command we can understand that a container using the jenkins/inbound-
agent docker image is running. In this test, everything should be executed quickly
considering that the job has just a build step that runs a shell echo command. Upon
inspection of the build, the outcome should be as per Figure 3.11, Jenkins Docker Build
over TLS:

Figure 3.11: Jenkins Docker Build over TLS

Further confirmation can be retrieved by clicking on the Built on Docker link, which
will return logs similar to what a docker inspect command would output, and by
clicking on Console Output, which will output the shell step defined in the job as
per the following example:

1. Started by user luigi

2. Running as SYSTEM

3. Building remotely on docker-00028yaiyiufl on docker (my-docker-
agent) in workspace /home/jenkins/workspace/Test Docker Pipeline

4. [Test Docker Pipeline] $ /bin/sh -xe /tmp/
jenkins4590919463263968080.sh

94 Security for Containers and Kubernetes

5. + echo Hello Docker!

6. Hello Docker!

7. Finished: SUCCESS

As the final verification step, the jenkins/inbound-agent container image at line
sixty of the casc.yaml has been downloaded only on the same host where the Docker
API Engine is running, while the same image is neither present on the system where
Jenkins is running nor inside the Jenkins container itself.

Update life cycle
It is of paramount importance to ensure that the Docker Engine and the host
operating system on which Docker is running are updated to reduce the attack
surface by eliminating any new known vulnerabilities, some of which can determine
a container escape. A similar topic was briefly discussed in Chapter 1, Containers and
Kubernetes Risk Analysis, in the section related to the Attack Surface. The argument
was suggesting utilizing Container-specific OSes like Fedora Core OS, openSUSE
Leap Micro, and RancherOS. Container-specific OS are considered “smart operating
systems”.

The principle behind the update methodology rolled by container-specific OS is
simple: the update process is a container itself, which is launched separately from the
other containers already running on the system. If an updated package is corrupted
or forged, the updating container can be shut down or rolled back.

Intel has created its own container-specific OS distro called Clear Linux. It claims
to be stateless, which means it is running a custom configuration that separates the
system configuration from the operating system configuration, so any wrongdoing
at the user level won’t affect the OS. As part of Intel Clear Containers project, an
open-source technology that integrates into Docker and Kubernetes, is optimized for
Intel Architecture VT and Cloud Integrated Advanced Orchestrator (CIAO), and
is a complete TLS-based workload scheduler is available at the following address:
https://clearlinux.org/about.

The most interesting innovation Clear Linux brings to the table is the integration of
an automated tool that scans and remediates Common Vulnerability and Exposure
(CVEs). It uses both the NVD (NIST Vulnerability Database) and MITRE repositories
as sources, which aim to keep the attack surface minimal, and it is highly effective
from a Zero Trust Model perspective. It also integrates a service that monitors SSH
login systematic patterns called Tallow as part of the openssh-server package.

Container Stack Security 95

Conclusion
In this chapter, we discussed the various aspects of container security, applying
the principle of defense-in-depth, looking at containers from any possible angle
and applying security principles to make every single process or option as hard as
possible to crack for an attacker.

We discussed the basics of containerization and looked at how to apply security to
the various steps of the most significant container platforms available in the industry,
and we also evaluated the difference between the most prominent containers’
runtime and their market application. Further on in the chapter, we looked at Docker
in depth and explored the numerous ways of security inter-steps the Docker Engine
makes available. Finally, we discussed how to secure Docker API and interface it
with CI/CD best practices for security and managed a secure update life cycle.

In the next chapter, we will learn about securing images, registry, scans, and
vulnerability management.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

96 Security for Containers and Kubernetes

Securing Container Images and Registries 97

Chapter 4
Securing Container

Images and
Registries

Introduction
Container images are the standard delivery format in cloud-native platforms today.
Their extremely broad distribution and deployment, either in on-premises or cloud
environments, requires reviewing security practices to guarantee container images
integrity.

Container image security scanning must be a fundamental part of the container
security strategy, even though it should only be part of a larger initiative of security
best practices needed to effectively protect the container stack.

Indeed, container registry security, either private or public, must not be overlooked.
Uploading, storing and downloading container images from such systems requires
a custom set of security best practices to be applied to such repositories.

Structure
In this chapter, we will discuss the following topics:

•	 Container image hardening

•	 Building file configuration

•	 Minimal and distroless image

98 Security for Containers and Kubernetes

•	 Scanning and verify images

•	 Private and Public Registries

•	 Role-Based Access Control

•	 Auditability

•	 Image Control

•	 Vulnerability Management

Objectives
This chapter aims to provide a set of security best practices for container image
creation and life cycle management, private and public container registry security
and their indissoluble relationship in actively contributing to the overall security
of the container stack. It also aims to provide the best known DevSecOps security
approach when considering container images and container registry from the
software development life cycle standpoint.

Container image hardening
A container image is a layered package of software, usually derived from a Linux
or Windows system distribution, that can be eventually customized. The image
provides information on how a container should be initialized and reviewed,
determining what software, applications, or libraries will run and how.

Figure 4.1: Images

Figure 4.1, Images, depicts the two main procedures for obtaining a container image:
download a pre-built image from a registry or build a new image from a Dockerfile
process. Both approaches pose security challenges.

Securing Container Images and Registries 99

Note: The registry topic will be discussed further in this chapter; refer to the
Private and Public Registries Section.

Dockerfile is an efficient way to build container images through a declarative text file
that contains all the information and commands needed. The Docker build command
reads the input from the Dockerfile and create read-only layers, one for each line or
directive, combining all the layers in one final image. Usually, a Dockerfile starts
from a parent image, an image that has been pre-built and made available locally or
in the registry. This is represented by the FROM directive. The Dockerfile used in
Chapter 3, Container Stack Security, in the Secure CI/CD section is re-proposed here as
an example, excluding the commenting lines:

1. # syntax=docker/dockerfile:1

2. FROM jenkins/jenkins:lts

3. USER root

4. ENV JAVA_OPTS -Djenkins.install.runSetupWizard=false

5. ENV CASC_JENKINS_CONFIG /var/jenkins_home/casc.yaml

6. RUN jenkins-plugin-cli --plugins docker-plugin:1.3.0 configuration-
as-code:latest job-dsl:latest

7. COPY casc.yaml /var/jenkins_home/casc.yaml

8. USER jenkins

When a container image is created, Docker uses the image declared in the FROM
directive as an input, creating a new writable layer, the only writable layer, on top
of all the image layers combined via the Dockerfile through the storage driver. Figure
4.2, Dockerfile Layers, shows how the container layer stack is built:

Figure 4.2: Dockerfile Layers

100 Security for Containers and Kubernetes

The main difference between containers and container images is that very writable
container layer.

Building file configuration
With regard to secure image building process, one of the most common and the most
dangerous vulnerability is secret management when it becomes part of the image
building process. A common error when dealing with secrets during application
development is the copy and remove (COPY / RM) approach. The following
example code is based on a simplification of the Jenkins custom image build, but the
Jenkins image has been replaced with the Ubuntu image, which is much lighter in
terms of disk space:

1. # syntax=docker/dockerfile:1

2. FROM ubuntu:22.04

3. COPY the_secret_file /root/the_secret_file

4. RUN rm /root/the_secret_file

As explained in Figure 4.2, Dockerfile Layers, the build process will layer the three
steps above executing the COPY command first, and then it will execute the RUN
command to remove the secret file, but both layers would be added to the final
image, as the following output confirms:

1. $ docker build —no-cache -t this-is-not-a-safe-image:latest .

2. [+] Building 1.6s (13/13) FINISHED

3. …

4. OMITTED

5. ...

6. => CACHED [1/3] FROM docker.io/library/ubuntu:22.04 0.0s

7. => [2/3] COPY the_secret_file /root/the_secret_file 0.0s

8. => [3/3] RUN rm /root/the_secret_file 0.2s

9. => exporting to image 0.0s

10. => => exporting layers 0.0s

11. => => writing image sha256:5c40b3ccbedc31c15873bf-
ba264e14514a678c65d785f819c365208fd4afee43 0.0s

12. => => naming to docker.io/library/this-is-not-a-safe-image:latest

Securing Container Images and Registries 101

The result of the building process is a container image that should not present the
secret file in the final layer; running the container makes it possible to verify that
indeed there is no file in the root folder:

1. $ docker run -it 5c40b3ccbedc

2. root@33034062fb29:/# ls root/

3. root@33034062fb29:/#

To demonstrate that the Docker storage driver is adding up layers into the final
image, and that the secret file is still stored inside the newly created image, a simple
verification methodology involves extracting a compressed tar file of the image.

1. $ docker save this-is-not-a-safe-image -o this-is-not-a-safe-image.
tar

2. $ tar xf this-is-not-a-safe-image.tar

By listing the folder in which the this-is-not-a-safe-image.tar file has been
extracted with the tar command, we should find something like the following (note
that the output of the ls command has been modified slightly to accommodate
publishing requirements):

1. $ ls -l

2. total 140320

3. drwxr-xr-x 063d9c2e40c64f3012e236e946d55aef47f80cae9584da0c-
d0e36417628e77b6

4. drwxr-xr-x 2d2784d5d10388724011f34336b29c9e834d5318b611d-
d1143a4e1af7a80671c

5. drwxr-xr-x 59679b05a55027190f7d4e06290c9ab5d63ff34eb62be-
25f053807eec333acf4

6. -rw-r—r-- 5c40b3ccbedc31c15873bfba264e14514a678c65d785f-
819c365208fd4afee43.json

7. -r—r--r-- manifest.json

8. -r—r--r-- repositories

9. -rw------- this-is-not-a-safe-image.tar

The manifest.json file is the high-level overview of the structural image creation; it
contains the final sha256 digest assigned to the image and the layers digest assigned
at each of the command of the Dockerfile. The details of the building operations are
stored in the JSON file named as the final Docker image digest. As readers may note,
the layers mentioned in the manifest.json file have been extracted as well in the

102 Security for Containers and Kubernetes

form of folders; each folder contains a layer.tar compressed file, which snapshots the
Linux folders tree of the original container image declared in the FROM directive at
the time of the correspondent command listed in the Dockerfile.

The Dockerfile contains three commands: FROM, COPY, and RUN; therefore, there are
three layer folders extracted. It is safe to assume that one of the extracted layers.
tar still contains the secret file. Looping inside all the layers can help verify the
assumption:

1. $ for secret in */layer.tar; do tar -tf $secret | grep the_secret_
file && echo $secret; done

2. root/.wh.the_secret_file

3. 063d9c2e40c64f3012e236e946d55aef47f80cae9584da0cd0e36417628e77b6/
layer.tar

4. root/the_secret_file

5. 59679b05a55027190f7d4e06290c9ab5d63ff34eb62be25f053807eec333acf4/
layer.tar

The interesting thing to note in the output is the .wh. suffix. In Linux systems, the
.wh. suffix to a file or folder is the indication that the file or folder has been deleted
from an upper layer of the filesystem by the OverlayFS mechanism. When a file has
been marked for deletion, it is not actually removed from a filesystem; instead, it is
replaced by a without file to testify that the file is no longer needed. This corresponds
to the RUN command in the example Dockerfile provided earlier. It is clear, then, that
the digest at point 5 corresponds to the COPY command of the Dockerfile; this is
verifiable by attempting to extract the secret from the layer.tar file, which is indeed
still stored in the final image.

1. $ tar xf 59679b05a55027190f7d4e06290c9ab5d63ff34eb62be25f053807ee-
c333acf4/layer.tar root/the_secret_file

2. $ cat root/the_secret_file

3. my_password

Docker has developed a kit that adds other capabilities to the build process, called
Buildkit. Among other performances improvements, the interesting flag is --secret.
This flag can safely provide a secret to the Dockerfile at the build time, mounting
tmpfs and storing the secret in /run/secrets temporarily. This feature guarantees that
no secrets will be left in the image inadvertently. To enable Buildkit, the Dockerfile
must have a syntax line commented out at the beginning of the file, with minimal
version of 1.2:

1. # syntax=docker/dockerfile:1.2

2. FROM ubuntu:22.04

Securing Container Images and Registries 103

3. RUN --mount=type=secret,id=the_secret_file,dst=/root/.aws/credentials
Launch any aws command

As someone might have noted, the previous code adds the dst flag to the mount
command for the secret, which means the secret will be stored in a custom location;
when the dst flag is missing, Buildkit will assume that the secret will be in /run/
secrets. In order to enable Buildkit building, the DOCKER_BUILDKIT environment
variable must be declared:

1. $ DOCKER_BUILDKIT=1 docker build --no-cache \

2. --secret id=the_secret_file,src=the_secret_file \

3. -t safe-image:latest .

The --secret flag is passed via build, and it is indicating the secret ID and location
(src). The output of the build command is as follows:

1. [+] Building 1.5s (9/9) FINISHED

2. => [internal] load build definition from Dockerfile 0.0s

3. => => transferring dockerfile: 160B 0.0s

4. ... OMITTED

5. => CACHED [1/2] FROM docker.io/library/ubuntu:22.04 0.0s

6. => [2/2] RUN --mount=type=secret,id=the_secret_file,dst=/root/.aws/
credentials 0.2s

7. => exporting to image 0.0s

8. => => exporting layers 0.0s

9. => => writing image sha256:6ee02422e4bc8f792f019c06df5a9e63cc0d-
65c6ea35f32fc0bd7ecbdb51ddd6

What has changed with the Buildkit approach is that the Docker build command,
when interpreting the Dockerfile, has acknowledged the presence of the mount line,
and has, therefore, treated the secret as a flag to be used during the build process
(line 6).

This is a secure approach in handling secrets during the building process, because
there will be no trace of the secret inside the container after the image has been
built. The verification can be executed by running the newly created container and
checking the presence of the credentials file in the root/.aws folder.

1. $ docker run -it 6ee02422e4bc8f792f019c06df5a9e63cc0d65c6ea35f32f-
c0bd7ecbdb51ddd6

2. root@59b4dc46b075:/# ls -la root/.aws/

104 Security for Containers and Kubernetes

3. total 8

4. drwxr-xr-x 2 root root 4096 Apr 2 16:21 .

5. drwx------ 1 root root 4096 Apr 2 16:21 ..

The verification can also be processed by extracting the tar compressed file as per the
previous example with the not safe image and looping inside the layers.tar files:

1. $ docker save safe-image -o safe-image

2. $ tar xf safe-image.tar

3. $ for secret in */layer.tar; do tar -tf $secret | grep creden-
tials && echo $secret; done

The newly built safe-image, in contrast with the previous this-is-not-a-safe-image,
has no inspecting layers therefore it is not possible to retrieve the content of the
secret file.

Multi-stage builds
There are cases where the Dockerfile is an extreme complex configuration file,
especially when the file contains specific service configurations parameters. It can
include the base image specifications, the user configuration, any update or upgrade
needed, service configuration parameters, the TLS certificate configuration, and
secrets management, etc..

As illustrated in the previous section, any line in a Dockerfile is a new layer in the
image, so the number of layers an image contains is directly proportional to the
number of instructions a Dockerfile contains. With a complex Dockerfile, it becomes
quite difficult to keep the build size as small as possible, resulting in a complex
process that can potentially increase the size and attack surface of the image. A large
deployment brings into context several intermediate processes, tools and artifacts.
Refer to the following figure:

Figure 4.3: Dockerfile Weight

Securing Container Images and Registries 105

Figure 4.3, Dockerfile Weight, shows some of the phases a Dockerfile could be subjected
to. Thinking of a Dockerfile from a development process standpoint, where ideally
everything that is needed for building the application is considered within the
building process, is opposed to a Dockerfile that contains only the application and
what is needed to execute it. Multi-stage builds are Docker’s answer to this specific
issue, aiming to optimize Dockerfile itself and creating intermediaries’ steps between
the initial and the final image, providing better control over the files and the artifacts
that a container image will contain.

Figure 4.4: Nested FROM

The nested selected and progressive creation methodology helps in reducing
the attack surface, as illustrated in Figure 4.4, Nested FROM. It is very common
to use different Dockerfile, one for each phase of the building process, usually a
development Dockerfile, then a build Dockerfile, and finally a deployment script.
This approach to the containerization process brings a series of layers as part of the
previous container image, which are not strictly necessary for the purpose of simply
running the final binary file, and it also introduces the concept of base image, where
a container image is treated as the base for multiple environments or purposes:

1. # syntax=docker/dockerfile:1

2. FROM jenkins/jenkins:lts AS base

3. USER root

4. ENV JAVA_OPTS -Djenkins.install.runSetupWizard=false

5. RUN jenkins-plugin-cli --plugins docker-plugin:1.3.0

6. USER jenkins

106 Security for Containers and Kubernetes

7.

8. # Use the base Jenkins image to build the matrix plugin

9. FROM base AS development

10. USER root

11. RUN jenkins-plugin-cli --plugins configuration-as-code:latest

12. USER jenkins

13.

14. # Use the development image to build the production image

15. FROM development AS production

16. USER root

17. ENV CASC_JENKINS_CONFIG /var/jenkins_home/casc.yaml

18. RUN jenkins-plugin-cli --plugins job-dsl:latest

19. COPY casc.yaml /var/jenkins_home/casc.yaml

20. USER jenkins

The previous example code re-think the Dockerfile used in Chapter 3, Container Stack
Security, in the Secure CI/CD section for a multi-stage purpose, defining three steps:
base, development, and production, as multiple FROM directives. The building
process can be initiated through Buildkit and can be selectively stopped at the
desired build stage using the --target directive.

1. $ DOCKER_BUILDKIT=1 docker build --no-cache \

2. -t multi-image:development --target development .

Each FROM directive can use a different base image, and each FROM initiates a new
phase of the build process, where artifacts can be selectively copied from one phase
to another, discharging everything that is not needed for the final phase.

Minimal and distroless images
The layering of the container images makes use of what is known as the copy-
on-write (CoW) strategy, essentially a strategy of copying and sharing layer for
maximum efficiency and sizing containment. The principle is that if a file or folder
already exists in a lower layer of the image, it will use that very layer; a new layer
is only created when that file or folder is modified. Container images should indeed
be considered ephemerals, if a change is needed, a new image is generated and the
current one is destroyed.

Securing Container Images and Registries 107

Although the copy-on-write strategy helps in reducing disk I/O (Input/Output),
consequently reducing the disk space occupied, developers should consider creating
their own image from scratch to have full control on its contents. Despite the
obvious security advantage of such approach, in the cloud age, where everything is
ephemeral, it is hard to imagine developers creating their own machine, stripping
out all the not-needed packages and libraries, and create their own image. It’s time
consuming and does not fit well in a constant high-paced software development life
cycle. It also requires sysadmin skills to resolve dependencies in providing a stable
environment.

Figure 4.5, Image Evolution, shows the container image evolution path:

•	 The base image is standard image, it can be also referred to as the DVD iso
image, containing all the standard packages of a modern Linux distribution.

•	 The minimal image type is a tentative to reduce at the minimum necessary
the image size of the standard image.

•	 The micro or distroless image aims to provide a smaller footprint in term
of size compared to the minimal image, and packaging only the necessary
libraries to execute the application binary which it is meant for.

Figure 4.5: Image Evolution

Distroless is, therefore, a language-oriented container system rather than Linux
distro flavored. Linux distros, such as RedHat, Debian, Ubuntu, and CentOS, have
published ad-hoc container image versions of the respective releases, the so-called
minimal. Minimal is a specific type of container image designed for automation
and deployment at scale, made available through the most common registry
channels like DockerHub, Quay or AWS. The distroless project is one of the many
Google Container Tools projects available, and the difference between minimal and
distroless is quite interesting, and it is at the center of an interesting discussion in
the community. RedHat has created a set of container images available without a
RedHat subscription, the UBI that stands for Universal Base Image, in four different

108 Security for Containers and Kubernetes

flavors: standard, init, minimal and micro. Table 4.1, UBI Images, shows the main
differences between the four flavors:

Type Description
Standard •	 init system: all systemd features

•	 yum: standard set of commands
•	 utilities: tar, dmidecode, gzip, and so on

Init •	 systemd initialization system
•	 ps and included process commands

Minimal •	 microdnf
•	 32 M image size

Micro •	 like distroless images

Table 4.1: UBI Images

In terms of size, minimal and micro are not far away; for instance, the Minimal
Ubuntu claims to be just 29 MB (Megabyte) for the 18.04 LTS (Long Term Support)
version, which is remarkable on its own, but the Google Distroless based on Debian
11, available at gcr.io/distroless/static-debian11 (you would need access to Google
Cloud to verify such a URL), claims to be only 2 MiB (Mebibyte).

In terms of security, the smaller the footprint, the smaller the attack surface. If an
attacker gains access to the container, the best practice is to provide as few tools
as possible. Table 4.2, Tools to avoid, shows a minimal list of tools that should be
definitively avoided in a production environment:

Type Description
Package Managers yum, apt, zipper
Network tools curl, ssh, netcat, wget
Shells bash, zsh, ksh
Compilers gcc, aocc, ispc, babel, free pascal, javac, Gc, pypy
Debuggers gdb, xdb, dbx, ghidra, bashdb, strace, xdebug, jpda

Table 4.2: Tools to avoid

A quick digression brings to light the fact that not many know that the United States
National Security Agency (NSA) has made the Ghidra project publicly available.

Note: Ghidra is an open-source, reverse engineering framework, a full high-end
software featured analysis tool including assembly, scripting, decompilation,
disassembly, and graphing.

Securing Container Images and Registries 109

Among the minimal image types, Alpine made a name for itself recently. The
Alpine distro is a minimal security-oriented container image designed to compile
all binaries running in the user space as Position Independent Executables (PIE).
The PIE are considered the output of hardened build processes, meaning that a PIE
binary executable and all its dependencies are executed in random locations of the
virtual memory each time the application is executed.

The specific purpose of such a solution is to oppose one of the most common
techniques of stack smashing attack, such as stack buffer overflow, or its more
recent and advanced computer security exploit technique: the Return Oriented
Programming (ROP). In software programming, the stack buffer overflow happens
when an application writes to a memory address on the application’s call stack
outside the intended data structure, in other words, when the application writes
more data to a buffer than what is actually allocated, generating an overflow. The
overflow can be generated intentionally as part of the stack smashing attack.

Figure 4.6: Stack Buffer Overflow

In a standard buffer overflow attack, the attacker would write the attack code into
the stack and overwrite the return address in a different location of the memory,
injecting its payload with new instructions, as shown in Figure 4.6, Stack Buffer
Overflow. With the ROP attack, the attacker obtains control of the application call
stack to inject machine instructions into memory to perform arbitrary and malicious
operations for the purpose of invalidating executable space protection systems.

When Data Execution Prevention is enabled, the attacker cannot return the payload
to another area of the memory because it is marked as non-executable (note that
non-executable is different from non-writable), so the attacker uses machine
instructions called gadgets, such as loops and conditional branches, to build the

110 Security for Containers and Kubernetes

kind of payload needed for the attack, thanks to valid instructions. Return Oriented
Programming is one the techniques used in penetration tests. The Metasploit team
at Rapid7 explains ROP with a quick video at https://www.rapid7.com/resources/
rop-exploit-explained/, it has also released the Metasploit framework, which has
an interesting lab for exploitation and enumeration of Kubernetes clusters. The
available Metasploit modules can run via a compromised Docker container or via
API, externally to the cluster.

The documentation to run a Kubernetes penetration test is available at https://
docs.metasploit.com/docs/pentesting/metasploit-guide-kubernetes.html. The
following is a quick list of the available Metasploit penetration test modules, in Table
4.3, Metasploit Modules:

Type Description
HTTP + HTTPS Against port 80 and port 443 encrypted via TLS
Kubernetes Enumerating: version, auth, namespaces, pods, secrets
MySQL Against port 3306; Enumerating: version, bruteforcing

credentials, dumping database, executing arbitrary queries
and SQL queries, reverse shell access

PostgreSQL Against port 5432; Enumerating: version, bruteforcing
credentials, dumping database, capture server, executing
arbitrary SQL queries, reverse shell access

SMB Against port 139 with NetBIOS and 445 without NetBIOS
SSH Against port 22 with support for tunnelling traffic
WinRM Against port 5985 for HTTP and 5986 for HTTPS

Table 4.3: Metasploit Modules

Distroless containers, despite providing a certain level of security, are not immune to
attacks. The focus on the image size could lead to a misinterpretation of what really
matters from the security standpoint in any given Linux operating system. Here are
a few considerations:

•	 Attack surface is not measured in megabytes

•	 Distroless does not mean no operating system

The real attack surface is not just the number of files a container image stores or
how many megabytes of disk space the image occupies; rather, it is a combination of
several analytic considerations, as Figure 4.7, Attack Surface illustrates:

Securing Container Images and Registries 111

Figure 4.7: Attack Surface

Regardless of how many packages, libraries, and generic software or files can be
excluded from a Linux distro, there will always be a kernel and a user space to
handle. Even the distroless project by Google relies on the Debian Linux distro for its
user space requirements. Furthermore, the application deployed inside the container
image would carry additional weight in relation to the specific programming
language.

The Center for Internet Security (CIS) is one of the most recognized Information
Technology (IT) communities worldwide, and it aims to provide guidelines to
implement security best-practices. CIS has created and released several free tools for
the only purpose of increasing cybersecurity readiness. It is mandatory mentioning
version 8 of the CIS Security Controls (previously known as the SANS Top 20),
available at https://www.cisecurity.org/controls/cis-controls-list; however, this
chapter focuses on the suite of the CIS Benchmarks, a wide collection of documented
industry security best practices, spanning across securing system configurations,
securing network and applications, across several technology categories.

The CIS Benchmarks can be used as standard to map security controls for achieving
compliance with regulatory frameworks like Health Insurance Portability and
Accountability Act (HIPAA, Payment Card Industry Data Security Standard (PCI
DSS), International Organization for Standardization (ISO). From these over 140
CIS Benchmarks, it is worth mentioning the following:

•	 CIS Hardened Images - https://www.cisecurity.org/cis-hardened-images

•	 CIS Docker - https://www.cisecurity.org/benchmark/docker

The CIS Benchmarks Hardened Images is a set of security best-practices applied
to virtual machines aiming to generate hardened virtual image. Those images are
either distro related such as Debian Linux, Ubuntu Linux, CentOS Linux, Amazon
Linux, Apple macOS, Microsoft Windows Server or application related such as
NGINX, PostgreSQL and so on and so forth, released on a monthly life cycle. The
CIS Benchmarks Docker is a set of security best-practices applied to the Docker

112 Security for Containers and Kubernetes

Engine system and to the Container Images and Build File system as part of the
hardening process, as shown in Table 4.4, CIS Container Images Hardening:

CIS Benchmark Docker Container Images
Use non-root user
Container must use only trusted images
Remove unnecessary packages
Scan and rebuild images to includes patches and updates
Enabled Content Trust
Enable HEALTHCHECK
Do not use update in Dockerfile
Remove setuid and setgid
User COPY rather than ADD
Do not store secrets in Dockerfile
Use only verified packages
Validate artifacts

Table 4.4: CIS Container Images Hardening

The CIS Benchmark Docker has been also adopted by the DevSec Project, which
aims to create a standard for running secure infrastructure. The idea is to create a
common secure hardened layer for operating system and services via automation,
essentially, a hardening framework. Readers aiming to enhance their knowledge
of security best practices applied via tools like Ansible, Chef or Puppet can visit
https://dev-sec.io. There is also a CIS Kubernetes Benchmark, but this topic will be
discussed in Chapter 7, Kubernetes Hardening.

Scanning and verifying images
Images built with security vulnerabilities become vulnerable as soon as the container
is created. Those vulnerabilities are enabled at the runtime. When integrating the
image scanning mechanism into the Continuous Integration (CI) pipeline, the build
should be permitted only if the security requirements are respected as part of the
shift-to-the-left approach, where vulnerable images should never be pushed to the
production environment.

As simple as this topic could appear, image scanning is not perfect science. The market
offers various proprietary and open-source image scanners with different levels of
coverage: some image scanners check only operating system packages, while some
can also scan runtime libraries for programming languages, and others could even
provide deeper additional features like binary fingerprinting or file content testing.

Securing Container Images and Registries 113

Table 4.5, Scanning Feature, explains in detail the features that should always be
considered to make image scanning as effective as possible:

Type Description
App The scanner should be able to verify the app binary

language.
Supporting Language The scanner should be able to scan the app’s libraries

installed to support the app binary.
Scanning Agent If the scanner needs an agent, this should be part of the

update life cycle within the CI.
Operating System The scanner should be able to effectively scan the

operating system, regardless of the attack surface the
image is exposed to.

Acceptable Risk Level Defines the accepted level of risk with a technical
threshold calculated on the severity of the detected
vulnerabilities.

Table 4.5: Scanning Features

In this scenario, it is hard to propose a specific tool that could satisfy every possible
use case; indeed, there is no such solution, as container image scanning needs may
vary from organization to organization, and more often, from team to team.

Historically, the most common open-source code quality platform is SonarQube
by SonarSource, it can scan code for vulnerabilities in almost thirty programming
languages. There are several competitors worth mentioning, such as Veracode,
Qualys WAS (Web Application Scanning), Rapid7 InsightAppSec, Tenable Web App
Scanning, Snyk Code, and others.

A code quality platform is considered an external system to the container image
scanning platform, and it often creates overhead because it is mostly related to the
code quality control and a tool that a developer would feel comfortable with. To
reduce the gap between developer and operations, and promote DevSecOps best-
practice, SonarQube can create a project directly from a source control system like
GitHub, GitLab, Bitbucket, and Azure DevOps.

In contrast, the source control systems GitHub and GitLab have integrated code
quality system to enhance secure code delivering. GitHub Security is language-
oriented, with support for up to 11 programming languages, along with features
like Secret scanning, Dependabot, and Supply Chain Security. On the other
hand, GitLab Application Security offers several security tools, including Static
Application Security Testing (SAST), Dynamic Application Security Testing
(DAST), Dependency Scanning (also known as Software Composition Analysis),
Infrastructure as Code (IaC) Scanning, Container Scanning, Secret Detection, API

114 Security for Containers and Kubernetes

Fuzzing, and Coverage Fuzzing. Many of the tools GitLab Security provides need
the GitLab Runner agent installed as a pre-requisite, which should be considered as
additional executable within the secure update life cycle.

The GitLab Security suite covers all the aspects exposed in Figure 4.7, Attack Surface,
but like many other DevSecOps solutions, it comes at a price in an enterprise or
commercial tier. Among the open-source projects, there are several solutions that
can be adopted to achieve a very good security posture and fulfil several container
image security aspects, like Clair, XRAY, Anchore, Falco, and the verification system
Notary. Figure 4.8, Image Scanners, shows the main purpose for each one:

Figure 4.8: Image Scanners

Clair is probably the most famous open-source Static Application Security Testing
(SAST) tool available online today; it can scan either Docker or Open Container
Initiative (OCI) application containers, and it is the scanning engine behind Quay.
io, the RedHat Container Registry. RedHat OpenShift uses Clair for container
security natively. Clair uses several vulnerability data sources like RedHat Security
Data, Ubuntu CVE, and Debian Security Bug Tracker.

JFrog XRAY is an open-source artifact and dependencies analysis tool. Its main
feature is to provide Software Composition Analysis (SCA) methodologies,
natively integrated with the famous JFrog Artifactory system. This is not a trivial

Securing Container Images and Registries 115

statement; for instance, a supply chain attack was used in late 2020 to compromise
the SolarWinds software build system. A supply chain attack is a cyberattack aiming
to damage one or more organizations by attacking the less secure elements in their
supply chain.

The SolarWinds cyberattack was perpetrated via a supply chain attack having the
target of SolarWinds IT infrastructure, which includes many US federal governments
bodies. The case, then rebranded UNC2452, brought the Cybersecurity and
Infrastructure Security Agency (CISA) to release Sparrow, a free tool for detecting
potential malicious activities in any Microsoft Office 365 or Azure environment,
pushing the US government administration to provide new guidelines and
regulations. The National Institute of Standards and Technology then released
the Software Bill of Materials (SBOM), a new standard for detailing supply chain
components relationship as part of the NIST SP 800-161r1.

Anchore is a complete ecosystem of security solutions for scanning container images.
The open-source portion of the Anchore framework consists of two main projects:

•	 Grype is a powerful tool for vulnerability scanning:
o It can scan container, container images and filesystems.
o Language-specific scanning such as Ruby, Golang, PHP, Rust, Java,

.Net, Python, and JavaScript.
o It works with Docker systems, Open Container Initiative (OCI)

systems and Singularity image formats.

•	 Syft is a command line interface tool for creating Software Bill of Materials
reports directly from container images; it can generate a complete mapping
of the application’s dependencies in respect of the NIST SP 800-161r1.

Note: Singularity is an open-source container platform designed with security in
mind for systems running in High Performance Computing (HPC) environments.
It provides out-of-the-box features like immutable single-file image format with
crypto signatures and encryption and user consistency. At the hardware level
works with GPUs accessible hardware, parallel filesystems on clusters and
high-speed networks.

Falco was originally created by Sysdig, and then it became an incubator for the
Cloud Native Computing Foundation (CNCF). It is essentially a container
runtime security tool that can be executed in containers or PODs, with the intent
of intercepting kernel events and applying governance policies, in breach of which
Falco will generate alerts with a correspondent severity.

Falco is designed to detect Linux syscalls like shell running within a container,
containers running in privileged mode or mounting specific path from the host, and
non-device written to /dev. Figure 4.9, Image Scan Automation, illustrates a classic

116 Security for Containers and Kubernetes

application of a container image scanner applied to a Continuous Integration
Continuous Deployment (CI / CD) pipeline. Most of the tools mentioned so far can
be easily integrated in any CI/CD pipeline, but trivy by Aqua Security excels for the
ease of integration in highly automated environments.

Figure 4.9: Image Scan Automation

Trivy is probably the most comprehensive open-source security scanner today
available, it includes features like the following:

•	 Vulnerability detection for various base images, including distroless.

•	 Docker, Open Container Initiative (OCI), Podman, containerd container
image

•	 Language-specific scanning packages like Composer, Pipenv, npm, yarn,
Bundler, Maven, Go, Cargo, Poetry and NuGet

•	 SBOM support

•	 IaC (Infrastructure as Code) scanning, including Terraform

•	 Secret scanning

•	 Policy and exception framework

•	 Works with Open Policy Agent (OPA), https://www.openpolicyagent.org/

•	 Works with Jenkins, GitLab, GitHub Actions, CircleCI, Travis CI, Azure,
AWS Code Pipeline, Bitbucket Pipelines, AWS Security Hub

•	 And of course, it works with pods and Kubernetes

Securing Container Images and Registries 117

•	 Istio, the most popular Kubernetes service mesh, has adopted trivy recently

Notary has been donated to the Cloud Native Computing Foundation (CNCF) in 2017
by Docker. Notary is a container verification content system, based on The Update
Framework (TUF) concept, aiming to create a secure software updating system by
enabling protection against attackers that could potentially compromise repositories
or signing keys. To read more about TUF, visit https://theupdateframework.io. The
key advantages of the Notary system are detailed in Table 4.6, Notary Features:

Type Description
Survivable Key Compromise Signing Key Management mechanism
Freshness Guarantees Timestamping on publishing
Configurable Trust Thresholds Content with multi-signature mechanism
Signing Delegation Publishing delegation
Use of Existing Distribution Trust can be added to existing content
Untrusted Mirrors and Transport Metadata mirroring

Table 4.6: Notary Features

A deeper approach on the image signing mechanism and its interaction with
container registries is explained later in the chapter.

Private and public registries
When all the security requirements related to the container image are in place, it is
time to run the building pipeline and push them to the registry. A container registry
is essentially a repository or a group of repositories used to store container images.
There are two types of registries:

•	 Private registries are enterprise container image storage system, often
providing advanced security features.

•	 Public registries are publicly available, and they are used most often by
professionals or small teams with no resources to create their own registry.

Alongside the three major public cloud provider container registry services, i.e.,
Google Container Registry, Amazon Elastic Container Registry (AWS ECR),
and Microsoft Azure Container Registry, DockerHub is the most popular public
container image registry.

Chapter 03, Container Stack Security, in the section Secure Connection has explained
how to enable Transport Layer Security TLS connection for the Docker Engine
system, and how the same secure communication could be applied to the Docker
API system when exposed over TCP connections.

118 Security for Containers and Kubernetes

In a recent study, TrendMicro demonstrated how DockerHub registry could
be exposed to exploit via credentials leaking. The TrendMicro team uploaded
to DockerHub two honeypots (honeypot is a controlled vulnerable computer
environment), which were the targets of exploitation attempts several times in less
than a month, for the purpose of deploying malicious Docker images containing
rootkits, Kinsing malware, credentials stealers, XMRig Monero cryptocurrency
miners, Docker escape kits and Kubernetes exploit kits. The full article is available
at https://www.trendmicro.com/en_gb/research/22/i/security-breaks-teamtnts-
dockerhub-credentials-leak.html.

The downside of public registries is that there is limited control on the quantity and
quality of security requirements that can be used to achieve a sufficient security
posture, and the truth is that unless those requirements are somehow enforced
by whoever provides the services, they are often overlooked. DockerHub can be
re-created locally, in any private network, and can be secured through different
advanced methodologies. Because the Docker registry does not accept credentials
provided in clear text, it is necessary to create a password file. The suggestion is to
create an additional folder named auth to store the htpasswd file:

1. $ mkdir auth

2. $ docker run --entrypoint htpasswd httpd:2 -Bbn luigi mypass-
word > htpasswd

To create a container using the htpasswd mechanism, the following Docker command
helps in spinning up the local system:

1. $ docker run -d \

2. -p 5005:5005 \

3. --restart=always \

4. --name my-local-registry \

5. -v "$(pwd)"/auth:/auth \

6. -e REGISTRY_HTTP_ADDR=0.0.0.0:5005 \ # Avoid conflicts on Mac

7. -e "REGISTRY_AUTH=htpasswd" \

8. -e "REGISTRY_AUTH_HTPASSWD_REALM=Registry Realm" \

9. -e REGISTRY_AUTH_HTPASSWD_PATH=/auth/htpasswd \

10. registry:2

Securing Container Images and Registries 119

Then, it is possible to log in to the local registry by simply running the Docker login
command:

1. $ docker login localhost:5005

2. Username: luigi

3. Password:

4. Login Succeeded

With the local Docker registry up and running, it is possible to push and pull
container images, as we would do with any container registry.

The obvious security advantage of such solutions, even with basic authentication
methodology, is that all the images are stored locally, with greater control on what
the registry is handling. The local Docker registry would be empty in the beginning,
so it is possible to create a new image via Dockerfile or pull a test image from the
public DockerHub and then tag and push it against the local registry:

1. $ docker pull alpine

2. $ docker tag alpine localhost:5005/my-local-alpine-image

3. $ docker push localhost:5005/my-local-alpine-image

Subsequently, we would work locally with the images by pulling them from the
local registry.

1. $ docker pull localhost:5005/my-local-alpine-image

Non-cloud systems historically in the market as excellent alternatives to DockerHub
are Sonatype Nexus Repository, RedHat Quay.io, JFrog Container Registry, and
GitLab Container Registry. Among those solutions, each of them proposing a free
tier or community edition with less or more features, JFrog Container Registry stands
out because it can handle both container images and helm charts for Kubernetes.
From the security standpoint, JFrog Container Registry helps in automating security
within the build pipeline, while GitLab Container Registry has adopted a token
methodology to authenticate users against the registry, eventually leveraging Multi
Factor Authentication. (MFA) as well.

More recently, another project promoted by the Cloud Native Computing
Foundation (CNCF) with the intent of providing a trusted registry came to light:
Harbor. It is an open-source trusted container and helm charts registry that stores,
scans and signs cloud native artifacts. The peculiarity of such a system is the added

120 Security for Containers and Kubernetes

value of the security features that so far seem unique only to this registry, such as
identity management, access control, and auditing. The list of security capabilities
for Harbor contains Role Based Access Control RBAC, LDAP and Active Directory
integration, OpenID Connect support, the native integration of Notary, discussed in
the previous section, a full logs auditing mechanism, and a vulnerability scanning
system.

Registry authentication
The deployment of the local registry as it is, works with basic authentication, so it is
widely available on the local network and, of course, is exposed to attack. There are
three ways to enable authentication security, and each method has an increased level
of difficulty and security:

•	 Add authentication via user, as demonstrated in the previous section

•	 Use Nginx as authentication proxy

•	 Add a Transport Layer Security (TLS) certificate

Basic authentication is often not sufficient in working environments that are not small
office home office (soho) and that may require enterprise authentication mechanism
like Lightweight Directory Access Protocol (LDAP) or Active Directory (AD) or
Single Sign On (SSO). With the following methodology, a reverse nginx proxy is
deployed in front of the Docker registry that implements authentication. For the
purpose of this exercise, we will use the key and certificate created in the previous
chapter, where we enabled the Docker API Engine secure communication over TLS.

Note: Although a self-signed certificate is a more secure communication
mechanism than a basic authentication system based simply on passwords, the
TLS certificate should be signed by a Certificate Authority to achieve stronger
security posture.

The auth folder should already be in place if readers have completed the Docker
registry basic authentication explained in the previous section. Additionally, a data
folder, a nginx.htpasswd file, the nginx.conf file, domain.crt certificate, the domain.
key key files, and the docker-compose.yml file are needed to run the container stack
that deploys the registry and the nginx container:

1. $ mkdir -p auth data

2. $ docker run --entrypoint htpass-
wd httpd:2 -Bbn luigi mypassword > auth/nginx.htpasswd # “mypass-
word” for the docker login

3. $ cp client-cert.pem auth/domain.crt

4. $ cp client-key.pem auth/domain.key

Securing Container Images and Registries 121

5. $ touch auth/nginx.conf

6. $ touch docker-compose.yaml

Add the following code to the docker-compose.yaml file:

1. version: '3'

2. services:

3. nginx:

4. image: nginx:alpine

5. ports:

6. - 5043:443

7. links:

8. - registry:registry

9. volumes:

10. - ./auth:/etc/nginx/conf.d

11. - ./auth/nginx.conf:/etc/nginx/nginx.conf:ro

12. registry:

13. image: registry:2

14. environment:

15. - REGISTRY_HTTP_ADDR=0.0.0.0:5055

16. volumes:

17. - ./data:/var/lib/registry

Add the following code to the nginx.conf file; comments are provided inline:

1. events {

2. worker_connections 1024;

3. }

4.

5. http {

6. upstream docker-registry {

7. ## Avoid conflicts on Mac

8. server registry:5055;

9. }

122 Security for Containers and Kubernetes

10.

11. ## Set a variable to help us decide if we need to add
the ‹Docker-Distribution-Api-Version› header.

12. map $upstream_http_docker_distribution_api_version $docker_distri-
bution_api_version {

13. '' 'registry/2.0';

14. }

15.

16. server {

17. listen 443 ssl;

18. # Custom name

19. server_name nginx_registry;

20. # SSL provided by the certificate in Chapter 3

21. ssl_certificate /etc/nginx/conf.d/domain.crt;

22. ssl_certificate_key /etc/nginx/conf.d/domain.key;

23. ssl_protocols TLSv1.2;

24. ssl_ciphers 'EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH';

25. ssl_prefer_server_ciphers on;

26. ssl_session_cache shared:SSL:10m;

27. client_max_body_size 0; # disable any lim-
its to avoid HTTP 413 for large image uploads

28. chunked_transfer_encoding on;

29. location /v2/ {

30. # Do not allow connections from Docker 1.5 and earlier

31. # Docker pre-1.6.0 did not properly set the user agent on ping

32. if ($http_user_agent ~ "^(docker\/1\.(3|4|5(?!\.
[0-9]-dev))|Go).*$") {

33. return 404;

34. }

35. auth_basic "Registry realm";

36. auth_basic_user_file /etc/nginx/conf.d/nginx.htpasswd;

37. proxy_pass http://docker-registry;

.

Securing Container Images and Registries 123

38. proxy_set_header Host $http_
host; # required docker client

39. proxy_set_header X-Real-IP $remote_
addr; # pass on real client IP

40. proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_
for;

41. proxy_set_header X-Forwarded-Proto $scheme;

42. proxy_read_timeout 900;

43. }

44. }

45. }

Execute the following to run the container stack:

1. $ docker-compose up -d

2. [+] Running 3/3

3. ⠿ Network chapter_04_default Created 0.0s

4. ⠿ Container chapter_04-registry-1 Started. 0.5s

5. ⠿ Container chapter_04-nginx-1 Started

The proxy will authenticate the user on the Docker login command:

1. $ docker login localhost:5043

2. Username: luigi

3. Password:

4. Login Succeeded

As per the example in the previous section, it is now possible to push and pull images
to the registry via nginx proxy:

1. $ docker tag alpine localhost:5043/my-local-alpine-image

2. $ docker push localhost:5043/my-local-alpine-image

3. $ docker pull localhost:5043/my-local-alpine-image

When a reverse proxy configuration is not needed, an excellent and fast security
authentication mechanism can be achieved adding a TLS certificate to the Docker
compose file. First step is to copy the certificates into the certs folder:

124 Security for Containers and Kubernetes

1. $ cp client-cert.pem certs/domain.crt

2. $ cp client-key.pem certs/domain.key

Then, edit the Docker compose file:

1. version: '3'

2. services:

3. registry:

4. restart: always

5. image: registry:2

6. ports:

7. - 443:443

8. environment:

9. REGISTRY_HTTP_ADDR: 0.0.0.0:443

10. REGISTRY_HTTP_TLS_CERTIFICATE: /certs/domain.crt

11. REGISTRY_HTTP_TLS_KEY: /certs/domain.key

12. volumes:

13. - ./certs:/certs

The push and pull commands do not need Docker login authentication to allow
images to be transferred because the Docker registry is listening over port 443.

Role-Based Access Control
Role-Based Access Control (RBAC) is an access control methodology that assigns
permissions to users based on the role they hold in the organization. This approach
guarantees fine-grained control, and it is less prone to error. It is worth mentioning
that Docker has, of course, an RBAC system, which was exclusively part of the
Docker Enterprise Edition; therefore, this feature is not available in the Docker
Engine (recently renamed as Docker Community Edition).

As discussed in Chapter 03, Container Stack Security, the Docker Enterprise Edition
was sold to Mirantis in the late 2019, so all the related container images or solutions
were removed within a year from the acquisition. Also, it is not in the scope of this
book to provide edge information that would eventually benefit only a small niche
of readers or a single use case for a specific technology; instead, it is more helpful
to provide a valid security alternative that could fit the needs of a wider audience.

Securing Container Images and Registries 125

While container orchestrator systems like Rancher, Kubernetes, Apache Mesos,
RedHat OpenShift, Hashicorp Nomad, and basically all the cloud-based container
services provide a user management system with role-based access control,
self-hosted solutions today are lacking in this aspect. In this scenario, it is worth
mentioning two solutions: the first one is Portainer.io, a container management
platform that offers role-based access control in a very affordable business tier;
and the second one is Harbor, where the RBAC capabilities are directly tied to the
container registry solution.

With Kubernetes taking the spotlight where role-based access control is included in
the cluster, it is hard to suggest a solution that could fit well container environments
only. Adopting cloud solutions can simplify access management, with the role-based
access control system implemented as part of the Identity and Access Management
(IAM) service.

Type Description
Limited Guest Only pull images permissions, no push
Guest Read-Only privileges for a specific project
Developer Read and Write privileges for a project
Maintainer Elevated permissions like scan images, delete images or helm charts
Project Admin User management privileges, such as adding or removing members

and execute vulnerability scans

Table 4.7: Harbor RBACs

Harbor is limited to container images management. To provide access to images,
users must be added to the project that handles those images; then the user can have
any of the roles listed in Table 4.7, Harbor RBACs.

Note: Harbor has two system-level roles: anonymous for not logged users
with read-only access to public projects, and system administrator, with super
privileges like list all the projects, elevate user to admin roles, delete users, and
set vulnerability scan policies.

Lastly, DockerHub provides a mechanism called Registry Access Management
(RAM), an option available to organizations with a Docker Business subscription.
RAM works toward centralizing access to registries from the Docker Desktop with
a whitelisting principle.

Auditability
Docker provides audit logs features at the organizational level for repositories that
are part of a Docker Team subscription. Audit is a very important step in securing

126 Security for Containers and Kubernetes

the container environment. An overview on which features we should consider on
auditing Docker containers is provided in this section; a more modern solution will
be explored in Chapter 06, Monitoring Containers and Security.

The following information is considered as quick runbooks or cheat-sheets; it is
helpful in troubleshooting scenarios, or when a quick copy and paste exercise can
easily provide useful details as part of a single operation or wider investigation.
Table 4.8, Docker images and containers, lists the most common auditing commands for
images and containers:

Type Description
docker images --digests image-name Checking the checksum of the image
docker trust inspect image-name --pretty Content trust for signatures
docker inspect image-name Metadata, env var, and secrets on the image
docker inspect container-name Metadata, env var, and secrets on the

container
docker history image-name History of the image

Table 4.8: Docker images and containers

Table 4.9, Docker volume and networks, describes the most common auditing commands
for volumes and networks:

Type Description
docker volume ls List docker volumes
docker volume inspect volumeId Inspect docker volume
docker network ls List docker networks
docker network inspect networkId Inspect docker network

Table 4.9: Docker volume and networks

Table 4.10, Docker registry, describes the most common auditing commands for
registries:

Type Description
curl -s http://localhost:5000/v2/_catalog
| jq .

Verify that the Docker registry is running

docker run --rm -it localhost:5000/my-
image:latest sh

Inspect container

Table 4.10: Docker registry

Securing Container Images and Registries 127

Table 4.11, Docker runtime describes the most common auditing commands for
runtime endpoints:

Type Description
docker system info Docker daemon configuration check
docker system events Runtime generated events
sudo cat /lib/systemd/system/docker.
service

API exposure check

docker inspect | grep -i '/var/run/' Verify that Docker socket is mounted

Table 4.11: Docker runtime

Image control
The scope of this section is to apply the logic of idempotent instructions to container
images. Idempotency refers to the capability of container images to be independent
from the system in which they are built, executed, destroyed or updated. In other
words, regardless of the system in which the instructions reside, the image output
will be always the same.

When a container is created from an image, it cannot be changed, because the
underlying image from which the container is derived cannot be changed either.
There is not really an update methodology about container, similar to what a
software update like yum update or apt update would be.

In this mini-lab working with image tags, a full image updating logic will be
demonstrated, brining full control on the container image environment. Assuming
that there are several containers running on the older nginx:1.22.0 image:

1. $ docker images

2. REPOSITORY TAG IMAGE ID CREATED SIZE

3. aquasec/trivy latest 9a3534dae91d 11 days ago 192MB

4. nginx 1.22.0 55eae9c5b582 2 weeks ago 134MB

5. nginx 1.23.1 0c404972e130 2 weeks ago 135MB

6. jenkins/jenkins latest c32212374bfe 3 weeks ago 453MB

Its life cycle is due, so it is time to replace the image on which the containers have
been created with the more recent nginx:1.23.1. The following Docker command
with the “ancestor” filter will display the running containers on nginx:1.22.0 only:

128 Security for Containers and Kubernetes

1. $ docker ps -a --filter "ancestor=nginx:1.22.0"

2. CONTAINER ID IMAGE STA-
TUS PORTS NAMES

3. 1b24fcd4cf74 nginx:1.22.0 Up 11 minutes 0.0.0.0:8082->80/
tcp old-nginx3

4. 45c173b8fb83 nginx:1.22.0 Up 12 minutes 0.0.0.0:8081->80/
tcp old-nginx2

5. 83b0fcc32c06 nginx:1.22.0 Up 12 minutes 0.0.0.0:8080->80/
tcp old-nginx1

It is more efficient to use the previous command as an input for the docker stop
command:

1. $ docker stop $(docker ps -aq --filter "ancestor=nginx:1.22.0")

2. 1b24fcd4cf74

3. 45c173b8fb83

4. 83b0fcc32c06

Now it is possible to delete the old containers:

1. $ docker rm $(docker ps -aq --filter "ancestor=nginx:1.22.0")

2. 1b24fcd4cf74

3. 45c173b8fb83

4. 83b0fcc32c06

And delete the ancestor image:

1. $ docker rmi nginx:1.22.0

2. Untagged: nginx:1.22.0

3. Untagged: nginx@sha256:4535aaa94ae5316180fac74c56035921280275d0e-
c54282253e1a95536d62a05

4. Deleted: sha256:55eae9c5b5821494851315634494cbd272ba050d9d-
9912a6375b142d79f37cdc

5. Deleted: sha256:b852123f741b38df06e063858df4ee68c4fe9edfa6be71b-
9ca652cfc977cafa7

6. Deleted: sha256:47e3a69d9ba6cdf7cc8f5bd789195fe4ff24c-
1c28260c2950561c6b4d051dfba

7. Deleted: sha256:b227ccadd8de1d1130c3561e7c03e5c95b07ddb-
25d4ad7794d783b588fdc506c

Securing Container Images and Registries 129

8. Deleted: sha256:680b47ce99eea59d8052263d4172dea68aa7ce566cb52a22ec-
c70e08f64c928e

9. Deleted: sha256:5aef7e48290092f2f2fd68bc8d1fe20b8ac7d82c-
ba9d174d9f9990a67223a787

Finally, creating new containers based on the new image is as follows:

1. $ docker run --name new-nginx -d -p 8080:80 nginx:1.23.1

2. 34164dcee11751abc0351493d7d750b7d0bc7ac332ca3030eb321e0285289984

Figure 4.10, Image Control, illustrates the image control cycle, but the previous exercise
is not efficient in large-scale environments. To solve this problem, there is a better
way to apply Continuous Deployment to any containerized platform, and it works
with private registries and enforcing Transport Layer Security (TLS) certificate
connection: Watchtower.

Figure 4.10: Image Control

Once Watchtower has been deployed and authenticated against the registry, it
will monitor the registry for pushes. When a new image is pushed to the registry,
Watchtower will pull the new image, shut down the associated containers, and re-
deploy those containers with the new image.

Watchtower can read the interdependency between containers like web, API and
database, and it can replace them in a logical order to obtain a graceful shutdown
and an efficient deployment. The level of customization uses the hooks listed in Table
4.12, Watchtower hooks:

130 Security for Containers and Kubernetes

Type Description
pre-check Before it checks whether an update is available
pre-update After the update is found but before the update is executed
post-update After the update is completed
post-check Verify the update has been completed

Table 4.12: Watchtower hooks

It also provides great notification capabilities, such as email notifications, Microsoft
Teams and Slack integration.

Vulnerability management
The vulnerability management has been introduced in a few previous sections, such
as Scan and verify images, where we explained that scanning images is an essential
part of the container security life cycle, and the Private and public registries as
registry software solutions can provide image scanning capabilities. Developing
the right procedure to manage Common Vulnerabilities and Exposures (CVEs) in
container images is pivotal toward securing the container platform.

