EXPERT INSIGHT

Modern Computer
Architecture and
Organization

Learn x86, ARM, and RISC-V architectures and the
design of smartphones, PCs, and cloud servers

Foreword by:

Dave Farley

Independent Software Engineering Consultant
Founder of Continuous Delivery Ltd

Second Edition

Jim Ledin PGCI('I')




Modern Computer Architecture

and Organization
Second Edition

Learn x86, ARM, and RISC-V architectures and the design of
smartphones, PCs, and cloud servers

Jim Ledin

Pack

BIRMINGHAM—MUMBAI



Modern Computer Architecture and Organization
Second Edition

Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, exceptin the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Senior Publishing Product Manager: Denim Pinto
Acquisition Editor — Peer Reviews: Saby Dsilva
Project Editor: Namrata Katare

Content Development Editor: Edward Doxey
Copy Editor: Safis Editing

Technical Editor: Tejas Mhasvekar

Proofreader: Safis Editing

Indexer: Subalakshmi Govindhan

Presentation Designer: Ganesh Bhadwalkar

First published: April 2020
Second edition: May 2022

Production reference: 2260422

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80323-451-9

www. packt.com


http://www.packt.com

Foreword

I am a software developer, not a hardware engineer. I have spent my career building software of
all different kinds to solve lots of different kinds of problems. However, as a quirk, accident or
fate, I have spent a fair amount of my software development career closer to the hardware than

many, maybe most, software developers do these days.

In the early years of my fascination with computers I quickly discovered that the, by today’s stan-
dards, incredibly crude devices that I had access to, couldn’t really do anything very interesting
unless I learned how to program them in assembler. So, I learned to program them in Z80, and
later 6502 and 80x86 assembler.

Programming in assembler is different in lots of ways to programming in higher level languages.
Itimmediately puts you next to the hardware. You can’tignore how memory is laid out, you need
to adjust your code for it. You can’t ignore the registers at your disposal, they are your variables
and you need to marshal them carefully. You also learn how to communicate with other devices
through I/O ports, which is, ultimately, the only way that digital devices communicate with each
other. Once, when working on a particularly tricky problem, I woke up in the middle of the night

and realised that I had been dreaming in 80x86 assembly language.

My career, and more importantly the hardware I had access to, developed. I got my dream job, at
the time, working in the R&D division of a computer manufacturer. I worked on enhancing op-
erating systems to work with our hardware and built device drivers to take advantage of some of
the unique features of our PCs. Again, it was essential in this kind of work to have a good working

knowledge of how the hardware worked.

Software development evolved. The languages that we used became more abstract, the operating
systems, virtual machines, containers and public cloud infrastructure increasingly hid the details
of the underlying hardware from us software developers. I recently spoke to a LISP programmer
on social media who didn’t realise that ultimately his lovely functional declarative structures got
translated to opcodes and values in the registers of a CPU. He seemingly had no working model
for how the computers that he relied upon worked. He didn’t have to, but I think he would be a
better programmer if he did.

In the latter part of my career I worked on some world-class high performance systems. A team I

led was tasked with building one the world’s highest performance financial exchanges.



In order to do so, once again we needed to dig in and really understand how the underlying
hardware of our system worked. This allowed us to take full advantage of the staggering lev-
els of performance that modern hardware is capable of. During this time we stole a term from
motor-racing to try to describe our approach. In the 1970’s the best Formula 1 racing driver was
Jackie Stewart. He was interviewed and asked, “do you need to be an engineer to be a greatracing
driver?”. Jackie responded, “no, but you must have Mechanical Sympathy for the car.” In essence,

you need to understand the capabilities of the underlying hardware to take advantage of them.

We adopted this idea of Mechanical Sympathy and applied it to our work. For example, the big-
gest costin our trading system was a cache-miss. If the data we wanted to process wasn’tin the
appropriate cache when it was needed, we’d see orders of magnitude wiped off the performance
of our system. So we needed to design our code, even though it was written in a high-level lan-
guage running in a virtual machine, to maximise our chances that the data was in the cache. We
needed to understand and manage the concurrency in our multi-core processors, and recognise
and take advantage of things like processor cache lines and the essentially block storage nature of
memory and other storage devices. The result was levels of performance that some people didn’t

think possible. Modern hardware is very impressive when you take advantage of it.

This interest in the hardware isn’t just for high-performance computing. Estimates vary, but all
agree that a significant fraction of the carbon that we emit as a species comes from powering the
data-centres where our code lives. I can’t think of any field of human endeavor that is as ineffi-
cient as software—for most systems, a speed increase of up to 100 times is easy if you do just a
bit more work to manage the flow of information through your hardware. Nearly all systems can
attain a 1000-fold increase with some more focused work, however if we could gain even a 10x
improvement by better understanding how our code works and how it uses the hardware thatit
operates on, we could reduce the carbon footprint of computing by a factor of 10 too. That is an

idea that is much more important than performance for performance’s sake.

Ultimately, there is a degree to which you must understand how your computer works, and there
are risks to losing touch with how the hardware we all depend upon functions. I confess that I
am a nerd. I love to understand how things work. Not everyone needs to push hardware to its
limits, but it is a bad idea to treat it like magic, because it’s not magic. It is engineering, and en-
gineering is always about trade-offs. You will be surprised how often the fundamentals of how
your hardware works leaks out and affects the behaviour of your software, however far up the

stack it sits—even if we are writing cloud-based systems in LISP.

For someone like me, Jim Ledin’s Modern Computer Architecture and Organization, Second Edition,

is a delight.



I am not a hardware engineer, and I don’t want to be. For me though, a vital part of my skills as a
software developer includes having a good working model for how the hardware thatIrely upon,

actually works. I want to maintain, and build, mechanical sympathy.

This book takes us from the basic concepts of computation, looking at the first computers and
the first CPUs, to the potential of quantum computing and other near-future directions that our
hardware will probably exploit. You might want to understand how a modern processor works,
and get to grips with their staggering efficiency and their ability to keep themselves fed with
data from stores that are hundreds of times slower than they are. You may also be interested in
complex ideas that extend beyond the confines of only the hardware, such as how cryptocurrency
mining works, or what the architecture of a modern self-driving car, looks like. This book can

answer those questions and many, many more.

I think thatitis not just computer scientists and engineers, but indeed every software developer,
who will be better at their job when they have some understanding of how the devices that they
use in their everyday work. When trying to understand something big and complicated in software,
I still, frequently think, “well it’s all just bits, bytes and opcodes really, so what is going on here?”
This is the equivalent of a chemist understanding molecules and compounds and being able to
go back to first principles to solve something tricky. These are the real building blocks, and it can

help us all to understand them better.

I know that I will be dipping into this book on a regular basis for years to come, and I hope that

you enjoy doing the same.

Dave Farley
Independent Software Engineering Consultant and Founder of Continuous Delivery Ltd
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Preface

Welcome to the second edition of Modern Computer Architecture and Organization. It has been my
pleasure to receive a great deal of feedback and comments from readers of the first edition. Of
course, I appreciate all input from readers, especially those who bring any errors and omissions

to my attention.

This book presents the key technologies and components employed in modern processor and
computer architectures and discusses how various architectural decisions result in computer

configurations optimized for specific needs.

To understate the situation quite drastically, modern computers are complicated devices. Yet,
when viewed in a hierarchical manner, the functions of each level of complexity become clear.
We will cover a great many topics in these chapters and will only have space to explore each of
them to a limited degree. My goal is to provide a coherent introduction to each important tech-
nology and subsystem you might find in a modern computing device and explain its relationship

to other system components.

This edition includes updates on technologies that have advanced since the publication of the
first edition and adds significant new content in several important areas related to computer
architecture. New chapters cover the topics of cybersecurity, blockchain and bitcoin mining, and

self-driving vehicle computing architectures.

While the security of computing systems has always been important, recent exploitations of major
vulnerabilities in widely used operating systems and applications have resulted in substantial
negative impacts felt in countries around the world. These cyberattacks have accentuated the
need for computer system designers to incorporate cybersecurity as a foundational element of

system architecture.

I will not be providing a lengthy list of references for further reading. The internet is your friend

in this regard.
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If you can manage to bypass the clamor of political and social media argumentation on the internet,
youwill find yourself in an enormous, cool, quiet library containing a vast quantity of accumulated
human knowledge. Learn to use the advanced features of your favorite search engine. Also, learn
to differentiate high-quality information from uninformed opinion. Check multiple sources if you
have any doubts about the information you’re finding. Consider the source: if you are looking for

information about an Intel processor, search for documentation published by Intel.

By the end of this book, you will have gained a strong grasp of the computer architectures cur-
rently used in a wide variety of digital systems. You will also have developed an understanding
of the relevant trends in architectural technology currently underway, as well as some possible
disruptive advances in the coming years that may drastically influence the architectural devel-

opment of computing systems.

Who this book is for

This book is intended for software developers, computer engineering students, system designers,
computer science professionals, reverse engineers, and anyone else seeking to understand the
architecture and design principles underlying all types of modern computer systems, from tiny
embedded devices to smartphones to warehouse-sized cloud server farms. Readers will also
explore the directions these technologies are likely to take in the coming years. A general under-

standing of computer processors is helpful but is not required.

What this book covers

Chapter 1, Introducing Computer Architecture, begins with a brief history of automated computing
devices and describes the significant technological advances that drove leaps in capability. This
is followed by a discussion of Moore’s law, with an assessment of its applicability over previous
decades and the implications for the future. The basic concepts of computer architecture are

introduced in the context of the 6502 microprocessor.

Chapter 2, Digital Logic, introduces transistors as switching elements and explains their use in
constructing logic gates. We will then see how flip-flops and registers are developed by combining
simple gates. The concept of sequential logic, meaning logic that contains state information, is

introduced, and the chapter ends with a discussion of clocked digital circuits.

Chapter 3, Processor Elements, begins with a conceptual description of a generic processor. We
will examine the concepts of the instruction set, register set, and instruction loading, decoding,

execution, and sequencing.
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Memory load and store operations are also discussed. The chapter includes a description of branch-
ing instructions and their use in looping and conditional processing. Some practical considerations

are introduced that lead to the necessity for interrupt processing and I/O operations.

Chaypter 4, Computer System Components, discusses computer memory and its interface to the pro-
cessor, including multilevel caching. I/O requirements, including interrupt handling, buffering,
and dedicated I/O processors, are described. We will discuss some specific requirements for I/O
devices, including the keyboard and mouse, the video display, and the network interface. The
chapter ends with descriptive examples of these components in modern computer applications,
including smart mobile devices, personal computers, gaming systems, cloud servers, and dedi-

cated machine learning systems.

Chapter 5, Hardware-Software Interface, discusses the implementation of the high-level services
a computer operating system must provide, including disk I/O, network communications, and
interactions with users. This chapter describes the software layers thatimplement these features,
starting at the level of the processor instruction set and registers. Operating system functions,

including booting, multiprocessing, and multithreading, are also described.

Chapter 6, Specialized Computing Domains, explores domains of computing that tend to be less
directly visible to most users, including real-time systems, digital signal processing, and GPU
processing. We will discuss the unique requirements associated with each of these domains and

look at examples of modern devices implementing these features.

Chapter 7, Processor and Memory Architectures, takes an in-depth look at modern processor ar-
chitectures, including the von Neumann, Harvard, and modified Harvard variants. The chapter
discusses the implementation of paged virtual memory. The practical implementation of memory
management functionality within the computer architecture is introduced and the functions of

the memory management unit are described.

Chapter 8, Performance-Enhancing Techniques, discusses a number of performance-enhancing tech-
niques used routinely to reach peak execution speed in real-world computer systems. The most
important techniques for improving system performance, including the use of cache memory, in-

struction pipelining, instruction parallelism, and SIMD processing, are the subjects of this chapter.

Chapter 9, Specialized Processor Extensions, focuses on extensions commonly implemented at the
processor instruction set level to provide additional system capabilities beyond generic data
processing requirements. The extensions presented include privileged processor modes, float-

ing-point mathematics, power management, and system security management.
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Chapter 10, Modern Processor Architectures and Instruction Sets, examines the architectures and
instruction set features of modern processor designs, including the x86, x64, and ARM proces-
sors. One challenge that arises when producing a family of processors over several decades is the
need to maintain backward compatibility with code written for earlier-generation processors.
The need for legacy support tends to increase the complexity of the later-generation processors.
This chapter will examine some of the attributes of these processor architectures that result from

supporting legacy requirements.

Chapter 11, The RISC-V Architecture and Instruction Set, introduces the exciting new RISC-V (pro-
nounced risk five) processor architecture and its instruction set. RISC-V is a completely open
source, free-to-use specification for a reduced instruction set computer architecture. A complete
instruction set specification has been released and a number of hardware implementations of
this architecture are currently available. Work is ongoing to develop specifications for a number
of instruction set extensions. This chapter covers the features and variants available in the RISC-V
architecture and introduces the RISC-V instruction set. We will also discuss the applications of

the RISC-V architecture in mobile devices, personal computers, and servers.

Chapter 12, Processor Virtualization, introduces the concepts involved in processor virtualization
and explains the many benefits resulting from the use of virtualization. The chapter includes
examples of virtualization based on open source tools and operating systems. These tools enable
the execution of instruction set-accurate representations of various computer architectures and
operating systems on a general-purpose computer. We will also discuss the benefits of virtual-

ization in the development and deployment of real-world software applications.

Chapter 13, Domain-Specific Computer Architectures, brings together the topics discussed in previous
chapters to develop an approach for architecting a computer system design to meet unique user
requirements. We will discuss some specific application categories, including mobile devices,

personal computers, gaming systems, internet search engines, and neural networks.

Chapter 14, Cybersecurity and Confidential Computing Architectures, focuses on the security needs
of critical application areas like national security systems and financial transaction processing.
These systems must be resilient against a broad range of cybersecurity threats, including mali-
cious code, covert channel attacks, and attacks enabled by physical access to computing hardware.
Topics addressed in this chapter include cybersecurity threats, encryption, digital signatures, and

secure hardware and software design.

The explosion of interest in cryptocurrencies and their growing acceptance by mainstream finan-
cial institutions and retailers demonstrate that this area of computing is on a continued growth

path. This edition adds a chapter on blockchain and the computational demands of bitcoin mining.
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Chapter 15, Blockchain and Bitcoin Mining Architectures, introduces the concepts associated with
blockchain, a public, cryptographically secured ledger recording a sequence of transactions. We
continue with an overview of the process of bitcoin mining, which appends transactions to the
bitcoin blockchain and rewards those who complete this task with payment in the form of bitcoin.
Bitcoin processing requires high-performance computing hardware, which is illustrated in terms

of a current-generation bitcoin mining computer architecture.

The continuing growth in the number of automobiles with partial or full self-driving capabilities
demands robust, highly capable computing systems that meet the requirements for safe auton-

omous vehicle operation on public roadways.

Chapter 16, Self-Driving Vehicle Architectures, describes the capabilities required in self-navigating
vehicle processing architectures. It begins with a discussion of the requirements for ensuring the
safety of the autonomous vehicle and its occupants, as well as for other vehicles, pedestrians, and
stationary objects. We continue with a discussion of the types of sensors and data a self-driving
vehicle receives as input while driving and a description of the types of processing required for
effective vehicle control. The chapter concludes with an overview of an example self-driving

computer architecture.

Chapter 17, Quantum Computing and Other Future Directions in Computer Architectures, looks at the
road ahead for computer architectures. This chapter reviews the significant advances and ongoing
trends that have resulted in the current state of computer architectures and extrapolates these
trends in possible future directions. Potentially disruptive technologies are discussed that could
alter the path of future computer architectures. In closing, I will propose some approaches for

professional development for the computer architect that should resultin a future-tolerant skill set.

As in the other chapters, each of the three new chapters contains end-of-chapter exercises de-
signed to broaden your understanding of the chapter topic and cement the information from the

chapter within your knowledge base.

I hope you enjoy this updated edition as much as I have enjoyed developing it. Happy reading!

To get the most out of this book

Each chapter in this book includes a set of exercises at the end. To get the most from the book,
and to cement some of the more challenging concepts in your mind, I recommend you try to
work through each exercise. Complete solutions to all exercises are provided in the book and are
available online at https://github.com/PacktPublishing/Modern-Computer-Architecture-

and-Organization-Second-Edition.
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In case there is a need to update the code examples and answers to the exercises, updates will

appear at this GitHub repository.

Download the example code files

The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/
Modern-Computer-Architecture-and-Organization-Second-Edition. We also have oth-
er code bundles from our rich catalog of books and videos available at https://github.com/

PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book.
You can download it here: https://static.packt-cdn.com/downloads/9781803234519_
ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in the text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example:
“Subtraction using the SBC instruction tends to be a bit more confusing to novice 6502 assembly

language programmers.”

Ablock of code is set as follows:

LDA #$04
CLC

ADC #%$03
ADC #$02
ADC #$01

Any command-line input or output is written as follows:

C:\>bcdedit

Windows Boot Manager

identifier {bootmgr}



https://github.com/PacktPublishing/Modern-Computer-Architecture-and-Organization-Second-Edition
https://github.com/PacktPublishing/Modern-Computer-Architecture-and-Organization-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781803234519_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781803234519_ColorImages.pdf
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Bold: Indicates a new term, an important word, or words that you see on the screen, for example,
inmenus or dialog boxes, also appear in the text like this. For example: “Because there are now four

sets, the Set field in the physical address reduces to two bits and the Tag field increases to 24 bits.”

\/{ﬂ’; Warnings or important notes appear like this.

L

',@\' Tips and tricks appear like this.

7/

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub. com, and mention the book’s title in the subject of
your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book we would be grateful if you would report this
to us. Please visit, http://www.packtpub.com/submit-errata, selecting your book, clicking on

the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would
be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.comwith alink to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are

interested in either writing or contributing to a book, please visit http://authors.packtpub.com.


http://www.packtpub.com/submit-errata
http://authors.packtpub.com
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Share your thoughts

Once you've read Modern Computer Architecture and Organization, Second Edition, we’d love to
hear your thoughts! Please click here to go straight to the Amazon review page for this book

and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re

delivering excellent quality content.


https://www.packtpub.com/

Introducing Computer
Architecture

The architectures of automated computing systems have evolved from the first mechanical cal-
culators constructed nearly two centuries ago to the broad array of modern electronic computer
technologies we use directly and indirectly every day. Along the way, there have been stretches of
incremental technological improvement interspersed with disruptive advances that drastically

altered the trajectory of the industry. We can expect these trends to continue in the coming years.

In the 1980s, during the early days of personal computing, students and technical professionals
eager to learn about computer technology had a limited range of subject matter available for this
purpose. If they had a computer of their own, it was probably an IBM PC or an Apple II. If they
worked for an organization with a computing facility, they might have used an IBM mainframe
or a Digital Equipment Corporation VAX minicomputer. These examples, and a limited number

of similar systems, encompassed most people’s exposure to the computer systems of the time.

Today, numerous specialized computing architectures exist to address widely varying user needs.
We carry miniature computers in our pockets and purses that can place phone calls, record video,
and function as full participants on the internet. Personal computers remain popular in a format
outwardly similar to the PCs of past decades. Today’s PCs, however, are orders of magnitude
more capable than the early generations in terms of computing power, memory size, disk space,
graphics performance, and communication ability. These capabilities enable modern PCs to easily
perform tasks that would have been inconceivable on early PCs, such as the real-time generation

of high-resolution 3D images.
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Companies offering web services to hundreds of millions of users construct vast warehouses filled
with thousands of tightly coordinated computer systems capable of responding to a constant
stream of user requests with extraordinary speed and precision. Machine learning systems are
trained through the analysis of enormous quantities of data to perform complex activities such

as driving automobiles.

This chapter begins with a presentation of some key historical computing devices and the leaps
in technology associated with them. We will then examine some significant modern-day trends
related to technological advances and introduce the basic concepts of computer architecture,
including a close look at the 6502 microprocessor and its instruction set. The following topics

will be covered in this chapter:

e  The evolution of automated computing devices
e  Moore’s law

e  Computer architecture

Technical requirements

Files for this chapter, including answers to the exercises, are available at https://github.com/

PacktPublishing/Modern-Computer-Architecture-and-Organization-Second-Edition.

The evolution of automated computing devices

This section reviews some classic machines from the history of automated computing devices
and focuses on the major advances each embodied. Babbage’s Analytical Engine isincluded here
because of the many leaps of genius represented in its design. The other systems are discussed
because they embodied significant technological advances and performed substantial real-world

work over their lifetimes.

Charles Babbage's Analytical Engine

Although a working model of the Analytical Engine was never constructed, the detailed notes
Charles Babbage developed from 1834 until his death in 1871 described a computing architecture
that appeared to be both workable and complete. The Analytical Engine was intended to serve
as a general-purpose programmable computing device. The design was entirely mechanical and
was to be constructed largely of brass. The Analytical Engine was designed to be driven by a shaft

powered by a steam engine.
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Borrowing from the punched cards of the Jacquard loom, the rotating studded barrels used in
music boxes, and the technology of his earlier Difference Engine (also never completed in his
lifetime, and more of a specialized calculating device than a computer), the Analytical Engine’s

design was, otherwise, Babbage’s original creation.

Unlike most modern computers, the Analytical Engine represented numbers in signed decimal
form. The decision to use base-10 numbers rather than the base-2 logic of most modern com-
puters was the result of a fundamental difference between mechanical technology and digital
electronics. It is straightforward to construct mechanical wheels with 10 positions, so Babbage
chose the human-compatible base-10 format because it was not significantly more technically
challenging than using some other number base. Simple digital circuits, on the other hand, are

not capable of maintaining 10 different states with the ease of a mechanical wheel.

All numbers in the Analytical Engine consisted of 40 decimal digits. The large number of digits
was likely chosen to reduce problems with numerical overflow. The Analytical Engine did not

support floating-point mathematics.

Each number was stored on a vertical axis containing 40 wheels, with each wheel capable of
resting in 10 positions corresponding to the digits 0-9. A 41" number wheel contained the sign:
any even number on this wheel represented a positive sign, and any odd number represented a
negative sign. The Analytical Engine axis was somewhat analogous to the register used in modern
processors, except the readout of an axis was destructive—reading an axis would set it to 0. If
it was necessary to retain an axis’s value after it had been read, another axis had to store a copy
of the value during the readout. Numbers were transferred from one axis to another, or used in
computations, by engaging a gear with each digit wheel and rotating the wheel to extract the

numerical value. The set of axes serving as system memory was referred to as the store.

The addition of two numbers used a process somewhat similar to the method of addition taught
to schoolchildren. Assume a number stored on one axis, let’s call it the addend, was to be added
to anumber on another axis that we will call the accumulator. The machine would connect each
addend digit wheel to the corresponding accumulator digit wheel through a train of gears. It
would then simultaneously rotate each addend digit downward to 0 while driving the accumu-
lator digit an equivalent rotation in the increasing direction. If an accumulator digit wrapped
around from 9 to 0, the next most significant accumulator digit would increment by 1. This carry
operation would propagate across as many digits as needed (think of adding 1 to 999,999). By
the end of the process, the addend axis would hold the value 0 and the accumulator axis would
hold the sum of the two numbers. The propagation of carries from one digit to the next was the

most mechanically complex part of the addition process.
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Operations in the Analytical Engine were sequenced by music box-like rotating barrels in a con-

struct called the mill, which is analogous to the control unit of a modern CPU.

Each Analytical Engine instruction was encoded in a vertical row of locations on the barrel, where
the presence or absence of a stud at a particular location either engaged a section of the Engine’s
machinery or left the state of that section unchanged. Based on Babbage’s estimate of the Engine’s
execution speed, the addition of two 40-digit numbers, including the propagation of carries,

would take about 3 seconds.

Babbage conceived several important concepts for the Engine that remain relevant to modern
computer systems. His design supported a degree of parallel processing consisting of simultane-
ous multiplication and addition operations that accelerated the computation of series of values
intended to be output as numerical tables. Mathematical operations such as addition supported

a form of pipelining, in which sequential operations on different data values overlapped in time.

Babbage was well aware of the difficulties associated with complex mechanical devices, such as
friction, gear backlash, and wear over time. To prevent errors caused by these effects, the Engine
incorporated mechanisms called lockings that were applied during data transfers across axes.
The lockings forced the number wheels into valid positions and prevented the accumulation of
small errors from allowing a wheel to drift to an incorrect value. The use of lockings is analogous
to the amplification of potentially weak input signals to produce stronger outputs by the digital

logic gates in modern processors.

The Analytical Engine was to be programmed using punched cards and supported branching
operations and nested loops. The most complex program intended for execution on the Analytical
Engine was developed by Ada Lovelace to compute the Bernoulli numbers, an important sequence
in number theory. The Analytical Engine code to perform this computation is recognized as the

first published computer program of substantial complexity.

Babbage constructed a trial model of a portion of the Analytical Engine mill, which is currently

on display at the Science Museum in London.

ENIAC

ENIAC, the Electronic Numerical Integrator and Computer, was completed in 1945 and was the
first programmable general-purpose electronic computer. The system consumed 150 kilowatts

of electricity, occupied 1,800 square feet of floor space, and weighed 27 tons.

The design was based on vacuum tubes, diodes, and relays. ENIAC contained over 17,000 vacuum

tubes that functioned as switching elements.
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Similar to the Analytical Engine, it used base-10 representation of 10-digit decimal numbers
implemented using 10-position ring counters (the ring counter will be discussed in Chapter 2,

Digital Logic).

Input data was received from an IBM punch-card reader and the output of computations was

delivered by a card punch machine.

The ENIAC architecture was capable of complex sequences of processing steps including loops,
branches, and subroutines. The system had 20 10-digit accumulators that functioned like registers
in modern computers. It did not initially have any memory beyond the accumulators. If inter-
mediate values were required for use in later computations, the data had to be written to punch

cards and read back in when needed. ENIAC could perform about 385 multiplications per second.

ENIAC programs consisted of plugboard wiring and switch-based function tables. Programming
the system was an arduous process that often took the team of talented female programmers
weeks to complete. Reliability was a problem, as vacuum tubes failed regularly, requiring trou-

bleshooting on a day-to-day basis to isolate and replace failed tubes.

In 1948, ENIAC was improved by adding the ability to program the system via punch cards rather
than plugboards. This greatly enhanced the speed with which programs could be developed. As
a consultant for this upgrade, John von Neumann proposed a processing architecture based on a
single memory region holding program instructions and data, a processing component with an
arithmetic logic unit and registers, and a control unit that contained an instruction register and
a program counter. Many modern processors continue to implement this general structure, now
known as the von Neumann architecture. We will discuss this architecture in detail in Chapter

3, Processor Elements.

