
Shipping Reliable Containers in Production

DockerDocker
 Up & Running Up & Running

Sean P. Kane
 with Karl Matthias

Third
EditionTHIRD

EDITION

DOCKER CONTAINER S

“Docker: Up & Running
moves past the
Docker honeymoon
and prepares you
for the realities of
running containers
in production.”

—Kelsey Hightower
Principal Developer Advocate,

Google Cloud Platform

“Docker: Up & Running
takes you from the basic
underlying concepts
to invaluable practical
lessons learned from
running Docker at scale.”

—Liz Rice
Chief Open Source Officer with

eBPF specialists at Isovalent

“Docker: Up & Running
will steer you toward
building modern, reliable
and highly available
distributed systems.”

—Mihai Todor
Senior Principal Engineer, TLCP

Docker: Up & Running

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Docker and Linux containers have fundamentally changed
the way that organizations develop, deliver, and run software
at scale. But understanding why these tools are important
and how they can be successfully integrated into your
organization’s ecosystem can be challenging. This fully
updated guide provides developers, operators, architects,
and technical managers with a thorough understanding of
the Docker tool set and how containers can improve almost
every aspect of modern software delivery and management.

This edition includes updates that reflect the substantial changes
to Docker since it was first released nearly a decade ago. Sean
Kane and Karl Matthias have revised the text to reflect best
practices and provide additional coverage of BuildKit, multi-
architecture image support, rootless containers, and much more.

•	 Learn how Docker and Linux containers integrate
with cloud services and Kubernetes

•	 Build Open Container Initiative (OCI) images and deploy and
manage Linux containers with powerful command-line tools

•	 Understand how OCI images simplify dependency
management and deployment workflow for your applications

•	 Learn practical techniques for deploying and
testing Linux containers in production

•	 Deploy production containers at scale wherever you
need them

•	 Explore advanced Docker topics, including deployment
tools, networking, orchestration, security, and configuration

Sean Kane is the founder of techlabs.sh and a principal production
operations engineer at SuperOrbital.

Karl Matthias is VP of architecture at Community.com.

US $65.99	 CAN $82.99
ISBN: 978-1-098-13182-1

THIRD
EDITION

Praise for Docker: Up & Running

Docker: Up & Running moves past the Docker honeymoon and prepares you
for the realities of running containers in production.

—Kelsey Hightower, Principal Developer Advocate,
Google Cloud Platform

Docker: Up & Running takes you from the basics underlying concepts
to invaluable practical lessons learned from running Docker at scale.

—Liz Rice, Chief Open Source Officer
with eBPF specialists, Isovalent

Docker: Up & Running will steer you toward building modern,
reliable, and highly available distributed systems.

—Mihai Todor, Senior Principal Engineer, TLCP

A few years ago, I had to switch my workflow away from virtual machines
and start focusing on containers. For me, the best way to understand how something

works is by getting hands-on experience as a user, and only then diving into the
technology. Docker: Up & Running made the process of getting hands-on with Docker

and containers a smooth process, allowing me to easily get up to speed with containers.
—Fabiano Fidêncio, Cloud Orchestration

Software Engineer, Intel Corporation

Sean P. Kane
with Karl Matthias

Docker: Up & Running
Shipping Reliable Containers in Production

THIRD EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-13182-1

[LSI]

Docker: Up & Running
by Sean P. Kane with Karl Matthias

Copyright © 2023 Sean P. Kane and Karl Matthias. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (https://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Michele Cronin
Production Editor: Elizabeth Faerm
Copyeditor: Sonia Saruba
Proofreader: Piper Editorial Consulting, LLC

Indexer: Sue Klefstad
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Kate Dullea

April 2023: Third Edition

Revision History for the Third Edition
2023-04-13: First Release
2024-01-12: Second Release

See https://oreilly.com/catalog/errata.csp?isbn=9781098131821 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Docker: Up & Running, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

https://oreilly.com
https://oreilly.com/catalog/errata.csp?isbn=9781098131821

For my wife and children, who make everything worth it.

For my parents, who pointed me toward the beautiful intersection
between logic and passion.

And for my sister, who challenges me to explore the world
through the perception of others.

—Sean P. Kane

For my mom, who got me to read, and my dad, who read to me.

And for my wife and daughters, who are my bedrock.

—Karl Matthias

Table of Contents

Foreword. xiii

Preface. xvii

1. Introduction. 1
The Promise of Docker 1

Benefits of the Docker Workflow 3
What Docker Isn’t 5
Important Terminology 7
Wrap-Up 8

2. The Docker Landscape. 9
Process Simplification 9
Broad Support and Adoption 12
Architecture 14

Client/Server Model 14
Network Ports and Unix Sockets 15
Robust Tooling 16
Docker Command-Line Tool 17
Docker Engine API 17
Container Networking 18

Getting the Most from Docker 19
Containers Are Not Virtual Machines 20
Limited Isolation 21
Containers Are Lightweight 22
Toward an Immutable Infrastructure 22
Stateless Applications 23
Externalizing State 24

vii

The Docker Workflow 25
Revision Control 25
Building 27
Testing 27
Packaging 28
Deploying 29
The Docker Ecosystem 29

Wrap-Up 31

3. Installing Docker. 33
Docker Client 34

Linux 34
macOS, Mac OS X 37
Microsoft Windows 11 37

Docker Server 39
systemd-Based Linux 40
Non-Linux VM-Based Server 40

Testing the Setup 45
Ubuntu 46
Fedora 46
Alpine Linux 46

Exploring the Docker Server 46
Wrap-Up 49

4. Working with Docker Images. 51
Anatomy of a Dockerfile 52
Building an Image 55
Running Your Image 58

Build Arguments 59
Environment Variables as Configuration 59

Custom Base Images 61
Storing Images 62

Public Registries 62
Private Registries 63
Authenticating to a Registry 63
Running a Private Registry 68

Optimizing Images 72
Keeping Images Small 73
Layers Are Additive 80
Utilizing the Layer Cache 83
Directory Caching 87

Troubleshooting Broken Builds 92

viii | Table of Contents

Debugging Pre-BuildKit Images 92
Debugging BuildKit Images 94

Multiarchitecture Builds 97
Wrap-Up 102

5. Working with Containers. 103
What Are Containers? 103

History of Containers 104
Creating a Container 106

Basic Configuration 106
Storage Volumes 111
Resource Quotas 114

Starting a Container 124
Auto-Restarting a Container 125
Stopping a Container 126
Killing a Container 127
Pausing and Unpausing a Container 128
Cleaning Up Containers and Images 129
Windows Containers 131
Wrap-Up 135

6. Exploring Docker. 137
Printing the Docker Version 138
Server Information 139
Downloading Image Updates 141
Inspecting a Container 142
Exploring the Shell 144
Returning a Result 145
Getting Inside a Running Container 146

docker container exec 147
docker volume 148

Logging 150
docker container logs 150
More Advanced Logging 152

Monitoring Docker 155
Container Statistics 155
Container Health Checks 159
docker system events 163
cAdvisor 164

Prometheus Monitoring 167
Exploration 170
Wrap-Up 170

Table of Contents | ix

7. Debugging Containers. 171
Process Output 172
Process Inspection 177
Controlling Processes 179
Network Inspection 182
Image History 185
Inspecting a Container 186
Filesystem Inspection 187
Wrap-Up 188

8. Exploring Docker Compose. 189
Configuring Docker Compose 190
Launching Services 199
Exploring Rocket.Chat 201
Exercising Docker Compose 211
Managing Configuration 213

Default Values 213
Mandatory Values 215
The dotenv File 216

Wrap-Up 218

9. The Path to Production Containers. 219
Getting to Production 219
Docker’s Role in Production Environments 221

Job Control 222
Resource Limits 223
Networking 223
Configuration 224
Packaging and Delivery 225
Logging 225
Monitoring 225
Scheduling 226
Service Discovery 228
Production Wrap-Up 230

Docker and the DevOps Pipeline 231
Quick Overview 231
Outside Dependencies 234

Wrap-Up 235

10. Containers at Scale. 237
Docker Swarm Mode 238
Kubernetes 251

x | Table of Contents

Minikube 251
Docker Desktop-Integrated Kubernetes 273
Kind 274

Amazon ECS and Fargate 276
Core AWS Setup 277
IAM Role Setup 277
AWS CLI Setup 278
Container Instances 280
Tasks 280
Testing the Task 289
Stopping the Task 289

Wrap-Up 291

11. Advanced Topics. 293
Containers in Detail 293

cgroups 294
Namespaces 299

Security 303
UID 0 304
Rootless Mode 308
Privileged Containers 311
Secure Computing Mode 315
SELinux and AppArmor 320
The Docker Daemon 321

Advanced Configuration 323
Networking 323

Storage 330
nsenter 334

Debugging Shell-less Containers 336
The Structure of Docker 339
Swapping Runtimes 343

gVisor 344
Wrap-Up 346

12. The Expanding Landscape. 347
Client Tools 347

nerdctl 347
podman and buildah 349

All-in-One Developer Tools 351
Rancher Desktop 351
Podman Desktop 352

Wrap-Up 353

Table of Contents | xi

13. Container Platform Design. 355
The Twelve-Factor App 356

Codebase 357
Dependencies 357
Config 358
Backing Services 360
Build, Release, Run 361
Processes 361
Port Binding 362
Concurrency 362
Disposability 363
Development/Production Parity 363
Logs 364
Admin Processes 364
Twelve-Factor Wrap-Up 365

The Reactive Manifesto 365
Responsive 365
Resilient 365
Elastic 366
Message Driven 366

Wrap-Up 366

14. Conclusion. 367
The Road Ahead 367
The Challenges Docker Addresses 369
The Docker Workflow 370
Minimizing Deployment Artifacts 370
Optimizing Storage and Retrieval 371
The Payoff 371
The Final Word 372

Index. 373

xii | Table of Contents

Foreword

Containers are ubiquitous. From local development, to continuous integration, to
managing large-scale production workloads, containers are everywhere. Why did this
come about, where is it going, and what do you, the reader, need to know about this
revolution that has taken over our industry?

Many older technologies offer the promise of “write once, run anywhere.” However,
not all runtimes offered this facility, and even those that did still required the runtime
(and any additional dependencies) to be available in order for an application to
run. Containers offer the promise of “build once, run anywhere.” They allow you to
package your applications, the runtime required to run it, configuration files, and any
and all file dependencies it needs into one artifact. As long as you have a container
runtime on the target machine, your application just works. This allows your infra‐
structure to be truly application agnostic. “It works on my machine,” begone!

Containers offer a standard application programming interface (API) to manage the
lifecycle of a container and the applications packaged within the container. This API
provides a homogenous interface to an otherwise heterogeneous deployment land‐
scape, relieving operations teams from having to know the nitty-gritty of deploying
and running applications and, consequently, being able to focus on the what they do
best—managing infrastructure, enforcing security and compliance, and keeping the
lights on.

This interface also forms the basis for a ton of innovation. Container orchestrators
like Kubernetes and Nomad leverage this control plane to raise the level of abstrac‐
tion, making it easier to manage containerized workflows at scale. Service mesh tech‐
nologies, like Istio, work hand in glove with orchestrators, decoupling cross-cutting
concerns like service discovery and security from the application stack.

xiii

All the benefits of a standard interface also flow upstream, making the daily lives
of developers easier. A single command can produce an entire development environ‐
ment. Within continuous integration (CI), containers can be easily spun up to house
databases, queues, or whatever dependencies your application needs to allow for
integration, smoke, and end-to-end tests to check and verify your work. And finally,
the portability of containers allows development teams to take ownership of their
work in production, making many facets of DevOps a reality.

In a world where runtimes upgrade major versions regularly, teams and organizations
are polyglot, DevOps practices like blue-green and canary releases are the norm, and
scale is unprecedented, the technology that teams throughout the world are using
to build and deploy their applications is containers. Containers are no longer new
or novel—rather, they represent the rule of how organizations are packaging and
deploying applications.

However, working with containers isn’t easy. Having used containers for almost a
decade, and having spent time teaching it to audiences around the world, I can attest
to how nuanced this subject is.

Sean and Karl have distilled years of experience into a highly readable, yet compre‐
hensive guide to using containers with Docker. Everything you need to get started
and be productive with Docker can be found within the pages of this book—from
installation, to understanding how to use and build images, to working with contain‐
ers, introspecting builds and the runtime, as well as productionizing containers, can
be all found here.

And that’s not all—Sean and Karl aren’t afraid to dive into microscopic details—
elaborating on how simple Linux primitives like cgroups and namespaces make
this magical thing called containers a reality. Finally, the Docker ecosystem is ever
growing and expanding—and you’ll find coverage on that landscape as well.

In the foreword of Docker: Up & Running, second edition, Laura Tacho made
an astute observation—cloud native technologies like VMs and containers are not
exclusive. Rather, they are additive. This statement couldn’t be truer today—the rise
of technologies like Kata Containers that combine the use of lightweight virtual
machines to run containers, thus allowing us to have the best of both worlds (the
isolation of VMs with the portability of containers), are an attestation to Laura’s
commentary.

xiv | Foreword

https://katacontainers.io

Containers are ubiquitous. A journey of a thousand miles begins with a single step—
and indeed, the journey to truly grokking containers is a long one. If this book is
your first step, you’ve made the right choice. You have two very experienced guides
showing you the way, and while I realize you don’t need it, I still wish you the very
best of luck.

Happy containerizing.

— Raju Gandhi
Founder, DefMacro Software, LLC,

and author of Head First Software Architecture,
Head First Git, and JavaScript Next

@looselytyped
Columbus, Ohio

April 2023

Foreword | xv

https://twitter.com/looselytyped

Preface

This book is designed for anyone who needs a practical understanding of Linux
containers and how they can be used to improve development and production practi‐
ces. Most modern integration workflows and production systems require developers
and operations engineers to have a firm understanding of Linux containers and
how they can be leveraged to significantly improve repeatability and predictability
across the system. Along the way we’ll explore how to build, test, deploy, and debug
Linux containers within the Docker ecosystem. We’ll also cover a few of the signifi‐
cant orchestration tools that leverage Linux containers. And finally, we’ll round all
of that out with some guidance on security and best practices for your container
environment.

Who Should Read This Book
This book is intended for anyone who is looking to solve the complex workflow
problems involved in developing and deploying software to production at scale.
If you’re interested in Linux containers, Docker, Kubernetes, DevOps, and large,
scalable, software infrastructures, then this book is for you.

Why Read This Book?
Today there are many conversations, projects, and articles on the internet about
Docker, and some of them have even started predicting the demise of Docker.

So why should you devote precious hours to reading this book?

Although there are other alternatives today, Docker single-handedly made Linux
containers accessible to all engineers. Before Docker created the container image
format and helped build many of the core libraries used in containerization systems
today, Linux containers were very difficult to use and primarily remained the tools
of very large cloud-hosting companies that needed to provide scalability while also
protecting their systems from untrusted user code.

xvii

Docker changed all of that.

Even though there is a lot of information about Docker and Linux containers out
there, the landscape is still actively evolving, and best practices are shifting. Imagine
that you just read a blog post, published four years ago, about Docker. It might still
work, but it might not be the best approach anymore. During the time it took us to
write the first edition of this book, Docker, Inc., released four versions of Docker plus
a few major tools into their ecosystem. In the seven years between the first and third
editions of this book, the landscape has changed significantly. Docker has stabilized,
and there are now many additional tools that fill similar roles. Instead of suffering
from a complete lack of tools, there are now many robust choices for almost every
aspect of the DevOps workflow. Wrapping your arms around the scope of what Linux
containers and Docker provide, understanding how they fit into your workflow, and
getting all the various integrations right are not trivial tasks.

We have worked with multiple companies for over nine years building and operat‐
ing a mix of production Linux container platforms, including Docker, Mesos, and
Kubernetes. We originally implemented Docker in production only months after its
release and can share with you some of the experience we gained from evolving our
production platforms since then. Our goal with this book is for you to benefit from
this experience by avoiding many of the bumps in the road that we suffered through.
Even though the online documentation for the Docker project is very useful, we
will attempt to give you a much bigger picture and expose you to many of the best
practices that we have learned along the way.

When you finish this book, you should have enough information to understand
what Linux containers are, what Docker provides, why they are important, and how
you can leverage them to streamline everything from local development through
production. It should be a fascinating trip through a few interesting technologies that
have some very practical applications.

Navigating This Book
This book is organized as follows:

• Chapters 1 and 2 provide an introduction to Docker and explain what it is and•
how you can use it.

• Chapter 3 takes you through the steps required to install Docker.•
• Chapters 4 through 6 dive into the Docker client, images, and containers, explor‐•

ing what they are and how you can work with them.
• Chapter 7 discusses how to debug your images and containers.•
• Chapter 8 introduces Docker Compose and how it can be used to significantly•

simplify the process of developing complex container-based services.

xviii | Preface

https://docs.docker.com

• Chapter 9 explores the considerations that are important to ensure a smooth•
transition into production.

• Chapter 10 delves into deploying containers at scale in public and private clouds.•
• Chapter 11 dives into advanced topics that require some familiarity with•

Docker and can be important as you start to use Docker in your production
environment.

• Chapter 12 explores a few alternative tools that can be useful in containerized•
Linux environments.

• Chapter 13 explores some of the core concepts that have solidified in the industry•
about how to design the next generation of internet-scale production software.

• Chapter 14 wraps everything up and ties it with a bow. It includes a summary of•
what has been covered and how it should help you improve the way you deliver
and scale software services.

We realize that many people don’t read technical books front to back and that
something like the preface is incredibly easy to skip, but if you’re still with us, here is
a quick guide to some different approaches to reading this book:

• If you are new to Linux containers, start at the beginning. The first two chapters•
are intended to help you get your head around the basics of Docker and Linux
containers, including what they are, how they work, and why you should care.

• If you want to jump right in and install and run Docker on your workstation,•
then skip to Chapters 3 and 4, which show you how to install Docker, create and
download images, run containers, and much more.

• If you are familiar with the Docker basics but would like to learn more about•
how to utilize it for development, take a look at Chapters 5 through 8, which go
over a lot of the skills that will make working with Docker on a day-to-day basis
easy, and conclude with a thorough exploration of Docker Compose.

• If you are already using Docker for development but need some help getting it•
into production, consider starting with Chapter 9 and continuing on through
Chapter 12. These sections delve into deploying containers, leveraging advanced
container platforms, and many other advanced topics.

• If you are a software or platform architect, you might find Chapter 13 an interest‐•
ing place to investigate, as we dive into some of the current thinking regarding
containerized applications and horizontally scalable service design.

Preface | xix

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

<Constant width in angle brackets>

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/bluewhalebook/docker-up-and-running-3rd-edition.

This book is here to help you get your job done. In general, if there is code that is
offered along with this book, you may use it in your programs and documentation.
You do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of
code from this book does not require permission. Selling or distributing a collection

xx | Preface

https://github.com/bluewhalebook/docker-up-and-running-3rd-edition

of examples from O’Reilly books does require permission. Answering a question
by citing this book and quoting example code does not require permission. Incor‐
porating a significant amount of example code from this book into your product’s
documentation does require permission.

We appreciate but do not require attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Docker: Up & Running, 3e, by Sean P.
Kane with Karl Matthias (O’Reilly). Copyright 2023 Sean P. Kane and Karl Matthias,
978-1-098-13182-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/docker-up-and-running-3e.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Preface | xxi

mailto:permissions@oreilly.com
https://oreilly.com
https://oreilly.com
https://oreil.ly/docker-up-and-running-3e
mailto:bookquestions@oreilly.com
https://oreilly.com

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
We’d like to send a heartfelt thanks to the many people who helped make each edition
of this book possible:

• Nic Benders, Bjorn Freeman-Benson, and Dana Lawson at New Relic, who went•
far above and beyond in supporting the first edition, and who ensured that we
had time to pursue it.

• Roland Tritsch and Nitro Software for supporting Karl’s efforts on the second•
edition.

• Laurel Ruma at O’Reilly, who initially reached out to us about writing a Docker•
book, and Mike Loukides who helped get everything on track.

• A special thanks to our first-edition editor, Brian Anderson, who ensured that we•
knew what we were getting into and guided us along every step of the way.

• Nikki McDonald and Virginia Wilson, who helped shepherd us through the•
process of creating a much-needed second edition of this book.

• And to John Devins, Michele Cronin, and Elizabeth Faerm who worked incredi‐•
bly hard to make sure that this third edition saw the light of day.

• Thank you to Yevgeniy (Jim) Brikman, the author of the excellent Terraform:•
Up & Running, who graciously let us heavily base the website design for https://
dockerupandrunning.com on his previous work.

• Introducing a new audience to a new technology succinctly takes a special talent.•
We are very grateful to Lars Herrmann, Laura Frank Tacho, and Raju Ghandi for
taking the time to create a foreword for one of the releases.

• Our draft reviewers, who helped ensure that we were on the right track at•
various points throughout the writing process: Ksenia Burlachenko, who gave us
our very first review as well as a full tech review, Andrew T. Baker, Sébastien
Goasguen, Henri Gomez, Chelsey Frank, Rachid Zarouali, Werner Dijkerman,
Predrag Knežević, and Vishwesh Ravi Shrimali.

• A special call-out is due to Alice Goldfuss and Tom Offermann, who gave us•
detailed and consistently useful feedback when we wrote the first edition, and
to Mihai Todor for his encouragement, tech review, and full feedback on the
second edition.

xxii | Preface

https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia
https://dockerupandrunning.com
https://dockerupandrunning.com

• Gillian McGarvey, Melanie Yarbrough, Justin Billing, Rachel Monaghan, and•
Sonia Saruba for their efforts in copyediting the manuscript and making it
appear like we were paying attention in our high school English classes. 517
commas added and counting….

• Sue Klefstad, who helped us ensure that the 3e index was a useful reference for•
all of our readers, and to Wendy Catalano and Ellen Troutman for their efforts in
indexing the earlier editions.

• A special thanks to Nick Adams and everyone who worked behind the scenes•
at O’Reilly Media to help ensure that everything appeared just right in all of the
distribution formats.

• All of our peers at New Relic and Nitro who have been along for the whole•
Docker ride. They provided us with much of the experience that’s reflected here.

• Grains of Wrath Brewery, World Cup Coffee, McMenamins Ringlers Pub, Old•
Town Pizza, A Beer at a Time!, Taylor’s Three Rock pub, and others who kindly
let us use their tables and power long after our dishes were empty.

• Our families, for being supportive and giving us the required quiet time when we•
needed it.

• And finally to everyone else who encouraged us, gave us advice, or supported us•
in any way throughout this process.

Preface | xxiii

CHAPTER 1

Introduction

Docker was first introduced to the world—with no pre-announcement and little
fanfare—by Solomon Hykes, founder and CEO of a company then called dotCloud,
in a five-minute lightning talk at the Python Developers Conference in Santa Clara,
California, on March 15, 2013. At the time of this announcement, only about 40
people outside of dotCloud had been given the opportunity to play with Docker.

Within a few weeks of this announcement, there was a surprising amount of press.
The source code was quickly released on GitHub as a public and fully open source
project. Over the next few months, more and more people in the industry started
hearing about Docker and how it was going to revolutionize the way software was
built, delivered, and run. And within a year, almost no one in the industry was
unaware of Docker, but many were still unsure what it was exactly, and why people
were so excited about it.

Docker is a tool that promises to easily encapsulate the process of creating a distrib‐
utable artifact for any application, deploying it at scale into any environment, and
streamlining the workflow and responsiveness of Agile software organizations.

The Promise of Docker
Initially, many people who were unfamiliar with Docker viewed it as some sort of
virtualization platform, but in reality, it was the first widely accessible tool to build on
top of a much newer technology called containerization. Docker and Linux containers
have had a significant impact on a wide range of industry segments that include tools
and technologies like Vagrant, KVM, OpenStack, Mesos, Capistrano, Ansible, Chef,
Puppet, and so on. There is something very telling about the list of products that
have had their market share directly impacted by Docker, and maybe you’ve spotted
it already. Looking over this list, most engineers would recognize that these tools

1

https://youtu.be/wW9CAH9nSLs
https://us.pycon.org
https://github.com/moby/moby

span a lot of different use cases, yet all of these workflows have been forever changed
by Docker. This is largely because Docker has significantly altered everyone’s expect‐
ations of how a continuous integration and continuous delivery (CI/CD) workflow
should function. Instead of each step involving a time-consuming process managed
by specialists, most people expect a DevOps pipeline to be fully automated and flow
from one step to the next without any human intervention. The technologies in that
list are also generally acclaimed for their ability to improve productivity, and that’s
exactly what has given Docker so much buzz. Docker sits right in the middle of
some of the most enabling technologies of the last decade and can bring significant
improvements to almost every step of the pipeline.

If you were to do a feature-by-feature comparison of Docker and the reigning cham‐
pion in any of these individual areas (e.g., configuration management), Docker would
very likely look like a middling competitor. It’s stronger in some areas than others,
but what Docker brings to the table is a feature set that crosses a broad range of work‐
flow challenges. By combining the ease of application testing and deployment tools
like Vagrant and Capistrano with the ease of administrating virtualization systems,
and then providing interfaces that make workflow automation and orchestration easy
to implement, Docker provides a very enabling feature set.

Lots of new technologies come and go, and a dose of skepticism about the newest
rage is always healthy. When Docker was a new technology, it would have been easy
to dismiss Docker as just another technology that solves a few very specific problems
for developers or operations teams. If you look at Docker as a pseudovirtualization
or deployment technology alone, it might not seem very compelling. But Docker is
much more than it seems on the surface.

It is hard and often expensive to get communication and processes right between
teams of people, even in smaller organizations. Yet we live in a world where commu‐
nicating detailed information between teams is increasingly required to be successful.
Discovering and implementing a tool that reduces the complexity of that communi‐
cation while aiding in the production of more robust software is a big win. And
that’s exactly why Docker merits a deeper look. It’s no panacea, and the way that
you implement Docker within your organization requires some critical thought, but
Docker and Linux containers provide a good approach to solving some real-world
organizational problems and helping enable companies to ship better software faster.
Delivering a well-designed Linux container workflow can lead to happier technical
teams and real savings for the organization’s bottom line.

So where are companies feeling the most pain? Shipping software at the speed
expected in today’s world is hard to do well, and as companies grow from one or
two developers to many teams of developers, the burden of communication around
shipping new releases becomes much heavier and harder to manage. Developers
have to understand a lot of complexity about the environment they will be shipping

2 | Chapter 1: Introduction

software into, and production operations teams need to increasingly understand the
internals of the software they ship. These are all generally good skills to work on
because they lead to a better understanding of the environment as a whole and
therefore encourage the designing of robust software, but these same skills are very
difficult to scale effectively as an organization’s growth accelerates.

The details of each company’s environment often require a lot of communication
that doesn’t directly build value for the teams involved. For example, requiring
developers to ask an operations team for release 1.2.1 of a particular library slows
them down and provides no direct business value to the company. If developers
could simply upgrade the version of the library they use, write their code, test with
the new version, and ship it, the delivery time would be measurably shortened, and
fewer risks would be involved in deploying the change. If operations engineers could
upgrade software on the host system without having to coordinate with multiple
teams of application developers, they could move faster. Docker helps to build a layer
of isolation in software that reduces the burden of communication in the world of
humans.

Beyond helping with communication issues, Docker is opinionated about software
architecture in a way that encourages more robustly crafted applications. Its architec‐
tural philosophy centers on atomic or throwaway containers. During deployment, the
whole running environment of the old application is thrown away with it. Nothing
in the environment of the application will live longer than the application itself, and
that’s a simple idea with big repercussions. It means that applications are not likely
to accidentally rely on artifacts left by a previous release. It means that ephemeral
debugging changes are less likely to live on in future releases that picked them up
from the local filesystem. And it means that applications are highly portable between
servers because all of the state has to be included directly into the deployment artifact
and be immutable, or sent to an external dependency like a database, cache, or file
server.

All of this leads to applications that are not only more scalable but more reliable as
well. Instances of the application container can come and go with little impact on the
uptime of the frontend site. These are proven architectural choices that have been
successful for non-Docker applications, but the design choices enforced by Docker
mean that containerized applications are required to follow these best practices. And
that’s a very good thing.

Benefits of the Docker Workflow
It’s hard to cohesively categorize all of the things Docker brings to the table. When
implemented well, it benefits organizations, teams, developers, and operations engi‐
neers in a multitude of ways. It makes architectural decisions simpler because all
applications essentially look the same on the outside from the hosting system’s per‐

The Promise of Docker | 3

spective. It makes tooling easier to write and share between applications. Nothing in
this world comes with benefits and no challenges, but Docker is surprisingly skewed
toward the benefits. Here are some more of the benefits you get with Docker and
Linux containers:

Packaging software in a way that leverages the skills developers already have
Many companies have had to create positions for release and build engineers
in order to manage all the knowledge and tooling required to create software
packages for their supported platforms. Linux tools like rpm, mock, dpkg, and
pbuilder can be complicated to use, and each one must be learned independ‐
ently. Docker wraps up all your requirements together into one packaging for‐
mat, known as the Open Container Initiative (OCI) standard.

Bundling application software and required OS filesystems together in a single
standardized image format

In the past, you typically needed to package not only your application but also
many of the dependencies that it relied on, including libraries and daemons.
However, you could never ensure that 100% of the execution environment was
identical. For natively compiled code, this meant that your build system needed
to have exactly the same shared library versions as your production environment.
All of this made packaging difficult to master, and hard for many companies
to accomplish reliably. Often someone running Scientific Linux would resort
to trying to deploy a community package tested on Red Hat Enterprise Linux,
hoping that the package was close enough to what they needed. With Docker, you
deploy your application along with every single file required to run it. Docker’s
layered images make this an efficient process that ensures that your application is
running in the expected environment.

Using packaged artifacts to test and deliver the exact same artifact to all systems in
all environments

When developers commit changes to a version control system, a new Docker
image can be built, which can go through the whole testing process and be
deployed to production without having to be recompiled or repackaged at any
step in the process, unless that is specifically desired.

Abstracting software applications from the hardware without sacrificing resources
Traditional enterprise virtualization solutions like VMware are typically used
when someone needs to create an abstraction layer between the physical hard‐
ware and the software applications that run on it, at the cost of resources. The
hypervisors that manage the VMs and each VM’s running kernel use a percent‐
age of the hardware system’s resources, which are then no longer available to the
hosted applications. A container, on the other hand, is just another process that
typically talks directly to the underlying Linux kernel and therefore can utilize
more resources, up until the system or quota-based limits are reached.

4 | Chapter 1: Introduction

https://opencontainers.org
https://scientificlinux.org
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux

When Docker was first released, Linux containers had been around for quite a few
years, and many of the other technologies that Docker is built on are not entirely
new. However, Docker’s unique mix of strong architectural and workflow choices
combines into a whole that is much more powerful than the sum of its parts. Docker
single-handedly made Linux containers, which have been publicly available since
2008, approachable and useful for all computer engineers. Docker fits containers
relatively easily into the existing workflow and processes of real companies. And
the problems discussed earlier have been felt by so many people that interest in the
Docker project accelerated much faster than anyone could have reasonably expected.

From a standing start in 2013, Docker has seen rapid iteration and now has a huge
feature set and is deployed in a vast number of production infrastructures across
the planet. It has become one of the foundation layers for any modern distributed
system and has inspired many others to expand on the approach. A large number of
companies now leverage Docker and Linux containers as a solution to some of the
serious complexity issues that they face in their application delivery processes.

What Docker Isn’t
Docker can be used to solve a wide range of challenges that other categories of tools
have traditionally been enlisted to fix; however, Docker’s breadth of features often
means that it lacks depth in specific functionality. For example, some organizations
will find that they can completely remove their configuration management tool when
they migrate to Docker, but the real power of Docker is that although it can replace
some aspects of more traditional tools, it is also usually compatible with them or
even enhanced in combination with them. In the following list, we explore some of
the tool categories that Docker doesn’t directly replace but that can often be used in
conjunction to achieve great results:

Enterprise virtualization platform (VMware, KVM, etc.)
A container is not a virtual machine in the traditional sense. Virtual machines
contain a complete operating system, running on top of a hypervisor that is
managed by the underlying host operating system. Hypervisors create virtual
hardware layers that make it possible to run additional operating systems on
top of a single physical computer system. This makes it very easy to run many
virtual machines with radically different operating systems on a single host. With
containers, both the host and the containers share the same kernel. This means
that containers utilize fewer system resources but must be based on the same
underlying operating system (e.g., Linux).

Cloud platform (OpenStack, CloudStack, etc.)
Like enterprise virtualization, the container workflow shares a lot of similari‐
ties—on the surface—with more traditional cloud platforms. Both are tradition‐
ally leveraged to allow applications to be horizontally scaled in response to

What Docker Isn’t | 5

changing demand. Docker, however, is not a cloud platform. It only handles
deploying, running, and managing containers on preexisting Docker hosts. It
doesn’t allow you to create new host systems (instances), object stores, block stor‐
age, and the many other resources that are often managed with a cloud platform.
That being said, as you start to expand your Docker tooling, you should start to
experience more and more of the benefits that one traditionally associates with
the cloud.

Configuration management (Puppet, Chef, etc.)
Although Docker can significantly improve an organization’s ability to manage
applications and their dependencies, it does not directly replace more traditional
configuration management. Dockerfiles are used to define how a container
should look at build time, but they do not manage the container’s ongoing state
and cannot be used to manage the Docker host system. Docker can, however, sig‐
nificantly lessen the need for complex configuration management code. As more
and more servers simply become Docker hosts, the configuration management
codebase that a company uses can become much smaller, and Docker can be used
to ship the more complex application requirements inside of standardized OCI
images.

Deployment framework (Capistrano, Fabric, etc.)
Docker eases many aspects of deployment by creating container images that
encapsulate all the dependencies of an application in a manner that can be
deployed in all environments without changes. However, Docker can’t be used
to automate a complex deployment process by itself. Other tools are usually still
needed to stitch together the larger workflow. That being said, because Docker
and other Linux container toolsets, like Kubernetes (k8s), provide a well-defined
interface for deployment, the method required to deploy containers will be con‐
sistent on all hosts, and a single deployment workflow should suffice for most, if
not all, of your Docker-based applications.

Development environment (Vagrant, etc.)
Vagrant is a virtual machine management tool for developers that is often used
to simulate server stacks that closely resemble the production environment in
which an application will be deployed. Among other things, Vagrant makes it
easy to run Linux software on macOS and Windows-based workstations. Virtual
machines managed by tools like Vagrant assist developers in trying to avoid the
common “it worked on my machine” scenario that occurs when the software
runs fine for the developer but does not run properly elsewhere. However, as
with many of the previous examples, when you start to fully utilize Docker, there
is a lot less need to mimic a wide variety of production systems in development,
since most production systems will simply be Linux container servers, which can
easily be reproduced locally.

6 | Chapter 1: Introduction

Workload management tool (Mesos, Kubernetes, Swarm, etc.)
An orchestration layer (including the built-in Swarm mode) must be used to
coordinate work across a pool of Linux container hosts, track the current state of
all the hosts and their resources, and keep an inventory of running containers.
These systems are designed to automate the regular tasks that are needed to keep
a production cluster healthy while also providing tools that help make the highly
dynamic nature of containerized workloads easier for human beings to interact
with.

Each of these sections point out an important function that Docker and Linux con‐
tainers disrupted and improved. Linux containers provide a way to run software in
a controlled and isolated environment, while the easy-to-use command line interface
(CLI) tooling and container image standard that Docker introduced made working
with containers much easier and ensured that there was a repeatable way to build
software across the whole fleet.

Important Terminology
Here are a few terms that we will continue to use throughout the book and whose
meanings you should become familiar with:

Docker client
This is the docker command used to control most of the Docker workflow and
talk to remote Docker servers.

Docker server
This is the dockerd command that is used to start the Docker server process that
builds and launches containers via a client.

Docker or OCI images
Docker and OCI images consist of one or more filesystem layers and some
important metadata that represent all the files required to run a containerized
application. A single image can be copied to numerous hosts. An image typically
has a repository address, a name, and a tag. The tag is generally used to identify
a particular release of an image (e.g., docker.io/superorbital/wordchain:v1.0.1). A
Docker image is any image that is compatible with the Docker toolset, while
an OCI image is specifically an image that meets the Open Container Initiative
standard and is guaranteed to work with any OCI-compliant tool.

Linux container
This is a container that has been instantiated from a Docker or OCI image. A
specific container can exist only once; however, you can easily create multiple
containers from the same image. The term Docker container is a misnomer since
Docker simply leverages the operating system’s container functionality.

Important Terminology | 7

Atomic or immutable host
An atomic or immutable host is a small, finely tuned OS image, like Fedora
CoreOS, that supports container hosting and atomic OS upgrades.

Wrap-Up
Completely understanding Docker can be challenging when you are coming at it
without a strong frame of reference. In the next chapter, we will lay down a broad
overview of Docker: what it is, how it is intended to be used, and what advantages it
brings to the table when implemented with all this in mind.

8 | Chapter 1: Introduction

https://getfedora.org/en/coreos
https://getfedora.org/en/coreos

CHAPTER 2

The Docker Landscape

Before you dive into configuring and installing Docker, a broad survey is in order to
explain what Docker is and what it brings to the table. It is a powerful technology but
not a tremendously complicated one at its core. In this chapter, we’ll cover the gener‐
alities of how Docker and Linux containers work, what makes them powerful, and
some of the reasons you might use them. If you’re reading this, you probably have
your reasons to use containers, but it never hurts to augment your understanding
before you jump in.

Don’t worry—this chapter should not hold you up for too long. In the next chapter,
we’ll dive right into getting Docker installed and running on your system.

Process Simplification
Because Docker is a piece of software, it may not be obvious that it can also have a
big positive impact on company and team processes if it is adopted and implemented
well. So, let’s dig in and see how Docker and Linux containers can simplify both
workflows and communication. This usually starts with the deployment story. Tradi‐
tionally, the cycle of getting an application to production often looks something like
the following (illustrated in Figure 2-1):

1. Application developers request resources from operations engineers.1.
2. Resources are provisioned and handed over to developers.2.
3. Developers script and tool their deployment.3.
4. Operations engineers and developers tweak the deployment repeatedly.4.
5. Additional application dependencies are discovered by developers.5.
6. Operations engineers work to install the additional requirements.6.

9

7. Loop over steps 4 through 6 n more times.7.
8. The application is deployed.8.

Figure 2-1. A traditional deployment workflow (without Docker)

Our experience has shown that when you are following traditional processes, deploy‐
ing a brand-new application into production can take the better part of a week
for a complex new system. That’s not very productive, and even though DevOps
practices work to alleviate many of the barriers, it often still requires a lot of effort
and communication between teams of people. This process can be both technically
challenging and expensive, but even worse, it can limit the kinds of innovation that
development teams will undertake in the future. If deploying new software is hard,
time-consuming, and dependent on resources from another team, then developers
may just build everything into the existing application in order to avoid suffering the
new deployment penalty, or even worse, they may simply avoid solving problems that
require new development efforts.

Push-to-deploy systems like Heroku have shown developers what the world can look
like if you are in control of your application and a majority of your dependencies.
Talking with developers about deployment will often turn up discussions of how
easy things are on Heroku or similar systems. If you’re an operations engineer,
you’ve probably heard complaints about how much slower your internal systems are
compared with “push-button” solutions like Heroku, which are built on top of Linux
container technology.

Heroku is a whole environment, not just a container engine. While Docker doesn’t
try to be everything that is included in Heroku, it provides a clean separation of

10 | Chapter 2: The Docker Landscape

https://www.heroku.com

responsibilities and encapsulation of dependencies, which results in a similar boost
in productivity. Docker also allows even more fine-grained control than Heroku by
putting developers in control of everything, down to the exact files and package
versions that ship alongside their application. Some of the tooling and orchestrators
that have been built on top of Docker (e.g., Kubernetes, Docker Swarm mode, and
Mesos) aim to replicate the simplicity of systems like Heroku. But even though
these platforms wrap more around Docker to provide a more capable and complex
environment, a simple platform that uses only Docker still provides all of the core
process benefits without the added complexity of a larger system.

As a company, Docker adopts an approach of “batteries included but removable.”
This means that its tools come with everything most people need to get the job done
while still being built from interchangeable parts that can easily be swapped in and
out to support custom solutions. By using an image repository as the hand-off point,
Docker allows the responsibility of building the application image to be separated
from the deployment and operation of the container. What this means in practice is
that development teams can build their application with all of its dependencies, run
it in development and test environments, and then just ship the exact same bundle
of application and dependencies to production. Because those bundles all look the
same from the outside, operations engineers can then build or install standard tooling
to deploy and run the applications. The cycle described in Figure 2-1 then looks
somewhat like this (illustrated in Figure 2-2):

1. Developers build the Docker image and ship it to the registry.1.
2. Operations engineers provide configuration details to the container and provi‐2.

sion resources.
3. Developers trigger deployment.3.

Figure 2-2. A Docker deployment workflow

Process Simplification | 11

This is possible because Docker allows all of the dependency issues to be discovered
during the development and test cycles. By the time the application is ready for its
first deployment, that work has already been done. And it usually doesn’t require
as many handoffs between the development and operations teams. In a well-refined
pipeline, this can completely alleviate the need for anyone other than the develop‐
ment team to be involved in the creation and deployment of a new service. That’s a
lot simpler and saves a lot of time. Better yet, it leads to more robust software through
testing of the deployment environment before release.

Broad Support and Adoption
Docker is well supported, with the majority of the large public clouds offering some
direct support for it. For example, Docker and Linux containers have been used in
Amazon Web Services (AWS) via multiple products like Amazon Elastic Container
Service (Amazon ECS), Amazon Elastic Kubernetes Service (Amazon EKS), Ama‐
zon Fargate, and Amazon Elastic Beanstalk. Linux containers can also be used on
Google App Engine (GAE), Google Kubernetes Engine, Red Hat OpenShift, IBM
Cloud, Microsoft Azure, and many more. At DockerCon 2014, Google’s Eric Brewer
announced that Google would be supporting Docker as its primary internal container
format. Rather than just being good PR for these companies, what this meant for the
Docker community was that a lot of money began to back the stability and success of
the Docker platform.

Further building its influence, Docker’s image format for Linux containers has
become the lingua franca among cloud providers, offering the potential for “write
once, run anywhere” cloud applications. When Docker released its libswarm develop‐
ment library, an engineer from Orchard demonstrated deploying a Linux container to
a heterogeneous mix of cloud providers at the same time. This kind of orchestration
had not been easy before because every cloud provider offered a different API or
toolset for managing instances, which were usually the smallest item you could man‐
age with an API. What was only a promise from Docker in 2014 has since become
fully mainstream as the largest companies continue to invest in the platform, support,
and tooling. With most providers offering some form of Docker and Linux container
orchestration as well as the container runtime itself, Docker is well supported for
nearly any kind of workload in common production environments. If all of your
tooling is built around Docker and Linux containers, then your applications can
be deployed in a cloud-agnostic manner, allowing for new flexibility that was not
previously possible.

In 2017, Docker donated its containerd runtime to the Cloud Native Computing
Foundation (CNCF), and in 2019, it was elevated to the graduated project status.

Today, the use of Linux containers in development, delivery, and production is bigger
than ever. In 2022, we saw that Docker started to lose a share of the server market

12 | Chapter 2: The Docker Landscape

https://thenewstack.io/docker-donate-container-runtime-containerd-cloud-native-computing-foundation
https://www.cncf.io
https://www.cncf.io

to the newest versions of Kubernetes that no longer require the Docker daemon,
but even these releases of Kubernetes rely very heavily on the containerd runtime,
which was initially developed by Docker. Docker also continues to have a very strong
presence in many developer and CI/CD workflows.

So, what about OS vendor support and adoption? The Docker client runs directly on
most major operating systems, and the server can run on Linux or Windows Server.
The vast majority of the ecosystem is built around Linux servers, but other platforms
are increasingly being supported. The beaten path is and will likely continue to
revolve around Linux servers running Linux containers.

It is possible to run Windows containers natively (without a VM)
on 64-bit versions of Windows Server 2016+. However, 64-bit ver‐
sions of Windows 10+ Professional still require Hyper-V to provide
the Windows Server kernel that is used for Windows containers.
We will dive into a little more detail about this in “Windows Con‐
tainers” on page 131.
It is also worth noting here that Windows can run Linux containers
outside a virtual machine by leveraging WSL 2 (Windows Subsys‐
tem for Linux, version 2).

To support the growing demand for Docker tooling in development environments,
Docker has released easy-to-use implementations for macOS and Windows. These
appear to run natively but are still utilizing a small Linux virtual machine to provide
the Docker server and Linux kernel. Docker has traditionally been developed on the
Ubuntu Linux distribution, but most Linux distributions and other major operating
systems are now supported where possible. Red Hat, for example, has gone all in
on containers, and all of its platforms have first-class support for Docker. With the
near-ubiquity of containers in the Linux realm, we now have distributions like Red
Hat’s Fedora CoreOS, which is built entirely for Linux container workloads.

In the first years after Docker’s release, a set of competitors and service providers
voiced concerns about Docker’s proprietary image format. Containers on Linux did
not have a standard image format, so Docker, Inc., created its own according to the
needs of its business.

Service providers and commercial vendors were particularly reluctant to build plat‐
forms that might be subject to the whims of a company with overlapping interests
to their own. Docker as a company faced some public challenges in that period as
a result. To gain some goodwill and support wider adoption in the marketplace,
Docker, Inc., decided to help sponsor the Open Container Initiative (OCI) in June of
2015. The first full specification from that effort was released in July 2017 and was
based in large part on version 2 of the Docker image format. It is now possible to
apply for OCI certification for both container images and container runtimes.

Broad Support and Adoption | 13

https://www.opencontainers.org

This is the primary high-level OCI-certified runtime:

• containerd, which is the default high-level runtime in modern versions of•
Docker and Kubernetes.

These lower-level OCI-certified runtimes can be used by containerd to manage and
create containers:

• runc is often used as the default lower-level runtime by containerd.•
• crun is written in C and designed to be fast and have a small memory footprint.•
• Kata Containers from Intel, Hyper, and the OpenStack Foundation is a virtual‐•

ized runtime that can run a mix of containers and virtual machines.
• gVisor from Google is a sandboxed runtime, implemented entirely in user space.•
• Nabla Containers provide another sandboxed runtime designed to significantly•

reduce the attack surface of Linux containers.

The space around deploying containers and orchestrating entire systems of contain‐
ers continues to expand, too. Many of these are open source and available both
on premises and as cloud or software as a service (SaaS) offerings from various
providers, either in their clouds or yours. Given the amount of investment continuing
to pour into the Linux container space, it’s likely that Docker will continue to have an
important role in the modern internet.

Architecture
Docker is a powerful technology, and that often indicates both tools and processes
that come with a high level of complexity. And, under the hood, Docker is fairly com‐
plex; however, its fundamental user-facing structure is indeed a simple client/server
model. Several pieces are sitting behind the Docker API, including containerd and
runc, but the basic system interaction is a client talking over an API to a server.
Underneath this simple exterior, Docker heavily leverages kernel mechanisms such as
iptables, virtual bridging, Linux control groups (cgroups), Linux namespaces, Linux
capabilities, secure computing mode, various filesystem drivers, and more. We’ll talk
about some of these in Chapter 11. For now, we’ll go over how the client and server
work and give a brief introduction to the network layer that sits underneath a Linux
container in Docker.

Client/Server Model
It’s easiest to think of Docker as consisting of two parts: the client and the server/
daemon (see Figure 2-3). Optionally there is a third component called the registry,
which stores Docker images and their metadata. The server does the ongoing work

14 | Chapter 2: The Docker Landscape

https://containerd.io
https://github.com/opencontainers/runc
https://github.com/containers/crun
https://katacontainers.io
https://github.com/google/gvisor
https://nabla-containers.github.io

of building, running, and managing your containers, and you use the client to tell
the server what to do. The Docker daemon can run on any number of servers in the
infrastructure, and a single client can address any number of servers. Clients drive all
of the communication, but Docker servers can talk directly to image registries when
told to do so by the client. Clients are responsible for telling servers what to do, and
servers focus on hosting and managing containerized applications.

Figure 2-3. Docker client/server model

Docker is a little different in structure from some other client/server software. It
has a docker client and a dockerd server, but rather than being entirely monolithic,
the server then orchestrates a few other components behind the scenes on behalf of
the client, including containerd-shim-runc-v2, which is used to interact with runc
and containerd. Docker cleanly hides any complexity behind the simple server API,
though, so you can just think of it as a straightforward client and server for most
purposes. Each Docker host will normally have one Docker server running that can
manage any number of containers. You can then use the docker command-line tool
to talk to the server, either from the server itself or, if properly secured, from a remote
client. We’ll talk more about that shortly.

Network Ports and Unix Sockets
The docker command-line tool and dockerd daemon can talk to each other over
Unix sockets and network ports. Docker, Inc., has registered three ports with the
Internet Assigned Numbers Authority (IANA) for use by the Docker daemon and cli‐
ent: TCP port 2375 for unencrypted traffic, port 2376 for encrypted SSL connections,
and port 2377 for Docker Swarm mode. Using a different port is easily configurable
for scenarios where you need to use different settings. The default setting for the
Docker installer is to only use a Unix socket for communication with the local
Docker daemon. This ensures that the system defaults to the most secure installa‐
tion possible. This is also easily configurable, but it is highly recommended that
network ports are not used with Docker, due to the lack of user authentication and
role-based access controls within the Docker daemon. The Unix socket can be located
in different paths on different operating systems, but in most cases, it can be found

Architecture | 15

https://en.wikipedia.org/wiki/Daemon_(computing)
https://www.iana.org

here: /var/run/docker.sock. If you have strong preferences for a different location,
you can usually specify this at install time or simply change the server configuration
afterward and restart the daemon. If you don’t, then the defaults will probably work
for you. As with most software, following the defaults will save you a lot of trouble if
you don’t need to change them.

Recent versions of Docker Desktop may create the docker.sock file
in the user’s home directory inside .docker/run/ and then simply
link _/var/run/docker.sock to this location.

Robust Tooling
Among the many things that have led to Docker’s strong adoption is its simple and
powerful tooling. Since its initial release, its capabilities have been expanding ever
wider, thanks to efforts from the Docker community at large. The tooling that Docker
ships with supports building Docker images, basic deployment to individual Docker
daemons, a distributed mode called Swarm mode, and all the functionality needed
to manage a remote Docker server. Beyond the included Swarm mode, community
efforts have focused on managing whole fleets (or clusters) of Docker servers and
scheduling and orchestrating container deployments.

When we talk about Docker Swarm or Swarm mode in this book,
we are referring to the built-in Swarm functionality in the Docker
client and server, which leverages another underlying library called
SwarmKit. When searching for articles on the internet, you may
find references to an older standalone version of Docker Swarm,
which is often referred to as Docker Swarm “Classic” nowadays.

Docker has also launched its own orchestration toolset, including Compose, Docker
Desktop, and Swarm mode, which creates a cohesive deployment story for develop‐
ers. Docker’s offerings in the production orchestration space have been largely over‐
shadowed by Google’s Kubernetes, although it should be noted that Kubernetes relied
heavily on Docker until v1.24 was released in early 2022. But Docker’s orchestration
tools remain useful, with Compose being particularly handy for local development.

Because Docker provides both a command-line tool and a remote REST API, it is
easy to add further tooling in any language. The command-line tool lends itself well
to shell scripting, and anything the client can do can also be done programmatically
via the REST API. The Docker CLI is so well-known that many other Linux container
CLI tools, like podman and nerdctl, mimic its arguments for compatibility and easy
adoption.

16 | Chapter 2: The Docker Landscape

https://docs.docker.com/engine/swarm
https://github.com/docker-archive/classicswarm
https://github.com/docker/compose
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://docs.docker.com/engine/swarm
https://kubernetes.io/blog/2020/12/02/dockershim-faq
https://kubernetes.io/blog/2020/12/02/dockershim-faq
https://podman.io
https://github.com/containerd/nerdctl

Docker Command-Line Tool
The command-line tool docker is the main interface that most people will have
with Docker. The Docker client is a Go program that compiles and runs on all
common architectures and operating systems. The command-line tool is available
as part of the main Docker distribution on various platforms and also compiles
directly from the Go source. Some of the things you can typically do with the Docker
command-line tool include, but are not limited to, the following:

• Building a container image•
• Pulling images from a registry to a Docker daemon or pushing them up to a•

registry from the Docker daemon
• Starting a container on a Docker server either in the foreground or background•
• Retrieving the Docker logs from a remote server•
• Interactively running a command inside a running container on a remote server•
• Monitoring statistics about your container•
• Getting a process listing from your container•

You can probably see how these can be composed into a workflow for building,
deploying, and observing applications. But the Docker command-line tool is not the
only way to interact with Docker, and it’s not necessarily the most powerful.

Docker Engine API
Like many other pieces of modern software, the Docker daemon has an API. This is
in fact what the Docker command-line tool uses to communicate with the daemon.
But because the API is documented and public, it’s quite common for external tooling
to use the API directly. This provides a convenient mechanism that allows any
tool to create, inspect, and manage all of the images and containers that are under
the Docker daemon’s management. While it’s unlikely that beginners will initially
want to talk directly to the Docker API, it’s a great tool to have available. As your
organization embraces Docker over time, you will increasingly find the API to be a
good integration point for this tooling.

Extensive documentation for the API is on the Docker site. As the ecosystem has
matured, robust implementations of Docker API libraries have emerged for all popu‐
lar languages. Docker maintains SDKs for Python and Go, and there are additional
libraries maintained by third parties that are worth considering. For example, over
the years we have used these Go and Ruby libraries and have found them to be both
robust and rapidly updated as new versions of Docker are released.

Most of the things you can do with the Docker command-line tooling are supported
relatively easily via the API. Two notable exceptions are the endpoints that require

Architecture | 17

https://golang.org
https://dockr.ly/2wxCHnx
https://dockr.ly/2wxCHnx
https://github.com/fsouza/go-dockerclient
https://github.com/upserve/docker-api

streaming or terminal access: running remote shells or executing the container in
interactive mode. In these cases, it’s often easier to use one of these solid client
libraries or the command-line tool.

Container Networking
Even though Linux containers are largely made up of processes running on the host
system itself, they usually behave quite differently from other processes at the net‐
work layer. Docker initially supported a single networking model but now supports a
robust assortment of configurations that handle most application requirements. Most
people run their containers in the default configuration, called bridge mode. So let’s
take a look at how it works.

To understand bridge mode, it’s easiest to think of each of your Linux containers
as behaving like a host on a private network. The Docker server acts as a virtual
bridge, and the containers are clients behind it. A bridge is just a network device that
repeats traffic from one side to another. So you can think of it like a mini virtual
network, with each container acting like a host attached to that network. The actual
implementation (see Figure 2-4) is that each container has a virtual Ethernet interface
connected to the Docker bridge and an IP address allocated to the virtual interface.
Docker lets you bind and expose individual or groups of ports on the host to the
container so that the outside world can reach your container on those ports. The
traffic is largely managed by the vpnkit library.

Docker allocates the private subnet from an unused RFC 1918 private subnet block.
It detects which network blocks are unused on the host and allocates one of those to
the virtual network. That is bridged to the host’s local network through an interface
on the server called docker0. This means that, by default, all of the containers are on
a network together and can talk to one another directly. But to get to the host or the
outside world, they go over the docker0 virtual bridge interface.

18 | Chapter 2: The Docker Landscape

https://github.com/moby/vpnkit
https://www.rfc-editor.org/rfc/rfc1918

Figure 2-4. The network on a typical Docker server

There is a dizzying array of ways in which you can configure Docker’s network layer,
from allocating your own network blocks to configuring your own custom bridge
interface. People often run with the default mechanisms, but there are times when
something more complex or specific to your application is required. You can find
much more detail about Docker networking in the documentation, and we will cover
more details in Chapter 11.

When developing your Docker workflow, you should get started
with the default networking approach. You might later find that
you don’t want or need this default virtual network. Networking
is configurable per container, and you can switch off the whole
virtual network layer entirely for a container using the --net=host
switch to docker container run. When running in that mode,
Linux containers use the host’s own network devices and addresses,
and no virtual interfaces or bridges are provisioned. Note that host
networking has security implications you might need to consider.
Other network topologies are possible and discussed in Chapter 11.

Getting the Most from Docker
Like most tools, Docker has a number of great use cases, and others that aren’t
so good. You can, for example, open a glass jar with a hammer. But that has its
downsides. Understanding how to best use the tool, or even simply determining if it’s
the right tool, can get you on the correct path much more quickly.

To begin with, Docker’s architecture is aimed squarely at applications that are either
stateless or where the state is externalized into data stores like databases or caches.
Those are the easiest to containerize. Docker enforces some good development

Getting the Most from Docker | 19

https://dockr.ly/2otp461

principles for this class of application, and we’ll talk later about how that’s powerful.
But this means that doing things like putting a database engine inside Docker is a
bit like swimming against the current. It’s not that you can’t do it, or even that you
shouldn’t do it; it’s just that this is not the most obvious use case for Docker, so if
it’s the one you start with, you may find yourself disappointed early on. Databases
that run well in Docker are now often deployed this way, but this is not the simple
path. Some good applications for beginning with Docker include web frontends,
backend APIs, and short-running tasks like maintenance scripts that might normally
be handled by cron.

If you focus first on building an understanding of running stateless or externalized-
state applications inside containers, you will have a foundation on which to start con‐
sidering other use cases. We strongly recommend starting with stateless applications
and learning from that experience before tackling other use cases. The community is
continuously working on how to better support stateful applications in Docker, and
there are likely to be many developments in this area.

Containers Are Not Virtual Machines
A good way to start shaping your understanding of how to leverage Docker is to
think of Linux containers not as virtual machines (VMs) but as very lightweight
wrappers around a single Unix process. During actual implementation, that process
might spawn other processes, but on the other hand, one statically compiled binary
could be all that’s inside your container (see “Outside Dependencies” on page 234
for more information). Containers are also ephemeral: they may come and go much
more readily than a traditional virtual machine.

Virtual machines are by design a stand-in for real hardware that you might throw in a
rack and leave there for a few years. Because a real server is what they’re abstracting,
virtual machines are often long-lived in nature. Even in the cloud where companies
often spin virtual machines up and down on demand, they usually have a running
life span of days or more. On the other hand, a particular container might exist for
months, or it may be created, run a task for a minute, and then be destroyed. All of
that is OK, but it’s a fundamentally different approach than the one virtual machines
are typically used for.

To help drive this differentiation home, if you run Docker on a mac or Windows
system, you are leveraging a Linux virtual machine to run dockerd, the Docker
server. However, on Linux, dockerd can be run natively, and therefore there is no
need for a virtual machine to be run anywhere on the system (see Figure 2-5).

20 | Chapter 2: The Docker Landscape

Figure 2-5. Typical Docker installations

Limited Isolation
Containers are isolated from one another, but that isolation is probably more limited
than you might expect. While you can put limits on their resources, the default
container configuration just has them all sharing CPU and memory on the host
system, much as you would expect from colocated Unix processes. This means that
unless you constrain them, containers can compete for resources on your production
machines. That might be fine for your use case, but it impacts your design decisions.
Limits on CPU and memory use are encouraged through Docker, but in most cases,
they are not the default like they would be with a virtual machine.

It’s often the case that many containers share one or more common filesystem layers.
That’s one of the more powerful design decisions in Docker, but it also means that
if you update a shared image, you may also need to rebuild and redeploy containers
that are still utilizing the older image.

Containerized processes are just processes on the Docker server itself. They are
running on the same instance of the Linux kernel as the host operating system. All
container processes show up in the normal ps output on the Docker server. That
is utterly different from a hypervisor, where the depth of process isolation usually
includes running an entirely separate instance of the operating system kernel for each
virtual machine.

This light containment can lead to the tempting option of exposing more resources
from the host, such as shared filesystems to allow the storage of state. But you
should think hard before further exposing resources from the host into the container
unless they are used exclusively by the container. We’ll talk about the security of
containers later, but generally, you might consider helping to enforce isolation further
by applying Security-Enhanced Linux (SELinux) or AppArmor policies rather than
compromising the existing barriers.

Getting the Most from Docker | 21

https://www.redhat.com/en/topics/linux/what-is-selinux
https://apparmor.net

By default, many containers use UID 0 to launch processes.
Because the container is contained, this seems safe, but in reality, it
isn’t very safe. Because everything is running on the same kernel,
many types of security vulnerabilities or simple misconfiguration
can give the container’s root user unauthorized access to the host’s
system resources, files, and processes. Refer to “Security” on page
303 for a discussion of how to mitigate this.

Containers Are Lightweight
We’ll get more into the details of how this works later, but creating a new container
can take up very little disk space. A quick test reveals that a newly created container
from an existing image takes a whopping 12 kilobytes of disk space. That’s pretty
lightweight. On the other hand, a new virtual machine created from a golden image
might require hundreds or thousands of megabytes, since at a minimum it requires
a full operating install to exist on that disk. The new container, on the other hand,
is so small because it is just a reference to a layered filesystem image and some
metadata about the configuration. By default, no copy of the data is allocated to the
container. Containers are just processes on the existing system that may only need to
read information from the disk, so there may not be a need to copy any data for the
exclusive use of the container, until a time when it needs to write data that is unique
to that container instance.

The lightness of containers means that you can use them for situations where creating
another virtual machine would be too heavyweight or where you need something
to be truly ephemeral. You probably wouldn’t, for instance, spin up an entire virtual
machine to run a curl command to a website from a remote location, but you might
spin up a new container for this purpose.

Toward an Immutable Infrastructure
By deploying most of your applications within containers, you can start simplifying
your configuration management story by moving toward an immutable infrastruc‐
ture, where components are replaced entirely rather than changed in place. The idea
of an immutable infrastructure has gained popularity in response to how difficult
it is, in reality, to maintain a truly idempotent configuration management codebase.
As your configuration management codebase grows, it can become as unwieldy and
unmaintainable as large, monolithic legacy applications.

With Docker, it is possible to deploy a very lightweight Docker server that needs
almost no configuration management, or in many cases, none at all. You handle all
of your application management simply by deploying and redeploying containers to
the server. When the server needs an important update to something like the Docker

22 | Chapter 2: The Docker Landscape

daemon or the Linux kernel, you can simply bring up a new server with the changes,
deploy your containers there, and then decommission or reinstall the old server.

Container-based Linux distributions like Red Hat’s Fedora CoreOS are designed
around this principle. But rather than requiring you to decommission the instance,
Fedora CoreOS can entirely update itself and switch to the updated OS. Your con‐
figuration and workload largely remain in your containers, and you don’t have to
configure the OS very much at all.

Because of this clean separation between deployment and configuration of your
servers, many container-based production systems are using tools such as Hashi‐
Corp’s Packer to build cloud virtual server images, and then leveraging Docker to
nearly or entirely avoid configuration management systems.

Stateless Applications
A good example of the kind of application that containerizes well is a web application
that keeps its state in a database. Stateless applications are normally designed to
immediately answer a single self-contained request and have no need to track infor‐
mation between requests from one or more clients. You might also run something
like ephemeral Memcached instances in containers. If you think about your web
application, though, it probably has some local state that you rely on, like configura‐
tion files. That might not seem like a lot of state, but if you bake that configuration
into your images, it means that you’ve limited the reusability of your image and
made it more challenging to deploy into different environments, without maintaining
multiple images for different deployment targets.

In many cases, the process of containerizing your application means that you move
configuration state into environment variables that can be passed to your application
at runtime. Rather than baking the configuration into the container, you apply the
configuration to the container when it is deployed. This allows you to easily do things
like use the same container to run in either production or staging environments.
In most companies, those environments would require many different configuration
settings like the connection URLs for various external services that the application
utilizes.

With containers, you might also find that you are always decreasing the size of your
containerized application as you optimize it down to the bare essentials required to
run. We have found that thinking of anything that you need to run in a distributed
way as a container can lead to some interesting design decisions. If, for example, you
have a service that collects some data, processes it, and returns the result, you might
configure containers on many servers to run the job and then aggregate the response
on another container.

Getting the Most from Docker | 23

https://getfedora.org/en/coreos
https://www.packer.io/intro/index.html
https://www.packer.io/intro/index.html
https://memcached.org

Externalizing State
If Docker works best for stateless applications, how do you best store state when
you need to? Configuration is typically passed by environment variables, for example.
Docker supports environment variables natively, and they are stored in the metadata
that makes up a container configuration. This means that restarting the container will
ensure that the same configuration is passed to your application each time. It also
makes the configuration of the container easily observable while it’s running, which
can make debugging a lot easier, although there are some security concerns around
exposing secrets in environment variables. It is also possible to store and retrieve your
application configuration inside an external datastore, like Consul or PostgreSQL.

Databases are often where scaled applications store state, and nothing in Docker
interferes with doing that for containerized applications. Applications that need to
store files, however, face some challenges. Storing things to the container’s filesystem
is not performant, will be limited by space, and will not preserve state when a
container is re-created. If you redeploy a stateful service without utilizing storage
external to the container, you will lose all of that state. Applications that need to
store filesystem state should be carefully considered before you put them into Docker.
If you decide that you can benefit from Linux containers in these cases, it’s best to
design a solution where the state can be stored in a centralized location that could
be accessed regardless of which host a container runs on. In certain cases, this might
mean using a service like Amazon Simple Storage Service (Amazon S3), OpenStack
Swift, or a local block store, or even mounting EBS volumes or iSCSI disks inside the
container. Docker volume plug-ins provide some additional options and are briefly
discussed in Chapter 11.

Although it is possible to externalize state on the host’s local filesys‐
tem, it is not generally encouraged by the community and should
be considered an advanced use case. It is strongly recommended
that you start with applications that don’t need persistent state.
There are multiple reasons why this is typically discouraged, but
in almost all cases it is because it introduces dependencies between
the container and the host that interfere with using Docker as a
truly dynamic, horizontally scalable application delivery service. If
your container maintains state on the local host filesystem, then
it can only be deployed to the system that houses that local filesys‐
tem. Remote volumes that can be dynamically attached are a good
solution but also an advanced use case.

24 | Chapter 2: The Docker Landscape

https://www.consul.io
https://www.postgresql.org
https://docs.docker.com/engine/extend/plugins_volume

The Docker Workflow
Like many tools, Docker strongly encourages a particular workflow. It’s a very
enabling workflow that maps well to how many companies are organized, but it’s
probably a little different than what you or your team are doing now. Having adapted
our own organizations’ workflows to the Docker approach, we can confidently say
that this is a change that can have a wide-reaching positive impact on many teams
in your organization. If the workflow is implemented well, it can help you realize the
promise of reduced communication overhead between teams.

Revision Control
The first thing that Docker gives you out of the box is two forms of revision control.
One of them is used to track the filesystem layers that each Docker image is com‐
prised of, and the other is a tagging system for those images.

Filesystem layers
Linux containers are made up of stacked filesystem layers, each identified by a unique
hash, where each new set of changes made during the build process is laid on top of
the previous changes. That’s great because it means that when you do a new build,
you only have to rebuild the layers that follow the change you’re deploying. This saves
time and bandwidth because containers are shipped around as layers, and you don’t
have to ship layers that a server already has stored. If you’ve done deployments with
many classic deployment tools, you know that you can end up shipping hundreds of
megabytes of the same data to a server over and over with each deployment. That’s
incredibly inefficient, and worse, you can’t be sure exactly what changed between
deployments. Because of the layering effect, and because Linux containers include all
of the application dependencies, with Docker you can be more confident about the
changes that you are shipping to production.

To simplify this a bit, remember that a Docker image contains everything required to
run your application. If you change one line of code, you certainly don’t want to waste
time rebuilding every dependency that your code requires into a new image. Instead,
by leveraging the build cache, Docker can ensure that only the layers affected by the
code change are rebuilt.

Image tags
The second kind of revision control offered by Docker makes it easy to answer
an important question: what was the previous version of the application that was
deployed? That’s not always easy to answer. There are a lot of solutions for non-
containerized applications, from Git tags for each release, to deployment logs, to tag‐
ged builds for deployment, and many more. If you’re coordinating your deployment
with Capistrano, for example, it will handle this for you by keeping a set number of

The Docker Workflow | 25

https://capistranorb.com

previous releases on the server and then using symlinks to make one of them the
current release.

But what you find in any scaled production environment is that each application
has a unique way of handling deployment revisions. Many of them do the same
thing, but some may be different. Worse, in heterogeneous language environments,
the deployment tools are often entirely different between applications, and very little
is shared. So the question “What was the previous version?” can have many answers
depending on whom you ask and which application you’re referring to. Docker has
a built-in mechanism for handling this: image tagging a standard build step. You can
easily leave multiple revisions of your application on the server so that performing a
rollback is trivial. This is not rocket science, and it’s not functionality that is hard to
find in other deployment tooling, but with container images, it can easily be made
standard across all of your applications, and everyone can have the same expectations
about how things will be tagged for all applications. This makes communication
easier between teams, and it makes tooling much simpler because there is one source
of truth for application releases.

In many examples online and in this book, you will see people
use the latest tag for a container image. This is useful when
you’re getting started and when you’re writing examples, as it will
always grab the most recent build of an image. But since this is a
floating tag, it is a really bad idea to use latest in most production
workflows, as your dependencies can get updated out from under
you, and it is impossible to roll back to latest because the old
version is no longer the one tagged latest. It also makes it hard to
verify if the same image is running on different servers. The rule
of thumb is: don’t use the latest tag in production. It’s not even
a good idea to use the latest tag from upstream images, for the
same reasons.
It is highly recommended that you tag your CI/CD builds with
something that uniquely identifies the exact source code commit
that was used to build them. In a git workflow, this could be the
git hash related to the commit. Once you are ready to release an
image, the recommendation is that you use semantic versioning
and provide your image with tags, like 1.4.3, 2.0.0, etc.
Pinning versions requires a bit more work to keep them current,
but it will also prevent many unfortunate and poorly timed sur‐
prises during builds and deployments.

26 | Chapter 2: The Docker Landscape

https://semver.org

Building
Building applications is a black art in many organizations, where a few people know
all the levers to pull and knobs to turn to spit out a well-formed, shippable artifact.
Part of the heavy cost of getting a new application deployed is getting the build just
right. Docker doesn’t solve all of these problems, but it does provide a standardized
tool configuration and toolset for builds. That makes it a lot easier for people to learn
how to build your applications and to get new builds up and running.

The Docker command-line tool contains a build flag that will consume a Dockerfile
and produce a Docker image. Each command in a Dockerfile generates a new layer
in the image, so it’s easy to reason about what the build is going to do by looking at
the Dockerfile itself. The great part of all of this standardization is that any engineer
who has worked with a Dockerfile can dive right in and modify the build of any other
application. Because the Docker image is a standardized artifact, all of the tooling
behind the build will be the same regardless of the development language or base
image that is being used or the number of layers needed. The Dockerfile is usually
checked into a revision control system, which also means that tracking changes to
the build is simplified. Modern multistage Docker builds also allow you to define
the build environment separately from the final artifact image. This provides huge
“configure ability” for your build environment just like you’d have for a production
container.

Many Docker builds are a single invocation of the docker image build command
and generate a single artifact, the container image. Because it’s usually the case that
most of the logic about the build is wholly contained in the Dockerfile, it’s easy to
create standard build jobs for any team to use in build systems like Jenkins. As a
further standardization of the build process, many companies—eBay, for example—
have standardized Linux containers to do the image builds from a Dockerfile. SaaS
build offerings like Travis CI and CodeShip also have first-class support for Docker
builds.

It is also possible to automate the creation of multiple images that support different
underlying compute architectures, like x86 and ARM, by utilizing the newer BuildKit
support in Docker.

Testing
While Docker itself does not include a built-in framework for testing, the way con‐
tainers are built lends some advantages to testing with Linux containers.

Testing a production application can take many forms, from unit testing to full
integration testing in a semi-live environment. Docker facilitates better testing by
guaranteeing that the artifact that passed testing will be the one that ships to produc‐
tion. This can be guaranteed because we can either use the Docker SHA for the

The Docker Workflow | 27

https://jenkins-ci.org
https://travis-ci.com
https://codeship.com
https://github.com/moby/buildkit

container, or a custom tag to make sure we’re consistently shipping the same version
of the application.

Since, by design, containers include all of their dependencies, tests run on containers
are very reliable. If a unit test framework says tests were successful against a container
image, you can be sure that you will not experience a problem with the versioning
of an underlying library at deployment time, for example. That’s not easy with most
other technologies, and even Java WAR (Java Web application ARchive) files, for
example, don’t include testing of the application server itself. That same Java applica‐
tion deployed in a Linux container will generally also include an application server
like Tomcat, and the whole stack can be smoke tested before shipping to production.

A secondary benefit of shipping applications in Linux containers is that in places
where there are multiple applications that talk to one another remotely via something
like an API, developers of one application can easily develop against a version of
the other service that is currently tagged for the environment they require, like
production or staging. Developers on each team don’t have to be experts in how the
other service works or is deployed just to do development on their own application.
If you expand this to a service-oriented architecture with innumerable microservices,
Linux containers can be a real lifeline to developers or QA engineers who need to
wade into the swamp of inter-microservice API calls.

A common practice in organizations that run Linux containers in production is for
automated integration tests to pull down a versioned set of Linux containers for
different services, matching the current deployed versions. The new service can then
be integration-tested against the very same versions it will be deployed alongside.
Doing this in a heterogeneous language environment would previously have required
a lot of custom tooling, but it becomes reasonably simple to implement because of the
standardization provided by Linux containers.

Packaging
Docker builds produce an image that can be treated as a single build artifact,
although technically they may consist of multiple filesystem layers. No matter which
language your application is written in or which distribution of Linux you run it
on, you get a layered Docker image as the result of your build. And it is all built
and handled by the Docker tooling. That build image is the shipping container
metaphor that Docker is named for: a single, transportable unit that universal tooling
can handle, regardless of what it contains. Like oceanic cargo ships that package
everything into steel containers, your Docker tooling will only ever have to deal with
one kind of package: the Docker image. That’s powerful, because it’s a huge facilitator
of tool reuse between applications, and it means that someone else’s off-the-shelf
container tools will work with your build images.

28 | Chapter 2: The Docker Landscape

Applications that traditionally took a lot of custom configuration to deploy onto
a new host or development system become very portable with Docker. Once a
container is built, it can easily be deployed on any system with a running Docker
server on the same architecture.

Deploying
Deployments are handled by so many kinds of tools in different shops that it
would be impossible to list them here. Some of these tools include shell scripting,
Capistrano, Fabric, Ansible, and in-house custom tooling. In our experience with
multiteam organizations, there are usually one or two people on each team who know
the magical incantation to get deployments to work. When something goes wrong,
the team is dependent on them to get it running again. As you probably expect by
now, Docker makes most of that a nonissue. The built-in tooling supports a simple,
one-line deployment strategy to get a build onto a host and up and running. The
standard Docker client handles deploying only to a single host at a time, but there
is a large array of tools available that make it easy to deploy into a cluster of Docker
or other compatible Linux container hosts. Because of the standardization Docker
provides, your build can be deployed into any of these systems, with low complexity
on the part of the development teams.

The Docker Ecosystem
Over the years, a wide community has formed around Docker, driven by both devel‐
opers and system administrators. Like the DevOps movement, this has facilitated
better tools by applying code to operations problems. Where there are gaps in the
tooling provided by Docker, other companies and individuals have stepped up to the
plate. Many of these tools are also open source. That means they are expandable and
can be modified by any other company to fit its needs.

Docker is a commercial company that has contributed much of the
core Docker source code to the open source community. Compa‐
nies are strongly encouraged to join the community and contribute
back to the open source efforts. If you are looking for supported
versions of the core Docker tools, you can find out more about its
offerings at the Docker website.

Orchestration
The first important category of tools that add functionality to the core Docker
distribution and Linux container experience contains orchestration and mass deploy‐
ment tools. Early mass deployment tools like New Relic’s Centurion, Spotify’s Helios,

The Docker Workflow | 29

https://capistranorb.com
https://www.fabfile.org
https://www.ansible.com
https://www.docker.com/support
https://github.com/newrelic/centurion
https://github.com/spotify/helios

1 Full URL: https://docs.ansible.com/ansible/latest/collections/community/docker/docsite/sce
nario_guide.html#ansible-collections-community-docker-docsite-scenario-guide

2 Some of these commercial offerings have free editions of their platforms.

and the Ansible Docker tooling1 still work largely like traditional deployment tools
but leverage the container as the distribution artifact. They take a fairly simple,
easy-to-implement approach. You get a lot of the benefits of Docker without much
complexity, but many of these tools have been replaced by more robust and flexible
tools, like Kubernetes.

Fully automatic schedulers like Kubernetes or Apache Mesos with the Marathon
scheduler are more powerful options that take nearly complete control of a pool of
hosts on your behalf. Other commercial entries are widely available, such as Hashi‐
Corp’s Nomad, Mesosphere’s DC/OS (Datacenter Operating System), and Rancher.2

The ecosystems of both free and commercial options continue to grow rapidly.

Immutable atomic hosts
One additional idea that you can leverage to enhance your Docker experience is
immutable atomic hosts. Traditionally, servers and virtual machines are systems that
an organization will carefully assemble, configure, and maintain to provide a wide
variety of functionality that supports a broad range of usage patterns. Updates must
often be applied via nonatomic operations, and there are many ways in which host
configurations can diverge and introduce unexpected behavior into the system. Most
running systems are patched and updated in place in today’s world. Conversely, in
the world of software deployments, most people deploy an entire copy of their appli‐
cation, rather than trying to apply patches to a running system. Part of the appeal
of containers is that they help make applications even more atomic than traditional
deployment models.

What if you could extend that core container pattern down into the operating sys‐
tem? Instead of relying on configuration management to try to update, patch, and
coalesce changes to your OS components, what if you could simply pull down a new,
thin OS image and reboot the server? And then if something breaks, easily roll back
to the exact image you were previously using?

This is one of the core ideas behind Linux-based atomic host distributions, like Red
Hat’s Fedora CoreOS, Bottlerocket OS, and others. Not only should you be able to
easily tear down and redeploy your applications, but the same philosophy should
apply for the whole software stack. This pattern helps provide very high levels of
consistency and resilience to the whole stack.

Some of the typical characteristics of an immutable or atomic host are a minimal
footprint, a design focused on supporting Linux containers and Docker, and atomic

30 | Chapter 2: The Docker Landscape

https://docs.ansible.com/ansible/latest/collections/community/docker/docsite/scenario_guide.html#ansible-collections-community-docker-docsite-scenario-guide
https://docs.ansible.com/ansible/latest/collections/community/docker/docsite/scenario_guide.html#ansible-collections-community-docker-docsite-scenario-guide
https://oreil.ly/V8X_f
https://kubernetes.io
https://mesos.apache.org
https://mesosphere.github.io/marathon
https://mesosphere.github.io/marathon
https://www.nomadproject.io
https://www.nomadproject.io
https://dcos.io
https://rancher.com
https://getfedora.org/en/coreos
https://getfedora.org/en/coreos
https://github.com/bottlerocket-os/bottlerocket
https://gist.github.com/jzb/0f336c6f23a0ba145b0a

OS updates and rollbacks that can easily be controlled via multihost orchestration
tools on both bare-metal and common virtualization platforms.

In Chapter 3, we will discuss how you can easily use these immutable hosts in your
development process. If you are also using these hosts as deployment targets, this
process creates a previously unheard-of amount of software stack symmetry between
your development and production environments.

Additional tools
Docker is not just a standalone solution. It has a massive feature set, but there is
always a case where someone needs more than it can deliver on its own. There is a
wide ecosystem of tools to either improve or augment Docker’s functionality. Some
good production tools leverage the Docker API, like Prometheus for monitoring
and Ansible for simple orchestration. Others leverage Docker’s plug-in architecture.
Plug-ins are executable programs that conform to a specification for receiving and
returning data to Docker.

Many of the Docker plug-ins are considered legacy and are being
replaced with better approaches. Make sure that you perform ade‐
quate research before deciding on a plug-in that you are going to
utilize, to ensure that it is the best option and is not going to be
unsupported or quickly replaced.

There are many more good tools that either talk to the API or run as plug-ins.
Many of these have sprung up to make life with Docker easier on the various cloud
providers. These help with seamless integration between Docker and the cloud. As
the community continues to innovate, the ecosystem continues to grow. There are
new solutions and tools available in this space on an ongoing basis. If you find you
are struggling with something in your environment, look to the ecosystem!

Wrap-Up
There you have it: a quick tour through Docker. We’ll return to this discussion later
on with a slightly deeper dive into the architecture of Docker, more examples of how
to use the community tooling, and an exploration of some of the thinking behind
designing robust container platforms. But you’re probably itching to try it all out, so
in the next chapter, we’ll get Docker installed and running.

Wrap-Up | 31

https://prometheus.io
https://www.ansible.com

CHAPTER 3

Installing Docker

We’re now at the point where you hopefully understand roughly what Docker is and
what it isn’t, and it’s time for some hands-on work. Let’s get Docker installed so we
can work with it. The steps required to install Docker vary depending on the platform
you use for development and the Linux distribution you use to host your applications
in production.

In this chapter, we discuss the steps required to get a fully working Docker develop‐
ment environment set up on most modern desktop operating systems. First, we’ll
install the Docker client on your native development platform, and then we’ll get a
Docker server running on Linux. Finally, we’ll test out the installation to make sure it
works as expected.

Although the Docker client can run on Windows and macOS to control a Docker
server, Linux containers can only be built and launched on a Linux system. Therefore,
non-Linux systems will require a virtual machine or remote server to host the Linux-
based Docker server. Docker Community Edition, Docker Desktop, and Vagrant,
which are all discussed later in this chapter, provide some approaches to address this
issue. It is also possible to run Windows containers natively on Windows systems,
and we will specifically discuss this in “Windows Containers” on page 131, but most
of the book’s focus will be on Linux containers.

The Docker ecosystem is changing very rapidly as the technology
evolves to become more robust and solve a broader range of prob‐
lems. Some features discussed in this book and elsewhere may
become deprecated. To see what has been tagged for deprecation
and eventual removal, refer to the documentation.

33

https://docs.docker.com/engine/deprecated

We assume that you are using a traditional Unix shell in most of
the code examples in the book. You can use PowerShell, but be
aware that some commands will need adjusting to work in that
environment.
If you are in an environment that requires you to use a proxy, make
sure that it is properly configured for Docker.

Docker Client
The Docker client natively supports 64-bit versions of Linux, Windows, and macOS.

The majority of popular Linux distributions can trace their origins to either Debian
or Red Hat. Debian systems utilize the deb package format and Advanced Package
Tool (apt) to install most prepackaged software. On the other hand, Red Hat systems
rely on RPM Package Manager (rpm) files and Yellowdog Updater, Modified (yum), or
Dandified yum (dnf) to install similar software packages. Alpine Linux, which is often
used in environments that require a very small Linux footprint, relies on the Alpine
Package Keeper (apk) to manage software packages.

On macOS and Microsoft Windows, native GUI installers provide the easiest method
to install and maintain prepackaged software. Homebrew for macOS and Chocolatey
for Windows are also very popular options among technical users.

We will be discussing a few approaches to installing Docker in this
section. Make sure that you pick the first one in this list that best
matches your needs. Installing more than one may cause problems
if you are not well versed in how to switch between them properly.
Choose one of these: Docker Desktop, Docker Community Edition,
OS package manager, or Vagrant.

You can always find the most recent installation documentation on the Docker
website.

Linux
It is strongly recommended that you run Docker on a modern release of your
preferred Linux distribution. It is possible to run Docker on some older releases,
but stability may be a significant issue. Generally, a 3.8 or later kernel is required,
and we advise you to use the newest stable version of your chosen distribution. The
following directions assume you are using a recent stable release of the Ubuntu or
Fedora Linux distributions.

34 | Chapter 3: Installing Docker

https://docs.docker.com/network/proxy
https://wiki.debian.org/AptCLI
https://wiki.debian.org/AptCLI
https://en.wikipedia.org/wiki/Yum_(software)
https://goo.gl/TdkGRS
https://wiki.alpinelinux.org/wiki/Package_management
https://wiki.alpinelinux.org/wiki/Package_management
https://brew.sh
https://chocolatey.org
https://chocolatey.org
https://docs.docker.com/get-docker

Although we are not covering it here, Docker Desktop for Linux
has been released and can be used on Linux if you would prefer
running the Docker daemon on a local virtual machine instead of
directly on your system.

Ubuntu Linux 22.04 (64-bit)
Let’s take a look at the steps required to install Docker on the 64-bit version of
Ubuntu Linux 22.04.

For up-to-date instructions or coverage of other versions of
Ubuntu, see the Docker Community Edition for Ubuntu.

These first two commands will ensure that you aren’t running older versions of
Docker. The packages have been renamed a few times, so you’ll need to specify
several possibilities here:

$ sudo apt-get remove docker docker.io containerd runc
$ sudo apt-get remove docker-engine

It is safe to ignore apt-get errors that say “Unable to locate pack‐
age” or “Package is not installed.”

Next, you will need to add the required software dependencies and apt repository for
Docker Community Edition. This lets us fetch and install packages for Docker and
validate that they are signed:

$ sudo apt-get update
$ sudo apt-get install \
 ca-certificates \
 curl \
 gnupg \
 lsb-release
$ sudo mkdir -p /etc/apt/keyrings
$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg |\
 sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg
$ sudo chmod a+r /etc/apt/keyrings/docker.gpg
$ echo \
 "deb [arch=$(dpkg --print-architecture) \
 signed-by=/etc/apt/keyrings/docker.gpg] \
 https://download.docker.com/linux/ubuntu \

Docker Client | 35

https://docs.docker.com/desktop/linux/install
https://dockr.ly/2NwNbuw

 $(lsb_release -cs) stable" |\
 sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

Now that you have the repository set up, run the following commands to install
Docker:

$ sudo apt-get update
$ sudo apt-get install \
 docker-ce \
 docker-ce-cli \
 containerd.io \
 docker-compose-plugin

Assuming you don’t get any error messages, you now have Docker installed!

Fedora Linux 36 (64-bit)
Now let’s take a look at the steps needed to install Docker on the 64-bit version of
Fedora Linux 36.

For up-to-date instructions or coverage of other versions of Fedora,
see the Docker Community Edition for Fedora.

This first command will ensure that you aren’t running older versions of Docker. As
on Ubuntu systems, the package has been renamed a few times, so you’ll need to
specify several possibilities here:

$ sudo dnf remove -y \
 docker \
 docker-client \
 docker-client-latest \
 docker-common \
 docker-latest \
 docker-latest-logrotate \
 docker-logrotate \
 docker-selinux \
 docker-engine-selinux \
 docker-engine

Next, you will need to add the required software dependencies and dnf repository for
Docker Community Edition:

$ sudo dnf -y install dnf-plugins-core
$ sudo dnf config-manager \
 --add-repo \
 https://download.docker.com/linux/fedora/docker-ce.repo

Now you can install the current version of Docker Community Edition:

36 | Chapter 3: Installing Docker

https://dockr.ly/2NwNdTa

1 Full URL: https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/about

$ sudo dnf install -y \
 docker-ce \
 docker-ce-cli \
 containerd.io \
 docker-compose-plugin

macOS, Mac OS X
To install Docker on macOS, you should use the official Docker Desktop installer.

GUI installer
Download the latest Docker Desktop for Mac installer, and then double-click on the
downloaded program icon. Follow all of the installer’s prompts until the installation
is finished. Docker Desktop for macOS relies on the xhyve project and Apple’s
Hypervisor framework to provide a native lightweight virtualization layer for the
Linux server component, which is required to launch Linux virtual machines that can
build Docker images and run containers.

Homebrew installation
You can also install the Docker CLI tools using the popular Homebrew package
management system for macOS. If you take this approach, you should consider
installing Vagrant for creating and managing your Linux VM. We’ll discuss that
shortly in “Non-Linux VM-Based Server” on page 40.

Microsoft Windows 11
Here are the steps required to install Docker Desktop on Windows 11.

It is highly recommended that you set up the Windows Subsystem
for Linux (WSL2) before installing Docker Desktop, and then select
any available options in the Docker Desktop installer to enable and
default to WSL2.
Docker Desktop for Windows can leverage Hyper-V1 to provide
a native virtualization layer for the Linux server components, but
WSL2 should provide you with the smoothest experience when
working with Linux containers.

Download the latest Docker Desktop for Windows installer, and then double-click
on the downloaded program icon. Follow all of the installer prompts until the instal‐
lation is finished.

Docker Client | 37

https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/about
https://dockr.ly/2wyTpCO
https://github.com/machyve/xhyve
https://developer.apple.com/documentation/hypervisor
https://docs.brew.sh/Installation
https://docs.microsoft.com/en-us/windows/wsl/install
https://docs.microsoft.com/en-us/windows/wsl/install
https://oreil.ly/vt6-o
https://docs.microsoft.com/en-us/windows/wsl/install
https://dockr.ly/2C0n7H0

Enabling Linux Container Mode for Windows
By default, your Docker Desktop installation on Windows should be set up for Linux
containers, but if you ever get a message that says something like “no matching man‐
ifest for windows/amd64,” then Docker Desktop is likely configured for Windows
containers.

Linux containers are still the most common type of Linux container, and this book
requires Linux container support. You can easily change your Windows setup by
right-clicking on the Docker icon in the Windows taskbar and selecting “Switch to
Linux containers…,” as shown in Figures 3-1 and 3-2.