Figure 4.11: Container

The aim of this section is not to provide the umpteenth tool to readers; it would
not be possible to treat any solution in depth. Instead, the section aims to look at
vulnerability management as a strategy. Figure 4.11, Container, depicts the complexity
each image can achieve, and thus the footprint each vulnerability management
would entail.

Securing Container Images and Registries 131

Container lifecycle can be misleading. The maximum age of a container is considered
extremely short: hours rather than days.

This is often not true, especially in production customer-facing environments or
even worse in highly regulated environments, where any deployment in production
goes through a complex and long change control methodology; it is not uncommon
to see the same container version running for weeks or months.

Furthermore, scenarios in which the risk of deploying or running flawed systems is
accepted by the business due to technology constrains or lack of resources are not
common, but they do exist.

There are few strategies that can be used, and the effectiveness of each of these varies
upon the deployment environment, but the general rule should be reflected in Figure
4.12, Deployment Logic, highlighting the general concept that should be applied to
vulnerability management.

Figure 4.12: Deployment Logic

132 Security for Containers and Kubernetes

The key element in the logic is the acceptable risk level concept recalled into the
Scan and verify images section earlier in this chapter. When deciding the best
vulnerability management strategy, it is important to understand how the Common
Vulnerabilities and Exposures (CVE) scoring works.

The CVE framework is a reference system for known information security
vulnerabilities maintained by US National Cybersecurity Federal Founded Research
and Development Center (FFRDC) and operated by The Mitre Corporation. The
Mitre maintains the CVE entries at https://cve.mitre.org, but they do not include
technical information about the risk and, eventually, the fix. Those details are
maintained by the National Institute of Standards and Technology (NIST) in their
National Vulnerability Database (NVD) system browsable at https://nvd.nist.gov,
which is mirroring the Mitre database.

The NVD implements in their Common Vulnerability Scoring System CVSS
version 3.0 a metric to classify vulnerabilities, which is based on the combination
of factors like attack vector, scope, privileges required, user interaction, impact, and
exploitability. The scoring points resulting from the combination of the previous
factors are then layered in severity ranges, as shown in Figure 4.13, NVD Scoring:

Figure 4.13: NVD Scoring

There are different ways to define an acceptable risk level; the preferred one would be
zero CVE, but other considerations could affect this decision, such as legacy system,
firewalling mechanism, access control, network exposure, business considerations,
market presence, and geo-location.

Securing Container Images and Registries 133

The options in Figure 4.14, Acceptable Risk Level, are the most common ones, but in
relation to the specific business goals, there could be other combinations to consider,
such as remediations for all the scoring levels within a certain time frame and in
relation to compliance goals.

This threshold is extremely important and must be evaluated accurately. Let’s
examine in detail Figure 4.14, Acceptable Risk Level, with the most common options
available:

Figure 4.14: Acceptable Risk Level

The previous strategies are not mutually exclusive; they can be combined in different
ways to achieve zero trust. Remember that the zero trust model means that devices,
systems or components are never trusted by default, even if previously verified.

In relation to the Acceptable Risk Level’s threshold, the vulnerability management
strategies adopted are summarized in Table 4.13, Container Vulnerability Management
Strategies, which details the most common strategies for applying security best
practices to container platforms:

Description Description
After build Images are scanned after build and before push.
Registry scan Images are scanned after push and before pull.
Staging Strategy Images are scanned in a staging registry.
Runtime scan Container are scanned during execution.
Combined Strategy Managed strategy combination.

Table 4.13: Container Vulnerability Management Strategies

134 Security for Containers and Kubernetes

The After Build scan approach is arguably the simplest and immediate. It offers
immediate feedback after the image is built and helps keep the registry tidy. Of
course, the build can happen on a local machine with tools like Anchore, Trivy
or Clair, or integrated in Continuous Integration (CI) pipelines and using cloud
systems like Azure DevOps or AWS CodePipeline, where the same tools can be
leveraged in the earliest of the shift-to-the-left approach possible.

Figure 4.15, After Build, illustrates the location of the scanner immediately after
the image has been generated by the CI pipeline. If the scanned image meets the
requirements of the Acceptable Risk Level, it gets pushed to the registry; if it does
not, the build fails and an alert is generated for the developer to review the code.
There is no deployment at this stage. Refer to the following figure:

Figure 4.15: After Build

In the Registry Scan approach, the container image scanner is placed inside the
container registry system, so the scan happens after the image has been built and
pushed to the registry. The container registry has no knowledge of what type of
software that image contains or if the image has any vulnerability; it accepts the
push and then starts the scan, as illustrated in Figure 4.16, Registry Scan:

Figure 4.16: Registry Scan

If the container image has a lower level of vulnerability, as defined in the Acceptable
Risk Level threshold, the image is deployed, and it becomes a container. If the
threshold is exceeded, the scanner marks the image as failed and an alert is triggered

Securing Container Images and Registries 135

for the developer to review the code, then the image is not deployed. The Staging
Registry strategy involves having two container registries, the staging one is
dedicated to analyzing the image at an earlier stage in development cycle, and it
ensures that no vulnerable images reach the production registry, as shown in Figure
4.17, Staging Registry:

Figure 4.17: Staging Registry

The advantage of this approach is the reduction of the clutter in production, but it
implies overhead in managing the two separate systems and pipelines. It does make
sense in certain highly regulated environments, such as biotechnology or science-
related areas where compliance imposes strictly security control measures.

The Runtime Scan strategy goes beyond all the illustrated container registry
scanning approaches, so it is scanning the container itself rather than the container
images from which the container is created. Take a look at Figure 4.18:

Figure 4.18: Staging Registry

It is essentially an application of the Dynamic Application Security Testing (DAST)
methodology that we will discuss in the next chapter, because it aims to scan the
running application, and therefore, is outside the domain of the CI/CD pipeline.

136 Security for Containers and Kubernetes

DAST uses a behavioral approach and is quite different from the methodologies we
have seen so far. It looks at the running application from the “outside”, trying to
exploit its weakness, and it is limited to test only running executables.
Finally, a combination of all the previously mentioned approaches can provide
greater security posture, applying vulnerability management alongside all the steps
of the application life cycle, as illustrated in Figure 4.19, Combined Strategy:

Figure 4.19: Combined Strategy

Lastly, in Kubernetes, we can use the Kubernetes Admission Controller, to leverage
external scanners and define policies that would admit a container to be deployed
after meeting certain criteria. This topic will be discussed in Chapter 8, Kubernetes
Orchestration Security.

Conclusion
In this chapter, we discussed the various aspects of container image security and build
file configuration security, and we looked at how to scan and verify images. Then,
we analyzed how to secure a container registry and explored the communication
between the registry itself and external tools.
We also discussed how to control, audit and scan images, with arguments about the
various vulnerability management strategies.
In the next chapter, we will learn about container application security.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Application Container Security 137

Chapter 5
 Application

Container
Security

Introduction
Containers, also known as containerized applications, are the essence of a
microservices model, where each service is virtualized and exposed on a single
running container instance. Readers with many years of experience in the field, and
system administrators with memories on when the Linux, Apache, MySQL and PHP
(LAMP) stack approach was not even virtualized (see Figure 5.1, LAMP) and all

138 Security for Containers and Kubernetes

the services in the stack were running on the same physical hardware, the jump to
containerized applications is significantly innovative.

Figure 5.1: LAMP

The microservices architecture, one of the service-oriented architecture (SOA)
applications of software engineering, is an architectural pattern that defines an
application as a collection of independent services, communicating between them
through a network protocol as opposed to a monolithic application where there are
no moving parts. And if a single part of the application is failing, the application
functionality is compromised. It is worth recalling that Figure 1.1, Virtual Machines
and Containers Structure, in Chapter 1, Containers and Kubernetes Risk Analysis,
with a few adjustments in relation to the concept illustrated in this chapter, becomes
Figure 5.2, Microservices Architecture:

Figure 5.2: Microservices Architecture

Application Container Security 139

The advantages of this model are immediate: separation of duties, parallel developing,
independent deployment, and monitoring accuracy, but containerized applications
expose some security challenges that we partially discussed in the previous chapter.

Containerized applications run isolated systems, each with a specific, and notably,
sole purpose. Those are considered as the ensemble of the application itself, including
all its dependencies, system libraries, executables and configuration files, as shown
in Figure 4.11, Container, in the previous chapter.

Structure
In this chapter, we will discuss the following topics:

•	 Application Container Security

•	 Threat Intelligence

•	 CI/CD Security Integration

•	 Shift Left

•	 Remediation

•	 Manage Privileges

•	 Penetration Testing

•	 Third-Party Components

Objectives
This chapter aims to provide a set of security best practices for containerized
applications, discussing security methodologies for containers while also introducing
concepts around threat intelligence, shift-to-the-left, and penetration testing. We
will also discuss how these methodologies and their implementation in complex
continuous integration and continuous deployment pipelines, affect positively a full
containerized secure software development life cycle.

Application Container Security
Before getting deep into analyzing the various aspects of a comprehensive
application container security workflow and their relationship with any single
step of the Software Development Life Cycle (SDLC), there is a framework that
has recently become popular in the community that provides a quick and efficient
breakdown set of security controls and requirements, the OWASP CSVS, which
stands for Container Security Verification Standard.

140 Security for Containers and Kubernetes

Readers familiar with such methodologies for container security would also be
familiar with frameworks like National Institute of Standard and Technology
(NIST) Application Container Security Guide publication NIST.SP.800.190 or Center
for Internet Security (CIS) Docker Benchmark.

The NIST Application Container Security Guide is a concept guide that focuses
on abstraction of virtualization and containerization. It highlights, with a risk-based
approach, the security best practices, the remediations or countermeasures needed
to reach a sufficient level of container security posture, but it does not offer any
specific technical suggestion.

The CIS Docker Benchmark is a prescriptive guide providing security controls
and requirements to elevate the security posture of the container platform, a very
technical document that is considered one of the industry references today but could
result in a very challenging implementation due to its over two hundred security
recommendations.

The OWASP Container Security Verification Standard aims to provide a middle
ground approach with a clear security standard framework for container platforms,
with an easy-to-go approach to verify the security posture related to container
solutions. This framework proposes a new approach with three layers: a Level 1
Basic Security that can be applied to all the container platforms, a Level 2 Advanced
Security meant for sensitive data container system in need of additional security
protection, and a Level 3 High Security container project handling medical data like
Personal Health Information (PHI) or high value transactions. Readers interested
in enhancing their knowledge about the solutions mentioned earlier can refer to the
following addresses:

•	 OWASP CSVS https://owasp.org/www-project-container-security-
verification-standard/migrated_content

•	 CIS Docker Benchmark https://www.cisecurity.org/benchmark/docker

•	 NIST SP 800-190 https://nvlpubs.nist.gov/nistpubs/specialpublications/
nist.sp.800-190.pdf

In the previous chapter, we acknowledged, with reference to Figure 4.11, Container,
the three main components of a container application, which are as follows:

•	 The application code itself and its dependencies

•	 The framework or runtime necessary to successfully execute the application

•	 The operating system on which the two previous points are ingested

As we discovered in the previous chapter, there are different ways to enhance security
posture in a container platform, and each of the three points identified earlier has a
specific methodology that is summarized in Figure 5.3, Microservices Model:

Application Container Security 141

Figure 5.3: Microservices Model

There are two ways to protect a running container, both of which were introduced
in the previous chapter: an external method, using Nginx Reverse Proxy, and an
internal method, using a container runtime testing system. In the previous chapter, we
looked at Nginx as a security authentication mechanism, specifically in conjunction
with a container registry, but Nginx can be used also, and mainly, as a reverse proxy
system to work as the first line of defense against running containers. The benefits
that Nginx Reverse Proxy add in value as security posture to the container platform
are as follows:

•	 Façade Routing and HTTPS

•	 TLS Offloading

•	 Authentication and Authorization Offloading

Table 5.1, Reverse Proxy lists the main features:

Type Description
URLs restrictions URLs Access Restrictions
Intercept Response Headers Upstream servers’ headers interception
Control Request Methods Control the request methods
Control Domain Level Access Define what [*].domain can be accessed and by who
Façade Routing URLs Layer exposed
URLs rewrite Fix broken URIs
API Version Control Versioning Control

Table 5.1: Reverse Proxy

142 Security for Containers and Kubernetes

Let us visually clarify the intended architecture of this solution in Figure 5.4, NGINX
Reverse Proxy:

Figure 5.4: NGINX Reverse Proxy

In the preceding example, the network traffic is coming from the left, hitting the
Nginx Reverse Proxy only. There are two different domain names: api.mydomain.
com running on port 80 with three different URIs (Uniform Resource Identifier),
and api2.mydomain.com running on the same port but with its own unique URI.
Those two domains are configured on the NIGNX reverse proxy system to talk
uniquely with the container services running in the container runtime.

The Nginx Reverse Proxy is blocking all the malicious activities, such as the PUT
attempt on the /admin URI, but is allowing all the legit network connections. A
sample of the Dockerfile snippet for the login service is in the following code:

1. login:

2. image: node:slim

3. container_name: login

4. depends_on:

5. - nginx-proxy

6. - letsencrypt

7. environment:

8. - VIRTUAL_HOST=api.mydomain.com

9. networks:

10. - my-reverse_proxy-net

Note: The preceding code is only an example.

Application Container Security 143

You would have noted the letsencrypt directive in line six. Let us Encrypt is a non-
profit Certificate Authority (CA) maintained by the Internet Security Research
Group (ISRG) that issues X.509 certificates for Transport Layer Security (TLS)
encryption for free, with the goal of securing websites using HTTPS. The non-profit
organization has many major sponsors, including but not limited to Facebook,
Google Chrome, Mozilla Foundation, Cisco Systems and AWS. Table 5.2, TLS
Offloading, illustrates the complexity of managing TLS:

Type Description
TLS Protocols v1.1, v1.2, v1.3
Cyphers RSA, PSK, ECDH, and so on
Sessions How to handle TLS sessions
OCSP Online Certificate Status Protocol (revoking process)
Key Management How to manage key pairs
Vulnerabilities How to manage vulnerabilities
Patching How to implement a patching cycle
Performance degradation Overhead created by the TLS system

Table 5.2: TLS Offloading

The implementation of the Let’s Encrypt solution would help offload all the
managing key points expressed in the previous table by automating the TLS delivery
mechanism through container deployment. Let us look at Figure 5.4 again, with the
addition of the letsencrypt directive in Figure 5.5, NGINX Let us Encrypt.

Deploying the Nginx Reverse Proxy through a container implementing the
letsencrypt directive allows us to pull a certificate from the Let’s Encrypt Certificate
Authority. The reverse proxy uses a system called certbot to request certificates from

144 Security for Containers and Kubernetes

Let’s Encrypt, then it stores those certificates and keys in memory or on disk, or
loaded on demand with a mechanism called lazy load.

Figure 5.5: NGINX Let us Encrypt

Nginx Plus, an enterprise version of the famous Nginx system, also offers a Key
Value Database that can be implemented in this scenario to handle certificates and
keys, adding one more layer of security.

It is suggested to deepen the Nginx knowledge, as this is also one of the most utilized
Kubernetes Ingress Controller. You can find more information at https://www.nginx.
com/products/nginx/. Besides its native connection with container registries, Nginx
can be used for more complex authentication and authorization scenarios, such as
the ones in Table 5.3, Authentication and Authorization:

Type Description
IDP Support Identity Provider integration (OIDC)
MFA Multi Factor Authentication support
Authentication Credential Validation offloading
Policy Enforcement Authorization enforcement
Interception Block unauthenticated requests

Table 5.3: Authentication and Authorization

Nginx can load a JSON WEB Key file, essentially a secret file in JSON format
returned upon client request, into a specific domain to serve as a decryption key to

Application Container Security 145

decode the header string and payload into a JSON structure and build variables for
the contents of all the keys and values, as illustrated in Figure 5.6, JSON WEB KEY.

Figure 5.6: JSON WEB Key

In all the three cases illustrated so far, Nginx Proxy Server can be deployed as
a container to route the traffic to another container deployment via network
communication, as demonstrated in Chapter 4, Securing Container Images and
Registries, in the Private and Public Registries section. Eventually, it can be deployed
with the sidecar approach where essentially, a new Nginx Proxy Server is deployed
for each container.

Note: A couple of useful resources: for JWT encoding, visiting https://jwt.io is
helpful, while for the “iat” timestamp (as part of the payload in the previous
figure), which stands for “issued at”, this tool is excellent: https://www.
timestamp-converter.com.

Among the internal testing methodologies, the Dynamic Application Security
Testing (DAST) system is likely the most widely known, but there are two more
testing approaches less know to the public such as Interactive Application Security
Testing (IAST) and Runtime Application Self-Protection (RASP). Figure 5.7,

146 Security for Containers and Kubernetes

DAST vs IAST vs RASP, illustrates the main difference between the three testing
methodologies:

Figure 5.7: DAST vs IAST vs RASP

A DAST system comes to help when the container is created and the application
is up and running. It is a kind of “black box testing” because it doesn’t have access
to the application code and therefore, has no knowledge of software internals. The
main fields of applications are as follows:

•	 Detect exploitable vulnerabilities in a running application.

•	 Detect issues in HTTPS traffic, API system, sessions, JavaScript, authentication,
and so on.

•	 Simulate XSS (Cross Site Scripting), Code Injection, CSRF (Cross Site Request
Forgery) attacks, and so on.

Unfortunately, due to its very nature, a DAST system scan could result in unexpected
side effects like crashing the application or generating false positive alerts. Because it
scan the application from outside, it can detect the vulnerability, but it cannot tell the
portion of the code that generates that vulnerability. The best case scenario for DAST
applications is likely to be a testing environment.

There are many commercial solutions that can apply the DAST methodology, such
as Veracode Dynamic Analysis, Rapid7 InsightAppSec, and Detectify Deep Scan,
which is a cloud-based DAST tool created by a team of ethical hackers. On the open-
source side, ZAP (Zed Attack Proxy) stands out as it has a passive mode called the
Baseline Scan that doesn’t attack the application. This solution has been adopted by
GitLab as part of their DevSecOps CI/CD pipeline.

Application Container Security 147

An IAST is a modern approach for testing application security; it is a hybrid
methodology that combines the best SAST and DAST tools. An IAST tool can
scan the application during the development phase in a white-box approach, and
during the application execution runtime using a black-box approach, by means of
intercepting actual user inputs and actions. Refer to the following figure:

Figure 5.8: IAST

Figure 5.8, IAST, shows the IAST approach as a combination of SAST and DAST,
combining the best of the two worlds in one methodology. A code analyzer tool
(SAST) can look for security issues in the source code, but it can’t detect an SQL
injection in that code, and vice versa: a DAST tool can look for Cross Site Scripting
(XSS), but it can’t verify which part of the code is generating that vulnerability. This
is when the benefit of the IAST approach comes into scope: in its ability to analyze
and explore the surface of the application, and also in pinpointing the vulnerability
to its source code.

This brings many advantages, such as identifying vulnerabilities early in the
deployment phase (shift-to-the-left approach), allowing for faster fix and remediation
processes, reducing false positives and also creating a consistent, homogeneous
development life cycle, enabling better control on both the coding experience and
the runtime environment.

There are two types of IAST, as illustrated in Figure 5.9, IAST types: active and
passive. An active IAST combines application security testing with vulnerability
scanning via an agent installed on the host machine (it could be the container from

148 Security for Containers and Kubernetes

where the application is launched), while a passive IAST has no application security
testing methodology.

Figure 5.9: IAST types

There are two open-source projects and one commercial solution in this field worth
highlighting: Hvid Security, Vega and W3AF:

•	 Hvid Security was one of the first security tools enabling DevSecOps best
practices combining source code inspection and application security testing.
It was initially published as an open-source project and then acquired by
Datadog at the beginning of 2022 as part of the Datadog Cloud Security
Platform.

•	 Vega is a web application security testing platform written in Java
developed by Subgraph. It runs in two modes: as automated scanner and as
intercepting proxy. When running in the automated scanner mode, it crawls
the application, collecting information like the Google spider but with the
difference that Vega will try to run the appropriate software module to inject
code into any vulnerability it discovers. A module is essentially an attack
vector (XSS, SQL Injection, and so on). When running as intercepting proxy,
Vega is analyzing the browser interaction with the application, intercepting
requests and responses, and it can override those requests and induce anomaly
behavior. Interestingly, Vega can also simulate HTTPS communications
generating dynamic certificates to simulate real-world attack conditions.
Visit the following web address for more info https://subgraph.com/vega.

•	 W3AF is an application security tool focused on attack and auditing. Its
approach is very similar to what Vega can do, with two major differences:
it has an extensive vulnerability type library, over 200 (refer to Table 5.4,
W3AF Vulns Type, for an overview of the most significant ones), and it has

Application Container Security 149

been developed in Python providing, greater flexibility and easy integration.
Refer to the following table:

Type Description
Audit Blind SQL injection, Buffer overflow, LDAP injection, MX injection,

Insecure SSL version, eval() input injection, Shell shock, Rosetta
Flash, and so on.

WebSocket Insecure WebSocket Origin filter, Open WebSocket, Origin restricted
WebSocket, Websockets CSRF.

Crawl dwsync.xml file found, phpinfo() file found, PHP register_globals,
Google hack database match, Cross-domain allow ACL, Potential
web backdoor, robots.txt file, Identified WordPress user, and so on.

Grep US Social Security Number disclosure, Parameter has SQL
sentence, NTLM authentication, Cookie without HttpOnly, Secure
flag missing in HTTPS cookie, Click-Jacking, Private IP disclosure,
Oracle application server, .NET ViewState encryption is disabled,
Insecure password form access over HTTP.

Infrastructure HTTP traceroute, Apache Server version, Virtual host identified,
Internal hostname in HTML link, PHP Egg, DAV methods enabled,
Reverse proxy identified, HTTP load balancer detected, MS15-034,
JetLeak.

Brute force Guessable credentials.
Attack DAV Misconfiguration, Arbitrary file upload, OS Commanding

code execution, Code execution via remote file inclusion, Arbitrary
file read, Eval() code execution.

Table 5.4: W3AF Vulns Type

RASP is considered one of the most advanced solutions. It analyzes the application
traffic and behavior at the runtime to detect and prevent cyber threats. It can
review the application source code even if the executable is compiled, it analyzes
vulnerabilities and weakness, and proactively terminate user sessions and issue
alerts if a drift from an expected behavior is detected. Even if RASP seems to be the
perfect solution, it is not meant for replacing SAST, DAST or IAST. They all act at
different levels of the development life cycle, with some overlapping features; take a
look at Figure 5.7, DAST vs IAST vs RASP.

Due to its very nature, RASP is the perfect tool for legacy applications or for
applications with a reduced update life cycle. Although a RASP system seems pretty
like a Web Application Firewall (WAF) field application, they are different in essence:
a WAF system analyzes the network traffic before the traffic hits the application

150 Security for Containers and Kubernetes

(perimeter inspection), while a RASP system analyzes the network traffic and
eventually blocks malicious activities in relation to the application’s behavior.

Figure 5.10: RASP

Figure 5.10, RASP, depicts the network communication flow, where it is visible that
the WAF is on the network perimeter rather than on the application perimeter. The
RASP system analyzes the application’s behavior and decides whether to block a
specific request, generate an alert or allow the traffic and generate a response based
on that.

There are several security tools using the RASP approach, such as Datadog Real-
Time Container Monitoring, Contrast Security Protect, Imperva, Dynatrace
Application Security, Sysdig Falco, Rapid7 Threat Command, Veracode Analytics
and CrowdStrike Falcon.

Threat intelligence
Since RASP has knowledge of the application’s runtime environment, it can be
tailored to the application’s specific requirements. While systems like WAF or
Intrusion Protection System (IPS) are traditionally related to network infrastructure
security and are, therefore, used to monitor suspicious activities via network traffic
or user sessions, their utilization is limited to the network perimeter.

RASP monitors the application from the inside, moving security inside the container
but in an intelligent way because it evaluates real-time application traffic within the
context of its expected behavior. It is very effective in cloud environments as field

Application Container Security 151

application of cloud security, where traditional security countermeasures are not
technologically equipped to deliver security in the cloud.

RASP is application specific, so the sensors installed as part of the code deployment
must meet the programming language environment to work properly, but thanks to
its deep embedding in the application, it provides a series of advantages:

•	 A RASP system makes decisions based on the context in which the application
resides because it has knowledge of the application architecture.

•	 It protects from various attack vectors, including OWASP’s Top Ten.

•	 No configuration files, no policies, no rules, and no maintenance is expected,
just as simple as installing the RASP sensor.

•	 Prevents Cross-site scripting (XSS) and SQL Injection attacks.

•	 Helps with Zero Day and Denial of Service / Distributed Denial of Service
(DoS / DDoS), attacks.

Let us produce a real-world scenario for an interesting tool developed by Baidu:
OpenRASP. OpenRASP integrates a protection engine inside the application; the
following SQL query has no malicious payload:

1. SELECT * FROM mytable WHERE ID = '65324' and begin_time >= '2022-09-
30' ORDER by end_time

However, take a look at the following request body:

1. orderBydata=end_time+desc&query=ID+%3d+'65324'+and+begin_
time+%3C%3D+'2022-09-30'

It can change the logic of the SQL statement, so OpenRASP would detect it as a
potential malicious activity.

Java is a widely used programming language, and its adaptation as web system is not
new. Java Server Pages (JSP) is a server-side scripting system based on the famous
Java technology created by Sun Microsystems in the late nineteens. This solution was
created to generate Hyper Text Markup Language (HTML), Extensible Markup
Language (XML), and other type of pages dynamically, conceptually working like
PHP or ASP but using the Java programming language as the back end.

A bi-directional encrypted network traffic over HTTPS would effectively bypass
WAF and IDS, even with the following payload, where a Behinder remote web shell
is requested from the server:

1. java.lang.ProcessBuilder.Start

2. ...

152 Security for Containers and Kubernetes

3. net.rebyond.behinder.paylod.java.Cmd.RunCMD

4. net.rebyond.behinder.paylod.java.Cmd.equals

When the attackers break through the web application firewall and intrusion
detection system, they can upload the backdoor., The Endpoint Detection and
Response (EDR) would overlook the threat since the communication is encrypted,
while OpenRASP, acting at the application layer would have been able to detect the
threat.

Note: Behinder is a very popular implant web server capable of providing very
powerful tools to attackers, such as memory-only web shells, and native support
with tools like Meterpreter and Cobalt Strike.

That is how Chinese hackers were able to compromise some Confluence servers
from the famous Atlassian system in early June 2022, leveraging initially a zero-
day vulnerability, impacting the Java-based content management system.
This incident is what was coded as CVE-2022-26134; you can find more
information at https://confluence.atlassian.com/doc/confluence-security-
advisory-2022-06-02-1130377146.html.

CI/CD Security integration
Modern software development life cycle processes are managed using CI/CD
(continuous integration / continuous delivery) tools, for the purpose of completely
automating the release process. Security testing should be integrated fully inside the
continuous integration / continuous delivery pipelines, from planning to testing
and deployment.

The application security methodologies we have discussed so far have their specific
application fields and therefore, can help test the application at a specific point in
time throughout the CI/CD pipeline. However, achieving overall visibility in any
of those specific phases can be challenging, resulting in a lack of knowledge or tool
managing overhead, especially in a smaller team.

ASTO is a new category of the application security field introduced by Gartner in
2017, and it stands for Application Security Testing Orchestration.

The purpose of an ASTO tool is to integrate security tools across all the phases of
the entire software development life cycle, as shown in Figure 5.11, SSDLC (Secure
Software Development Life Cycle), to fully enable DevSecOps processes.

As an orchestrator, an ASTO tool should be able to interact with any single security
tool at any given point in time of the SDLC via simple API calls, unlocking the
potential of a comprehensive Secure Software Development Life Cycle (SSDLC).

Application Container Security 153

Readers should think of an ASTO system as what Kubernetes is to containers or
what Rancher is to Kubernetes: a tool that can manage other tools.

Figure 5.11: SSDLC

ASTO tools are relatively new, but the market has proposed interesting solutions over
the last few years, such as Synopsys Intelligent Orchestration, GitLab DevSecOps,
Checkmarx Application Security Platform, and Snyk Application Security. But among
all of these, Kondukto.io stands out for the clear approach in applying security
principle, tools and best practices at the right stage of the pipeline. Unfortunately,
none of the mentioned platforms have an open-source or community edition, but
Snyk Application Security has a free tier up to 100 container tests per month.

Shift left
As discussed in the previous section, modern software development life cycle
processes are managed using CI/CD tools, and each specific phase has security
mechanisms to help improve the security of the entire process. The SDLC is secure
when each critical phase of the development process meets the security requirements,
in this case, we can talk about SSDLC.

Figure 5.12: SDLC

154 Security for Containers and Kubernetes

Readers should consider SDLC as a process that starts from a specific point in time
in a specific phase, planning, and extending in time from left to right whenever
a new phase is reached. This is visually expressed in Figure 5.10, SSDLC, and in
Figure 5.12, SDLC. Being able to apply security at an earlier stage of the software
development life cycle (shift left) means being able to elevate the security of the
overall development process and increase the security posture of the application.
The purpose of shifting left is not only to move the security testing at an earlier point
in time within the software development life cycle but also to plan to apply security
testing from an earlier phase throughout the entire SDLC.

A less known Agile or DevOps methodology is Shift Right, which applies testing
and monitoring procedures in production to help DevOps uncover unexpected
malicious scenarios or activities that may not have been detected within previous
phases of the SSDLC.

When applying both methodologies, especially in containerized environments, the
results could be an overload of vulnerability detections that could add friction to
the process and slow down the development life cycle. The common way to address
this issue is to define the DevSecOps maturity level within the organization and
understand the balance between development and security.

Remediation
In early 2019, a security misconfiguration in an AWS cloud account led to the loss of
sensitive information from the Capital One Financial Corporation, also known as the
Capital One Hack. The hack involved over 100 thousand Social Security Numbers
(SSNs) and 100 million people’s credit card information. No details were disclosed
about the specific vulnerability exploited by the attacker, but all the investigation
information gathered by the FBI was leading to a cloud misconfiguration in the
Capital One AWS IAM service for WAF role. Readers curious about the case can read
more about it at https://www.justice.gov/usao-wdwa/press-release/file/1188626/
download.

A Cloud Security Posture Management (CSPM) solution detects misconfigurations
in cloud environments that could expose the infrastructure of the containerized
application to potential risks and attack vectors. This kind of solution can
recommend remediations or automatically apply security best practices based on
the organization’s policies or well-known framework security standards.

One of the tools we discussed in the previous chapter, Trivy from Aqua Security, has
recently added the CSPM capability to its scan system specifically for AWS, becoming
the Aqua Wave security solution. Aqua Cloud Security Posture Management is
based on three interesting features:

•	 Multi-Cloud Visibility

Application Container Security 155

•	 Rapid Remediation

•	 Cloud Native Security

The technology used by Trivy is based on another tool that Aqua Security acquired
in 2019: CloudSploit. The open-source version could be running as a Docker
container simply cloning the mentioned git reop and running Docker build. Table
5.5, CloudSploit Overview, provides a recap of the various features of CloudSploit:

Type Description
Cloud AWS, Microsoft Azure, Google Cloud Platform, Oracle Cloud
Compliance HIPAA, PCI, CIS Benchmarks
Output CSV, JSON, XML
Plugin A set of security controls or requirements required to analyze a specific

environment or system
Remediation A set of actions needed to perform remediations in consideration of the

scanning findings

Table 5.5: CloudSploit Overview

The most famous commercial alternative to CloudSploit currently in the market is
CrowdStrike CSPM, with its container security and runtime protection, containerized
application protection from the build time to the runtime following the SDLC, breach
prevention, automate response and behavioral profile with drift detection.

Managing privileges
Secrets are privileged credentials used to perform authentication when privileged
users need to access sensitive container applications or data. There are several types
of secrets, but let us summarize them in Table 5.6, Secrets:

Type Description
User credentials Username and password combination
Database strings Secret used to establish a connection between the application

and the database
Keys Cryptographic keys establish secure communication
Cloud Service
Credentials

Authentication requested to access cloud resources or data

API keys Secret requested to identify an API source
Tokens API access request for users

Table 5.6: Secrets

156 Security for Containers and Kubernetes

Secrets must never be stored inside a container; it is critical to adopt a system that
manages secrets and provides them to the container when requested. Container
orchestrator systems like Kubernetes often have a built-in secret management
system, but it also possible to adopt specific cloud provider secret management, like
AWS Secret Manager and Azure Vault, or plug either in the cloud or on premises
open-source solution, such as Hashicorp Vault.

Figure 5.13: Secrets

Figure 5.13, Secrets, illustrates the three methodologies to pass a secret to container,
each with a progressive decreased risk exposure.

When outlining the features that a secret management should have, few basic
handling characteristics should be addressed:

•	 Encryption at rest and in transit, decryption on the fly, only in memory

•	 Restrict access only to container that need to retrieve the secret

•	 Secret rotation and secret revocation

•	 Auditing

In April 2021, hackers were able to gain unauthorized access to CodeCov Bash
Uploader script, thanks to an error in its Docker image creation process that allowed
the attackers to extract the credentials needed. This address, https://about.codecov.
io/security-update, contains the full incident report. At the top of the reverse pyramid
in Figure 5.12, there is the container image where secrets could be stored either in the
application source code or as a layer of the image via Docker Build; those secrets are,
therefore, available to everyone who has access to the code or can inspect the image.

When the secret is stored at the container runtime level, anyone who can exec into
the container also has the ability to read the secret, and it also can be exposed in /
proc. Container filesystems are temporary volumes, which means their ephemeral

Application Container Security 157

life has a pre-determined end; still, it is not the right approach to apply security best
practices.

Vault provides encryption out-of-the-box, and the secret gets ingested into the
container application as a file via exchange of token, meaning there is control over
the secret ingestion and eventually, auditing. If the secret changes, for example on
rotation needs, the token associated with the secret changes, so Vault revokes the
previous file and ingests the new one.

The main difference in the Docker Swarm secret management system is that while
Vault can be used with any container orchestrator, Docker secret management works
only with Swarm; that said, it doesn’t not provide an easy secret rotation mechanism.

HashiCorp Vault is the most known access management tool due to the famous
cousin Terraform system from the same company, but there are alternatives out
there worth mentioning, such as Delinea Secret Server, CyberArk Privileged Access
Management, BeyondTrust DevOps Secrets Safe and Symantec Privileged Access
Management.

Penetration testing
Penetration testing, also known as pen test, is a simulated and authorized attack on
a system aiming to evaluate the security posture and identify weaknesses that could
be exploited by a hacker. There are typically three kind of penetration tests: white
box, grey box and black box.

In a white box penetration test, all the information related to the application or
system is provided to the tester in advance; the tester acquires knowledge about
the application business logic, the underlying infrastructure, the programming
language and deployment mechanism. In a black box penetration test, the tester has
the minimum level of information necessary to start the attack procedure, such as the
URL endpoint or the hosting platform. This approach is the closest to a real-world
attack simulation scenario. A grey box penetration test is a middle way between the
previous two approaches, and the level of information provided varies according to
the agreement between the tester and the organization.

Penetration tests are considered one of the cybersecurity exercises belonging
traditionally to the Red Team. In cybersecurity, a red team aims to identify, test and
assess the vulnerabilities of a given system or application; in other words, Red Team
is synonymous of attackers.

Attack frameworks are often used as base model for threat modelling, a process by
which threats can be identified, enumerated and prioritized. The most common ones
are as follows:

158 Security for Containers and Kubernetes

•	 Spoofing, Tampering, Repudiation, Information disclosure, Denial of
service, Elevation or privilege (STRID) created by Microsoft in the late ‘90s

•	 Process Attack Simulation Threat Analysis (PASTA)

•	 Visual Agile Simple Threat (VAST)

•	 Linkability, Identifiability, Non-repudiation, Detectability, Disclosure of
Information, Unawareness, Non-compliance (LINDDUN) a privacy threat
model

•	 Confidentiality, Integrity, and Availability (CIA)

Threat modelling is traditionally considered an element of defense and therefore,
belonging to the Blue Team. The OWASP project has an open-source, very
interesting threat modelling tool based on STRIDE, LINDDUN and CIA aiming to
provide threat modelling diagrams called OWASP Threat Dragon. There are several
open-source attack systems that the red team can use to conduct simulated attacks,
such as Mitre Caldera, Red Canary Atomic Red, Uber Metta and Endgame Red
Team Automation. Most of these can be used with penetration tools like Metasploit,
nmap, Wireshark, and ZAP.

The Mitre has also defined several other attack frameworks, such as for Windows,
macOS, Linux, Cloud, Mobile, and Network, but it has defined an attack framework
for containers in their Mitre ATT&CK Container Matrix, which is also being used
as the attack framework for container orchestrator like Kubernetes, as shown in
Table 5.7, Mitre Containers Matrix. You can visit https://attack.mitre.org/matrices/
enterprise/containers for more information.

Type Description
Initial Access •	 Exploit Public-Facing Application

•	 External Remote Services
•	 Valid Accounts

Execution •	 Container Administration Command
•	 Deploy Container
•	 Scheduled Task/Job
•	 User Execution

Persistence •	 External Remote Services
•	 Implant Internal Image
•	 Scheduled Task/Job
•	 Valid Accounts

Application Container Security 159

Privilege
Escalation

•	 Escape to Host
•	 Exploitation for Privilege Escalation
•	 Scheduled Task/Job
•	 Valid Accounts

Defense Evasion •	 Build Image on Host
•	 Deploy Container
•	 Impair Defenses
•	 Indicator Removal on Host
•	 Masquerading
•	 User Alternate Authentication Material
•	 Valid Accounts

Credential Access •	 Brute Force
•	 Steal Application Access Token
•	 Unsecured Credentials

Discovery •	 Container and Resource discovery
•	 Network Service discovery
•	 Permission Groups discovery

Lateral Movement •	 Use Alternate Authentication Material
Impact •	 Endpoint Denial of Service

•	 Network Denial of Service
•	 Resource Hijacking

Table 5.7: Mitre Containers Matrix

Among all the tools mentioned in the preceding table that use the Mitre Attack
framework for Containers, OWASP ZAP (Zed Attack Proxy) is likely the most
widely known open-source resource. The goal of the ZAP system in penetration
mode is to break into the target system and start a denial-of-service attack. ZAP
works out the penetration test in three phases: explore, attack and report.

The first phase includes exploring attempts to understand and learn about the target
system and gathering information like software type, endpoint, programming
language, patching level; the second phase is executed trying to break into the
system using known vulnerabilities; in the last phase, a report highlighting results
of the penetration test is created, including exploitable vulnerabilities and severity.

ZAP is a very flexible system, as it can be integrated into CI/CD systems, it provides
a command line interface for easy automation processes and an API interface.

160 Security for Containers and Kubernetes

Third-party components
Package managers and modules are one of the most important parts of any
programming language. Many of today’s languages, like Golang, Python, Java or
NodeJS, can install additional resources to enhance and streamline the development
process. It is not trivial that many of the routine or functions that are common to
many already have a pre-determined set of instructions free to everyone aiming to
let developers focus on the customer code they are working on.

Then, downloading packages for that purpose significantly increases the risk
associated with enhancing the coding experience. Attackers have found new attack
vectors by inducing developers in downloading misspelled packages; this type of
attack on third-party components is known as dependency confusion.

There are other packages aiming not to cover any of the application’s internal needs,
such as in relation to a specific function; therefore, the developers would not want
to integrate those inside the application because it would make coding heavier, but
they can be used externally as plug-ins or external modules, like logging for example.

This was the case the popular Java logging framework Log4j. Log4j is one of the
most popular background components running in many modern web applications.
Its only purpose is to log the application behavior. Log4j was one of the most
dangerous vulnerabilities discovered; NIST applied to CVE-2021-44228 a severity of
Critical scored with 10 out of 10. Log4j had a massive impact on the industry at the
end of 2021 and beginning of 2022, because was deployed in private organizations
but also in some US government agencies.

Third-party components, also known as supply chain security, are hard to spot,
especially in complex environments where multiple teams are working on different
parts of the same application and can affect all the layers of the software development
life cycle. The Log4j incident brought to the attention of the industry the importance
of having defined Software Bill of Materials (SBOM) as a key element of the SDLC.
SBOM is a list of libraries, modules and components that are required to build or
execute any given software and the structured supply chain relationship between
them. Key elements of the security guardrails to protect against supply chain attacks
are as follows:

•	 Implement only trusted dependencies

•	 Scan open-source software

•	 Patch regularly

Docker is working on a docker sbom directive aiming to provide a list of packages
related to a specific application for container. It can potentially enlist all the
components that the application needs or were used to build it. At the container
image level, this also includes the operating system and language-specific packages.

Application Container Security 161

Note: The Docker sbom command is still experimental.

The following is an example:

1. $ docker sbom neo4j:4.4.4

2. Syft v0.42.0

3. ✔ Loaded image

4. ✔ Parsed image

5. ✔ Cataloged packages [348 packages]

6.

7. NAME VERSION TYPE

8. ...

9. bsdutils 1:2.36.1-8+deb11u1 deb

10. ca-certificates 20220614 deb

11. ...

12. log4j-api 2.17.0 java-archive

13. log4j-core 2.17.0 java-archive

14. ...

The docker sbom command is based on Syft, a tool introduced in Chapter 4, Securing
Container Images and Registries, developed by Anchore. Syft is a flexible tool that can
create a map of the libraries, dependencies and packages of an application, starting
from the container image in standards as Docker Images, OCI (Open Container
Initiative) and Singularity. It can scan within the container image for the packages
listed in Table 5.8, Syft:

Description Description
Image scanning dpkgdb, apkdb, dotnet-deps, portage, ruby-gemspec, python-

package, php-composer-installed Cataloger, rpmdb, javascript-
package, java, go-module-binary, alpmdb

Directory scanning alpmdb, apkdb, conan , cocoapods, dpkgdb, hackage, rpmdb,
python-index, , dotnet-deps, python-package, php-composer-
lock, javascript-lock, java, java-pom, go-module-binary,
portage , go-mod-file, rust-cargo-lock, dartlang-lock, ruby-
gemfile

Table 5.8: Syft

162 Security for Containers and Kubernetes

It supports various programming languages like C, C++, .Net, Go, Objective-C, Java,
JavaScript, Haskell, PHP, Python, Ruby, Rust, Swift on several systems, like Alpine,
Debian, RedHat, and Jenkins for CI/CD integration.

Conclusion
In this chapter, we discussed the various aspects of container application security,
including specific examples of how to protect application containers at runtime.
We also discussed threat intelligence methodologies, and continuous integration
and continuous deployment implementation in container application automation
contexts, defining them as important parts of the secure software development life
cycle when shifting the security either on the left or on the right of the cycle.

In the last part of this chapter, we deepened our knowledge on remediation and
privilege management, exploring container attack framework and an application’s
third-party components.

In the next chapter, we will learn about monitoring container and security.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Secure Container Monitoring 163

Chapter 6
Secure Container

Monitoring

Introduction
Security information monitoring is the process of collecting and analyzing
information aiming to detect potential security threats. In Information Technology
(IT), monitoring refers to networking traffic, and from the security perspective,
traditionally, monitoring takes two main aspects:

•	 East-West traffic

•	 North-South traffic

East-West traffic unfolds typically as horizontal network traffic, a network
communication between two or more physical or virtual servers (for example, a web
server connecting to a database); routers, firewalls, or more general components of
a data center or cloud environment are all examples of east-west traffic network
communication. For instance, a communication between data centers could be
also considered “east-west traffic” (redundancy), and communication between
availability zones to use a more modern concept in relation to cloud systems. North-
South traffic is typically referred as vertical network traffic or any communication
between devices of a data center and an external system, which is physically located
outside the data center’s (or cloud) boundaries. A clear example is an external client
requesting connection to a system running within the data center or cloud system:

164 Security for Containers and Kubernetes

•	 The network traffic generated by the client that is entering the data center
or cloud system from outside through a perimeter device like a router or
firewall, is denominated to as southbound traffic.

•	 The network traffic generated by a system running within the data center or
cloud system moving outward, in response to a client request, is denominated
to as northbound traffic.

For visual understanding of these concepts, see Figure 6.1, Network Traffic:

Figure 6.1: Network Traffic

There is a tendency to trust east-west traffic because it is generated within the
boundaries of the internal network or the known network perimeter, but due to the
extensive usage of virtualized and containerized systems in modern applications,
east-west traffic has increased exponentially. The traffic increase is an obstacle to
the capability of any monitoring system to provide insightful metrics and logs, even
more, when these are collected for security purposes.

Structure
In this chapter, we will discuss the following topics:

•	 Container activity
o Docker Engine Monitoring
o Containers Monitoring

Secure Container Monitoring 165

o Host Monitoring
o Application Monitoring

•	 Workload observability
•	 Anomaly detection
•	 Externalize logs
•	 Alerting
•	 Topology visualization

Objectives
Monitoring containers requires insights and visibility at multiple layers of the
container stack. This chapter aims to provide security best practices for monitoring
containerized applications, container runtime and host servers.

Container activity
The same physical server running Docker could have a dozen containers running
on top of the host server, generating much more virtual traffic than the only
physical network interface card installed on the bare metal would. Among the many
monitoring systems in the market, such as Datadog, Dynatrace, SolarWinds Server
and Application Monitor, Splunk, Sysdig, New Relic, Elasticsearch Logstash and
Kibana (ELK), Prometheus is the only one that has been graduated by the Cloud
Native Computing Foundation. Refer to the following figure:

Figure 6.2: Container Stack Monitoring

166 Security for Containers and Kubernetes

Container observability is essential to maintaining a healthy running environment
and enhancing security best practices, including all the components of the container
stack, as illustrated in Figure 6.2, Container Stack Monitoring: Docker engine,
containers, host server, and applications running on top of the containers.

Docker engine monitoring
The dockerd daemon can be configured to enable metric ingestion into Prometheus;
it needs a Docker Swarm running under the hood and reconfiguring the Docker
daemon by adding the --metrics-addr parameter. The Docker Swarm configuration
can be retrieved from Chapter 3, Container Stack Security, the Network Security section,
and there is no need to reset the Docker environment, as the parameter is not adding
conflicts to the dockerd daemon executability. To modify the dockerd daemon in a
systemd-based environment, this is likely to be the most common approach; edit
the /etc/systemd/system/docker.service.d/override.conf file to look as
follows:

1. [Service]

2. ExecStart=

3. ExecStart=/usr/bin/dockerd -H unix:///var/run/docker.
sock -H fd:// -H tcp://0.0.0.0:2376 --tlsverify --tlscacert=/
home/luigi/ca-public-key.pem --tlscert=/home/luigi/server-
cert.pem --tlskey=/home/luigi/server-key.pem --metrics-
addr=192.168.1.226:9323

Reload systemctl and restart the Docker service with the following commands:

1. $ sudo systemctl daemon-reload

2. $ sudo systemctl restart docker.service

On the manager node, create the prometheus.yml file and add the following code:

1. # Prometheus config

2. global:

3. scrape_interval: 15s

4. evaluation_interval: 15s

Secure Container Monitoring 167

5. external_labels:

6. monitor: prometheus-monitor-docker'

7. rule_files:

8. # - "first.rules" # No rules for this example

9. # - "second.rules" # No rules for this example

10. scrape_configs:

11. - job_name: 'prometheus' # Establish reachability for
Prometheus system

12. static_configs:

13. - targets: ['192.168.1.226:9090']

14. - job_name: 'docker' # Connects the target to the dockerd daemon

15. static_configs:

16. - targets: ['192.168.1.226:9323']

To spin up the Prometheus system as a service on the swarm manager node, run the
following:

1. $ sudo docker service create \

2. --replicas 1 \

3. --name my-prometheus \

4. --mount type=bind,source=/home/luigi/prometheus.yml,destination=/
etc/prometheus/prometheus.yml \

5. --publish published=9090,target=9090,protocol=tcp \

6. prom/prometheus

Prometheus is available at the published port 9090 of the IP address associated with the
Docker swarm manager node. This is verifiable by browsing the Prometheus server
at the server address defined in the override.conf file at http://192.168.1.226:9090/
targets, where the endpoint of the Docker target shall be signed with an up green

168 Security for Containers and Kubernetes

state. Figure 6.3, Docker Engine Graph, depicts an example of Docker engine network
activity using the engine_daemon_network_actions_seconds_count metric:

Figure 6.3: Docker Engine Graph

The output graph could be flattened out if the Docker host has no container network
activity; it is possible to spin up a few containers to generate some network traffic to
populate the specific metric, such as the ping_service.

1. $ sudo docker service ls

2. $ sudo docker service rm hm3vsuhz0wzz

To terminate the Prometheus instance, list the running Docker services, and then
invoke the rm command as illustrated in the preceding two commands. All the
browsable metrics ingested by the Docker engine into Prometheus have engine_ as
the suffix.

Containers monitoring
A Docker Swarm service is not the only way to spin up a containerized Prometheus
system and expose the various metrics related to the host machine and the containers
running on top of it. That said, it can help redistribute the CPU load. A very popular
utility that works with Prometheus out-of-the-box is Container Advisor (cAdvisor),
a utility created by Google to monitor containers, aiming to help analyze and expose
resource utilization and performance data. Container Advisor works in a plugin
kind of approach, conceptually similar to how Grafana works with Prometheus. To

Secure Container Monitoring 169

scrape metrics that can be consumed by cAdvisor, Prometheus needs the following
scrape_configs parameter in the prometheus.yml file:

1. scrape_configs:

2. - job_name: container_advisor

3. scrape_interval: 5s

4. static_configs:

5. - targets:

6. - cadvisor:8080

Create a docker-compose.yml file to spin up the Prometheus system, including
the cAdvisor system exposed on the default metric port 8080, and the Redis data
structure system to queue up the metrics for delivery, as per the following code:

1. version: '3.2'

2. services:

3. prometheus:

4. image: prom/prometheus:latest

5. container_name: prometheus

6. ports:

7. - 9090:9090

8. command:

9. - --config.file=/etc/prometheus/prometheus.yml

10. volumes:

11. - ./prometheus.yml:/etc/prometheus/prometheus.yml:ro

12. depends_on:

13. - cadvisor

14. cadvisor:

15. image: gcr.io/cadvisor/cadvisor:latest

16. container_name: cadvisor

17. ports:

18. - 8080:8080

19. volumes:

20. - /:/rootfs:ro

170 Security for Containers and Kubernetes

21. - /var/run:/var/run:rw

22. - /sys:/sys:ro

23. - /var/lib/docker/:/var/lib/docker:ro

24. - /var/run/docker.sock:/var/run/docker.sock:rw

25. depends_on:

26. - redis

27. redis:

28. image: redis:latest

29. container_name: redis

30. ports:

31. - 6379:6379

The cAdvisor web user interface is available at the 192.168.1.226:8080 address.
To query container metrics, Prometheus provides the graph expression browser at
192.168.1.226:9090/graph, and to explore specific container stats and graphs,
the web interface is available at 192.168.1.226/docker/<container_id>, as
illustrated in Figure 6.4, Container Metrics. The IP address 192.168.1.226 has been
utilized as part of the exercise in this book but can, of course, vary according to the
specific platform configuration.

Figure 6.4: Container Metrics

Secure Container Monitoring 171

Interestingly, from the security standpoint, cAdvisor can supply metrics related
to the Control Groups, a feature of the Linux kernel that limits and isolates the
hardware resources of the host server that are virtualized into the container stack,
as observed in Chapter 2, Hardware and Host OS Security, and in Chapter 3, Container
Stack Security:

Type Description
rate(container_cpu_usage_seconds_total{name="cadvisor"}[1m]) Cgroups CPU usage
container_memory_usage_bytes{name="cadvisor "} Cgroups RAM usage
rate(container_network_transmit_bytes_total[1m]) Bytes transmitted
rate(container_network_receive_bytes_total[1m]) Bytes received

Table 6.1: cAdvisor Expressions

Table 6.1, cAdvisor Expressions, lists some of the expressions available for this use
case. All the browsable metrics detected by the cAdvisor system Prometheus have
container_ as the suffix.

Host monitoring
By host monitoring, this section refers to the capability of the Prometheus system to
collect a certain type of hardware-related metrics in addition to what the Linux kernel
can provide. To achieve host monitoring, Prometheus provides an additional system
called Node Exporter. Although a container version of the node exporter exists,
due to the very nature of the system, a containerized version is not recommended
from the security standpoint because it would need low-level machine access to
scrape the needed metrics, which would entail elevating the Docker engine access
to the underlying operating system. Node exporter can be downloaded, along with
various other systems, such as mysqld_exporter and memchached_exporter,
from https://prometheus.io/download. At the time of writing this book, node
exporter is on version 1.5.0. To install Node Exporter, download the latest version
available with wget; the file is compressed, so extract the necessary files and launch
it as the following instructions suggest:

1. $ tar xvfz node_exporter-1.5.0.linux-amd64.tar.gz

2. $ cd node_exporter-1.5.0.linux-amd64

3. $./node_exporter

Once node_exporter is up and running, we can redeploy Prometheus. For this task,
we are going to modify the prometheus.yml and docker-compose.yml files used
in the previous section to include the systems and metrics of the Docker engine, the
cAdvisor container monitoring, and the node exporter in one single deployment

172 Security for Containers and Kubernetes

process. The full prometheus.yml file includes all the scrape_configs sections
mentioned:

1. # Prometheus config

2. global:

3. scrape_interval: 5s

4. evaluation_interval: 5s

5. external_labels:

6. monitor: 'prometheus-monitor-docker'

7. rule_files:

8. # - "first.rules" # No rules for this example

9. # - "second.rules" # No rules for this example

10. scrape_configs:

11. - job_name: 'prometheus' # Establish reachability to Prometheus system

12. static_configs:

13. - targets: ['192.168.1.226:9090']

14. - job_
name: 'docker' # Connects the target to the dockerd daemon

15. static_configs:

16. - targets: ['192.168.1.226:9323']

17. - job_name: node # Connects the target on the node exporter

18. static_configs:

19. - targets: ['192.168.1.226:9100']

20. - job_name: cadvisor

21. static_configs: # Connects the target to cAdvisor

22. - targets:

23. - cadvisor:8080

For the deployment of the Prometheus monitoring stack, the docker-compose.
yml file is not going to change with respect to the one used in the previous section,
Containers Monitoring; by running a simple sudo docker-compose up command,
Prometheus will pick up the new configuration. In the example in Figure 6.5, Node
Exporter Metrics, the disk writes metric node_disk_writes_completed_total
collected on the host is showing the total KB (Kilobytes) of data written to the disk
in the last two hours.

Secure Container Monitoring 173

Figure 6.5: Node Exporter Metrics

All the browsable metrics ingested by the node exporter into Prometheus have node_
as the suffix. There is a very rich section of exporters or integration available with
Prometheus; some are officially maintained by the Prometheus organization, while
others are contributed by third parties, such as AWS for the CloudWatch exporter
or Microsoft for the Azure Monitor exporter, and Kubernetes itself. Refer to https://
prometheus.io/docs/instrumenting/exporters/.