Early applications of ENIAC included analyses related to the development of the hydrogen bomb

and the computation of firing tables for long-range artillery.

IBM PC

In the years following the construction of ENIAC, several technological breakthroughs resulted

in remarkable advances in computer architectures:

e The invention of the transistor in 1947 by John Bardeen, Walter Brattain, and William
Shockley delivered a vastimprovement over the vacuum tube technology prevalent at the
time. Transistors were faster, smaller, consumed less power, and, once production process-

es had been sufficiently optimized, were much more reliable than the failure-prone tubes.
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e The commercialization of integrated circuits in 1958, led by Jack Kilby of Texas Instru-
ments, began the process of combining large numbers of formerly discrete components

onto a single chip of silicon.

e In 1971, Intel began production of the first commercially available microprocessor, the
Intel 4004. The 4004 was intended for use in electronic calculators and was specialized

to operate on 4-bit binary-coded decimal digits.

From the humble beginnings of the Intel 4004, microprocessor technology advanced rapidly
over the ensuing decade by packing increasing numbers of circuit elements onto each chip and

expanding the capabilities of the microprocessors implemented on those chips.

The Intel 8088 microprocessor

IBM released the IBM PCin 1981. The original PC contained an Intel 8088 microprocessor running

ata clock frequency of 4.77 MHz and featured 16 KB of Random Access Memory (RAM), expand-
able to 256 KB. It included one or, optionally, two floppy disk drives. A color monitor was also

available. Later versions of the PC supported more memory, but because portions of the address

space had been reserved for video memory and Read-Only Memory (ROM), the architecture

could support a maximum of 640 KB of RAM.

The 8088 contained 14 16-bit registers. Four were general-purpose registers (AX, BX, CX, and
DX). Four were memory segment registers (CS, DS, SS, and ES) that extended the address space
to 20 bits. Segment addressing functioned by adding a 16-bit segment register value, shifted left
by 4 bit positions, to a 16-bit offset contained in an instruction to produce a physical memory

address within a 1 MB range.

The remaining 8088 registers were the Stack Pointer (SP), the Base Pointer (BP), the Source In-
dex (SI), the Destination Index (DI), the Instruction Pointer (IP), and the Status Flags (FLAGS).
Modern x86 processors employ an architecture remarkably similar to this register set (Chapter 10,
Modern Processor Architectures and Instruction Sets, will cover the details of the x86 architecture).
The most obvious differences between the 8088 and x86 are the extension of the register widths

to 32 bits in x86 and the addition of a pair of segment registers (FS and GS) that are used today

primarily as data pointers in multithreaded operating systems.

The 8088 had an external data bus width of 8 bits, which meant it took two bus cycles to read or
write a 16-bit value. This was a performance downgrade compared to the earlier 8086 processor,
which employed a 16-bit external bus. However, the use of the 8-bit bus made the PC more eco-
nomical to produce and provided compatibility with lower-cost 8-bit peripheral devices. This
cost-sensitive design approach helped reduce the purchase price of the PC to a level accessible

to more potential customers.
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Program memory and data memory shared the same address space and the 8088 accessed mem-
ory over a single bus. In other words, the 8088 implemented the von Neumann architecture. The
8088 instruction set included instructions for data movement, arithmetic, logical operations,
string manipulation, control transfer (conditional and unconditional jumps, and subroutine
call and return), input/output, and additional miscellaneous functions. The processor required
about 15 clock cycles per instruction on average, resulting in an execution speed of 0.3 million

instructions per second (MIPS).

The 8088 supported nine distinct modes for addressing memory. This variety of modes was

needed to efficiently access a single item at a time as well as for iterating over sequences of data.

The segment registers in the 8088 architecture provided a seemingly clever way to expand the
range of addressable memory without increasing the length of most instructions referencing
memory locations. Each segment register allowed access to a 64-kilobyte block of memory be-
ginning at a physical memory address defined at a multiple of 16 bytes. In other words, the 16-bit
segment register represented a 20-bit base address with the lower four bits set to zero. Instructions
could then reference any location within the 64-kilobyte segment using a 16-bit offset from the

address defined by the segment register.

The CS register selected the code segment location in memory and was used in fetching instruc-
tions and performing jumps and subroutine calls and returns. The DS register defined the data
segment location for use by instructions involving the transfer of data to and from memory. The
SS register set the stack segment location, which was used for local memory allocation within

subroutines and for storing subroutine return addresses.

Programs that required less than 64 kilobytes in each of the code, data, and stack segments could
ignore the segmentregisters entirely because those registers could be set once at program startup
(programming language compilers would do this automatically) and remain unchanged through

execution. Easy!

Things got quite a bit more complicated when a program’s data size increased beyond 64 kilobyte.
Though the use of segment registers resulted in a clean hardware design, using those registers
caused many headaches for software developers. Compilers for the 8088 architecture distin-
guished between near and far references to memory. A near pointer represented a 16-bit offset
from the current segment register base address. A far pointer contained 32 bits of addressing
information: a 16-bit segment register value and a 16-bit offset. Far pointers consumed an addi-

tional 16 bits of data memory and they also required additional processing time.
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Making single memory access using a far pointer involved the following steps:

1.  Save the current segment register contents to a temporary location

2. Load the new segment value into the register

3. Access the data (reading or writing as needed) using an offset from the segment base
4.

Restore the original segment register value

When using far pointers, it was possible to declare data objects (for example, an array of charac-
ters representing a documentin a text editor) up to 64 KB in size. If you needed a larger structure,
you had to work out how to breakitinto chunks no larger than 64 KB and manage them yourself.
As a result of such segment register manipulations, programs that required extensive access to
data items larger than 64 KB became quite complex and were susceptible to code size bloat and

slower execution.

The IBM PC motherboard contained a socket for an optional Intel 8087 floating-point coproces-
sor. The designers of the 8087 invented data formats and processing rules for 32-bit and 64-bit
floating-point numbers that became enshrined in 1985 as the IEEE 754 floating-point standard,
which remains in near-universal use today. The 8087 could perform about 50,000 floating-point
operations per second. We will look at floating-point processing in detail in Chapter 9, Specialized

Processor Extensions.

The Intel 80286 and 80386 microprocessors
The second generation of the IBM PC, the PC AT, was released in 1984. AT stood for Advanced

Technology, which referred to several significant enhancements over the original PC that mostly

resulted from the use of the Intel 80286 processor.

Like the 8088, the 80286 was a 16-bit processor, and it maintained backward compatibility with
the 8088: 8088 code could run unmodified on the 80286. The 80286 had a 16-bit data bus and
24 addresslines supporting a 16-megabyte address space. The external data bus width was 16 bits,
improving data access performance over the 8-bit bus of the 8088. The instruction execution rate
(instructions per clock cycle) was about double the 8088 in many applications. This meant that
at the same clock speed, the 80286 would be twice as fast as the 8088. The original PC AT clocked
the processor at 6 MHz and a later version operated at 8 MHz. The 6 MHz variant of the 80286

achieved an instruction execution rate of about 0.9 MIPS, roughly three times that of the 8088.

The 80286 implemented a protected virtual address mode intended to support multiuser oper-

ating systems and multitasking.
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In protected mode, the processor enforced memory protection to ensure one user’s programs
could notinterfere with the operating system or with other users’ programs. This groundbreaking
technological advance in personal computing remained little used for many years, mainly because
of the prohibitive cost of adding sufficient memory to a computer system to make it useful in a

multiuser, multitasking context.

Following the 80286, the next generation of the x86 processor line was the 80386, introduced in
1985. The 80386 was a 32-bit processor with support for a flat 32-bit memory model in protect-
ed mode. The flat memory model allowed programmers to address up to 4 GB directly, without
the need to manipulate segment registers. Compagq introduced an IBM PC-compatible personal
computer based on the 80386 called the DeskPro in 1986. The DeskPro shipped with a version
of Microsoft Windows targeted to the 80386 architecture.

The 80386 maintained substantial backward compatibility with the 80286 and 8088 processors.
The processor architecture implemented in the 80386 remains the current standard x86 archi-
tecture. We will examine this architecture in detail in Chapter 10, Modern Processor Architectures

and Instruction Sets.

The initial version of the 80386 was clocked at 33 MHz and achieved about 11.4 MIPS. Modern
implementations of the x86 architecture run several hundred times faster than the original as the
result of higher clock speeds, performance enhancements, including the extensive use of multilevel
cache memory, and more efficient instruction execution at the hardware level. We will examine

the benefits of cache memory in Chapter 8, Performance-Enhancing Techniques.

The iPhone

In 2007, Steve Jobs introduced the iPhone to a world that had no idea it had any use for such a
device. The iPhone built upon previous revolutionary advances from Apple Computer, includ-
ing the Macintosh computer, released in 1984, and the iPod music player of 2001. The iPhone

combined the functions of the iPod, a mobile telephone, and an internet-connected computer.

The iPhone did away with the hardware keyboard that was common on smartphones of the time
and replaced it with a touchscreen capable of displaying an onscreen keyboard, or any other type
of user interface. In addition to touches for selecting keyboard characters and pressing buttons,

the screen supported multi-finger gestures for actions such as zooming a photo.

The iPhone ran the OS X operating system, the same OS used on the flagship Macintosh com-

puters of the time.
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This decision immediately enabled the iPhone to support a vast range of applications already
developed for Macs and empowered software developers to rapidly introduce new applications

tailored to the iPhone, after Apple began allowing third-party application development.

TheiPhone 1had a 3.5” screen with a resolution of 320x480 pixels. It was 0.46 inches thick (thinner
than other smartphones), had a built-in 2-megapixel camera, and weighed 4.8 oz. A proximity
sensor detected when the phone was held to the user’s ear and turned off screen illumination and
touchscreen sensing during calls. It had an ambient light sensor to automatically set the screen
brightness and an accelerometer that detected whether the screen was being held in portrait or

landscape orientation.

The iPhone 1 included 128 MB of RAM and 4 GB, 8 GB, or 16 GB of flash memory, and supported
Global System for Mobile communications (GSM) cellular communication, Wi-Fi (802.11b/g),
and Bluetooth.

In contrast to the abundance of openly available information about the IBM PC, Apple was no-
toriously reticent about releasing the architectural details of the iPhone’s construction. Apple
released no information about the processor or other internal components of the first iPhone,

simply referring to it as a closed system.

Despite the lack of official information from Apple, other parties enthusiastically tore down
the various iPhone models and attempted to identify the phone’s components and how they
interconnected. Software sleuths have devised various tests that attempt to determine the spe-
cific processor model and other digital devices implemented within the iPhone. These reverse
engineering efforts are subject to error, so descriptions of the iPhone architecture in this section

should be taken with a grain of salt.

The iPhone 1 processor was a 32-bit ARM11 manufactured by Samsung running at 412 MHz. The
ARM11 was an improved variant of previous-generation ARM processors and included an 8-stage
instruction pipeline and support for Single Instruction-Multiple Data (SIMD) processing to
improve audio and video performance. The ARM processor architecture will be discussed further

in Chapter 10, Modern Processor Architectures and Instruction Sets.

The iPhone 1 was powered by a 3.7 V lithium-ion polymer battery. The battery was not intended
to be replaceable, and Apple estimated it would lose about 20 percent of its original capacity after
400 charge and discharge cycles. Apple quoted up to 250 hours of standby time and 8 hours of

talk time on a single charge.
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Six months after the iPhone was introduced, Time magazine named the iPhone the “Invention
of the Year” for 2007. In 2017, Time ranked the 50 Most Influential Gadgets of All Time. The iPhone
topped the list.

In the next section, we will examine the interplay of technological advances in computing over

time and the underlying physical limits of silicon-based integrated circuits.

Moore’s law

For those working in the rapidly advancing field of computer technology, it is a significant chal-
lenge to make plans for the future. This is true whether the goal is to plot your own career path or
for a giant semiconductor corporation to identify optimal R&D investments. No one can ever be
completely sure what the next leap in technology will be, what effects from it will ripple across
the industry and its users, or when it will happen. One approach that has proven useful in this

difficult environment is to develop a rule of thumb, or empirical law, based on experience.

Gordon Moore co-founded Fairchild Semiconductor in 1957 and was later the chairman and
CEO of Intel. In 1965, Moore published an article in Electronics magazine in which he offered his
prediction of the changes that would occur in the semiconductor industry over the next 10 years.
In the article, he observed that the number of formerly discrete components, such as transistors,
diodes, and capacitors, that could be integrated onto a single chip had been doubling approxi-
mately yearly and the trend was likely to continue over the next 10 years. This doubling formula
came to be known as Moore’s law. This was not a scientific law in the sense of the law of gravity.
Rather, it was based on an observation of historical trends, and he believed this formulation had

some ability to predict the future.

Moore’s law turned out to be impressively accurate over those 10 years. In 1975, he revised the
predicted growth rate for the following 10 years to double the number of components per inte-
grated circuit every 2 years, rather than yearly. This pace continued for decades, up until about
2010. In more recent years, the growth rate has appeared to decline slightly. In 2015, Brian Krza-
nich, Intel CEOQ, stated that the company’s growth rate had slowed to doubling about every two
and a half years.

Even though the time to double integrated circuit density is increasing, the current pace represents
a phenomenal rate of growth that can be expected to continue into the future, just not quite as

rapidly as it once progressed.

Moore’s law has proven to be a reliable tool for evaluating the performance of semiconductor

companies over the decades.
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Companies have used it to set goals for the performance of their products and to plan their invest-
ments. By comparing the integrated circuit density increases for a company’s products against
prior performance, and against other companies, semiconductor executives and industry analysts
can evaluate and score company performance. The results of these analyses have fed directly into
decisions to investin enormous new fabrication plants and to push the boundaries of ever-smaller

integrated circuit feature sizes.

The decades since the introduction of the IBM PC have seen tremendous growth in the capabil-
ities of single-chip microprocessors. Current processor generations are hundreds of times faster,
operate natively on 32-bit and 64-bit data, have far more integrated memory resources, and

unleash vastly more functionality, all packed into a single integrated circuit.

The increasing density of semiconductor features, as predicted by Moore’s law, has enabled these
improvements. Smaller transistors run at higher clock speeds due to the shorter connection
paths between circuit elements. Smaller transistors also, obviously, allow more functionality to
be packed into a given amount of die area. Being smaller and closer to neighboring components

allows the transistors to consume less power and generate less heat.

There was nothing magical about Moore’s law. It was an observation of the trends in progress at
the time. One trend was the steadily increasing size of semiconductor dies. This was the result of
improving production processes that reduced the density of defects, which allowed acceptable
production yield with larger integrated circuit dies. Another trend was the ongoing reduction in
the size of the smallest components that could be reliably produced in a circuit. The final trend
was what Moore referred to as the “cleverness” of circuit designers in making increasingly efficient

and effective use of the growing number of circuit elements placed on a chip.

Traditional semiconductor manufacturing processes have begun to approach physical limits that
will eventually put the brakes on growth under Moore’s law. The smallest features on current
commercially available integrated circuits are around 5 nanometers (nm). For comparison, a typ-
ical human hair is about 50,000 nm thick, and a water molecule (one of the smallest molecules)
is 0.28 nm across. There is a point beyond which it is simply not possible for circuit elements to

become smaller as the sizes approach atomic scale.

In addition to the challenge of building reliable circuit components from a small number of
molecules, other physical effects with names such as Abbe diffraction limit become significant

impediments to single-digit nanometer-scale circuit production.
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We won’t get into the details of these phenomena; it’s sufficient to know the steady increase in
integrated circuit component density that has proceeded for decades under Moore’s law is going

to become a lot harder to continue over the coming years.

This does not mean we will be stuck with processors essentially the same as those that are now
commercially available. Even as the rate of growth in transistor density slows, semiconductor
manufacturers are pursuing several alternative methods to continue growing the power of com-
puting devices. One approach is specialization, in which circuits are designed to perform a specific

category of tasks extremely well rather than performing a wide variety of tasks merely adequately.

Graphics Processing Units (GPUs) are an excellent example of specialization. The original gen-
eration of GPUs focused exclusively on improving the speed at which three-dimensional graphics
scenes could be rendered, mostly for use in video gaming. The calculations involved in generating
athree-dimensional scene are well defined and must be applied to thousands of pixels to create a
single frame. The process is repeated for each subsequent frame, and frames must be redrawn at
a 60 Hz or higher rate to provide a satisfactory user experience. The computationally demanding
and repetitive nature of this task is ideally suited for acceleration via hardware parallelism. Mul-
tiple computing units within a GPU simultaneously perform essentially the same calculations
on different input data to produce separate outputs. Those outputs are combined to generate
the entire scene. Modern GPU architectures have been enhanced to support other computing
domains, such as training neural networks on massive amounts of data. GPU architectures will

be covered in detail in Chapter 6, Specialized Computing Domains.

As Moore’s law shows signs of fading over the coming years, what advances might take its place
to kick off the next round of innovations in computer architectures? We don’t know for sure to-
day, but some tantalizing options are currently under intense study. Quantum computing is one
example of these technologies. We will cover that technology in Chapter 17, Quantum Computing

and Other Future Directions in Computer Architectures.

Quantum computing takes advantage of the properties of subatomic particles to perform compu-
tations in a manner that traditional computers cannot. A basic element of quantum computing is
the qubit, or quantum bit. A qubitis similar to a regular binary bit, but in addition to representing
the states 0 and 1, qubits can attain a state that is a superposition (or mixture) of the 0 and 1 states.
When measured, the qubit output will always be O or 1, but the probability of producing either
outputis a function of the qubit’s quantum state prior to being read. Specialized algorithms are

required to take advantage of the unique features of quantum computing.
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Another future possibility is that the next great technological breakthrough in computing devices
will be something that we either haven’t thought of or, if we have thought about it, we may have
dismissed the idea out of hand as unrealistic. The iPhone, discussed in the preceding section, is
an example of a category-defining product that revolutionized personal communication and
enabled the use of the internet in new ways. The next major advance may be a new type of prod-
uct, a surprising new technology, or some combination of product and technology. Right now,
we don’t know what it will be or when it will happen, but we can say with confidence that such

changes are coming.

The next section introduces some fundamental digital computing concepts that must be under-
stood before we delve into digital circuitry and the details of modern computer architecture in

the coming chapters.

Computer architecture

The descriptions of a number of key architectures from the history of computing presented in
the previous sections of this chapter included some terms that may or may not be familiar to you.
This section will introduce the conceptual building blocks that are used to construct modern-day

processors and related computer subsystems.

Representing numbers with voltage levels

One ubiquitous feature of modern computers is the use of voltage levels to indicate data values.
In general, only two voltage levels are recognized: a low level and a high level. The low level is

often assigned the value 0, and the high level is assigned the value 1.

The voltage at any point in a circuit (digital or otherwise) is analog in nature and can take on any
voltage within its operating range. When changing from the low level to the high level, or vice
versa, the voltage must pass through all voltages in between. In the context of digital circuitry,
the transitions between low and high levels happen quickly and the circuitry is designed to not

react to voltages between the high and low levels.

Binary and hexadecimal numbers

The circuitry within a processor does not work directly with numbers, in any sense. Processor
circuit elements obey the laws of electricity and electronics and simply react to the inputs provided
to them. The inputs that drive these actions result from the code developed by programmers and
from the data provided as input to the program. The interpretation of the output of a program

as, say, numbers in a spreadsheet, or characters in a word processing program, is a purely hu-
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man interpretation that assigns meaning to the result of the electronic interactions within the
processor. The decision to assign O to the low voltage and 1 to the high voltage is the first step in

the interpretation process.

The smallest unit of information in a digital computer is a binary digit, called a bit, which rep-
resents a discrete data element containing the value O or 1. Multiple bits can be placed together
to enable the representation of a greater range of values. A byte is composed of 8 bits placed to-
gether to form a single value. A byte is the smallest unit of information that can be read from or
written to memory by most modern processors. Some computers, past and present, use a different

number of bits for the smallest addressable data item, but the 8-bit byte is the most common size.

A single bit can take on two values: 0 and 1. Two bits placed together can take on four values:
00, 01, 10, and 11. Three bits can take on eight values: 000, 001, 010, 011, 100, 101, 110, and 111. In
general, a group of 7 bits can take on 2" values. An 8-bit byte, therefore, can represent 2°, or 256,

unique values.

The binary number format is not most people’s first choice when it comes to performing arith-
metic. Working with numbers such as 11101010 can be confusing and error-prone, especially
when dealing with 32- and 64-bit values. To make working with these numbers somewhat easier,

hexadecimal numbers are often used instead. The term hexadecimal is often shortened to hex.

In the hexadecimal number system, binary numbers are separated into groups of 4 bits. With 4
bits in the group, the number of possible values is 2*, or 16. The first 10 of these 16 numbers are
assigned the digits 0-9, and the last 6 are assigned the letters A-F. Table 1.1 shows the first 16 binary
values starting at O, along with the corresponding hexadecimal digit and the decimal equivalent

to the binary and hex values:

Binary Hexadecimal | Decimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
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1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

Table 1.1: Binary, hexadecimal, and decimal numbers

The binary number 11101010 can be represented more compactly by breaking it into two 4-bit
groups (1110 and 1010) and writing them as the hex digits EA. A 4-bit grouping is sometimes re-
ferred to as a nibble, meaning it is half a byte. Because binary digits can take on only two values,
binary is a base-2 number system. Hex digits can take on 16 values, so hexadecimal is base-16.

Decimal digits can have 10 values, and therefore decimal is base-10.

When working with these different number bases, it is easy for things to become confusing. Is a
number written as 100 a binary, hexadecimal, or decimal value? Without additional information,
you can’t tell. Various programming languages and textbooks have taken different approaches
to remove this ambiguity. In most cases, decimal numbers are unadorned, so the number 100 is
usually decimal. In programming languages such as C and C++, hexadecimal numbers are pre-
fixed by 0x, so the number 0x100 is 100 hex. In assembly languages, either the prefix character
$ or the suffix & might be used to indicate hexadecimal numbers. The use of binary values in
programming is less common, mostly because hexadecimal is preferred due to its compactness.

Some compilers support the use of 0b as a prefix for binary numbers.

HEXADECIMAL NUMBER REPRESENTATION

\/V This book uses either the prefix $ or the suffix h to represent hexadecimal numbers,
depending on the context. The suffix b will represent binary numbers, and the ab-

sence of a prefix or suffix indicates decimal numbers.

Bits are numbered individually within a binary number, with bit O as the rightmost, least signifi-

cant bit. Bit numbers increase in magnitude leftward, up to the most significant bit at the far left.
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Some examples should make this clear. In Table 1.1, the binary value 0001b (1 decimal) has bit
number O set to 1 and the remaining three bits are cleared to 0. For 0010b (2 decimal), bit 1is set
and the other bits are cleared. For 0100b (4 decimal), bit 2 is set and the other bits are cleared.

SET VERSUS CLEARED

&

A bit thatis set has the value 1. A bit that is cleared has the value 0.

An 8-bit byte can take on values from $00h to $FF, equivalent to the decimal range 0-255. When
performing addition at the byte level, the result can exceed 8 bits. For example, adding $01 to
$FF results in the value $100. When using 8-bit registers, this represents a carry into the 9" bit,
which must be handled appropriately by the processor hardware and by the software performing
the addition.

In unsigned arithmetic, subtracting $01 from $00 results in a value of $FF. This constitutes a
wraparound to $FF. Depending on the computation being performed, this may or may not be the
desired result. Once again, the processor hardware and the software must handle this situation

to arrive at the desired result.

When appropriate, negative values can be represented using binary numbers. The most common
signed number format in modern processors is two’s complement. In two’s complement, 8-bit
signed numbers span the range from -128 to 127. The most significant bit of a two’s complement
data valueis the sign bit: a 0 in this bit represents a positive number and a 1 represents a negative
number. A two’s complement number can be negated (multiplied by -1) by inverting all the bits,
adding 1, and ignoring the carry. Inverting a bit means changing a O bit to 1 and a 1 bit to 0. See

Table 1.2 for some step-by-step examples negating signed 8-bit numbers:

Negating O returns a result of 0, as you would expect mathematically.

Decimal value | Binary value Invert the bits Add one Negated result
0 00000000b 11111111b 00000000b 0
1 00000001b 1111111eb 11111111b -1
-1 11111111b 00000000b 00000001b 1
127 01111111b 10000000b 10000001b -127
-127 10000001b 0111111eb 01111111b 127
Table 1.2: Negation operation examples
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TWO’S COMPLEMENT ARITHMETIC

V4 Two’s complement arithmetic is identical to unsigned arithmetic at the bit level.
\E/‘ The manipulations involved in addition and subtraction are the same whether the
input values are intended to be signed or unsigned. The interpretation of the result

as signed or unsigned depends entirely on the intent of the user.

Table 1.3 shows how the binary values 00000000b to 11111111b correspond to signed values over
the range -128 to 127, and unsigned values from O to 255:

Binary Signed Decimal Unsigned Decimal
00000000b 0 0
00000001b 1 1
00000010b 2 2
01111110b 126 126
01111111b 127 127
10000000b -128 128
10000001b -127 129
10000010b -126 130
11111101b -3 253
1111111eb -2 254
11111111b -1 255

Table 1.3: Signed and unsigned 8-bit numbers

Signed and unsigned representations of binary numbers extend to larger integer data types. 16-bit
values can represent unsigned integers from O to 65,535, and signed integers in the range -32,768
to 32,767. 32-bit, 64-bit, and even larger integer data types are commonly available in modern

processors and programming languages.

The 6502 microprocessor

This section introduces a processor architecture that is relatively simple compared to more pow-

erful modern processors.
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The intent here is to provide a whirlwind introduction to some basic concepts shared by pro-
cessors spanning the spectrum from very low-end microcontrollers to sophisticated multi-core

64-bit processors.

The 6502 processor was introduced by MOS Technology in 1975. The 6502 found widespread use
in video game consoles from Atari and Nintendo and in computers marketed by Commodore and
Apple. Versions of the 6502 continue to be in widespread use today in embedded systems, with
estimates of between 5 and 10 billion (yes, billion) units produced as of 2018. In popular culture,
both Bender, the robot in Futurama, and the T-800 robot in The Terminator appear to have em-

ployed the 6502, based on onscreen evidence.

Like many early microprocessors, the 6502 was powered by 5 volts (V) direct current (DC). In
these circuits, a low signal level is any voltage between O and 0.8 V. A high signal level is any
voltage between 2 and 5 V. Voltages between these ranges occur only during transitions from
low to high and from high to low. The low signal level is defined as logical 0, and the high signal
level is defined as logical 1. Chapter 2, Digital Logic, will delve further into the electronic circuits

used in digital electronics.