Figure 3-1. Switch to Linux containers

38 | Chapter 3: Installing Docker

Figure 3-2. Switch to Linux containers confirmation

You can easily switch back and forth if you need to use both Linux and Windows
containers.

Chocolatey installation
You can also install the Docker CLI tools using the popular Chocolatey package
management system for Windows. If you take this approach, you should consider
installing Vagrant for creating and managing your Linux VM. We’ll discuss that
shortly in “Non-Linux VM-Based Server” on page 40.

The Docker website has installation directions for additional envi‐
ronments online.

Docker Server
The Docker server is a separate binary from the client and is used to manage most of
the work for which Docker is typically used. Next we will explore the most common
ways to manage the Docker server.

Docker Desktop and Docker Community Edition already set up
the server for you, so if you took that route, you do not need to do
anything else besides ensuring that the server (dockerd) is running.
On Windows and macOS, this typically just means starting the
Docker application. On Linux, you may need to run the following
systemctl commands to start the server.

Docker Server | 39

https://docs.chocolatey.org/en-us/choco/setup
https://docs.docker.com/engine/install

systemd-Based Linux
Current Fedora and Ubuntu releases use systemd to manage processes on the system.
Because you have already installed Docker, you can ensure that the server starts every
time you boot the system by typing this:

$ sudo systemctl enable docker

This tells systemd to enable the docker service and start it when the system boots or
switches into the default run level. To start the Docker server, type the following:

$ sudo systemctl start docker

Non-Linux VM-Based Server
If you are using Microsoft Windows or macOS in your Docker workflow, you will
need a VM so that you can set up a Docker server for testing. Docker Desktop
is convenient because it sets up this VM for you using the native virtualization
technology on these platforms. If you are running an older version of Windows or
cannot use Docker Desktop for other reasons, you should investigate Vagrant to help
you create and manage your Docker server Linux VM.

In addition to using Vagrant, you can also use other virtualization tools, like Lima
on macOS or any standard hypervisor, to set up a local Docker server, depending on
your preferences and needs.

Vagrant
Vagrant provides support for multiple hypervisors and can often be leveraged to
mimic even the most complex environments.

A common use case for leveraging Vagrant during Docker development is to support
testing on images that match your production environment. Vagrant supports every‐
thing from broad distributions like Red Hat Enterprise Linux and Ubuntu to finely
focused atomic host distributions like Fedora CoreOS.

You can easily install Vagrant on most platforms by downloading a self-contained
package.

This Vagrant example is not secure and is not intended to be a
recommendation. Instead, it is simply a demonstration of the basic
requirements needed to set up a remote Docker server VM and
make use of it. Securing the server is of critical importance.
Using Docker Desktop for development is often a better option,
when possible.

40 | Chapter 3: Installing Docker

https://www.freedesktop.org/wiki/Software/systemd
https://www.vagrantup.com
https://github.com/lima-vm/lima
https://github.com/lima-vm/lima
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://ubuntu.com
https://getfedora.org/en/coreos
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html

2 Full URL: https://www.vmware.com/products/workstation-pro.html
3 Full URL: https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v

You will need to have a hypervisor, like one of the following, fully installed on your
system:

• VirtualBox•
— Freely available—
— Supports multiplatforms on most architectures—

• VMware Workstation Pro/Fusion2•
— Commercial software—
— Supports multiplatforms on most architectures—

• HyperV3•
— Commercial software—
— Supports Windows on most architectures—

• KVM•
— Freely available—
— Supports Linux on most architectures—

By default, Vagrant assumes that you are using the VirtualBox hypervisor, but you
can change it by using the --provider flag when using the vagrant command.

In the following example, you will create a Ubuntu-based Docker host running
the Docker daemon. Then you will create a host directory with a name similar to
docker-host and move into that directory:

$ mkdir docker-host
$ cd docker-host

In order to use Vagrant, you need to find a Vagrant Box (VM image) that is compati‐
ble with your provisioner and architecture. In this example, we will use a Vagrant Box
for the Virtual Box hypervisor.

Virtual Box only works on Intel/AMD x86(64) systems, and the
Vagrant Box we are using is specifically built for AMD64 systems.

Go ahead and create a new file called Vagrantfile with the following contents in it:

Docker Server | 41

https://www.vmware.com/products/workstation-pro.html
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v
https://www.virtualbox.org/wiki/Downloads
https://oreil.ly/4uNsR
https://oreil.ly/agPTI
https://www.linux-kvm.org
https://learn.hashicorp.com/tutorials/vagrant/getting-started-providers
https://app.vagrantup.com/boxes/search

puts (<<-EOT)

 [WARNING] This exposes an unencrypted Docker TCP port on the VM!!

 This is NOT secure and may expose your system to significant risk
 if left running and exposed to the broader network.

EOT

$script = <<-SCRIPT
echo \'{"hosts": ["tcp://0.0.0.0:2375", "unix:///var/run/docker.sock"]}\' | \
sudo tee /etc/docker/daemon.json
sudo mkdir -p /etc/systemd/system/docker.service.d
echo -e \"[Service]\nExecStart=\nExecStart=/usr/bin/dockerd\" | \
sudo tee /etc/systemd/system/docker.service.d/docker.conf
sudo systemctl daemon-reload
sudo systemctl restart docker
SCRIPT

Vagrant.configure(2) do |config|

 # Pick a compatible Vagrant Box
 config.vm.box = 'bento/ubuntu-20.04'

 # Install Docker if it is not already on the VM image
 config.vm.provision :docker

 # Configure Docker to listen on an unencrypted local port
 config.vm.provision "shell",
 inline: $script,
 run: "always"

 # Port-forward the Docker port to
 # 12375 (or another open port) on our host machine
 config.vm.network "forwarded_port",
 guest: 2375,
 host: 12375,
 protocol: "tcp",
 auto_correct: true

end

You can retrieve a complete copy of this file by running this:

$ git clone https://github.com/bluewhalebook/\
docker-up-and-running-3rd-edition.git --config core.autocrlf=input
$ cd docker-up-and-running-3rd-edition/chapter_03/vagrant
$ ls Vagrantfile

42 | Chapter 3: Installing Docker

You may need to remove the “\” in the git clone command and
reassemble the URL into a single line. It is there because the com‐
mand is too long for the standard printed page, and this should
work in a standard Unix shell as long as there are no leading or
trailing spaces in either line.

Ensure that you are in the directory with the Vagrantfile, and then run the following
command to start the Vagrant VM.

This setup is provided as a simple example. It is not secure and
should not be left running without ensuring that the server cannot
be accessed from the broader network.
Docker maintains documentation on how to secure your Docker
endpoint with SSH or TLS client certificates and provides some
additional information about the attack surface of the Docker dae‐
mon.

$ vagrant up
…
Bringing machine 'default' up with 'virtualbox' provider…
==> default: Importing base box 'bento/ubuntu-20.04'…
==> default: Matching MAC address for NAT networking…
==> default: Checking if box 'bento/ubuntu-20.04' version '…' is up to date…
==> default: A newer version of the box 'bento/ubuntu-20.04' for provider…
==> default: available! You currently have version '…'. The latest is version
==> default: '202206.03.0'. Run `vagrant box update` to update.
==> default: Setting the name of the VM: vagrant_default_1654970697417_18732
==> default: Clearing any previously set network interfaces…
…
==> default: Running provisioner: docker…
 default: Installing Docker onto machine…
==> default: Running provisioner: shell…
 default: Running: inline script
 default: {"hosts": ["tcp://0.0.0.0:2375", "unix:///var/run/docker.sock"]}
 default: [Service]
 default: ExecStart=
 default: ExecStart=/usr/bin/dockerd

On macOS, you may see an error like this:
VBoxManage: error: Details: code NS_ERROR_FAILURE

(0x80004005), component MachineWrap, interface IMachine

This is due to the security features in macOS. A quick search
should lead you to an online post that describes the fix.

Docker Server | 43

https://docs.docker.com/engine/security/protect-access
https://docs.docker.com/engine/security/protect-access
https://docs.docker.com/engine/security/#docker-daemon-attack-surface
https://docs.docker.com/engine/security/#docker-daemon-attack-surface
https://scriptcrunch.com/solved-vboxmanage-error-component-machinewrap

Once the VM is running, you should be able to connect to the Docker server
by running the following command and telling the Docker client where it should
connect to with the -H argument:

$ docker -H 127.0.0.1:12375 version
Client:
 Cloud integration: v1.0.24
 Version: 20.10.14
 API version: 1.41
…

Server: Docker Engine - Community
 Engine:
 Version: 20.10.17
 API version: 1.41 (minimum version 1.12)
…

The output will provide you with version information about the various components
that make up the Docker client and server.

Passing in the IP address and port every time you want to run a Docker command
is not ideal, but luckily Docker can be set up to know about multiple Docker servers
by using the docker context command. To start, let’s check and see what context
is currently in use. Take note of the entry that has an asterisk (*) next to it, which
designates the current context:

$ docker context list
NAME TYPE … DOCKER ENDPOINT …
default * moby … unix:///var/run/docker.sock …
…

You can create a new context for the Vagrant VM and then make it active by running
the following sequence of commands:

$ docker context create vagrant --docker host=tcp://127.0.0.1:12375
vagrant
Successfully created context "vagrant"

$ docker context use vagrant
vagrant

If you re-list all the contexts now, you should see something like this:

$ docker context list
NAME TYPE … DOCKER ENDPOINT …
default moby … unix:///var/run/docker.sock …
vagrant * moby … tcp://127.0.0.1:12375 …
…

With your current context set to vagrant, running docker version without the
additional -H argument will still connect to the correct Docker server and return the
same information as before.

44 | Chapter 3: Installing Docker

To connect to a shell on the Vagrant-based VM, you can run the following:

$ vagrant ssh
…
Welcome to Ubuntu 20.04.3 LTS (GNU/Linux 5.4.0-91-generic x86_64)
…
vagrant@vagrant:~$ exit

Until you have time to secure this setup, it is best to go ahead and shut down the VM
and set your context back to its original state:

$ vagrant halt
…
==> default: Attempting graceful shutdown of VM…

$ docker version
Cannot connect to … daemon at tcp://127.0.0.1:12375. Is the … daemon running?

$ docker context use default
default

If you are using macOS, you might want to take a look at Colima,
which makes it very easy to spin up and manage a flexible Docker
or Kubernetes VM.

Testing the Setup
Once you have a working client and server set up, you are ready to test that every‐
thing is working. You should be able to run any one of the following commands on
your local system to tell the Docker daemon to download the latest official container
for that distribution and then launch it with a running Unix shell process.

This step is important to ensure that all the pieces are properly installed and commu‐
nicating with one another as expected. It shows off one of the features of Docker: we
can run containers based on any Linux distribution we like. In the next few steps,
we’ll run Linux containers based on Ubuntu, Fedora, and Alpine Linux. You don’t
need to run them all to prove that this works; running one of them will suffice.

If you are using the Docker client on a Linux system, you may need
to prepend each docker command with sudo since the root user
may be the only one with Docker access, by default.
Most Docker installs create a docker group that can be used to
manage who has access to the dockerd Unix socket. You can add
your user to that group so that you no longer need to use the sudo
command.

Testing the Setup | 45

https://github.com/abiosoft/colima
https://man7.org/linux/man-pages/man8/sudo.8.html
https://man7.org/linux/man-pages/man8/sudo.8.html

Ubuntu
Let’s try launching a container using the latest Ubuntu Linux base image:

$ docker container run --rm -ti docker.io/ubuntu:latest /bin/bash

root@aa9b72ae1fea:/#

Using docker container run is functionally the same as using
docker run.

Fedora
In this example, we launch a container using the latest Fedora Linux base image:

$ docker container run --rm -ti docker.io/fedora:latest /bin/bash

[root@5c97201e827b /]# exit

Alpine Linux
And then finally, we can test launching a container using the latest Alpine Linux base
image:

$ docker container run --rm -ti docker.io/alpine:latest /bin/sh

/ # exit

docker.io/ubuntu:latest, docker.io/fedora:latest, and
docker.io/alpine:latest all represent a Docker image reposi‐
tory, followed by an image name and an image tag.

Exploring the Docker Server
Although the Docker server is often installed, enabled, and run automatically, it’s
useful to see that running the Docker daemon manually on a Linux system can be as
simple as typing something like this:

$ sudo dockerd -H unix:///var/run/docker.sock \
 --config-file /etc/docker/daemon.json

46 | Chapter 3: Installing Docker

https://docs.docker.com/engine/reference/commandline/dockerd

This section assumes that you are on the actual Linux server or
VM that is running the Docker daemon. If you are using Docker
Desktop on Windows or Mac, you won’t be able to easily interact
with the dockerd executable, as it is intentionally hidden from the
end user, but we’ll show you a trick in just a moment.

This command starts the Docker daemon, creates and listens to a Unix domain
socket (-H unix:///var/run/docker.sock), and reads in the rest of the configura‐
tion from /etc/docker/daemon.json. You’re not likely to have to start the Docker server
yourself, but that’s what’s going on behind the scenes. On non-Linux systems, you will
typically have a Linux-based VM that hosts the Docker server. Docker Desktop sets
up this VM for you in the background.

If you already have Docker running, executing the daemon again
will fail because it can’t use the same network port twice.

In most cases, it is very easy to SSH into your new Docker server and take a look
around, but the seamless experience of Docker Desktop on a non-Linux system
means it is often not apparent that Docker Desktop is leveraging a local VM on which
to run the Docker daemon. Because the Docker Desktop VM is designed to be very
small and very stable, it does not run an SSH daemon and is, therefore, a bit tricky to
access.

If you are curious or just ever have a need to access the underlying VM, you can do it,
but it requires a little advanced knowledge. We will talk about the command nsenter
in much more detail in “nsenter” on page 334, but for now, if you would like to see
the VM (or underlying host), you can run these commands:

$ docker container run --rm -it --privileged --pid=host debian \
 nsenter -t 1 -m -u -n -i sh

/ # cat /etc/os-release
PRETTY_NAME="Docker Desktop"

/ # ps | grep dockerd
 1540 root 1:05 /usr/local/bin/dockerd
 --containerd /var/run/desktop-containerd/containerd.sock
 --pidfile /run/desktop/docker.pid
 --swarm-default-advertise-addr=eth0
 --host-gateway-ip 192.168.65.2

/ # exit

Exploring the Docker Server | 47

This command uses a privileged Debian container that contains the nsenter com‐
mand to manipulate the Linux kernel namespaces so that we can navigate the filesys‐
tem of the underlying VM or host.

This container is privileged to allow us to navigate the underlying
host, but you should not get into the habit of using privileged con‐
tainers when adding individual capabilities or system call privileges
will suffice. We discuss this more in “Security” on page 303.
If you can use a Docker server endpoint, this command will give
you access to the underlying host.

The Docker daemon configuration is typically stored in /etc/docker/daemon.json,
but you may notice that it exists somewhere like /containers/services/docker/rootfs/etc/
docker/daemon.json in the Docker Desktop VM. Docker uses reasonable defaults for
all its settings, so this file may be very small or even completely absent. If you are
using Docker Desktop, you can edit this file by clicking on the Docker icon and
selecting Preferences… → Docker Engine, as shown in Figure 3-3.

Figure 3-3. Docker Desktop server configuration

48 | Chapter 3: Installing Docker

Wrap-Up
Now that you have a running Docker setup, you can start to look at more than the
basic mechanics of getting it installed. In the next chapter, you’ll explore how to build
and manage Docker images, which provide the basis for every container you will ever
launch with Docker.

In the rest of the book, when you see docker on the command line,
assume you will need to have the correct configuration in place
either as a Docker context, environment variables, or via the -H
command-line flag to tell the docker client how to connect to the
dockerd server process.

Wrap-Up | 49

1 Full URL: https://github.com/torvalds/linux/commit/e9be9d5e76e34872f0c37d72e25bc27fe9e2c54c

CHAPTER 4

Working with Docker Images

Every Linux container is based on an image. Images are the underlying definition of
what gets reconstituted into a running container, much like a virtual disk becomes a
VM when you start it up. Docker or Open Container Initiative (OCI) images provide
the basis for everything that you will ever deploy and run with Docker. To launch
a container, you must either download a public image or create your own. You can
think of the image as a single asset that primarily represents the filesystem for the
container. However, in reality, every image consists of one or more linked filesystem
layers that generally have a direct one-to-one mapping to each build step used to
create that image.

Because images are built up from individual layers, they put special demands on the
Linux kernel, which must provide the drivers that Docker needs to run the storage
backend. For image management, Docker relies heavily on this storage backend,
which communicates with the underlying Linux filesystem to build and manage
the multiple layers that combine into a single usable image. The primary storage
backends that are supported include the following:

• Overlay21•
• B-Tree File System (Btrfs)•
• Device Mapper•

Each storage backend provides a fast copy-on-write (CoW) system for image man‐
agement. We discuss the specifics of various backends in Chapter 11. For now, we’ll
use the default backend and explore how images work, since they make up the basis
for almost everything else that you will do with Docker, including the following:

51

https://github.com/torvalds/linux/commit/e9be9d5e76e34872f0c37d72e25bc27fe9e2c54c
https://opencontainers.org
https://oreil.ly/r4JHY
https://btrfs.wiki.kernel.org/index.php/Main_Page
https://www.sourceware.org/dm

• Building images•
• Uploading (pushing) images to an image registry•
• Downloading (pulling) images from an image registry•
• Creating and running containers from an image•

Anatomy of a Dockerfile
To create a custom Docker image with the default tools, you will need to become
familiar with the Dockerfile. This file describes all the steps that are required to
create an image and is usually contained within the root directory of the source code
repository for your application.

A typical Dockerfile might look something like the one shown here, which creates a
container for a Node.js-based application:

FROM node:18.13.0

ARG email="anna@example.com"
LABEL "maintainer"=$email
LABEL "rating"="Five Stars" "class"="First Class"

USER root

ENV AP /data/app
ENV SCPATH /etc/supervisor/conf.d

RUN apt-get -y update

The daemons
RUN apt-get -y install supervisor
RUN mkdir -p /var/log/supervisor

Supervisor Configuration
COPY ./supervisord/conf.d/* $SCPATH/

Application Code
COPY *.js* $AP/

WORKDIR $AP

RUN npm install

CMD ["supervisord", "-n"]

Dissecting this Dockerfile will provide some initial exposure to a number of the possi‐
ble instructions for controlling how an image is assembled. Each line in a Dockerfile
creates a new image layer that is stored by Docker. This layer contains all of the

52 | Chapter 4: Working with Docker Images

changes that are a result of that command being issued. This means that when you
build new images, Docker will only need to build layers that deviate from previous
builds: you can reuse all the layers that haven’t changed.

Although you could build a Node instance from a plain, base Linux image, you
can also explore Docker Hub for official images for Node. The Node.js community
maintains a series of Docker images and tags that allow you to quickly determine
what versions are available. If you want to lock the image to a specific point release of
Node, you could point it at something like node:18.13.0. The following base image
will provide you with an Ubuntu Linux image running Node 18.13.0:

FROM docker.io/node:18.13.0

The ARG parameter provides a way for you to set variables and their default values,
which are only available during the image build process:

ARG email="anna@example.com"

Applying labels to images and containers allows you to add metadata via key/value
pairs that can later be used to search for and identify Docker images and contain‐
ers. You can see the labels applied to any image using the docker image inspect
command. For the maintainer label, we are leveraging the value of the email build
argument that was defined in the previous line of the Dockerfile. This means that this
label can be changed anytime we build this image:

LABEL "maintainer"=$email
LABEL "rating"="Five Stars" "class"="First Class"

By default, Docker runs all processes as root within the container, but you can use
the USER instruction to change this:

USER root

Even though containers provide some isolation from the under‐
lying operating system, they still run on the host kernel. Due
to potential security risks, production containers should almost
always be run in the context of an unprivileged user.

Unlike the ARG instruction, the ENV instruction allows you to set shell variables that
can be used by your running application for configuration, in addition to being
available during the build process. The ENV and ARG instructions can be used to
simplify the Dockerfile and help keep it DRYer (Don’t Repeat Yourself):

ENV AP /data/app
ENV SCPATH /etc/supervisor/conf.d

Anatomy of a Dockerfile | 53

https://registry.hub.docker.com
https://registry.hub.docker.com/_/node

In the following code, you’ll use a collection of RUN instructions to start and cre‐
ate the required file structure that you need, and install some required software
dependencies:

RUN apt-get -y update

The daemons
RUN apt-get -y install supervisor
RUN mkdir -p /var/log/supervisor

While we’re demonstrating it here for simplicity, it is not recom‐
mended that you run commands like apt-get -y update or
dnf -y update in your application’s Dockerfile. This is because
it requires crawling the repository index each time you run a build,
which means that your build is not guaranteed to be repeatable
since package versions might change between builds. Instead, con‐
sider basing your application image on another image that already
has these updates applied to it and where the versions are in a
known state. It will be faster and more repeatable.

The COPY instruction is used to copy files from the local filesystem into your image.
Most often this will include your application code and any required support files.
Because COPY copies the files into the image, you no longer need access to the local
filesystem to access them once the image is built. You’ll also start to use the build
variables you defined in the previous section to save you a bit of work and help
protect you from typos:

Supervisor Configuration
COPY ./supervisord/conf.d/* $SCPATH/

Application Code
COPY *.js* $AP/

Remember that every instruction creates a new Docker image layer,
so it often makes sense to combine a few logically grouped com‐
mands onto a single line. It is even possible to use the COPY instruc‐
tion in combination with the RUN instruction to copy a complex
script to your image and then execute that script with only two
commands in the Dockerfile.

With the WORKDIR instruction, you change the working directory in the image for
the remaining build instructions and the default process that launches with any
resulting containers:

54 | Chapter 4: Working with Docker Images

2 This code was originally forked from GitHub.

WORKDIR $AP

RUN npm install

The order of commands in a Dockerfile can have a very significant
impact on ongoing build times. You should try to order commands
so that things that change between every single build are closer to
the bottom. This means that adding your code and similar steps
should be held off until the end. When you rebuild an image, every
single layer after the first introduced change will need to be rebuilt.

And finally, you end with the CMD instruction, which defines the command that
launches the process that you want to run within the container:

CMD ["supervisord", "-n"]

Though not a hard-and-fast rule, it is generally considered a
best practice to try to run only a single process within a con‐
tainer. The core idea is that a container should provide a single
function so that it remains easy to horizontally scale individual
functions within your architecture. In the example, you are using
supervisord as a process manager to help improve the resiliency
of the node application within the container and ensure that it
stays running. This can also be useful for troubleshooting your
application during development so that you can restart your service
without restarting the whole container.
You could also achieve a similar effect by using the --init
command-line argument to docker container run, which we
discuss in “Controlling Processes” on page 179.

Building an Image
To build your first image, go ahead and clone a Git repo that contains an example
application called docker-node-hello, as shown here:2

$ git clone https://github.com/spkane/docker-node-hello.git \
 --config core.autocrlf=input
Cloning into 'docker-node-hello'…
remote: Counting objects: 41, done.
remote: Total 41 (delta 0), reused 0 (delta 0), pack-reused 41
Unpacking objects: 100% (41/41), done.

$ cd docker-node-hello

Building an Image | 55

https://github.com/enokd/docker-node-hello

Git is frequently installed on Linux and macOS systems, but if
you do not already have Git available, you can download a simple
installer from git-scm.com.
The --config core.autocrlf=input option we use helps ensure
that the line endings are not accidentally altered from the Linux
standard that is expected.

This will download a working Dockerfile and related source code files into a directory
called docker-node-hello. If you look at the contents while ignoring the Git repo
directory, you should see the following:

$ tree -a -I .git
.
├── .dockerignore
├── .gitignore
├── Dockerfile
├── index.js
├── package.json
└── supervisord
 └── conf.d
 ├── node.conf
 └── supervisord.conf

Let’s review the most relevant files in the repo.

The Dockerfile should be the same as the one you just reviewed.

The .dockerignore file allows you to define files and directories that you do not want
to upload to the Docker host when you are building the image. In this instance,
the .dockerignore file contains the following line:

.git

This instructs docker image build to exclude the .git directory, which contains the
whole source code repository, from the build. The rest of the files reflect the current
state of your source code on the checked-out branch. You don’t need the contents of
the .git directory to build the Docker image, and since it can grow quite large over
time, you don’t want to waste time copying it every time you do a build. package.json
defines the Node.js application and lists any dependencies that it relies on. index.js is
the main source code for the application.

The supervisord directory contains the configuration files for supervisord that you
will use to start and monitor the application.

Using supervisord in this example to monitor the application is
overkill, but it is intended to provide a bit of insight into some of
the techniques you can use in a container to provide more control
over your application and its running state.

56 | Chapter 4: Working with Docker Images

https://git-scm.com/downloads
http://supervisord.org

As we discussed in Chapter 3, you will need to have your Docker server running and
your client properly set up to communicate with it before you can build a Docker
image. Assuming that this is all working, you should be able to initiate a new build
by running the upcoming command, which will build and tag an image based on the
files in the current directory.

Each step identified in the following output maps directly to a line in the Dockerfile,
and each step creates a new image layer based on the previous step. The first build
that you run will take a few minutes because you have to download the base node
image. Subsequent builds should be much faster unless a new version of our base
image tag has been released.

The output that follows is from the new BuildKit included in
Docker. If you see significantly different output, then you are likely
still using the older image building code.
You can enable BuildKit in your environment by setting the
DOCKER_BUILDKIT environment variable to 1.
You can find more details on the Docker website.

At the end of the build command, you will notice a period. This refers to the
build context, which tells Docker what files it should upload to the server so that it
can build our image. In many cases, you will simply see a . at the end of a build
command, since a single period represents the current directory. This build context is
what the .dockerignore file is filtering so that we don’t upload more than we need.

Docker assumes that the Dockerfile is in the current directory, but if
it is not, you can point directly to it using the -f argument.

Let’s run the build:

$ docker image build -t example/docker-node-hello:latest .

 => [internal] load build definition from Dockerfile
 => => transferring dockerfile: 37B
 => [internal] load .dockerignore
 => => transferring context: 34B
 => [internal] load metadata for docker.io/library/node:18.13.0
 => CACHED [1/8] FROM docker.io/library/node:18.13.0@19a9713dbaf3a3899ad…
 => [internal] load build context
 => => transferring context: 233B
 => [2/8] RUN apt-get -y update
 => [3/8] RUN apt-get -y install supervisor
 => [4/8] RUN mkdir -p /var/log/supervisor

Building an Image | 57

https://docs.docker.com/build/buildkit

 => [5/8] COPY ./supervisord/conf.d/* /etc/supervisor/conf.d/
 => [6/8] COPY *.js* /data/app/
 => [7/8] WORKDIR /data/app
 => [8/8] RUN npm install
 => exporting to image
 => => exporting layers
 => => writing image sha256:991844271ca5b984939ab49d81b24d4d53137f04a1bd…
 => => naming to docker.io/example/docker-node-hello:latest

To improve the speed of builds, Docker will use a local cache
when it thinks it is safe. This can sometimes lead to unexpected
issues because it doesn’t always notice that something changed in
a lower layer. In the preceding output, you will notice lines like
⇒ [2/8] RUN apt-get -y update. If instead you see ⇒ CACHED
[2/8] RUN apt-get -y update, you know that Docker decided to
use the cache. You can disable the cache for a build by using the
--no-cache argument to the docker image build command.

If you are building your Docker images on a system that is used for other simultane‐
ous processes, you can limit the resources available to your builds by using many of
the same cgroup methods that we will discuss in Chapter 5. You can find detailed
documentation on the docker image build arguments in the official documentation.

Using docker image build is functionally the same as using
docker build.

If you have any issues getting a build to work correctly, you may want to skip ahead
and read the sections “Multistage builds” on page 78 and “Troubleshooting Broken
Builds” on page 92 in this chapter.

Running Your Image
Once you have successfully built the image, you can run it on your Docker host with
the following command:

$ docker container run --rm -d -p 8080:8080 example/docker-node-hello:latest

This command tells Docker to create a running container in the background from the
image with the example/docker-node-hello:latest tag, and then map port 8080 in
the container to port 8080 on the Docker host. If everything goes as expected, the
new Node.js application should be running in a container on the host. You can verify
this by running docker container ls. To see the running application in action, you
will need to open up a web browser and point it at port 8080 on the Docker host.

58 | Chapter 4: Working with Docker Images

https://docs.docker.com/engine/reference/commandline/image_build

You can usually determine the Docker host IP address by examining the entry from
docker context list that is marked with an asterisk or checking the value of the
DOCKER_HOST environment variable if it happens to be set. If the DOCKER ENDPOINT is
set to a Unix socket, then the IP address is most likely 127.0.0.1:

$ docker context list
NAME TYPE … DOCKER ENDPOINT …
default * moby … unix:///var/run/docker.sock …
…

Get the IP address and enter something like http://127.0.0.1:8080/ (or your remote
Docker address if it’s different than that) into your web browser address bar, or use a
command-line tool like curl. You should see the following text:

Hello World. Wish you were here.

Build Arguments
If you inspect the image that we built, you will be able to see that the maintainer label
was set to anna@example.com:

$ docker image inspect \
 example/docker-node-hello:latest | grep maintainer
 "maintainer": "anna@example.com",

If we wanted to change the maintainer label, we could simply rerun the build and
provide a new value for the email ARG via the --build-arg command-line argument,
like so:

$ docker image build --build-arg email=me@example.com \
 -t example/docker-node-hello:latest .

…
 => => naming to docker.io/example/docker-node-hello:latest

After the build has finished, we can check the results by reinspecting the new image:

$ docker image inspect \
 example/docker-node-hello:latest | grep maintainer
 "maintainer": "me@example.com",

The ARG and ENV instructions can help make Dockerfiles very flexible while also
avoiding a lot of repeated values that can be hard to keep up to date.

Environment Variables as Configuration
If you read the index.js file, you will notice that part of the file refers to the variable
$WHO, which the application uses to determine who the application is going to say
Hello to:

Running Your Image | 59

http://127.0.0.1:8080/

var DEFAULT_WHO = "World";
var WHO = process.env.WHO || DEFAULT_WHO;

app.get('/', function (req, res) {
 res.send('Hello ' + WHO + '. Wish you were here.\n');
});

Let’s quickly cover how you can configure this application by passing in environment
variables when you start it. First, you need to stop the existing container using two
commands. The first command will provide you with the container ID, which you
will need to use in the second command:

$ docker container ls
CONTAINER ID IMAGE STATUS …
b7145e06083f example/centos-node-hello:latest Up 4 minutes …

You can format the output of docker container ls by using
a Go template so that you see only the information that you
care about. In the preceding example, you might decide to
run something like docker container ls --format "table

{{.ID}}\t{{.Image}}\t{{.Status}}" to limit the output to the
three fields you care about. Additionally, running docker con

tainer ls --quiet with no format options will limit the output to
only the container ID.

And then, using the container ID from the previous output, you can stop the running
container by typing the following:

$ docker container stop b7145e06083f
b7145e06083f

Using docker container ls is functionally equivalent to using
docker container list, docker container ps, or docker ps.
Using docker container stop is also functionally equivalent to
using docker stop.

You can then restart the container after adding a single instance of the --env argu‐
ment to the previous docker container run command:

$ docker container run --rm -d \
 --publish mode=ingress,published=8080,target=8080 \
 --env WHO="Sean and Karl" \
 example/docker-node-hello:latest

If you reload your web browser, you should see that the text on the web page now
reads as follows:

Hello Sean and Karl. Wish you were here.

60 | Chapter 4: Working with Docker Images

https://developer.hashicorp.com/nomad/tutorials/templates/go-template-syntax

You could shorten the preceding docker command to the following
if you wanted:

$ docker container run --rm -d -p 8080:8080 \
 -e WHO="Sean and Karl" \
 example/docker-node-hello:latest

You can go ahead and stop this container now, by using docker container stop and
passing in the correct container ID.

Custom Base Images
Base images are the lowest-level images that other Docker images will build upon.
Most often, these are based on minimal installs of Linux distributions like Ubuntu,
Fedora, or Alpine Linux, but they can also be much smaller, containing a single
statically compiled binary. For most people, using the official base images for their
favorite distribution or tool is a great option.

However, there are times when it is preferable to build your own base images rather
than use an image created by someone else. One reason to do this is to maintain a
consistent OS image across all your deployment methods for hardware, VMs, and
containers. Another is to get the image size down substantially. There is no need
to ship around an entire Ubuntu distribution, for example, if your application is a
statically built C or Go application. You might find that you only need the tools you
regularly use for debugging, and some other shell commands and binaries. Making
the effort to build such an image could pay off in better deployment times and easier
application distribution.

A common middle ground between these two approaches is to build images using
Alpine Linux, which is designed to be very small and is popular as a basis for
Docker images. To keep the distribution size very small, Alpine Linux is based on
the modern, lightweight musl standard library, instead of the more traditional GNU
C Library (glibc). In general, this is not a big issue, since many packages support
musl, but it is something to be aware of. It has the largest impact on Java-based
applications and DNS resolution. It’s widely used in production, however, because of
its diminutive image size. Alpine Linux is highly optimized for space, which is the
reason that it ships with /bin/sh instead of /bin/bash, by default. However, you can
also install glibc and bash in Alpine Linux if you need it, and this is often done in the
case of JVM containers.

In the official Docker documentation, there is some good information about how you
can build base images on the various Linux distributions.

Custom Base Images | 61

https://musl.libc.org
https://www.gnu.org/software/libc
https://www.gnu.org/software/libc
https://dockr.ly/2N1FZcU

Storing Images
Now that you have created a Docker image that you’re happy with, you’ll want
to store it somewhere so that it can be easily accessed by any Docker host that
you want to deploy it to. This is also the normal hand-off point between building
images and storing them somewhere for future deployment. You don’t normally build
the images on a production server and then run them. This process was described
when we talked about handoff between teams for application deployment. Ordinarily,
deployment is the process of pulling an image from a repository and running it on
one or more Linux servers. There are a few ways you can go about storing your
images into a central repository for easy retrieval.

Public Registries
Docker provides an image registry for public images that the community wants to
share. These include official images for Linux distributions, ready-to-go WordPress
containers, and much more.

If you have images that can be published on the internet, the best place for them
is a public registry, like Docker Hub. However, there are other options. When the
core Docker tools were first gaining popularity, Docker Hub did not exist. To fill this
obvious void in the community, Quay.io was created. Since then, Quay.io has gone
through a few acquisitions and is now owned by Red Hat. Cloud vendors like Google
and SaaS companies like GitHub also have their own registry offerings. Here we’ll talk
about just the two of them.

Both Docker Hub and Quay.io provide centralized Docker image registries that can
be accessed from anywhere on the internet, and provide a method to store private
images in addition to public ones. Both have nice user interfaces and the ability
to separate team access permissions and manage users. Both also offer reasonable
commercial options for private SaaS hosting of your images, much in the same way
that GitHub sells private registries on its systems. This is probably the right first step
if you’re getting serious about Docker but are not yet shipping enough code to need
an internally hosted solution.

For companies that use Docker heavily, one of the biggest downsides to these regis‐
tries is that they are not local to the network on which the application is being
deployed. This means that every layer of every deployment might need to be dragged
across the internet to deploy an application. Internet latencies have a very real impact
on software deployments, and outages that affect these registries could have a very
detrimental impact on a company’s ability to deploy smoothly and on schedule. This
is mitigated by good image design, where you make thin layers that are easy to move
around the internet.

62 | Chapter 4: Working with Docker Images

https://registry.hub.docker.com
https://hub.docker.com
https://quay.io

3 Full URL: https://docs.docker.com/registry/recipes/mirror/#configure-the-docker-daemon
4 Full URL: https://docs.docker.com/registry/recipes/mirror/#run-a-registry-as-a-pull-through-cache

Private Registries
The other option that many companies consider is to host some type of Docker
image registry internally, which can interact with the Docker client to support push‐
ing, pulling, and searching images. The open source Distribution project provides the
basic functionality that most other registries build upon.

Other strong contenders in the private registry space include Harbor and Red Hat
Quay. In addition to the basic Docker registry functionality, these products have solid
GUI interfaces and many additional features, like image verification.

Authenticating to a Registry
Communicating with a registry that stores container images is a part of daily life with
Docker. For many registries, this means you’ll need to authenticate to gain access to
images. But Docker also tries to make it easy to automate things so it can store your
login information and use it on your behalf when you request things like pulling
down a private image. By default, Docker assumes the registry will be Docker Hub,
the public repository hosted by Docker, Inc.

Although a bit more advanced, it is worth noting that you can also
configure the Docker daemon to use a custom registry mirror3 or a
pull-through image cache.4

Creating a Docker Hub account
For these examples, you will create an account on Docker Hub. You don’t need an
account to download publicly shared images, but you will need to be logged in to
avoid rate limits and upload any containers that you build.

To create your account, use a web browser of your choice to navigate to Docker Hub.

From there, you can log in via an existing account or create a new login based on
your email address. When you create your account, Docker Hub sends a verification
email to the address that you provided during sign-up. You should immediately log
in to your email account and click the verification link inside the email to finish the
validation process.

At this point, you have created a public registry to which you can upload new images.
The Account Settings option under your profile picture has a Default Privacy

Storing Images | 63

https://docs.docker.com/registry/recipes/mirror/#configure-the-docker-daemon
https://docs.docker.com/registry/recipes/mirror/#run-a-registry-as-a-pull-through-cache
https://github.com/distribution/distribution
https://goharbor.io
https://www.redhat.com/en/technologies/cloud-computing/quay
https://www.redhat.com/en/technologies/cloud-computing/quay
https://oreil.ly/16Kns
https://oreil.ly/2Am1f
https://hub.docker.com
https://hub.docker.com/settings/default-privacy

section that allows you to change your registry default visibility to private if that is
what you need.

For much better security, you should create and log in to Docker
Hub with a limited-privilege personal access token.

Logging in to a registry
Now let’s log in to the Docker Hub registry using our account:

$ docker login
Login with your Docker ID to push and pull images from Docker Hub. If you
don't have a Docker ID, head over to https://hub.docker.com to create one.
Username: <hub_username>
Password: <hub_password/token>
Login Succeeded

The command docker login is functionally the same command as
docker login docker.io.

When you get Login Succeeded back from the server, you know you’re ready to
pull images from the registry. But what happened behind the scenes? It turns out
that Docker has written a dotfile for you in your home directory to cache this
information. The permissions are set to 0600 as a security precaution against other
users reading your credentials. You can inspect the file with something like this:

$ ls -la ${HOME}/.docker/config.json
-rw-------@ 1 … 158 Dec 24 10:37 /Users/someuser/.docker/config.json

$ cat ${HOME}/.docker/config.json

On Linux you will see something like this:

{
 "auths": {
 "https://index.docker.io/v1/": {
 "auth":"cmVsaEXamPL3hElRmFCOUE=",
 "email":"someuser@example.com"
 }
 }
}

64 | Chapter 4: Working with Docker Images

https://docs.docker.com/go/access-tokens

Docker is constantly evolving and has added support for many
OS native secret management systems like the macOS Keychain
or Windows Credential Manager. So, your config.json file might
look significantly different than the example. There is also a set of
credentials managers for different platforms that can make your life
easier here.

The auth value in the Docker client config file is only base64 enco‐
ded. It is not encrypted. This is typically only a significant issue on
multiuser Linux systems, because there isn’t a default system-wide
credential manager that just works, and other privileged users on
the system can likely read your Docker client config file and access
those secrets. It is possible to configure gpg pr pass to encrypt
these files on Linux.

Here you can see that the ${HOME}/.docker/config.json file contains docker.io cre‐
dentials for the user someuser@example.com in JSON. This configuration file sup‐
ports storing credentials for multiple registries. In this case, you just have one entry,
for Docker Hub, but you could have more if you needed it. From now on, when the
registry needs authentication, Docker will look in ${HOME}/.docker/config.json to see
if you have credentials stored for this hostname. If so, it will supply them. You will
notice that one value is completely lacking here: a timestamp. These credentials are
cached forever or until you tell Docker to remove them, whichever comes first.

As with logging in, you can also log out of a registry if you no longer want to cache
the credentials:

$ docker logout
Removing login credentials for https://index.docker.io/v1/
$ cat ${HOME}/.docker/config.json

{
 "auths": {
 }
}

Here you have removed the cached credentials and they are no longer stored by
Docker. Some versions of Docker may even remove this file if it is empty. If you were
trying to log in to something other than the Docker Hub registry, you could supply
the hostname on the command line:

$ docker login someregistry.example.com

This would then add another auth entry into your ${HOME}/.docker/config.json file.

Storing Images | 65

https://github.com/docker/docker-credential-helpers

Pushing images into a repository
The first step required to push your image is to ensure that you are logged in to the
Docker repository you intend to use. For this example, we will focus on Docker Hub,
so ensure that you are logged in to Docker Hub with your preferred credentials:

$ docker login
Login with your Docker ID to push and pull images from Docker Hub. If you
don't have a Docker ID, head over to https://hub.docker.com to create one.
Username: <hub_username>
Password: <hub_password/token>
Login Succeeded

Logging in with your password grants your terminal complete access to
your account.

Once you are logged in, you can upload an image. Earlier, you used the com‐
mand docker image build -t example/docker-node-hello:latest . to build the
docker-node-hello image.

In reality, the Docker client, and for compatibility reasons, many other
container tools, actually interpret example/docker-node-hello:latest as
docker.io/example/docker-node-hello:latest. Here, docker.io signifies the
image registry hostname, and example/docker-node-hello is the repository inside
the registry that contains the images in question.

When you are building an image locally, the registry and repository name can be
anything that you want. However, when you are going to upload your image to a real
registry, you need that to match the login.

You can easily edit the tags on the image that you already created by running the
following command and replacing ${<myuser>} with your Docker Hub username:

$ docker image tag example/docker-node-hello:latest \
 docker.io/${<myuser>}/docker-node-hello:latest

If you need to rebuild the image with the new naming convention or simply want
to give it a try, you can accomplish this by running the following command in the
docker-node-hello working directory that was generated when you performed the Git
checkout earlier in the chapter.

For the following examples, you will need to replace ${<myuser>}
in all the examples with the user that you created in Docker Hub.
If you are using a different registry, you will also need to replace
docker.io with the hostname of the registry you are using.

$ docker image build -t docker.io/${<myuser>}/docker-node-hello:latest .
…

66 | Chapter 4: Working with Docker Images

On the first build, this will take a little time. If you rebuild the image, you
may find that it is very fast. This is because most, if not all, of the layers
already exist on your Docker server from the previous build. We can quickly
verify that our image is indeed on the server by running docker image ls

${<myuser>}/docker-node-hello:

$ docker image ls ${<myuser>}/docker-node-hello
REPOSITORY TAG IMAGE ID CREATED SIZE
myuser/docker-node-hello latest f683df27f02d About an hour ago 649MB

It is possible to format the output of docker image ls to make
it more concise by using the --format argument, like this: docker
image ls --format="table {{.ID}}\t{{.Repository}}".

At this point you can upload the image to the Docker repository by using the docker
image push command:

$ docker image push ${<myuser>}/docker-node-hello:latest
Using default tag: latest
The push refers to repository [docker.io/myuser/docker-node-hello]
5f3ee7afc69c: Pushed
…
5bb0785f2eee: Mounted from library/node
latest: digest: sha256:f5ceb032aec36fcacab71e468eaf0ba8a832cfc8244fbc784d0…

If this image was uploaded to a public repository, anyone in the world can now easily
download it by running the docker image pull command.

If you uploaded the image to a private repository, then users must
log in with credentials that have access to those repositories using
the docker login command before they will be able to pull the
image down to their local system.

$ docker image pull ${<myuser>}/docker-node-hello:latest
Using default tag: latest
latest: Pulling from myuser/docker-node-hello
Digest: sha256:f5ceb032aec36fcacab71e468eaf0ba8a832cfc8244fbc784d040872be041cd5
Status: Image is up to date for myuser/docker-node-hello:latest
docker.io/myuser/docker-node-hello:latest

Exploring images in Docker Hub
In addition to simply using the Docker Hub website to explore what images are
available, you can also use the docker search command to find images that might be
useful.

Storing Images | 67

https://hub.docker.com

Running docker search node will return a list of images that contain the word node
in either the image name or the description:

$ docker search node
NAME DESCRIPTION STARS OFFICIAL AUTOMATED
node Node.js is a JavaScript-ba… 12267 [OK]
mongo-express Web-based MongoDB admin in… 1274 [OK]
nodered/node-red Low-code programming for e… 544
nodered/node-red-docker Deprecated - older Node-RE… 356 [OK]
circleci/node Node.js is a JavaScript-ba… 130
kindest/node sigs.k8s.io/kind node imag… 78
bitnami/node Bitnami Node.js Docker Ima… 69 [OK]
cimg/node The CircleCI Node.js Docke… 14
opendronemap/nodeodm Automated build for NodeOD… 10 [OK]
bitnami/node-exporter Bitnami Node Exporter Dock… 9 [OK]
appdynamics/nodejs-agent Agent for monitoring Node.… 5
wallarm/node Wallarm: end-to-end API se… 5 [OK]
…

The OFFICIAL header tells you that the image is one of the official curated images
on Docker Hub. This typically means that the image is maintained by the company
or official development community that oversees that application. AUTOMATED denotes
that the image is automatically built and uploaded by a CI/CD process triggered
via commits to the underlying source code repository. Official images are always
automated.

Running a Private Registry
In keeping with the spirit of the open source community, Docker encourages the
community to share Docker images via Docker Hub by default. There are times,
however, when this is not a viable option due to commercial, legal, image retention,
or reliability concerns.

In these cases, it makes sense to host an internal private registry. Setting up a basic
registry is not difficult, but for production use, you should take the time to familiarize
yourself with all the available configuration options for the open source Docker
Registry (Distribution).

For this example, we are going to create a very simple secure registry using SSL and
HTTP basic auth.

First, let’s create a few directories and files on our Docker server. If you are using a
VM or cloud instance to run your Docker server, then you will need to SSH to that
server for the next few commands. If you are using Docker Desktop or Community
Edition, then you should be able to run these on your local system.

68 | Chapter 4: Working with Docker Images

https://docs.docker.com/docker-hub/official_images
https://docs.docker.com/registry
https://docs.docker.com/registry

Windows users may need to download additional tools, like
htppaswd, or alter the non-Docker commands to accomplish the
same tasks on your local system.

First let’s clone a Git repository that contains the basic files required to set up a
simple, authenticated Docker registry:

$ git clone https://github.com/spkane/basic-registry \
 --config core.autocrlf=input
Cloning into 'basic-registry'…
remote: Counting objects: 10, done.
remote: Compressing objects: 100% (8/8), done.
remote: Total 10 (delta 0), reused 10 (delta 0), pack-reused 0
Unpacking objects: 100% (10/10), done.

Once you have the files locally, you can change directories and examine the files that
you just downloaded:

$ cd basic-registry
$ ls
Dockerfile config.yaml.sample registry.crt.sample
README.md htpasswd.sample registry.key.sample

The Dockerfile simply takes the upstream registry image from Docker Hub and copies
some local configuration and support files into a new image.

For testing, you can use some of the included sample files, but do not use these in
production.

If your Docker server is available via localhost (127.0.0.1), then you can use these
files unmodified by simply copying each of them like this:

$ cp config.yaml.sample config.yaml
$ cp registry.key.sample registry.key
$ cp registry.crt.sample registry.crt
$ cp htpasswd.sample htpasswd

If, however, your Docker server is on a remote IP address, then you will need to do a
little additional work.

First, copy config.yaml.sample to config.yaml:
$ cp config.yaml.sample config.yaml

Storing Images | 69

Then edit config.yaml and replace 127.0.0.1 with the IP address of your Docker
server so that:

http:
 host: https://127.0.0.1:5000

becomes something like this:

http:
 host: https://172.17.42.10:5000

It is easy to create a registry using a fully qualified domain name
(FQDN), like my-registry.example.com, but for this example,
working with IP addresses is easier because no DNS is required.

Next, you need to create an SSL keypair for your registry’s IP address.

One way to do this is with the following OpenSSL command. Note that you will need
to set the IP address in this portion of the command, /CN=172.17.42.10, to match
your Docker server’s IP address:

$ openssl req -x509 -nodes -sha256 -newkey rsa:4096 \
 -keyout registry.key -out registry.crt \
 -days 14 -subj '{/CN=172.17.42.10}'

Finally, you can either use the example htpasswd file by copying it:

$ cp htpasswd.sample htpasswd

or you can create your own username and password pair for authentication by using
a command like the following, replacing ${<username>} and ${<password>} with
your preferred values:

$ docker container run --rm --entrypoint htpasswd g \
 -Bbn ${<username>} ${<password>} > htpasswd

If you look at the directory listing again, it should now look like this:

$ ls
Dockerfile config.yaml.sample registry.crt registry.key.sample
README.md htpasswd registry.crt.sample
config.yaml htpasswd.sample registry.key

If any of these files are missing, review the previous steps to ensure that you did not
miss one, before moving on.

If everything looks correct, then you should be ready to build and run the registry:

$ docker image build -t my-registry .
$ docker container run --rm -d -p 5000:5000 --name registry my-registry
$ docker container logs registry

70 | Chapter 4: Working with Docker Images

If you see errors like “docker: Error response from daemon: Con‐
flict. The container name “/registry” is already in use,” then you
need to either change the preceding container name or remove the
existing container with that name. You can remove the container
by running docker container rm registry.

Testing the private registry
Now that the registry is running, you can test it. The very first thing that you need
to do is authenticate against it. You will need to make sure that the IP address in
the docker login matches the IP address of your Docker server that is running the
registry.

myuser is the default username, and myuser-pw! is the default
password. If you generated your own htpasswd, then these will be
whatever you choose.

$ docker login 127.0.0.1:5000
Username: <registry_username>
Password: <registry_password>
Login Succeeded

This registry container has an embedded SSL key and is not using
any external storage, which means that it contains a secret, and
when you delete the running container, all your images will also be
deleted. This is by design.
In production, you will want to have your containers pull secrets
from a secrets management system and use some type of redun‐
dant external storage, like an object store. If you want to keep
your development registry images between containers, you could
add something like --mount type=bind,source=/tmp/registry-
data,target=/var/lib/registry to your docker container run
command to store the registry data on the Docker server.

Now, let’s see if you can push the image you just built into your local private registry.

In all of these commands, ensure that you use the correct IP
address for your registry.

Storing Images | 71

$ docker image tag my-registry 127.0.0.1:5000/my-registry
$ docker image push 127.0.0.1:5000/my-registry
Using default tag: latest
The push refers to repository [127.0.0.1:5000/my-registry]
f09a0346302c: Pushed
…
4fc242d58285: Pushed
latest: digest: sha256:c374b0a721a12c41d5b298930d11e658fbd37f22dc2a0fac7d6a2…

You can then try to pull the same image from your repository:

$ docker image pull 127.0.0.1:5000/my-registry
Using default tag: latest
latest: Pulling from my-registry
Digest: sha256:c374b0a721a12c41d5b298930d11e658fbd37f22dc2a0fac7d6a2ecdc0ba5490
Status: Image is up to date for 127.0.0.1:5000/my-registry:latest
127.0.0.1:5000/my-registry:latest

It’s worth keeping in mind that both Docker Hub and Docker
Distribution expose an API endpoint that you can query for useful
information. You can find out more information about the API via
the official documentation.

If you have not encountered any errors, then you have a working registry for develop‐
ment and can build on this foundation to create a production registry. At this point,
you may want to stop the registry for the time being. You can easily accomplish this
by running the following:

$ docker container stop registry

As you become comfortable with Docker Distribution, you may
also want to consider exploring the Cloud Native Computing
Foundation (CNCF) open source project, called Harbor, which
extends the Docker Distribution with a lot of security and
reliability-focused features.

Optimizing Images
After you have spent a little bit of time working with Docker, you will quickly notice
that keeping your image sizes small and your build times fast can be very beneficial in
decreasing the time required to build and deploy new versions of your software into
production. In this section, we will talk a bit about some of the considerations you
should always keep in mind when designing your images and a few techniques that
can help you achieve these goals.

72 | Chapter 4: Working with Docker Images

https://github.com/distribution/distribution/blob/main/docs/spec/api.md
https://goharbor.io

Keeping Images Small
In most modern businesses, downloading a single 1 GB file from a remote location
on the internet is not something that people often worry about. It is so easy to find
software on the internet that people will often rely on simply re-downloading it if
they need it again, instead of keeping a local copy for the future. This may often be
acceptable when you truly need a single copy of this software on a single server, but
it can quickly become a scaling problem when you need the same software on 100+
nodes and you deploy new releases multiple times a day. Downloading these large
files can quickly cause network congestion and slower deployment cycles that have a
real impact on the production environment.

For convenience, a large number of Linux containers inherit from a base image that
contains a minimal Linux distribution. Although this is an easy starting place, it
isn’t required. Containers only need to contain the files that are required to run the
application on the host kernel, and nothing else. The best way to explain this is to
explore a very minimal container.

Go is a compiled programming language that can easily generate statically compiled
binary files. For this example, we are going to use a very small web application
written in Go that can be found on GitHub.

Let’s go ahead and try out the application so that you can see what it does. Run the
following command, and then open up a web browser and point it to your Docker
host on port 8080 (e.g., http://127.0.0.1:8080 for Docker Desktop and Community
Edition):

$ docker container run --rm -d -p 8080:8080 spkane/scratch-helloworld

If all goes well, you should see the following message in your web browser: “Hello
World from Go in minimal Linux container.” Now let’s take a look at what files this
container comprises. It would be fair to assume that at a minimum it will include a
working Linux environment and all the files required to compile Go programs, but
you will soon see that this is not the case.

While the container is still running, execute the following command to determine
what the container ID is. The following command returns the information for the last
container that you created:

$ docker container ls -l
CONTAINER ID IMAGE COMMAND CREATED …
ddc3f61f311b spkane/scratch-helloworld "/helloworld" 4 minutes ago …

You can then use the container ID that you obtained from running the previous
command to export the files in the container into a tarball, which can be easily
examined:

$ docker container export ddc3f61f311b -o web-app.tar

Optimizing Images | 73

https://github.com/spkane/scratch-helloworld

Using the tar command, you can now examine the contents of your container at the
time of the export:

$ tar -tvf web-app.tar
-rwxr-xr-x 0 0 0 0 Jan 7 15:54 .dockerenv
drwxr-xr-x 0 0 0 0 Jan 7 15:54 dev/
-rwxr-xr-x 0 0 0 0 Jan 7 15:54 dev/console
drwxr-xr-x 0 0 0 0 Jan 7 15:54 dev/pts/
drwxr-xr-x 0 0 0 0 Jan 7 15:54 dev/shm/
drwxr-xr-x 0 0 0 0 Jan 7 15:54 etc/
-rwxr-xr-x 0 0 0 0 Jan 7 15:54 etc/hostname
-rwxr-xr-x 0 0 0 0 Jan 7 15:54 etc/hosts
lrwxrwxrwx 0 0 0 0 Jan 7 15:54 etc/mtab -> /proc/mounts
-rwxr-xr-x 0 0 0 0 Jan 7 15:54 etc/resolv.conf
-rwxr-xr-x 0 0 0 3604416 Jul 2 2014 helloworld
drwxr-xr-x 0 0 0 0 Jan 7 15:54 proc/
drwxr-xr-x 0 0 0 0 Jan 7 15:54 sys/

The first thing you might notice here is that there are almost no files in this container,
and almost all of them are zero bytes in length. All of the files that have a zero length
are required to exist in every Linux container and are automatically bind-mounted
from the host into the container when it is first created. All of these files, except
for .dockerenv, are critical files that the kernel needs to do its job properly. The only
file in this container that has any actual size and is related to our application is the
statically compiled helloworld binary.

The takeaway from this exercise is that your containers are only required to contain
exactly what they need to run on the underlying kernel. Everything else is unneces‐
sary. Because it is often useful for troubleshooting to have access to a working shell
in your container, people will often compromise and build their images from a very
lightweight Linux distribution like Alpine Linux.

If you find yourself exploring image files a lot, you might want to
take a look at the tool dive, which provides a nice CLI interface for
understanding what an image contains.

To dive into this a little deeper, let’s look at that same container again so that we
can dig into the underlying filesystem and compare it with the popular alpine base
image.

Although we could easily poke around in the alpine image by simply running
docker container run -ti alpine:latest /bin/sh, we cannot do this with the
spkane/scratch-helloworld image, because it does not contain a shell or SSH. This
means that we can’t use ssh, nsenter, or docker container exec to examine it,
though there is an advanced trick discussed in “Debugging Shell-less Containers” on

74 | Chapter 4: Working with Docker Images

https://unix.stackexchange.com/questions/198590/what-is-a-bind-mount
https://github.com/wagoodman/dive

page 336. Earlier, we took advantage of the docker container export command to
create a .tar file that contained a copy of all the files in the container, but this time
around we are going to examine the container’s filesystem by connecting directly to
the Docker server and then looking into the container’s filesystem itself. To do this,
we need to find out where the image files reside on the server’s disk.

To determine where on the server our files are actually being stored, run docker
image inspect on the alpine:latest image:

$ docker image inspect alpine:latest

[
 {
 "Id": "sha256:3fd…353",
 "RepoTags": [
 "alpine:latest"
],
 "RepoDigests": [
 "alpine@sha256:7b8…f8b"
],
…
 "GraphDriver": {
 "Data": {
 "MergedDir":
 "/var/lib/docker/overlay2/ea8…13a/merged",
 "UpperDir":
 "/var/lib/docker/overlay2/ea8…13a/diff",
 "WorkDir":
 "/var/lib/docker/overlay2/ea8…13a/work"
 },
 "Name": "overlay2"
…
 }
 }
…
]

And then on the spkane/scratch-helloworld:latest image:

$ docker image inspect spkane/scratch-helloworld:latest

[
 {
 "Id": "sha256:4fa…06d",
 "RepoTags": [
 "spkane/scratch-helloworld:latest"
],
 "RepoDigests": [
 "spkane/scratch-helloworld@sha256:46d…a1d"
],
…
 "GraphDriver": {
 "Data": {

Optimizing Images | 75

 "LowerDir":
 "/var/lib/docker/overlay2/37a…84d/diff:
 /var/lib/docker/overlay2/28d…ef4/diff",
 "MergedDir":
 "/var/lib/docker/overlay2/fc9…c91/merged",
 "UpperDir":
 "/var/lib/docker/overlay2/fc9…c91/diff",
 "WorkDir":
 "/var/lib/docker/overlay2/fc9…c91/work"
 },
 "Name": "overlay2"
…
 }
 }
…
]

In this particular example, we are going to use Docker Desktop
running on macOS, but this general approach will work on most
Docker servers. However, you can access your Docker server via
whatever method is easiest.

Since we are using Docker Desktop, we need to use our nsenter trick to enter the
SSH-less VM and explore the filesystem:

$ docker container run --rm -it --privileged --pid=host debian \
 nsenter -t 1 -m -u -n -i sh

/ #

Inside the VM, we should now be able to explore the various directories listed in the
GraphDriver section of the docker image inspect commands.

In this example, if we look at the first entry for the alpine image, we
will see that it is labeled MergedDir and lists the folder /var/lib/docker/overlay2/
ea86408b2b15d33ee27d78ff44f82104705286221f055ba1331b58673f4b313a/merged. If
we list that directory, we will get an error, but from listing the parent directory,
we quickly discover that we actually want to look at the diff directory:

/ # ls -lFa /var/lib/docker/overlay2/ea…3a/merged

ls: /var/lib/docker/overlay2/ea..3a/merged: No such file or directory

/ # ls -lF /var/lib/docker/overlay2/ea…3a/

total 8
drwxr-xr-x 18 root root 4096 Mar 15 19:27 diff/
-rw-r--r-- 1 root root 26 Mar 15 19:27 link

/ # ls -lF /var/lib/docker/overlay2/ea…3a/diff

76 | Chapter 4: Working with Docker Images

total 64
drwxr-xr-x 2 root root 4096 Jan 9 19:37 bin/
drwxr-xr-x 2 root root 4096 Jan 9 19:37 dev/
drwxr-xr-x 15 root root 4096 Jan 9 19:37 etc/
drwxr-xr-x 2 root root 4096 Jan 9 19:37 home/
drwxr-xr-x 5 root root 4096 Jan 9 19:37 lib/
drwxr-xr-x 5 root root 4096 Jan 9 19:37 media/
drwxr-xr-x 2 root root 4096 Jan 9 19:37 mnt/
dr-xr-xr-x 2 root root 4096 Jan 9 19:37 proc/
drwx------ 2 root root 4096 Jan 9 19:37 root/
drwxr-xr-x 2 root root 4096 Jan 9 19:37 run/
drwxr-xr-x 2 root root 4096 Jan 9 19:37 sbin/
drwxr-xr-x 2 root root 4096 Jan 9 19:37 srv/
drwxr-xr-x 2 root root 4096 Jan 9 19:37 sys/
drwxrwxrwt 2 root root 4096 Jan 9 19:37 tmp/
drwxr-xr-x 7 root root 4096 Jan 9 19:37 usr/
drwxr-xr-x 11 root root 4096 Jan 9 19:37 var/

/ # du -sh /var/lib/docker/overlay2/ea…3a/diff
4.5M /var/lib/docker/overlay2/ea…3a/diff

Now, alpine happens to be a very small base image, weighing in at only 4.5 MB, and
it is ideal for building containers on top of it. However, we can see that there is still a
lot of stuff in this container before we have started to build anything from it.

Now, let’s take a look at the files in the spkane/scratch-helloworld image. In this
case, we want to look at the first directory from the LowerDir entry of the docker
image inspect output, which you’ll notice also ends in a directory called diff:

/ # ls -lFh /var/lib/docker/overlay2/37…4d/diff

total 3520
-rwxr-xr-x 1 root root 3.4M Jul 2 2014 helloworld*

/ # exit

You’ll notice that there is only a single file in this directory, and it is 3.4 MB. This
helloworld binary is the only file shipped in this container and is smaller than the
starting size of the alpine image before any application files have been added to it.

It is possible to run the helloworld application from that directory
on your Docker server because it does not require any other files.
You really don’t want to do this on anything but a development
box, but it can help drive the point home about how useful these
types of statically compiled applications can be.

Optimizing Images | 77

Multistage builds
There is a way you can constrain containers to an even smaller size in many cases:
multistage builds. This is how we recommend that you build most production
containers. You don’t have to worry as much about bringing in extra resources to
build your application, and you can still run a lean production container. Multistage
containers also encourage doing builds inside Docker, which is a great pattern for
repeatability in your build system.

As the original author of the scratch-helloworld application has written, the release
of multistage build support in Docker itself has made the process of creating small
containers much easier than it used to be. In the past, to do the same thing that mul‐
tistage delivers for nearly free, you were required to build one image that compiled
your code, extract the resulting binary, and then build a second image without all
the build dependencies that you would then inject that binary into. This was often
difficult to set up and did not always work out of the box with standard deployment
pipelines.

Today, you can now achieve similar results using a Dockerfile as simple as this one:

Build container
FROM docker.io/golang:alpine as builder
RUN apk update && \
 apk add git && \
 CGO_ENABLED=0 go install -a -ldflags '-s' \
 github.com/spkane/scratch-helloworld@latest

Production container
FROM scratch
COPY --from=builder /go/bin/scratch-helloworld /helloworld
EXPOSE 8080
CMD ["/helloworld"]

The first thing you’ll notice about this Dockerfile is that it looks a lot like two Docker‐
files that have been combined into one. Indeed this is the case, but there is more to
it. The FROM command has been extended so that you can name the image during the
build phase. In this example, the first line, which reads FROM docker.io/golang as
builder, means that you want to base your build on the golang image and will be
referring to this build image/stage as builder.

On the fourth line, you’ll see another FROM line, which was not allowed
before the introduction of multistage builds. This FROM line uses a special
image name, called scratch, that tells Docker to start from an empty
image, which includes no additional files. The next line, which reads COPY --

from=builder /go/bin/scratch-helloworld /helloworld, allows you to copy the
binary that you built in the builder image directly into the current image. This will
ensure that you end up with the smallest container possible.

78 | Chapter 4: Working with Docker Images

https://medium.com/@adriaandejonge/simplify-the-smallest-possible-docker-image-62c0e0d342ef

5 Full URL: https://github.com/bluewhalebook/docker-up-and-running-3rd-edition/blob/main/chapter_04/multi
stage/Dockerfile

The EXPOSE 8080 line is documentation that is intended to inform users which
port(s) and protocols (TCP is the default protocol) the service listens on.

Let’s try to build this and see what happens. First, create a directory where you can
work, and then, using your favorite text editor, paste the content from the preceding
example into a file called Dockerfile:

$ mkdir /tmp/multi-build
$ cd /tmp/multi-build
$ vi Dockerfile

You can download a copy of this Dockerfile from GitHub.5

We can now start the multistage build:

$ docker image build .
[+] Building 9.7s (7/7) FINISHED
 => [internal] load build definition from Dockerfile
 => => transferring dockerfile: 37B
 => [internal] load .dockerignore
 => => transferring context: 2B
 => [internal] load metadata for docker.io/library/golang:alpine
 => CACHED [builder 1/2] FROM docker.io/library/golang:alpine@sha256:7cc6257…
 => [builder 2/2] RUN apk update && apk add git && CGO_ENABLED=0 go install …
 => [stage-1 1/1] COPY --from=builder /go/bin/scratch-helloworld /helloworld
 => exporting to image
 => => exporting layers
 => => writing image sha256:bb853f23418161927498b9631f54692cf11d84d6bde3af2d…

You’ll notice that the output looks like most other builds and still ends by reporting
the successful creation of our final, very minimal image.

If you are compiling binaries on your local system that use shared
libraries, you need to be careful to ensure that the correct versions
of those shared libraries are also available to the process inside the
container.

You are not limited to two stages, and in fact, none of the stages need to even be
related to one another. They will be run in order. You could, for example, have a stage
based on the public Go image that builds your underlying Go application to serve an

Optimizing Images | 79

https://github.com/bluewhalebook/docker-up-and-running-3rd-edition/blob/main/chapter_04/multistage/Dockerfile
https://github.com/bluewhalebook/docker-up-and-running-3rd-edition/blob/main/chapter_04/multistage/Dockerfile
https://oreil.ly/C1TSz

API, and another stage based on the Angular container to build your frontend web
UI. The final stage could then combine outputs from both.

As you start to build more complex images, you may find that
being limited to a single build context is challenging. The docker-
buildx plug-in, which we discuss near the end of this chapter, is
capable of supporting multiple build contexts, which can be used to
support some very advanced workflows.

Layers Are Additive
Something that is not apparent until you dig much deeper into how images are built
is that the filesystem layers that make up your images are strictly additive by design.
Although you can shadow/mask files in previous layers, you cannot delete those files.
In practice, this means that you cannot make your image smaller by simply deleting
files that were generated in earlier steps.

If you enable experimental features on your Docker server, it is
possible to squash a bunch of layers into a single layer using docker
image build --squash. This will cause all of the files that were
deleted in the intermediate layers to actually disappear from the
final image and can therefore recover a lot of wasted space, but
it also means that the whole layer must be downloaded by every
system that requires it, even when only a single line of source code
was updated, so there are real trade-offs to using this approach.

The easiest way to explain the additive nature of image layers is by using some
practical examples. In a new directory, download or create the following file, which
will generate an image that launches the Apache web server running on Fedora Linux:

FROM docker.io/fedora
RUN dnf install -y httpd
CMD ["/usr/sbin/httpd", "-DFOREGROUND"]

and then build it like this:

$ docker image build .
[+] Building 63.5s (6/6) FINISHED
 => [internal] load build definition from Dockerfile
 => => transferring dockerfile: 130B
 => [internal] load .dockerignore
 => => transferring context: 2B
 => [internal] load metadata for docker.io/library/fedora:latest
 => [1/2] FROM docker.io/library/fedora
 => [2/2] RUN dnf install -y httpd
 => exporting to image

80 | Chapter 4: Working with Docker Images

https://www.docker.com/blog/dockerfiles-now-support-multiple-build-contexts
https://github.com/bluewhalebook/docker-up-and-running-3rd-edition/blob/main/chapter_04/additive

 => => exporting layers
 => => writing image sha256:543d61c956778b8ea3b32f1e09a9354a864467772e6…

Let’s go ahead and tag the resulting image so that you can easily refer to it in
subsequent commands:

$ docker image tag sha256:543d61c956778b8ea3b32f1e09a9354a864467772e6… size1

Now let’s take a look at our image with the docker image history command. This
command will give us some insight into the filesystem layers and build steps that our
image uses:

$ docker image history size1
IMAGE CREATED CREATED BY SIZE …
543d61c95677 About a minute ago CMD ["/usr/sbin/httpd" "-DFOREGROU…"] 0B
<missing> About a minute ago RUN /bin/sh -c dnf install -y httpd … 273MB
<missing> 6 weeks ago /bin/sh -c #(nop) CMD ["/bin/bash"]… 0B
<missing> 6 weeks ago /bin/sh -c #(nop) ADD file:58865512c… 163MB
<missing> 3 months ago /bin/sh -c #(nop) ENV DISTTAG=f36co… 0B
<missing> 15 months ago /bin/sh -c #(nop) LABEL maintainer=… 0B

You’ll notice that three of the layers added no size to our final image, but two of them
increase the size a great deal. The layer that is 163 MB makes sense, as this is the base
Fedora image that includes a minimal Linux distribution; however, the 273 MB layer
is surprising. The Apache web server shouldn’t be nearly that large, so what’s going on
here, exactly?

If you have experience with package managers like apk, apt, dnf, or yum, then you
may know that most of these tools rely heavily on a large cache that includes details
about all the packages that are available for installation on the platform in question.
This cache uses up a huge amount of space and is completely useless once you have
installed the packages you need. The most obvious next step is to simply delete the
cache. On Fedora systems, you could do this by editing your Dockerfile so that it
looks like this:

FROM docker.io/fedora
RUN dnf install -y httpd
RUN dnf clean all
CMD ["/usr/sbin/httpd", "-DFOREGROUND"]

and then building, tagging, and examining the resulting image:

$ docker image build .
[+] Building 0.5s (7/7) FINISHED
…
 => => writing image sha256:b6bf99c6e7a69a1229ef63fc086836ada20265a793cb8f2d…

$ docker image tag sha256:b6bf99c6e7a69a1229ef63fc086836ada20265a793cb8f2d17…
IMAGE CREATED CREATED BY SIZE …
b6bf99c6e7a6 About a minute ago CMD ["/usr/sbin/httpd" "-DFOREGROU…"] 0B
<missing> About a minute ago RUN /bin/sh -c dnf clean all # build… 71.8kB
<missing> 10 minutes ago RUN /bin/sh -c dnf install -y httpd … 273MB

Optimizing Images | 81

<missing> 6 weeks ago /bin/sh -c #(nop) CMD ["/bin/bash"]… 0B
<missing> 6 weeks ago /bin/sh -c #(nop) ADD file:58865512c… 163MB
<missing> 3 months ago /bin/sh -c #(nop) ENV DISTTAG=f36co… 0B
<missing> 15 months ago /bin/sh -c #(nop) LABEL maintainer=… 0B

If you look carefully at the output from the docker image history command, you’ll
notice that you have created a new layer that adds 71.8kB to the image, but you have
not decreased the size of the problematic layer at all. What is happening, exactly?

The important thing to understand is that image layers are strictly additive in nature.
Once a layer is created, nothing can be removed from it. This means that you cannot
make earlier layers in an image smaller by deleting files in subsequent layers. When
you delete or edit files in subsequent layers, you’re simply masking the older version
with the modified or removed version in the new layer. This means that the only way
you can make a layer smaller is by removing files before you save the layer.

The most common way to deal with this is by stringing commands together on
a single Dockerfile line. You can do this very easily by taking advantage of the &&
operator. This operator acts as a Boolean AND statement and basically translates into
English as “and if the previous command ran successfully, run this command.” In
addition to this, you can take advantage of the \ operator, which is used to indicate
that a command continues after the newline. This can help improve the readability of
long commands.

With this knowledge in hand, you can rewrite the Dockerfile like this:

FROM docker.io/fedora
RUN dnf install -y httpd && \
 dnf clean all
CMD ["/usr/sbin/httpd", "-DFOREGROUND"]

Now you can rebuild the image and see how this change has impacted the size of the
layer that includes the http daemon:

$ docker image build .
[+] Building 0.5s (7/7) FINISHED
…
 => => writing image sha256:14fe7924bb0b641ddf11e08d3dd56f40aff4271cad7a421fe…

$ docker image tag sha256:14fe7924bb0b641ddf11e08d3dd56f40aff4271cad7a421fe9b…
IMAGE CREATED CREATED BY SIZE …
14fe7924bb0b About a minute ago CMD ["/usr/sbin/httpd" "-DFOREGROUN"]… 0B
<missing> About a minute ago RUN /bin/sh -c dnf install -y httpd &… 44.8MB
<missing> 6 weeks ago /bin/sh -c #(nop) CMD ["/bin/bash"] … 0B
<missing> 6 weeks ago /bin/sh -c #(nop) ADD file:58865512ca… 163MB
<missing> 3 months ago /bin/sh -c #(nop) ENV DISTTAG=f36con… 0B
<missing> 15 months ago /bin/sh -c #(nop) LABEL maintainer=C… 0B

In the first two examples, the layer in question was 273 MB in size, but now that
you have removed many unnecessary files that were added to that layer, you can

82 | Chapter 4: Working with Docker Images

shrink the layer down to 44.8 MB. This is a very large saving of space, especially when
you consider how many servers might be pulling the image down during any given
deployment.

Utilizing the Layer Cache
The final building technique that we will cover here is related to keeping build times
as fast as possible. One of the important goals of the DevOps movement is to keep
feedback loops as tight as possible. This means that it is important to try to ensure
that problems are discovered and reported as quickly as possible so that they can be
fixed when people are still completely focused on the code in question and haven’t
moved on to other unrelated tasks.

During any standard build process, Docker uses a layer cache to try to avoid
rebuilding any image layers that it has already built and that do not contain any
noticeable changes. Because of this cache, the order in which you do things inside
your Dockerfile can have a dramatic impact on how long your builds take on average.

For starters, let’s take the Dockerfile from the previous example and customize it just a
bit so that it looks like this.

Along with the other examples, you can also find these files on
GitHub.

FROM docker.io/fedora
RUN dnf install -y httpd && \
 dnf clean all
RUN mkdir -p /var/www && \
 mkdir -p /var/www/html
ADD index.html /var/www/html
CMD ["/usr/sbin/httpd", "-DFOREGROUND"]

Now, in the same directory, let’s also create a new file called index.html that looks like
this:

<html>
 <head>
 <title>My custom Web Site</title>
 </head>
 <body>
 <p>Welcome to my custom Web Site</p>
 </body>
</html>

For the first test, let’s time the build without using the Docker cache at all, by using
the following command:

Optimizing Images | 83

https://github.com/bluewhalebook/docker-up-and-running-3rd-edition/blob/main/chapter_04/cache

6 Full URL: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/measure-command?
view=powershell-7.3

$ time docker image build --no-cache .
time docker image build --no-cache .
[+] Building 48.3s (9/9) FINISHED
 => [internal] load build definition from Dockerfile
 => => transferring dockerfile: 238B
 => [internal] load .dockerignore
 => => transferring context: 2B
 => [internal] load metadata for docker.io/library/fedora:latest
 => CACHED [1/4] FROM docker.io/library/fedora
 => [internal] load build context
 => => transferring context: 32B
 => [2/4] RUN dnf install -y httpd && dnf clean all
 => [3/4] RUN mkdir -p /var/www && mkdir -p /var/www/html
 => [4/4] ADD index.html /var/www/html
 => exporting to image
 => => exporting layers
 => => writing image sha256:7f94d0d6492f2d2c0b8576f0f492e03334e6a535cac85576c…

real 1m21.645s
user 0m0.428s
sys 0m0.323s

Windows users should be able to run this command in a WSL2 ses‐
sion or use the PowerShell Measure-Command6 function to replace
the Unix time command used in these examples.

The output from the time command tells us that the build without the cache took
about a minute and 21 seconds and only pulled the base image from the layer cache.
If you rebuild the image immediately afterward and allow Docker to use the cache,
you will see that the build is very fast:

$ time docker image build .
[+] Building 0.1s (9/9) FINISHED
 => [internal] load build definition from Dockerfile
 => => transferring dockerfile: 37B
 => [internal] load .dockerignore
 => => transferring context: 2B
 => [internal] load metadata for docker.io/library/fedora:latest
 => [1/4] FROM docker.io/library/fedora
 => [internal] load build context
 => => transferring context: 32B
 => CACHED [2/4] RUN dnf install -y httpd && dnf clean all
 => CACHED [3/4] RUN mkdir -p /var/www && mkdir -p /var/www/html
 => CACHED [4/4] ADD index.html /var/www/html

84 | Chapter 4: Working with Docker Images

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/measure-command?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/measure-command?view=powershell-7.3
https://oreil.ly/MQQY_

 => exporting to image
 => => exporting layers
 => => writing image sha256:0d3aeeeeebd09606d99719e0c5197c1f3e59a843c4d7a21af…

real 0m0.416s
user 0m0.120s
sys 0m0.087s

Since none of the layers changed, and the cache could be fully leveraged for all four
build steps, the build took only a fraction of a second to complete. Now, let’s make a
small improvement to the index.html file so that it looks like this:

<html>
 <head>
 <title>My custom Web Site</title>
 </head>
 <body>
 <div align="center">
 <p>Welcome to my custom Web Site!!!</p>
 </div>
 </body>
</html>

and then let’s time the rebuild again:

$ time docker image build .
[+] Building 0.1s (9/9) FINISHED
 => [internal] load build definition from Dockerfile
 => => transferring dockerfile: 37B
 => [internal] load .dockerignore
 => => transferring context: 2B
 => [internal] load metadata for docker.io/library/fedora:latest
 => [internal] load build context
 => => transferring context: 214B
 => [1/4] FROM docker.io/library/fedora
 => CACHED [2/4] RUN dnf install -y httpd && dnf clean all
 => CACHED [3/4] RUN mkdir -p /var/www && mkdir -p /var/www/html
 => [4/4] ADD index.html /var/www/html
 => ADD index.html /var/www/html
 => exporting to image
 => => exporting layers
 => => writing image sha256:daf792da1b6a0ae7cfb2673b29f98ef2123d666b8d14e0b74…

real 0m0.456s
user 0m0.120s
sys 0m0.068s

Optimizing Images | 85

If you look at the output carefully, you will see that the cache was used for most of the
build. It wasn’t until step 4/4, when Docker needed to copy index.html, that the cache
was invalidated and the layers had to be re-created. Because the cache could be used
for most of the build, the build still did not exceed a second.

But what would happen if you changed the order of the commands in the Dockerfile
so that they looked like this:

FROM docker.io/fedora
RUN mkdir -p /var/www && \
 mkdir -p /var/www/html
ADD index.html /var/www/html
RUN dnf install -y httpd && \
 dnf clean all
CMD ["/usr/sbin/httpd", "-DFOREGROUND"]

Let’s quickly time another test build without the cache to get a baseline:

$ time docker image build --no-cache .
[+] Building 51.5s (9/9) FINISHED
…
 => => writing image sha256:1cc5f2c5e4a4d1cf384f6fb3a34fd4d00e7f5e7a7308d5f1f…

real 0m51.859s
user 0m0.237s
sys 0m0.159s

In this case, the build took 51 seconds to complete: since we used the --no-cache
argument, we know that nothing was pulled from the layer cache, except for the base
image. The difference in time from the very first test is entirely due to fluctuating
network speeds and has nothing to do with the changes that you have made to the
Dockerfile.

Now, let’s edit index.html again, like so:

<html>
 <head>
 <title>My custom Web Site</title>
 </head>
 <body>
 <div align="center" style="font-size:180%">
 <p>Welcome to my custom Web Site</p>
 </div>
 </body>
</html>

And now, let’s time the image rebuild while using the cache:

$ time docker image build .
[+] Building 43.4s (9/9) FINISHED
 => [internal] load build definition from Dockerfile
 => => transferring dockerfile: 37B
 => [internal] load .dockerignore

86 | Chapter 4: Working with Docker Images

 => => transferring context: 2B
 => [internal] load metadata for docker.io/library/fedora:latest
 => [1/4] FROM docker.io/library/fedora
 => [internal] load build context
 => => transferring context: 233B
 => CACHED [2/4] RUN mkdir -p /var/www && mkdir -p /var/www/html
 => [3/4] ADD index.html /var/www/html
 => [4/4] RUN dnf install -y httpd && dnf clean all
 => exporting to image
 => => exporting layers
 => => writing image sha256:9a05b2d01b5870649e0ad1d7ad68858e0667f402c8087f0b4…

real 0m43.695s
user 0m0.211s
sys 0m0.133s

The first time that you rebuilt the image, after editing the index.html file, it took only
.456 seconds, but this time it took 43.695 seconds, almost exactly as long as it took to
build the whole image without using the cache at all.

This is because you have modified the Dockerfile so that the index.html file is copied
into the image very early in the process. The problem with doing it this way is that
the index.html file changes frequently and will often invalidate the cache. The other
issue is that it is unnecessarily placed before a very time-consuming step in our
Dockerfile: installing the Apache web server.

The important lesson to take away from all of this is that order matters, and in
general, you should always try to order your Dockerfile so that the most stable and
time-consuming portions of your build process happen first and your code is added
as late in the process as possible.

For projects that require you to install dependencies based on your code using tools
like npm and bundle, it is also a good idea to do some research about optimizing
your Docker builds for those platforms. This often includes locking down your
dependency versions and storing them along with your code so that they do not need
to be downloaded for each and every build.

Directory Caching
One of the many features that BuildKit adds to the image-building experience is
directory caching. Directory caching is an incredibly useful tool for speeding up build
times without saving a lot of files that are unnecessary for the runtime into your
image. In essence, it allows you to save the contents of a directory inside your image
in a special layer that can be bind-mounted at build time and then unmounted before
the image snapshot is made. This is often used to handle directories where tools like
Linux software installers (apt, apk, dnf, etc.), and language dependency managers
(npm, bundler, pip, etc.), download their databases and archive files.

Optimizing Images | 87

If you are unfamiliar with bind mounts and what they are, you can
find a bind mount overview in the Docker documentation.

To make use of directory caching, you must have BuildKit enabled. In most circum‐
stances, this should already be the case, but you can force it from the client side, by
setting the environment variable DOCKER_BUILDKIT= to 1:

$ export DOCKER_BUILDKIT=1

Let’s explore directory caching by checking out the following git repository and
seeing how utilizing directory caching can significantly improve consecutive builds
while still keeping the resulting image sizes smaller:

$ git clone https://github.com/spkane/open-mastermind.git \
 --config core.autocrlf=input

$ cd open-mastermind
$ cat Dockerfile

FROM python:3.9.15-slim-bullseye
RUN mkdir /app
WORKDIR /app
COPY . /app
RUN pip install -r requirements.txt
WORKDIR /app/mastermind
CMD ["python", "mastermind.py"]

This codebase has a very generic Dockerfile checked into the repo. Let’s go ahead and
see how long it takes to build this image, with and without the layer cache, and let’s
also examine how large the resulting image is:

$ time docker build --no-cache -t docker.io/spkane/open-mastermind:latest .

[+] Building 67.5s (12/12) FINISHED
…
 => => naming to docker.io/spkane/open-mastermind:latest 0.0s

real 0m28.934s
user 0m0.222s
sys 0m0.248s

$ docker image ls --format "{{ .Size }}" spkane/open-mastermind:latest
293MB

$ time docker build -t docker.io/spkane/open-mastermind:latest .

[+] Building 1.5s (12/12) FINISHED
…
 => => naming to docker.io/spkane/open-mastermind:latest 0.0s

88 | Chapter 4: Working with Docker Images

https://docs.docker.com/storage/bind-mounts

real 0m1.083s
user 0m0.098s
sys 0m0.095s

From this output, we can see that this image takes just under 29 seconds to build
without the layer cache and just under 2 seconds to build when it can fully utilize the
layer cache. The resulting image size is 293 MB in total.

BuildKit finally has support for modifying or completely disabling
the colors used for the output. This is particularly nice for any‐
one who uses a dark background in their terminal. You can con‐
figure these colors by setting something like export BUILDKIT_
COLORS=run=green:warning=yellow:error=red:cancel=cyan in
your environment, or you can completely disable the colors by
setting export NO_COLOR=true.
Note that the BuildKit version used in various docker components
and third-party tools is still being updated, so it might not work yet
in every situation.

If you want to test the build, go ahead and run it:

$ docker container run -ti --rm docker.io/spkane/open-mastermind:latest

This will launch a terminal-based open source version of the Mastermind game.
There are on-screen directions for the game, and as a fallback, you can always exit by
typing Ctrl-C.

Since this is a Python application, it uses the requirements.txt file to list all of the
libraries that the application requires, and then the pip application is used in the
Dockerfile to install these dependencies.

We are installing some unnecessary dependencies simply to make
the benefits of directory caching more obvious.

Go ahead and open up the requirements.txt file and add a line that reads log-
symbols, so that it looks like this:

colorama
These are not required - but are used for demonstration purposes
pandas
flask
log-symbols

Let’s rerun the build now:

Optimizing Images | 89

https://github.com/moby/buildkit#color-output-controls
https://github.com/moby/buildkit#color-output-controls
https://github.com/philshem/open-mastermind

$ time docker build -t docker.io/spkane/open-mastermind:latest \
 --progress=plain .

#1 [internal] load build definition from Dockerfile
…
#9 [5/6] RUN pip install -r requirements.txt
#9 sha256:82dbc10f1bb9fa476d93cc0d8104b76f46af8ece7991eb55393d6d72a230919e
#9 1.954 Collecting colorama
#9 2.058 Downloading colorama-0.4.5-py2.py3-none-any.whl (16 kB)
…
real 0m16.379s
user 0m0.112s
sys 0m0.082s

If you look at the full output for step 5/6, you will notice that all the dependencies
are downloaded again, even though pip would normally have most of those depen‐
dencies cached in /root/.cache. This inefficiency results from the builder seeing that
we have made a change that impacts this layer and therefore completely re-creates the
layer, so we lose that cache, even though we had it stored in the image layer.

Let’s go ahead and improve this situation. To do this, we need to leverage the BuildKit
directory cache, and to do that we need to make a few changes to the Dockerfile so
that it looks like this:

syntax=docker/dockerfile:1
FROM python:3.9.15-slim-bullseye
RUN mkdir /app
WORKDIR /app
COPY . /app
RUN --mount=type=cache,target=/root/.cache pip install -r requirements.txt
WORKDIR /app/mastermind
CMD ["python", "mastermind.py"]

There are two important changes in there. First, we added the following line:

syntax=docker/dockerfile:1

This tells Docker that we are going to use a newer version of the Dockerfile frontend,
which provides us with access to BuildKit’s new features.

Then we edited the RUN line to look like this:

RUN --mount=type=cache,target=/root/.cache pip install -r requirements.txt

This line tells BuildKit to mount a caching layer into the container at /root/.cache
for the duration of this one build step. This will accomplish two goals for us. It will
remove the contents of that directory from the resulting image, and it will also be
remounted and available to pip in consecutive builds.

Let’s go ahead and do a full rebuild of the image with these changes, to generate
the initial cache directory contents. If you follow the output, you will see that pip
downloads all the dependencies, exactly as before:

90 | Chapter 4: Working with Docker Images

https://github.com/moby/buildkit/blob/master/frontend/dockerfile/docs/reference.md#run---mounttypecache
https://github.com/moby/buildkit/blob/master/frontend/dockerfile/docs/reference.md#run---mounttypecache
https://hub.docker.com/r/docker/dockerfile

$ time docker build --no-cache -t docker.io/spkane/open-mastermind:latest .

[+] Building 15.2s (15/15) FINISHED
…
 => => naming to docker.io/spkane/open-mastermind:latest 0.0s
…
real 0m15.493s
user 0m0.137s
sys 0m0.096s

So, now let’s open up the requirements.txt file and add a line that reads py-events:

colorama
These are not required - but are used for demonstration purposes
pandas
flask
log-symbols
py-events

This is where the changes pay off. When we rebuild the image now, we will see that
py-events and its dependencies are the only things that are downloaded; everything
else uses the existing cache from our previous build, which has been mounted into
the image for this build step:

$ time docker build -t docker.io/spkane/open-mastermind:latest \
 --progress=plain .

#1 [internal] load build definition from Dockerfile
…
#14 [stage-0 5/6] RUN --mount=type=cache,target=/root/.cache pip install …
#14 sha256:9bc72441fdf2ec5f5803d4d5df43dbe7bc6eeef88ebee98ed18d8dbb478270ba
#14 1.711 Collecting colorama
#14 1.714 Using cached colorama-0.4.5-py2.py3-none-any.whl (16 kB)
…
#14 2.236 Collecting py-events
#14 2.356 Downloading py_events-0.1.2-py3-none-any.whl (5.8 kB)
…
#16 DONE 1.4s

real 0m12.624s
user 0m0.180s
sys 0m0.112s

$ docker image ls --format "{{ .Size }}" spkane/open-mastermind:latest
261MB

Optimizing Images | 91

The build time has shrunk since there is no longer a need to re-download everything
each time, and the image size is also 32 MB smaller, even though we have added new
dependencies to the image. This is simply because the cache directory is no longer
stored directly in the image that contains the application.

BuildKit and the new Dockerfile frontends bring a lot of very useful features to the
image-building process that you will want to be aware of. We highly recommend that
you take the time to read through the reference guide and become acquainted with all
the available capabilities.