Application monitoring
As per security best practices, it is of utmost importance to gain visibility inside
the application itself. This is the last component of the container stack monitoring
explained in this section. If the metrics collected exclude the application environment,
the visibility inside the container stack is only partial from the monitoring standpoint.
Prometheus has various plugins or modules that can be integrated with the main
system to collect logs; among these, to monitor applications, Prometheus suggests
adding the client libraries that expose a service’s internal metrics through an HTTP
endpoint.

The programming languages officially supported by Prometheus via the client
libraries are Go, Java or Scala, Python, Ruby and Rust. There are a number of
unofficial client libraries that can be integrated into the application code to expose
the internal metrics; among those, it is worth mentioning C or C++, .NET, C#, Node.
js, R, Perl and PHP. There is a third option that can be useful if no client libraries
are available or if the application code does not expect internal dependencies to be

174 Security for Containers and Kubernetes

implemented: the exposition format. It is based on two main types, the Text-based
format and the OpenMetrics Text Format, with the latter being Prometheus effort
to standardize metric ingestion for the non-client libraries implementation method.

Figure 6.6: Application Monitoring

Figure 6.6, Application Monitoring, refers to enabling logs with respect to the specific
programming language the application was built upon, and the ephemeral nature
of the container system poses some challenges in tracking metrics and process
information. Monitoring systems must be capable of understanding how containers
share resources with the operating system through the container engine to be able
to monitor the application and the whole container stack effectively. That said, the
application needs to be programmed to interact with the container engine to ingest
logs that can be consumed further down the line by the monitoring tools.

In order to provide a verifiable methodology on how to expose an application
endpoint metric to be collected by Prometheus, the following example will be based
on the Python client library. The Prometheus Python client library is distributed as
a pip (Python Packaging) package, simplifying the installation on systems where
Python is already installed. The following procedure illustrates how to install the
library on a Linux Ubuntu system, but the installation process is pretty similar on
any other nix-based system, including macOS.

Secure Container Monitoring 175

1. $ python3 --version # Verify Python is installed

2. Python 3.10.6

3. $ sudo apt install python3-pip # PIP Installation on Ubuntu

4. $ pip3 --version

5. pip 22.0.2 from /usr/lib/python3/dist-packages/pip (python 3.10)

6. $ pip3 install prometheus-client # Python Library Installation

7. Collecting prometheus-client

8. Downloading prometheus_client-0.16.0-py3-none-any.whl (122 kB)

9. Installing collected packages: prometheus-client

10. Successfully installed prometheus-client-0.16.0

Upon successful installation of the Python client library, it is possible to create
an example Python file that generates a simple request function and exposes the
application internal endpoint on HTTP. The metric defined in the following Python
script is identified by the REQUEST_TIME function at point 5, which will ingest
request_processing_seconds metrics into the Prometheus monitoring system:

1. from prometheus_client import start_http_server, Summary

2. import random

3. import time

4. # Metric initialization to track time and requests.

5. REQUEST_TIME = Summary(‘request_processing_seconds’, ‘Requests
processing time’)

6. # Populate function with metrics.

7. @REQUEST_TIME.time()

8. def process_request(t):

9. “””Prometheus Python Client Library example function.”””

10. time.sleep(t)

11. if __name__ == ‘__main__’:

12. start_http_server(9191) # HTTP Endpoint exposed on port 9191

13. while True: # Requests generation

14. process_request(random.random())

176 Security for Containers and Kubernetes

The preceding Python code can be executed either interactively in the Python
console or saved in a file and executed via the python command. For simplicity, save
the code in the metrics.py file and run the Python functions with the following
command:

1. $ python3 metrics.py

By connecting to the Python endpoint at http://192.168.1.226:9191 declared on
line 12 of the preceding code, the script should generate something like the following
output:

1. # HELP python_gc_objects_collected_total Objects collected during gc

2. # TYPE python_gc_objects_collected_total counter

3. python_gc_objects_collected_total{generation="0"} 233.0

4. # TLDR OMITTED. . .

5. # HELP process_virtual_memory_bytes Virtual memory size in bytes.

6. # TYPE process_virtual_memory_bytes gauge

7. process_virtual_memory_bytes 1.8151424e+08

8. # HELP process_resident_memory_bytes Resident memory size in bytes.

9. # TYPE process_resident_memory_bytes gauge

10. process_resident_memory_bytes 2.154496e+07

11. # TLDR OMITTED. . .

12. # HELP process_cpu_seconds_
total Total user and system CPU time spent in seconds.

13. # TYPE process_cpu_seconds_total counter

14. process_cpu_seconds_total 0.24000000000000002

15. # TLDR OMITTED. . .

16. # HELP request_processing_seconds Time spent processing request

17. # TYPE request_processing_seconds summary

18. request_processing_seconds_count 11.0

19. request_processing_seconds_sum 5.801927725995483

20. # HELP request_processing_seconds_
created Time spent processing request

21. # TYPE request_processing_seconds_created gauge

22. request_processing_seconds_created 1.6819079937132046e+09

Secure Container Monitoring 177

The request_processing_seconds metric output of the Python script execution
matches the function requirement declared in the metrics.py file at point 5. To
ingest the metrics created by the Python script into Prometheus, it is necessary to
amend the prometheus.yml file, adding the Python target into the scrape_configs
section. Therefore, the file used in the previous section, Host Monitoring, will become
as follows:

1. # Prometheus config

2. global:

3. scrape_interval: 5s

4. evaluation_interval: 5s

5. external_labels:

6. monitor: 'prometheus-monitor-docker'

7. rule_files:

8. # - "first.rules" # No rules for this example

9. # - "second.rules" # No rules for this example

10. scrape_configs:

11. - job_name: 'prometheus' # Establish reachability to Pro-
metheus system

12. static_configs:

13. - targets: ['192.168.1.226:9090']

14. - job_name: 'docker' # Connects the target to the dockerd daemon

15. static_configs:

16. - targets: ['192.168.1.226:9323']

17. - job_name: node # Connects the target on the node exporter

18. static_configs:

19. - targets: ['192.168.1.226:9100']

20. - job_name: cadvisor

21. static_configs: # Connects the target to cAdvisor

22. - targets:

23. - cadvisor:8080

24. - job_name: python # Connects the target to python endpoint

25. static_configs:

26. - targets: ['192.168.1.226:9191']

178 Security for Containers and Kubernetes

The last step of the application monitoring is to redeploy the Prometheus stack
using the updated prometheus.yml file. The Docker compose file does not need
adjustment as the metrics.py file is running externally to the Docker stack.

1. $ sudo docker-compose up

By connecting to the Prometheus server at http://192.168.1.226:9090, it is possible to
verify that request_processing_seconds has been ingested into the monitoring
system, as illustrated in Figure 6.7, Python Client Library:

Figure 6.7: Application Monitoring

In this section, we achieved monitoring of the full container stack. The data ingestion
from any application or container into a centralized system or repository for post-
analysis is also referred to as a Security Information Management (SIM) tool.

Workload observability
In computing, a workload is any application that runs on a computer, and that
computer’s capability of ingesting input and processing an output. There is no single
set of criteria to classify workloads, but traditionally, they are divided into three
main groups: static and dynamic, transactional or batch, and analytical. The static
and dynamic group is also the most ancient definition of workload, when compute
resources were divided into the following:

Secure Container Monitoring 179

•	 Computer systems like operating systems, email systems, hypervisors or
any system central to the business need is considered a static workload with
none or little change overtime.

•	 Point in time application like test environments or scheduled jobs are as per
their own nature ephemeral, and therefore, are considered dynamic.

The second group is a classic of the mainframe era, but still actual in the financial
industry:

•	 Systems or operating systems built upon the use of real-time kernel adopted
by banking, insurance firms, stock exchange markets are considered
transactional.

•	 On-demand data processing in high volumes, such as billing systems, are
considered batch workloads.

The third group is likely the most recent type of workload:

•	 Analytical workloads analyze huge quantity of data, the most appropriate
field of application is advanced medical research or biotechnological, and it
also the basic concept behind big data and machine learning.

The adoption of the container stack has dramatically increased the density of any type
of mentionable workload, but it also adds complexity in securing and monitoring
microservices, software as a service application, and serverless compute programs,
as shown in Figure 6.8, Workload Density:

Figure 6.8: Workload Density

180 Security for Containers and Kubernetes

Container security is, therefore, achieved by applying a layered approach to the
applications, containers, the container runtime or the host operating system, because
due to the very nature of the container stack, hardware resources used by the
applications are virtualized and containerized into containers through the runtime
interface, as illustrated in Figure 6.9, Hardware Abstraction:

Figure 6.9: Hardware Abstraction

The challenge is, then, to transform the logs and data collected in applying the
methodologies exposed in the previous chapter into meaningful information.
Bitdefender, a Romanian-founded cybersecurity company, has recently come to
the market with a new product called GravityZone Security for Containers. This
feature expands the GravityZone EDR (Endpoint Detection and Response) Cloud
offer, which was initially designed to provide endpoint security solution with insight
threat data collection and real-time monitoring.

The peculiarity of the GravityZone Security for Containers solution is the
implementation of workload security capabilities, and eXtended Detection and
Response (XDR). The main difference between EDR and XDR is that while the EDR
solution is focused solely on endpoint protection, the XDR solution aggregates data
from all the endpoint agents, providing a higher level of threat intelligence and
response mechanism, as highlighted in Figure 6.10, EDR and XDR:

Secure Container Monitoring 181

Figure 6.10: EDR and XDR

Bitdefender achieved this by mapping into GravityZone Security for Containers the
full Mitre ATT&CK Container Matrix framework. This framework was discussed
in Chapter 5, Application Container Security, in the Penetration Testing section. To
review Mitre framework’s matrix, refer to Table 5.7, Mitre Containers Matrix.

What Bitdefender has achieved is also a field application of what Gartner defined
as the Cloud Workload Protection Platform (CWPP). A CWPP solution protects the
cloud infrastructure workload against security threats, and it should be able to cover
and detect several types of workloads either running on-premises or in the cloud,
such as containers, databases (including NoSQL), APIs, serverless, and Kubernetes,
systems that are traditionally difficult to inspect with a classic monitoring tool. In this
context, it feels natural to introduce Wazuh. Wazuh has been defined as the open-
source security platform that can unify the XDR system and a Security Information
and Event Management (SIEM) endpoint protection and cloud workloads in one
monitoring tool. Table 6.2, Wazuh Features, illustrates some of the more interesting
features:

182 Security for Containers and Kubernetes

Type Description
Intrusion detection Scans for malware, anomalies, hidden files, syscalls, stuck

processes, and rootkits
Log data analysis Collects data from the application logs and the operating

system; can also ingest data from network devices
FIM (File Integrity
Monitor)

Filesystem monitoring, file permission and attributes

Vulnerability Detection Software inventory data against CVE databases
Configuration Assessment System settings and application configurations monitoring

against security policies
Incident Response Threat response automation
Regulatory Compliance Provides security controls to meet industry standards,

such as PCI-DSS, HIPAA, GDPR
Cloud Security API level integration to monitor cloud infrastructure, such

as AWS, Azure, and GCP
Container Security Provides visibility into containers, monitoring volumes,

images, running containers, and network settings

Table 6.2: Wazuh Features

It is worth mentioning Wazuh automation capabilities with the full adoption
of deploying methodologies via Ansible, Chez, Puppet, and Salt, but also AWS
CloudFormation, Docker containers, and Kubernetes.

Anomaly detection
There’s no doubt that containers have entirely reshaped the deployment and
operational model for the detection and response mechanism. The huge set of
metadata produced by container workloads exponentially increases the number
of metrics ingested into monitoring tools, and defining rules to detect potential
threats is challenging. Anomaly detection is one such approach, and it consists of
creating a baseline of expected behavior for a container, and then measuring the
metrics generated against that baseline. When a drift from an expected behavior
is detected, the activity that generated that drift is considered anomalous and
must be investigated to fulfil the response to the event. Traditional IT (Information
Technology) infrastructure is often based on VMs (Virtual Machines), refer to Figure
6.11, VMs, and it provides less overhead and is easier to protect because it implies
security via system isolation. However, anomaly detection as a security model is
limited in this case because each application runs on a full operating system, so it is
hard to distinguish between the metrics related to either the application or the HOST
OS. Refer to the following figure:

Secure Container Monitoring 183

Figure 6.11: VMs

In other cases, to reduce the traffic generated by the quantity of containerized
operating systems deployed, multiple applications are deployed on a single host.
Although this option could inspire an alternative solution, it would require more
time and expertise to configure install multiple applications on the same host. On
the other hand, containers are usually running a single application, which often
means one process only to monitor. This form factor upholds the anomaly detection
efficacy. Here are a few approaches to handle anomaly detection for containers:

•	 Write anomaly detection policies based on the monitoring approach used in
the Container Activity section earlier in this chapter.

•	 Implement a Machine Learning solution in the cloud.

•	 Integrate Machine Learning system with Prometheus.

The first option leaves the door open to greater flexibility, but it needs a lot of
preparation to put down a template that works effectively. Cloud providers
have developed integrated system to consume cloud resources that can correlate
data metrics produced by their container services, and generate metrics to detect
anomalies that can be ingested in machine learning systems.

Microsoft Azure has deployed a container service to use their real-time Anomaly
Detector API as part of the Azure Cognitive Service. The Anomaly Detector can be
used offline from the Azure cloud service, it can be downloaded locally but it still
needs to be billed via the Azure subscription service. The service is intended to verify
the metrics collected by Azure resources deployed either onto Azure Container
Instances, Azure Kubernetes Service or any Kubernetes cluster deployed via
Azure Stack. The installation is straightforward, and it uses Docker commands:

184 Security for Containers and Kubernetes

1. $ docker pull mcr.microsoft.com/azure-cognitive-services/anomaly-
detector:latest

To run the Anomaly Detector system, run the following:

1. $ docker run --rm -it -p 5000:5000 --memory 4g --cpus 1 \

2. mcr.microsoft.com/azure-cognitive-services/decision/anomaly-
detector:latest \

3. Eula=accept \

4. Billing={ENDPOINT_URI} \

5. ApiKey={API_KEY}

The preceding Docker command has three additional Microsoft parameters, as
explained in Table 6.3, Azure Cognitive Service:

Type Description
Eula Accept Microsoft End User License Agreement
Billing This endpoint is utilized to collect billing information
ApiKey The API Key of the Azure Cognitive Service

Table 6.3: Azure Cognitive Service

Amazon ECS Anomaly Detector is an integration of AWS EventBridge, a serverless
event bus, with AWS ECS (Elastic Container Service), storing the EventBridge
rules into CloudWatch logs. This workflow also leverages the AWS SNS and AWS
Lambda functions for task automation and notification. The concept behind the
combination of the preceding services is to use the “near” real-time EventBridge
delivery stream to capture all the ECS events at a very granular level. Surfing
between the huge number of events generated by an ECS cluster can be challenging
and time-consuming, reducing the visibility on the services or tasks that misbehave.

AWS ECS logs four types of events:

•	 Container instance state change

•	 Task state change

•	 Service action

•	 Service deployment state change

Those events are grouped into three different categories: info, warning and error.
AWS ECS Anomaly Detector has a set of predefined rules in EventBridge, as per
Table 6.4, ECS Anomaly Detector rules:

Secure Container Monitoring 185

Description Description
ECS_AD_ServiceActivity All ECS events and ECS task state
ECS_AD_ServiceAction_Error Only error and warning
ECS_AD_StoppedTask_Detector Failed tasks detection
ECS_AD_DeploymentStateChange_Event ECS deployment state change
ECS_AD_UpdateService_CTEvent UpdateService API calls via CloudTrail

Table 6.4: ECS Anomaly Detector rules

All the events in the previous table are logged by AWS CloudWatch into the log
group called /aws/events/ECS_ANOMALY_DETECTOR. Figure 6.12, ECS Anomaly
Detector, shows a visual architecture of the Amazon solution:

Figure 6.12: ECS Anomaly Detector

The Artificial Intelligence Center of Excellence (AICOE), a division of RedHat
Emerging Technologies, has developed a Machine Learning model to monitor
containerized application running on OpenShift through Prometheus. Prometheus
stores metrics in a time series database. These metrics can present anomalies, i.e.,
values that are not in line with the expected behavior of the applications or containers;
however, due to the quantity of metrics normally ingested, it is challenging to
identify those “drifts” within the noise, so the detection is often based on experience
or knowledge. With an Artificial Intelligence-based approach, it is possible to train
machine learning in consideration of historic metrics aiming to perform valuable
“guesses” on what the metrics would likely be in the future, essentially, a prediction
model. The most important components of this model are as follows:

186 Security for Containers and Kubernetes

•	 Prometheus/Grafana

•	 Machine Learning Model

Figure 6.13: Prometheus Prediction Model

The machine learning model in Figure 6.13, Prometheus Prediction Model, has three
main parts: Thanos, Fourier and Prophet:

•	 Thanos is a Cloud Native Computing Foundation (CNCF) incubating
project that aims to scale the Prometheus querying mechanism of metrics
across multiple Prometheus server installations and clusters, with long-term
storage metrics capabilities and big data sampling.

•	 Fourier, or “Fourier transform”, is a methodical operator that transforms
a function in another function; in this case, it helps map metrics from the
Thanos system to a frequency domain.

•	 Prophet is a machine learning model developed by Facebook that aims
to provide automated forecasting process at scale. Prophet will provide a
predict metric between an upper and lower value for any given time, in
consideration of historic data and modelling the metrics, including non-
linear trends.

Secure Container Monitoring 187

Usually, when looking at metrics, it is common to browse the left part of the
graph, looking for something that has already happened. In this scenario, Artificial
Intelligence (AI) uses historical patterns to look at the future. The event logging
approach described in this section is the foundation of what is called Security Event
Management (SEM) in information security. An SEM tool is the capability of a given
system to define an event from the information logged.

Externalise logs
Containers are ephemeral in nature, so any trace of their existence disappears with
their termination. Logs are an important part of any diagnostic or troubleshooting
technology and must be preserved to ensure visibility. Many security compliance
frameworks have specific security logging and monitoring requirements, such as
access to logs should be controlled and limited, and the need for log integrity, backup
logs to a central server, and a minimum retention period.

Situations in which security breaches have been discovered only several weeks,
sometime months after the original attack starting date, are not uncommon. That
happens because the attacker has been able to cover their tracks by manipulating
the logs: “you do not know what you cannot see”. It is a security best practice to not
store the logs locally, which refers to keeping the logs on the same machine on which
containers are running, and also to keeping the logs in the same network. The goal
of this approach is to ensure that if an application or a system is compromised, the
logging system is out of the attacker’s reach.

As explained in the Container Activity section of this chapter, Docker provides logging
drivers that can be used to redirect logs to an external logging server. The simplest
way to externalize logs is to enable the syslog logging driver. The code to enable the
syslog driver is as simple as follows, and it should include the TLS configuration to
enable secure communication:

1. {

2. "log-driver": "syslog",

3. "log-opts": {

4. "syslog-address": "udp://1.2.3.4:1111",

5. "syslog-tls-ca-cert": "/etc/ca-certificates/custom/ca-key.pem",

6. "syslog-tls-cert": "/etc/ca-certificates/custom/server-cert.pem",

7. "syslog-tls-key": "/etc/ca-certificates/custom/client-key.pem"

8. }

9. }

188 Security for Containers and Kubernetes

The National Institute of Standards and Technology (NIST) has published with its
Special Publication 800-92, Guide to Computer Security Log Management, a series
of recommendations and security best practices for managing and securing log data.
The NIST SP 800-92 aims to address the security log management challenges:

•	 Ensure log integrity during storage and transmission

•	 Log review

•	 Log retention

The NIST SP 800-92 highlights the concept of log centralization, the SIEM. A SIEM
tool has one or more log servers communicating and ingesting information, featuring
a combination of a SIM (Security Information Management) tool, as described at the
beginning of this chapter, and a SEM (Security Event Management) tool, as shown
in Figure 6.14, SIEM:

Figure 6.14: SIEM

A SIEM software is essentially a log aggregator that combines the SIM capability to
collect data and the SEM feature to retrieve events from the information collected.
Many solutions in the market can satisfy the SIEM requirements today, such as Splunk,
DataDog, ELK (Elasticsearch Logstash Kibana), Graylog, Wazuh and SolarWinds.
But a SIEM solution has potential to do more from the security perspective; it is
not only considered a log and event management tool, but it should also be able to
recognize malicious activities and security threats. Table 6.5, SIEM features, aims to
highlight the most common modern SIEM capabilities:

Type Description
Single Pane of Glass A unified dashboard used by the SOC team to provide

insights on threat intelligence, anomaly detection, and in-
depth visualization

Analytic Machine learning analytics to gain insight on vast amounts
of data

Threat Detection EDR, Anomaly Detection and Incident Response

Secure Container Monitoring 189

Forensic Security events in-depth analysis
Compliance Security compliance frameworks reporting features

Table 6.5: SIEM features

SIEM tools have become critical components in modern information security
structures. AntiVirus/AntiMalware (AV/AM) solutions, firewalls, or advanced
endpoint protection systems in general are not sufficient anymore against zero-day
attacks, where the exploited vulnerabilities are not known to the defense mechanism
yet.

Alerting
Alerts are a direct consequence of the logging system. Logs are ingested into the
logging server, and the monitoring tool is verifying that the data is not showing
anomalies. When an anomaly is detected, the monitoring tool sends out an alert.
Today alert mechanisms are multiple, such as email, text message, SLACK or TEAMS,
PagerDuty notifications, but all of these can be configured in the monitoring tool.
The SIEM system discussed in the previous section, for instance, is the “natural”
security system to define criteria in to identify a potential threat and, therefore, to
raise an alert.

It is essential to define alert rules based on the severity of the finding. A severity-
based alerting process helps reduce noise, providing a marked difference between a
high-priority alert and a low-priority alert. These rules are at the core of any incident
response procedure. SIEM Alerting is, therefore, the capability of a SIEM system to
provide intelligent alerts based on an event-driven monitoring system.

Security Orchestration Automation Response (SOAR) technology is the next level
of a SIEM solution. A SOAR system brings security in aggregation of monitoring
tools, helping coordinate and automate tasks within a single system. Gartner has
defined a SOAR system that is designed to satisfy three software capabilities:

•	 Security Operations Automation

•	 Threat and Vulnerability

•	 Security Incident Response

Typically, a SOAR software ingests alerts from systems that a SIEM tool would not
cover, such as vulnerability scan software, IoT devices, and cloud security alerts (for
example, AWS GuardDuty), and responds to these alerts with automated playbooks
with the intent of automatically applying a fix to clear the alert. In consideration of
the huge amounts of information collectable from a container stack, and even more
from container orchestrator like Kubernetes, surfing the noise of data in search of

190 Security for Containers and Kubernetes

meaningful events can be daunting. That’s why the orchestration and automation
aspects of a SOAR system are extremely useful to a Security Operations Center team.

Topology visualization
Despite the due diligence, sometimes it is hard to understand why some containers
are not behaving as expected, and monitoring the huge amount of data can be very
time-consuming. In this scenario, having a visual representation of the network
communication in a container stack could come in handy to gain immediate access
to valuable information.

ThreatMapper by Deepfence is a Cloud Native threat hunter visualization tool;
refer to Figure 6.15, ThreatMapper, with the interesting feature of hunting for what
Deepfence defines the “hidden threats”, ranking them on exploit-risk based criteria.

Figure 6.15: ThreatMapper

In relation to containers, ThreatMapper works on the following logic: discover, find
threats and actionable information. ThreatMapper inspects infrastructure using the
following:

•	 CloudScanner, which, as the name suggests, scans cloud providers via API
calls to gather configuration information, and being a risk-based system,
compares the acquired information against compliance benchmarks to
determine whether a deviation has occurred.

•	 Sensor Agents, which is an agent-based tool that can be installed on the
most common platforms, such as Docker, Kubernetes, Amazon ECS, AWS

Secure Container Monitoring 191

Fargate, and Virtual Machines or Bare-Metal systems, which will report to
the ThreatMapper Management Console.

The core system used by ThreatMapper to plot the containers interconnection
is called Scope by Waeveworks. Scope has been specifically designed to map
containers and applications running into the target infrastructure to monitor and
control microservices, as shown in Figure 6.16, Scope:

Figure 6.16: Scope

The main characteristics of Scope are as follows:

•	 Understanding container infrastructure in real time

•	 Metrics and metadata visualization

•	 Containers interaction, such as start/stop, pause/reboot, and live console

Scope supports a plugin mechanism to extend the capabilities of the system. Among
those already available, it is worth noting Scope Traffic Control and Scope Volume
Count. The Scope Traffic Control plugin allows us to change the container’s network
parameters, and the Scope Volume Count plugin inspects Docker for the total
number of volumes mounted for each container.

192 Security for Containers and Kubernetes

Conclusion
In this chapter, we discussed the various aspects of container monitoring and security,
starting from the basic definition of network traffic from the security perspective
and moving on to enabling logging at the different layers of the container stack with
practice examples on the container runtime and the container itself. We discussed
and defined the various types of container workloads and how to observe these with
respect to monitoring tools that can cover either EDR or XDR.

We then moved on to define what an “anomaly” is and how to detect it in cloud
monitoring platforms that can correlate data intelligence mechanisms and how to
use AI (Artificial Intelligence) to apply a prediction model. We also explained why
logs should be preserved and how they can be used by different solutions, such as
SIM, SEM and SIEM, for different purposes.

Finally, we looked at how to produce intelligent alerting and the capability of a
SOAR system to leverage automation to better respond to an incident from the SOC
(Security Operations Center) standpoint, and how visualizing the topology of the
container stack that can provide great insights into the container network traffic and
workload security.

In the next chapter, we will learn about Kubernetes Hardening.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Kubernetes Hardening 193

Chapter 7
Kubernetes
Hardening

Introduction
Kubernetes, commonly known as K8s, is an open-source orchestrator system for
automating, deployment, scaling containers and management of applications
running as microservices originally developed by Google to address the need of
containerized applications and microservices management at scale.

Originally designed to work natively with Docker through an interface called
Dockershim, as discussed in Chapter 3, Container Stack Security, from release v1.25,
Kubernetes does not install the Docker connector by default, in favor of a more “open
approach” toward other projects like containerd and CRI-O, container engines
supported by the Cloud Native Computing Foundation. The Dockershim connector
is still available, and it will be available for the foreseeable future.

Kubernetes has introduced greater flexibility in containerized platforms when
compared to traditional monolithic software infrastructure, but it has also introduced
greater complexity in securely managing microservices and the underlying
virtualized infrastructure. Kubernetes’ common sources of compromise, according
to the Cybersecurity and Infrastructure Security Agency (CISA), department of the

194 Security for Containers and Kubernetes

National Security Agency (NSA), are highlighted in Table 7.1, Kubernetes Compromise
Sources:

Type Description
Insider threats Users, administrators or cloud providers
Supply chain Container deployment life cycle
Malicious threat actors Kubernetes’ components misconfigurations and

vulnerabilities

Table 7.1: Kubernetes Compromise Sources

Getting started with architectural concepts will bring more clarity to the security
approach taken in this chapter, along with a high-level overview of the Kubernetes
platform and the potential security issues a system of such complexity may introduce.
With reference to Table 7.1, Kubernetes Compromise Sources, Table 7.2, Kubernetes Threats
Reference Matrix, illustrates the association between the threats addressed by the
CISA Kubernetes hardening guide and the Kubernetes components we will discuss
in this chapter and in Chapter 8, Kubernetes Orchestration Security:

Type Description
Insider threats •	 User access

•	 Administrators
•	 Infrastructure or Cloud Provider

Supply chain •	 Infrastructure or HOST
•	 Container runtime
•	 Application layer and third-party dependencies

Malicious threat actors •	 Control plane (apiserver, etcd, scheduler, controller
manager)

•	 Worker nodes (kubelet, kube-proxy)
•	 Containers

Table 7.2: Kubernetes Threats Reference Matrix

Note: Some of the aspects of Table 7.2, Kubernetes Threats Reference Matrix, have
been discussed previously in this book; readers would appreciate that due to the
extensiveness of the topics, this cannot be covered in a single section. The next
chapter will provide a summary of the various topics with a quick reference to
the sections of the book.

Kubernetes Hardening 195

Structure
In this chapter, we will discuss the following topics:

•	 Architecture

•	 Control plane hardening

•	 Worker node hardening

•	 Securing network communication

•	 Securing container runtime interface

•	 POD security

•	 POD escaping

•	 Hardening tools

•	 Updating life cycle

Objectives
This chapter aims to familiarize you with the security best practices for securing the
Kubernetes platform, including the main components of its complex architecture.
This hardening procedure aims to provide insights useful in real-world scenarios,
where security best practices can be leveraged to achieve a better security posture.

Architecture
The main aim of Kubernetes is to make the complexity of managing containers
disappearing by providing a simple alternative mechanism based on an internal
API system. Kubernetes is a client-server architecture system with all the limitations
and security concerns of a such an old model. In Kubernetes, the client-server
model is applied to the platform itself, where the communication between the client
and the server is serving the purpose of “running and managing” the underlying
infrastructure rather than the containerized application, also known as workloads.
In this scenario, the key components for the Kubernetes client-server model are the

196 Security for Containers and Kubernetes

worker nodes (or Data Plane) acting as the client and the control plane acting as the
server, as shown in Figure 7.1, Kubernetes Architecture.

Figure 7.1: Kubernetes Architecture

The client-server model was initially implemented to enable flexibility in the
distributed application infrastructure model and decentralize the compute resources
needed, with the client requesting a specific function and the server serving that
computational request. The Control Plane and Data Plane should be considered as
two separate sets of systems, grouped together by their logic applicationpurpose
within the cluster. Any of these two components has a set of subcomponents deployed
to address the multi-layered complexity of the Kubernetes container orchestrator.
The Control Plane includes the components described in Table 7.3, Control Plane
Components:

Type Description
kube-apiserver API server for the Kubernetes control plane
etcd Cluster data key value store
kube-scheduler Schedules and allocates the Pods
kube-controller-manager Controls cluster related processes (for example,

node controller)
cloud-controller-manager Manages the interaction with the Cloud

infrastructure, which will be discussed in depth in
Chapter 10, Kubernetes Cloud Security

Table 7.3: Control Plane Components

Kubernetes Hardening 197

The Data Plane is a set of one or more worker nodes, each worker node includes the
components described in Table 7.4, Worker Node Components:

Type Value
kubelet Ensures containers are running on the Pod in the desired state
kube-proxy Provides proxy capabilities to the worker node and ensure communication
Pod The Kubernetes workloads deployable unit

Table 7.4: Worker Node Components

Most recent Kubernetes installations set up keys, certificates and Transport Security
Layer (TLS) encryption mechanism on either the kube-apiserver or the etcd data
storage system in compliance with the Center for Internet Security (CIS) Kubernetes
Benchmark, but a comprehensive hardening procedure would verify that anyway.

Control plane hardening
Many Linux distributions have forked and created their own Kubernetes version
expanding the quantity of security best-practices needed. Without listing the much
more popular Kubernetes cloud versions, interesting alternatives to the traditional
Kubernetes cluster are Canonical Kubernetes, Platform9, and CodeZero. We
will discuss the security aspects of the most popular Kubernetes cloud systems in
Chapter 10, Kubernetes Cloud Security. There are many ways and many tools to install
Kubernetes, but in essence, we can distinguish two main deployment approaches:

•	 For a learning environment, the recommended way is to install minikube
with at least two nodes. Minikube is a lightweight Kubernetes single machine
deployment system. It is known for drastically reducing the complexity
of a complete Kubernetes deployment, thanks to its reduced footprint;
nevertheless, it maintains all the characteristics of a full installation.

•	 For an on-premises or cloud production environment, there are three
deployment methods: kops, kubeadm or Kubespray. The differences
between the three methodologies and highlights of their use case scenarios
are described in Table 7.5, Kubernetes Production Deployment Methods:

Type Description
kops Command-line tool similar to kubectl but aiming to deal with

infrastructure creation and cluster provisioning that can interact
with cloud providers systems and supports upgrades and add-ons
deployments

198 Security for Containers and Kubernetes

Type Description
kubeadm Aims to create a minimum cluster setup to pass the Kubernetes

Conformance Test designed for vendors willing to obtain a certification
released by the CNCF for their Kubernetes version; does not provide
any infrastructure deployment, so control plane and worker nodes hosts
must already be in place and configured with the desired virtualization
driver and network connectivity; works with tools like Terraform or
Ansible

Kubespray Deployment automation tool based on a mix of Ansible playbooks,
inventories and infrastructure provisioning tools like Terraform,
Kubespray helps install Kubernetes on most cloud providers and bare
metal systems

Table 7.5: Kubernetes Production Deployment Methods

For the purpose of this chapter, minikube is the preferred approach because it enables
the vast majority of readers to test their own environment. With minikube there is no
need to have demanding hardware available in lab or to consider allocating budget
for cloud resources. At the same time readers have the confidence that the suggested
security measures are not going to negatively impact any production environment.
The minikube security best practices begin from the installation of the Docker
rootless system: the rootless mode is essentially the capability of the Docker daemon
to run as a non-root service, creating a more secure environment. As reference, the
Linux distribution used as host is Ubuntu Server 22.04.2 LTS. To enable the rootless
mode, the Linux distribution used should comply with the requisites described in
Table 7.6, Rootless Mode Requisites:

Type Value
Login Variable must be set to allow systemd and cgroups to work properly
User subuid and subgid must be properly configured
Cgroup Version 2 is supported
Delegation Enable CPU and I/O to be available to non-root processes

Table 7.6: Rootless Mode Requisites

The $XDG_RUNTIME_DIR is not set when one logs in to the machine as a root user, but
it is set in case of a non-root user login via console or SSH. To verify that the login
variable is in place, please run the following command:

1. $ echo $XDG_RUNTIME_DIR

2. /run/user/1000

Kubernetes Hardening 199

Containers running in rootless mode use user namespace to emulate privileges
needed to create containers, as explained in Chapter 3, Container Stack Security, in the
Least Privilege section. To verify that the user has at least 65,536 subordinates for UID
and GID, it is possible to inspect /etc/subuid and /etc/subgid, and then install
newuidmap and newgidmap contained in the uidmap package:

1. $ cat /etc/subuid

2. luigi:100000:65536

3. $ cat /etc/subgid

4. luigi:100000:65536

5. $ sudo apt-get install -y uidmap

Then, verify that Cgroup v2 is installed by running the following:

1. $ ls -l /sys/fs/cgroup/cgroup.controllers

2. -r--r--r-- 1 root root 0 Mar 2 12:58 /sys/fs/cgroup/cgroup.controllers

If the cgroup.controllers file is not present in the /sys/fs/cgroup folder, Linux
is running Cgroup v1, but this should not be a problem with any modern Linux
distribution. Lastly, in order to enable non-root users to access low-level machine
resources like CPU, CPUSET and Disk I/O, a delegation process must be established:

1. $ sudo mkdir -p /etc/systemd/system/user@.service.d

2. $ touch /etc/systemd/system/user@.service.d/delegate.conf

3. # Add the following lines to the delegate.conf file

4. [Service]

5. Delegate=cpu cpuset io memory pids

6. $ sudo systemctl daemon-reload

After amending the systemd configuration, rebooting is recommended. The host is
now ready for the Docker rootless mode installation:

1. $ curl -o rootless-install.sh -fsSL https://get.docker.com/rootless

2. $ sh rootless-install.sh

3. # Installing stable version 23.0.4

4. # Executing docker rootless install script, commit: 07206cb

5. ...

6. # TLDR OMITTED

7. Installed docker.service successfully.

200 Security for Containers and Kubernetes

8. $ export PATH=$HOME/bin:$PATH

9. $ docker context use rootless

10. rootless

11. Current context is now "rootless"

With Docker rootless mode installed, the next step is to install minikube and start
the local cluster:

1. $ curl -LO https://storage.googleapis.com/minikube/releases/latest/
minikube_latest_amd64.deb

2. $ sudo dpkg -i minikube_latest_amd64.deb

3. $ minikube start --driver=docker --container-
runtime=containerd --nodes 2 -p my-cluster

4. [my-cluster] minikube v1.30.1 on Ubuntu 22.04

5. Using the docker driver based on user configuration

6. Using rootless Docker driver

7. Starting control plane node my-cluster in cluster my-cluster

8. Pulling base image ...

9. Creating docker container (CPUs=2, Memory=2200MB) ...

10. Preparing Kubernetes v1.26.3 on containerd 1.6.20 ...

11. ▪ Generating certificates and keys ...

12. ▪ Booting up control plane ...

13. ▪ Configuring RBAC rules ...

14. Configuring CNI (Container Networking Interface) ...

15. ▪ Using image gcr.io/k8s-minikube/storage-provisioner:v5

16. Verifying Kubernetes components...

17. Enabled addons: default-storageclass, storage-provisioner

18.

19. Starting worker node my-cluster-m02 in cluster my-cluster

20. Pulling base image ...

21. Creating docker container (CPUs=2, Memory=2200MB) ...

22. Found network options:

23. ▪ NO_PROXY=192.168.49.2

24. Preparing Kubernetes v1.26.3 on containerd 1.6.20 ...

Kubernetes Hardening 201

25. ▪ env NO_PROXY=192.168.49.2

26. Verifying Kubernetes components...

27. Done! kubectl is now configured to use "my-
cluster" cluster and "default" namespace by default

From Figure 7.1, Kubernetes Architecture, the centrality of the kube-apiserver
component stands out; Kubernetes is indeed an API-based system, so it is the
security around it. To ensure that basic security controls are in place, let’s verify that
the kube-apiserver is not exposed gathering the cluster address with the following
command:

1. $ kubectl get all

2. NAME TYPE CLUSTER-IP EXTERNAL-
IP PORT(S) AGE

3. service/kubernetes ClusterIP 10.96.0.1 <none> 443/
TCP 20m

The preceding command’s output confirms three things: firstly, the cluster is
running on a Class A internal IP (Internet Protocol) address range; secondly, there
is no external IP assigned to the cluster; and thirdly, the cluster operates on port
443, meaning that the system is listening using HTTPS secure protocol. To verify
that the cluster nodes have been successfully created, please execute the following
command:

1. $ kubectl get nodes -o wide

2. NAME STATUS ROLES AGE VERSION INTERNAL-
IP EXTERNAL-IP

3. my-cluster Ready control-
plane 5m33s v1.26.3 192.168.49.2 <none>

4. my-cluster-m02 Ready <none> 4m48s v1.26.3
192.168.49.3 <none>

Therefore, the nodes created by minikube are the hosts running Kubernetes
infrastructure, one for the control-plane and another one for the worker node.

In this scenario, curling the cluster with the following command should time out:

1. $ curl -k https://10.96.0.1:443/api

2. curl: (28) Failed to con-
nect to 10.96.0.1 port 443 after 75457 ms: Couldn't connect to serv-
er

202 Security for Containers and Kubernetes

The “failed to connect” error is expected, but there are scenarios where the
kube-apiserver is able to respond to a request, even without necessarily granting
access, for example, by opening a shell on the worker node:

1. $ minikube ssh --native-ssh=false -p my-cluster -n my-cluster-m02

2. Last login: Sun Apr 23 23:56:27 2023 from 192.168.49.1

A return command like the one shown in the following code is expected because the
API is listening but the anonymous user cannot interact with it:

1. $ curl -k https://192.168.49.2:8443

2. {

3. "kind": "Status",

4. "apiVersion": "v1",

5. "metadata": {},

6. "status": "Failure",

7. "message": "forbidden: User \"system:anonymous\" can-
not get path \"/\"",

8. "reason": "Forbidden",

9. "details": {},

10. "code": 403

11. }

We will look at this topic in detail in Chapter 8, Kubernetes Orchestration Security, in
the API Bypass Risks section, as the focus of this chapter is on hardening techniques.
Run the following command to verify that the kube-apiserver has TLS encryption
enabled:

1. $ kubectl get pods -n kube-system | grep api

2. kube-apiserver-my-
cluster 1/1 Running 1 (11h ago) 23h

3. $ kubectl describe pod/kube-apiserver-my-cluster -n kube-
system | grep tls

4. --tls-cert-file=/var/lib/minikube/certs/apiserver.crt

5. --tls-private-key-file=/var/lib/minikube/certs/apiserver.key

As stated, these parameters are usually auto populated during the installation,
but the recommendation would be to adopt a custom certificate to be exchanged
by the control plane components, given that a key management system is in place

Kubernetes Hardening 203

or a simple mechanism like mkcert has been implemented. Readers who need to
adopt trusted certificates in development environments may find mkcert interesting
and useful to run local machines with trusted self-signed certificates on https://
localhost:<anyport>. You can visit https://mkcert.org for more information. The
following code provides an example of how nginx with a custom TLS certificate can
be implemented as ingress add-on:

1. $ kubectl -n kube-system create secret tls mysecret --key key.
pem --cert cert.pem

2. secret/mysecret created

3. $ minikube addons configure ingress -p my-cluster

4. -- Enter custom cert (format is "namespace/secret"): secret/mysecret

5. ingress was successfully configured

6. $ minikube addons enable ingress -p my-cluster

7. ingress is an addon maintained by Kubernetes. For any concerns con
tact minikube on GitHub.

8. You can view the list of minikube maintainers at: https://github.
com/kubernetes/minikube/blob/master/OWNERS

9. ▪ Using image registry.k8s.io/ingress-nginx/kube-webhook-
certgen:v20230312-helm-chart-4.5.2-28-g66a760794

10. ▪ Using image registry.k8s.io/ingress-nginx/kube-webhook-
certgen:v20230312-helm-chart-4.5.2-28-g66a760794

11. ▪ Using image registry.k8s.io/ingress-nginx/controller:v1.7.0

12. Verifying ingress addon...

13. The 'ingress' addon is enabled

14. $ kubectl -n ingress-nginx get deployment ingress-nginx-
controller -o yaml | grep mysecret

15. - --default-ssl-certificate=secret/mysecret

A parameter that is often overlooked, even by the CIS Kubernetes Benchmark, but
is mentioned in the Kubernetes STIG Viewer hardening guide is the TLS minimum
version. The TLS protocol, like any other security mechanism, has a life cycle, and
different versions have been released over the years. Today, TLS version 1.0 and
version 1.1 are considered non secure, and they have both been deprecated in 2021.
The version widely adopted currently is TLS version 1.2, but it is a protocol that
was initially released in 2008, so it already has more than a decade of usage, while
the next generation of the TLS protocol, TLS version 1.3, was released in 2018.
Kubernetes supports all the four TLS versions mentioned earlier and therefore, it

204 Security for Containers and Kubernetes

is highly recommended to set the parameter to TLS version 1.3. To achieve this,
log in to the master node, make a backup copy of the API manifest file and add the
required string, like in the following example:

1. $ minikube ssh --native-ssh=false -p my-cluster -n my-cluster

2. $ sudo cp /etc/kubernetes/manifests/kube-apiserver.yaml .

3. $ sudo vi /etc/kubernetes/manifests/kube-apiserver.yaml

4. ...

5. - --service-cluster-ip-range=10.96.0.0/12

6. - --tls-cert-file=/var/lib/minikube/certs/apiserver.crt

7. - --tls-private-key-file=/var/lib/minikube/certs/apiserver.key

8. - --tls-min-version=VersionTLS13

9. image: registry.k8s.io/kube-apiserver:v1.26.3

10. imagePullPolicy: IfNotPresent

11. ...

The Kubernetes data storage system is ectd, the same principle as that of any other
data storage system should be applied to guarantee a better security posture: both
encryption at rest and encryption in transit should be applied and enabled. The ectd
data system is the central storage system to Kubernetes; if an attacker compromising
the API server would gain access to the ectd data storage system, then the attacker
has de-facto access to the entire cluster, being able to manipulate essentially any
single function or component of the system, including accessing secrets, start pods,
manage users and credentials. It is possible to check whether the etcd data storage
system has been configured with TLS encryption in respect to the encryption in
transit security control by checking on the etcd pod with the following command:

1. $ kubectl describe pod/{etcd-pod-name} -n kube-system

2. $ sudo cat /etc/kubernetes/manifests/etcd.yaml

3. - etcd

4. - --advertise-client-urls=https://192.168.49.2:2379

5. - --cert-file=/var/lib/minikube/certs/etcd/server.crt

6. - --client-cert-auth=true

7. ...

8. - --key-file=/var/lib/minikube/certs/etcd/server.key

If the two parameters --cert-file and --key-file are present in the etcd manifest
file, the encryption in transit has been properly configured. With the encryption
in transit configured properly, the next step is to verify that the etcd data storage

Kubernetes Hardening 205

system has encryption at rest enabled. To verify that the etcd system has encryption
at rest enabled, run the following command querying the kube-apiserver and look
for the --encryption-provider-config parameter:

1. $ kubectl describe pod/{kube-apiserver-pod-name} -n kube-system

If that parameter is not returned from the kube-apiserver, the etcd system does
not have encryption at rest enabled, and it must be configured. The configuration
file is as follows:

1. apiVersion: apiserver.config.k8s.io/v1

2. kind: EncryptionConfiguration

3. resources:

4. – resources:

5. – secrets

6. providers:

7. – identity: {}

8. – aesgcm:

9. keys:

10. – name: key1

11. secret: my-secret-key-1

12. – name: key2

13. secret: my-secret-key-2

14. – aescbc:

15. keys:

16. – name: key1

17. secret: my-secret-key-1

18. – name: key2

19. secret: my-secret-key-2

20. – secretbox:

21. keys:

22. – name: key1

23. secret: my-strong-secret-key-1

206 Security for Containers and Kubernetes

The preceding encryption providers are detailed in Table 7.7, etcd encryption providers:

Type Encryption Strength
identity None None
secretbox XSalsa20 / Poly1305 Strong
aesgcm AES-GCM must be rotated every 200k writes
aescbc AES-CBC with PKCS#7 Weak
kms v1 DEK using AES-CBC with PKCS#7 Strongest but slow
kms v2 DEK using AES-GCM Strongest and fast

Table 7.7: etcd encryption providers

KMS is the fastest and strongest encryption provider, so it is also the recommended
choice. It uses a Data Encryption Key (DEK) system with a key generated for each
encryption and a Key Encryption Key (KEK) mechanism to facilitate key rotation.
Cloud provider key managed systems like AWS KMS and Azure Key Vault adopt
one or more of the encryption providers described earlier, and they can ingest
keys into Kubernetes clusters through gRPC protocol. The following small lab will
provide an example of how to enable encryption at rest for the etcd component:

1. $ minikube ssh --native-ssh=false -p my-cluster -n my-cluster

2. Last login: Tue Apr 25 22:56:09 2023 from 192.168.49.1

3. docker@my-cluster:$ head -c 32 /dev/urandom | base64

4. JuF9H4fz5CvAbu/oD/O+OUl9ZnDthRTHRQ16OSKLeP0=

5. docker@my-cluster:$ sudo mkdir -p /etc/kubernetes/enc

6. docker@my-cluster:$ cat <<EOF | sudo tee /etc/kubernetes/enc/enc.yaml

7. apiVersion: apiserver.config.k8s.io/v1

8. kind: EncryptionConfiguration

9. resources:

10. - resources:

11. - secrets

12. - configmaps

13. - pandas.awesome.bears.example

14. providers:

15. - aescbc:

16. keys:

Kubernetes Hardening 207

17. - name: key1

18. secret: JuF9H4fz5CvAbu/oD/O+OUl9ZnDthRTHRQ16OSKLeP0=

19. - identity: {}

20. EOF

21. docker@my-cluster:$ exit

22. logout

Log in to the control plane, creating a random base64 value used as a secret at line
18 for the enc.yaml file, set the --encryption-provider-config parameter on the
kube-apiserver to point to the Encryption Configuration file location by editing
the kube-apiserver manifest file at line 6, and add the reference to encryption
provider in the volumeMounts and volumes section, as shown in the following
example:

1. - --tls-min-version=VersionTLS13

2. - --encryption-provider-config=/etc/kubernetes/enc/enc.yaml

3. image: registry.k8s.io/kube-apiserver:v1.26.3

4. imagePullPolicy: IfNotPresent

5. ...

6. volumeMounts:

7. ...

8. - mountPath: /etc/kubernetes/enc

9. name: enc

10. readOnly: true

11. ...

12. volumes:

13. ...

14. - hostPath:

15. path: /etc/kubernetes/enc

16. type: DirectoryOrCreate

17. name: enc

To verify that the data is encrypted, create a new secret called test-secret in the
default namespace:

208 Security for Containers and Kubernetes

1. $ kubectl create secret generic test-secret -n default \

2. --from-literal=mytest-secret=mytest-data

3. secret/test-secret created

The verification process needs the etcdctl command, which is usually installed on
the etcd container. To login onto control plane containers in a Kubernetes minikube
deployment, it is possible to list and ssh on the minikube control plane nodes by
executing the following commands:

1. $ minikube node list -p my-cluster

2. my-cluster 192.168.49.2

3. my-cluster-m02 192.168.49.3

4. $ minikube ssh --native-ssh=false -p my-cluster -n my-cluster

Several tools are available on the control plane node, among which crictl can list
and manage either the containers or the pods.

1. $ sudo crictl ps

2. CONTAINER STATE NAME POD ID

3. f6f5eb3476c0e Running storage-provisioner 1d1a2ec2067d7

4. 1f8124d86b411 Running kindnet-cni 325ce54832c28

5. 79c45d5df013e Running coredns 83d3bb1604446

6. ba894af13ddfc Running kube-proxy 8d85fa2fdc44e

7. ec7e1e508328b Running kube-controller-manager d0d68bdcd08ab

8. b1b5832cfc814 Running kube-apiserver aec8a1424cc81

9. ad0a7f5df8f4d Running etcd d6988a3b45379

10. c60e52371559b Running kube-scheduler 40148808c32ea

A successful call to the etcd container must be authorized, so the parameters defined
in Table 7.8, etcd encryption parameters, must be provided to the etcdctl command
according to the Kubernetes cluster type in use:

Var Minikube Kubernetes
--cacert /var/lib/minikube/certs/etcd/ca.crt /etc/kubernetes/pki/etcd/

ca.crt
--cert /var/lib/minikube/certs/etcd/server.crt /etc/kubernetes/pki/etcd/

server.crt
--key /var/lib/minikube/certs/etcd/server.key /etc/kubernetes/pki/etcd/

server.key

Table 7.8: etcd encryption parameters

Kubernetes Hardening 209

From the control plane node, the following command will return a dump of the
test-secret file prefixed with k8s:enc:aescbc:v1 confirming data encryption
at rest:

1. $ sudo crictl exec -i ad0a7f5df8f4d etcdctl \

2. --cacert=/var/lib/minikube/certs/etcd/ca.crt \

3. --cert=/var/lib/minikube/certs/etcd/server.crt \

4. --key=/var/lib/minikube/certs/etcd/server.key \

5. get /registry/secrets/default/test-secret

6. k8s:enc:aescbc:v1:key1:xc #NOT READABLE CHARACTERS

The kube-controller-manager and the kube-scheduler are not often mentioned
because from the logic perspective, they need to interact with the kube-apiserver;
so, they operate from a layer down within the control plane with no direct
communication with the worker nodes. Nevertheless, their functionalities within
the cluster are essential to Kubernetes, so they must be considered from the security
standpoint when the goal is to achieve a better security posture. The CVE-2020-
8555 is a security vulnerability affecting the kube-controller-manager up to
version 1.18.0, allowing Server-Side Request Forgery (SSRF) to leak 500 bytes of
arbitrary data within the control plane’s host network by certain users. The kube-
controller-manager manages the overall Kubernetes cluster and controls its
functions, ensuring that the expected number of pods are running as expected. To
verify the current kube-controller-manager configuration, run the following
command:

1. $ kubectl describe pod/{kube-controller-manager-pod-name} -n kube-
system

The expected security parameters are detailed in Table 7.9, Kube Controller Manager
parameters:

Type Values on minikube
--use-service-account-credentials True
--service-account-private-key-file /var/lib/minikube/certs/sa.key
--bind-address 127.0.0.1
--root-ca-file /var/lib/minikube/certs/ca.crt
RotateKubeletServerCertificate true (applied via the --feature-gates option)

Table 7.9: Kube Controller Manager parameters

All the previous parameters are usually configured by default in any
Kubernetes installation, except for the feature gates option. To apply the option

210 Security for Containers and Kubernetes

RotateKubeletServerCertificate to the kube controller manager, it is possible to
modify the manifest file so that it looks as follows:

1. apiVersion: v1

2. kind: Pod

3. metadata:

4. creationTimestamp: null

5. labels:

6. component: kube-controller-manager

7. tier: control-plane

8. name: kube-controller-manager

9. namespace: kube-system

10. featureGates:

11. RotateKubeletServerCertificate: true

12. spec:

13. containers:

14. - command:

15. - kube-controller-manager

16. - --bind-address=127.0.0.1

17. - --client-ca-file=/var/lib/minikube/certs/ca.crt

18. - --root-ca-file=/var/lib/minikube/certs/ca.crt

19. - --service-account-private-key-file=/var/lib/minikube/certs/
sa.key

20. - --use-service-account-credentials=true

21. image: registry.k8s.io/kube-controller-manager:v1.26.3

22. imagePullPolicy: IfNotPresent

23. livenessProbe:

24. ...

The feature gates option can also be applied as a command-line parameter inside
the manifest file, as it will be illustrated in the kube-scheduler example. The
kube-scheduler selects the best modality to run newly created, scheduled and
unscheduled Pods. The kube-scheduler filters and selects the nodes according to
any Pod’s specific needs, mainly around resources allocations such as CPU and RAM,
but also according to their “labelling” or destination in more complex environments.

Kubernetes Hardening 211

To verify the current kube-scheduler configuration, run the following command:

1. $ kubectl describe pod/{kube-scheduler-pod-name} -n kube-system

The expected security parameters are detailed in Table 7.10, Scheduler parameters:

Type Value
--profiling false
--bind-address 127.0.0.1
AppArmor true (applied via the --feature-gates option)

Table 7.10: Scheduler parameters

The --profiling parameter is used to identify performance issues within the cluster,
but due to its purpose, it generates a significant amount of information that can
be potentially used as attack vector, especially in combination with the --bind-
address option. The AppArmor feature, please refer to Chapter 2, Hardware and
HOST OS Security, section Host Hardening, AppArmor, is enabled via the --feature-
gates parameter. It accepts values in the following comma-separated format:
<”key=True|False”,”key=True|False”>. Therefore, to enable the AppArmor
feature for the kube-scheduler, the following command-line parameter should be
added to the kube-scheduler manifest file:

1. Containers:

2. kube-scheduler:

3. Container ID: docker://2f0e7db06157c2d9c98bffe23ce-
942681be808e9084fc994e9f796b1d7d3a211

4. Image: k8s.gcr.io/kube-scheduler:v1.25.2

5. Image ID: docker://sha256:873dc124ec692aa7dae4f3b1b-
41898c8bda1ef989c08823dbf183286155d0eed

6. Port: <none>

7. Host Port: <none>

8. Command:

9. kube-scheduler

10. --authentication-kubeconfig=/etc/kubernetes/scheduler.conf

11. --authorization-kubeconfig=/etc/kubernetes/scheduler.conf

12. --bind-address=127.0.0.1

13. --kubeconfig=/etc/kubernetes/scheduler.conf

14. --leader-elect=true

15. --feature-gates=AppArmor=true

212 Security for Containers and Kubernetes

The Kubernetes Features Gates is not a well-known set of components and features
that can come in handy in increasing the level of customization of the Kubernetes
cluster. There are several options that can be leveraged to increase the security
posture of the cluster, and readers are encouraged to use those features for their
specific applications. Those features have life cycles, and many of those are improved
or deprecated in accordance with the overall Kubernetes system development cycle.
All the components of both the control plane and the worker node accept the Feature
Gates set with specific parameters designed to work with the logic mechanism of
that specific component.