The word length of a processor defines the size of the fundamental data element the processor
operates upon. The 6502 has a word length of 8 bits. This means the 6502 reads and writes mem-

ory 8 bits at a time and stores data internally in 8-bit wide registers.

Program memory and data memory share the same address space and the 6502 accesses its mem-
ory over a single bus. Like the Intel 8088, the 6502 implements the von Neumann architecture.

The 6502 has a 16-bit address bus, enabling the addressing of 64 kilobytes of memory.

1KBis defined as 2'°, or 1,024 bytes. The number of unique binary combinations of the 16 address
lines is 2"°, which permits access to 65,536 byte-wide memory locations. Note that just because a
device can address 64 KB, it does not mean there must be memory at each of those locations. The
Commodore VIC-20, based on the 6502, contained just 5 KB of RAM and 20 KB of ROM.

The 6502 contains internal storage areas called registers. A register is a location in alogical device
in which a word of information can be stored and acted upon during computation. A typical pro-
cessor contains a small number of registers for temporarily storing data values and performing

operations such as addition or address computations.
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Figure 1.1 shows the 6502 register structure. The processor contains five 8-bit registers (A, X, Y, P,
and S) and one 16-bit register (PC). The numbers above each register indicate the bit numbers

at each end of the register:

7 0
A

‘i 0
X

7 0
Y

7 0

15 0

PC

Figure 1.1: 6502 register set

Each of the A, X, and Y registers can serve as a general-purpose storage location. Program in-
structions can load a value into one of those registers and, some instructions later, use the saved
value for some purpose if the intervening instructions did not modify the register contents. The
Aregister is the only register capable of performing arithmetic operations. The X and Y registers,

but not the A register, can be used as index registers in calculating memory addresses.

The P register contains processor flags. Each bit in this register has a unique purpose, except for
the bitlabeled 1. The 1 bitis unused and can be ignored. Each of the remaining bits in this register
is called a flag and indicates a specific condition that has occurred or represents a configuration

setting. The 6502 flags are as follows:

e N:Negative sign flag: This flag is set when the result of an arithmetic operation sets bit 7
in the result. This flag is used in signed arithmetic.
e  V:Overflow flag: This flagis set when a signed addition or subtraction results in overflow

or underflow outside the range -128 to 127.
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e  B:Break flag: This flag indicates a Break (BRK) instruction has executed. This bit is not
present in the P register itself. The B flag value is only relevant when examining the P
register contents as stored on the stack by a BRK instruction or by an interrupt. The B flag
is set to distinguish a software interrupt resulting from a BRK instruction from a hardware

interrupt during interrupt processing.

e  D:Decimal mode flag: If set, this flag indicates processor arithmetic will operate in Bina-
ry-Coded Decimal (BCD) mode. BCD mode is rarely used and won’t be discussed here,
other than to note that this base-10 computation mode evokes the architectures of the

Analytical Engine and ENIAC.

e L Interrupt disable flag: If set, this flag indicates that interrupt inputs (other than the

non-maskable interrupt) will not be processed.
e  Z:Zero flag: This flag is set when an operation produces a result of 0.

e  C:Carry flag: This flag is set when an arithmetic operation produces a carry.

TheN,V, Z, and C flags are the most important flags in the context of general computing involving

loops, counting, and arithmetic.

The S register is the stack pointer. In the 6502, the stack is the region of memory from addresses
$100 to $1FF. This 256-byte range is used for the temporary storage of parameters within subrou-
tines and holds the return address when a subroutine is called. At system startup, the Sregister is
initialized to point to the top of this range. Values are “pushed” onto the stack using instructions

such as PHA, which pushes the contents of the A register onto the stack.

When a valueis pushed onto the stack, the 6502 stores the value at the address indicated by the S
register, after adding the fixed $100 offset, and then decrements the S register. Additional values
can be placed on the stack by executing more push instructions. As additional values are pushed,
the stack grows downward in memory. Programs must take care not to exceed the fixed 256-byte

size of the stack when pushing data onto it.

Data stored on the stack must be retrieved in the reverse of the order from which it was pushed
onto the stack. The stack is a Last-In, First-Out (LIFO) data structure, meaning when you “pop”
avalue from the stack, it is the byte most recently pushed onto it. The PLA instruction increments
the S register by 1 and then copies the value at the address indicated by the S register (plus the
$100 offset) into the A register.

The PC register is the program counter. This register contains the memory address of the next
instruction to be executed. Unlike the other registers, the PC is 16 bits long, allowing access to

the entire 6502 address space.
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Each instruction consists of a 1-byte operation code, called opcode for short, and may be followed
by O to 2 operand bytes, depending on the type of instruction. After each instruction executes,
the PC updates to point to the nextinstruction following the one that just completed. In addition
to automatic updates during sequential instruction execution, the PC can be modified by jump

instructions, branch instructions, and subroutine call and return instructions.

The 6502 instruction set

We will now examine the 6502 instruction set. Instructions are individual processor commands
that, when strung together sequentially, execute the algorithm coded by the programmer. An
instruction contains a binary number called an operation code (or opcode) that tells the processor

what to do when that instruction executes.

If they wish, programmers can write code directly using processor instructions. We will see exam-
ples of this later in this section. Programmers can also write code in a so-called high-level language.
The programmer then uses a software tool called a compiler that translates the high-level code

into a (usually much longer) sequence of processor instructions.

In this section, we are working with code written as sequences of processor instructions. This

form of source code is called assembly language.

Each of the 6502 instructions has a three-character mnemonic. In assembly language source files,
each line of code contains an instruction mnemonic followed by any operands associated with the
instruction. The combination of the mnemonic and the operands defines the addressing mode.
The 6502 supports several addressing modes providing a great deal of flexibility in accessing data
in registers and memory. For this introduction, we’ll only work with the immediate addressing
mode, in which the operand itself contains a value rather than indicating a register or memory

location containing the value. An immediate value is preceded by a # character.

In 6502 assembly, decimal numbers have no adornment (48 means 48 decimal), while hexadec-
imal values are preceded by a § character ($30 means 30 hexadecimal, equivalent to 00110000b
and to 48 decimal). An immediate decimal value looks like #48 and an immediate hexadecimal
value looks like #$30.

Some assembly code examples will demonstrate the 6502 arithmetic capabilities. Five 6502
instructions are used in the following examples:
e  LDAloadsregister A with a value

e ADC performs addition using Carry (the C flag in the P register) as an additional input

and output
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e  SBC performs subtraction using the C flag as an additional input and output
e  SECsets the C flag directly
e  CLC clears the C flag directly

Since the Cflagis an input to the addition and subtraction instructions, it is important to ensure
it has the correct value prior to executing the ADC or SBC instructions. Before initiating an addi-
tion operation, the C flag must be clear to indicate there is no carry from a prior addition. When
performing multi-byte additions (say, with 16-bit, 32-bit, or 64-bit numbers), the carry, if any,
will propagate from the sum of one byte pair to the next as you add the more significant bytes
together. If the C flag is set when the ADC instruction executes, the effect is to add 1 to the result.
After the ADC completes, the C flag serves as the ninth bit of the result: a C flag result of 0 means

there was no carry, and a 1 indicates there was a carry from the 8-bit register.

Subtraction using the SBC instruction tends to be a bit more confusing to novice 6502 assembly
language programmers. Schoolchildren learning subtraction use the technique of borrowing when
subtracting a larger digit from a smaller digit. In the 6502, the C flag represents the opposite of
Borrow. If Cis 1, then Borrow is 0, and if Cis O, Borrow is 1. Performing a simple subtraction with

no incoming Borrow requires setting the C flag before executing the SBC command.

The following examples employ the 6502 as a calculator using inputs defined as immediate values
in the code and with the result stored in the A register. The Results columns show the final value

of the A register and the states of the N, V, Z, and C flags:

Instruction | Description Results
Sequence A N v
CLC 8-bit addition with no Carry input: Clear $02 e e e e
LDA #1 the Carry flag, then load an immediate
value of 1into the A register and add 1 to it.
ADC #1
SEC 8-bit addition with a Carry input: Set the $e3 e e e e
LDA #1 Carry flag, then load an immediate value of
ADC #1 linto the A register and add 1 to it.
SEC 8-bit subtraction with no Borrow input: $00 e e 1 1
LDA #1 Set the Carry flag, then load an immediate
value of 1 into the A register then subtract1
>BC #1 from it. C = 1indicated no Borrow occurred.
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CLC 8-bit subtraction with a Borrow input: $FF 1 e e e
LDA #1 Clear the Carry flag, then load an

immediate value of 1into the A register
SBC #1 i o

and subtract 1from it. C = O indicates a

Borrow occurred.
CLC Unsigned overflow: Add 1to $FF.C =1 $o0 0 0 1 1
LDA $FF indicates a Carry occurred.
ADC #1
SEC Unsigned underflow: Subtract 1from 0. C= | $FF 1 e e e
LDA #0 0 indicates a Borrow occurred.
SBC #1
CLC Signed overflow: Add1to $7F. V=1 $80 1 1 e e
LDA #$7F indicates signed overflow occurred.
ADC #1
SEC Signed underflow: Subtract 1 from $80.v= | $7F e 1 e 1
LDA #$80 lindicates signed underflow occurred.
SBC #1

Table 1.4: 6502 arithmetic instruction sequences

If you don’t happen to have a 6502-based computer with an assembler and debugger handy,
there are several free 6502 emulators available online that you can run in your web browser. One
excellent emulatoris available athttps://skilldrick.github.io/easy6502/. Visit the website
and scroll down until you find a default code listing with buttons for assembling and running
6502 code. Replace the default code listing with a group of three instructions from Table 1.4 and

then assemble the code.

To examine the effect of each instruction in the sequence, use the debugger controls to single-step

through the instructions and observe the result of each instruction on the processor registers.

This section has provided a very brief introduction to the 6502 processor and a small subset of its
capabilities. One point of this analysis was to illustrate the challenge of dealing with the issue of
carries when performing addition and borrows when doing subtraction. From Charles Babbage
to the designers of the 6502 to the developers of modern computer systems, computer architects
have developed solutions to the problems of computation and implemented them using the best

technology available to them.
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Summary

This chapter began with a brief history of automated computing devices and described significant
technological advances that drove leaps in computational capability. A discussion of Moore’s
law followed with an assessment of its applicability over past decades and its implications for
the future. The basic concepts of computer architecture were introduced through a discussion
of the 6502 microprocessor registers and instruction set. The history of computer architecture is

fascinating, and I encourage you to explore it further.

The next chapter will introduce digital logic, beginning with the properties of basic electrical
circuits and proceeding through the design of digital subsystems used in modern processors. You
will learn about logic gates, flip-flops, and digital circuits including multiplexers, shift registers,
and adders. The chapter includes an introduction to hardware description languages, which are
specialized computer languages used in the design of complex digital devices such as computer

processors.

Exercises

1. Usingyour favorite programming language, develop a simulation of a single-digit decimal
adder that operates in the same manner as in Babbage’s Analytical Engine. First, prompt
the user for two digits in the range 0-9: the addend and the accumulator. Display the
addend, the accumulator, and the carry, which is initially 0. Perform a series of cycles as

follows:

1. Ifthe addend is O, display the values of the addend, accumulator, and carry and

terminate the program
Decrement the addend by 1 and increment the accumulator by 1
If the accumulator is incremented from 9 to 0, increment the carry

Go backtostep 1

oo

Test your code with these sums: 0+0, 0+1,1+0, 1+2, 5+5, 9+1, and 9+9

2. Create arrays of 40 decimal digits each for the addend, accumulator, and carry. Prompt
the user for two decimal integers of up to 40 digits each. Perform the addition digit by
digit using the cycles described in Exercise 1 and collect the carry output from each digit
position in the carry array. After the cycles are complete, insert carries, and, where nec-
essary, ripple them across digits to complete the addition operation. Display the results
after each cycle and at the end. Test with the same sums as in Exercise I and also test the
sums 99+1,999999+1, 49+50, and 50+50.
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3. Modify the program of Exercise 2 to implement the subtraction of 40-digit decimal val-
ues. Perform borrowing as required. Test with 0-0, 1-0,1000000-1, and 0-1. What is the
result for 0-1?

4. 6502 assembly language references data in memory locations using an operand value
containing the address (without the # character, which indicates an immediate value).
For example, the LDA $00 instruction loads the byte at memory address $00 into A. STA
$01 stores the byte in A into address $01. Addresses can be any value in the range of O
to $FFFF, assuming memory exists at the address and the address is not already in use
for some other purpose. Using your preferred 6502 emulator, write 6502 assembly code
to store a 16-bit value in addresses $00-$01, store a second value in addresses $02-$03,
then add the two values and store the result in $04-$05. Be sure to propagate any carry
between the two bytes. Ignore any carry from the 16-bit result. Test with $0000+$0001,
$00FF+$0001, and $1234+$5678.

5. Write 6502 assembly code to subtract two 16-bit values in a manner similar to Exercise
4. Test with $0001-$0000, $0001-$0001, $0100-$00FF, and $0000-$0001. What is the
result for $0000-$0001?

6. Write 6502 assembly code to store two 32-bit integers to addresses $00-03 and $04-$07,
and then add them, storing the results in $08-$0B. Use a looping construct, including
a label and a branch instruction, to iterate over the bytes of the two values to be added.
Search the internet for the details of the 6502 decrement and branch instructions and the
use of labels in assembly language. Hint: The 6502 zero-page indexed addressing mode

works well in this application.

Join our community Discord space

Join the book’s Discord workspace for a monthly Ask me Anything session with the author:
https://discord.gg/7h8aNRhRuY




Digital Logic

This chapter builds upon the introductory topics presented in Chapter 1, Introducing Computer
Architecture, and provides a firm understanding of the digital building blocks used in the design
of modern processors and other sophisticated electronic circuits. We begin with a discussion of
basicelectrical circuit elements. Next, we introduce transistors and examine their use as switching
components in simple logic gates. We then construct latches, flip-flops, and ring counters from
logic gates. More complex processor components, including registers and adders, are developed
by combining the devices introduced earlier. The concept of sequential logic, which means logic
that contains state information that varies over time, is developed. The chapter ends with an
introduction to hardware description languages, which represent the design method of choice

for complex digital devices.
The following topics will be covered in this chapter:

e Electrical circuits
e The transistor

e Logic gates

e Latches

e  Flip-flops
e  Registers
e Adders

e Clocking

e  Sequential logic

e  Hardware description languages
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Technical requirements

Files for this chapter, including answers to the exercises, are available at https://github.com/

PacktPublishing/Modern-Computer-Architecture-and-Organization-Second-Edition.

Electrical circuits

We begin this chapter with a brief review of the properties of electrical circuits.

Conductive materials, such as copper, exhibit the ability to easily produce an electric current in
the presence of an electric field. Nonconductive materials, for example, glass, rubber, and poly-
vinyl chloride (PVC), inhibit the flow of electricity so thoroughly that they are used as insula-
tors to protect electrical conductors against short circuits. In metals, electrical current consists
of electrons in motion. Materials that permit some electrical current to flow, while predictably

restricting the amount allowed to flow, are used in the construction of resistors.

The relationship between electrical current, voltage, and resistance in a circuit is analogous to
therelationship between flow rate, pressure, and flow restriction in a hydraulic system. Consider
a kitchen water tap: pressure in the pipe leading to the tap forces water to flow when the valve
is opened. If the valve is opened just a tiny bit, the flow from the faucet is a trickle. If the valve is
opened further, the flow rate increases. Increasing the valve opening is equivalent to reducing

the resistance to water flow through the faucet.

In an electrical circuit, voltage corresponds to the pressure in the water pipe. Electrical current,
measured in amperes (often shortened to amps), corresponds to the rate of water flow through
the pipe and faucet. Electrical resistance corresponds to the flow restriction resulting from a

partially opened valve.

The quantities of voltage, current, and resistance are related by the formula V = IR, where Vis the
voltage (in volts), I is the current (in amperes), and R is the resistance (in ohms). In other words,
the voltage across a resistive circuit element equals the product of the current through the ele-
ment and its resistance. This is Ohm’s law, named in honor of Georg Ohm, who first published

the relationship in 1827.

Figure 2.1 shows a simple circuit representation of this relationship. The stacked horizontal lines
to the left indicate a voltage source, such as a battery or a computer power supply. The zig-zag
shape to the right represents a resistor. The lines connecting the components are wires, which
are assumed to be perfect conductors. A perfect conductor allows electrical current to flow with

no resistance.


https://github.com/PacktPublishing/Modern-Computer-Architecture-and-Organization-Second-Edition
https://github.com/PacktPublishing/Modern-Computer-Architecture-and-Organization-Second-Edition
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The current, denoted by the letter I, flows around the circuit clockwise, out the positive side of
the battery, through the resistor, and back into the negative side of the battery. The negative side

of the battery is defined in this circuit as the voltage reference point, with a voltage of zero volts:

| —»
g
N = R
<+ |
oV

Figure 2.1: Simple resistive circuit

Using the water pipe analogy, the wire at zero volts represents a pool of water. A “pump” (the
battery in the diagram) draws water from the pool and pushes it out of the “pump” at the top
of the battery symbol into a pipe at a higher pressure. The water flows as current I to the faucet,
represented by resistor R to the right. After passing through the flow-restricted faucet, the water

ends up in the pool where it is available to be drawn into the pump again.

If we assume the battery voltage, or pressure rise across the water pump, is constant, then any
increase in resistance R will reduce the current I by an inversely proportional amount. Doubling
the resistance cuts the current in half, for example. Doubling the voltage, perhaps by placing

two batteries in series, as is common in flashlights, will double the current through the resistor.

In the next section, we introduce the transistor, which serves as the basis for all modern digital

electronic devices.

The transistor

A transistor is a semiconductor device that, for the purpose of this discussion, functions as a digital
switch. A semiconductor is a material that exhibits properties between those of good conductors
(like copper wire) and good insulators (like glass or plastic). In a suitable circuit configuration,
the conductivity of a semiconductor device can be varied by a control input. A transistor used in

this manner becomes a digital switching element.

The transistor switching operation is electrically equivalent to changing between very high and
very low resistance based on the state of an input signal. One important feature of switching

transistors is that the switching input does not need to be very strong.
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This means that a very small current at the switching input can turn on and turn off a much
larger current passing through the transistor. A single transistor’s output current can drive many

other transistor inputs. This characteristic is vital to the development of complex digital circuits.

Figure 2.2 shows the schematic diagram of the NPN transistor. NPN refers to the construction of
the interconnected silicon regions that make up the transistor. An N region of silicon has mate-
rial added to it (using a process called doping) that increases the number of available electrons
present. A Pregion is doped to have a reduced number of available electrons. An NPN transistor
contains two N sections, with a P section sandwiched between them. The three terminals of the

device are connected to each of these regions:

Figure 2.2: NPN transistor schematic symbol

The collector, labeled C in Figure 2.2, is connected to one of the N regions, and the emitter, E, is
connected to the other Nregion. The base, B, connects to the P region between the two N regions.
The collector “collects” current and the emitter “emits” current, as indicated by the arrow. The
base terminal is the control input. By changing the voltage applied to the base terminal, and
thus altering the amount of current flowing into the base, current entering via the collector and

exiting via the emitter can be adjusted.

Logic gates

Figure 2.3 is a schematic diagram of a transistor NOT gate. This circuitis powered by a 5V supply.
The input signal might come from a pushbutton circuit that produces 0 V when the button is not
pressed and 5 V when it is pressed. RI limits the current flowing from the input terminal to the
transistor base terminal when the input is high (near 5 V). In a typical circuit, RI has a value of
about 1,000 ohms. R2 might have a value of 5,000 ohms. R2 limits the current flowing from the

collector to the emitter when the transistor is switched on:
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Output
(0-5V)

5V

oV
Figure 2.3: Transistor NOT gate

The input terminal accepts voltage inputs over the range O to 5 V, but since we are interested in
digital circuit operation, we are only interested in signals that are either near 0 V (low) or near
5V (high). We will assume that all voltage levels between the low and high states are transient

during near-instantaneous transitions between the low and high states.

A typical NPN transistor has a switching voltage of about 0.7 V. When the input terminal is held
at a low voltage, 0.2 V for example, the transistor is effectively switched off and has a very large
resistance between the collector and emitter. This allows R2, connected to the 5 V power supply,

to pull the output signal to a high state near 5 V.

When the input signal voltage rises above 0.7 V and into the 2 to 5 V range, the transistor switches
on and the resistance between the collector and the emitter becomes very small. This, in effect,
connects the output terminal to 0 V through a resistance thatis much smaller than R2. This pulls

the output terminal to a low voltage, typically around 0.2 V.

To summarize the behavior of this circuit, when the input terminal is high, the output terminal is
low. When the input terminal is low, the output terminal is high. This function describes a NOT
gate, in which the output is the inverse of the input. Assigning the low signal level the binary
value 0 and the high signal level the value 1, the behavior of this gate is summarized in the truth
table of Table 2.1:

Input Output
0 1
1 0

Table 2.1: NOT gate truth table
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A truth table is a tabular representation of the output of a logical expression as a function of all
possible combinations of inputs. Each column represents one input or output, with the output(s)
shown on the right-hand side of the table. Each row presents one set of input values together

with the output of the expression given those inputs.

Circuits such as the NOT gate in Figure 2.3 are so common in digital electronics that they are
assigned schematic symbols to enable the construction of higher-level diagrams representing

more complex logic functions.

The symbol for a NOT gate is a triangle with a small circle at the output, shown in Figure 2.4:

Input Output

Figure 2.4: NOT gate schematic symbol

The triangle represents an amplifier, which means this is a device that turns a weaker input signal
into a stronger output signal. The circle represents the inversion operator, which converts the

signal to its binary opposite.

Next, we will look at some more complex logical operations that can be developed by building
upon the NOT gate circuit. The circuit in Figure 2.5 uses two transistors to perform an AND oper-
ation on the inputs Input, and Input,. An AND operation has an output of 1 when both inputs are
1, otherwise the output s 0. Resistor R2 pulls the Output signal low unless both transistors have

been switched on by high levels at the Input, and Input, signals:

Output

R2

ov

Figure 2.5: Transistor AND gate
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Table 2.2 is the truth table for the AND gate. In simple terms, the Output signal is true (at the 1
level) when both the Input, and Input, inputs are true, and false (0) otherwise:

Inputi Inputa Output
0 0 0
1 0 (]
0 1 0
1 1 1

Table 2.2: AND gate truth table

The AND gate has its own schematic symbol, shown in Figure 2.6:

A —

Output
B — p

Figure 2.6: AND gate schematic symbol

An OR gate has an output of 1 when either the A or Binputis 1, and when both inputs are 1. Here

is the truth table for the OR gate:

A B Output
0 0 0

1 0 1

0 1 1

1 1 1

Table 2.3: OR gate truth table

The OR gate schematic symbol is shown in Figure 2.7

A

Output
B utpu

Figure 2.7: OR gate schematic symbol
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The exclusive-OR, or XOR, operation produces an output of 1 when just one of the A and B inputs

is 1. The output is O when both inputs are 0 and when both are 1. This is the XOR truth table:

A B Output
0 (0]

1 0 1

0 1 1

1 1 0

Table 2.4: XOR gate truth table

The XOR gate schematic symbol is shown in Figure 2.8:

A

QOutput
B p

Figure 2.8: XOR gate schematic symbol

Each of the AND, OR, and XOR gates can be implemented with an inverting output. The function

of the gate is the same as described in the preceding section, except the output is inverted (O is

replaced with 1 and 1 is replaced with 0 in the Output column in Table 2.2, Table 2.3, and Table

2.4). The schematic symbol for an AND, OR, or XOR gate with inverted output has a small circle

added on the output side of the symbol, just as on the output of the NOT gate. The names of the

gates with inverted outputs are NAND, NOR, and XNOR. The letter N in each of these names in-
dicates NOT. For example, NAND means NOT AND, which is functionally equivalent to an AND

gate followed by a NOT gate.

Simple logic gates can be combined to produce more complex functions. A multiplexer is a circuit
that selects one of multiple inputs to pass through to its output based on the state of a selector

input. Figure 2.9 is the diagram of a two-input multiplexer:

lo

Figure 2.9: Two-input multiplexer circuit
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The two single-bit data inputs are I, and I,. The selector input A passes the value of I, through to the
output Q when A is high. It passes I, to the output when A is low. One use of a multiplexer in pro-
cessor design is to select input data from one of multiple sources when loading an internal register.

The truth table representation of the two-input multiplexer is shown in Table 2.5. In this table,
the value X indicates “don’t care,” meaning it does not matter what value that signal has in de-

termining the Q output:

A I, I,
1 0 X 0
1 1 X 1
X 0 0
X 1 1

Table 2.5: Two-input multiplexer truth table

The logic gates presented in this section, and circuits constructed from them, are referred to as
combinational logic when the output at any moment depends only on the current state of the
inputs. For the moment, we’re ignoring propagation delay and assuming that the circuit output
responds immediately to changes in its inputs. In other words, given these assumptions, the
output does not depend on prior input values. Combinational logic circuits have no memory of

pastinputs or outputs.

In the next section, we will look at some circuits that can retain memory of past operations.

Latches

Combinational logic does not directly permit the storage of data as is needed for digital functions
such as processor registers. Logic gates can be used to create data storage elements by using feed-

back from a gate output to the input of a gate preceding that point in the signal chain.

A latch is a single-bit memory device constructed from logic gates. Figure 2.10 shows a simple
type of latch called the Set-Reset, or SR, latch. The feature that provides memory in this circuit
is the feedback from the output of the AND gate to the input of the OR gate:

D] H

Figure 2.10: SR latch circuit
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Based on the inputs S and R, the circuit can either set the output Q to high, reset Q to low, or cause
the output Q to be held at its last value. In the hold state, both S and R are low, and the state of
the output Q is retained. Pulsing S high (going from low to high then back to low) causes the
output Q to go high and remain at that level. Pulsing R high causes Q to go low and stay low. If
both S and R are set high, the R input overrides the S input and forces Q low.

The truth table for the SR latch is shown in Table 2.6. The output Q,,., represents the most recent
value of Q selected through the actions of the S and R inputs:

S R Action | Q

0 0 Hold Qprev
1 (0] Set 1

X 1 Reset 0

Table 2.6: SR latch truth table

One thing to be aware of with this latch circuit, and with volatile memory devices in general,
is that the initial state of the Q output upon power-up is not well defined. The circuit startup
behavior and the resulting value of Q depend on the characteristics and timing of the individual
gates as they come to life. After power-on, and prior to beginning use of this circuit for productive

purposes, itis necessary to pulse the S or R input to place Q into a known state.