Troubleshooting Broken Builds
We normally expect builds to just work, especially when we’ve scripted them, but in
the real world things go wrong. Let’s spend a little bit of time discussing what you can
do to troubleshoot a Docker build that is failing. In this section, we will explore two
options: one that works with the pre-BuildKit approach to image building and one
that works with BuildKit.

For this demonstration, we are going to reuse the docker-hello-node repo from
earlier in the chapter. If required, you can clone it again, like this:

$ git clone https://github.com/spkane/docker-node-hello.git \
 --config core.autocrlf=input
Cloning into 'docker-node-hello'…
remote: Counting objects: 41, done.
remote: Total 41 (delta 0), reused 0 (delta 0), pack-reused 41
Unpacking objects: 100% (41/41), done.

$ cd docker-node-hello

Debugging Pre-BuildKit Images
We need a patient for the next set of exercises, so let’s create a failing build. To do that,
edit the Dockerfile so that the line that reads:

RUN apt-get -y update

now reads:

RUN apt-get -y update-all

92 | Chapter 4: Working with Docker Images

https://github.com/moby/buildkit/blob/master/frontend/dockerfile/docs/reference.md

If you are using PowerShell on Windows, you will likely need to
set the environment variable that disables BuildKit before running
the following docker image build command, and then reset it
afterward:

PS C:\> $env:DOCKER_BUILDKIT = 0
PS C:\> docker image build `
 -t example/docker-node-hello:latest `
 --no-cache .
PS C:\> $env:DOCKER_BUILDKIT = 1

If you try to build the image now, you should get the following error:

$ DOCKER_BUILDKIT=0 docker image build -t example/docker-node-hello:latest \
 --no-cache .

Sending build context to Docker daemon 9.216kB
Step 1/14 : FROM docker.io/node:18.13.0
 ---> 9ff38e3a6d9d
…
Step 6/14 : ENV SCPATH /etc/supervisor/conf.d
 ---> Running in e903367eaeb8
Removing intermediate container e903367eaeb8
 ---> 2a236efc3f06
Step 7/14 : RUN apt-get -y update-all
 ---> Running in c7cd72f7d9bf
E: Invalid operation update-all
The command '/bin/sh -c apt-get -y update-all' returned a non-zero code: 100

So, how can we troubleshoot this, especially if we are not developing on a Linux
system? The real trick here is to remember that almost all Docker images are layered
on top of other Docker images and that you can start a container from any image.
Although the meaning is not obvious on the surface, if you look at the output for
Step 6, you will see this:

Step 6/14 : ENV SCPATH /etc/supervisor/conf.d
 ---> Running in e903367eaeb8
Removing intermediate container e903367eaeb8
 ---> 2a236efc3f06

The first line that reads Running in e903367eaeb8 is telling you that the build
process has started a new container, based on the image created in Step 5. The
next line, which reads Removing intermediate container e903367eaeb8, is telling
you that Docker is now removing the container after having altered it based on
the instruction in Step 6. In this case, it was simply adding a default environment
variable via ENV SCPATH /etc/supervisor/conf.d. The final line, which reads --→
2a236efc3f06, is the one we really care about because this is giving us the image ID
for the image that was generated by Step 6. You need this to troubleshoot the build
because it is the image from the last successful step in the build.

Troubleshooting Broken Builds | 93

With this information, it is possible to run an interactive container so that you can try
to determine why your build is not working properly. Remember that every container
image is based on the image layers below it. One of the great benefits of this is that we
can just run the lower layer as a container itself, using a shell to look around!

$ docker container run --rm -ti 2a236efc3f06 /bin/bash
root@b83048106b0f:/#

From inside the container, you can now run any commands that you might need to
determine what is causing your build to fail and what you need to do to fix your
Dockerfile:

root@b83048106b0f:/# apt-get -y update-all
E: Invalid operation update-all

root@b83048106b0f:/# apt-get --help
apt 1.4.9 (amd64)
…

Most used commands:
 update - Retrieve new lists of packages
…

root@b83048106b0f:/# apt-get -y update
Get:1 http://security.debian.org/debian-security stretch/updates … [53.0 kB]
…
Reading package lists… Done

root@b83048106b0f:/# exit
exit

Once the root cause has been determined, the Dockerfile can be fixed, so that RUN
apt-get -y update-all now reads RUN apt-get -y update, and then rebuilding
the image should result in success:

$ DOCKER_BUILDKIT=0 docker image build -t example/docker-node-hello:latest .
Sending build context to Docker daemon 15.87kB
…
Successfully built 69f5e83bb86e
Successfully tagged example/docker-node-hello:latest

Debugging BuildKit Images
When using BuildKit, we have to take a slightly different approach to get access to the
point where the build fails, because none of the intermediate build layers are exported
from the build container to the Docker daemon.

The options for debugging BuildKit will almost certainly evolve as we move forward,
but let’s take a look at one approach that works now.

94 | Chapter 4: Working with Docker Images

Assuming that the Dockerfile has been reverted to its original state, let’s change the
line that reads:

RUN npm install

so that it now reads:

RUN npm installer

and then attempt to build the image.

Make sure that you have BuildKit enabled!

$ docker image build -t example/docker-node-hello:debug --no-cache .

[+] Building 51.7s (13/13) FINISHED
 => [internal] load build definition from Dockerfile 0.0s
…
 => [7/8] WORKDIR /data/app 0.0s
 => ERROR [8/8] RUN npm installer 0.4s

 > [8/8] RUN npm installer:
#13 0.399
#13 0.399 Usage: npm <command>
…
#13 0.402 Did you mean one of these?
#13 0.402 install
#13 0.402 install-test
#13 0.402 uninstall

executor failed running [/bin/sh -c npm installer]: exit code: 1

We see an error as we expected, but how are we going to get access to that layer so
that we can troubleshoot this?

One approach that works is to leverage multistage builds and the --target argument
of docker image build.

Let’s start by modifying the Dockerfile in two places. Change this line:

FROM docker.io/node:18.13.0

so that it now reads:

FROM docker.io/node:18.13.0 as deploy

Troubleshooting Broken Builds | 95

and then immediately before the line that causes the error, we are going to add a new
FROM line:

FROM deploy
RUN npm installer

By doing this, we are creating a multistage build, where the first stage contains all of
the steps that we know are working and the second stage starts with our problematic
step.

If we try to rebuild this using the same command as before, it will still fail:

$ docker image build -t example/docker-node-hello:debug .

[+] Building 51.7s (13/13) FINISHED
…
executor failed running [/bin/sh -c npm installer]: exit code: 1

So, instead of doing that, let’s tell Docker that we only want to build the first image in
our multistage Dockerfile:

$ docker image build -t example/docker-node-hello:debug --target deploy .

[+] Building 0.8s (12/12) FINISHED
 => [internal] load build definition from Dockerfile 0.0s
 => => transferring dockerfile: 37B 0.0s
…
 => exporting to image 0.1s
 => => exporting layers 0.1s
 => => writing image sha256:a42dfbcfc7b18ee3d30ace944ad4134ea2239a2c0 0.0s
 => => naming to docker.io/example/docker-node-hello:debug 0.0s

Now, we can create a container from this image and do whatever testing we require:

$ docker container run --rm -ti docker.io/example/docker-node-hello:debug \
 /bin/bash

root@17807997176e:/data/app# ls
index.js package.json

root@17807997176e:/data/app# npm install
…
added 18 packages from 16 contributors and audited 18 packages in 1.248s
…

root@17807997176e:/data/app# exit
exit

And then once we understand what is wrong with the Dockerfile, we can revert our
debugging changes and fix the npm line so that the whole build works as expected.

96 | Chapter 4: Working with Docker Images

Multiarchitecture Builds
Since the launch of Docker, the AMD64/X86_64 architecture has been the primary
platform that most containers have targeted. However, this has started to change sig‐
nificantly. More and more developers are using systems based on ARM64/AArch64,
and cloud companies are starting to make ARM-based VMs available through their
platforms, due to the lower computing costs associated with the ARM platform.

This can cause some interesting challenges for anyone who needs to build and main‐
tain images that will target multiple architectures. How can you maintain a single,
streamlined codebase and pipeline while still supporting all of these different targets?

Luckily, Docker has released a plug-in for the docker CLI, called buildx, which can
help make this process pretty straightforward. In many cases, docker-buildx will
already be installed on your system, and you can verify this like so:

$ docker buildx version
github.com/docker/buildx v0.9.1 ed00243a0ce2a0aee75311b06e32d33b44729689

If you need to install the plug-in, you can follow the directions
from the GitHub repo.

By default, docker-buildx will leverage QEMU-based virtualization and
binfmt_misc to support architectures that differ from the underlying system. This
may already be set up on your Linux system, but just in case, it is a good idea to run
the following command when you are first setting up a new Docker server, just to
ensure that the QEMU files are properly registered and up to date:

$ docker container run --rm --privileged multiarch/qemu-user-static \
 --reset -p yes

Setting /usr/bin/qemu-alpha-static as binfmt interpreter for alpha
Setting /usr/bin/qemu-arm-static as binfmt interpreter for arm
Setting /usr/bin/qemu-armeb-static as binfmt interpreter for armeb
…
Setting /usr/bin/qemu-aarch64-static as binfmt interpreter for aarch64
Setting /usr/bin/qemu-aarch64_be-static as binfmt interpreter for aarch64_be
…

Unlike the original embedded Docker build functionality, which ran directly on the
server, BuildKit can utilize a build container when it builds images, which means that
there is a lot of functional flexibility that can be delivered with that build container. In
the next step, we are going to create a default buildx container called builder.

Multiarchitecture Builds | 97

https://github.com/docker/buildx#installing
https://github.com/docker/buildx#installing
https://www.qemu.org
https://docs.kernel.org/admin-guide/binfmt-misc.html

If you have an existing buildx container by this name, you can
either remove it by running docker buildx rm builder or you
can change the name in the upcoming docker buildx create
command.

With the next two commands, we are going to create the build container, set it as the
default, and then start it up:

$ docker buildx create --name builder --driver docker-container --use
builder

$ docker buildx inspect --bootstrap
[+] Building 9.6s (1/1) FINISHED
 => [internal] booting buildkit 9.6s
 => => pulling image moby/buildkit:buildx-stable-1 8.6s
 => => creating container buildx_buildkit_builder0 0.9s
Name: builder
Driver: docker-container

Nodes:
Name: builder0
Endpoint: unix:///var/run/docker.sock
Status: running
Buildkit: v0.10.5
Platforms: linux/amd64, linux/amd64/v2, linux/arm64, linux/riscv64,
 linux/ppc64le, linux/s390x, linux/386, linux/mips64le,
 linux/mips64, linux/arm/v7, linux/arm/v6

For this example, let’s go ahead and download the wordchain Git repository, which
contains a useful tool that can generate random and deterministic word sequences to
help with dynamic naming needs:

$ git clone https://github.com/spkane/wordchain.git \
 --config core.autocrlf=input
$ cd wordchain

Let’s go ahead and take a look at the included Dockerfile. You’ll notice that it is a
pretty normal multistage Dockerfile and does not have anything special in it related to
the platform architecture:

FROM golang:1.18-alpine3.15 AS build

RUN apk --no-cache add \
 bash \
 gcc \
 musl-dev \
 openssl

ENV CGO_ENABLED=0

COPY . /build

98 | Chapter 4: Working with Docker Images

WORKDIR /build

RUN go install github.com/markbates/pkger/cmd/pkger@latest && \
 pkger -include /data/words.json && \
 go build .

FROM alpine:3.15 AS deploy

WORKDIR /
COPY --from=build /build/wordchain /

USER 500
EXPOSE 8080

ENTRYPOINT ["/wordchain"]
CMD ["listen"]

In the first step, we are going to build our statically compiled Go binary, and then in
the second step, we are going to package it up into a small deployment image.

The ENTRYPOINT instruction in the Dockerfile is an advanced
instruction that allows you to separate the default process that is
run by the container (ENTRYPOINT) from the command-line argu‐
ments that are passed to that process (CMD). When ENTRYPOINT
is missing from the Dockerfile, the CMD instruction is expected
to contain both the process and all the required command-line
arguments.

We can go ahead and build this image and side-load it into our local Docker server by
running the following command:

$ docker buildx build --tag wordchain:test --load .

[+] Building 2.4s (16/16) FINISHED
 => [internal] load .dockerignore 0.0s
 => => transferring context: 93B 0.0s
 => [internal] load build definition from Dockerfile 0.0s
 => => transferring dockerfile: 461B 0.0s
…
 => exporting to oci image format 0.3s
 => => exporting layers 0.0s
 => => exporting manifest sha256:4bd1971f2ed820b4f64ffda97707c27aac3e8eb7 0.0s
 => => exporting config sha256:ce8f8564bf53b283d486bddeb8cbb074ff9a9d4ce9 0.0s
 => => sending tarball 0.2s
 => importing to docker 0.0s

We can quickly test out the image by running the following commands:

$ docker container run wordchain:test random

witty-stack

Multiarchitecture Builds | 99

$ docker container run wordchain:test random -l 3 -d .

odd.goo

$ docker container run wordchain:test --help

wordchain is an application that can generate a readable chain
 of customizable words for naming things like
 containers, clusters, and other objects.
…

As long as you got some random word pairs back with the first two commands, then
everything is working as expected.

Now, to build this image for multiple architectures, we need to simply add the
--platform argument to our build.

Typically we would also replace --load with --push, which would
push all the resulting images to the tagged repository, but in this
case, we need to simply remove --load, because the Docker server
cannot load images for multiple platforms at the moment, and we
do not have a repository set up to push these images to. If we
did have a repository and we tagged the images correctly, then we
could very easily build and push all the resulting images in one
step, with a command like this:
docker buildx build --platform linux/amd64,linux/arm64

--tag docker.io/spkane/wordchain:latest --push .

You can build this image for both the linux/amd64 and the linux/arm64 platforms
like this:

$ docker buildx build --platform linux/amd64,linux/arm64 \
 --tag wordchain:test .

[+] Building 114.9s (23/23) FINISHED
…
 => [linux/arm64 internal] load metadata for docker.io/library/alpine:3.1 2.7s
 => [linux/amd64 internal] load metadata for docker.io/library/alpine:3.1 2.7s
 => [linux/arm64 internal] load metadata for docker.io/library/golang:1.1 3.0s
 => [linux/amd64 internal] load metadata for docker.io/library/golang:1.1 2.8s
…
 => CACHED [linux/amd64 build 5/5] RUN go install github.com/markbates/pk 0.0s
 => CACHED [linux/amd64 deploy 2/3] COPY --from=build /build/wordchain / 0.0s
 => [linux/arm64 build 5/5] RUN go install github.com/markbates/pkger/c 111.7s
 => [linux/arm64 deploy 2/3] COPY --from=build /build/wordchain / 0.0s
WARNING: No output specified with docker-container driver. Build result will
 only remain in the build cache. To push result image into registry
 use --push or to load image into docker use --load

100 | Chapter 4: Working with Docker Images

Due to the emulation that is required when building images for
nonnative architectures, you may notice that some steps take much
longer than normal. This is to be expected due to the additional
computational overhead from the emulation.
It is possible to set up Docker so that it will build each image on a
worker with a matching architecture, which should speed things up
significantly in many cases. You can find some information about
this in this Docker blog article.

In the output for the build, you will notice lines that start with something like
=> [linux/amd64 *] or => [linux/arm64 *]. Each of these lines represents the
builder working on this build step for the stated platform. Many of these steps
will run in parallel, and due to caching and other considerations, each build might
progress at differing speeds.

Since we did not add --push to our build, you will also notice that we received a
warning at the end of the build. This is because the docker-container driver that the
builder is using just left everything in the build cache, which means that we can’t
run the resulting images; at this point, we can only feel confident that the build is
working.

There are a few build arguments that are automatically set by
Docker that can be especially helpful to leverage inside your Dock‐
erfile when you are doing multiarchitecture builds. As an example,
TARGETARCH is frequently used to make sure that a given build
step downloads the correct prebuilt binary for the current image’s
platform.

So, when we upload this image to a repository, how does Docker know which
image to use for the local platform? This information is provided to the Docker
server through something called an image manifest. We can look at the manifest for
docker.io/spkane/workdchain by running the following:

$ docker manifest inspect docker.io/spkane/wordchain:latest

{
 "schemaVersion": 2,
 "mediaType": "application/vnd.docker.distribution.manifest.list.v2+json",
 "manifests": [
 {
 "mediaType": "application/vnd.docker.distribution.manifest.v2+json",
 "size": 739,
 "digest": "sha256:4bd1…bfc0",
 "platform": {
 "architecture": "amd64",
 "os": "linux"

Multiarchitecture Builds | 101

https://www.docker.com/blog/speed-up-building-with-docker-buildx-and-graviton2-ec2
https://docs.docker.com/engine/reference/builder/#automatic-platform-args-in-the-global-scope

 }
 },
 {
…
 "platform": {
 "architecture": "arm64",
 "os": "linux"
 }
 },
…
]
}

If you look through the output, you will see that there are blocks that identify the
image that is required for every platform the image supports. This is accomplished
via the individual digest entries that are then paired with a platform block. This
manifest file is downloaded by the server when it requires an image, and then after
referencing the manifest, the server will download the correct image for the local
platform. This is why our Dockerfile works at all. Each FROM line lists a base image that
we want to use, but it is the Docker server that utilizes this manifest file to determine
exactly which image to download for each platform that the build is targeting.

Wrap-Up
At this point, you should feel pretty comfortable with image creation for Docker and
should have a solid understanding of many of the core tools and functionality you
can leverage to streamline your build pipeline. In the next chapter, we will start to dig
into how you can use your images to create containerized processes for your projects.

102 | Chapter 4: Working with Docker Images

https://github.com/opencontainers/image-spec/blob/main/descriptor.md#digests

CHAPTER 5

Working with Containers

In the previous chapter, we learned how to build a Docker image and the very basic
steps required for running the resulting image within a container. In this chapter,
we’ll first take a look at the history of container technology and then dive deeper
into running containers and exploring the Docker commands that control the overall
configuration, resources, and privileges that your container receives.

What Are Containers?
You might be familiar with virtualization systems like VMware or KVM that allow
you to run a complete Linux kernel and operating system on top of a virtualized
layer, commonly known as a hypervisor. This approach provides very strong isolation
between workloads because each VM hosts its own operating system kernel that sits
in a separate memory space on top of a hardware virtualization layer.

Containers are fundamentally different since they all share a single kernel, and isola‐
tion between workloads is implemented entirely within that one kernel. This is called
operating system virtualization.

The libcontainer README provides a good, short definition of a container:

A container is a self-contained execution environment that shares the kernel of the
host system and is (optionally) isolated from other containers in the system.

One of the major advantages of containers is resource efficiency, because you don’t
need a whole operating system instance for each isolated workload. Since you are
sharing a kernel, there is one fewer layer of indirection between the isolated task and
the real hardware underneath. When a process is running inside a container, there is
only a little bit of code that sits inside the kernel managing the container. Contrast
this with a VM, where a second layer would be running. In a VM, calls by the process

103

https://github.com/opencontainers/runc/blob/main/libcontainer/README.md

to the hardware or hypervisor would require bouncing in and out of privileged mode
on the processor twice, thereby noticeably slowing down many calls.

libcontainer is a Go library that is designed to provide a standard
interface for managing Linux containers from applications.

But the container approach does mean that you can only run processes that are
compatible with the underlying kernel. For example, unlike hardware virtualization
provided by technologies like VMware or KVM, Windows applications cannot run
natively inside a Linux container on a Linux host. Windows applications can, how‐
ever, run inside Windows containers on a Windows host. So containers are best
thought of as an OS-specific technology where you can run any of your favorite
applications or daemons that are compatible with the container server’s kernel. When
thinking of containers, you should try very hard to throw out what you might already
know about VMs and instead conceptualize a container as a wrapper around a
normal process that runs on the server.

In addition to being able to run containers inside VMs, it is com‐
pletely feasible to run a VM inside a container. If you do this,
then it is indeed possible to run a Windows application inside a
Windows VM that is running inside a Linux container.

History of Containers
It is often the case that a revolutionary technology is an older technology that has
finally arrived in the spotlight. Technology goes in waves, and some of the ideas from
the 1960s are back in vogue. Similarly, Docker is a newer technology, and it has an
ease of use that has made it an instant hit, but it doesn’t exist in a vacuum. Much
of what underpins Docker comes from work done over the last 30 years in a few
different areas. We can easily trace the conceptual evolution of containers from a
simple system call that was added to the Unix kernel in the late 1970s to the modern
container tooling that powers many huge internet firms, like Google, Twitter, and
Meta. It’s worth taking some time for a quick tour through how the technology
evolved and led to the creation of Docker, because understanding this helps you place
it within the context of other things that you might be familiar with.

Containers are not a new idea. They are a way to isolate and encapsulate a part
of the running system. The oldest technology in this area includes the very first
batch processing systems. When using these early computers, the system would only
run one program at a time, switching to run another program once the previous

104 | Chapter 5: Working with Containers

https://github.com/opencontainers/runc/tree/main/libcontainer

1 SELinux is one current implementation.

program had finished or a predefined time span had elapsed. With this design there
was enforced isolation: you could make sure your program didn’t step on anyone
else’s program because it was only possible to run one thing at a time. Although
modern computers still switch tasks constantly, it is incredibly fast and completely
unnoticeable to most users.

We would argue that the seeds for today’s containers were planted in 1979 with the
addition of the chroot system call to Version 7 Unix. chroot restricts a process’s view
of the underlying filesystem to a single subtree. The chroot system call is commonly
used to protect the operating system from untrusted server processes like FTP, BIND,
and Sendmail, which are publicly exposed and susceptible to compromise.

In the 1980s and 1990s, various Unix variants were created with mandatory access
controls for security reasons.1 This meant you had tightly controlled domains run‐
ning on the same Unix kernel. Processes in each domain had an extremely limited
view of the system that precluded them from interacting across domains. A popular
commercial version of Unix that implemented this idea was the Sidewinder firewall
built on top of BSDI Unix, but this was not possible with most mainstream Unix
implementations.

That changed in 2000 when FreeBSD 4.0 was released with a new command, called
jail, which was designed to allow shared-environment hosting providers to easily
and securely create a separation between their processes and those that belonged
to each of their customers. FreeBSD jail expanded chroot’s capabilities and also
restricted everything a process could do with the underlying system and other jailed
processes.

In 2004, Sun released an early build of Solaris 10, which included Solaris contain‐
ers, which later evolved into Solaris Zones. This was the first major commercial
implementation of container technology and is still used today to support many
commercial container implementations. In 2005, OpenVZ for Linux was released
by the company Virtuozzo, followed in 2007 by HP’s Secure Resource Partitions for
HP-UX, which was later renamed HP-UX Containers.

Companies like Google, which had to deal with scaling applications for broad inter‐
net consumption and/or hosting untrusted user code, started pushing container
technology in the early 2000s to facilitate reliably and securely distributing their
applications across global data centers. A few companies maintained their own
patched Linux kernels with container support for internal use, but as the need for
these features became more evident within the Linux community, Google contributed
some of its work supporting containers into the mainline Linux kernel, and in 2008,
Linux Containers (LXC) were released in version 2.6.24 of the Linux kernel. The

What Are Containers? | 105

phenomenal growth of Linux Containers across the community did not truly start to
grow until 2013, with the inclusion of user namespaces in version 3.8 of the Linux
kernel and the release of Docker one month later.

Nowadays, containers are used almost everywhere. Docker and OCI images provide
the packaging format for a significant and growing amount of software that is deliv‐
ered into production environments, and provide the basis for many production
systems, including, but not limited to, Kubernetes and most “serverless” cloud tech‐
nologies.

So-called serverless technologies are not actually serverless; they
simply rely on other people’s servers to get work done so that the
application owner does not have to worry about managing the
hardware and operating system.

Creating a Container
So far we’ve started containers using the handy docker container run command.
But docker container run is really a convenience command that wraps two separate
steps into one. The first thing it does is create a container from the underlying image.
We can accomplish this separately using the docker container create command.
The second thing docker container run does is execute the container, which we can
also do separately with the docker container start command.

The docker container create and docker container start commands both
contain all the options that pertain to how a container is initially set up. In Chapter 4,
we demonstrated that with the docker container run command you could map net‐
work ports in the underlying container to the host using the -p/--publish argument,
and that -e/--env could be used to pass environment variables into the container.

This only just begins to touch on the array of things that you can configure when
you first create a container. So let’s take a look at some of the options that docker
supports.

Basic Configuration
Let’s start by exploring some of the ways we can tell Docker to configure our
container when we create it.

106 | Chapter 5: Working with Containers

Container name
When you create a container, it is built from the underlying image, but various
command-line arguments can affect the final settings. Settings specified in the
Dockerfile are always used as defaults, but you can override many of them at creation
time.

By default, Docker randomly names your container by combining an adjective with
the name of a famous person. This results in names like ecstatic-babbage and serene-
albattani. If you want to give your container a specific name, you can use the --name
argument:

$ docker container create --name="awesome-service" ubuntu:latest sleep 120

After creating this container, you can then start it by using the docker container
start awesome-service. It will automatically exit after 120 seconds, but you can stop
it before then by running docker container stop awesome-service. We will dive a
bit more into each of these commands a little later in the chapter.

You can only have one container with any given name on a Docker
host. If you run the preceding command twice in a row, you will
get an error. You must either delete the previous container using
docker container rm or change the name of the new container.

Labels
As mentioned in Chapter 4, labels are key/value pairs that can be applied to Docker
images and containers as metadata. When new Linux containers are created, they
automatically inherit all the labels from their parent image.

It is also possible to add new labels to the containers so that you can apply metadata
that might be specific to that single container:

$ docker container run --rm -d --name has-some-labels \
 -l deployer=Ahmed -l tester=Asako \
 ubuntu:latest sleep 1000

You can then search for and filter containers based on this metadata, using com‐
mands like docker container ls:

$ docker container ls -a -f label=deployer=Ahmed
CONTAINER ID IMAGE COMMAND … NAMES
845731631ba4 ubuntu:latest "sleep 1000" … has-some-labels

Creating a Container | 107

https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go

2 Typically under /var/lib/docker/containers.

You can use the docker container inspect command to see all the labels that a
container has:

$ docker container inspect has-some-labels
…

 "Labels": {
 "deployer": "Ahmed",
 "tester": "Asako"
 },

…

This container runs the command sleep 1000, so after 1,000 seconds it will stop
running.

Hostname
By default, when you start a container, Docker copies certain system files on the host,
including /etc/hostname, into the container’s configuration directory on the host,2 and
then uses a bind mount to link that copy of the file into the container. We can launch
a default container with no special configuration, like this:

$ docker container run --rm -ti ubuntu:latest /bin/bash

This command uses the docker container run command, which runs docker
container create and docker container start in the background. Since we want
to be able to interact with the container that we are going to create for demonstra‐
tion purposes, we pass in a few useful arguments. The --rm argument tells Docker
to delete the container when it exits, the -t argument tells Docker to allocate a
pseudo-TTY, and the -i argument tells Docker that this is going to be an interactive
session and that we want to keep STDIN open. If there is no ENTRYPOINT defined in
the image, then the final argument in the command is the executable and command-
line arguments that we want to run within the container, which in this case is the
ever-useful /bin/bash. If there is an ENTRYPOINT defined in the image, then the final
argument is passed to the ENTRYPOINT process as a list of command-line arguments to
that command.

You might have noticed that the preceding paragraph talks about
-i and -t, but the command is using the argument -ti. There is a
lot of Unix history that explains why this is, but a quick overview
can be found online if you are curious.

108 | Chapter 5: Working with Containers

https://nullprogram.com/blog/2020/08/01

If we now run the mount command from within the resulting container, we’ll see
something similar to this:

root@ebc8cf2d8523:/# mount
overlay on / type overlay (rw,relatime,lowerdir=…,upperdir=…,workdir…)
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
tmpfs on /dev type tmpfs (rw,nosuid,mode=755)
shm on /dev/shm type tmpfs (rw,nosuid,nodev,noexec,relatime,size=65536k)
mqueue on /dev/mqueue type mqueue (rw,nosuid,nodev,noexec,relatime)
devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime,…,ptmxmode=666)
sysfs on /sys type sysfs (ro,nosuid,nodev,noexec,relatime)
/dev/sda9 on /etc/resolv.conf type ext4 (rw,relatime,data=ordered)
/dev/sda9 on /etc/hostname type ext4 (rw,relatime,data=ordered)
/dev/sda9 on /etc/hosts type ext4 (rw,relatime,data=ordered)
devpts on /dev/console type devpts (rw,nosuid,noexec,relatime,…,ptmxmode=000)
proc on /proc/sys type proc (ro,nosuid,nodev,noexec,relatime)
proc on /proc/sysrq-trigger type proc (ro,nosuid,nodev,noexec,relatime)
proc on /proc/irq type proc (ro,nosuid,nodev,noexec,relatime)
proc on /proc/bus type proc (ro,nosuid,nodev,noexec,relatime)
tmpfs on /proc/kcore type tmpfs (rw,nosuid,mode=755)
root@ebc8cf2d8523:/#

When you see any examples with a prompt that looks something
like root@hashID, it means that you are running a command within
the container instead of on the local host.
There are occasions when a container will have been configured
with a different hostname instead (e.g., using --name on the CLI),
but in the default case, it’s the container ID hash.
It is also possible to change the user that is used inside the con‐
tainer with --user, but by default, it will be root.

There are quite a few bind mounts in a container, but in this case, we are interested in
this one:

/dev/sda9 on /etc/hostname type ext4 (rw,relatime,data=ordered)

While the device number will be different for each container, the part we care about is
that the mount point is /etc/hostname. This links the container’s /etc/hostname to the
hostname file that Docker has prepared for the container, which by default contains
the container’s ID and is not fully qualified with a domain name.

We can check this in the container by running the following:

root@ebc8cf2d8523:/# hostname -f
ebc8cf2d8523
root@ebc8cf2d8523:/# exit

Creating a Container | 109

Don’t forget to exit the container shell to return to the local host
when finished.

To set the hostname specifically, we can use the --hostname argument to pass in a
more specific value:

$ docker container run --rm -ti --hostname="mycontainer.example.com" \
 ubuntu:latest /bin/bash

Then, from within the container, we’ll see that the fully qualified hostname is defined
as requested:

root@mycontainer:/# hostname -f
mycontainer.example.com
root@mycontainer:/# exit

Domain Name Service
Just like /etc/hostname, the resolv.conf file that configures Domain Name Service
(DNS) resolution is managed via a bind mount between the host and container:

/dev/sda9 on /etc/resolv.conf type ext4 (rw,relatime,data=ordered)

Details about the resolve.conf file can be found online.

By default, this is an exact copy of the Docker host’s resolv.conf file. If you didn’t
want this, you could use a combination of the --dns and --dns-search arguments to
override this behavior in the container:

$ docker container run --rm -ti --dns=8.8.8.8 --dns=8.8.4.4 \
 --dns-search=example1.com --dns-search=example2.com \
 ubuntu:latest /bin/bash

If you want to leave the search domain completely unset, then use
--dns-search=.

110 | Chapter 5: Working with Containers

https://sslhow.com/understanding-etc-resolv-conf-file-in-linux

Within the container, you would still see a bind mount, but the file contents would no
longer reflect the host’s resolv.conf; instead, it would now look like this:

root@0f887071000a:/# more /etc/resolv.conf
nameserver 8.8.8.8
nameserver 8.8.4.4
search example1.com example2.com
root@0f887071000a:/# exit

MAC address
Another important piece of information that you can configure is the media access
control (MAC) address for the container.

Without any configuration, a container will receive a calculated MAC address that
starts with the 02:42:ac:11 prefix.

If you need to specifically set this to a value, you can do so by running something
similar to this:

$ docker container run --rm -ti --mac-address="a2:11:aa:22:bb:33" \
 ubuntu:latest /bin/bash

Normally, you will not need to do that. But sometimes you want to reserve a par‐
ticular set of MAC addresses for your containers to avoid conflicting with other
virtualization layers that use the same private block as Docker.

Be very careful when customizing the MAC address settings. It is
possible to cause ARP contention on your network if two systems
advertise the same MAC address. If you have a strong need to do
this, try to keep your locally administered address ranges within
some of the official ranges, like x2-xx-xx-xx-xx-xx, x6-xx-xx-xx-xx-
xx, xA-xx-xx-xx-xx-xx, and xE-xx-xx-xx-xx-xx (with x being any
valid hexadecimal character).

Storage Volumes
There are times when the default disk space allocated to a container, or the container’s
ephemeral nature, is not appropriate for the job at hand, so you’ll need storage that
can persist between container deployments.

Mounting storage from the Docker host is not generally advisable
because it ties your container to a particular Docker host for its
persistent state. But for cases like temporary cache files or other
semi-ephemeral states, it can make sense.

Creating a Container | 111

For times like this, you can leverage the --mount/-v command to mount directories
and individual files from the host server into the container. It is important that
you use fully qualified paths in the --mount/-v argument. The following example
mounts /mnt/session_data to /data within the container:

$ docker container run --rm -ti \
 --mount type=bind,target=/mnt/session_data,source=/data \
 ubuntu:latest /bin/bash

root@0f887071000a:/# mount | grep data
/dev/sda9 on /data type ext4 (rw,relatime,data=ordered)
root@0f887071000a:/# exit

For bind mounts specifically, you can use the -v argument to
shorten the command. When using the -v argument, you will
notice here that the source and target files/directories are separated
by a colon(:).
It is also important to note that volumes are mounted read-write
by default. You can easily make docker mount the file or directory
read-only by adding ,readonly to end the of the --mount argu‐
ments, or by adding :ro to the end of the -v arguments.

$ docker container run --rm -ti \
 -v /mnt/session_data:/data:ro \
 ubuntu:latest /bin/bash

Neither the host mount point nor the mount point in the container needs to preexist
for this command to work properly. If the host mount point does not exist already,
then it will be created as a directory. This could cause you some issues if you were
trying to point to a file instead of a directory.

In the mount options, you can see that the filesystem was mounted read-write
on /data as expected.

SELinux and Volume Mounts
If you have SELinux enabled on your Docker host, you may get a “Permission
Denied” error when trying to mount a volume into your container. You can handle
this by using one of the z options to the Docker command for mounting volumes:

• The lowercase z option indicates that the bind-mount content is shared among•
multiple containers.

• The uppercase Z option indicates that the bind-mount content is private and•
unshared.

112 | Chapter 5: Working with Containers

If you are going to share a volume between containers, you can use the z option to the
volume mount:

$ docker container run --rm -v /app/dhcpd/etc:/etc/dhcpd:z dhcpd

However, the best option is actually the Z option to the volume mount command,
which will set the directory with the exact MCS label (e.g., chcon … -l s0:c1,c2)
that the container will be using. This provides for the best security and will allow only
a single container to mount the volume:

$ docker container run --rm -v /app/dhcpd/etc:/etc/dhcpd:Z dhcpd

Use extreme caution with the z options. Bind-mounting a sys‐
tem directory such as /etc or /var with the Z option will very
likely render your system inoperable and require you to use
SELinux tools to relabel the host machine manually.

If the container application is designed to write into /data, then this data will be
visible on the host filesystem in /mnt/session_data and will remain available when this
container stops and a new container starts with the same volume mounted.

It is possible to tell Docker that the root volume of your container should be mounted
read-only so that processes within the container cannot write anything to the root
filesystem. This prevents things like logfiles, which a developer may be unaware
of, from filling up the container’s allocated disk in production. When it’s used in
conjunction with a mounted volume, you can ensure that data is written only into
expected locations.

In the previous example, we could accomplish this simply by adding
--read-only=true to the command:

$ docker container run --rm -ti --read-only=true -v /mnt/session_data:/data \
 ubuntu:latest /bin/bash

root@df542767bc17:/# mount | grep " / "
overlay on / type overlay (ro,relatime,lowerdir=…,upperdir=…,workdir=…)
root@df542767bc17:/# mount | grep data
/dev/sda9 on /data type ext4 (rw,relatime,data=ordered)
root@df542767bc17:/# exit

If you look closely at the mount options for the root directory, you’ll notice
that they are mounted with the ro option, which makes it read-only. However,
the /session_data mount is still mounted with the rw option so that our application
can successfully write to the one volume to which it’s designed to write.

Sometimes it is necessary to make a directory like /tmp writable, even when the rest
of the container is read-only. For this use case, you can use the --mount type=tmpfs

Creating a Container | 113

https://www.thegeekdiary.com/understanding-selinux-file-labelling-and-selinux-context

argument with docker container run so that you can mount a tmpfs filesystem into
the container. The tmpfs filesystems are completely in-memory. They will be very
fast, but they are also ephemeral and will utilize additional system memory. Any data
in these tmpfs directories will be lost when the container is stopped. The following
example shows a container being launched with a 256 MB tmpfs filesystem mounted
at /tmp:

$ docker container run --rm -ti --read-only=true \
 --mount type=tmpfs,destination=/tmp,tmpfs-size=256M \
 ubuntu:latest /bin/bash

root@25b4f3632bbc:/# df -h /tmp
Filesystem Size Used Avail Use% Mounted on
tmpfs 256M 0 256M 0% /tmp
root@25b4f3632bbc:/# grep /tmp /etc/mtab
tmpfs /tmp tmpfs rw,nosuid,nodev,noexec,relatime,size=262144k 0 0
root@25b4f3632bbc:/# exit

Containers should be designed to be stateless whenever possible.
Managing storage creates undesirable dependencies and can easily
make deployment scenarios much more complicated.

Resource Quotas
When people discuss the types of problems they must often cope with when working
in the cloud, the “noisy neighbor” is often near the top of the list. The basic problem
this term refers to is that other applications running on the same physical system as
yours can have a noticeable impact on your performance and resource availability.

VMs have the advantage that you can easily and very tightly control how much
memory and CPU, among other resources, are allocated to the VM. When using
Docker, you must instead leverage the cgroup functionality in the Linux kernel to
control the resources that are available to a Linux container. The docker container
create and docker container run commands directly support configuring CPU,
memory, swap, and storage I/O restrictions when you create a container.

Constraints are normally applied at the time of container creation.
If you need to change them, you can use the docker container
update command or deploy a new container with the adjustments.

There is an important caveat here. While Docker supports various resource limits,
you must have these capabilities enabled in your kernel for Docker to take advantage
of them. You might need to add these as command-line parameters to your kernel on

114 | Chapter 5: Working with Containers

3 Full URL: https://docs.docker.com/engine/install/linux-postinstall/#your-kernel-does-not-support-cgroup-swap-
limit-capabilities

startup. To figure out if your kernel supports these limits, run docker system info.
If you are missing any support, you will get warning messages at the bottom, like this:

WARNING: No swap limit support

The details regarding getting cgroup support configured for your
kernel are distribution specific, so you should consult the Docker
documentation3 if you need help configuring things.

CPU shares
Docker has several ways to limit CPU usage by applications in containers. The
original method, still commonly used, is the concept of CPU shares. We’ll present
other options as well.

The computing power of all the CPU cores in a system is considered to be the
full pool of shares. Docker assigns the number 1,024 to represent the full pool. By
configuring a container’s CPU shares, you can dictate how much time the container
gets to use the CPU. If you want the container to be able to use at most half of the
computing power of the system, then you would allocate it 512 shares. These are
not exclusive shares, meaning that assigning all 1,024 shares to a container does not
prevent all other containers from running. Rather, it’s a hint to the scheduler about
how long each container should be able to run each time it’s scheduled. If we have
one container that is allocated 1,024 shares (the default) and two that are allocated
512, they will all get scheduled the same number of times. But if the normal amount
of CPU time for each process is 100 microseconds, the containers with 512 shares will
run for 50 microseconds each time, whereas the container with 1,024 shares will run
for 100 microseconds.

Let’s explore a little bit how this works in practice. For the following examples, we’ll
use a new Docker image that contains the stress command for pushing a system to
its limits.

Creating a Container | 115

https://docs.docker.com/engine/install/linux-postinstall/#your-kernel-does-not-support-cgroup-swap-limit-capabilities
https://docs.docker.com/engine/install/linux-postinstall/#your-kernel-does-not-support-cgroup-swap-limit-capabilities
https://oreil.ly/Z70ZO
https://oreil.ly/Z70ZO
https://linux.die.net/man/1/stress

When we run stress without any cgroup constraints, it will use as many resources as
we tell it to. The following command creates a load average of around five by creating
two CPU-bound processes, one I/O-bound process, and two memory allocation
processes. For all of the following examples, we are running on a system with two
CPUs.

Note that in the following command, everything following the container image name
is related to the stress command, not the docker command:

$ docker container run --rm -ti spkane/train-os \
 stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 120s

This should be a reasonable command to run on any modern
computer system, but be aware that it is going to stress the host
system. So don’t do this in a location that can’t take the additional
load, or even a possible failure, due to resource starvation.

If you run the top or htop command on the Docker host, near the end of the
two-minute run, you can see how the system is affected by the load created by the
stress program:

$ top -bn1 | head -n 15
top - 20:56:36 up 3 min, 2 users, load average: 5.03, 2.02, 0.75
Tasks: 88 total, 5 running, 83 sleeping, 0 stopped, 0 zombie
%Cpu(s): 29.8 us, 35.2 sy, 0.0 ni, 32.0 id, 0.8 wa, 1.6 hi, 0.6 si, 0.0 st
KiB Mem: 1021856 total, 270148 used, 751708 free, 42716 buffers
KiB Swap: 0 total, 0 used, 0 free. 83764 cached Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 810 root 20 0 7316 96 0 R 44.3 0.0 0:49.63 stress
 813 root 20 0 7316 96 0 R 44.3 0.0 0:49.18 stress
 812 root 20 0 138392 46936 996 R 31.7 4.6 0:46.42 stress
 814 root 20 0 138392 22360 996 R 31.7 2.2 0:46.89 stress
 811 root 20 0 7316 96 0 D 25.3 0.0 0:21.34 stress
 1 root 20 0 110024 4916 3632 S 0.0 0.5 0:07.32 systemd
 2 root 20 0 0 0 0 S 0.0 0.0 0:00.04 kthreadd
 3 root 20 0 0 0 0 S 0.0 0.0 0:00.11 ksoftir…

116 | Chapter 5: Working with Containers

Docker Desktop users on non-Linux systems may discover that
Docker has made the VM filesystem read-only, and it does not
contain many useful tools for monitoring the VM. For these demos
where you want to be able to monitor the resource usage of various
processes, you can work around this by doing something like this:

$ docker container run --rm -it --pid=host alpine sh
/ # apk update
/ # apk add htop
/ # htop -p $(pgrep stress | tr '\n' ',')
/ # exit

Be aware that the preceding htop command will give you an error
unless stress is actively running when you launch htop, since no
processes will be returned by the pgrep command.
You will also want to exit and rerun htop each time you run a new
stress instance.

If you want to run the same stress command again, with only half the amount of
available CPU time, you can do so like this:

$ docker container run --rm -ti --cpu-shares 512 spkane/train-os \
 stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 120s

The --cpu-shares 512 is the flag that does the magic, allocating 512 CPU shares to
this container. The effect of this argument might not be noticeable on a system that is
not very busy. That’s because the container will continue to be scheduled for the same
time-slice length whenever it has work to do unless the system is constrained for
resources. So in our case, the results of a top command on the host system will likely
look the same, unless you run a few more containers to give the CPU something else
to do.

Unlike VMs, Docker’s cgroup-based constraints on CPU shares
can have unexpected consequences. They are not hard limits; they
are relative limits, similar to the nice command. An example is
a container that is constrained to half the CPU shares but is on
a system that is not very busy. Since the CPU is not busy, the
limit on the CPU shares would have only a limited effect because
there is no competition in the scheduler pool. When a second
container that uses a lot of CPU is deployed to the same system,
suddenly the effect of the constraint on the first container will be
noticeable. Consider this carefully when constraining containers
and allocating resources.

Creating a Container | 117

CPU pinning
It is also possible to pin a container to one or more CPU cores. This means that work
for this container will be scheduled only on the cores that have been assigned to this
container. That is useful if you want to hard-shard CPUs between applications or if
you have applications that need to be pinned to a particular CPU for things like cache
efficiency.

In the following example, we are running a stress container pinned to the first of two
CPUs, with 512 CPU shares:

$ docker container run --rm -ti \
 --cpu-shares 512 --cpuset-cpus=0 spkane/train-os \
 stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 120s

The --cpuset-cpus argument is zero-indexed, so your first CPU
core is 0. If you tell Docker to use a CPU core that does not
exist on the host system, you will get a Cannot start container
error. On a two-CPU example host, you could test this by using
--cpuset-cpus=0-2.

If you run top again, you should notice that the percentage of CPU time spent in user
space (us) is lower than it previously was, since we have restricted two CPU-bound
processes to a single CPU:

%Cpu(s): 18.5 us, 22.0 sy, 0.0 ni, 57.6 id, 0.5 wa, 1.0 hi, 0.3 si, 0.0 st

When you use CPU pinning, additional CPU sharing restrictions
on the container only take into account other containers running
on the same set of cores.

Using the CPU Completely Fair Scheduler (CFS) within the Linux kernel, you can
alter the CPU quota for a given container by setting the --cpu-quota flag to a valid
value when launching the container with docker container run.

Simplifying CPU quotas
While CPU shares were the original mechanism in Docker for managing CPU limits,
Docker has evolved a great deal since, and one of the ways that it now makes users’
lives easier is by greatly simplifying how CPU quotas can be set. Instead of trying
to set correct CPU shares and quotas yourself, you can now simply tell Docker how
much CPU you would like to be available to your container, and it will do the math
required to set the underlying cgroups correctly.

118 | Chapter 5: Working with Containers

The --cpus command can be set to a floating-point number between 0.01 and the
number of CPU cores on the Docker server:

$ docker container run --rm -ti --cpus=".25" spkane/train-os \
 stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 60s

If you try to set the value too high, you’ll get an error message from Docker (not the
stress application) that will give you the correct range of CPU cores that you have to
work with:

$ docker container run --rm -ti --cpus="40.25" spkane/train-os \
 stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 60s
docker: Error response from daemon: Range of CPUs is from
 0.01 to 4.00, as there are only 4 CPUs available.
See 'docker container run --help'.

The docker container update command can be used to dynamically adjust the
resource limits of one or more containers. You could adjust the CPU allocation on
two containers simultaneously, for example, like so:

$ docker container update --cpus="1.5" 092c5dc85044 92b797f12af1

Docker sees CPUs the same way that Linux sees them. Hyper-
threading and cores are interpreted by Linux and exposed via the
special file /proc/cpuinfo. When you use the --cpus command in
Docker, you are referring to how many of the entries in this file
you want the container to have access to, whether they refer to a
standard core or a hyper-threaded core.

Memory
We can control how much memory a container can access in a manner similar
to constraining the CPU. There is, however, one fundamental difference: while con‐
straining the CPU only impacts the application’s priority for CPU time, the memory
limit is a hard limit. Even on an unconstrained system with 96 GB of free memory, if
we tell a container that it may have access only to 24 GB, then it will only ever get to
use 24 GB regardless of the free memory on the system. Because of the way the virtual
memory system works on Linux, it’s possible to allocate more memory to a container
than the system has actual RAM. In this case, the container will resort to using swap,
just like a normal Linux process.

Let’s start a container with a memory constraint by passing the --memory option to
the docker container run command:

$ docker container run --rm -ti --memory 512m spkane/train-os \
 stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 10s

When you use the --memory option alone, you are setting both the amount of
RAM and the amount of swap that the container will have access to. So by using

Creating a Container | 119

--memory 512m here, we’ve constrained the container to 512 MB of RAM and 512
MB of additional swap space. Docker supports b, k, m, or g, representing bytes,
kilobytes, megabytes, or gigabytes, respectively. If your system somehow runs Linux
and Docker and has multiple terabytes of memory, then unfortunately you’re going to
have to specify it in gigabytes.

If you would like to set the swap separately or disable it altogether, you need to also
use the --memory-swap option. This defines the total amount of memory and swap
available to the container. If we rerun our previous command, like so:

$ docker container run --rm -ti --memory 512m --memory-swap=768m \
 spkane/train-os stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M \
 --timeout 10s

then we’re telling the kernel that this container can have access to 512 MB of memory
and 256 MB of additional swap space. Setting the --memory-swap option to -1 will
allow the container to use as much swap as is available on the underlying system and
if --memory-swap and --memory are set to the same positive value, then the container
will not have any access to swap.

Again, unlike CPU shares, memory is a hard limit! This is good
because the constraint doesn’t suddenly have a noticeable effect on
the container when another container is deployed to the system.
But it means you need to be careful that the limit closely matches
your container’s needs because there is no wiggle room. An out-of-
memory container causes the kernel to behave just like it would if
the system were out of memory. It will try to find a process to kill
so that it can free up space. This is a common failure case where
containers have their memory limits set too low. The telltale sign of
this issue is a container exit code of 137 and kernel out-of-memory
(OOM) messages in the Docker server’s dmesg output.

So, what happens if a container reaches its memory limit? Well, let’s give it a try by
modifying one of our previous commands and lowering the memory significantly:

$ docker container run --rm -ti --memory 100m spkane/train-os \
 stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 10s

While all of our other runs of the stress container ended with a line like this:

stress: info: [17] successful run completed in 10s

we see that this run quickly fails with a line similar to this:

stress: FAIL: [1] (451) failed run completed in 0s

This is because the container tries to allocate more memory than it is allowed, and the
Linux OOM killer is invoked and starts killing processes within the cgroup to reclaim
memory. In this case, our container has a single-parent process that has spawned a

120 | Chapter 5: Working with Containers

few children processes, and when the OOM killer kills one of the children processes,
the parent process cleans everything up and exits with an error.

Docker has features that allow you to tune and disable the
Linux OOM killer by using the --oom-kill-disable and the
--oom-score-adj arguments to docker container run, but they
are not recommended for almost any use cases.

If you access your Docker server, you can see the kernel message related to this event
by running dmesg. The output will look something like this:

[4210.403984] stress invoked oom-killer: gfp_mask=0x24000c0 …
[4210.404899] stress cpuset=5bfa65084931efabda59d9a70fa8e88 …
[4210.405951] CPU: 3 PID: 3429 Comm: stress Not tainted 4.9 …
[4210.406624] Hardware name: BHYVE, BIOS 1.00 03/14/2014
…
[4210.408978] Call Trace:
[4210.409182] [<ffffffff94438115>] ? dump_stack+0x5a/0x6f
….
[4210.414139] [<ffffffff947f9cf8>] ? page_fault+0x28/0x30
[4210.414619] Task in /docker-ce/docker/5…3
killed as a result of limit of /docker-ce/docker/5…3
[4210.416640] memory: usage 102380kB, limit 102400kB, failc …
[4210.417236] memory+swap: usage 204800kB, limit 204800kB, …
[4210.417855] kmem: usage 1180kB, limit 9007199254740988kB, …
[4210.418485] Memory cgroup stats for /docker-ce/docker/5…3:
cache:0KB rss:101200KB rss_huge:0KB mapped_file:0KB dirty:0KB
writeback:11472KB swap:102420KB inactive_anon:50728KB
active_anon:50472KB inactive_file:0KB active_file:0KB unevictable:0KB
…
[4210.426783] Memory cgroup out of memory: Kill process 3429…
[4210.427544] Killed process 3429 (stress) total-vm:138388kB,
anon-rss:44028kB, file-rss:900kB, shmem-rss:0kB
[4210.442492] oom_reaper: reaped process 3429 (stress), now
anon-rss:0kB, file-rss:0kB, shmem-rss:0kB

This OOM event will also be recorded by Docker and viewable via docker system
events:

$ docker system events
2018-01-28T15:56:19.972142371-08:00 container oom \
 d0d803ce32c4e86d0aa6453512a9084a156e96860e916ffc2856fc63ad9cf88b \
 (image=spkane/train-os, name=loving_franklin)

Block I/O
Many containers are just stateless applications and won’t need block I/O restric‐
tions. But Docker also supports limiting block I/O in a few different ways via the
cgroups mechanism.

Creating a Container | 121

The first way is applying some prioritization to a container’s use of block device
I/O. You enable this by manipulating the default setting of the blkio.weight cgroup
attribute. This attribute can have a value of 0 (disabled) or a number between 10 and
1,000, the default being 500. This limit acts a bit like CPU shares, in that the system
will divide all of the available I/O between every process within a cgroup slice by
1,000, with the assigned weights impacting how much available I/O is available to
each process.

To set this weight on a container, you need to pass the --blkio-weight to your
docker container run command with a valid value. You can also target a specific
device using the --blkio-weight-device option.

As with CPU shares, tuning the weights is hard to get right in practice, but we can
make it vastly simpler by limiting the maximum number of bytes or operations per
second that are available to a container via its cgroup. The following settings let us
control that:

--device-read-bps Limit read rate (bytes per second) from a device
--device-read-iops Limit read rate (IO per second) from a device
--device-write-bps Limit write rate (bytes per second) to a device
--device-write-iops Limit write rate (IO per second) to a device

You can test how these impact the performance of a container by running some of the
following commands, which use the Linux I/O tester bonnie:

$ time docker container run --rm -ti spkane/train-os:latest bonnie++ \
 -u 500:500 -d /tmp -r 1024 -s 2048 -x 1
…
real 0m27.715s
user 0m0.027s
sys 0m0.030s

$ time docker container run -ti --rm --device-write-iops /dev/vda:256 \
 spkane/train-os:latest bonnie++ -u 500:500 -d /tmp -r 1024 -s 2048 -x 1
…
real 0m58.765s
user 0m0.028s
sys 0m0.029s

$ time docker container run -ti --rm --device-write-bps /dev/vda:5mb \
 spkane/train-os:latest bonnie++ -u 500:500 -d /tmp -r 1024 -s 2048 -x 1
…

PowerShell users should be able to use the Measure-Command func‐
tion to replace the Unix time command used in these examples.

122 | Chapter 5: Working with Containers

https://www.coker.com.au/bonnie
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/measure-command?view=powershell-7.3

In our experience, the --device-read-iops and --device-write-iops arguments
are the most effective way to set block I/O limits and are the ones we recommend.

ulimits
Before Linux cgroups, there was another way to place a limit on the resources
available to a process: the application of user limits via the ulimit command. That
mechanism is still available and still useful for all of the use cases where it was
traditionally used.

The following code is a list of the types of system resources that you can usually
constrain by setting soft and hard limits via the ulimit command:

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 5835
max locked memory (kbytes, -l) 64
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 10240
cpu time (seconds, -t) unlimited
max user processes (-u) 1024
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

It is possible to configure the Docker daemon with the default user limits that you
want to apply to every container. The following command tells the Docker daemon to
start all containers with a soft limit of 50 open files and a hard limit of 150 open files:

$ sudo dockerd --default-ulimit nofile=50:150

You can then override these ulimits on a specific container by passing in values using
the --ulimit argument:

$ docker container run --rm -d --ulimit nofile=150:300 nginx

There are some additional advanced commands that you can use when creating
containers, but this covers many of the more common use cases. The Docker client
documentation lists all the available options and is updated with each Docker release.

Creating a Container | 123

https://www.linuxhowtos.org/Tips%20and%20Tricks/ulimit.htm
https://dockr.ly/2ME0ygi
https://dockr.ly/2ME0ygi

Starting a Container
Before we got into the details of containers and constraints, we created our container
using the docker container create command. That container is just sitting there
without doing anything. There is a configuration but no running process. When
we’re ready to start the container, we can do so using the docker container start
command.

Let’s say that we needed to run a copy of Redis, a common key/value store. We won’t
do anything with this Redis container, but it’s a lightweight, long-lived process and
serves as an example of something we might do in a real environment. We could first
create the container:

$ docker container create -p 6379:6379 redis:2.8
Unable to find image 'redis:7.0' locally
7.0: Pulling from library/redis
3f4ca61aafcd: Pull complete
…
20bf15ad3c24: Pull complete
Digest: sha256:8184cfe57f205ab34c62bd0e9552dffeb885d2a7f82ce4295c0df344cb6f0007
Status: Downloaded newer image for redis:7.0
092c5dc850446324e4387485df7b76258fdf9ed0aedcd53a37299d35fc67a042

The result of the command is some output, the last line of which is the full hash that
was generated for the container. We could use that long hash to start it, but if we
failed to note it down, we could also list all the containers on the system, whether
they are running or not, using the following:

$ docker container ls -a --filter ancestor=redis:2.8
CONTAINER ID IMAGE COMMAND CREATED … NAMES
092c5dc85044 redis:7.0 "docker-entrypoint.s…" 46 seconds ago elegant_wright

We can confirm the identity of our container by filtering the output by the image that
we used and examining the container’s creation time. We can then start the container
with the following command:

$ docker container start 092c5dc85044

Most Docker commands will work with the container name, the
full hash, the short hash, or even just enough of the hash to make
it unique. In the previous example, the full hash for the container
is 092c5dc850446324e…a37299d35fc67a042, but the short hash that
is shown in most command output is 092c5dc85044. This short
hash consists of the first 12 characters of the full hash. In the
previous example, running docker container start 6b7 would
have worked just fine.

124 | Chapter 5: Working with Containers

That should have started the container, but with it running in the background we
won’t necessarily know if something went wrong. To verify that it’s running, we can
run the following:

$ docker container ls
CONTAINER ID IMAGE COMMAND … STATUS …
092c5dc85044 redis:7.0 "docker-entrypoint.s…" … Up 2 minutes …

And, there it is: running as expected. We can tell because the status says Up and shows
how long the container has been running.

Auto-Restarting a Container
In many cases, we want our containers to restart if they exit. Some containers are very
short-lived and come and go quickly. But for production applications, for instance,
you expect them to be up and running at all times after you’ve told them to run. If
you are running a more complex system, a scheduler may do this for you.

In the simple case, we can tell Docker to manage restarts on our behalf by passing the
--restart argument to the docker container run command. It takes four values:
no, always, on-failure, or unless-stopped. If restart is set to no, the container will
never restart if it exits. If it is set to always, the container will restart whenever it
exits, with no regard to the exit code. If restart is set to on-failure, whenever the
container exits with a nonzero exit code, Docker will try to restart the container. If
we set restart to on-failure:3, Docker will try and restart the container three times
before giving up. unless-stopped is the most common choice and will restart the
container unless it is intentionally stopped with something like docker container
stop.

We can see this in action by rerunning our last memory-constrained stress container
without the --rm argument but with the --restart argument:

$ docker container run -ti --restart=on-failure:3 --memory 100m \
 spkane/train-os stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M \
 --timeout 120s

In this example, we’ll see the output from the first run appear on the console before
it dies. If we run a docker container ls immediately after the container dies, we’ll
likely see that Docker has restarted the container:

$ docker container ls
… IMAGE … STATUS …
… spkane/train-os … Up Less than a second …

It will continue to fail because we haven’t given it enough memory to function prop‐
erly. After three attempts, Docker will give up, and we’ll see the container disappear
from the output of docker container ls.

Auto-Restarting a Container | 125

Stopping a Container
Containers can be stopped and started at will. You might think that starting and
stopping a container is analogous to pausing and resuming a normal process, but it’s
not quite the same in reality. When stopped, the process is not paused; it exits. And
when a container is stopped, it no longer shows up in the normal docker container
ls output. On reboot, Docker will attempt to start all of the containers that were
running at shutdown. If you need to prevent a container from doing any additional
work, without actually stopping the process, then you can pause the Linux container
with docker container pause and unpause, which will be discussed in more detail
later. For now, go ahead and stop the Redis container that we started a little earlier:

$ docker container stop 092c5dc85044
$ docker container ls
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Now that we have stopped the container, nothing is in the running container list! We
can start it back up with the container ID, but it would be inconvenient to have to
remember that. So docker container ls has an additional option (-a) to show all
containers, not just the running ones:

$ docker container ls -a
CONTAINER ID IMAGE STATUS …
092c5dc85044 redis:7.0 Exited (0) 2 minutes ago …
…

That STATUS field now shows that our container exited with a status code of 0 (no
errors). We can start it back up with the same configuration it had before:

$ docker container start 092c5dc85044
092c5dc85044

$ docker container ls -a
CONTAINER ID IMAGE STATUS …
092c5dc85044 redis:7.0 Up 14 seconds …
…

Voilà, our container is back up and running and configured just as it was before.

Remember that containers exist as a blob of configuration in the
Docker system even when they are not started. This means that
as long as the container has not been deleted, you can restart it
without needing to re-create it. Although memory and temporary
file system (tmpfs) contents will have been lost, all of the contain‐
er’s other filesystem contents and metadata, including environment
variables and port bindings, are saved and will still be in place
when you restart the container.

126 | Chapter 5: Working with Containers

By now we’ve probably thumped on enough about the idea that containers are just
a tree of processes that interact with the system in essentially the same way as any
other process on the server. But it’s important to point it out here again because it
means that we can send Unix signals to our process in the containers that they can
then respond to. In the previous docker container stop example, we’re sending the
container a SIGTERM signal and waiting for the container to exit gracefully. Containers
follow the same process group signal propagation that any other process group would
receive on Linux.

A normal docker container stop sends a SIGTERM to the process. If you want to
force a container to be killed if it hasn’t stopped after a certain amount of time, you
can use the -t argument, like this:

$ docker container stop -t 25 092c5dc85044

This tells Docker to initially send a SIGTERM signal as before, but if the container has
not stopped within 25 seconds (the default is 10), it tells Docker to send a SIGKILL
signal to forcefully kill it.

Although stop is the best way to shut down your containers, there are times when it
doesn’t work and you’ll need to forcefully kill a container, just as you might have to
do with any process outside of a container.

Killing a Container
When a process is misbehaving, docker container stop might not cut it. You might
just want the container to exit immediately.

In these circumstances, you can use docker container kill. As you’d expect, it
looks a lot like docker container stop:

$ docker container start 092c5dc85044
092c5dc85044

$ docker container kill 092c5dc85044
092c5dc85044

A docker container ls command now shows that the container is no longer
running, as expected:

$ docker container ls
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Just because it was killed rather than stopped does not mean you can’t start it again,
though. You can just issue a docker container start like you would for a nicely
stopped container. Sometimes you might want to send another signal to a container,
one that is not stop or kill. Like the Linux kill command, docker container kill
supports sending any Unix signal. Let’s say we wanted to send a USR1 signal to our

Killing a Container | 127

container to tell it to do something like reconnect a remote logging session. We could
do the following:

$ docker container start 092c5dc85044
092c5dc85044

$ docker container kill --signal=USR1 092c5dc85044
092c5dc85044

If our container process was designed to do something with the USR1 signal, it would
now do it. Any standard Unix signal can be sent to a container using this method.

Pausing and Unpausing a Container
There are a few reasons why we might not want to completely stop our container.
We might want to pause it, leave its resources allocated, and leave its entries in the
process table. That could be because we’re taking a snapshot of its filesystem to create
a new image or just because we need some CPU on the host for a while. If you
are used to normal Unix process handling, you might wonder how this works since
containerized processes are just processes.

Pausing leverages the cgroup freezer, which essentially just prevents your process
from being scheduled until you unfreeze it. This will prevent the container from
doing anything while maintaining its overall state, including memory contents.
Unlike stopping a container, where the processes are made aware that they are
stopping via the SIGSTOP signal, pausing a container doesn’t send any information to
the container about its state change. That’s an important distinction. Several Docker
commands use pausing and unpausing internally as well. Here is how we pause a
container:

$ docker container start 092c5dc85044
092c5dc85044

$ docker container pause 092c5dc85044
092c5dc85044

To pause and unpause containers in Windows, you must be using
Hyper-V or WSL2 as the underlying virtualization technology.

If we look at the list of running containers, we will now see that the Redis container
status is listed as (Paused):

$ docker container ls
CONTAINER ID IMAGE … STATUS …
092c5dc85044 redis:7.0 … Up 25 seconds (Paused) …

128 | Chapter 5: Working with Containers

https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt

Attempting to use the container in this paused state would fail. It’s present, but noth‐
ing is running. We can now resume the container by using the docker container
unpause command:

$ docker container unpause 092c5dc85044
092c5dc85044

$ docker container ls
CONTAINER ID IMAGE … STATUS …
092c5dc85044 redis:7.0 … Up 55 seconds …

It’s back to running, and docker container ls correctly reflects the new state.
It shows Up 55 seconds now because Docker still considers the container to be
running even when it is paused.

Cleaning Up Containers and Images
After running all these commands to build images, create containers, and run them,
we have accumulated a lot of image layers and container folders on our system.

We can list all the containers on our system using the docker container ls -a com‐
mand and then delete any of the containers in the list. We must stop all containers
that are using an image before removing the image itself. Assuming we’ve done that,
we can remove it as follows, using the docker container rm command:

$ docker container stop 092c5dc85044
092c5dc85044ls

$ docker container rm 092c5dc85044
092c5dc85044

It is possible to remove a running container if you use the -f or
--force flag with docker container rm.

We can then list all the images on our system using the following:

$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu latest 5ba9dab47459 3 weeks ago 188.3MB
redis 7.0 0256c63af7db 2 weeks ago 117MB
spkane/train-os latest 78fb082a4d65 4 months ago 254MB

We can then delete an image and all associated filesystem layers by running the
following:

$ docker image rm 0256c63af7db

Cleaning Up Containers and Images | 129

If you try to delete an image that is in use by a container, you will
get a Conflict, cannot delete error. You should stop and delete
the container(s) first.

There are times, especially during development cycles when it makes sense to com‐
pletely purge all the images or containers from your system. The easiest way to do
this is by running the docker system prune command:

$ docker system prune
WARNING! This will remove:
 - all stopped containers
 - all networks not used by at least one container
 - all dangling images
 - all build cache
Are you sure you want to continue? [y/N] y
Deleted Containers:
cbbc42acfe6cc7c2d5e6c3361003e077478c58bb062dd57a230d31bcd01f6190
…
Deleted Images:
deleted: sha256:bec6ec29e16a409af1c556bf9e6b2ec584c7fb5ffbfd7c46ec00b30bf …
untagged: spkane/squid@sha256:64fbc44666405fd1a02f0ec731e35881465fac395e7 …
…
Total reclaimed space: 1.385GB

To remove all unused images, instead of only dangling images, try
docker system prune -a.

It is also possible to craft more specific commands to accomplish similar goals.

To delete all of the containers on your Docker hosts, use the following command:

$ docker container rm $(docker container ls -a -q)

And to delete all the images on your Docker host, this command will get the job
done:

$ docker image rm $(docker images -q)

The docker container ls and docker images commands both support a
filter argument that can make it easy to fine-tune your delete commands for
certain circumstances.

To remove all containers that exited with a nonzero state, you can use this filter:

$ docker container rm $(docker container ls -a -q --filter 'exited!=0')

And to remove all untagged images, you can type this:

130 | Chapter 5: Working with Containers

$ docker image rm $(docker images -q -f "dangling=true")

You can read the official Docker documentation to explore the fil‐
tering options. At the moment, there are very few filters to choose
from, but more will likely be added over time.
You can also make your own very creative filters by stringing
together commands using pipes (|) and other similar techniques.

In production systems that see a lot of deployments, you can sometimes end up
with old containers or unused images lying around and filling up disk space. It can
be useful to script the docker system prune command to run on a schedule (e.g.,
running under cron or via a systemd timer).

Windows Containers
Up to now we have focused entirely on Docker commands for Linux containers, since
this is the most common use case and works on all Docker platforms. However, since
2016, the Microsoft Windows platform has supported running Windows containers
that include native Windows applications and can be managed with the usual set of
Docker commands.

Windows containers are not the focus of this book, since they still only make up
a small portion of production containers and aren’t 100% compatible with the rest
of the Docker ecosystem because they require Windows-specific container images.
However, they’re a growing and important part of the Docker world, so we’ll take a
brief look at how they work. In fact, except for the actual contents of the containers,
almost everything else works the same as Linux containers. In this section, we’ll run
through a quick example of how you can run a Windows container on Windows 10+
with Hyper-V and Docker.

For this to work, you must be using Docker Desktop on a compati‐
ble 64-bit edition of Windows 10 or later.

Windows Containers | 131

https://docs.docker.com/engine/reference/commandline/ps/#filtering

The first thing you’ll need to do is switch Docker from Linux containers to Windows
containers. To do this, right-click on the Docker whale icon in your taskbar, select
“Switch to Windows Containers…,” and then confirm the switch (Figures 5-1 and
5-2).

Figure 5-1. Switch to Windows containers

Figure 5-2. Switch to Windows containers confirmation

This process might take some time, although it usually happens almost immedi‐
ately. Unfortunately, there is no notification that the switch has completed. If you

132 | Chapter 5: Working with Containers

4 Full URL: https://learn.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7.3&viewFallback
From=powershell-6

right-click on the Docker icon again, you should now see “Switch to Linux Contain‐
ers…” in place of the original option.

If the first time you right-click on the Docker icon, it reads “Switch
to Linux Containers…,” then you are already configured for Win‐
dows containers.

We can test a simple Windows container by opening up PowerShell4 and trying to run
the following command:

PS C:\> docker container run --rm -it mcr.microsoft.com/powershell `
 pwsh -command `
 'Write-Host "Hello World from Windows `($IsWindows`)"'

Hello World from Windows (True)

This will download and launch a base container for PowerShell and then use scripting
to print Hello World from Windows (True) to the screen.

If the output from the preceding command prints Hello World
from Windows (false), then you have not switched over to Win‐
dows Container mode, or you are running this command on a
non-Windows platform.

If you want to build a Windows container image that accomplishes roughly the same
task, you can create the following Dockerfile:

escape=`
FROM mcr.microsoft.com/powershell
SHELL ["pwsh", "-command"]

RUN Add-Content C:\helloworld.ps1 `
 'Write-Host "Hello World from Windows"'

CMD ["pwsh", "C:\\helloworld.ps1"]

When you build this Dockerfile, it will base the image on mcr.microsoft.com/
powershell, create a small PowerShell script, and then configure the image to run
that script when this image is used to launch a container.

Windows Containers | 133

https://learn.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7.3&viewFallbackFrom=powershell-6
https://learn.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7.3&viewFallbackFrom=powershell-6
https://oreil.ly/SiTXP
https://hub.docker.com/_/microsoft-powershell

5 Full URL: https://learn.microsoft.com/en-us/virtualization/windowscontainers/about
6 Full URL: https://learn.microsoft.com/en-us/virtualization/windowscontainers/quick-start/building-sample-app

You may have noticed that we had to escape the backslash (\)
with an additional backslash in the preceding Dockerfile’s CMD line.
This is because Docker has its roots in Unix, and the backslash
has a special meaning in Unix shells. So, even though we changed
the escape character for the Dockerfile to match what is used in
PowerShell by default (which we set via the SHELL directive), we
still need to escape some backslashes to ensure that Docker does
not misinterpret them.

If you build this Dockerfile now, you’ll see something similar to this:

PS C:\> docker image build -t windows-helloworld:latest .

Sending build context to Docker daemon 2.048kB
Step 1/4 : FROM mcr.microsoft.com/powershell
 ---> 7d8f821c04eb
Step 2/4 : SHELL ["pwsh", "-command"]
 ---> Using cache
 ---> 1987fb489a3d
Step 3/4 : RUN Add-Content C:\helloworld.ps1
 'Write-Host "Hello World from Windows"'
 ---> Using cache
 ---> 37df47d57bf1
Step 4/4 : CMD ["pwsh", "C:\\helloworld.ps1"]
 ---> Using cache
 ---> 03046ff628e4
Successfully built 03046ff628e4
Successfully tagged windows-helloworld:latest

And now if you run the resulting image, you’ll see this:

PS C:\> docker container run --rm -ti windows-helloworld:latest

Hello World from Windows

Microsoft maintains good documentation about Windows containers5 that also
includes an example of building a container that launches a .NET application.6

134 | Chapter 5: Working with Containers

https://learn.microsoft.com/en-us/virtualization/windowscontainers/about
https://learn.microsoft.com/en-us/virtualization/windowscontainers/quick-start/building-sample-app
https://docs.docker.com/engine/reference/builder/#escape
https://docs.docker.com/engine/reference/builder/#escape
https://docs.docker.com/engine/reference/builder/#shell-form-entrypoint-example
https://oreil.ly/fYMHl
https://oreil.ly/WG2W2

On the Windows platform, it is also useful to know that you can
get improved isolation for your container by launching it inside
a dedicated and very lightweight Hyper-V VM. You can do this
very easily by simply adding the --isolation=hyperv option to
your docker container create and docker container run com‐
mands. There is a small performance and resource penalty for this,
but it significantly improves the isolation of your container. You
can read more about this in the documentation.

Even if you plan to mostly work with Windows containers, for the rest of the book
you should switch back to Linux containers so that all the examples work as expected.
When you are done reading and are ready to dive into building your containers, you
can always switch back.

Remember that you can re-enable Linux containers by right-
clicking on the Docker icon and selecting “Switch to Linux
Containers….”

Wrap-Up
In the next chapter, we’ll continue our exploration of what Docker brings to the table.
For now, it’s probably worth doing a little experimentation on your own. We suggest
exercising some of the container control commands we covered here so that you’re
familiar with the command-line options and the overall syntax. Now would even be
a great time to try to design and build a small image and then launch it as a new
container. When you are ready to continue, head on to Chapter 6!

Wrap-Up | 135

https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container

CHAPTER 6

Exploring Docker

Now that you have some experience working with containers and images, we can
explore some of Docker’s other capabilities. In this chapter, we’ll continue to use
the docker command-line tool to talk to the running dockerd server that you’ve
configured while visiting some of the other fundamental commands.

Docker provides commands to do several additional things easily:

• Printing the Docker version•
• Viewing the server information•
• Downloading image updates•
• Inspecting containers•
• Entering a running container•
• Returning a result•
• Viewing logs•
• Monitoring statistics•
• And much more…•

Let’s take a look at these as well as some of the additional community tooling that
augments Docker’s native capabilities.

137

Printing the Docker Version
If you completed the last chapter, you have a working Docker daemon on a Linux
server or VM, and you’ve started a base container to make sure it’s all working. If you
haven’t set that up already and you want to try out the steps in the rest of the book,
you’ll want to follow the installation steps in Chapter 3 before you move on with this
section.

The absolute simplest thing you can do with Docker is print the versions of the
various components. It might not sound like much, but this is a useful tool to
have because Docker is built from a multitude of components whose versions will
directly dictate what functionality is available to you. Knowing how to show the
version will also help you troubleshoot certain types of connection issues between the
client and server. For example, the Docker client might give you a cryptic message
about mismatched API versions, and it’s nice to be able to translate that into Docker
versions so you know which component needs updating. This command talks to the
remote Docker server, so if the client can’t connect to the server for any reason, the
client will report an error and then only print out the client version information. If
you find that you are having connectivity problems, you should probably revisit the
steps in the last chapter.

You can always directly log in to the Docker server and run docker
commands from a shell on the server if you are troubleshooting
issues or simply do not want to use the docker client to connect to
a remote system. On most Docker servers, this will require either
root privileges or membership in the docker group to connect to
the Unix domain socket that Docker is listening on.

Since we just installed all of the Docker components at the same time, when we run
docker version, we should see that all of our versions match:

$ docker version
Client:
 Cloud integration: v1.0.24
 Version: 20.10.17
 API version: 1.41
 Go version: go1.17.11
 Git commit: 100c701
 Built: Mon Jun 6 23:04:45 2022
 OS/Arch: darwin/amd64
 Context: default
 Experimental: true

Server: Docker Desktop 4.10.1 (82475)
 Engine:
 Version: 20.10.17

138 | Chapter 6: Exploring Docker

 API version: 1.41 (minimum version 1.12)
 Go version: go1.17.11
 Git commit: a89b842
 Built: Mon Jun 6 23:01:23 2022
 OS/Arch: linux/amd64
 Experimental: false
 containerd:
 Version: 1.6.6
 GitCommit: 10c12954828e7c7c9b6e0ea9b0c02b01407d3ae1
 runc:
 Version: 1.1.2
 GitCommit: v1.1.2-0-ga916309
 docker-init:
 Version: 0.19.0
 GitCommit: de40ad0

Notice how we have different sections representing the client and server. In this case,
we have a matching client and server since we just installed them together. But it’s
important to note that this won’t always be the case. Hopefully, in your production
systems, you can manage to keep the same version running on most systems. But
it’s not uncommon for development environments and build systems to have slightly
different versions.

API clients and libraries will usually work across a large number of Docker versions,
depending on which API version they require. In the Server section, we can see that
the current API version is 1.41 and the minimum API it will serve is 1.12. This is
useful information when you’re working with third-party clients, and now you know
how to verify this information.

Server Information
We can also find out a lot about the Docker server via the Docker client. Later
we’ll talk more about what all of this means, but you can find out which filesystem
backend the Docker server is running, which kernel version it is on, which operating
system it is running on, which plug-ins are installed, which runtime is being used,
and how many containers and images are currently stored there. docker system
info will present you with something similar to this, which has been shortened for
brevity:

$ docker system info
Client:
…
 Plugins:
 buildx: Docker Buildx (Docker Inc., v0.8.2)
 compose: Docker Compose (Docker Inc., v2.6.1)
 extension: Manages Docker extensions (Docker Inc., v0.2.7)
 sbom: View the packaged-based Software Bill Of Materials (SBOM) …
 scan: Docker Scan (Docker Inc., v0.17.0)

Server Information | 139

Server:
 Containers: 11
…
 Images: 6
 Server Version: 20.10.17
 Storage Driver: overlay2
…
 Plugins:
 Volume: local
 Network: bridge host ipvlan macvlan null overlay
 Log: awslogs fluentd gcplogs gelf journald json-file local logentries …
…
 Runtimes: io.containerd.runc.v2 io.containerd.runtime.v1.linux runc
 Default Runtime: runc
…
 Kernel Version: 5.10.104-linuxkit
 Operating System: Docker Desktop
 OSType: linux
 Architecture: x86_64
…

Depending on how your Docker daemon is set up, this might look somewhat differ‐
ent. Don’t be concerned about that; this is just to give you an example. Here we can
see that our server is a Docker Desktop release running the 5.10.104 Linux kernel and
backed with the overlay2 filesystem driver. We also have a few images and containers
on the server. With a fresh install, this number should be zero.

The information about plug-ins is worth pointing out here. It’s telling us about all the
things this installation of Docker supports. On a fresh install, things will look more or
less like this, depending on which new plug-ins are distributed with Docker. Docker
itself is made up of many different plug-ins all working together. This is powerful
because it means it’s also possible to install several other plug-ins contributed by
members of the community. It’s useful to be able to see which are installed even if you
just want to make sure Docker has recognized one that you recently added.

In most installations, /var/lib/docker will be the default root directory used to store
images and containers. If you need to change this, you can edit your Docker startup
scripts to launch the daemon, with the --data-root argument pointing to a new
storage location. To test this by hand, you could run something like this:

$ sudo dockerd \
 -H unix:///var/run/docker.sock \
 --data-root="/data/docker"

140 | Chapter 6: Exploring Docker

1 Full URL: https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-file

By default, the configuration file for the Docker server1 can be
found in /etc/docker/daemon.json. Most of the arguments that we
discuss passing directly to dockerd can be permanently set in this
file. If you are using Docker Desktop, you are advised to modify
this file in the Docker Desktop UI.

We will talk more about runtimes later, but here you can see that we have three run‐
times installed. The runc runtime is the default Docker runtime. If you think of Linux
containers, you are usually thinking about the type of container that runc builds.
On this server, we also have the io.containerd.runc.v2 and io.containerd.run
time.v1.linux runtimes installed. We’ll talk more about some other runtimes in
Chapter 11.

Downloading Image Updates
We’re going to use an Ubuntu base image for the following examples. Even if you
already grabbed the ubuntu:latest base image once, you can pull it again and it will
automatically pick up any updates that have been published since you last ran it.

This is because latest is a tag that, by convention, is supposed to represent the
latest build of the container. However, the latest tag is controversial, since it is
not permanently pinned to a specific image and can have different meanings across
different projects. Some people use it to point to the most recent stable release, some
use it to point to the last build produced by their CI/CD system, and others simply
refuse to tag any of their images with latest. That being said, it is still in wide use
and can be useful in preproduction environments where the convenience of using it
outweighs the lack of assurances that a real version provides:

Invoking docker image pull will look like this:

$ docker image pull ubuntu:latest

latest: Pulling from library/ubuntu
405f018f9d1d: Pull complete
Digest: sha256:b6b83d3c331794420340093eb706a6f152d9c1fa51b262d9bf34594887c2c7ac
Status: Downloaded newer image for ubuntu:latest
docker.io/library/ubuntu:latest

That command pulled down only the layers that have changed since we last ran the
command. You might see a longer or shorter list, or even an empty list, depending on
when you last pulled the image, what changes have been pushed to the registry since
then, and how many layers the target image contains.

Downloading Image Updates | 141

https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-file
https://oreil.ly/jp7iK

It’s good to remember that even though you pulled latest, Docker
won’t automatically keep the local image up to date for you. You’ll
be responsible for doing that yourself. However, if you deploy an
image based on a newer copy of ubuntu:latest, the Docker client
will download the missing layers during the deployment just like
you would expect. Keep in mind that this is the behavior of the
Docker client, and other libraries or API tools may not behave this
way. It’s highly recommended that you always deploy production
code using a fixed version tag rather than the latest tag. This
helps guarantee that you get the version you expect and there are
no unexpected surprises.

In addition to referring to items in the registry by the latest tag or another version
number tag, you can refer to them by their content-addressable tag, which looks like
this:

sha256:b6b83d3c331794420340093eb706a6f152d9c1fa51b262d9bf34594887c2c7ac

These are generated as a hashed sum of the contents of the image and are a very
precise identifier. This is by far the safest way to refer to Docker images when you
need to make sure you are getting the exact version you expect because these can’t
be moved like a version tag. The syntax for pulling them from the registry is very
similar, but note the @ in the tag:

$ docker image pull ubuntu@sha256:b6b83d3c331794420340093eb706a6f152d…

Unlike most Docker commands where you may shorten the hash, you cannot do that
with SHA-256 hashes. You must use the full hash here.

Inspecting a Container
Once you have a container created, running or not, you can now use docker to see
how it was configured. This is often useful in debugging and also has some other
information that can be useful for identifying a container.

For this example, go ahead and start up a container:

$ docker container run --rm -d -t ubuntu /bin/bash
3c4f916619a5dfc420396d823b42e8bd30a2f94ab5b0f42f052357a68a67309b

We can list all our running containers with docker container ls to ensure every‐
thing is running as expected, and to copy the container ID:

$ docker container ls
CONTAINER ID IMAGE COMMAND … STATUS … NAMES
3c4f916619a5 ubuntu:latest "/bin/bash" … Up 31 seconds … angry_mestorf

142 | Chapter 6: Exploring Docker

In this case, our ID is 3c4f916619a5. We could also use angry_mestorf, which is
the dynamic name assigned to our container. Many underlying tools need the unique
container ID though, so it’s useful to get into the habit of looking at that first. As we
mentioned earlier, the ID as shown is the truncated (or short) version, but Docker
treats these interchangeably with the long versions. As is the case in many version
control systems, this hash is just the prefix of a much longer hash. Internally, the
kernel uses a 64-byte hash to identify the container. But that’s painful for humans to
use, so Docker supports the shortened hash.

The output to docker container inspect is pretty verbose, so we’ll cut it down in
the following code block to a few values worth pointing out. You should look at the
full output to see what else you think is interesting:

$ docker container inspect 3c4f916619a5

[{
 "Id": "3c4f916619a5dfc420396d823b42e8bd30a2f94ab5b0f42f052357a68a67309b",
 "Created": "2022-07-17T17:26:53.611762541Z",
 …
 "Args": [],
 …
 "Image": "sha256:27941809078cc9b2802deb2b0bb6feed6c…7f200e24653533701ee",
 …
 "Config": {
 "Hostname": "3c4f916619a5",
 …
 "Env": [
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
],
 "Cmd": [
 "/bin/bash"
],
 …
 "Image": "ubuntu",
 …
 },
 …
}]

Note that long "Id" string. That’s the full unique identifier of this container. Luckily
we can use the short version, even if that’s still not especially convenient. We can also
see that the exact time when the container was created is much more precise than
what docker container ls gives us.

Some other interesting things are shown here as well: the top-level command in
the container, the environment that was passed to it at creation time, the image on
which it’s based, and the hostname inside the container. All of these are configurable
at container creation time if you need to do so. The usual method for passing
configuration to containers, for example, is via environment variables, so being able

Inspecting a Container | 143

to see how a container was configured via docker container inspect can reveal a
lot when you’re debugging.

You can go ahead and stop the current container by running something like docker
container stop 3c4f916619a5.

Exploring the Shell
Let’s get a container running with just an interactive bash shell so we can take a look
around. We’ll do that, as we did before, by running something like this:

$ docker container run --rm -it ubuntu:22.04 /bin/bash

That will run an Ubuntu 22.04 LTS container with the bash shell as the top-level
process. By specifying the 22.04 tag, we can be sure to get a particular version of the
image. So, when we start that container, what processes are running?

root@35fd1ad27228:/# ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 17:45 pts/0 00:00:00 /bin/bash
root 9 1 0 17:47 pts/0 00:00:00 ps -ef

Wow, that’s not much, is it? It turns out that when we told docker to start bash, we
didn’t get anything but that. We’re inside a whole Linux distribution image, but no
other processes started for us automatically. We only got what we asked for. It’s good
to keep that in mind going forward.

Linux containers don’t, by default, start anything in the background
as a full VM would. They’re a lot lighter weight than that and
therefore don’t start an init system. You can, of course, run a
whole init system if you need to, or the tini init system that is
built into Docker, but you have to ask for it. We’ll talk about that
more in Chapter 7.

That’s how we get a shell running in a container. Feel free to poke around and see
what else looks interesting inside the container. You might have a pretty limited set
of commands available. You’re in a base Ubuntu distribution, though, so you can fix
that by using apt-get update, followed by apt-get install… to download more
packages. However, these applications are only going to be around for the life of
this container. You’re modifying the top layer of the container, not the base image!
Containers are by nature ephemeral, so anything you do inside this container won’t
outlast it.

When you are done in the container, make sure to exit the shell, which will then
naturally stop the container:

root@35fd1ad27228:/# exit

144 | Chapter 6: Exploring Docker

https://github.com/krallin/tini

Returning a Result
How inefficient would it be to spin up a whole VM to run one command and
get the results? You usually wouldn’t want to do this because it would be very time-
consuming and would require booting a whole operating system to simply execute
one command. But Docker and Linux containers do not work the same way as VMs
do: containers are very lightweight and don’t have to boot up like an operating system
does. Running something like a quick background job and waiting for the exit code
is a normal use case for a Linux container. You can think of it as a way to get remote
access to a containerized system and have access to any of the individual commands
inside that container with the ability to pipe data to and from them and return exit
codes.

This can be useful in lots of scenarios: you might, for instance, have system health
checks run this way remotely or have a series of machines with processes that you
spin up via Docker to process a workload and then return. The docker command-
line tools proxy the results to the local machine. If you run the remote command in
foreground mode and don’t specify doing otherwise, docker will redirect its stdin
to the remote process, and the remote process’s stdout and stderr to your terminal.
The only things we have to do to get this functionality are to run the command
in the foreground and not allocate a TTY on the remote. This is also the default
configuration! No command-line options are required.

When we run these commands, Docker creates a new container, executes the com‐
mand that we requested inside the container’s namespaces and cgroups, removes the
container, and then exits so that nothing is left running or taking up unnecessary disk
space between invocations. The following code should give you an idea of the types of
things that you can do:

$ docker container run --rm ubuntu:22.04 /bin/false
$ echo $?
1

$ docker container run --rm ubuntu:22.04 /bin/true
$ echo $?
0

$ docker container run --rm ubuntu:22.04 /bin/cat /etc/passwd

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
…
nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin
_apt:x:100:65534::/nonexistent:/usr/sbin/nologin

$ docker container run --rm ubuntu:22.04 /bin/cat /etc/passwd | wc -l

19

Returning a Result | 145

Here we executed /bin/false on the remote server, which will always exit with a
status of 1. Notice how docker proxied that result to us in the local terminal. Just to
prove that it returns other results, we also run /bin/true, which will always return a
0. And there it is.

Then we actually ask docker to run cat /etc/passwd on the remote container. What
we get is a printout of the /etc/passwd file contained inside that container’s filesystem.
Because that’s just regular output on stdout, we can pipe it into local commands just
like we would anything else.

The previous code pipes the output into the local wc command,
not a wc command in the container. The pipe itself is not passed
to the container. If you want to pass the whole command, includ‐
ing the pipes, to the server, you need to invoke a complete
shell on the remote side and pass a quoted command, like bash
-c "<your command> | <something else>". In the previous
code, that would be docker container run ubuntu:22.04 /bin/
bash -c " /bin/cat /etc/passwd | wc -l".

Getting Inside a Running Container
You can pretty easily get a shell running in a new container, based on almost any
image, as we demonstrated earlier with docker container run. But it’s not the
same as getting a new shell inside an existing container that is actively running your
application. Every time you use docker container run, you get a new container.
But if you have an existing container that is running an application and you need to
debug it from inside the container, you need something else.

Using docker container exec is the Docker-native way to get a new interactive
process in a container, but there is also a more Linux-native way to do it, called
nsenter. We will take a look at docker container exec in this section and cover
nsenter later in “nsenter” on page 334.