Worker node hardening
As shown in Figure 7.1, Kubernetes Architecture, there are two main components
running on any Worker Node: the kubelet and the kube-proxy. In terms of
security posture, the worker node is exposed much more than any of the elements of
the control plane because the control plane is considered as an internal mechanism,
while the worker node runs Pods that are potentially exposed to external traffic and
users, as illustrated in Figure 7.2, Worker Node:

Figure 7.2: Worker Node

The kubelet is essentially an agent running on the worker node in charge of
managing the containers; it receives and executes requests of creating, destroying
and configuration changing that need to be applied to the containers. The most
common security parameters are detailed in Table 7.11, Kubelet Security:

Kubernetes Hardening 213

Type Value
--anonymous-auth False
--rotate-certificates True
--tls-private-key-file /path-to-private-key-file/node.key
--tls-cert-file /path-to-cert-file/node.crt
--tls-min-version VersionTLS13
RotateKubeletServerCertificate true (applied via the --feature-gates option)

Table 7.11: Kubelet Security

As per the kubelet system, kube-proxy runs on any worker node within the cluster,
with the purpose of handling the network rules on the nodes on which it is running.
The kube-proxy ensures that the worker nodes can establish and maintain network
connections with internal and external resources as required and permitted. Due to
the sensible nature of the kube-proxy’s functionalities, being in essence the network
handler, it is essential that the whole kube-proxy configuration file is “secure” with
the highest set of restrictions possible. The recommended set of permissions for the
kube-proxy config file is root:root (root or superuser for both owner and group)
with 600 file permissions, this is equal to the following unix declaration:

1. -rw-------

This means that only the user root can read and write to the file, while preventing
anybody else from doing so. This should be the default file permission value for all
the configuration files. Later in this chapter, in the POD Security section, we will
enhance the security best practices around POD security mechanism and look at
how they interface with the Worker Node and its components, and we will discuss
kube-proxy in the Securing Network Communication section.

Securing network communication
The network system and communications are managed into Kubernetes cluster
by the Kubernetes network proxy, also known as kube-proxy. Each node runs a
separate kube-proxy daemon system that reflects the network services as defined
via the kube-apiserver. Other than managing internal traffic communication
between the worker node and the control plane components, the kube-proxy also
forwards traffic connection via services to the appropriate containers; please review
Figure 7.2, Worker Node. Kube-proxy runs in three different modes:

•	 Iptables (default)

•	 IPVS (IP Virtual Server)

•	 User space (legacy, not recommended)

214 Security for Containers and Kubernetes

The difference between the iptables and IPVS modes is from the load standpoint,
because iptables reads firewalling rules sequentially, it can impact the performance
of the cluster if the workload goes beyond 1000 services running in parallel. The
Kubernetes cluster has a hub and spoke network communication model. All the API
requests from worker nodes, including kubelet, kube-proxy, PODs and containers,
are terminated at the kube-apiserver. No control plane component is designed to
expose remote services except the kube-apiserver, as illustrated in Figure 7.3, kube-
proxy. This guarantees the internal integrity of the control plane.

The kube-apiserver is configured to listen on a secure HTTPS port for remote
connections adopting one or more mechanism of client authentication. As explained
in the previous section, it is recommended to enable TLS encryption, providing the
kube-apiserver with a root certificate bundle to verify the kubelet certificate. This
option has been suggested because by default, kube-apiserver does not verify
the kubelet certificate, exposing the connection to man-in-the-middle attacks.
The connection from the kube-apiserver to services or PODS, which happens
through the kube-proxy component, default to HTTP when neither encryption nor
authentication are set, compromising the integrity of the network communication.

Kubernetes supports the SSH tunnelling mechanism to establish a secure
communication path, where the kube-apiserver connects on the port 22, initiating
an SSH Tunnel to each worker node. The SSH tunnel guarantees that the traffic
between the nodes and the Kubernetes API Server is not exposed. Although SSH
tunnelling is a secure mechanism, it creates overhead on the communication between
the Kubernetes API Server and the nodes, which transforms into a bottleneck
where the number of nodes reaches a certain threshold. In Kubernetes v1.18, a
secure communication mechanism has been introduced to replace SSH tunnelling:
Konnectivity. Currently SSH tunnelling is deprecated.

Figure 7.3: kube-proxy

Kubernetes Hardening 215

Konnectivity provides TCP proxy level for the Kubernetes cluster to ensure
secure control plane communication. The Konnectivity service uses a server-client
model, with a Konnectivity Server to be deployed in the control plane network
and a Konnectivity Agent to be deployed in the nodes network. Once enabled, the
whole control plane to nodes traffic is redirected via Konnectivity. To deploy the
Konnectivity system, a few steps need to be satisfied, including creating an egress
selector configuration file, as shown in the following example code:

1. apiVersion: apiserver.k8s.io/v1beta1

2. kind: EgressSelectorConfiguration

3. egressSelections:

4. - name: cluster

5. connection:

6. proxyProtocol: GRPC

7. transport:

8. uds:

9. udsName: /etc/kubernetes/konnectivity-server/konnectivity-
server.socket

Then, implement the following steps:

•	 Enable Service Account Token Volume Projection (from Kubernetes v.120, it
is enabled by default).

•	 Configure the kube-apiserver, --egress-selector-config-file parameter
to point at the egress selector file.

•	 If the cluster uses Unified Diagnostic Service (UDS), add the volume
configuration to the kube-apiserver.

•	 Retrieve a X.509 certificate using the Kubernetes CA cluster certificate from /
etc/Kubernetes/pki/ca.crt from one of the control plane systems.

The configuration files for the Konnectivity Server and the Konnectivity Agent
are available on the Kubernetes docs website. Their implementation should be
straightforward, and it is interesting from the security standpoint considering the
system implementation via Role Base Access Control (RBAC).

Securing container runtime interface
The Container Runtime operates at the lowest level of any Kubernetes node; it is the
software that starts and stops containers, among other functions. The most widely
known and adopted container runtime is out of questions Docker, but Docker is not

216 Security for Containers and Kubernetes

the only container runtime available on the market. The aim of this paragraph is
to define a clear distinction between the container runtime, which was discussed
along with the various types of container runtimes available within the Kubernetes
ecosystem and the reasons why Kubernetes adopted them, in Chapter 3 – Container
Stack Security, Container Security, and the CRI (Container Runtime Interface).

As the name suggests, Container Runtime Interface is an interface developed by
the Kubernetes community in 2016 and introduced in Kubernetes v1.5 to provide
greater flexibility in adopting a different container runtime if needed. The main
reason behind this was to push the idea of supporting interchangeable container
runtimes and trying to move the community to meet the Open Container Initiative
(OCI) requirements.

Figure 7.4: CRI

The CRI (Container Runtime Interface) architecture is quite complex, and spinning
up an application container is not a trivial process, as shown in Figure 7.4, CRI. A
breakdown of the process illustrated in Figure 7.4, CRI is in the following list:

1. Kubelet starts the process, calling cri-containerd to create a POD; cri-
containerd defers to containerd to create the sandbox container, a special
isolated container used as the base system for the creation process, which
sets the system bootstraps with kernel alignment and Cgroups configuration.

2. cri-containerd calls the Container Network Interface (CNI) to create the
network namespace and configure all the related network activities.

3. cri-containerd reads the Kubelet requests and downloads the desired
container image if not present on the node.

Kubernetes Hardening 217

4. cri-containerd calls the runtime service API system to start the container
using the image at point 3 and deploy the app inside the container.

5. cri-containerd uses the information collected so far from the sandbox
container and the initial deployment in the temporary Container A to build
the final POD.

In essence, the role of Container Runtime Interface is to forward the kubelet
requests to the container runtime of choice (either Docker, containerd or CRI-O); the
container runtime will then process those requests to create the POD that will run
the desired container and application within. During the containerization process,
the container runtime interface handles the entire resources virtualization, including
CPU units and RAM allocation, but more importantly, it handles the kernel syscall
mechanisms, as illustrated in Figure 7.5, CRI Logic:

Figure 7.5: CRI Logic

218 Security for Containers and Kubernetes

The CVE-2022-0811, discovered at the beginning of the 2022, reveals a flaw in the
CRI-O in the way in which the container runtime sets kernel options for the POD.
This flaw allows users with permissions to deploy PODs using the container escape
technique to execute arbitrary code as root users on the worker node. There are
several threats that could appear in relation to containers deployment:

•	 Hidden malware in container images

•	 Exploitable container runtime due to security bugs

•	 Misuse of the resources allocated to the POD from the HOST OS like volumes,
libraries or binaries

•	 Improper access control configurations or privilege escalation

The CVE-2022-23648, reveals a bug in the containerd container runtime affecting
versions prior to 1.6.1 where containers launched with a particular image
configuration could access files and folder on the host. The attack is also able to
bypass policy-based enforcement systems or container security configurations.
Being the CRI the point of contact between the worker node and the POD, once the
containerization process is complete, the communication between the container and
the host happens through the kernel for all the relevant system calls (for example,
CPU processing and RAM allocation).

Therefore, the security around the CRI is an indirect process, based on the security
functionality of the Linux kernel and the interpretation of those features applicable to
the Kubernetes system. Among the kernel security features, as discussed in Chapter
2, Hardening and Host OS Security, Host Hardening, the Cgroups, Namespace, SELinux
and Seccomp features are applied at the POD creation phase. The only kernel security
feature applied directly to the worker node is AppArmor. AppArmor replaces the
classic user and group permissions, characteristic of the Linux systems, with an
application security model approach, aiming to confine application’s execution into
a defined execution limited set of resources.

Currently, all Kubernetes CRIs support AppArmor, so its application is encouraged
to increase the node security posture. The recommended way to apply the AppArmor
profile at the node level is through a DaemonSet that creates a POD to verify that the
correct AppArmor profiles are loaded. The node assumes that AppArmor has been
enabled into the cluster via the --feature-gates parameter described in Table 7.10,
Scheduler parameters. The following code provides an AppArmor profile example:

1. . . .

2. profile k8s-apparmor-deny-write flags=(attach_disconnected) {

3. # Allow all file read access to the / volume.

4. file,

Kubernetes Hardening 219

5. # Deny all file write access to the / volume.

6. deny /** w,

7. }

8. . . .

Another way to implement AppArmor is at the worker node initialization time,
using automation tools like Ansible or Salt. Kubernetes, on its own, does not offer
any tool or methodology to shield the Container Runtime interface and the container
runtime; the only available feature is the audit system, which collects information
that the cluster does not consume. It also needs to be considered that POD resources
are ephemerals, so their audit logs exist only during their running time. When the
POD, and therefore the containers, are terminated, there will be no logging anymore.
In this scenario, a debug tool like Sloop is very helpful because it can monitor past
events of the Kubernetes cluster, recording histories of state changes of deployed
resources.

POD security
A POD is a Kubernetes’ deployable unit of compute resources. A POD is not a
container, or it’s better to say that a container is not a POD but a POD is a group
of virtualized resources like CPU units, RAM, storage, and network deployed in
conjunction with one or more application containers and their binaries and libraries.
Kubernetes POD Security Standards defines three policies to cover the POD security
landscape, as listed in Table 7.12, POD Security Standards:

Profile Description
Privileged Policy with no restrictions that allows privilege escalations
Baseline Policy that applies a minimum set of restrictions preventing known

privilege escalation and is the default POD configuration
Restricted Maximum restricted policy as per POD hardening security practices

Table 7.12: POD Security Standards

There is no security argument that can be leveraged to justify the Privileged Policy,
except for the when it is purposefully unrestricted, and therefore reasonably
applicable to test environments. The Baseline Policy is a balanced approach for
the adoption of containerized workloads and simultaneously blocking known
privileged escalation methodologies. In this regard, the set of security controls is
listed in Table 7.13, Baseline Controls:

220 Security for Containers and Kubernetes

Control Policy
HostProcess Windows PODs do not have privileged access to the

Windows Node.
Host Namespaces Namespace sharing with the host must be denied.
Privileged Containers They overcome most security controls and must be

disallowed.
Capabilities Limit capabilities to only those allowed by the policy.
HostPath Volumes Mapping to the host volume must be denied.
AppArmor This would prevent disabling the default AppArmor

profile.
SELinux Only the default SELinux profile is allowed.
/proc Mount Type Default /proc required. It reduces the attack surface.
Seccomp Set to “Unconfined” is disallowed.
Sysctls Disabled and isolated (no lateral movements).

Table 7.13: Baseline Controls

The Restricted Policy is the highest level of security mechanism applicable to
the POD. It aims to enforce POD hardening, but it also reduces the availability of
the system. This rule is cumulative with the Baseline, which means it applies all
the security controls of the Baseline Policy plus the security controls listed by the
Restricted Policy, as per Table 7.14, Restricted Controls:

Control Policy
Volume Types Null values are not accepted. Must be one of the listed

types.
Privilege Escalation set-user-ID and set-group-ID file mode not allowed.
Running as Non-root Containers are forced to run as non-roots users
Running as Non-root-user runAsUser with 0 value is not allowed.
Seccomp Set to “Unconfined” is disallowed. Profile must be

explicit.
Capabilities Only NET_BIND_SERVICE permitted.

Table 7.14: Restricted Controls

The security profiles are applied at the control plan level and therefore, they
enforce security mechanisms from the server standpoints. These are different from
the Security Contexts, which are applied at the POD level instead. In essence, the
Security Context is applying some of the security controls defined in the previous
Baseline and Restricted policies, but at the POD level, that means that those security

Kubernetes Hardening 221

controls can be implemented during the deployment or rolling mechanism, or even
better, considered as part of Software Development Life Cycle from the DevSecOps
standpoint.

For instance, the security controls applicable through the Kubernetes POD Security
Context mechanism are UID and GID (User ID and Group ID), SELinux (Security
Enhanced Linux), Capabilities, AppArmor, Seccomp, running as privileged or
unprivileged, and readOnlyRootFilesystem. The following a code example
of applying security context to a POD configuration file, where security context
is applied at row 6 for all the containers in this POD, and at row 20 where each
container will disallow privilege escalation:

1. apiVersion: v1

2. kind: Pod

3. metadata:

4. name: security-context-example

5. spec:

6. securityContext:

7. runAsUser: 1000

8. runAsGroup: 2000

9. fsGroup: 1000

10. volumes:

11. - name: sec-ctx-vol

12. emptyDir: {}

13. containers:

14. - name: sec-ctx- example

15. image: my-image:1.0

16. command: ["sh", "-c", "sleep 1h"]

17. volumeMounts:

18. - name: sec-ctx-vol

19. mountPath: /data/example

20. securityContext:

21. allowPrivilegeEscalation: false

Linux Capabilities can grant higher privileges to a Linux process without granting
privileges of a root user. With Security Context, it is possible to specify, within the

222 Security for Containers and Kubernetes

POD configuration file, the capabilities the container needs to be granted, as per the
following example:

1. apiVersion: v1

2. kind: Pod

3. metadata:

4. name: security-context-capability

5. spec:

6. containers:

7. - name: sec-ctx- capability

8. image: my-image:1.0

9. securityContext:

10. capabilities:

11. add: ["SYS_ADMIN", "SYS_TIME"]

Security Enhanced Linux (SELinux) allows Linux administrators better control
over providing access by defining security policies for applications, processes, and
files. Kubernetes implements SELinux at the POD layer via the securityContext
argument that propagates the desired SELinux rules to each container the POD will
manage. Among the three types of rules, the most intensive is the one related to file
security. The section of the POD configuration file after the containers argument
would look like the following code in this scenario:

1. ...

2. securityContext:

3. seLinuxOptions:

4. level: "s0:c123,c456"

The default mechanism before Kubernetes v1.25 was that the Container Runtime
(CR) implements SELinux labelling recursively: all files on all the volumes mounted
on the POD are target of the SELinux propagation. This methodology was very CPU-
intensive and time-consuming. To speed up the SELinux implementation from v1.25,
Kubernetes can apply the SELinux protection mechanism to a volume instantly with
the mount option -o context=<label>.

Note: As illustrated in Figure 7.5, CRI Logic, the container’s kernel is virtualized
via the containerization mechanism allowed via the container runtime, so the
SELinux security module must be enabled on the Worker Node Host OS to be
loadable on the POD and the containers.

Kubernetes Hardening 223

To benefit from the SELinux instant volume implementation, the following conditions
must be met:

•	 ReadWriteOncePod and SELinuxMountReadWriteOncePod must be
enabled.

•	 POD must set seLinuxOptions.

•	 The volume must use either a CSI driver or legacy volume iscsi type.
o The CSI driver must declare the mounting option -o context by

setting spec.seLinuxMount:true.

•	 POD must have the accessModes:[“ReadWriteOncePod”] argument set
on the PersistentVolumeClaim directive.

Seccomp is a Linux Kernel feature that sandboxes a system call process only to
the basic executions processes like read(), write(), sigreturn(), and exit(),
applying an execution separation between the user space and the system space.
The Kubernetes’ implementation of Seccomp at the POD layer occurs, including the
seccompProfile in the securityContext section of the POD configuration file, as
shown in the following code example:

1. ...

2. securityContext:

3. seccompProfile:

4. type: RuntimeDefault

The seccompProfile.type has three options: RuntimeDefault, Unconfined and
Localhost, as explained for the POD Security Profiles. The Localhost type must
be set only when a Seccomp localhostProfile argument is provided, such as in the
following example code:

1. ...

2. securityContext:

3. seccompProfile:

4. type: Localhost

5. localhostProfile: profiles-dir/my-seccomp-profile.json

The methodologies applied in this section found their security efficiency from
the POD standpoint and require a higher degree of granularity in configuring the
various security controls.

224 Security for Containers and Kubernetes

POD escaping
In Chapter 3, Container Stack Security, we discussed the container escape attack vector
several times. POD escaping has a similar footprint, and it is the attack technique
that allows a POD to “escape” its own boundaries in terms of resources, network
limitation or access to the underlying host system (the worker node). The CVE-
2022-0185 is one of the most interesting attack vectors recently discovered because
it affects the legacy_parse_param function of the kernel. This function verifies the
Linux kernel parameters length in term of bytes. An unprivileged user that can access
the filesystem which does not support the Filesystem Context API function could
generate a heap-buffer overflow (refer to Chapter 4, Securing Container Images and
Registries; Figure 4.6, Stack Buffer Overflow) by sending more than 4095 bytes to the
legacy_parse_param function and escalate their privileges.

The input is injected via the kernel fsconfig system call, by sending 4095 bytes or
more to the legacy_parse_param function. The interesting thing is that to call
fsconfig, a non-privileged user needs CAP_SYS_ADMIN privileges in the namespace in
which the attack is executed. The SYS_ADMIN feature is defined via Capabilities, and
that’s the reason for the CAP_ suffix; it qualifies itself as the process that runs tasks
on behalf of the user with privileged access. Where the CAP_SYS_ADMIN capability is
not available, the attacker can leverage unshare, another Linux kernel system call,
which is very relevant to the Kubernetes cluster because it is used to create or clone
a namespace.

In Kubernetes, namespaces are used to isolate PODs from processing resources,
therefore being able to clone or create a different namespace leaves the door
open for the attacker to leverage the unshare system call to gain CAP_SYS_ADMIN
privileges. In March 2022, a vulnerability was identified from the incorrect use of
the UNIX pipe handling, the CVE-2022-0847 affecting Linux Kernels from version
5.8, which was later renamed to Dirty-Pipe, allowing an attacker to overwrite files
on a system with arbitrary data. As discussed in Chapter 4, Securing Container Images
and Registries, Container image hardening, a container image is a collection of read-
only layers merged by the container runtime (containerd, Docker, CRI-O). There is
only one read-write layer, which is ephemeral in nature, created on top of all the
other layers using the Copy-On-Write (COW) mechanism. When the container is
destroyed, the read-write layer is also destroyed.

A proof of concept uses gcc at the RUN directive in the Dockerfile. The gcc compiler
runs a program written in C language, which is used to write files on the filesystem.
After logging in to the container, even if the files are read-only and owned by root
and the filesystem is also read-only, it can overwrite data by abusing the standard
way in which Linux controls file access. The danger in the Dirty Pipe hack is that
killing the container does not fix the issue; once the files have been overwritten with
the arbitrary data, they will persist in the read-only layer of the container image that

Kubernetes Hardening 225

was attacked, and any container created using that layer will be affected by that
attack vector.

Figure 7.6: Dirty Pipe

Mounting host volume as HostPath Mounts into the PODs is a discouraged
technique, and it is a practice that should be acknowledged as dangerous, but it
is still happening, especially when users feel safe by using the read-only flag.
With Dirty Pipe, mounting the host volume in read-only has no use, because this
vulnerability will be able to overcome the limitation and compromise the worker
node, as illustrated in Figure 7.6, Dirty Pipe. The only way to really mitigate the Dirty
Pipe is to upgrade the host systems with a kernel version that is not affected by the
vulnerability.

226 Security for Containers and Kubernetes

Hardening tools
Kubernetes adoption is de-facto a successful journey, thanks to the enormous efforts
of over 30,000 individual contributors working effortlessly. In such a wide landscape,
it is “normal” to end up considering additional tooling to increase the experience
around Kubernetes. This section of the chapter aims to illustrate some, but not all,
security-related tooling that are worth considering in any environment.

Before considering “external tools” though, it is important to draw attention to some
of Kubernetes’ internal solutions. Due to the extensive popularity of Docker, users
think about any tool that relates to containers in terms of a Docker tool. While we
have discussed many of these during our journey in the first part of this book, we
also have acknowledged that Kubernetes has introduced a new mechanism called
CRI, which supports native container engines like containerd and CRI-O, through
the use of a container runtime shim demon like dockershim.

Each container engine has its own mechanism and complexity and can handle
containers differently and with different tools. While the users have no issue using
Docker commands, it is understandable that not many would know how to interact
with containerd or CRI-O. Kubernetes, through the container runtime interface, has
defined a standard that can be quite handy and efficient. The kubelet makes requests
to the container engine via the container runtime interface, and it does not really
need to know which brand the container engine has; all that the kubelet wants is a
response to a request, whether it is a docker run, a nerdctl run, or anything else.

Note: At the time of writing this book, nerdctl is the official command-line
interface command for containerd. While CRI-O provides a command-line tool,
this is mainly used for testing CRI-O container engine and not for managing
containers.

That’s the reason why Kubernetes has introduced a command-line interface command
for the container runtime interface, called crictl. This very useful, mostly unknown,
command is part of the Kubernetes cri-tools suite, along with a validation tool called
critest. It is worth remembering that as debug tool, the PODs created by crictl will
not follow the normal life cycle, and the kubelet will eventually take them down to
preserve the integrity of the cluster. To debug Kubernetes worker nodes, crictl
offers, on top of the classic Docker commands, the options to list containers and PODs
and run a POD as a sandbox. This is a useful mechanism to create containers with the
container images available in the cluster, and to verify the deployment beforehand. To
create a POD sandbox, refer to the following code example:

1. $ cat <<EOF | sudo tee pod-conf.json

2. {

3. "metadata": {

Kubernetes Hardening 227

4. "name": "nginx-sandbox",

5. "namespace": "default",

6. "attempt": 1,

7. "uid": " 1000"

8. },

9. "log_directory": "/tmp",

10. "linux": {

11. }

12. }

13. EOF

14. $ crictl runp pod-conf.json

15. 3933c51901c112ef7d4162e25e7e4726869436779f06c40fa24c833153840de5

To create a container inside the POD sandbox, use the code following:

1. $ cat <<EOF | sudo tee container-conf.json

2. {

3. "metadata": {

4. "name": "alpine"

5. },

6. "image":{

7. "image": "alpine"

8. },

9. "command": [

10. "ls"

11.],

12. "log_path":"busybox.0.log",

13. "linux": {

14. }

15. }

Then, run the following command that recalls both the pod configuration and the
container configuration files:

228 Security for Containers and Kubernetes

1. $ sudo crictl run container-conf.json pod-conf.json

2. cfc5f9157892481c5fd5df0646813fee6df97c401342f2540a3c11418d11c2bb

The POD sandbox defines the boundaries of the containers in a closed space, where
applications can be tested safely. When thinking about tools that are not internal to
Kubernetes, many are worth examining, but that would be sidetracking the focus to
an infinite list of external application that could potentially be useful only to specific
arguments. When considering Kubernetes from the software development life cycle
standpoint, and therefore looking at this with DevSecOps eyes, four domains need
cover, as illustrated in Table 7.15, External Hardening Tools:

Type Description
SAST (Static Application Security Testing) Checkov
Hardening Kube-bench
Threat Analyzer Kube-hunter
DAST (Dynamic Application Security Testing) Falco

Table 7.15: External Hardening Tools

Today, everything is automation, compute resources can be deployed with tools like
Ansible, Chef and Puppet. The gap those tools were not able to fulfil is closed by the
adoption of Terraform, the most popular Infrastructure as Code (IaC) tool. With
Terraform resources like virtual private networks, gateways, subnets, clusters, and
identify and access management can be remotely deployed, also into the cloud, to
sustain compute resources needed to run any workload. A security tool that can
analyze the code prior to the infrastructure deployment is essential for keeping the
environment secure.

Checkov is one of the tools of this category, and it also covers SCA (Software
Composition Analysis) for open-source packages and images. This tool is a powerful
system and is capable of implementation via Kubernetes, AWS CloudFormation,
Helm, Dockerfile, Azure ARM Templates and Serverless. It can also be implemented
with versioning systems like GitHub, GitLab, Circle CI, and automated in CI/CD
systems like Jenkins.

Hardening is not a trivial task, and it could be challenging to achieve in complex
systems like Kubernetes. There are security frameworks that address Kubernetes
Hardening methodologies: the Center for Internet Security (CIS) Kubernetes
Benchmark, and the National Security Agency Cybersecurity and Infrastructure
Security Agency (NSA CISA) Kubernetes Hardening Guide. The quantity of
information provided by both frameworks is outstanding, and implementing such
security controls manually would be very difficult. Kube-bench is a hardening tool
designed to verify that Kubernetes has been deployed securely by executing checks
documented in the CIS Kubernetes Benchmark framework.

Kubernetes Hardening 229

Note: The OWASP (Open Web Application Security Project) Foundation has
recently introduced the Kubernetes Top 10, a list of the top 10 security issues
affecting organizations when they decide to adopt the container orchestrator.

The Mitre has also defined the Mitre ATT&CK Kubernetes Matrix, which is a
complex attack framework, and the threat analyzer system kube-hunter is mapping
the attack techniques discussed in that framework in conjunction with a collection
of in-house creative attack methodologies to mimic attackers inside or outside the
cluster. Kube-hunter supports four scanning options, as listed in Table 7.16, Kube-
hunter Scanning Options:

Type Description
Remote Specifies a remote node for hunting
Interface Scans all the networks interfaces into the cluster
Network Scans a specific CIDR
Auto-discovery Connects to the kube-apiserver to retrieve a list of resources

Table 7.16: Kube-hunter Scanning Options

Falco is a runtime security tool designed to inspect kernel events and aggregate
those events with metadata collected from the various components of the Kubernetes
cluster. Falco has a rich collection of inbuilt security controls, including the following:

•	 A shell has been invoked in a POD or a container.

•	 The container mounts sensitive paths, such as /proc.

•	 A process in the container is generating unexpected child processes.

•	 The container operates in privileged mode.

•	 Sensitive data read, such as /etc/shadows.

•	 Known binaries invoking outbound network connections, such as ls.

•	 Non-device files are written in the device space /dev.

•	 A POD with privileged access is started.

Falco comes with a plugin system to enhance the detection capabilities; some of
them are described in Table 7.17, Falco plugins:

Type Description
k8saudit Ingest Kubernetes audit events.
cloudtrail Connects to AWS S3 to read CloudTrail data.
docker Reads Docker events.

230 Security for Containers and Kubernetes

Type Description
okta Reads OKTA events.
github Reads the Webhooks events.
k8saudit-eks Ingest Kubernetes audit events for AWS EKS.

Table 7.17: Falco plugins

Updating life cycle
Kubernetes is an infrastructure system, a cluster that serves the deployment of
applications through the containers, so its life cycle from the software development
standpoint should be reduced, or it should be slower than a conventional application;
nevertheless, it is common for the Kubernetes community to release, on average,
three major versions per year, sometimes even more. Kubernetes upgrade of the
cluster is not a trivial task; there are many moving parts, such as kube-apiserver,
etcd, kube-controller-manager, kube-scheduler, and the worker node components.
This is where smart tools like kubeadm come into play.

Kubeadm is a tool built by the Kubernetes community to manage complex processes
in a simple way. Many underestimate the value of such tool, especially users who
do not usually need K8s (abbreviation for Kubernetes) in production environments.
Table 7.18, Kubeadm Features provides an overview of the kubeadm features:

Type Description
kubeadm init initializes a control-plane node
kubeadm join initializes a worker node
kubeadm upgrade upgrades the cluster to a new version
kubeadm token manages token for kubeadm join
kubeadm reset reverts changes made by kubeadm init or kubeadm join
kubeadm certs manages certificates
kubeadm kubeconfig manages kubeconfig files

Table 7.18: Kubeadm Features

Among the various aspects covered by kubeadm in the previous table, kubeadm
token and kubeadm certs are the most relevant to this section of the book. When
a new node is initialized via kubeadm join, a token is generated to establish
bidirectional trust between the worker node and the control plane. However, even if
this concept was created to serve kubeadm, it can also be utilized as an RBAC (Role-
Based Access Control) policy. Each token has a correspondent secret in the kube-
system namespace and has the following structure:

Kubernetes Hardening 231

1. apiVersion: v1

2. kind: Secret

3. metadata:

4. name: bootstrap-token-mytoken

5. namespace: kube-system

6. type: bootstrap.kubernetes.io/token

7. stringData:

8. description: “The default token generated by kubeadm init”

9. token-id: mytoken

10. token-secret: a-secret

11. expiration: 2022-12-10T07:51:33Z

12. usage-bootstrap-authentication: “true”

13. usage-bootstrap-signing: “true”

14. auth-extra-groups: system:bootstrappers:worker,system:bootstrap-
pers:ingress

Tokens can be created, deleted, generated and listed via the kubeadm token
command. Not many know that the client certificates created by kubeadm have a
1-year life cycle, after which they expire. The following command-line arguments
are then useful to verify the status of the certificates and manage them accordingly:

•	 kubeadm certs renew

•	 kubeadm certs certificate-key

•	 kubeadm certs check-expiration

•	 kubeadm certs generate-csr

The certificates are renewed automatically when kubeadm upgrade is invoked and
an upgrade of the Kubernetes cluster is, therefore, executed.

Conclusion
In this chapter, we discussed the various aspects of Kubernetes architecture and
looked at how the various components of the control plane and the worker nodes
impact the security of the whole cluster. We discussed the main aspect of securing
network communication within the cluster, and also analyzed the threat of non-
secure external communications. We also analyzed why securing the container
runtime interface is important and explored how to secure the minimal deployable

232 Security for Containers and Kubernetes

unit in Kubernetes, the POD, and the security concerns, and the threat and attack
vectors around it. Finally, we touched upon interesting hardening tools and
understood why it is important to keep Kubernetes updated.

In the next chapter, we will learn about Kubernetes and the various aspects of or-
chestration security.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Kubernetes Orchestration Security 233

Chapter 8
Kubernetes

Orchestration
Security

Introduction
The term “orchestration” recalls the music practice of combining several music
instrument families for the purpose of achieving the intended performed melody.
In this sense, Kubernetes assumes the same meaning: different container systems
(Web servers, databases, message brokers) are deployed to work together, aiming to
deliver the application that will serve that specific business goal. In Kubernetes, as
for the orchestra, the individual components of instrument families can be replicated,
increased or reduced, also known as scaling, according to the specific needs of
requested music performance. Hence, this parallelism brings us to consider the
scaling of containerized applications, as the volume of single container applications
increases or decreases.

Container orchestration is not only scaling; many other aspects must also be
considered for a comprehensive analysis of the container orchestrator potentiality:
automation of provisioning, deploying, networking, and managing of containers.
The Kubernetes hardening process created by the National Security Agency (NSA)
and the Cybersecurity and Infrastructure Security Agency (CISA), discussed in
Chapter 7, Kubernetes Hardening, highlights the three main sources of compromised
for the Kubernetes system; please refer to Table 7.1, Kubernetes Compromise Sources,
and to Table 7.2, Kubernetes Threats Reference Matrix.

234 Security for Containers and Kubernetes

Kubernetes is a complex system made of several moving parts combined as a
single platform, and it can deploy, scale and manage thousands of containers at
any given time. While this sounds amazing from a DevOps perspective, achieving
a good securing posture can be extremely challenging; therefore, while we have
discussed the individual security requirements of Kubernetes’ main components in
the previous chapter, the focus of this chapter switches to achieving security from
the orchestration standpoint. To provide a better prospective on the various topics
treated by the National Security Agency CISA Kubernetes Hardening Guide, the
Malicious threat actors and the Supply chain source of compromise discussed
in the previous chapter are mapped and summarized in Figure 8.1, NSA and CISA
Kubernetes Hardening Guide Reference Table:

Figure 8.1: NSA and CISA Kubernetes Hardening Guide Reference Table

This chapter will then focus on the third and final Kubernetes hardening outstanding
topic: the “insider threats”. As we continue this journey in the Kubernetes
environment created in the previous chapter, the reference to files location or code is
extracted from the minikube cluster or the Kubernetes cluster, as needed.

Structure
In this chapter, we will discuss the following topics:

•	 Authentication and authorization

Kubernetes Orchestration Security 235

•	 API bypass risks

•	 RBAC vs ABAC

•	 Admission controller

•	 Securing secrets

•	 Cluster isolation

•	 Audit logging

•	 POD escaping privilege escalation

•	 Assess and verify

Objectives
The aim of this chapter is to outline security best practices for securing the Kubernetes
platform in a DevSecOps way, facing the security complexity of the cluster from the
orchestration standpoint and simultaneously fulfilling the security requirements
described in Table 7.2, Kubernetes Threats Reference Matrix, in the Insider Threats section
of the previous chapter.

Authentication and authorization
Authentication and authorization in Kubernetes play a very important part
in securing the orchestration platform. These two terms are often considered
interchangeable, but in reality, they are very different. In essence, authentication
is the process that verifies the identity of the user that is trying to access a given
system, while authorization is the process to verify that the user has the permissions
to perform that action. Kubernetes provides two categories of users as per Table 8.1,
Kubernetes Users, in a very standard approach:

Type Description
service accounts machine users managed by Kubernetes itself
users allocated to humans

Table 8.1: Kubernetes users

Users cannot be added through API calls; indeed, Kubernetes does not have an
object to represent user accounts, but any access attempt made by users with a
valid certificate that has been signed by the certificate authority of the Kubernetes
system itself is considered trusted, and therefore, authenticated. Service accounts are
created and managed by the kube-apiserver; they are bound to pre-determined
namespaces, and they use credentials stored as secrets accessible by the PODs to
allow in-cluster communications and processing.

236 Security for Containers and Kubernetes

Note: All the requests must be authenticated to be executed, including both
the users and service accounts. Non-authenticated requests are treated as
anonymous and rejected unless anonymous access is enabled, which is, of
course, discouraged.

Kubernetes offers several authentication strategies, which are listed in Table 8.2,
Authenticators Plug-ins, but they all follow the same process:

•	 The client provides the credentials to the kube-apiserver.

•	 The kube-apiserver calls the authentication plugin to verify the identity
through an identity provider.

•	 The identity provider verifies the credentials provided by the client.

•	 If the credentials are ok, the kube-apiserver checks the permissions
as per the authorization mechanism, or it returns an HTTP 401
Unauthorized and error blocks the request.

Type Description
X509 Client Certs --client-ca-file=/etc/kubernetes/pki/etcd/

ca.crt (installed by default)
Static Token File Enabled by passing to the server --token-auth-

file=your_token, the bearer token contains at least
token, username and userid

Bootstrap Tokens Stored as secrets in the Kubernetes kube-system
namespace, with the --enable-bootstrap-token-
auth flag, it is used for a new cluster bootstrapping

Service Account Tokens Created automatically by the kube-apiserver and
leveraged by the PODs to communicate within the
cluster

OpenID Connect Tokens User authentication layer on top of the OAuth 2.0 stack;
works with Azure AD and Google

Webhook Token Rest API call outside the cluster domain
Authenticating Proxy Uses a proxy that verifies the user identity, but it needs to

present a valid client certificate to the kube-apiserver
for validation

client-go credentials Enable Kubernetes to implement non-natively
supported authentication protocols such as OAuth2,
Kerberos, LDAP, and SAML

Client API access Verifies your client authentication methodology against
the kube-apiserver

Table 8.2: Authenticators Plug-ins

Kubernetes Orchestration Security 237

From Kubernetes version 1.22.0, the user impersonation feature was added,
adding the interesting capability of a user that can achieve authentication acting as
another user. The user impersonation feature was introduced with the principle of
least-privilege in mind, where users should have the minimum set of permissions
required, and they should only elevate that set on a need basis and temporary.

This feature is different from the role base access control that we will discuss in the
next section of this chapter, because it does not set permissions based on roles but
allows users authenticated onto the cluster with an initial set of permissions (or role)
to assume another, higher set of permissions aiming to complete a task that they
would usually not be allowed to.

For this example, we are going to create a devops-team group bound to a view-only
role and a devops-team-admin role with permissions to change or modify things
in the cluster. The devops-team group is logged in to the cluster initially with view
permissions only; when they need to change things, they can invoke kubectl with
the --as=devops-team-admin parameter via the user impersonation feature to
achieve the level of permissions set for the devops-team-admin user. The following
code shows how to create the devops-team role binding to access the cluster in view
only mode:

1. apiVersion: rbac.authorization.k8s.io/v1

2. kind: RoleBinding

3. metadata:

4. name: devops-team-view

5. namespace: devops-team

6. roleRef:

7. apiGroup: rbac.authorization.k8s.io

8. kind: ClusterRole

9. name: view

10. subjects:

11. - apiGroup: rbac.authorization.k8s.io

12. kind: Group

13. name: devops-team

Then, use the following example code for the devops-team-admin role:

1. apiVersion: rbac.authorization.k8s.io/v1

2. kind: RoleBinding

3. metadata:

238 Security for Containers and Kubernetes

4. name: devops-team-admin

5. namespace: devops-team

6. roleRef:

7. apiGroup: rbac.authorization.k8s.io

8. kind: ClusterRole

9. name: admin

10. subjects:

11. - apiGroup: rbac.authorization.k8s.io

12. kind: User

13. name: devops-team-admin

Kubernetes will need to apply the user impersonator feature by creating a cluster
role to allow the assumption of the new set of permissions, as shown in the following
code:

1. apiVersion: rbac.authorization.k8s.io/v1

2. kind: ClusterRole

3. metadata:

4. name: devops-team-impersonator

5. rules:

6. - apiGroups: [""]

7. resources: ["users"]

8. verbs: ["impersonate"]

9. resourceNames: ["devops-team-admin"]

And finally, use the cluster role binding for the devops-team-admin user
impersonator feature:

1. apiVersion: rbac.authorization.k8s.io/v1

2. kind: ClusterRoleBinding

Kubernetes Orchestration Security 239

3. metadata:

4. name: devops-team-admin-impersonate

5. roleRef:

6. apiGroup: rbac.authorization.k8s.io

7. kind: ClusterRole

8. name: devops-team-impersonator

9. subjects:

10. - apiGroup: rbac.authorization.k8s.io

11. kind: Group

12. name: devops-team

This concept recalls in principle the Linux sudo command, and readers may look
for something similar when using the command line interface to connect to their
cluster to preserver the least-privilege security principle: introducing kubectl-
sudo. Aiming to reduce the attack surface, kubectl-sudo is not a Kubernetes plugin
per se but a way of providing a sudo like mechanism to access the orchestrator. The
logic is to reduce the cluster administrators default privileges to the minimum and
grant them the capability to impersonate users and groups with a higher level of
permissions called masters.

Interestingly, Cloudogu, a German consulting company focused on DevOps
toolchain containerized software development, has two more open-source projects
along the line of the same Linux sudo principle: helm-sudo and sudo-kubeconfig.
Any authorization request in Kubernetes is processed only upon authentication, so
the cluster expects the entity to be logged in before verifying the granted level of
permissions. The request must contain attributes common to any REST API system,
using the well-known Linux firewall approach, where everything is denied by
default, except what is specifically allowed.

In Kubernetes clusters with multiple authorization mechanism enabled, each
request is checked in sequence. If any of the authorization modules denies or
approves a request, the result is immediately acknowledged by the cluster, and
no other authorization system is involved. If all the authorization modules cannot
either approve or deny the request, by default the request is denied. Figure 8.2,

240 Security for Containers and Kubernetes

Authentication and Authorization, provides a visual representation of the model
described so far:

Figure 8.2: Authentication and Authorization

The authorization modes supported by Kubernetes are listed in Table 8.3, Kubernetes
Authorization Modes:

Type Description
Node Authorization mechanism specifically built for kubelet
ABAC Attribute-based Access Control; authorization is granted via policies
RBAC Role-based Access Control; access control based on roles that users

can assume
Webhook HTTP callback event executed through POST

Table 8.3: Kubernetes Authorization Modes

One of the interesting functions provided by the authorization mechanism is the
can-I parameter, with which users can check whether they are allowed to execute a
certain command. The following command query the cluster to check whether the
user logged in can create secrets in the myspace namespace:

1. $ kubectl auth can-i create secrets–-namespace myspace

Kubernetes Orchestration Security 241

If this function is combined with the user impersonation mechanism explained
earlier, the users logged in can check whether a given function is allowed while
elevating temporary their privileges, as per the following command:

1. $ kubectl auth can-i create secrets --namespace myspace --as devops-
team-admin

Users with permissions to create or edit PODs in a namespace potentially have
the capability of escalating their privileges in that specific namespace. There are a
few escalation paths that should be carefully considered from the administration
standpoint:

•	 Allowing namespaces to mount arbitrary secrets can lead to accessing secrets
meant for other type of workloads or obtaining a service account token with
higher permissions.

•	 Allowing namespace to use arbitrary service accounts can lead the kube-
apiserver to act on other workloads using the impersonation mechanism or
execute privileged actions as source of compromise.

•	 Allowing namespace to mount configmaps can lead to gathering information
related to other workloads.

•	 Allowing namespace to mount volumes can lead to gathering information
related to other workloads and potentially change it.

When building custom resource definitions affecting these four areas, administrators
should consider the impact of such changes because they could potentially lead to
privilege escalation paths.

API bypass risks
The kube-apiserver should be hardened by adopting a Transport Layer Security
(TLS) certificate. When the handshake is established and verified via TLS, the
request reaches the authentication step. The authentication depends on the modules
installed in the cluster, as listed in Table 8.2, Authenticators Plug-ins, while the
authorization mechanism is expecting the request to present the username, the
action to be performed and the target object of the action. To understand the logic
behind the API bypass risk, let’s assume that the user Luigi is logged in to the cluster
and has the following policy that grants him read-only permissions in the devops-
team namespace:

1. {

2. "apiVersion": "abac.authorization.kubernetes.io/v1beta1",

3. "kind": "Policy",

242 Security for Containers and Kubernetes

4. "spec": {

5. "user": "Luigi",

6. "namespace": "devops-team",

7. "resource": "pods",

8. "readonly": true

9. }

10. }

Therefore, the following action is authorized:

1. {

2. "apiVersion": "authorization.k8s.io/v1beta1",

3. "kind": "SubjectAccessReview",

4. "spec": {

5. "resourceAttributes": {

6. "namespace": "devops-team",

7. "verb": "get",

8. "group": "devops-team",

9. "resource": "pods"

10. }

11. }

12. }

But if user Luigi is going to create or update anything in the same namespace, the
request will be denied:

1. {

2. "apiVersion": "authorization.k8s.io/v1beta1",

3. "kind": "SubjectAccessReview",

4. "spec": {

5. "resourceAttributes": {

6. "namespace": "devops-team",

7. "verb": "put",

8. "group": "devops-team",

9. "resource": "pods"

Kubernetes Orchestration Security 243

10. }

11. }

12. }

The preceding code is clear and straightforward. It is part of the functional logic
around the API server and its interaction with human users, where the authentication
and authorization are controlled by administrators with tools like RBAC, ABAC,
Admission controller or policies. Nevertheless, there are four possible sources of
compromise that readers should consider when thinking about kube-apiserver
security: Static PODs, Kubelet API, etcd API, and Container runtime socket. These
four are known as the kube-apiserver bypass risks.

Static PODs are managed directly by the kubelet system on the node itself and the
kube-apiserver has no visibility of them. They are not to be confused with PODs
managed by the control plane, for example, PODs created via deployment. Static
Pods are special PODs used in cases like bootstrapping or are used by the cluster
itself to spin up control plane components like Controller Manager, Scheduler or
the API Server itself as Static PODs. When the Kubernetes cluster is created, the
kubeadm also creates PODs manifest files in a folder that is monitored by the
kubelet system. Each kubelet system directly manages any manifests that have not
been created via user input as Static PODs, and since they are not visible to the API
Server, the kubelet also tries to spin up a mirror POD in the kube-apiserver. An
attacker with permissions to amend the manifest files could inject modified Static
PODs to assume control of various components of the control plane or compromise
the node by mounting hostPath from the underlying host. If the Static POD fails the
admission control, it won’t be registered as mirror POD by the kube-apiserver, but it
will still run on the node as a possible source of compromise.

The kubelet system running on the worker node exposes an API system, not to
be confused with the kube-apiserver, on port 10250; and depending on the
Kubernetes distribution, it could also be exposed on the control plane nodes. When
users have RBAC access permissions to the Node object and related resources, that
access also grants them the authorization to talk to the kubelet API. Furthermore,
this kind of access to the kubelet API is not logged by any audit system and does not
need to undergo the admission control mechanism. An attacker with access to the
kubelet API may be able to bypass any authorization mechanism.

As explained in the previous chapter, Kubernetes uses etcd as datastore. The only
control plane component that needs access to etcd is the kube-apiserver. Similar to
the kubelet API, the etcd system also has its own API system, and the etcd API is
not logged by any audit system and does not need to undergo the admission control
mechanism. Access to the etcd API is managed by default via client certificate
authentication. Any certificate generated by a Certificate Authority (CA) trusted by
the etcd system grants full access to the datastore. An attacker who can retrieve the

244 Security for Containers and Kubernetes

certificate private key or create a trusted certificate can therefore, obtain administrator
permissions and access the datastore.

As discussed in Chapter 7, Kubernetes Hardening, in the Securing container runtime
interface section, container runtime is the software that manages containers on the
worker node. The runtime communicates with the kubelet system on the worker
node via a Unix socket. An attacker that can access the Unix socket on the container
runtime can therefore, access and manage running containers or create new
containers eventually. The impact is defined by whether the compromised containers
have access to secrets, the vulnerabilities that could be exploited or the information
the attacker could use to escalate privileges in order to gain access to the underlying
host, or compromise one or more control plane components.

For each of the four security issues affecting the Kubernetes API Server that we
discussed so far, mitigation methodologies can be placed to reduce the risk surface,
as described in Table 8.4, API Bypass Risks Mitigations:

Risk Mitigation
Static PODs •	 Enable Static POD manifest if required by the worker node

•	 Restrict users access to the manifest folder
•	 Restrict users access to the kubelet configurations
•	 Audit storage locations for the kubelet configuration files

and Static PODs manifests
kubelet API •	 Restrict access to the node object resources

•	 Allow a trusted IP range to communicate with the kubelet
API port

•	 Verify that the kubelet authentication is configured in
certificate mode

•	 Disable kubelet port non-authenticated read-only
etcd API •	 Verify that the trusted CA is used only to authenticate against

the etcd system
•	 Restrict access to the private key
•	 Allow a trusted IP range to communicate with the etcd API

port
Container
Runtime Socket

•	 Restrict filesystem access only to the root user when possible
•	 Use the Linux kernel namespace (not the Kubernetes

namespace) to isolate the kubelet process from other services
running on the worker node, for example, the kube-proxy

•	 Do not allow hostPath mount
•	 Restrict users access to the worker node

Table 8.4: API Bypass Risks Mitigations

Kubernetes Orchestration Security 245

RBAC vs ABAC
Role-based Access Control (RBAC) and Attribute-based Access Control (ABAC)
are two of the four authorization modes discussed earlier in this chapter. RBAC is
a method of controlling access to a system or network based on roles, while ABAC
defines paradigms where access permissions are granted via policies. The RBAC
defines four types of objects, as per Table 8.5, RBAC Objects:

Type Description
Role Contains rules to set permissions in a specified namespace
ClusterRole Contains rules to set permissions in a non-namespaced resource
RoleBinding Grants the Role permissions to a user or group in a specified

namespace
ClusterRoleBinding Grants the Role permissions to a user or group across the whole

cluster

Table 8.5: RBAC Objects

Note: Role and ClusterRole rules have no “deny” condition because they
represent a permission set. The permission set implies “allowing rules”,
meaning that without rules there is no permission.

The RBAC API system forbids user escalation by the means of modifying roles or role
bindings objects; enforcing this mechanism at the API layer, the cluster guarantees
its application even when RBAC is not the chosen authorization mechanism. In an
RBAC authorization mechanism scenario, users can create or update a role only if at
least one of the following conditions is true:

•	 The user has all the permissions contained in the role within the same scope
of the object affected by the change.

•	 The user has explicit permissions to escalate.

Similarly, users can create or update a role binding if one of the following conditions
is true:

•	 The user has all the permissions contained in the referenced role.

•	 The user has explicit permissions on the bind object.

By default, RBAC does not grant any permissions to any service account that is not
the kube-system namespace. This choice provides great flexibility to manage the
service accounts across the whole cluster, and Kubernetes has a high granularity
configuration capability that can result in time and effort to manage them. On the
other side of this equation, administrators would feel comfortable, especially in

246 Security for Containers and Kubernetes

development environments, granting broader permissions, just to ease the burden
on the administration side.

Note: Readers with experience in cloud services like AWS Identity and Access
Management (IAM) would recognize the ABAC approach when dealing with
AWS IAM Policy.

The following description aims to identify a five-step incremental security approach
that can be applied to the RBAC logic. The first of the five steps are the least secure;
security increases with each step, and upon reaching the fifth step, the maximum
degree of security is considered applied through RBAC, as illustrated in Figure 8.3,
Securing RBAC Service Account:

Figure 8.3: Securing RBAC Service Account

Attribute-based access control (ABAC) as an authorization mechanism became
prominent over a decade ago, as part of an attempt to improve US federal
organization’s access control architecture. It is indeed the evolution of the access
control lists because the logic behind it is based on policies. ABAC provides
great flexibility and granularity, but it is computationally intensive, due to the
quantity of attributes that must be considered and the conditions applied during

Kubernetes Orchestration Security 247

the authorization process. The key logic of the ABAC approach is the capability to
not need any specific relationship between the subject and the object of the policy,
meaning that users granted access to a specific resource do not necessarily need to
be related to that resource.

This is in contrast with the RBAC model, where tendentially administrators create a
logic relationship between the users and the groups with the resource, for example,
users working in the human resource department are granted permissions to access
human resources-related systems and are denied access to the developer system
with that very same role. Clusters running older versions of Kubernetes commonly
use ABAC permissive policies, which poses a threat to the integrity of the system
because the authorization mechanism does not define an authorization process
priority; in essence, any authorization module can pick up the authorization request.

Moving from an ABAC approach to an RBAC approach, which is far more secure,
can be a painful exercise and can disrupt the existing running workloads. Moving
from a permissive ABAC policy to a permissive RBAC role, such as number one
in Figure 8.3, Securing RBAC Service Account, is highly discouraged because it goes
against security best practices. The recommended way to solve this issue is to use
the “parallel authorizers” method. Instruct the cluster to run RBAC and ABAC,
specifying the ABAC policy that needs to be ported into a RBAC role, as with the
following command line parameter:

1. --authorization-mode=RBAC,ABAC --authorization-policy-file=abac-
legacy-policy.json

To gather information on porting the ABAC policy into the RBAC policy, the kube-
apiserver produces authentication and authorization logs with a minimum log level
of 5. For all the API calls rejected by the RBAC authorization module and granted
by the ABAC authorization module, it possible to identify users, groups or service
accounts, which can be used subsequently to define a new RBAC role. When all
the workloads are running with no disruptions and no RBAC, denial messages
are logged by the kube-apiserver; the ABAC authorization module can be safely
removed. An interesting tool to be considered to evaluate RBAC permissions is the
Palo Alto Networks solution called RBAC Police. This tool can help identify the
RBAC permissions of the Kubernetes users, groups, service accounts, PODs, and
nodes, and evaluate them to detect which of the Kubernetes identities have risky
permissions and can potentially pose as threat to the integrity of the cluster.