The gated D latch, in which D stands for data, has many uses in digital circuits. The term gated
refers to the use of an additional input that enables or inhibits the passage of data through the

circuit. Figure 2.11 shows an implementation of the gated D latch:

D e
Y DB

Figure 2.11: Gated D latch circuit

D

The D input passes through to the Q output whenever the E (enable) inputis high. When E is low,
the Q output retains its previous value regardless of the state of the D input. The Q output always

holds the inverse of the Q output (the horizontal bar above Q means NOT):
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D E Q Q
0 1 0 1

1 1 1 0

X 0 Qprev Qprev

Table 2.7: Gated D latch truth table

It is worth taking a moment to trace the logical flow of this circuit to understand its operation.
The left half of Figure 2.11, consisting of the D input, the NOT gate, and the two leftmost NAND

gates, is a combinational logic circuit, meaning the outputis always a direct function of the input.

First, consider the case when the E input is low. With E low, one of the inputs to each of the two
left-hand NAND gates is low, which forces the output of both gates to 1 (refer to Table 2.2 and the
AND gate truth table and remember that the NAND gate is equivalent to an AND gate followed by
a NOT gate). In this state, the value of the D input is irrelevant, and one of Q or Q must be high
and the other must be low, because of the cross-connection of the outputs of the two rightmost

NAND gates feeding back to the gate inputs. This state will be retained as long as E is low.

When E is high, depending on the state of D, one of the two leftmost NAND gates will have a low
output and the other will have a high output. The one with the low output will drive the connected
rightmost NAND gate to a high output. This output will feed back to the input of the other right-
hand side NAND gate and, with both inputs high, will produce a low output. The result is that
the input D will propagate through to the output Q and the inverse of D will appear at output Q.

Itis important to understand that Q and Q cannot both be high or low at the same time because
this would represent a conflict between the outputs and inputs of the two rightmost NAND gates.
If one of these conditions happens to arise fleetingly, such as during power-up, the circuit will
self-adjust to a stable configuration, with Q and Q holding opposite states. As with the SR latch,
the result of this self-adjustment is not predictable, so it is important to initialize the gated D
latch to a known state before using it in any operations. Initialization is performed by setting E

high, setting D to the desired initial Q output, and then setting E low.

The gated D latch described previously is a level-sensitive device, meaning the output Q changes
to follow the D input while the E input is held high. In more complex digital circuits, it becomes
important to synchronize multiple circuit elements connected in series without the need to
carefully account for propagation delays across the individual devices. The use of a shared clock

signal as an input to multiple elements enables this type of synchronization.



38 Digital Logic

In a shared-clock configuration, components update their outputs based on clock signal edges
(edges are the moments of transition from low to high or high to low) rather than responding

continuously to high or low input signal levels.

Edge triggering is useful because the clock signal edges identify precise moments at which device
inputs must be stable and valid. After the clock edge has passed, the device’s inputs are free to
vary in preparation for the next active clock edge without the possibility of altering the circuit
outputs. The flip-flop circuit, discussed next, responds to clock edges, providing this desirable

characteristic for complex digital designs.

Flip-flops

Adevice that changes its output state only when a clock signal makes a specified transition (either
low to high or high to low) is referred to as an edge-sensitive device. Flip-flops are similar to
latches, with the key difference being that the output of a flip-flop changes in response to a clock

edge rather than responding continuously to its input signal while enabled.

The positive edge-triggered D flip-flop is a popular digital circuit component used in a wide
variety of applications. The D flip-flop typically includes set and reset input signals that perform
the same functions as in the SR latch. This flip-flop has a D input that functions just like the D
input of the gated D latch. Instead of an enable input, the D flip-flop has a clock input that triggers
the transfer of the D input to the Q output and, with inversion, to the Q output on the clock’s
rising edge. Other than within a very narrow time window surrounding the rising edge of the
clock signal, the flip-flop does not respond to the value of the D input. When active, the S and R

inputs override any activity on the D and clock inputs.

Figure 2.12 presents the schematic symbol for the D flip-flop. The clock input is indicated by the
small triangle on the left-hand side of the symbol:

—D S Q-
-

RQ
|

Figure 2.12: D flip-flop schematic symbol
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Consider the following table. The upward-pointing arrows in the CLK column indicate the rising
edge of the clock signal. The Q and Q outputs shown in the table rows with upward-pointing

arrows represent the state of the outputs following the rising clock edge.

S R D CLK Q Q

0 0 1 T 1 0

0 0 0 T 0 1

0 0 X Stable | Quev | Qprev
1 0 X X 1 0

0 1 X X Y 1

Table 2.8: D flip-flop truth table

Flip-flops can be connected in series to enable the transfer of data bits from one flip-flop to the
next on sequential clock cycles. This is achieved by connecting the Q output of the first flip-flop
to the D input of the second one, and so on for any number of stages. This structure, called a shift
register, has many applications, two of which are serial-to-parallel conversion and parallel-to-

serial conversion.

If the Q output at the end of a shift register is connected to the D input at the other end of the
register, the result is a ring counter. Ring counters are used for tasks such as the construction
of finite state machines. Finite state machines implement a mathematical model that is always
in one of a set of well-defined states. Transitions between states occur when inputs satisfy the

requirements to transition to a different state.

The ring counter in Figure 2.13 has four positions. The counter is initialized by pulsing the RST
input high and then low. This sets the Q output of the first (leftmost) flip-flop to 1 and the re-
maining flip-flop Q outputs to 0. After that, each rising edge of the CLK input transfers the 1 bit
to the next flip-flop in the sequence. The fourth CLK pulse transfers the 1 back to the leftmost
flip-flop. At all times, each of the flip-flops has a Q output of O except for one that has a 1 output.
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The flip-flops are edge-sensitive devices and are all driven by a common clock signal, making

this a synchronous circuit:

—0
©l
|
P
O
|
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Figure 2.13: Four-position ring counter circuit

This circuit contains four ring counter states. Adding six more flip-flops would bring the number
of states to 10. As we discussed in Chapter 1, Introducing Computer Architecture, the ENIAC used
vacuum tube-based 10-position ring counters to maintain the state of decimal digits. A 10-state

ring counter based on the circuit in Figure 2.13 can perform the same function.

In the next section, we will construct registers for data storage from flip-flops.

Registers

Processor registers temporarily store data values and serve as input to and output from a variety
of instruction operations, including data movement to and from memory, arithmetic, and bit
manipulation. Most general-purpose processors include instructions for shifting binary values
stored in registers to the left or right and for performing rotation operations in which data bits
shifted out one end of the register are inserted at the opposite end. The rotation operation is similar
to the ring counter, except the bits in a rotation can hold arbitrary values, while a ring counter
typically transfers a single 1 bit through the sequence of locations. Circuits performing these

functions are constructed from the low-level gates and flip-flops presented earlier in this chapter.

Registers within a processor are usually written and read in parallel, meaning all the bits are writ-
ten or read on individual signal lines simultaneously under the control of a common clock edge.
The examples presented in this section use 4-bit registers for simplicity, butitis straightforward

to extend these designs to 8, 16, 32, or 64 bits.

Figure 2.14 shows a simple 4-bit register with parallel input and output. This is a synchronous
circuit, in which data bits provided on inputs D,-D; are loaded into the flip-flops on the rising
edge of the CLK signal. The data bits appear immediately at the Q,-Q; outputs and retain their

state until new data values are loaded on a subsequent rising clock edge:
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Figure 2.14: 4-bit register circuit

To perform useful functions beyond simply storing data in a register, it must be possible to load
data from multiple sources into the register, perform operations on the register contents, and

write the resulting data value to one of potentially many destinations.

In general-purpose processors, a data value can usually be loaded into a register from a memory
location, from an input port, or transferred from another register. Operations performed on the
register contents might include incrementing, decrementing, arithmetic operations, shifting,
rotating, and bit manipulations such as AND, OR, and XOR. Note thatincrementing or decrement-
ing an integer is equivalent to the addition or subtraction of an operand with a second implied
operand of 1. Once a register contains the result of a computation, its contents can be written to

a memory location, to an output port, or to another register.

Figure 2.9 presented a circuit for a two-input multiplexer. It is straightforward to extend this
circuit to support a larger number of inputs, any of which can be selected by control signals. The
single-bit multiplexer can be replicated to support simultaneous operation across all the bits
in a processor word. Such a circuit is used to select among a variety of sources when loading a
register with data. When implemented in a processor, logic triggered by instruction opcodes sets
the multiplexer control inputs to route data from the selected source to the specified destination
register. Chapter 3, Processor Elements, will expand on the use of multiplexers for data routing to

registers and to other units within the processor.

The next section will introduce circuits for adding binary numbers.

Adders

General-purpose processors usually support the addition operation for performing calculations
on datavalues and, separately, to manage the instruction pointer. Following the execution of each

instruction, the instruction pointer increments to the next instruction location.
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When the processor supports multi-word instructions, the updated instruction pointer must be

set to its current value plus the number of words in the just-completed instruction.

A simple adder circuit adds two data bits plus an incoming carry and produces a 1-bit sum and a
carry output. This circuit, shown in Figure 2.15, is called a full adder because itincludes the incom-

ing carry in the calculation. A half adder adds only the two data bits without an incoming carry:

in 7

c‘uul

Figure 2.15: Full adder circuit

The full adder uses logic gates to produce its output as follows. The sum bit Sis 1 only if the total
number of bits with a value of 1in the collection A, B, C;, is an odd number. Otherwise, Sis 0. The
two XOR gates perform this logical operation. C,, is 1 if both A and B are 1, or if just one of A and
Bis1and C, is also 1. Otherwise, C,is O.

The circuit in Figure 2.15 can be condensed to a schematic block that has three inputs and two
outputs for use in higher-level diagrams. Figure 2.16 is a 4-bit adder with four blocks represent-
ing copies of the full adder circuit of Figure 2.15. The inputs are the two words to be added, A,-A,

and B,-Bs, and the incoming carry, C;,. The output is the sum, S,-S;, and the outgoing carry, C,.:

g AsBs; S AB, s, AB, S, AyB,

Full J I Full J [ Full J I Full
Adder Adder Adder Adder

cout* 3 2 1 0 *Cin

Figure 2.16: 4-bit adder circuit

It is important to note that this circuit is a combinational circuit, meaning that once the inputs
have been set, the outputs will be generated directly. This includes the carry propagation from
bit to bit, no matter how many bits are affected by carries. Because the carry flows across bit by

bit, this configuration is referred to as a ripple carry adder.



Chapter 2 43

It takes some time for the carries to propagate across all the bit positions and for the outputs to

stabilize at their final value.

Since we are now discussing a circuit that has a signal path passing through a significant number
of devices, it is appropriate to discuss the implications of the time required for signals to travel

from end to end through multiple components.

Propagation delay

When the input of alogic device changes, the output does not change instantly. There is a time lag
between a change of state at the input and when the result appears at the output. This is called
propagation delay. The propagation delay through a circuit places an upper limit on the clock
frequency at which the circuit can operate. In a microprocessor, the clock speed determines the

speed at which the device can execute instructions.

Placing multiple combinational circuits in series results in an overall propagation delay equal to
the sum of the delays of the individual devices. A gate may have a different propagation delay
for a low-to-high transition than for a high-to-low transition, so the larger of these two values

should be used when estimating the worst-case delay through a circuit path.

As shown in Figure 2.15, the longest path (in terms of the number of gates in series) from input to
output for the full adder is from the A and B inputs to the C,, output: a total of three sequential
gates. If all the 4-bit adder input signals in Figure 2.16 are set simultaneously, the three-gate delay
related to the A and Binputs will take place simultaneously across all four of the adders. However,
the C, output from full adder 0 is only guaranteed to be stable after the three-gate delay across
full adder 0. Once C, is stable, there is an additional two-gate delay across full adder 1 (note that

in Figure 2.15, C;, only passes through two sequential levels of gates).

The overall propagation delay for the circuit in Figure 2.16 is therefore three gate delays across
full adder O followed by two gate delays across each of the remaining three full adders, a total of
nine gate delays. This may not seem like a lot, but consider a 32-bit adder: the propagation delay
for this adder is three gate delays for full adder O plus two gate delays for each of the remaining
31 adders, a total of 65 gate delays.

The path with the maximum propagation delay through a combinational circuit is referred to as
the critical path. The critical path delay places an upper limit on the clock frequency that can

be used to drive the circuit.

Logic gates from the Advanced Schottky Transistor-Transistor Logic family, abbreviated to (AS)
TTL, are among the fastest individually packaged gates available today.
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An (AS) TTL NAND gate has a propagation delay of 2 nanoseconds (ns) under typical load con-

ditions. For comparison, light in a vacuum travels just under 2 feet in 2 ns.

In the 32-bitripple carry adder, 65 propagation delays through (AS) TTL gates resultin a delay of
130 ns between setting the inputs and receiving final, stable outputs. To form a rough estimate,
let’s assume this is the worst-case propagation delay through an entire processor integrated
circuit. We'll also ignore any additional time required to hold inputs stable before and after an
active clock edge. This adder, then, cannot perform sequential operations on input data more

often than once every 130 ns.

When performing 32-bit addition with a ripple carry adder, the processor uses a clock edge to
transfer the contents of two registers (each consisting of a set of D flip-flops) plus the processor
C flag to the adder inputs. The subsequent clock edge loads the results of the addition into a

destination register. The C flag receives the value of C,, from the adder.

A clock with a period 0of 130 ns has a frequency of (1/130 ns), which is 7.6 MHz. This certainly does
not seem very fast, especially when considering that many low-cost processors are available today
with clock speeds greater than 4 GHz. Part of the reason for this discrepancy is the inherent speed
advantage of integrated circuits containing massive numbers of tightly packed transistors, and
the other part is the result of the cleverness of designers, as referenced by Gordon Moore, which
was discussed in Chapter 1, Introducing Computer Architecture. To perform the adder function
efficiently, many design optimizations have been developed to substantially reduce the worst-
case propagation delay. Chapter 8, Performance-Enhancing Techniques, will discuss some of the

methods processor architects use to wring higher speeds from their designs.

In addition to gate delays, there is also some delay resulting from signal traveling through wires
and integrated circuit conductive paths. The propagation speed through a wire or other type of
conductive material varies depending on the material used for conduction and on the insulating
material surrounding the conductor. Depending on these and other factors, signal propagation

speed in digital circuits is typically 50-90% of the speed of light in a vacuum.

The next section discusses the generation and use of clocking signals in digital circuits.

Clocking

The clock signal serves as the heartbeat of a processor. This signal is usually a square wave signal
operating at a fixed frequency. A square wave is a digital signal that oscillates between high and
low states, spending equal lengths of time at the high and low levels on each cycle. Figure 2.17

shows an example of a square wave over time:
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Figure 2.17: Square wave signal

The clock signal in a computer system is usually generated from a crystal oscillator providing a
base frequency of a few megahertz (MHz). 1 MHz is 1 million cycles per second. A crystal oscillator
relies on the resonant vibration of a physical crystal, usually made of quartz, to generate a cyclic
electrical signal. The mechanical vibration of the crystal is transformed into an electrical signal by
the piezoelectric effect. The piezoelectric effect is the electrical charge that accumulates in certain
crystals when placed under mechanical stress. Quartz crystals resonate at precise frequencies,

which leads to their use as timing elements in computers, wristwatches, and other digital devices.

Although crystal oscillators are more accurate time references than alternative timing references
thatfind use in low-cost devices, crystals exhibit errors in frequency that accumulate over periods
of days and weeks to gradually drift by seconds and then minutes away from the correct time.
To avoid this problem, most internet-connected computers access a time server periodically to

reset their internal clocks to the current time as published by a precise atomic reference clock.

Phase-locked loop (PLL) frequency multiplier circuits are used to generate the high-frequency
clock signals needed by multi-GHz processors. A PLL frequency multiplier generates a square
wave output frequency that is an integer multiple of the input frequency provided to it from the
crystal oscillator. The ratio of the PLL clock output frequency to the input frequency it receives

is called the clock multiplier.

A PLL frequency multiplier operates by continuously adjusting the frequency of its internal os-
cillator to maintain the correct clock multiplier ratio relative to the PLL input frequency. Modern
processors usually have a crystal oscillator clock signal input and contain several PLL frequency
multipliers producing different frequencies. These PLL output frequencies then drive core proces-
sor operations at the highest possible speed while simultaneously interacting with components

that require lower clock frequencies, such as system memory and peripheral devices.

Sequential logic
Digital circuitry that generates outputs based on a combination of current inputs and pastinputs
is called sequential logic. This contrasts with combinational logic, in which outputs depend only

on the current state of the inputs.
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When a sequential logic circuit composed of several components operates those components

under the control of a shared clock signal, the circuit implements synchronous logic.

The steps involved in the execution of processor instructions take place as a series of discrete
operations that consume input in the form of instruction opcodes and data values received from
various sources. This activity takes place under the coordination of a master clock signal. The
processor maintains internal state information from one clock step to the next, and from one

instruction to the next.

Modern complex digital devices, including processors, are almost always implemented as syn-
chronous sequential logic devices. Low-level internal components, such as the gates, multiplexers,
registers, and adders discussed previously, are usually combinational logic circuits. These low-
er-level components, in turn, receive inputs under the control of synchronous logic. After allowing
sufficient time for signal propagation across the combinational components, the shared clock
signal transfers the outputs of those components to other portions of the architecture under the

control of processor instructions and the logic circuits that carry out those instructions.

Chapter 3, Processor Elements, will introduce the higher-level processor components that imple-
ment more complex functionality, including instruction decoding, instruction execution, and

arithmetic operations.

The next section introduces the idea of designing digital hardware using languages that are very

similar to traditional computer programming languages.

Hardware description languages

It is straightforward to represent simple digital circuits using logic diagrams like the ones pre-
sented earlier in this chapter. When designing digital devices that are substantially more complex,
however, the use of logic diagrams quickly becomes unwieldy. As an alternative to the logic dia-
gram, several hardware description languages have been developed over the years. This evolution
has been encouraged by Moore’s law, which drives digital system designers to continually find
new ways to quickly make the most effective use of the constantly growing number of transistors

available in integrated circuits.

Hardware description languages are not the exclusive province of digital designers at semicon-
ductor companies; even hobbyists can acquire and use these powerful tools at an affordable cost.

Some are even free.

A gate array is a logic device containing many logic elements such as NAND gates and D flip-flops

that can be connected to form arbitrary circuits.
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A category of gate arrays called field-programmable gate arrays (FPGAs) enables end users to
implement their own designs into gate array chips using just a computer, a small development

board, and an appropriate software package.

A developer can define a complex digital circuit using a hardware description language and pro-
gram itinto a chip directly, resulting in a fully functional, high-performance custom digital device.
Modern low-cost FPGAs contain enough gates to implement complex modern processor designs.
As one example, an FPGA-programmable design of the RISC-V processor (discussed in detail
in Chapter 11, The RISC-V Architecture and Instruction Set) is available in the form of open source

hardware description language code.

VHDL

VHDL is one of the leading hardware description languages in use today. Development of the
VHDL language began in 1983 under the guidance of the U.S. Department of Defense. The syn-
tax and some of the semantics of VHDL are based on the Ada programming language. The Ada
language is, incidentally, named in honor of Ada Lovelace, the programmer of Charles Babbage’s
Analytical Engine, discussed in Chapter 1, Introducing Computer Architecture. Verilog is another
popular hardware design language with capabilities similar to VHDL. This book will use VHDL

exclusively, but the examples can be implemented just as easily in Verilog.

VHDL is a multilevel acronym where the V stands for VHSIC, which means very high-speed
integrated circuit, and VHDL stands for VHSIC hardware description language. The following

code presents a VHDL implementation of the full adder circuit shown in Figure 2.15:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity FULL_ADDER is

port (
A : in std_logic;
B : in std _logic;

C_IN : in std_logic;
S : out std_logic;
C_OUT : out std logic
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end entity FULL_ADDER;

architecture BEHAVIORAL of FULL_ADDER is

begin

s <= (A XOR B) XOR C_INj;
C_OUT <= (A AND B) OR ((A XOR B) AND C_IN);

end architecture BEHAVIORAL;

This code is a straightforward textual description of the full adder in Figure 2.15. Here, the section

introduced with entity FULL_ADDER is defines the inputs and outputs of the full adder compo-

nent. The architecture section toward the end of the code describes how the circuitlogic operates

to produce the outputs S and C_OUT given the inputs A, B, and C_IN. The term std_logic refers

to a single-bit binary data type. The <= characters represent signal assignment, which indicates

a wire-like connection that drives the output on the left-hand side with the value computed on

the right-hand side.

The following code references the FULL_ADDER VHDL as a component in the implementation of

the 4-bit adder design presented in Figure 2.16:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity ADDER4 is

port (
A4 : in
B4 : in
SUM4 : out
C_0uT4 : out

std_logic_vector(3 downto 0);
std _logic_vector(3 downto 0);
std_logic_vector(3 downto 9);
std_logic
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)
end entity ADDER4;

-- Define the behavior of the 4-bit adder

architecture BEHAVIORAL of ADDER4 is

-- Reference the previous definition of the full adder

component FULL_ADDER is

port (
A : in std_logic;
B : in std_logic;
C_IN : in std_logic;
S : out std_logic;
c_out : out std_logic
)s

end component;

-- Define the signals used internally in the 4-bit adder

signal c@, c1, c2 : std_logic;

begin

-- The carry 1input to the first adder is set to ©
FULL_ADDER®@ : FULL_ADDER

port map (
A => A4(0),
B => B4(0),
C_IN => 'e',
S => SUM4(0),
c_ouT => 0

)s

FULL_ADDER1 : FULL_ADDER
port map (
A => A4(1),
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B => B4(1),
C_IN => c0,
S => SUM4(1),
c_out => c1

)s

FULL_ADDER2 : FULL_ADDER

port map (
A => A(2),
B => B4(2),
C_IN => ci,
S => SUM4(2),
c_out => 2

)

FULL_ADDER3 : FULL_ADDER

port map (
A => A4(3),
B => B4(3),
C_IN => c2,
S => SUM4(3),
C_ouT => C_OUT4
)s

end architecture BEHAVIORAL;

This code is a textual description of the 4-bit adder in Figure 2.16. Here, the section introduced
with entity ADDER4 is defines theinputs and outputs of the 4-bit adder component. The phrase
std_logic_vector(3 downto 0) represents a 4-bit vector data type with bit number 3 in the

most significant position and bit number O in the least significant position.

The FULL_ADDER component is defined in a separate file, referenced here by the section beginning
component FULL_ADDER is. The statement signal c@, cl1l, c2 : std_logic; defines the in-
ternal carry values between the full adders. The four port map sections define the connections
between the 4-bit adder signals and the inputs and outputs of each of the single-bit full adders.
To reference a bit in a bit vector, the bit number follows the parameter name in parentheses. For

example, A4(0) refers to the least significant of the 4 bits in A4.
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Note the use of hierarchy in this design. A simple component, the single-bit full adder, was first
defined in a discrete, self-contained block of code. This block was then used to construct a more
complex circuit, the 4-bit adder. This hierarchical approach can be extended through many levels
to define an extremely complex digital device constructed from less complex components, each of
which, in turn, is constructed from even simpler parts. This general approach is used routinely in
the development of modern processors containing billions of transistors, while managing com-

plexity to keep the design understandable by humans at each level of the architectural hierarchy.

The code presented in this section provides all the circuit definitions that a logic synthesis software
tool suite requires to implement the 4-bit adder as a component in an FPGA device. Of course,
additional circuitry is required to present meaningful inputs to the adder circuit and then to

process the results of an addition operation after allowing for propagation delay.

This section provided a very brief introduction to VHDL. The intent is to make you aware that
hardware description languages such as VHDL are the current state of the artin complex digital
circuit design. In addition, you should know that some very low-cost options are available for
FPGA development tools and devices. The exercises at the end of this chapter will introduce you
to some highly capable FPGA development tools that are free. You are encouraged to search the
internet and learn more about VHDL and other hardware description languages and try your

hand at developing some simple (and not-so-simple) circuit designs.

Summary

This chapter began with an introduction to the properties of electrical circuits and showed how
components such as voltage sources, resistors, and wires are represented in circuit diagrams. The
transistor was introduced, with a focus on its use as a switching element in digital circuits. The
NOT gate and the AND gate were constructed from transistors and resistors. Additional types of
logic gates were defined and truth tables were presented for each device. Logic gates were used
to construct more complex digital circuits, including latches, flip-flops, registers, and adders.
The concept of sequential logic was introduced, and its applicability to processor design was
discussed. Finally, hardware description languages were introduced and a 4-bit adder example

was presented in VHDL.

You should now understand basic digital circuit concepts and the design tools used in the de-
velopment of modern processors. The next chapter will expand upon these building blocks to
explore the functional components of modern processors, leading to a discussion of how those
components coordinate to implement the primary processor operational cycle of instruction

loading, decoding, and execution.
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Exercises

1. Rearrange the circuit in Figure 2.5 to convert the AND gate to a NAND gate. Hint: there is
no need to add or remove components.

2. Createacircuitimplementation of an OR gate by modifying the circuit in Figure 2.5. Wires,
transistors, and resistors can be added as needed.

3. Search the internet for free VHDL development software suites that include a simulator.
Get one of these suites, set it up, and build any simple demo projects that come with the
suite to ensure it is working properly.

4. Using your VHDL tool set, implement the 4-bit adder using the code listings presented
in this chapter.

5. Addtestdriver code (search the internet for VHDL testbench to find examples) to your 4-bit
adder to drive it through a limited set of input sets and verify that the outputs are correct.

6. Expand the testdriver code and verify that the 4-bit adder produces correct results for all

possible combinations of inputs.

Join our community Discord space

Join the book’s Discord workspace for a monthly Ask me Anything session with the author:
https://discord.gg/7h8aNRhRuY




Processor Elements

This chapter begins our development of a comprehensive understanding of modern processor
architectures. Building upon the basic digital circuits introduced in Chapter 2, Digital Logic, we
discuss the functional units of a simple, generic computer processor. Concepts related to the
instruction set and register set are introduced, followed by a discussion of the steps involved in
instruction loading, decoding, execution, and sequencing. Addressing modes and instruction
categories are discussed in the context of the 6502 processor architecture. We choose to focus on
this venerable processor for its structural cleanliness and simplicity, which allows us to consider
basic concepts without distractions. The requirement for processor interrupt handling is intro-
duced, using the example of 6502 interrupt processing. The standard approaches that modern
processors employ for input/output (I/O) operations are introduced, including direct memory
access (DMA).