You may be wondering why you would ever want to do this. In
development, this can be very useful when you are actively building
and testing your application. This is the mechanism that develop‐
ment containers use in IDEs like Visual Studio Code.
In production, it isn’t considered good practice to SSH into your
production servers, and this is roughly the same thing; but there
are times when it’s very important to see what’s going on inside the
actual environment, and this can help you out in those situations.

146 | Chapter 6: Exploring Docker

https://containers.dev
https://containers.dev
https://code.visualstudio.com/docs/devcontainers/containers

docker container exec
First, let’s take a look at the easiest and best way to get inside a running container. The
dockerd server and docker command-line tool support remotely executing a new
process in a running container via the docker container exec command. So let’s
start up a container in background mode and then enter it using docker container
exec and invoking a shell.

The command you invoke doesn’t have to be a shell: it’s possible to run individual
commands inside the container and see their results outside it using docker con
tainer exec. But if you want to get inside the container to look around, a shell is the
easiest way to do that.

To run docker container exec, we’ll need our container’s ID. For this demo, let’s
create a container that will just run the sleep command for 600 seconds:

$ docker container run -d --rm ubuntu:22.04 sleep 600
9f09ac4bcaa0f201e31895b15b479d2c82c30387cf2c8a46e487908d9c285eff

The short ID for this container is 9f09ac4bcaa0. We can now use that to get inside
the container with docker container exec. The command line for that, unsurpris‐
ingly, looks a lot like the command line for docker container run. We request an
interactive session and a pseudo-TTY with the -i and -t flags:

$ docker container exec -it 9f09ac4bcaa0 /bin/bash
root@9f09ac4bcaa0:/#

Note that we got a command line back that tells us the ID of the container we’re
running inside. That’s pretty useful for keeping track of where we are. We can now
run a normal Linux ps to see what else is running inside our container. We should see
the sleep process that was created when the container was originally started:

root@9f09ac4bcaa0:/# ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 20:22 ? 00:00:00 sleep 600
root 7 0 0 20:23 pts/0 00:00:00 /bin/bash
root 15 7 0 20:23 pts/0 00:00:00 ps -ef

Type exit to get out of the container when you are done.

Getting Inside a Running Container | 147

You can also run additional processes in the background via
docker container exec. You use the -d option just like with
docker container run. But you should think hard about doing
that for anything but debugging because you lose the repeatabil‐
ity of the image deployment if you depend on this mechanism.
Other people would then have to know what to pass to docker
container exec to get the desired functionality. If you’re tempted
to do this, you would probably reap bigger gains from rebuilding
your container image to launch both processes in a repeatable way.
If you need to signal to the software inside the container to take
some action like rotating logs or reloading a configuration, it is
cleaner to leverage docker container kill -s <SIGNAL> with
the standard Unix signal name to pass information to the process
inside the container.

docker volume
Docker supports a volume subcommand that makes it possible to list all of the
volumes stored in your root directory and then discover additional information
about them, including where they are physically stored on the server.

These volumes are not bind-mounted; instead, they are special data containers that
provide a useful method for persisting data.

If we run a normal docker command that bind-mounts a directory, we’ll notice that it
does not create any Docker volumes:

$ docker volume ls
DRIVER VOLUME NAME

$ docker container run --rm -d -v /tmp:/tmp ubuntu:latest sleep 120
6fc97c50fb888054e2d01f0a93ab3b3db172b2cd402fc1cd616858b2b5138857

$ docker volume ls
DRIVER VOLUME NAME

However, you can easily create a new volume with a command like this:

$ docker volume create my-data

If you then list all your volumes, you should see something like this:

148 | Chapter 6: Exploring Docker

$ docker volume ls

DRIVER VOLUME NAME
local my-data

$ docker volume inspect my-data

[
 {
 "CreatedAt": "2022-07-31T16:19:42Z",
 "Driver": "local",
 "Labels": {},
 "Mountpoint": "/var/lib/docker/volumes/my-data/_data",
 "Name": "my-data",
 "Options": {},
 "Scope": "local"
 }
]

Now you can start a container with this data volume attached to it by running the
following:

 $ docker container run --rm \
 --mount source=my-data,target=/app \
 ubuntu:latest touch /app/my-persistent-data

That container created a file in the data volume and then immediately exited.

If we now mount that data volume to a different container, we will see that our data is
still there:

$ docker container run --rm \
 --mount source=my-data,target=/app \
 fedora:latest ls -lFa /app/my-persistent-data

-rw-r--r-- 1 root root 0 Jul 31 16:24 /app/my-persistent-data

And finally, you can delete the data volume when you are done with it by running the
following:

$ docker volume rm my-data

my-data

If you try to delete a volume that is in use by a container (whether
it is running or not), you’ll get an error like this:

Error response from daemon: unable to remove volume:
 remove my-data: volume is in use - [
 d0763e6e8d79e55850a1d3ab21e9d…,
 4b40d52978ea5e784e66ddca8bc22…]

Getting Inside a Running Container | 149

These commands should help you explore your containers in great detail. Once
we’ve explained namespaces more in Chapter 11, you’ll get a better understanding of
exactly how all these pieces interact and combine to create a container.

Logging
Logging is a critical part of any production application. When things go wrong, logs
can be a critical tool in restoring service, so they need to be done well. There are
some common ways in which we expect to interact with application logs on Linux
systems, some better than others. If you’re running an application process on a box,
you might expect the output to go to a local logfile that you could read through. Or
perhaps you might expect the output to simply be logged to the kernel buffer where
it can be read from dmesg. Or, as on many modern Linux distributions with systemd,
you might expect logs to be available from journalctl. Because of the container’s
restrictions and how Docker is constructed, none of these will work without at
least some configuration on your part. But that’s OK because logging has first-class
support in Docker.

Docker makes logging easier in a few critical ways. First, it captures all of the normal
text output from applications in the containers it manages. Anything sent to stdout
or stderr in the container is captured by the Docker daemon and streamed into a
configurable logging backend. Secondly, like many other parts of Docker, this system
is pluggable, and there are lots of powerful options available to you as plug-ins. But
let’s not dive into the deep end just yet.

docker container logs
We’ll start with the simplest Docker use case: the default logging mechanism. There
are limitations to this mechanism, which we’ll explain in a minute, but for the most
common use cases, it works well, and it’s very convenient. If you are running Docker
in development, this is probably the only logging strategy you’ll use there. This
logging method has been there from the very beginning and is well understood and
supported. The mechanism is the json-file method. The docker container logs
command exposes most users to this.

As implied by the name, when you run the default json-file logging plug-in, your
application’s logs are streamed by the Docker daemon into a JSON file for each
container. This lets us retrieve logs for any container at any time.

We can display some logs by starting an nginx container:

$ docker container run --rm -d --name nginx-test --rm nginx:latest

150 | Chapter 6: Exploring Docker

and then:

$ docker container logs nginx-test
…
2022/07/31 16:36:05 [notice] 1#1: using the "epoll" event method
2022/07/31 16:36:05 [notice] 1#1: nginx/1.23.1
2022/07/31 16:36:05 [notice] 1#1: built by gcc 10.2.1 20210110 (Debian 10.2.1-6)
2022/07/31 16:36:05 [notice] 1#1: OS: Linux 5.10.104-linuxkit
…

This is nice because Docker allows you to get the logs remotely, right from the
command line, on demand. That’s very useful for low-volume logging.

To limit the log output to more recent logs, you can use
the --since option to display logs only after a specified RFC
3339 date (e.g., 2002-10-02T10:00:00-05:00), Unix timestamp (e.g.,
1450071961), standard timestamp (e.g., 20220731), or Go duration
string (e.g., 5m45s). You can also use --tail followed by the num‐
ber of lines you would like to tail.

The actual files backing this logging are on the Docker server itself, by
default in /var/lib/docker/containers/<container_id>/ where the <container_id>
is replaced by the actual container ID. If you take a look at the file named
<container_id>-json.log, you’ll see that it’s a file with each line representing a
JSON object. It will look something like this:

{"log":"2022/07/31 16:36:05 [notice] 1#1: using the \"epoll\" event method\n",
 "stream":"stderr","time":"2022-07-31T16:36:05.189234362Z"}

That log field is exactly what was sent to stdout on the process in question; the
stream field tells us that this was stdout and not stderr, and the precise time that
the Docker daemon received it is provided in the time field. It’s an uncommon format
for logging, but it’s structured rather than just a raw stream, which is beneficial if you
want to do anything with the logs later.

Like a logfile, you can also tail the Docker logs live with docker container logs -f:

$ docker container logs -f nginx-test
…
2022/07/31 16:36:05 [notice] 1#1: start worker process 35
2022/07/31 16:36:05 [notice] 1#1: start worker process 36
2022/07/31 16:36:05 [notice] 1#1: start worker process 37
2022/07/31 16:36:05 [notice] 1#1: start worker process 38

Logging | 151

This looks identical to the usual docker container logs, but the client will continue
to wait for, and then display, new messages as they are received from the server, much
like the Linux command line tail -f. You can type Ctrl-C to exit the logs stream at
any time:

$ docker container stop nginx-test

By configuring the tag log option similar to --log-opt

tag="{{.ImageName}}/{{.ID}}", it is possible to change the
default log tag (which every log line will start with) to something
more useful. By default, Docker logs will be tagged with the first 12
characters of the container ID.

For single-host logging, this mechanism is pretty good. Its shortcomings are around
log rotation, remote access to the logs once they’ve been rotated, and disk space
usage for high-volume logging. Despite being backed by a JSON file, this mechanism
performs well enough that most production applications can log this way if that’s the
solution that works for you. But if you have a more complex environment, you’re
going to want something more robust and with centralized logging capabilities.

The default settings for dockerd do not currently enable log rota‐
tion. You’ll want to make sure you specify the --log-opt max-size
and --log-opt max-file settings via the command line or the
daemon.json configuration file if you are running in production.
Those settings limit the largest file size before rotation and the
maximum number of logfiles to keep, respectively. max-file does
not do anything unless you’ve also set max-size to tell Docker
when to rotate the logs. When this is enabled, the docker con
tainer logs mechanism will return data only from the current
logfile.

More Advanced Logging
For those times when the default mechanism isn’t enough—and at scale, it’s probably
not—Docker also supports configurable logging backends. This list of plug-ins is
constantly growing. Currently supported are the json-file we described earlier,
as well as syslog, fluentd, journald, gelf, awslogs, splunk, gcplogs, local, and
logentries, which are used for sending logs to various popular logging frameworks
and services.

152 | Chapter 6: Exploring Docker

That’s a big list of plug-ins we just threw out there. The supported option that
currently is the simplest for running Docker at scale is sending your container logs to
syslog directly from Docker. You can specify this on the Docker command line with
the --log-driver=syslog option or set it as the default in the daemon.json file for all
containers.

The daemon.json file is the configuration for the dockerd server. It
can usually be found in the /etc/docker/ directory on the server. For
Docker Desktop, this file can be edited in Preferences → Docker
Engine from the UI. If you change this file, you will need to restart
Docker Desktop or the dockerd daemon.

There are also several third-party plug-ins available. We’ve seen mixed results from
third-party plug-ins, primarily because they complicate installing and maintaining
Docker. However, you may find that there is a third-party implementation that’s
perfect for your system, and it might be worth the installation and maintenance
hassle.

Some caveats apply to all of the logging drivers. For example,
Docker supports only one at a time. This means that you can
use the syslog or gelf logging driver, but not along with the
json-file driver. Unless you run json-file or journald, you
will lose the ability to use the docker container logs command!
This may not be expected and is a big consideration when you are
changing the driver.
Some plug-ins are designed to send the logs to a remote endpoint
and keep a local JSON copy for the docker container logs com‐
mand, but you will need to determine if the plug-in that you want
to use supports this. There are too many gotchas to go through
for each driver, but you should keep in mind the trade-off between
guaranteed delivery of logs and the potential for breaking your
Docker deployment. UDP-based solutions or other nonblocking
options are recommended.

Traditionally, most Linux systems have some kind of syslog receiver, whether it be
syslog, rsyslog, or any of the many other options. This protocol in its various forms
has been around for a long time and is fairly well supported by most deployments.
When migrating to Docker from a traditional Linux or Unix environment, many
companies already have syslog infrastructure in place, which means this is often the
easiest migration path as well.

Logging | 153

Many newer Linux distributions are based on the systemd init
system and therefore use journald for logging by default, which is
different from syslog.

While syslog is a traditional solution, it has its problems. The Docker syslog driver
supports TLS, TCP, and UDP connection options, which sounds great, but you
should be cautious about streaming logs from Docker to a remote log server over
TCP or TLS. The problem with this is that they are both run on top of connection-
oriented TCP sessions, and Docker tries to connect to the remote logging server at
the time of container startup. If it fails to make the connection, it will block trying to
start the container. If you are running this as your default logging mechanism, this
can strike at any time on any deployment.

This is not a particularly usable state for production systems, and thus it is recom‐
mended that you use the UDP option for syslog logging if you intend to use the
syslog driver. This does mean your logs are not encrypted and do not have guaran‐
teed delivery. There are various philosophies around logging, and you’ll need to bal‐
ance your need for logs against the reliability of your system. We tend to recommend
erring on the side of reliability, but if you run in a secure audit environment, you may
have different priorities.

You can log directly to a remote syslog-compatible server from a
single container by setting the log option syslog-address similar
to this: --log-opt syslog-address=udp://192.168.42.42:123.

One final caveat to be aware of regarding most of the logging plug-ins: they are block‐
ing by default, which means that logging back-pressure can cause issues with your
application. You can change this behavior by setting --log-opt mode=non-blocking
and then setting the maximum buffer size for logs to something like --log-opt
max-buffer-size=4m. Once these are set, the application will no longer block when
that buffer fills up. Instead, the oldest loglines in memory will be dropped. Again,
reliability needs to be weighed here against your business’s need to receive all the logs.

154 | Chapter 6: Exploring Docker

Some third-party libraries and programs write to the filesystem
for various (and sometimes unexpected) reasons. If you are trying
to design clean containers that do not write directly into the con‐
tainer filesystem, you should consider utilizing the --read-only
and --mount type=tmpfs options to docker container run that
we discussed in Chapter 4. Writing logs inside the container is not
recommended. It makes them hard to get to, prevents them from
being preserved beyond the container life span, and can wreak
havoc with the Docker filesystem backend.

Monitoring Docker
Among the most important requirements for production systems is that they are
observable and measurable. A production system where you are blind to how it’s
behaving won’t serve you well. In modern operations environments, we want to mon‐
itor everything meaningful and report as many useful statistics as we can. Docker
supports container health checks and some basic reporting capabilities via docker
container stats and docker system events. We’ll show you those and then look
at a community offering from Google that does some nice graphing output, and
then we’ll take a look at a—currently experimental—feature of Docker that exports
container metrics to the Prometheus monitoring system.

Container Statistics
Let’s start with the CLI tools that ship with Docker itself. The docker CLI has an
endpoint for viewing important statistics of running containers. The command-line
tool can stream from this endpoint and every few seconds report back on one or
more listed containers, giving basic statistics information about what’s happening.
docker container stats, like the Linux top command, takes over the current
terminal and updates the same lines on the screen with the current information. It’s
hard to show that in print so we’ll just give an example, but this updates every few
seconds by default.

Command-line statistics
Start an active container:

$ docker container run --rm -d --name stress \
 docker.io/spkane/train-os:latest \
 stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 60s

Then run the stats command to look at the new container:

$ docker container stats stress
CONTAINER ID NAME CPU % MEM USAGE/LIMIT MEM % NET I/O BLOCK I/O PIDS
1a9f52f0855f stress 476.50% 36.09MiB/7.773GiB 0.45% 1.05kB/0B 0B/0B 6

Monitoring Docker | 155

You can type Ctrl-C to exit the stats stream at any time.

You can use the --no-stream option to get a single-point-in-time
set of statistics that will not update and will return you back to the
command line after the command completes.

Let’s break that rather dense output down into some manageable chunks. We have the
following:

• The container ID (but not the name).•
• The amount of CPU it’s currently consuming. One hundred percent is equivalent•

to one whole CPU core.
• The amount of memory it has in use, followed by the maximum amount it’s•

allowed to use.
• Network and block I/O statistics.•
• The number of active processes inside the container.•

Some of these will be more useful than others for debugging, so let’s take a look at
what you can do with them.

One of the more helpful pieces of output here is the percentage of memory used
versus the limit that was set for the container. One common problem with running
production containers is that overly aggressive memory limits can cause the Linux
kernel’s OOM killer to stop the container over and over again. The stats command
can help you identify and troubleshoot these types of issues.

Concerning I/O statistics, if you run all of your applications in containers, then this
summary can make it very clear where your I/O is going from the system. Before
containers, this was much harder to figure out!

The number of active processes inside the container helps debug as well. If you have
an application that is spawning children without reaping them, this can expose it
pretty quickly.

One great feature of docker container stats is that it can show not just one
container but all of them in a single summary. That can be pretty revealing, even on
boxes where you think you know what they are doing.

That is all useful and easy to digest because it’s human formatted and available on the
command line. But there is an additional endpoint on the Docker API that provides
a lot more information than is shown in the client. We’ve steered away from directly
utilizing the API in this book so far, but in this case, the data provided by the API

156 | Chapter 6: Exploring Docker

is so much richer than the client that we’ll go ahead and use curl to make an API
request and see what our container is doing. It’s nowhere near as nice to read, but
there is a lot more detail.

Remember that basically everything that the docker client can do
can be done directly through the Docker APIs. This means that you
can programmatically do very similar things in your applications if
there is a need.

The example in “stats API endpoint” on page 157 is a good intro to calling the API
directly.

stats API endpoint

The /stats/ endpoint that we’ll hit on the API will continue to stream statistics to
us as long as we keep the connection open. Since as humans we can’t easily parse the
JSON, we’ll just ask for one line and then use the tool jq to “pretty-print” it. For this
command to work, you’ll need to have jq installed (version 2.6 or later). If you don’t
and you still want to see the JSON output, you can skip the pipe to jq, but you’ll get
plain, ugly JSON back. If you already have a favorite JSON pretty printer, feel free to
use that instead.

Most Docker daemons will be installed with the API available only on the Unix
domain socket and not published on TCP. So we’ll use curl from the Docker server
host itself to call the API. If you plan to monitor this endpoint in production, you
would need to expose the Docker API on a TCP port. This is not something that we
recommend, but the Docker documentation will walk you through this.

If you are not on the Docker server or using Docker Desktop
locally, you may need to inspect the contents of the DOCKER_HOST
environment variable, using something like echo $DOCKER_HOST, to
discover the hostname or IP address of the Docker server that you
are using.

First, start up a container that you can read statistics from:

$ docker container run --rm -d --name stress \
 docker.io/spkane/train-os:latest \
 stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 60s

Monitoring Docker | 157

https://dockr.ly/2Lzuox2

Now that the container is running, you can get an ongoing stream of statistics about
the container in JSON format by running something like curl with your container’s
name or hash.

In the following examples, we are running curl against the Docker
socket, but you could just as easily run it against the Docker port if
it is available.

$ curl --no-buffer -XGET --unix-socket /var/run/docker.sock \
 http://docker/containers/stress/stats

This JSON stream of statistics will not stop on its own. So for now,
we can use the Ctrl-C key combination to stop it.

To get a single group of statistics, we can run something similar to this:

$ curl -s -XGET --unix-socket /var/run/docker.sock \
 http://docker/containers/stress/stats | head -n 1 | jq

And finally, if we have jq or another tool capable of pretty-printing JSON, we can
make this output human readable, as shown here:

$ curl -s -XGET --unix-socket /var/run/docker.sock \
 http://docker/containers/stress/stats | head -n 1 | jq

{
 "read": "2022-07-31T17:41:59.10594836Z",
 "preread": "0001-01-01T00:00:00Z",
 "pids_stats": {
 "current": 6,
 "limit": 18446744073709552000
 },
 "blkio_stats": {
 "io_service_bytes_recursive": [
 {
 "major": 254,
 "minor": 0,
 "op": "read",
 "value": 0
 },
…
]
 },
 "num_procs": 0,
 "storage_stats": {},
 "cpu_stats": {

158 | Chapter 6: Exploring Docker

https://stedolan.github.io/jq

 "cpu_usage": {
 "total_usage": 101883204000,
 "usage_in_kernelmode": 43818021000,
 "usage_in_usermode": 58065183000
…
 },
 },
 "memory_stats": {
 "usage": 183717888,
 "stats": {
 "active_anon": 0,
 "active_file": 0,
…
 },
 "limit": 8346021888
 },
 "name": "/stress",
 "id": "9be7c9de26864ac97e07fc3d8e3ffb5bb52cc2ba49f569d4ba8d407f8747851f",
 "networks": {
 "eth0": {
 "rx_bytes": 1046,
 "rx_packets": 9,
…
 }
 }
}

There is a lot of information in there. We’ve cut it down to prevent wasting any more
trees or electrons than necessary, but even so, there is a lot to digest. The main idea
is to let you see how much data is available from the API about each container. We
won’t spend much time going into the details, but you can get quite detailed memory
usage information, as well as block I/O and CPU usage information.

If you are doing your own monitoring, this is a great endpoint to hit as well. A
drawback, however, is that it’s one endpoint per container, so you can’t get the
statistics about all containers from a single call.

Container Health Checks
As with any other application, when you launch a container it is possible that it will
start and run but never actually enter a healthy state where it could receive traffic.
Production systems also fail, and your application may become unhealthy at some
point during its life, so you need to be able to deal with that.

Many production environments have standardized ways to health-check applications.
Unfortunately, there’s no clear standard for how to do that across organizations, and
it’s unlikely that many companies do it in the same way. For this reason, monitoring
systems have been built to handle that complexity so that they can work in a lot of
different production systems. It’s a clear place where a standard would be a big win.

Monitoring Docker | 159

To help remove this complexity and standardize on a universal interface, Docker
has added a health-check mechanism. Following the shipping container metaphor,
Linux containers should really look the same to the outside world no matter what
is inside the container, so Docker’s health-check mechanism not only standardizes
health checking for containers but also maintains the isolation between what is inside
the container and what it looks like on the outside. This means that containers
from Docker Hub or other shared repositories can implement a standardized health-
checking mechanism, and it will work in any other Docker environment designed to
run production containers.

Health checks are a build-time configuration item and are created with a
HEALTHCHECK definition in the Dockerfile. This directive tells the Docker daemon
what command it can run inside the container to ensure the container is in a healthy
state. As long as the command exits with a code of zero (0), Docker will consider the
container to be healthy. Any other exit code will indicate to Docker that the container
is not in a healthy state, at which point appropriate action can be taken by a scheduler
or monitoring system.

We will be using the following project to explore Docker Compose in a few chapters.
But, for the moment, it includes a useful example of Docker health checks. Go ahead
and pull down a copy of the code, and then navigate into the rocketchat-hubot-demo/
mongodb/docker/ directory:

$ git clone https://github.com/spkane/rocketchat-hubot-demo.git \
 --config core.autocrlf=input
$ cd rocketchat-hubot-demo/mongodb/docker

In this directory, you will see a Dockerfile and a script called docker-healthcheck. If
you view the Dockerfile, this is all that you will see:

FROM docker.io/bitnami/mongodb:4.4
Newer Upstream Dockerfile:
https://github.com/bitnami/containers/blob/
f9fb3f8a6323fb768fd488c77d4f111b1330bd0e/bitnami/mongodb
/5.0/debian-11/Dockerfile

COPY docker-healthcheck /usr/local/bin/

Useful Information:
https://docs.docker.com/engine/reference/builder/#healthcheck
https://docs.docker.com/compose/compose-file/#healthcheck
HEALTHCHECK CMD ["docker-healthcheck"]

160 | Chapter 6: Exploring Docker

2 Full URL: https://github.com/bitnami/containers/blob/f9fb3f8a6323fb768fd488c77d4f111b1330bd0e/bit
nami/mongodb/5.0/debian-11/Dockerfile

It is very short because we are basing this on the upstream Mongo image,2 and our
image inherits a lot of things from that, including the entry point, default command,
and port to expose.

Bitnami significantly refactored their container repositories in early
2023, so this link points to a slightly newer version of the Dockerfile
that targets MongoDB 5.0. We are using MongoDB 4.4 in this
example, but the link should still get the point across.

EXPOSE 27017
ENTRYPOINT ["/opt/bitnami/scripts/mongodb/entrypoint.sh"]
CMD ["/opt/bitnami/scripts/mongodb/run.sh"]

Be aware that Docker will forward traffic to a container’s ports even
when the container and underlying processes are still spinning up.

So, in our Dockerfile we are only adding a single script that can health-check our
container, and defining a health-check command that runs that script.

You can build the container like this:

$ docker image build -t mongo-with-check:4.4 .
 => [internal] load build definition from Dockerfile 0.0s
 => => transferring dockerfile: 37B 0.0s
 => [internal] load .dockerignore 0.0s
 => => transferring context: 2B 0.0s
 => [internal] load metadata for docker.io/bitnami/mongodb:4.4 0.5s
 => [internal] load build context 0.0s
 => => transferring context: 40B 0.0s
 => CACHED [1/2] FROM docker.io/bitnami/mongodb:4.4@sha256:9162…ae209 0.0s
 => [2/2] COPY docker-healthcheck /usr/local/bin/ 0.0s
 => exporting to image 0.0s
 => => exporting layers 0.0s
 => => writing image sha256:a6ef…da808 0.0s
 => => naming to docker.io/library/mongo-with-check:4.4 0.0s

And then run the container and look at the docker container ls output:

$ docker container run -d --rm --name mongo-hc mongo-with-check:4.4
5a807c892428ab0641232c82bd477fc8d1142c9e15c27d5946b8bfe7056e2695

$ docker container ls

Monitoring Docker | 161

https://github.com/bitnami/containers/blob/f9fb3f8a6323fb768fd488c77d4f111b1330bd0e/bitnami/mongodb/5.0/debian-11/Dockerfile
https://github.com/bitnami/containers/blob/f9fb3f8a6323fb768fd488c77d4f111b1330bd0e/bitnami/mongodb/5.0/debian-11/Dockerfile
https://oreil.ly/Is1yt

… IMAGE … STATUS PORTS …
… mongo-with-check:4.4 … Up 1 second (health: starting) 27017/tcp …

You should notice that the STATUS column now has a health section in parentheses.
Initially, this will display health: starting as the container is starting up. You can
change the amount of time that Docker waits for the container to initialize using the
--health-start-period argument to docker container run. The status will change
to healthy once the container is up and the health check is successful. It might take
this container 40+ seconds to transition into a healthy state:

$ docker container ls
… IMAGE … STATUS PORTS …
… mongo-with-check:4.4 … Up 32 seconds (healthy) 27017/tcp …

You can query this status directly, using the docker container inspect command:

$ docker container inspect --format='{{.State.Health.Status}}' mongo-hc
healthy

$ docker container inspect --format='{{json .State.Health}}' mongo-hc | jq

{
 "Status": "healthy",
 "FailingStreak": 0,
 "Log": [
 …
]
}

If your container begins failing its health check, the status will change to unhealthy,
and you can then determine how to handle the situation:

$ docker container ls
… IMAGE … STATUS PORTS …
… mongo-with-check:4.4 … Up 9 minutes (unhealthy) 27017/tcp …

At this point, you can stop the container by simply running docker container stop
mongo-hc.

As with most systems, you can configure a lot of details about
your health checks, including how often Docker checks the
health (--health-interval), how many failures are required to
cause the container to be marked unhealthy (--health-retries),
and more. You can even disable the health check completely
(--no-healthcheck) if needed.

This feature is very useful, and you should strongly consider using it in all of your
containers. This will help you improve both the reliability of your environment and
the visibility you have into how things are running in it. It is also supported by many
production schedulers and monitoring systems, so it should be easy to implement.

162 | Chapter 6: Exploring Docker

As always, the usefulness of a health check is largely determined by
how well written it is and how accurately it determines the state of
the service.

docker system events
The dockerd daemon internally generates an events stream around the container
lifecycle. This is how various parts of the system find out what is going on in other
parts. You can also tap into this stream to see what lifecycle events are happening
for containers on your Docker server. This, as you probably expect by now, is imple‐
mented in the docker CLI tool as another command-line argument. When you run
this command, it will block and continually stream messages to you. Behind the
scenes, this is a long-lived HTTP request to the Docker API that returns messages in
JSON blobs as they occur. The docker CLI tool decodes them and prints some data to
the terminal.

This events stream is useful in monitoring scenarios or triggering additional actions,
like wanting to be alerted when a job completes. For debugging purposes, it allows
you to see when a container died even if Docker restarts it later. Down the road,
this is a place where you might also find yourself directly implementing some tooling
against the API.

In one terminal, go ahead and run the events command:

$ docker system events

You will notice that nothing happens.

In another terminal, go ahead and launch the following short-lived container:

$ docker container run --rm --name sleeper debian:latest sleep 5

In the original terminal that is running the events command, you should now see
something like this:

…09:59.606… container create d6… (image=debian:latest, name=sleeper)
…09:59.610… container attach d6… (image=debian:latest, name=sleeper)
…09:59.631… network connect ea… (container=d60b…, name=bridge, type=bridge)
…09:59.827… container start d6… (image=debian:latest, name=sleeper)
…10:04.854… container die d6… (exitCode=0, image=debian:latest, name=sleeper)
…10:04.907… network disconnect ea… (container=d60b…, name=bridge, type=bridge)
…10:04.922… container destroy d6… (image=debian:latest, name=sleeper)

You can type Ctrl-C to exit the events stream at any time.

Monitoring Docker | 163

As with the Docker statistics, you can access the Docker system
events via curl using a command like curl --no-buffer -XGET
--unix-socket /var/run/docker.sock http://docker/events.

In this example, we ran a short-lived container that simply counted 5 seconds and
then exited.

The container create, container attach, network connect, and container
start events are all the steps required to get the container into a running state. When
the container exits, the events stream logs a container die, network disconnect,
and container destroy message. Each one of these marks a step in completely
tearing down the container. Docker also helpfully tells us the ID of the image that
the container is running on. This can be useful for tying deployments to events, for
example, because a deployment usually involves a new image.

If you have a server where containers are not staying up, the docker system events
stream is pretty helpful in seeing what’s going on and when. But if you’re not watch‐
ing it at the time, Docker very helpfully caches some of the events, and you can still
get at them for some time afterward. You can ask it to display events after a time with
the --since option, or before with the --until option. You can also use both to limit
the window to a narrow scope of time when an issue you are investigating may have
occurred. Both options take ISO time formats like those in the previous example (e.g.,
2018-02-18T14:03:31-08:00).

There are a few specific event types that you should go out of your
way to monitor:

container oom
Appears when a container runs out of memory

container exec_create

container exec_start

container exec_die
Appear when someone has used docker container exec to
enter a container, which could signal a security incident

cAdvisor
docker container stats and docker system events are useful but don’t get us
graphs to look at yet. And graphs are pretty helpful when we’re trying to see trends.
Of course, other people have filled some of this gap. When you begin to explore the
options for monitoring Docker, you will find that many of the major monitoring

164 | Chapter 6: Exploring Docker

http://docker/events

tools now provide some functionality to help you improve the visibility into your
containers’ performance and ongoing state.

In addition to the commercial tooling provided by companies like Datadog, Ground‐
Work, and New Relic, there are plenty of options for free, open source tools like
Prometheus or even Nagios. We’ll talk about Prometheus in “Prometheus Monitor‐
ing” on page 167. Soon after Docker was introduced, Google released its internal
container monitoring tool as a well-maintained open source project on GitHub,
called cAdvisor. Although cAdvisor can be run outside of Docker, by now you’re
probably not surprised to hear that the easiest implementation of cAdvisor is to
simply run it as a Linux container.

To install cAdvisor on most Linux systems, all you need to do is run this code.

This command is intended to be run directly on a Linux Docker
server. It will not work properly when run from a Windows or
macOS system.

$ docker container run \
 --volume=/:/rootfs:ro \
 --volume=/var/run:/var/run:ro \
 --volume=/sys:/sys:ro \
 --volume=/var/lib/docker/:/var/lib/docker:ro \
 --volume=/dev/disk/:/dev/disk:ro \
 --publish=8080:8080 \
 --detach=true \
 --name=cadvisor \
 --privileged \
 --rm \
 --device=/dev/kmsg \
 gcr.io/cadvisor/cadvisor:latest

Unable to find image 'cadvisor/cadvisor:latest' locally
Pulling repository cadvisor/cadvisor
f0643dafd7f5: Download complete
…
ba9b663a8908: Download complete
Status: Downloaded newer image for cadvisor/cadvisor:latest
f54e6bc0469f60fd74ddf30770039f1a7aa36a5eda6ef5100cddd9ad5fda350b

On Red Hat Enterprise Linux (RHEL)-based systems, you may
need to add the following line to the docker container run com‐
mand shown here: --volume=/cgroup:/cgroup \.

Monitoring Docker | 165

https://github.com/google/cadvisor

Once you have done this, you will be able to navigate to your Docker host on
port 8080 to see the cAdvisor web interface (e.g., http://172.17.42.10:8080/) and the
various detailed charts it has for the host and individual containers (see Figure 6-1).

Figure 6-1. cAdvisor CPU graphs (example)

cAdvisor provides a REST API endpoint, which can easily be queried for detailed
information by your monitoring systems:

$ curl http://172.17.42.10:8080/api/v2.1/machine/

166 | Chapter 6: Exploring Docker

You can find details about the cAdvisor API in the official documentation.

The amount of detail provided by cAdvisor should be sufficient for many of your
graphing and monitoring needs.

Prometheus Monitoring
The Prometheus monitoring system has become a popular solution for monitoring
distributed systems. It works largely on a pull model, where it reaches out and gathers
statistics from endpoints on a timed basis. Docker has an endpoint that was built for
Prometheus and makes it easy to integrate your container stats into a Prometheus
monitoring system. At the time of this writing, the endpoint is currently experimental
and not enabled in the dockerd server by default. Our brief experience with it shows
that it seems to work well, and it’s a pretty slick solution, as we’ll show you. We should
point out that this solution is for monitoring the dockerd server, in contrast to the
other solutions, which exposed information about the containers.

To export metrics to Prometheus, we need to reconfigure the dockerd server to
enable the experimental features and to expose the metrics listener on a port of
our choice. This is nice because we don’t have to expose the whole Docker API on
a TCP listener to get metrics out of the system—a security win at the expense of
a little more configuration. To do that, we can either provide the --experimental
and --metrics-addr= options on the command line, or we can put them into the
daemon.json file that the daemon uses to configure itself. Because many current
distributions run systemd, and changing configurations there is highly dependent
on your installation, we’ll use the daemon.json option since it’s more portable. We’ll
demonstrate this on Ubuntu Linux 22.04 LTS. On this distribution, the file is usually
not present to begin with. So let’s put one there using your favorite editor.

As previously mentioned, the daemon.json file for Docker Desktop
can be edited in Preferences → Docker Engine from the UI. If you
change this file, you will need to restart Docker Desktop or the
dockerd daemon.

Adjust or add the following lines to the daemon.json file:

{
 "experimental": true,
 "metrics-addr": "0.0.0.0:9323"
}

You should now have a file that contains only what you just pasted and nothing else.

Prometheus Monitoring | 167

https://github.com/google/cadvisor/blob/master/docs/api_v2.md
https://prometheus.io

Any time you make a service available on the network, you need
to consider what security risks you might introduce. We believe
the benefit of making metrics available is worth the trade-off, but
you should think through the repercussions in your scenario. For
example, making metrics available on the public internet is proba‐
bly not a good idea in almost all cases.

When we restart Docker, we’ll now have a listener on all addresses on port 9323.
That’s where Prometheus will connect to get the metrics. But first, we need to restart
the dockerd server. Docker Desktop automatically takes care of the restart for you,
but if you are on the Linux Docker server, then you can run something like sudo
systemctl restart docker to restart the daemon. You should not get any errors
returned from the restart. If you do, you likely have something set incorrectly in the
daemon.json file.

Now you can test the metrics endpoint with curl:

$ curl -s http://localhost:9323/metrics | head -15

HELP builder_builds_failed_total Number of failed image builds
TYPE builder_builds_failed_total counter
builder_builds_failed_total{reason="build_canceled"} 0
builder_builds_failed_total{reason="build_target_not_reachable_error"} 0
builder_builds_failed_total{reason="command_not_supported_error"} 0
builder_builds_failed_total{reason="dockerfile_empty_error"} 0
builder_builds_failed_total{reason="dockerfile_syntax_error"} 0
builder_builds_failed_total{reason="error_processing_commands_error"} 0
builder_builds_failed_total{reason="missing_onbuild_arguments_error"} 0
builder_builds_failed_total{reason="unknown_instruction_error"} 0
HELP builder_builds_triggered_total Number of triggered image builds
TYPE builder_builds_triggered_total counter
builder_builds_triggered_total 0
HELP engine_daemon_container_actions_seconds The number of seconds it
takes to process each container action
TYPE engine_daemon_container_actions_seconds histogram

If you run this locally, you should get very similar output. It might not be identical,
and that’s OK as long as you get something that is not an error message.

So now we have a place where Prometheus can get to our statistics. But we
need to have Prometheus running somewhere, right? We can easily do that by
spinning up a container. But first, we need to write a simple config. We’ll put it
in /tmp/prometheus/prometheus.yaml. You can use your favorite editor to put the
following into the file:

Scrape metrics every 5 seconds and name the monitor 'stats-monitor'
global:
 scrape_interval: 5s
 external_labels:

168 | Chapter 6: Exploring Docker

 monitor: 'stats-monitor'

We're going to name our job 'DockerStats' and we'll connect to the docker0
bridge address to get the stats. If your docker0 has a different IP address
then use that instead. 127.0.0.1 and localhost will not work.
scrape_configs:
 - job_name: 'DockerStats'
 static_configs:
 - targets: ['172.17.0.1:9323']

For Docker Desktop, you can also use host.docker.inter

nal:9323 or gateway.docker.internal:9323 in place of the
172.17.0.1:9323 shown here. Both of these hostnames will point
to the container’s IP address.

As noted in the file, you should use the IP address of your docker0 bridge here, or
the IP address of your ens3 or eth0 interface since localhost and 127.0.0.1 are
not routable from the container. The address we used here is the usual default for
docker0, so it’s probably the right one for you.

Now that we’ve written that out, we need to start up the container using this config:

$ docker container run --rm -d -p 9090:9090 \
 -v /tmp/prometheus/prometheus.yaml:/etc/prometheus.yaml \
 prom/prometheus --config.file=/etc/prometheus.yaml

That will run the container and volume-mount the config file we made into the
container so that it will find the settings it needs to monitor our Docker endpoint.
If it starts up cleanly, you should now be able to open your browser and navigate
to port 9090 on your host. There you will get a Prometheus window, something like
Figure 6-2.

In the following figure, you’ll see that we’ve selected one of the metrics, the
engine_daemon_events_total, and graphed it over a short period. You can easily
query any of the other metrics in the drop-down. Further work and exploration
with Prometheus would allow you to define alerts and alerting policies based on
these metrics as well. And it is easy to monitor so much more than just the dockerd
server. You can also expose metrics for Prometheus from your applications. If you’re
intrigued and want to look at something more advanced, you might take a look at
dockprom, which leverages Grafana to make nice dashboards and also queries your
container metrics like those in the Docker API /stats endpoint.

Prometheus Monitoring | 169

https://github.com/stefanprodan/dockprom

Figure 6-2. Prometheus event graph (example)

Exploration
This should give you all the basics you need to start running containers. It’s probably
worth downloading a container or two from the Docker Hub registry and exploring a
bit on your own to get used to the commands we just learned. There are many other
things you can do with Docker, including but not limited to the following:

• Copying files in and out of the container with docker container cp•
• Saving an image to a tarball with docker image save•
• Loading an image from a tarball with docker image import•

Docker has a huge feature set that you will likely grow into over time. Each new
release adds more functionality as well. We’ll get into a lot more detail later on about
many of the other commands and features, but keep in mind that Docker’s whole
feature set is very large.

Wrap-Up
In the next chapter, we’ll dive into more technical details about how Docker works
and how you can use this knowledge to debug your containerized applications.

170 | Chapter 6: Exploring Docker

CHAPTER 7

Debugging Containers

Once you’ve shipped an application to production, there will come a day when it’s not
working as expected. It’s always nice to know ahead of time what to expect when that
day comes. It’s also important to have a good understanding of debugging containers
before moving on to more complex deployments. Without debugging skills, it will be
difficult to see where orchestration systems have gone wrong. So let’s take a look at
debugging containers.

In the end, debugging a containerized application is not all that different from
debugging a normal process on a system except that the tools are somewhat different.
Docker provides some pretty nice tooling to help you out! Some of these map to
regular system tools, and some go further.

It is also critical to understand that your application is not running in a separate
system from the other Docker processes. They share a kernel, and depending on your
container configuration, they may share other things like a storage subsystem and
network interfaces. This means that you can get a lot of information about what your
container is doing from the system.

If you’re used to debugging applications in a VM environment, you might think you
would need to enter the container to inspect an application’s memory or CPU use,
or to debug its system calls. However, this is not so! Despite feeling in many ways
like a virtualization layer, processes in containers are just processes on the Linux host
itself. If you want to see a process list across all of the Linux containers on a machine,
you could log in to the server and run ps with your favorite command-line options.
However, you can use the docker container top command from anywhere to see
the list of processes running in your container from the viewpoint of the underlying
Linux kernel. Let’s take a more detailed look at some of the things that you can do
when debugging a containerized application that do not require the use of either
docker container exec or nsenter.

171

Process Output
One of the first things you’ll want to know when debugging a container is what is
running inside it. As we mentioned previously, Docker has a built-in command for
doing just that: docker container top. This is not the only way to see what’s going
on inside a container, but it is by far the easiest to use. Let’s see how that works:

$ docker container run --rm -d --name nginx-debug --rm nginx:latest
796b282bfed33a4ec864a32804ccf5cbbee688b5305f094c6fbaf20009ac2364

$ docker container top nginx-debug

UID PID PPID C STIME TTY TIME CMD
root 2027 2002 0 12:35 ? 00:00 nginx: master process nginx -g daemon off;
uuidd 2085 2027 0 12:35 ? 00:00 nginx: worker process
uuidd 2086 2027 0 12:35 ? 00:00 nginx: worker process
uuidd 2087 2027 0 12:35 ? 00:00 nginx: worker process
uuidd 2088 2027 0 12:35 ? 00:00 nginx: worker process
uuidd 2089 2027 0 12:35 ? 00:00 nginx: worker process
uuidd 2090 2027 0 12:35 ? 00:00 nginx: worker process
uuidd 2091 2027 0 12:35 ? 00:00 nginx: worker process
uuidd 2092 2027 0 12:35 ? 00:00 nginx: worker process

$ docker container stop nginx-debug

To run docker container top, we need to pass it the name or ID of our container,
and then we receive a nice listing of what is running inside our container, ordered by
PID just as we’d expect from Linux ps output.

There are some oddities here, though. The primary one is the name-spacing of user
IDs and filesystems.

It is important to understand that the username for a particular user ID (UID) can be
completely different between each container and the host system. It is even possible
that a specific UID has no named user in the container or host’s /etc/passwd file
associated with it at all. This is because Unix does not require a UID to have a named
user associated with it, and Linux namespaces, which we discuss much more in
“Namespaces” on page 299, provide some isolation between the container’s concept
of valid users and those on the underlying host.

Let’s look at a more concrete example of this. Let’s consider a production Docker
server running Ubuntu 22.04 and a container running on it that has an Ubuntu
distribution inside. If you run the following commands on the Ubuntu host, you
would see that UID 7 is named lp:

$ id 7

uid=7(lp) gid=7(lp) groups=7(lp)

172 | Chapter 7: Debugging Containers

There is nothing special about the UID number we are using here.
You don’t need to take any particular note of it. It was chosen sim‐
ply because it is used by default on both platforms but represents a
different username.

If we then enter the standard Fedora container on that Docker host, you will see that
UID 7 is set to halt in /etc/passwd. By running the following commands, you can see
that the container has a completely different perspective of who UID 7 is:

$ docker container run --rm -it fedora:latest /bin/bash

root@c399cb807eb7:/# id 7
uid=7(halt) gid=0(root) groups=0(root)

root@c399cb807eb7:/# grep x:7: /etc/passwd
halt:x:7:0:halt:/sbin:/sbin/halt

root@409c2a8216b1:/# exit

If we then run ps aux on the theoretical Ubuntu Docker server while that container
is running as UID 7 (-u 7), we see that the Docker host shows the container process
as being run by lp instead of halt:

$ docker container run --rm -d -u 7 fedora:latest sleep 120

55…c6

$ ps aux | grep sleep

lp 2388 0.2 0.0 2204 784 ? … 0:00 sleep 120
vagrant 2419 0.0 0.0 5892 1980 pts/0 … 0:00 grep --color=auto sleep

This could be particularly confusing if a well-known user like nagios or postgres
were configured on the host system but not in the container, yet the container ran
its process with the same ID. This namespacing can make the ps output look quite
strange. It might, for example, look like the nagios user on your Docker host is
running the postgresql daemon that was launched inside a container, if you don’t
pay close attention.

Process Output | 173

One solution to this is to dedicate a nonzero UID to your contain‐
ers. On your Docker servers, you can create a container user as
UID 5000 and then create the same user in your base container
images. If you then run all your containers as UID 5000 (-u 5000),
not only will you improve the security of your system by not
running container processes as UID 0, but you will also make the
ps output on the Docker host easier to decipher by displaying the
container user for all of your running container processes. Some
systems use the nobody or daemon user for the same purpose, but
we prefer container for clarity. There is a little more detail about
how this works in “Namespaces” on page 299.

Likewise, because the process has a different view of the filesystem, paths that are
shown in the ps output are relative to the container and not the host. In these cases,
knowing it is in a container is a big win.

So that’s how you use the Docker tooling to look at what’s running in a container. But
that’s not the only way, and in a debugging situation, it might not be the best way.
If you hop onto a Docker server and run a normal Linux ps to see what’s running,
you get a full list of everything containerized and not containerized just as if they
were all equivalent processes. There are some ways to look at the process output to
make things a lot clearer. For example, you can facilitate debugging by looking at the
Linux ps output in tree form so that you can see all of the processes descended from
Docker. Here’s what that might look like when you use the BSD command-line flags
to look at a system that is currently running two containers; we’ll chop the output to
just the part we care about.

Docker Desktop’s VM contains minimal versions of most Linux
tools, and some of these commands may not produce the same
output that you will get if you use a standard Linux server as the
Docker daemon host.

$ ps axlfww

… /usr/bin/containerd
…
… /usr/bin/dockerd -H fd:// --containerd=/run/containerd/containerd.sock
… _ /usr/bin/docker-proxy -proto tcp -host-ip 0.0.0.0 -host-port 8080 \
 -container-ip 172.17.0.2 -container-port 8080
… _ /usr/bin/docker-proxy -proto tcp -host-ip :: -host-port 8080 \
 -container-ip 172.17.0.2 -container-port 8080
…
… /usr/bin/containerd-shim-runc-v2 -namespace moby -id 97…3d -address /run/…
… _ sleep 120

174 | Chapter 7: Debugging Containers

…
… /usr/bin/containerd-shim-runc-v2 -namespace moby -id 69…7c -address /run/…

Many of the ps commands in this example work only on Linux
distributions with the full ps command. Some stripped-down ver‐
sions of Linux, like Alpine, run the BusyBox shell, which does
not have full ps support and won’t show some of this output. We
recommend running a full distribution on your host systems like
Ubuntu or Fedora CoreOS.

Here you can see that we’re running one instance of containerd, which is the main
container runtime used by the Docker daemon. dockerd has two docker-proxy sub-
processes running at the moment, which we will discuss in more detail in “Network
Inspection” on page 182.

Each process that is using containerd-shim-runc-v2 represents a single container
and all of the processes that are running inside that container. In this example, we
have two containers. They show up as containerd-shim-runc-v2, followed by some
additional information about the process, including the container ID. In this case, we
are running one instance of Google’s cadvisor and one instance of sleep in another
container. Each container that has ports mapped will have at least one docker-proxy
process that is used to map the required network ports between the container and
the host Docker server. In this example, both docker-proxy processes are related to
cadvisor. One is mapping the ports for IPv4 addresses, and the other is mapping
ports for IPv6 addresses.

Because of the tree output from ps, it’s pretty clear which processes are running in
which containers. If you’re a bigger fan of Unix SysV command-line flags, you can get
a similar, but not as nice-looking, tree output with ps -ejH:

$ ps -ejH

… containerd
…
… dockerd
… docker-proxy
… docker-proxy
…
… containerd-shim
… cadvisor
…
… containerd-shim
… sleep

Process Output | 175

You can get a more concise view of the docker process tree by using the pstree
command. Here, we’ll use pidof to scope it to the tree belonging to docker:

$ pstree `pidof dockerd`

dockerd─┬─docker-proxy───7*[{docker-proxy}]
 ├─docker-proxy───6*[{docker-proxy}]
 └─10*[{dockerd}]

This doesn’t show us PIDs and therefore is useful only for getting a sense of how
things are connected. But this is conceptually clear output when there are a lot of
processes running on a host. It’s far more concise and provides a nice high-level map
of how things connect. Here we can see the same containers that were shown in the
previous ps output, but the tree is collapsed so we get multipliers like 7* when there
are seven duplicate processes.

We can get a full tree with PIDs if we run pstree, as shown here:

$ pstree -p `pidof dockerd`

dockerd(866)─┬─docker-proxy(3050)─┬─{docker-proxy}(3051)
 │ ├─{docker-proxy}(3052)
 │ ├─{docker-proxy}(3053)
 │ ├─{docker-proxy}(3054)
 │ ├─{docker-proxy}(3056)
 │ ├─{docker-proxy}(3057)
 │ └─{docker-proxy}(3058)
 ├─docker-proxy(3055)─┬─{docker-proxy}(3059)
 │ ├─{docker-proxy}(3060)
 │ ├─{docker-proxy}(3061)
 │ ├─{docker-proxy}(3062)
 │ ├─{docker-proxy}(3063)
 │ └─{docker-proxy}(3064)
 ├─{dockerd}(904)
 ├─{dockerd}(912)
 ├─{dockerd}(913)
 ├─{dockerd}(914)
 ├─{dockerd}(990)
 ├─{dockerd}(1014)
 ├─{dockerd}(1066)
 ├─{dockerd}(1605)
 ├─{dockerd}(1611)
 └─{dockerd}(2228)

This output provides us with a very good look at all the processes attached to Docker
and what they are running.

If you wanted to inspect a single container and its processes, you could determine the
container’s main process ID and then use pstree to see all the related subprocesses:

$ ps aux | grep containerd-shim-runc-v2
root 3072 … /usr/bin/containerd-shim-runc-v2 -namespace moby -id 69…7c …

176 | Chapter 7: Debugging Containers

root 4489 … /usr/bin/containerd-shim-runc-v2 -namespace moby -id f1…46 …
vagrant 4651 … grep --color=auto shim

$ pstree -p 3072
containerd-shim(3072)─┬─cadvisor(3092)─┬─{cadvisor}(3123)
 │ ├─{cadvisor}(3124)
 │ ├─{cadvisor}(3125)
 │ ├─{cadvisor}(3126)
 │ ├─{cadvisor}(3127)
 │ ├─{cadvisor}(3128)
 │ ├─{cadvisor}(3180)
 │ ├─{cadvisor}(3181)
 │ └─{cadvisor}(3182)
 ├─{containerd-shim}(3073)
 ├─{containerd-shim}(3074)
 ├─{containerd-shim}(3075)
 ├─{containerd-shim}(3076)
 ├─{containerd-shim}(3077)
 ├─{containerd-shim}(3078)
 ├─{containerd-shim}(3079)
 ├─{containerd-shim}(3080)
 ├─{containerd-shim}(3121)
 └─{containerd-shim}(3267)

Process Inspection
If you’re logged in to the Docker server, you can inspect running processes using
all of the standard debugging tools. Common debugging tools like strace work as
expected. In the following code, we’ll inspect an nginx process running inside a
container:

$ docker container run --rm -d --name nginx-debug --rm nginx:latest

$ docker container top nginx-debug

UID PID PPID … CMD
root 22983 22954 … nginx: master process nginx -g daemon off;
systemd+ 23032 22983 … nginx: worker process
systemd+ 23033 22983 … nginx: worker process

$ sudo strace -p 23032

strace: Process 23032 attached
epoll_pwait(10,

If you run strace, you will need to type Ctrl-C to exit the strace
process.

Process Inspection | 177

You can see that we get the same output that we would from noncontainerized
processes on the host. Likewise, an lsof shows us that the files and sockets open in a
process work as expected:

$ sudo lsof -p 22983
COMMAND PID USER … NAME
nginx 22983 root … /
nginx 22983 root … /
nginx 22983 root … /usr/sbin/nginx
nginx 22983 root … /usr/sbin/nginx (stat: No such file or directory)
nginx 22983 root … /lib/aarch64-linux-gnu/libnss_files-2.31.so (stat: …
nginx 22983 root … /lib/aarch64-linux-gnu/libc-2.31.so (stat: …
nginx 22983 root … /lib/aarch64-linux-gnu/libz.so.1.2.11 (path inode=…)
nginx 22983 root … /usr/lib/aarch64-linux-gnu/libcrypto.so.1.1 (stat: …
nginx 22983 root … /usr/lib/aarch64-linux-gnu/libssl.so.1.1 (stat: …
nginx 22983 root … /usr/lib/aarch64-linux-gnu/libpcre2-8.so.0.10.1 (stat: …
nginx 22983 root … /lib/aarch64-linux-gnu/libcrypt.so.1.1.0 (path …
nginx 22983 root … /lib/aarch64-linux-gnu/libpthread-2.31.so (stat: …
nginx 22983 root … /lib/aarch64-linux-gnu/libdl-2.31.so (stat: …
nginx 22983 root … /lib/aarch64-linux-gnu/ld-2.31.so (stat: …
nginx 22983 root … /dev/zero
nginx 22983 root … /dev/null
nginx 22983 root … pipe
nginx 22983 root … pipe
nginx 22983 root … pipe
nginx 22983 root … protocol: UNIX-STREAM
nginx 22983 root … pipe
nginx 22983 root … pipe
nginx 22983 root … protocol: TCP
nginx 22983 root … protocol: TCPv6
nginx 22983 root … protocol: UNIX-STREAM
nginx 22983 root … protocol: UNIX-STREAM
nginx 22983 root … protocol: UNIX-STREAM

Note that the paths to the files are all relative to the container’s view of the backing
filesystem, which is not the same as the host view. Due to this, if you are on the host
system, you may not be able to easily find a specific file from one of your running
containers. In most cases, it’s probably best to enter the container using docker
container exec to look at the files with the same view that the processes inside it
have.

It’s possible to run the GNU debugger (gdb) and other process inspection tools in the
same manner as long as you’re root and have proper permissions to do so.

It is worth mentioning here that it is also possible to run a new debugging container
that can see the processes of an existing container and therefore provide additional
tools to debug issues. We will discuss the underlying details of this command later, in
“Namespaces” on page 299 and “Security” on page 303:

$ docker container run -ti --rm --cap-add=SYS_PTRACE \
 --pid=container:nginx-debug spkane/train-os:latest bash

178 | Chapter 7: Debugging Containers

[root@e4b5d2f3a3a7 /]# ps aux
USER PID %CPU %MEM … TIME COMMAND
root 1 0.0 0.2 … 0:00 nginx: master process nginx -g daemon off;
101 30 0.0 0.1 … 0:00 nginx: worker process
101 31 0.0 0.1 … 0:00 nginx: worker process
root 136 0.0 0.1 … 0:00 bash
root 152 0.0 0.2 … 0:00 ps aux

[root@e4b5d2f3a3a7 /]# strace -p 1
strace: Process 1 attached
rt_sigsuspend([], 8

[Control-C]
strace: Process 1 detached
<detached …>

[root@e4b5d2f3a3a7 /]# exit

$ docker container stop nginx-debug

You will need to type Ctrl-C to exit the strace process.

Controlling Processes
When you have a shell directly on the Docker server, you can, in many ways, treat
containerized processes just like any other process running on the system. If you’re
remote, you might send signals with docker container kill because it’s expedient.
But if you’re already logged in to a Docker server for a debugging session or because
the Docker daemon is not responding, you can just kill the process like you would
any other.

Unless you kill the top-level process in the container (PID 1 inside the container),
killing a process will not terminate the container itself. That might be desirable if you
were killing a runaway process, but it might leave the container in an unexpected
state. Developers probably expect that all the processes are running if they can see
their container in docker container ls. It could also confuse a scheduler like Mesos
or Kubernetes or any other system that is health-checking your application. Keep in
mind that containers are supposed like a single bundle to the outside world. If you
need to kill off something inside the container, it’s best to replace the whole container.
Containers offer an abstraction that tools interoperate with. They expect the internals
of the container to be predictable and remain consistent.

Controlling Processes | 179

Terminating processes is not the only reason to send signals. And since containerized
processes are just normal processes in many respects, they can be passed the whole
array of Unix signals listed in the manpage for the Linux kill command. Many Unix
programs will perform special actions when they receive certain predefined signals.
For example, nginx will reopen its logs when receiving a SIGUSR1 signal. Using the
Linux kill command, you can send any Unix signal to a container process on the
local server.

Process Control in Containers
Unless you run an orchestrator like Kubernetes that can handle multiple containers
in a larger abstraction like a pod, we consider it a best practice to run some kind of
process control in your production containers. Whether it be tini, upstart, runit,
s6, or something else, this approach allows you to treat containers atomically even
when they contain more than one process. You should, however, try very hard not
to run more than one thing inside your container, to ensure that your container
is scoped to handle one well-defined task and does not grow into a monolithic
container.

In either case, you will want docker container ls to reflect the presence of the
whole container so that you don’t need to worry about whether an individual process
inside it has died. If you can assume that the presence of a container and absence
of error logs means that things are working, you can treat docker container ls
output as the truth about what’s happening on your Docker systems. It also means
any orchestration system you use can do the same.

It is also a good idea to ensure that you understand the complete behavior of your
preferred process control service, including memory or disk utilization, Unix single
handling, and so on, since this can impact your container’s performance and behav‐
ior. Generally, the lightest-weight systems are the best.

Because containers work just like any other process, it’s important to understand how
they can interact with your application in less than helpful ways. There are some
special needs in a container for processes that spawn background children—that
is, anything that forks and daemonizes so the parent no longer manages the child
process lifecycle. Jenkins build containers are one common example where people see
this go wrong. When daemons fork into the background, they become children of
PID 1 on Unix systems. Process 1 is special and is usually an init process of some
kind.

PID 1 is responsible for making sure that children are reaped. In your container, by
default, your main process will be PID 1. Since you probably won’t be handling the
reaping of children from your application, you can end up with zombie processes in
your container. There are a few solutions to this problem. The first is to run an init

180 | Chapter 7: Debugging Containers

https://github.com/krallin/tini
https://upstart.ubuntu.com
http://smarden.org/runit
https://skarnet.org/software/s6

system in the container of your own choosing—one that is capable of handling PID
1 responsibilities. s6, runit, and others described in the preceding note can be easily
used inside the container.

But Docker itself provides an even simpler option that solves just this one case
without taking on all the capabilities of a full init system. If you provide the --init
flag to docker container run, Docker will launch a very small init process based
on the tini project that will act as PID 1 inside the container on startup. Whatever
you specify in your Dockerfile as the CMD is passed to tini and otherwise works in the
same way you would expect. It does, however, replace anything you might have in the
ENTRYPOINT section of your Dockerfile.

When you launch a Linux container without the --init flag, you get something like
this in your process list:

$ docker container run --rm -it alpine:3.16 sh
/ # ps -ef

PID USER TIME COMMAND
 1 root 0:00 sh
 5 root 0:00 ps -ef

/ # exit

Notice that in this case, the CMD we launched is PID 1. That means it is responsible
for child reaping. If we are launching a container where that is important, we can pass
--init to make sure that when the parent process exits, children are reaped:

$ docker container run --rm -it --init alpine:3.16 sh
/ # ps -ef

PID USER TIME COMMAND
 1 root 0:00 /sbin/docker-init -- sh
 5 root 0:00 sh
 6 root 0:00 ps -ef

/ # exit

Here, you can see that the PID 1 process is /sbin/docker-init. That has in turn
launched the shell binary for us as specified on the command line. Because we now
have an init system inside the container, the PID 1 responsibilities fall to it rather
than the command we used to invoke the container. In most cases, this is what you
want. You may not need an init system, but it’s small enough that you should consider
having at least tini inside your containers in production.

In general, you probably only need an init process inside your container if you are
running multiple parent processes or you have processes that do not respond to Unix
signals properly.

Controlling Processes | 181

https://github.com/krallin/tini

Network Inspection
Compared to process inspection, debugging containerized applications at the net‐
work level can be more complicated. Unlike traditional processes running on the
host, Linux containers can be connected to the network in multiple ways. If you are
running the default setup, as the vast majority of people are, then your containers are
all connected to the network via the default bridge network that Docker creates. This
is a virtual network where the host is the gateway to the rest of the world. We can
inspect these virtual networks with the tooling that ships with Docker. You can get it
to show you which networks exist by calling the docker network ls command:

$ docker network ls

NETWORK ID NAME DRIVER SCOPE
f9685b50d57c bridge bridge local
8acae1680cbd host host local
fb70d67499d3 none null local

Here we can see the default bridge network, the host network, which is for any
containers running in host network mode (see “Host networking” on page 325), and
the none network, which disables network access entirely for the container. If you use
docker compose or other orchestration tools, they may create additional networks
here with different names.

But seeing which networks exist doesn’t make it any easier to see what’s on those
networks. So, you can see which containers are attached to any particular named
network with the docker network inspect command. This produces a fair amount
of output. It shows you all of the containers that are attached to the specified network
and a number of details about the network itself. Let’s take a look at the default bridge
network:

$ docker network inspect bridge

[
 {
 "Name": "bridge",
 …
 "Driver": "bridge",
 "EnableIPv6": false,
 …
 "Containers": {
 "69e9…c87c": {
 "Name": "cadvisor",
 …
 "IPv4Address": "172.17.0.2/16",
 "IPv6Address": ""
 },
 "a2a8…e163": {
 "Name": "nginx-debug",

182 | Chapter 7: Debugging Containers

 …
 "IPv4Address": "172.17.0.3/16",
 "IPv6Address": ""
 }
 },
 "Options": {
 "com.docker.network.bridge.default_bridge": "true",
 …
 "com.docker.network.bridge.host_binding_ipv4": "0.0.0.0",
 "com.docker.network.bridge.name": "docker0",
 …
 },
 "Labels": {}
 }
]

We’ve excluded some of the details here to shrink the output a bit. But what we can
see is that there are two containers on the bridge network, and they are attached to
the docker0 bridge on the host. We can also see the IP addresses of each container
(IPv4Address and IPv6Address) and the host network address they are bound to
(host_binding_ipv4). This is useful when you are trying to understand the internal
structure of the bridged network. If you have containers on different networks, they
may not have connectivity to one another, depending on how the networks were
configured.

In general, we recommend leaving your containers on the default
bridge network until you have a good reason not to or are running
docker compose or a scheduler that manages container networks
on its own. In addition, naming your containers in some identifia‐
ble way helps here because we can’t see the image information. The
name and ID are the only references we have in this output that
can tie us back to a docker container ls listing. Some schedulers
don’t do a good job of naming containers, which is too bad because
it can be really helpful for debugging.

As we’ve seen, containers will normally have their own network stack and their own
IP address, unless they are running in host networking mode, which we will discuss
further in “Networking” on page 323. But what about when we look at them from the
host machine itself? Because containers have their own network and addresses, they
won’t show up in all netstat output on the host. But we know that the ports you map
to your containers are bound to the host.

Network Inspection | 183

Running netstat -an on the Docker server works as expected, as shown here:

$ sudo netstat -an

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:8080 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.53:53 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN
tcp 0 0 192.168.15.158:22 192.168.15.120:63920 ESTABLISHED
tcp6 0 0 :::8080 :::* LISTEN
tcp6 0 0 :::22 :::* LISTEN
udp 0 0 127.0.0.53:53 0.0.0.0:*
udp 0 0 192.168.15.158:68 0.0.0.0:*
raw6 0 0 :::58 :::* 7
…

Here we can see all of the interfaces that we’re listening on. Our container is bound
to port 8080 on IP address 0.0.0.0. That shows up. But what happens when we ask
netstat to show us the process name that’s bound to the port?

$ sudo netstat -anp

Active Internet connections (servers and established)
Proto … Local Address Foreign Address … PID/Program name
tcp … 0.0.0.0:8080 0.0.0.0:* … 1516/docker-proxy
tcp … 127.0.0.53:53 0.0.0.0:* … 692/systemd-resolve
tcp … 0.0.0.0:22 0.0.0.0:* … 780/sshd: /usr/sbin
tcp … 192.168.15.158:22 192.168.15.120:63920 … 1348/sshd: vagrant
tcp6 … :::8080 :::* … 1522/docker-proxy
tcp6 … :::22 :::* … 780/sshd: /usr/sbin
udp … 127.0.0.53:53 0.0.0.0:* … 692/systemd-resolve
udp … 192.168.15.158:68 0.0.0.0:* … 690/systemd-network
raw6 … :::58 :::* … 690/systemd-network

We see the same output, but notice what is bound to the port: docker-proxy. That’s
because, in its default configuration, Docker has a proxy written in Go that sits
between all of the containers and the outside world. That means that when we look at
this output, all containers running via Docker will be associated with docker-proxy.
Notice that there is no clue here about which specific container docker-proxy is
handling. Fortunately, docker container ls shows us which containers are bound
to which ports, so this isn’t a big deal. But it’s not obvious, and you probably want to
be aware of it before you’re debugging a production failure. Still, passing the p flag to
netstat is helpful in identifying which ports are tied to containers.

If you’re using host networking in your container, then this layer
is skipped. There is no docker-proxy, and the process in the con‐
tainer can bind to the port directly. It also shows up as a normal
process in netstat -anp output.

184 | Chapter 7: Debugging Containers

Other network inspection commands work largely as expected, including tcpdump,
but it’s important to remember that docker-proxy is there, in between the host’s
network interface and the container, and that the containers have their own network
interfaces on a virtual network.

Image History
When you’re building and deploying a single container, it’s easy to keep track of
where it came from and what images it’s sitting on top of. But this rapidly becomes
unmanageable when you’re shipping many containers with images that are built and
maintained by different teams. How can you tell what layers are actually underneath
the one your container is running on? Your container’s image tag hopefully makes it
clear which build of your application you’re running, but the image tag doesn’t reveal
anything about the image layers that your application is built on. docker image
history does just that. You can see each layer that exists in the inspected image, the
sizes of each layer, and the commands that were used to build it:

$ docker image history redis:latest

IMAGE … CREATED BY SIZE COMMENT
e800a8da9469 … /bin/sh -c #(nop) CMD ["redis-server"] 0B
<missing> … /bin/sh -c #(nop) EXPOSE 6379 0B
<missing> … /bin/sh -c #(nop) ENTRYPOINT ["docker-entry… 0B
<missing> … /bin/sh -c #(nop) COPY file:e873a0e3c13001b5… 661B
<missing> … /bin/sh -c #(nop) WORKDIR /data 0B
<missing> … /bin/sh -c #(nop) VOLUME [/data] 0B
<missing> … /bin/sh -c mkdir /data && chown redis:redis … 0B
<missing> … /bin/sh -c set -eux; savedAptMark="$(apt-m… 32.4MB
<missing> … /bin/sh -c #(nop) ENV REDIS_DOWNLOAD_SHA=f0… 0B
<missing> … /bin/sh -c #(nop) ENV REDIS_DOWNLOAD_URL=ht… 0B
<missing> … /bin/sh -c #(nop) ENV REDIS_VERSION=7.0.4 0B
<missing> … /bin/sh -c set -eux; savedAptMark="$(apt-ma… 4.06MB
<missing> … /bin/sh -c #(nop) ENV GOSU_VERSION=1.14 0B
<missing> … /bin/sh -c groupadd -r -g 999 redis && usera… 331kB
<missing> … /bin/sh -c #(nop) CMD ["bash"] 0B
<missing> … /bin/sh -c #(nop) ADD file:6039adfbca55ed34a… 74.3MB

Using docker image history can be useful, for example, when you are trying to
determine why the size of the final image is much larger than expected. The layers are
listed in order, with the first one at the bottom of the list and the last one at the top.

Here we can see that the command output has been truncated in a few cases. For long
commands, adding the --no-trunc option to the docker image history command
will let you see the complete command that was used to build each layer. Just be
aware that --no-trunc will make the output much larger and more difficult to
visually scan in most cases.

Image History | 185

Inspecting a Container
In Chapter 4, we showed you how to read the docker container inspect output
to see how a container is configured. But underneath that is a directory on the host’s
disk that is dedicated to the container. Usually this is /var/lib/docker/containers. If you
look at that directory, it contains very long SHA hashes, as shown here:

$ sudo ls /var/lib/docker/containers

106ead0d55af55bd803334090664e4bc821c76dadf231e1aab7798d1baa19121
28970c706db0f69716af43527ed926acbd82581e1cef5e4e6ff152fce1b79972
3c4f916619a5dfc420396d823b42e8bd30a2f94ab5b0f42f052357a68a67309b
589f2ad301381b7704c9cade7da6b34046ef69ebe3d6929b9bc24785d7488287
959db1611d632dc27a86efcb66f1c6268d948d6f22e81e2a22a57610b5070b4d
a1e15f197ea0996d31f69c332f2b14e18b727e53735133a230d54657ac6aa5dd
bad35aac3f503121abf0e543e697fcade78f0d30124778915764d85fb10303a7
bc8c72c965ebca7db9a2b816188773a5864aa381b81c3073b9d3e52e977c55ba
daa75fb108a33793a3f8fcef7ba65589e124af66bc52c4a070f645fffbbc498e
e2ac800b58c4c72e240b90068402b7d4734a7dd03402ee2bce3248cc6f44d676
e8085ebc102b5f51c13cc5c257acb2274e7f8d1645af7baad0cb6fe8eef36e24
f8e46faa3303d93fc424e289d09b4ffba1fc7782b9878456e0fe11f1f6814e4b

That’s a bit daunting. But those are just the container IDs in long form. If you want
to look at the configuration for a particular container, you just need to use docker
container ls to find its short ID, and then find the directory that matches:

$ docker container ls

CONTAINER ID IMAGE COMMAND …
c58bfeffb9e6 gcr.io/cadvisor/cadvisor:v0.44.1-test "/usr/bin/cadvisor…" …

You can view the short ID from docker container ls, then match it to the
ls /var/lib/docker/containers output to see that you want the directory begin‐
ning with c58bfeffb9e6. Command-line tab completion is helpful here. If you need
exact matching, you can do a docker container inspect c58bfeffb9e6 and grab
the long ID from the output. This directory contains some pretty interesting files
related to the container:

$ cd /var/lib/docker/containers/\
c58bfeffb9e6e607f3aacb4a06ca473535bf9588450f08be46baa230ab43f1d6

$ ls -la

total 48
drwx--x--- 4 root root 4096 Aug 20 10:38 .
drwx--x--- 30 root root 4096 Aug 20 10:25 ..
-rw-r----- 1 root root 635 Aug 20 10:34 c58bf…f1d6-json.log
drwx------ 2 root root 4096 Aug 20 10:24 checkpoints
-rw------- 1 root root 4897 Aug 20 10:38 config.v2.json
-rw-r--r-- 1 root root 1498 Aug 20 10:38 hostconfig.json

186 | Chapter 7: Debugging Containers

-rw-r--r-- 1 root root 13 Aug 20 10:24 hostname
-rw-r--r-- 1 root root 174 Aug 20 10:24 hosts
drwx--x--- 2 root root 4096 Aug 20 10:24 mounts
-rw-r--r-- 1 root root 882 Aug 20 10:24 resolv.conf
-rw-r--r-- 1 root root 71 Aug 20 10:24 resolv.conf.hash

As we discussed in Chapter 5, this directory contains some files that are bind-
mounted directly into your container, like hosts, resolv.conf, and hostname. If you
are running the default logging mechanism, then this directory is also where Docker
stores the JSON file containing the log that is shown with the docker container
logs command, the JSON configuration that backs the docker container inspect
output (config.v2.json), and the networking configuration for the container (hostcon‐
fig.json). The resolv.conf.hash file is used by Docker to determine when the container’s
file has diverged from the current one on the host so it can be updated.

This directory can also be really helpful in the event of severe failure. Even if we’re
not able to enter the container, or if docker is not responding, we can look at how the
container was configured. It’s also pretty useful to understand where those files are
mounted from inside the container. Keep in mind that it’s not a good idea to modify
these files. Docker expects them to contain reality, and if you alter that reality, you’re
asking for trouble. But it’s another avenue for information on what’s happening in
your container.

Filesystem Inspection
Docker, regardless of the backend actually in use, has a layered filesystem that allows
it to track the changes in any given container. This is how the images are assembled
when you do a build, but it is also useful when you’re trying to figure out if a Linux
container has changed anything and, if so, what. A common problem with contain‐
erized applications is that they may continue to write things into the container’s
filesystem. Normally, you don’t want your containers to do that, to the extent possible,
and it can help debugging to figure out if your processes have been writing into
the container. Sometimes this is helpful in turning up stray logfiles that exist in the
container as well. As with most of the core tools, this kind of inspection is built into
the docker command-line tooling and is also exposed via the API. Let’s take a look at
what this shows us. Let’s launch a quick container and use its name to explore this:

$ docker container run --rm -d --name nginx-fs nginx:latest
1272b950202db25ee030703515f482e9ed576f8e64c926e4e535ba11f7536cc4

$ docker container diff nginx-fs
C /run
A /run/nginx.pid
C /var
C /var/cache
C /var/cache/nginx
A /var/cache/nginx/scgi_temp

Filesystem Inspection | 187

A /var/cache/nginx/uwsgi_temp
A /var/cache/nginx/client_temp
A /var/cache/nginx/fastcgi_temp
A /var/cache/nginx/proxy_temp
C /etc
C /etc/nginx
C /etc/nginx/conf.d
C /etc/nginx/conf.d/default.conf

$ docker container stop nginx-fs
nginx-fs

Each line begins with either A or C, which is shorthand for added or changed, respec‐
tively. We can see that this container is running nginx, that the nginx configuration
file has been written to, and that some temporary files have been created in a new
directory named /var/cache/nginx. Being able to find out how the container filesys‐
tem is being used can be very useful when you are trying to optimize and harden
your container’s filesystem usage.

Further detailed inspection requires exploring the container with docker container
export, docker container exec, or nsenter and the like, to see exactly what is in
the filesystem. But docker container diff gives you a good place to start.

Wrap-Up
At this point, you should have a good idea of how to deploy and debug individual
containers in development and production, but how do you start to scale this for
larger application ecosystems? In the next chapter, we’ll take a look at one of the
simpler Docker orchestration tools: Docker Compose. This tool is a nice bridge
between a single Linux container and a production orchestration system. It delivers a
lot of value in development environments and throughout the DevOps pipeline.

188 | Chapter 7: Debugging Containers

CHAPTER 8

Exploring Docker Compose

At this point, you should have a good feel for the docker command and how to use
it to build, launch, monitor, and debug your applications. Once you are comfortable
working with individual containers, it won’t be long before you’ll want to share your
projects and start building more complex projects that require multiple containers
to function properly. This is particularly the case in development environments,
where running a whole stack of containers can easily simulate many production
environments on your local machine.

If you’re running a whole stack of containers, however, every container needs to be
run with the proper setup to ensure that the underlying application is configured
correctly and will run as expected. Getting these settings correct every time can be
challenging, especially when you are not the person who originally wrote the applica‐
tion. To help with this during development, people often resort to trying to write shell
scripts that can build and run multiple containers consistently. Although this works,
it can become difficult to understand for a newcomer and hard to maintain as the
project changes over time. It’s also not necessarily repeatable between projects.

To help address this problem, Docker, Inc., released a tool primarily aimed at devel‐
opers called Docker Compose. This tool is included with Docker Desktop, but you
can also install it by following the online installation directions.

Docker Compose was originally a separate application written in
Python that was run using the command docker-compose. This
command is referred to as Docker Compose version 1 and has
recently been replaced with Docker Compose version 2. Docker
Compose v2 was completely rewritten in Go, as a Docker client
plug-in. If docker compose version returns a result, then you
have the plug-in installed. If not, we highly recommend that you
take a little time to install it now.

189

https://docs.docker.com/compose/install

Docker Compose is an incredibly useful tool that can streamline all sorts of develop‐
ment tasks that have traditionally been very cumbersome and error prone. It can
easily be leveraged to help developers quickly spin up complicated application stacks,
compile applications without the need for setting up complex local development
environments, and much more.

In this chapter, we’ll do a run-through of how to use Compose to its best advantage.
We’ll be using a GitHub repository in all of the following examples. If you want to
run the examples as we go through them, you should run the following command to
download the code, if you didn’t already do that in Chapter 6:

$ git clone https://github.com/spkane/rocketchat-hubot-demo.git \
 --config core.autocrlf=input

In the example, shell script and docker-compose.yaml files below
some lines have been truncated to fit in the margins. Make sure
that you use the files from this Git repository if you plan to try
these examples yourself.

This repository contains the configuration we’ll need to launch a complete web
service that includes a MongoDB datastore, the open source Rocket.Chat communi‐
cations server, a Hubot ChatOps bot, and a zmachine-api instance for a little surprise
entertainment value.

Configuring Docker Compose
Before we dive into using the docker compose command, it is useful to see the kind
of ad hoc tooling it replaces. So let’s take a moment to look at a shell script that could
be used to build and deploy a local copy of our service for development and local
testing via Docker. This output is long and detailed, but it’s important to prove the
point about why Docker Compose is a huge leap over shell scripting.

We do not recommend running this shell script. It is simply an
example, and in your environment, it may not work or may leave
things in an odd state.

#!/bin/bash

This is here just to keep people from really running this.
exit 1

The actual script
#

190 | Chapter 8: Exploring Docker Compose

https://goo.gl/hKT3QW

Note: This has not been updated to directly mirror the docker-compose file
since it is just intended to make a point.

set -e
set -u

if [$# -ne 0] && [${1} == "down"]; then
 docker rm -f hubot || true
 docker rm -f zmachine || true
 docker rm -f rocketchat || true
 docker rm -f mongo-init-replica || true
 docker rm -f mongo || true
 docker network rm botnet || true
 echo "Environment torn down…"
 exit 0
fi

Global Settings
export PORT="3000"
export ROOT_URL="http://127.0.0.1:3000"
export MONGO_URL="mongodb://mongo:27017/rocketchat"
export MONGO_OPLOG_URL="mongodb://mongo:27017/local"
export MAIL_URL="smtp://smtp.email"
export RESPOND_TO_DM="true"
export HUBOT_ALIAS=". "
export LISTEN_ON_ALL_PUBLIC="true"
export ROCKETCHAT_AUTH="password"
export ROCKETCHAT_URL="rocketchat:3000"
export ROCKETCHAT_ROOM=""
export ROCKETCHAT_USER="hubot"
export ROCKETCHAT_PASSWORD="bot-pw!"
export BOT_NAME="bot"
export EXTERNAL_SCRIPTS="hubot-help,hubot-diagnostics,hubot-zmachine"
export HUBOT_ZMACHINE_SERVER="http://zmachine:80"
export HUBOT_ZMACHINE_ROOMS="zmachine"
export HUBOT_ZMACHINE_OT_PREFIX="ot"

docker build -t spkane/mongo:4.4 ./mongodb/docker

docker push spkane/mongo:4.4
docker pull spkane/zmachine-api:latest
docker pull rocketchat/rocket.chat:5.0.4
docker pull rocketchat/hubot-rocketchat:latest

docker rm -f hubot || true
docker rm -f zmachine || true
docker rm -f rocketchat || true
docker rm -f mongo-init-replica || true
docker rm -f mongo || true

docker network rm botnet || true

Configuring Docker Compose | 191

docker network create -d bridge botnet

docker container run-d \
 --name=mongo \
 --network=botnet \
 --restart unless-stopped \
 -v $(pwd)/mongodb/data/db:/data/db \
 spkane/mongo:4.4 \
 mongod --oplogSize 128 --replSet rs0
sleep 5
docker container run-d \
 --name=mongo-init-replica \
 --network=botnet \
 spkane/mongo:4.4 \
 'mongo mongo/rocketchat --eval "rs.initiate({ _id: ''rs0'', members: [{ … '
sleep 5
docker container run-d \
 --name=rocketchat \
 --network=botnet \
 --restart unless-stopped \
 -v $(pwd)/rocketchat/data/uploads:/app/uploads \
 -p 3000:3000 \
 -e PORT=${PORT} \
 -e ROOT_URL=${ROOT_URL} \
 -e MONGO_URL=${MONGO_URL} \
 -e MONGO_OPLOG_URL=${MONGO_OPLOG_URL} \
 -e MAIL_URL=${MAIL_URL} \
 rocketchat/rocket.chat:5.0.4
docker container run-d \
 --name=zmachine \
 --network=botnet \
 --restart unless-stopped \
 -v $(pwd)/zmachine/saves:/root/saves \
 -v $(pwd)/zmachine/zcode:/root/zcode \
 -p 3002:80 \
 spkane/zmachine-api:latest
docker container run-d \
 --name=hubot \
 --network=botnet \
 --restart unless-stopped \
 -v $(pwd)/hubot/scripts:/home/hubot/scripts \
 -p 3001:8080 \
 -e RESPOND_TO_DM="true" \
 -e HUBOT_ALIAS=". " \
 -e LISTEN_ON_ALL_PUBLIC="true" \
 -e ROCKETCHAT_AUTH="password" \
 -e ROCKETCHAT_URL="rocketchat:3000" \
 -e ROCKETCHAT_ROOM="" \
 -e ROCKETCHAT_USER="hubot" \
 -e ROCKETCHAT_PASSWORD="bot-pw!" \
 -e BOT_NAME="bot" \
 -e EXTERNAL_SCRIPTS="hubot-help,hubot-diagnostics,hubot-zmachine" \

192 | Chapter 8: Exploring Docker Compose

 -e HUBOT_ZMACHINE_SERVER="http://zmachine:80" \
 -e HUBOT_ZMACHINE_ROOMS="zmachine" \
 -e HUBOT_ZMACHINE_OT_PREFIX="ot" \
 rocketchat/hubot-rocketchat:latest
echo "Environment setup…"
exit 0

At this point, you can probably follow most of this script pretty easily. As you may
already have noticed, this is a hassle to read, is not very flexible, will be a pain to edit,
and might fail unexpectedly in several places. If we were to follow shell script best
practices and handle all the possible errors here in an effort to guarantee that it was
repeatable, it would also be two to three times as long as it already is. Without a lot of
work extracting common functionality for error handling, you’d also have to rewrite
much of that logic every time you have a new project like this. This is not a very good
way to approach a process that you need to work every time you use it. This is where
good tooling comes in. You can accomplish the same thing with Docker Compose
while also making it significantly more repeatable and easier to read, understand, and
maintain.

In contrast to this messy shell script, which is very repetitive and prone to breaking,
Docker Compose is typically configured with a single, declarative YAML file for each
project, named docker-compose.yaml. This configuration file is very easy to read and
will work in a very repeatable fashion so that each user has the same experience when
they run it. Here you can see an example docker-compose.yaml file that could be used
to replace the preceding brittle shell script:

version: '3'
services:
 mongo:
 build:
 context: ../mongodb/docker
 image: spkane/mongo:4.4
 restart: unless-stopped
 environment:
 MONGODB_REPLICA_SET_MODE: primary
 MONGODB_REPLICA_SET_NAME: rs0
 MONGODB_PORT_NUMBER: 27017
 MONGODB_INITIAL_PRIMARY_HOST: mongodb
 MONGODB_INITIAL_PRIMARY_PORT_NUMBER: 27017
 MONGODB_ADVERTISED_HOSTNAME: mongo
 MONGODB_ENABLE_JOURNAL: "true"
 ALLOW_EMPTY_PASSWORD: "yes"
 # Port 27017 already exposed by upstream
 # See the newer upstream Dockerfile:
 # https://github.com/bitnami/containers/blob/
 # f9fb3f8a6323fb768fd488c77d4f111b1330bd0e/bitnami/
 # mongodb/5.0/debian-11/Dockerfile#L52
 networks:
 - botnet
 rocketchat:

Configuring Docker Compose | 193

https://yaml.org

 image: rocketchat/rocket.chat:5.0.4
 restart: unless-stopped
 labels:
 traefik.enable: "true"
 traefik.http.routers.rocketchat.rule: Host(`127.0.0.1`)
 traefik.http.routers.rocketchat.tls: "false"
 traefik.http.routers.rocketchat.entrypoints: http
 volumes:
 - "../rocketchat/data/uploads:/app/uploads"
 environment:
 ROOT_URL: http://127.0.0.1:3000
 PORT: 3000
 MONGO_URL: "mongodb://mongo:27017/rocketchat?replicaSet=rs0"
 MONGO_OPLOG_URL: "mongodb://mongo:27017/local?replicaSet=rs0"
 DEPLOY_METHOD: docker
 depends_on:
 mongo:
 condition: service_healthy
 ports:
 - 3000:3000
 networks:
 - botnet
 zmachine:
 image: spkane/zmachine-api:latest
 restart: unless-stopped
 volumes:
 - "../zmachine/saves:/root/saves"
 - "../zmachine/zcode:/root/zcode"
 depends_on:
 - rocketchat
 expose:
 - "80"
 networks:
 - botnet
 hubot:
 image: rocketchat/hubot-rocketchat:latest
 restart: unless-stopped
 volumes:
 - "../hubot/scripts:/home/hubot/scripts"
 environment:
 RESPOND_TO_DM: "true"
 HUBOT_ALIAS: ". "
 LISTEN_ON_ALL_PUBLIC: "true"
 ROCKETCHAT_AUTH: "password"
 ROCKETCHAT_URL: "rocketchat:3000"
 ROCKETCHAT_ROOM: ""
 ROCKETCHAT_USER: "hubot"
 ROCKETCHAT_PASSWORD: "bot-pw!"
 BOT_NAME: "bot"
 EXTERNAL_SCRIPTS: "hubot-help,hubot-diagnostics,hubot-zmachine"
 HUBOT_ZMACHINE_SERVER: "http://zmachine:80"
 HUBOT_ZMACHINE_ROOMS: "zmachine"

194 | Chapter 8: Exploring Docker Compose

 HUBOT_ZMACHINE_OT_PREFIX: "ot"
 depends_on:
 - zmachine
 ports:
 - 3001:8080
 networks:
 - botnet
networks:
 botnet:
 driver: bridge

The docker-compose.yaml file makes it easy to describe all the important requirements
for each of your services and how they need to communicate with one another. And
we get a lot of validation and logic checking for free that we didn’t even have time to
write into our shell script and that we’d probably get wrong on occasion, no matter
how careful we are.

So, what did we tell Compose to do in that YAML file? The first line of our file simply
tells Docker Compose what version of the Compose configuration language this file
was designed for:

version: '3'

The rest of our document is divided into two sections: services and networks.

For starters, let’s take a quick look at the networks section. In this docker-
compose.yaml file, we are defining a single, named Docker network:

networks:
 botnet:
 driver: bridge

This is a very simple configuration that tells Docker Compose to create a single
network, named botnet, using the (default) bridge driver, which will bridge the
Docker network with the host’s networking stack.

The services section is the most important part of the configuration and tells
Docker Compose what applications you want to launch. Here, the services section
defines five services: mongo, mongo-init-replica, rocketchat, zmachine, and hubot.
Each named service then contains sections that tell Docker how to build, configure,
and launch that service.

If you take a look at the mongo service, you will see that the first subsection is
called build and contains a context key. This informs Docker Compose that it
can build this image and that the files required for the build are located in the ../../
mongodb/docker directory, which is two levels above the directory containing the
docker-compose.yaml file:

 build:
 context: ../../mongodb/docker

Configuring Docker Compose | 195

https://docs.docker.com/compose/compose-file

If you look at the Dockerfile in the mongodb/docker directory, you will see this:

FROM mongo:4.4

COPY docker-healthcheck /usr/local/bin/

Useful Information:
https://docs.docker.com/engine/reference/builder/#healthcheck
https://docs.docker.com/compose/compose-file/#healthcheck
HEALTHCHECK CMD ["docker-healthcheck"]

Take a moment to look at the HEALTHCHECK line. This tells Docker what command
should be run to check the health of the container. Docker will not take action
based on this health check, but it will report the health so that other things can
make use of this information. If you are curious, feel free to take a look at the
docker-healthcheck script in the mongodb/docker directory.

The next setting, image, defines the image tag that you want either to apply to your
build or to download (if you’re not building an image) and then run:

 image: spkane/mongo:4.4

With the restart option, you tell Docker when you want it to restart your contain‐
ers. In most cases, you’ll want Docker to restart your containers any time that you
have not specifically stopped them:

 restart: unless-stopped

Next, you will see an environment section. This is where you can define any environ‐
ment variables that you want to pass into your container:

 environment:
 MONGODB_REPLICA_SET_MODE: primary
 MONGODB_REPLICA_SET_NAME: rs0
 MONGODB_PORT_NUMBER: 27017
 MONGODB_INITIAL_PRIMARY_HOST: mongodb
 MONGODB_INITIAL_PRIMARY_PORT_NUMBER: 27017
 MONGODB_ADVERTISED_HOSTNAME: mongo
 MONGODB_ENABLE_JOURNAL: "true"
 ALLOW_EMPTY_PASSWORD: "yes"

The final subsection for the mongo service, networks, tells Docker Compose which
network this container should be attached to:

 networks:
 - botnet

At this point, let’s jump down to the rocketchat service. This service does not have
a build subsection; instead, it only defines an image tag that tells Docker Compose
that it cannot build this image and must instead try to pull and launch a preexisting
Docker image with the defined tag.