Admission controller
Admission controllers are Kubernetes cluster plugins used to enhance the most
advanced security features. These plugins enforce and govern the cluster. In
consideration of the access mechanism, the admission controller kicks-in as the third

248 Security for Containers and Kubernetes

logic element, after the authentication and authorization processes have already been
executed by the cluster. From Kubernetes 1.26, the default admission controllers are
listed in Table 8.6, Admission Controllers List:

Type Description
CertificateApproval Monitors requests to approve CertificateSigningRequest
CertificateSigning Monitors updates of CertificateSigningRequest
CertificateSubjectRestriction Rejects requests of groups system:masters
DefaultIngressClass Monitors Ingress objects with no specific ingress class

and adds them to the default ingress
DefaultStorageClass Monitors PersistentVolumeClaim objects with no

specific storage class and add them to the default
storage class

DefaultTolerationSeconds Sets the tolerance in seconds for the notready:NoExecute
and unreachable:NoExecute

LimitRanger Ensures that incoming requests are not violating the
constrains set in the LimitRange of the namespace

MutatingAdmissionWebhook Is the first phase of the Admission Controller logic
NamespaceLifecycle Ensures that terminating namespaces cannot have

new objects
PersistentVolumeClaimResize Validates the volume resize requests
PodSecurity Replaces PodSecurityPolicy and validates POD

creation requests
Priority Evaluates POD creation priority. POD is rejected if no

priority class is set
ResourceQuota Enforces the resource quota assigned to the POD
RuntimeClass Verifies and enforces the POD overhead configuration
ServiceAccount Monitors ServiceAccount objects
StorageObjectInUseProtection Protects storage objects from being deleted
TaintNodesByCondition Controls PODs allocation
ValidatingAdmissionPolicy Implements Common Expression Language for

incoming requests
ValidatingAdmissionWebhook Second phase of the Admission Controller logic

Table 8.6: Admission Controllers List

The Admission Controller process has two phases, as illustrated in Figure 8.4,
Admission Controllers: the mutating admission and the validating admission.
Admission controllers can behave as mutating controllers or validating controllers.
For example, the LimitRanger described in Table 8.6, Admission Controllers List,

Kubernetes Orchestration Security 249

assumes the validation admission (Phase 2) when it blocks PODs from exceeding
the specific set or resources requirements within the namespace and assumes the
mutating admission (Phase 1) when it allows PODs to augment the default resources
limits. The difference between the two is self-explanatory: mutating admission
can eventually mutate objects, although it can also reject API calls with mutating
requests, and the validating admission cannot mutate objects; it can only enforce
policies on the resources. The security advantages of the validating admission over
the mutating admission is two folds: administrators would consider disabling the
mutating admission to drastically increase the security posture of the cluster in the
first place; and as per Figure 8.4, Admission Controllers, the validating admission is
executed after the mutating one, so once a request is validated, it persists in the etcd
datastore, even if a mutation has been validated by the system itself, decreasing the
security posture of the cluster. Refer to the following figure:

Figure 8.4: Admission Controllers

The main security advantages of using admission controllers are listed in Table 8.7,
Admission Controller Advantages:

250 Security for Containers and Kubernetes

Type Description
Security Creating a security baseline that can be applied to all

the namespaces or to the entire cluster
Governance Enforcing adoption of best security practices such as

labelling, resource limitation, and annotations
Configuration Management Validating the configuration of resources running in

the cluster and prevent misconfigurations that can
affect the cluster security posture

Table 8.7: Admission Controller Advantages

Among all the admission controllers, PodSecurity is likely the most prominent and
interesting as it directly affects the container workloads and the software development
life cycle. The Pod Security Standards defined into the Kubernetes cluster has three
different policies: privileged, baseline and restricted. The privileged policy is
completely unrestricted, the baseline policy offers a minimal restrictive approach
and block known privilege escalations, and the restricted policy is the most secure
one and follows best POD security hardening practice. It is possible to enforce the
Pod Security Standards configuring the built-in PodSecurity admission controller
at the cluster level, fulfilling the security orchestrator requirements in managing
either default behaviors or exemptions. The following code provides an example of
PodSecurity configuration:

1. apiVersion: apiserver.config.k8s.io/v1

2. kind: AdmissionConfiguration

3. plugins:

4. - name: PodSecurity

5. configuration:

6. apiVersion: pod-security.admission.config.k8s.io/v1

7. kind: PodSecurityConfiguration

8. defaults:

9. enforce: "restricted"

10. enforce-version: "latest"

11. audit: " restricted "

12. audit-version: "latest"

13. warn: " restricted "

14. warn-version: "latest"

15. exemptions:

Kubernetes Orchestration Security 251

16. usernames: []

17. runtimeClasses: []

18. namespaces: []

In the above example, the ”defaults” applies when the POD mode Label is not
set with the latest policy version, and it provides no exemption to the policy. The
defaults.labels are described in Chapter 7, Kubernetes Hardening, Table 7.12, POD
Security Standards, as part of a broader discussion around POD Security.

Note: PODs are often created indirectly, for example, via deployment. In this
case, the enforce label is not applied to the workload resources, only to the
PODs. Audit and warning can help in modifying the deployment template to
meet the security requirements.

Exemptions to the policy must be explicitly declared. A request that meets the
defined policy exemptions is ignored and can bypass the policy enforcement. Based
on this note, it is not recommended to exempt service accounts, as it would exempt
any user that leverages that service account.

Securing secrets
Secrets are objects that contain sensitive information, such as tokens, passwords, and
SSH keys. Kubernetes uses secrets to provide control on how sensitive information is
managed and aims to reduce the risk of exposure. The default storage methodology
for secrets in the cluster is not encrypted but encoded as base64 strings, which is
not sufficient from the security standpoint. The following is a list of recommended
actions from the orchestration standpoint:

•	 Enable etcd encryption at rest

•	 Control access to secrets

•	 Improve datastore management policies

•	 Use external secrets management systems

The first step to enhance security around secrets is to enable encryption data at rest
in etcd. This procedure requires etcd version 3.0 or higher and minimum Kubernetes
version 1.26 to encrypt custom resources. Refer to Chapter 7, Kubernetes Hardening,
Control plane, for a detailed description on how to enable etcd encryption at rest. As
per discussion in the previous section about Role-based Access Control (RBAC),
the least-privilege principle should be applied when managing access to secrets;
this can be achieved by considering the approach defined in Table 8.8 – Least-privilege
access to secrets:

252 Security for Containers and Kubernetes

Type Description
Components •	 Restricts access to list or watch only to privileged system

components

•	 Allows the use of get access if it is necessary for the component
Humans •	 Forbids access to use list, get, or watch to users, and allows

only administrators with a view-only access role

•	 For more fine-grained access control mechanism, consider
using a third-party tool

Table 8.8: Least-privilege access to secrets

Users that can create PODs have access to the secrets that the PODs invoke, even if
the policies are forbidding users access to secrets. To mitigate this behavior, consider
the following:

•	 Implementing auditing rules to alert on secrets specific events

•	 Using short-lived or one-time secrets

To improve datastore management policies, consider wiping out the etcd database
storage volume when no longer in use, and if there are multiple etcd datastore
instances, adopt Transport Layer Security (TLS) communication to protect data in
transit, especially in high-availability clusters configuration scenarios.

It is not uncommon to use external secrets management system; this solution keeps
sensitive information outside the domain of the cluster, so PODs must be configured
to look up that information externally. This is possible thanks to the Kubernetes
Secrets Store CSI Driver, essentially a DaemonSet that connects the kubelet with
the external system. The external secrets management systems that are currently
supported are AWS Provider, Azure Provider, GCP Provider and Hashicorp Vault
Provider. There are few more actions worth considering, even if they do not apply
specifically to cluster administration and are more directed to the application and
container life cycle:

•	 Restrict access only to the container that needs it

•	 Protect secret after accessing it

•	 Do not share secret manifests

In an environment where a POD has multiple containers running, access to secrets
should be allowed only to those containers that need authentication mechanism,
by defining appropriate mounting variables. Containers should protect the value of
the secrets after consuming it, so appropriate measure should be in place to avoid
transmitting secrets to untrusted parties or logging the secrets in log systems. If a
manifest file is adopted to configure secrets, appropriate security measures should

Kubernetes Orchestration Security 253

be considered in controlling access to the manifest file, as secrets would be available
to any user who can read the manifest.

Cluster isolation
A Kubernetes cluster is a complex environment and can be hard to manage; also,
it is very common to “share” the usage of the cluster between teams, especially
those that are logically closer to each other. For example, the same cluster could be
used by dev, devops, testing, and quality or when different applications share the
same member of the teams involved in the release cycle. If an application is used
by the human resource or the facility team, they could share the same cluster with
different levels of access. Sometimes it is the application that defines who needs
access to what; the broader the breath of the application, the more it will span over
multiple teams. These considerations should also include environment separation,
such staging versus production, with some stakeholders accessing the cluster with
a lower level of permissions and others with a higher level of permission, defining
coexisting tenancy model. There are usually two levels of isolation, as described in
Table 8.9, Isolation Level:

Type Description
hard multi-tenancy •	 Strong isolation

•	 No trust

•	 More difficult to achieve on the Data Plane

•	 Regulatory and compliance requirements
soft multi-tenancy •	 Soft isolation

•	 Common for internal environments

•	 Easier to achieve on the Control Plan

Table 8.9: Isolation Level

There are a few ways to implement multi-tenant solutions and achieve isolation
in Kubernetes; each of these methodologies has its own trade-off that affects the
isolation and implementation level, complexity and management; but it usually
comes down to two techniques: Control Plane Isolation and Data Plane Isolation.
The main goal of the Control Plane Isolation method is to ensure that tenants cannot
access or in any way affect each other’s kube-apiserver and resources. Isolation is
achieved as per the description in Table 8.10, Control Plane Isolation:

254 Security for Containers and Kubernetes

Type Description
Namespaces •	 Address the isolation mechanism within a single cluster.

•	 Objects with the same name can span in different
namespaces.

•	 Security policies can be scoped at the namespace layer.
•	 In a multi-tenant environment, it helps segment the

workload into logical units.
•	 It requires configuration of other resources, such as

networking.
Access controls •	 Adopting the Least-Privilege principle to ensure the

minimum access level is set.
•	 Use RBAC to enforce authorization by enforcing Role and

RoleBinding at the namespace layer.
•	 In a multi-tenant environment, restrict access to the

appropriate namespace with RBAC.
•	 Do not grant access at the cluster level.
•	 When a policy grants more permissions than it should,

considering adopting a policy review process.
Quotas •	 Manage physical node resources.

•	 Limit the number of PODs per namespace.
•	 Quota has no control over network traffic.

Table 8.10: Control Plane Isolation

The Data Plane Isolation is referred to PODs and workload to ensure that tenants
cannot access or in any way affect each other’s running resources. Isolation is
achieved as per the description in Table 8.11, Data Plane Isolation:

Type Description
Network isolation •	 All PODs can communicate to each other by default,

and network traffic is unencrypted.
•	 Consider adopting Network Policies.
•	 Consider implementing a service mesh, which can help

increasing the network isolation, acting at the OSI Layer
7.

Kubernetes Orchestration Security 255

Storage isolation •	 Adopt Dynamic Volume Provisioning.
•	 Do not implement volume types that need node

resources.
•	 PersistentVolumeClaim is a resource confined by the

namespace.
•	 Be mindful of the PersistentVolume resource, which

can span to the whole cluster.
•	 Adopt StorageClasses to increase isolation.

Sandboxing •	 Provides workloads isolation in shared cluster.
•	 Recommended when running suspicious code or for

troubleshooting purposes.
•	 gVisor is a tool that intercepts system calls from the

containers and executes them via a userspace kernel
with limited and controlled access to the host node.

•	 Kata Containers provides an additional virtualized
environment allowing to run containers in a virtual
machine inside the POD, and therefore, blocking the
system calls to reaching the node.

Node isolation •	 Running PODs are assigned to a specific tenant.
•	 POD escaping is limited to the node environment.
•	 Slightly more secure and easier to implement with

respect to sandboxing.
•	 It can be achieved using POD Node Selectors or Virtual

Kubelet.

Table 8.11: Data Plane Isolation

There are two methods to implement multi-tenancy for a Kubernetes cluster while
preserving isolation: namespace per tenant and virtual control plane per tenant.
The namespace per tenant approach is very well supported, implies namespace
isolation, and provides a methodology to allow proper tenants communication, but
it can be complicated to configure and cannot be used to isolate resources that cannot
be confined into a namespace. On the contrary, the control plane virtualization per
tenant approach can apply isolation to non-namespace Kubernetes resources but
has much more difficult tenant-to-tenant interaction and a higher cost in terms of
resource utilization.

Audit logging
The Kubernetes auditing system is a chronological record set that registers the
actions within the Kubernetes cluster. The cluster records three set of activities:

256 Security for Containers and Kubernetes

users, applications that interact with the kube-apiserver, and the control
plane.

Figure 8.5: Auditing

The audit system in Kubernetes follows the workflow illustrated in Figure 8.5,
Auditing, where any request generates an audit event, the audit event is processed
by an audit policy analyzer, which defines what to record from the audit event, and
the event is then written to a persistent volume. The API requests ingested into the
audit system have four possible stages, as described in Table 8.12, Audit Request Stage:

Type Description
RequestReceived It is generated as soon as the audit system received the request.
ResponseStarted Only the response header is sent, not the response body.
ResponseComplete The response body is sent, the audit request has been

completed.
Panic It is only generated by panic events.

Table 8.12: Audit Request Stage

The audit policy defined into the audit system provides priority rules about
what data should be recorded when the event is processed. The first matching

Kubernetes Orchestration Security 257

rule determines the audit level. The audit levels are described in Table 8.13, Audit
Levels:

Type Description
None Do not log events.
Metadata Only log metadata, such as user, resource, timestamp, or verb.
Request Log request body and its metadata, but do not log response

body.
RequestResponse Log request body, metadata, and response body.

Table 8.13: Audit Levels

Kubernetes provides a sample audit policy that helps configure the audit system as
per the following example code:

1. apiVersion: audit.k8s.io/v1

2. kind: Policy

3. omitStages:

4. – “RequestReceived”

5. rules:

6. – level: RequestResponse

7. resources:

8. – group: “”

9. resources: [“pods”]

10. – level: Metadata

11. resources:

12. – group: “”

13. resources: [“pods/log”, “pods/status”]

14. – level: None

15. resources:

16. – group: “”

17. resources: [“configmaps”]

18. resourceNames: [“controller-leader”]

19. – level: None

20. users: [“system:kube-proxy”]

258 Security for Containers and Kubernetes

21. verbs: [“watch”]

22. resources:

23. – group: “”

24. resources: [“endpoints”, “services”]

25. – level: None

26. userGroups: [“system:authenticated”]

27. nonResourceURLs:

28. – “/api*”

29. – “/version”

30. – level: Request

31. resources:

32. – group: “”

33. resources: [“configmaps”]

34. namespaces: [“kube-system”]

35. – level: Metadata

36. resources:

37. – group: “”

38. resources: [“secrets”, “configmaps”]

39. – level: Request

40. resources:

41. – group: “”

42. – group: “extensions”

43. – level: Metadata

44. omitStages:

45. – “RequestReceived”

Policy objects cannot be created via kubectl command line; the audit.k8s.io
would return a no match error. The policy can be invoked by modifying the kube-
apiserver manifest file:

1. spec:

2. containers:

3. – command:

Kubernetes Orchestration Security 259

4. – kube-apiserver

5. - --allow-privileged=false

6. - --audit-policy-file=/home/docker/audit.yaml

Table 8.14, Audit Rules, provides a brief description of the above-mentioned
configuration:

Line Description
3 The omitStages forbid the cluster to generate audit events for all the

RequestReceived; this will help in reducing the noise.
6 The RequestResponse level logs PODs changes.
9 “pods” does not match resource requests.
13 PODs log and status is logged at Metadata level.
18 The configmap resource controller-leader is not logged.
24 Resources endpoints and services with watch requests are not logged.
28 Non-resource api requests are not logged.
29 Non-resource version requests are not logged.
34 The namespace resource kube-system logs audit request body of configmap

changes.
38 Resource secrets logs changes at the Metadata level.
39 Resource configmap logs changes at the Metadata level.
42 Logs at the request level resources in extensions.
45 Logs all the RequestReceived at the Metadata level.

Table 8.14: Audit Rules

Note: The group “” with empty double quote is intended for the core API group.

For readers who want to create their own audit profile, it is recommended to use
the Google Container-Optimized OS. Kubernetes has a configure-helper.sh script
to generate a starting point audit policy that can be tailored to individual user
needs. Audit events are stored with the Log backend and the Webhook backend
mechanisms: the former writes JSON locally via volumeMounts, while the latter
sends audit event to a remote web system to ingest logs into an external monitoring
tool.

260 Security for Containers and Kubernetes

POD escaping privilege escalation
In Chapter 7, Kubernetes Hardening, we discussed a possible scenario of POD Escaping,
where the attacker can eventually escape the POD and gain access to the underlying
host, aka the worker node. Worker nodes come with a set of pre-determined
credentials based on the type of Kubernetes distribution or service installed;
these credentials may vary, but they are usually divided into kubelet credentials
(restricted via NodeAuthorizer and NodeRestriction), and PODs Service Accounts
credentials.

Users logically associate PODs with applications, and therefore their focus is on how
to manage workloads, but there are also cluster-managed PODs or PODs plug-in,
with their own set of permissions via service account. These are usually running
as a DaemonSet spanning two or more worker nodes. The way in which cluster
resources are deployed may vary according to the specific Kubernetes distribution
or service adopted, and the criticality is that administrators do not have visibility
into “cluster-related microservices”. To successfully escalate privilege, an attacker
would need to leverage PODs Service Accounts or DaemonSet permissions to grant
what is described in Table 8.15, Attack Vectors:

Attack Description
Change Authentication Change identity
Change Authorization Change permissions (user impersonation)
Tokens Retrieve or issue a service account token
Remote Code Execution (RCE) Execute code on PODs
Steal PODs Move PODs from one node to another

Table 8.15: Attack Vectors

Kubernetes Orchestration Security 261

Interestingly, Kubernetes clusters as service, including the most famous public cloud
providers, are much more exposed to this threat than on-premises distribution
because in order to connect with the cluster and make it available to the user, they
need to provide a sort of interface that can manage the nodes. Refer to the following
figure:

Figure 8.6: POD Escaping Privilege Escalation

During the Blackhat USA 2022, researchers at the Palo Alto Networks were able to
demonstrate the escalation technique illustrated in Figure 8.6, POD Escaping Privilege
Escalation, and named the threat as the “Trampoline POD”.

Assess and verify
Applying security to Kubernetes is an evolving journey. There are many things to
consider, and keeping track of all the aspects involved is challenging. In Chapter
7, Kubernetes Hardening, we introduced Mitre ATT&CK Kubernetes Matrix, a
framework aiming to provide guidelines to help organizations understand the attack

262 Security for Containers and Kubernetes

surface of the Kubernetes environment in depth. The matrix highlights strategies
and techniques attackers may use to target the Kubernetes clusters, as illustrated in
Figure 8.7, Mitre ATT&CK Kubernetes Matrix:

Figure 8.7: Mitre ATT&CK Kubernetes Matrix

Despite the completeness of such framework and its very useful approach to create
a security baseline in any Kubernetes environment, sometimes it is hard to find a
logic way to start applying security best practices to such complex systems. Table
8.16, Kubernetes Security List, provides a quick summary of guidance to consider
when aiming to achieve a better cluster security posture. This list is not meant to be
complete; it just describes a baseline that can be quickly evolved and integrated with
other tools and methodologies.

Kubernetes Orchestration Security 263

Type Description
Authentication and
authorization

•	 The system:masters group has no more use after the
initialization of the cluster.

•	 Root certificate is shielded.
•	 Certificates are managed.
•	 The control plane, kube-controller-manager has --use-

service-account-credentials enabled.
•	 RBAC best practices are applied.
•	 A procedure for periodic access review is in place.

Network security •	 Network policies are applied.
•	 CNI plugins are implementing network policies.
•	 Encryption in transit is applied within the cluster.
•	 The control plane components are exposed only

internally.
•	 PODs and containers’ reverse access is filtered.
•	 Load Balancer and external Ips utilization are restricted.

POD Security •	 RBAC permissions are in place.
•	 POD Security is applied.
•	 Hardware resources access is controlled and limited.
•	 SELinux, AppArmor and Seccomp are enabled.

Secrets •	 Encryption at rest is configured.
•	 Service accounts credentials are not available to PODs.
•	 ConfigMaps are denied access to sensitive information.
•	 An external secrets management tool is available.

Images •	 Reduce the content of the image to the strict necessary
to run the application.

•	 Non-root user approach is adopted.
•	 The tag latest is avoided.
•	 Reference to the image is made by sha256 digest.
•	 Images are regularly scanned during the software

development life cycle.
Admission
Controller

•	 The list of admissions controllers is reviewed regularly.
•	 The mutating admission is disabled.
•	 The PODSecurity controller is enforced.

Table 8.16: Kubernetes Security List

264 Security for Containers and Kubernetes

Lastly, there is an interesting tool that applies the general security principles described
in the previous table and can be used to assess the initial cluster security posture that
is worth noting: Kubeaudit. Kubeaudit is a Shopify tool used to address various
security concerns; it can run as a kubectl plugin, as a standalone Docker container,
or simply as a command line tool installed via brew. The methodology applied to
audit the cluster leverages the “auditors”, a set of security controls that inspect
the system to identify misconfigurations. The auditors can be executed together or
individually, depending on the target of the auditing. These are briefly described in
Table 8.17, Kubeaudit Auditors:

Type Description
AppArmor Verifies that containers running in PODs have the AppArmor flag

enabled
ASAT Automount Service Account Token (ASAT) auditor inspect

containers that have the serviceAccount flagged as deprecated,
and for the default serviceAccount mounted

Capabilities Audit containers that do not add or drop the recommended
capabilities

Deprecated APIs Inspect the clusters for Kubernetes resources using a deprecated
version of the API system

HostNS Inspect the clusters for containers with HostPID, HostNetwork or
HostIPC enabled

Image Looks out for containers using a wrong version of the desired
image or images without tags

Limits Looks out for containers exceeding the required CPU or RAM
limits or that do not specify those limits

Mounts Looks out for containers mounting sensitive host path, such as /
proc, /etc, /root and similar

Netpols Looks out for namespaces that are not denying network traffic by
default as per network policies specifications

Non-root Looks out for containers running as root
Privesc Looks out for containers allowed to use privilege escalation

features
Privileged Looks out for containers running with privileged permissions
rootfs Looks out for containers mounting writable filesystems
Seccomp Looks out for containers running in PODs without enabling

Seccomp

Table 8.17: Kubeaudit Auditors

Kubernetes Orchestration Security 265

Kubeaudit runs in manifest mode, local mode, or cluster mode. The manifest mode
supports the autofix feature that aims to correct the misbehaving resources. With it
being an offline fix, the resources will be fixed only when the manifest file is applied
again. The cluster mode can be executed running kubeaudit as a Docker image
either with or without RBAC enabled. Of course, enabling RBAC is recommended.
A brief description of the three modes is provided in Table 8.18, Kubeaudit Modes:

Description Description
Manifest When a manifest file is provided, kubeaudit scans the manifest file only.
Local It leverages the kubeconfig file to connect to the cluster.
Cluster In this mode, the whole cluster will be audited.

Table 8.17: Kubeaudit Modes

Kubeaudit supports three types of results: error, warning, and info. These are also
considered the three levels of severity the tool can produce when auditing a system.

Conclusion
In this chapter, we discussed the various security aspects of Kubernetes from
the orchestration standpoint. This journey started from the authentication and
authorization methodologies and how to secure them, and then we discussed the
risks associated with the API server, the main differences between RBAC and ABAC,
which one to choose and why.

We then moved on to understand what admission controllers are and why we need
them, and we also looked at which aspect of the security landscape they cover within
the cluster. Moving on, we got an overview of how Kubernetes manages secrets and
how to protect them. Cluster isolation is another important part of establishing a
security baseline for the Kubernetes cluster, and we complemented this argument
with the audit and logging capabilities.

We also expanded on the concept of POD escaping discussed in the previous chapter,
and looked at how it could escalate to compromise the whole cluster. Lastly, we
focused on security guidelines and tooling to assess, audit and verify the security
posture of the cluster.

In the next chapter, we will learn about Kubernetes Governance, and the various
security aspects of adopting policies and procedure, and we will also go through
tooling.

266 Security for Containers and Kubernetes

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Kubernetes Governance 267

Chapter 9
Kubernetes
Governance

Introduction
In information security, governance is the capability of a process to assess and
manage the risks associated with the adoption of information technology solutions.
Information security governance is, therefore, a set of policies, processes, and
procedures by which an organization controls and coordinates the security
requirements and activities that define the risk appetite.

Applying governance to Kubernetes is not a trivial task. The intrinsic complexity
of the cluster does not facilitate the implementation of governance solutions. The
Cloud Native Computing Foundation defines Kubernetes governance as a critical
area of the cluster security aiming to achieve production-ready systems at scale.
Governance should therefore be considered as a mix of different set of tools applied
at different layers of the cluster, indeed there is no single governance tool that can
achieve alone an optimal security posture. Security policies are sets of rules adopted
to achieve the desired security requirements, often to fulfill compliance purposes. In
Kubernetes, those are enforced to raise guardrails around the perimeter and reduce
the attack surface by enabling control on the component of the cluster.

268 Security for Containers and Kubernetes

Structure
In this chapter, we will discuss the following topics:

•	 Policy engines
•	 Admission controller threat model
•	 Network policies
•	 Resources management
•	 Security policies
•	 Limits and limitation

Objectives
This chapter provides an insight into how to apply governance by means of security
policies that can be enforced to control security in the Kubernetes system. The topics
of this chapter are to be considered as complementary arguments to the previous
two chapters, where hardening and security orchestration were deemed to define
different strategies to achieve a better security posture of the cluster.

Policy engines
In Chapter 4, Securing Container Images and Registries, we briefly introduced the Open
Policy Agent (OPA) in the context of Scanning and verifying images. OPA is the most
widely adopted Kubernetes policy engine, implemented as an additional layer of
security through the admission controller mechanism discussed in the previous
chapter. There are several use cases that can be mentioned, but to travel through
the topics we have touched in this book so far, the following are the most relevant
examples:

•	 All the container images must be deployed from a secure registry.

•	 All PODs must specify resource quota.

•	 The production namespaces must have RBAC enabled.

Kubernetes Governance 269

Open Policy Engine was not created with Kubernetes in mind; indeed, the policy
engine is an independent software created by Styra, with the mission to solve the
cloud native authorization evolution, a system that has reached the Cloud Native
Computing Foundation graduated maturity level in the early 2021. As such, OPA
has a steep learning curve due to the adoption of Rego, a high-level declarative
query language used to compose policies. Nevertheless, OPA can be integrated into
Kubernetes as an admission controller through a mechanism called Gatekeeper.
Gatekeeper is essentially the integration system between OPA and Kubernetes.

At the time of writing this chapter, Gatekeeper is at version 3.12. This version integrates
the OPA Constraint Framework that fully supports Kubernetes CRD-based policies.
CRD stands for Custom Resource Definition, which is not a Kubernetes resource but
a custom resource added to the cluster by creating a custom API object. In this case,
the imported policies generated by OPA Constraint Framework become Kubernetes
objects or resources once admitted to the cluster through the admission controller. The
OPA Constraint Framework, built with kubebuilder, allows declarative configured
policy, overcoming the facto the OPA language limitation imposed by the Rego
language, providing validating admission and mutating admission control, along
with audit capabilities. A constraint is a declarative code enforcing a given system to
meet a specific set of security requirements; consider the following example:

1. apiVersion: constraints.gatekeeper.sh/v1beta1

2. kind: RequiredLabel

3. metadata:

4. name: require-production-label

5. spec:

6. match:

7. namespace: ["my-namespace"]

8. parameters:

9. labels: ["production"]

The objects produced by the OPA Constraint Framework successively admitted
to the Kubernetes cluster are, therefore, consumed by the cluster itself as custom

270 Security for Containers and Kubernetes

resources and applied through the Gatekeeper to perform the governance tasks they
have been created for. Refer to the following figure:

Figure 9.1: OPA Gatekeeper

A workflow diagram to help visualize the Gatekeeper implementation is provided
in Figure 9.1, OPA Gatekeeper:

1. An API request is received by the Kubernetes API Server.

2. The request is authenticated, and then the authorized is evaluated via
admission controller.

3. The Admission Controller passes the request to the Open Policy Agent
through the Gatekeeper.

4. The OPA Engine weights the request against the OPA Constraint Framework.

5. The OPA Engine responds to the kube-apiserver.

6. The Kubernetes API Server applies executes the request as a result of the
OPA Engine evaluation.

Kubernetes Governance 271

As explained in Figure 8.4, Admission Controllers, in the previous chapter, the
admission controller system has two phases: the mutating admission and the
validating admission. The kube-apiserver allows the admission controller to
intercept requests before they become objects in Kubernetes; those requests are then
routed to Gatekeeper, evaluated through OPA and redirected against the relevant
resources once API requests are generated. The OPA Constraint Framework brings
the features described in Table 9.1, OPA Constraint Framework Features:

Type Description
Policy library A set of ready-to-go policies for General cluster governance

and Pod Security governance
Constraints A YAML-coded declaration to enforce a specific set of

requirements
Constraint template A template to implement new constraints based on the input

parameters and the Rego code to implement the constraint
Mutation The mutation (or in Kubernetes terms, the mutating admission

feature) that enables Gatekeeper to modify, change or update
Kubernetes resources based on the constraints

Audit Follows the resources lifecycle and periodically evaluate them
against the constraints, eventually detecting misconfiguration
and enforcing mutation

External data Supports external data sources to enhance Gatekeeper
capabilities to apply security requirements to the cluster, such
as the following:

•	 Ratify, an artifact security metadata verification engine

•	 Container images signature verification engine

Table 9.1: OPA Constraint Framework Features

The immediate advantage of Gatekeeper 3.12 is the policy library, which provides
several constraints that can be utilized to improve security governance. The policy
library general cluster governance group contains the policies described in Table 9.2,
General Policy Library:

Type Description
Allowed Repositories Defines a list of allowed repositories from which

container images can be pulled
Automount Service Account
Token for Pod

Enables or disables any POD controlling the
automountServiceAccountToken parameter

Block Endpoint Edit Default
Role

Locks out editing the cluster endpoints; this vulnerability
has been addressed in CVE-2021-25740

272 Security for Containers and Kubernetes

Type Description
Block NodePort Blocks all services using type NodePort
Block Services with type
LoadBalancer

Blocks all services using type LoadBalancer

Block updating Service
Account

Blocks service accounts update on all the cluster resources
external to the POD

Block wildcard ingress Blocks wildcard (*) hostnames on the ingress system
Container Limits Sets CPU and RAM limits to be restricted within the

constraint limits
Container Requests Sets CPU and RAM requests to be restricted within the

constraint limits
Container Ratios Sets the maximum allowed ratio between container

limits and requests
Disallow Anonymous
Access

Blocks Role and ClusterRole association with
system:anonymous and system:unauthenticated

Disallow tags Enforces container images to be tagged differently from
the disallow list

External IPs Enforces Service externalIPs to a pre-defined allowed list
HTTPS only Enforces Ingress to HTTPS only
Image Digests Enforces container images to adopt the digest
Pod Disruption Budget Enforces POD disruptions in high availability deployment

scenario
Required Annotations Resources are requested to adopt annotations
Replica Limits Limits resources replica to the value specified within

ranges
Required Labels Resources must contain the labels and values provided
Required Probes PODs must have readiness and liveness probes set
Required Resources Containers must have defined the allocated set of

resources
Storage Class Storage classes must be defined
Unique Ingress Host Ingress rules must be unique
Unique Service Selector Selectors on services must be unique within a namespace

Table 9.2: General Policy Library

The POD Security topic was discussed initially in Chapter 7, Kubernetes Hardening, in the
POD Security section, and subsequently in Chapter 8, Kubernetes Orchestration Security,
in the Admission Controller section, where we acknowledged that PODSecurity
replaces PODSecurityPolicy. The OPA Gatekeeper Library implements POD

Kubernetes Governance 273

Security Policy as either constraints or constraints templates and brings into the
picture a new aspect of Kubernetes security controls: the POD Governance. To clarify
the relationship between security requirements, their initial application through the
cluster POD Security Policy and policy engine system that governs them with the
OPA Constraint Framework, refer to Table 9.3, POD Governance:

Security Control POD Security Policy Constraint
Privileged containers Privileged privileged-containers
Host namespaces •	 hostPID

•	 hostIPC
host-namespaces

Host networking and
ports

•	 hostNetwork
•	 hostPorts

host-network-ports

Volume types volumes volumes
Host filesystem allowedHostPaths host-filesystem

flex-volume drivers
approved list

allowedFlexVolumes flexvolume-drivers

read-only root file
system

readOnlyRootFilesystem read-only-root-
filesystem

Container user and
group IDs

•	 runAsUser
•	 runAsGroup
•	 supplementalGroups
•	 fsgroup

users

root privileges
escalation

•	 allowPrivilege Escalation
•	 defaultAllow PrivilegeEscalation

allow-privilege-
escalation

Linux capabilities •	 defaultAddCapabilities
•	 requiredDropCapabilities
•	 allowedCapabilities

capabilities

Container SELinux seLinux seLinux
Container Proc mount
types

allowedProcMountTypes proc-mount

Container AppArmor
profile

annotations apparmor

Container seccomp
profile

annotations seccomp

Container sysctl profile •	 forbiddenSysctls
•	 allowedUnsafeSysctls

forbidden-sysctls

Table 9.3: POD Governance

274 Security for Containers and Kubernetes

Whenever a policy or constraint is missing and is required by the business needs, the
constraint template helps in formulating a new constraint. It is a mix of fixed values
and Rego language; the fixed values are as follows:

•	 validation: The parameters schema for the constraint

•	 targets: The resources target of the constraint

•	 rego: The rego expression that defines what the constraint wants to achieve

•	 libs: Library functions utilized by the rego package

An example of such implementation is given in the following constraint template
code, assuming that the example policy aims to block ingress resources deployed in
two or more namespaces from sharing the same hostname:

1. apiVersion: gatekeeper.sh/v1beta1

2. kind: ConstraintTemplate

3. metadata:

4. name: blockingresshostsharingalternativenamespace

5. spec:

6. crd:

7. spec:

8. names:

9. kind: BlockIngressHostSharingAlternativeNamespace

10. validation:

11. openAPIV3Schema:

12. properties:

13. labels:

14. type: array

15. items: string

16. targets:

17. - target: admission.k8s.gatekeeper.sh

18. rego: |

19. package kubernetes.admission

20. import data.kubernetes.ingresses

21. deny[msg] {

22. some alt_namespace, alt_ingresses

Kubernetes Governance 275

23. input.request.kind.kind == "Ingress"

24. input.request.operation == ["CREATE", "UPDATE"]

25. host := input.request.object.spec.rules[_].host

26. ingress := ingresses[alt_namespace][alt_ingresses]

27. alt_namespace != input.request.namespace

28. ingress.spec.rules[_].host == host

29. msg := sprintf("Host %q conflict! The ingress object be-
longs to a different namespace", [host, alt_namespace, alt_ingresses])

30. }

Once the constraint template has been deployed into the cluster, the constraint can
be deployed as customer resource definition; in our assumed case, the constraint
example is provided in the following example code:

1. apiVersion: constraints.gatekeeper.sh/v1beta1

2. kind: BlockIngressHostSharingAlternativeNamespace

3. metadata:

4. name: ingress-conflict

5. spec:

6. match:

7. kinds:

8. - apiGroups: [""]

9. kinds: ["ingress"]

10. parameters:

11. namespace: ["alt_namespace"]

In this context, an audit mechanism can be deployed to verify the application of the
preceding constraint within the cluster. Continuing the ingress conflict example the
deployment YAML file would look like the following audit code:

1. apiVersion: constraints.gatekeeper.sh/v1beta1

2. kind: BlockIngressHostSharingAlternativeNamespace

3. metadata:

4. name: ingress-conflict

5. spec:

6. match:

276 Security for Containers and Kubernetes

7. kinds:

8. - apiGroups: [""]

9. kinds: ["ingress"]

10. parameters:

11. labels: ["alt_namespace"]

12. status:

13. auditTimestamp: "2023-18-01T06:12:55Z"

14. byPod:

15. - enforced: true

16. id: gatekeeper-controller-manager-0

17. violations:

18. - enforcementAction: deny

19. kind: ingress

20. message: 'Host conflict, the ingress object belongs to a differ-
ent namespace'

21. name: kube-system

Recently, a new player has joined the policy engines universe, Kyverno. Kyverno, in
contrast with OPA, is designed to work with the tools that Kubernetes users have the
habit of using, such as kubectl, kustomize, and eventually, git. The policy logic is
a linear set of rules with a one-to-one relationship between the target resource and
the expected action, as illustrated in Figure 9.2, Kyverno.

Kubernetes Governance 277

Figure 9.2: Kyverno

Furthermore, once Kyverno has been deployed as admission controller, its policies
are treated as Kubernetes native resources with no external language to learn, and
there is no need to use Gatekeeper as implementation mechanism, and to define new
rules via any customized template. Policies can be applied at either the cluster or the
namespace layer, a simple idea of confining resources in the two mainstream logical
perimeters of the Kubernetes cluster. Also, Kyverno is a policy engine created for
cloud native solutions, so it provides great deployment flexibility and a rich set of
pre-defined policy categories, a summary of which is provided in Table 9.4, Kyverno
Policies:

278 Security for Containers and Kubernetes

Type Description
AWS •	 IRSA required on node DaemonSet

•	 AWS ELB Encryption required
•	 AWS EKS

o Karpenter node eviction required
o Communication restriction via Network Policy
o Namespaces control Pod Security Admission via

labels
o Container base images built from trusted sources
o Block ENV VARS containing secrets
o Limits and Requests check
o POD lifecycle management via liveliness and

readiness
o PodDisruptionBudget
o Pod Security Standards profile restriction
o Container images verification via Cosign

Best Practices •	 Check deprecated Kubernetes API Server versions
•	 Block Container Runtime Interface socket mount
•	 Ingress disallows empty host
•	 Block “latest” tag
•	 Block all Capabilities
•	 Require workloads to declare Limits and Requests on

cluster resources
•	 POD life cycle management via liveliness and readiness
•	 Enforce root filesystem in read-only mode
•	 Enforce restriction on external IPs
•	 Enforce restriction on image registries
•	 Enforce restriction on defaultBackend for ingress

deployment
Cert-Manager •	 100 days certificate renewal

•	 dnsNames limited to a single name
•	 Chain of trust established between a domain and the cluster

certificate issuer
Consul •	 TLS minimum version check

Kubernetes Governance 279

Istio •	 Sidecar Injection
•	 mTLS enforcing
•	 TLS on Host
•	 AuthorizationPolicies

KubeVirt •	 VirtualMachineInstance SSH service
•	 InstanceType Enforcement

Linkerd •	 Sidecar injection at the namespace level
•	 Policy Annotation
•	 Blocking Pod Injection

Multi-Tenancy •	 Network Policy
•	 DNS
•	 Quota
•	 StorageClass
•	 RoleBinding

Nginx •	 Block custom snippets to retrieve secrets from the cluster to
address CVE-2021-25742

•	 Ingress restriction on annotation values for CVE-2021-
25746

•	 Ingress path mitigation on CVE-2021-25745
POD Security •	 Baseline PSS (POD Security Standard) Policy

•	 Restricted PSS (POD Security Standard) Policy
o Container-Level Control
o Spec and Container-Level Control

•	 POD Security Admission
Supply Chain •	 Enforce vulnerability scan on the image

•	 Implement SBOM verification
•	 Addresses Apache Commons Text library as per CVE-2022-

42889
Tekton •	 Block TaskRun

•	 Check TaskRun for vulnerabilities
•	 PipelineRun requires namespace to be declared

Table 9.4: Kyverno Policies

280 Security for Containers and Kubernetes

Interestingly, Kyverno proposes security best practices to deploy the Kyverno policy
engine inside the Kubernetes cluster with the maximum level of security posture to
preserve the integrity and security of the cluster, as illustrated in Table 9.5, Kyverno
Security Best Practices:

Type Description
POD Security POD Security Standard restricted profile
RBAC Kyverno RBAC Roles and RoleBindings configuration to set the

appropriate level of required permissions; specific customization
can be provided via the kyverno:view and the kyverno:generate
roles

Networking Encrypted by default, network communication should be also
restricted; a set of communication port is provided for fine-tuning

Webhooks Both mutating and validating configurations are created
Recommendation Minimum set of recommended policies are POD Security Standard

and Best Practices

Table 9.5: Kyverno Security Best Practices

For example, the following code illustrates how to enforce the AWS Elastic
Kubernetes Service (EKS) node DaemonSet to use IAM Role for Service Account
(IRSA):

1. apiVersion: kyverno.io/v1

2. kind: ClusterPolicy

3. metadata:

4. name: enforce-aws-node-irsa

5. spec:

6. validationFailureAction: enforce

7. background: true

8. rules:

9. - name: validate-aws-node-daemonset-irsa

10. match:

11. any:

12. - resources:

13. kinds:

14. - DaemonSet

15. names:

Kubernetes Governance 281

16. - aws-node

17. namespaces:

18. - kube-system

19. validate:

20. message: "Enforce aws-node daemonset to use IRSA."

21. pattern:

22. spec:

23. serviceAccountName: "!aws-node"

Due to the very flexible nature of this policy engine, and thanks to the availability
of the kyverno command-line tool, the engine can be used in DevSecOps scenarios
like Continuous Integration and Continuous Deployment (CI/CD) pipelines,
in combination with version control system such as git. This enables a high level
of security posture plus governance within the secure software development life
cycle. An interesting part of this policy engine is also the report and monitoring
capabilities. The report can be requested via command line, the result can be filtered
per policy or per cluster, and the output of the report will provide the information in
the format mentioned in Table 9.6, Kyverno Report:

Type Description
pass The count of resources to which the policy has been applied successfully
fail The count of resources to which the policy has been applied unsuccessfully
warn The count of resources to which the policy has been applied and returned a warning
error The count of resources to which the policy has been applied and returned an error
skip The count of resources for which the policy has been skipped

Table 9.6: Kyverno Report

The command-line report tool can be invoked via kubectl, as shown in the following
example:

1. $ kubectl get policyreport -A
2. NAMESPACE NAME

PASS FAIL WARN ERROR SKIP AGE
3. kube-system forbid-root-containers

4 1 0 1 0 16s
4. kyverno forbid-root-containers

12 0 1 0 0 51s
5. default forbid-root-containers

1 1 0 0 1 5m

282 Security for Containers and Kubernetes

Although doing manual investigation is useful, it can be cumbersome in complex
environments. So, Kyverno implements a ready-to-use Grafana dashboard that can
display out-of-the-box metrics like the following:

•	 The total count of active policies and rules

•	 The total count of rules execution

•	 Any latency associated with the rule processing

•	 The history of cluster policies ingested via Kyverno and their status over
time

Lastly, Kyverno supports Customer Resource Definition (CRD) that can be used
with integrated development environment tools such VS Code.

Admission controller threat model
In Chapter 8, Kubernetes Orchestration Security, in the Admission Controller section, we
discussed the potential and use cases for the admission controller mechanism in
Kubernetes. In this chapter, we discussed how policy engines like OPA and Kyverno
can leverage the admission controller to be plugged into the cluster for enhancing
security governance, and how they can integrate external sources to expand their
policy system baseline. Similar to the kube-apiserver, the admission controller is
one of the key elements of a Kubernetes cluster. Due to its peculiarity the admission
controller is at the same time source of concerns because it enables external systems
to be plugged into the cluster and let those systems to govern the cluster behavior.
The admission controller could be leveraged by an attacker to bypass the natural
cluster defense mechanisms. The Kubernetes Special Interest Group (SIG) has
developed a reference threat model to define the threats to be considered when
designing or implementing plugins for the admission controller. The Admission
Controller Threat Model can be used by the following groups:

•	 Authors who are developing or working on admission controller
implementation

•	 Companies deploying an admission controller add-on as part of their
security requirements

•	 Auditors who need to assess the security of newly deployed or existing
Kubernetes clusters that use the admission controller system

•	 Developers who are responsible for implementing new features or updating
the existing ones

This threat model considers that the admission controller can be implemented as
described in Table 9.7, Admission Controller Implementation:

Kubernetes Governance 283

Type Description
Workload This is a common installation methodology for Kubernetes

admission controllers; refer to Table 8.2, Admission Controllers
List.

Webhooks This is a common installation methodology for third-party
admission controllers to connect to the kube-apiserver.

Table 9.7: Admission Controller Implementation

The implementation strategy is not the only mechanism that can determine a threat;
there are two other characteristics to consider, as per Table 9.8, Admission Controller
Features:

Type Description
Rules The admission controller implementation provides a set of rules that can

block or allow container workloads into the Kubernetes cluster, aiming to
add a layer of security controls.

Mutation The admission controller implementation provides the capability to mutate
container workloads and therefore, to change or modify Kubernetes
resources configurations to comply with policies deployed into the cluster.

Table 9.8: Admission Controller Features

When considering the mentioned assumptions as non-true, the various scenarios
resulting from this threat model analysis can be still help provide threat mitigation
for the purpose of elevating the overall security posture of the Kubernetes cluster.
The admission controller threat model today has defined 18 threat scenarios that
can potentially impact the admission controller system, as described in Table 9.9,
Admission Controller Threat List:

ID Threat Impact
T1 Traffic floods webhook Spin up a malicious workload that would usually

be blocked
T2 Workload causes timeouts Spin up a malicious workload that would usually

be blocked
T3 Misconfiguration exploit Deploy a malicious workload that would usually

be blocked or mutated
T4 Modify or delete webhook Bypassing the admission controller
T5 Webhook Access credentials Denial of Service
T6 Cluster root credentials Whole cluster compromised

284 Security for Containers and Kubernetes

ID Threat Impact
T7 Network sniffing Transmitted information exposed
T8 Man in the middle Intercepting requests and responses
T9 Spoofing Forging responses
T10 Rule abuse Host node compromise
T11 Namespace exposure Cluster node compromise
T12 Missing match Cluster node compromise
T13 Bad string matching Spin up a malicious workload that in normal

conditions would be blocked
T14 No rule features New features or old features in old cluster may not

have been assessed, so the admission controller
could be bypassed

T15 Privileged container The admission controller would be forbidden from
enforcing policies

T16 Privileged hostPath mount The admission controller POD disruption
T17 SSH access Disable or change the admission controller

operations
T18 Policy compromise Information leak due to potential data transmission

to external systems

Table 9.9: Admission Controller Threat List

The Kubernetes Special Interest Group (SIG) has provided 10 mitigation techniques
to address the threats described in the previous table. These mitigations are described
in Table 9.10, Admission Controller Mitigation Factors:

ID Mitigation
M1 Apply and restrict Role-Based Access Control (RBAC) permissions, including

the following:
•	 ValidatingWebhookConfigurations
•	 MutatingWebhookConfigurations
•	 ClusterRoleBindings
•	 ClusterRoles
•	 Workloads
•	 Services

M2 Close Webhook that fails; be mindful of legit webhook failing due to access
restrictions or network communication issues; it could prevent legit container
workload from being deployed into the cluster

Kubernetes Governance 285

M3 Request Webhook connection authentication through exchange of certificates
that can be validated by a trusted Certification Authority (CA)

M4 Apply encryption in transit between webhooks and the API server, using at
least TLS version 1.2

M5 Webhook mutual authentication should be required; the API server should
authenticate via TLS the webhook and vice versa

M6 Regularly audit and test the rules endorsed by the admission controller ensuring
that the policy is effectively enforcing the security requirements defined

M7 Privileged containers should be restricted by the admission controller only to
the system services

M8 Regularly audit Webhook configurations to verify the admission controller
overall security

M9 Admission controllers implementing external systems access should restrict
external network traffic by configuring network policies

M10 Utilize a dedicated Webhook for each individual admission controller
minimizing the attack surface of the cluster

Table 9.10: Admission Controller Mitigation Factors

Not all the mitigation techniques described in the preceding table can be utilized for
all the aspects of this threat model.

Figure 9.3: Admission Controller Threat Model Mapping

286 Security for Containers and Kubernetes

The preceding figure is divided into the four initial domains described in Table 9.7,
Admission Controller Implementation, and Table 9.8, Admission Controller Features.
These four domains have been associated to the threat list described in Table 9.9,
Admission Controller Threat List, which has been mapped to the mitigation methods
described in Figure 9.3, Admission Controller Threat Model Mapping. As readers may
note, different threats can have the same mitigation technique, like the threats with
IDs 12, 13, 14 and 10, and some threats may not have a mitigation at all, like threats
with IDs 6 and 17. There are also threats that depend on other threats, and they may
require one or more mitigation methodology to fully comply with the governance of
the cluster. The mitigation ID 10 is broadly used to reduce the attack surface of the
cluster as a whole.

Network policies
All the policy engines and rules we have discussed so far are somehow affecting
Kubernetes resources, individual components of the cluster or group of resources.
It is possible to control the network traffic within the Kubernetes cluster at the IP
address level, at layer 3, Network Layer or layer 4, Transport Layer, of the Open
System Interconnection (OSI) model. This can be achieved through Kubernetes
Network Policies. The Network Policies system governs how a POD communicates
with other Kubernetes network resources like endpoints, ingresses, and services.
The network resources that a POD is allowed to communicate with are described as
a combination of the following:

•	 Other PODs

•	 Allowed namespaces

•	 CIDRs ranges

In Chapter 7, Kubernetes Hardening, in the Securing Container Runtime Interface
section, we briefly discussed the Container Network Interface (CNI) as part of the
components that contribute to the creation of a POD, in the context of securing the
Container Runtime Interface. A container network interface is a network plugin
used by Kubernetes to deploy network policies into the cluster. In essence, this is a
prerequisite for the network policies to work as expected.

Note: CNI is fully supported by Kubernetes version 1.26 and above; for versions
prior to 1.24, it can be managed via kubectl. The recommended container network
interface version is 1.0.0.

Every network device has two communication directions: an inbound or ingress
that accepts or denies the network traffic coming from outside, and an outbound
or egress that pushes the traffic on the device outside. By default, a POD is a non-
isolate network system either in egress or ingress communications, which means it

Kubernetes Governance 287

is accepting network traffic from everywhere and is also generating network traffic
toward everywhere. When a POD achieves isolation via egress and ingress network
policies, the only connections allowed are the ones explicitly allowed by the ingress
or egress lists of the mentioned network po1licies. Note that network policies do
not act as a firewall; even if they tend to achieve POD security, their rule mechanism
behaves slightly differently because they do not conflict; and there is no order of
rule evaluation. Rules are additive, meaning communication is the combination of
all the applicable rules enforced by the policies. The following code provides an
example of network policy to be applied for the purpose of isolating PODs labelled
as role=mysql in the “my-namespace” namespace:

1. apiVersion: networking.k8s.io/v1

2. kind: NetworkPolicy

3. metadata:

4. name: network-policy-01

5. namespace: my-namespace

6. spec:

7. podSelector:

8. matchLabels:

9. role: mysql

10. policyTypes:

11. - Ingress

12. - Egress

13. ingress:

14. - from:

15. - ipBlock:

16. cidr: 172.11.0.0/16

17. except:

18. - 172.11.2.0/24

19. - namespaceSelector:

20. matchLabels:

21. project: webserver

22. - podSelector:

23. matchLabels:

24. role: http

288 Security for Containers and Kubernetes

25. ports:

26. - protocol: TCP

27. port: 3306

28. egress:

29. - to:

30. - ipBlock:

31. cidr: 10.0.1.0/24

32. ports:

33. - protocol: TCP

34. port: 6121

35. endport: 6221

The key elements of the preceding code are described in Table 9.11, Network Policy
Elements:

Type Description
podSelector This network policy will be applied to all the PODs with label

role:mysql created and running in the namespace my-namespace.
policyTypes A network policy could define either ingress or egress, but this policy

declares both.
ingress rules Allow ingress connections for PODs meeting the following criteria:

•	 PODs are labelled as role:http
•	 PODs are running in the namespace labelled as

project:webserver
•	 PODs have IP address within the CIDR block 172.11.0.0/16 ,

except 172.11.2.0/24
•	 PODs requesting connection to port TCP 3306

egress rules Allow egress connection for PODs meeting the following criteria :
•	 PODs are labelled as role:mysql
•	 PODs with addresses within the CIDR block 10.0.1.0/24
•	 PODs requesting connection from port TCP 6121 to TCP 6221

Table 9.11: Network Policy Elements

When defining rules in network policies, be mindful of using the elements to and
from; for example, the following code is extracted from the previous code from line
19 to 24, and it means “allow connection from any POD in namespace labelled as
project=webserver” or ”allow connection from all the PODs in any namespace

Kubernetes Governance 289

labelled as role=http”, resulting in two different applications of the element
from:

1. ...

2. ingress:

3. - from:

4. - namespaceSelector:

5. matchLabels:

6. project: webserver

7. - podSelector:

8. matchLabels:

9. role: http

10. ...

The following code at line 7 has no dash suffix on the podSelector element,
meaning “allowing connection from any POD labelled with role=http running in
the namespace labelled with project=server”:

1. ...

2. ingress:

3. - from:

4. - namespaceSelector:

5. matchLabels:

6. project: webserver

7. podSelector:

8. matchLabels:

9. role: http

10. ...

There is only one dash difference between the two code examples, but the result of the
policy may be quite different and may lead to unexpected results. It is recommended
to verify that Kubernetes has interpreted the policy with kubectl describe my-
policy-name. There are cases where ipBlock can’t be applied or it is simply not
effective, such as IP rewriting due to LoadBalancer, or in cloud environments where
the network traffic is rerouted according to the network service implemented or
managed. In a scenario where namespaces have no policies at all, all the traffic in any
direction is allowed by default. Default behavior can be changed to the following:

290 Security for Containers and Kubernetes

•	 Deny ingress traffic by default

•	 Deny egress traffic by default

•	 Deny ingress and egress traffic by default

Based on what we described before, to achieve this, the podSelector should be
declared as follows, using the appropriate policyTypes:

1. ...

2. metadata:

3. name: default-deny-all

4. spec:

5. podSelector: {}

6. policyTypes:

7. - Egress

8. - Ingress

As a reminder, and to set each piece of the puzzle in the right place, network policies
are part of the cluster isolation topic discussed in Chapter 8, Kubernetes Orchestration
Security, in the Cluster Isolation section.

Resources management
This section of the chapter is not related to how to specify CPU, RAM and storage
requests and limits. Resource quotas are considered policies, their application
is mostly related hardware resource optimization. There are, of course, security
requirements on resource quotas, especially in relation to the cluster hardware
capacity and POD allocation. For instance, one of the common scenarios is having
PODs running in different namespaces being allocated on the same node.

This argument does not aim to discourage the application of resource requests
or limits of containers or PODs; it is a good practice to define boundaries around
the hardware resources that those Kubernetes components can obtain. Rather,
it is an invite to move one step further and considering apply the same concepts
to namespace and nodes. The combination of resource requests and limits at the
container level is also what qualifies a POD to obtain a Quality of Service (QoS)
class within the namespace. Refer to the following figure:

Kubernetes Governance 291

Figure 9.4: QoS Classes

As illustrated in Figure 9.4, QoS Classes, there are three Quality of Services classes:

•	 The QoS BestEffort container has neither requests nor limits set.

•	 The QoS Burstable container has both CPU and memory requests values
lower than their limits.

•	 The QoS Guaranteed container has both CPU and memory requests values
equal to their limits.

The QoS POD classes are significant to the cluster because they represent the metrics
used by Kubernetes to apply decisions on the resources’ allocation. Resources
management in the cluster is enabled using the ResourceQuota admission controller
(refer to Table 8.6, Admission Controllers List, in the previous chapter for an overview
of the controllers available in Kubernetes), and it is enforced in any namespace
where ResourceQuota is declared. The resource types available to namespaces are
the same for the containers or the PODs, and they are listed in Table 9.12, Namespace
ResourceQuota:

Type Description
cpu It is an abbreviation for requests.cpu.
memory It is an abbreviation for requests.memory.
requests.cpu Total sum of CPU request by all PODs running in the namespace

cannot exceed this value.
limits.cpu Total sum of CPU limit by all PODs running in the namespace

cannot exceed this value.
requests. memory Total sum of memory request by all PODs running in the

namespace cannot exceed this value.