After completing this chapter, you will understand the basic components of a processor and the
structure of processor instruction sets. You will have learned the categories of processor instruc-

tions, why interrupt processing is necessary, and will have an understanding of I/O operations.
The following topics will be covered in this chapter:

e Asimple processor

e Theinstruction set

e  Addressing modes

e Instruction categories
e Interrupt processing

e Input/output operations
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Technical requirements

Files for this chapter, including answers to the exercises, are available at https://github.com/

PacktPublishing/Modern-Computer-Architecture-and-Organization-Second-Edition.

A simple processor

The 6502 processor architecture and a small subset of its instructions were introduced in Chapter
1, Introducing Computer Architecture. In this section, we will build upon that foundation to present
some of the functional components universally employed in processor architectures, from the

tiniest embedded controllers to the most powerful server CPUs.

The integrated circuit at the core of a computer system goes by a few different names: the Cen-
tral Processing Unit (CPU), microprocessor, or, simply, processor. A microprocessor is a single
integrated circuit that implements all the functions of a processor. This book will refer to all

categories of CPUs and microprocessors as processors.
A processor like the 6502 contains three logically distinct functional units:

e  The control unit manages the overall operation of the device. This includes fetching the
next instruction from memory, decoding the instruction to determine the operation to
perform, and distributing the execution of the instruction to appropriate elements within

the processor.

e TheArithmetic Logic Unit (ALU) is a combinational circuit that performs arithmetic and

bit manipulation operations.

e The register set provides source and destination locations for instruction inputs and

outputs. Registers are also used as temporary storage locations.

The following diagram shows the flow of control and data among the control unit, the registers,

the ALU, system memory, and input/output devices:

Registers
A
A 4 .| Memory and
Control Unit | Input / Output
A Devices
v
ALU

Figure 3.1: Interactions between processor functional units


https://github.com/PacktPublishing/Modern-Computer-Architecture-and-Organization-Second-Edition
https://github.com/PacktPublishing/Modern-Computer-Architecture-and-Organization-Second-Edition

Chapter 3 55

The control unit directs overall processor operations to carry out each instruction. The registers,

ALU, memory, and 1/O devices respond to commands initiated by the control unit.

Control unit

The control unit of a modern processor is a synchronous sequential digital circuit. It interprets
processor instructions and manages the execution of those instructions by interacting with the
other functional units within the processor and with external components, including memory

and input/output devices. The control unit is a key part of the 6502’s von Neumann architecture.

In this chapter, the term memory refers to Random Access Memory (RAM) external to the pro-
cessor’s execution units. Cache memory, which often resides within a microprocessor integrated

circuit, will be covered in later chapters.

Some examples of I/O devices are the computer keyboard, the mouse, disk storage, and graphical
video displays. Other common I/O devices include network interfaces, Wi-Fi and Bluetooth®

wireless interfaces, sound output to speakers, and microphone input.

When a computer system is powered on, the processor undergoes a reset process to initialize its
internal components. Following a reset, the processor loads the Program Counter (PC) with the
memory location of the first instruction to be executed. Software developers who construct the
lowest-level system software components must configure their development tools to produce a

code memory image that begins execution at the address required by the processor architecture.

The PC is a central component of the control unit. The PC always contains the memory address
of the next instruction to be executed. At the beginning of each instruction execution cycle, the
control unit reads the data word at the memory address indicated by the PC and places it in an
internal register for decoding and execution. The first word of an instruction contains an opcode.
Based on the opcode bit pattern, the control unit may read additional memory locations following

the opcode to retrieve data needed by the instruction, such as a memory address or data operand.
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As the control unit begins executing instructions, it performs the repetitive cycle shown in Figure
3.2

Reset:
Initialize

Decode
instruction

Branch

Increment
PC

Execute

Instruction instruction

Figure 3.2: Instruction execution cycle

Following a reset, the PC contains the initial instruction location. The control unit fetches the
first instruction from memory and decodes it. During decoding, the control unit determines the

actions required by the instruction.

As part of the decoding process, the control unit identifies the category of instruction. The two
basicinstruction categories represented in Figure 3.2 are branching instructions and all other in-
structions. Branching instructions are implemented directly by the control unit. These instructions
cause the contents of the PC to be replaced with the memory address of the branch destination.
Examples of instructions that perform branching are conditional branch instructions (when the
branch is taken), subroutine calls, subroutine returns, and unconditional branching (also called

jump) instructions.

Instructions that do not involve branching are carried out by processor circuitry under the di-

rection of the control unit.
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In a sense, the control unit manages the execution of the non-branching instructions in a manner
similar to the Analytical Engine’s mill (see Chapter 1, Introducing Computer Architecture), except,
instead of using the presence of studs on a rotating barrel to engage portions of the mill machinery,
the control unit uses the decoded bits of the instruction opcode to activate particular sections of

digital circuitry. The selected circuit components perform the tasks required by the instruction.

The process of instruction execution may include actions such as reading or writing a register,
reading or writing a memory location, directing the ALU to perform a mathematical operation,

or other miscellaneous activities.

In most processors, the execution of a single instruction extends over multiple processor clock
cycles. The instruction cycle count can vary significantly from simple instructions that require
a small number of clock cycles to complex operations that take many cycles to complete. The

control unit orchestrates all this activity.

The circuits managed by the control unit are constructed from the simple logic gates discussed in
Chapter 2, Digital Logic, and are often composed of higher-level constructs such as multiplexers,
latches, and flip-flops. Multiplexers, in particular, are commonly used by control unit logic to

selectively route data to a particular destination.

Executing an instruction — a simple example

Consider a simplified example of two 6502 instructions, TXA and TYA. TXA copies the contents of
register X to register A, and TYA does the same thing using the Y register as the source. If we con-
sider these two instructions in isolation, the execution of both instructions can be implemented

as shown in Figure 3.3:

X register —
v
. S, .
Select »  Multiplexer [ A register
'y 7'y
p 8
Y register i
CLK

Figure 3.3: 6502 TXA and TYA instructions
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The circuit in Figure 3.3 assumes the X and Y registers are D flip-flop registers (as in Figure 2.14),
except in the 6502 they are 8-bit registers rather than 4 bits. The multiplexer is implemented
as eight copies of the two-input, single-bit multiplexer of Figure 2.9, all controlled by a single
shared selector input. In Figure 3.3, thicker lines represent 8-bit data buses and thinner lines are
individual logic signals. The short lines crossing the thick lines with the numeral 8 above them

indicate the number of bits in the bus.
To execute the TXA instruction, the following steps are performed:

1. The control unit first sets the Select input to direct the X register data bits through to the
output of the multiplexer. This presents the data from X at the inputs to the A register.

2. After the Select input to the multiplexer has been set, the control unit must pause to
permit the propagation of the data bits to the multiplexer outputs.
3. After the multiplexer outputs have stabilized, the control unit generates a rising edge on

the CLK signal to load the X register data bits into register A.

To execute the TYA instruction, the control unit performs the same sequence of steps, except it

must first set the Select input to feed the Y register to the multiplexer output.

This is a very simple example of a control unit instruction operation, but it demonstrates that an
individual instruction may consist of multiple steps and may involve just a small portion of the
logic circuits present in the processor. Unused components within the processor must be managed
by the control unit to ensure that they remain idle when not needed to execute an instruction.
This prevents those components from interfering with the executing instruction and keeps power

consumption to a minimum.

Arithmetic logic unit

The ALU performs arithmetic and bit-oriented operations under the direction of the control
unit. To perform an operation, the ALU requires data input values, called operands, along with
a code indicating the operation to be performed. The ALU output is the result of the operation.
ALU operations may use one or more processor flags, such as the carry flag, as input, and set the
states of processor flags as outputs. In the 6502, ALU operations update the carry, negative, zero,

and overflow flags.

An ALU is a combinational circuit, which implies its outputs update asynchronously in response

to changes at the inputs and it retains no memory of previous operations.
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To execute an instruction involving the ALU, the control unit applies inputs to the ALU, pauses
to allow for the propagation delay across the ALU, and then transfers the ALU output to the des-

tination specified by the instruction.

The ALU contains an adder circuit to perform addition and subtraction operations. In a processor
with two’s complement arithmetic, subtraction can be implemented by first performing a two’s
complement negation of the right operand and adding the result to the left operand. Mathemati-

cally, when performing subtraction in this manner, the expression A-Bis transformed into A+(-B).

Asyou’ll recall from Chapter 1, Introducing Computer Architecture, the two’s complement negation
of a signed number is achieved by inverting all the bits in the operand and adding 1 to the result.

Incorporating this operation, subtraction represented as A+(-B) becomes A+(NOT(B)+1).

Looking at subtraction in this form should clarify the use of the 6502 carry flag in conjunction
with the SBC instruction. The C flag provides the “+1” in subtraction when there is no borrow. If

there is a borrow, the sum must be reduced by 1, which is accomplished by setting the C flag to 0.

To summarize, in the 6502, subtraction logic is identical to addition logic with the single differ-
ence that the B operand in A-B is routed through a set of NOT gates to invert all eight of the bits
prior to feeding NOT(B) to the adder input.

Figure 3.4 is a functional representation of the addition and subtraction operations in the 6502:

8/ 8, Left Operand

Right Operand - L re
v

Select—»  Multiplexer 8-bit Adder = A register

A 4] A

81

CLK
Figure 3.4: 6502 addition and subtraction operations

Similar to Figure 3.3, Figure 3.4 is a highly simplified representation of the 6502 processor depict-
ing only the components involved in the ADC and SBC instructions. The Select input in Figure 3.4
chooses whether the operation is addition or subtraction. Addition requires selecting the upper
multiplexer input, while the lower multiplexer input selects subtraction. In the 6502 architecture,

the A register is always the left operand for subtraction.
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The inputs to the adder are the left and right operands and the C flag. When executing an ADC or
SBC instruction, the control unit presents the right operand to the multiplexer data inputs and
sets the multiplexer select input to the appropriate state for the given instruction. After pausing
for propagation through the NOT gate, the multiplexer, and the adder, the control unit generates
a clock edge that latches the adder outputs into the A register and the processor flags register.

The processor flags are set as shown in the following execution of an ADC or SBC instruction:

e Cindicates whether an addition generated in a carry (C = 1) or whether a subtraction

produced a borrow (C = 0).
e N contains the value of bit 7 of the result.
e  Vindicates whether a signed overflow occurred (V = 1if overflow occurred).

e Zisliftheresultis zero. Z is O otherwise.

An ALU supports a variety of operations in addition to adding and subtracting two numbers. In
the 6502, most operations with two operands use the A register as the left operand. The right
operand is either read from a memory location or provided as an immediate value in the next
memory location after the opcode. All 6502 ALU operands and results are 8-bit values. The 6502

ALU operations are as follows:

e ADC, SBC: Add or subtract two operands with carry input.

e  DEC,DEX, DEY: Decrement a memory location or register by one.

e INC, INX, INY: Increment a memory location or register by one.

e AND: Perform a bitwise logical AND operation on two operands.

e  ORA: Perform a bitwise logical OR operation on two operands.

e  EOR: Perform a bitwise logical XOR operation on two operands.

e ASL,LSR: Shift the Aregister or memory location left or right by one bit position and insert
0 into the vacated bit position.

e  ROL, ROR: Rotate the A register or memory location left or right by one bit position and
insert the C flag value into the vacated bit position.

e  CMP, CPX, CPY: Subtract two operands and discard the result, setting the N, Z, and C flags
based on the result of the subtraction.

e  BIT:Perform a bitwise logical AND between two operands and use the Z flag to indicate

whether the resultis 0. In addition, copy bits 7 and 6 of the left operand to the N and V flags.

The 6502 has limited ALU capabilities when compared to more complex modern processors such

as the x86 family.
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For example, in the 6502, the programmer must implement multiplication and division in code
as repetitive addition and subtraction operations. Also, the 6502 can shift or rotate a value by

just one bit position per instruction.

The x86, on the other hand, directly implements multiplication and division instructions, and
the x86 shift and rotate instructions include a parameter indicating the number of bit positions

to shiftin a single instruction.

An ALU is a necessarily complex logic device, making it an ideal candidate for design with a
hardware design language. The following listing is a VHDL implementation of a portion of a
6502-like ALU:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

entity ALU is

port (
LEFT : in std_logic_vector(7 downto 0);
RIGHT : in std_logic_vector(7 downto 9);
OPCODE : in std logic vector(3 downto 9);
C_IN : in std_logic;
RESULT : out std_logic_vector(7 downto 0);
c_out : out std_logic;
N_OuT : out std_logic;

V_OouT : out std_logic;
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Z_0ouT : out std_logic
)s
end entity ALU;
-- Define the behavior of the 8-bit ALU
architecture BEHAVIORAL of ALU is
begin
P_ALU : process (LEFT, RIGHT, OPCODE, C_IN) is
variable result8 : unsigned(7 downto 9);
variable result9 : unsigned(8 downto 0);
variable right_op : unsigned(7 downto 0);
begin
case OPCODE is

when "0000" | "0001" => -- Addition or subtraction

if (OPCODE = "@000") then

right_op := unsigned(RIGHT); -- Addition
else

right_op := unsigned(not RIGHT); -- Subtraction
end if;
result9 := ('0" & unsigned(LEFT)) +

unsigned(right_op) +
unsigned(std_logic_vector'(""& C_IN));
result8 := result9(7 downto 0);

C_OUT <= result9o(8); -- C flag

-- V flag
if (((LEFT(7) XOR result8(7)) = '1') AND
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((right_op(7) XOR result8(7)) = '1')) then
V_OUT <= '1';

else
V_OUT <= '9"';

end if;

when "0010" => -- Increment
result8 := unsigned(LEFT) + 1;

when "0011" => -- Decrement
result8 := unsigned(LEFT) - 1;

when "0101" => -- Bitwise AND
result8 := unsigned(LEFT and RIGHT);

when "0110" => -- Bitwise OR
result8 := unsigned(LEFT or RIGHT);

when "0111" => -- Bitwise XOR

result8 := unsigned(LEFT xor RIGHT);
when others =>
result8 := (others => 'X");

end case;

RESULT <= std_logic_vector(result8);

N_OUT <= result8(7); -- N flag
if (result8 = 0) then -- Z flag
Z OUT <= '1';
else
Z OUT <= '0';
end if;

end process P_ALU;

end architecture BEHAVIORAL;

This code defines a simple ALU as a combinational circuit with a left operand, right operand,
opcode, and the C flag as its inputs. The outputs are the result of the operation along with the
C,N,V, and Z flags.
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Next, we'll look at the purpose and functions of processor registers.

Registers

Processor registers are internal storage locations that serve as sources and destinations for in-
struction operations. Registers provide the quickest data access in a processor but are limited to a
very small number of locations due to their high costin terms of die area. The width of a register

in bits is generally the same as the processor word size.

The 6502, as we have seen, has only three 8-bit registers: A, X, and Y. The x86 has six 32-bit reg-
isters suitable for temporary data storage: EAX, EBX, ECX, EDX, ESI, and EDI. In many processor
architectures, specific registers are assigned to provide inputs required by certain instructions. For
example, in the x86 architecture, a single REP MOVSD instruction moves a block of data with the

length (in words) in ECX beginning at the source address in ESI to the destination address in EDI.

When designing a new processor architecture, it is critical to evaluate the trade-off between the
number of registers and the number and complexity of instructions available to the processor. For
a given integrated circuit die size and fabrication process (which together constrain the number
of transistors available for the processor), adding more registers to the architecture reduces the
number of transistors available for executing instructions and for performing other functions.
In contrast, adding instructions with complex capabilities may limit the die space available for
registers. This tension between instruction set complexity and the number of registers is expressed

in the categorization of an architecture as CISC or RISC:

e  CISC (Complex Instruction Set Computer) processors are characterized as having arich
instruction set providing a variety of features, such as the ability to load operands from
memory, perform an operation, and store the result to memory, all in one instruction. In a
CISC processor, an instruction may take many clock cycles to execute as the processor per-
forms all required subtasks. The REP MOVSD instruction mentioned previously is an example
of a single instruction with a potentially lengthy execution time. CISC processors tend to
have a smaller number of registers due, in part, to the die space required for the circuitry

occupied by the instruction set logic. The x86 is a classic example of CISC architecture.

e  RISC (Reduced Instruction Set Computer) processors, on the other hand, have a smaller
number of instructions that each perform simpler tasks in comparison to CISC instruc-
tions. Performing an operation on data values stored in memory might require a pair of
load instructions to load two operands from memory into registers, another instruction

to perform the operation, and a final instruction to store the result back to memory.
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The key distinction between CISC and RISC is that RISC architectures are optimized to execute
individual instructions at very high speed. Even though reading memory, performing the oper-
ation, and writing the result back to memory require several more instructions in an RISC pro-
cessor than in a CISC processor, the overall start-to-finish time may be comparable or even faster
for the RISC processor. Some examples of RISC architectures are ARM, discussed in Chapter 10,
Modern Processor Architectures and Instruction Sets, and RISC-V, discussed in Chapter 11, The RISC-V

Architecture and Instruction Set.

The reduction in instruction set complexity in RISC processors leaves more die space for registers,
which means there is generally a larger number of registers in RISC processors in comparison to
CISC processors. The ARM architecture, for example, has 13 general-purpose registers, while the

RISC-V base 32-bit architecture has 31 general-purpose registers.

The larger number of registers in RISC architectures reduces the need to access system memory
because more registers are available for storing intermediate results. This improves performance
because accessing system memory is significantly more time-consuming than accessing data

located in processor registers.

Think of a processor register as a set of D flip-flops in which each flip-flop contains one bit of the
register’s data. Each of a register’s flip-flops is loaded with data by a common clock signal. Input
to a register may arrive at the flip-flops after passing through a multiplexer that selects one of

potentially many data sources under the control of the executing instruction.

As an alternative to using a multiplexer for this purpose, an instruction may load a register from
a data bus internal to the processor. In this configuration, the control unit manages the internal
bus to ensure that only the desired data source is driving the data bus lines during the clock edge
that loads the register, while all other data sources on the bus are inhibited from placing data

on the bus.

The following sections will introduce the full range of instructions in a processor instruction set

and the addressing modes used by them.

The instruction set

Similar instructions to those discussed earlier are implemented within most general-purpose
processor architectures, though more sophisticated processors augment their capabilities with
additional categories of instructions. The more advanced instructions available in modern pro-

cessor architectures will be introduced in later chapters.
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CISC processors generally support multiple addressing modes. Addressing modes are designed
to enable efficient access to sequential memory locations for use by software algorithms running
on the processor. The next section describes the instruction addressing modes implemented
by the 6502 processor. The section following that will introduce the categories of instructions
implemented by the 6502, most of which are represented in modern processor architectures.
Specialized instructions for processing interrupts and for input/output operations will then be
covered, including an explanation of processor features that enable high-performance input and

output operations on sizable blocks of data.

Addressing modes

CISC processors support multiple addressing modes for instructions that require transferring
data between memory and registers. RISC processors have a more limited number of address-
ing modes. Each processor architecture defines its collection of addressing modes based on an

analysis of the anticipated memory access patterns that software will use on that architecture.

To introduce the 6502 addressing modes, this section employs a simple example of 6502 code
that adds together four data bytes. To avoid extraneous details, the example will ignore any carry

from the 8-bit sum.

Immediate addressing mode

Inimmediate addressing, the operand value immediately follows the opcode in memory. For the
first example, assume we are given the values of the four bytes to sum and asked to write a 6502
program to perform that task. This allows us to enter the byte values directly into our code. The
bytes in this example are $01 through $04. We’ll be adding the bytes together in reverse order
(04 down to $01) in anticipation of the use of a looping construct later in this section. This code

uses the immediate addressing mode to add the four bytes together:

LDA #$04
CLC

ADC #$03
ADC #$02
ADC #$01

Notice that assembly language comments begin with a semicolon character. When these instruc-
tions finish execution, the A register will hold the value $0A, the sum of the four bytes listed as

operands.
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Recall from Chapter 1, Introducing Computer Architecture, that in 6502 assembly language, an im-
mediate value is preceded by a # character and the $ character indicates the value is hexadecimal.
An immediately addressed operand is read from the memory address following the instruction
opcode. Immediate addressing is handy because there is no need to reserve the memory location
from which to read the operand. However, immediate addressing mode is only useful when the

data value is known at the time the program is written.

Absolute addressing mode

Absolute addressing mode, sometimes called direct addressing mode, specifies the memory
location containing the value to be read or written by the instruction. The 6502 has 16 address
bits, so an address field that supports accessing all available memory is two bytes long. A com-
plete instruction to access data at an arbitrary 6502 memory location consists of three bytes:
the first byte is the opcode, followed by two bytes for the address to be read or written. The two
address bytes must be stored with the lower-order byte first, followed by the higher-order byte.
The high-order byte of a 16-bit value contains the most significant 8 bits, and the low-order byte

contains the least significant 8 bits.

The convention of storing the lower-order byte of a two-byte address at the lower memory address
makes the 6502 a little-endian processor. The x86 is also little-endian. The ARM and RISC-V ar-
chitectures allow the selection of big- or little-endian mode under software control (this is called
bi-endianness), but most operating systems running on these architectures select little-endian

mode.

For the absolute addressing mode example, we begin with some setup code to store the four
bytes to be added together into addresses $200 through $203. The instructions to add the four

bytes follow the setup code. This example uses absolute addressing mode to sum the four bytes:

LDA #$04
STA $0203
LDA #$03
STA $0202
LDA #%$02
STA $0201
LDA #%$01
STA $0200

LDA $0203
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CLC

ADC $0202
ADC $0201
ADC $0200

Unlike immediate addressing mode, absolute addressing permits summing four values that are
not known until the time of program execution: the ADC instructions will add together whatever
values have been stored in locations $200-$203. A limitation of this addressing mode is that the
addresses of the bytes to be added must be specified when the program is written. This code

cannot sum bytes located at an arbitrary location in memory.

Our simple example has the downside of unnecessarily stringing together a sequence of nearly
identical instructions. To avoid this, it is usually desirable to place a repetitive sequence of code
into aloop construct. The next two examples use a 6502 addressing mode that facilitates looping

operations, although we won’t implement a loop until the second example.

Absolute indexed addressing mode

Absolute indexed addressing mode computes a memory address by adding a base address pro-
vided in the instruction to a value contained in the X or Y register. The following example adds
the bytes at addresses $0200 through $0203 using absolute indexed addressing. The X register
provides an offset from the base of the byte array at address $0200:

LDA #%$04
STA $0203
LDA #$03
STA $0202
LDA #$02
STA $0201
LDA #$01
STA $0200

LDX #$03

cLC

LDA $0200, X
DEX

ADC $0200, X
DEX



Chapter 3 69

ADC $0200, X
DEX
ADC $0200, X

The DEX instruction decrements (subtracts 1from) the X register. Although this code makes things
worse in terms of increasing the number of instructions it takes to add the four bytes together, we

see that the instruction sequence DEX followed by ADC $8200, X now repeats three times.

We can use conditional branching to perform the same addition sequence in a loop:

LDA #$04
STA $0203
LDA #%$03
STA $0202
LDA #$02
STA $0201
LDA #$01
STA $0200

LDX #$03

LDA $0200, X
DEX

cLC
ADD_LOOP:
ADC $0200, X
DEX

BPL ADD_LOOP

The BPL instructions means “branch on plus,” which conditionally transfers control to the instruc-
tion preceded by the ADD_LOOP label. BPL executes the branch only when the processor N flag is

clear. If the N flag is set, BPL continues with the next instruction in memory.

The code in this example might not seem to have been worth the effort involved in constructing a
loop just to add up four bytes. However, note that this version can be modified to add together 100
sequential bytes by simply changing the operand of the LDX instruction. Extending the previous
example to add 100 bytes together in the same manner would require quite a bit more work, and

the instructions would consume far more memory.
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This example has the same limitation as the absolute address mode example, both of which set
the start of the byte array at a memory location defined at the time the program was written.
The next addressing mode removes this limitation and sums an array of bytes, starting at any

address in memory.

Indirect indexed addressing mode

Indirectindexed addressing mode uses a two-byte address stored in the memory address range
$00-$FF as the base address and adds the contents of the Y register to that base to produce the
memory address used by the instruction. In the following example, the base address of the byte
array ($0200) is first stored in little-endian order at addresses $0010 and $0011. The code uses
indirect indexed addressing in a loop to add the bytes together:

LDA #$04
STA $0203
LDA #$%$03
STA $0202
LDA #%$02
STA $0201
LDA #$01
STA $0200

LDA #$00
STA $10
LDA #$02
STA $11

LDY #$03

LDA ($10), Y
DEY

cLC
ADD_LOOP:
ADC ($10), Y
DEY

BPL ADD_LOOP
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With indirect indexed addressing, any memory address can be stored at addresses $10-$11 before
the summing code executes. Note thatindirect indexed addressing must use the Y register as the

address offset. The X register is not available for use in this addressing mode.

The 6502 has some other addressing modes available: zero-page addressing mode provides
instructions that are smaller (one byte less in length) and faster to execute for absolute and abso-
lute indexed addressing by working only with memory addresses in the range $00-$FF. The term
zero-page refers to the high byte of the 16-bit address, which is zero for addresses in this range.
Other than exhibiting improved performance in terms of faster execution speed and reduced
code memory usage, the zero-page addressing modes behave the same as the corresponding

addressing modes described earlier.

Another mode is called indexed indirect addressing mode, which is like indirect indexed ad-
dressing except that the X register is used instead of Y, and the offset contained in X is added to
the address provided in the instruction to determine the address of the pointer to the data. For
example, assume that X contains the value 8. The LDA ($10, X) instruction adds the contents
of X to $10, producing the result $18. The instruction then uses the 16-bit memory address read
from addresses $18-$19 as the target memory address for loading the A register.

Indexed indirect addressing is not relevant to our example summing a sequence of bytes. One
example application of this mode is selecting a value from a sequential list of pointers, where
each pointer contains the address of a character string. The X register can reference one of the
strings as an offset from the beginning of the pointer list. An instruction such as LDA ($10, X)

will load the address of the selected string into A.

The addressing modes available in CISC processor architectures and, to a lesser degree, in RISC
architectures are intended to support efficient methods of accessing various types of data struc-

tures in system memory.

The next section discusses the categories of instructions implemented in the 6502 architecture

and how each instruction makes use of the available addressing modes.