196 | Chapter 8: Exploring Docker Compose

The first new subsection that you will notice in this service is called volumes.

A lot of services have at least some data that should be persisted during development,
despite the ephemeral nature of containers. To accomplish this, it is easiest to mount
a local directory into the containers. The volumes section allows you to list all the
local directories that you would like to have mounted into a container, and define
where they go. This command will bind-mount ../rocketchat/data/uploads into /app/
uploads inside the container:

 volumes:
 - "../rocketchat/data/uploads:/app/uploads"

You may have noticed that we do not define a volume for Mon‐
goDB, which might seem a bit counterintuitive. Although a bind-
mounted volume would be useful to store the database files in,
MongoDB will fail to write to the native Windows filesystem, so we
leave this out to achieve the broadest compatibility and instead let
the database write into the container for this development use case.
The primary result of this is that when you delete the container
using a command like docker compose down, all of the data in the
MongoDB instance will be lost.
We could easily solve this MongoDB storage problem by using a
data volume container, but this example is specifically using bind
mounts for the volumes.

In almost all cases, you should not use host-based local storage for
containers in production. This can be very convenient in develop‐
ment since you are using a single host, but in production, your
containers will often be deployed to whatever node has space and
resources, and will lose access to files stored on a single host’s
filesystem. In production, if you need stateful storage, you have to
leverage things like network-based storage, Kubernetes Persistent
Volumes, etc.

In the environment section for the rocketchat service, you will see that the value
for the MONGO_URL does not use an IP address or fully qualified domain name. This
is because all of these services are running on the same Docker network, and Docker
Compose configures each container so that it can find the others via their service
names. This means that we can easily configure URLs like this to simply point at
the service name and internal port for the container we need to connect to. And, if
we rearrange things, these names will continue to point to the right container in our
stack. They are also nice because they make it quite explicit to the reader what the
dependency is for that container:

Configuring Docker Compose | 197

https://docs.docker.com/storage/volumes/#create-and-manage-volumes

 environment:
 …
 MONGO_URL: "mongodb://mongo:27017/rocketchat?replicaSet=rs0"
 …

The docker-compose.yaml file can also refer to environment vari‐
ables using the ${VARIABLE_NAME} format, which makes it possible
to pull in secrets without actually storing them in this file. Docker
Compose also supports an .env file, which can be very useful for
handling secrets and environment variables that change between
developers, for example.

The depends_on section defines a container that must be running before this con‐
tainer can be started. By default, docker compose only ensures that the container is
running, not that it is healthy; however, you can leverage the HEALTHCHECK functional‐
ity in Docker, and the condition statement in Docker Compose, to require that the
dependent service be healthy before Docker Compose brings the new service up. It
is important to remember that this only impacts startup. Docker will report services
that become unhealthy later on, but it does not take any action to correct the situation
unless the container exits, in which case, Docker will restart the container if it is
configured to do so:

 depends_on:
 mongo:
 condition: service_healthy

We discuss Docker’s health-check functionality in more detail in
“Container Health Checks” on page 159. You can also find more
information in the documentation for Docker and Docker Com‐
pose.

The ports subsection allows you to define all the ports that you want to be mapped
from the container to the host:

 ports:
 - 3000:3000

The zmachine service uses only one new subsection, called expose. This section
allows us to tell Docker that we want to expose this port to the other containers on
the Docker network but not to the underlying host. This is why you do not provide a
host port to map this port to:

 expose:
 - "80"

198 | Chapter 8: Exploring Docker Compose

https://docs.docker.com/compose/env-file
https://dockr.ly/2MYnLZL
https://dockr.ly/2wt366J
https://dockr.ly/2wt366J

You might notice at this point that, while we expose a port for zmachine, we didn’t
expose a port in the mongo service. It wouldn’t have hurt anything to expose the
mongo port, but we didn’t need to because it is already exposed by the upstream mongo
Dockerfile. This is sometimes a little opaque. docker image history on the built
image can be helpful here.

Here we’ve used an example that is complex enough to expose you to some of the
power of Docker Compose, but it is by no means exhaustive. There is a great deal
else that you can configure in a docker-compose.yaml file, including security settings,
resource quotas, and much more. You can find a lot of detailed information about
configuration for Compose in the official Docker Compose documentation.

Launching Services
We configured a set of services for our application in the YAML file. That tells
Compose what we’re going to launch and how to configure it. So, let’s get it up and
running! To run our first Docker Compose command, we need to be sure that we are
in the same directory as the docker-compose.yaml file:

$ cd rocketchat-hubot-demo/compose

Once you are in the correct directory, you can confirm that the configuration is
correct by running the following:

$ docker compose config

If everything is fine, the command will print out your configuration file. If there is a
problem, the command will print an error with details about the problem, like so:

services.mongo Additional property builder is not allowed

You can build any containers that you need by using the build option. Any services
that use images will be skipped:

$ docker compose build

 => [internal] load build definition from Dockerfile 0.0s
 => => transferring dockerfile: 32B 0.0s
 => [internal] load .dockerignore 0.0s
 => => transferring context: 2B 0.0s
 => [internal] load metadata for docker.io/bitnami/mongodb:4.4 1.2s
 => [auth] bitnami/mongodb:pull token for registry-1.docker.io 0.0s
 => [internal] load build context 0.0s
 => => transferring context: 40B 0.0s
 => [1/2] FROM docker.io/bitnami/mongodb:4.4@sha256:9162…ae209 0.0s
 => CACHED [2/2] COPY docker-healthcheck /usr/local/bin/ 0.0s
 => exporting to image 0.0s
 => => exporting layers 0.0s
 => => writing image sha256:a6ef…da808 0.0s
 => => naming to docker.io/spkane/mongo:4.4 0.0s

Launching Services | 199

https://github.com/docker-library/mongo/blob/58bdba62b65b1d1e1ea5cbde54c1682f120e0676/3.2/Dockerfile#L95
https://github.com/docker-library/mongo/blob/58bdba62b65b1d1e1ea5cbde54c1682f120e0676/3.2/Dockerfile#L95
https://docs.docker.com/compose/compose-file

You can start up your web service in the background by running the following
command:

$ docker compose up -d

[+] Running 5/5
 ⠿ Network compose_botnet Created 0.0s
 ⠿ Container compose-mongo-1 Healthy 62.0s
 ⠿ Container compose-rocketchat-1 Started 62.3s
 ⠿ Container compose-zmachine-1 Started 62.5s
 ⠿ Container compose-hubot-1 Started 62.6s

Docker Compose prefixes the network and container names with a project name.
By default, this is the name of the directory that contains your docker-compose.yaml
file. Since this command was run in a directory named compose, you can see that
everything starts with compose as the project name.

Windows users: when you first bring up the services, Windows may
prompt you to authorize vpnkit, and Docker Desktop for Windows
may also prompt you to share your disk. You must click both
the “Allow access” and the “Share it” buttons for the network and
volume shares to work and everything to come up properly.

Once everything comes up, we can take a quick look at the logs for all of the services
(Figure 8-1):

$ docker compose logs

Figure 8-1. docker compose logs output

You can’t see it well in print here, but if you’re following along, note that all of the logs
are color coded by service and interlaced by the time Docker received the log lines.
This makes it a lot easier to follow what’s happening, even though several services are
logging messages at once.

It can take Rocket.Chat a little while to set up the database and be ready to accept
connections. Once the Rocket.Chat logs print a line that contains SERVER RUNNING,
things should be ready to go:

200 | Chapter 8: Exploring Docker Compose

$ docker compose logs rocketchat | grep "SERVER RUNNING"

compose-rocketchat-1 | | SERVER RUNNING |

At this point, we have successfully launched a reasonably complex application that
makes up a stack of containers. We’ll take a look at this simple application now so that
you can see what we built and get a more complete understanding of the Compose
tooling. While this next section does not strictly have anything to do with Docker
itself, it is intended to show you how easy it is to use Docker Compose to set up
complex and fully functioning web services.

Exploring Rocket.Chat
In this section, we’re going to diverge from Docker for a moment
and take a look at Rocket.Chat. We’ll spend a few pages on it so that
you know enough about it that you can hopefully start to appreci‐
ate how much easier it is to set up a complex environment using
Docker Compose. Feel free to skip down to “Exercising Docker
Compose” on page 211, if you would like.

We’ll shortly dig further into what’s happening behind the scenes of our setup. But
to do that effectively, we should now take a brief moment to explore the application
stack we built. Rocket.Chat, the primary application we launched with Docker Com‐
pose, is an open source chat client/server application. To see how it works, let’s launch
a web browser and navigate to http://127.0.0.1:3000.

When you get there, you see the Admin Info screen for Rocket.Chat (Figure 8-2).

Exploring Rocket.Chat | 201

https://rocket.chat
http://127.0.0.1:3000

Figure 8-2. Rocket.Chat Admin Info screen

Fill out the form like this:

• Full name: student•
• Username: student•
• Email: student@example.com•
• Password: student-pw!•

Then click the blue Next button.

You then see the Organization Info screen (Figure 8-3).

202 | Chapter 8: Exploring Docker Compose

Figure 8-3. Rocket.Chat Organization Info screen

The specifics of this form are not critical, but you can fill it in something like this:

• Organization name: training•
• Organization type: Community•
• Organization industry: Education•
• Organization size: 1-10 people•
• Country: United States•

Then click the blue Next button.

At this point, you see the Register Your Server screen (Figure 8-4).

Exploring Rocket.Chat | 203

Figure 8-4. Rocket.Chat Register Your Server screen

You can simply delete and uncheck everything and then click the small blue “Con‐
tinue as standalone” link. You then see the Standalone Server Configuration screen
(Figure 8-5).

Figure 8-5. Rocket.Chat Standalone Server Confirmation screen

Click the blue Confirm button.

If you are using localhost or something other than 127.0.0.1 to
reach Rocket.Chat in your browser, you may get a pop-up window
asking if you would like to update the SITE_URL. In most cases, go
ahead and let it update that value so that it matches what you are
using.

204 | Chapter 8: Exploring Docker Compose

Congratulations—you are now logged in to a fully functional chat client, but you
aren’t done yet. The Docker Compose configuration launched an instance of a Hubot
chat assistant and the mysterious zmachine, so let’s take a look at those.

Since the Rocket.Chat server is brand new, it doesn’t yet have a user that our bot can
use. Let’s remedy that.

Start by clicking the top of the left sidebar, where you see a purple box with the letter
S in it. Click Administration in the pop-up menu (Figure 8-6).

Figure 8-6. Rocket.Chat Administration sidebar

In the Administration panel, click Users (Figure 8-7).

Figure 8-7. Rocket.Chat User screen

On the top-far-right side of the screen, click the New button to display the Add User
screen (Figure 8-8).

Exploring Rocket.Chat | 205

https://hubot.github.com

Figure 8-8. Rocket.Chat Add User screen

Fill out the form as follows:

• Name: hubot•
• Username: hubot•
• Email: hubot@example.com•

206 | Chapter 8: Exploring Docker Compose

• Click: Verified (Blue)•
• Password: bot-pw!•
• Roles: bot•
• Disable: Send welcome email (Gray)•

Click Save to create the user.

To ensure that the bot can log in, we also need to disable two-factor authentication,
which is enabled by default. To do this, click Settings at the bottom of the Adminis‐
tration sidebar on the left side of your browser (Figure 8-9).

Figure 8-9. Rocket.Chat Administration settings

Exploring Rocket.Chat | 207

The Settings screen is displayed (Figure 8-10).

Figure 8-10. Rocket.Chat Accounts settings

In the new text search bar, type totp, then click the Open button under Accounts.

You should now see a long list of settings (Figure 8-11).

Figure 8-11. Rocket.Chat TOTP settings

Scroll down to the Two Factor Authentication section, expand it, and then deselect
the Enable Two Factor Authentication option.

Once you have done this, click “Save changes.”

At the top of the left side of the Administration panel, click the X to close the panel
(Figure 8-12).

208 | Chapter 8: Exploring Docker Compose

Figure 8-12. Rocket.Chat close Administration panel

In the left side panel under Channels, click “general” (Figure 8-13).

Figure 8-13. Rocket.Chat general channel

And finally, if you don’t already see a message in the channel that “Hubot has joined
the channel,” go ahead and tell Docker Compose to restart the Hubot container. This
will force Hubot to try and log into the chat server again, now that there is a user for
the service to use:

$ docker compose restart hubot
Restarting unix_hubot_1 … done

If everything went according to plan, you should now be able to navigate back to your
web browser and send commands to Hubot in the chat window.

Hubot should auto-join the General channel when it logs into the
server, but just in case, you can send the following message in the
General channel to explicitly invite Hubot:

/invite @hubot

You may get a message from the internal admin rocket.cat that
says “@hubot is already in here.” This is perfectly fine.

The environment variables used to configure Hubot defined its alias as a period.
So you can now try typing . help to test that the bot is responding. If everything

Exploring Rocket.Chat | 209

is working, you should get a list of commands that the bot understands and will
respond to:

> . help
. adapter - Reply with the adapter
. echo <text> - Reply back with <text>
. help - Displays all of the help commands that this bot knows about.
. help <query> - Displays all help commands that match <query>.
. ping - Reply with pong
. time - Reply with current time
…

Finally, try typing the following:

. ping

Hubot should respond with PONG.

If you type:

. time

then Hubot will tell you what the time is set to on the server.

So, for one last diversion, try creating a new chat channel by typing /create
zmachine in the chat window. You should now be able to click on the new zmachine
channel in the left sidebar and invite Hubot with the chat command /invite @hubot.

When you do this, Hubot might say:
There's no game for zmachine!

This is nothing to be concerned about.

Next, try typing the following commands into the chat window to play a chat-based
version of the famous game Colossal Cave Adventure:

. z start adventure

more
look
go east
examine keys
get keys

. z save firstgame

. z stop

. z start adventure

. z restore firstgame

inventory

210 | Chapter 8: Exploring Docker Compose

https://en.wikipedia.org/wiki/Interactive_fiction#Adventure

1 Full URL: https://ifarchive.org/indexes/if-archiveXgamesXzcode.html

Interactive fiction can be addictive and a huge time sink. You have
been warned. That being said, if you aren’t already familiar with it
and are interested in learning more, take a look at some of these
resources:

• Definition of interactive fiction•
• Emulator•
• Development•
• Games1•
• Competition•

You’ve now seen how easy it can be to configure, launch, and manage complex web
services that require multiple components to accomplish their jobs using Docker
Compose. In the next section, we will explore a few more of the features that Docker
Compose includes.

You could avoid much of the Rocket.Chat setup by providing Mon‐
goDB with a preconfigured Rocket.Chat database, but it felt impor‐
tant to remove any magic from this example to make it clearer how
everything fits together.

Exercising Docker Compose
Now that you have the full Rocket.Chat stack running and understand what the
application is doing, we can dig in to get a little more insight into how the services
are running. Some of the common Docker commands are also exposed as Compose
commands, but for a specific stack rather than a single container or all of the
containers on a host. You can run docker compose top to see an overview of your
containers and the processes that are running in them:

$ docker compose top

compose-hubot-1
UID PID … CMD
1001 73342 … /usr/bin/qemu-x86_64 /bin/sh /bin/sh -c node -e "console.l…"
1001 73459 … /usr/bin/qemu-x86_64 /usr/local/bin/node node node_modules/…

compose-mongo-1
UID PID … CMD
1001 71243 … /usr/bin/qemu-x86_64 /opt/bitnami/mongodb/bin/mongod /opt/…

compose-rocketchat-1

Exercising Docker Compose | 211

https://ifarchive.org/indexes/if-archiveXgamesXzcode.html
https://en.wikipedia.org/wiki/Interactive_fiction
https://davidgriffith.gitlab.io/frotz
https://ganelson.github.io/inform-website
https://oreil.ly/IrOLh
https://ifcomp.org

UID PID … CMD
65533 71903 … /usr/bin/qemu-x86_64 /usr/local/bin/node node main.js

compose-zmachine-1
UID PID … CMD
root 71999 … /usr/bin/qemu-x86_64 /usr/local/bin/node node /root/src/server.js
root 75078 … /usr/bin/qemu-x86_64 /root/src/../frotz/dfrotz /root/src/…

Similar to how you would normally enter a running Linux container using the
docker container exec command, you can run commands inside containers via the
Docker Compose tooling using the docker compose exec command. Because docker
compose is a newer tool, it provides some convenient shortcuts over the standard
docker commands. In the case of docker compose exec, you do not need to pass
in -i -t, and you can use the Docker Compose service name instead of trying to
remember the container ID or name:

$ docker compose exec mongo bash

I have no name!@0078134f9370:/$ mongo
MongoDB shell version v4.4.15
connecting to: mongodb://127.0.0.1:27017/?compressors=disabled&…
Implicit session: session { "id" : UUID("daec9543-bb9c-4e8c-ba6b…") }
MongoDB server version: 4.4.15
…
rs0:PRIMARY> exit
bye
I have no name!@0078134f9370:/$ exit
exit

docker compose logs and docker compose exec are probably the
most useful commands for troubleshooting. If Docker Compose
cannot build your image or start your container at all, you will
need to fall back to the standard docker commands to debug your
image and container, as we discussed in “Troubleshooting Broken
Builds” on page 92 and “Getting Inside a Running Container” on
page 146.

You can also use Docker Compose to start and stop and, in most environments,
pause and unpause either a single container or all of your containers, depending on
what you need:

$ docker compose stop zmachine
[+] Running 1/1
 ⠿ Container compose-zmachine-1 Stopped 0.3s
$ docker compose start zmachine
[+] Running 2/2
 ⠿ Container compose-mongo-1 Healthy 0.5s
 ⠿ Container compose-zmachine-1 Started 0.4s
$ docker compose pause

212 | Chapter 8: Exploring Docker Compose

[+] Running 4/0
 ⠿ Container compose-mongo-1 Paused 0.0s
 ⠿ Container compose-zmachine-1 Paused 0.0s
 ⠿ Container compose-rocketchat-1 Paused 0.0s
 ⠿ Container compose-hubot-1 Paused 0.0s
$ docker compose unpause
[+] Running 4/0
 ⠿ Container compose-zmachine-1 Unpaused 0.0s
 ⠿ Container compose-hubot-1 Unpaused 0.0s
 ⠿ Container compose-rocketchat-1 Unpaused 0.0s
 ⠿ Container compose-mongo-1 Unpaused 0.0s

Finally, when you want to tear everything down and delete all the containers created
by Docker Compose, you can run the following command:

$ docker compose down
[+] Running 5/5
 ⠿ Container compose-hubot-1 Removed 10.4s
 ⠿ Container compose-zmachine-1 Removed 0.1s
 ⠿ Container compose-rocketchat-1 Removed 0.6s
 ⠿ Container compose-mongo-1 Removed 0.9s
 ⠿ Network compose_botnet Removed 0.1s

When you delete the MongoDB container using the docker com
pose down command, all data in the MongoDB instance will be
lost.

Managing Configuration
Docker Compose offers a few important capabilities that can help you significantly
improve the flexibility of your docker-compose.yaml files. In this section, we will
explore how you can avoid hardcoding many configuration values into your docker-
compose.yaml files while still making them easy to use by default.

Default Values
If we take a look at the services:rocketchat:environment section of the docker-
compose.yaml file, we will see something like this:

 environment:
 RESPOND_TO_DM: "true"
 HUBOT_ALIAS: ". "
 LISTEN_ON_ALL_PUBLIC: "true"
 ROCKETCHAT_AUTH: "password"
 ROCKETCHAT_URL: "rocketchat:3000"
 ROCKETCHAT_ROOM: ""
 ROCKETCHAT_USER: "hubot"
 ROCKETCHAT_PASSWORD: "bot-pw!"

Managing Configuration | 213

 BOT_NAME: "bot"
 EXTERNAL_SCRIPTS: "hubot-help,hubot-diagnostics,hubot-zmachine"
 HUBOT_ZMACHINE_SERVER: "http://zmachine:80"
 HUBOT_ZMACHINE_ROOMS: "zmachine"
 HUBOT_ZMACHINE_OT_PREFIX: "ot"

Now, if we look at docker-compose-defaults.yaml inside the same directory, we will see
that this same section looks like this:

 environment:
 RESPOND_TO_DM: ${HUBOT_RESPOND_TO_DM:-true}
 HUBOT_ALIAS: ${HUBOT_ALIAS:-. }
 LISTEN_ON_ALL_PUBLIC: ${HUBOT_LISTEN_ON_ALL_PUBLIC:-true}
 ROCKETCHAT_AUTH: ${HUBOT_ROCKETCHAT_AUTH:-password}
 ROCKETCHAT_URL: ${HUBOT_ROCKETCHAT_URL:-rocketchat:3000}
 ROCKETCHAT_ROOM: ${HUBOT_ROCKETCHAT_ROOM:-}
 ROCKETCHAT_USER: ${HUBOT_ROCKETCHAT_USER:-hubot}
 ROCKETCHAT_PASSWORD: ${HUBOT_ROCKETCHAT_PASSWORD:-bot-pw!}
 BOT_NAME: ${HUBOT_BOT_NAME:-bot}
 EXTERNAL_SCRIPTS: ${HUBOT_EXTERNAL_SCRIPTS:-hubot-help,
 hubot-diagnostics,hubot-zmachine}
 HUBOT_ZMACHINE_SERVER: ${HUBOT_ZMACHINE_SERVER:-http://zmachine:80}
 HUBOT_ZMACHINE_ROOMS: ${HUBOT_ZMACHINE_ROOMS:-zmachine}
 HUBOT_ZMACHINE_OT_PREFIX: ${HUBOT_ZMACHINE_OT_PREFIX:-ot}

This is using a technique called variable interpolation that Docker Compose has
borrowed directly from many common Unix shells, like bash.

In the original file, the environment variable ROCKETCHAT_PASSWORD is hardcoded to
the value "bot-pw!":

 ROCKETCHAT_PASSWORD: "bot-pw!"

By using this new approach, we are stating that we want ROCKETCHAT_PASSWORD to be
set to the value of the HUBOT_ROCKETCHAT_PASSWORD variable if it is set in the user’s
environment, and if it is not, then ROCKETCHAT_PASSWORD should be set to the default
value of bot-pw!:

 ROCKETCHAT_PASSWORD: ${HUBOT_ROCKETCHAT_PASSWORD:-bot-pw!}

This provides us with a great deal of flexibility since we can now make almost every‐
thing configurable while still providing reasonable defaults for the most common use
case. We can easily test this out by running docker compose up with the new file:

$ docker compose -f docker-compose-defaults.yaml up -d

[+] Running 5/5
 ⠿ Network compose_botnet Created 0.0s
 ⠿ Container compose-mongo-1 Healthy 31.0s
 ⠿ Container compose-rocketchat-1 Started 31.2s
 ⠿ Container compose-zmachine-1 Started 31.5s
 ⠿ Container compose-hubot-1 Started 31.8s

214 | Chapter 8: Exploring Docker Compose

https://docs.docker.com/compose/compose-file/#interpolation

By default, this will result in the exact same stack that we spun up earlier. However,
we could easily make changes to it now by simply setting one or more environment
variables in our terminal before running our docker compose commands:

$ docker compose -f docker-compose-defaults.yaml down
…

$ docker compose -f docker-compose-defaults.yaml config | \
 grep ROCKETCHAT_PASSWORD

 ROCKETCHAT_PASSWORD: bot-pw!

$ HUBOT_ROCKETCHAT_PASSWORD="my-unique-pw" docker compose \
 -f docker-compose-defaults.yaml config | \
 grep ROCKETCHAT_PASSWORD

 ROCKETCHAT_PASSWORD: my-unique-pw

In the examples here, Docker Compose will treat an empty envi‐
ronment variable exactly the same as one that is set to an empty
string. If an empty string is a valid value in your use case, then
you will want to modify the format of the variable substitution line
so that it looks like this: ${VARIABLE_NAME-default-value}. We
recommend reading through the documentation for this feature so
that you understand all the possibilities.

This is pretty nice, but what if we don’t want to provide a default value at all and
instead want to force the user to set something? We can do this pretty easily as well.

Some readers might be uncomfortable with the fact that we are
passing in the password as part of the command line, since those
passwords might be viewable in the system process list, etc., but
don’t worry—we will address that in just a few minutes.

Mandatory Values
To set a mandatory value, we simply need to alter the variable substitution line a bit.
It seems like a bad idea to pass in a default password, so let’s go ahead and make that
value required.

In the docker-compose-defaults.yaml file, ROCKETCHAT_PASSWORD is defined like this:

 ROCKETCHAT_PASSWORD: ${HUBOT_ROCKETCHAT_PASSWORD:-bot-pw!}

In the newer docker-compose-env.yaml file, we can see that it is defined like this:

 ROCKETCHAT_PASSWORD:
 ${HUBOT_ROCKETCHAT_PASSWORD:?HUBOT_ROCKETCHAT_PASSWORD must be set!}

Managing Configuration | 215

https://docs.docker.com/compose/compose-file/#interpolation

Instead of containing a default value, this approach defines an error string if the
variable is not set to a nonempty string in the environment. If we try to simply spin
up these services now, we will get an error message:

$ docker compose -f docker-compose-env.yaml up -d

invalid interpolation format for
 services.hubot.environment.ROCKETCHAT_PASSWORD.
You may need to escape any $ with another $.
required variable HUBOT_ROCKETCHAT_PASSWORD is missing a value:
 HUBOT_ROCKETCHAT_PASSWORD must be set!

The output gives us a few hints about what might be wrong, but the last two lines are
pretty clear, and the final message is the exact error message that we defined, so it can
be set to whatever makes the most sense in the situation.

If we go ahead and pass in our own password, then everything spins up just fine:

$ HUBOT_ROCKETCHAT_PASSWORD="a-b3tt3r-pw" docker compose \
 -f docker-compose-env.yaml up -d

[+] Running 5/5
 ⠿ Network compose_botnet Created 0.0s
 ⠿ Container compose-mongo-1 Healthy 31.0s
 ⠿ Container compose-rocketchat-1 Started 31.3s
 ⠿ Container compose-zmachine-1 Started 31.5s
 ⠿ Container compose-hubot-1 Started 31.8s

$ docker compose -f docker-compose-env.yaml down
…

The dotenv File
Passing in a single environment variable is not that difficult, but if you need to pass in
a lot of custom values, or even one real secret, then setting them in the local terminal
isn’t ideal. This is where the .env (dotenv) file can be very useful.

The .env file is a special file standard that is intended to be parsed by programs that
need additional configuration information that is specific to the local environment.

In the preceding use case, we must set a password to spin up our Docker Compose
environment. We can pass in the environment every time, but this isn’t ideal for at
least a few reasons. It would be nice if we could set it in a way that is reasonably
secure for a single-user environment and that will also make our lives a bit easier and
less error prone.

In essence, a .env file is simply a list of key/value pairs. Since this file is intended to be
unique to the local environment and will often contain at least one secret, we should
start by ensuring that we will never accidentally commit these files into our revision

216 | Chapter 8: Exploring Docker Compose

https://www.dotenv.org/docs/security/env

control system. To do this with git, we can simply make sure that our .gitignore file
includes .env, which, in this case, it already does:

$ grep .env ../.gitignore
.env

Assuming that we are on a single-user system, we can now safely create a .env file in
the same directory that contains our docker-compose.yaml file(s).

For this example, let’s go ahead and make the contents of our .env file look like this:

HUBOT_ROCKETCHAT_PASSWORD=th2l@stPW!

We could add many more key/value pairs to this file, but to keep things simple, we
are only focusing on this one password. If you run git status after creating this file,
you should notice that git is completely ignoring the new file, which is exactly what
we want:

$ git status
On branch main
Your branch is up to date with 'origin/main'.

nothing to commit, working tree clean

A .env file is not a Unix shell script. There are subtle but impor‐
tant differences between this format and how you might define
variables in a standard shell script. The most important one is
that, in most circumstances, you should not surround values with
quotation marks.

In the previous section, when we ran docker compose -f docker-compose-

env.yaml up -d without setting the HUBOT_ROCKETCHAT_PASSWORD, we got an error,
but if we try this again after creating the .env file, things should work just fine:

$ docker compose -f docker-compose-env.yaml up -d

[+] Running 5/5
 ⠿ Network compose_botnet Created 0.0s
 ⠿ Container compose-mongo-1 Healthy 31.1s
 ⠿ Container compose-rocketchat-1 Started 31.3s
 ⠿ Container compose-zmachine-1 Started 31.5s
 ⠿ Container compose-hubot-1 Started 31.8s

Managing Configuration | 217

Let’s confirm that the value that has been assigned to ROCKETCHAT_PASSWORD is what
we set it to in the .env file:

$ docker compose \
 -f docker-compose-env.yaml config | \
 grep ROCKETCHAT_PASSWORD

 ROCKETCHAT_PASSWORD: th2l@stPW!

We can see that the value is indeed set to what we defined in the .env file. This is
because Docker Compose will always read in the key/value pairs that are defined in
a .env file that lives in the same directory as the docker-compose.yaml file that we are
using.

It is important to understand the precedence that is in effect here. The very first
thing that Docker Compose does is read all the defaults that are set in the docker-
compose.yaml file. It then reads the .env file and overrides any of the defaults, which
are values defined in the file. Then it finally looks at any environment variables that
are set in the local environment and overwrites values previously defined with these.

This means that the defaults in the file should be the most common settings, then
each user can define their common changes in the local .env file, and finally, they can
rely on local environment variables when they need to make an unusual change for
a specific use case. Using these features with Docker Compose helps ensure that you
can build a very repeatable process that still contains enough flexibility to cover most
common workflows.

There are additional features of Docker Compose that we do not
cover, like override files. As you start to use Docker Compose
more, it is worth your time to review the documentation so that
you are aware of any additional features that might be useful for
your projects.

Wrap-Up
You should now have a very good feel for the types of things you can accomplish with
Docker Compose and how you can use this tool to decrease the toil and increase the
repeatability of your development environments.

In the next chapter, we will explore some of the tools that are available to help you
scale Docker inside your data center and in the cloud.

218 | Chapter 8: Exploring Docker Compose

https://docs.docker.com/compose/extends
https://docs.docker.com/compose

CHAPTER 9

The Path to Production Containers

Now that we’ve explored tooling for bringing up a stack of containers on a single host,
we need to look at how we’d do this in a large-scale production environment. In this
chapter, our goal is to show you how you might take containers to production based
on our own experiences. There are myriad ways in which you will probably need to
tailor this to your applications and environments, but this should provide you with a
solid starting point to help you understand the Docker philosophy in practical terms.

Getting to Production
Getting an application from the point where it is built and configurable to the point
where it is running on production systems is one of the most mine-ridden steps in
going from zero to production. This has traditionally been complicated but is vastly
simplified by the shipping container model. If you can imagine what it was like to
load goods into a ship to take across the ocean before shipping containers existed,
you have a sense of what most traditional deployment systems look like. In that
old shipping model, randomly sized boxes, crates, barrels, and all manner of other
packages were loaded by hand onto ships. They then had to be manually unloaded by
someone who could tell which pieces needed to be unloaded first so that the whole
pile wouldn’t collapse like a Jenga puzzle.

Shipping containers changed all that: we now have a standardized box with well-
known dimensions. These containers can be packed and unloaded in a logical order,
and whole groups of items arrive together when expected. The shipping industry
built machinery to manage them very efficiently. The Docker deployment model is
very similar. All Linux containers support the same external interface, and the tooling
just drops them on the servers they are supposed to be on without any concern for
what’s inside.

219

https://en.wikipedia.org/wiki/Jenga

In the new model, when we have a running build of our application, we don’t have to
write much custom tooling to kick off deployment. If we only want to ship it to one
server, the docker command-line tooling will handle most of that for us. If we want
to send it to more servers, then we will have to look at some of the more advanced
tooling from the broader container ecosystem. In either case, there are things your
application will need to be aware of and concerns you will need to consider before
taking your containerized application to production.

There is a progression you will follow while getting your applications to production
with Docker:

1. Locally build and test a Docker image on your development box.1.
2. Build your official image for testing and deployment, usually from a continuous2.

integration (CI) or build system.
3. Push the image to a registry.3.
4. Deploy your Docker image to your server, then configure and start the container.4.

As your workflow evolves, you will eventually collapse all of those steps into a single
fluid workflow:

1. Orchestrate the building, testing, and storage of images and the deployment of1.
containers to production servers.

But there is a lot more to the story than that. At the most basic level, a production
story must encompass three things:

• It must be a repeatable process. Each time you invoke it, it needs to do the same•
thing. Ideally, it will do the same thing for all your applications.

• It needs to handle configuration for you. You must be able to define your applica‐•
tion’s configuration in a particular environment and then guarantee that it will
ship that configuration on each deployment.

• It must deliver an executable artifact that can be started.•

To accomplish that, there are several things you need to think about. We’ll try to help
with that by presenting a framework you can use to think about your application in
its environment.

220 | Chapter 9: The Path to Production Containers

Docker’s Role in Production Environments
We’ve covered a lot of capabilities that Docker brings to the table, and we’ve talked
about some general production strategies. Before we dive deeper into production
containers, let’s look at how Docker fits into both a traditional and more modern pro‐
duction environment. If you are moving to Docker from a more traditional system,
you can pick and choose which pieces you will delegate to Docker, to a deployment
tool, or to a larger platform like Kubernetes or a cloud-based container system, or
perhaps you’ll even decide to leave it on your more traditional infrastructure. We
have successfully transitioned multiple systems from traditional deployments to con‐
tainerized systems, and there is a wide spectrum of good solutions. But understand‐
ing the required components and what makes up the modern and more traditional
variants will put you on the right path to making good choices.

In Figure 9-1 we describe several concerns that need to be considered in a production
system, the modern components that address them, and the systems they might
replace in a more traditional environment. We divide these up into concerns that are
addressed by Docker itself and those we ascribe to what we call the platform. The
platform is a system that usually wraps around a cluster of servers and presents a
common interface for Linux container management. This might be a unified system
like Kubernetes or Docker Swarm, or it might consist of separate components that
combine to form a platform. During the transition to a fully containerized system
with a scheduler, the platform might be more than one thing at a time. So let’s take a
look at each of these concerns and see how they fit together.

Figure 9-1. Docker’s role in a production system

In Figure 9-1, you can see that the application is sitting on the top of the stack. It
relies on all of the concerns below it in a production system. In some cases, your
environment may call these concerns out specifically, and in others, they may be

Docker’s Role in Production Environments | 221

addressed by something you don’t necessarily think of as filling that concern. But
your production applications will rely on most of these in one way or another, and
they will need to be addressed in your production environment. If you want to
transition from an existing environment to a Linux Container-based environment,
you’ll want to think about how you are providing these today and how they might be
addressed in the new system.

We’ll start with familiar territory and then go from the bottom to the top. That
familiar territory is your application. Your application is on the top! Everything else
is there to deliver functionality to your application. After all, it’s the application that
delivers business value, and everything else is there to make that possible, to facilitate
doing it at scale and reliably, and to standardize how it works across applications.
While the order of the items underneath your application is intentional, it’s not the
case that each layer provides functionality to the one above. They are all providing
that functionality to the application itself.

Because Linux containers and Docker can facilitate a lot of this functionality, contain‐
erizing your system will make many of these choices easier. As we get closer to
the platform part of the stack, we’ll have more to think about, but understanding
everything that lies below it will make that much more manageable.

Let’s start with application job control.

Job Control
Job control is a fundamental requirement for a modern deployment. This is part
of the blue block in the drawing of concerns. You basically can’t have a system
of any kind without job control. It’s something we have more traditionally left to
the operating system, or one of the Linux init systems (systemd, System V init,
runit, BSD rc scripts, etc.) more specifically. We tell the operating system about a
process we want to have running, and then we configure what the behavior should
be when restarting it, reloading its configuration, and managing the lifecycle of the
application.

When we want to start or stop the application, we rely on these systems to handle
that. We also rely on them in some cases to keep the application running more
robustly by, for example, restarting it when it fails. Different applications require
different job control. In a traditional Linux system, you might use cron to start
and stop jobs on a timed basis. systemd might be responsible for restarting your
application if it crashes. But, how the system does so is up to the specifics of that
system, and there are many different implementations to deal with, which is not
great.

If we’re moving to the shipping container model, we want to be able to treat all jobs
more or less the same way from the outside. We might need a little more metadata

222 | Chapter 9: The Path to Production Containers

about them to get them to do the right thing, but we don’t want to look inside
the container. The Docker engine provides a strong set of primitives around job
control—for example, docker container start, docker container stop, docker
container run, and docker container kill—which map to most of the critical
steps in the lifecycle of an application. All of the platforms that are built around
Docker containers, including Kubernetes, follow these lifecycle behaviors as well.
We’ve placed this at the bottom of the stack of concerns because it’s fundamentally
the lowest abstraction that Docker provides for your application. Even if we didn’t
use any other part of Docker, this would be a big win because it’s the same for all
applications and for all the platforms that run Docker containers.

Resource Limits
Sitting above job control are resource limits. In Linux systems, it is possible to
use Linux control groups (cgroups) directly to manage resource limits if we want
to, and some production environments have done exactly that. But more tradition‐
ally we have relied on things like ulimit and the different settings of application
runtime environments like the Java, Ruby, or Python VMs. In cloud systems, one
of the early wins was that we could spin up individual virtual servers to limit
the resources around a single business application. This was a nice innovation: no
more noisy neighbor applications. Compared to containers, however, that is a pretty
coarse-grained control.

With Linux containers, you can easily apply a wide set of resource controls to your
containers via cgroups. It’s up to you to decide whether or not you’ll restrict your
application’s access to things like memory, disk space, or I/O when running in pro‐
duction. However, we highly recommend that you take the time to do this once you’re
comfortable with the needs of your application. If you don’t, you won’t be able to take
advantage of one of the core features of containerized applications: running multiple
applications on the same machine, largely without interference. As we’ve discussed,
Docker gives this to you for free, and it’s a core part of what makes a container
valuable. You can review the specific arguments that Docker uses to manage these
resources in Chapter 5.

Networking
There is a lot of detail about Docker networking in Chapter 11, so we won’t touch
on it too heavily here, but your containerized system will need to manage connecting
your applications on the network. Docker provides a rich set of configuration options
for networking. You should decide on one mechanism to use in your production
environment and standardize that across containers. Trying to mix them is not an
easy path to success. If you are running a platform like Kubernetes, then some of
these decisions will be made for you. But the good part is that generally, the complex‐

Docker’s Role in Production Environments | 223

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://linuxconfig.org/limit-user-environment-with-ulimit-linux-command

ity of how the network is constructed is outside the concern of the application in the
container. Consider that Docker or your bigger platform will provide this to you, and
your application can work the same way inside the container on a local machine as it
would in production as long as you follow a few rules:

1. Rely on Docker or your platform to map your ports dynamically and tell your1.
application what they are mapped to. This is often provided to the application in
the form of an environment variable.

2. Avoid protocols like FTP or RTSP that map random ports for return traffic. This2.
is very difficult to support in a containerized platform.

3. Rely on the DNS provided to your container by Docker or your production3.
runtime.

If you follow these rules, then generally your application can be quite agnostic about
where it is deployed. Most production environments will provide you the ability to
define the actual configuration and apply them at runtime. Docker Compose, Docker
Swarm mode, Kubernetes, and cloud provider runtimes, like ECS, all do this for you.

Configuration
All applications need to somehow have access to their configuration. There are two
levels of configuration for an application. The lowest level is how it expects the
Linux environment around it to be configured. Containers handle this by providing
a Dockerfile that we can use to build the same environment repeatably. In a more
traditional system, we might have used a configuration management system like
Chef, Puppet, or Ansible to do this. You may still use those systems in a containerized
world, but you are usually not using them to provide dependencies to applications.
That job belongs to Docker and the Dockerfile. Even if the contents of the Dockerfile
are different for different applications, the mechanism and tooling are all the same—
and that’s a huge win.

The next level of configuration is the configuration directly applied to the applica‐
tion. We talked earlier about this in detail. Docker’s native mechanism is to use
environment variables, and this works across all modern platforms. Some systems,
notably, make it easier to rely on more traditional configuration files. Kubernetes, in
particular, makes it relatively easy to rely on files, but we recommend against it if you
truly want a portable, container-native application. We find that this can significantly
impact the observability of the application and discourage you from relying on
that crutch. There is more about the reasoning behind environment variables in
Chapter 13.

224 | Chapter 9: The Path to Production Containers

Packaging and Delivery
We’ll lump packaging and delivery together in our discussion here. This is an area
where a containerized system has major advantages over a traditional one. Here we
don’t have to stretch our imaginations to see the parallels to the shipping container
model: we have a consistent package, the container image, and a standardized way to
get them places—Docker’s registry and the image pull and image push facilities. In
more traditional systems, we would have built handcrafted deployment tooling, some
of which we hopefully standardized across our applications. But if we needed to have
a multilanguage environment, this would have been trouble. In your containerized
environment, you’ll need to consider how you handle packaging your applications
into images and how you store those images.

The easiest path for the latter is a paid subscription to a hosted, commercial image
registry. If that’s acceptable to your company, then you should consider it. Several
cloud providers, including Amazon, have image-hosting services that you can deploy
inside your environment, which is another good option. You can, of course, also build
and maintain an internal private registry, as we talked about in “Running a Private
Registry” on page 68. There is a broad ecosystem of providers available to you, and
you should survey your options.

Logging
Logging sits on the boundary of concerns that you can rely on Docker to provide
in your containerized environment and concerns that the platform needs to manage.
That’s because, as we detailed in Chapter 6, Docker can collect all the logs from
your containers and ship them somewhere. But by default, that somewhere is not
even off of the local system. That might be great for a limited-size environment, and
you could stop considering it there if local host storage is good enough for you.
But your platform will be responsible for handling logs from lots of applications on
lots of systems, so you’ll probably want to centralize these logs into a system that
significantly improves visibility and simplifies troubleshooting. When designing this,
refer back to Chapter 6 for more details on logging. Some systems, like Kubernetes,
are opinionated about the collecting of logs. But from the application’s standpoint,
you only need to make sure it sends them to stdout or stderr and let Docker or the
platform handle the rest.

Monitoring
The first part of the system not neatly tied up in a bow by Docker or Linux containers
in general is still improved by the standardization that Docker brings to the table. The
ability to health-check applications in a standardized way, as discussed in Chapter 6,
means that the process for monitoring application health is simplified. In many sys‐
tems, the platform itself handles monitoring, and the scheduler will dynamically shut

Docker’s Role in Production Environments | 225

down unhealthy containers and potentially move the workload to a different server
or restart the workload on the same system. In older systems, containers are often
monitored by existing systems like Nagios, Zabbix, or other traditional monitoring
systems. As we showed in Chapter 6, there are also newer options, including systems
like Prometheus. The Application Performance Monitoring (APM) vendors, like New
Relic, Datadog, or Honeycomb, all have first-class support for Linux containers and
the applications that they contain as well. So if your application is already monitored
by one of them, chances are that you don’t need to change much.

In older systems, it is generally engineers who are paged and respond to issues and
make decisions about how to handle failed applications. In dynamic systems, this
work generally moves into more automated processes that belong inside the platform.
In a transitional period, your system may have both while moving to an automated
system where engineers are paged only when the platform really can’t intervene. In
any case, a human will still need to be the final line of defense. But the containerized
system is much easier to handle when things do go wrong because the mechanisms
are standardized across applications.

Scheduling
How do you decide which services run on which servers? Containers are easy to
move around because Docker provides such good mechanisms for doing so. And that
opens up lots of possibilities for better resource usage, better reliability, self-healing
services, and dynamic scaling. But something has to make those decisions.

In older systems, this was often handled with dedicated servers per service. You often
configured a list of servers into the deployment scripts, and the same set of servers
would receive the new application on each deployment. One-service-per-server mod‐
els drove early virtualization in private data centers. Cloud systems encouraged the
one-service-per-server model by making it easy to slice and dice servers into com‐
modity virtual servers. Autoscaling in systems like AWS handled part of this dynamic
behavior. But if you move to containers, where many services may be running on the
same virtual server, scaling and dynamic behaviors at the server level don’t help you.

Distributed schedulers
Distributed schedulers leverage Docker to let you reason about your entire network
of servers almost as if it were a single computer. The idea here is that you define
some policies about how you want your application to run, and you let the system
figure out where to run it and how many instances of it to run. If something goes
wrong on a server or with the application, you let the scheduler start it up again
on any available healthy resource that meets the application’s requirements. This fits
more into Docker, Inc., founder Solomon Hykes’s original vision for Docker: a way to
run your application anywhere without worrying about how it gets there. Generally,

226 | Chapter 9: The Path to Production Containers

https://www.linkedin.com/in/solomonhykes

zero downtime deployment in this model is done in the blue-green style, where you
launch the new generation of an application alongside the old generation and then
slowly migrate work from the old stack to the new one.

Using the metaphor now made famous by Kelsey Hightower, the scheduler is the
system that plays Tetris for you, placing services on servers for the best fit, on the fly.

While it was not the first—that honor goes to platforms like Mesos and Cloud
Foundry—today Kubernetes, which came out of Google in 2014, is the undoubted
leader when it comes to container-based schedulers. The early releases of Kubernetes
took the lessons that Google learned from its own internal Borg system and brought
those to the open source community. It was built on Docker and Linux containers
from the beginning and supports not only Docker’s containerd but also a few of
the other container runtimes—all of which use Docker containers. Kubernetes is a
big system with a lot of moving pieces. There are many different commercial and
cloud-based distributions of Kubernetes. The Cloud Native Computing Foundation
provides certifications to ensure that each distribution meets certain standards within
the broader Kubernetes community. This space continues to change rapidly, and
while Kubernetes is really powerful, it’s an actively evolving target that can be hard
to stay on top of. If you are building a brand-new system from scratch, you will
probably want to strongly consider Kubernetes. In the absence of other experience,
if you are running on a cloud, your provider’s implementation will likely be the
easiest path to follow. While we encourage you to consider it for any complex system,
Kubernetes is not the only option.

Docker Swarm mode came out of Docker, Inc., in 2015 and is built as a Docker-
native system from the ground up. It might be an attractive option if you are looking
for a very simple orchestration tool that stays completely within the Docker platform
and is supported by a single vendor. Docker Swarm mode has not seen much adop‐
tion in the market, and since Docker is integrating Kubernetes so heavily into its
tooling, this is probably not as clear a path as it once was.

Docker’s Role in Production Environments | 227

https://martinfowler.com/bliki/BlueGreenDeployment.html
https://youtu.be/HlAXp0-M6SY?t=10m23s
https://kubernetes.io
https://kubernetes.io/blog/2015/04/borg-predecessor-to-kubernetes
https://landscape.cncf.io/members?category=certified-kubernetes-distribution,certified-kubernetes-hosted,certified-kubernetes-installer&grouping=category

Orchestration
When we talk about schedulers, we often talk about not just their ability to match
jobs to resources but their orchestration capabilities as well. By that, we mean the
ability to command and organize applications and deployments across a whole sys‐
tem. Your scheduler might move jobs for you on the fly or allow you to run tasks
on each server specifically. This was more commonly handled in older systems by
specific orchestration tools.

In most modern container systems, all the orchestration tasks, including scheduling,
are handled by the core cluster software, whether it be Kubernetes, Swarm, a cloud
provider’s bespoke container-management system, or something else.

Of all the features delivered by the platform, scheduling is undoubtedly the most
powerful. It also has the most impact on applications when moving them into con‐
tainers. Many traditional applications are not designed to have service discovery and
resource allocation change underneath them and require a significant number of
changes to work well in a truly dynamic environment. For this reason, your move
to a containerized system may not necessarily encompass moving to a scheduled
platform initially. Often the best path to production containers lies in containerizing
your applications while running inside the traditional system and then moving on to
a more dynamic, scheduled system. This might mean initially running your applica‐
tions as containers on the same servers they are currently deployed to, and then once
that is working well, you can introduce a scheduler to the mix.

Service Discovery
You can think of service discovery as the mechanism by which the application finds
all the other services and resources it needs on the network. Rare is the application
that has no dependency on anything else. Stateless, static websites are perhaps one
of the only systems that may not need any service discovery. Nearly everything
else needs to know something about the surrounding system and requires a way to
discover that information. Most of the time this involves more than one system, but
they are usually tightly coupled.

You might not think of them this way, but in traditional systems, load balancers
are one of the primary means for service discovery. Load balancers are used for
reliability and scaling, but they also keep track of all of the endpoints associated with
a particular service. This is sometimes manually configured and sometimes more
dynamic, but the way other systems find endpoints for a service is by using a known
address or name for the load balancer. That’s a form of service discovery, and load
balancers are a common way to do this in older systems. They often are used for
this in modern environments, too, even if they don’t look much like traditional load
balancers. Other means for service discovery in older systems are static database
configurations or application configuration files.

228 | Chapter 9: The Path to Production Containers

As you saw back in Figure 9-1, Docker does not address service discovery in your
environment, except when using Docker Swarm mode. For the vast majority of
systems, service discovery is left to the platform. This means it’s one of the first
things you’ll need to resolve in a more dynamic system. Containers are by nature
easily moved, and that can break traditional systems if they were built around more
statically deployed applications. Each platform handles this differently, and you’ll
want to understand what works best with your system.

Docker Swarm (classic Swarm) and Docker Swarm mode are not
the same things. We will discuss Docker Swarm mode in more
detail in Chapter 10.

Some examples of service discovery mechanisms you might be familiar with include
the following:

• Load balancers with well-known addresses•
• Round-robin DNS•
• DNS SRV records•
• Dynamic DNS systems•
• Multicast DNS•
• Overlay networks with well-known addresses•
• Gossip protocols•
• Apple’s Bonjour protocol•
• Apache ZooKeeper•
• HashiCorp’s Consul•
• etcd•

That’s a big list, and there are a lot more options than that. Some of these systems also
do a lot more than just service discovery, which can confuse the issue. An example
of service discovery that may be closer to hand while you’re trying to understand
this concept is the linking mechanism used by Docker Compose in Chapter 8. This
mechanism relies on a DNS system that the dockerd server supplies, which allows
one service in Docker Compose to reference another peer service’s name and return
the correct container IP address. Kubernetes, at its simplest, also has a system that
works like this, with injected environment variables. But these are the simplest forms
of discovery on modern systems.

Often you find that the interface to these systems relies on having well-known names
and/or ports for a service. You might call out to http://service-a.example.com to

Docker’s Role in Production Environments | 229

https://github.com/docker-archive/classicswarm
https://docs.docker.com/engine/swarm
https://en.wikipedia.org/wiki/Bonjour_(software)
https://zookeeper.apache.org
https://www.consul.io
https://etcd.io

1 Full URL: https://kubernetes.io/docs/concepts/services-networking/ingress
2 Full URL: https://doc.traefik.io/traefik/providers/kubernetes-ingress

reach service A on a well-known name. Or you might call out to http://services.exam‐
ple.com:service-a-port to reach the same service on a well-known name and port.
Modern environments often handle this differently. Usually, within a new system,
this process will be managed and fairly seamless. And it’s frequently easy for new
applications to call out of the platform to more traditional systems, but sometimes it’s
not as easy going the other way. Often, the best initial system (though not necessarily
longer term) is one in which you present dynamically configured load balancers that
are easily reachable by systems in your older environment. Kubernetes provides for
this in the form of Ingress routes and might be one path to consider if you are using
that platform.

Examples of this include the following:

• Kubernetes’s Ingress controllers,1 including Traefik2 or Contour, among others•
• Linkerd service mesh•
• Standalone Sidecar service discovery with Lyft’s Envoy proxy•
• Istio service mesh and Lyft’s Envoy•

If you are running a blended modern and traditional system, getting traffic into the
newer containerized system is generally the harder problem to solve and the one you
should think through first.

Production Wrap-Up
Many people will start by using simple Docker orchestration tools. However, as the
number of containers and frequency with which you deploy containers grows, the
appeal of distributed schedulers will quickly become apparent. Tools like Kubernetes
allow you to abstract individual servers and whole data centers into large pools of
resources in which to run container-based tasks.

There are undoubtedly many other worthy projects out there in the deployment
space. But these are the most commonly cited and have the most publicly available
information at the time of this writing. It’s a fast-evolving space, so it’s worth taking a
look around to see what new tools are being shipped.

In any case, you should start by getting a Linux container infrastructure up and
running and then look at outside tooling. Docker’s built-in tooling might be good
enough for you. We suggest using the lightest-weight tool for the job, but having
flexibility is a great place to be, and Linux containers are increasingly supported by
more and more powerful tooling.

230 | Chapter 9: The Path to Production Containers

https://kubernetes.io/docs/concepts/services-networking/ingress
https://doc.traefik.io/traefik/providers/kubernetes-ingress
https://oreil.ly/7ucPN
https://oreil.ly/RbuvY
https://projectcontour.io
https://linkerd.io
https://github.com/NinesStack/sidecar
https://github.com/envoyproxy/envoy
https://istio.io

Docker and the DevOps Pipeline
So once we have considered and implemented all of that functionality, we should
have our production environment in robust shape. But how do we know it works?
One of Docker’s key promises is the ability to test your application and all of its
dependencies in exactly the operating environment it would have in production. It
can’t guarantee that you have properly tested external dependencies like databases,
nor does it provide any magical test framework, but it can make sure that your
libraries and other code dependencies are all tested together. Changing underlying
dependencies is a critical place where things go wrong, even for organizations with
strong testing discipline. With Docker, you can build your image, run it on your
development box, and then test the same image in your continuous-integration
pipeline before shipping it to production servers.

Testing your containerized application is not much more complicated than testing
your application itself, as long as your test environment is designed to manage Linux
container workloads. Next, let’s cover one example of how you might do this.

Quick Overview
Let’s draw up an example production environment for a fictional company. We’ll try
to describe something similar to the environment at a lot of companies, with Docker
thrown into the mix for illustration purposes.

Our fictional company’s environment has a pool of production servers that run
Docker daemons and an assortment of applications deployed there. There are multi‐
ple build and test workers that are tied to the pipeline coordination server. We’ll
ignore deployment for now and talk about it once our fictional application has been
tested and is ready to ship.

Figure 9-2 shows what a common workflow looks like for testing containerized
applications, including the following steps:

1. A build is triggered by some outside means—for example, from a webhook call1.
from a source code repository or a manual trigger by a developer.

2. The build server kicks off a container image build.2.
3. The image is created on the local server.3.
4. The image is tagged with a build or version number or a commit hash.4.
5. A new container, based on the newly built image, is configured to run the5.

test suite.
6. The test suite is run against the container, and the result is captured by the build6.

server.
7. The build is marked as passing or failing.7.

Docker and the DevOps Pipeline | 231

8. Passed builds are shipped to an image registry or other storage mechanism.8.

You’ll notice that this isn’t too different from common patterns for testing applica‐
tions. At a minimum, you need to have a job that can kick off a test suite. The steps
we’re adding here are just to create a container image first and invoke the test suite
inside of the container.

Figure 9-2. Docker testing workflow chart

Let’s look at how this works for the application we’re deploying at our fictional
company. We just updated our application and pushed the latest code to our Git
repository. We have a post-commit hook that triggers a build on each commit, so
that job is kicked off on the build server, which is also running the dockerd daemon.
The job on the build server assigns the task to a test worker. The worker doesn’t have
dockerd running, but it has the docker command-line tool installed. So we run our
docker image build against the remote dockerd daemon, generating a new image
on the remote Docker server.

You should build your container image exactly as you’ll ship it
to production. If you need to make concessions for testing, they
should be externally provided switches, either via environment
variables or through command-line arguments. The whole idea is
to test the exact build that you’ll ship, so this is a critical point.

Once the image has been built, our test job will create and run a new container based
on our new production image. Our image is configured to run the application in
production, but we need to run a different command for testing. That’s OK! Docker

232 | Chapter 9: The Path to Production Containers

lets us do that simply by providing the command at the end of the docker container
run command. In production, our imaginary container would start supervisor,
which in turn would start up an nginx instance and some Ruby unicorn web server
instances behind that. But for testing, we don’t need that nginx, and we don’t need to
run our web application. Instead, our build job invokes the container like this:

$ docker container run -e ENVIRONMENT=testing -e API_KEY=12345 \
 -it awesome_app:version1 /opt/awesome_app/test.sh

We called docker container run, but we did a couple of extra things here, too.
We passed a couple of environment variables into the container: ENVIRONMENT and
API_KEY. These can either be new or overrides for the ones Docker already exports
for us. We also asked for a particular tag—in this case, version1. That will make
sure we build on top of the correct image even if another build is running simultane‐
ously. Then we override the command that our container was configured to start
in the Dockerfile’s CMD line. Instead, we call our test script, /opt/awesome_app/test.sh.
Although it is not necessary in this example, you should note that in some cases you
will need to override the Dockerfile’s ENTRYPOINT (--entrypoint) to run something
other than the default command for that container.

Always pass the precise Docker tag (usually a version or commit
hash) for your image into the test job. If you always use latest,
then you won’t be able to guarantee that another job has not moved
that tag just after your build was kicked off. If you use the most
precise tag possible, then you can be sure you’re testing the right
build of the application.

A critical point to make here is that docker container run will exit with the exit
status of the command that was invoked in the container. That means we can just
look at the exit status to see if our tests were successful. If your test suite is properly
designed, this is probably all you need. If you need to run multiple steps, or the exit
code can’t be relied on, one way to handle this is to capture all of the output of the
test run into a file and then sift through the output to look for status messages. Our
fictional build system does just that. We write out the output from the test suite, and
our test.sh echoes either Result: SUCCESS! or Result: FAILURE! on the last line to
signify if our tests passed. If you need to rely on this mechanism, be sure to look
for some output string that won’t appear by happenstance in your normal test suite
output. If we need to look for “success,” for example, we should limit it to looking at
the last line of the file, and maybe also ensure that the whole line matched the exact
output we would normally expect. In this case, we look at just the last line of the file
and find our success string, so we mark the build as passed.

There is one more container-specific step. We want to take our passed build and push
that image to our registry. The registry is the interchange point between builds and

Docker and the DevOps Pipeline | 233

deployments. It also allows us to share the image with our peers and other builds that
might be built on top of it. But for now, let’s just think of it as the place where we
put and tag successful builds. Our build script will now do a docker image tag to
give the image the right build tag(s), potentially including latest, and then perform
a docker image push to push the build to the registry.

That’s it! As you can see, there is not much to this compared with testing a normal
application. We took advantage of Docker’s client/server model to invoke the test on
a different server from our primary test server, and we wrapped up our tests into a
consolidated shell script to generate our output status. Overall it is very similar to
most other modern build system approaches.

The most critical takeaway is that our fictional company’s system makes sure that they
only ship applications whose test suites have passed on the same Linux distribution,
with the same libraries and the same build settings. That container might then also
be tested against any outside dependencies like databases or caches without having to
mock them. None of this guarantees success, but it gets us a lot closer to that than the
dependency roulette often experienced by production deployment systems that are
not built on container technology.

If you use Jenkins for continuous integration or are looking for
a good way to test scaling Docker, there are many plug-ins for
Docker, Mesos, and Kubernetes that are worth investigating. Many
hosted, commercial platforms now provide containerized CI envi‐
ronments as well, including CircleCI and GitHub Actions.

Outside Dependencies
But what about those external dependencies that we glossed over? Things like the
database, or Memcached or Redis instances that we need to run our tests against
our container? If our fictional company’s application needs a database to run, or a
Memcached or Redis instance, we need to solve that external dependency to have
a clean test environment. It would be nice to use the container model to support
that dependency. With some work, you can do this with tools like Docker Compose,
which we described in detail in Chapter 8. In Docker Compose, our build job could
express some dependencies between containers, and then Compose will connect
them seamlessly.

Being able to test your application in an environment that looks like where it will
live is a huge win. Compose makes this pretty easy to set up. You’ll still need to rely
on your own language’s testing framework for the tests, but the environment is really
easy to orchestrate.

234 | Chapter 9: The Path to Production Containers

https://plugins.jenkins.io
https://circleci.com
https://github.blog/2022-02-02-build-ci-cd-pipeline-github-actions-four-steps
https://github.com/docker/compose

Wrap-Up
Now that we’ve surveyed how a containerized application interacts with the outside
environment, and where the boundaries lie in each of those areas, we’re ready
to explore how Docker clusters can be built to support the global, always-on,
on-demand nature of many modern technology operations.

Wrap-Up | 235

CHAPTER 10

Containers at Scale

A major strength of containers is their ability to abstract away the underlying
hardware and operating system so that your application is not constrained to any
particular host or environment. It facilitates scaling a stateless application not just
horizontally within your data center but also across cloud providers without many
of the traditional barriers you would encounter. True to the shipping container
metaphor, a container on one cloud looks like a container on another.

Many organizations find turnkey cloud deployments of Linux containers appealing
because they can gain many of the immediate benefits of a scalable container-based
platform without needing to completely build something in-house. Even though this
is true, the barrier is actually pretty low for building your own platform in the cloud
or in your own data center, and we’ll cover some options for doing that shortly.

The major public cloud providers have all worked to support Linux containers
natively in their offerings. Some of the largest efforts to support Linux containers in
the public cloud include the following:

• Amazon Elastic Container Service•
• Google Cloud Run•
• Azure Container Apps•

Many of the same companies also have robust hosted Kubernetes offerings like these:

• Amazon Elastic Kubernetes Service•
• Google Kubernetes Engine•
• Azure Kubernetes Service•

237

https://aws.amazon.com/ecs
https://cloud.google.com/run
https://azure.microsoft.com/en-us/services/container-apps
https://aws.amazon.com/eks
https://cloud.google.com/kubernetes-engine
https://azure.microsoft.com/en-us/services/kubernetes-service

It’s trivial to install Docker on a Linux instance in one of the public clouds. But
getting Docker onto the server is usually just one step in creating a full production
environment. You could do this completely on your own, or you could use the
many tools available from the major cloud providers, Docker, Inc., and the broader
container community. Much of the tooling will work equally well in either a public
cloud or your own data center.

In the realm of schedulers and more complex tooling systems, we have plenty of
choices for systems that replicate much of the functionality you would get from a
public cloud provider. Even if you run in a public cloud, there are some compelling
reasons why you might choose to run your own Linux container environment rather
than use one of the off-the-shelf offerings.

In this chapter, we’ll cover some options for running Linux containers at scale, first
going through the much simpler Docker Swarm mode and then diving into some
more advanced tools like Kubernetes and some of the larger cloud offerings. All of
these examples should give you a view of how you can leverage Docker to provide an
incredibly flexible platform for your application workloads.

Docker Swarm Mode
After building the container runtime in the form of the Docker engine, the engineers
at Docker turned to the problems of orchestrating a fleet of individual Docker hosts
and effectively packing those hosts full of containers. The first tool that evolved
from this work was called Docker Swarm. As we explained early on, and rather
confusingly, there are now two things called “Swarm,” both of which come from
Docker, Inc.

The original standalone Docker Swarm is now commonly referred to as Docker
Swarm (classic), but there is a second “Swarm” implementation that is more specifi‐
cally called Swarm mode. Instead of being a separate product, this is built into the
Docker client. The built-in Swarm mode is a lot more capable than the original
Docker Swarm and is intended to replace it entirely. Swarm mode has the major
advantage of not requiring you to install anything separately. You already have this
clustering capability on any of your systems that are running Docker! This is the
Docker Swarm implementation that we’ll focus on here. Hopefully, now that you
know that there have been two different Docker Swarm implementations, you won’t
get confused by contradictory information on the internet.

The idea behind Docker Swarm mode is to present a single interface to the docker
client tool but have that interface be backed by a whole cluster rather than a sin‐
gle Docker daemon. Swarm is primarily aimed at managing clustered computing
resources via the Docker tools. It has grown a lot since its first release and now
contains several scheduler plug-ins with different strategies for assigning containers

238 | Chapter 10: Containers at Scale

https://github.com/docker-archive/classicswarm
https://github.com/docker-archive/classicswarm
https://docs.docker.com/engine/swarm

to hosts, and it comes with some basic service discovery built in. But it remains only
one building block of a more complex solution.

Swarm clusters can contain one or more managers that act as the central manage‐
ment hub for your Docker cluster. It is best to set up an odd number of managers.
Only one manager will act as the cluster leader at a time. As you add more nodes
to Swarm, you are merging them into a single, cohesive cluster that can be easily
controlled with the Docker tooling.

Let’s get a Swarm cluster up and running. To start, you will need three or more Linux
servers that can talk to each other over the network. Each of these servers should
be running recent releases of Docker Community Edition from the official Docker
software repositories.

Refer to Chapter 3 for details on installing the docker-ce packages
on Linux.

For this example, we will use three Ubuntu servers running docker-ce. The very
first thing you’ll need to do is ssh to the server that you want to use as the Swarm
manager, and then run the swarm init command using the IP address for your
Swarm manager:

$ ssh 172.17.4.1
…

ubuntu@172.17.4.1:$ sudo docker swarm init --advertise-addr 172.17.4.1

Swarm initialized: current node (hypysglii5syybd2zew6ovuwq) is now a manager.

To add a worker to this swarm, run the following command:

 docker swarm join --token SWMTKN-1-14……a4o55z01zq 172.17.4.1:2377

To add a manager to this swarm, run 'docker swarm join-token manager'
and follow the instructions.

There are steps that you must take to secure a Docker Swarm
mode cluster, which we are not covering here. Before you run
Docker Swarm mode on any long-lived systems, make sure that
you understand the options and have taken proper steps to secure
the environment.

Docker Swarm Mode | 239

In many of this chapter’s examples, you must use the correct IP
addresses for your manager and worker nodes.

This step will initialize the Swarm manager and give you the token that is required
for nodes that want to join the cluster. Make note of this token somewhere safe, like a
password manager. Don’t worry too much if you lose this token; you can always get it
again by running the following command on the manager:

sudo docker swarm join-token --quiet worker

You can inspect your progress so far by running your local docker client pointed at
the new manager node’s IP address:

$ docker -H 172.17.4.1 system info

…
Swarm: active
 NodeID: l9gfcj7xwii5deveu3raf4782
 Is Manager: true
 ClusterID: mvdaf2xsqwjwrb94kgtn2mzsm
 Managers: 1
 Nodes: 1
 Default Address Pool: 10.0.0.0/8
 SubnetSize: 24
 Data Path Port: 4789
 Orchestration:
 Task History Retention Limit: 5
 Raft:
 Snapshot Interval: 10000
 Number of Old Snapshots to Retain: 0
 Heartbeat Tick: 1
 Election Tick: 10
 Dispatcher:
 Heartbeat Period: 5 seconds
 CA Configuration:
 Expiry Duration: 3 months
 Force Rotate: 0
 Autolock Managers: false
 Root Rotation In Progress: false
 Node Address: 172.17.4.1
 Manager Addresses:
 172.17.4.1:2377
…

240 | Chapter 10: Containers at Scale

You can also list all of the nodes that are currently in the cluster with the following
command:

$ docker -H 172.17.4.1 node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS ENGINE VERSION
l9…82 * ip-172-17-4-1 Ready Active Leader 20.10.7

At this point, you can add the two additional servers as workers to the Swarm cluster.
This is what you’d do in production if you were going to scale up, and Swarm makes
this pretty easy:

$ ssh 172.17.4.2 \
 "sudo docker swarm join --token SWMTKN-1-14……a4o55z01zq 172.17.4.1:2377"

This node joined a swarm as a worker.

$ ssh 172.17.4.3 \
 "sudo docker swarm join --token SWMTKN-1-14……a4o55z01zq 172.17.4.1:2377"

This node joined a swarm as a worker.

Adding additional managers is important and can be done as easily
as adding the workers. You just need to pass in the manager join
token instead of the worker join token. You can get this token by
running docker swarm join-token manager on any of the active
nodes.

If you rerun docker node ls, you should now see that you have a total of three nodes
in your cluster, and only one of them is marked as the Leader:

$ docker -H 172.17.4.1 node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS ENGINE VERSION
l9…82 * ip-172-17-4-1 Ready Active Leader 20.10.7
3d…7b ip-172-17-4-2 Ready Active 20.10.7
ip…qe ip-172-17-4-3 Ready Active 20.10.7

This is all that’s required to get a Swarm cluster up and running in Swarm mode
(Figure 10-1)!

Docker Swarm Mode | 241

Figure 10-1. Simple Docker Swarm mode cluster

The next thing you should do is create a network for your services to use. There is a
default network called ingress in Swarm, but it is very easy to create additional ones
for better isolation:

$ docker -H 172.17.4.1 network create --driver=overlay default-net

ckwh5ph4ksthvx6843ytrl5ik

$ docker -H 172.17.4.1 network ls

NETWORK ID NAME DRIVER SCOPE
494e1a1bf8f3 bridge bridge local
xqgshg0nurzu default-net overlay swarm
2e7d2d7aaf0f docker_gwbridge bridge local
df0376841891 host host local
n8kjd6oa44fr ingress overlay swarm
b4720ea133d6 none null local

Up to this point, we’ve just been getting the underlying pieces running, and so far
we haven’t deployed any real business logic. So let’s launch your first service into the
cluster. You can do that with a command like this:

$ docker -H 172.17.4.1 service create --detach=true --name quantum \
 --replicas 2 --publish published=80,target=8080 --network default-net \
 spkane/quantum-game:latest

tiwtsbf270mh83032kuhwv07c

The service we’re launching with starts containers that host the Quantum game. This
is a browser-based puzzle game that uses real quantum mechanics. We hope that this
is a more interesting example than another Hello World!

242 | Chapter 10: Containers at Scale

https://github.com/stared/quantum-game

Although we’re using the latest tag in many of these examples,
you shouldn’t ever use this tag in production. It is convenient for
this book since we can easily push out updates to the code, but this
tag floats and cannot be pinned to a specific release over a long
period. That means if you use latest, then your deployments are
not repeatable! It can also easily lead to a situation where you don’t
have the same version of an application running on all the servers.

Let’s see where those containers ended up by running docker service ps against the
service name you created:

$ docker -H 172.17.4.1 service ps quantum

ID NAME IMAGE NODE DESIRED… CURRENT… ERROR PORTS
rk…13 quantum.1 spkane/qua… ip-172-17-4-1 Running Running…
lz…t3 quantum.2 spkane/qua… ip-172-17-4-2 Running Running…

Swarm mode uses a routing mesh between the nodes to automatically route traffic
to a container that can serve the request. When you specify a published port in
the docker service create command, the mesh makes it possible to hit this port
on any of your three nodes and will route you to the web application. Notice that
we said any of the three nodes even though you only have two instances running.
Traditionally, you would have also had to set up a separate reverse proxy layer to
accomplish this, but its batteries are included with Swarm mode.

To prove it, you can test the service now by pointing a web browser to the IP address
of any of your nodes:

http://172.17.4.1/

If everything is working as expected, you should see the first puzzle board for the
Quantum Game:

To get a list of all the services, we can use +service ls+:

$ docker -H 172.17.4.1 service ls

ID NAME MODE REPLICAS IMAGE PORTS
iu…9f quantum replicated 2/2 spkane/quantum-game:latest *:80->8080/tcp

This gives us a summary view of the most commonly needed information, but some‐
times that’s not enough. Docker maintains a lot of other metadata about services,
just like it does for containers. We can get detailed information about a service with
service inspect:

$ docker -H 172.17.4.1 service inspect --pretty quantum

ID: iuoh6oxrec9fk67ybwuikutqa
Name: quantum
Service Mode: Replicated
 Replicas: 2

Docker Swarm Mode | 243

https://quantumgame.io
https://quantumgame.io

Placement:
UpdateConfig:
 Parallelism: 1
 On failure: pause
 Monitoring Period: 5s
 Max failure ratio: 0
 Update order: stop-first
RollbackConfig:
 Parallelism: 1
 On failure: pause
 Monitoring Period: 5s
 Max failure ratio: 0
 Rollback order: stop-first
ContainerSpec:
 Image: spkane/quantum-game:latest@sha256:1f57…4a8c
 Init: false
Resources:
Networks: default-net
Endpoint Mode: vip
Ports:
 PublishedPort = 80
 Protocol = tcp
 TargetPort = 8080
 PublishMode = ingress

There is a lot of info here, so let’s point out some of the more important things. First,
we can see that this is a replicated service with two replicas, just like we saw in the
service ls command. We can also see that Docker is health-checking the service
at 5-second intervals. Running an update to the service will use the stop-first
method, which means it will take our service first to N−1 and then spin up a new
instance to take us back to N. You might want to always run in N+1 mode so that
you are never down a node during updates in production. You can change that with
the --update-order=start-first option to the service update command. It will
exhibit the same behavior in a rollback scenario, and we can likewise change that with
--rollback-order=start-first.

In a real-world scenario, we not only need to be able to launch our service, but we
also need to be able to scale it up and down. It would be a shame if we had to rede‐
ploy it to do that, not to mention it could introduce any number of additional issues.
Luckily, Swarm mode makes it easy to scale our services with a single command. To
double the number of instances you have running from two to four, you can simply
run this:

$ docker -H 172.17.4.1 service scale --detach=false quantum=4

quantum scaled to 4
overall progress: 4 out of 4 tasks
1/4: running [==>]
2/4: running [==>]
3/4: running [==>]

244 | Chapter 10: Containers at Scale

4/4: running [==>]
verify: Service converged

We used --detach=false in the previous command so that it was
easier to see what was happening.

We can now use service ps to show us that Swarm did what we asked. This is the
same command we ran earlier, but now we should have more copies running! But
wait, didn’t we ask for more copies than we have nodes?

$ docker -H 172.17.4.1 service ps quantum

ID NAME IMAGE NODE DESIRED… CURRENT… ERROR PORTS
rk…13 quantum.1 spkane/quan… ip-172-17-4-1 Running Running…
lz…t3 quantum.2 spkane/quan… ip-172-17-4-2 Running Running…
mh…g8 quantum.3 spkane/quan… ip-172-17-4-3 Running Running…
cn…xb quantum.4 spkane/quan… ip-172-17-4-1 Running Running…

You’ll notice that you have two services running on the same host. Did you expect
that? This may not be ideal for host resiliency, but by default Swarm will prioritize
ensuring that you have the number of instances that you requested over spreading
individual containers across hosts when possible. If you don’t have enough nodes,
you will get multiple copies on each node. In a real-world scenario, you need to
think carefully about placement and scaling. You might not be able to get away with
running multiple copies on the same host when you lose a whole node. Would your
application still serve users at that reduced scale?

When you need to deploy a new release of your software, you will want to use the
docker service update command. There are a lot of options for this command, but
here’s one example:

$ docker -H 172.17.4.1 service update --update-delay 10s \
 --update-failure-action rollback --update-monitor 5s \
 --update-order start-first --update-parallelism 1 \
 --detach=false \
 --image spkane/quantum-game:latest-plus quantum

quantum
overall progress: 4 out of 4 tasks
1/4: running [==>]
2/4: running [==>]
3/4: running [==>]
4/4: running [==>]
verify: Service converged

Docker Swarm Mode | 245

Running this command will cause Swarm to update your service one container at a
time, pausing in between each update. Once this is done, you should be able to open
up the service’s URL in a new private or incognito browsing session (to sidestep the
browser’s local cache) and see that the game background is now green instead of blue.

Great, you have now successfully applied an update, but what if something were to
go wrong? We might need to deploy a previous release to get back to working order.
You could now roll back to the previous version, with the correct blue background,
by using the service rollback command, which we discussed in passing a little bit
earlier:

$ docker -H 172.17.4.1 service rollback quantum

quantum
rollback: manually requested rollback
overall progress: rolling back update: 4 out of 4 tasks
1/4: running [>]
2/4: running [>]
3/4: running [>]
4/4: running [>]
verify: Service converged

That’s about as nice a rollback mechanism as you could ask for a stateless service.
You don’t have to keep track of the previous version; Docker does that for you. All
you need to do is tell it to roll back and it pulls the previous metadata out of its
internal storage and performs the rollback. Just like during deployment, Docker can
health-check your containers to make sure the rollback is working correctly.

This rollback mechanism will always go back to the last deployed
version, so if you run it multiple times in a row, it will just flip
between two versions.

Building on docker service is a command called docker stack, which enables you
to deploy a specially designed docker-compose.yaml file to a Docker Swarm mode
or Kubernetes cluster. If you go back and check out the Git repo that we used in
Chapter 8, we can deploy a modified version of that container stack into our current
Swarm mode cluster:

$ git clone https://github.com/spkane/rocketchat-hubot-demo.git \
 --config core.autocrlf=input

Inside that repository is a directory called stack that contains a modified version of
the docker-compose.yaml file that we used earlier:

$ cd rocketchat-hubot-demo/stack

246 | Chapter 10: Containers at Scale

If you wanted to spin up this setup in the Swarm mode cluster, you could run the
following command:

$ docker -H 172.17.4.1 stack deploy --compose-file docker-compose-stack.yaml \
 rocketchat

Creating network rocketchat_default
Creating service rocketchat_hubot
Creating service rocketchat_mongo
Creating service rocketchat_rocketchat
Creating service rocketchat_zmachine

Now you can list what stacks are in the cluster and see what services were added by
the stack:

$ docker -H 172.17.4.1 stack ls

NAME SERVICES ORCHESTRATOR
rocketchat 4 Swarm

$ docker -H 172.17.4.1 service ls

ID NAME … … IMAGE PORTS
iu…9f quantum … 2/2 spkane/quantum-game:latest *:80->8080/tcp
nh…jd …_hubot … 1/1 rocketchat/hubot-rocketchat:latest *:3001->8080/tcp
gw…qv …_mongo … 1/1 spkane/mongo:4.4
m3…vd …_rocketchat … 1/1 rocketchat/rocket.chat:5.0.4 *:3000->3000/tcp
lb…91 …_zmachine … 1/1 spkane/zmachine-api:latest

This stack is for basic demonstration purposes and has not been
well tested for this use case; however, it should give you an idea of
how you could assemble something similar.
You may notice that it takes a while for all the containers to come
up and that Hubot will continue to restart. This is expected since
Rocket.Chat has not been configured yet. The Rocket.Chat setup is
covered in Chapter 8.

At this point, you could point your web browser at port 3000 on one of the Swarm
nodes (e.g., http://172.17.4.1:3000/ in these examples), and you should see the initial
setup page for Rocket.Chat.

You can see all the containers that are managed by the stack, with docker stack ps:

$ docker -H 172.17.4.1 stack ps -f "desired-state=running" rocketchat

ID NAME IMAGE NODE … CURRENT STATE …
b5…1h …_hubot.1 rocketchat/hubot-rocket… …-1 … Running 14 seconds ago
eq…88 …_mongo.1 spkane/mongo:4.4 …-2 … Running 11 minutes ago
5x…8u …_rocketchat.1 rocketchat/rocket.chat:… …-3 … Running 11 minutes ago
r5…x4 …_zmachine.1 spkane/zmachine-api:lat… …-4 … Running 12 minutes ago

Docker Swarm Mode | 247

When you are done, you can go ahead and tear down the stack like this:

$ docker -H 172.17.4.1 stack rm rocketchat

Removing service rocketchat_hubot
Removing service rocketchat_mongo
Removing service rocketchat_rocketchat
Removing service rocketchat_zmachine
Removing network rocketchat_default

If you try to immediately spin everything back up, you might get
some unexpected errors. Just waiting a few moments should fix
things while the cluster finishes tearing down the old network for
the stack, etc.

So, what happens if one of your servers is experiencing an issue and you need to take
it offline? In this case, you can easily drain all the services off of a single node by
using the --availability option to the docker node update command.

Let’s take a look at the nodes that you have in the cluster again:

 docker -H 172.17.4.1 node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS ENGINE VERSION
l9…82 * ip-172-17-4-1 Ready Active Leader 20.10.7
3d…7b ip-172-17-4-2 Ready Active 20.10.7
ip…qe ip-172-17-4-3 Ready Active 20.10.7

Let’s also check where our containers are currently running:

$ docker -H 172.17.4.1 service ps -f "desired-state=running" quantum

ID NAME IMAGE NODE DESIRED… CURRENT… ERROR PORTS
sc…1h quantum.1 spkane/qua… ip-172-17-4-1 Running Running…
ax…om quantum.2 spkane/qua… ip-172-17-4-2 Running Running…
p4…8h quantum.3 spkane/qua… ip-172-17-4-3 Running Running…
g8…tw quantum.4 spkane/qua… ip-172-17-4-1 Running Running…

In the previous command, we used a filter so that the output
showed only the currently running processes. By default, Docker
will also show you the previous containers that were running in a
tree format so that you can see things like updates and rollbacks in
the output.

248 | Chapter 10: Containers at Scale

If you have determined that the server at 172.17.4.3 needs downtime, you could
drain the tasks of that node and move them to another host by modifying the
availability state to drain in Swarm:

$ docker -H 172.17.4.1 node update --availability drain ip-172-17-4-3

ip-172-17-4-3

If we inspect the node, we can see that the availability is now set to drain:

$ docker -H 172.17.4.1 node inspect --pretty ip-172-17-4-3

ID: ipohyw73hvf70td9licnls9qe
Hostname: ip-172-17-4-3
Joined at: 2022-09-04 16:59:52.922451346 +0000 utc
Status:
 State: Ready
 Availability: Drain
 Address: 172.17.4.3
Platform:
 Operating System: linux
 Architecture: x86_64
Resources:
 CPUs: 2
 Memory: 7.795GiB
Plugins:
 Log: awslogs, fluentd, gcplogs, gelf, journald, json-file, local,
 logentries, splunk, syslog
 Network: bridge, host, ipvlan, macvlan, null, overlay
 Volume: local
Engine Version: 20.10.7
TLS Info:
 TrustRoot:
…

 Issuer Subject: …
 Issuer Public Key: …

You might be wondering what effect that has on the service. We told one of the nodes
to stop running copies of the service, and they either have to go away or migrate
somewhere else. What did it do? We can look at the details of our service again and
see that all the running containers on that host have been moved to a different node:

$ docker -H 172.17.4.1 service ps -f "desired-state=running" quantum

ID NAME IMAGE NODE DESIRED… CURRENT… ERROR PORTS
sc…1h quantum.1 spkane/qua… ip-172-17-4-1 Running Running…
ax…om quantum.2 spkane/qua… ip-172-17-4-2 Running Running…
p4…8h quantum.3 spkane/qua… ip-172-17-4-2 Running Running…
g8…tw quantum.4 spkane/qua… ip-172-17-4-1 Running Running…

Docker Swarm Mode | 249

At this point, it is safe to bring down the node and do whatever work is required
to make it healthy again. When you are ready to add the node back into the Swarm
cluster, you can do so by running the following:

$ docker -H 172.17.4.1 node update --availability active ip-172-17-4-3

ip-172-17-4-3

We’ll spare you from reinspecting the node at the moment, but you can always rerun
the node inspect command if you want to see what this looks like.

When you add a node back to the cluster, containers will not auto‐
matically balance! However, a new deployment or update should
result in the containers being evenly spread across the nodes.

Once you are done, you can remove your service and network with the following
commands:

$ docker -H 172.17.4.1 service rm quantum

quantum

$ docker -H 172.17.4.1 network rm default-net

default-net

And then verify that they are both indeed completely gone:

$ docker -H 172.17.4.1 service ps quantum

no such service: quantum

$ docker -H 172.17.4.1 network ls

NETWORK ID NAME DRIVER SCOPE
494e1a1bf8f3 bridge bridge local
2e7d2d7aaf0f docker_gwbridge bridge local
df0376841891 host host local
n8kjd6oa44fr ingress overlay swarm
b4720ea133d6 none null local

That’s all for now! At this point, you can safely tear down all of the servers that were a
part of your Swarm cluster if you no longer need them.

That was kind of a whirlwind tour, but it covers the basics of using Swarm mode in
Docker Engine and should help get you started building your own Docker clusters
wherever you might decide to use them.

250 | Chapter 10: Containers at Scale

Kubernetes
Now let’s take some time to look at Kubernetes. Since its release to the public during
DockerCon 2014, Kubernetes has grown rapidly and is now probably the most widely
adopted of the container platforms. It is not the oldest or most mature product today
—that distinction goes to Mesos, which first launched in 2009 before containers were
in widespread use—but Kubernetes was purpose-built for containerized workloads,
has a great mix of functionality that is ever evolving, and also enjoys a very strong
community that includes many early Docker and Linux container adopters. This mix
has helped significantly increase its popularity over the years. At DockerCon EU
2017, Docker, Inc., announced that Kubernetes support will be coming to the Docker
Engine tooling itself. Docker Desktop is capable of spinning up a single-node Kuber‐
netes cluster, and the client can deploy container stacks for development purposes.
This provides a nice bridge for developers who use Docker locally but deploy to
Kubernetes.

Like Linux itself, Kubernetes is available in several distributions, both free and com‐
mercial. There is a wide variety of distributions that are available and supported to
varying degrees. Kubernetes widespread adoption means that it now has some pretty
nice tooling for local development installations.

The Kubernetes coverage in this book is intended to provide some
basic guidance on how you can integrate your Linux container
workflow with Kubernetes, but we do not go into a lot of detail
about the Kubernetes ecosystem here. We highly recommend read‐
ing Kubernetes: Up & Running, by Brendan Burns et al. (O’Reilly),
or any of the other great materials out there to familiarize yourself
with all the relevant concepts and terminology.

Minikube
Minikube was one of the original tools for managing a local Kubernetes installation
and is the first one that we will be focusing on here. Most of the concepts that you’ll
learn while working with Minikube can be applied to any Kubernetes implementa‐
tion, including the options that we’ll discuss after Minikube, so it’s a great place
to start.

Kubernetes | 251

https://events.docker.com/events/dockercon
https://www.oreilly.com/library/view/kubernetes-up-and/9781098110192

There are many other options for running a local Kubernetes clus‐
ter. We are starting with minikube because the container or VM
that it spins up is a pretty standard single-node Kubernetes install.
In addition to the tools that we will be discussing in this section, we
highly recommend exploring k3s, k3d, k0s, and microk8s as well.

What Is Minikube?
Minikube is a whole distribution of Kubernetes for a single instance. It manages a
container or VM on your computer that presents a working Kubernetes installation
and allows you to use all the same tooling that you would use in a production
system. In scope, it’s a little bit like Docker Compose: it will let you stand up a whole
stack locally. It goes one step further than Compose, though, in that it has all the
production APIs. As a result, if you run Kubernetes in production, you can have an
environment on your desktop that is reasonably close in function, if not in scale, to
what you are running in production.

Minikube is fairly unique in that all of the distribution is controlled from a single
binary you download and run locally. It will automatically detect which containeriza‐
tion or VM manager you have locally and will set up and run a container or VM with
all of the necessary Kubernetes services in it. That means getting started with it is
pretty simple.

So let’s install it!

Installing Minikube
Most of the installation is the same across all platforms because once you have the
tools installed, they will be your gateway to the VM running your Kubernetes instal‐
lation. To get started, just skip to the section that applies to your operating system.
Once you have the tool up and running, you can follow the shared documentation.

We need two tools to use Minikube effectively: minikube and kubectl. For our
simple installation, we’re going to leverage the fact that both of these commands are
static binaries with no outside dependencies, which makes them easy to install.

There are several other ways to install Minikube. We’re going to
show you what we think is the simplest path on each platform. If
you have strong preferences about how to install these applications,
feel free to use your preferred approach. On Windows, for example,
you might prefer to use the Chocolatey package manager, or the
Snap package system on Linux.

252 | Chapter 10: Containers at Scale

https://k3s.io
https://k3d.io
https://k0sproject.io
https://microk8s.io
https://chocolatey.org
https://snapcraft.io

macOS. Just as in Chapter 3, you will need to have Homebrew installed on your
system. If you don’t, go back to Chapter 3 and make sure you have it set up. Once you
do, it’s trivial to install the minikube client:

$ brew install minikube

This will cause Homebrew to download and install Minikube. It will look something
like this depending, on your configuration:

==> Downloading https://ghcr.io/v2/homebrew/core/kubernetes-cli/…/1.25.0
Already downloaded: …/Homebrew/downloads/…kubernetes-cli…manifest.json
==> Downloading https://ghcr.io/v2/homebrew/core/kubernetes-cli/blobs/sha256…
Already downloaded: …/Homebrew/downloads/…kubernetes-cli--1.25…bottle.tar.gz
==> Downloading https://ghcr.io/v2/homebrew/core/minikube/manifests/1.26.1
Already downloaded: …/Homebrew/downloads/…minikube-1.26.1.…_manifest.json
==> Downloading https://ghcr.io/v2/homebrew/core/minikube/blobs/sha256:…
Already downloaded: …/Homebrew/downloads/…minikube--1.26.1…bottle.tar.gz
==> Installing dependencies for minikube: kubernetes-cli
==> Installing minikube dependency: kubernetes-cli
==> Pouring kubernetes-cli--1.25.0.arm64_monterey.bottle.tar.gz
 /opt/homebrew/Cellar/kubernetes-cli/1.25.0: 228 files, 52.8MB

==> Installing minikube
==> Pouring minikube--1.26.1.arm64_monterey.bottle.tar.gz
==> Caveats
Bash completion has been installed to:
 /opt/homebrew/etc/bash_completion.d
==> Summary
 /opt/homebrew/Cellar/minikube/1.26.1: 9 files, 70.6MB

==> Running `brew cleanup minikube`…
Disable this behavior by setting HOMEBREW_NO_INSTALL_CLEANUP.
Hide these hints with HOMEBREW_NO_ENV_HINTS (see `man brew`).
==> Caveats
==> minikube
Bash completion has been installed to:
 /opt/homebrew/etc/bash_completion.d

That’s it! Let’s test to make sure it’s in your path:

$ which minikube
/opt/homebrew/bin/minikube

Homebrew on arm64 systems install into /opt/homebrew/bin
instead of /usr/local/bin.