292 Security for Containers and Kubernetes

Type Description
limits.memory Total sum of memory limit by all PODs running in the namespace

cannot exceed this value.
hugepages-<size> Total number of huge pages in the namespace cannot exceed

this value.

Table 9.12: Namespace ResourceQuota

Similarly, it is possible to limit the storage resources in the namespace, as listed in
Table 9.13, Namespace Storage ResourceQuota:

Type Description
requests.storage The total number of persistent volume requests in the

namespace cannot exceed this value.
storage-class-name/
requests

The total number of storage requests within a specific storage
class in the namespace cannot exceed this value at any given
time.

persistentvolume-
claims

The total number of persistent volumes that can exist in the
namespace cannot exceed this value at any given time.

storage-class-name/
persistentvolume-
claims

The total number of persistent volumes claims within a specific
storage class in the namespace cannot exceed this value at any
given time.

ephemeral-storage It is an abbreviation for requests.ephemeral-storage.
requests.ephemer-
al-storage

The total number of ephemeral storage requests within the
namespace cannot exceed this value.

limits.ephemeral-stor-
age

The total number of ephemeral storage limits within the
namespace cannot exceed this value.

Table 9.13: Namespace Storage ResourceQuota

Another interesting feature is to set a count quota per namespaced resource using the
count/something suffix; for example, count/secrets will set a limit to the total number
of secrets that can be created, along with count/services, count/deployments, count/
jobs. To achieve full namespace isolation, from Kubernetes version 1.24 onward, it is
possible to scope out a quota limit. The quota limit defines a set of namespaces that
are allowed to enable POD affinity by declaring the CrossNamespacePodAffinity
parameter. A quick reminder about the affinity property: it is the capability of a POD
to attract or repel other PODs or Nodes. This is a strategic allocation of PODs in
terms of resources or deployment affinity. This feature comes in useful for system
segmentation considering both affinity and anti-affinity use cases. A simple example
for POD affinity would be all the webserver PODs need to be deployed within
the same namespace conversely the database PODs need to be deployed into a

Kubernetes Governance 293

different namespace (affinity). The POD anti-affinity use case is slightly different,
and should not be considered as the opposite logic of the POD Affinity use case.
For instance, an example of anti-affinity is applicable to distributed systems or high
availability applications where it is better not to have POD deployed on the same
node or within the same namespace. From the security standpoint, having PODs
crossing namespaces is a serious concern and is hard to handle, but by applying the
CrossNamespacePodAffinity parameter, governance can be achieved by setting a
hard limit of 0, as shown in the following example code:

1. apiVersion: v1

2. kind: ResourceQuota

3. metadata:

4. name: disable-cross-namespace-affinity

5. namespace: my-namespace

6. spec:

7. hard:

8. pods: "0"

9. scopeSelector:

10. matchExpressions:

11. - scopeName: CrossNamespacePodAffinity

12. operator: Exists

A node is a full operating host system that assumes the node function, which means
not all the host resources are assigned to Kubernetes or the various components that
constitute a cluster; some of the CPU and memory resources are assigned to the host
itself. A node is then a combination of the following resources:

•	 Physical hardware resources

•	 Operating system resources

•	 Resources reserved for Kubelet

•	 Resources available to PODs

What Kubernetes manages on the host to govern the worker node is a set of three
policies, as described in Table 9.14, Node Resource Managers:

294 Security for Containers and Kubernetes

Policy Description
CPU
Manager

The kubelet system uses the Completely Fair Scheduler (CFS) to enforce
CPU limits on PODs; refer to Chapter 3, Container Stack Security, the Resource
Limitation section. Two policies can be applied:

•	 The none policy is the default policy on the node, and it does
nothing more than what the CFS can do, deferring all the affinity
decision to the scheduler.

•	 The static policy provides the Guaranteed POD class access to
the exclusive CPU cycle, usually allocated to components like the
container runtime or the kubelet, exposing the host to potential
source of compromise.

Memory
Manager

It enables the hugepages and memory allocation for PODs. PODs must
have a QoS Guaranteed class and a Non-Uniform Memory Access
(NUMA) yield affinity to the node. Two policies can be applied:

•	 The none policy is the default policy on the node, and it does not
intervene in memory allocation.

•	 The static policy allows the Guaranteed POD class to be allocated
on NUMA nodes, where the available memory can be reserved.

Device
Manager

As the name suggests, the policies implemented by the device manager
are utilized as device plugin framework for the purpose of elevating the
hardware resources visibility up to the kubelet layer. Readers can see this
as a sort of hypervisor, where hardware resources are virtualized. The list
includes, but it is not limited to, Field Programmable Gate Array (FPGAs),
Graphic Processor Units (GPUs), and Network Interface Cards (NICs).

Table 9.14: Node Resource Managers

Prior to Kubernetes version 1.18, the CPU and Device managers were making
decisions in relation to resource allocation independently, with obvious repercussions
for cluster stability and security. From that release onward, Kubernetes introduced
Topology Manager as a feature gate to govern and orchestrate hardware resource
allocation across the three domains described in the previous table. The Topology
Manager is implemented on the node as a kubelet component and offers an interface
for the other components, called Hint Providers, for the purpose of consuming
information about the hardware resources on the node. The scope of application is
dual: Container Scope and POD Scope. The container scope is the default choice,
and it is equal to no policy. The Topology Manager will arbitrarily assign containers
to nodes. When the POD scope is selected, the Topology Manager will allocate all the
containers of a POD to a single node or to a shared set of nodes. A description of the
topology options is given in Table 9.15, Topology Manager Policies:

Kubernetes Governance 295

Policy Description
none No topology alignment is performed.
best-effort The Topology Manager queries each Hint Provider to understand

their resources status, and it syncs container assigned resources
in any given POD with the resources available on the nodes. If
affinity is not met, the POD is anyway admitted to the node.

restricted The Topology Manager queries each Hint Provider to understand
their resource status, and it syncs container assigned resources
in any given POD with the resources available on the nodes;
if affinity is not met, the POD is rejected, triggering a POD
admission failure. From the security perspective, any requests or
limits that do not meet the policy criteria are considered unsafe.

single-numa-node The Topology Manager queries each Hint Provider to understand
their resources status, and it syncs container assigned resources
any given POD with the resources available onto a single node;
but if affinity is not met, the POD is rejected, triggering a POD
admission failure.

Table 9.15: Topology Manager Policies

When configured with POD scope, the Topology Manager interprets the container
requirements as the requirements of the entire POD. So, all the containers running
inside the POD will have the same topology decision.

Security policies
In Chapter 7, Kubernetes Hardening, in the POD Security section, we described what
POD Security Standards is and how it affects the security of the Kubernetes cluster.
We also discussed how POD Security Standards is applied to the cluster by means of
the Admission Controller in Chapter 8, Kubernetes Orchestration Security. The practical
execution of POD Security Standards can be applied in three different ways, each
way affecting a dedicated Kubernetes perimeter:

•	 At the cluster level

•	 At the namespace level

•	 At the POD level

At the cluster level, the most efficient way to apply POD Security Standards is to
use the POD Security Admission Controller. In this configuration, when a POD is
created everywhere in the cluster, the POD Security admission controller checks the
configuration against the POD Security Standards. As we know, the POD Security
Standards has three pre-defined policies as per Table 7.12, POD Security Standards:
privileged, baseline and restricted. It is possible to verify the impact of changing
policy using the --dry-run=server parameter.

296 Security for Containers and Kubernetes

1. $ kubectl label --overwrite ns --dry-run=server --all \

2. pod-security.kubernetes.io/enforce=baseline

For example, the preceding command will return something like this:

1. namespace/default labelled

2. namespace/kube-public labelled

3. namespace/kube-node-lease labelled

4. Warning: existing pods in namespace “kube-sys-
tem” violate the new PodSecurity enforce level “baseline:latest”

5. Warning: etcd-my-cluster-control-
plane (and 3 other pods): host namespaces, hostPath volumes

6. Warning: kindnet-xyz72: non-
default capabilities, host namespaces, hostPath volumes

7. Warning: kube-proxy-
a4trg: host namespaces, hostPath volumes, privileged

8. namespace/kube-system labelled

9. namespace/local-path-storage labelled

The execution of the preceding command with the restricted policy would
eventually create even more warnings. The policy can be used as a configuration
file that the API server can consume upon cluster creation, as the following example
code demonstrates:

1. apiVersion: apiserver.config.k8s.io/v1

2. kind: AdmissionConfiguration

3. plugins:

4. - name: PodSecurity

5. configuration:

6. apiVersion: pod-security.admission.config.k8s.io/v1

7. kind: PodSecurityConfiguration

8. defaults:

9. enforce: "restricted"

10. enforce-version: "latest"

11. audit: "restricted"

12. audit-version: "latest"

Kubernetes Governance 297

13. warn: "restricted"

14. warn-version: "latest"

Note: The restricted policy offers the highest level of security, but it can also
compromise the availability of the system. It is recommended to test the
application of such policy and eventually consider excluding the kube-system.

It is possible to verify the effectiveness of the policy creating a simple POD:

1. apiVersion: v1

2. kind: Pod

3. metadata:

4. name: mysql

5. spec:

6. containers:

7. - image: mysql

8. name: mysql

9. ports:

10. - containerPort: 3306

The output is alerting that the POD deployment is violating the PODSecurity
restricted policy configuration by allowing POD with Privilege Escalation capability:

1. Warning: would violate PodSecurity “restricted:latest”: allowPrivi-
legeEscalation != false (container “mysql” must set securityContext.
allowPrivilegeEscalation=false), \

2. unrestricted capabilities (contain-
er “mysql” must set securityContext.capabilities.drop=[“ALL”]), \

3. runAsNon-
Root != true (pod or container “mysql” must set securityContext.
runAsNonRoot=true), \

4. seccompProfile (pod or container “mysql” must set securityContext.
seccompProfile.type to “RuntimeDefault” or “Localhost”)

It is possible to apply the same principle at the namespace level:

1. $ kubectl label –overwrite ns my-namespace \

2. pod-security.kubernetes.io/warn=baseline \

298 Security for Containers and Kubernetes

And it is also possible to create a configuration file similar to the one used for the
cluster case that can be consumed by the API server; of course, this time the policy
would apply to the namespace my-namespace only. When thinking about how
to apply the policy at the POD level, two systems can be leveraged: AppArmor
or Seccomp. For the purpose of this section, remember that the main difference
between AppArmor and Seccomp is that the former applies security boundaries at
the application level, while the latter restricts the calls to the kernel that a process is
able to make. Assuming that both are enabled and that Kubernetes is at least version
1.25, we also need to ensure that the container runtime supports AppArmor and that
the AppArmor profile is loaded. Refer to the following code:

1. container.apparmor.security.beta.kubernetes.io/my-
container: <profile>

The preceding code shows how to enable AppArmor for the container my-container;
the <profile> parameter must be one of the options listed in Table 9.16, AppArmor
Profiles:

Eviction Description
unconfined The container will run with no AppArmor profile.
runtime/default The container will run with the default AppArmor profile

loaded into runtime.
localhost/profile The container will run with the default AppArmor profile

loaded into the host.

Table 9.16: AppArmor Profiles

To use Seccomp, the kubelet system must have the feature gate SeccompDefault
loaded; this should be present by default in most recent cluster versions, but the worker
nodes and the host must also have the corresponding feature enabled. With both
running the SeccompDefault, the kubelet will use the Seccomp RuntimeDefault
profile rather than the Unconfined profile. The default profile sufficiently provides a
strong set of security reequipments and in the meantime, preserves the functionality
of the cluster. Seccomp is an efficient way to retain the containers syscall against the
Kernel, but it also affects the workload and the interactions of the containers with
the underlaying system, stopping them from working as they should. As such, it is
possible to create custom Seccomp profile that can be used as audit mechanism. For
example, the following code will create a Seccomp profile called inspect.json:

1. {

2. "defaultAction": "SCMP_ACT_LOG",

3. "architectures": [

4. "SCMP_ARCH_X86_64",

Kubernetes Governance 299

5. "SCMP_ARCH_X86",

6. "SCMP_ARCH_X32"

7.]

8. }

Then, the following code will create a POD that leverages the custom Seccomp
profile:

1. apiVersion: v1

2. kind: Pod

3. metadata:

4. name: seccomp-audit

5. labels:

6. app: seccomp-audit

7. spec:

8. securityContext:

9. seccompProfile:

10. type: Localhost

11. localhostProfile: profiles/inspect.json

12. containers:

13. - name: my-audited-container

14. image: hashicorp/http-echo:0.2.3

15. args:

16. - "-text=syscalls executed"

17. securityContext:

18. allowPrivilegeEscalation: false

The http-echo is a mini webserver created by Hashicorp for demo purposes, and it
usually runs unrestricted. By login into the container and checking the syslog file in
/var/log/syslog, the file would eventually expose syscalls made by the container,
as per the following log example (note that the audit log has been edited to comply
with publishing guidelines):

1. Jan 22 21:11:22 my-vm kernel: audit: pid=29064 exe=”/http-
echo” syscall=43

2. Jan 22 21:11:22 my-vm kernel: audit: pid=29064 exe=”/http-

300 Security for Containers and Kubernetes

echo” syscall=64

3. Jan 22 21:11:22 my-vm kernel: audit: pid=29064 exe=”/http-
echo” syscall=102

4. Jan 22 21:11:22 my-vm kernel: audit: pid=29064 exe=”/http-
echo” syscall=188

5. Jan 22 21:11:22 my-vm kernel: audit: pid=29064 exe=”/http-
echo” syscall=1

The syscall= entry in the syslog file illustrates the system calls made by the
container. Reversing this approach, it is possible to create a test POD that applies a
custom policy, with only the system calls that the cluster admin allows. The following
code can be used as baseline to fine-tune the policy:

1. {

2. "defaultAction": "SCMP_ACT_ERRNO",

3. "architectures": [

4. "SCMP_ARCH_X32",

5. "SCMP_ARCH_X86",

6. "SCMP_ARCH_X86_64"

7.],

8. "syscalls": [

9. {

10. "names": [

11. "accept4",

12. "arch_prctl",

13. "brk",

14. "bind",

15. "clone",

16. "clock_gettime",

17. "close",

18. "connect",

19. "dup2",

20. "epoll_create1",

21. "epoll_ctl",

Kubernetes Governance 301

22. "epoll_wait",

23. "epoll_pwait",

24. "execve",

25. "exit",

26. "exit_group",

27. "fcntl",

28. "futex",

29. "getpid",

30. "getsockname",

31. "gettid",

32. "getuid",

33. "ioctl",

34. "listen",

35. "madvise",

36. "mmap",

37. "mprotect",

38. "munmap",

39. "nanosleep",

40. "open",

41. "openat",

42. "poll",

43. "pselect6",

44. "recvfrom",

45. "read",

46. "readlinkat",

47. "rt_sigaction",

48. "rt_sigprocmask",

49. "rt_sigreturn",

50. "sched_getaffinity",

51. "sched_yield",

52. "setsockopt",

302 Security for Containers and Kubernetes

53. "sigaltstack",

54. "sendto",

55. "set_tid_address",

56. "setitimer",

57. "socket",

58. "vfork",

59. "write",

60. "writev"

61.],

62. "action": "SCMP_ACT_ALLOW"

63. }

64.]

65. }

These syscalls are only allowed by the policy, so by exec into the container and
checking the syslog file, we can verify that all the other system calls are not being
executed.

Limits and limitations
Kubernetes provides the capability to limit the number of process IDs, also known
as PIDs, that a POD can invoke. These can, eventually, also be reserved for each
node and allocated to the operating system or services running on top of it. It is
very important to implement mechanisms to ensure that containers and PODs are
not exhausting the PIDs available onto the node, preventing them from taking over
the worker node and blocking vital components like kubelet or kube-proxy from
working properly. Kubernetes allows three type of Process ID limits: Node PID
limit, POD PID limit, and PID based eviction. Kubernetes can be configured to
reserve a certain quantity of PIDs, preventing them from being abused by the PODs,
by using the pid=<number> parameter in the --system-reserved option.

Kubernetes can also be configured to limit the total number of PIDs a POD can
invoke as processes by setting the PodPidsLimit parameter in the kubelet config
file. The limitation is indeed applied at the node level, as per the following example
code:

1. apiVersion: kubelet.config.k8s.io/v1beta1

2. kind: KubeletConfiguration

3. enableServer: true

Kubernetes Governance 303

4. address: "10.10.10.100"

5. port: 20250

6. ...

7. evictionHard:

8. memory.available: "300Mi"

9. evictionSoft:

10. memory.available: "300Mi"

11. PodPidsLimit: 1000

12. ...

POD Eviction is a feature implemented by the cluster or the node to terminate
misbehaving PODs based on abnormal consumption of resources. POD Eviction can
be executed by the cluster; in this case, the kube-controller-manager periodically
checks the status of the nodes and initiates POD termination requests when needed.
Alternatively, POD eviction can be executed by the worker node itself; in this case,
the kubelet system checks for physical resources on the host and initiates POD
termination requests according to their priority or classes. The eviction mechanism
at the cluster level is initiated directly via API call to the Eviction API system or
programmatically using the kubectl drain command. To create an eviction object
against the Eviction API, the policy expressed in JSON format would initiate the
POST request:

1. {

2. "apiVersion": "policy/v1",

3. "kind": "Eviction",

4. "metadata": {

5. "name": "eviction",

6. "namespace": "my-namespace"

7. }

8. }

The eviction mechanism at the node level is referred to as Node-pressure Eviction.
In essence, the kubelet service monitors memory, CPU, and disk space on the host,
and when these resources reach a pre-defined consumption level, the Kubelet
intentionally stops POD resource requests or initiates termination requests. In
order to assume decision-making on the POD Eviction, the kubelet uses the criteria
described in Table 9.17, Eviction Criteria:

304 Security for Containers and Kubernetes

Eviction Description
Signals These are the status of any resource at any given time.
Thresholds This is the minimum number of resources that the node should have

available. It defines two options:
•	 An evictionSoft option expects the grace period to be fully

executed.
•	 An evitcionHard option has no grace period.

Interval Thresholds are evaluated on their interval values.

Table 9.17: Eviction Criteria

The kubelet can initiate POD eviction based on the pressure conditions described in
Table 9.18, Node Pressure:

Type Description
PIDPressure The number of process IDs has been reached.
MemoryPressure The memory threshold has been reached.
DiskPressure The disk space threshold has been reached.

Table 9.18: Node Pressure

Kubelet then classifies the POD eviction with the following termination order:

•	 POD classes BestEffort and Burstable are evicted first based on their assigned
priority and resource exceeding level.

•	 POD classes Burstable and Guaranteed are evicted last if their resource
usage is less than the requests according to their priority.

The QoS mechanism explained in the previous section is not used as an eviction order
parameter. There are a few but substantial limitations, especially in the Kubernetes
network policies system, that should be mentioned; these are not available today:

•	 Redirect internal traffic to a common gateway

•	 Encryption in transit via TLS

•	 Node policies

•	 Logging network security events

•	 Querying policies and auditing tools

To overcome some the aspects not yet implemented into Kubernetes, readers are
invited to go through Chapter 12, Service Mesh Security.

Kubernetes Governance 305

Conclusion
In this chapter, we discussed various topics of the Kubernetes cluster from the
security governance standpoint. We started defining what security governance is
and what application of Kubernetes governance entails. We then analyzed what a
policy engine is and how it can be technically implemented into Kubernetes. We
had a deep discussion about the Open Policy Agent (OPA) policy engine and its
complexity rule implementations, and we also introduced a valid and powerful
alternative like Kyverno.

Moving on, we analyzed the security aspects of the Admission Controller Threat
Model created by the Kubernetes SIG and dove into the complexity of the Kubernetes
network policies and resources management. We have then discussed the complexity
of the Security Policies and the various different options available for the POD
Security Standards policy. Finally, we discussed how to apply limits and got a quick
overview of the limitations we want to overcome.

In the next chapter, we will learn about the security of the most popular Kubernetes
Cloud services, such as AWS EKS and Azure AKS.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

306 Security for Containers and Kubernetes

Kubernetes Cloud Security 307

Chapter 10
Kubernetes Cloud

Security

Introduction
Kubernetes is the most famous and most widely adopted container orchestrator
system, and it is also the most utilized among the cloud providers. Public cloud
providers like Amazon Web Services (AWS), Microsoft Azure, and Google Cloud
Platform (GCP), have all created managed Kubernetes services integrated in their
cloud platforms. These Kubernetes cloud services can leverage specific characteristics
of the respective cloud systems and can be easily integrated with other cloud services.
The cloud Kubernetes service becomes then a powerful component of a much wider
and complex multi-service system that can include cloud storage, load balancing,
monitoring and auditing cloud services, identity management, networking and
serverless systems. In the previous chapters we have demonstrated the complexity of
the Kubernetes cluster, its highly integrable modularity and expansion characteristics
in conjunction with the cloud ecosystem’s capabilities, provide endless possibilities.
Shifting the focus from the Kubernetes system to the cloud environment from the
security perspective requires an extreme effort. Although the concepts around the
shared responsibility model of what are the cloud provider’s responsibilities and
what are the customer’s responsibilities are often well-defined, but things become
shady with container-based service. This is due to the shift in responsibility when
moving between the various cloud services offerings, such as Software-as-a-Service
(SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS). For

308 Security for Containers and Kubernetes

instance, the customer’s security responsibility is reduced to the bare minimum when
adopting software as a service solution, while it is amplified to the maximum with
infrastructure as a service solution. Kubernetes is a container orchestrator solution,
and the spectrum of its applications is too wide to be well defined or contained in
a single security model, which would be anyway largely dependent on the specific
cloud provider. However, being a cloud native platform solution, the Cloud Native
Security Model aims to standardize Kubernetes security with the 4C security model.

Structure
In this chapter, we will discuss the following topics:

•	 Cloud Native Security Model

•	 Amazon Elastic Kubernetes Service

•	 Azure Kubernetes Service

•	 Google Kubernetes Engine

•	 OpenShift

•	 Rancher

•	 Tanzu

Objectives
This chapter aims to familiarize you with the fundamental concepts of Kubernetes
cloud security, describing the general security model applied to containerized and
orchestrated cloud resources and the major cloud Kubernetes services available on
the market, along with their pros and cons from the security perspective. We will
also discuss few Kubernetes versions with a hybrid or on-premises footprint.

Cloud native security model
The Cloud Native Security model is a fairly recent concept that aims to address the
challenges of using a containerized application and the infrastructure underneath,
whether or not it is adopted as a service.

Kubernetes Cloud Security 309

Figure 10.1: Cloud Native Security 4C Model

This model outlines four concentric layers: cloud, cluster, container, and code,
as illustrated in Figure 10.1, Cloud Native Security 4C Model, and how they are an
extension of the defense in depth concept. The layered approach defined here
highlights the security independence of each layer, and each layer has its own
security characteristics that should be addressed, but they together contribute to the
overall security of the platform.

At the lowest layer of the cloud service provider, there is the infrastructure the
cluster relies upon, the outermost exposed layer that sets the security baseline
not only for the cluster but for the entire cloud footprint. The other layers, even if
secured, cannot benefit a vulnerable or unsecured configured infrastructure, and
vice versa. The relationship is polyvalent among all the four layers. Each layer of
the Cloud Native Security model can be mapped to one or more specific chapter or
section of this book, except for the cloud layer, which can be addressed only when
looking at cloud-specific security measures. A brief recap of the previous chapters
in relation to Figure 10.1, Cloud Native Security 4C Model, is mapped in Table 10.1, 4C
Model Mapping:

310 Security for Containers and Kubernetes

Type Description
Code •	 Chapter 4 – Securing Container Images and Registries

•	 Chapter 5 – Application Container Security
Container •	 Chapter 3 – Container Stack Security

•	 Chapter 4 – Securing Container Images and Registries
Cluster •	 Chapter 7 – Kubernetes Hardening

•	 Chapter 8 – Kubernetes Orchestration Security
•	 Chapter 9 – Kubernetes Governance

Cloud •	 Chapter 10 – Kubernetes Cloud Security

Table 10.1: 4C Model Mapping

The 4C security model must not be seen as the cloud Kubernetes security reference
best practice as it does not provide sufficient protection. It does offer some general
guidelines though. It is fundamental to verify the specific cloud provider security
best practices because they are the baseline security of the cluster environment and
may differ quite significantly between providers.

For the container and code sections, in previous chapters of this book, we identified
some security arguments that may fit the specific cases. Lastly, the cluster topic has
been discussed from an unmanaged perspective, while in cloud environments, the
Kubernetes service is often a managed service, which poses some limitations to the
topics we have discussed so far. Before discussing in detail some of the Kubernetes
cloud services, it is necessary to clarify how the cloud providers implement the
Kubernetes cluster as a cloud service. In Chapter 7, Kubernetes Hardening, we introduced
the control plane in Figure 7.1, Kubernetes Architecture, where we intentionally did
not discuss one of the components: the Cloud Controller Manager or CCM.

Kubernetes Cloud Security 311

Figure 10.2: Cloud Controller Manager

Recalling Figure 7.1, Kubernetes Architecture, and adapting its content with the
introduction of the Cloud Controller Manager, the Figure 10.2, Cloud Controller
Manager provides a visual overview of the control plane and data plane interaction
with underlying cloud infrastructure. It is evident how the cloud implementation of
the Kubernetes cluster adds another layer of difficulty to a system that already has a
high degree of complexity. The Cloud Controller Manager is not a standalone system;
it is composed of additional modules specific to the cloud Kubernetes service, which
are needed to fulfil cloud requirements to interact with specific infrastructure of the
cloud provider, as per Table 10.2, Cloud Components:

312 Security for Containers and Kubernetes

Type Description
Node Controller Adds or removes node objects to or from the Kubernetes cloud

service. The node information and type are specific to the cluster:

•	 Computer resource.

•	 Location (region, network, availability zone, and so on).

•	 Health check and status retrieving.
Service Controller Service provided via the cloud system in use that can integrate

with the cluster, such as the following:

•	 Load balancer.

•	 Web Application Firewall.

•	 Packet filtering.

•	 Encryption in transit.
Route Controller •	 Manages the network routes inside the cluster to redirect

network traffic to PODs and containers.

•	 Manages the underlying cluster network infrastructure.

Table 10.2: Cloud Components

The description of how Kubernetes is implemented at the cloud level is of greatest
importance; it helps understand the security implications of various implementation
models. Although an effort can still be produced to apply security best practices to
the cluster, as we have seen so far, a good chunk of the security requirements will
need to be shifted to the cloud provider and implemented in accordance with the
specific cloud system security methodologies.

Amazon elastic Kubernetes service
AWS does not need any introduction; it is a well-established and popular cloud
service provider. It considers security for managed services like Elastic Kubernetes
Service (EKS) applied via the shared responsibility model. In general, AWS is
responsible for managing the Kubernetes control plane and all its components,
while the customer is responsible for managing the worker nodes plus everything
running on top of them.

Figure 10.3, EKS Shared Responsibility Model, shows in blue the topics that are always
customers’ responsibility, while the elements in orange are the ones that are always
the responsibility of AWS. There are a few elements that can shift according to the sub-
service the customer chooses; these are the worker node scaling option and the set
of operating system, kubelet, container runtime interface and image configuration.

Kubernetes Cloud Security 313

Refer to the following figure:

Figure 10.3: EKS Shared Responsibility Model

Note: The “AMI image configuration” in Figure 10.3, EKS Shared Responsibility
Model, is intended as Amazon Machine Image (AMI) configuration.

AWS EKS comes with three tiers, always in relation to how the worker nodes are
managed, as per Table 10.3, EKS Shifting Responsibility:

Service Customer Responsibility AWS Responsibility
Self-Managed Workers Worker Node Autoscaling

OS, kubelet, CRI, AMI Image
N/A

Managed Node Groups OS, kubelet, CRI, AMI Image Worker Node Autoscaling
EKS Fargate N/A Worker Node Autoscaling

OS, kubelet, CRI, AMI Image

Table 10.3: EKS Shifting Responsibility

314 Security for Containers and Kubernetes

Many aspects of AWS EKS security best practices can be mapped to the topics we
have discussed in the previous chapters of this book, but some of them, which are
not only cloud specific but are also bound to the AWS cloud provider, are going to
be the arguments of the next few discussions:

•	 Infrastructure security

•	 Identity and Access Management (IAM)

•	 Detective controls

•	 Incident response

One of the key elements to secure the cloud version of Kubernetes running in AWS is
to consider securing the infrastructure that runs it. AWS recommends adopting the
infrastructure security guidelines for EKS in connection with the runtime security
topic; refer to Chapter 7, Kubernetes Hardening, the Securing Container Runtime Interface
section. Table 10.4, EKS Infrastructure Security, describes the security best practices
recommendation:

Type Description
Use a private network Managed Node Group prior April 2020 was automatically

provisioned with public IPs, but this is not the case
anymore; it is worth verifying whether or not nodes have
been deployed in a subnet with public exposure.

Container-specific OS AWS recommends special purpose OS, such as Project
Atomic, Flatcar Linux, Bottleroocket or EKS optimized
AMI. These Linux distros reduce the attack surface of
the host as per the discussion in Chapter 1, Containers and
Kubernetes Risk Analysis, the Attack Surface section.

Node access SSH access is not recommended; instead, AWS System
Manager Session Manager (SSM) is preferred. There is no
need to handle SSH key pairs because SSM is integrated
with IAM. A custom IAM example policy is provided
below.

Node update The special purpose OS recommended above are subjected
to update as any other Linux distro, so it is recommended
to automate rolling patch updates, as minimal security
measure.

Immutability Rather than treating the infrastructure as upgradable, it is
recommended to consider it to be immutable, which means
upgrades are not necessary because when a new update is
available, the worker node is replaced by a new one. This
takes a bit of DevSecOps work, establishing a deployment
methodology to safeguard the integrity of the cluster.

Kubernetes Cloud Security 315

Auditing AWS recommends kube-bench as auditing tool; refer to
Chapter 7, Kubernetes Hardening, the Hardening Tools section.

Vulnerability
Management

AWS recommends using Amazon Inspector to check the
EKS cluster for Common Vulnerabilities and Exposures
(CVE). In order to achieve this, SSM Agent must be installed.

Table 10.4: EKS Infrastructure Security

The default AWS managed policy AmazonSSMManagedInstanceCore cited in the
Node Access of Table 10.4 contains permissions not strictly required to access the
worker. The following is a minimalist example code:

1. {

2. "Version": "2012-10-17",

3. "Statement": [

4. {

5. "Sid": "EnableSSMRunCommand",

6. "Effect": "Allow",

7. "Action": [

8. "ec2messages:AcknowledgeMessage",

9. "ec2messages:DeleteMessage",

10. "ec2messages:FailMessage",

11. "ec2messages:GetEndpoint",

12. "ec2messages:GetMessages",

13. "ec2messages:SendReply",

14. "ssm:UpdateInstanceInformation"

15.],

16. "Resource": "*"

17. },

18. {

19. "Sid": "EnableAccessViaSSMSessionManager",

20. "Effect": "Allow",

21. "Action": [

22. "ssmmessages:CreateControlChannel",

23. "ssmmessages:CreateDataChannel",

316 Security for Containers and Kubernetes

24. "ssmmessages:OpenControlChannel",

25. "ssmmessages:OpenDataChannel",

26. "ssm:UpdateInstanceInformation"

27.],

28. "Resource": "*"

29. }

30.]

31. }

The SSM system leveraging the preceding policy will allow to access the worker
node by simply typing the following command:

1. aws ssm start-session --target [EKS_NODE_INSTANCE_ID]

The preceding example is just one of the many considerations that governs Identity
and Access Management (IAM) for an EKS cluster, and that implies not only access
to the worker nodes but also to PODs. Figure 10.2, Cloud Controller Manager, illustrates
how the Cloud API governs the communication between AWS native services like
the AWS Application Load Balancer (ALB) and the worker nodes on which the
PODs are running.

The ALB needs to be able to invoke AWS APIs and list service endpoints. Kubernetes
manages access to PODs via RBAC roles; these are assigned automatically by the
cluster to namespaces via a default service account. The security concern is that
upon cluster creation, the API endpoint is public to the internet by default; even if the
authentication would require a combination of RBAC and AWS IAM, it represents
needless exposure. The recommendation is to limit the exposure to the least or
disable the API public access completely. To achieve this, the endpoint private access
must be enabled to keep the communication with the cluster API server within
the boundaries of the AWS VPC. This will create a private hosted zone in AWS
Route 53 linked to the VPC in which the cluster has been deployed. Furthermore,
to properly route network traffic to the kube-apiserver, the VPC must have the
AmazonProvidedDNS option set into the DHCP, and both enableDnsHostnames
and enableDnsSupport should be set with true as value.

In Chapter 9, Kubernetes Governance, we discussed how policy agents can apply security
requirements at scale; specifically, the Kyverno engine provides an example of how
to enforce IRSA onto the cluster. IRSA stands for IAM Role for Service Account, a
feature of the AWS Identity and Access Management service that allows us to assign
an AWS IAM Role to a Kubernetes service account. Therefore, when PODs have
assigned a service account that is connected to an IAM role, the kube-apiserver will
invoke the Open ID Connect (OIDC) endpoint that has been configured as Identity
Provider (IDP).

Kubernetes Cloud Security 317

The OIDC endpoint signs the token issued by the Kubernetes API server via
cryptography, allowing the POD to communicate with the IAM role. According to
the policy assigned to the IAM role, the POD will be able to communicate with the
service listed, for example, with an Application Load Balancer or an AWS S3 bucket.
To provide an example of token structure, the following code is an example of JWT
token for IRSA:

1. {

2. “aud”: [

3. “sts.amazonaws.com”

4.],

5. “exp”: 1675532114,

6. “iat”: 1675445714,

7. “iss”: “https://oidc.eks.us-east-1.amazonaws.com/id/
T34DE27G27A865933133EA00A26FB256”,

8. “ubernetes.io”: {

9. “namespace”: “default”,

10. “pod”: {

11. “name”: “alpine-44b5774646-af911”,

12. “uid”: “4a20e883-1407-12ia-a75c-0e72b7e4f463”

13. },

14. “serviceaccount”: {

15. “name”: “s3-read-only”,

16. “uid”: “b270bb5c-4406-91ea-3898-123b45b60dfg”

17. }

18. },

19. “nbf”: 1675445714,

20. “sub”: “system:serviceaccount:default:s3-read-only”

21. }

As per part of the shared responsibility model showed in Figure 10.3, EKS Shared
Responsibility Model, the control plane is managed by AWS. The control plane logs
must be enabled to achieve visibility into the logs generated by the kube-scheduler,
the kube-apiserver, the etcd data store and the kube-controller-manager.

318 Security for Containers and Kubernetes

Note: AWS warns that enabling control plane logging will incur extra costs.
Readers are encouraged to verify those costs and understand if enabling control
plane logs meet their requirements.

Table 10.5, EKS Detective Controls, provides a quick overview of logging elements that
should be monitored to gain visibility in the Kubernetes cluster:

Type Description
Metadata Log and verify API calls authorization requests and the reason

why authorization was granted by inspecting the following two
annotations:

•	 authorization.k8s.io/decision
•	 authorization.k8s.io/reason

Alerts Leverage the host, sourceIPs, and k8s_user.username attributes
to generate alerts where there is an abnormal increase in the
following response:

•	 403 Forbidden
•	 401 Unauthorized

Log Insights Monitor the following RBAC objects with CloudWatch Log
Insights:

•	 Roles
•	 RoleBindings
•	 ClusterRoles
•	 ClusterRolesBindings

CloudTrail Logs IRSA API calls; when CloudTrail logs show unauthorized
service accounts, it may be sign of a policy misconfiguration.

CloudTrail
Insights

CloudTrail Insights identifies anomalies in API request volumes.

Table 10.5: EKS Detective Controls

When an anomaly is detected or an alert is generated, the log should be treated as a
security event. A security event is a drift from a system’s expected behavior, which
should be investigated to determine whether an incident actually occurred. AWS
provides a Security Incident Response (IR) Guide as part of the AWS Whitepapers.
The AWS Security Incident Response Guide, available at https://docs.aws.amazon.
com/whitepapers/latest/aws-security-incident-response-guide/aws-security-
incident-response-guide.html, follows the National Institute of Standards and
Technology (NIST) security best practices formalized in the Computer Security

Kubernetes Cloud Security 319

Incident Handling Guide Special Publication (SP) 800-61 r2. The NIST SP 800-61
r2 provides the following incident response phases:

•	 Preparation

•	 Operations
o Detection
o Analysis
o Containment
o Eradication
o Recovery

•	 Post-Incident Activity

The various steps of the Operations phase can be mapped to the AWS EKS Incident
Response, as shown in Table 10.6, EKS Incident Response:

Type Description
Detection This first phase of the IR Operations is fulfilled by implementing the

detective controls explained earlier. Monitoring and visibility are
important topics of any Incident Response plan.

Analysis AWS recommends the following identification methodologies for
PODs and worker nodes:

•	 Workload analysis

•	 Service account analysis

•	 Vulnerable or compromised images
Containment Containment is applied by means of the following:

•	 Isolating the POD

•	 Detaching the IAM role or policy

•	 Cordoning the node

•	 Disabling POD termination
Eradication In relation to the analysis and containment phases, eradication is

the removal of all the unauthorized resources by mitigating all the
exploited vulnerabilities and eliminating malware software.

Recovery Deploy a new workload that contains the fixes or patches to the
exploited vulnerabilities to kill the affected PODs or worker nodes,
bringing up a new set of patches systems.

Table 10.6: EKS Incident Response

320 Security for Containers and Kubernetes

The analysis steps described in Table 10.6 can be expanded by providing a few
quick examples in the form of code that can be utilized to identify the allegedly
compromised systems by looping into the workloads. For instance, workloads are
one or more applications running on the cluster, in Kubernetes term this can also be
intended as one or more PODs created to run the applications. The following code
is an example of how to identify worker nodes running compromised PODs, in
essence a simple example of workload analysis:

1. $ kubectl get pods <compromised-pod-name> --namespace <namespace> \

2. -o=jsonpath='{.spec.nodeName}{"\n"}'

If the POD is part of a workload resource like a Deployment, all the PODs running in
the same workload are likely to be exposed. To list all the PODs of the compromised
workload, use the following code:

1. $ deployment=$(kubectl get deployments <compromised-deployment-
name> \

2. --namespace <namespace> -o json | jq -j \

3. '.spec.selector.matchLabels | to_entries | .[] | "\(.key)=\(.value)"')

4.

5. $ kubectl get pods --namespace <namespace> --selector=$deployment \

6. -o json | jq -r '.items[] | "\(.metadata.name) \(.spec.nodeName)"'

Similarly, when the service account is compromised, all the PODs running with that
service account are likely to be compromised. We can identify the PODs using the
compromised service account by running the following command:

1. $ kubectl get pods --namespace <suspicious-namespace> -o json | \

2. jq -r '.items[] |

3. select(.spec.serviceAccount == "<compromised-service-account-
name>") |

4. "\(.metadata.name) \(.spec.nodeName)"'

In complex deployment environments, with high container interaction, sometimes
it is difficult to keep track of all the container images stored in the registry. When an
image is suspected to have exploitable vulnerabilities, we can filter all the running
PODs on that specific container image by running the following command:

1. image=<vulnerable-image/tag>

2.

3. $ kubectl get pods --all-namespaces -o json | \

Kubernetes Cloud Security 321

4. jq -r --arg image "$image" '.items[] |

5. select(.spec.containers[] | .image == $image) |

6. "\(.metadata.name) \(.metadata.namespace) \(.spec.nodeName)"›

The containment steps described in Table 10.6 can be analyzed further by providing
the following example code that can be utilized to set a contained perimeter around
the compromised resources, stopping them from spreading the damage. We can
isolate a POD using a network policy like the one described in Chapter 9, Kubernetes
Governance, section Network Policies:

1. apiVersion: networking.k8s.io/v1

2. kind: NetworkPolicy

3. metadata:

4. name: deny-by-default

5. spec:

6. podSelector:

7. matchLabels:

8. app: compromised-pod-label

9. policyTypes:

10. - Egress

11. - Ingress

Worker nodes, in terms of host systems, are not affected by the preceding policies.
If the suspected compromised resources are the nodes, it is more effective to use
the AWS Security Groups to achieve isolation. In an IRSA scenario where the POD
communicates with other AWS resources, such as AWS Elastic Load Balancer or
AWS Simple Storage Service (S3), using an OIDC token, detaching the policy
that allows the POD to communicate with the service would prevent any further
network communication. Another way to achieve worker node isolation is to
instruct Kubernetes to exclude the compromised node from the cluster. With the
cordon command the kube-scheduler will mark the node as unschedulable=true
and assign the workload to the remaining nodes. Following an example of cordon
command:

1. $ kubectl cordon <compromised-node-name>

It is also recommended to enable termination protection to stop an attacker’s attempt
to cover their traces by terminating the PODs. That’s why the isolation technique is
preferred.

322 Security for Containers and Kubernetes

Azure Kubernetes Service
The Microsoft Azure Kubernetes Service (AKS) was originally only one of the three
services included in what was known as Azure Container Service (ACS), along
with Docker Swarm and Apache Mesos. Due to the high increase in demand and
popularity of the Kubernetes system, in mid 2018, the Azure team decided to extract
Kubernetes as a standalone service from ACS, creating the Azure Kubernetes Service.
There is no specific shared responsibility model directly referencing the Azure
Kubernetes Service; instead, there is a broader representation of the responsibility
according to stack deployment typology. The responsibility shifts from the customer,
running a full on-prem environment progressively to Microsoft in a Software-as-a-
Service environment. We can deduce that for AKS, Microsoft’s responsibility is to
secure the cluster infrastructure, and the customer’s responsibility is to secure the
cluster itself and the PODs and containers deployed on top of it.

Microsoft Azure’s approach to security is based on the Microsoft Cloud Security
Benchmark (MCSB). MCSB is a set of security controls or recommendations that
are referenced by the Azure services.

Note: MCSB is the successor of the Azure Security Benchmark (ASB), a rebrand
Microsoft pursued in October 2022. The ASB is still an applicable security
framework and has provided the baseline for the MCSB.

The step forward from the Azure Security Benchmark (ASB) to the MCSB is due
to the continuous increase in cloud services offered by Azure and the fast-paced
development environment with new features released constantly. The Azure Security
Benchmark has three active versions (v1, v2, and v3), and the v3 has provided the
baseline for the first version of MCSB.

It is also worth noting that the DevOps security concept appears only from the third
version of the Azure Security Benchmark onward, an update needed to implement
DevSecOps solutions in the cloud.

Although Azure Security Benchmark v3 and MCSB v1 seem the same at a first look,
they do provide one key differentiator: the AWS guidance.

Kubernetes Cloud Security 323

The MCSB AWS guidance maps the Azure security controls with the popular
Amazon Web Services platform to enable multi-cloud capabilities. This section can
reveal itself useful in migration scenarios when organizations are willing to move
from the popular cloud provider to Azure.

Figure 10.4, ASB vs MCSB, illustrates the evolution of the Microsoft Azure security
recommendations over time, from version 2 onward the framework has been pretty
stable with minor adjustment. Of all the security recommendations, only network
security, data protection and incident response have been unaltered, with the others
following the natural evolution of the cloud platform, and therefore, the risks
associated with it. Refer to the following figure:

Figure 10.4: ASB vs MCSB

324 Security for Containers and Kubernetes

The MCSB security framework is based on two key aspects of the security spectrum,
as per Table 10.7, Microsoft Cloud Security Benchmark:

Type Description
Security Controls The security controls span the entire cloud platform and are not

service specific. This is the case of either the three versions of
the Azure Security Benchmark or the Microsoft Cloud Security
Benchmark. Readers can consider these as security best practices
in the cloud to define the following:

•	 The security principle behind the recommendation.
•	 The Azure guidance in how to achieve the intended

security control.
•	 The Azure implementation and additional context, with

links to the guidelines of the various aspects involved in
the security controls.

•	 Customer security stakeholders, typically involved in
the various phases of the implementation plan.

•	 AWS guidance, a service mirror implementation
solution with the Amazon services.

Security Baseline The security baseline applies the security controls from the cloud
service standpoint. It extracts, from the list of security controls,
only those that are relevant to the specific Azure service.

Table 10.7: Microsoft Cloud Security Benchmark

Note: Not all the Azure services are using the latest security benchmark,
specifically the MCSB v1. On the contrary, many Azure cloud services still apply
different security benchmark versions.

The AKS security is based on the very first version of the Azure Security Benchmark,
and it follows the implementation logic expressed in Figure 10.4, ASB vs MCSB, in
the ASB v1 section. Due to its complexity, all the aspects listed in the ASB version 1
are in scope for the Kubernetes cluster. The listing of such baseline controls would
result in a tedious copy and paste exercise, which would not benefit the scope of the
chapter and overall, of the book.

For the reason mentioned and also in consideration of the vast coverage the previous
chapters have been able to provide about the Kubernetes system, this section will
focus on three key security aspects of the AKS service: cluster security, node security
and Microsoft Defender for Containers. Cluster security for Azure Kubernetes
Service is specific to this service, and it considers the security controls discussed
in the Azure Security Benchmark version 1. In relation to the Azure service that
contributes to the overall security of the Kubernetes cluster in the cloud, Table 10.8,
AKS Cluster Security provides an overview of the topics of interest:

Kubernetes Cloud Security 325

Type Description
Identity The cluster needs an identity to leverage other Azure resources

like storage, vault, and application gateway. When a new cluster is
created, Azure assigns a managed identity to it, which is handled
by the cloud system via certificate-based authentication.

To achieve control on the cluster identity, we can replace the
managed identity with a service principal. In this case, the identity
must be managed by the user, including credential provisioning
and rotation.

Credentials Kubernetes Clusters with service principals as identity have a 1-year
expiration time. Credentials must either be extended or rotated.
This is mandatory, or the cluster will just stop working.

Credentials rotation or update can be executed either manually
or via a predefined security policy, or in case where Azure Active
Directory (AD) is the authentication authority, two more identities
would need reset or rotation:

•	 AD Client App

•	 AD Server App
Configuration file Access to the ~/.kube/config file can be restricted via Azure Role-

Based Access Control (RBAC) by defining who can access the
Kubernetes config file. Azure offers two built-in roles:

•	 AKS Cluster User Role

•	 AKS Cluster Admin Role

The preferred way is to define user permissions via Azure AD with
the clusterUser Role. This option allows much more granularity
control, and it is based on custom authentication permissions.

kube-apiserver Restrict access to the Kubernetes API server by controlling the IPs
that are allowed to communicate with the kube-apiserver. This can
be achieved during the cluster creation by passing the --api-server-
authorized-ip-ranges parameter.

etcd In order to achieve encryption at rest on the Azure cloud platform,
AKS utilizes the Key Management Service (KMS) system known
as Azure Vault. All the secrets stored in etcd will benefit from the
encryption at rest.

RBAC As per discussion in the identity section at the beginning of this
table, leveraging Azure AD will enable you to configure access
(authentication and authorization) to the cluster using Azure AD
users, groups and service principals. After Azure AD authentication,
the built-in Kubernetes RBAC will manage access to the cluster
resources, including namespaces.

326 Security for Containers and Kubernetes

Type Description
Certificate AKS uses certificates for secure internal communication. With a

cluster using RBAC deployed after March 2022, the certificates are
rotated automatically by Azure. Before March 2022, this feature was
not available, and if the cluster needs certificate rotation in place, for
compliance reasons for example, the rotation is executed manually.

Azure Policy The Azure Policy system leverages the Gatekeeper admission
controller to implement the Open Policy Agent (OPA) system as
described in Chapter 9, Kubernetes Governance, the Policy Engines
section.

ImageCleaner At the time of writing this chapter this feature is in preview state,
meaning that has not been fully implemented by Azure. It enables
the AKS cluster to define rules to delete old or stale container images
that can present security issues due to vulnerabilities.

Table 10.8: AKS Cluster Security

As system counterpart of the Kubernetes control plane, the worker nodes are an
element of security concern because they materially execute the container workload.
That is why node security is an important topic of the overall security of the cluster.
These security controls are not intended to supersede the node security measures
discussed in the previous chapter, but they are willing to add a new layer of security
for the recommendations proposed by the Azure platform. Table 10.9, AKS Node
Security, details the security measures that AKS can provide to secure the worker
nodes:

Type Description
Host One of the security measures adopted to enhance worker node security

is to use the Azure Dedicated Host service. This enables the cluster to use
dedicated physical machines that are uniquely allocated the AKS system.

CVM Azure provides the Confidential Virtual Machine (CVM) service.
This security feature enables the worker nodes to use encrypted RAM,
protecting the host memory processing. It is based on Advanced Micro
Devices (AMD) SEV-SNP technology which stands for Secure Encrypted
Virtualization-Secure Nested Paging.

Encryption AKS offers the host-based encryption service where the virtual machine
used as worker node can be encrypted at rest, and the data communication
with the storage system of the same virtual machine is encrypted, achieving
encryption in transit with the backend storage system as well.

BYOK The previous host-based encryption service can optionally utilize a custom
key through the Bring Your Own Key service. In this case, the encryption
keys are managed by the user or cluster admin.

Kubernetes Cloud Security 327

FIPS Although not common, AKS can provide the Federal Information Process
Standard (FIPS), a security framework requested by the US government
for organizations that need to elevate their security standards in order to
be compliant with US federal bodies security requirements.

Table 10.9: AKS Node Security

Microsoft Windows users would likely be familiar with the Microsoft Defender
system. Like many other Microsoft host-based systems, the Defender platform has
evolved over the years; today, it is the Azure cloud-native solution for containers.
Microsoft Defender for Containers is the cloud-based service that Microsoft offers
to monitor, maintain and improve the security of the AKS cluster, and broadly, of the
containers and applications running in the cloud environment. This service provides
three key security aspects, as listed in Table 10.10, Microsoft Defender for Containers
features:

Type Description
Environment
Hardening

This feature is not intended as an application of a hardening
framework like the Center for Internet Security (CIS) Benchmark
or in relation to the solution discussed in Chapter 7, Kubernetes
Hardening; rather, it is a clever system that surfaces gaps in cluster
configuration and proposes fixes.

Vulnerability
assessment

Microsoft Defender scans the Azure Container Registry to identify
the container images that contain known vulnerabilities. The scans
provide visibility into the container workloads and guidance
to protect and remediate security issue that might affect the
containerized environment.

Threat Protection Real-time threat protection is offered out of the box by Azure
Microsoft Defender for Containers. The platform is designed to
generate alerts for any security event detected in the container
workloads and can be enabled also at the host layer. This feature is
extremely useful in POD Escaping scenarios. The service is based on
the MITRE ATT&CK matrix for Containers.

Table 10.10: Microsoft Defender for Containers features

Azure Kubernetes Service provides a few more security aspects that must be noted,
but not discussed, as their specifics have been covered in the previous chapters of
this book: build security, registry security and application security.

Google Kubernetes Engine
Google Kubernetes Engine (GKE) is the oldest of the cloud Kubernetes service, and
it is also the quickest to adopt new features, evolving its infrastructure and service

328 Security for Containers and Kubernetes

offering constantly. After all, before becoming a graduated Cloud Native Computing
Foundation project, Kubernetes was born at Google and was later donated to the
CNCF community.

Figure 10.5: GKE Shared Responsibility Model

Google GKE Shared Responsibility Model is slightly different from the previous
cloud providers, and it is somehow simpler because there is a clear separation of
duties between Google and the customer. With reference to the Cloud Native Security
4C Model described at the beginning of this chapter, Google’s responsibilities are
clearly defined around the Cloud and Cluster, while the customer’s responsibilities
are bound to the Container and the Code, as illustrated in Figure 10.5, GKE Shared
Responsibility Model. In essence, Google’s responsibilities include everything except
cluster upgrades and workload management. Monitoring cluster and worker nodes
activities is also considered, naturally, a customer’s responsibility, although this
can be achieved with specific tools: the Google Cloud Operations Suite and the
interesting Security Posture Dashboard. The latter has a footprint similar to the
Microsoft Defender for Containers in terms of features, but it is still in preview at the
time of writing this book.

Google praises itself for custom designing the network equipment and server boards
used either in their data centers or in the Google Cloud Platform (GCP). Among
those custom designed hardware solutions, there is Titan, a hardware security chip
deployed on Google’s server, which enables cryptographic signature at the hardware
layer to ensure that operating systems are booting securely.

Kubernetes Cloud Security 329

Figure 10.6: Layered approach

GKE provides different ways to secure the cluster and the workloads, but the
recommended one is the security layered approach. The traditional security layered
approach is to look at a platform from the inside out. Figure 10.6, Layered approach,
illustrates this on the left side, in the bottom-up direction. Therefore, the security
layered approach moves outward starting with the Data layer at the inner center
of the diagram. The outward direction indicates the increased level of exposure
terminating with the Identity & Access as the outer layer. GCP maps the security
layered approach with the Google Kubernetes Engine security controls, selecting
the security measures most relevant to the Kubernetes cluster and its deployment
in a cloud environment. In a GKE cluster, the users are managed by the Google
Cloud Platform, and in order to clarify their purpose in contrast with the traditional
Kubernetes users, Table 10.11, GKE User Types, describes the subtle difference between
them:

Type Description
User Account Although Kubernetes has knowledge about these accounts, it does not

manage them.
Service
Account

These are accounts managed by Kubernetes only, and they can used
only by Kubernetes resources.

Google
Account

A Google Account grants access to Google-based services, for example,
Gmail.

Google
Cloud Service
Account

The GCP Service Accounts are Google Cloud identities, and they manage
authentication and authorization between GKE and other GCP services.

Table 10.11: GKE User Types

330 Security for Containers and Kubernetes

GKE leverages the Role-Based Access Control mechanism to extend control and
provide access granularity to the Google Cloud project or the Kubernetes cluster
itself. When RBAC is used, readers should ensure that they disable the legacy
“Attribute Based Access Control” feature that is still present in the GKE system.
For a quick recap of what ABAC is, refer to Chapter 8, Kubernetes Orchestrator, the
RBAC vs ABAC section. Google’s approach to control pane security is not different
from the other two big competitors; similarly, it’s not different from most other
cloud Kubernetes providers for that matter, which include in scope kube-apiserver,
controller manager, scheduler and etcd database. Table 10.12, GKE Control Plane
Security, summarizes the main element of the security spectrum used by GKE:

Type Description
Hardening The hardening concept in Google is different from what

has been discussed in Chapter 7, Kubernetes Hardening; it is
based on the adoption of what GCP calls the Container-
Optimized OS. This operating system is a hardened version
of Chromium OS, implementing the various characteristics
of a typical Linux system, such as Seccomp and AppArmor,
but also some peculiar features of the Linux kernel, such
as Integrity Measurement Architecture (IMA) and Kernel
Page Table Isolation (KPTI).