Instruction categories

This section presents the categories of instructions available in the 6502 processor. The purpose
of discussing the 6502 here is to introduce the concepts associated with the instruction set of a
processor architecture thatis simpler than the modern 32- and 64-bit processors we will examine
in later chapters. By the time we get to those processors, the underlying instruction set concepts

should be quite familiar.
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Memory load and store instructions

The 6502 uses load and store instructions to read data values from system memory into processor
registers and to write registers out to system memory. In the 6502 architecture, the LDA, LDX, and
LDY instructions load the register identified in the instruction mnemonic with an 8-bit word from
system memory. LDA supports all addressing modes available in the 6502, while LDX and LDY each

support a more limited subset of addressing modes: immediate, absolute, and absolute indexed.

After each of these instructions finishes executing, the N and Z flags indicate whether the value

that was loaded is negative (that s, bit 7 is set) and whether the value is zero.

STA, STX, and STY store the register identified in the instruction to memory. Each store instruction
supports the same addressing modes as the load instruction for that register, except the store
instructions do not support immediate addressing mode. These instructions update the N and

Z flags to reflect the value stored.

Register-to-register data transfer instructions

These instructions copy an 8-bit word from one of the A, X, and Y registers to another register.
These instructions use implied addressing mode, which means the source and destination of

each instruction are indicated directly by the instruction opcode.

TAX copies the A register contents to the X register. TAY, TXA, and TYA perform similar operations
between the register pairs indicated by the instruction mnemonic. These instructions update
the N and Z flags.

Stack instructions

The TXS instruction copies the X register to the stack pointer (S) register. This instruction must
be used toinitialize the S register during system startup. TSX copies the S register to the X register.

TSX updates the N and Z flags. TXS does not affect any flags.

PHA pushes the A register contents onto the stack. PHP pushes the processor flags onto the stack
as an 8-bit word. These instructions do not affect the processor flags. Pushing a value onto the
stack consists of writing the register to the memory address computed by adding $100 to the S

register and then decrementing the S register.

PLA and PLP pop the A register and the flags register from the stack, respectively. Popping a value
first increments the S register and then transfers the value at the location computed by adding

$100 to the S register to the target register location.
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PLAupdates the N and Z flags. PLP sets or clears six of the seven processor flags based on the value
popped from the stack. The B (break) flag is only meaningful in a copy of the processor flags register
that has been pushed onto the stack by an interrupt or by the PHP instruction. This distinguishes
a BRK instruction from a hardware interrupt request. Both the PHP and BRK instructions push the

flags register with the B bit (bit 4) set.

Hardware interrupts generated via the processor IRQ (Interrupt Request) and NMI (Non-Mas-
kable Interrupt) pins push the processor flags register with the B bit cleared. Interrupt processing

and the BRK instruction will be discussed later in this chapter.

Arithmetic instructions

As we’ve seen, addition and subtraction are performed by the ADC and SBC instructions. The left
operand of each instruction is the A register, which is also the destination for the result of the
operation. All addressing modes are available for designating the right operand. The Z, C, N, and
V flags are updated to reflect the result of the operation.

INC and DEC, respectively, increment or decrement the specified memory location by adding 1 to,
or subtracting 1 from, the value at that location. The resultis stored at the same memory location.
Absolute and absolute indexed addressing modes are supported. These instructions update the

N and Z flags based on the result of the operation.

The INX, DEX, INY, and DEY instructions increment or decrement the X or Y register, as indicated

by the mnemonic. These instructions update the N and Z flags.

The CMP instruction performs a comparison by subtracting the operand value from the A register.
The behavior of CMP is very similar to the instruction sequence SEC followed by SBC. The N, Z, and
C flags are set to reflect the result of the subtraction. The differences between CMP and SBC are

as follows:

e CMP discards the result of the subtraction (the value in A is unaffected by the CMP instruc-
tion)
e  CMP does not use decimal mode if the D flag is set
e  CMP does not affect the value of the V flag
e  CMP supports all addressing modes
The CPX and CPY instructions are like CMP, except the X or Y register is used as the left operand

as indicated in the mnemonic, and only absolute and absolute indexed addressing modes are

supported for the right operand.
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Logical instructions

The AND, EOR, and ORA instructions perform bitwise AND, XOR, and OR operations, respectively,
between the A register and the operand. The result is stored in the A register. The Z and N flags

are updated to reflect the result of the operation. All addressing modes are supported.

The ASL instruction shifts the operand one bit left, inserting a zero as the least significant bit. The
most significant bit is shifted into the C flag. This is equivalent to multiplying the A register by
two and placing the most significant bit of the 9-bit resultin C.

Similar to ASL, LSR shifts the operand one bit right, inserting a zero as the most significant bit.
The least significant bit s shifted into the C flag. This is equivalent to the division of an unsigned

operand by two, with the remainder placed in C.

The ROL and ROR instructions shift the A register one bit to the left or right, respectively. The
previous value of the C flag is shifted into the bit location vacated by the shift operation. The bit
shifted out of A is stored in the C flag.

ASL, LSR, ROL, and ROR support accumulator addressing mode, which uses the A register as the
operand. This mode is specified by using the special operand value “A,” as in ASL A. These four

instructions also support absolute and absolute indexed addressing modes.

The BIT instruction performs a bitwise AND between the operand and the A register, and the
result is discarded. The Z flag is updated based on the result of this operation. Bits 7 and 6 from
the memory location are copied to the N and V flags, respectively. Only absolute addressing mode

is supported.

Branching instructions
The JMP instruction loads the operand into the PC and continues execution with the instruction

at that location. The destination, a two-byte absolute address, can be anywhere in the 6502’s

address space:

e The BCC and BCS instructions perform conditional branching if the C flag is clear or set,
respectively

e The BNE and BEQ instructions perform conditional branching if the Z flag is clear or set,
respectively

e The BPL and BMI instructions perform conditional branching if the N flag is clear or set,

respectively
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e The BVC and BVS instructions perform conditional branching if the V flag is clear or set,

respectively

The conditional branch instructions use relative addressing mode, where the target addressis a
signed 8-bit offset (in the range -128 to +127 bytes) from the address of the instruction following

the branch instruction.

Subroutine call and return instructions

The ISR instruction pushes the address of the instruction following the JSR instruction (minus
one) onto the stack, loads the address provided as the 16-bit operand into the PC, and then con-

tinues execution from the instruction at that location.

RTS is used to end a subroutine. The return PC value (minus one) is pulled from the stack and
loaded into the PC. The RTS instruction increments the PC before it is used as the address of the

next instruction to execute.

Processor flag instructions

The processor flag instructions operate directly on the flags, setting or clearing a single flag.

e The SEC and CLC instructions set and clear the C flag, respectively.
e The SED and CLD instructions set and clear the D flag, respectively.

e TheCLVinstruction clears the V flag. No instruction simply sets the V flag.

Interrupt-related instructions

Interrupt-related instructions allow the processor to manage the handling of externally gener-
ated interrupts and to generate software-triggered interrupts. External interrupts can be of two
types: maskable and non-maskable. Each interrupt type is triggered by its own input pin on the
6502 processor.

Maskable interrupts can be disabled by setting the processor I flag. When masked, the processor
ignores the associated input pin. Non-maskable interrupts, as the name implies, cannot be inhib-
ited and will always initiate a processor interrupt when the appropriate signal transition occurs

on the associated pin. We’ll cover interrupt processing in more detail in an upcoming section.

The SEI and CLI instructions set and clear the I flag, respectively. When the I flagis set, maskable

interrupts are disabled, or masked.
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The BRK instruction triggers a non-maskable interrupt. The memory address two bytes after
the BRK instruction is pushed onto the stack, followed by the processor flags register. The PC s
loaded with the interrupt handler address, which is read from memory addresses $FFFE-$FFFF.

The interrupt handler then begins to execute.

The BRK instruction does not alter any register contents (other than the stack pointer) or processor
flags. The flags register pushed onto the stack has the B bit set to indicate that the interrupt is

the result of a BRK instruction.

RTI returns from an interrupt handler. This instruction restores the processor flags from the stack
and restores the PC. After the processor flags have been restored, the B flag is not meaningful and

should be ignored.

Interrupt processing and the use of the BRK instruction will be discussed further in the Interrupt

processing section of this chapter.

No operation instruction

The NOP instruction (often referred to as no-op) does nothing except advance the PC to the fol-

lowing instruction.

NOP instructions are sometimes used as a debugging tool during program development. For exam-
ple, one or more instructions can be effectively “commented out” by filling the memory addresses

for those instructions with $EA bytes. $EA is the hexadecimal value of the 6502 NOP opcode.

Interrupt processing

Processors generally support some form of interrupt handling for responding to service requests
from external devices. Conceptually, interrupt handling resembles a scenario in which you are
busy working on a task and your phone rings. After answering the call and perhaps jotting a note
for later action (“buy bread,” for example), you resume the interrupted task. We humans employ
several similar mechanisms, such as doorbells and alarm clocks, which enable us to interrupt

lower priority activities and respond to more immediate needs.

IRQ processing

The 6502 integrated circuit has two input signals that allow external components to notify the
processor of a need for attention. The firstis the interrupt request input, IRQ. TRQ is an active low
(meaning the signal is at its low, or 0, level; that’s what the bar over the IRQ characters means)
input that generates a processor interrupt when pulled low. Think of this signal as a telephone

ringer notifying the processor of an incoming call.
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The 6502 cannot respond instantly to a low signal level on the IRQ input. Before the 6502 can
begin to process the interrupt, it must first complete the instruction already in progress. Next, it
pushes the return address (the address of the next instruction that would have been executed
after the instruction in progress) onto the stack, followed by the processor flags register. Since this

interrupt was generated by the IRQ input, the B flag in the processor flags on the stack will be 0.

Unlike the ISR instruction, the return address pushed in response to the IRQ input is the actual
address of the next instruction to be executed, rather than the instruction address minus 1. The
interrupt return address will not be incremented to generate the return address as occurs during

RTS instruction execution.

In the next stage of interrupt processing, the processor loads the address of the IRQ handler
routine from memory addresses $FFFE-$FFFF into the PC. The 6502 then begins executing the
interrupt handler code at that address. The interrupt handler is the code that identifies the pe-
ripheral that initiated the interrupt and performs the processing required to satisfy the request,

and then returns control to the code that was executing prior to the interrupt.

When the interrupt handler is finished, it executes the RTI instruction. RTI pops the processor
flags and the PC from the stack and resumes execution at the instruction following the instruction

that was in progress when the IRQ input was driven low.

The IRQ inputis a maskable interrupt, meaning itis possible to perform the equivalent of putting
the telephone ringer on mute. When IRQ processing begins, the 6502 automatically sets the I flag,
which masks (disables) the IRQ input until the I flag is cleared.

The I flag will be cleared when the RTI instruction restores the processor flags because the I flag
could not have been set when the processor began responding to the IRQ. The I flag can also be
cleared by the CLI instruction, which means it is possible to enable TRQ interrupts while pro-
cessing an IRQ interrupt. An interrupt handled while processing another interrupt is referred to

as a nested interrupt.

The IRQ inputis level-sensitive, which means any time the IRQ inputis low and the I flagis cleared,
the processor will initiate the interrupt processing sequence. One consequence of this is that,
at the completion of processing an interrupt, the 6502’s interactions with the interrupt source
must ensure that the IRQ input is no longer low. If IRQ remains low when the RTI instruction is

executed, the 6502 will immediately begin the interrupt handling process all over again.

Interrupts initiated via the IRQ input handle most routine interactions between the 6502 and

peripheral devices. For example, the keyboard is an interrupt source in most computers.



78 Processor Elements

Each keypress generates an IRQ interrupt. During keyboard interrupt processing, the 6502 reads
the identification of the key from the keyboard interface and stores it into a queue for later pro-
cessing by the currently active application. The IRQ handler code does not need to know anything

about what the key press information will be used for; it just saves the data for later use.

NMI processing

The second interrupt input to the 6502 is the non-maskable interrupt, NMI. As its name implies,
the NMI input is not masked by the I flag. NMI is an edge-sensitive input that triggers on the
falling edge of the signal.

The processing of NMI interrupts is similar to the processing of IRQ interrupts, except the address
of the interrupt handler routine isloaded from memory addresses $FFFA-$FFFB and the Iflag has

no effect on this type of interrupt.

Because NMI is non-maskable, it can be triggered at any time, including when the 6502 is in the

middle of handling an TRQ interrupt, or even while handling an earlier NMI interrupt.

The NMI input is normally reserved for very high-priority conditions that cannot be delayed or
missed. One possible use of NMI interrupts is to trigger the incrementing of a real-time clock at

regular intervals.

This example of NMI handler code increments a 32-bit clock counter located at addresses $10-$13

each time the interrupt occurs:

NMI_HANDLER:
INC $10

BNE NMI_DONE
INC $11

BNE NMI_DONE
INC $12

BNE NMI_DONE
INC $13
NMI_DONE:
RTI

When referring to hardware signals in program source code, a leading forward slash can be used

to indicate an active low signal. NMI is represented as /NMI in the preceding code comment.
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BRK instruction processing

The BRK instruction triggers processing that is very similar to an IRQ interrupt. Because BRK is
an instruction, there is no need to wait for the completion of an instruction in progress before
initiating interrupt processing. During BRK execution, the return address (the address of the BRK
instruction plus 2) and the processor flags are pushed onto the stack, much like the response
to a low level on the IRQ input. Note that by adding 2 to the BRK instruction address, the return
address is not pointed to the byte after BRK, but to the second byte after it.

The BRK instruction is non-maskable: the state of the I flag does not affect the execution of the

BRK instruction.

The BRK handler shares the same address as the IRQ handler, which is located at memory ad-
dresses $FFFE-$FFFF. Since the BRK instruction and TRQ use the same handler, the B flag must
be consulted to identify the interrupt source during processing. The B flag in the processor flags
pushed onto the stack (this is noz the B flag in the processor flags (P) register) is set in response

to a BRK instruction and clear when processing an IRQ interrupt.

The BRK instruction is not presentin most 6502 applications. A traditional use of this instruction
is to set breakpoints when debugging a program. By temporarily replacing the opcode byte at the
desired break location with a BRK instruction, the debugging program (often called a monitor
in smaller computer systems) can gain control, allowing the user to display and modify register

contents and memory locations before resuming execution.

The following example code implements a minimal handler that differentiates between TRQ

interrupts and BRK instructions. It uses memory address $14 as a temporary storage location:

IRQ_BRK_HANDLER:
STA $14

PLA
PHA

AND $10

BNE BRK_INSTR
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JMP IRQ_DONE
BRK_INSTR:

IRQ_DONE:

LDA $14
RTI

This example showed how to differentiate between interrupts initiated by the processor IRQ in-
put and those resulting from the BRK instruction in the 6502 architecture. In more sophisticated
processors, including those we will discuss in later chapters, there are unique interrupt vectors
(interrupt handler starting addresses) for each interrupt input signal. These architectures also
contain extensive support for debugging activities such as setting breakpoints at specified in-

struction locations.

The preceding sections introduced the categories of instructions in the 6502 architecture and
provided a brief description of each instruction within those categories. Although the 6502 is
much simpler than modern 32- and 64-bit processors, this discussion presented the most com-
mon types of instructions and addressing modes used in even the most sophisticated modern

processors, including instructions supporting the universal concept of interrupt processing.

The next section will introduce the fundamentals of /O processing, which performs data transfer

between the processor and peripheral devices.

Input/output operations

The goal of the 1/O portion of a processor architecture is to efficiently transfer data between ex-
ternal peripheral devices and system memory. Input operations transfer data from the external

world into memory and output operations send data from memory to an outside destination.

The format of the data on the external side of the I/O interface varies widely. Here are some ex-

amples of the external representations of computer I/O data:

e Signals on avideo cable connected to a monitor
e  Voltage fluctuations on the wires in an Ethernet cable
e  Magnetic patterns on the surface of a disk

e  Sound waves produced by computer speakers
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Regardless of the form the data takes when it is outside the computer, the connection of any I/O
device with the processor must comply with the processor’s I/O architecture and the I/O device

must be compatible with any other I/O devices that happen to be present in the computer system.

The processor uses the instruction categories, addressing modes, and interrupt processing meth-
ods described earlier in this chapter to conduct interactions with I/O devices. The difference here
is that instead of reading and writing system memory, the instructions read from, and write to,

locations that communicate with an I/O device.

Memory-mapped I/O and port-mapped I/O are the two main approaches employed in modern
processors to access I/O devices. Memory-mapped I/O dedicates portions of the system address
space to I/O devices. The processor accesses peripheral devices at predefined addresses using
the same instructions and addressing modes it uses to read and write system memory. The 6502

employs memory-mapped I/O to communicate with its peripherals.

Processors that use port-mapped I/O implement a separate category of instructions for per-
forming 1/O operations. Port-mapped I/O devices have a dedicated address space independent
from system memory. I/O devices are assigned port numbers as addresses. The x86 architecture

employs port-mapped 1/0.

One drawback of memory-mapped 1/0 is the need to dedicate part of the system address space
to 1/0 devices, thereby reducing the maximum amount of memory that can be installed in the
computer system. A drawback of port-mapped I/O is the requirement for the processor to imple-

ment additional instructions to perform 1/O operations.

Some implementations of port-mapped I/O provide additional hardware signals to indicate when
an I/O device is being addressed as opposed to system memory. Using this signal as a selector
(which effectively becomes another address bit), the same address lines can be used for accessing
memory and I/O devices. Alternatively, some higher-end processors implement an entirely sep-
arate bus for performing port-mapped /O operations. This architecture allows I/O and memory

access operations to proceed simultaneously.

In the simplest approach to I/O, the processor handles all steps in an I/O operation itself, using
instructions to transfer data between memory and the 1/O device. More complex processor ar-
chitectures provide hardware features to accelerate repetitive I/O operations. We will discuss
three methods of performing I/O with varying degrees of processor involvement: programmed

I/0, interrupt-driven I/O, and direct memory access.
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Programmed 1/0

Programmed I/O simply means that the processor performs every step of the I/O data transfer
operation using program instructions. Consider a keyboard that presents itself to the processor
as two memory-mapped one-byte addresses in the processor’s I/O address region. One of these
bytes contains status information, specifically a bit indicating when a key has been pressed. The

second byte contains the value of the key that was pressed.

Each time a key is pressed, the key available status bit is set. When using programmed 1/0, the
processor must periodically read the keyboard status register to see whether a key has been
pressed. If the status bitindicates a key has been pressed, the processor reads the keyboard data

register, which turns off the key available status bit until the next keypress occurs.

If the keyboard data register can only hold one key at a time, this keyboard status checking oper-
ation must occur frequently enough that no key presses getlost, even when a very fast typistis at
the keyboard. As a result, the processor must spend a significant amount of its time checking to
see whether a key has been pressed. Most of these checks will be fruitless whenever fast typing

is not taking place.

It should be clear that programmed I/O is not a very efficient method for general usage. Itis similar

in concept to checking your phone every few seconds to see if someone is calling you.

Programmed I/O makes sense in some situations. For example, the one-time configuration of a

peripheral device during system startup is a reasonable application of this technique.

Interrupt-driven 1/0

An I/O device can use interrupts to notify the processor when action is needed. In the case of
the simple keyboard interface, instead of merely setting a bit in a status register, the peripheral
could pull the 6502’s IRQ line low to initiate an interrupt each time a key is pressed. This allows
the processor to go about its business without constantly checking for keypresses. The processor
will only focus attention on the keyboard interface when there is work to be done, as indicated
by the interrupt. Using interrupts to trigger I/O operations is analogous to adding a ringer to the

phone that we had to check for incoming calls every few seconds when using programmed I/O.

The 6502 has a single maskable interrupt input signal (IRQ) available for I/O operations. Com-
puter systems usually contain multiple sources of I/O interrupts. This makes the task of servicing
interrupts a bit more complicated in the 6502 because the processor must first identify which

peripheral initiated the interrupt before it can begin transferring data.
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The interrupt handler has to poll each interrupt-capable device to locate the interrupt source.
In the case of the keyboard interface, this polling operation consists of reading the keyboard
status register to determine if the bit is set, indicating a keypress occurred. Once the processor
hasidentified the device responsible for the interrupt, it branches to code that interacts with the
device to complete the requested 1/0 task. In the case of the keyboard interface, this processing
performs the steps of reading the keyboard data register and clearing the key available status bit,
which deactivates the IRQ input signal.

Interrupts from external devices are asynchronous events, meaning they can occur at any time.
Computer system design requires careful consideration of the possibility that interrupts may be
generated at potentially unexpected times, such as during system startup or while processing
other interrupts. Interrupts from multiple devices may occur simultaneously, or nearly simul-
taneously, and in random order. Interrupt-handling hardware circuitry and interrupt-servicing
code must ensure that all interrupts are detected and processed regardless of the existence of

these timing peculiarities.

Interrupt-driven /O eliminates the processor’s need to periodically check I/O devices to see
whether action is needed. However, handling an interrupt may consume significant processor
time if itinvolves transferring a large block of data. This occurs frequently during operations such
asreading from, or writing to, a disk drive. The next I/O method we will discuss removes the need

for the processor to perform the work of transferring these large blocks of data.

Direct memory access

Direct Memory Access (DMA) permits peripheral device I/O operations to access system memory
independent of the processor. When using DMA to transfer a block of data, the processor sets up
the operation by configuring a DMA controller with the starting address of the data block to be
transferred, the block length, and the destination address. After initiating the DMA, the proces-
sor is free to continue other work. Following completion of the operation, the DMA controller

generates an interrupt to inform the processor that the transfer is complete.

Within a computer system, a DMA controller may be implemented as a separate integrated cir-
cuit managed by the processor, or a processor architecture may contain one or more integrated
DMA controllers.

I/O devices that move substantial amounts of data, such as disk drives, sound cards, graphics
cards, and network interfaces, generally rely on DMA to efficiently transfer data into and out of

system memory. DMA is also useful for transferring blocks of data within system memory.
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The 6502 architecture does not support DMA operations, but the original IBM PC included a DMA
controller. Almost every 32-bit and 64-bit processor architecture provides extensive support for

DMA operations.

DMA is one of many techniques that improve computer system performance by accelerating re-
petitive operations. In Chapter 5, Hardware-Software Interface and Chapter 9, Specialized Processor

Extensions, we will see some examples of the use of DMA to accelerate 1/O operations.

Summary

This chapter described the primary functional units of a simple processor: the control unit, the
ALU, and the registers. An overview of processor instructions and addressing modes followed. The
instruction categories implemented by the 6502 processor were introduced with the goal of demon-

strating the variety and utility of instructions available in a relatively simple processor architecture.

The concepts involved in interrupt processing were introduced and demonstrated in the context
of the 6502 architecture. The chapter concluded with an overview of the most common architec-
tural approaches to I/O operations (memory-mapped 1/O and port-mapped 1/0) and the basic
modes of performing I/O in a computer system (programmed /0, interrupt-driven I/O, and DMA).

Having completed this chapter, you should now possess a conceptual understanding of processor
functional units, instruction processing, interrupt handling, and input/output operations. This
information forms the basis for the next chapter, which covers architecture at the computer

system level.

Exercises

1. Consider the addition of two signed 8-bit numbers (thatis, numbers in the range -128 to
+127) where one operand is positive and the other is negative. Is there any pair of 8-bit
numbers of different signs that, when added together, will exceed the range -128 to +127?
This would constitute a signed overflow. Note: We’re only looking at addition here because,
as we've seen, subtraction in the 6502 architecture is the same as addition with the right

operand’s bits inverted.

2. If the answer to Exercise I is “no,” this implies the only way to create a signed overflow
is to add two numbers of the same sign. If an overflow occurs, what can you say about
the result of performing XOR between the most significant bit of each operand with the
most significant bit of the result? In other words, what will be the result of the expres-
sions, left(7) XOR result(7)andright(7) XOR result(7)?In these expressions, (7)

indicates bit 7, the most significant bit.
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3. Review the VHDLlisting in the Arithmetic logic unit section in this chapter and determine
whether the logic for setting or clearing the V flag is correct for addition and subtraction
operations. Check the results of adding 126+1, 127+1, -127+(-1), and -128+(-1).

4. When transferring blocks of data over an error-prone transmission medium, it is common
to use a checksum to determine whether any data bits were lost or corrupted during
transmission. The checksum is typically appended to the transferred data record. One

checksum algorithm uses these steps:

1. Add all the bytes in the data record together, retaining only the lowest 8 bits of

the sum
2. The checksum is the two’s complement of the 8-bit sum

3. Append the checksum byte to the data record

After receiving a data block with the appended checksum, the processor can determine
whether the checksum is valid by simply adding all the bytes in the record, including the
checksum, together. The checksum is valid if the lowest 8 bits of the sum are zero. Im-
plement this checksum algorithm using 6502 assembly language. The data bytes begin
at the memory location stored in addresses $108-$11 and the number of bytes (including
the checksum byte) is provided as an input in the X register. Set the A register to 1if the

checksum is valid, and to O if it is invalid.

5. Make the checksum validation code from Exercise 4 into a labeled subroutine that can be
called with a JSR instruction and that ends with an RTS instruction.

6. Write and execute a set of tests to verify the correct operation of the checksum testing
subroutine you implemented in Exercises 4-5. What is the shortest block of data on which

your code can perform checksum validation? What is the longest block?

Join our community Discord space

Join the book’s Discord workspace for a monthly Ask me Anything session with the author:
https://discord.gg/7h8aNRhRuY







Computer System Components

This chapter introduces the lower-level components used in the construction of computer systems.
We begin with the metal-oxide-semiconductor (MOS) transistor, which is employed extensively
in memory circuits and across virtually all other modern digital devices. We will examine the de-
sign of MOS transistor-based computer memory and its interface with the processor. We’ll look
at modern computer input/output interfaces, with a focus on the use of high-speed serial com-
munication within the computer case, as well as data transfer over cable connections to external

components. The functional requirements of system I/O devices including the graphics display,
network interface, keyboard, and mouse will be discussed. The chapter ends with a descriptive

example of the specifications for a modern computer motherboard.

After completing this chapter, you will have a solid understanding of the hardware components
of modern computer systems, from technical specifications down to the circuit level. You will
have learned how system memory is implemented, including the basics of caching. You will un-
derstand the mechanisms of efficient I/O operations and the use of Universal Serial Bus (USB) to
connect the keyboard, mouse, and other I/O devices. You will understand the computer’s network

interface and will be familiar with the key technical aspects of a modern computer motherboard.
The following topics will be covered in this chapter:

e  Memory subsystem

e Introducing the MOSFET

e  Constructing DRAM circuits with MOSFETs
e 1/O subsystem

e  Graphics displays
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e Network interface
e Keyboard and mouse

e  Modern computer system specifications

Technical requirements

Files for this chapter, including answers to the exercises, are available at https://github.com/

PacktPublishing/Modern-Computer-Architecture-and-Organization-Second-Edition.