If you don’t get a response, you will need to make sure you have /usr/local/bin
and /opt/homebrew/bin in your PATH environment variable. Assuming that passes, you
now have the minikube tool installed.

Kubernetes | 253

kubectl should have been automatically installed since it is a dependency of mini
kube, but you can also do it explicitly with brew as well. Generally, the version of
kubectl in Homebrew will match the current release of minikube, so using brew
install should help prevent mismatches:

$ brew install kubernetes-cli

We’ll test that the same way we tested minikube:

$ which kubectl
/opt/homebrew/bin/kubectl

We’re good to go!

Windows. As with installing Docker Desktop on Windows, you may want to install
Hyper-V or another supported virtualization platform to run a Kubernetes VM. To
install minikube, you simply download the binary and put it in a place you have in
your PATH so that you can execute it on the command line. You can download the
most recent release of minikube from GitHub. You’ll want to rename the Windows
executable that you download to minikube.exe; otherwise, you’ll be doing a lot more
typing than you probably want!

You can find more details about the Windows install process and
that binary executable from the Minikube install documentaton.

You then need to get the latest Kubernetes CLI tool, kubectl, to interact with your
distribution. Unfortunately, there is not a /latest path for downloading that. So, to
make sure you have the latest version, you need to get the latest version from the
website and then plug it into a URL, like this:

https://storage.googleapis.com/kubernetes-release/release/<VERSION>/bin/windows/
amd64/kubectl.exe.

Once you’ve downloaded that, you again need to make sure it’s accessible from your
PATH to make the rest of our exploration easier.

Linux. On Linux, you will want to have Docker installed and should consider
installing either KVM (Linux’s Kernel-based Virtual Machine) or VirtualBox so that
minikube can create and manage a Kubernetes VM for you. Because minikube is just
a single binary, once you have it installed, there is no need to install any additional
packages. And, because minikube is a statically linked binary, it should pretty much
work on any distribution you want to run it on. Although we could do all the
installation in a one-liner, we are going to break it up into a few steps to make it easier

254 | Chapter 10: Containers at Scale

https://github.com/kubernetes/minikube/releases/latest
https://minikube.sigs.k8s.io/docs/start
https://storage.googleapis.com/kubernetes-release/release/stable.txt

to understand and troubleshoot. Note that at the time of this writing, the binary is
hosted on googleapis, which usually maintains very stable URLs. So, here we go:

Download the file, save as 'minikube'
$ curl -Lo minikube \
 https://storage.googleapis.com/minikube/releases/latest/minikube-linux-amd64

Make it executable
$ chmod +x minikube

Move it to /usr/local/bin
$ sudo mv minikube /usr/local/bin/

You’ll need to make sure that /usr/local/bin is in your path. Now that we have
minikube, we also need to fetch kubectl, which we can do like this:

Get the latest version number
$ KUBE_VERSION=$(curl -s \
 https://storage.googleapis.com/kubernetes-release/release/stable.txt)

Fetch the executable
$ curl -LO \
 https://storage.googleapis.com/kubernetes-release/\
release/$(KUBE_VERSION)/bin/linux/amd64/kubectl

Make it executable
$ chmod +x kubectl

Move it to /usr/local/bin
$ sudo mv kubectl /usr/local/bin/

One of the URLs in the example has been continued on the follow‐
ing line so that it fits in the margins. You may find that you need to
reassemble the URL and remove the backslashes for the command
to work properly in your environment.

That’s it for installation—we’re ready to go.

Running Kubernetes

Now that we have the minikube tool, we can use it to bootstrap our Kubernetes
cluster. This is normally pretty straightforward. You usually don’t need to do any
configuration beforehand. In this example, you will see that minikube decided to use
the docker driver, although there are others that could be selected.

Kubernetes | 255

To start minikube, go ahead and run the following:

$ minikube start

 minikube v1.26.1 on Darwin 12.5.1 (arm64)
 Automatically selected the docker driver. Other choices: parallels, ssh, …
 Using Docker Desktop driver with root privileges
 Starting control plane node minikube in cluster minikube
 Pulling base image …
 Downloading Kubernetes v1.24.3 preload …

 > preloaded-images-k8s-v18-v1…: 342.82 MiB / 342.82 MiB 100.00% 28.22 M
 > gcr.io/k8s-minikube/kicbase: 348.00 MiB / 348.00 MiB 100.00% 18.13 MiB
 > gcr.io/k8s-minikube/kicbase: 0 B [________________________] ?% ? p/s 16s
 Creating docker container (CPUs=2, Memory=4000MB) …
 Preparing Kubernetes v1.24.3 on Docker 20.10.17 …

 ▪ Generating certificates and keys …
 ▪ Booting up control plane …
 ▪ Configuring RBAC rules …
 Verifying Kubernetes components…

 ▪ Using image gcr.io/k8s-minikube/storage-provisioner:v5
 Enabled addons: storage-provisioner, default-storageclass
 Done! kubectl is now configured to use "minikube" cluster and

 "default" namespace by default

So what did we just do? Minikube packs a lot into that one command. In this case,
we launched a single Linux container that is providing us a functioning Kubernetes
installation on our local system. If we had used one of the virtualization drivers with
minikube, then we would have created a complete VM running Kubernetes instead
on a single container.

It then runs all of the necessary components of Kubernetes inside Linux containers
on the host. You can easily explore the minikube container or VM to see what you
got:

$ minikube ssh

docker@minikube:~$

On your Kubernetes cluster, you probably won’t be using SSH to get into the com‐
mand line that often. But we want to see what’s installed and get a handle on the
fact that when we run minikube, we’re controlling an environment that is running
many processes. Let’s take a look at what is running on the Docker instance on our
Kubernetes cluster:

docker@minikube:~$ docker container ls

…ID IMAGE COMMAND … NAMES
48…cf ba…57 "/storage-provisioner" … k8s_storage-provisioner_storage-…
4e…8d ed…e8 "/coredns -conf /etc…" … k8s_coredns_coredns-6d4b75cb6d-…
1d…3d …pause:3.6 "/pause" … k8s_POD_coredns-6d4b75cb6d-…
82…d3 7a…dc "/usr/local/bin/kube…" … k8s_kube-proxy_kube-proxy-…

256 | Chapter 10: Containers at Scale

27…10 …pause:3.6 "/pause" … k8s_POD_kube-proxy-zb6w2_kube-…
15…ce …pause:3.6 "/pause" … k8s_POD_storage-provisioner_kube-…
ff…3d f9…55 "kube-controller-man…" … k8s_kube-controller-manager_kube-…
33…c5 …pause:3.6 "/pause" … k8s_POD_kube-controller-manager-…
30…97 a9…df "etcd --advertise-cl…" … k8s_etcd_etcd-minikube_kube-…
f5…41 53…a6 "kube-apiserver --ad…" … k8s_kube-apiserver_kube-apiserver-…
5b…08 8f…73 "kube-scheduler --au…" … k8s_kube-scheduler_kube-scheduler-…
87…cc …pause:3.6 "/pause" … k8s_POD_kube-apiserver-…
5a…14 …pause:3.6 "/pause" … k8s_POD_etcd-minikube_kube-…
6f…0c …pause:3.6 "/pause" … k8s_POD_kube-scheduler-…

We won’t dive too much into what each component is, but by now you should hope‐
fully see how the mechanism works. Also, it’s pretty easy to upgrade the components
since they are just containers, are versioned, and can be pulled from an upstream
container repository.

Go ahead and exit the shell that you have on the Minikube system:

docker@minikube:~$ exit

minikube commands. In the interest of space and time, we won’t go through all of the
commands for minikube. We encourage you to run it without any options, take a
look at the output, and play around with what’s available. That being said, let’s take a
quick look at some of the most interesting commands. We’ll cover a few more later in
the course of installing an application stack, but here’s a quick survey.

To see what was going on inside the system, earlier we used minikube ssh, which is
great for debugging or inspecting the system directly. Without directly accessing the
Minikube system, we can always check on the cluster status using another minikube
command:

$ minikube status

minikube
type: Control Plane
host: Running
kubelet: Running
apiserver: Running
kubeconfig: Configured

This shows us that everything is looking good. Two other useful commands include:

Command Action

minikube ip Retrieve the IP address of the Minikube VM.

minikube update-check Check your version of Minikube against the most recent release.

To apply an upgrade, you can simply use the same mechanism you used to install
it originally.

Kubernetes | 257

Critically, the minikube status command also shows us that the kubeconfig is
properly configured. We will need this so that kubectl knows how to connect to our
cluster.

We started the Kubernetes cluster with minikube start. As you might expect, follow‐
ing the style of Docker CLI arguments, minikube stop will stop all the Kubernetes
components and the Linux container or VM. To completely clean up your environ‐
ment, you can also delete the cluster by running minikube delete.

Kubernetes Dashboard
Now that we have Minikube up and running, we don’t just have the command-line
tools to interact with; we have a whole Kubernetes Dashboard installed that we can
explore. We can reach it via the minikube dashboard command. Go ahead and run
that—it should launch your web browser pointed to the correct IP address and port
of the Kubernetes Dashboard! There is a lot of stuff on the dashboard, and we’re not
able to cover it all, but feel free to click around and explore. Depending on your
previous exposure to Kubernetes, some of the terms in the dashboard’s sidebar will
be familiar to you, but many of them may be completely foreign. If you don’t have a
computer in front of you, Figure 10-2 shows a screenshot of what an empty Minikube
installation looks like from the Service link in the dashboard sideboard.

Figure 10-2. Kubernetes Dashboard (example)

If you explore the Nodes link under Cluster in the left sidebar, you should see a single
node in the cluster, named minikube. This is the container or VM that we started,
and the dashboard, like the other components, is hosted in one of the containers we
saw when we connected to the Minikube system earlier. We’ll take another look at the
dashboard when we’ve deployed something into our cluster.

258 | Chapter 10: Containers at Scale

Kubernetes exposes almost everything that you see on the dash‐
board with the kubectl command as well, which makes it very
scriptable with shell scripts.
For example, running kubectl get services or kubectl get

nodes should show you the same information that you can see on
the dashboard.

While clicking around, you may notice that Kubernetes itself shows up as a compo‐
nent inside the system, just like your applications will.

You will need to type Ctrl-C to exit the minikube dashboard pro‐
cess and return to your terminal prompt.

Kubernetes containers and pods
Now that we have a Kubernetes cluster up and running, and you’ve seen how easy
that is to do locally, we need to pause to talk about a concept that Kubernetes adds
on top of the container abstraction. Kubernetes came out of the experiences that
Google had running its massive platform. Google encountered most of the situations
you might see in a production platform and had to work out concepts to make it
easier to understand and solve the kinds of problems you run into when managing
a large installation. In doing so, Google created a complex set of new abstractions.
Kubernetes embraces many of these and thus has a whole vocabulary unto itself. We
won’t try to get into all of these, but it’s important to understand the most central of
these new abstractions—a concept that sits a layer above the container and is known
as a pod.

The term pod came about because the Docker mascot is Moby, the
whale, and a group of whales is called a pod.

In Kubernetes parlance, a pod is one or more containers sharing the same cgroups
and namespaces. You can also isolate the containers themselves from one another
inside the same pod using cgroups and namespaces. A pod is intended to encapsulate
all of the processes or applications that need to be deployed together to create a
functioning unit, which the scheduler can then manage. All of the containers in the
pod can talk to one another on localhost, which eliminates any need to discover
one another. So why not just deploy a big container with all the applications inside it?
The advantage of a pod over a massive container is that you can still resource-limit

Kubernetes | 259

the individual application separately and leverage the large library of public Linux
containers to construct your application.

Additionally, Kubernetes administrators often leverage the pod abstraction to have
a container run on pod startup to make sure things are configured properly for
the others, to maintain a shared resource, or to announce the application to others,
for example. This allows you to make finer-grained containers than you might if
you have to group things into the same container. Another nice part of the pod
abstraction is the ability to share mounted volumes.

Pods have a life span much like a Linux container. They are essentially ephemeral and
can be redeployed to new hosts according to the lifecycle of the application or the
host it runs on. Containers in a pod even share the same IP address when facing the
outside world, which means they look like a single entity from the network level. Just
as you would run only one instance of an application per container, you generally
run one instance of a given container inside a pod. The easiest way to think about
pods is that they are a group of Linux containers that work together as if they were
one container, for most purposes. If you need only one container, then you still get
a pod deployed by Kubernetes, but that pod contains only one container. The nice
thing about this is that there is only one abstraction as far as the Kubernetes scheduler
is concerned: the pod. Containers are managed by some of the runtime pieces that
construct the pod and also by the configuration that you use to define them.

One critical difference between a pod and a container is that you don’t construct
pods in a build step. They are a runtime abstraction that is defined in a JSON or
YAML manifest and lives only inside Kubernetes. So you build your Linux containers
and send them to a registry, then define and deploy your pods using Kubernetes.
In reality, you don’t usually directly describe a pod either; the tools generate it for
you through the concept of a deployment. But the pod is the unit of execution and
scheduling in a Kubernetes cluster. There is a lot more to it, but that’s the basic
concept, and it’s probably easiest to understand with a simple example. The pod
abstraction is more complicated than thinking of your system in terms of individual
containers, but it can be pretty powerful.

Let’s deploy something
When working with pods in Kubernetes, we usually manage them through the
abstraction of a deployment. A deployment is just a pod definition with some addi‐
tional information, including health monitoring and replication configuration. It
contains the definition of the pod and a little metadata about it. So let’s look at a basic
deployment and get it running.

The simplest thing we can deploy on Kubernetes is a pod that contains just one
container. We are going to use the httpbin application to explore the basics of
deployment on Kubernetes, and we’ll call our deployment hello-minikube.

260 | Chapter 10: Containers at Scale

https://httpbin.org

We’ve used the minikube command, but to get things done on Kubernetes itself, we
now need to leverage the kubectl command we installed earlier:

$ kubectl create deployment hello-minikube \
 --image=kennethreitz/httpbin:latest --port=80

deployment.apps/hello-minikube created

To see what that did for us, we can use the kubectl get all command to list the
most important objects that are now in our cluster:

$ kubectl get all

NAME READY STATUS RESTARTS AGE
pod/hello-minikube-ff49df9b8-svl68 1/1 Running 0 2m39s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 98m

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/hello-minikube 1/1 1 1 2m39s

NAME DESIRED CURRENT READY AGE
replicaset.apps/hello-minikube-ff49df9b8 1 1 1 2m39s

With that one command, Kubernetes created a deployment, a ReplicaSet to manage
scaling, and a pod. We want to ensure that our pod shows a STATUS of Running. If
yours isn’t, just wait and run the command a couple more times until you see the
status change. The service/kubernetes entry is a running service that represents
Kubernetes itself. But where is our service? We can’t get to it yet. It’s essentially in the
same state a Linux container would be if you didn’t tell it to expose any ports. So we
need to tell Kubernetes to do that for us:

$ kubectl expose deployment hello-minikube --type=NodePort
service/hello-minikube exposed

This has now created a service we can reach and interact with. A service is a wrapper
for one or more deployments of an application and can tell us how to contact the
application. In this case, we get a NodePort, which exposes a port on every node in
the cluster that will be routed to the underlying pods. Let’s get Kubernetes to tell us
how to get to it:

$ kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hello-minikube NodePort 10.105.184.177 <none> 80:32557/TCP 8s
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 107m

You might think you could now connect to http://10.105.184.177:8080 to get to our
service. But those addresses are not reachable from your host system because of the

Kubernetes | 261

container or VM in which Minikube is running. So we need to get minikube to tell us
where to find the service:

$ minikube service hello-minikube --url
http://192.168.99.100:30616

In some configurations, you may see a message like this:
 Because you are using a Docker driver on darwin,

 the terminal needs to be open to run it.

This indicates that transparently wiring the networking from your
host to the Kubernetes services is not possible at the moment, and
you will need to leave the command running while you explore
your application. You can use a local web browser or open up
another terminal to run commands like curl.
When you are done, you can type Ctrl-C in the original terminal
session to kill the minikube service command.

The nice thing about this command, like many of the other Kubernetes commands,
is that it is scriptable and command-line friendly under normal circumstances. If
we want to open it with curl on the command line, we can often just include the
minikube command call in our request:

$ curl -H foo:bar $(minikube service hello-minikube --url)/get

{
 "args": {},
 "headers": {
 "Accept": "*/*",
 "Foo": "bar",
 "Host": "127.0.0.1:56695",
 "User-Agent": "curl/7.85.0"
 },
 "origin": "172.17.0.1",
 "url": "http://127.0.0.1:56695/get"
}

httpbin is a simple HTTP request and response API that can be used to test and
confirm HTTP services. Not the world’s most exciting application, but you can see
that we are able to contact our service and get a response back from it via curl.

This is the simplest use case. We didn’t configure much and relied on Kubernetes to
do the right thing using its defaults. In the next step, we’ll take a look at something
more complicated. But first, let’s shut down our new service and deployment. It takes
two commands to do that: one to remove the service and the other to delete it:

$ kubectl delete service hello-minikube
service "hello-minikube" deleted

262 | Chapter 10: Containers at Scale

$ kubectl delete deployment hello-minikube
deployment.apps "hello-minikube" deleted

$ kubectl get all

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 138m

Deploying a realistic stack
Let’s now deploy something that looks more like a production stack. We’ll deploy an
application that can fetch PDF documents from an S3 bucket, cache them on disk
locally, and rasterize individual pages to PNG images on request, using the cached
document. To run this application, we’ll want to write our cache files somewhere
other than inside the container. We want to have them go somewhere a little more
permanent and stable. And this time we want to make things repeatable so that
we’re not deploying our application through a series of CLI commands that we
need to remember and hopefully get right each time. Kubernetes, much like Docker
Compose, lets us define our stack in one or more YAML files that contain all of
the definitions we care about in one place. This is what you want in a production
environment and is similar to what you’ve seen for the other production tools.

The service we’ll now create will be called lazyraster (as in “rasterize on demand”),
and each time you see that in the YAML definition, you’ll know we’re referring to
our application. Our persistent volume will be called cache-data. Again, Kubernetes
has a huge vocabulary that we can’t entirely address here, but to make it clear
what we’re looking at, we need to introduce two more concepts: PersistentVolume
and PersistentVolumeClaim. A PersistentVolume is a physical resource that we
provision inside the cluster. Kubernetes has support for many kinds of volumes, from
local storage on a node to Amazon Elastic Block Store (Amazon EBS) volumes on
AWS and similar on other cloud providers. It also supports Network File System
(NFS) and other more modern network filesystems. A PersistentVolume stores data
with a lifecycle that is independent of our application or deployments. This lets us
store data that persists between application deployments. For our cache, that’s what
we’ll use. A PersistentVolumeClaim is a link between the physical resource of the
PersistentVolume and the application that needs to consume it. We can set a policy
on the claim that allows either a single read/write claim or many read claims. For
our application we just want a single read/write claim to our cache-data Persistent
Volume.

Kubernetes | 263

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
https://en.wikipedia.org/wiki/Network_File_System
https://en.wikipedia.org/wiki/Network_File_System

If you want more detail about some of the concepts we’ve talked
about here, the Kubernetes project maintains a glossary of all the
terms involved in operating Kubernetes. This can be very helpful.
Each entry in the glossary is also linked to much more in-depth
detail on other pages.

You can check out the file we will be using in this section by running the following:

$ git clone \
 https://github.com/bluewhalebook/\
docker-up-and-running-3rd-edition.git --config core.autocrlf=input

Cloning into 'docker-up-and-running-3rd-edition'…
…

$ cd docker-up-and-running-3rd-edition/chapter_10/kubernetes

The URL in the example has been continued on the following
line so that it fits in the margins. You may find that you need to
reassemble the URL and remove the backslashes for the command
to work properly.

We will start by looking at the manifest YAML file, called lazyraster-service.yaml. The
full manifest contains multiple YAML documents separated by ---. We will discuss
each section individually here.

Service definition
apiVersion: v1
kind: Service
metadata:
 name: lazyraster
 labels:
 app: lazyraster
spec:
 type: NodePort
 ports:
 - port: 8000
 targetPort: 8000
 protocol: TCP
 selector:
 app: lazyraster

The first section defines our Service. The second and third sections, which we’ll see
in a moment, respectively define our PersistentVolumeClaim and then our actual
Deployment. We’ve told Kubernetes that our service will be called lazyraster and
that it will be exposed on port 8000, which maps to the actual 8000 in our container.
We’ve exposed that with the NodePort mechanism, which simply makes sure that our

264 | Chapter 10: Containers at Scale

https://kubernetes.io/docs/reference/glossary/?fundamental=true

application is exposed on the same port on each host, much like the --publish flag
to docker container run. This is helpful with minikube since we’ll run only one
instance, and the NodePort type makes it easy for us to access it from our computer
just like we did earlier. As with many parts of Kubernetes, there are several options
other than NodePort, and you can probably find a mechanism that’s ideal for your
production environment. NodePort is good for minikube, but it might work well for
more statically configured load balancers as well.

So, back to our Service definition. The Service is going to be connected to the
Deployment via the selector, which we apply in the spec section. Kubernetes widely
uses labels as a way to reason about similar components and to help tie them all
together. Labels are key/value pairs that are arbitrarily defined and that can then be
queried to identify pieces of your system. Here the selector tells Kubernetes to look
for Deployments with the label app: lazyraster. Notice that we also apply the same
label to the Service itself. That’s helpful if we want to identify all the components
together later, but it’s the selector section that ties the Deployment to our Service.
So we now have a Service, but it doesn’t do anything yet. We need more definitions
to make Kubernetes do what we want.

PersistentVolumeClaim definition
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: cache-data-claim
 labels:
 app: lazyraster
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 100Mi

The next section defines our PersistentVolumeClaim and likewise the Persistent
Volume that backs it. A PersistentVolumeClaim is a way to name a volume and
claim that you have a token to access that particular volume in a particular way.
Notice, though, that we didn’t define the PersistentVolume here. That’s because
Kubernetes is doing that work for us using what it calls Dynamic Volume Provisioning.
In our case, the use is pretty simple: we want a read/write claim to a volume, and
we’ll let Kubernetes put that in a volume container for us. But you can imagine a
scenario where an application is going to be deployed into a cloud provider and
where dynamic provisioning would truly come into its own. In that scenario, we don’t
want to have to make separate calls to have our volume created in the cloud for
us. We want Kubernetes to handle that. That’s what Dynamic Volume Provisioning
is all about. Here, it will just create a container for us to hold our persistent data,

Kubernetes | 265

and mount it into our pod when we stake our claim. We don’t do a lot in this
section except name it, ask for 100 MB of data, and tell Kubernetes it’s a read/write
mount-once-only volume.

There’s a large number of possible volume providers in Kubernetes.
Which ones are available to you is in part determined by which
provider or cloud service you are running on. You should take a
look and see which ones make the most sense for you when you are
preparing to head into production.

Deployment definition
apiVersion: apps/v1
kind: Deployment
metadata:
 name: lazyraster
 labels:
 app: lazyraster
spec:
 selector:
 matchLabels:
 app: lazyraster
 strategy:
 type: RollingUpdate
 template:
 metadata:
 labels:
 app: lazyraster
 spec:
 containers:
 - image: relistan/lazyraster:demo
 name: lazyraster
 env:
 - name: RASTER_RING_TYPE
 value: memberlist
 - name: RASTER_BASE_DIR
 value: /data
 ports:
 - containerPort: 8000
 name: lazyraster
 volumeMounts:
 - name: cache-data
 mountPath: /data
 volumes:
 - name: cache-data
 persistentVolumeClaim:
 claimName: cache-data-claim

The Deployment creates the pods for us and uses the Linux container for our applica‐
tion. We define some metadata about the application, including its name and one

266 | Chapter 10: Containers at Scale

label, just like we did for the other definitions. We also apply another selector here
to find the other resources we’re tied to. In the strategy section, we say we want to
have a RollingUpdate, which is a strategy that causes our pods to be cycled through
one by one during deployment. We could also pick Recreate, which would simply
destroy all existing pods and then create new ones afterward.

In the template section, we define how to stamp out copies of this deployment. The
container definition includes the Docker image name, the ports to map, volumes
to mount, and some environment variables that the lazyraster application needs.
The very last part of the spec asks to have our PersistentVolumeClaim named
cache-data-claim.

And that’s it for the application definition. Now let’s stand it up!

There are many more options and a rich set of directives you can
specify here to tell Kubernetes how to handle your application.
We’ve walked through a couple of simple options, but we encour‐
age you to explore the Kubernetes documentation to learn more.

Deploying the application

Before we continue, let’s see what’s in our Kubernetes cluster by using the kubectl
command:

$ kubectl get all

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 160m

We have only one thing defined at the moment, a service called service/kubernetes.
A naming convention used widely in Kubernetes is to preface the type of object with
the object Kind, which is sometimes shortened to a two- or three-letter abbreviation.
Sometimes you will see service represented as svc. If you are curious, you can
see all of the resources and their short names by running the command kubectl
api-resources. So let’s go ahead and get our service, deployment, and volume into
the cluster!

$ kubectl apply -f ./lazyraster-service.yaml

service/lazyraster created
persistentvolumeclaim/cache-data-claim created
deployment.apps/lazyraster created

That output looks like what we expected: we have a service, a persistent volume
claim, and a deployment. So let’s see what’s in the cluster now:

$ kubectl get all

Kubernetes | 267

NAME READY STATUS RESTARTS AGE
pod/lazyraster-644cb5c66c-zsjxd 1/1 Running 0 17s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 161m
service/lazyraster NodePort 10.109.116.225 <none> 8000:32544/TCP 17s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/lazyraster 1/1 1 1 17s

NAME DESIRED CURRENT READY AGE
replicaset.apps/lazyraster-644cb5c66c 1 1 1 17s

You can see that a bunch more happened behind the scenes. And also, where is our
volume or persistent volume claim? We have to ask for that separately:

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
cache-data-claim Bound pvc-1a…41 100Mi RWO standard 65s

kubectl get all does nothing of the sort. It would be more aptly
named get all-of-the-most-common-resources, but there are
several other resources you can fetch. The Kubernetes project hosts
a handy cheat sheet to make this more discoverable.

So what about that replicaset.apps that appeared in the get all output? That is a
ReplicaSet. A ReplicaSet is a piece of Kubernetes that is responsible for making sure
that our application is running the right number of instances all the time and that
they are healthy. We don’t normally have to worry about what happens inside the
ReplicaSet because the deployment we created manages it for us. You can manage the
ReplicaSet yourself if need be, but most of the time you won’t need to or want to.

We didn’t tell kubectl any specific number of instances, so we got one. And we can
see that both the desired and current states match. We’ll take a look at that in a
moment. But first, let’s connect to our application and see what we’ve got:

$ minikube service --url lazyraster
http://192.168.99.100:32185

You will probably get a different IP address and port back. That’s fine! This is very
dynamic stuff. And that’s why we use the minikube command to manage it for us.

Also, remember that minikube will warn you if you need to keep the
service command running while you explore the lazyraster service. So grab
the address that came back, open your web browser, and paste it into the
URL bar like this: http://<192.168.99.100:32185>/documents/docker-up-and-running-

268 | Chapter 10: Containers at Scale

https://kubernetes.io/docs/reference/kubectl/cheatsheet

public/sample.pdf?page=1. You’ll need to substitute the IP and port into the URL to
make it work for you.

You’ll need to be connected to the internet because the lazyraster application is
going to go out to the internet, fetch a PDF from a public S3 bucket, and then
render the first page from the document as a PNG in a process called rasterization.
If everything worked, you should see a copy of the front cover of an earlier edition
of this book! This particular PDF has two pages, so feel free to try changing the
argument to ?page=2. If you do that, you may notice it renders much faster than
the first page. That’s because the application is using our persistent volume to cache
the data. You can also specify width=2048 or ask for a JPEG instead of a PNG with
imageType=image/jpeg. You could rasterize the front page as a very large JPEG, like
this:

http://<192.168.99.100:32185>/documents/docker-up-and-running-public/sam‐
ple.pdf?page=1&imageType=image/jpeg&width=2048

If you have a public S3 bucket with other PDFs in it, you can simply substitute
the bucket name for docker-up-and-running-public in the URL to hit your bucket
instead. If you want to play with the application some more, check out the Nitro/
lazyraster repo on GitHub.

Scaling up
In real life you don’t just deploy applications; you operate them as well. One of the
huge advantages of scheduled workloads is the ability to scale them up and down
at will, within the resource constraints available to the system. In our case, we only
have one Minikube node, but we can still scale up our service to better handle load
and provide more reliability during deployments. Kubernetes, as you might imagine,
allows scaling up and down quite easily. For our service, we will need only one
command to do it. Then we’ll take another look at the kubectl output and also at the
Kubernetes Dashboard we introduced earlier so we can prove that the service scaled.

In Kubernetes, the thing we will scale is not the service; it’s the deployment. Here’s
what that looks like:

$ kubectl scale --replicas=2 deploy/lazyraster
deployment.apps/lazyraster scaled

Great, that did something! But what did we get?

$ kubectl get deployment/lazyraster

NAME READY UP-TO-DATE AVAILABLE AGE
lazyraster 2/2 2 2 16m

Kubernetes | 269

https://github.com/Nitro/lazyraster
https://github.com/Nitro/lazyraster

We now have two instances of our application running. Let’s see what we got in the
logs:

$ kubectl logs deployment/lazyraster

Found 2 pods, using pod/lazyraster-644cb5c66c-zsjxd
Trying to clear existing Lazyraster cached files (if any) in the background…
Launching Lazyraster service…
time="2022-09-10T21:14:16Z" level=info msg="Settings -----------------…
time="2022-09-10T21:14:16Z" level=info msg=" * BaseDir: /data"
time="2022-09-10T21:14:16Z" level=info msg=" * HttpPort: 8000"
…
time="2022-09-10T21:14:16Z" level=info msg=" * LoggingLevel: info"
time="2022-09-10T21:14:16Z" level=info msg="--------------------------…
…
time="2022-09-10T21:14:16Z" level=info msg="Listening on tcp://:6379"
…

We asked for logs for the deployment, but Kubernetes tells us two pods are running,
so it simply picked one of them to show us the logs from. We can see the replica start‐
ing up. If we want to specify a particular instance to look at, we can ask for the logs
for that pod with something like kubectl logs pod/lazyraster-644cb5c66c-zsjxd,
using the output from kubectl get pods to find the pod in question.

We now have a couple of copies of our application running. What does that look like
on the Kubernetes Dashboard? Let’s navigate there with minikube dashboard. Once
we’re there, we’ll select “Workloads - Deployments” from the left sidebar and then
click on the lazyraster deployment, which should display a screen that looks like
Figure 10-3.

Figure 10-3. lazyraster service dashboard (example)

270 | Chapter 10: Containers at Scale

We encourage you to click around some more in the Kubernetes Dashboard to see
what else is presented. With the concepts you’ve picked up here, a lot should be
clearer now, and you can probably figure out some more on your own. Likewise,
kubectl has a lot of other options available as well, many of which you’ll need in a
real production system. The cheat sheet we discussed earlier is a real lifesaver here!

As always, you can type Ctrl-C at any time to exit the running minikube dashboard
command.

kubectl API
We haven’t shown you an API yet, and, as we’ve discussed with Docker, it can
be really useful to have a simple API to interact with for scripting, programming,
and other general operational needs. You can write programs to talk directly to the
Kubernetes API, but for local development and other simple use cases, you can use
kubectl as a nice proxy to Kubernetes, and it presents a clean API that is accessible
with curl and JSON command-line tools. Here’s an example of what you can do:

$ kubectl proxy
Starting to serve on 127.0.0.1:8001

We’ve now got kubectl itself serving up a web API on the local system! You’ll need
to read more about what’s possible, but let’s get it to show us the individual instances
of the lazyraster application. We can do that by opening the following URL in a
browser or by using curl in another terminal window: http://localhost:8001/api/v1/
namespaces/default/endpoints/lazyraster.

There is a lot of output here, but the part we care about is the subsets section:

{
…
 "subsets": [
 {
 "addresses": [
 {
 "ip": "172.17.0.5",
 "nodeName": "minikube",
 "targetRef": {
 "kind": "Pod",
 "namespace": "default",
 "name": "lazyraster-644cb5c66c-zsjxd",
 "uid": "9631395d-7e68-47fa-bb9f-9641d724d8f7"
 }
 },
 {
 "ip": "172.17.0.6",
 "nodeName": "minikube",
 "targetRef": {
 "kind": "Pod",
 "namespace": "default",

Kubernetes | 271

https://kubernetes.io/docs/reference/kubectl/cheatsheet

 "name": "lazyraster-644cb5c66c-pvcmj",
 "uid": "e909d424-7a91-4a74-aed3-69562b74b422"
 }
 }
],
 "ports": [
 {
 "port": 8000,
 "protocol": "TCP"
 }
]
 }
]
}

What’s interesting here is that we can see that both instances are running on the
Minikube host and that they have different IP addresses. If we were building a cloud-
native application that needed to know where the other instances of the application
were running, this would be a good way to do that.

You can type Ctrl-C at any time to exit the running kubectl proxy processes, and
then you can remove the deployment and all of its components by running the
following command. It may take Kubernetes a minute or so to delete everything and
return you to the terminal prompt:

$ kubectl delete -f ./lazyraster-service.yaml

service "lazyraster" deleted
persistentvolumeclaim "cache-data-claim" deleted
deployment.apps "lazyraster" deleted

And then finally, you can go ahead and remove your Minikube cluster if you are done
with everything in it for now:

$ minikube delete

 Deleting "minikube" in docker …
 Deleting container "minikube" …
 Removing /Users/spkane/.minikube/machines/minikube …
 Removed all traces of the "minikube" cluster.

Kubernetes is a really big system, with great community involve‐
ment. We’ve just shown you the tip of the iceberg with Minikube,
but if you are interested, there are many other Kubernetes distribu‐
tions and tools to explore.

272 | Chapter 10: Containers at Scale

Docker Desktop-Integrated Kubernetes
Docker Desktop comes with support for an integrated single-node Kubernetes cluster
that can be run by simply enabling an option in the application preferences.

The integrated Kubernetes cluster is not easily configurable, but it does provide a very
accessible option for those who simply need to verify some basic functionality against
a current Kubernetes installation.

To enable Docker Desktop’s built-in Kubernetes functionality, launch Docker Desk‐
top and then open up Preferences from the Docker whale icon in your task/menu bar.
Then select the Kubernetes tab, click Enable Kubernetes, and finally click the “Apply
& Restart” button to make the required changes to the VM. The first time you do this,
Docker will utilize the kubeadm command to set up the Kubernetes cluster.

If you are interested in a bit more information about how the
Docker Desktop-integrated Kubernetes is set up, Docker has a
good blog post that covers some of these details.

This will create a new kubectl context called docker-desktop and should automati‐
cally switch you to this context.

You can confirm which context you are currently set to by running the following:

$ kubectl config current-context

docker-desktop

If you need to change the current context, you can do so like this:

$ kubectl config use-context docker-desktop --namespace=default

Switched to context "docker-desktop".

And finally, if you want to completely unset the current context, you can use this
command:

$ kubectl config unset current-context

Property "current-context" unset.

Once this cluster is running, you can interact with it just like any other Kubernetes
cluster via the kubectl command. Whenever you shut down Docker Desktop, this
will also shut down the Kubernetes cluster.

If you want to completely disable this Kubernetes cluster, go back into the Preferences
panel, select the Kubernetes tab, and un-check Enable Kubernetes.

Kubernetes | 273

https://kubernetes.io/docs/reference/setup-tools/kubeadm
https://www.docker.com/blog/how-kubernetes-works-under-the-hood-with-docker-desktop

Kind
The final option that we are going to discuss here is kind, a very simple but useful
tool that allows you to manage a Kubernetes cluster made up of one or more Linux
containers running in Docker. The tool name, kind, is an acronym that means
“Kubernetes in Docker” but also refers to the fact that object types in Kubernetes are
identified in the API by a field called Kind.

You will find that searching for this tool on the web can be a bit
difficult, but you can always find the tool and documentation on its
primary website.

kind provides a nice middle ground between the simplistic Kubernetes cluster that is
embedded into the Docker VM and the minikube VM, which can be overly complex
at times. kind is distributed as a single binary and can be installed with your favorite
package manager or by simply navigating to the kind project releases page and
downloading the most recent release for your system. If you manually download the
binary, make sure that you rename the binary to kind, copy it to a directory in your
path, and then ensure that it has the correct permissions so that users can run it.

Once kind is installed, you can try to create your first cluster with it by running the
following:

$ kind create cluster --name test

Creating cluster "test" …
 ✓ Ensuring node image (kindest/node:v1.25.3)
 ✓ Preparing nodes
 ✓ Writing configuration
 ✓ Starting control-plane
 ✓ Installing CNI
 ✓ Installing StorageClass
Set kubectl context to "kind-test"
You can now use your cluster with:

kubectl cluster-info --context kind-test

Thanks for using kind!

274 | Chapter 10: Containers at Scale

https://kind.sigs.k8s.io
https://github.com/kubernetes-sigs/kind/releases

By default, this command will spin up a single Docker container that represents a
one-node Kubernetes cluster, using the most current stable Kubernetes release that
kind currently supports.

kind has already set the Kubernetes current context to point at the cluster, so we can
start running kubectl commands immediately:

$ kubectl cluster-info

Kubernetes control plane is running at https://127.0.0.1:56499
CoreDNS is running at
https://127.0.0.1:56499/api/v1/namespaces/kube-system/services/kube-dns:dns/proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.

You can see a redacted version of the information used by kubectl to connect to the
Kubernetes server by running the following:

$ kubectl config view --minify

apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: DATA+OMITTED
 server: https://127.0.0.1:56499
 name: kind-test
contexts:
- context:
 cluster: kind-test
 user: kind-test
 name: kind-test
current-context: kind-test
kind: Config
preferences: {}
users:
- name: kind-test
 user:
 client-certificate-data: REDACTED
 client-key-data: REDACTED

kind has some advanced features that can generally be controlled by passing in a
configuration file with the --config argument when spinning up the cluster.

You may find some of the follwing features useful:

• Changing the version of Kubernetes that is used•
• Spinning up multiple worker nodes•
• Spinning up multiple control plane nodes for HA testing•
• Mapping ports between Docker and the local host system•
• Enabling and disabling Kubernetes feature gates•

Kubernetes | 275

https://kind.sigs.k8s.io/docs/user/quick-start/#advanced
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates

• Exporting control plane component logs with kind export logs•
• And more•

One thing to remember when using kind is that Kubernetes is run‐
ning inside one or more containers, which are potentially running
inside a Linux VM when you are using something like Docker
Desktop. This may mean that you need to set up some additional
port forwarding when you spin up the cluster. This can be done
using the extraPortMappings setting in the kind config.

At this point, you can go ahead and delete the cluster by running the following
command:

$ kind delete cluster --name test

Deleting cluster "test" …

Amazon ECS and Fargate
One of the most popular cloud providers is Amazon via their AWS offerings. Support
for running containers natively has existed in AWS Elastic Beanstalk since mid-2014.
But that service assigns only a single container to an Amazon instance, which means
that it’s not ideal for short-lived or lightweight containers. Amazon Elastic Compute
Cloud (Amazon EC2) itself is a great platform for hosting your own Docker environ‐
ment, though, and because Docker is powerful, you don’t necessarily need much
on top of your instances to make this a productive environment to work in. But
Amazon has spent a lot of engineering time building a service that treats containers
as first-class citizens: the Amazon Elastic Container Service (Amazon ECS). In the
last few years, Amazon has built upon this support with products like the Elastic
Kubernetes Services (EKS) and AWS Fargate.

Fargate is simply a marketing label Amazon uses for the feature of
ECS that makes it possible for AWS to automatically manage all the
nodes in your container cluster so that you can focus on deploying
your service.

The ECS is a set of tools that coordinates several AWS components. With ECS, you
have a choice of whether or not you will run the Fargate tooling on top. If you do,
then you don’t need to handle as much of the work. If you don’t, then in addition to
the cluster nodes to handle your workload, you will also need to add one or more
EC2 instances to the cluster running Docker and Amazon’s special ECS agent. If you

276 | Chapter 10: Containers at Scale

https://amzn.to/2wNa1rL

run Fargate, then the cluster is automatically managed for you. In either case, you
spin up the cluster and then push your containers into it.

The Amazon ECS agent we just mentioned works with the ECS service to coordinate
your cluster and schedule containers to your hosts. You will only be directly exposed
to this when you manage a traditional non-Fargate ECS cluster.

Core AWS Setup
The rest of this section assumes that you have access to an AWS account and some
familiarity with the service. You can learn about pricing and create a new account at
https://aws.amazon.com/free. Amazon offers a free service tier, which may be enough
for you to experiment with if you don’t already have a paid account. After you have
your AWS account set up, you will need at least one administrative user, a key pair,
an Amazon virtual private cloud (AWS VPC), and a default security group in your
environment. If you do not already have these set up, follow the directions in the
Amazon documentation.

IAM Role Setup
Amazon’s Identity and Access Management (Amazon IAM) roles are used to control
what actions a user can take within your cloud environment. We need to make
sure we can grant access to the right actions before moving on with the ECS. To
work with the ECS, you must create a role called ecsInstanceRole that has the
AmazonEC2ContainerServiceRole managed role attached to it. The easiest way to
do this is by logging in to the AWS console and navigating to Identity and Access
Management:

Check to ensure that you don’t already have the proper role. If
it already exists, then you should double-check that it is set up
properly, as these directions have changed a bit over the years.

1. In the left sidebar, click Roles.1.
2. Then, click the “Create role” button.2.
3. Under AWS Service, select Elastic Container Service.3.
4. Under “Select your use case,” select Elastic Container Service.4.
5. Click Next: Permissions.5.
6. Click Next: Review.6.
7. In Role Name, type ecsInstanceRole.7.

Amazon ECS and Fargate | 277

https://github.com/aws/amazon-ecs-agent
https://aws.amazon.com/free
https://amzn.to/2FcPDSL
https://console.aws.amazon.com
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home

8. Click “Create role.”8.

If you are interested in storing container configuration in an S3 object storage bucket,
take a look at the Amazon ECS container agent configuration documentation.

AWS CLI Setup
Amazon supplies command-line tools that make it easy to work with their API-
driven infrastructure. You will need to install a very recent version of the AWS CLI
tools. Amazon has detailed documentation that covers the installation of their tools,
but the basic steps are as follows.

Installation
Here we’ll cover the native installation on a few different OSes, but be aware that you
can also run the AWS CLI via a Docker container! You can feel free to skip to the one
you care about. If you’re curious or just like installation instructions, by all means,
read them all!

macOS
In Chapter 3, we discussed installing Homebrew. If you previously did this, you
can install the AWS CLI using the following commands:

$ brew update
$ brew install awscli

Windows
Amazon provides a standard MSI installer for Windows, which can be down‐
loaded from Amazon S3 for your architecture:

• 32-bit Windows•
• 64-bit Windows•

Other
The Amazon CLI tools are written in Python. So on most platforms, you can
install the tools with the Python pip package manager by running the following
from a shell:

$ pip install awscli --upgrade --user

278 | Chapter 10: Containers at Scale

https://amzn.to/2PNapOL
https://amzn.to/1PCpPNA
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-docker.html#cliv2-docker-install
https://s3.amazonaws.com/aws-cli/AWSCLI32.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64.msi

Some platforms won’t have pip installed by default. In that case, you can use the
easy_install package manager, like this:

$ easy_install awscli

Configuration
Quickly verify that your AWS CLI version is at least 1.7.0 with the following
command:

$ aws --version

aws-cli/1.14.50 Python/3.6.4 Darwin/17.3.0 botocore/1.9.3

To configure the AWS CLI tool, ensure that you have access to your AWS access key
ID and AWS secret access key, and then run the configure command. You will be
prompted for your authentication information and some preferred defaults:

$ aws configure

AWS Access Key ID [None]: EXAMPLEEXAMPLEEXAMPLE
AWS Secret Access Key [None]: ExaMPleKEy/7EXAMPL3/EXaMPLeEXAMPLEKEY
Default region name [None]: us-east-1
Default output format [None]: json

At this point, it’s a really good idea to test that the CLI tools are working correctly
before proceeding. You can easily do that by running the following command to list
the IAM users in your account:

$ aws iam list-users

Assuming everything went according to plan and you chose JSON as your default
output format, you should get something like this:

{
 "Users": [
 {
 "Path": "/",
 "UserName": "administrator",
 "UserId": "ExmaPL3ExmaPL3ExmaPL3Ex",
 "Arn": "arn:aws:iam::936262807352:user/myuser",
 "CreateDate": "2021-04-08T17:22:23+00:00",
 "PasswordLastUsed": "2022-09-05T15:56:21+00:00"
 }
]
}

Amazon ECS and Fargate | 279

Container Instances
The first thing you need to do after installing the required tools is to create at least a
single cluster that your Docker hosts will register with when they are brought online.

The default cluster is imaginatively named default. If you keep this
name, you do not need to specify --cluster-name in many of the
commands that follow.

The first thing you need to do is create a cluster in the container service. You will then
launch your tasks in the cluster once it’s up and running. For these examples, you
should start by creating a cluster called fargate-testing:

$ aws ecs create-cluster --cluster-name fargate-testing

{
 "cluster": {
 "clusterArn": "arn:aws:ecs:us-east-1:1…2:cluster/fargate-testing",
"clusterName": "fargate-testing",
 "status": "ACTIVE",
 "registeredContainerInstancesCount": 0,
 "runningTasksCount": 0,
 "pendingTasksCount": 0,
 "activeServicesCount": 0,
 "statistics": [],
 "tags": [],
 "settings": [
 {
 "name": "containerInsights",
 "value": "disabled"
 }
],
 "capacityProviders": [],
 "defaultCapacityProviderStrategy": []
 }
}

Before AWS Fargate was released, you were required to create AWS EC2 instances
running docker and the ecs-agent, and add them to your cluster. You can still use
this approach if you want (EC2 launch type), but Fargate makes it much easier to
run a dynamic cluster that can scale fluidly with your workload.

Tasks
Now that our container cluster is set up, we need to start putting it to work. To do
this, we need to create at least one task definition. The Amazon ECS defines the term
task definition as a list of containers grouped together.

280 | Chapter 10: Containers at Scale

To create your first task definition, open up your favorite editor, copy in the following
JSON, and then save it as webgame-task.json in your current directory, as shown here:

{
 "containerDefinitions": [
 {
 "name": "web-game",
 "image": "spkane/quantum-game",
 "cpu": 0,
 "portMappings": [
 {
 "containerPort": 8080,
 "hostPort": 8080,
 "protocol": "tcp"
 }
],
 "essential": true,
 "environment": [],
 "mountPoints": [],
 "volumesFrom": []
 }
],
 "family": "fargate-game",
 "networkMode": "awsvpc",
 "volumes": [],
 "placementConstraints": [],
 "requiresCompatibilities": [
 "FARGATE"
],
 "cpu": "256",
 "memory": "512"
}

You can also check out these files and a few others by running the
following:

git clone \
 https://github.com/bluewhalebook/\
docker-up-and-running-3rd-edition.git \
 --config core.autocrlf=input

The URL has been continued on the following line so that it fits in
the margins. You may find that you need to reassemble the URL
and remove the backslashes for the command to work properly.

In this task definition, we are saying that we want to create a task family called
fargate-game running a single container called web-game that is based on the Quan‐
tum web game. As you may have seen in an earlier chapter, this Docker image
launches a browser-based puzzle game that uses real quantum mechanics.

Amazon ECS and Fargate | 281

https://github.com/stared/quantum-game
https://github.com/stared/quantum-game

Fargate limits some of the options that you can set in this config‐
uration, including networkMode and the cpu and memory settings.
You can find out more about the options in the task definition
from the official AWS documentation.

In this task definition, we define some constraints on memory and CPU usage for
the container, in addition to telling Amazon whether this container is essential to the
task. The essential flag is useful when you have multiple containers defined in a
task, and not all of them are required for the task to be successful. If essential is true
and the container fails to start, then all the containers defined in the task will be killed
and the task will be marked as failed. We can also use the task definition to define
almost all of the typical variables and settings that would be included in a Dockerfile
or on the docker container run command line.

To upload this task definition to Amazon, you will need to run a command similar to
what is shown here:

$ aws ecs register-task-definition --cli-input-json file://./webgame-task.json

{
 "taskDefinition": {
 "taskDefinitionArn": "arn:aws:ecs:…:task-definition/fargate-game:1",
 "containerDefinitions": [
 {
 "name": "web-game",
 "image": "spkane/quantum-game",
 "cpu": 0,
 "portMappings": [
 {
 "containerPort": 8080,
 "hostPort": 8080,
 "protocol": "tcp"
 }
],
 "essential": true,
 "environment": [],
 "mountPoints": [],
 "volumesFrom": []
 }
],
 "family": "fargate-game",
 "networkMode": "awsvpc",
 "revision": 1,
 "volumes": [],
 "status": "ACTIVE",
 "requiresAttributes": [
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.18"
 },
 {

282 | Chapter 10: Containers at Scale

https://amzn.to/2PkliGR

 "name": "ecs.capability.task-eni"
 }
],
 "placementConstraints": [],
 "compatibilities": [
 "EC2",
 "FARGATE"
],
 "requiresCompatibilities": [
 "FARGATE"
],
 "cpu": "256",
 "memory": "512",
 "registeredAt": "2022-09-05T09:10:18.184000-07:00",
 "registeredBy": "arn:aws:iam::…:user/me"
 }
}

We can then list all of our task definitions by running the following:

$ aws ecs list-task-definitions

{
 "taskDefinitionArns": [
 "arn:aws:ecs:us-east-1:…:task-definition/fargate-game:1",
]
}

Now you are ready to create your first task in your cluster. You do so by running a
command like the one shown next. The count argument in the command allows you
to define how many copies of this task you want to be deployed into your cluster. For
this job, one is enough.

You will need to modify the following command to reference a valid subnet ID and
security-group ID from your AWS VPC. You should be able to find these in the AWS
console or by using the AWS CLI commands aws ec2 describe-subnets and aws
ec2 describe-security-groups. You can also tell AWS to assign your tasks a public
IP address by using a network configuration similar to this:

awsvpcConfiguration={subnets=[subnet-abcd1234],
 securityGroups=[sg-abcd1234],
 assignPublicIp=ENABLED}

Assigning a public IP address may be required if you are using public subnets:

$ aws ecs create-service --cluster fargate-testing --service-name \
 fargate-game-service --task-definition fargate-game:1 --desired-count 1 \
 --launch-type "FARGATE" --network-configuration \
 "awsvpcConfiguration={subnets=[subnet-abcd1234],\
 securityGroups=[sg-abcd1234]}"

{
 "service": {

Amazon ECS and Fargate | 283

https://console.aws.amazon.com/vpc/home
https://console.aws.amazon.com/vpc/home

 "serviceArn": "arn:aws:ecs:…:service/fargate-game-service",
 "serviceName": "fargate-game-service",
 "clusterArn": "arn:aws:ecs:…:cluster/fargate-testing",
 "loadBalancers": [],
 "serviceRegistries": [],
 "status": "ACTIVE",
 "desiredCount": 1,
 "runningCount": 0,
 "pendingCount": 0,
 "launchType": "FARGATE",
 "platformVersion": "LATEST",
 "platformFamily": "Linux",
 "taskDefinition": "arn:aws:ecs:…:task-definition/fargate-game:1",
 "deploymentConfiguration": {
 "deploymentCircuitBreaker": {
 "enable": false,
 "rollback": false
 },
 "maximumPercent": 200,
 "minimumHealthyPercent": 100
 },
 "deployments": [
 {
 "id": "ecs-svc/…",
 "status": "PRIMARY",
 "taskDefinition": "arn:aws:ecs:…definition/fargate-game:1",
 "desiredCount": 1,
 "pendingCount": 0,
 "runningCount": 0,
 "failedTasks": 0,
 "createdAt": "2022-09-05T09:14:51.653000-07:00",
 "updatedAt": "2022-09-05T09:14:51.653000-07:00",
 "launchType": "FARGATE",
 "platformVersion": "1.4.0",
 "platformFamily": "Linux",
 "networkConfiguration": {
…
 },
 "rolloutState": "IN_PROGRESS",
 "rolloutStateReason": "ECS deployment ecs-svc/… in progress."
 }
],
 "roleArn": "…aws-service-role/ecs.amazonaws.com/AWSServiceRoleForECS",
 "events": [],
 "createdAt": "2022-09-05T09:14:51.653000-07:00",
 "placementConstraints": [],
 "placementStrategy": [],
 "networkConfiguration": {
…
 },
 "schedulingStrategy": "REPLICA",
 "createdBy": "arn:aws:iam::…:user/me",

284 | Chapter 10: Containers at Scale

 "enableECSManagedTags": false,
 "propagateTags": "NONE",
 "enableExecuteCommand": false
 }
}

Fargate and the awsvpc network require that you have a service-
linked role for ECS. In the preceding output, you should see a line
that ends like this:

"role/aws-service-role/ecs.amazonaws.com/
AWSServiceRoleForECS"

Most of the time this will be autogenerated for you, but you can
create it manually using the following command:

$ aws iam create-service-linked-role \
 --aws-service-name ecs.amazonaws.com

You can now list all of the services in your cluster with the following command:

$ aws ecs list-services --cluster fargate-testing

{
 "serviceArns": [
 "arn:aws:ecs:us-west-2:…:service/fargate-testing/fargate-game-service"
]
}

To retrieve all the details about your service, run the following:

$ aws ecs describe-services --cluster fargate-testing \
 --services fargate-game-service

{
 "services": [
 {
…
 "deployments": [
 {
 "id": "ecs-svc/…",
 "status": "PRIMARY",
 "taskDefinition": "arn:…:task-definition/fargate-game:1",
 "desiredCount": 1,
 "pendingCount": 1,
 "runningCount": 0,
 "createdAt": "2022-09-05T09:14:51.653000-07:00",
 "updatedAt": "2022-09-05T09:14:51.653000-07:00",
 "launchType": "FARGATE",
 "platformVersion": "1.4.0",
 "platformFamily": "Linux",
 "networkConfiguration": {
…
 },

Amazon ECS and Fargate | 285

 "rolloutState": "IN_PROGRESS",
 "rolloutStateReason": "ECS deployment ecs-svc/…progress."
 }
],
 "roleArn": "…role/ecs.amazonaws.com/AWSServiceRoleForECS",
 "events": [
 {
 "id": "83bd5c2eed5d4866bb7ec8c3c938666c",
 "createdAt": "2022-09-05T09:14:54.950000-07:00",
 "message": "(…game-service) has started 1 tasks: (…)."
 }
],
…
 }
],
 "failures": []
}

This output will tell you a lot about all the tasks in your service. In this case, we have
a single task running at the moment.

The task-definition value is a name followed by a number
(fargate-game:1). The number is the revision. If you edit
your task and re-register it with the aws ecs register-task-
definition command, you will get a new revision, which means
that you will want to reference that new revision in various com‐
mands, like aws ecs update-service. If you don’t change that
number, you will continue to launch containers using the older
JSON. This versioning makes it very easy to roll back changes and
test new revisions without impacting all future instances.

If you want to see what individual tasks are running in your cluster, you can run the
following:

$ aws ecs list-tasks --cluster fargate-testing

{
 "taskArns": [
 "arn:aws:ecs:…:task/fargate-testing/83bd5c2eed5d4866bb7ec8c3c938666c"
]
}

Since you only have a single task in your cluster at the moment, this list is very small.

To get more details about the individual task, you can run the following command
after substituting the task ID with the correct one from your cluster:

$ aws ecs describe-tasks --cluster fargate-testing \
 --task 83bd5c2eed5d4866bb7ec8c3c938666c

286 | Chapter 10: Containers at Scale

{
 "tasks": [
 {
 "attachments": [
 {
…
 "details": [
…
 {
 "name": "networkInterfaceId",
 "value": "eni-00a40225208c9411a"
 },
…
 {
 "name": "privateIPv4Address",
 "value": "172.31.42.184"
 }
]
 }
],
 "attributes": [
…
],
 "availabilityZone": "us-west-2b",
 "clusterArn": "arn:aws:ecs:us-west-2:…:cluster/fargate-testing",
 "connectivity": "CONNECTED",
 "connectivityAt": "2022-09-05T09:23:46.929000-07:00",
 "containers": [
 {
 "containerArn": "arn:…:container/fargate-testing/…",
 "taskArn": "arn:…:task/fargate-testing/…",
 "name": "web-game",
 "image": "spkane/quantum-game",
 "runtimeId": "83bd…998",
 "lastStatus": "RUNNING",
 "networkInterfaces": [
 {
 "attachmentId": "ddab…373a",
 "privateIpv4Address": "172.31.42.184"
 }
],
 "healthStatus": "UNKNOWN",
 "cpu": "0"
 }
],
 "cpu": "256",
 "createdAt": "2022-09-05T09:23:42.700000-07:00",
 "desiredStatus": "RUNNING",
 "enableExecuteCommand": false,
 "group": "service:fargate-game-service",
 "healthStatus": "UNKNOWN",
 "lastStatus": "RUNNING",

Amazon ECS and Fargate | 287

1 Full URL: https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_cannot_pull_image.html

 "launchType": "FARGATE",
 "memory": "512",
 "overrides": {
 "containerOverrides": [
 {
 "name": "web-game"
 }
],
 "inferenceAcceleratorOverrides": []
 },
 "platformVersion": "1.4.0",
 "platformFamily": "Linux",
 "pullStartedAt": "2022-09-05T09:59:36.554000-07:00",
 "pullStoppedAt": "2022-09-05T09:59:46.361000-07:00",
 "startedAt": "2022-09-05T09:59:48.546000-07:00",
 "startedBy": "ecs-svc/…",
 "tags": [],
 "taskArn": "arn:aws:…:task/fargate-testing/83bd…666c",
 "taskDefinitionArn": "arn:aws:…:task-definition/fargate-game:1",
 "version": 4,
 "ephemeralStorage": {
 "sizeInGiB": 20
 }
 }
],
 "failures": []
}

If you notice that the lastStatus key is displaying a value of PENDING, this most
likely means that your service is still starting up. You can describe the task again to
ensure that it has completed transitioning into a RUNNING state. After verifying that
the lastStatus key is set to RUNNING, you should be able to test your container.

Depending on the network setup, your task may not be able to
download the image. If you see an error like this:
"stoppedReason": "CannotPullContainerError: inspect

image has been retried 5 time(s): failed to resolve

ref \"docker.io/spkane/quantum-game:latest\": failed to

do request: Head https://registry-1.docker.io/v2/spkane/

quantum-game/manifests/latest: dial tcp 54.83.42.45:443:

i/o timeout"

then you should read through this troubleshooting guide.1

288 | Chapter 10: Containers at Scale

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_cannot_pull_image.html
https://registry-1.docker.io/v2/spkane/quantum-game/manifests/latest
https://registry-1.docker.io/v2/spkane/quantum-game/manifests/latest
https://oreil.ly/FYo9Z

Testing the Task
You will need a modern web browser installed on your system to connect to the
container and test the web game.

In the previous output, you’ll notice that the privateIPv4Address for the example
task was listed as 172.31.42.184. Yours will be different.

If you need more information about the network setup for
your task and the EC2 instance that it is running on, you
can grab the networkInterfaceId from the aws ecs describe-
tasks output and then append that to the aws ec2 describe-
network-interfaces --network-interface-ids command to get
everything you should need, including the PublicIp value if you
configured your service for that.

Ensure that you are connected to a network that can reach either the public or private
IP address of your host, then launch your web browser and navigate to port 8080 on
that IP address.

In the example, this private URL would look like this:

http://172.31.42.184:8080/

If everything is working as expected, you should be greeted by the Quantum Game
puzzle board.

The official version of the game can be found at https://quantumgame.io.

We completely understand if you get distracted at this point and
stop reading for a few hours to try to solve some puzzles and learn
a little bit of quantum mechanics at the same time. The book won’t
notice! Put it down, play the puzzles, and pick it back up later.

Stopping the Task
Right, so we have a running task. Now let’s take a look at stopping it. To do that, you
need to know the task ID. One way to obtain this is by relisting all the tasks running
in your cluster:

$ aws ecs list-tasks --cluster fargate-testing

{
 "taskArns": [
 "arn:aws:ecs:…:task/fargate-testing/83bd5c2eed5d4866bb7ec8c3c938666c"
]
}

Amazon ECS and Fargate | 289

https://quantumgame.io

You can also obtain it from the service information:

$ aws ecs describe-services --cluster fargate-testing \
 --services fargate-game-service

{
…
 {
 "id": "6b7f…0384",
 "createdAt": "2022-09-05T09:59:23.917000-07:00",
 "message": "…: (task 83bd5c2eed5d4866bb7ec8c3c938666c)."
 }
…
}

Finally, we can stop the task by running the following command with the correct task
ID:

$ aws ecs stop-task --cluster fargate-testing \
 --task 83bd5c2eed5d4866bb7ec8c3c938666c

{
 "desiredStatus": "STOPPED",
…
 "lastStatus": "RUNNING",
…
 "stopCode": "UserInitiated",
 "stoppedReason": "Task stopped by user",
 "stoppingAt": "2022-09-05T10:29:05.110000-07:00",
…
}

If you describe the task again using the same task ID, you should now see that the
lastStatus key is set to STOPPED:

$ aws ecs describe-tasks --cluster fargate-testing \
 --task 83bd5c2eed5d4866bb7ec8c3c938666c

{
…
 "desiredStatus": "STOPPED",
…
 "lastStatus": "STOPPED",
…
}

Listing all the tasks in our cluster should return an empty set:

$ aws ecs list-tasks --cluster fargate-testing

{
 "taskArns": []
}

290 | Chapter 10: Containers at Scale

At this point, you could start creating more complicated tasks that tie multiple
containers together and rely on the ECS and Fargate tooling to spin up hosts and
deploy the tasks into your cluster as needed.

If you want to tear down the rest of the ECS environment, you can run the following
commands:

$ aws ecs delete-service --cluster fargate-testing \
 --service fargate-game-service --force
…

$ aws ecs delete-cluster --cluster fargate-testing
…

Wrap-Up
In this chapter, we’ve certainly presented you with a lot of options! It’s unlikely that
you’ll ever need to use all of these, since many of them overlap. However, each one
has a unique perspective on exactly what a production system should look like and
what problems are the most important to solve. After exploring all of these tools, you
should have a pretty good idea of the wide range of options you can choose from to
build your production Linux container environment.

Underlying all of these tools is Docker’s highly portable image format for Linux
containers and its ability to abstract away so much of the underlying Linux system,
which makes it easy to move your applications fluidly between your data center and
as many cloud providers as you want. Now you just have to choose which approach
will work best for you and your organization and then implement it.

In the meantime, let’s jump into the next chapter and explore some of the most
technical topics in the Docker ecosystem, including security, networking, and storage.

Wrap-Up | 291

CHAPTER 11

Advanced Topics

In this chapter, we’ll do a quick pass through some of the more advanced topics.
We’re going to assume that you have a pretty good hold on Docker by now and
that you’ve already got it in production or you’re at least a regular user. We’ll talk
about how containers work in detail and about some of the aspects of Docker secu‐
rity, Docker networking, Docker plug-ins, swappable runtimes, and other advanced
configurations.

Some of this chapter covers configurable changes you can make to your Docker
installation. These can be useful, but Docker has good defaults, so as with most
software, you should stick to the defaults on your operating system unless you have a
good reason to change them and have educated yourself on what those changes mean
to you. Getting your installation right for your environment will likely involve some
trial and error, tuning, and adjustment over time. However, changing settings from
their defaults before understanding them well is not recommended.

Containers in Detail
Though we usually talk about Linux containers as a single entity, they are actually
implemented through several separate mechanisms built into the Linux kernel that
all work together: control groups (cgroups), namespaces, Secure Computing Mode
(seccomp), and SELinux or AppArmor, all of which serve to contain the process.
cgroups provide for resource limits, namespaces allow for processes to use identically
named resources and isolate them from one another’s view of the system, Secure
Computing Mode limits which system calls a process can use, and SELinux or
AppArmor provides additional strong security isolation for processes. So, to start,
what do cgroups and namespaces do for you?

293

Before we launch into detail, an analogy might help you understand how each of
these subsystems plays into the way that containers work. Imagine that the typical
computer is like a large open warehouse, full of workers (processes). The warehouse
is full of space and resources, but it is very easy for the workers to get in one another’s
way, and most of the resources are simply used by whomever gets them first.

When you are running Docker and using Linux containers for your workloads, it is
like that warehouse has been converted into an office building, where each worker
now has their own individual office. Each office has all the normal things that the
workers need to accomplish their jobs, and in general, they can now work without
worrying much about what other people (processes) are doing.

Namespaces make up the walls of the office and ensure that processes cannot interact
with neighboring processes in any way that they are not specifically allowed to.
Control groups are a bit like paying rent to receive utilities. When the process is first
spun up, it is assigned time on the CPU and storage subsystem that it will be allowed
each cycle, in addition to the amount of memory that it will be allowed to use at
any moment. This helps ensure that the workers (processes) have the resources they
need, without allowing them to use resources or space reserved for others. Imagine
the worst kind of noisy neighbors, and you can suddenly truly appreciate good, solid
barriers between offices. Finally, Secure Computing Mode, SELinux, and AppArmor
are a bit like office security, ensuring that even if something unexpected or untoward
happens, it is unlikely to cause much more than the headache of filling out paperwork
and filing an incident report.

cgroups
Traditional distributed system design dictates running each intensive task on its own
virtual server. So, for example, you don’t run your applications on the database server
because they have competing resource demands, and their resource usage could grow
unbounded and begin to dominate the server, starving the database of performance.

On real hardware systems, this could be quite expensive, so solutions like virtual
servers are very appealing, in part because you can share expensive hardware between
competing applications, and the virtualization layer will handle your resource parti‐
tioning. But while it saves money, this is still a fairly expensive approach if you don’t
need all the other separation provided by virtualization, because running multiple
kernels introduces a reasonable overhead on the applications. Maintaining VMs is
also not the cheapest solution. All the same, cloud computing has shown that it’s
immensely powerful and, with the right tooling, incredibly effective.

But if the only kind of isolation you needed was resource partitioning, wouldn’t it
be great if you could get that on the same kernel without running another operating
system instance? For many years, you could assign a “niceness” value to a process,
and it would give the scheduler hints about how you wanted this process to be treated

294 | Chapter 11: Advanced Topics

in relation to the others. But it wasn’t possible to impose hard limits like those that
you get with VMs. And niceness is not at all fine-grained: you can’t give something
more I/O and less CPU than other processes. This fine-grained control, of course, is
one of the promises of Linux containers, and the mechanism that they use to provide
that functionality is cgroups, which predate Docker and were invented to solve just
this problem.

Control groups allow you to set limits on resources for processes and their children.
This is the mechanism that the Linux kernel uses to control limits on memory,
swap, CPU, storage, and network I/O resources. cgroups are built into the kernel and
originally shipped in 2007 in Linux 2.6.24. The official kernel documentation defines
them as “a mechanism to organize processes hierarchically and distribute system
resources along the hierarchy in a controlled and configurable manner.” It’s important
to note that this setting applies to a process and all of the children that descend from
it. That’s exactly how containers are structured.

It is worth mentioning that there have been at least two major
releases of Linux control groups: v1 and v2. Make sure that you
know which version is being used in production so that you can
leverage all the abilities that it provides.

Every Linux container is assigned a cgroup that is unique to that container. All of
the processes in the container will be in the same group. This means that it’s easy to
control resources for each container as a whole without worrying about what might
be running. If a container is redeployed with new processes added, you can have
Docker assign the same policy and it will apply to the whole container and all the
process containers within it.

We talked previously about the cgroups hooks exposed by Docker via its API. That
interface allows you to control memory, swap, and disk usage. But there are lots of
other things that you can manage with cgroups, including tagging network packets
from a container so that you can use those tags to prioritize traffic. You might find
that in your environment you need to use some of these levers to keep your contain‐
ers under control, and there are a few ways you can go about doing that. By their very
nature, cgroups need to do a lot of accounting of resources used by each group. That
means that when you’re using them, the kernel has a lot of interesting statistics about
how much CPU, RAM, disk I/O, and so on your processes are using. So Docker uses
cgroups not just to limit resources but also to report on them. These are many of the
metrics you see, for example, in the output of docker container stats.

The /sys filesystem
The primary way to control cgroups in a fine-grained manner, even if you configured
them with Docker, is to manage them yourself. This is the most powerful method

Containers in Detail | 295

https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt

because changes don’t just happen at container creation time—they can be done on
the fly.

On systems with systemd, there are command-line tools like systemctl that you can
use to do this. But since cgroups are built into the kernel, the method that works
everywhere is to talk to the kernel directly via the /sys filesystem. If you’re not familiar
with /sys, it’s a filesystem that directly exposes several kernel settings and outputs. You
can use it with simple command-line tools to tell the kernel how you would like it to
behave.

This method of configuring cgroups controls for containers only works directly on
the Docker server, so it is not available remotely via any API. If you use this method,
you’ll need to figure out how to script this for your environment.

Changing cgroups values yourself, outside of any Docker configu‐
ration, breaks some of the repeatability of a Docker deployment.
Unless you implement changes in your deployment process, set‐
tings will revert to their defaults when containers are replaced.
Some schedulers take care of this for you, so if you run one in
production, you might check the documentation to see how to best
apply these changes repeatably.

Let’s use an example of changing the CPU cgroups settings for a container we have
just started up. We need to get the long ID of the container, and then we need to find
it in the /sys filesystem. Here’s what that looks like:

$ docker container run -d spkane/train-os \
 stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 360s

dcbb…8e86f1dc0a91e7675d3c93895cb6a6d83371e25b7f0bd62803ed8e86

Here, we’ve had docker container run give us the long ID in the output, and the ID
we want is dcbb…8e86f1dc0a91e7675d3c93895cb6a6d83371e25b7f0bd62803ed8e86.
You can see why Docker normally truncates this.

In the examples, we may need to truncate the ID to make it fit
into the constraints of a standard page. But remember that you will
need to use the long ID!

296 | Chapter 11: Advanced Topics

Now that we have the ID, we can find our container’s cgroup in the /sys filesys‐
tem. /sys is laid out so that each type of setting is grouped into a module, and that
module might be exposed at a different place in the /sys filesystem. So when we look
at CPU settings, we won’t see blkio settings, for example. You might take a look
around in /sys to see what else is there. But for now we’re interested in the CPU
controller, so let’s inspect what that gives us. You need root access on the system to
do this because you’re manipulating kernel settings.

Remember our nsenter trick we originally discussed in Chapter 3.
You can run docker container run --rm -it --privileged

--pid=host debian nsenter -t 1 -m -u -n -i sh to get access
to the Docker host, even if you can’t SSH into the server.

$ ls /sys/fs/cgroup/docker/dcbb…8e86

cgroup.controllers cpuset.cpus.partition memory.high
cgroup.events cpuset.mems memory.low
cgroup.freeze cpuset.mems.effective memory.max
cgroup.max.depth hugetlb.2MB.current memory.min
cgroup.max.descendants hugetlb.2MB.events memory.oom.group
cgroup.procs hugetlb.2MB.events.local memory.stat
cgroup.stat hugetlb.2MB.max memory.swap.current
cgroup.subtree_control hugetlb.2MB.rsvd.current memory.swap.events
cgroup.threads hugetlb.2MB.rsvd.max memory.swap.high
cgroup.type io.bfq.weight memory.swap.max
cpu.max io.latency pids.current
cpu.stat io.max pids.events
cpu.weight io.stat pids.max
cpu.weight.nice memory.current rdma.current
cpuset.cpus memory.events rdma.max
cpuset.cpus.effective memory.events.local

The exact path here may change a bit depending on the Linux
distribution your Docker server is running on and what the hash of
your container is.

You can see that under cgroups, there is a docker directory that contains all of the
Linux containers that are running on this host. You can’t set cgroups for things that
aren’t running, because they apply only to running processes. This is an important
point that you should consider. Docker takes care of reapplying cgroup settings for
you when you start and stop containers. Without that mechanism, you are somewhat
on your own.

Containers in Detail | 297

Let’s go ahead and inspect the CPU weight for this container. Remember that we
explored setting some of these CPU values in Chapter 5 via the --cpus command-
line argument to docker container run. But for a normal container where no
settings were passed, this setting is the default:

$ cat /sys/fs/cgroup/docker/dcbb…8e86/cpu.weight
100

100 CPU weight means we are not limited at all. Let’s tell the kernel that this
container should be limited to half that:

$ echo 50 > /sys/fs/cgroup/docker/dcbb…8e86/cpu.weight
$ cat /sys/fs/cgroup/docker/dcbb…8e86/cpu.weight
50

In production, you should not use this method to adjust cgroups
on the fly, but we are demonstrating it here so that you understand
the underlying mechanics that make all of this work. Take a look
at docker container update if you’d like to adjust these on a run‐
ning container. You might also find the --cgroup-parent option to
docker container run interesting.

There you have it. We’ve changed the container’s settings on the fly. This method is
very powerful because it allows you to set any cgroups setting for the container. But
as we mentioned earlier, it’s entirely ephemeral. When the container is stopped and
restarted, the setting reverts to the default:

$ docker container stop dcbb…8e86
dcbb…8e86

$ cat /sys/fs/cgroup/docker/dcbb…8e86/cpu.weight
cat: /sys/fs/…/cpu.weight: No such file or directory

You can see that the directory path doesn’t even exist anymore now that the container
is stopped. And when we start it back up, the directory comes back but the setting is
back to 100:

$ docker container start dcbb…8e86
dcbb…8e86

$ cat /sys/fs/cgroup/docker/dcbb…8e86/cpu.weight
100

If you were to change these kinds of settings in a production system via the /sys
filesystem directly, you’d want to manage that directly. A daemon that watches the
docker system events stream and changes settings at container startup, for exam‐
ple, is a possibility.

298 | Chapter 11: Advanced Topics

https://docs.kernel.org/admin-guide/cgroup-v2.html#cpu-interface-files
https://dockr.ly/2PPC4P1
https://dockr.ly/2PTLaKK

It is possible to create custom cgroups outside of Docker and then
attach a new container to that cgroup using the --cgroup-parent
argument to docker container create. This mechanism is also
used by schedulers that run multiple containers inside the same
cgroup (e.g., Kubernetes pods).

Namespaces
Inside each container, you see a filesystem, network interfaces, disks, and other
resources that all appear to be unique to the container despite sharing the kernel with
all the other processes on the system. The primary network interface on the actual
machine, for example, is a single shared resource. But inside your container, it will
look like it has an entire network interface to itself. This is a really useful abstraction:
it’s what makes your container feel like a machine all by itself. The way this is
implemented in the kernel is with Linux namespaces. Namespaces take a traditionally
global resource and present the container with its own unique and unshared version
of that resource.

Namespaces cannot be explored on the filesystem quite as easily as
cgroups, but most of the details can be found under the /proc/*/ns/*
and /proc/*/task/*/ns/* hierarchies. In newer Linux releases, the
lsns command can also be quite useful.

Rather than just having a single namespace, however, by default containers have a
namespace on each of the resources that are currently namespaced in the kernel:
mount, UTS, IPC, PID, network, and user namespaces, in addition to the partially
implemented time namespace. Essentially, when you talk about a container, you’re
talking about several different namespaces that Docker sets up on your behalf. So
what do they all do?

Mount namespaces
Linux uses these primarily to make your container look like it has its own entire
filesystem. If you’ve ever used a chroot jail, this is its more robust relative. It
looks a lot like a chroot jail but goes all the way down to the deepest levels of the
kernel so that even mount and unmount system calls are namespaced. If you use
docker container exec or nsenter, which we will discuss later in this chapter,
to get into a container, you’ll see a filesystem rooted on /. But we know that this
isn’t the actual root partition of the system. It’s the mount namespace that makes
that possible.

UTS namespaces
Named for the kernel structure they namespace, UTS (Unix Time Sharing Sys‐
tem) namespaces give your container its own hostname and domain name. This

Containers in Detail | 299

is also used by older systems like NIS to identify which domain a host belongs
to. When you enter a container and see a hostname that is not the same as the
machine on which it runs, it’s this namespace that makes that happen.

To have a container use its host’s UTS namespace, you can specify
the --uts=host option when launching the container with docker
container run. There are similar commands for sharing the other
namespaces as well.

IPC namespaces
These isolate your container’s System V IPC and POSIX message queue systems
from those of the host. Some IPC mechanisms use filesystem resources like
named pipes, and those are covered by the mount namespace. The IPC name‐
space covers things like shared memory and semaphores that aren’t filesystem
resources but that really should not cross the container wall.

PID namespaces
We have already shown that you can see all of the processes in containers in the
Linux ps output on the host Linux server. But inside the container, processes
have a different PID. This is the PID namespace in action. A process has a
unique PID in each namespace to which it belongs. If you look in /proc inside a
container, or run ps, you will only see the processes inside the container’s PID
namespace.

Network namespaces
This is what allows your container to have its own network devices, ports, and
so on. When you run docker container ls and see the bound ports for your
container, you are seeing ports from both namespaces. Inside the container, your
nginx might be bound to port 80, but that’s on the namespaced network inter‐
face. This namespace makes it possible to have what seems to be a completely
separate network stack for your container.

User namespaces
These provide isolation between the user and group IDs inside a container and
those on the Linux host. Earlier, when we looked at ps output outside and then
inside the container, we saw different user IDs; this is how that happened. A new
user inside a container is not a new user on the Linux host’s main namespace,
and vice versa. There are some subtleties here, though. For example, UID 0
(root) in a user namespace is not the same thing as UID 0 on the host, although
running as root inside the container does increase the risk of potential security
exploits. There are concerns about security leakage, which we’ll talk about in a
bit, and this is why things like rootless containers are growing in popularity.

300 | Chapter 11: Advanced Topics

Cgroup namespaces
This namespace was introduced in Linux kernel 4.6 in 2016 and is intended to
hide the identity of the cgroup of which the process is a member. A process
checking which cgroup any process is part of would see a path that is relative to
the cgroup set at creation time, hiding its true cgroup position and identity.

Time namespaces
Time has historically not been namespaced since it is so integral to the Linux
kernel, and providing full namespacing would be very complex. However, with
the release of Linux kernel 5.6 in 2020, support was added for a time namespace
that allows containers to have their own unique clock offsets.

At the time of this writing, Docker still does not have direct sup‐
port for setting the time offset, but like everything else, it can be set
directly, if required.

So by combining all of these namespaces, Linux can provide the visual and, in many
cases, the functional isolation that makes a container look like a VM even though it’s
running on the same kernel. Let’s explore what some of the namespacing that we just
described looks like in more detail.

There is a lot of ongoing work trying to make containers more
secure. The community is actively looking into ways to improve
support for rootless containers, which enables regular users to
create, run, and manage containers locally without needing spe‐
cial privileges. In Docker, this can now be achieved via rootless
mode. New container runtimes like Google gVisor are also try‐
ing to explore better ways to create much more secure container
sandboxes without losing most of the advantages of containerized
workflows.

Exploring namespaces

One of the easiest namespaces to demonstrate is UTS, so let’s use docker container
exec to get a shell in a container and take a look. From within the Docker server, run
the following:

$ hostname

docker-desktop

Containers in Detail | 301

https://man7.org/linux/man-pages/man7/time_namespaces.7.html
https://rootlesscontaine.rs
https://docs.docker.com/engine/security/rootless
https://docs.docker.com/engine/security/rootless
https://github.com/google/gvisor

Again, remember that you can use the docker container run
--rm -it --privileged --pid=host debian nsenter -t 1 -m

-u -n -i sh command that we originally discussed in Chapter 3
to get access to the Docker host, even if you can’t SSH into the
server.

And then on your local system, run the following:

$ docker container run -ti --rm ubuntu \
 bash -c 'echo "Container hostname: $(hostname)"'

Container hostname: 4cdb66d4495b

That docker container run command line gets us an interactive session (-ti) and
then executes the hostname command via /bin/bash inside the container. Since the
hostname command is run inside the container’s namespace, we get back the short
container ID, which is used as the hostname by default. This is a pretty simple
example, but it should clearly show that we’re not in the same namespace as the host.

Another example that’s easy to understand and demonstrate involves PID namespa‐
ces. Let’s create a new container:

$ docker container run -d --rm --name pstest spkane/train-os sleep 240
6e005f895e259ed03c4386b5aeb03e0a50368cc173078007b6d1beaa8cd7dded

$ docker container exec -ti pstest ps -ef

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 15:33 ? 00:00:00 sleep 240
root 13 0 0 15:33 pts/0 00:00:00 ps -ef

And now let’s get Docker to show us the process IDs from the host’s perspective:

$ docker container top pstest

UID PID PPID C STIME TTY TIME CMD
root 31396 31370 0 15:33 ? 00:00:00 sleep 240

What we can see here is that from inside our container, the original command run by
Docker is sleep 240, and it has been assigned PID 1 inside the container. You might
recall that this is the PID normally used by the init process on Unix systems. In this
case, the sleep 240 command that we started the container with is the first process,
so it gets PID 1. But in the Docker server’s main namespace, we can see that the PID
there is not 1 but 31396, and it’s a child of process ID 31370.

If you are curious, you can run a command like this to determine what PID 31370 is:

$ docker container run --pid=host ubuntu ps -p 31370
PID TTY TIME CMD
31370 ? 00:00:00 containerd-shim

302 | Chapter 11: Advanced Topics

Now we can go ahead and remove the container we started in the last example by
running the following:

 $ docker container rm -f pstest

The other namespaces work in essentially the same manner, and you probably get
the idea by now. It’s worth pointing out here that when we were first working with
nsenter back in Chapter 3, we had to pass what appeared to be some pretty arcane
arguments to the command when we ran it to enter a container from the Docker
server. Let’s go ahead and look at the nsenter portion of the command docker
container run --rm -it --privileged --pid=host debian nsenter -t 1 -m -u

-n -i sh.

It turns out that nsenter -t 1 -m -u -n -i sh is exactly the same as nsenter
--target 1 --mount --uts --net -ipc sh. So this command really just says, look
at PID 1 and then open up a shell in the same mount, uts, net, and ipc namespaces of
that process.

Now that we’ve explained namespaces in detail, this probably makes a lot more sense
to you. It can also be educational to use nsenter to try entering different sets of
namespaces in a throwaway container to see what you get and simply explore how all
of this works in some more detail.

When it comes down to it, namespaces are the primary things that make a container
look like a container. Combine them with cgroups, and you have reasonably robust
isolation between processes on the same kernel.

Security
We’ve spent a good bit of space now talking about how Docker provides containment
for applications, allows you to constrain resource utilization, and uses namespaces to
give the container a unique view of the world. We have also briefly mentioned the
need for technologies like Secure Computing Mode, SELinux, and AppArmor. One of
the advantages of containers is the ability to replace VMs in several use cases. So let’s
take a look at what isolation we get by default and what we don’t.

You are undoubtedly aware by now that the isolation you get from a container is
not as strong as that from a VM. We’ve been reinforcing the idea from the start of
this book that containers are just processes running on the Linux server. Despite the
isolation provided by namespaces, containers are not as secure as you might imagine,
especially if you are still mentally comparing them to lightweight VMs.

One of the big boosts in performance for containers, and one of the things that makes
them lightweight, is that they share the kernel of the Linux server. This is also the
source of the greatest security concern around Linux containers. The main reason
for this concern is that not everything in the kernel is namespaced. We have talked

Security | 303

about all of the namespaces that exist and how the container’s view of the world is
constrained by the namespaces it runs in. However, there are still lots of places in the
kernel where no real isolation exists, and namespaces constrain the container only if
it does not have the power to tell the kernel to give it access to a different namespace.

Containerized applications are more secure than noncontainerized applications
because cgroups and standard namespaces provide some important isolation from
the host’s core resources. But you should not think of containers as a substitute for
good security practices. If you think about how you would run an application on
a production system, that is really how you should run all your containers. If your
application would traditionally run as a nonprivileged user on a server, then it should
be run in the same manner inside the container. It is very easy to tell Docker to run
your container processes as a nonprivileged user, and in almost all cases, this is what
you should be doing.

The --userns-remap argument to the dockerd command and root‐
less mode both make it possible to force all containers to run
within a user and group context that is unprivileged on the host
system. These approaches help protect the host from many poten‐
tial security exploits.
For more information about userns-remap, read through the offi‐
cial feature and Docker daemon documentation.
You can learn more about rootless mode in the section “Rootless
Mode” on page 308.

Let’s look at some common security risks and controls.

UID 0
The first and most overarching security risk in a container is that, unless you are
using rootless mode or the userns-remap functionality in the Docker daemon, the
root user in the container is actually the root user on the system. There are extra
constraints on root in a container, and namespaces do a good job of isolating root
in the container from the most dangerous parts of the /proc and /sys filesystems. But
if you are UID 0, you have root access, so if you somehow get access to protected
resources on a file mount or outside of your namespace, then the kernel will treat you
as root and therefore give you access to the resource. Unless otherwise configured,
Docker starts all services in containers as root, which means you are responsible for
managing privileges in your applications just like if you are on any standard Linux
system. Let’s explore some of the limits on root access and look at some obvious
holes. This is not intended to be an exhaustive statement on container security but
rather an attempt to give you a healthy understanding of some of the classes of
security risks.

304 | Chapter 11: Advanced Topics

https://dockr.ly/2BYfWze
https://dockr.ly/2LE9gG2

First, let’s fire up a container and get a bash shell using the public Ubuntu image
shown in the following code. Then we’ll see what kinds of access we have, after
installing some tools we want to run:

$ docker container run --rm -ti ubuntu /bin/bash

root@808a2b8426d1:/# apt-get update
…
root@808a2b8426d1:/# apt-get install -y kmod
…
root@808a2b8426d1:/# lsmod
Module Size Used by
xfrm_user 36864 1
xfrm_algo 16384 1 xfrm_user
shiftfs 28672 0
grpcfuse 16384 0
vmw_vsock_virtio_transport 16384 2
vmw_vsock_virtio_transport_common 28672 1 vmw_vsock_virtio_transport
vsock 36864 9 vmw_vsock_virtio_transport_common…

In Docker Desktop, you may only see a few modules in the list, but on a normal
Linux system, this list can be very long. Using lsmod, we’ve just asked the kernel to
tell us what modules are loaded. It is not that surprising that we get this list from
inside our container, since a normal user can always do this. If you run this listing
on the Docker server itself, it will be identical, which reinforces the fact that the
container is talking to the same Linux kernel that is running on the server. So we can
see the kernel modules; what happens if we try to unload the floppy module?

root@808a2b8426d1:/# rmmod shiftfs

rmmod: ERROR: ../libkmod/libkmod-module.c:799 kmod_module_remove_module() …
rmmod: ERROR: could not remove module shiftfs: Operation not permitted

root@808a2b8426d1:/# exit

That’s the same error message we would get if we were a nonprivileged user trying
to tell the kernel to remove a module. This should give you a good sense that the
kernel is doing its best to prevent us from doing things we shouldn’t. And because
we’re in a limited namespace, we can’t get the kernel to give us access to the top-level
namespace either. We are essentially relying on the hope that there are no bugs in the
kernel that allow us to escalate our privileges inside the container. Because if we do
manage to do that, we are root, which means that we will be able to make changes if
the kernel allows us to.

We can contrive a simple example of how things can go wrong by starting a bash shell
in a container that has had the Docker server’s /etc bind-mounted into the container’s
namespace. Keep in mind that anyone who can start a container on your Docker
server can do what we’re about to do any time they like because you can’t configure

Security | 305

Docker to prevent it, so you must instead rely on external tools like SELinux to avoid
exploits like this.

This example assumes that you are running the docker CLI on
a Linux system, which has an /etc/shadow file. This file will not
exist on Windows or macOS hosts running something like Docker
Desktop.

$ docker container run --rm -it -v /etc:/host_etc ubuntu /bin/bash

root@e674eb96bb74:/# more /host_etc/shadow
root:!:16230:0:99999:7:::
daemon:*:16230:0:99999:7:::
bin:*:16230:0:99999:7:::
sys:*:16230:0:99999:7:::
…
irc:*:16230:0:99999:7:::
nobody:*:16230:0:99999:7:::
libuuid:!:16230:0:99999:7:::
syslog:*:16230:0:99999:7:::
messagebus:*:16230:0:99999:7:::
kmatthias:1aTAYQT.j$3xamPL3dHGow4ITBdRh1:16230:0:99999:7:::
sshd:*:16230:0:99999:7:::
lxc-dnsmasq:!:16458:0:99999:7:::

root@e674eb96bb74:/# exit

Here we’ve used the -v switch to tell Docker to mount a host path into the container.
The one we’ve chosen is /etc, which is a very dangerous thing to do. But it serves
to prove a point: we are root in the container, and root has file permissions in this
path. So we can look at the /etc/shadow file on the Linux server, which contains the
encrypted passwords for all the users. There are plenty of other things you could do
here, but the point is that by default you’re only partly constrained.