Cluster Trust A control plane is an ensemble of many moving parts,
and these parts communicate between themselves and
externally, for example, with worker nodes, PODs, and
vice versa. Requests and responses are sent over SSH
tunnels or leveraging the Konnectivity Service (reference
Chapter 7, Kubernetes Hardening, section Securing Network
Communication) over Transport Layer Security (TLS). On the
most recent clusters, TLS version 1.3 is the default.

Authorized Network Specify CIDR ranges that are allowed to access the GKE cluster
over HTTPS. As per the Cluster Trust topic, communication
is secured via TLS. All the other communication requests are
dropped.

Table 10.12: GKE Control Plane Security

Within the control plane security topic, it is worth noting the private cluster concept.
In a typical user scenario, being the cluster in the cloud, the user must have internet
access to communicate remotely with Kubernetes. In enterprise environments, it
is common to see users accessing cloud resources via a Virtual Private Network
(VPN) connection that secures the communication between the two endpoints, but
that is not always the case.

Kubernetes Cloud Security 331

Figure 10.7: GKE Private Cluster

A GKE Private Cluster is deployed in virtual private networks where worker nodes,
services, PODs and containers have been assigned only internal IP addresses, as
shown in Figure 10.7, GKE Private Cluster. Instead, the control plane has both public
and private endpoints, and the public endpoint can be disabled. To be able to
remotely access a cluster running in a completely private network, Google Cloud
uses the bastion host access mechanism. The remote access is handled via the
Identity Aware Proxy (IAP), which must be enabled for the bastion host instance;
then, the request is redirected against the Google user authentication system, which
can also be attached to a role. If authentication and authorization to the bastion host
are granted, the request is proxied to the GKE cluster through the Tinyproxy service.
A code example of how to create a GKE private cluster is shown below; consider the
/28 subnet mask requirement:

332 Security for Containers and Kubernetes

1. $ gcloud container clusters create my-private-cluster \

2. --create-subnetwork name=my-private-subnet \

3. --enable-private-nodes \

4. --enable-private-endpoint \

5. --enable-master-authorized-networks \

6. --enable-ip-alias \

7. --master-ipv4-cidr 172.12.16.32/28

When the --enable-private-endpoint option is declared the private cluster
runs completely on a private network with private IP addresses, but it can still
communicate with Google Cloud external services by exposing Kubernetes services,
such as a load balancer. One of the most interesting applications of node security in
the security layered approach at Google is the Shielded GKE Nodes. A Shielded GKE
node is what Google calls a Shielded VM (Virtual Machine), addressed specifically
to work as cluster worker nodes. A Shielded VM is a type of virtual machine that has
achieved a higher level of security due to the following characteristics:

•	 Secure Boot

•	 Virtual Trusted Platform Module (vTPM)

•	 Integrity Monitoring

The first two topics can be reviewed in Chapter 2, Hardware and Host OS Security,
while the Integrity Monitoring feature is a monitoring service that ingests data about
the Secure Boot and vTPM events logging. GKE uses instance metadata to configure
virtual machines as worker nodes, but the metadata extracted from the VMs contains
information that PODs or containers do not need access to, for example, the service
account key. GKE provides two ways to secure instance metadata from unwanted
exposure, as listed Table 10.13, Securing instance metadata:

Type Description
Metadata
Concealment

The Metadata Concealment is a not recommend approach, as
it is due to be deprecated; but in principle, it protects access to
kube-env by firewalling traffic from PODs that are not running
on HostNetwork to the cluster metadata server.

Workload Identity It replaces Metadata Concealment by creating an access approach
similar to the AWS IRSA solution. By applying Identify and
Access Management (IAM) policies to the workloads, we can
tailor granular access permissions and therefore, stop PODs and
containers from being able to access instance metadata.

Table 10.13: Securing instance metadata

Kubernetes Cloud Security 333

The elements of the Private Cluster solution are also elements of network security,
which does not end at securing communication between users, control plane and
worker nodes; it goes further, for the two considerations expressed in Table 10.14,
GKE Network Security:

Type Description
POD-to-POD This is a concept already expressed in previous consideration,

but it is worth considering that Google Kubernetes Engine
applies a similar solution because it strengthens the
effectiveness of using network policies to govern network
traffic between PODs. As a reminder with no policies in place,
all traffic is allowed.

Load Balancer Filter A LoadBalancer service type that matches PODs’ labels can
filter traffic to ensure that only authorized traffic reaches the
PODs. The loadBalancerSourceRanges parameter can help
achieve filtering by specifying the allowed CIDRs.

Table 10.14: GKE Network Security

The workload security layer in GKE has two main preventive measures, as listed in
Table 10.15, GKE Workload Security:

Type Description
GKE Sandbox Workload isolation helps in preventing POD escaping scenarios by

segregating the container kernel from the host kernel. In essence, the
sandboxing stops the POD from sending syscall to the host kernel
leveraging on the gVisor solution. As reference, you can revisit
Chapter 8, Kubernetes Orchestrator, the Cluster Isolation section.

Binary
Authentication

The purpose of this Google Cloud service is to provide visibility in
software supply chain issues. Binary Authentication is based on the
Kritis system, which enforces container image verification against
the policy defined, and it is suitable for DevSecOps implementation.
If the image does not satisfy the policy requirements in terms of
software, libraries, and their versions, the deployment will fail.

Table 10.15: GKE Workload Security

The following example code illustrates a MySQL deployment sandboxed via gVisor:

1. # gVisor.yaml

2. apiVersion: apps/v1

3. kind: Deployment

4. metadata:

5. name: mysql

334 Security for Containers and Kubernetes

6. labels:

7. app: mysql

8. spec:

9. replicas: 1

10. selector:

11. matchLabels:

12. app: mysql

13. template:

14. metadata:

15. labels:

16. app: mysql

17. spec:

18. runtimeClassName: gvisor

19. containers:

20. - name: mysql

21. image: mysql

As mentioned at the beginning of this section, Google Cloud provides a new feature
for the audit and logging layer; it is called the Security Posture Dashboard. The
dashboard scans clusters and container workloads against security industry best
practices to determine whether any vulnerability or configuration issue is affecting
the system. Lastly, Google recommends using GKE Autopilot, an automated Google
security framework that applies most of the security measures described, and more.
This is a very simple way to deploy a Kubernetes cluster in Google Cloud with a
baseline of already active security requirements.

Red Hat OpenShift
OpenShift is the Kubernetes solution offered by Red Hat. OpenShift is mainly
focused on hybrid cloud enterprise solutions, trying to unload organizations from
the burden of managing complex infrastructures. The base OpenShift solution is the
Red Hat OpenShift Kubernetes Engine, which represents the infrastructure and
orchestration Kubernetes system. It has been tailored to work on Red Hat Enterprise
Linux and Red Hat Enterprise Linux CoreOS.

The second tier is the Red Hat OpenShift Container Platform, where OpenShift
brings security into the Kubernetes cluster by implementing the DevSecOps
approach based on three key concepts: build, deploy, and run. To build security into

Kubernetes Cloud Security 335

the applications, OpenShift recommends the key elements described in Table 10.16,
OpenShift Build:

Type Description
Trust Gaining control on the container’s content by creating trusted Linux

systems, the Red Hat Universal Base Images. The images are constantly
monitored via the Container Health Index, which provides insights into
the health status of the container images. The container images are rebuilt
when a new version is released.

Registry OpenShift provides out-of-the-box Red Hat Quay, a private registry that
has built-in vulnerability scanning capabilities.

Building OpenShift leverages the Source-to-image (S2I) framework to combine
custom source code of the application with container base images.

Pipeline OpenShift spans security across the CI/CD pipeline:

•	 Scans container images into the registry

•	 Implements vulnerability checks and remediations into the
integrated development environment (IDE) through the Red Hat
Dependency Analytics

•	 Ensures real-time assessment integration with Jenkins and
Tekton; Tekton specifically address the need of CI/CD pipelines
with Kubernetes Operators

Table 10.16: OpenShift Build

The approach to the deployment concept is achieved with the elements described in
Table 10.17, OpenShift Deploy:

Type Description
Platform Implements Kubernetes Operators, a feature that packages an application

into a single deployment component, regardless of its complexity. This
simplifies the management life cycle of the application.

IAM Identity and Access Management is achieved by the OpenShift control
plane through the built-in Cluster Authentication Operator (CAO).
CAO is deployed as a Kubernetes Operator, which simplifies the system
management life cycle and provides OAuth access tokens as authentication
mechanisms for both users and service accounts.

Data OpenShift provides encryption in transit by default, with the options
common to other Kubernetes cloud providers. It also provides encryption
at rest for the Linux Core OS storages and for the etcd database.

336 Security for Containers and Kubernetes

Type Description
Policy OpenShift has a rich set of policy-based options, and they can be grouped

into the following:

•	 Container policies

•	 Cluster policies

Container policies use the Security Context Constraints admission
controller to manage and govern deployment securely. Cluster Policies are
managed via the Red Hat Cluster Management system.

Table 10.17: OpenShift Deploy

To protect applications running into the Kubernetes cluster, OpenShift relies on the
key elements described in Table 10.18, OpenShift Protect:

Type Description
Container
Isolation

Container isolation is achieved following the recommendations
of the NIST SP 800-190, including Linux namespaces, Cgroups,
SELinux, Capabilities and Seccomp.

Application
Isolation

Application isolation is mainly achieved with the following:

•	 OpenShift projects, SELinux namespaces

•	 Security Context Constraints (SCCs)
Network Isolation OpenShift uses HAProxy to handle ingress traffic control and

CoreDNS for PODs name resolution. Both systems implement
reencrypt, a solution to decrypts HTTP traffic and reencrypt it
without TLS termination.

Access Security Red Hat OpenShift supports Single Sign-On (SSO) out-of-the-box
with Security Assertion Markup Language (SAML) 2.0 or OpenID
Connect (OIDC). Access federation is achieved through the
Keycloak project implementation, an open-source IAM solution.

Observability Prometheus is the default built-in monitoring solution.

Table 10.18: OpenShift Protect

Red Hat OpenShift Container Platform can run as a cloud-managed service in AWS,
Azure, GCP or IBM Cloud, but it can also run on a dedicated OpenShift platform.
The third and last tier offered by Red Hat is the Red Hat OpenShift Platform Plus,
which adds the Red Hat Advanced Cluster Security for Kubernetes option on top of
the previously described security solutions. This option adds the following features:

•	 Securing software supply chain

•	 Kubernetes Security Posture Management (KSPM)

Kubernetes Cloud Security 337

•	 Workload protection

It also enabled compliance capabilities against the most popular security frameworks,
such as CSI Benchmark, PCI-DSS and HIPAA; deployments risk profiling to enhance
remediation solutions for exposed workloads; a visual representation of the network
traffic workflow; a vulnerability management feature for both the cluster and the
container images; and an incident response mechanism.

Rancher
Rancher is a Kubernetes orchestrator tool, a multi-clusters management solution
with the mission to manage Kubernetes clusters at scale. It was acquired by SUSE
in 2020 in an effort to bring to the market Rancher Prime, a secure multi-cluster
Kubernetes solution. Rancher supports both cloud deployment with AWS, GCP, and
Azure, and on-premises deployment with VMWare vSphere implementation. The
security section is not particularly rich in terms of topics, but Rancher does reference
the Kubernetes security best practices and the CIS Benchmark hardening framework.
Similarly, like many other Kubernetes distributions, Rancher integrates Open Policy
Agent (OPA) via Gatekeeper in the full sense of the Constraint Framework discussed
in Chapter 9, Kubernetes Governance, in the Policy Engines section.

The interesting feature that Rancher brings to the discussion, and the main reason
why it is part of this chapter, is due to out-of-the-box integration with NeuVector.
NeuVector is an open-source security framework that runs container operations by
providing real-time network visibility, as illustrated in Figure 10.8, NeuVector:

Figure 10.8: NeuVector

338 Security for Containers and Kubernetes

NeuVector can run runtime security by inspecting east-west network traffic; refer
to Chapter 6, Monitoring Container and Security, Figure 6.1, Network Traffic. This
enables NeuVector to execute deep packet inspection, a typical firewall feature, by
monitoring all the network traffic container-to-container, POD-to-POD, and across
worker nodes. Particularly, NeuVector enhances runtime security within the cluster
by enabling the features listed in Table 10.19, NeuVector characteristics:

Type Description
DPI Deep Packet Inspection, also known as DPI (patented by

NeuVector) on:
•	 OSI Layers 3 and 4 Port (network and transport layers)
•	 OSI Layer 7 Protocol (application layer)
•	 Processes

Application
Behavior

Uses the DPI system to identify expected behaviors and drifts
from expected behaviors; NeuVector is capable of automating
policy generation based on the network traffic inspection, packet
capture and user interaction with the system

Vulnerability
Management

The NeuVector Vulnerability Management is compelling:
•	 Scans container image into the registry
•	 Scans container image within the CI/CD pipeline
•	 Inspects containers at runtime
•	 Applies the CIS Benchmark hardening compliance

framework against containers, Docker runtime, and the
Kubernetes cluster

Zero Trust Zero Trust is achieved by the integration of the following two
features:

•	 Data Loss Prevention (DLP) is implemented via the
Deep Packet Inspection feature; due to its visibility into
the network traffic, NeuVector can detect sensitive data
transmission

•	 Web Application Firewall (WAF), by leveraging network
traffic at the OSI Layer 7

Table 10.19: NeuVector characteristics

Due to the Rancher multi-deployment and managing nature, the focus is on
maintaining a consistent security infrastructure across clusters via the integration of
the OPA system, which leverages a centralized security policy management system.
The Rancher system can handle security in the same web interface for clusters
deployed either in the cloud, with services like EKS, AKS, GKE or on-premises,
applying a comprehensive multi-cloud approach.

Kubernetes Cloud Security 339

Tanzu
Tanzu is the Kubernetes solution created by VMware. It is the answer to the need for
unifying Kubernetes clusters management, regardless of where these are deployed.
With Tanzu Mission Control, users can consistently manage Kubernetes clusters
deployed into the cloud, multi-cloud, on-premises or in hybrid scenarios, and it
works with vSphere out-of-the-box to build and deliver cloud native applications.
Tanzu Application Platform has simplified the approach to securing software supply
chains by providing an interesting point of view on the matter, as described in Table
10.20, Tanzu Software Supply Chain, as part of the shifting security left process:

Type Description
Shift left Once the Software Bill of Material (SBOM) is defined and trusted,

it becomes part of the building process; refer to Chapter 5, Application
Container Security, the Third-party components section.

Automation Achieving full automation of manual activities around dependencies
such as the following:

•	 Scanning

•	 Patching

•	 Inventorying

•	 Signing
Guardrails Identify unsinged container images or vulnerabilities by stopping

them from running.

Table 10.20: Tanzu Software Supply Chain

The vulnerability scanning system implemented by Tanzu is based on Grype, the
Anchore unit that scans container images and filesystems for SBOM vulnerabilities;
refer to Chapter 4, Securing Container Images and Registries, the Scan and Verify Images
section, for a quick overview of the tool and its use cases. The build process is secured
and shielded from the supply chain attack vector by VMWare Tanzu Build Service,
through the adoption of Buildpacks, the Cloud Native Compute Foundation
(CNCF) reference tool for SBOM, which automatically generates inventories for
Node.js- and Java-based projects.

Tanzu integrates a system to cryptographically sign container images. This
is implemented through the adoption of the kpack/cosign tool. Kpack is the
Kubernetes Native Container Build Service system created by Pivotal Software,
which was acquired by VMware in 2019. Cosign is a tool used to generate a key pair
attributable to a Docker image that works with Kubernetes. The following example
code shows how to create a key pair with the cosign command (the command will
ask users to insert a password):

340 Security for Containers and Kubernetes

1. $ cosign generate-key-pair k8s://default/my-key-pair

2. Successfully created secret my-key-pair in namespace default

3. Public key written to cosign.pub

The private key is stored in Kubernetes, and the public key is saved in the same
folder where the command was executed. To create a secret out of the cosign key
pair, use the following:

1. apiVersion: v1

2. kind: Secret

3. type: Opaque

4. metadata:

5. name: my-key-pair

6. namespace: default

7. annotations:

8. kpack.io/cosign.docker-media-types: "1"

9. data:

10. cosign.key: <insert the content of the private key>

11. cosign.password: <password used to generate the key>

12. cosign.pub: < insert the content of the public key>

The kpack.io/cosign.docker-media-types: "1" annotation is for registries that
do not support the Open Container Initiative (OCI) format. Let us create a service
account with the following example code that will be used by the signed image:

1. apiVersion: v1

2. kind: ServiceAccount

3. metadata:

4. name: signed-service-account

5. namespace: default

6. secrets:

7. - name: my-registry-credentials

8. - name: my-key-pair

9. imagePullSecrets:

10. - name: my-registry-credentials

Kubernetes Cloud Security 341

Based on the preceding information, we can build a container image using the
service account created previously, by executing the following code:

1. apiVersion: kpack.io/v1alpha2

2. kind: Image

3. metadata:

4. name: my-signed-image

5. namespace: default

6. spec:

7. tag: <image tag>

8. serviceAccountName: signed-service-account

9. builder:

10. name: my-builder

11. kind: Builder

12. source:

13. registry:

14. image: “source-image”

Upon creation, to verify that the image built was correctly signed, we can verify the
signature with the following command:

1. $ cosign verify --key cosign.pub <image-digest>

The example procedure shown in the previous code is automated by Tanzu, which
provides users with the capabilities to enforce container images signature across the
Kubernetes.

Conclusion
In this chapter, we discussed the most prominent and popular Kubernetes cloud
services. We started by discussing the Cloud Native Security Model, with the 4C
approach, code, container, cluster and cloud, and then we looked at how those are
related to the topics we have already addressed in the previous chapters of this book.

We then analyzed the AWS shared responsibility model and how it impacts the
different kinds of Elastic Kubernetes Service (EKS) services. On the EKS system,
we described and explained the four main security topics: infrastructure security,
identity and access management, detective controls and incident response.

342 Security for Containers and Kubernetes

Among AWS cloud competitors, Microsoft Azure Kubernetes Service is one
of most utilized in the cloud environment. Microsoft’s effort to standardize the
security requirements as a cloud provider and to allocate those requirements to
any Azure service let us define the best course of action to secure the Kubernetes
cluster according to Microsoft infrastructure. Google Kubernetes Engine (GKE)
completes the Kubernetes cloud offer by the big three cloud providers, with its focus
on hardening and isolation, and the various security mechanisms to strengthen the
Linux systems.

Lastly, we discussed how Red Hat OpenShift, Rancher and VMWare Tanzu apply
interesting and particular security controls, widening the footprint of their systems
to include private and public cloud providers, and hybrid and on-premises solutions.

In the next chapter, we will learn how to secure Helm, the most popular Kubernetes
package system.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Helm Chart Security 343

Chapter 11
Helm Chart

Security

Introduction
Helm is similar to apt for Linux Ubuntu or yum for CentOS, a package manager that
can organize Kubernetes objects in a packaged application, such an rpm file, that can
be downloaded, redistributed, installed and configured. The equivalent of a Linux
rpm file in Helm is a chart. The main purpose of the Helm package manager is to
help in making Kubernetes easier to handle by reducing the intrinsic complexity
of the cluster. Any application in Kubernetes can be deployed by defining a set of
instructions in a YAML file. With complex systems, the YAML file becomes complex,
and deploying the desired application becomes a difficult challenge. With Helm it
is possible to deploy an application into the Kubernetes cluster by simply using few
command line helm commands, as we would do with yum or apt. We have discussed
security solutions like Open Policy Agent or Kyverno in the previous chapters, or
system like Jenkins, Harbor, Istio, Falco, HashiCorp Vault, Prometheus or Grafana.
Like many others, they can be installed in the Kubernetes cluster by leveraging the
related helm charts with a few simple commands.
A command line command does not offer powerful research options and it is visually
poor. In 2019 the ArtifactHUB was launched, an online Helm Chart repository, just
like DockerHub is to Docker. The issue with external package repositories is that
software is often distributed or updated to fulfil missing functionalities than to
address security issues; this concerns Kubernetes because it introduces vulnerabilities
and increases the attack surface of the cluster.

344 Security for Containers and Kubernetes

Structure
In this chapter, we will discuss the following topics:

•	 Helm
•	 Tiller
•	 Integrity
•	 IaC Trust
•	 Chart Scanner
•	 Dependencies

Objectives
This chapter aims to describe the security concerns around the Helm Chart system,
including its various components and their interaction with the Kubernetes cluster.
This visibility helps in reducing the security risk concerning expanding Kubernetes’
capabilities and utilizing external packages from verified sources.

Helm
Helm charts are files containing declarative Kubernetes resources that are required
to install an application in the cluster. If the application brings dependencies, they
can be declared and resolved automatically by the system to let the application run
properly. Refer to the following figure:

Figure 11.1: Helm Architecture

Helm Chart Security 345

Figure 11.1, Helm Architecture, shows the basic architecture of the system and
illustrates the main difference between Helm v2 and v3. In Helm version three,
Tiller has been deprecated, moving the previous client-server architecture to a
client-only architecture. The default Helm installation has no security configurations
in place. Although this can be appropriate in certain home lab or local development
environments, it is not the recommended approach. With Helm version 2, most
security requirements are related to the Tiller backend system. In Helm version 3,
the communication and security requirements are essentially related to the kube-
apiserver interaction. Tiller will be discussed in an upcoming section in this chapter.

Helm, in essence, deploys Kubernetes applications as templates via Yet Another
Markup Language (YAML) file manifests containing a set of instructions, including
the referred container images and a set of parameters. When considering using
ArtifactHub as a chart repository, it is recommended to pay attention to the following
three key elements:

•	 The chart is published by a Verified Publisher.

•	 The chart is tagged as an Official release.

•	 The Images Security Rating is a C or above.

ArtifactHub provides a vulnerability scanner mechanism integrated in their platform
that scans the container images. This is based on Trivy (refer to the Scanning and
Verifying Images section in Chapter 4, Securing Container Images and Registries), a tool
developed by Aqua Security to generate security vulnerability reports for each
chart uploaded. The report has a security rating determined by the scoring system
illustrated in Table 11.1, ArtifactHub Images Security Rating. Note the missing E; this
rating is not present in the original scoring model:

Rating Description
A No vulnerabilities reported
B Reported LOW vulnerabilities
C Reported MEDIUM vulnerabilities
D Reported HIGH vulnerabilities
F Reported CRITICAL vulnerabilities
- Reported vulnerabilities of unknown severity

Table 11.1: ArtifactHub Images Security Rating

Reports are generated periodically and specifically daily for the latest chart version
and weekly for previous chart versions. The report could contain multiple scanned
images depending on the complexity of the chart and also depending on any
dependencies the helm chart could have on external images. Trivy scans specific

346 Security for Containers and Kubernetes

application dependencies by inspecting the manifest file where the dependencies
are declared, with a wide footprint in terms of programming languages supported,
including Ruby, Python, PHP, Node.js, .Net, Java, Go, Rust, C/C++, and Elixir.
Remember that ArtifactHub is a public container registry, so it should be considered
a non-trusted entity as per the topics discussed in Chapter 4, Securing Container Images
and Registries, in the Private and Public Registries section. In this regard, ArtifactHub
has released its own chart artifact-hub that can be deployed on a private Kubernetes
cluster and configured as local private repository. A Helm chart deployment
YAML file may contain references to container images either optional or required
for the application to start. Controlling the extension of a single deployment can
be challenging, for example, the Istio chart published by IBM for the IBM Cloud
platform contains 14 dependencies, including charts like Prometheus, Grafana,
Jaeger, Kiali, and others, which contain other dependencies. As all these are deployed
as containers, it is not uncommon to install systems that potentially have no quotas
set, and no security contexts or Linux capabilities enabled. It is possible to override
the default values by editing the values.yaml file.

Tiller
Tiller is the back-end system installed by default in the kube-system namespace, and
it listens for requests made by the Helm system. From Helm version 3 onward, the
Tiller server is removed and no longer needed; nevertheless, to complete the security
spectrum of specific use cases, it is worth discussing the security requirements
of such a solution. If installed through helm init, the options in Table 11.2, Tiller
parameters should be considered:

Type Description
--canary-image This option allows the use of a Canary image; not recommended

for production environments, as they can be not stable.
--kube-context With this parameter enabled, it is possible to specify an

alternative cluster.
--tiller-namespace With this parameter enabled, it is possible to specify an

alternative namespace.
--service-account It enables us to specify the service account for the Tiller system

in RBAC clusters.

Table 11.2: Tiller parameters

Helm Chart Security 347

The previous table does not show the element of encryption that will satisfy a
secure communication channel between Helm and Tiller. The following installation
command sets a Transport Layer Security (TLS) communication security requirement
in place:

1. $ helm init \

2. --override 'spec.template.spec.containers[0].command'='{/tiller,--
storage=secret}' \

3. --service-account=helm-service-account \

4. –storage=secret \

5. --tls-ca-cert=ca.pem \

6. --tiller-tls \

7. --tiller-tls-verify \

8. --tiller-tls-key=key.pem \

9. --tiller-tls-cert=cert.pem

Role-Based Access Control (RBAC) is the default authentication mechanism used
by Helm for deployments, as it is also the default for Kubernetes. Kubernetes’ RBAC
has been discussed in Chapter 8, Kubernetes Orchestration Security, and the role types
have been described in Table 8.5, RBAC vs ABAC. The service account is considered
an RBAC resource in Kubernetes, but it should be declared separately from the
authentication standpoint:

1. rbac:

2. create: true

3. Component1:

4. serviceAccount:

5. create: true

6. name: component1

7. Component2:

8. serviceAccount:

9. create: true

10. name: component2

348 Security for Containers and Kubernetes

Tiller works with the permission granted by its service account, and being deployed
by default in kube-system, it is certainly a source of concern.

Figure 11.2: Tiller Secure Architecture

The limitations provided by the RBAC mechanism are sufficient to constrain Tiller
within the authorizations of the Kubernetes Role and RoleBindings roles, but to
enhance security, it is sensible to deploy the Helm server-side system in a different
namespace or even better, in a different cluster, via the --kube-context and
--tiller-namespace parameters. When a new software is needed in the cluster, the
installation request is sourced from another cluster where the user is connected and
is running helm command via TLS secure communication, as illustrated in Figure
11.2, Tiller Secure Architecture. It is very important to enable the TLS protocol during
the Helm installation because the gRPC endpoint, which is the Tiller server exposed
endpoint, runs without authentication in the first place. No authentication means
any process can perform any operation in the kube-system when the endpoint is
known. By enabling TLS, Helm is authenticated by the means of the cluster in which
it resides, and it reaches the gRPC endpoint over secure communication. Lastly, it
is advisable to change the default information storage mechanism from ConfigMaps
to Secrets. This involves adding the --storage=secret parameter to the helm
installation command.

Helm Chart Security 349

Integrity
In Helm v3, a new mechanism has been implemented to verify the origin and the
integrity of a chart package. This system implements tools like GnuPG or Public Key
Infrastructure (PKI). Pretty Good Privacy (PGP) is an encryption tool released at the
beginning of the ’90s that provides cryptographic privacy for data communication.
At the time, it was designed to protect email communication. The issue with PGP
was the patenting concern around the algorithm used for the encryption mechanism.
Based on that experience, PGP Inc. proposed an open version to the community,
OpenPGP, which defines cryptographic standards to secure communications. In
2010, Symantec acquired PGP to implement its cryptographic mechanism as part its
Enterprise Security Group. Late in 2019, this was acquired by Broadcom.

The Free Software Foundation created in 1999 an open-source version of the encryption
tool called GNU Privacy Guard (GNU-PG) based on the OpenPGP standard. The
GNU-PC technical requirements were defined in the RFC4880 document. An RFC
is a technical document published by the Internet Engineer Task Force (IETF). The
GNU suffix signifies the open-source character of the software, like many other
applications distributed today under the GNU General Public License. In order to
verify integrity, Helm charts generate provenance record with the .prov extension,
which are stored alongside the charts. For instance, a chart file like chartXYZ-0.1.0.tgz
will have a corresponded provenance record, such as chartXYZ-0.1.0.tgz.prov. The
provenance records are generated at the chart creation with the –sign parameter.
The .prov file is a YAML file manifest that contains information about the chart and
cryptographic data, as per Table 11.3, Provenance file:

Type Description
Chart The chart.yaml document that includes information about the

software packages
Signature The SHA256 signature on the chart file
Body The body is encrypted with the GnuPG system

Table 11.3: Provenance file

The key for signature must be already in place; for Gnu Privacy Guard users, this
should be located in ~/.gnupg/secring.gpg.

Note: GnuPG v2 has the secret moved to the kbx format, so the location would
be ~/.gnupg/pubring.kbx. In this scenario, it is necessary to convert the new
keyring format kbx to the former keyring format gpg.

350 Security for Containers and Kubernetes

To apply a signature to an example chart, run the following command:

1. $ helm package --sign --key 'Luigi Aversa' --keyring ~/.gnupg/secring.
gpg chartXYZ

The preceding command will generate both the .tgz and .prov files. An example of
the .prov file is provided as follows:

1. Hash: SHA512

2.

3. apiVersion: v2

4. appVersion: "0.21.1"

5. description: CHartXYZ

6. name: chartXYZ

7. type: application

8. version: 0.1.0

9.

10. ...

11. files:

12. chartXYZ-0.1.0.tgz: sha256:jjggj39g9935fggpge98g095g9ug3g09ugu3f-
gug9u0gu05ug8u5u530u8035u08

13. -----BEGIN PGP SIGNATURE-----

14.

15. goepjrog££$rref;e;kkb[teyhpo4oy-6{[6-hhl[h[pkht6hkthrbbk0kkkk/Kd

16. nvHFBNps7hXqSocsg0a9Fi1LRAc3OpVh3knjPfHNGOy8+xOdhbqpdnB+5ty8YopI

17. mYMWp6cP/Mwpkt7//wTIaLKiWkv2rSfty4yZUs7DJcYB8Udi1prnWf8fgfer658k

18. pkht6hkthrbbk0kkkk/gP1ecWFMenvHFBNps7hXqSocsg0a9R/c3OpVh3knjPfHN

19. vicbaFH5AmJCBihBaKJE4R1IX49/+JojnOLIhI3Psd0HBD2bTlsm/rSfty4yZUsD

20. nvHFBNps7hXqSocsg0a9Vh3knjPfHNGOy8+u9/eyLR0+JcYB8Udi1prnWf8=jtrt

21. =bfds

22. -----END PGP SIGNATURE-----

To verify the integrity of the chart by the mean of cryptographic signature, run the
following:

1. $ helm verify chartXYZ-0.1.0.tgz

Helm Chart Security 351

The integrity verification can be also performed at the deployment phase with a
command similar to the following:

1. $ helm install –generate-name –keyring ~/.gnupg/secring.gpg –verify
chartXYZ-0.1.0.tgz

If the verification fails with a “sha256 do not match”, the installation is aborted. The
preceding command includes the path to the default keyring location.

IaC trust
The previous section has described the signature mechanism provided by the Helm
system with the implementation of the GnuPG software for local charts. In this
section, we will expand on the topic to achieve package signature verification during
the deployment phase. A simple approach to integrity verification is provided by
a service called Keybase.io, which performs the same kind of steps and applies
the same logic discussed in the previous section. For this to work properly, two
prerequisites are to be considered:

•	 An account with Keybase.io

•	 The keybase command-line tool installed

Keybase introduces an easy way to retrieve an organization’s PGP public key by
querying a web interface: the purpose is to establish a cryptographic identity chain
of trust for anyone with an internet presence. The concept of retrieving online
public keys is not new to computer science; it is what a keyserver is supposed to
fulfil in computer security. A keyserver is a system that stores and serves public
cryptographic keys together with the information about the entity that released the
PGP key publicly. The public key can also be stored in the X.509 certificate format.
Keybase.io is a keyserver in essence. Here are some of the most popular keyservers:

•	 keyserver.ubuntu.com

•	 pgp.mit.edu

•	 keys.openpgp.org

The keyserver allows us to search for a specific identify by email address, key,
or fingerprint (a shorter string of bits mapped to a larger set of data), if known.
However, it is also possible to add the keyserver to the GPG tool locally and execute
command-line queries to retrieve the PGP key. The example we are going to illustrate
here goes beyond the simple application of the signature to a helm package; instead,
it aims to achieve helm chart package signature verification for any chart that has a
PGP public key ascribable to an identity. Grafana is one of the most popular open-
source web visualization tools and works beautifully with Prometheus, the metric
collector and monitoring system discussed in Chapter 6, Monitoring Container and

352 Security for Containers and Kubernetes

Security, in the Container Activity section. Grafana provides a helm chart, and it can
be downloaded and installed in Kubernetes with few simple commands:

1. $ helm repo add grafana https://grafana.github.io/helm-charts

2. $ helm repo update

3. $ helm install desired-version grafana/grafana

Note: We are not going to execute the install command at this stage. It is only to
illustrate the simplicity of the helm chart deployment.

Searching Grafana on the Ubuntu keyserver returns a few results; the most recent
one has key ID:

1. 0E22EB88E39E12277A7760AE9E439B102CF3C0C6

In order to utilize the key, GPG has to acknowledge where it is published, so we
add the Ubuntu keyserver to the local keyring and request Grafana’s key with the
following command:

1. $ gpg --keyserver keyserver.ubuntu.com \

2. --recv-keys 0E22EB88E39E12277A7760AE9E439B102CF3C0C6

3. gpg: key 9E439B102CF3C0C6: public key "Grafana Labs <engineering@
grafana.com>" imported

4. gpg: Total number processed: 1

5. gpg: imported: 1

Once the key has been imported in the local keyring, we can export it to a .gpg file;
we can also skip overwriting any previous exported key if the key is already present
in the original path:

1. $ gpg --output previous-key.
gpg --export 0E22EB88E39E12277A7760AE9E439B102CF3C0C6

2. File 'previous-key.gpg' exists. Overwrite? (y/N) N

3. Enter new filename: grafana.gpg

And verify the integrity of the helm chart by typing the following:

1. $ helm fetch --verify grafana/
grafana --version 6.50.7 --keyring grafana.gpg

2. Error: failed to fetch provenance "https://github.com/grafana/helm-
charts/releases/download/grafana-6.50.7/grafana-6.50.7.tgz.prov"

Helm Chart Security 353

The error in the previous command highlights the fact that the .prov file does not
exist, so the Grafana chart has not been signed for verification and cannot be verified.
Let’s repeat the exercise, adding the HashiCorp repo to helm:

1. $ helm repo add hashicorp https://helm.releases.hashicorp.com

2. "hashicorp" has been added to your repositories

3. $ helm search repo hashicorp

4. NAME CHART VERSION APP VERSION DESCRIPTION

5. hashicorp/consul 1.0.4 1.14.4 Official HashiCorp Con-
sul Chart

6. hashicorp/terraform 1.1.2 Install and config-
ure Terraform Cloud Operator ...

7. hashicorp/vault 0.23.0 1.12.1 Offi-
cial HashiCorp Vault Chart

8. hashicorp/waypoint 0.1.17 0.10.5 Offi-
cial Helm Chart for HashiCorp Waypoint

The HashiCorp PGP public key is as follows:

1. c874011f0ab405110d02105534365d9472d7468f

To add the HashiCorp public key to the local keyring and export it to a .gpg file, use
the following commands:

1. $ gpg --keyserver keyserver.ubuntu.com \

2. --recv-keys c874011f0ab405110d02105534365d9472d7468f

3. gpg: key 34365D9472D7468F: public key "HashiCorp Security
(hashicorp.com/security) <security@hashicorp.com>" imported

4. gpg: Total number processed: 1

5. gpg: imported: 1

PGP Keys actually present in the keyring can be listed with the following:

1. $ gpg --list-keys

2. /Users/luigiaversa/.gnupg/pubring.kbx

3. -------------------------------------

4. pub rsa3072 2023-01-06 [SC] [expires: 2025-01-05]

5. 0E22EB88E39E12277A7760AE9E439B102CF3C0C6

6. uid [unknown] Grafana Labs <engineering@grafana.com>

354 Security for Containers and Kubernetes

7. sub rsa3072 2023-01-06 [E] [expires: 2025-01-05]

8.

9. pub rsa4096 2021-04-19 [SC] [expires: 2026-04-18]

10. C874011F0AB405110D02105534365D9472D7468F

11. uid [unknown] HashiCorp Security (hashicorp.com/
security) <security@hashicorp.com>

12. sub rsa4096 2021-04-21 [S] [expires: 2026-04-20]

13. sub rsa4096 2021-04-19 [E] [expires: 2026-04-18]

To export the Public PGP key to a GPG file, we can use the same command used
with the Grafana case but while naming the output file appropriately to skip the
overwrite task:

1. $ gpg --output hashicorp.gpg --export c874011f0ab405110d02105534365d
9472d7468f

Once the HashiCorp GPG key has been exported from the HashiCorp PGP key, we
can verify any HashiCorp helm chart present in the repo:

1. $ helm fetch --verify hashicorp/
terraform --version 1.1.2 --keyring hashicorp.gpg

2. Signed by: HashiCorp Security (hashicorp.com/security) <security@
hashicorp.com>

3. Using Key With Fingerprint: C874011F0AB405110D02105534365D9472D7468F

4. Chart Hash Verified: sha256:9115fecf667f3d41a5a1c5833de948ef-
699321a6165be7bebe4976a7279702d5

Successful verification indicates that HashiCorp has signed the Terraform helm
chart at the creation phase, as illustrated in the previous section of this chapter, so
the repo hosts not only the .tgz file but also the .prov file. Readers familiar with
tools like Terraform will understand that the popular HashiCorp tool satisfies the
implementation of a Infrastructure as Code (IaC) solutions. Infrastructure as Code
is the provisioning of infrastructure using configuration files that contain the IT
infrastructure specifications either on-premises or in the cloud. To help manage the
various types of the IT infrastructures, Terraform uses a mechanism called providers.
A provider is a set of resources assigned to a specific vendor, which details modules
and parameters for any service or resource that can be deployed. For example,
the AWS provider has modules for the Virtual Private Cloud (VPC) service, the
Security Group (SG) service, and the Elastic Kubernetes Service (EKS); likewise,
Microsoft Azure, Google Cloud, and Kubernetes have their own set of modules that
can be leveraged to deploy the related services. The Terraform Registry, where the

Helm Chart Security 355

providers are stored, also publishes vendor- or application-specific providers, such
JFrog Artifactory, Aqua Security, Cisco, Cloudflare, and the Elastic stack.

In 2017, HashiCorp released the first version of the terraform-provider-helm,
which is on release 2.8.0 today. The description of the various configurations and
parameters is out of scope of this book, but it is worth noting the options as per Table
11.4:

Type Description
verify If set to true, this optional parameter will enable chart integrity

verification, and therefore, is expecting to find the .prov file alongside
the .tgz package.

keyring This is the path to the public key .gpg file used to execute integrity
verification on the chart; this option can be used only if the previous
option is true.

Table 11.4: Terraform Helm Parameters

Therefore, the following example code will automate helm chart infrastructure as
code deployment, also providing chart integrity verification by the means of PGP
Public Key:

1. resource "helm_release" "vault" {

2. name = "vault"

3. create_namespace = true

4. namespace = "the-assigned-namespace"

5. repository = "https://helm.releases.hashicorp.com"

6. chart = "vault"

7. version = "0.23.0"

8. verify = true

9. keyring = "hashicorp.gpg"

10. }

When thinking of a DevSecOps scenario and Secure Software Development Life
Cycle (SSDLC), which entails Kubernetes clusters and additional software to be
managed on top of the orchestrator via CI/CD pipelines, the option to add a layer
of security via package signature verification enhances the security posture and
simultaneously reduces the attack surface, enabling the Web of Trust.

356 Security for Containers and Kubernetes

Chart scanner
In Chapter 7, Kubernetes Hardening, in Table 7.15, External Hardening Tools, the
recommended Static Application Security Testing (SAST) solution is the code
security inspection tool Checkov. Checkov can be used in various environments like
Jenkins, Docker, GitLab CI, Bitbucket, and with Terraform. Checkov also supports
systems like Ansible, AWS SAM, CloudFormation, Serverless configuration and
Software Composition Analysis (SCA). In Helm Charts, Checkov supports offline
scanning as well, meaning there is no need to install the chart to execute the scanning.
With our example on the HashiCorp chart in the previous section, after adding the
chart repo, it is possible to inspect it with the following commands:

1. $ helm repo add hashicorp https://helm.releases.hashicorp.com

2. $ helm inspect values hashicorp/vault > export-vault-values.yaml

This will generate the HashiCorp Vault correspondent YAML file simply from the
Vault chart available in the repo. This file is, however, not verifiable by Checkov;
it needs to be templated into a Kubernetes framework, similar to the files used by
Kubernetes itself for deployment, with the following command:

1. $ helm template hashicorp/vault -f export-vault-values.yaml > k8s-
vault-template.yaml

This file is now ready for the Checkov scan:

1. $ checkov -f k8s-vault-template.
yaml --framework kubernetes --quiet --skip-check CKV_K8S_21
> checkov-vault-scan

The --quiet parameter will silence the output on the checks that are passed,
focusing only on the failed one. Among the charts in the HashiCorp helm chart repo,
Vault is at version 0.23.0, which was released in November 2022, and it is the latest
available at the time of writing this chapter. The checkov tool scanned the k8s-
vault-template.yaml with 279 checks, passed 234, and failed 45.

Note: CKV_K8S_21 alert on the default namespace is skipped because Helm
manages the namespace on its own, and it would create false positives.

It would not be possible to list all the failed checks, but the most relevant ones are
listed in Table 11.5, Checkov Vault Failed Checks:

Check Resource Description
CKV_K8S_12 POD Memory requests is not set
CKV_K8S_20 POD The allowPrivilegeEscalation option should be disabled

Helm Chart Security 357

Check Resource Description
CKV_K8S_13 POD Memory limits is not set
CKV_K8S_40 POD To avoid conflict with the host systems containers should

run as a high UID
CKV_K8S_10 POD CPU requests is not set
CKV_K8S_29 POD Security context should be applied to your pods and

containers
CKV_K8S_38 POD The Service Account Tokens should be mounted only

where necessary
CKV_K8S_23 POD Root containers admission should be minimized
CKV_K8S_43 POD Container Images should use digest
CKV_K8S_11 POD CPU limits is not set
CKV_K8S_11 CPU limits is not set
CKV_K8S_155 Cluster Validating and mutating admission configurations should

be minimized
CKV_K8S_31 The seccomp profile should be set to docker/default or

runtime/default
CKV_K8S_31 StatefulSet The seccomp profile should be set to docker/default or

runtime/default

Table 11.5: Checkov Vault Failed Checks

There is also a second option via the use of the Aqua Security tool Trivy, which also
provides good results. The tool has a specific command option config to scan folders
that contain configuration file structures:

1. $ helm inspect values grafana/grafana > export-grafana-values.yaml

2. $ helm template grafana/grafana \

3. -f export-grafana-values.yaml > k8s-grafana-template.yaml

4. $ trivy config k8s-grafana-template.yaml > trivy-grafana-scan

5. 2023-05-05T19:31:35.564+0100 INFO Misconfiguration scanning is enabled

6. 2023-05-05T19:31:36.761+0100 INFO Detected config files: 1

The scanning results of the Grafana helm chart are summarized in the following
screen output:

1. k8s-grafana-template.yaml (kubernetes)

2. ======================================

3. Tests: 165 (SUCCESSES: 141, FAILURES: 24, EXCEPTIONS: 0)

4. Failures: 24 (UNKNOWN: 0, LOW: 20, MEDIUM: 4, HIGH: 0, CRITICAL: 0)

358 Security for Containers and Kubernetes

The format of the vulnerability result is similar to the following example code:

1. MEDIUM: Container 'grafana' of Deployment 'release-
name-grafana' should set 'securityContext.
allowPrivilegeEscalation' to false

2. ═══

3. A program inside the container can elevate its own privileg-
es and run as root, which might give the program
control over the container and node.

4.

5. See https://avd.aquasec.com/misconfig/ksv001

6. ───

7. k8s-grafana-template.yaml:197-249

8. ───

9. 197 ┌ - name: grafana

10. 198 │ image: "grafana/grafana:9.3.6"

11. 199 │ imagePullPolicy: IfNotPresent

12. 200 │ volumeMounts:

13. 201 │ - name: config

14. 202 │ mountPath: "/etc/grafana/grafana.ini"

15. 203 │ subPath: grafana.ini

16. 204 │ - name: storage

17. 205 └ mountPath: "/var/lib/grafana"

18. ...

19. ───

Note that the output of the preceding command has been modified to accommodate
publishing requirements.

Dependencies
To deploy an application into Kubernetes without Helm, you need to write multiple
manifest files to bring the application up and running. Many complex systems have
several dependencies and often require more than one container in order to work
properly. A WordPress chart has 20 templates, Grafana has 35 templates, and the
longer the list, the higher the chance that a misconfiguration has occurred. Many

Helm Chart Security 359

things can happen that could potentially harm the cluster: no quotas set, run as root
set to true, a privilege escalation issue, or a missed capability constraint. Helm has
three types of dependencies, as listed in Table 11.6, Helm Chart Dependency Types:

Type Description
Chart A chart can recall another chart to fulfil installation purposes and streamline

the deployment process in subpackages (nested charts).
Library Available from Helm version 3, it is possible to declare libraries directly into

the chart. In Helm, libraries are not libraries in the common Linux sense;
they are libraries packed as charts.

Table 11.6: Helm Chart Dependency Type

The chart dependencies declaration format in Helm has no substantial difference
between version 2 and version 3. What is changed is the file where those dependencies
are declared: in version 2 the file is requirements.yaml while in version 3 the
dependencies are now declared in the Chart.yaml file, as the following Prometheus
chart file illustrates:

1. dependencies:

2. – name: alertmanager

3. version: 0.24.*

4. repository: https://prometheus-community.github.io/helm-charts

5. – name: kube-state-metrics

6. version: 4.24.*

7. repository: https://prometheus-community.github.io/helm-charts

8. – name: rometheus-node-exporter

9. version: 4.8.*

10. repository: https://prometheus-community.github.io/helm-charts

11. version: 4.8.*

In addition to the chart interdependence and package declaration, the Helm v3
system brings the capability to declare libraries into the chart configuration file:

1. dependencies:

2. - name: any-library

3. version: 0.0.1

4. repository: quay.io

360 Security for Containers and Kubernetes

In Chapter 4, Securing Container Images and Registries, we briefly discussed
dependencies scanning, the role that Software Composition Analysis (SCA) has
in securing container images, and how the National Institute of Standards and
Technology (NIST) has recently coded the Software Bill of Materials (SBOM)
to tackle the rising issue of supply chain attacks. While Grype and Syft, the two
command-line tools mentioned in the same chapter, created by Anchore, are
excellent solutions to scan container images and should be considered to enhance
the security posture of the environment, in Kubernetes and specifically with Helm
Chart, those are less efficient. There is a nice tool called KubeClarity, a well-built
SBOM detection and management system that integrates the two mentioned tools
plus CycloneDX-gomod and Aqua Security Trivy.

To clarify, Software Composition Analysis is similar to Static Application Security
Testing (SAST) in the broader spectrum of application security, but SCA is focused
on the libraries or dependencies that the applications need to run. So, if a Node.
js application needs to access a MySQL database back-end system, it would use
the Node.js MySQL module. The MySQL module is considered a dependency of
the main Node.js application, which will be scanned for vulnerabilities by the SCA
system. In contrast, SBOM is the standard industry format report generated by the
SCA tool in a XML format. The Open Web Application Security Project (OWASP)
has created CycloneDX, a cyber risk reduction framework that aims to standardize
the security process of utilizing third-party software into the software development
life cycle, to address the security threats generated by the supply chain. CycloneDX
list a few types of bills of materials, as shown in Table 11.7, CycloneDX Bill of Materials:

Type Description
Software Bill of Materials SBOM is the standard format to track and create an

inventory of the software components dependencies.
Hardware Bill of Materials HBOM is the standard format track and create an

inventory of the hardware components for embedded
devices, such as Internet of Things (IoT) devices.

Software-as-a-Service Bill
of Materials

SaaSBOM shifts the focus on cloud-native applications,
where the dependency could be a misconfigured cloud
service.

Operations Bill of
Materials

OBOM is the inventory of configurations and runtimes.

Vulnerability Disclosure
Reports

VDR is a standard report aiming to communicate and
highlight the vulnerabilities affecting the components.

Vulnerability Exploitability
eXchange

VEX reconcile the vulnerabilities of the components in the
context of the application in which they are deployed.

Table 11.7: CycloneDX Bill of Materials

Helm Chart Security 361

The OWASP CycloneDX lists several tools that can help with SBOM, but not so many
can interact with Helm. There are a couple of ways to extract a SBOM report from a
Helm chart, and we can use, as an example, the Grafana helm repo already added to
our system and Checkov. First, the helm chart must be extracted and decompressed;
the fetch option allows this in one single command:

1. $ helm fetch grafana/grafana --destination /save/path/grafana --untar

Checkov can scan the grafana helm chart from the parent directory using the output
format cyclonedx, as per the following example:

1. $ checkov -d grafana -o cyclonedx > sbom-grafana.xml

The inspection of the grafana.xml highlights the following example output that is
consistent with the result produced by Checkov when scanning the Grafana Helm
Chart:

1. ...

2. <component type="application" bom-ref="pkg:helm/cli_repo/grafana/
grafana/templates/clusterrole.yaml/ClusterRole.default.release-name-
grafana-clusterrole@sha1:8faaaaa4208e987a1fe4cf37fc63c5e7b99393ee">

3. <name>ClusterRole.default.release-name-grafana-clusterrole</name>

4. <version>sha1:8faaaaa4208e987a1fe4cf37fc63c5e7b99393ee</version>

5. <hashes>

6. <hash alg="SHA-1">8faaaaa4208e987a1fe4cf37fc63c5e7b99393ee</
hash>

7. </hashes>

8. <purl>pkg:helm/cli_repo/grafana/grafana/templates/clusterrole.
yaml/ClusterRole.default.release-name-grafana-clusterrole@
sha1:8faaaaa4208e987a1fe4cf37fc63c5e7b99393ee</purl>

9. </component>

10. ...

The SBOM standard is the last frontier of the supply chain security, and with the
OWASP community backing the process, it will evolve fast. One of the suggested
tools to consume SBOM report is Dependency-Track, a platform that provides
Supply Chain Component Analysis insights, with a dashboard to visualize projects
and components in an organized and efficient fashion. The vulnerabilities are then
structured and managed with risk-based scoring system and policy management.

362 Security for Containers and Kubernetes

Conclusion
In this chapter, we discussed the importance of securing the Helm Chart system. We
analyzed the Helm system architecture, and the changelog between version 2 and
version 3. We also discussed how Tiller is still a topic that deserves some security
clarifications due to its popularity.

We then discussed how to verify the integrity of the helm chart packages, retrieving
the PGP public key issued by the publishers from keyservers and ingesting it in
our GPG keyring to acknowledge helm chart signature as guarantee of authenticity.
Further on, we demonstrated how it is possible to create a circle of trust within the
infrastructure as code mechanism to verify helm chart integrity.

In the last part of this chapter, we discussed why scanning Helm Charts for
vulnerability is important and which tools are more appropriate for this task. We
also provided an overview of how Helm processes dependencies and why we
should pay attention to them when securing the Kubernetes cluster environment.

Lastly, we discussed in depth the Software Bill of Materials (SBOM) and explored
how the security community is effortlessly trying to standardize the Software
Composition Analysis security scans through the CycloneDX project, to enhance
security for the supply chain issue.

In the next and the last chapter of this book, we will learn about the Service Mesh
and understand why it is important to Kubernetes and what the related security best
practices are.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Service Mesh Security 363

Chapter 12
Service Mesh

Security

Introduction
In a microservices architecture scenario, each individual component of the
application benefits from independence from the others. The User Interface (UI)
can be written in Angular for example, while the back end can rely on Go or Java,

364 Security for Containers and Kubernetes

the cache system can use Redis, and the database can store data in PostgreSQL or
MySQL or MongoDB. Refer to the following figure:

Figure 12.1: Microservices concepts

Often, the microservices architecture goes beyond the simple tier logic subdivision,
for instance, each business function is a standalone application, coded with the
desired programming language. Each application can be deployed, updated, or
dismissed without affecting the overall functionality of the system, as illustrated
in Figure 12.1, Microservices concepts. While this architecture solution provides great
flexibility and streamlines the software development life cycle, allowing the creation
of independent functional small teams focused on a single service, it also implies
that these services need to communicate to each other to gather the information
that they need to perform their tasks. For example, a simple purchase process may
involve the search service, the stock check service, the basket service, the payment
service and all the related database transactions. The independence obtained from
the application development standpoint does not reflect the challenge for a services-
to-service network communication system. While the logic governing networking

Service Mesh Security 365

can be included in each component of the application or smoothened out by modules
and plugins, it often represents an obstacle that can affect the user experience and
generate serious security concerns.

Structure
In this chapter, we will discuss the following topics:

•	 Overview
•	 Architecture
•	 Container Network Interface
•	 Envoy security
•	 Secret Discovery Service
•	 Mutual TLS
•	 Istio Security
•	 Zero-Trust Networking

Objectives
This chapter aims to provide security insights for organizations that consider
implementing a service mesh on top of their Kubernetes infrastructure, and it
explains the implications of such a choice. We will discuss the technology behind
service meshes and the intrinsic security values they add to the security posture
of the whole cluster. We will also look at the drawbacks that such benefits could
generate.

Overview
A service mesh works as an infrastructure network layer in a Kubernetes cluster. This
new component installs a dedicated control plane, the Service Mesh Control Plane,
which works as a platform adaptor interfaced through the Container Network
Interface (CNI) on the nodes, as illustrated in Figure 12.2, Service Mesh Overview.
A service mesh unloads the Kubernetes cluster from traffic network management,
but in contrast, it generates much more computational load because it augments

366 Security for Containers and Kubernetes

the resources needed to deploy the sidecars onto the nodes. Refer to the following
figure:

 Figure 12.2: Service Mesh Overview

Note: The kube-proxy object has been purposefully removed from the right
side of Figure 12.2, Service Mesh Overview, because it does not serve the
communication with the service mesh, at least not functionally. However, the
object is still present to satisfy the necessary communication between the
Kubernetes control plane and the worker nodes intended as hosts.

The set of proxies or sidecars collectively creates the Service Mesh Data Plane,
which is not a single element but a high-level nomenclature to identify resources
that are not included in the Service Mesh Control Plane. Readers with networking
knowledge will be familiar with the concept of a network proxy system, and the name
HAProxy is likely known to most of them. HAProxy has been around for more than
20 years now, and although it is one of the most stable, reliable and consistent proxy
servers with features like high availability, load balancer, and reverse proxy, it is not
the chosen system to be the sidecar because it was not designed for microservices.