Memory subsystem

The memory subsystem is an addressable sequence of storage locations containing instructions
and data for use by the processor as it executes programs. Modern computer systems and digital
devices often contain over a billion 8-bit storage locations in main memory, each of which can

be independently read and written by the processor.

As we saw in Chapter 1, Introducing Computer Architecture, the design of the Babbage Analytical
Engineincluded a collection of axes, each holding 40 decimal digit wheels, as the means of storing
data during computations. Reading data from an axis was a destructive operation, resulting in
zeros on each of an axis’s wheels after the read was complete. This was an entirely mechanical

method of data storage.

From the 1950s to the 1970s, the preferred implementation technology for digital computer mem-
ory was the magnetic core. One bit of core memory is stored in a small toroidal (donut-shaped)
ceramic permanent magnet. The set of cores making up a memory array is arranged in a rect-
angular grid with horizontal and vertical connecting wires. Writing to a bit location involves
introducing enough current in the wires connected to the bit location to flip the polarity of the
core’s magnetic field. A O bit might be defined as clockwise magnetic flux circulation within the

core and a1 bit as counterclockwise flux circulation.

Reading a bit from core memory consists of attempting to set the bit to the 0 polarity and observing
the electrical response. If the selected core already contains a 0 bit, there will be no response. If
the core holds a 1, a detectable voltage pulse will occur as the polarity changes. As in the Analytical
Engine, a core memory read operation is destructive. After reading a bit value of 1 from memory,

a subsequent write must be performed to restore the state of the bit.


https://github.com/PacktPublishing/Modern-Computer-Architecture-and-Organization-Second-Edition
https://github.com/PacktPublishing/Modern-Computer-Architecture-and-Organization-Second-Edition
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Magnetic core memory is non-volatile: the contents will be retained indefinitely after power has
been removed. It also has characteristics that make it valuable in applications such as spacecraft
where radiation tolerance is important. In fact, the Space Shuttle computers employed core mem-

ory into the late 1980s.

Modern consumer and business computer systems use MOSFET-based DRAM circuits almost

exclusively for main system memory. The next section presents the features of the MOSFET.

Introducing the MOSFET

Chapter 2, Digital Logic, described the NPN transistor, a type of bipolar junction transistor (BJT).
The NPN transistor is called bipolar because it relies on both positive (P) and negative (N) charge

carriers to function.

In semiconductors, electrons serve as the negative charge carriers. There are no physical particles
with a positive charge involved in a semiconductor operation. Instead, the absence of a normally
present electron in an atom exhibits the same properties as a positively charged particle. These
missing electrons are referred to as holes. Holes function as the positive charge carriers in bipolar

junction transistors.

The concept of holes is so fundamental to semiconductor operation that William Shockley, one
of the inventors of the transistor, wrote a book entitled Electrons and Holes in Semiconductors,
published in 1950. We’ll next examine the behavior of positive and negative charge carriers in

unipolar transistors.

As an alternative to the BJT transistor structure, the unipolar transistor relies on only one of the
two types of charge carriers. The metal-oxide-semiconductor field-effect transistor (MOSFET)
is a unipolar transistor suitable for use as a digital switching element. Like the NPN transistor,
the MOSFET is a three-terminal device that employs a control input to turn the flow of current
across the other two terminals on and off. The terminals of a MOSFET are named gate, drain, and

source. The gate terminal controls the flow of current between the drain and source terminals.

MOSFETs are categorized as enhancement mode or depletion mode devices. An enhancement
mode MOSFET blocks current flow between drain and source when the gate voltage is zero and
allows current flow when the gate voltage is above the threshold voltage. A depletion mode
MOSFET functions in the opposite manner, blocking current flow when the gate voltage is high

and allowing current flow when the gate voltage is zero.
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The following figure is the schematic representation of an n-channel enhancement mode MOSFET:

Drain

Gate

Source
Figure 4.1: N-channel enhancement mode MOSFET

For our purposes, the n-channel enhancement mode MOSFET functions as a switch: when the
gate terminal voltage is low (below the threshold voltage) relative to the source terminal, there
is very high resistance between the drain and source terminals. When the gate terminal voltage
ishigh (above the threshold voltage) relative to the source terminal, there is very little resistance
between those terminals. The “n” in n-channel refers to a channel in the silicon that has been

doped to provide an increased number of electrons (negative charge carriers).

The MOSFET’s behavior resembles the operation of the NPN transistor discussed in Chapter
2, Digital Logic. There is, however, a key difference: the MOSFET is a voltage-controlled device,
while the NPN transistor is a current-controlled device. The base terminal of the NPN transistor
requires a small but steady current to activate the device as a switch, thereby allowing current
to flow between the emitter and collector terminals. The MOSFET, on the other hand, requires
only a gate-to-source voltage above a threshold to switch the current flow on between the drain
and source terminals. The gate input requires almost no current flow to keep the switch open.
Because of this, a MOSFET consumes significantly less power than an NPN transistor performing

the equivalent digital function.

Mohamed Atalla and Dawon Kahng invented the MOSFET at Bell Telephone Laboratories in 1959.
It was not until the early 1970s that production processes had matured sufficiently to support the
reliable production of MOS integrated circuits. Since then, the MOSFET has been by far the most
common type of transistor used in integrated circuits. In 2018, it was estimated that 13 sextillion
(a sextillion is 1 followed by 21 zeros) transistors had been manufactured, 99.9 percent of which

were MOSFETs. The MOSFET is the most frequently manufactured device in human history.
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The p-channel enhancement mode MOSFET is like the n-channel enhancement mode MOSFET,
except it exhibits the opposite response to the gate-to-source voltage: a gate terminal voltage
lower than the source terminal beyond the threshold voltage allows current to flow between the
drain and source, while a gate-to-source voltage less than the threshold inhibits current between
the drain and source. The “p” in p-channel refers to channel doping that increases the number
of holes (positive charge carriers). The following figure is the schematic diagram of a p-channel
enhancement mode MOSFET:

Source
Gate

Drain

Figure 4.2: P-channel enhancement mode MOSFET

To distinguish between the schematic representations of the n-channel and p-channel MOSFETS,
observe that the source terminal is connected to the center of the three internal connections
in both configurations. The directional arrow on this connection points toward the gate in an
n-channel MOSFET and away from the gate in a p-channel MOSFET.

Both the n-channel and p-channel enhancement mode MOSFETs can be considered normally
open switches, meaning they do not conduct current when the gate-source voltage difference is
small. Both n- and p-channel MOSFETs are also available in the depletion mode configuration,
which causes them to function as normally closed switches. Current flows in depletion mode

MOSFETs when the gate-source voltage is small but not when it is large.

MOS transistors are frequently employed in an n-channel and p-channel pair to perform logic
functions. A device built with these pairs of MOS transistors is called a complementary MOS
(CMOS) integrated circuit. The CMOS name derives from the fact that the transistors in each pair
function in opposite, or complementary, fashion. Except when switching is taking place, CMOS cir-
cuits consume almost no power because the gate inputs require essentially no current. Chih-Tang

Sah and Frank Wanlass of Fairchild Semiconductor developed the CMOS circuit structure in 1963.
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The following diagram shows a NOT gate circuit where the NPN transistor of Chapter 2, Digital
Logic, has been replaced by a pair of complementary MOSFETs:

S

p-channel

—_ MOSFET

(0-5V)
o—— Output

e 0-5V
5V — ( )
- n-channel

MOSFET

ov

Figure 4.3: CMOS NOT gate circuit

When the Input signal is low (near O V), the lower n-channel MOSFET is switched off and the
upper p-channel MOSFET is switched on. This connects the Output to the positive side of the
voltage source, raising the Output signal to nearly 5 V. When Input is high, the upper MOSFET
is switched off and the lower MOSFET is switched on, pulling the Output down to near O V. The

Output signal is always the inverse of the Input signal, which represents the behavior of a NOT gate.

Today, virtually all high-density digital integrated circuits are based on CMOS technology. In
addition to performing logic functions, the MOSFET is a key component of modern random-ac-
cess memory (RAM) circuit architecture. The next section discusses the use of the MOSFET in

memory circuits.

Constructing DRAM circuits with MOSFETs

A single bit in a standard dynamic random-access memory (DRAM) integrated circuit is com-
posed of two circuit elements: a MOSFET and a capacitor. The following section presents a brief

introduction to the electrical characteristics of capacitors.

The capacitor

A capacitor is a two-terminal passive circuit element capable of storing energy. Energy enters and
leaves a capacitor as electrical current. The voltage across the capacitor terminals is proportional

to the quantity of electrical energy contained in the capacitor.
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To continue the hydraulic system analogy introduced in Chapter 2, Digital Logic, think of a capac-
itor as a balloon attached to the side of the pipe leading to a water tap. Water pressure in the pipe
causes the balloon to inflate, filling it with some of the water from the pipe. Let’s assume thisis a
strong balloon, and that as it inflates, the balloon stretches, increasing the pressure within. The

balloon fills until the pressure in the balloon equals the pressure in the pipe, and it then stops filling.

If you open the tap at the end of the pipe all the way, the release of water causes the pressure
in the pipe to decrease. Some of the water in the balloon will flow back into the pipe until the

balloon pressure again equals the pipe pressure.

Hydraulic devices called water hammer arrestors function in exactly this manner to solve the
problem of pipes that make banging noises when water taps are turned on and off. A water ham-
mer arrestor uses balloon-stretching-like behavior to smooth out the abrupt changes in water

pressure that result from taps opening and closing.

The quantity of electrical energy contained in a capacitor is analogous to the amount of water
in the balloon. The voltage across the capacitor is analogous to the pressure inside the balloon

exerted by stretching.

An electrical capacitor can be constructed from two parallel metal plates separated by an insulating
material, such as air. One terminal is connected to each of the plates. The ratio of the quantity
of stored electrical energy to the voltage across the capacitor is called capacitance. Capacitance
depends on the size of the parallel plates, the distance separating them, and the type of material
used as the insulator between them. The capacitance of a capacitor is analogous to the size of the
balloon in the hydraulic example. A capacitor with a larger capacitance corresponds to a larger

balloon. A large balloon requires more water to fill to a given pressure than a small balloon.

The schematic symbol for a capacitor is shown in the following figure:

1
T

Figure 4.4: Capacitor schematic symbol

The two horizontal lines with space between them represent the metal plate capacitor architecture
described in this section. The unit of capacitance is the farad, named after the English scientist

Michael Faraday, who, among many other achievements, invented the electric motor.
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The DRAM bit cell

A DRAM bit cellis areadable and writeable storage location for a single bit of data. ADRAM mod-
ule in a modern computer or phone contains billions of bit cells. A single bit in a DRAM circuit

consists of a MOSFET and a capacitor, arranged as follows:

A
Wordline

1

A 4 -

A

Bitline

Figure 4.5: DRAM bit cell circuit

In this figure, the symbol with three horizontal lines at the bottom right is the ground symbol,
which is the standard representation of the O V reference voltage we used in earlier diagrams such

as Figure 4.3. The wordline and bitline are wires used to connect the individual bit cells into a grid.

This single-bit cell is replicated in a rectangular grid to form a complete DRAM memory bank. The
following figure shows the configuration of a 16-bit DRAM bank consisting of 4 words of 4 bits each:

" = = = =
5 I_ I_ I_ I_
3 = :v :v =

Figure 4.6: DRAM memory bank organization
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Of course, real DRAM banks contain a much larger number of bits than the simple circuit shown
here. Typical DRAM devices have a word size of 8 bits, rather than the 4 bits labeled BO-B3 in the

figure. This means a DRAM chip can store or retrieve 8 bits in parallel.

The number of instances of bit cells along a wordline in an actual DRAM bank array is an integer
multiple of the device word size. The large DRAM modules used in personal computers contain
many words along each wordline. For example, a DRAM chip implemented with 8-bit words and
1,024 words per row contains 8,192 bits in a row, with all the MOSFET gate terminals along the
row controlled by a single wordline signal. These devices contain additional multiplexer logic to
select the specific word the processor is requesting from the many words along the row selected

by the active wordline.

The vertical dimension of the DRAM bank consists of replicated copies of cell rows with one
wordline controlling each row. The wordline connects all the bit cells horizontally, while the

bitline signals connect the cells in all the rows vertically.

The state of each memory bit is stored in the cell’s capacitor. A low voltage on the capacitor rep-
resents a O bit, while a high voltage represents a 1 bit. In the context of DDR5 DRAM devices, low
voltage is near O V and high isnear 1.1V.

The wordline for each row is held low most of the time. This keeps the MOSFET turned off, main-
taining the capacitor state. When it is time to read a word (actually, an entire row) of DRAM, ad-
dressing circuitry selects the appropriate wordline and drives it high while keeping all the other
wordlines in the bank low. This turns on the MOSFET in each bit cell along the active wordline,
allowing the cell capacitors to drive their voltages onto the connected bitlines. Bitlines for cells at
the 1 (high) voltage level will have higher voltages than cells at the 0 (low) voltage level. The bitline
voltages are sensed by circuitry in the DRAM device and latched into the chip’s output register.

Writing to a DRAM word begins by setting the selected wordline high in the same manner as
reading a word. Instead of sensing the voltage on the bitlines, the DRAM device drives each
bitline with the voltage to be written to each cell, either 0 V or 1.1V, depending on whether the
databitisa O or a 1. As with filling or emptying a balloon, it takes a bit of time for each capacitor
to charge or discharge to the voltage presented on its bitline. After this delay has completed, the

wordline is driven low to turn the MOSFETs off and lock the capacitors at their new charge levels.

DRAM circuit technology is complicated by the fact that capacitors leak. After charging a capacitor
to a non-zero voltage, the charge bleeds off over time, reducing the voltage across the capacitor.

Because of this, the contents of each cell must be refreshed periodically.
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A refresh operation reads each cell value and writes it back to the cell. This recharges the capac-
itor to its “full” voltage level if it is a 1, or drives it to near O V if itis a 0. A typical refresh interval
for modern DRAM devices is 64 milliseconds. DRAM refresh proceeds continuously, row by row,
in the background during system operation and synchronizes with processor access to memory
to avoid conflicts. There is a small performance penalty that occurs when processor access to

memory is delayed by refresh activity.

While the need for periodic refreshing significantly complicates the design of systems using DRAM
devices, the benefit of storing a bit with just one transistor and one capacitor is so immense that
DRAM has supplanted all alternatives as the preferred technology for main memory in consumer,

business, and scientific computer systems.

The next section will examine the architecture of the current generation of DRAM technology,
DDRS.

DDR5 SDRAM

Intel produced the first commercial DRAM integrated circuit in 1970. The Intel 1103 held 1,024 bits
and had a word size of 1 bit. The 1103 had to be refreshed every 2 milliseconds. By the early 1970s,
MOS semiconductor DRAM overtook magnetic core memory as the preferred memory technology
in computer systems. DRAM is volatile, meaning when power is removed, the charge in the bit

cell capacitors dissipates and the data content is lost.

The term double data rate (DDR) refers to the transfer timing characteristics between a memory

module and the processor memory controller. The original single data rate (SDR) DRAM per-
formed one data transfer per memory clock cycle. DDR memory devices perform two transfers per

clock cycle: one on the clock rising edge and one on the falling edge. The number following “DDR”
identifies the generation of DDR technology. DDRS5, therefore, is the fifth generation of the DDR

standard. The term synchronous DRAM (SDRAM) indicates the DRAM circuitry is synchronized

with the processor memory controller by a shared clock signal. The current generation of DRAM

technology in widespread use is DDR4 SDRAM, while DDR5 SDRAM is beginning to roll out.

Modern personal computers and personal devices such as smartphones generally contain multi-
ple gigabytes (GB) of RAM. One GB s 2*°bytes, equivalent to 1,073,741,824 (just over one billion)

bytes. As the name implies, random access memory allows the processor to read or write any
memory location within the RAM address space in a single operation. As of 2021, a high-end

memory module available for use in laptop computers contains 32 GB of DRAM distributed across

16 integrated circuits. Each DRAM chip in this module contains 2 giga-words, (where 1 giga-word

is 2°° words) with a word length of 8 bits.
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In 2021, the leading memory module standard is DDR5 SDRAM, an evolutionary optimization of
DRAM interface technologies built upon the DDR1, DDR2, DDR3, and DDR4 generations. ADDRS5
memory module is packaged as a dual inline memory module (DIMM). A DIMM has electrical
contacts on both sides of the circuit board edge (hence the term dual in the name), providing
connectivity to the DIMM socket in the motherboard. A standard DDR5 DIMM has 288 pins. A
smaller module format called the small outline DIMM (SODIMM) is available for systems such
as laptops where space is at a premium. A DDR5 SODIMM has 262 pins. Because of the reduced
number of pins, SODIMM modules lack features that some DIMMSs support, such as the ability
to detect and correct bit errors in data retrieved from the device. This capability is referred to as

error correcting code (ECC).

DDR5 memory modules are nominally powered by 1.1V. As a representative example, a particular
DDRS5 module can perform up to 4.8 billion data transfers per second, double the memory clock
speed of 2,400 MHz. At 8 bytes per transfer, this DDR5 device can theoretically transfer 38.4 GB per

second. DDR5 modules will be available in a variety of clock speeds, memory sizes, and price points.

Although real-world DRAM modules implement rectangular banks of single-bit cells as described
in the previous section, the internal architecture of a DDRS5 device is somewhat more complex. A
DRAM integrated circuit generally contains multiple banks. The addressing logic selects the bank
containing the desired memory location before performing a read or write operation. In DDR5
modules, banks are further arranged into bank groups, necessitating additional addressing logic
to choose the correct group. A DDRS5 device contains up to eight bank groups, each with up to four
banks. The reason for partitioning the DDR5 module architecture into multiple bank groups is
to maximize data transfer speed by enabling multiple simultaneous, overlapped memory access
operations to proceed in parallel. This permits data transfer between processor and RAM to flow

at peak speed while minimizing the need to wait for each DRAM access operation to complete.

In addition to specifying the correct address location within a DDR5 memory module, the sys-
tem must provide a command via interface signals to indicate the action to be taken, specifically,

whether to read from, write to, or refresh the selected row.

The DDR5 SDRAM standard, available for purchase from the Joint Electron Device Engineering
Council (JEDEC) athttps://www.jedec.org/standards-documents/docs/jesd79-5, provides
the detailed definition of the DDR5 memory interface to host computer systems. This standard
contains all the information needed to design memory modules compatible with any computer

system supporting DDR5.


https://www.jedec.org/standards-documents/docs/jesd79-5
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Historically, each numerical generation of the DDR SDRAM standards has been incompatible with
previous generations. A motherboard built for DDR5 memory modules will only work with DDR5
modules. The slot for each DDR generation is constructed in such a way that it is not possible

to insert an incorrect module. For example, a DDR4 DRAM module will not fit into a DDRS5 slot.

As memory technologies evolve, the primary improvements in each new generation are increased
data transfer rate and greater memory density. To assist in achieving these goals, power supply
voltages have decreased in later generations, reducing system power consumption and enabling

denser memory circuitry while avoiding excessive heating.

Most modern processors view system memory as a linear array of sequential addresses. In less
sophisticated processor architectures, such as the 6502, the processor directly addresses RAM
chips using memory addresses provided in instructions. Because of the complexity of the control
signals and bank managementlogic in DDR5 SDRAM devices, modern computer systems provide
a memory controller to translate each linear processor address into command and addressing
signals selecting the appropriate DDR5 module (in a system with multiple memory modules),
bank group, bank, and row/column location within the selected bank. The memory controller
is a sequential logic device that manages the details of communication between the processor
and DRAM memory modules. To achieve peak system performance, the memory controller must

intelligently exploit the capability for overlapped operations provided by DDR5 memory modules.

Sophisticated modern processors generally integrate the memory controller function into the
processor integrated circuit itself. It is also possible to design a system with a separate memory

controller that sits between the processor and RAM.

A memory controller interface may contain multiple channels, where each channel is a separate
communication path between the processor and one or more memory modules. The benefit of
providing multiple channels in a memory architecture is that this configuration permits simul-
taneous memory accesses over the channels. However, a system containing multiple memory
channels does not achieve an automatic increase in memory access speed. System software must
actively manage the assignment of memory regions to each application or system process to bal-
ance memory usage across channels. If the operating system were to simply assign processes to
physical memory regions sequentially, filling one memory module first then moving to the next,
there would be no benefit from multi-channel memory because all processes would be forced to

use the same memory channel.
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Graphics DDR

Graphics DDR (GDDR) is a DDR memory technology optimized for use as video RAM in graphics
cards. GDDR has a wider memory bus to support the high-throughput requirements of video
displays. Standard DDR memory, on the other hand, is optimized to provide minimum latency

access to data.

The generation numbers for GDDR and DDR are not aligned. As of 2021, GDDR6 modules have

been available for a few years, while the DDR6 SDRAM standard remains in development.

Prefetching

One DRAM performance attribute that improves very little from one generation to the next is
the speed of reading from or writing to an individual bit location. To achieve an increase in the
average data transfer rate into and out of DRAM modules, the devices must employ other tech-
niques to improve performance. One technique for achieving faster average data transfer speeds

is prefetching.

The idea behind prefetching is to exploit the fact that whenever a particular memory location
is being accessed by a processor, it is likely that addresses close to the first location will soon be
accessed. Prefetching consists of reading a larger block of memory than the single address a pro-
cessor instruction references and passing the entire block from the DRAM device to the processor.

In the context of a DDR5 memory module, the block size is normally 64 bytes.

The DDR5 module can read 64 bytes quickly because it accesses all 512 bits of those 64 bytes si-
multaneously. To do this, the DDR5 module reads an integer multiple of 512 bitlines from the cells
selected by a wordline. The bits of the selected row are read simultaneously, then pass through
a multiplexer to extract the desired 512 bits from (perhaps) 8,192 bits in the entire row, which
are then latched into an output register. The latched bits transfer from the DRAM module to the

processor using DDR clocking.

With the effective use of multiple bank groups, multiple reads of memory and transfers of the
resulting data can overlap in time and ensure that data moves between the memory module and

the processor at the highest rate the interface can support.

Upon receiving the 64-byte block, the processor stores the data in internal cache memory and
selects the specific data element (perhaps as small as 1 byte) from the block requested by the
executing instruction. If a subsequent instruction accesses different data contained in the same
block, the processor need only consult its local cache, resulting in much faster execution than

the instruction that originally retrieved the data block from DRAM.
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In addition to interacting with main memory, the processor must communicate with the outside
world through input and output devices. The next section discusses the implementation of /O

interfaces in modern computer systems.

1/0 subsystem

Chapter 3, Processor Elements, introduced two broad categories of /O architecture: memory-mapped
I/O and port-mapped /0. The pros and cons of each of these approaches were significant in the
early days of PCs when the number of physical address lines limited the total processor memory
space to a 1 MB range. Modern processor architectures can address a far larger memory range,
typically in the tens of gigabytes. A consequence of this address space expansion is the ready
availability of address regions for use in I/O interfaces. Because of this, modern 32-bit and 64-bit

general-purpose processors employ memory-mapped I/O for most of their interface requirements.

Sophisticated modern processors usually implement a memory controller within the processor
chip, communicating directly with DDR memory modules. Most other types of I/O performed by
these processors are offloaded to one or more external integrated circuits, typically referred to as
a chipset. The term chipset is commonly used even when only one chip is needed to implement
the I/O functions.

The chipset provides interfaces to a wide range of peripherals, such as disk drives, network in-
terface, keyboard, mouse, and many others via USB. Most of these interfaces are implemented
using one form or another of a serial bus. The following sections introduce the most common

I/0 technologies employed in modern computers.

Parallel and serial data buses

A parallel data bus communicates multiple data bits simultaneously across separate conductors
between two or more communication endpoints. Early PCs used parallel buses for functions
such as connecting a printer to the computer. Over time, several limitations of parallel buses

became apparent:

e Depending on how many bits the bus supports, a parallel bus connection may require
a lot of wires. This means cables are more expensive and there is a greater possibility of

problems when cable wires break, or connectors fail to make solid electrical contact.

e Ascomputer system developers made efforts to increase bus data rates (and thereby gain
a competitive edge), another limitation of parallel buses became significant: even though
the device transmitting a data word on the bus may output all the parallel bits simulta-

neously, the individual signals may not arrive at the destination at the same time.
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This could be caused by differences in the effective path length of the conductors in the
cable or across the circuit board. Because of this, there is an upper limit on the data transfer

rate a parallel bus architecture can support.

Another limitation of parallel buses is they can only transfer data in one direction at a time (re-
ferred to as half-duplex) unless a duplicate set of connections is provided for simultaneously
transferring data in the opposite direction. Parallel buses usually do not provide simultaneous

bi-directional communication capability, referred to as full-duplex operation, for this reason.

Aserial data bus transfers data between two communication endpoints a single bit at a time using
a pair of conductors. Most high-speed communication paths between the processor and periph-
eral devices in modern computers use some form of serial bus. While, at first blush, switching
from a parallel bus architecture to a serial bus seems to represent a substantial loss in throughput
capability, serial buses exhibit several important advantages that make their use attractive in

performance-critical applications.

High-speed serial buses in personal and business computer systems communicate over pairs of
conductors using differential signaling. Differential signaling employs two conductors, carefully
matched to be of the same length and to exhibit nearly identical electrical characteristics. When
used in cables, these conductors are insulated wires twisted around each other to form twisted

pairs.

The following figure represents a serial data bus using differential signaling:

R%1>

Figure 4.7: Serial bus circuit using differential signaling

Tx

The digital signal to be transmitted arrives at the transmitter (labeled Tx) via the input at the
left side of the figure. The input is transformed into a pair of voltages on the two parallel lines
crossing the center of the diagram. The small circle indicates the upper signal from the transmitter

is inverted relative to the lower signal.

In a typical serial interface, a high signal level at the transmitter input will generate a voltage of
1.0 V on the top serial conductor and 1.4 V on the bottom conductor. A low signal input produces

1.4 V on the top conductor and 1.0 V on the bottom conductor.
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The inputs to the receiver (which is labeled Rx) are high impedance, meaning the receiver draws
negligible current from the circuit. The receiver measures the voltage across the resistor, which
has a typical value of 100 Q. When the Tx input is high, the upper resistor terminal is at -0.4 V
relative to the lower terminal. When the Tx input is low, the upper resistor terminal is +0.4 V

relative to the lower terminal.