It is a bad idea to run your container processes with UID 0. This
is because any exploit that allows the process to somehow escape
its namespaces will expose your host system to a fully privileged
process. You should always run your standard containers with a
nonprivileged UID.

The easiest way to deal with the potential problems surrounding the use of UID 0
inside containers is to always tell Docker to use a different UID for your container.

You can do this by passing the -u argument to docker container run. In the next
example, we run the whoami command to show that we are root by default and that
we can read the /etc/shadow file that is inside this container:

306 | Chapter 11: Advanced Topics

$ docker container run --rm spkane/train-os:latest whoami
root

$ docker container run --rm spkane/train-os:latest cat /etc/shadow
root:!locked::0:99999:7:::
bin:*:18656:0:99999:7:::
daemon:*:18656:0:99999:7:::
adm:*:18656:0:99999:7:::
lp:*:18656:0:99999:7:::
…

In this example, when you add -u 500, you will see that we become a new, unprivi‐
leged user and can no longer read the same /etc/shadow file:

$ docker container run --rm -u 500 spkane/train-os:latest whoami
user500

$ docker container run --rm -u 500 spkane/train-os:latest cat /etc/shadow
cat: /etc/shadow: Permission denied

Another highly recommended approach is to add the USER directive to your Docker‐
files so that containers created from them will launch using a nonprivileged user by
default:

FROM fedora:34
RUN useradd -u 500 -m myuser
USER 500:500
CMD ["whoami"]

If you create this Dockerfile, and then build and run it, you will see that whoami
returns myuser instead of root:

$ docker image build -t user-test .

[+] Building 0.5s (6/6) FINISHED
 => [internal] load build definition from Dockerfile 0.0s
 => => transferring dockerfile: 36B 0.0s
 => [internal] load .dockerignore 0.0s
 => => transferring context: 2B 0.0s
 => [internal] load metadata for docker.io/library/fedora:34 0.4s
 => [1/2] FROM docker.io/library/fedora:34@sha256:321d…2697 0.0s
 => CACHED [2/2] RUN useradd -u 500 -m myuser 0.0s
 => exporting to image 0.0s
 => => exporting layers 0.0s
 => => writing image sha256:4727…30d5 0.0s
 => => naming to docker.io/library/user-test 0.0s

$ docker container run --rm user-test
myuser

Security | 307

Rootless Mode
One of the primary security challenges with containers is that they often require
some root-privileged processes to launch and manage them. Even when you use
the --userns-remap feature of the Docker daemon, the daemon itself still runs as a
privileged process, even though the containers that it launches will not.

With rootless mode, it is possible to run the daemon and all containers without root
privileges, which can do a great deal to improve the security of the underlying system.

Rootless mode requires a Linux system, and Docker recommends Ubuntu, so let’s run
through an example using a new Ubuntu 22.04 system.

These steps assume that you are logging in a regular unprivileged
user and that you already have Docker Engine installed.

The first thing we need to do is make sure that dbus-user-session and uidmap are
installed. If dbus-user-session isn’t already installed, then we need to log out and
log back in after running the following command:

$ sudo apt-get install -y dbus-user-session uidmap
…
dbus-user-session is already the newest version (1.12.20-2ubuntu4).
…
Setting up uidmap (1:4.8.1-2ubuntu2) …
…

Although, it is not strictly required, if the system-wide Docker daemon is set up to
run, it is a very good idea to disable it and then reboot:

$ sudo systemctl disable --now docker.service docker.socket

Synchronizing state of docker.service with SysV service script with
 /lib/systemd/systemd-sysv-install.
Executing: /lib/systemd/systemd-sysv-install disable docker
Removed /etc/systemd/system/sockets.target.wants/docker.socket.
Removed /etc/systemd/system/multi-user.target.wants/docker.service.

$ sudo shutdown -r now

Once the system is back up, you can SSH back into the server as a regular user and
confirm that /var/run/docker.sock is no longer on the system:

$ ls /var/run/docker.sock
ls: cannot access '/var/run/docker.sock': No such file or directory

The next step is to run the rootless mode installation script, which is installed
in /usr/bin by the Docker installer:

308 | Chapter 11: Advanced Topics

https://docs.docker.com/engine/security/rootless
https://docs.docker.com/engine/install/ubuntu

$ dockerd-rootless-setuptool.sh install

[INFO] Creating /home/me/.config/systemd/user/docker.service
[INFO] starting systemd service docker.service
+ systemctl --user start docker.service
+ sleep 3
+ systemctl --user --no-pager --full status docker.service
● docker.service - Docker Application Container Engine (Rootless)
 Loaded: loaded (/home/me/.config/systemd/user/docker.service; …)
…
+ DOCKER_HOST=unix:///run/user/1000/docker.sock /usr/bin/docker version
Client: Docker Engine - Community
 Version: 20.10.18
…
Server: Docker Engine - Community
 Engine:
 Version: 20.10.18
…
+ systemctl --user enable docker.service
Created symlink /home/me/.config/systemd/user/default.target.wants/
 docker.service → /home/me/.config/systemd/user/docker.service.
[INFO] Installed docker.service successfully.

[INFO] To control docker.service, run:
 `systemctl --user (start|stop|restart) docker.service`
[INFO] To run docker.service on system startup, run:
 `sudo loginctl enable-linger me`

[INFO] Creating CLI context "rootless"
Successfully created context "rootless"

[INFO] Make sure the following environment variables are set
 (or add them to ~/.bashrc):
export PATH=/usr/bin:$PATH
export DOCKER_HOST=unix:///run/user/1000/docker.sock

The UID` in the DOCKER_HOST` variable here should match the UID
of the user who ran the script. In this case, the UID is 1000.

This script ran a few checks to ensure that our system was ready and then installed
and started a user-scoped systemd service file into ${HOME}/.config/systemd/user/
docker.service. Each and every user on the system could do the same thing,
if desired.

The user Docker daemon can be controlled, like most systemd services. A few basic
examples are shown here:

Security | 309

$ systemctl --user restart docker.service
$ systemctl --user stop docker.service
$ systemctl --user start docker.service

To allow the user Docker daemon to run when the user is not logged in, the user
needs to use sudo to enable a systemd feature called linger, and then you can also
enable the Docker daemon to start whenever the system boots up:

$ sudo loginctl enable-linger $(whoami)
$ systemctl --user enable docker

This would be a good time to go ahead and add those environment variables to our
shell startup files, but at a minimum we need to make sure both of these environment
variables are set in our current terminal:

$ export PATH=/usr/bin:$PATH
$ export DOCKER_HOST=unix:///run/user/1000/docker.sock

We can easily run a standard container:

$ docker container run --rm hello-world

Hello from Docker!
This message shows that your installation appears to be working correctly.
…
For more examples and ideas, visit:
 https://docs.docker.com/get-started/

However, you will notice that some of the more privileged containers that we have
used in earlier sections will not work in this environment:

$ docker container run --rm -it --privileged --pid=host debian nsenter \
 -t 1 -m -u -n -i sh

docker: Error response from daemon: failed to create shim task: OCI runtime
create failed: runc create failed: unable to start container process: error
during container init: error mounting "proc" to rootfs at "/proc":
mount proc:/proc (via /proc/self/fd/7), flags: 0xe:
operation not permitted: unknown.

And this is because, in rootless mode, the container cannot have more privileges than
the user who is running the container, even though, on the surface, the container
appears to still have full root privileges:

$ docker container run --rm spkane/train-os:latest whoami
root

310 | Chapter 11: Advanced Topics

Let’s explore this just a little bit more by launching a small container that is running
sleep 480s:

$ docker container run -d --rm --name sleep spkane/train-os:latest sleep 480s
1f8ccec0a834537da20c6e07423f9217efe34c0eac94f0b0e178fb97612341ef

If we look at the processes inside the container, we see that they all appear to be
running with the user root:

$ docker container exec sleep ps auxwww
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.1 0.0 2400 824 ? Ss 17:51 0:00 sleep 480s
root 7 0.0 0.0 7780 3316 ? Rs 17:51 0:00 ps auxwww

However, if we look at the processes on the Linux system, we see that the sleep
command is actually being run by the local user, named me, and not by root at all:

$ ps auxwww | grep sleep
me 3509 0.0 0.0 2400 824 ? Ss 10:51 0:00 sleep 480s
me 3569 0.0 0.0 17732 2360 pts/0 S+ 10:51 0:00 grep --color=auto sleep

The root user inside a rootless container is actually mapped to the user themself. The
container processes cannot use any privileges that the user running the daemon does
not already have, and because of this, they are a very safe way to allow users on a
multiuser system to run containers without granting any of them elevated privileges
on the system.

There are directions to uninstall rootless mode on the Docker
website.

Privileged Containers
There are times when you need your container to have special kernel capabilities that
would normally be denied to the container. These could include mounting a USB
drive, modifying the network configuration, or creating a new Unix device.

In the following code, we try to change the MAC address of our container:

$ docker container run --rm -ti spkane/train-os /bin/bash

[root@280d4dc16407 /]# ip link ls
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode …
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN mode DEFAULT …
 link/ipip 0.0.0.0 brd 0.0.0.0
3: ip6tnl0@NONE: <NOARP> mtu 1452 qdisc noop state DOWN mode DEFAULT …
 link/tunnel6 :: brd :: permaddr 12b5:6f1b:a7e9::
22: eth0@if23: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue …

Security | 311

https://docs.docker.com/engine/security/rootless/#uninstall
https://man7.org/linux/man-pages/man7/capabilities.7.html

 link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0

[root@fc4589fb8778 /]# ip link set eth0 address 02:0a:03:0b:04:0c
RTNETLINK answers: Operation not permitted

[root@280d4dc16407 /]# exit

As you can see, it doesn’t work. This is because the underlying Linux kernel blocks
the nonprivileged container from doing this, which is exactly what we’d normally
want. However, assuming that we need this functionality for our container to work
as intended, the easiest way to significantly expand a container’s privileges is by
launching it with the --privileged=true argument.

We don’t recommend running the ip link set eth0 address
command in the next example, since this will change the MAC
address on the container’s network interface. We show it to help
you understand the mechanism. Try it at your own risk.

$ docker container run -ti --rm --privileged=true spkane/train-os /bin/bash

[root@853e0ef5dd63 /]# ip link ls
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode …
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN mode DEFAULT …
 link/ipip 0.0.0.0 brd 0.0.0.0
3: ip6tnl0@NONE: <NOARP> mtu 1452 qdisc noop state DOWN mode DEFAULT …
 link/tunnel6 :: brd :: permaddr 12b5:6f1b:a7e9::
22: eth0@if23: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue …
 link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0

[root@853e0ef5dd63 /]# ip link set eth0 address 02:0a:03:0b:04:0c

[root@853e0ef5dd63 /]# ip link show eth0
26: eth0@if27: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue …
 link/ether 02:0a:03:0b:04:0c brd ff:ff:ff:ff:ff:ff link-netnsid 0

[root@853e0ef5dd63 /]# exit

In the preceding output, you will notice that we no longer get the error, and the
link/ether entry for eth0 has been changed.

The problem with using the --privileged=true argument is that you are giving your
container very broad privileges, and in most cases, you likely need only one or two
kernel capabilities to get the job done.

If we explore our privileged container some more, we will discover that we have
capabilities that have nothing to do with changing the MAC address. We can even do
things that could cause issues with both Docker and the host system. In the following
code, we are going to mount a disk partition from the underlying host system, list all

312 | Chapter 11: Advanced Topics

of the underlying Docker-based Linux containers on the system, and explore some of
their critical files:

$ docker container run -ti --rm --privileged=true spkane/train-os /bin/bash

[root@664a896983d7 /]# mount /dev/vda1 /mnt && \
 ls -F /mnt/docker/containers | \
 head -n 10

047df420f6d1f227a26667f83e477f608298c25b0cdad2e149a781587aae5e11/
0888b9f97b1ecc4261f637404e0adcc8ef0c8df291b87c9160426e42dc9b5dea/
174ea3ec35cd3a576bed6f475b477b1a474d897ece15acfc46e61685abb3101d/
1eddad26ee64c4b29eb164b71d56d680739922b3538dc8aa6c6966fce61125b0/
22b2aa38a687f423522dd174fdd85d578eb21c9c8ec154a0f9b8411d08f6fd4b/
23879e3b9cd6a42a1e09dc8e96912ad66e80ec09949c744d1177a911322e7462/
266fe7da627d2e8ec5429140487e984c8d5d36a26bb3cc36a88295e38216e8a7/
2cb6223e115c12ae729d968db0d2f29a934b4724f0c9536e377e0dbd566f1102/
306f00e86122b69eeba9323415532a12f88360a1661f445fc7d64c07249eb0ce/
333b85236409f873d07cd47f62ec1a987df59f688a201df744f40f98b7e4ef2c/

[root@664a896983d7 /]# ls -F /mnt/docker/containers/047d…5e11/

047df420f6d1f227a26667f83e477f608298c25b0cdad2e149a781587aae5e11-json.log
checkpoints/
config.v2.json
hostconfig.json
hostname
hosts
mounts/
resolv.conf
resolv.conf.hash

[root@664a896983d7 /]# cat /mnt/docker/containers/047d…5e11/047…e11-json.log

{"log":"047df420f6d1\r\n","stream":"stdout","time":"2022-09-14T15:18:29.…"}
…

[root@664a896983d7 /]# exit

Do not change or delete any of these files. It could have an unpre‐
dictable impact on the containers or the underlying Linux system.

So, as we’ve seen, people can run commands and get access to things that they
shouldn’t from a fully privileged container.

Security | 313

To change the MAC address, the only kernel capability we need is CAP_NET_ADMIN.
Instead of giving our container the full set of privileges, we can give it this one
privilege by launching our Linux container with the --cap-add argument, as shown
here:

$ docker container run -ti --rm --cap-add=NET_ADMIN spkane/train-os /bin/bash

[root@087c02a3c6e7 /]# ip link show eth0
36: eth0@if37: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue …
 link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0

[root@087c02a3c6e7 /]# ip link set eth0 address 02:0a:03:0b:04:0c

[root@087c02a3c6e7 /]# ip link show eth0
36: eth0@if37: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue …
 link/ether 02:0a:03:0b:04:0c brd ff:ff:ff:ff:ff:ff link-netnsid 0

[root@087c02a3c6e7 /]# exit

You should also notice that although we can change the MAC address, we can no
longer use the mount command inside our container:

$ docker container run -ti --rm --cap-add=NET_ADMIN spkane/train-os /bin/bash

[root@b84a06ddaa0d /]# mount /dev/vda1 /mnt
mount: /mnt: permission denied.

[root@b84a06ddaa0d /]# exit

It is also possible to remove specific capabilities from a container. Imagine for a
moment that your security team requires that tcpdump be disabled in all containers,
and when you test some of your containers, you find that tcpdump is installed and can
easily be run:

$ docker container run -ti --rm spkane/train-os:latest tcpdump -i eth0

dropped privs to tcpdump
tcpdump: verbose output suppressed, use -v[v]… for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), snapshot length 262144 bytes
15:40:49.847446 IP6 fe80::23:6cff:fed6:424f > ff02::16: HBH ICMP6, …
15:40:49.913977 ARP, Request who-has _gateway tell 5614703ffee2, length 28
15:40:49.914048 ARP, Request who-has _gateway tell 5614703ffee2, length 28
15:40:49.914051 ARP, Reply _gateway is-at 02:49:9b:d9:49:4e (oui Unknown), …
15:40:49.914053 IP 5642703bbff2.45432 > 192.168.75.8.domain: 44649+ PTR? …
…

You could remove tcpdump from your images, but there is very little preventing
someone from reinstalling it. The most effective way to solve this problem is to
determine what capability tcpdump needs to operate and remove that from the con‐
tainer. In this case, you can do so by adding --cap-drop=NET_RAW to your docker
container run command:

314 | Chapter 11: Advanced Topics

$ docker container run -ti --rm --cap-drop=NET_RAW spkane/train-os:latest \
 tcpdump -i eth0

tcpdump: eth0: You don't have permission to capture on that device
(socket: Operation not permitted)

By using both the --cap-add and --cap-drop arguments to docker container run,
you can finely control your container’s Linux kernel capabilities.

Be aware that in addition to providing access to system calls, there
are actually some other things that enabling a specific Linux capa‐
bility can provide. This might include visibility of all the devices on
the system or the ability to change the time on the system.

Secure Computing Mode
When Linux kernel version 2.6.12 was released in 2005, it included a new security
feature called Secure Computing Mode, or seccomp for short. This feature enables
a process to make a one-way transition into a special state, where it will only be
allowed to make the system calls exit(), sigreturn(), and read() or write() to
already-open file descriptors.

An extension to seccomp, called seccomp-bpf, utilizes the Linux version of Berkeley
Packet Filter (BPF) rules to allow you to create a policy that will provide an explicit
list of system calls that a process can utilize while running under Secure Computing
Mode. The Docker support for Secure Computing Mode utilizes seccomp-bpf so that
users can create profiles that give them very fine-grained control of which kernel
system calls their containerized processes are allowed to make.

By default, all containers use Secure Computing Mode and have the
default profile attached to them. You can read more about Secure
Computing Mode and which system calls the default profile blocks
in the documentation. You can also examine the default policy’s
JSON file to see what a policy looks like and understand exactly
what it defines.

To see how you could use this, let’s use the program strace to trace the system
calls that a process is making when we try to unmount a filesystem with the
umount command.

Security | 315

https://man7.org/linux/man-pages/man7/capabilities.7.html
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://docs.docker.com/engine/security/seccomp
https://docs.docker.com/engine/security/seccomp
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json

These examples are here to prove a point, but you obviously
shouldn’t be unmounting filesystems out of your container without
knowing exactly what is going to happen.

$ docker container run -ti --rm spkane/train-os:latest umount /sys/fs/cgroup
umount: /sys/fs/cgroup: must be superuser to unmount.

$ docker container run -ti --rm spkane/train-os:latest \
 strace umount /sys/fs/cgroup

execve("/usr/bin/umount", ["umount", "/sys/fs/cgroup"], 0x7fff902ddbe8 …
…
umount2("/sys/fs/cgroup", 0) = -1 EPERM (Operation not permitted)
write(2, "umount: ", 8umount:) = 8
write(2, "/sys/fs/cgroup: must be superuse"…,
 45/sys/fs/cgroup: must be superuser to unmount.) = 45
write(2, "\n", 1
) = 1
dup(1) = 3
close(3) = 0
dup(2) = 3
close(3) = 0
exit_group(32) = ?
+++ exited with 32 +++

We already know that mount-related commands do not work in a container with
standard permissions, and strace makes it clear that the system returns an “Oper‐
ation not permitted” error message when the umount command tries to use the
umount2 system call.

You could potentially fix this by giving your container the SYS_ADMIN capability, like
this:

$ docker container run -ti --rm --cap-add=SYS_ADMIN spkane/train-os:latest \
 strace umount /sys/fs/cgroup

execve("/usr/bin/umount", ["umount", "/sys/fs/cgroup"], 0x7ffd3e4452b8 …
…
umount2("/sys/fs/cgroup", 0) = 0
dup(1) = 3
close(3) = 0
dup(2) = 3
close(3) = 0
exit_group(0) = ?
+++ exited with 0 +++

316 | Chapter 11: Advanced Topics

However, remember that using --cap-add=SYS_ADMIN will make it possible for us to
do many other things, including mounting system partitions using a command like
this:

$ docker container run -ti --rm --cap-add=SYS_ADMIN spkane/train-os:latest \
 mount /dev/vda1 /mnt

You can solve this problem with a more focused approach by using a seccomp
profile. Unlike seccomp, --cap-add will enable a whole set of system calls and some
additional privileges, and you almost certainly don’t need them all. CAP_SYS_ADMIN
is particularly powerful and provides way more privileges than any one capability
should. With a seccomp profile, however, you can be very specific about exactly what
system calls you want to be enabled or disabled.

If we take a look at the default seccomp profile, we’ll see something like this:

{
 "defaultAction": "SCMP_ACT_ERRNO",
 "defaultErrnoRet": 1,
 "archMap": [
 {
 "architecture": "SCMP_ARCH_X86_64",
 "subArchitectures": [
 "SCMP_ARCH_X86",
 "SCMP_ARCH_X32"
]
 },
…
],
 "syscalls": [
 {
 "names": [
 "accept",
 "accept4",
 "access",
 "adjtimex",
…
 "waitid",
 "waitpid",
 "write",
 "writev"
],
 "action": "SCMP_ACT_ALLOW"
 },
 {
 "names": [
 "bpf",
 "clone",
…
 "umount2",
 "unshare"

Security | 317

],
 "action": "SCMP_ACT_ALLOW",
 "includes": {
 "caps": [
 "CAP_SYS_ADMIN"
]
 }
 },
…
]
}

This JSON file provides a list of supported architectures, a default ruleset, and
groups of system calls that fall within the scope of each capability. In this case, the
default action is SCMP_ACT_ERRNO and will generate an error if an unspecified call is
attempted.

If you examine the default profile in detail, you’ll notice that CAP_SYS_ADMIN controls
access to 37 system calls, a huge number that is even larger than the 4-6 system calls
included in most other capabilities.

In the current use case, we actually need some of the special functionality provided
by CAP_SYS_ADMIN, but we do not need all of those system calls. To ensure that we
are adding only the one additional system call that we need, we can create our own
Secure Computing Mode policy, based on the default policy that Docker provides.

First, pull down the default policy and make a copy of it:

$ wget https://raw.githubusercontent.com/moby/moby/master/\
profiles/seccomp/default.json

$ cp default.json umount2.json

The URL has been continued on the following line so that it fits in
the margins. You may find that you need to reassemble the URL
and remove the backslashes for the command to work properly in
your environment.

Then edit the file and remove a bunch of the system calls that CAP_SYS_ADMIN
normally provides. In this case, we actually need to retain two system calls to ensure
that both strace and umount work correctly.

The section of the file that we are targeting ends with this JSON block:

 "includes": {
 "caps": [
 "CAP_SYS_ADMIN"
]
 }

318 | Chapter 11: Advanced Topics

This diff shows the exact changes that need to be made in this use case:

$ diff -u -U5 default.json umount2.json

diff -u -U5 default.json umount2.json
--- default.json 2022-09-25 13:23:57.000000000 -0700
+++ umount2.json 2022-09-25 13:38:31.000000000 -0700
@@ -575,34 +575,12 @@
]
 }
 },
 {
 "names": [
- "bpf",
 "clone",
- "clone3",
- "fanotify_init",
- "fsconfig",
- "fsmount",
- "fsopen",
- "fspick",
- "lookup_dcookie",
- "mount",
- "mount_setattr",
- "move_mount",
- "name_to_handle_at",
- "open_tree",
- "perf_event_open",
- "quotactl",
- "quotactl_fd",
- "setdomainname",
- "sethostname",
- "setns",
- "syslog",
- "umount",
- "umount2",
- "unshare"
+ "umount2"
],
 "action": "SCMP_ACT_ALLOW",
 "includes": {
 "caps": [
 "CAP_SYS_ADMIN"

You are now ready to test your new finely tuned seccomp profile to ensure that it can
run umount but cannot run mount:

$ docker container run -ti --rm --security-opt seccomp=umount2.json \
 --cap-add=SYS_ADMIN spkane/train-os:latest /bin/bash

[root@15b8a26b6cfe /]# strace umount /sys/fs/cgroup
execve("/usr/bin/umount", ["umount", "/sys/fs/cgroup"], 0x7ffece9ebc38 …
close(3) = 0

Security | 319

exit_group(0) = ?
+++ exited with 0 +++

[root@15b8a26b6cfe /]# mount /dev/vda1 /mnt
mount: /mnt: permission denied.

[root@15b8a26b6cfe /]# exit

If everything went according to plan, your strace of the umount program should
have run perfectly and the mount command should have been blocked. In the real
world, it would be much safer to consider redesigning your applications so that they
do not need these special privileges, but when it cannot be avoided, you should be
able to use these tools to help ensure that your containers remain as secure as possible
while still doing their jobs.

You could completely disable the default Secure Computing Mode
profile by setting --security-opt seccomp=unconfined; however,
running a container unconfined is a very bad idea in general and is
probably only useful when you are trying to figure out exactly what
system calls you may need to define in your profile.

The strength of Secure Computing Mode is that it allows users to be much more
selective about what a container can and can’t do with the underlying Linux kernel.
Custom profiles are not required for most containers, but they are an incredibly
handy tool when you need to carefully craft a powerful container and ensure that you
maintain the overall security of the system.

SELinux and AppArmor
Earlier, we talked about how containers primarily leverage cgroups and namespaces
for their functionality. SELinux and AppArmor are security layers in the Linux
ecosystem that can be used to increase the security of containers even further. In this
section, we are going to discuss these two systems a bit. SELinux and AppArmor
allow you to apply security controls that extend beyond those normally supported by
Unix systems. SELinux originated in the US National Security Agency, was strongly
adopted by Red Hat, and supports very fine-grained control. AppArmor is an effort
to achieve many of the same goals while being a bit more user-friendly than SELinux.

By default, Docker ships with reasonable profiles enabled on platforms that support
either of these systems. You can further configure these profiles to enable or prevent
all sorts of features, and if you’re running Docker in production, you should do a risk
analysis to determine if there are additional considerations that you should be aware
of. We’ll give a quick outline of the benefits you are getting from these systems.

320 | Chapter 11: Advanced Topics

https://www.redhat.com/en/topics/linux/what-is-selinux
https://apparmor.net

Both systems provide mandatory access control, a class of security system where
a systemwide security policy grants users (or “initiators”) access to a resource (or
“target”). This allows you to prevent anyone, including root, from accessing a part of
the system that they should not have access to. You can apply the policy to a whole
container so that all processes are constrained. Many chapters would be required to
provide a clear and detailed overview of how to configure these systems. The default
profiles are performing tasks like blocking access to parts of the /proc and /sys filesys‐
tems that would be dangerous to expose in the container, even though they show up
in the container’s namespace. The default profiles also provide more narrowly scoped
mount access to prevent containers from getting hold of mount points they should
not see.

If you are considering using Linux containers in production, it is worth seriously
considering going through the effort to enable AppArmor or SELinux on these
systems. For the most part, both systems are reasonably equivalent. But in the Docker
context, one notable limitation of SELinux is that it only works fully on systems
that support filesystem metadata, which means that it won’t work with all Docker
storage drivers. AppArmor, on the other hand, does not use filesystem metadata and
therefore works on all of the Docker backends. Which one you use is somewhat
distribution-centric, so you may be forced to choose a filesystem backend that also
supports the security system that you use.

The Docker Daemon
From a security standpoint, the Docker daemon and its components are the only
completely new risk you are introducing to your infrastructure. Your containerized
applications are not any less secure and are, at least, a little more secure than they
would be if deployed outside of containers. But without the containers, you would
not be running dockerd, the Docker daemon. You can run Docker such that it doesn’t
expose any ports on the network. This is highly recommended and the default for
most Docker installations.

The default configuration for Docker, on most distributions, leaves Docker isolated
from the network with only a local Unix socket exposed. Since you cannot remotely
administer Docker when it is set up this way, it is not uncommon to see people
simply add the nonencrypted port 2375 to the configuration. This may be great for
getting started with Docker, but it is not what you should do in any environment
where you care about the security of your systems. You should not open Docker up to
the outside world at all unless you have a very good reason to. If you do, you should
also commit to properly securing it. Most scheduler systems run their services on
each node and expect to talk to Docker over the Unix domain socket instead of over a
network port.

Security | 321

If you do need to expose the daemon to the network, you can do a few things to
tighten Docker down in a way that makes sense in most production environments.
But no matter what you do, you are relying on the Docker daemon itself to be
resilient against threats like buffer overflows and race conditions, two of the more
common classes of security vulnerabilities. This is true of any network service. The
risk is a lot higher with the Docker daemon because it is normally run as root, it can
run anything on your system, and it has no integrated role-based access controls.

The basics of locking Docker down are common with many other network daemons:
encrypt your traffic and authenticate users. The first is reasonably easy to set up
on Docker; the second is not as easy. If you have SSL certificates you can use for
protecting HTTP traffic to your hosts, such as a wildcard certificate for your domain,
you can turn on TLS support to encrypt all of the traffic to your Docker servers,
using port 2376. This is a good first step. The Docker documentation will walk you
through doing this.

Authenticating users is more complicated. Docker does not provide any kind of
fine-grained authorization: you either have access or you don’t. But the authentication
control it does provide—signed certificates—is reasonably strong. Unfortunately, this
also means that you don’t get a cheap step from no authentication to some authenti‐
cation without also having to set up a certificate authority in most cases. If your
organization already has one, then you are in luck. Certificate management needs to
be implemented carefully in any organization, both to keep certificates secure and to
distribute them efficiently. So, given that, here are the basic steps:

1. Set up a method of generating and signing certificates.1.
2. Generate certificates for the server and clients.2.
3. Configure Docker to require certificates with --tlsverify.3.

Detailed instructions on getting a server and client set up, as well as a simple certifi‐
cate authority, are included in the Docker documentation.

Because it’s a daemon that almost always runs with privilege, and
because it has direct control of your applications, it is a bad idea to
expose Docker directly on the internet. If you need to talk to your
Docker hosts from outside your network, consider something like
a VPN or an SSH tunnel to a secure jump host.

322 | Chapter 11: Advanced Topics

https://docs.docker.com/engine/security/protect-access
https://docs.docker.com/engine/security/protect-access

Advanced Configuration
Docker has a very clean external interface, and on the surface, it looks pretty mon‐
olithic. But there are actually a lot of things going on behind the scenes that are
configurable, and the logging backends we described in “Logging” on page 150
are a good example. You can also do things like change out the storage backend
for container images for the whole daemon, use a completely different runtime, or
configure individual containers to run on a different network configuration. Those
are powerful switches, and you’ll want to know what they do before turning them
on. First, we’ll talk about the network configuration, then we’ll cover the storage
backends, and finally, we’ll try out a completely different container runtime to replace
the default runc supplied with Docker.

Networking
Early on, we described the layers of networking between a Linux container and the
real, live network. Let’s take a closer look at how that works. Docker supports a rich
set of network configurations, but let’s start with the default setup. Figure 11-1 shows
a drawing of a typical Docker server, where three containers are running on their
private network, shown on the right. One of them has a public port (TCP port 10520)
that is exposed on the Docker server. We’ll track how an inbound request gets to the
Linux container and also how a Linux container can make an outbound connection
to the external network.

Figure 11-1. The network on a typical Docker server

If we have a client somewhere on the network that wants to talk to the nginx server
running on TCP port 80 inside Container 1, the request will come into the eth0
interface on the Docker server. Because Docker knows this is a public port, it has
spun up an instance of docker-proxy to listen on port 10520. So our request is

Advanced Configuration | 323

passed to the docker-proxy process, which then forwards the request to the correct
container address and port on the private network. Return traffic from the request
flows through the same route.

Outbound traffic from the container follows a different route in which the docker-
proxy is not involved at all. In this case, Container 3 wants to contact a server on
the public internet. It has an address on the private network of 172.16.23.1, and its
default route is the docker0 interface 172.16.23.7. So it sends the traffic there. The
Docker server now sees that this traffic is outbound and that it has traffic forwarding
enabled. And since the virtual network is private, it wants to send the traffic from its
public address instead. So the request is passed through the kernel’s network address
translation (NAT) layer and put onto the external network via the eth0 interface on
the server. Return traffic passes through the same route. The NAT is one-way, so
containers on the virtual network will see real network addresses in response packets.

You’ve probably noticed that it’s not a simple configuration. It’s a fair amount of
complexity, but it makes Docker seem pretty transparent. It also contributes to the
security posture of the Docker stack because the containers are namespaced into
individual network namespaces, are on individual private networks, and don’t have
access to things like the main system’s DBus (Desktop Bus) or iptables.

Let’s examine what’s happening at a more detailed level. The interfaces that show up
in ifconfig or ip addr show in the Linux container are actually virtual Ethernet
interfaces on the Docker server’s kernel. They are then mapped into the container’s
network namespace and given the names that you see inside the container. Let’s take
a look at what we might see when running ip addr show on a Docker server. We’ll
shorten the output a little for clarity and spaces, as shown here:

$ ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group …
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 brd 127.255.255.255 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state …
 link/ether 02:50:00:00:00:01 brd ff:ff:ff:ff:ff:ff
 inet 172.16.168.178/24 brd 192.168.65.255 scope global dynamic …
 valid_lft 4908sec preferred_lft 3468sec
 inet6 fe80::50:ff:fe00:1/64 scope link
 valid_lft forever preferred_lft forever
…
7: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue …
 link/ether 02:42:9c:d2:89:4f brd ff:ff:ff:ff:ff:ff
 inet 172.17.42.1/16brd 172.17.255.255 scope global docker0
 valid_lft forever preferred_lft forever
 inet6 fe80::42:9cff:fed2:894f/64 scope link

324 | Chapter 11: Advanced Topics

 valid_lft forever preferred_lft forever
…
185: veth772de2a@if184: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc …
 link/ether 9a:a9:24:b7:5a:31 brd ff:ff:ff:ff:ff:ff link-netnsid 1
 inet6 fe80::98a9:24ff:feb7:5a31/64 scope link
 valid_lft forever preferred_lft forever

What this tells us is that we have the normal loopback interface, our real Ethernet
interface eth0, and then the Docker bridge interface, docker0, that we described ear‐
lier. This is where all the traffic from the Linux containers is picked up to be routed
outside the virtual network. The surprising thing in this output is the veth772de2a
interface. When Docker creates a container, it creates two virtual interfaces, one of
which sits on the server side and is attached to the docker0 bridge, and one that
is attached to the container’s namespace. What we’re seeing here is the server-side
interface. Did you notice how it doesn’t show up as having an IP address assigned to
it? That’s because this interface is just joined to the bridge. This interface will have a
different name in the container’s namespace as well.

As with so many pieces of Docker, you can replace the proxy with a different imple‐
mentation. To do so, you would use the --userland-proxy-path=<path> setting,
but there are probably not that many good reasons to do this unless you have a
very specialized network. However, the --userland-proxy=false flag to dockerd will
completely disable the userland-proxy and instead rely on hairpin NAT functional‐
ity to route traffic between local containers. If you need higher-throughput services,
this might be right for you.

A hairpin NAT is typically used to describe services inside a NATed
network that address one another with their public IP addresses.
This causes traffic from the source service to route out to the
internet, hit the external interface for the NAT router, and then get
routed back into the original network to the destination service.
The traffic is shaped like the letter U or a standard hairpin.

Host networking
As we’ve noted, there is a lot of complexity involved in the default implementation.
You can, however, run a container without the whole networking configuration
that Docker puts in place for you. And the docker-proxy can also limit the through‐
put for very high-volume data services by requiring all the network traffic to pass
through the docker-proxy process before being received by the container. So what
does it look like if we turn off the Docker network layer? Since the beginning, Docker
has let you do this on a per-container basis with the --net=host command-line
switch. There are times, like when you want to run high-throughput applications,
when you might want to do this. But you lose some of Docker’s flexibility when you
do. Let’s examine how this mechanism works.

Advanced Configuration | 325

https://www.geeksforgeeks.org/network-address-translation-nat

Like others we discuss in this chapter, this is not a setting you
should take lightly. It has operational and security implications that
might be outside your tolerance level. It can be the right thing to
do, but you should understand the consequences.

Let’s start a container with --net=host and see what happens:

$ docker container run --rm -it --net=host spkane/train-os bash

[root@docker-desktop /]# docker container run --rm -it --net=host \
 spkane/train-os ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
 default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 brd 127.255.255.255 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
 state UP group default qlen 1000
 link/ether 02:50:00:00:00:01 brd ff:ff:ff:ff:ff:ff
 inet 192.168.65.3/24 brd 192.168.65.255 scope global dynamic
 noprefixroute eth0
 valid_lft 4282sec preferred_lft 2842sec
 inet6 fe80::50:ff:fe00:1/64 scope link
 valid_lft forever preferred_lft forever
…
7: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue
 state DOWN group default
 link/ether 02:42:9c:d2:89:4f brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0
 valid_lft forever preferred_lft forever
 inet6 fe80::42:9cff:fed2:894f/64 scope link
 valid_lft forever preferred_lft forever
8: br-340323d07310: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc
 noqueue state DOWN group default
 link/ether 02:42:56:24:42:b8 brd ff:ff:ff:ff:ff:ff
 inet 172.22.0.1/16 brd 172.22.255.255 scope global br-340323d07310
 valid_lft forever preferred_lft forever
11: br-01f7537b9475: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc
 noqueue state DOWN group default
 link/ether 02:42:ed:14:67:61 brd ff:ff:ff:ff:ff:ff
 inet 172.18.0.1/16 brd 172.18.255.255 scope global br-01f7537b9475
 valid_lft forever preferred_lft forever
 inet6 fc00:f853:ccd:e793::1/64 scope global
 valid_lft forever preferred_lft forever
 inet6 fe80::42:edff:fe14:6761/64 scope link
 valid_lft forever preferred_lft forever
 inet6 fe80::1/64 scope link
 valid_lft forever preferred_lft forever

326 | Chapter 11: Advanced Topics

That should look pretty familiar. That’s because when we run a container with the
host networking option, the container is running in both the host server’s network
and UTS namespaces. Our server’s hostname is docker-desktop, and from the shell
prompt, we can tell that our container has the same hostname:

[root@docker-desktop /]# hostname
docker-desktop

If we run the mount command to see what’s mounted, though, we see that Docker is
still maintaining our /etc/resolv.conf, /etc/hosts, and /etc/hostname directories. And as
expected, the /etc/hostname directory simply contains the server’s hostname:

[root@docker-desktop /]# mount

overlay on / type overlay (rw,relatime,lowerdir=/var/lib/docker/overlay2/…)
…
/dev/vda1 on /etc/resolv.conf type ext4 (rw,relatime)
/dev/vda1 on /etc/hostname type ext4 (rw,relatime)
/dev/vda1 on /etc/hosts type ext4 (rw,relatime)
…

[root@docker-desktop /]# cat /etc/hostname
docker-desktop

Just to prove that we can see all the normal networking on the Docker server, let’s
look at the output from ss to see if we can see the sockets that Docker is utilizing:

root@852d18f5c38d:/# ss | grep docker

u_str ESTAB 0 0 /run/guest-services/docker.sock 18086 * 16860
…
u_str ESTAB 0 0 /var/run/docker.sock 21430 * 21942

If the Docker daemon was listening on a TCP port, like 2375, you
could have looked for that as well. Feel free to look for another
TCP port on your server port that you know is in use.

If you search for docker in the output of a normal container within its own name‐
space, you will notice that you get no results:

$ docker container run --rm -it spkane/train-os bash -c "ss | grep docker"

So we are indeed in the server’s network namespace. What all of this means is that
if we were to launch a high-throughput network service, we could expect network
performance from it that is essentially native. But it also means we could try to bind
to ports that would collide with those on the server, so if you do this, you should be
careful about how you allocate port assignments.

Advanced Configuration | 327

Configuring networks
There is more to networking than just the default network or host networking,
however. The docker network command lets you create multiple networks backed by
different drivers. It also allows you to view and manipulate the Docker network layers
and how they are attached to containers that are running on the system.

Listing the networks available from Docker’s perspective is easily accomplished with
the following command:

$ docker network ls

NETWORK ID NAME DRIVER SCOPE
5840a6c23373 bridge bridge local
1c22b4582189 host host local
c128bfdbe003 none null local

You can then find out more details about any individual network by using the docker
network inspect command along with the network ID:

$ docker network inspect 5840a6c23373

[
 {
 "Name": "bridge",
 "Id": "5840…fc94",
 "Created": "2022-09-23T01:21:55.697907958Z",
 "Scope": "local",
 "Driver": "bridge",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": null,
 "Config": [
 {
 "Subnet": "172.17.0.0/16",
 "Gateway": "172.17.0.1"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": {},
 "Options": {
 "com.docker.network.bridge.default_bridge": "true",
 "com.docker.network.bridge.enable_icc": "true",
 "com.docker.network.bridge.enable_ip_masquerade": "true",
 "com.docker.network.bridge.host_binding_ipv4": "0.0.0.0",

328 | Chapter 11: Advanced Topics

 "com.docker.network.bridge.name": "docker0",
 "com.docker.network.driver.mtu": "1500"
 },
 "Labels": {}
 }
]

Docker networks can be created and removed, as well as attached and detached from
individual containers, with the network subcommand.

So far, we’ve set up a bridged network, no Docker network, and a bridged network
with hairpin NAT. There are a few other drivers that you can use to create different
topologies using Docker as well, with the overlay and macvlan drivers being the
most common. Let’s take a brief look at what these can do for you:

overlay

This driver is used in Swarm mode to generate a network overlay between the
Docker hosts, creating a private network between all the containers that run on
top of the real network. This is useful for Swarm but not in scope for general use
with non-Swarm containers.

macvlan

This driver creates a real MAC address for each of your containers and then
exposes them on the network via the interface of your choice. This requires that
you switch gears to support more than one MAC address per physical port on
the switch. The result is that all the containers appear directly on the underlying
network. When you’re moving from a legacy system to a container-native one,
this can be a really useful step. There are drawbacks here, such as making
it harder when debugging to identify which host the traffic is really coming
from, overflowing the MAC tables in your network switches, excessive ARPing
by container hosts, and other underlying network issues. For this reason, the
macvlan driver is not recommended unless you have a good understanding of
your underlying network and can manage it effectively.

There are a few sets of configurations that are possible here, but the basic setup is easy
to configure:

$ docker network create -d macvlan \
 --subnet=172.16.16.0/24 \
 --gateway=172.16.16.1 \
 -o parent=eth0 ourvlan

$ docker network ls
NETWORK ID NAME DRIVER SCOPE
5840a6c23373 bridge bridge local
1c22b4582189 host host local
c128bfdbe003 none null local
8218c0ecc9e2 ourvlan macvlan local

Advanced Configuration | 329

$ docker network rm 8218c0ecc9e2

You can prevent Docker from allocating specific addresses by spec‐
ifying them as named auxiliary addresses, --aux-address="my-
router=172.16.16.129".

There is a lot more you can configure with the Docker network layer. However, the
defaults, host networking, and userland proxyless mode are the ones that you’re most
likely to use or encounter in the wild. Some of the other options you can configure
include the container’s DNS nameservers, resolver options, and default gateways,
among other things. The networking section of the Docker documentation gives an
overview of how to do some of this configuration.

For advanced network configuration of Docker, check out Weave
—a well-supported overlay network tool for spanning containers
across multiple Docker hosts, similar to the overlay driver but
much more configurable and without the Swarm requirement.
Another offering is Project Calico. If you’re running Kubernetes,
which has its own networking configuration, you might also want
to familiarize yourself with the Container Network Interface (CNI)
and then look at Cilium, which provides robust eBPF-based net‐
working for containers.

Storage
Backing all of the images and containers on your Docker server is a storage backend
that handles reading and writing all of that data. Docker has some strenuous require‐
ments on its storage backend: it has to support layering, the mechanism by which
Docker tracks changes and reduces both how much disk a container occupies and
how much is shipped over the wire to deploy new images. Using a copy-on-write
strategy, Docker can start up a new container from an existing image without having
to copy the whole image. The storage backend supports that. The storage backend
is what makes it possible to export images as groups of changes in layers and also
lets you save the state of a running container. In most cases, you need the kernel’s
help in doing this efficiently. That’s because the filesystem view in your container
is generally a union of all of the layers below it, which are not actually copied into
your container. Instead, they are made visible to your container, and only when you
make changes does anything get written to your container’s filesystem. One place this
layering mechanism is exposed to you is when you upload or download a new image
from a registry like Docker Hub. The Docker daemon will push or pull each layer
separately, and if some of the layers are the same as others it has already stored, it will

330 | Chapter 11: Advanced Topics

https://docs.docker.com/network
https://github.com/weaveworks/weave
https://www.tigera.io/project-calico
https://www.cni.dev
https://cilium.io

use the cached layer instead. In the case of a push to a registry, it will sometimes even
tell you which image they are mounted from.

Docker relies on an array of possible kernel drivers to handle the layering. The
Docker codebase contains code that can handle interacting with many of these
backends, and you can configure the decision about which to use on daemon restart.
So let’s look at what is available and some of the pluses and minuses of each.

Various backends have different limitations that may or may not make them your
best option. In some cases, your choices of which backend to use are limited by what
your distribution of Linux supports. Using the drivers that are built into the kernel
shipped with your distribution will always be the easiest approach. It’s generally
best to stay close to the well-tested path. We’ve seen all manner of oddities from
various backends since Docker’s release. And, as usual, the common case is always
the best-supported one. Different backends also report different statistics through the
Docker Remote API (/info endpoint). This can be very useful for monitoring your
Docker systems. However, not all backends are created equal, so let’s see how they
differ:

Overlay
Overlay (formerly OverlayFS) is a union filesystem where multiple layers are
mounted together so that they appear as a single filesystem. The Overlay filesys‐
tem is the most recommended choice for Docker storage these days and works
on most major distributions. If you are running on a Linux kernel older than
4.0 (or 3.10.0-693 for RHEL), then you won’t be able to take advantage of this
backend. The reliability and performance are good enough that it might be worth
updating your OS for Docker hosts to support it, even if your company standard
is an older distribution. The Overlay filesystem is part of the mainline Linux ker‐
nel and has become increasingly stable over time. Being in the mainline means
that long-term support is virtually guaranteed, which is another nice advantage.
Docker supports two versions of the Overlay backend, overlay and overlay2. As
you might expect, you are strongly advised to use overlay2 as it is faster, more
efficient with inode usage, and more robust.

Storage | 331

https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html

The Docker community is frequently improving support for a vari‐
ety of filesystem backends. For more details about the supported
filesystems, take a look at the official documentation.

AuFS
Although at the time of this writing it is no longer recommended, aufs is the
original backend for Docker. AuFS (Advanced multilayered unification filesys‐
tem) is a union filesystem driver with reasonable support on various popular
Linux distributions. It was never accepted into the mainline kernel, however,
and this has limited its availability on various distributions. It is not supported
on recent versions of Red Hat or Fedora, for example. It is not shipped in the
standard Ubuntu distribution but is in the Ubuntu linux-image-extra package.

Its status as a second-class citizen in the kernel has led to the development of
many of the other backends now available. If you are running an older distribu‐
tion that supports AuFS, you might consider it, but you should upgrade to a
kernel version that natively supports Overlay or Btrfs, which is discussed next.

Btrfs
B-Tree File System (Btrfs) is fundamentally a copy-on-write filesystem, which
means it’s a pretty good fit for the Docker image model. Like aufs and unlike
devicemapper, Docker is using the backend in the way it was intended. That
means it’s both pretty stable in production and also a good performer. It scales
reasonably to thousands of containers on the same system. A drawback for Red
Hat–based systems is that Btrfs does not support SELinux. If you can use the
btrfs backend, it is worth exploring another option, after the overlay2 driver.
One popular way to run btrfs backends for Linux containers without having to
give over a whole volume to this filesystem is to make a Btrfs filesystem in a file
and loopback-mount it with something like mount -o loop file.btrs /mnt.
Using this method, you could build a 50 GB Linux container storage filesystem
even on cloud-based systems without having to give over all your precious local
storage to Btrfs.

Device Mapper
Originally written by Red Hat to support their distributions, which lacked AuFS
in Docker’s early days, Device Mapper became the default backend on all Red
Hat–based distributions of Linux. Depending on the version of Red Hat Linux
that you are using, this may be your only option. Device Mapper itself has been
built into the Linux kernel for ages and is very stable. The way the Docker dae‐
mon uses it is a bit unconventional, though, and in the past, this backend was not
that stable. This checkered past means that we recommend picking a different
backend when possible. If your distribution supports only the devicemapper

332 | Chapter 11: Advanced Topics

https://docs.docker.com/storage/storagedriver
https://aufs.sourceforge.net
https://aufs.sourceforge.net
https://btrfs.wiki.kernel.org/index.php/Main_Page

driver, then you will likely be fine. But it’s worth considering using overlay2
or btrfs. By default, devicemapper utilizes the loop-lvm mode, which has zero
configuration and is very slow and generally only useful for development. If you
decide to use the devicemapper driver, you must make sure it is configured to use
direct-lvm mode for all nondevelopment environments.

You can find out more about using the various devicemapper
modes with Docker in the official documentation. A 2014 blog
article also provides some interesting history about the various
Docker storage backends.

VFS
Of the supported drivers, the Virtual File System (vfs) driver is the simplest, and
slowest, to start up. It doesn’t actually support copy-on-write. Instead, it makes a
new directory and copies over all of the existing data. It was originally intended
for use in tests and for mounting host volumes. The vfs driver is very slow to
create new containers, but runtime performance is native, which is a real benefit.
Its mechanism is very simple, which means there is less to go wrong. Docker,
Inc., does not recommend it for production use, so proceed with caution if you
think it’s the right solution for your production environment.

ZFS
ZFS, which was created by Sun Microsystems, is the most advanced open source
filesystem available on Linux. Due to licensing restrictions, it does not ship in
mainline Linux. However, the ZFS on Linux project has made it pretty easy to
install. Docker can then run on top of the ZFS filesystem and use its advanced
copy-on-write facilities to implement layering. Given that ZFS is not in the main‐
line kernel and not available off the shelf in the major commercial distributions,
going this route requires some extended effort. However, if you are already
running ZFS in production, this may be your very best option.

Storage backends can have a big impact on the performance of
your containers. And if you swap the backend on your Docker
server, all of your existing images will disappear. They are not
gone, but they will not be visible until you switch the driver back.
Caution is advised.

Storage | 333

https://docs.docker.com/storage/storagedriver/device-mapper-driver
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker
https://zfsonlinux.org

You can use docker system info to see which storage backend your system is
running:

$ docker system info

…
 Storage Driver: overlay2
 Backing Filesystem: extfs
 Supports d_type: true
 Native Overlay Diff: true
 userxattr: false
…

As you can see, Docker will also tell you what the underlying or “backing” filesystem
is if there is one. Since we’re running overlay2 here, we can see it’s backed by an ext
filesystem. In some cases, like with devicemapper on raw partitions or with btrfs,
there won’t be a different underlying filesystem.

Storage backends can be swapped via the daemon-json configuration file or via
command-line arguments to dockerd on startup. If we wanted to switch our Ubuntu
system from aufs to devicemapper, we could do so like this:

$ dockerd --storage-driver=devicemapper

That will work on pretty much any Linux system that can support Docker because
devicemapper is almost always present. The same is true for overlay2 on modern
Linux kernels. However, you will need to have the actual underlying dependencies in
place for the other drivers. For example, without aufs in the kernel—usually via a
kernel module—Docker will not start up with aufs set as the storage driver, and the
same is true for Btrfs or ZFS.

Getting the appropriate storage driver for your systems and deployment needs is
one of the more important technical points to get right when you’re taking Docker
to production. Be conservative: make sure the path you choose is well supported
in your kernel and distribution. Historically, this was a pain point, but most of the
drivers have reached reasonable maturity. Remain cautious for any newly appearing
backends, however, as this space continues to change. Getting new backend drivers to
work reliably for production systems takes quite some time, in our experience.

nsenter
nsenter, which is short for “namespace enter,” allows you to enter any Linux name‐
space and is part of the core util-linux package from kernel.org. Using nsenter,
we can get into a Linux container from the server itself, even in situations where the
dockerd server is not responding and we can’t use docker container exec. It can
also be used to manipulate things in a container as root on the server that would
otherwise be prevented by docker container exec. This can be truly useful when

334 | Chapter 11: Advanced Topics

https://mirrors.edge.kernel.org/pub/linux/utils/util-linux

you are debugging. Most of the time, docker container exec is all you need, but
you should have nsenter in your tool belt.

Most Linux distributions ship with a new-enough util-linux package that it will
contain nsenter. If you are on a distribution that does not have it, the easiest way to
get hold of nsenter is to install it via the third-party Linux container.

This container works by pulling a Docker image from the Docker Hub registry and
then running a Linux container that will install the nsenter command-line tool
into /usr/local/bin. This might seem strange at first, but it’s a clever way to allow you
to install nsenter to any Docker server remotely using nothing more than the docker
command.

Unlike docker container exec, which can be run remotely, nsenter requires that
you run it on the server itself, directly or via a container. For our purposes, we’ll use
a specially crafted container to run nsenter. As with the docker container exec
example, we need to have a container running:

$ docker container run -d --rm ubuntu:22.04 sleep 600
fd521174d66dc32650d165e0ce7dd97255c7b3624c34cb1d119d955284382ddf

docker container exec is pretty simple, but nsenter is a little inconvenient to use.
It needs to have the PID of the actual top-level process in your container, which is not
obvious to find. Let’s go ahead and run nsenter by hand so you can see what’s going
on.

First, we need to find out the ID of the running container, because nsenter needs to
know that to access it. We can easily get this using docker container ls:

$ docker container ls

CONTAINER ID IMAGE COMMAND … NAMES
fd521174d66d ubuntu:22.04 "sleep 1000" … angry_albattani

The ID we want is that first field, fd521174d66d. With that, we can now find the PID
we need, like this:

$ docker container inspect --format \{{.State.Pid\}} fd521174d66d
2721

You can also get the real PIDs of the processes in your container
by running the command docker container top, followed by the
container ID. In our example, this would look like the following:

$ docker container top fd521174d66d

UID PID PPID C STIME TTY TIME CMD
root 2721 2696 0 20:37 ? 00:00:00 sleep 600

nsenter | 335

https://github.com/jpetazzo/nsenter

Make sure to update the --target argument in the following command with the
process ID that you got from the previous command, then go ahead and invoke
nsenter:

$ docker container run --rm -it --privileged --pid=host debian \
 nsenter --target 2721 --all

ps -ef

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 20:37 ? 00:00:00 sleep 600
root 11 0 0 20:51 ? 00:00:00 -sh
root 15 11 0 20:51 ? 00:00:00 ps -ef
exit

If the result looks a lot like docker container exec, that’s because it does almost the
same thing under the hood!

The command-line argument --all is telling nsenter that we want to enter all of the
namespaces used by the process specified with --target.

Debugging Shell-less Containers
If you want to troubleshoot a container that does not have a Unix shell, then things
get a little trickier, but it is still possible. For this example, we can run a container that
has a single executable in it:

$ docker container run --rm -d --name outyet-small \
 --publish mode=ingress,published=8090,target=8080 \
 spkane/outyet:1.9.4-small
4f6de24d4c9c794c884afa758ef5b33ea38c01f8ec9314dcddd9fadc25c1a443

Let’s take a quick look at the processes that are running in this container:

$ docker container top outyet-small

UID PID PPID C STIME TTY TIME CMD
root 61033 61008 0 22:43 ? 00:00:00 /outyet -version 1.9.4 -poll 600s …

If you try to launch a Unix shell in the container, you will get an error:

$ docker container exec -it outyet-small /bin/sh

OCI runtime exec failed: exec failed: unable to start container process: exec:
 "/bin/sh": stat /bin/sh: no such file or directory: unknown

We can then launch a second container that includes a shell and some other useful
tools in a way that the new container can see the processes in the first container, is
using the same network stack as the first container, and has some extra privileges
which will be helpful for our debugging:

336 | Chapter 11: Advanced Topics

$ docker container run --rm -it --pid=container:outyet-small \
 --net=container:outyet-small --cap-add sys_ptrace \
 --cap-add sys_admin spkane/train-os /bin/sh

sh-5.1#

If you type ls in this container, you will see in the filesystem the spkane/train-os
image, which contains /bin/sh and all of our debugging tools, but it does not contain
any of the files from our outyet-small container:

sh-5.1# ls

bin dev home lib64 media opt root sbin sys usr
boot etc lib lost+found mnt proc run srv tmp var

However, if you type ps -ef, you will notice that you see all of the processes from
the original container. This is because we told Docker to attach to use the namespace
from the outyet-small container by passing in --pid=container:outyet-small:

sh-5.1# ps -ef

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 22:43 ? 00:00:00 /outyet -version 1.9.4 -poll 600s …
root 29 0 0 22:47 pts/0 00:00:00 /bin/sh
root 36 29 0 22:49 pts/0 00:00:00 ps -ef

And because we are using the same network stack, you can even curl the port that
the outyet service from the first container is bound to:

sh-5.1# curl localhost:8080

<!DOCTYPE html><html><body><center>
 <h2>Is Go 1.9.4 out yet?</h2>
 <h1>

 YES!

 </h1>
 <p>Hostname: 155914f7c6cd</p>
</center></body></html>

At this point, you could use strace or whatever else you wanted to debug your
application, and then finally exit the new debug container, leaving your original
container still running on the server.

If you run strace, you will need to type Ctrl-C to exit the strace
process.

nsenter | 337

sh-5.1# strace -p 1

strace: Process 1 attached
futex(0x963698, FUTEX_WAIT, 0, NULL^Cstrace: Process 1 detached
 <detached …>

sh-5.1# exit
exit

You’ll notice that we could not see the filesystem in this use case. If you need to view
or copy files from the container, you can make use of the docker container export
command to retrieve a tarball of the container’s filesystem:

$ docker container export outyet-small -o export.tar

You can then use tar to view or extract the files:

$ tar -tvf export.tar

-rwxr-xr-x 0 0 0 0 Jul 17 16:04 .dockerenv
drwxr-xr-x 0 0 0 0 Jul 17 16:04 dev/
-rwxr-xr-x 0 0 0 0 Jul 17 16:04 dev/console
drwxr-xr-x 0 0 0 0 Jul 17 16:04 dev/pts/
drwxr-xr-x 0 0 0 0 Jul 17 16:04 dev/shm/
drwxr-xr-x 0 0 0 0 Jul 17 16:04 etc/
-rwxr-xr-x 0 0 0 0 Jul 17 16:04 etc/hostname
-rwxr-xr-x 0 0 0 0 Jul 17 16:04 etc/hosts
lrwxrwxrwx 0 0 0 0 Jul 17 16:04 etc/mtab -> /proc/mounts
-rwxr-xr-x 0 0 0 0 Jul 17 16:04 etc/resolv.conf
drwxr-xr-x 0 0 0 0 Apr 24 2021 etc/ssl/
drwxr-xr-x 0 0 0 0 Apr 24 2021 etc/ssl/certs/
-rw-r--r-- 0 0 0 261407 Mar 13 2018 etc/ssl/certs/ca-certificates.crt
-rwxr-xr-x 0 0 0 5640640 Apr 24 2021 outyet
drwxr-xr-x 0 0 0 0 Jul 17 16:04 proc/
drwxr-xr-x 0 0 0 0 Jul 17 16:04 sys/

When you are finished, go ahead and delete export.tar, and then stop the outyet-
small container with docker container stop outyet-small.

You can explore the container’s filesystem from the Docker server
by navigating directly to where the filesystem resides on the serv‐
er’s storage system. This will typically look something like /var/lib/
docker/overlay/fd5… but will vary based on the Docker setup, stor‐
age backend, and container hash. You can determine your Docker
root directory by running docker system info.

338 | Chapter 11: Advanced Topics

The Structure of Docker
What we think of as Docker is made of five major server-side components that
present a common front via the API. These parts are dockerd, containerd, runc,
containerd-shim-runc-v2, and the docker-proxy we described in “Networking” on
page 323. We’ve spent a lot of time interacting with dockerd and the API it presents.
It is, in fact, responsible for orchestrating the whole set of components that make
up Docker. But when it starts a container, Docker relies on containerd to handle
instantiating the container. All of this used to be handled in the dockerd process
itself, but there were several shortcomings to that design:

• dockerd had a huge number of jobs.•
• A monolithic runtime prevented any of the components from being swapped out•

easily.
• dockerd had to supervise the lifecycle of the containers themselves, and it•

couldn’t be restarted or upgraded without losing all the running containers.

Another major motivation for containerd was that, as we’ve just shown, containers
are not just a single abstraction. On the Linux platform, they are processes involving
namespaces, cgroups, and security rules in AppArmor or SELinux. But Docker also
runs on Windows and may even work on other platforms in the future. The idea
of containerd is to present a standard layer to the outside world where, regardless
of implementation, developers can think about the higher-level concepts of contain‐
ers, tasks, and snapshots rather than worry about specific Linux system calls. This
simplifies the Docker daemon a lot and enables platforms like Kubernetes to integrate
directly into containerd rather than using the Docker API. Kubernetes relied on a
Docker shim for many years, but nowadays it uses containerd directly.

Let’s take a look at the components (shown in Figure 11-2) and see what each of them
does:

dockerd

One per server. Serves the API, builds container images, and does high-level
network management, including volumes, logging, statistics reporting, and more.

docker-proxy

One per port forwarding rule. Each instance handles the forwarding of the
defined protocol traffic (TCP/UDP) from the defined host IP and port to the
defined container IP and port.

containerd

One per server. Manages the lifecycle, execution, copy-on-write filesystem, and
low-level networking drivers.

The Structure of Docker | 339

1 To quote the OCI website: “The Open Container Initiative (OCI) is a lightweight, open governance structure
(project), formed under the auspices of the Linux Foundation, for the express purpose of creating open
industry standards around container formats and runtime. The OCI was launched on June 22nd, 2015 by
Docker, CoreOS and other leaders in the container industry.”

containerd-shim-runc-v2

One per container. Handles file descriptors passed to the container (e.g., stdin/
out) and reports exit status.

runc

Constructs the container and executes it, gathers statistics, and reports events on
the lifecycle.

Figure 11-2. Structure of Docker

dockerd and containerd speak to each other over a socket, usually a Unix socket,
using a gRPC API. dockerd is the client in this case, and containerd is the server!
runc is a CLI tool that reads configuration from JSON on disk and is executed by
containerd.

When we start a new container, dockerd will handle making sure that the image is
present or will pull it from the repository specified in the image name. (In the future,
this responsibility may shift to containerd, which already supports image pulls.) The
Docker daemon also does most of the rest of the setup around the container, like
launching docker-proxy to set up port forwarding. It then talks to containerd and
asks it to run the container. containerd will take the image and apply the container
configuration passed in from dockerd to generate an OCI bundle that runc can
execute.1 It will then execute containerd-shim-runc-v2 to start the container. This
will in turn execute runc to construct and start the container. However, runc will not

340 | Chapter 11: Advanced Topics

https://grpc.io
https://www.opencontainers.org

stay running, and the containerd-shim-runc-v2 will be the actual parent process of
the new container process.

If we launch a container and then look at the output of ps axlf on the Docker server,
we can see the parent/child relationship between the various processes. PID 1 is /
sbin/init and is the parent process for containerd, dockerd, and the containerd-
shim-runc-v2.

Docker Desktop’s VM contains minimal versions of most Linux
tools, and some of these commands may not produce the same
output that you will get if you use a standard Linux server as the
Docker daemon host.

$ docker container run --rm -d \
 --publish mode=ingress,published=8080,target=80 \
 --name nginx-test --rm nginx:latest
08b5cffed7baaf32b3af50498f7e5c5fa7ed35e094fa6045c205a88746fe53dd

$ ps axlf
… PID PPID COMMAND
…
… 5171 1 /usr/bin/containerd
… 5288 1 /usr/bin/dockerd -H fd:// --containerd=/run/cont…/containerd.…
… 5784 5288 _ /usr/bin/docker-proxy -proto tcp -host-ip … -host-port 8080
… 5791 5288 _ /usr/bin/docker-proxy -proto tcp -host-ip :: -host-port …
… 5807 1 /usr/bin/containerd-shim-runc-v2 -namespace moby -id …
… 5829 5807 _ nginx: master process nginx -g daemon off;
… 5880 5829 _ nginx: worker process
… 5881 5829 _ nginx: worker process
… 5882 5829 _ nginx: worker process
… 5883 5829 _ nginx: worker process
…

So what happened to runc? Its job is to construct the container and start it running,
then it leaves and its children are inherited by its parent, the containerd-shim-runc-
v2. This leaves the minimal amount of code in memory necessary to manage the file
descriptors and exit status for containerd.

To help you understand what’s going on here, let’s take a deeper look at what happens
when we start a container. We’ll just reuse the nginx container that we already have
running for this since it’s very lightweight and the container stays running when
backgrounded:

$ docker container ls

CONTAINER ID IMAGE COMMAND … PORTS NAMES
08b5cffed7ba nginx:latest "/docker-ent…" … 0.0.0.0:8080->80/tcp … nginx-test

The Structure of Docker | 341

Let’s use the runc runtime CLI tool to take a look at its view of the system. We could
see a similar view from ctr, the CLI client for containerd, but runc is nicer to work
with, and it’s at the lowest level:

$ sudo runc --root /run/docker/runtime-runc/moby list

ID PID … BUNDLE … OWNER
08b5…53dd 5829 … …/io.containerd.runtime.v2.task/moby/08b5…53dd … root

We normally need root privileges to run this command. Unlike with the Docker
CLI, we can’t rely on the Docker daemon’s permissions to let us access lower-level
functionality. With runc we need direct access to these privileges. What we can see
in the output from runc is our container! This is the actual OCI runtime bundle that
represents our container, with which it shares an ID. Notice that it also gives us the
PID of the container; that’s the PID on the host of the application running inside the
container:

$ ps -edaf | grep 5829

root 5829 5807 … nginx: master process nginx -g daemon off;
systemd+ 5880 5829 … nginx: worker process
systemd+ 5881 5829 … nginx: worker process
systemd+ 5882 5829 … nginx: worker process
systemd+ 5883 5829 … nginx: worker process

If we look in the bundle, we’ll see a set of named pipes for our container:

$ sudo ls -la /run/docker/containerd/08b5…53dd

total 0
drwxr-xr-x 2 root root 80 Oct 1 08:49 .
drwxr-xr-x 3 root root 60 Oct 1 08:49 ..
prwx------ 1 root root 0 Oct 1 08:49 init-stderr
prwx------ 1 root root 0 Oct 1 08:49 init-stdout

You can find a lot of additional files related to your container underneath /run/con‐
tainerd/io.containerd.runtime.v2.task/moby:

$ sudo ls -la /run/containerd/io.containerd.runtime.v2.task/moby/08b5…53dd/

total 32
drwx------ 3 root root 240 Oct 1 08:49 .
drwx--x--x 3 root root 60 Oct 1 08:49 ..
-rw-r--r-- 1 root root 89 Oct 1 08:49 address
-rw-r--r-- 1 root root 9198 Oct 1 08:49 config.json
-rw-r--r-- 1 root root 4 Oct 1 08:49 init.pid
prwx------ 1 root root 0 Oct 1 08:49 log
-rw-r--r-- 1 root root 0 Oct 1 08:49 log.json
-rw------- 1 root root 82 Oct 1 08:49 options.json
drwx--x--x 2 root root 40 Oct 1 08:49 rootfs
-rw------- 1 root root 4 Oct 1 08:49 runtime

342 | Chapter 11: Advanced Topics

-rw------- 1 root root 32 Oct 1 08:49 shim-binary-path
lrwxrwxrwx 1 root root 119 Oct 1 08:49 work -> /var/lib/containerd/io…

The config.json file is a very verbose equivalent of what Docker shows in docker
container inspect. We are not going to reproduce it here due to size, but we
encourage you to dig around and see what’s in the config. You may, for example, note
all the entries for the “Secure Computing Mode” on page 315 that are present in it.

If you want to explore runc some more, you can experiment with the CLI tool. Most
of this is already available in Docker, usually on a higher and more useful level than
the one available in runc. But it can be useful to explore so that you can better
understand how containers and the Docker stack are put together. It’s also interesting
to watch the events that runc reports about a running container. We can hook into
those with the runc events command. During the normal operations of a running
container, there is not a lot of activity in the events stream. But runc regularly reports
runtime statistics, which we can see in JSON format:

$ sudo runc --root /run/docker/runtime-runc/moby events 08b5…53dd

{"type":"stats","id":"08b5…53dd","data":{"cpu":{"usage":{"…"}}}}

To conserve space, we have removed much of the output from the previous com‐
mand, but this might look familiar to you now that we’ve spent some time looking at
docker container stats. Guess where Docker gets those statistics by default. That’s
right, runc.

At this point, you can go ahead and stop the example container by running docker
container stop nginx-test.

Swapping Runtimes
As we mentioned in Chapter 2, there are a few other native OCI-compliant runtimes
that can be substituted in place of runc. As an example, there is crun, which describes
itself as “a fast and low-memory footprint OCI Container Runtime fully written in C.”
Some other alternative native runtimes, like railcar and rkt, have been deprecated
and largely abandoned. In the next section, we’ll talk about a sandboxed runtime
from Google, called gVisor, which provides a user space runtime for untrusted code.

Kata Containers is a very interesting open source project that pro‐
vides a runtime capable of using VMs as an isolation layer for
containers. At the time of this writing, version 3 of Kata works with
Kubernetes but does not work with Docker. The Kata developers
are working with the Docker developers to try and improve this
situation and create better documentation. This may be resolved
when Docker 22.06 is publicly released.

Swapping Runtimes | 343

https://github.com/containers/crun
https://gvisor.dev
https://github.com/kata-containers
https://github.com/kata-containers/kata-containers/issues/5321

gVisor
In mid-2018, Google released gVisor, which is a completely new take on a runtime.
It’s OCI compliant and can therefore also be used with Docker. However, gVisor also
runs in user space and isolates the application by implementing system calls there
rather than relying on Kernel isolation mechanisms. It doesn’t redirect the calls to
the kernel; rather, it implements them itself using kernel calls. The most obvious win
from this approach is security isolation since gVisor itself is running in user space
and thus is isolated from the kernel. Any security issues are still trapped in user space,
and all of the kernel security controls we’ve mentioned still apply. The downside is
that it typically performs worse than Kernel or VM-based solutions.

If you have processes that do not require massive scaling but do require highly secure
isolation, gVisor may be an ideal solution for you. A common use case for gVisor
is when your containers will be running code provided by your end users and you
cannot guarantee that the code is benign. Let’s run a quick demo so you can see how
gVisor works.

Installation is covered in the gVisor documentation. It is written in Go and is deliv‐
ered as a single executable with no packages required. Once it’s installed, you can
start containers with the runsc runtime. To demonstrate the different isolation levels
offered by gVisor, we’ll run a shell using it and compare that to one using a standard
container.

First, let’s start a shell on gVisor and look around a bit:

$ docker container run --rm --runtime=runsc -it alpine /bin/sh

That will drop us into a shell running in an Alpine Linux container. One very
revealing difference is apparent when you look at the output of the mount command:

$ docker container run --rm --runtime=runsc -it alpine /bin/sh -c "mount"

none on / type 9p (rw,trans=fd,rfdno=4,wfdno=4,aname=/,…)
none on /dev type tmpfs (rw,mode=0755)
none on /sys type sysfs (ro,noexec,dentry_cache_limit=1000)
none on /proc type proc (rw,noexec,dentry_cache_limit=1000)
none on /dev/pts type devpts (rw,noexec)
none on /dev/shm type tmpfs (rw,noexec,mode=1777,size=67108864)
none on /etc/hosts type 9p (rw,trans=fd,rfdno=7,wfdno=7,…)
none on /etc/hostname type 9p (rw,trans=fd,rfdno=6,wfdno=6,…)
none on /etc/resolv.conf type 9p (rw,trans=fd,rfdno=5,wfdno=5,…)
none on /tmp type tmpfs (rw,mode=01777)

There is not very much in there! Compare that with the output from a traditional
container launched with runc:

$ docker container run --rm -it alpine /bin/sh -c "mount"

overlay on / type overlay (rw,relatime,…)

344 | Chapter 11: Advanced Topics

https://gvisor.dev/docs/user_guide/quick_start/docker

proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
tmpfs on /dev type tmpfs (rw,nosuid,size=65536k,mode=755,inode64)
devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime,gid=5,…)
sysfs on /sys type sysfs (ro,nosuid,nodev,noexec,relatime)
cgroup on /sys/fs/cgroup type cgroup2 (ro,nosuid,nodev,noexec,relatime)
mqueue on /dev/mqueue type mqueue (rw,nosuid,nodev,noexec,relatime)
shm on /dev/shm type tmpfs (rw,nosuid,nodev,noexec,relatime,…)
/dev/sda3 on /etc/resolv.conf type ext4 (rw,relatime,errors=remount-ro)
…
devpts on /dev/console type devpts (rw,nosuid,noexec,relatime,gid=5,…)
proc on /proc/bus type proc (ro,nosuid,nodev,noexec,relatime)
…
tmpfs on /proc/asound type tmpfs (ro,relatime,inode64)
…

This output was 24 lines long, so we truncated it a lot. It should be pretty clear that
there is a lot of system detail here. That detail represents the kernel footprint exposed
to the container in one way or another. The contrast with the very short output from
gVisor should give you an idea of the differing level of isolation. We won’t spend a lot
more time on it, but it’s also worth looking at the output of ip addr show as well. On
gVisor:

$ docker container run --rm --runtime=runsc alpine ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65522
 link/loopback 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff
 inet 127.0.0.1/8 scope global dynamic
2: eth0: <UP,LOWER_UP> mtu 1500
 link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.2/16 scope global dynamic

And in a normal Linux container:

$ docker container run --rm alpine ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
44: eth0@if45: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc
 noqueue state UP
 link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0
 valid_lft forever preferred_lft forever

Even the Linux /proc filesystem exposes a lot less in the gVisor container:

$ docker container run --rm --runtime=runsc alpine ls -C /proc

1 filesystems net sys
cgroups loadavg self thread-self
cmdline meminfo sentry-meminfo uptime
cpuinfo mounts stat version

Swapping Runtimes | 345

Once more comparing this to a normal Linux container:

$ docker container run --rm alpine ls -C /proc

1 fb mdstat stat
acpi filesystems meminfo swaps
asound fs misc sys
bootconfig interrupts modules sysrq-trigger
buddyinfo iomem mounts sysvipc
bus ioports mpt thread-self
cgroups irq mtd timer_list
cmdline kallsyms mtrr tty
consoles kcore net uptime
cpuinfo key-users pagetypeinfo version
crypto keys partitions version_signature
devices kmsg pressure vmallocinfo
diskstats kpagecgroup schedstat vmstat
dma kpagecount scsi zoneinfo
driver kpageflags self
dynamic_debug loadavg slabinfo
execdomains locks softirqs

Aside from being more isolated, the experience inside the gVisor container is inter‐
esting because it looks a lot more like what you might expect to see in an isolated
environment. Sandboxed runtimes like gVisor provide a lot of potential for securely
running untrusted workloads by providing a much stronger barrier between the
application and the underlying kernel.

Wrap-Up
That’s a quick tour of some of the more advanced concepts of Docker. Hopefully,
it has expanded your knowledge of what is happening behind the scenes and has
opened up some avenues for you to continue your exploration. As you build and
maintain a production platform, this background should provide you with a broad
enough perspective of Docker to know where to start when you need to customize
the system.

346 | Chapter 11: Advanced Topics

1 Full URL: https://github.com/kubernetes-sigs/cri-tools/blob/master/docs/crictl.md

CHAPTER 12

The Expanding Landscape

The landscape of tools that are available to interact with Linux containers is con‐
stantly evolving, especially with the significant adoption that Kubernetes has experi‐
enced for many years.

In this chapter, we are going to take a very quick tour of a few tools that are inspired
by Docker but are often focused on improving specific use cases. This is not intended
to be a comprehensive list but instead is intended to simply give you a taste of some
of the categories and options that are available to explore.

Client Tools
In this section, we are going to introduce three command-line tools: nerdctl, podman,
and buildah. All of these tools might be useful to anyone familiar with Docker and its
common workflows.

nerdctl
Although crictl1 is installed by default in many containerd-based environments,
nerdctl is an easy-to-use Docker-compatible CLI for containerd, which is worth
checking out. This means that nerdctl can provide a very easy migration path for
people and scripts that use Docker but need to support containerd systems that are
not running the Docker daemon.

As a quick example, if you spin up a small Kubernetes cluster with kind, which
we discussed in “Kind” on page 274, you should end up with a containerd-based
Kubernetes cluster that is not directly compatible with the docker CLI:

347

https://github.com/kubernetes-sigs/cri-tools/blob/master/docs/crictl.md
https://oreil.ly/zElq_

$ kind create cluster --name nerdctl
Creating cluster "nerdctl" …
…

$ docker container exec -ti nerdctl-control-plane /bin/bash

You should now be inside the kind/Kubernetes container.

In the curl command that follows, you must ensure that you are
downloading the correct version for your architecture. You will
need to replace ${ARCH} with either amd64 or arm64, depending on
your system. Also, feel free to try and download the most recent
version of nerdctl.

Once you have edited the following curl command and reassembled it into a single
line, you should be able to download and extract the nerdctl client and then try a
few commands with it:

root@nerdctl-control-plane:/# curl -s -L \
 "https://github.com/containerd/nerdctl/releases/download/v0.23.0/\
nerdctl-0.23.0-linux-${ARCH}.tar.gz" -o /tmp/nerdctl.tar.gz

root@nerdctl-control-plane:/# tar -C /usr/local/bin -xzf /tmp/nerdctl.tar.gz

root@nerdctl-control-plane:/# nerdctl namespace list

NAME CONTAINERS IMAGES VOLUMES LABELS
k8s.io 18 24 0

root@nerdctl-control-plane:/# nerdctl --namespace k8s.io container list

CONTAINER ID IMAGE … NAMES
07ae69902d11 registry.k8s.io/pause:3.7 … k8s://kube-system/core…
0b241db0485f registry.k8s.io/coredns/coredns:v1.9.3 … k8s://kube-system/core…
…

root@nerdctl-control-plane:/# nerdctl --namespace k8s.io container run --rm \
 --net=host debian sleep 5

docker.io/library/debian:latest: resolved |+++++++++++++++++++++++++++|
index-sha256:e538…4bff: done |+++++++++++++++++++++++++++|
manifest-sha256:9b0e…2f7d: done |+++++++++++++++++++++++++++|
config-sha256:d917…d33c: done |+++++++++++++++++++++++++++|
layer-sha256:f606…5ddf: done |+++++++++++++++++++++++++++|
elapsed: 6.4 s total: 52.5 M (8.2 MiB/s)

root@nerdctl-control-plane:/# exit

In most cases, docker commands can be used with almost no alteration by nerdctl.
The one change that might stand out is the need to often provide a namespace value.

348 | Chapter 12: The Expanding Landscape

https://github.com/containerd/nerdctl/releases
https://github.com/containerd/nerdctl/releases

This is because containerd provides a fully namespaced API, and we need to specify
which one we are interested in interacting with.

Once you have exited the kind container, you can go ahead and delete it:

$ kind delete cluster --name nerdctl

Deleting cluster "nerdctl" …

podman and buildah
podman and buildah are a set of tools from Red Hat that were created early on to
provide a container workflow that did not rely on a daemon process, like Docker. It
is heavily used within the Red Hat community and rethinks the way that images are
built and containers are run and managed.

You can find a good introduction to podman and buildah for
Docker users on the Red Hat blog.

$ kind create cluster --name podman
Creating cluster "podman" …
…

$ docker container exec -ti podman-control-plane /bin/bash

An overview of installing and using kind can be found in “Kind”
on page 274.

You should now be inside the kind/Kubernetes container:

root@podman-control-plane:/# apt update
Get:1 http://security.ubuntu.com/ubuntu jammy-security InRelease [110 kB]
…

root@podman-control-plane:/# apt install -y podman
Reading package lists… Done
…

root@podman-control-plane:/# podman container run -d --rm \
 --name test debian sleep 120
9b6b333313c0d54e2da6cda49f2787bc5213681d90dac145a9f64128f3e18631

root@podman-control-plane:/# podman container list

Client Tools | 349

https://github.com/containerd/containerd/blob/main/docs/namespaces.md
https://podman.io
https://buildah.io
https://developers.redhat.com/blog/2019/02/21/podman-and-buildah-for-docker-users
https://developers.redhat.com/blog/2019/02/21/podman-and-buildah-for-docker-users

CONTAINER ID IMAGE COMMAND … NAMES
548a2f709785 docker.io/library/debian:latest sleep 120 … test

root@podman-control-plane:/# podman container stop test
test

Unlike docker (which interfaces with the Docker daemon) and nerdctl (which
interfaces with containerd), podman skips the container engine and instead directly
interfaces with an underlying container runtime, like runc.

Although podman build can be used to build containers as well, buildah provides
an advanced interface for image building that makes it possible to script the whole
image-building process and remove the need to rely on the Dockerfile format (or
Containerfile, as podman calls it).

We won’t dig into the details of buildah here, but you can try a very simple example
in the kind container, and if you are interested in alternatives to the traditional
Dockerfile approach, or the newer alternatives provided by BuildKit’s LBB interface,
you can read more about buildah online via GitHub and the Red Hat blog.

To try out a buildah script in the kind container, go ahead and run the following
commands:

root@podman-control-plane:/# cat > apache.sh <<"EOF"

#!/usr/bin/env bash

set -x

ctr1=$(buildah from "${1:-fedora}")

Get all updates and install the apache server
buildah run "$ctr1" -- dnf update -y
buildah run "$ctr1" -- dnf install -y httpd

Include some buildtime annotations
buildah config --annotation "com.example.build.host=$(uname -n)" "$ctr1"

Run our server and expose the port
buildah config --cmd "/usr/sbin/httpd -D FOREGROUND" "$ctr1"
buildah config --port 80 "$ctr1"

Commit this container to an image name
buildah commit "$ctr1" "${2:-myrepo/apache}"

EOF

root@podman-control-plane:/# chmod +x apache.sh
root@podman-control-plane:/# ./apache.sh

++ buildah from fedora

350 | Chapter 12: The Expanding Landscape

https://github.com/moby/buildkit#exploring-llb
https://github.com/containers/buildah
https://www.redhat.com/sysadmin/building-buildah

+ ctr1=fedora-working-container-1
+ buildah run fedora-working-container-1 -- dnf update -y
…
Writing manifest to image destination
Storing signatures
037c7a7c532a47be67f389d7fd3e4bbba64670e080b120d93744e147df5adf26

root@podman-control-plane:/# exit

Once you have exited the kind container, you can go ahead and delete it:

$ kind delete cluster --name podman

Deleting cluster "podman" …

All-in-One Developer Tools
Although Docker Desktop is a very useful tool, changes in Docker’s licensing and
the broader technology landscape have led some people and organizations to look for
alternative tools. In this section, we will take a quick look at Rancher Desktop and
Podman Desktop and how they can be used to provide some of the functionality of
Docker Desktop while also bringing some interesting features of their own.

Rancher Desktop
Rancher Desktop is designed to provide a very similar experience to Docker Desk‐
top while focusing specifically on Kubernetes integration. It uses k3s to provide a
certified, lightweight Kubernetes backend and can use either containerd or dockerd
(moby) as the container runtime.

You should probably quit Docker (and/or Podman) Desktop, if
either one is running, before trying out Rancher Desktop, since
they all spin up a VM that will consume system resources.

After downloading, installing, and launching Rancher Desktop, you will have a local
Kubernetes cluster, which, by default, is using containerd and can be interacted with
via nerdctl.

The exact location where Rancher Desktop installs the nerdctl
binary might vary a bit depending on which operating system you
are using. You should initially try and make sure that you are using
the version that was packaged with the Rancher Desktop.

All-in-One Developer Tools | 351

https://rancherdesktop.io
https://k3s.io

$ ${HOME}/.rd/bin/nerdctl --namespace k8s.io image list

REPOSITORY TAG IMAGE ID … PLATFORM SIZE BLOB SIZE
moby/buildkit v0.8.3 171689e43026 … linux/amd64 119.2 MiB 53.9 MiB
moby/buildkit <none> 171689e43026 … linux/amd64 119.2 MiB 53.9 MiB
…

Don’t forget to quit Rancher Desktop when you are done; otherwise the VM will stay
running and consume additional resources.

Podman Desktop
Podman Desktop is focused on providing a daemon-less container tool that still pro‐
vides the seamless experience that developers on all of the major operating systems
have grown accustomed to.

You should probably quit Docker (and/or Rancher) Desktop, if
either one is running, before trying out Podman Desktop, since
they all spin up a VM that will consume system resources.

After downloading, installing, and launching Podman Desktop, you will see an appli‐
cation window on the Home tab. If Podman Desktop does not detect the podman
CLI on your system, it will prompt you to install it via a button labeled Install.
This should walk you through the installation of the podman client. When the Pod‐
man Desktop VM, which can be controlled from the command line via the podman
machine command, is not started, click the Run Podman switch, and then wait a few
moments. The switch should disappear, and you should see the “Podman is running”
message.

The exact location where Podman Desktop installs the podman
binary might vary a bit depending on which operating system you
are using. You should initially make sure that you are using the
version that was installed via Podman Desktop.

352 | Chapter 12: The Expanding Landscape

https://podman-desktop.io

To test the system, give this a try:

$ podman run quay.io/podman/hello

!… Hello Podman World …!