The complexity of a system like Kubernetes has technical requirements that go beyond
the classic client-server approach or the single file configuration systems. It needs a

Service Mesh Security 367

modular, scalable, API-based system like Envoy Proxy. In the Kubernetes cluster,
each node runs a kube-proxy system that processes the network communication
between the Kubernetes control plane and the host, implements network rules,
routes communication to the PODs and therefore to containers, and forwards traffic
to virtual IP addresses of the Kubernetes Service objects, as explained in Chapter 7,
Kubernetes Hardening, in Figure 7.3, kube-proxy.

Kubernetes does not directly expose any POD, so any request reaching the load
balancer in a north-south traffic network scenario will be able to establish a
successful connection when kube-proxy routes it via the node’s kernel directly to
the container’s endpoint, also known as iptables mode, it also uses the operating
system installed on the host as a packet filtering mechanism, such as Netfilter.

There is no straightforward methodology to secure load balancers created by
the Kubernetes Service. In some cases, we can whitelist IP ranges blocks that are
allowed to connect to the cluster via the loadBalancerSourceRanges. When this
is not configured, the network traffic is supposed to be transparent. That is one of
the reasons why, at the cloud level, cloud providers usually implement the load
balancer externally to the Kubernetes cluster. Furthermore, when a component of
the application attempts to access another component within the cluster in an east-
west traffic logic, it starts a lookup request to identify the destination IP address of
the connection. The lookup mechanism is also known as service discovery.

Architecture
A service mesh is essentially composed of two elements: the control plane and
the data plane. The control plane provides configuration and management of the
network architecture, while the data plane handles or operates the network traffic
routing. The service mesh brings to the Kubernetes cluster many benefits, the most
relevant ones being faster application deployment, reduced overhead on service-
to-service communication, easier diagnostic capabilities due to localized network
errors, and security features like authentication, authorization and encryption
supported out-of-the-box.

Cloud-native applications mirroring the microservices model running in
containerized environments and sustained by a container orchestrator like
Kubernetes benefit immensely by the adoption of the service mesh model, which
creates a networking layer to harmonize and unify the network communication
model. In the service mesh architecture, as per Figure 12.3, Service Mesh Microservices,
the service-to-service communication model is replaced by a new infrastructure
network layer. Technically, a service mesh is a layer of interconnected proxy systems.
Each service of the application has its own service mesh system running in parallel,
each microservice talks to its own service mesh, and the service mesh routes the

368 Security for Containers and Kubernetes

requests or responses to the service mesh of another component, filtering the
communication.

Figure 12.3: Service Mesh Microservices

Service mesh components are sometimes referred to as sidecars, as they run alongside
each service, not within them. In a service mesh scenario, expanding the application
with new features and new services does not add complexity in terms of networking
to the entirety of the application because the only communication needed would
be that of the microservice with the service mesh. A breakdown of the main service
mesh components is described in Table 12.1, Service Mesh Components:

Component Description
Control Plane A POD deployed into the that governs the network communication

applied through the Container Network Interface.
Data Plane The data plane is not a specific component on its own; it is the

collection of all the sidecars considered together.

Service Mesh Security 369

Component Description
Sidecars A proxy server deployed alongside each POD that bridges the

communication between the following:

•	 The microservice attached to the sidecar and the other
sidecars

•	 The microservice and the Worker Node

•	 The microservice and the control plane POD

•	 The microservice and the cluster

•	 The microservice and external requests routed into the POD
SMI Service Mesh Interface is a Cloud Native Compute Foundation

project to standardize the interface connection on Kubernetes. The
standardization would affect the following elements:

•	 Network Traffic Management

•	 Network Traffic Policy

•	 Network Traffic Telemetry

•	 A set of common APIs requirements will allow the SMI to be
provider agnostic, meaning that it will not be linked to any
specific cloud provider or technology.

Table 12.1: Service Mesh Components

There are several service mesh projects that can be deployed in a Kubernetes cluster:
Istio (the most popular), Linkerd; Kuma; Nginx Service Mesh; Open Service Mesh
created by Microsoft and donated to Cloud Native Computing Foundation; Consul
Connect by HashiCorp; Maesh; and Network Service Mesh, a hybrid and multi-
cloud IP service mesh. Microsoft was not the only cloud provider to have created
an ad hoc service mesh system for its own cloud service; there is another popular
system created by Amazon, called AWS App Mesh.

Container Network Interface
Container Network Interface (CNI) is a Cloud Native Computing Foundation
project, a Kubernetes network interface designed to overcome some of the
limitations imposed by the kube-proxy system and to expand the features that the
cluster can offer by plugging in a third-party network component mechanism. The
main purpose of CNI is to provide control over network communication to monitor
network activities and simultaneously reduce the burden of generating manual
network configurations by the implementation of network policies; refer to Chapter
9, Kubernetes Governance, the Network Policies section.

370 Security for Containers and Kubernetes

In essence, a CNI is a pluggable module that works on top of the Linux container
network interface. As a reminder, containerized platforms draw physical resources
from the underlying host, so any mechanism working on top of those is an
additional abstraction layer of the operating system. A Container Network Interface
can be integrated using two network models: an encapsulated model like Virtual
eXtensible LAN (VxLAN), and an unencapsulated model like Border Gateway
Protocol (BGP). A visual representation of the difference between the two models is
provided in Figure 12.4, CNI Models:

Figure 12.4: CNI Models

The differences between the two network mechanisms are highlighted in Table 12.2,
CNI Network Models, but in essence, a VxLAN is a network protocol that tunnels
network traffics at the Data-Link Layer 2 over a Network Layer 3, while BGP is
a protocol designed to exchange information on the routing paths of autonomous
systems at the Network Layer 3 only.

Service Mesh Security 371

Type Description
Encapsulated •	 The encapsulation mechanism happens at the OSI Layer 2,

Data Link over an existing OSI Layer 3, Network.

•	 The Data Link layer is isolated, and the encapsulation creates
an IP header. This translates data from the control plane to the
nodes Media Access Control (MAC) addresses, distributing
encapsulated data between the nodes in the cluster.

•	 A popular encapsulation model is Internet Protocol Security
(IPsec).

•	 A network bridging connection is created between the PODs
and the nodes through the container runtime engine.

Unencapsulated •	 The unencapsulated mechanism happens at the OSI Layer 3,
the Network layer, directly.

•	 Missing the Data Layer, the worker nodes need to handle the
routing within the hosts.

•	 The routing is executed by the BGP protocol, which distributes
information to the PODs, while the container runtime engine
defines the communication between the PODs.

Table 12.2: CNI Network Models

The most common Container Network Interface providers are Flannel, Canal,
Cilium, Calico and WeaveNet by WeaveWorks. In Chapter 6, Monitoring Container
and Security, we discussed another WeaveWorks tool in the Topology Visualization
section: WeaveScope. It is worth highlighting that the Flannel container network
interface does not support network policies and the Canal container network
interface does not support encryption. Some of the most popular cloud providers
have created their own solutions, such as the AWS Elastic Kubernetes Service
(EKS) VPC-CNI, Microsoft with the Azure CNI, and Google with the GKE CNI in
order to implement network policies and service meshes derived by their own cloud
services, but they also provide the capability to integrate external CNI drivers with
different flavors. For instance, AWS and Google both support the Calico CNI, while
Azure is developing a new Azure CNI based on Cilium, which is in preview at the
time of writing this chapter.

372 Security for Containers and Kubernetes

In the Kubernetes network environment, it is common to talk about the overlay
network. The overlay network is intended as the capability of the cluster to
communicate to a POD by IP addresses, and all the cluster services rely on the overlay
network to work properly. In order for the IP-based communication to happen, the
kube-proxy system invokes the CoreDNS system, which aims to resolve the Domain
Name System (DNS) name to an IP address. Once the name has been resolved to an
IP address, CoreDNS creates the correspondent iptables rules on the host operating
system to route the traffic network accordingly. The CoreDNS is indeed one of the
processes of the cluster service-to-service communication mechanism.

A spoofing attack is a way by which a system, application, or a person masquerades
as a trusted entity attempts to gain an illegitimate advantage. DNS Spoofing, also
known as DNS Cache Poisoning, is when corrupted data is legitimated by DNS,
redirecting the network traffic to an IP address that is not the true resolver of a
domain name. Kubernetes is not immune to this kind of an attack, and the network
communication can be compromised if the target of the attack is the CoreDNS
deployment, in a scenario where the CNI is not installed. The CoreDNS system that
receives DNS queries attempts to resolve requests from within the cluster, using the
local configuration; if a request cannot be satisfied, the name server will query the
authoritative name servers configured, asking if they know which IP corresponds to
that domain.

A POD Escaping is eventually possible (refer to Chapter 8, Kubernetes Orchestration
Security, the POD Escaping Privilege Escalation section for reference) when the Linux
Capability CAP_NET_RAW is enabled into the POD by means of an attack technique
called ARP Spoofing. ARP stands for Address Resolution Protocol, and it is accessible
along with the Internet Control Message Protocol (ICMP) through the NET_RAW
capability. The ARP Spoofing attack exploits the correlation between the IP address
and the physical address of the network machine by impersonating a fake MAC
address. With the implementation of a Container Network Interface, the cluster
is not only taking advantage of the network policy capability but also of a virtual
layer of IPs dynamically assigned to PODs, reducing the overhead on the network
cluster management, plus securing most of the network communication mechanism
out-of-the-box. For example, the Calico CNI can prevent both ARP Spoofing and IP
Spoofing, and the Calico Cloud service also provides a DNS Dashboard aiming to
visualize DNS traffic flow of data.

Envoy security
Envoy proxy is the sidecar in the service mesh; it was written to satisfy and support
microservices or distributed infrastructure systems, and while still supporting
the single file configuration mode, it also supports the gRPC or the API-based
configuration approaches. It is the most popular, modern proxy server adopted
by service mesh systems like Istio, Kuma, and Consul Connect, and many cloud

Service Mesh Security 373

providers. Envoy works at the OSI Model Layer 7, the application layer; it has been
designed to bring network transparency, in which applications have no knowledge
of the network structure, by virtually working with any programming language.
Table 12.3, Envoy Features, provides a high-level overview of the main characteristics
available in the system, and the observability feature is one of the most significant
ones because it provides powerful tools to diagnose the cluster network behavior.

Type Description
HTTP L7 Routing The routing system can route requests based on various factors,

such as runtime values, content type, path, and authority.
HTTP L7 Filter The filter can be implemented into the HTTP connection system

to perform routing and forwarding, rate limiting, and buffering.
HTTP/2 Any combination of HTTP/1 and HTTP/2 can be bridged.
OSI L3 and L4 Listener mechanism that performs network layer filters such as

Read, Write and Read/Write.
gRPC Remote Procedure Call is a high-performance cross-platform

framework used by Google before becoming open-source to
connect microservices at scale.

Edge Proxy It’s a type of proxy that sits logically at the edge of the network,
providing visibility into networking traffic management.

Discovery Service It provides dynamic updates of listening sockets, HTTP routing,
hosts and backends, and cryptographic communications.

Advanced Load
Balancer

Currently, supported features are circuit breaking, automatic
retries, global rate limiting, outlier detection and request
shadowing.

Health Check It performs active health check of cluster services.
Observability It provides server side statistics, access logs, application logs.

Table 12.3: Envoy Features

The Envoy Proxy system provides several ways to secure network traffic, not only
the north-south traffic, but also the east-west traffic. To better understand Envoy’s
approach to security, it is worth recalling the Envoy threat model, which is based on
the two main logic aspects:

•	 Control Plane, which is generally trusted, being the “network orchestrator”
for the proxy system.

•	 Data Plane, the core components are hardened when considering untrusted
upstream and downstream connections.

The Envoy threat model implements the CIA Triad model, model expressed around
the three fundamental principles of Confidentiality, Integrity and Availability, as

374 Security for Containers and Kubernetes

discussed in Chapter 5, Application Container Security, in the Penetration Testing section.
Confidentiality refers to the capability of an organization to implement rules or
policies to limit and control access to information, ensuring that only a limited group
of people with the right set of permissions can access sensitive information. Integrity
refers to the assurance that the information has not been tampered, preserving the
truthfulness of the data, by implementing a data consistency mechanism over the data
management life cycle. Availability ensures that access to information is guaranteed
when needed, maintaining hardware, network and software in healthy conditions.
The Transport Layer Security (TLS) is widely supported by the Envoy Proxy system,
along with the TLS termination and the TLS origination features, and a few other
HTTP-based protocols like JWT, RBAC and external OAuth authentication system.

Table 12.4, Envoy TLS feature, summarizes the main features supported by Envoy TLS
implementation:

Type Description
ALPN TLS extension Application-Layer Protocol Negotiation (ALPN)

allows the OSI Layer 7 to choose which protocol should negotiate
the secure connection.

BoringSSL Key Management extension, such as TPM and TLS acceleration,
based on the Google version of OpenSSL.

Certificate revocation Envoy verifies if a certificate is valid against a revocation list. If
matches, the certificate is marked as revoked.

Certificate
verification

A chain verification process allows Envoy to verify the validity
of a certificate using hash pinning and subject name verification.

Client certificate Client can provide a client certificate.
Ciphers Each listener can specify which TLS cipher to use.
FIPS 140-2 Federal Information Processing Standard (FIPS) Publication

140-2 sets the cryptographic module security requirements
for organizations that need business with US-based federal
entities. The BoringSSL crypto library is not FIPS compliant, but
compliance can be built to be validated for the FIPS framework
using the BoringCrypto core library.

OCSP Stapling Online Certificate Status Protocol (OCSP) Stapling is a standard
to verify X.509 digital certificates revocation status.

Session resumption Based on RFC 5077, server connection can be resumed via TLS
session ticket.

SNI Server Name Indication (SNI) helps client to declare the
hostnames of the machine they are trying to establish a secure
connection with.

Table 12.4: Envoy TLS features

Service Mesh Security 375

Despite the funny name, BoringSSL is forked by Google from OpenSSL and is
designed by the popular tech giant to meet the specific needs of their security
requirements, providing the foundation for the TLS provider used by Envoy. Edge
Proxy VPN support can be implemented, thanks to the TLS client authentication
filter. When using a VPN service that integrated REST API capabilities, the filter can
be invoked to verify that the client certificate hash matches any of the certificates on
the principal list to determine whether the connection should be established. Envoy
classifies the network traffic into two main categories:

•	 Containers connecting to Envoy are considered downstream.

•	 When the connection is from an Envoy Proxy to a container, the connection
is considered upstream.

Figure 12.5, Envoy Downstream and Upstream Connection, illustrates the two traffic
methodologies adopted by Envoy:

Figure 12.5: Envoy Downstream and Upstream

376 Security for Containers and Kubernetes

When a client needs to establish a secure connection downstream via TLS, it is
possible to configure TLS via the DownstreamTLSContext parameter, declaring
a server certificate and server key. The following coding snippet clarifies the TLS
connection for the listener transport socket:

1. static_resources:

2. …

3. listeners:– - name: listener_XYZ

4. ...

5. filter_chains:

6. – - filters:

7. – - name: envoy.filters.network.http_connection_manager

8. ...

9. transport_socket:

10. name: envoy.transport_sockets.tls

11. typed_config:

12. “ "@t”pe": type.googleapis.com/envoy.extensions.transport_
sockets.tls.v3.DownstreamTlsContext

13. common_tls_context:

14. tls_certificates:

15. – - certificate_chain:

16. filename: /path-to/servercert.pem

17. private_key:

18. filename: /path-to/serverkey.pem

Similarly, we can declare the upstream connection with UpstreamTLSContext:

1. ...

2. transport_socket:

3. name: envoy.transport_sockets.tls

4. typed_config:

5. "@type": type.googleapis.com/envoy.extensions.transport_
sockets.tls.v3.UpstreamTlsContext

Certificate validation is not implemented by default but can be enforced on the
upstream TLS connection through the validation_context parameter; therefore, the
previous code becomes this:

Service Mesh Security 377

1. ...

2. transport_socket:

3. name: envoy.transport_sockets.tls

4. typed_config:

5. "@type": type.googleapis.com/envoy.extensions.transport_
sockets.tls.v3.UpstreamTlsContext

6. common_tls_context:

7. validation_context:

8. trusted_ca:

9. filename: /path-to/cacert.pem

Certificate validation for X.509 can be implemented by adding the Subject
Alternative Names parameter to the preceding code:

1. ...

2. trusted_ca:

3. filename: /path-to/cacert.pem

4. match_typed_subject_alt_names:

5. - san_type: DNS

The communication between the application and the Envoy proxy supports
Online Certificate Status Protocol stapling through the DownstreamTLSContext
parameter during the handshake. The stapling mechanism enables the verification
of revoked certificates, and it is executed with the ocsp_staple field, where a pre-
computed response is provided. Envoy will require a valid response to be provided,
which declares the certificate as valid or non-revoked. There is also a custom
handshake extension that can override the default SSL behavior by declaring the
CommonTLSContext parameter. Alongside the TLS authentication system discussed
so far, Envoy Proxy offers the JSON Web Token, or JWT authentication system,
which is based on HTTP filter configuration. When an incoming request is received,
the JWT Authentication filter verifies the JWT signature’s validity based on the
HTTP filter; if the validity check fails, the request can either be rejected or passed to
an upstream filter that can accept or reject it. Like any other modern authentication
system platform, Envoy Proxy supports Role-Based Access Control. The RBAC
authentication process filters incoming requests against the policy list configured in
the filter config; this can be configured as a simple HTTP filter or as a network filter,
or eventually, as both. The rules can be defined as listed in Table 12.5, RBAC Rule
Filters:

378 Security for Containers and Kubernetes

Type Description
Policy A policy is a set of principals and permissions the requests are checked

against; inside the permissions logic, the request action is declared, which
allows a specific request to be approved or rejected.

Matcher A matcher supersedes the policy by allowing the request to traverse the
matching API system until a match is found. If none is found, the request
is denied.

Shadow The Shadow Policy and Shadow Matcher in relation to the two previous
filters can be configured to log request events. It is a sort of dry-run for
testing purposes as it does not affect the filters.

Table 12.5: RBAC Rule Filters

As part of the logic behind the RBAC filter, a condition can applied to the policy for
the request to be satisfied. This is considered an extra clause of the authentication
mechanism in order for the request to be approved. Similar to the RBAC filter, the
External Authorization system executes external requests to the external identity
provider, such as OAuth, and it can be used in conjunction with the HTTP filter and
the network filter, or with both.

Secret discovery service
Envoy has been designed to satisfy any use case, from the simplest one with the
adoption of a full file static configuration management implementation to the most
complex deployment environments where the resource load cannot be inventoried
but they need to be discovered. The Discovery Service, also referred to as xDS, is a
set of API-based systems specifically designed for the discovery of a certain type of
resources. Table 12.6, xDS, details the various type of discovery services supported
by Envoy:

Type Description
EDS Endpoint Discovery Service is allocated to discover upstream cluster’s

endpoints.
CDS Cluster Discovery Service is a layer mechanism to discover upstream clusters

through routing. It is recommended to use CDS in combination with EDS.
RDS Route Discovery Service is an API service aiming to discover route configuration

for an HTTP connection.
VHDS Virtual Host Discovery Service can request virtual host to be discovered

independently from the route configuration.
SRDS Scope Route Discovery Service can decouple route tables.
LDS Listener Discovery Service looks for listeners.

Service Mesh Security 379

Type Description
SDS Secret Discovery Service aims to let Envoy discover cryptographic secrets.
RTDS RunTime Discovery Service helps the API system retrieve runtime layers.
ECDS Extension Config Discovery Service allows Envoy to retrieve extension

configurations.

Table 12.6: xDS

Among the various type of discovery services, the Secret Discovery Service stands
out from the security standpoint, unloading the burden to configure static secrets.
In a standard Kubernetes deployment, the certificates are stored as secrets, and
upon expiration, a secret rotation mechanism must be triggered, which involves re-
deployment. In an SDS system, the server will manage the certificates, and upon
expiration, will redistribute the new certificates; the Envoy proxy containers do not
need to be redeployed because they will simply acknowledge the certificate update.
The SDS also acts as a defense mechanism because the listener waits for the certificate
to be fetched before establishing any new connection. The SDS server is, essentially,
the implementation of the gRPC Secret Discovery Service. The certificates can be
declared as secrets in a YAML file format with the SdsSecretConfig parameter in
two specific fields of CommonTlsContext:

•	 The tls_certificate_sds_secret_configs, where the SDS server gets the
TLS certificate from

•	 The validation_context_sds_secret_config, where the SDS server
verifies the TLS certificate validity

The following code provides an illustrated example of SDS Server implementation:

1. listeners:

2. ...

3. filter_chains:

4. - transport_socket:

5. name: envoy.transport_sockets.tls

6. typed_config:

7. "@type": type.googleapis.com/envoy.extensions.transport_
sockets.tls.v3.DownstreamTlsContext

8. common_tls_context:

9. tls_certificate_sds_secret_configs:

10. - name: server_certificate

380 Security for Containers and Kubernetes

11. sds_config:

12. resource_api_version: V3

13. api_config_source:

14. api_type: GRPC

15. transport_api_version: V3

16. grpc_services:

17. envoy_grpc:

18. cluster_name: sds_server_mtls

19. validation_context_sds_secret_config:

20. - name: context_validation

21. sds_config:

22. ...

23. <same as line 12 to 17>

24. ...

25. cluster_name: sds_server_uds

26. ...

The SDS Server allows a key rotation mechanism that can be used to rotate
the certificates on a need basis. This can be achieved either on the SDS static
configuration file or through the gRPC SDS system, with the latter being the
recommended approach. The Envoy Proxy currently supports two secret types
that can be automatically rotated: the CertificateValidationContext and the
TlsCertificate. Rotation is applied by adding the watched_directory parameter,
which will monitor the folder in which the certificates are loaded. Therefore, we can
amend the code example in the previous section by adding the following:

1. ...

2. tls_certificates:

3. - certificate_chain:

4. filename: /path-to/servercert.pem

5. private_key:

6. filename: /path-to/serverkey.pem

7. watched_directory:

8. path: /path-to/

Service Mesh Security 381

The SDS server also provides a few statistics that can be used for troubleshooting
purposes, such as the total count of updated SSL context, total count of empty SSL
certification connections that have been reset, both for downstream and upstream
listeners, plus the total count of failed key rotations update.

Mutual TLS
Transport Layer Security is the standard de facto today to secure network
communications over the internet. The Google Transparency Report website shows
a steep curve outlining the adoption of HTTPS encryption traffic on the web over the
last 10 years or so, with 94 percent of encrypted traffic registered across the Google
platform in February 2023. The report is available at https://transparencyreport.
google.com/safe-browsing/overview. Still, there is a good percentage of the web
traffic that is unencrypted, a percentage that grows when considering communication
systems outside Google itself. When we switch the focus from inspecting internet
traffic to a local network or Local Area Network (LAN) traffic, the scenario changes,
because the necessity for “trust” is often attributed to external networks only: many
consider their home, office, and local network intrinsically secure just because it is at
their fingertip. Refer to the following figure:

Figure 12.6: TLS Termination

Cloud mechanisms are not indifferent to the same attitude. In many cloud architecture
logics, the load balancer that is exposed on the public internet manages the TLS
certificate, the network traffic travels on HTTPS until it hits the load balancer, and
then it gets decrypted and redirected over HTTP in plain text to the private network
where the web server is running, as illustrated in Figure 12.6, TLS Termination. The
logic behind the TLS termination mechanism is justified by a few reasons:

•	 Previous versions of SSL/TLS encryption add latency to network connections,
slowing down the website response time.

•	 The SSL/TLS needs additional compute resources creating overhead on the
encryption and decryption processes.

382 Security for Containers and Kubernetes

•	 There is a tendency to trust internal networks, drawing the line between
trusted and not trusted networks exactly where the traffic hits the load
balancer.

With the rise of the microservices model and the spread of the containers and the
Kubernetes platforms, with a subsequently increasingly complex development and
deployment of the application ecosystem, each individual communication between
microservices should be secured by implementing authentication, authorization and
encryption in each single network transaction to fulfil the requirements of a zero-
trust security model. Although this solution elevates the intrinsic security posture
of any application, it would add complexity to the programming code needed to
encrypt and decrypt the traffic between microservices, and it would not only slow
down the software development life cycle but also enhance the need for expertise on
any single component of the software stack.

Figure 12.7: mTLS

A service mesh is the ideal software solution to implement security in a microservices
model scenario, through the adoption of the Mutual TLS (mTLS) mechanism, as
shown in Figure 12.7, mTLS.

Service Mesh Security 383

Figure 12.8: Establishing Mutual TLS

The TLS uses a two-way encrypted communication between sidecars, applying a
many-to-many TLS communication logic. Figure 12.8, Establishing Mutual TLS, shows
in detail how the Mutual TLS is created by describing visually what the following
steps aim to explain:

1. The User Account microservice’s Envoy proxy requests the TLS certificate
from the Basket microservice’s Envoy proxy.

2. The Basket microservice’s Envoy proxy replies with the TLS certificate and
requests the User Account microservice’s Envoy proxy TLS certificate.

3. The User Account microservice’s Envoy proxy verifies the Basket
microservice’s Envoy proxy certificate by querying the Certificate Authority.

4. Upon successful verification, the User Account microservice’s Envoy proxy
sends its TLS certificate, plus a session key based on the Basket’s Envoy
proxy certificate public key, to the Basket’s Envoy proxy.

5. The Basket microservice’s Envoy proxy verifies the User Account
microservice’s Envoy proxy TLS certificate by querying the Certificate
Authority.

6. Upon successful verification, the Basket’s Envoy proxy accepts the session
key and establishes Mutual TLS with the User Account microservice’s Envoy
proxy.

From the code perspective, the minimum requirement to set up a mTLS connection
is to leverage the require_client_certificate parameter and declare a mutual
certificate authority, as per the following example:

384 Security for Containers and Kubernetes

1. transport_socket:

2. ...

3. require_client_certificate: true

4. common_tls_context:

5. validation_context:

6. trusted_ca:

7. filename: /path-to/cacert.pem

8. match_typed_subject_alt_names:

9. - san_type: DNS

10. matcher:

11. exact: user-account.mydomain.com

The match_typed_subject_alt_names parameter is an added restriction on the
client authentication side. Upstream connections can be enforced on the client by
implementing a certificate chain mechanism, as shown in the following example:

1. common_tls_context:

2. tls_certificates:

3. - certificate_chain:

4. filename: /path-to/clientcert.pem

The Certificate Authority (CA) is implemented by the service mesh itself,
specifically by the service mesh control plane, and must be able to handle the
certificate management, the communication with the sidecars, the authentication
and authorization policies, and the TLS configuration.

Istio security
The architecture and features described so far are reflected into the majority of the
service meshes listed in this chapter, but Istio is likely the most mature and stable
among all. Istio has been built around the concepts described in the previous sections,
and in particular, it implements security around two distinct logical approaches:
control plane security and data plane security. Istio’s vision on control plane security
is focused on the following:

•	 A trusted Certificate Authority (CA) acting as Key Management System,
specifically for keys and certificates, also known as Citadel

•	 An authentication policy engine

•	 An authorization policy engine

Service Mesh Security 385

Data plane security in Istio is built around the following:

•	 Policy Enforcement Points (PEPs), to define the sidecar perimeter and
secure the communication

•	 Envoy extension for auditing and monitoring purposes

One of the fundamental concepts Istio relies on is the service identity to verify the
identity of the incoming request. In security, identity is a fundamental concept that,
in Istio, is the base model for a service-to-service communication to be executed. In
the client-server authentication model, Istio provides security on both sides: on the
client side, the identity of the server is verified against the secure naming information
system (the identity is encoded inside the certificate), while on the server side, the
server satisfies the “who can access what” logic by implementing authorization
policies to control the level of permissions. To pursue CA management tasks, three
elements need to be considered:

•	 The istiod service running within the control plane.

•	 The Certificate Authority (Citadel) system running inside the control plane.

•	 The Istio Agent running alongside the Envoy Proxy inside the data plane.

The provisioning flow of secure artifacts illustrated in Figure 12.9, Istio Certificate
Management, follows these high-level steps:

•	 The istiod service enables a gRPC service to process certificate signing
requests.

•	 The Istio Agent generates both the private key and the certificate signing
request, forwarding these to the istiod system via the gRPC protocol.

•	 The istiod system queries the CA to validate the certificate signing requests,
and upon successful validation, it creates the X.509 certificate.

•	 When the POD is created, the Envoy Proxy system queries the Istio Agent for
the certificate though the Secret Discovery Service (SDS).

•	 The Istio Agent provides the certificate retrieved from the istiod system to
the Envoy Proxy.

386 Security for Containers and Kubernetes

•	 The Istio Agent monitors the certificate validity and expiration to execute
certificate rotation when necessary.

Figure 12.9: Istio Certificate Management

Two authentication systems are provided by Istio, as per Table 12.7, Istio Authentication:

Type Description
Peer Service-to-service communication via mTLS with the benefits of strong inter-

clusters identity, secure network connection between microservices, and
Key Management System capability. The Peer authentication works in three
modes:

•	 mTLS is disabled; not recommended

•	 Permissive; both mTLS and unencrypted traffic will be allowed

•	 Strict; only mTLS is allowed
Request User authentication through JWT or any external authentication providers

that supports OpenID Connect; the required JWT parameters are the issuer,
the public JSON Web Key, and the location of the token.

Table 12.7: Istio Authentication

The peer authentication and the request authentication as components of the Istio
authentication architecture can control the authentication requirements through
authentication policies. The concept here is similar to what we discussed in Chapter 9,
Kubernetes Governance, with reference to systems like Open Policy Agent or Kyverno.
When a policy is updated, a new version of the policy is created, and it is enforced
into the cluster by the Policy Enforcement Point (PEP).

Service Mesh Security 387

The authorization mechanism acts at three layers of the Kubernetes cluster: the
service mesh architecture, the namespace layer and the POD layer. Authorization
policies allow a priority implementation using three selectors: custom, deny and
allow. The request will be allowed only if there is no custom action coded or if
it has not explicitly denied. The following code provides an authorization policy
example, allowing the staging namespace and the service account cluster.local/
ns/default/sa/idle to access http-ingress version v1 in my-namespace when the
JWT token is valid:

1. apiVersion: security.istio.io/v1

2. kind: AuthorizationPolicy

3. metadata:

4. name: http-ingress

5. namespace: my-namespace

6. spec:

7. selector:

8. matchLabels:

9. app: http-ingress

10. version: v1

11. action: ALLOW

12. rules:

13. - from:

14. - source:

15. principals: ["cluster.local/ns/default/sa/idle"]

16. - source:

17. namespaces: ["staging"]

18. to:

19. - operation:

20. methods: ["GET"]

21. when:

22. - key: request.auth.claims[iss]

23. values: ["https://accounts.google.com"]

388 Security for Containers and Kubernetes

The custom condition in the preceding code is implemented by the when parameter
at line 21. The key elements of a policy are three, as per Table 12.8, Authorization Policy
Elements:

Type Description
selector This is the target field of the policy.
action The request can be either allow or deny.
rules The action is triggered by the rule in consideration of the from, to and

when fields.
Table 12.8: Authorization Policy Elements

The recommended approach is to use mTLS in the Peer Authentication mode to
enhance the security posture of the service mesh. Istio offers a rich set of telemetry for
all the components of the service mesh, among which we can observe the following:

•	 Access logs

•	 Distributed traces

•	 Metrics

Access logs are generated to keep track of machine behavioral analytics, which
overlaps with the Envoy Proxy access log system. Distributed traces are extremely
beneficial in troubleshooting scenarios as they monitor individual requests flowing
though the service mesh, enabling a very detailed visualization of the information
related to the various hops. Metrics are provided at the control plane layer, the
service layer and the proxy layer. By default, those are exported to Prometheus and
can be easily visualized in Grafana.

Zero-Trust networking
The logic behind a zero-trust approach is that user access must always be verified,
resource access defined via policies, and devices never trusted, as per the National
Institute of Standard and Technology (NIST) SP 800-207 guidelines. Zero-trust
networking is the concept of zero-trust security applied to network communications.
A service mesh looks at the software development life cycle from the application
standpoint, it is a new network model designed to interconnect microservices. The
security features described in this chapter address many security aspects of the
Kubernetes attacks surface, as per Table 12.9, Service Mesh Attack Mitigation:

Service Mesh Security 389

Type Description
Impersonation A combination of mTLS, Secure Naming and Authentication

mechanism is difficult to break and also prevents spoofing.
Data Exfiltration Rate limiting puts control over network traffic.
Sniffing mTLS secures the communication in both directions.
Unauthorized access Service-to-service communication is secured via RBAC.

Table 12.9: Service Mesh Attack Mitigation

Unfortunately, there is always the possibility that infrastructures, platforms and
networks can be infiltrated by malicious code, exploited by bad actors or exposed
due to coding vulnerabilities or misconfigured systems. The Zero-trust networking
model uses the motto “never trust, always verify”; and it is exactly what the service
mesh is achieving, mainly with the Mutual TLS feature, but also with the enforcement
of network policies and the implementation of a Certificate Authority that governs
the certificate life cycle. With cloud technologies, the traditional network perimeter,
usually defined in the past by the extension of the on-premises network, has shifted
to a grey area. The introduction of complex environments like the Kubernetes
cluster and the containerized platforms has enhanced the difficulty to define the
exact boundaries of the network perimeter. Assuming that every single service,
POD or container is legitimately running on the cluster and can be trusted is a bad
assumption. In a microservices model, new services can spin up and start serving
other services, expanding the attack surface.

Identity validation and identity verification are not intended as standalone one-time
processes; in connection with Continuous Integration and Continuous Deployment
security best practices, they all are key elements of a Zero-trust security model applied
to Kubernetes. A new era has recently started with the rise of the cryptocurrency
market where attacker’s main objective is to steal compute power resources for the
purpose of illegal cryptocurrency mining, also known as cryptojacking. Attackers
are willing to cover their tracks and stay undetected for as long as possible to
consume compute resources to mine cryptocurrencies, in contrast to the much
famous ransomware, where the attacked system is encrypted until the ransom is
paid. That is exactly what happened to Tesla in late 2017, where some Kubernetes
clusters of the EV car-maker’s AWS infrastructure were running undetected mining
processes.

Conclusion
In this chapter, we discussed what a service mesh is, the deployment model is based
upon and its architecture. We also described the main concepts behind the container
network interface and its contribution to the security of the service mesh and, in

390 Security for Containers and Kubernetes

general, of the Kubernetes cluster. We then moved on to analyzing what Envoy
Proxy is, why it is a fundamental component of the service mesh model and how it
contributes to the security of the microservices model, with a particular introspective
on two of the Envoy Proxy features: the Secret Discovery Service and the Mutual
TLS mechanism.

Among all the service mesh available, we picked Istio, one of the most mature and
stable service meshes, and we looked at its peculiarity in consistently applying the
security requirements of the service mesh model and the most secure Envoy Proxy
capabilities defense and protection techniques. Lastly, we discussed the Zero-Trust
Networking model and why both the service mesh and the Istio system naturally
complement the security of the Kubernetes cluster in this philosophy.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Index 391

Index

A
Abstract Container Processes 54
Acceptable Risk Level 134
acceptable risk level concept 132
Access Vector Cache (AVC) 44
Active Directory (AD) 120
admission controller 247-251
After Build scan approach 134
alerts 189
Alpine 109
Alpine Linux 8
Amazon ECS Anomaly Detector 184
Amazon Elastic Container

Registry (AWS ECR) 117
Amazon Elastic Kubernetes

service 312-321
Amazon Web Services (AWS) 307
Anchore 114, 115, 161, 339
anomaly detection 182-187

Anomaly Detector API 183
Antivirus (AV) engines 11
Apache Mesos 20, 125
Apache web server httpd 41
AppArmor 45

applying 46-48
Application Container Security 139-150
Application Load Balancer (ALB) 316
Aqua Security Trivy 360
ARP Spoofing 372
ArtifactHUB 343
Artificial Intelligence (AI) 61
Artificial Intelligence Center

of Excellence (AICOE) 185
ASTO 152, 153
auditability 125
audit.log file 72
audit logs 72
auditors 264

392 Security for Containers and Kubernetes

AWS ECS (Elastic Container Service)
184

AWS Elastic Load Balancer 321
AWS EventBridge 184
AWS KMS 206
AWS Lambda 184
AWS Simple Storage Service (S3) 321
AWS SNS 184
Azure CNI 371
Azure Cognitive Service 183
Azure Container Service (ACS) 322
Azure Key Vault 206
Azure Kubernetes Service

(AKS) 183, 322-327
Azure Security Benchmark (ASB) 322

B
base image layer 7
Baseline Policy 219
Baseline Scan 146
bastion host access mechanism 331
BIOS 28
BIOS DoS vulnerability DSA-2021-103

reference link 27
Bitdefender 180
bitlocker-spi-toolkit 32
Black Hat 31
Blue Team 158
BootHole 30
Border Gateway Protocol (BGP) 370
Buildkit 102, 103

C
Canonical Kubernetes 197
capabilities

applying 42
CasC 86
Center for Internet Security (CIS) 36, 111

Center for Internet Security (CIS)
Kubernetes Benchmark 197, 228

Central Processing Unit CPU 62
Certificate Authority (CA) 384
Certificate Signing Request (CSR) 77
CFS parameters 62, 63
Chain of Trust 29
change root 5
Checkov 228
CheckOV

URL 22
chroot 5, 37
CI/CD Security integration 152
CIS Benchmarks Docker 111
CIS Benchmarks Hardened Images 111
CIS Docker Benchmark 59, 140
CIS Kubernetes Benchmark 112, 203
Citadel 384
Clair 114
Clear Linux 4, 94
client-cert.pem certificate 80
client libraries 173
client-server model 72
Cloud Controller Manager 310
Cloud Integrated Advanced Orchestra-

tor (CIAO) 94
Cloud Native Compute Foundation

(CNCF) 339
Cloud Native Computing Foundation

(CNCF) 57, 115, 119, 186
Cloud Native Security model 308-312
cloud providers 12
CloudScanner 190
Cloud Security Posture Management

(CSPM) 154
CloudSploit 155
Cloud Workload Protection Platform

(CWPP) 181

Index 393

CodeZero 197
coexisting tenancy model 253
Common Vulnerabilities and Exposure

(CVEs) 94, 130
Common Vulnerability Scoring System

(CVSS) 132
Comparing Container Runtimes 55
Completely Fair Scheduler (CFS) 62
Constraint Framework 337
container activity 165
Container Advisor (cAdvisor) 168
containerd 55, 57
Container Engines 54
container image 7, 97, 98

auditability 125, 126
control 127-130
vulnerability management 130-136

container image hardening 98, 99
container images

evolution 107
minimal and distroless images 106-112
scanning 112-117
verifying 112-117

container image security 97
container layer 7
Container Managers 55
Container Network Interface (CNI) 365,

369
models 370
providers 371

container registry 12
authentication 120-124
private registry 12
public registry 12

container risks 15
application layer 17, 18
container runtime 15, 16

network traffic 16, 17
Rogue containers 18

Container Runtime Interface (CRI) 51
architecture 216
list 72
securing 215-219

Container Scope 294
container security 53-57

containerd 57
CRI-O 57-59
Docker 59

Container Security Verification
Standard (CSVS) 15

container-specific OSes 4
container stack monitoring 165

application monitoring 173-178
containers monitoring 168-171
Docker engine monitoring 166-168
host monitoring 171-173

Continuous Integration (CI) pipeline
112

Continuous Integration Continuous
Deployment (CI / CD) pipeline
116

control groups 39-41
features 40

control plane 196
hardening 197-212

Control Plane Isolation 253
copy and remove approach 100
Copy-On-Write (COW) 106, 224
CoreDNS system 372
CoreOS rkt 56
Cosign 339
CRI-O 57-59
Cross Site Request Forgery (CSRF)

protection 86
Cross Site Scripting (XSS) 147

394 Security for Containers and Kubernetes

cryptojacking 389
curl command 85
Customer Resource Definition (CRD)

282
CVE-2020-10713 30
CVE-2022-0492 41
CVE-2022-0811 218
CVE-2022-23648 218
CVE framework 132
Cybersecurity and Infrastructure Securi-

ty Agency (CISA) 193
CycloneDX 360
CycloneDX-gomod 360

D
database container 68
Datadog 148
Data Encryption Key (DEK) system 206
Data Execution Prevention 109
Data Plane 196
Data Plane Isolation 254
Debian Linux distro 111
default service account 316
dependency confusion 160
Dependency-Track 361
deployment script 105
Detectify Deep Scan 146
Device Identifier Composition

Engine (DICE) 34, 35
DevSec Hardening Framework 36
DevSecOps 36
Dirty Pipe 225
Discovery Service 378
Discretionary Access Control (DAC) 44
distroless project 107
DNS Spoofing 372
Docker 51, 59

AppArmor 66, 67

container isolation 64
least privilege 59-61
namespaces 65, 66
resource limitation 61-64
SECCOMP 67, 68

Docker Bench for Security 59
docker-ce-rootless-extras package 60
docker-cli 73
Docker Container Processes 53
dockerd 73
docker-default 66
Docker Engine API 73
Docker engine monitoring 166-168
DockerHub 117
docker info command 61
docker inspect 11
dockermap 65
docker run command 61
docker sbom command 161
docker sbom directive 160
Dockershim 193
Docker Swarm 19, 157
Domain Name System (DNS) 372
Dynamic Application Security Testing

(DAST) 113, 135, 145, 146

E
East-West traffic 163
ECC P256 31
echo command 40
Elastic Kubernetes Service

(EKS) 312, 354
Elasticsearch Logstash and Kibana

(ELK) 165
Endpoint Detection and Response

(EDR) 152
Envoy proxy 372-378
Envoy TLS feature 374

Index 395

Evil-Maid attack 32
ExecStart 76
exposition format 174
eXtended Detection and Response

(XDR) 180
Extensible Markup Language

(XML) 151
external method 141
extfile-client.cnf 80

F
Falco 114, 115, 229
FallOfSudo 42
Federal Information Processing Stan-

dard (FIPS) 140-2 71
Fedora CoreOS project 56
file configuration

building 100-104
multi-stage builds 104-106

FIPS encryption standard mechanism
71

fork/exec model 72
Fourier 186
FROM directive 99
FwHunt application 28

G
gadgets 109
Gatekeeper 269
general-purpose OSes 4
GitHub 113
GitHub Security 113
GitLab 113
GitLab Application Security 113
GitLab Container Registry 119
GitLab Runner agent 114
GKE Autopilot 334
GKE CNI 371
GKE Private Cluster 331

GnuPG 349
GNU Privacy Guard (GNU-PG) 349
Google Cloud Operations Suite 328
Google Cloud Platform (GCP) 328
Google Container Registry 117
Google Distroless 108
Google Kubernetes Engine

(GKE) 57, 327-334
GravityZone EDR 180
GravityZone Security for Containers

180
GRUB2 30
Grype 115, 339
gVisor 333

H
Harbor 125
hardening tools 226-229
hard limit 62
hardware security 27-29

DICE 34, 35
Security Boot 29, 30
Trusted Execution Environment

(TEE) 33, 34
Trusted Platform Module

(TPM) 31-33
virtualization-based security 30, 31

Hashicorp Nomad 125
HashiCorp Nomad 20
HashiCorp Vault 157
Helm 343, 344

architecture 344-346
chart scanner 356-358
dependencies 358-361
IaC trust 351-355
integrity 349-351
Tiller 346-348

396 Security for Containers and Kubernetes

Host OSes
container-specific OSes 4
general-purpose OSes 4

host OS hardening 35, 36
AppArmor 45-48
capabilities 41-43
control groups 39, 40
Linux namespaces 37-39
SECCOMP 48-50
SELinux 43-45

Host OS risks 3
attack surface 4, 5
authentication 6
component vulnerabilities 6
file system integrity 7
system-level virtualization 5

httpd daemon 72
Hvid Security 148
Hyper Text Markup Language

(HTML) 151

I
Identity Aware Proxy (IAP) 331
Identity Provider (IDP) 316
image layer 7
image risks 7

embedded malware 10, 11
embedded secrets 9, 10
image misconfiguration 8, 9
image vulnerabilities 8
untrusted images 11, 12

Information Technology (IT) 111, 163
Infrastructure as Code (IaC) 22, 228

scanning 113
InsydeH2O UEFI system 28
Interactive Application Security Testing

(IAST) 145, 147
types 148

internal method 141
Internet Control Message Protocol

(ICMP) 372
Internet Engineer Task Force

(IETF) 349
Intrusion Protection System (IPS) 150
iptables 214
iptables mode 367
IPVS 214
istio security 384

J
Java Server Pages (JSP) 151
JFrog Container Registry 119
JSON WEB KEY 145
JSON WEB Key file 144

K
Keybase.io 351
Key Encryption Key (KEK) 206
KMS 206
Kondukto.io 153
Konnectivity Agent 215
Konnectivity Server 215
kops 197
Kubeadm 197, 230
kube-apiserver 73, 201
Kubeaudit 264
Kube-bench 228
kubebuilder 269
KubeClarity 360
kube-hunter 229
Kubernetes 19, 125, 193

architecture 195, 196
client-server architecture 195
control plane components 196
life cycle, updating 230
namespaces 39

Index 397

Kubernetes Cloud Security
Amazon Elastic Kubernetes

service 312-321
Azure Kubernetes Service 322-327
cloud native security model 308-312
Google Kubernetes Engine

(GKE) 327-334
Rancher 337, 338
Red Hat OpenShift 334-337
Tanzu 339-341

Kubernetes Features Gates 212
Kubernetes governance 267

admission controller threat
model 282-286

limits and limitations 302-304
network policies 286-290
policy engines 268-282
resources management 290-295
security policies 295-302

Kubernetes Network Policies 286
Kubernetes network proxy 213
Kubernetes Orchestration Security

access and verify 261-265
admission controller 247-251
API bypass risks 241-244
audit logging 255-259
authentication 235-241
authorization 235-241
cluster isolation 253-255
POD escaping privilege

escalation 260, 261
RBAC, versus ABAC 245-247
secrets, securing 251, 252

Kubernetes Special Interest Group
(SIG) 282

Kubernetes STIG Viewer 203
Kubernetes Threats Reference Matrix

194

Kube-Scan 22
Kubespray 197
KVM hypervisor system 57
Kyverno 276, 277

L
LAMP 138
lazy load 144
Let us Encrypt 143, 144
Level 1 Basic Security 140
Level 2 Advanced Security 140
Level 3 High Security 140
Lightweight Directory Access

Protocol (LDAP) 120
Linux namespaces 37-39
Local Area Network (LAN) traffic 381
Log4j 160
logs

externalising 187-189
LTS (Long Term Support) 108
LUKS 33
Lynis 36, 37

M
Mandatory Access Control (MAC) 44
Massachusetts Institute of Technology

(MIT) License 22
MCSB AWS guidance 323
microservices architecture 138
Microsoft Azure Container

Registry 117
Microsoft Cloud Security

Benchmark (MCSB) 322
Microsoft Defender system 327
minikube 197, 198
minimal 107
Minimal Ubuntu 108
Mirantis Container Runtime 71
Mitre ATT&CK Container Matrix 158

398 Security for Containers and Kubernetes

Mitre ATT&CK Kubernetes Matrix 229,
261

Mkit 23
URL 23

Multi Factor Authentication. (MFA) 119
multi-stage builds 104-106
mutating admission 271
myremapuser 65, 66
my-ubuntu container 40

N
namespace per tenant approach 255
National Institute of Standard and

Technology (NIST) 25
National Security Agency (NSA) 43
National Vulnerability Database

(NVD) 132
Netfilter 367
network communication

securing 213-215
network security 68-71

Mirantis Container Runtime 71
NeuVector 338
Nginx Reverse Proxy 142
NIST Application Container Security

Guide 140
node 293
Node Exporter 171
Node-pressure Eviction 303
non-root user 42
northbound traffic 164
North-South traffic 163
Notary 114

features 117
NSA CISA 228

O
OPA Constraint Framework 269
Open Container Initiative

(OCI) 57, 115 161
Open ID Connect (OIDC) 316
Open Policy Agent (OPA) 268
OpenRASP 151
openSUSE MicroOS 4
Open System Interconnection

(OSI) model 286
Open Web Application Security

Project (OWASP) 15, 360
orchestration 18, 233
orchestrator risks 18-20

admin access 20
network segregation 21, 22
unauthorized access 20
worker node trust 23
workload levels 22

Original Device Manufacturers
(ODM) 28

Original Equipment Manufacturers
(OEM) 28

Out Of Memory Exception
(OOME) 62

OverlayFS mechanism 102
overlay network 372
OWASP Container Security

Verification Standard 140
OWASP CSVS 139
OWASP Threat Dragon 158
OWASP ZAP (Zed Attack Proxy) 159

P
Palo Alto Networks solution 247
Palo Alto Networks Unit 42 10

Index 399

parallel authorizers method 247
peer authentication 386
penetration testing 157, 158
Personal Health Information (PHI) 140
PID 37
PID1 37
pip (Python Packaging) package 174
Platform9 197
POD 219

escaping 224, 225
security 219-223

POD Eviction 303
POD Governance 273
POD level 298
Podman system 72
POD Scope 294
POD Security Admission Controller 295
Pod Security Standards 250
POD Security Standards 295
policy library 271
Portainer.io 125
Position Independent Executables (PIE)

109
Power On phase 28
Pretty Good Privacy (PGP) 349
private registry 117-120
Privileged Policy 219
privileges

managing 155-157
Proactive Data Loss Prevention (DLP)

11
production database container 68
production registry 135
Prometheus 165
Prophet 186
public registry 117-120

Q
Quality of Service (QoS) 290

R
RAM parameters 62
Rancher 20, 125, 337, 338
RancherOS 4
Rancher Prime 337
Rapid7 InsightAppSec 146
RASP 149, 150
RBAC API system 245
RBAC Police 247
Realtime Scheduler 63

parameters 63, 64
Red Hat OpenShift 20, 125, 334-337
Red Hat OpenShift Container Platform

334
Red Hat OpenShift Kubernetes Engine

334
RedHat Quay.io 119
Red Team 157
registry 12
Registry Access Management (RAM)

125
registry risks

authentication and authorization 15
non-secure connections 13, 14
stale images 14

Registry Scan approach 134
Rego 269
remediation 154, 155
request authentication 386
Restricted Policy 220
Return Oriented Programming

(ROP) 109, 110
Reverse Proxy

features 141

400 Security for Containers and Kubernetes

Rogue containers 18
Role-Based Access Control

(RBAC) 18, 124, 125
RSA private key 32
Runtime Application Self-Protection

(RASP) 145
Runtime Scan strategy 135

S
scaling 233
Scope 191

characteristics 191
Scope Traffic Control 191
Scope Volume Count 191
SECCOMP 48-50
Secret Discovery Service 379
Secure and Validated Containers 71
secure connection 73-76

CI/CD, securing 86-94
client certificate 79-81
dockerd TLS, enabling 81-85
server certificate 77-79

Secure Connection 117
Secure File Transfer Protocol (SFTP) 44
Secure Software Development Life Cy-

cle (SSDLC) 10, 152
Secure Validated Encryption 71
Security Contexts 220
Security Event Management (SEM) 187
Security Group (SG) service 354
Security Information and Event

Management (SIEM) 181
Security Information Management

(SIM) tool 178
security information monitoring 163
security-opt parameter 66
Security Orchestration Automation

Response (SOAR) 189

Security Posture Dashboard 328, 334
security profiles 220
Security Technical Implementation

Guide (STIG) 36, 71
SELinux (Security Enhanced Linux)

43-45
Sensor Agents 190
service discovery 367
Service Mesh Control Plane 365
Service Mesh Data Plane, 366
Service Mesh Security

architecture 367-369
Container Network Interface

(CNI) 369-372
Envoy security 372-378
istio security 384-388
mutual TLS 381-384
overview 365-367
secret discovery service 378-381
Zero-Trust networking 388, 389

service-oriented architecture (SOA) 138
SHA-256 31
Shielded GKE Nodes 332
Shielded VM (Virtual Machine) 332
shift left methodology 153, 154
Shift Right methodology 154
shift-to-the-left approach 112
sidecars 366, 368
SIEM tool 188

capabilities 188
Single Sign On (SSO) 120
Social Security Numbers (SSNs) 154
soft limit 62
Software Bill of Materials (SBOM) 360
Software Composition Analysis

(SCA) 10, 356, 360
Software Development Life Cycle

(SDLC) 10, 22, 139

Index 401

SolarWinds 115
SonarQube 113
Sonatype Nexus Repository 119
southbound traffic 164
Sparrow 115
SSH tunnelling mechanism 214
stack buffer overflow 109
stack smashing attack 109
Staging Registry strategy 135
staging web container 68
Static Application Security Testing

(SAST) 10, 113, 356, 360
Static PODs 243
sudoers 42
Super User DO (sudo) command 42
Syft 115, 161
Sysdig 115
systemd-nspawn container runtime

feature 56

T
T2 Chip 32
Tallow 94
Tanzu 339-341
Tanzu Application Platform 339
Tanzu Mission Control 339
tcp socket 73
Terraform 228
Terraform helm chart 354
Tesla 389
Test Docker Pipeline job 93
Text-based format 174
Thanos 186
The Container Technology Stack 25
The Update Framework (TUF) concept

117
third-party components 160
threat intelligence 150-152

ThreatMapper 190
Tiller 345, 346
Tinyproxy service 331
Titan 328
Topology Manager 294
topology visualization 190, 191
Transport Layer Security (TLS) 197, 374

connection 117
TrendMicro 118
Trivy 116, 345
Trusted Execution Environment

(TEE) 33
requirements 33

Trusted Platform Module
(TPM) 28-33

U
UDICA 45
UEFI solution 28
uidmap package 59
UNC2452 115
Unified Extensible Firmware

Interface Secure Boot 30
UnionFS 7
Unit 42 researcher 41
Universal Base Image 107
unix socket 73
untrusted hypervisors 32

V
v1alpha2 51
validating admission 271
Vault 157
Vega 148
Veracode Dynamic Analysis 146
virtual control plane per tenant

approach 255
virtualenv 5
Virtual eXtensible LAN (VxLAN) 370

402 Security for Containers and Kubernetes

virtualization-based security (VBS) 28,
30

Virtual Local Area Network (VLAN) 68
Virtual Private Cloud (VPC) 354
VMWare Tanzu Build Service 339
VMWare vSphere implementation 337
vTPM (virtual TPM) 32
vulnerability management 130-136

W
W3AF 148
Watchtower 129
web container 68
Windows Nano Server 8
worker node 196, 197

monitoring 212, 213
workload density 179
workload observability 178-182
workloads 195
writable layer 99

X
xDS 378
XMRig 10
XRAY 114

Y
Yet Another Markup Language

(YAML) 345

Z
ZAP 159
ZAP (Zed Attack Proxy) 146
zero-day attacks 45
zero-trust networking 388, 389

	1
	2