 .--"--.
 / - - \
 / (O) (O) \
   ~~~| -=(,Y,)=- |
    .---. /   \   |~~
 ~/  o  o \~~~~.----. ~~
  | =(X)= |~  / (O (O) \
   ~~~~~~~  ~| =(Y_)=-  |
  ~~~~    ~~~|   U      |~~

Project:   https://github.com/containers/podman
Website:   https://podman.io
Documents: https://docs.podman.io
Twitter:   @Podman_io

When you are done exploring Podman Desktop, you can go ahead and shut down
the VM by clicking the Preferences tab, selecting Resources → Podman → Podman
Machine, and then clicking the Stop button.

At this point, you can go ahead and quit the Podman Desktop application.

You can also start and stop the Podman VM by using the podman
machine start and podman machine stop commands.

Wrap-Up
Docker’s place in technology history is well established. There is no doubt that the
introduction of Docker took the existing Linux container technology, extended it
with the image format, and then made the concepts and technology accessible to
engineers all around the world.

We can argue about whether things are better today than they were before Linux
containers and Docker, and we can debate about which tools and workflows are
better, but in the end, much of that comes down to how each tool is used and how
those workflows are designed.

No tools will magically solve all your problems, and any tool can be implemented
so poorly that it makes everything much worse than it was before. This is why it is
so important to spend significant time thinking about the process workflow that you
want to implement from at least three angles. First, what inputs and outputs do we

Wrap-Up | 353



need the workflow to support? Second, how easy will the workflow be for the people
who need to use it every day or just once a year? And third, how easy will it be to
run and maintain for the people who must ensure that the system runs smoothly and
securely at all times?

Once you have a good picture of what you are trying to achieve, then you can start to
pick the tools that will help you enable these goals.

354 | Chapter 12: The Expanding Landscape



CHAPTER 13

Container Platform Design

When implementing any technology in production, you’ll often gain the most mile‐
age by designing a resilient platform that can withstand the unexpected issues that
will inevitably occur. Docker can be a powerful tool but requires attention to detail
to get the whole platform right around it. As a technology that is going through
very rapid growth, it is bound to produce frustrating bugs that crop up between the
various components that make up your container platform.

If instead of simply deploying Docker into your existing environment, you take the
time to build a well-designed container platform utilizing Docker as one of the core
components, you can enjoy the many benefits of a container-based workflow while
simultaneously protecting yourself from some of the sharper edges that can exist in
such high-velocity projects.

Like all other technology, Docker doesn’t magically solve all your problems. To reach
its true potential, organizations must make very conscious decisions about why and
how to use it. For small projects, it is possible to use Docker in a simple manner;
however, if you plan to support a large project that can scale with demand, it’s crucial
that you design your applications and the platform very deliberately. This ensures that
you can maximize the return on your investment in the technology. Taking the time
to intentionally design your platform will also make it much easier to modify your
production workflow over time. A well-designed container platform and deployment
process will be as lightweight and straightforward as possible while still supporting
the features required to meet all the technical and compliance requirements. A well-
thought-out design will help ensure that your software is running on a dynamic foun‐
dation that can easily be upgraded as technology and company processes develop.

355



In this chapter, we will explore two open documents, “The Twelve-Factor App” and
“The Reactive Manifesto” (a companion document to “The Reactive Principles”), and
discuss how they relate to Docker and building robust container platforms. Both
documents contain a lot of ideas that should help guide you through the design
and implementation of your container platform and ensure more resiliency and
supportability across the board.

The Twelve-Factor App
In November of 2011, well before the release of Docker, Heroku cofounder Adam
Wiggins and his colleagues released an article called “The Twelve-Factor App”. This
document describes a series of 12 practices, distilled from the experiences of the
Heroku engineers, for designing applications that will thrive and grow in a modern
container-based SaaS environment.

Although not required, applications built with these 12 steps in mind are ideal
candidates for the Docker workflow. Throughout this chapter, we will explore each
of the following steps and explain why these practices can, in numerous ways, help
improve your development cycle:

• Codebase•
• Dependencies•
• Config•
• Backing services•
• Build, release, run•
• Processes•
• Port binding•
• Concurrency•
• Disposability•
• Development/production parity•
• Logs•
• Admin processes•

356 | Chapter 13: Container Platform Design

https://12factor.net
https://www.reactivemanifesto.org
https://www.reactiveprinciples.org
https://12factor.net
https://www.heroku.com


Codebase
One codebase tracked in revision control.

Many instances of your application will be running at any given time, but they should
all come from the same code repository. Every single Docker image for a given
application should be built from a single source code repository that contains all the
code required to build the Linux container. This ensures that the code can easily be
rebuilt and that all third-party requirements are well-defined within the repository
and will automatically be pulled in during a build.

What this means is that building your application shouldn’t require stitching together
code from multiple source repositories. That is not to say that you can’t have a
dependency on an artifact from another repo. But it does mean that there should
be a clear mechanism for determining which pieces of code were shipped when you
built your application. Docker’s ability to simplify dependency management is much
less useful if building your application requires pulling down multiple source code
repositories and stitching pieces together. It also is not very repeatable if you must
know a magic incantation to get the build to work correctly.

A good test might be to give a new developer in your company a clean laptop and a
paragraph of directions and then see if they can successfully build your application
in under an hour. If they can’t, then the process probably needs to be refined and
simplified.

Dependencies
Explicitly declare and isolate dependencies.

Never rely on the belief that a dependency will be made available via some other
avenue, like the operating system install. Any dependencies that your application
requires should be well defined in the codebase and pulled in by the build process.
This will help ensure that your application will run when deployed, without relying
on libraries being installed by other people or processes. This is particularly impor‐
tant within a container since the container’s processes are isolated from the rest of
the host operating system and will usually not have access to anything outside of the
host’s kernel and the container image’s filesystem.

The Dockerfile and language-dependent configuration files like Node’s package.json
or Ruby’s Gemfile should define every nonexternal dependency required by your
application. This ensures that your image will run correctly on any system to which it
is deployed. Gone will be the days when you try to deploy and run your application
in production only to find out that important libraries are missing or installed with
the wrong version. This pattern has huge reliability and repeatability advantages and
very positive ramifications for system security. If to fix a security issue, you update
the OpenSSL or libyaml libraries that your containerized application uses, then you

The Twelve-Factor App | 357



can be assured that it will always be running with that version wherever you deploy
that particular application.

It is also important to note that many Docker base images are larger than they need
to be. Remember that your application process will be running on a shared kernel,
and the only files that you need inside your image are the ones that the process
will require to run. It’s good that base images are so readily available, but they can
sometimes mask hidden dependencies. Although people often start with a minimal
install of Alpine, Ubuntu, or Fedora, these images still contain a lot of operating
system files and applications that your process almost certainly does not need, or
possibly some files that your application is making use of that you aren’t consciously
aware of, like compiling your application using the musl system library in Alpine
versus the glibc system library in many other base images. You need to be fully aware
of your dependencies, even when containerizing your application. It is also important
to consider what support tools, if any, you are including in your images, as there
can be a fine line between making things easier to debug and increasing the security
attack surface of your application and environments.

A good way to shed light on what files are required inside an image is to compare a
“small” base image with an image for a statically linked program written in a language
like Go or C. These applications can be designed to run directly on the Linux kernel
without any additional libraries or files.

To help drive this point home, it might be useful to review the exercises in “Keeping
Images Small” on page 73, where we explored one of these ultra-light containers,
spkane/scratch-helloworld, and then dived into the underlying filesystem a bit and
compared it with the popular alpine base image.

In addition to being conscientious about how you manage the filesystem layers in
your images, keeping your images stripped down to the bare necessities is another
great way to keep everything streamlined and your docker image pull commands
fast. Applications written with interpreted languages will require many more files
because of the large runtimes and dependency graphs you often need to install, but
you should try to keep as minimal a base layer as needed for your use case so that you
can reason about your dependencies. Docker helps you package them up, but you still
need to be in charge of reasoning about them.

Config
Store configuration in environment variables, not in files checked into the codebase.

This makes it simple to deploy the same codebase to different environments, like
staging and production, without maintaining complicated configuration in code
or rebuilding your container for each environment. This keeps your codebase
much cleaner by keeping environment-specific information like database names and

358 | Chapter 13: Container Platform Design



passwords out of your source code repository. More importantly, though, it means
that you don’t bake deployment environment assumptions into the repository, and
thus it is extremely easy to deploy your applications anywhere that it might be useful.
You also want to be able to test the same image you will ship to production. You
can’t do that if you have to build an image for each environment with all of its
configuration already baked in.

As discussed in Chapter 4, you can achieve this by launching docker container
run commands that leverage the -e command-line argument. Using -e APP_ENV=
production tells Docker to set the environment variable APP_ENV to the value
production within the newly launched container.

For a real-world example, let’s assume we pulled the image for the chat robot Hubot
with the Rocket.Chat adapter installed. We’d issue something like the following com‐
mand to get it running:

$ docker container run \
  --rm --name hubot -d \
  -e ENVIRONMENT="development" \
  -e ROCKETCHAT_URL='rocketchat:3000' \
  -e ROCKETCHAT_ROOM='general' \
  -e RESPOND_TO_DM=true \
  -e ROCKETCHAT_USER=bot \
  -e ROCKETCHAT_PASSWORD=bot \
  -e ROCKETCHAT_AUTH=password \
  -e BOT_NAME=bot \
  -e EXTERNAL_SCRIPTS=hubot-pugme,hubot-help \
  docker.io/rocketchat/hubot-rocketchat:latest

Here, we are passing a whole set of environment variables into the container when
it is created. When the process is launched in the container, it will have access to
these environment variables so that it can properly configure itself at runtime. These
configuration items are now an external dependency that we can inject at runtime.

There are many other ways to provide this data to a container,
including using key/value stores like etcd and consul. Environ‐
ment variables are simply a universal option that acts as a very
good starting point for most projects. They are the easy path
for container configuration because they are well supported by
the platform and every programming language in common use.
They also aid in the observability of your applications because
the configuration can easily be inspected with docker container
inspect.

In the case of a Node.js application like hubot, you could then write the following
code to make decisions based on these environment variables:

The Twelve-Factor App | 359

https://www.rocket.chat


switch(process.env.ENVIRONMENT){
        case 'development':
            console.log('[INFO] Running in development');

        case 'staging':
            console.log('[INFO] Running in staging');

        case 'production':
            console.log('[INFO] Running in production');

        default:
            console.log('[WARN] Environment value is unknown');
    }

The exact method used to pass this configuration data into your
container will vary depending on the specific tooling that you’ve
chosen for your projects, but almost all of them will make it easy to
ensure that every deployment contains the proper settings for that
environment.

Keeping specific configuration information out of your source code makes it very
easy to deploy the exact same container to multiple environments, with no changes
and no sensitive information committed into your source code repository. Crucially,
it supports testing your container images thoroughly before deploying to production
by allowing the same image to be used in all environments.

$ docker container stop hubot

If you need a process for managing secrets that need to be provided
to your containers, you might want to look into the documenta‐
tion for the docker secret command, which works with Docker
Swarm mode, and HashiCorp’s Vault.

Backing Services
Treat backing services as attached resources.

Local databases are no more reliable than third-party services and should be treated
as such. Applications should handle the loss of an attached resource gracefully. By
implementing graceful degradation in your application and never assuming that any
resource, including filesystem space, is available, you ensure that your application will
continue to perform as many of its functions as it can, even when external resources
are unavailable.

360 | Chapter 13: Container Platform Design

https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://www.vaultproject.io


This isn’t something that Docker helps you with directly, and although it is always
a good idea to write robust services, it is even more important when you are using
containers. When using containers, you achieve high availability most often through
horizontal scaling and rolling deployments, instead of relying on the live migration of
long-running processes, like on traditional VMs. This means that specific instances of
a service will often come and go over time, and your service should be able to handle
this gracefully.

Additionally, because Linux containers have limited filesystem resources, you can’t
simply rely on having some local storage available. You need to plan that into your
application’s dependencies and handle it explicitly.

Build, Release, Run
Strictly separate build and run stages.

Build the code, release it with the proper configuration, and then deploy it. This
ensures that you maintain control of the process and can perform any single step
without triggering the whole workflow. By ensuring that each of these steps is self-
contained in a distinct process, you can tighten the feedback loop and react more
quickly to any problems within the deployment flow.

As you design your Docker workflow, you want to clearly separate each step in the
deployment process. It is perfectly fine to have a single button that builds a container,
tests it, and then deploys it, assuming that you trust your testing processes—but
you don’t want to be forced to rebuild a container simply to deploy it to another
environment.

Docker supports the 12-factor ideal well in this area because the image registry
provides a clean handoff point between building an image and shipping it to produc‐
tion. If your build process generates images and pushes them to the registry, then
deployment can simply be pulling the image down to servers and running it.

Processes
Execute the app as one or more stateless processes.

All shared data must be accessed via a stateful backing store so that application
instances can easily be redeployed without losing any important session data. You
don’t want to keep any critical state on disk in your ephemeral container or in
the memory of one of its processes. Containerized applications should always be
considered ephemeral. A truly dynamic container environment requires the ability to
destroy and re-create containers at a moment’s notice. This flexibility helps enable the
rapid deployment cycle and outage recovery demanded by modern, Agile workflows.

The Twelve-Factor App | 361



As much as possible, it is preferable to write applications that do not need to keep
state longer than the time required to process and respond to a single request. This
ensures that the impact of stopping any given container in your application pool is
very minimal. When you must maintain state, the best approach is to use a remote
datastore like Redis, PostgreSQL, Memcache, or even Amazon S3, depending on your
resiliency needs.

Port Binding
Export services via port binding.

Your application needs to be addressable by a port specific to itself. Applications
should bind directly to a port to expose the service and should not rely on an external
daemon like inetd to handle that for them. You should be certain that when you’re
talking to that port, you’re talking to your application. Most modern web platforms
are quite capable of directly binding to a port and servicing their own requests.

To expose a port from your container, as discussed in Chapter 4, you can launch
docker container run commands that use the --publish command-line argument.
Using --publish mode=ingress,published=80,target=8080, for example, would
tell Docker to proxy the container’s port 8080 on the host’s port 80.

The statically linked Go Hello World container that we discussed in “Keeping Images
Small” on page 73 is a great example of this, because the container contains nothing
but our application to serve its content to a web browser. We did not need to include
any additional web servers, which would require further configuration, introduce
additional complexity, and increase the number of potential failure points in our
system.

Concurrency
Scale out via the process model.

Design for concurrency and horizontal scaling within your applications. Increasing
the resources of an existing instance can be difficult and hard to reverse. Adding and
removing instances as scale fluctuates is much easier and helps maintain flexibility
in the infrastructure. Launching another container on a new server is incredibly
inexpensive compared to the effort and expense required to add resources to an
underlying virtual or physical system. Designing for horizontal scaling allows the
platform to react much faster to changes in resource requirements.

As an example, in Chapter 10, you saw how easily a service could be scaled using
Docker Swarm mode by simply running a command like this:

$ docker service scale myservice=8

362 | Chapter 13: Container Platform Design



This is where tools like Docker Swarm mode, Mesos, and Kubernetes truly begin to
shine. Once you have implemented a Docker cluster with a dynamic scheduler, it is
very easy to add three more instances of a container to the cluster as load increases
and then to be able to easily remove two instances of your application from the
cluster as load starts to decrease again.

Disposability
Maximize robustness with fast startup and graceful shutdown.

Services should be designed to be ephemeral. We already talked a little bit about this
when discussing external state with containers. Responding well to dynamic horizon‐
tal scaling, rolling deploys, and unexpected problems requires applications that can
quickly and easily be started or shut down. Services should respond gracefully to a
SIGTERM signal from the operating system and even handle hard failures confidently.
Most importantly, we shouldn’t care if any given container for our application is up
and running. As long as requests are being served, the developer should be freed
of concerns about the health of any single component within the system. If an
individual node is behaving poorly, turning it off or redeploying it should be an easy
decision that doesn’t entail long planning sessions and concerns about the health of
the rest of the cluster.

As discussed in Chapter 7, Docker sends standard Unix signals to containers when it
is stopping or killing them; therefore, any containerized application can detect these
signals and take the appropriate steps to shut down gracefully.

Development/Production Parity
Keep development, staging, and production as similar as possible.

The same processes and artifacts should be used to build, test, and deploy services
into all environments. The same people should do the work in all environments, and
the physical nature of the environments should be as similar as reasonably possible.
Repeatability is incredibly important. Almost any issue discovered in production
points to a failure in the process. Every area where production diverges from staging
is an area where risk is being introduced into the system. These inconsistencies blind
you to certain types of issues that could occur in your production environment until
it is too late to proactively deal with them.

In many ways, this advice essentially repeats a few of the early recommendations.
However, the specific point here is that any environment divergence introduces
risks, and although these differences are common in many organizations, they are
much less necessary in a containerized environment. Docker servers can normally be
created so that they are identical in all of your environments, and environment-based

The Twelve-Factor App | 363



configuration changes should typically impact only which endpoints your service
connects to without specifically changing the application’s behavior.

Logs
Treat logs as event streams.

Services should not concern themselves with routing or storing logs. Instead, events
should be streamed, unbuffered, to STDOUT and STDERR for handling by the hosting
process. In development, STDOUT and STDERR can be easily viewed, whereas in staging
and production, the streams can be routed to anything, including a central logging
service. Different environments have different exceptions for log handling. This logic
should never be hardcoded into the application. Streaming everything to STDOUT
and STDERR enables the top-level process manager to handle the logs via whatever
method is best for the environment, allowing the application developer to focus on
core functionality.

In Chapter 6, we discussed the docker container logs command, which collects the
output from your container’s STDOUT and STDERR and records it as logs. If you write
logs to random files within the container’s filesystem, you will not have easy access to
them. It is also possible to configure Docker to send logs to a local or remote logging
system using tools like rsyslog, journald, or fluentd.

If you use a process manager or initialization system on your servers, like systemd
or upstart, it is usually very easy to direct all process output to STDOUT and STDERR
and then have your process monitor capture them and send them to a remote logging
host.

Admin Processes
Run admin/management tasks as one-off processes.

One-off administration tasks should be run via the same codebase and configura‐
tion that the application uses. This helps avoid synchronization problems and code/
schema drift problems. Oftentimes, management tools exist as one-off scripts or live
in a completely different codebase. It is much safer to build management tools within
the application’s codebase and utilize the same libraries and functions to perform the
required work. This can significantly improve the reliability of these tools by ensuring
that they leverage the same code paths that the application relies on to perform its
core functionality.

What this means is that you should never rely on random cron-like scripts to per‐
form administrative and maintenance functions. Instead, include all of these scripts
and functionality in your application codebase. Assuming that these don’t need to
be run on every instance of your application, you can launch a special short-lived

364 | Chapter 13: Container Platform Design



container, or use docker container exec with the existing container, whenever you
need to run a maintenance job. This command can trigger the required job, report its
status somewhere, and then exit.

Twelve-Factor Wrap-Up
While “The Twelve-Factor App” wasn’t written as a Docker-specific manifesto, almost
all of this advice can be applied to writing and deploying applications on a Docker
platform. This is in part because the article heavily influenced Docker’s design, and
in part because the manifesto itself codified many of the best practices promoted by
modern software architects.

The Reactive Manifesto
Riding alongside “The Twelve-Factor App,” another pertinent document was released
in July of 2013 by Typesafe cofounder and CTO Jonas Bonér, entitled “The Reactive
Manifesto”. Jonas originally worked with a small group of contributors to solidify a
manifesto that discusses how the expectations for application resiliency have evolved
over the last few years and how applications should be engineered to react predictably
to various forms of interaction, including events, users, load, and failures.

“The Reactive Manifesto” states that “reactive systems” are responsive, resilient, elas‐
tic, and message driven.

Responsive
The system responds in a timely manner if at all possible.

In general, this means that the application should respond to requests very quickly.
Users simply don’t want to wait, and there is rarely a good reason to make them.
If you have a containerized service that renders large PDF files, design it so that it
immediately responds with a “job submitted” message so that users can go about their
day, and then provide a message or banner that informs them when the job is finished
and where they can download the resulting PDF.

Resilient
The system stays responsive in the face of failure.

When your application fails for any reason, the situation will always be worse if it
becomes unresponsive. It is much better to handle the failure gracefully and dynami‐
cally reduce the application’s functionality or even display a simple but clear problem
message to the user while reporting the issue internally.

The Reactive Manifesto | 365

https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.lightbend.com/blog/why-do-we-need-a-reactive-manifesto


Elastic
The system stays responsive under varying workload.

With Docker, you achieve this by dynamically deploying and decommissioning con‐
tainers as requirements and load fluctuate so that your application is always able to
handle server requests quickly, without deploying a lot of underutilized resources.

Message Driven
Reactive systems rely on asynchronous message passing to establish a boundary between
components that ensures loose coupling, isolation, and location transparency.

Although not directly addressed by Docker, the idea here is that there are times when
an application can become busy or unavailable. If you utilize asynchronous message
passing between your services, you can help ensure that your services will not lose
requests and that they will be processed as soon as possible.

Wrap-Up
All four of the design features in “The Reactive Manifesto” require application devel‐
opers to design graceful degradation and define a clear separation of responsibilities
in their applications. By treating all dependencies as properly designed, attached
resources, dynamic container environments allow you to easily maintain N+2 status
across your application stack, reliably scale individual services in your environment,
and quickly replace unhealthy nodes.

A service is only as reliable as its least reliable dependency, so it is vital to incorporate
these ideas into every component of your platform.

The core ideas in “The Reactive Manifesto” merge very nicely with “The Twelve-
Factor App” and the Docker workflow. These documents successfully summarize
many of the most important discussions about the way you need to think and
work if you want to be successful in meeting new expectations in the industry. The
Docker workflow provides a practical way to implement many of these ideas in any
organization in a completely approachable manner.

366 | Chapter 13: Container Platform Design



1 Full URL: https://www.tutorialworks.com/difference-docker-containerd-runc-crio-oci

CHAPTER 14

Conclusion

At this point, you have had a solid tour through the Docker ecosystem and have
seen many examples of how Docker and Linux containers can benefit you and your
organization. We have tried to map out some of the common pitfalls and impart
some of the wisdom that we have picked up over the many years that we’ve run Linux
containers in production. Our experience has shown that the promise of Docker is
quite achievable, and we’ve seen significant benefits in our organizations as a result.
Like other powerful technologies, Docker is not without its compromises, but the
net result has been a big positive for us, our teams, and our organizations. If you
implement the Docker workflow and integrate it into the processes you already have
in your organization, there is every reason to believe that you can significantly benefit
from it as well.

In this chapter, we will take a moment to consider Docker’s evolving place in the
technology landscape, and then quickly review the problems that Docker is designed
to help you solve and some of the power it brings to the table.

The Road Ahead
There is no doubt that containers are here to stay for a very long time, but some
people have predicted the ultimate demise of Docker on and off for a long time.
Much of this is simply because the word Docker represents so many things in so many
people’s minds.1 Are you talking about the company, which was sold to Mirantis in
2019 and reported $50 million USD in annual recurring revenue (ARR) two years
after the restructuring? Or maybe the docker client tool, whose source code can be
downloaded, modified, and built by anyone who might need it? It is hard to know.

367

https://www.tutorialworks.com/difference-docker-containerd-runc-crio-oci
https://oreil.ly/pvSEl
https://oreil.ly/pvSEl
https://github.com/docker/cli


People often like to try and predict the future, but reality often lies somewhere in the
middle, hidden in the often-overlooked details.

In 2020, Kubernetes announced the deprecation of dockershim, which went fully into
effect with the release of Kubernetes v1.24. At the time, lots of people took this to
mean that Docker was dead, but the point many people were missing is that Docker
has always primarily been a developer tool, not a production component. Sure it
can be used on a production system for various reasons, but its true power lies in
its ability to streamline much of the software packaging and testing workflow into a
consolidated toolset. Kubernetes uses the Container Runtime Interface (CRI), which
is not implemented by Docker and therefore required them to maintain another piece
of wrapper software called dockershim to support using Docker Engine via the CRI.
This announcement was not given to make some statement about Docker’s place in
the ecosystem; it was simply given to make maintaining a large volunteer-driven open
source project easier. Docker may not run on your Kubernetes servers, but in most
cases, this will have no impact at all on the development and release cycle for your
software. Unless you are a Kubernetes operator who used the docker CLI to directly
query the containers running on a Kubernetes node, you are unlikely to notice any
change as this transition occurs.

And as it turns out, Docker’s parent company has developed and continues to support
a new shim, called cri-dockerd, that allows Kubernetes to continue to interface with
Docker for those who need that workflow to be supported.

Interestingly enough, Docker is also diversifying into noncontainer technologies,
like WebAssembly (Wasm), that can complement containers while improving the
developer experience.

So, Docker as a developer-friendly toolset is likely here to stay for a long while,
but that doesn’t mean that there are not any other tools in the ecosystem that can
complement or even replace it if that is something that you want or need. The beauty
of the various standards that exist, like the OCI, and their broad adoption, is that
many of these tools can interoperate with the same images and containers that other
tools generate and manage.

368 | Chapter 14: Conclusion

https://kubernetes.io/blog/2022/02/17/dockershim-faq
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes
https://github.com/Mirantis/cri-dockerd
https://docs.docker.com/desktop/wasm


The Challenges Docker Addresses
In traditional deployment workflows, there is often a multitude of required steps that
significantly contribute to the overall pain felt by teams. Every step you add to the
deployment process for an application increases the risk inherent in shipping it to
production. Docker combines a workflow with a simple toolset that is directly targe‐
ted at addressing these concerns. Along the way, it squarely aims your development
processes toward some of the industry’s best practices, and its opinionated approach
often leads to better communication and more robustly crafted applications.

Some of the specific problems that Docker and Linux containers can help mitigate
include the following:

• Avoiding significant divergence between deployment environments.•
• Requiring application developers to re-create configuration and logging logic in•

applications.
• Using outdated build and release processes that require multiple levels of handoff•

between development and operations teams.
• Requiring complex and fragile build and deploy processes.•
• Managing divergent dependency versions that are required by applications that•

need to share the same hardware.
• Managing multiple Linux distributions in the same organization.•
• Building one-off deployment processes for each application you put into•

production.
• Needing to treat each application as a unique codebase when it comes to patching•

and auditing security vulnerabilities.
• And much more.•

By using the registry as a handoff point, Docker eases and simplifies communication
between operations and development teams, or between multiple development teams
on the same project. By bundling all of the dependencies for an application into
one shipping artifact, Docker eliminates concerns about which Linux distribution
developers want to work on, which versions of libraries they need to use, and how
they compile their assets or bundle their software. It isolates operations teams from
the build process and puts developers in charge of their dependencies.

The Challenges Docker Addresses | 369



The Docker Workflow
Docker’s workflow helps organizations tackle really hard problems—some of the
same problems that DevOps processes are aimed at solving. A major problem in
incorporating DevOps successfully into a company’s processes is that many people
have no idea where to start. Tools are often incorrectly presented as the solution to
what are fundamentally process problems. Adding virtualization, automated testing,
deployment tools, or configuration management suites to the environment often just
changes the nature of the problem without delivering a resolution.

It would be easy to dismiss Docker as just another tool making unfulfillable promises
about fixing your business processes, but that would be selling it short. Docker’s
power is in the way that its natural workflow allows applications to travel through
their whole lifecycle, from conception to retirement, within one ecosystem. Unlike
other tools that often target only a single aspect of the DevOps pipeline, Docker
significantly improves almost every step of the process. That workflow is often opin‐
ionated, but it simplifies the adoption of some of the core principles of DevOps. It
encourages development teams to understand the whole lifecycle of their application
and allows operations teams to support a much wider variety of applications on the
same runtime environment. And that delivers value across the board.

Minimizing Deployment Artifacts
Docker alleviates the pain that is often induced by sprawling deployment artifacts.
It does this by defining the result of a build as a single artifact, the Docker image,
which contains everything your Linux application requires to run, and it executes this
within a protected runtime environment. Containers can then be easily deployed on
modern Linux distributions. But because of the clean split between the Docker client
and server, developers can build their applications on non-Linux systems and still
participate in the Linux container environment remotely.

Leveraging Docker allows software developers to create Docker images that, starting
with the very first proof of concept, can be run locally, tested with automated tools,
and deployed into integration or production environments without ever having to
be rebuilt. This ensures that the application that is launched in production is the
same as what was tested. Nothing needs to be recompiled or repackaged during the
deployment workflow, which significantly lowers the risks normally inherent in most
deployment processes. It also means that a single build step replaces a typically error-
prone process that involves compiling and packaging multiple complex components
for distribution.

Docker images also simplify the installation and configuration of an application.
Every single piece of software that an application requires to run on a modern Linux
kernel is contained in the image, and the dependency conflicts you might find in a

370 | Chapter 14: Conclusion



traditional environment are eliminated. This makes it trivial to run multiple applica‐
tions that rely on different versions of core system software on the same server.

Optimizing Storage and Retrieval
Docker leverages filesystem layers to allow containers to be built from a composite
of multiple images. This shaves a vast amount of time and effort off of many deploy‐
ment processes by shipping only significant changes across the wire. It also saves
considerable disk space by allowing multiple containers to be based on the same
lower-level base image and then utilizing a copy-on-write process to write new or
modified files into a top layer. This also helps in scaling an application by allowing
more copies of an application to be started on the same servers without the need to
push the binaries across the wire for each new instance.

To support image retrieval, Docker leverages the image registry for hosting images.
While not revolutionary on the face of it, the registry helps split team responsibilities
clearly along the lines embraced by DevOps principles. Developers can build their
application, test it, ship the final image to the registry, and deploy the image to the
production environment, while the operations team can focus on building excellent
deployment and cluster management tooling that pulls from the registry, runs relia‐
bly, and ensures environmental health. Operations teams can provide feedback to
developers and see the results of all the test runs at build time rather than waiting
to find problems when the application is shipped to production. This enables both
teams to focus on what they do best without a multiphase handoff process.

The Payoff
As teams become more confident with Docker and its workflow, the realization often
dawns that containers create a powerful abstraction layer between all of their software
components and the underlying operating system. Organizations can begin to move
away from having to create custom physical servers or VMs for most applications
and instead deploy fleets of identical Docker hosts that can be used as a large
pool of resources to dynamically deploy their applications to, with an ease that was
previously unheard of.

When these process changes are successful, the cultural impact within a software
engineering organization can be dramatic. Developers gain more ownership of their
complete application stack, including many of the smallest details, which would
typically be handled by a completely different group. Operations teams are simultane‐
ously freed from trying to package and deploy complicated dependency trees with
little or no detailed knowledge of the application.

In a well-designed Docker workflow, developers compile and package the application,
which makes it much easier for them to focus on ensuring that the application is

The Payoff | 371



running properly in all environments, without worrying about significant changes
introduced to the application environment by the operations teams. At the same
time, operations teams are freed from spending most of their time supporting the
application and can focus on creating a robust and stable platform for the application
to run on. This dynamic creates a very healthy environment in which teams have
clearer ownership and responsibilities in the application delivery process, and friction
between them is significantly decreased.

Getting the process right has a huge benefit to both the company and the customers.
With organizational friction removed, software quality is improved, processes are
streamlined, and code ships to production faster. This all helps free the organiza‐
tion to spend more time providing a satisfying customer experience and delivering
directly to the broader business objectives. A well-implemented Docker-based work‐
flow can greatly help organizations achieve those goals.

The Final Word
You should now be equipped with the knowledge that can help you make the transi‐
tion to a modern, container-based build and deployment process. We encourage you
to experiment with Docker on a small scale on your laptop or in a VM to further your
understanding of how all of the pieces fit together, and then consider how you might
begin to implement it for your organization. Every company or individual developer
will follow a different path determined by their own needs and competencies. If
you’re looking for guidance on how to start, we’ve found success in tackling the
deployment problem first with simpler tools and then moving on to tasks like service
discovery and distributed scheduling. Docker can be made as complicated as you like,
but as with anything, starting simple usually pays off.

We hope you can now take all of this newfound knowledge and make good on some
of Docker and Linux containers’ promises for yourself.

372 | Chapter 14: Conclusion



Index

Symbols
&& operator in Dockerfiles, 82
.dockerignore file, 56
.env (dotenv) configuration file, 216-218

docker-compose.yaml then .env then envi‐
ronment variables, 218

same directory as docker-compose.yaml,
217

values not in quotation marks, 217
/ operator in Dockerfiles, 82
12-factor app (see twelve-factor app)
:- in docker-compose.yaml, 215
:? in docker-compose.yaml, 215

A
admin processes as one-off tasks, 364
Advanced Package Tool (apt), 34
Alpine Linux

launching container containing base image,
46

ps support not complete, 175
small distribution size, 61, 74, 77

Alpine Package Keeper (apk), 34
Amazon ECS (Elastic Container Service)

about, 276
AWS CLI setup, 278
container instances, 280
core AWS setup, 277
Fargate, 276
Identity and Access Management (IAM),

277
Linux container support, 12, 237
stopping the task, 289-291
tasks, 280-288

testing the task, 289
Amazon EKS (Elastic Kubernetes Service)

hosted Kubernetes offerings, 237
Linux container use, 12, 276

Amazon Fargate, 276
(see also Amazon ECS (Elastic Container

Service))
Amazon Identity and Access Management

(IAM), 277
AMD and ARM platform builds, 97-102

image manifest, 101
Ansible Docker tooling, 29, 31
Apache Mesos Marathon scheduler, 30
APIs

API endpoint information, 72
Docker daemon, 17

documentation, 17
plug-ins leveraging, 31
version command, 138

everything the Docker client can do, 157
kubectl API, 271-272
multiple applications communicating via, 28
stats endpoint for monitoring, 157-159

app design twelve factors (see twelve-factor
app)

AppArmor, 21, 320
Application Performance Monitoring (APM),

226
apt (Advanced Package Tool), 34
architecture of Docker

about, 14
client/server model, 14
command-line tool, 17
container networking, 18

373



daemon API, 17
documentation, 17

network ports and Unix sockets, 15
plug-in architecture, 31
stateless or state externalized, 19
structure of Docker, 339-343
tooling shipped with, 16

orchestration tools, 16
ARM and AMD platform builds, 97-102

image manifest, 101
atomic hosts

definition, 8
Fedora CoreOS as, 3, 30

(see also Fedora CoreOS (Red Hat))
immutable atomic hosts, 30
Linux containers as, 3

AuFS, 332
aws

configure, 279
ecs

create-cluster, 280
create-service, 283
delete-cluster, 291
delete-service, 291
describe-services, 285
describe-tasks, 286
list-services, 285
list-task-definitions, 283
list-tasks, 286
register-task-definition, 282
stop-task, 290

iam
create-service-linked-role, 285
list-users, 279

--version, 279
Azure Container Apps, 237
Azure Kubernetes Service, 237

B
backing services as attached resources, 360
bind mounts

docker container run -v command, 112
z and Z options (SELinux), 112

documentation, 88
hostname, 108, 109

binfmt_misc, 97
block I/O for Linux containers, 121
blue-green deployment, 226
Bonér, Jonas, 365

Bottlerocket OS, 30
Brewer, Eric, 12
bridge mode, 18
Btrfs, 51, 332
build flag, 27
build stage separate from run stage, 361
buildah and podman, 349-351
building a Docker image, 55-58

Docker workflow, 27
BuildKit support in Docker, 27
packaging, 28

exactly as shipped to production, 232
BuildKit

build container for building images, 97
debugging broken builds, 94-96
directory caching, 87-92
enabling, 57
output color modification, 89

Burns, Brandan, 251

C
cAdvisor for monitoring, 164-167
Centurion (New Relic), 29
cgroups in Linux kernel

block I/O, 122
cgroup namespaces, 301
containers in detail

about cgroups, 294
about subsystems working together, 293
/sys filesystem, 295-299

documentation, 295
freezer for pausing containers, 128
Linux versions and, 295
resource quotas, 114, 117, 223

ChatOps (Hubot)
added as user to Rocket.Chat, 205-209
cloning Git repository, 190
Colossal Cave Adventure game, 210
docker-compose.yaml, 193-199
help for list of commands, 209
invitation from Rocket.Chat, 209
launching services, 199-201

Chocolatey for Windows, 34, 39
chroot Unix system call, 105, 299
CI/CD (continuous integration and continuous

delivery)
Docker plug-ins, 234
workflow with Docker, 1-5

client, 7

374 | Index



(see also Docker client; docker commands)
client certificate documentation, 43
client/server model of Docker, 14

testing taking advantage of, 234
cloning a Git repository

building first image, 55
Compose examples, 190
private registry, 69
wordchain, 98

cloud deployments
container abstraction aiding scaling, 237
Docker Swarm mode

about, 238
adding node as worker, 241
adding servers as workers, 241
adding working, 239
docker stack, 246-248
inspecting via Docker client, 240
launching first service, 242
listing nodes via Docker client, 241
manager initialized, 240
more services than nodes, 245
networking, 242
routing mesh between nodes, 243
scaling service up or down, 244
Swarm cluster manager added, 239, 241
Swarm cluster manager initialized, 240
Swarm cluster managers, 239
Swarm cluster up and running, 239-241
token required for nodes joining cluster,

240
public cloud providers supporting Linux

containers, 237
Cloud Native Computing Foundation (CNCF)

certifications of Kubernetes distributions,
227

containerd runtime, 12
codebase tracked in revision control, 357
Colima for macOS, 45
Colossal Cave Adventure game, 210
Compose (see Docker Compose)
concurrency, 362
config.yaml for private registry, 69
configuration

advanced configuration, 323
networking, 323-330

config.yaml for private registry, 69
daemon.json for Docker server, 141
Dockerfile for environment consistency, 224

(see also Dockerfiles)
Docker’s role in production, 224
environment variables

building Docker images, 59-61
configuration files versus, 224
Docker Compose, 214
Docker’s native mechanism, 224
stateless applications, 24
twelve-factor app, 358-360

container networking, 18
(see also networking)

container platform design, 355
twelve factors of app design (see twelve-

factor app)
containerd runtime

about, 14
Cloud Native Computing Foundation, 12
Kubernetes supporting, 227
lower-level OCI-certified runtimes used by,

14
containers (see Linux containers)
containers and pods of Kubernetes, 259-260
continuous integration and continuous delivery

(CI/CD)
Docker plug-ins, 234
workflow with Docker, 1-5

control groups (see cgroups in Linux kernel)
copy-on-write (CoW) system, 51
copying files in and out of container, 170
CPU pinning of a container, 118
CPU quotas simplified, 118
CPU shares, 115-117
crun runtime, 14
curl

Docker /events API call, 157
Docker system event, 164

D
daemon (see Docker daemon)
daemon.json configuration file

--config-file to specify, 46
experimental and metrics-addr for monitor‐

ing, 167
location of, 48, 141, 153

Docker Desktop, 48, 153, 167
--log-driver option, 153
logging settings, 152
Prometheus settings for monitoring, 167

Dandified yum (dnf), 34

Index | 375



datastores for configuration information, 24
DC/OS (Datacenter Operating System; Meso‐

sphere), 30
Debian distributions, 34
debugging

broken builds, 92-96
about, 92
BuildKit images, 94-96
pre-BuildKit images, 92

containers
about, 171
controlling processes, 179-181
filesystem inspection, 187
filesystem paths relative to container,

174, 178
filesystem paths relative to processes,

178
image history, 185
inspecting a container, 142, 186
killing a process, 179
network inspection, 182-185
new debugging container seeing existing

container processes, 178
process inspection, 177-179
process output, 172-176
processes that spawn background chil‐

dren, 180
ps output in tree form, 174-176

Docker Compose, 212
docker system events, 164
getting inside a running container, 146-150

about, 146
docker container exec, 146

monitoring (see monitoring)
shell-less containers, 336
updates with rollbacks, 246

default root directory, 140
delivery role of Docker in production, 225
dependencies

about Docker, 10-12
BuildKit directory caching, 90
Docker’s role in production, 224

Docker and the DevOps pipeline, 231
explicitly declare and isolate, 357
filesystem layers of Linux containers, 25
filesystem state storage, 24
persistent storage, 114
reliability of tests on containers, 28
service discovery, 228

deployment
agnostic via three rules, 224
artifacts minimized, 370
blue-green style, 226
cloud deployments

container abstraction aiding scaling, 237
Docker Swarm mode, 238-250

Docker versus frameworks, 6
Docker workflow, 27, 29
immutable infrastructure via containers, 22
orchestration tools

Docker, 16
third party, 29

push-to-deploy systems, 10
simplified with Linux containers, 9-12

development cycle twelve factors (see twelve-
factor app)

development/production parity, 363
Device Mapper, 51, 332
DevOps pipeline and Docker

about, 2, 231
external dependencies, 234
overview, 231-234

directory caching, 87-92
documentation, 90

disposability of services, 363
distributed schedulers, 226
Distribution project for private registry, 63
dive tool for exploring image contents, 74
dmesg, 121
dnf (Dandified yum), 34
DNS (Domain Name Service)

configuring Linux containers, 110
Docker Compose service discovery, 229
Docker providing to container, 224

Docker
about, 1-5, 14

broad support for, 12-14, 29
capabilities not handled by, 5-7, 20
Linux containers, 2, 7
terminology, 7

API endpoint information, 72
architecture

about, 14
client/server model, 14
command-line tool, 17
container networking, 18
daemon API, 17
network ports and Unix sockets, 15

376 | Index



orchestration tools, 16
plug-in architecture, 31
stateless or state externalized, 19
tooling shipped with, 16

challenges addressed, 369
characteristics

about, 19
containers as ephemeral wrappers, 20,

104
containers using minimal disk space, 22
externalizing state, 24
immutable infrastructure, 22
limited isolation of containers, 21
stateless applications, 23

documentation, xviii
deprecation, 33
filesystem backends, 332
installation, 34
networking, 19

future thoughts, 367
history of development, 1, 12

container history, 104-106
Linux container accessibility, xvii, 5

installation (see installing Docker)
production via Docker, 221

(see also production)
structure of Docker, 339-343
version displayed, 138
website, 29
workflow with Linux containers

about, 3-5, 370
building applications, 27
deploying, 29
packaging, 28
process simplification, 9-12
revision control, 25
starting with default networking, 19
testing, 27, 231
tools for additional capabilities, 29-31

Docker client, 7, 13
(see also docker commands)
API can do programmatically, 157
client/server model, 14
docker commands on server instead, 138
Go language used for, 17
installing

about, 34
Fedora Linux, 36
Linux, 34

macOS, 34, 37
testing the installation, 45
Ubuntu Linux, 35
Windows, 34, 37-39

latest tag during deployment, 142
Swarm mode built in, 238
tools that are similar

nerdctl, 347-349
podman and buildah, 349-351

version command, 138
Docker Community Edition

Fedora installation, 36
documentation, 36

server installed, 39
Fedora or Ubuntu, 39
Windows or macOS, 39

Ubuntu installation, 35
documentation, 35

Docker Compose
:- operator, 215
:? operator, 215
about, 189

external dependencies, 234
version 1 versus version 2, 189
Windows users first invoking services,

200
work in docker-compose.yaml directory,

199
about multiple-container projects, 189
configuring, 193-199

default values, 213-215
docker-compose.yaml, 193-199
docker-compose.yaml then .env then

environment variables, 218
.env (dotenv) file, 216-218
managing configuration, 213-218
mandatory values, 215

docker-compose.yaml, 193-199
configuration .env (dotenv) file, 216-218
configuration default values, 213-215
configuration management, 213-218
configuration mandatory values, 215
displaying via docker compose config,

199
docker-compose.yaml then .env then

environment variables, 218
work in same directory, 199

documentation, 218
configuration, 199

Index | 377



installation, 189
variable interpolation, 215

exercising, 211-213
launching services, 199-201
logs, 200
override files, 218
Rocket.Chat

about startup, 200
exploring, 201-211

service discovery, 229
shell scripting versus Compose, 190-199

Docker containers (see Linux containers)
Docker daemon

API, 17
documentation, 17

attack surface documentation, 43
client/server model, 14

(see also Docker server)
configuration file, 48

(see also daemon.json configuration file)
running manually, 46
security, 321
user authentication and access controls lack‐

ing, 15
version command, 138

Docker Desktop
daemon.json file editing, 48, 153, 167
Docker Compose included, 189
Docker Desktop for Linux, 35
Kubernetes, 273
Linux commands minimal, 174
macOS, 37

hypervisor framework, 37
VM-based Linux server, 40
xhyve, 37

nsenter for Docker server access, 47, 76
server installed, 39
VM filesystem read-only, 117
Windows

Hyper-V, 37
VM-based Linux server, 40
Windows Subsystem for Linux (WSL 2),

37
Docker Hub

API endpoint information, 72
Docker image public registry, 62, 63-68

creating account, 63
editing image tags with username, 66
exploring images, 67

logging in, 64
logging out, 65
official curated images, 68
pulling images, 67
pushing images, 66

Node images, 53
Docker images (see OCI images)
Docker Registry, 68-72
Docker server, 7, 13

(see also dockerd command)
command execution instead of via client,

138
configuration management minimal, 22
daemon.json configuration file location, 48,

141, 153
Docker Desktop, 48, 153, 167

docker0 interface, 18
exploring, 46, 139-141
image file location, 75
installing

about, 39
Docker Community Edition, 39
Fedora, 39
macOS on Docker Community Edition,

39
macOS VM via Docker Desktop, 40
testing the installation, 45
Ubuntu, 39
Vagrant for server VM, 40-45
Windows on Docker Community Edi‐

tion, 39
Windows VM via Docker Desktop, 40

log file location, 151
Docker Swarm (classic), 16, 227, 238
Docker Swarm mode

about, 16, 238
managing clustered computing

resources, 238
adding node as worker, 241
adding servers as workers, 241
adding worker, 239
docker stack, 246-248
inspecting via Docker client, 240
launching first service, 242

scaling up or down, 244
listing nodes via Docker client, 241
more services than nodes, 245
networking, 242
overlay network driver, 329

378 | Index



routing mesh between nodes, 243
scaling, 238-250

scaling service up or down, 244
service discovery, 229
Swarm cluster managers

about, 239
docker swarm init creating, 239
manager added, 239, 241
manager initialized, 240
odd number of, 239

Swarm cluster up and running, 239-241
token required for nodes joining cluster,

240
lost token recovery, 240

updating software, 245
rollbacks, 246

Docker, Inc., 29, 226
Dockerfiles

&& operator to string commands, 82
/ operator for command continuation, 82
about, 6

Docker image customization, 52
environment consistency via, 224

anatomy of, 52-55
build flag, 27
CMD instruction, 99

--init flag of docker container run, 181
debugging BuildKit images, 94-96
debugging pre-BuildKit images, 92
deleting cache in image layers, 81
directory caching, 87-92
documentation, 92
ENTRYPOINT, 99, 108, 233
HEALTH CHECK definition, 160

--health-interval, 162
layer cache utilized, 83-87
multistage builds for smaller containers, 78
TARGETARCH, 101
Windows containers, 133

docker-buildx (see docker buildx)
docker-ce (see Docker Community Edition)
docker-compose (see docker compose)
docker (Unix group), 45
docker build (see docker image build)
docker buildx

build, 99
--platform (for multiple architectures),

100
create, 98

multi-compute-architecture builds, 97-102
rm to remove a container, 98

docker commands
about, 7

client/server model, 15
Go language used for, 17
network ports and Unix sockets, 15

command-line tool, 16
-H for remote docker server, 44
shell prompt for interactive containers, 109

exit command for exiting container
shell, 110

sudo before docker commands, 45
man page, 45

docker compose
build, 199
config, 199
down, 213
exec, 212
logs, 200, 212

rocketchat, 200
pause, 212
restart user, 209
start, 212
stop, 212
top, 211
unpause, 212
up

-d for background web service, 200, 214
-f for configuration file, 214

version, 189
docker container

cp to copy files in and out of container, 170
create

--cgroup-parent, 299
docker container run doing, 106
--isolation=hyperv, 135
--name, 107

diff for filesystem inspection, 187
exec

-d for running background processes,
148

filesystem paths relative to processes,
178

-it for interactive terminal, 147
new interactive process in container, 146

export contained files to tarball, 73
inspect, 142

debugging containers, 186

Index | 379



displaying labels, 108
kill, 127

--signal, 127, 179
list (see docker container ls)
logs, 150-152

directory containing, 187
-f for live display, 151
non-functional with some logging driv‐

ers, 153
running a private registry, 70

ls
-a for all even non-running, 126
checking for running container, 58, 125
container ID retrieved, 60, 73
equivalent commands, 60
-f/--filter, 130
filtering on labels, 107
formatting the output, 60
health check, 161
paused containers still running, 129
reflecting truth about processes, 179, 180

--mount, 71
pause, 128
ps (see docker container ls)
rm

-f/--force to remove a running container,
129

filtering via ls or docker images, 130
removing a container, 71, 129

run
authentication username and password,

70
--blkio-weight, 122
--blkio-weight-device, 122
--cap-add, 178, 314, 316-320, 336
--cap-drop, 314
containers of various distributions, 45
--cpu-shares, 117
--cpus, 119
--cpuset-cpus, 118
creating and executing the container,

106
-d/--detach, 165
debugging a broken build, 94
default network approach when starting,

19
--dns, 110
--dns-search, 110
-e/--env to set environment variable, 60

environment variable values, 233
exit codes, 233
--hostname, 110
image tags, 46, 233
--init, 55, 181
--isolation=hyperv, 135
-it for interactive terminal, 74, 89, 108
-l for labels, 107
--mac-address, 111
--memory, 119
--memory-swap, 120
--mount storage volume, 112, 149, 155
--net=host switch, 19
new debugging container seeing existing

container processes, 178
nginx container for log display, 150
nsenter for Docker server access, 47, 76
-p/--publish to map ports, 58, 60
Prometheus monitor, 169
--read-only, 113, 155
--restart, 125
--rm to remove container on exit, 70,

108
running a Docker image, 58
running a private registry, 70
testing in production, 232
-ti for interactive terminal, 74, 89, 108
--ulimit for user limits, 123
--uts=host, 300
-v for bind mounts, 112
z and Z options for volume mounts, 112

start
docker container run executing con‐

tainer, 106
exit after 120 seconds, 107
starting a container, 124
starting a killed container, 127

stats, 155-157
--no-stream, 156

stop, 126
SIGTERM signal sent, 127
stop running container, 60, 107
-t to kill after some time, 127

top for list of container processes, 171, 172
unpause, 129
update to adjust resource quotas, 114, 119

docker context
create, 44
list, 59

380 | Index



use, 44
Vagrant server VM, 44

docker image
build, 57

build arguments, 59
Docker workflow, 27
.dockerignore file, 56
documentation, 58
local cache, 58
period at end, 57
running a private registry, 70
--squash to combine layers, 80-83
--target argument, 95
uploading image to registry, 66

-f/--filter, 130
history

debugging containers, 185
filesystem layers and build steps, 81
--no-trunc, 185

import to load an image from a tarball, 170
inspect to locate server image files, 75
ls

formatting output, 67
verifying image on server, 67

pull
content-addressable tag, 142
downloading image from repository, 67
latest tag, 141

push to upload image to repository, 67
rm to remove, 129
save for saving image to tarball, 170
tag

editing username, 66
production build tags, 234

docker images (see docker image ls)
docker inspect, 59
docker kill (see docker container kill)
docker login, 64

registry hostname supplied, 65
docker logout, 65
docker manifest inspect, 101
docker network

--aux-address, 330
create

Docker Swarm mode networking, 242
macvlan, 329

inspect, 182, 328
ls, 182, 242, 328

docker node

drain, 248
ls, 241
update

--availability active, 250
--availability drain, 248

docker pause (see docker container pause)
docker ps (see docker container ls)
docker rm (see docker container rm)
docker rmi (see docker image rm)
docker run (see docker container run)
docker search, 67
docker secret, 360
docker service

create, 242
inspect --pretty, 243
ls, 243
ps, 243
rm, 250
rollback, 246
scale, 244

--detach=false, 245
update, 245

docker stack, 246-248
docker start (see docker container start)
docker stop (see docker container stop)
docker swarm

init, 239
join

adding a worker, 239
adding node as worker, 241
adding servers as workers, 241

join-token
manager added, 239
token recovery, 240

docker system
events, 163-164

out of memory event, 121
info

Docker Swarm mode status, 240
exploring the server, 139
kernel information, 115
storage backend system, 334

prune to remove all containers and images,
130

docker unpause (see docker container unpause)
docker version, 138

-H with Vagrant VM, 44
docker volume

about, 148

Index | 381



create, 148
ls, 148
rm, 149

docker-compose.yaml, 193-199
:- operator, 215
:? operator, 215
displaying via docker compose config, 199
managing configuration, 213-218

default values, 213-215
docker-compose.yaml then .env then

environment variables, 218
.env (dotenv) file, 216-218
mandatory values, 215

work in same directory, 199
docker0 server interface, 18
dockerd

about Docker server, 7
client/server model, 15
Docker Desktop needs trick to interact,

47
docker0 server interface, 18
native on Linux, 20
network ports and Unix sockets, 15
server configuration management mini‐

mal, 22
daemon.json configuration file, 141

(see also daemon.json configuration file)
--data-root for root directory, 140
docker group to manage access to Unix

socket, 45
running manually, 46
security, 321
--storage-driver, 334
--userns-remap, 304

dockershim deprecation, 368
dockprom for monitoring, 169
documentation

API endpoint information, 72
BuildKit directory caching, 90
cgroups, 295
Docker, xviii

bind mounts, 88
building base images on various Linux

distributions, 61
deprecation, 33
docker image build command, 58
filesystem backends, 332
filtering options, 131
installation, 34

installation on Fedora Linux, 36
installation on Ubuntu Linux, 35
installation on Windows, 39
networking, 19
rootless mode uninstall, 311
security, 322
SSH or TLS client certificates, 43

Docker Compose, 218
configuration, 199
installation, 189
variable interpolation, 215

Dockerfiles, 92
Hypervisor framework, 37
sudo man page, 45
Windows containers, 134

Domain Name Service (see DNS)
dotCloud company, 1
dotenv (.env) configuration file, 216-218

docker-compose.yaml then .env then envi‐
ronment variables, 218

same directory as docker-compose.yaml,
217

values not in quotation marks, 217

E
ECS (see Amazon ECS (Elastic Container Ser‐

vice))
EKS (see Amazon EKS (Elastic Kubernetes Ser‐

vice))
Elastic Container Service (see Amazon ECS

(Elastic Container Service))
Elastic Kubernetes Service (see Amazon EKS

(Elastic Kubernetes Service))
elastic systems, 366
encrypted SSL connection port, 15
ENTRYPOINT in Dockerfiles, 99, 108, 233
.env (dotenv) configuration file, 216-218

docker-compose.yaml then .env then envi‐
ronment variables, 218

same directory as docker-compose.yaml,
217

values not in quotation marks, 217
environment variables

BUILDKIT_COLORS, 89
configuration via, 24

building Docker images, 59-61
Docker Compose, 214
Docker’s native mechanism, 224
twelve-factor app, 358-360

382 | Index



docker container run command, 233
docker-compose.yaml then .env then envi‐

ronment variables, 218
DOCKER_BUILDKIT, 57, 93
DOCKER_HOST, 59
KUBE_VERSION, 255
metadata of Linux containers, 24
NO_COLOR, 89
PATH, 143, 253, 254, 310

event stream around container lifecycle,
163-164

exit codes
137 out of memory error, 120
container returning a result, 145-146
debugging BuildKit images, 95
docker container run command, 233
health checks, 160
restarting a container per, 125

exit command for exiting container shell, 110
exit command for exiting minikube, 257
exiting via Ctrl-C

applications, 89
events stream, 163
logs stream, 152
stats stream, 156
strace process, 177, 179

--experimental option for Prometheus moni‐
toring, 167

exporting container files to a tarball, 73

F
Fargate, 276

(see also Amazon ECS (Elastic Container
Service))

Fedora CoreOS (Red Hat)
download link, 8
immutable atomic hosts, 3, 30
installing Docker

client, 36
server, 39
testing the installation, 45
Vagrant for server VM, 40-45

launching container containing base image,
46

Linux container workload support, 13
OS configuration minimal, 23
sudo before docker commands, 45
Vagrant supporting, 40

filesystem layers of Linux containers, 25, 51

additive, 80-83
history and build steps, 81

debugging containers, 187
directory corresponding to a container, 186
examining in server image files, 75-77
exporting to a tarball, 73
paths relative to container, 174, 178

docker container exec for process view,
178

read-only to prevent filesystem writes, 155
storage and retrieval optimization, 371
storage backend for, 51, 330-333

comparing storage backends, 331-333
/sys filesystem, 295-299
tmpfs for writable within read-only, 113

filesystem state storage, 24

G
gdb (GNU debugger), 178
Git

cloning a Git repository
building first image, 55
Compose examples, 190
private registry, 69
wordchain, 98

.gitignore for files containing secrets, 216
git status confirming, 217

installer link, 56
GitHub

book code examples source code, xx
Docker source code, 1

glibc (GNU C Library), 61
GNU C Library (glibc), 61
GNU debugger (gdb), 178
Go language

Docker Compose version 2, 189
docker client, 17
libcontainer library, 104
minimal container example, 73
template for output formatting, 60

Google Cloud Run, 237
Google Kubernetes Engine, 237
Google supporting Docker, 12
gVisor runtime, 14, 301, 344-346

H
Harbor private image registry, 63
hashes

container filesystem layer identification, 25

Index | 383



container ID hash, 109
displaying via docker container inspect,

143, 186
displaying via docker container ls, 124,

142, 186
long form, 143, 186
short form, 186

container references in commands, 124, 142
SHA-256 content-addressable tag, 142

HashiCorp
Nomad, 30
Packer, 23
Vault, 360

health checks for Linux containers, 159-163
--health-interval, 162

Helios (Spotify), 29
Heroku deployments, 10
Hightower, Kelsey, 227
Homebrew for macOS, 34, 37
host networking, 325-327
hostname, 108-110

hostname command, 109
htop command after stress command, 116
htpasswd file for private registry, 70
Hubot ChatOps

added as user to Rocket.Chat, 205-209
cloning Git repository, 190
Colossal Cave Adventure game, 210
docker-compose.yaml, 193-199
help for list of commands, 209
invitation from Rocket.Chat, 209
launching services, 199-201

Hykes, Solomon, 1, 226
Hyper-V, 37, 41

running Windows containers, 131-135
Hypervisor framework (Apple)

Docker Desktop relying on, 37
documentation, 37
hypervisors for Vagrant, 41
virtualization system hypervisors, 103

I
IAM (Amazon Identity and Access Manage‐

ment), 277
image registries

client/server model, 14
custom registry mirror, 63
private registries, 63

running a private registry, 68-72

public registries, 62
(see also Docker Hub; GitHub)

pull-through image cache, 63
pushing image to, 233

image tags
about Docker images, 7

(see also Docker images)
docker container run command, 46, 233
editing for Docker Hub username, 66
latest tag, 26, 141

deployment and, 142
not in production, 243
testing and, 233

revision control, 25
semantic versioning, 26

images (see OCI images)
immutable infrastructure

container deployment for, 22
immutable atomic hosts, 30

installing Docker
about, 33
client

about, 34
Fedora Linux, 36
Linux, 34-36
macOS, 34, 37
Ubuntu Linux, 35
Windows, 34, 37-39

docker group, 45
exploring Docker server, 46
server

about, 39
Docker Community Edition, 39
exploring, 46
Fedora, 39
macOS on Docker Community Edition,

39
macOS VM via Docker Desktop, 40
Ubuntu, 39
Vagrant for server VM, 40-45
Windows on Docker Community Edi‐

tion, 39
Windows VM via Docker Desktop, 40

testing the installation, 45
Internet Assigned Numbers Authority (IANA),

15
IP addresses

container networking, 18
containers normally have their own, 183

384 | Index



Docker host IP address determination, 59
docker network inspect command, 183
minikube ip command, 257
running a private registry, 69

testing the private registry, 71
IPC namespaces, 300

J
jail command, 105
Jenkins build system, 27

daemons forking into background, 180
Docker plug-ins, 234

job control by Docker in production, 222
jq tool for output formatting, 157
JSON

daemon.json (see daemon.json configura‐
tion file)

json-file logging plug-in, 150-153
stats API endpoint for monitoring, 157-159

json-file logging plug-in, 150-153

K
k0s, 252
k3d, 252
k3s, 252
k8s (see Kubernetes)
Kata Containers runtime, 14
kill command, 179

passing Unix signals, 180
kind, 274-276
kubectl command

about, 252
apply, 267
config

current-context, 273
unset current-context, 273
use-context, 273

create, 261
delete, 272

deployment, 262
service, 262

expose, 261
get

all, 261
pvc, 268
services, 261

installing with Minikube
Linux, 254
macOS, 253

Windows, 254
logs, 270
proxy, 271
scale, 269

Kubernetes
automatic scheduler, 30
choice when building from scratch, 227
Cloud Native Computing Foundation certif‐

ications, 227
container-based scheduler, 227
containerd runtime supported, 12, 227
dockershim deprecation, 368
production orchestration, 16
public cloud provider offerings, 237
scaling

about, 251
containers and pods, 259-260
dashboard, 258
deploying a production stack, 263
deploying the application, 267-269
deployment, 260-262
Deployment definition, 266
Docker Desktop, 273
kind, 274-276
kubectl API, 271-272
Minikube, 251-272
PersistentVolumeClaim definition, 265
running Kubernetes, 255
scaling up, 269-271
Service definition, 264

Kubernetes: Up and Running (Burns et al.), 251
KVM, 41

L
labels, 53, 107
latest tag, 26, 141

deployment and, 142
not in production, 243
testing and, 233

libcontainer Go library, 104
Linux

about containers and Linux versions, 4
cgroups and Linux versions, 295

Alpine Linux for small distribution size, 61,
74, 77

AppArmor, 21, 320
capabilities

--cap-add, 178, 314, 316-320, 336
--cap-drop, 314

Index | 385



NET_ADMIN, 314
NET_RAW, 314
SYS_ADMIN, 316-320, 336
SYS_PTRACE, 178, 336

control groups (see cgroups in Linux kernel)
distributions

Alpine (see Alpine Linux)
Fedora CoreOS (see Fedora CoreOS

(Red Hat))
Red Hat Enterprise Linux (see Red Hat

Enterprise Linux)
Ubuntu (see Ubuntu Linux)

Docker requiring, 13, 33
init systems for job control, 222
installing Docker

about, 33
client, 34-36
server, 39-45
testing the installation, 45
Ubuntu Linux, 35
Vagrant for server VM, 40-45

kernel
container as just another process, 4, 21,

171
container root user unauthorized access,

22
control groups (see cgroups in Linux

kernel)
development history, 105
OCI image layers and, 51
operating system virtualization, 103
out of memory (OOM), 120
resource quotas, 114
version 3.8 or later, 34
version displayed via system info, 139
virtual machine providing, 13, 103

Linux Containers (LXC), 105
Minikube installation, 254
namespaces (see namespaces)
Secure Computing Mode, 315-320
SELinux and volume mounts, 112
sudo before docker commands, 45
system calls (see system calls)
systemd

cgroup control, 296
job control, 222
linger feature, 310
logging, 150, 154, 364
process inspection, 177

rootless mode, 308-310
starting Docker, 40, 41

Unix signals (see Unix signals)
Linux containers

about
about Docker, 2
abstracting underlying hardware and

OS, 237
atomic or throwaway, 3, 8
broad support for, 12-14, 29
definition, 7, 103
explanation of containers, 103
operating system virtualization, 103
OS-specific technology, 104
subsystems working together, 293
Windows running, 13

auto-restarting, 125
bridge mode, 18
build container for building images, 97
cgroups, 294

(see also cgroups in Linux kernel)
characteristics

ephemeral wrappers, 20, 104
immutable infrastructure, 22
limited isolation, 21
minimal disk space, 22

cleaning up, 129
configuring

container name, 107
container name unique, 71, 107
Domain Name Service, 110
hostname, 108-110
labels, 53, 107
MAC address, 111

container ID retrieved, 73
container networking, 18

(see also networking)
creating a container, 106-123

about, 106
basic configuration, 106-111
resource quotas, 114-123
storage volumes, 111-114

debugging (see debugging)
Docker image runtime instance, 7, 51
exporting contained files into tarball, 73
filesystem layers, 25, 51

additive, 80-83
examining in server image files, 75-77
exporting to a tarball, 73

386 | Index



history and build steps, 81
storage and retrieval optimization, 371
storage backend for, 51, 330-333

future thoughts, 367
Go library for managing from applications,

104
health checks, 159-163

--health-interval, 162
history of development, 104-106
inside a running container, 146-150

about, 146
docker compose exec, 212
docker container exec, 146
docker volume, 148-150

inspecting a container, 142
debugging containers, 186
exploring the shell, 144
getting inside a running container,

146-150
minimal container example, 73

killing, 127
sending a Unix signal, 127
stop -t argument for time till kill, 127

Linux required, 33
metadata

labels, 53, 107
state stored in environment variables, 24

monitoring (see monitoring)
mount command, 109
multiple-container projects, 189

(see also Docker Compose)
namespaces, 299-301

about subsystems working together, 293
exploring, 301-303

pausing, 126, 128
unpausing, 129

privileged
security, 311
VM or underlying host exposed, 47

process control in production containers,
180

removing a container, 71
buildx container, 98
prune to remove all, 130

restarting a container, 60
returning a result, 145-146
running from any distribution, 45
shell-less, 336
small containers via multistage build, 78

starting a container, 124, 126
auto-restarting, 125

stopping a container, 60, 126
unprivileged user or group context, 53, 304
workflow with Docker (see workflow with

Docker)
Linux Containers (LXC), 105
load balancers for service discovery, 228
loading an image from a tarball, 170
logging

about, 150
one logging driver at a time, 153

advanced logging, 152-155
blocking by default, 154
journald, 153, 154
syslog, 153

changing blocking to non-blocking, 154
changing default log tag, 152
changing log driver, 153
configuration via daemon.json, 153

(see also daemon.json configuration file)
displaying via nginx container, 150

--since option to filter, 151
Docker’s role in production, 225
docker container logs command, 150-152
json-file logging plug-in, 150-153
live display stream, 151
log file location on server, 151
log rotation, 152
logs as event streams, 364
running a private registry, 70

logging in to Docker Hub, 64
logging out, 65

lsof command, 178
LXC (Linux Containers), 105

M
MAC (media access control) address

configuring Linux containers, 111
warning about customizing, 111

macOS running Docker
about, 13, 33
AWS CLI setup, 278
Homebrew, 34
installing Docker

about, 33
client, 34, 37
Colima for server VM, 45

Index | 387



server via Docker Community Edition,
39

server via VM, 40
testing the installation, 45
Vagrant for server VM, 40-45

Minikube installation, 253
mandatory access control, 321
Marathon scheduler, 30
Mastermind game, 89
memory resources for container, 119-121

hard limit, 119, 120
memory swap option, 120
monitoring via docker container stats, 156
out of memory, 120

Docker system events, 164
tuning and disabling, 121

Mesos Marathon scheduler, 30
Mesosphere DC/OS (Datacenter Operating Sys‐

tem), 30
message-driven systems, 366
metadata about services, 243
metadata of Linux containers

labels, 53, 107
state stored in environment variables, 24

--metrics-addr option for Prometheus moni‐
toring, 167

microk8s, 252
Minikube

commands, 257
description of, 252
installing

about, 252
Linux, 254
macOS, 253
Windows, 254

scaling with Kubernetes, 251-272
about, 251
containers and pods, 259-260
deploying a production stack, 263
deploying the application, 267-269
deployment, 260-262
Deployment definition, 266
kubectl API, 271-272
Kubernetes dashboard, 258
PersistentVolumeClaim definition, 265
running Kubernetes, 255
scaling up, 269-271
Service definition, 264

minikube command

dashboard, 258
delete, 272
ip, 257
service, 262, 268
ssh, 256, 257
start, 256
status, 257
update-check, 257

MongoDB datastore
cloning Git repository, 190
container deleted with docker compose

down, 213
docker-compose.yaml, 193-199
launching services, 199-201
preconfigured Rocket.Chat database, 211

monitoring
about, 155
cAdvisor, 164-167
container statistics

about, 155
command-line statistics, 155-157
stats API endpoint, 157-159

Docker Desktop VM filesystem read-only,
117

Docker system events, 163-164
Docker’s role in production, 225
dockprom for, 169
health checks for Linux containers, 159-163

--health-interval, 162
Prometheus for, 31, 167-169

mount command
Btrfs backend with loopback-mount, 332
namespaces, 299
networking, 327
privileged containers, 313
root volume as read-only, 113
run within container, 109
Secure Computing Mode, 316

multiarchitecture image builds, 97-102
image manifest, 101

multistage builds for smaller images, 78-80
production builds multistage, 78

musl standard library, 61

N
Nabla Containers runtime, 14
namespaces

containers in detail, 299-301
about subsystems working together, 293

388 | Index



exploring namespaces, 301-303
username not required for UID, 172

nerdctl, 347-349
netstat command

-an, 183
-anp, 184

networking
about container networking, 18
advanced configuration, 323-330

docker network command, 328-330
host networking, 325-327

debugging containers, 182-185
default approach recommended, 19, 183
default bridge network, 182
Docker’s role in production, 223
host network mode, 182
macvlan driver, 329
network namespace, 300
overlay driver, 329
ports of Docker, 15

New Relic Centurion, 29
nginx container for displaying logs, 150
Node instance via Dockerfile, 53
Node.js Docker images, 53
Nomad (HashiCorp), 30
nsenter for Docker server access, 47, 76, 334

O
OCI images

about, 7, 13, 51
Docker images as, 7
history of development, 13
Linux container templates, 7, 51
standard format for cloud providers, 12
updating shared images, 21

building an image, 55-58
build arguments, 59
build container for building images, 97
cloning a Git repository, 55
debugging broken builds, 92-96
Docker workflow, 27
environment variables as configuration,

59-61
exactly as shipped to production, 232
multiarchitecture builds, 97-102
multistage builds for smaller images,

78-80
multistage builds in production, 78
packaging, 28

cleaning up, 129
content-addressable tag, 142
custom base images, 61

Alpine Linux for small distribution size,
61

documentation on various Linux distri‐
butions, 61

debugging broken builds, 92-96
about, 92
BuildKit images, 94-96
pre-BuildKit images, 92

docker container run with image tags, 46
Dockerfile for customization, 52-55
downloading updates, 141
exploring contents via dive tool, 74
exporting files to a tarball, 73
filesystem layers, 25, 51

additive, 80-83
exporting files to a tarball, 73
history and build steps, 81
loading from a tarball, 170
server image files examined, 75-77
storage backend for, 51, 330-333

loading from a tarball, 170
multiarchitecture builds, 97-102

image manifest, 101
optimizing

&& operator in Dockerfiles, 82
/ operator in Dockerfiles, 82
about, 72
directory caching, 87-92
keeping images small, 73-80
layer cache utilized, 83-87
layers additive, 80-83
smaller with multistage builds, 78-80

removing, 129
prune to remove all, 130

repositories, 46
running the image, 58

restarting the container, 60
stopping the container, 60

saving to a tarball, 170
storing images

about, 62
custom registry mirror, 63
Docker Hub, 62, 63-68
exploring images in Docker Hub, 67
official curated images, 68
private registries, 63

Index | 389



public registries, 62
pull-through image cache, 63
pulling from repository, 67
running a private registry, 68-72

subscription-based delivery, 225
updates downloaded, 141

online resources (see resources online)
Open Container Initiative (OCI), 4

about OCI images, 7, 13
openssl command, 70
operating system virtualization, 103
orchestration tools

Docker, 16
production, 228

third party, 29
out of memory (OOM), 120

tuning and disabling, 121
Overlay, 331
overlay2, 51

P
packaging

Docker workflow, 28
Docker’s role in production, 225

Packer (HashiCorp), 23
paths of files relative to container, 174, 178

docker container exec for process view, 178
persistent storage (see storage volumes for

Linux containers)
PID namespace, 300
pipe (|)

container output, 146
filtering via, 131

plug-ins for Docker
about, 31
CI/CD, 234
displayed via docker system info, 139
Docker Compose version 2, 189
Jenkins build system, 234
json-file logging, 150-153
scaling, 234

podman and buildah, 349-351
Podman Desktop, 352
pods and containers of Kubernetes, 259-260
ports for Docker networking, 15

docker-proxy, 184
export services via port binding, 362
rely on Docker for mapping, 224

PowerShell

command adjustments for, 34
disabling BuildKit before image build, 93
Measure-Command, 84, 122
Windows container tested, 133

private registries, 63
GitHub selling, 62
running a private registry, 68-72

cloning a Git repository, 69
config.yaml for configuration, 69
testing the private registry, 71

storing images (see storing Docker images)
privileged containers

security, 311
unprivileged user or group context, 53, 304
VM or underlying host exposed, 47

processes
admin processes as one-off tasks, 364
container bash shell processes, 144
container history of development, 104-106
container processes as Linux host processes,

171
debugging containers

about, 171
controlling processes, 179-181
filesystem paths relative to container,

174, 178
filesystem paths relative to processes,

178
killing a process, 179
new debugging container seeing existing

container processes, 178
process inspection, 177-179
process output, 172-176
ps output in tree form, 174-176

inside a running container, 147
killed when out of memory, 120
Linux containers, 18

limited isolation, 21
UID 0 to launch, 22

monitoring via docker container stats, 156
new interactive process in container, 146
overview of containers

docker compose top, 211
docker container top, 171, 172

passing Unix signals via Linux kill, 180
PID 1, 180
process control in production containers,

180
run as root within container, 53

390 | Index



SIGTERM signal sent on stop, 127
single process within a container, 55
stateless, 361

production
about container platform design, 355
development/production parity, 363
Docker and the DevOps pipeline

about, 231
external dependencies, 234
overview, 231-234

Docker’s role
about, 221-222, 230
configuration, 224
job control, 222
logging, 225
monitoring, 225
networking, 223
packaging and delivery, 225
resource limits, 223
scheduling, 226-228
service discovery, 228-230

getting to production, 219
Kubernetes for orchestration, 16
latest tag not used, 243
multistage builds, 78
orchestration tools of Docker, 16
process control in production containers,

180
scaling facilitated by containers, 237

(see also scaling)
secrets, 71
unprivileged user context, 53, 304

Prometheus for monitoring, 31, 167-169
protocols

avoid those that map random ports, 224
proxy servers, 34
ps command, 147, 171

“container” user as nonzero UID, 174
filesystem paths relative to container, 174
output in tree form, 174-176
ps aux, 173

pstree command, 176
public registries for storing Docker images, 62

(see also Docker Hub; storing Docker
images)

pull-through image cache, 63
pulling images, 67

image updates, 141
pushing images onto Docker Hub, 66

Q
QEMU-based virtualization, 97
Quantum web game in Docker Swarm mode,

242
Quay (Red Hat) private image registry, 63
Quay.io image public registry, 62

R
Rancher Desktop, 351
“The Reactive Manifesto” (Bonér), 365
read-only

mount option, 113
preventing filesystem writes, 155

Red Hat
distributions, 34
Enterprise Linux, 4
Fedora CoreOS (see Fedora CoreOS)
Package Manager, 34
Quay private image registry, 63

Red Hat Enterprise Linux
download link, 4
Vagrant supporting, 40

registries (see image registries)
removing a container, 71

buildx container, 98
repositories for Docker images, 46

cloning a Git repository, 55
resource quotas

about, 114
block I/O, 121
CPU pinning, 118
CPU quotas simplified, 118
CPU shares, 115-117
Docker managing in production, 223
memory, 119-121
user limits via ulimit, 123, 223

resources online
API endpoint information, 72
BuildKit directory caching documentation,

90
cgroups documentation, 295
Docker Compose documentation, 218

configuration, 199
installation, 189
variable interpolation, 215

Docker documentation, xviii
API, 17
bind mounts, 88

Index | 391



building base images on various Linux
distributions, 61

deprecation, 33
docker image build, 58
filesystem backends, 332
filtering options, 131
installation, 34
installation on Ubuntu Linux, 35
installation on Windows, 39
networking, 19
rootless mode uninstall, 311
security, 322
source code on GitHub, 1
SSH or TLS client certificate, 43

Docker website, 29
Dockerfiles documentation, 92
Fedora CoreOS download link, 8
Git installer, 56
Hypervisor framework documentation, 37
Windows containers documentation, 134

responsive systems, 365
REST API, 16
revision control

about, 25
filesystem layers, 25
Git (see Git)
GitHub (see GitHub)
image tags, 25

latest tag, 26
semantic versioning, 26

RFC 1918 private subnet block, 18
Rocket.Chat

about, 201
about startup, 200
Admin Info screen via browser, 201-204
Administration panel, 205

closing, 208
cloning Git repository, 190
configuration management

default values, 213-215
docker-compose.yaml, 193-199
mandatory values, 215

create new chat channel, 210
exploring, 201-211
general channel, 209
invite user, 209
launching services, 199-201
setup via MongoDB with preconfigured

database, 211

user added, 205-209
rollbacks

image tags enabling, 26
software update, 246

root directory default, 140
root running container processes, 53
root shell prompt for interactive containers, 109
rootless containers, 301

security risk, 308-311
uninstalling rootless mode, 311
unprivileged context, 304

RPM Package Manager, 34
run stage separate from build stage, 361
runc as containerd default runtime, 14, 141
runit, 180
runtimes

containerd and its runtimes, 14
Kubernetes supporting containerd, 227
runc as default, 14, 141

crun runtime, 14
gVisor runtime, 14, 301, 344-346
Kata Containers runtime, 14
Nabla Containers runtime, 14
runc as default for containerd, 14, 141
swapping, 343-346

S
s6, 180
saving a docker image to a tarball, 170
scaling

Amazon ECS and Fargate
about, 276
AWS CLI setup, 278
container instances, 280
core AWS setup, 277
Identity and Access Management, 277
stopping the task, 289-291
tasks, 280-288
testing the task, 289

container abstraction facilitating, 237
Docker Swarm mode, 238-250

overlay network driver, 329
horizontal with concurrency, 362
Kubernetes

about, 251
containers and pods, 259-260
dashboard, 258
deploying a production stack, 263
deploying the application, 267-269

392 | Index



deployment, 260-262
Deployment definition, 266
Docker Desktop, 273
kind, 274-276
kubectl API, 271-272
Minikube, 251-272
PersistentVolumeClaim definition, 265
running Kubernetes, 255
scaling up, 269-271
Service definition, 264

load balancers for service discovery, 228
plug-ins for, 234
public cloud providers

Kubernetes offerings, 237
Linux container support, 237
running your own versus, 238

scheduling and Docker, 226-228
distributed schedulers, 226
orchestration, 228

secrets
docker secret, 360
.env (dotenv) file, 216
git .gitignore file, 216
HashiCorp Vault, 360
private registry, 71

production, 71
Secure Computing Mode, 315-320
security

about, 303
AppArmor, 320
Docker daemon, 321

attack surface documentation, 43
documentation, 322

gVisor runtime, 301
Linux capabilities

--cap-add, 178, 314, 316-320, 336
--cap-drop, 314
NET_ADMIN, 314
NET_RAW, 314
SYS_ADMIN, 316-320, 336
SYS_PTRACE, 178, 336

mandatory access control, 321
metrics and, 168
privileged containers, 311
rootless mode security risk, 308-311

rootless containers, 301
uninstalling rootless mode, 311

Secure Computing Mode, 315-320
SELinux, 320

SSH or TLS client certificate documenta‐
tion, 43

system calls, 293, 315-320
UID 0 security risk, 304
unprivileged user context in production, 53,

304
Security-Enhanced Linux (SELinux), 21
SELinux security, 320

volume mounts, 112
semantic versioning for image tags, 26
server, 7

(see also Docker server; dockerd)
serverless technologies, 106
services

backing services as attached resources, 360
disposability, 363
Docker Compose launching services,

199-201
Windows, 200

Docker Swarm mode
launching first service, 242
more services than nodes, 245
scaling service up or down, 244

draining off a single node, 248
export services via port binding, 362
load balancers for service discovery, 228
metadata about services, 243
removing, 250
service discovery

about, 228
Docker Compose, 229
Docker’s role in production, 228-230

shell assumed to be traditional Unix, 34
shell running in a container, 144

exiting shell stops container, 144
getting inside a running container, 146-150

about, 146
docker container exec, 146
docker volume, 148-150

shell scripting versus Compose, 190-199
shell-less containers, 336
SIGKILL signal when killing a container, 127
SIGTERM signal when stopping a container,

127
SIGUSR1 signal, 180
Spotify Helios, 29
SSH

client certificate documentation, 43
Docker server exploration, 47

Index | 393



SSL encrypted connection port, 15
SSL keypair for private registry, 70, 71
stateless applications, 23-24
stateless containers, 114
stats API endpoint for monitoring, 157-159
stderr

captured in logging, 150, 225
log file json.log, 151

output from container, 145
STDIN open with -i argument, 108
stdout

captured in logging, 150, 225
log file json.log, 151

output from container, 145
storage and retrieval optimized by Docker, 371
storage backends for filesystem layers, 51, 330

comparing storage backends, 331-333
storage volumes for Linux containers, 111-114

docker volume command, 148
SELinux, 112

storing Docker images
about, 62
custom registry mirror, 63
Docker Hub, 62, 63-68

creating account, 63
editing image tags with username, 66
exploring images in, 67
logging in, 64
logging out, 65
official curated images, 68
pulling from repository, 67
pushing images, 66

private registries, 63
running a private registry, 68-72

public registries, 62
pull-through image cache, 63

strace command, 177
stress command, 115
subnet from unused private subnet block, 18
subscription-based delivery of images, 225
sudo before docker commands, 45

man page, 45
supervisord

building a Docker image, 56
Dockerfile anatomy, 52, 54, 55

Swarm mode (see Docker Swarm mode)
system calls

chroot, 105, 299
exit, 45

gVisor, 344
history of container development, 104
mount

Btrfs backend with loopback-mount, 332
namespaces, 299
networking, 327
privileged containers, 313
root volume as read-only, 113
run within container, 109
Secure Computing Mode, 316

read, 315
Secure Computing Mode, 293, 315-320
sigreturn, 315
structure of Docker, 339
umount, 315

namespaces, 299
write, 315

system events, 163-164
systemctl to start Docker server, 39

restarting the server, 168

T
tags

content-addressable tag, 142
image tags, 7

(see also image tags)
TARGETARCH in Dockerfiles, 101
TCP port for unencrypted traffic, 15
tcpdump command, 185
terminology, 7
testing

Docker and the DevOps pipeline
about, 231
external dependencies, 234
overview, 231-234

Docker workflow, 27
Docker and the DevOps pipeline, 231

testing your private registry, 71
time command, 83
time namespaces, 301
tini, 180
TLS client certificate documentation, 43
tmpfs for writable within read-only, 113

logging, 155
lost when container stopped, 126

tools
all-in-one developer tools

Podman Desktop, 352
Rancher Desktop, 351

394 | Index



client tools
nerdctl, 347-349
podman and buildah, 349-351

top command after stress command, 116
tree command, 56
troubleshooting (see debugging)
twelve-factor app

about, 356
admin processes, 364
backing services, 360
build, release, run, 361
codebase, 357
concurrency, 362
configuration, 358-360
dependencies, 357
development/production parity, 363
disposability, 363
logs, 364
port binding, 362
processes, 361

“The Twelve-Factor App.” (Wiggins et al.), 356

U
Ubuntu Linux

installing Docker
client, 35
documentation, 35
server, 39
testing the installation, 45
Vagrant for server VM, 40-45

launching container containing base image,
46

sudo before docker commands, 45
UID (user ID)

“container” user as nonzero UID, 174
all containers as same UID, 174

UID 0 security risk, 304
username differences for same UID, 172

ulimit command for user limits, 123, 223
umount command

namespaces, 299
secure computing mode, 315

Unix group (see docker (Unix group))
Unix signals

SIGKILL, 127
SIGTERM, 127
SIGUSR1, 180

Unix sockets of Docker, 15
docker group to manage access, 45

Unix traditional shell assumed, 34
unprivileged user or group context, 53, 304
updating software in Swarm mode, 245

rollback, 246
upstart, 180
user ID (see UID)
user namespace, 300
UTS (Unix Time Sharing System) namespaces,

299
exploring, 301-303

V
Vagrant

about, 40
Docker Desktop instead, 40

Docker server VM, 40-45
IP address and port, 44
shutting down, 45
Vagrantfile, 41

variable interpolation, 214
documentation, 215

Vault (HashiCorp), 360
version of Docker Compose displayed, 189
version of Docker displayed, 138
VFS (Virtual File System), 333
virtual machines (VM)

Colima for macOS, 45
containers versus, 20-22, 104

no operating system boot-up, 145
operating system virtualization, 103
resource quotas, 114

Docker Desktop (see Docker Desktop)
Hyper-V (see Hyper-V)
hypervisor virtualized layer, 103
KVM, 41
Podman Desktop, 352
Rancher Desktop, 351
Vagrant (see Vagrant)
VirtualBox, 41
VMware Workstation Pro/Fusion, 41

VirtualBox, 41
VM (see virtual machines)
VMware Workstation Pro/Fusion, 41
vpnkit library, 18

W
website for Docker, 29
Wiggins, Adam, 356
Windows containers, 131-135

Index | 395



documentation, 134
option to improve isolation, 135
running natively, 13
Windows-specific container images, 131

Dockerfile example, 133
testing via PowerShell, 133

Windows running Docker
about, 13, 33
AWS CLI setup, 278
Chocolatey, 34, 39
Compose services first invoked, 200
htppaswd tool, 69
Hyper-V, 37, 41

running Windows containers, 131-135
installing Docker

about, 33
client, 34, 37-39
documentation, 39
server, 39-45
testing the installation, 45
Vagrant for server VM, 40-45

Minikube installation, 254
pausing and unpausing containers, 128
WSL 2 (see Windows Subsystem for Linux)

Windows Subsystem for Linux (WSL 2), 13, 37
wordchain, 98
workflow with Docker

about, 3-5, 370

building applications, 27
deploying, 29
packaging, 28
process simplification, 9-12
revision control

about, 25
filesystem layers, 25
image tags, 25

starting with default networking, 19
testing, 27

Docker and the DevOps pipeline, 231
tools for additional capabilities, 29-31

immutable atomic hosts, 30
orchestration, 29

X
xhyve, 37

Y
YAML files for Compose configuration, 193

(see also docker-compose.yaml)
Yellowdog Updater, Modified (yum), 34

Z
zero downtime via blue-green deployment, 226
ZFS, 333

396 | Index



About the Authors
Sean P. Kane is the founder of techlabs.sh and a principal production operations
engineer at SuperOrbital. Sean specializes in engineering, teaching, and writing about
modern DevOps processes, including Kubernetes, Docker, Terraform, and more. He
has had a long career in production operations, with many diverse roles across a
broad range of industries. Sean is the lead inventor on a container-related patent and
spends a lot of his spare time writing, teaching, and speaking about technology. He
is an avid traveler, hiker, and camper and lives in the US Pacific Northwest with his
wife, children, and dogs.

Karl Matthias is vp of Architecture at Community.com and has previously worked at
several well-known tech companies where he held a number of very senior engineer‐
ing and leadership roles for more than 25 years. He is an enthusiast of hard problems,
distributed systems, Go, Ruby, Elixir, scalable datastores, automated infrastructure,
and repeatable systems.

Colophon
The animal on the cover of Docker: Up & Running is a blue whale (Balaenoptera
musculus). Blue whales can grow up to 100 feet in length and 200 tons in weight,
making them the largest animals on Earth, and the largest animals to ever exist. At
birth, a blue whale calf is as large as an adult hippopotamus and can gain up to 200
pounds a day. When fully grown, blue whales are long and thin, with a small dorsal
fin, two flippers at their side, and a horizontal tail, also known as a “fluke.” Blue
whales are named for their bluish-gray coloring.

Blue whales are migratory and can be found in every ocean. They generally feed
in colder polar regions and then head to warmer tropical waters to give birth. Blue
whales usually travel alone or in pairs and communicate through a series of complex
vocalizations. As a member of the rorqual (balaenopteridae) family, blue whales feed
by straining their prey through bony plates in their mouths known as baleen. Their
diet consists almost entirely of krill, a small crustacean similar to shrimp. They
require 1.5 million kilocalories of energy every day and can eat up to 7,900 pounds
of krill daily. Because of their speed and size, blue whales have practically no natural
predators.

Blue whales were once widespread, with a population estimated in the hundreds of
thousands. While they were initially too large and fast for whalers to capture, the
invention of the harpoon gun in the late 1800s enabled whalers to successfully hunt
blue whales. Decades of whaling followed, causing a significant population decline.
An international ban on the hunting of blue whales was enacted in 1966, allowing
their numbers to recover, although they remain endangered.

https://techlabs.sh
https://superorbital.io
https://www.community.com


Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. If you are interested in helping whale populations flourish, please consider
volunteering with or donating to whale conservation organizations such as the Whale
and Dolphin Conservation Society.

The cover illustration is by Karen Montgomery, based on a black-and-white engrav‐
ing from A History of British Quadrupeds, Including the Cetacea. The cover fonts are
Gilroy Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

https://whales.org
https://whales.org


Learn from experts.  
Become one yourself.
Books | Live online courses   
Instant Answers | Virtual events 
Videos | Interactive learning

Get started at oreilly.com. 

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k 

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	Who Should Read This Book
	Why Read This Book?
	Navigating This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	The Promise of Docker
	Benefits of the Docker Workflow

	What Docker Isn’t
	Important Terminology
	Wrap-Up

	Chapter 2. The Docker Landscape
	Process Simplification
	Broad Support and Adoption
	Architecture
	Client/Server Model
	Network Ports and Unix Sockets
	Robust Tooling
	Docker Command-Line Tool
	Docker Engine API
	Container Networking

	Getting the Most from Docker
	Containers Are Not Virtual Machines
	Limited Isolation
	Containers Are Lightweight
	Toward an Immutable Infrastructure
	Stateless Applications
	Externalizing State

	The Docker Workflow
	Revision Control
	Building
	Testing
	Packaging
	Deploying
	The Docker Ecosystem

	Wrap-Up

	Chapter 3. Installing Docker
	Docker Client
	Linux
	macOS, Mac OS X
	Microsoft Windows 11

	Docker Server
	systemd-Based Linux
	Non-Linux VM-Based Server

	Testing the Setup
	Ubuntu
	Fedora
	Alpine Linux

	Exploring the Docker Server
	Wrap-Up

	Chapter 4. Working with Docker Images
	Anatomy of a Dockerfile
	Building an Image
	Running Your Image
	Build Arguments
	Environment Variables as Configuration

	Custom Base Images
	Storing Images
	Public Registries
	Private Registries
	Authenticating to a Registry
	Running a Private Registry

	Optimizing Images
	Keeping Images Small
	Layers Are Additive
	Utilizing the Layer Cache
	Directory Caching

	Troubleshooting Broken Builds
	Debugging Pre-BuildKit Images
	Debugging BuildKit Images

	Multiarchitecture Builds
	Wrap-Up

	Chapter 5. Working with Containers
	What Are Containers?
	History of Containers

	Creating a Container
	Basic Configuration
	Storage Volumes
	Resource Quotas

	Starting a Container
	Auto-Restarting a Container
	Stopping a Container
	Killing a Container
	Pausing and Unpausing a Container
	Cleaning Up Containers and Images
	Windows Containers
	Wrap-Up

	Chapter 6. Exploring Docker
	Printing the Docker Version
	Server Information
	Downloading Image Updates
	Inspecting a Container
	Exploring the Shell
	Returning a Result
	Getting Inside a Running Container
	docker container exec
	docker volume

	Logging
	docker container logs
	More Advanced Logging

	Monitoring Docker
	Container Statistics
	Container Health Checks
	docker system events
	cAdvisor

	Prometheus Monitoring
	Exploration
	Wrap-Up

	Chapter 7. Debugging Containers
	Process Output
	Process Inspection
	Controlling Processes
	Network Inspection
	Image History
	Inspecting a Container
	Filesystem Inspection
	Wrap-Up

	Chapter 8. Exploring Docker Compose
	Configuring Docker Compose
	Launching Services
	Exploring Rocket.Chat
	Exercising Docker Compose
	Managing Configuration
	Default Values
	Mandatory Values
	The dotenv File

	Wrap-Up

	Chapter 9. The Path to Production Containers
	Getting to Production
	Docker’s Role in Production Environments
	Job Control
	Resource Limits
	Networking
	Configuration
	Packaging and Delivery
	Logging
	Monitoring
	Scheduling
	Service Discovery
	Production Wrap-Up

	Docker and the DevOps Pipeline
	Quick Overview
	Outside Dependencies

	Wrap-Up

	Chapter 10. Containers at Scale
	Docker Swarm Mode
	Kubernetes
	Minikube
	Docker Desktop-Integrated Kubernetes
	Kind

	Amazon ECS and Fargate
	Core AWS Setup
	IAM Role Setup
	AWS CLI Setup
	Container Instances
	Tasks
	Testing the Task
	Stopping the Task

	Wrap-Up

	Chapter 11. Advanced Topics
	Containers in Detail
	cgroups
	Namespaces

	Security
	UID 0
	Rootless Mode
	Privileged Containers
	Secure Computing Mode
	SELinux and AppArmor
	The Docker Daemon

	Advanced Configuration
	Networking

	Storage
	nsenter
	Debugging Shell-less Containers

	The Structure of Docker
	Swapping Runtimes
	gVisor

	Wrap-Up

	Chapter 12. The Expanding Landscape
	Client Tools
	nerdctl
	podman and buildah

	All-in-One Developer Tools
	Rancher Desktop
	Podman Desktop

	Wrap-Up

	Chapter 13. Container Platform Design
	The Twelve-Factor App
	Codebase
	Dependencies
	Config
	Backing Services
	Build, Release, Run
	Processes
	Port Binding
	Concurrency
	Disposability
	Development/Production Parity
	Logs
	Admin Processes
	Twelve-Factor Wrap-Up

	The Reactive Manifesto
	Responsive
	Resilient
	Elastic
	Message Driven

	Wrap-Up

	Chapter 14. Conclusion
	The Road Ahead
	The Challenges Docker Addresses
	The Docker Workflow
	Minimizing Deployment Artifacts
	Optimizing Storage and Retrieval
	The Payoff
	The Final Word

	Index
	About the Authors
	Colophon