The receiver produces its output signal by inverting one of the inputs (the top one in the figure,
with the small circle) and adding the resulting voltage to the other input. In other words, the re-
ceiver only measures the difference between the voltages on the two conductors. The fundamental
benefit of this approach derives from the fact that most forms of corrupting interference cause
voltage variations in the conductors carrying the signal. By placing the two conductors very close
together, most of the noise voltage introduced on one of the conductors will also appear on the
other. The subtraction operation cancels out a large portion of the noise that would otherwise

interfere with accurate signal detection by the receiver.

A serial data bus can perform several billion bit transfers per second, far more than an old PC’s
parallel bus. It is also possible to run several serial buses alongside each other, effectively multi-

plying the data transfer bandwidth by the number of buses.

A crucial difference between multiple serial buses connecting two endpoints and a parallel bus
making the same connection is that, for many interface standards, the serial buses operate some-
what independently. They do not synchronize at the level of each bit transfer in the same way
all the bits in a parallel bus must. This makes it easier to design interconnections capable of
supporting very high data rates with only the need to worry about precisely matching conductor

length and electrical characteristics within each pair of serial conductors.

The connection between a modern processor and its motherboard chipset generally consists
of several serial data buses called high-speed input output (HSIO) lanes. Each lane is a serial
connection with one data path, like Figure 4.7, flowing in each direction, supporting full-duplex

operation.

Individual HSIO lanes can be assigned to specific types of peripheral interfaces that are implement-
ed as serial connections, such as PCI Express, SATA, M.2, USB, and Thunderbolt. The following

sections introduce each of these interface standards.

PCI Express

The original Peripheral Component Interconnect (PCI) bus was a 32-bit parallel bus running at
33 MHz used in PC-compatible computers from about 1995 through 2005.
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The PCI slots on computer motherboards accepted a wide variety of expansion cards performing
functions such as networking, video display, and audio output. By the early 2000s, the limitations
of the parallel bus architecture had become constraining, and development began on a serial bus

replacement for PCI named PCI Express.

PCI Express, abbreviated as PCle, is a bi-directional differential signaling serial bus used primarily
to connect communication endpoints on computer motherboards. PCle performance is expressed
in billions of transfers (giga-transfers) per second, or GT/s. One “transfer” is a single bit propa-
gated across the bus from transmitter to receiver. PCle inserts additional redundant bits in each
multi-bit communication to ensure data integrity. Different generations of PCle have varying
numbers of these overhead bits, influencing the effective data transfer rate. The following table
shows the major generations of PCle, the year each was introduced, the single-lane transfer rate

in GT/s, and the effective data transfer rate in MB/s:

PCle generation | Year introduced | Transfer Effective one-way
rate datarate

1.0a 2003 2.5GT/s 250 MB/s

2.0 2007 5GT/s 500 MB/s

3.0 2010 8 GT/s 985 MB/s

4.0 2017 16 GT/s 1,969 MB/s

5.0 2019 32 GT/s 3,938 MB/s

6.0 (proposed) 2021 64 GT/s 7,877 MB/s

Table 4.1: PCI Express generations

The effective data rate presented here is for one-way communication. PCle supports full-speed

data transfer in both directions simultaneously.

The PCle standards support multi-lane connections indicated by the notations x1, X2, x4, x8, x16,
and x32. Most modern motherboards implement, as a minimum, PCle x1 and x16 slots. PCI x1
slots are compatible with a board edge connector length of 25 mm, while x16 slots expect a board
edge connector length of 89 mm. A PCle card will operate correctly in any slot in which it can
physically fit. For example, a PCle x1 card can be plugged into an x16 slot and will use just one of

the 16 available lanes.

A primary application for PCle x16 slots is to interface between the processor and a graphics card,
with the goal of providing peak performance for graphics-intensive applications such as gaming.

A PCle 5.0 x16 interface is capable of unidirectional data transfer at 63 GB/s.
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In modern computer architectures, the processor chip usually provides a direct PCle 16-lane
connection to a graphics board installed in a PCIe x16 slot. This means you don’t need to pass the

graphics card PCle signals through the chipset.

Other than the graphics display and the DDR SDRAM interface, most I/O in modern computer
systems is managed by the chipset. The processor and chipset communicate through a collection
of HSIO lanes. The chipset provides interfaces to peripheral devices such as disk drives, network
interfaces, keyboard, and mouse. The interfaces to these devices commonly use the SATA, M.2,

and USB serial interface standards, discussed next.

SATA

The Serial AT Attachment (SATA) is a bi-directional serial interface standard for connecting
computer motherboards to storage devices. The “AT” in SATA refers to the IBM PC AT. Like a single
PCle lane, SATA contains two differential signaling pairs of conductors, where one pair carries
data in each direction. Unlike PCle, SATA is intended for operation over cables rather than over
metal signal traces on motherboards. In addition to electrical and data format requirements, the

SATA standard contains detailed specifications for compatible cables and connectors.

A SATA cable contains one bi-directional lane supporting communication between a processor
and a storage device such as a magnetic disk drive, optical disk drive, or solid-state drive. The
following table shows the major revisions of the SATA standard, the year each was introduced,

and performance parameters:

SATA Year Transfer Effective one-way
generation | introduced | rate data rate
1.0 2003 1.5 GT/s 150 MB/s
2.0 2004 3 GT/s 300 MB/s
3.0 2009 6 GT/s 600 MB/s

Table 4.2: SATA generations

The data transfer rate in this table describes one-way communication, though, like PCle, SATA

supports full-duplex data transfer.

The SATA standard continues to undergo incremental improvements, but as of 2021 there has

been no announcement of an upcoming SATA generation with a faster data transfer rate.
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M.2

Modern solid-state drives (SSDs) employ flash memory to store data rather than the rotating
magnetic platters in traditional hard drives. Because of the radically different technology of SSDs,
the SATA interface that works well enough in most cases for rotating disks has proven to be a

significant performance barrier for SSDs.

To access an arbitrary block of data (called a sector) on a magnetic disk drive, the drive head must
physically move to the track containing the sector, then wait for the beginning of the sector to
rotate to the head position before the drive can begin reading data. In contrast, an SSD can directly

address any data sector in a manner very similar to the way a processor accesses a DRAM location.

The M.2 specification was developed to provide a small form factor and high-performance in-
terface for flash memory storage in small, portable devices. The performance limitations of the
SATA interface are removed, and it is possible to transfer data at rates several times faster than

SATA can support.

In addition to mass storage devices, M.2 supports other interfaces including PCle, USB, Bluetooth,
and Wi-Fi. Modern motherboards include M.2 slots, which, in addition to the higher performance,

consume much less space in the computer case than traditional disk drive bays.

UsB

The USB interface provides a simple (from the user’s viewpoint) interface for connecting a wide
variety of peripheral devices to a computer system. In addition to communication protocols, the
USB standard revisions define requirements for cables, connectors, and for supplying power to

connected devices via the USB cable.

USB cables have easily identifiable connector types and USB-enabled devices support hot-plug-
ging (plugging devices together while powered on). USB devices are self-configuring, and, in most
cases, users need not concern themselves with installing drivers when attaching a new device to

a computer with a USB cable.

Early USB data cables (through generation 2.0) contained a single differential signaling pair that
could pass data in only one direction at a time. Later versions of the USB standard (USB 3.2 Gen
1 onward) support simultaneous bi-directional data transfer. In addition, USB generations 3.2

and USB4 provide up to two lanes, doubling the data transfer rate.
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The following table shows the major revisions of the USB standard, the date each was introduced,

the maximum number of lanes supported, and peak data transfer performance:

USB Year Number of | Transfer Effective one-
generation introduced lanes rate way data rate
1.1 1998 1 0.012 GT/s 1.5 MB/s

2.0 2000 1 0.48 GT/s 60 MB/s
3.2Genl 2008 1 5GT/s 500 MB/s
3.2Gen?2 2013 1 10 GT/s 1,200 MB/s
3.2 Gen 2x2 2017 2 20 GT/s 2,400 MB/s
USB4 2019 2 40 GT/s 4,800 MB/s

Table 4.3: USB generations

In USB generations through 2.0, communication takes place entirely under the control of the
host. The host initiates each communication interaction by sending packets addressed to a par-
ticular device and performs data transfers to or from the device. Beginning with USB 3.2 Gen 1,
devices can initiate communication with the host, effectively providing an interrupt capability

for connected peripherals.

Thunderbolt

Thunderbolt is a collection of high-speed serial interface standards introduced in 2011. The orig-
inal Thunderbolt interface combined PCle and DisplayPort signal transmission using two serial

Thunderbolt lanes.

Thunderbolt 4 is the latest generation of the Thunderbolt standard, adding USB4 compatibility
while supporting connectivity to PCle devices and to multiple high-resolution displays from a
single computer port. Thunderbolt 4 uses the same connector as USB 3.2 and later generations
(the USB-C connector) and supports the 40 Gbit/s USB4 data rate. USB devices operate properly
when connected to a computer’s Thunderbolt 4 port. Thunderbolt 4 peripheral devices are not

compatible with non-Thunderbolt 4 USB-C ports, however.

The next section provides an overview of the most popular graphics display interface standards.

Graphics displays
In the domains of gaming, video editing, graphic design, and animation, video processing per-
formance is critical. Generating and displaying high-resolution graphics requires an enormous

number of mathematical calculations.
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While general-purpose processors can perform the necessary computations, such processors lack

the performance users of these applications have come to expect.

High-performance graphics cards, called graphics processing units (GPUs), are essentially min-
iature supercomputers, heavily optimized to perform graphical computational tasks such as 3D
scene rendering. Because the computations involved in scene rendering are highly repetitive,
substantial performance gains can be achieved with the use of hardware parallelization. Graphics
processors contain a large number of relatively simple computational units, each performing a

small portion of the overall task.

A GPU may contain thousands of individual processing units that each function like an ALU.
While the original driving force that led to the development of high-performance GPUs was 3-D
scene generation, later generations of this technology have found broad use in fields such as big
data analytics and machine learning. Any numerically intensive computational task that can be

broken into a collection of parallel operations is suitable for acceleration with a GPU architecture.

Of course, not all users require extreme video performance. To accommodate users with modest
graphics needs and more limited budgets, modern processors often integrate a moderately capable
GPU into the processor chip. In many applications, this approach provides more than adequate
graphical performance. This configuration is referred to as integrated graphics, meaning the
GPU function is integrated into the processor die and shares system memory with the processor.
Computer systems with integrated graphics are lower in cost while providing adequate graphics

performance for basic computing tasks such as email, web browsing, and watching videos.

Many desktop computer systems, as well as some laptops, provide integrated graphics while
offering the option of installing a high-performance graphics card. This allows users to tailor the

computer system to their price and performance needs.

Several different video standards are in current use for connecting displays to computers. Because
the output generated by a computer graphics interface must be compatible with the connected
display, it is common for computers to provide more than one type of video connector. Computer
monitors and high-definition televisions usually provide a selection of video connection types

as well.

Chapter 6, Specialized Computing Domains, will cover the processing architecture of GPUs in more
detail. The following sections describe video interface standards used in computer applications

past and present.
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VGA

The Video Graphics Array (VGA) video standard for personal computers was introduced by IBM
in 1987. VGA is an analog interface that remains in widespread use today, though most modern
computers do not provide a VGA connector. It is not uncommon to find older computers with
VGA outputs using a converter cable to present a display on a monitor supporting DVI or HDMI

video input.

Modern versions of the VGA standard support display resolutions up to 1,920 pixels wide by 1,200
pixels high, refreshed at 60 Hz. Because the VGA video signal is analog, some loss of signal quality

occurs during transmission to the display. This effect is most noticeable at high screen resolutions.

DVI

The Digital Visual Interface (DVI) video standard was developed to improve the visual quality
of computer displays by transferring the video signal digitally from the computer to the monitor.
To maintain backward compatibility with older computers and monitors, DVI cables can carry

VGA analog signals as well.

Like the high-speed serial interfaces discussed earlier in this chapter, DVI uses differential serial
signaling to transfer video data. A DVI connector contains four serial lanes. Individual lanes car-

ry red, green, and blue color information, and the fourth lane carries the common clock signal.

Three DVI variants are defined, depending on the combination of digital and analog video signal

types supported:

e  DVI-Asupports only the analog video signal. This option is intended to provide backward
compatibility with VGA computers and monitors. The DVI-A connector has a different
pin layout than traditional VGA connectors, so an adapter cable is required to connect to

legacy VGA devices.

e DVI-D is a digital-only interface supporting single-link and dual-link options. The du-
al-link option provides additional serial data lanes to increase the video bandwidth for

higher-resolution displays. Dual-link does not mean the cable supports dual monitors.

e DVI-lis an integrated interface supporting both the analog interface of DVI-A and the
digital modes of DVI-D. A DVI-I digital interface may be single- or dual-link.

DVl interfaces are used primarily in computer display applications. The effective data rate of a
single-link DVI-D connection is 3.96 gigabits per second (Gbit/s). Dual-link DVI-D transfers video
data at twice the single-link rate, 7.92 Gbit/s.
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HDMI

High-Definition Media Interface (HDMI) is supported by most modern computers and monitors,
and by virtually all modern televisions and related video entertainment devices such as DVD
players. HDMI supports digital video only (there is no analog capability) and uses the same dif-
ferential serial bus as DVI-D. In addition to video data, HDMI cables also transport multi-channel

digital audio.

The HDMI standard has undergone several revisions since its introduction in 2002. Each successive
revision has maintained backward compatibility while adding new capabilities. Later versions of
the standard have increased video bandwidth, increased the range of supported screen resolutions,
added high-definition audio capabilities, added support for Ethernet communication over the
HDMI cable, and added features to support gaming. Although each HDMI version is backward
compatible, newer features are only available in configurations where the signal source device,

the display device, and the connecting cable are all compatible with the newer standard.

HDMI version 2.1 was released in 2017. This standard supports an effective data rate of 42.6 Gbit/s

over four differential serial lanes.

DisplayPort

DisplayPort, introduced in 2006, is a digital interface standard supporting digital video, audio,
and USB connections. While HDMI is targeted at consumer electronics such as televisions and
home theater systems, DisplayPort is oriented toward computer applications. DisplayPort trans-
fers data in packets with clocking information embedded in each packet, eliminating the need

for a separate clock channel.

A single computer DisplayPort output can drive multiple monitors connected in a daisy chain,
where one cable connects the computer to the first monitor, a second cable connects the first and
second monitors, and so on. The monitors must provide support for this capability. The maxi-
mum number of displays that can be combined in this manner is limited only by the capabilities
of the graphics card, the maximum cable data throughput, and the resolution and refresh rate

of the displays.

DisplayPort 2.0 was released in 2019, with an effective data rate of up to 77.4 Gbit/s over four

differential serial lanes.
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Network interface

A computer network is a collection of digital devices interacting over a shared communication
medium. A local area network (LAN) consists of a limited number of computers that might
reside in a single physical location such as a home or office building. The connected computers,
phones, and other digital devices in your home represent a LAN. Device connections within a LAN

environment may use a wired interface, usually Ethernet, or a wireless interface, typically Wi-Fi.

Geographically separated computers and LANs communicate using a wide area network (WAN).
WAN services are often provided by a telecommunication company such as a cable television
provider or telephone company. Your home LAN most likely connects to the Internet via WAN

services provided by your telephone or cable company.

Home and business network interface devices (called routers) provided by WAN service providers
usually offer Ethernet and Wi-Fi options for connecting local devices to the WAN. The following

sections introduce the technologies of Ethernet and Wi-Fi.

Ethernet

Ethernet is a set of networking standards for connecting computers using cables in a LAN envi-
ronment. The original version of Ethernet was developed by Robert Metcalfe at Xerox Palo Alto
Research Center in 1974. Ethernet was released commercially in 1980 as a 10 Mbit/s communication
technology for groups of computers connected with coaxial cabling. The name of the technology
was derived from the historical term luminiferous aether, a hypothesized medium filling all of
space and enabling the propagation of electromagnetic waves. The Ethernet cable serves as a

conceptually similar communication medium.

The Institute of Electrical and Electronic Engineers (IEEE) began developing standards for LAN
technologies, including Ethernet, in 1980. The IEEE 802.3 Ethernet standard was published in
1985. Since then, the standard has undergone several revisions supporting increased data rates
and different network topologies. The most obvious difference in modern computer networks
from the original Ethernet standard is the use of point-to-point twisted pair cables in place of

the original shared coaxial cable.

Modern computers commonly use Gigabit Ethernet interfaces to communicate over unshielded
twisted-pair (UTP) cabling. Gigabit Ethernet is formally defined in the IEEE 802.3ab standard
and supports 1.0 Gbit/s with an effective data transfer rate up to 99% of the raw bit rate, though

the amount of overhead varies considerably depending on the communication protocol in use.
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Ethernet communication is composed of variable-size data units called frames containing up to
1,518 bytes. The header of each frame contains addressing information identifying the source and
destination Ethernet interfaces. Because modern twisted-pair connections are point-to-point, the
most common structure for connecting a group of computers is to run a cable from each computer
to a switch. A switch is a device that receives frames transmitted by the connected computers
and, based on the destination address contained in each frame, immediately forwards it to the
correct recipient. Ethernet cables are limited to a maximum recommended length of 100 meters,

constraining the physical size of an Ethernet LAN to an area such as a single office building or home.

Modern motherboards usually contain a built-in Ethernet interface, which eliminates the need
to consume a PCle slot with an Ethernet card. An Ethernet interface, whether built into the
motherboard or installed in a PCIe expansion slot, consumes one HSIO lane connecting from the

processor through the chipset to the Ethernet interface.

Wi-Fi

The IEEE released the first version of the 802.11 wireless communication standard in 1997 support-
ing araw data rate of 2 Mbit/s in the 2.4 GHz radio frequency band. The 802.11b standard, released
in 1999 with an 11 Mbit/s raw data rate, proved to be commercially popular. The technology was

named Wi-Fiin 1999 as areference to the term “hi-fi,” referring to high-fidelity sound reproduction.

The 802.11g standard, released in 2003, has a raw bit rate of 54 Mbit/s. 802.11n, released in 2009,
supports multiple-input-multiple-output (MIMO) antennas and optional operation in the
5 GHz band. The 802.11ac standard, published in 2013, supports a bit rate in the 5 GHz band of
over 500 Mbit/s using MIMO antenna configurations. The 802.11ax standard, approved in 2021,
provides a 39% throughput increase relative to 802.11ac for a single client and offers enhanced
support for use in dense radio signal environments. 802.11ax is marketed as Wi-Fi 6 for operation
in the 2.4 and 5 GHz bands and as Wi-Fi 6E for operation in the 6 GHz band.

Wi-Fi devices can suffer from interference produced by household appliances such as cordless
phones, microwave ovens, and other Wi-Fi networks in the area. Wi-Fi signal propagation is af-
fected by factors such as walls and other obstacles between transmitter and receiver, multipath
(the destructive interference between a direct-path signal and a reflected copy of the signal), and
is limited by the maximum power a Wi-Fi transmitter is authorized to emit. The use of multiple
antennas in 802.11n, 802.11ac, and 802.11ax configurations significantly mitigates multipath-re-

lated performance issues.
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Modern WAN routers supplied by telecommunication service providers usually contain a combi-
nation of Ethernet and Wi-Fi communication interfaces. A primary benefit of Wi-Fiin comparison

to Ethernet for these applications is the reduction in the amount of cabling required.

One drawback of Wi-Fi is the potential for security issues because the radio frequency signal can
propagate far outside the building containing the communicating systems. The Wi-Fi standards
provide substantial support for secure communication using protocols such as Wi-Fi Protected
Access 2 (WPA2), but system administrators and users must ensure the appropriate security
features are enabled and that secret information such as the network password is sufficiently

complex and is stored securely.

Support for Wi-Fi is ubiquitous in portable digital devices such as laptops, smartphones, and

tablets, and is directly built into many motherboards.

The next section presents the computer interfaces with the lowest bandwidth requirements: the

keyboard and mouse.

Keyboard and mouse

Compared to the high-speed interfaces discussed earlier in this chapter, the bandwidth require-
ments for a keyboard and mouse are quite modest. These devices are the sole input methods used
by the human operator in most computer configurations, and thus are only required to operate at

the speed of human actions. Even the fastest typist can only press one or two dozen keys per second.

Keyboard

A mechanical computer keyboard consists of a collection of keys, each of which activates an
electrical momentary switch. A standard full-size keyboard typically contains 104 keys including
the arrow keys, control keys (Home, Scroll Lock, and so on), and the numeric keypad. Modern

keyboards commonly use a USB cable for connection to the computer or connect wirelessly.

Because the bandwidth requirements for human interaction are so low, some computer mother-
boards provide a slower USB 2.0 port for keyboard connection while offering higher-performance
USB 3.2 or faster interfaces for high-speed peripherals. This results in a small cost reduction for

the motherboard components.

Because the keyboard reports the press and release of each key separately, the computer can
process combinations of keys pressed simultaneously. For example, holding the Shift key down

while pressing the A key produces a capital A.
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Some computers and digital devices such as tablets and phones provide a touchscreen interface.
When textinputis required on these devices, the system displays a keyboard pattern on the screen

and the user touches letter locations to produce keypresses.

Mechanical keyboards tend to provide more accurate input and are favored by users entering
significant quantities of text. Because the surface of a touchscreen is completely flat, there is no
feedback to the user’s fingers indicating alignment with the keys. This results in more frequent
input errors when using touchscreen keyboards. Of course, when using a touchscreen keyboard
there is no need to provide a mechanical keyboard, which represents a substantial benefit for por-
table devices. In addition, touchscreen keyboard input does not suffer from mechanical failures
that can affect the components of mechanical keyboards. For users wearing gloves, text input is

more difficult on both touchscreens and keyboards.

Mouse

A computer mouse is a hand-held device that moves a pointer horizontally and vertically across a
computer screen. The user initiates actions based on the pointer location by pressing buttons on
the mouse. Modern mice often provide a small wheel capable of rolling in either direction, used

to perform tasks such as scrolling through a document.

As with the keyboard, the mouse commonly connects to the computer via USB over a wired or
wireless connection. The mouse has low bandwidth requirements and can be supported on a
USB 2.0 port.

The operation of a mouse requires a flat horizontal surface, typically a table top, upon which the
user moves the mouse. Modern mice most commonly use optical emitters and sensors to detect
motion across the surface. Many mice have difficulty operating on highly reflective surfaces such

as glass tabletops.

A trackball is similar in concept to a mouse, except that rather than moving a mouse across a
surface, a ball is retained at a fixed location but is allowed to rotate in any direction using hand
motion. By rolling the ball forward, backward, left, and right, the user can move the pointer on

the computer display.

A trackball does not require the amount of surface space a mouse needs, and the trackball can
be fixed at a stationary location. The ability to firmly attach a trackball to a structure makes the
trackball the preferred pointing device for computer stations installed in ground vehicles, ships,

and aircraft.
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As with the keyboard, the computer detects the press and release of each mouse button as separate
events. Users can exploit this capability to perform operations such as dragging an icon across

the screen by following these steps:

1. Place the pointer over the icon

2. Pressand hold the left mouse button

3. Move the pointer (with the icon now attached) to the new location
4

Release the mouse button

Together, the keyboard and mouse provide all the input capability most computer users need to

perform their interactive tasks.

The next section brings together the subsystem descriptions in this chapter to examine the spec-

ifications of a modern computer motherboard.

Modern computer system specifications

With the information in this chapter, you should be able to interpret most of the technical features
of a modern computer motherboard, processor, and chipset. This section provides an example
of the specifications for a current (2021) motherboard with some explanation of the individual

features.

The designers of a computer motherboard must make several decisions such as the number of
PCle expansion ports, number of DIMM slots, number of USB ports, and the number of SATA
ports to be provided in a particular motherboard model. These decisions are guided by the target

customer demographic, whether it be gamers, business users, or cost-conscious home users.

The example motherboard presented here is the ASUS Prime X570-Pro, a higher-performance
board intended for gaming applications that supports gaming-related features such as overclock-
ing. Overclocking refers to increasing the clock frequencies for the processor and other system

components with the goal of improving performance.

Overclocking increases heat generation and may lead to unstable performance if a componentis

driven at an excessive frequency.
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Feature Specification Notes

Processor AMD AM4 socket compatible with The socket contains 1,331 contacts. The
third-generation AMD Ryzen™ processor interfaces directly to DDR4
processors system memory. There is a PCI 4.0 x16

interface direct from the processor to the

GPU.
Chipset AMD X570 The processor-to-chipset interface is
16 x PCle 4.0 lanes PCle 4.0 x4.
6 SATA 6 Gbit/s ports
Graphics Up to 3 x PCle 4.0 x16 slots Multiple GPUs can run in parallel using
card Nvidia Scalable Link Interface (SLI) or
AMD Crossfire technology.
Expansion 3 x PCle 4.0 x16 slots The x16 slots can be configured as a
slots single x16 slot, as two x8 slots, or as two

3 x PCle 4.0 x1 slots
x8 slots plus an x4 slot.

System 4 x dual-channel DDR4 3200 MHz Up to four DDR4 modules can be
memory DIMM slots containing up to 128 GB | installed with up to 32 GB each.

total Overclocking up to 5,100 MHz is possible.
Disk 2xM.2 The M.2 slots use PCI 4.0 for high-
interface . performance SSDs. The SATA ports

6 x SATA 6 Gbit/s

support traditional disks.

Ethernet 1x Gigabit Ethernet High-speed Ethernet networking.
USB 2 x USB 2.0 headers Each header supports multiple USB ports.

Use USB 2.0 for keyboard and mouse.

Use USB 3.2 for fast peripherals such as
1x USB 3.2 Gen 2 (10 Gbit/s) headers | external drives.

1x USB 3.2 Gen 1 (5 Gbit/s) headers

Table 4.4: Example motherboard specifications

This example is intended to provide some perspective on the specifications of higher-end con-

sumer-grade computer capabilities as of 2021.

\/u' If you are looking to purchase a computer, you can use the information in this chapter

to make yourself a more informed consumer.
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Summary

This chapter began with an introduction to the computer memory subsystem, the MOSFET, and
the capacitor. We examined the circuitry that implements the DRAM bit cell. We reviewed the
architecture of DDR5 memory modules and the operation of multichannel memory controllers.
Other types of 1/O devices were introduced, with a focus on high-speed differential serial con-
nections and their ubiquitous use in technologies such as PCle, SATA, USB, and video interfaces.

Popular video standards were presented, including VGA, DVI, HDM], and DisplayPort. We looked
at the Ethernet and Wi-Fi networking technologies as well. We continued with a discussion of
standard computer peripheral interfaces including the keyboard and mouse. The chapter concluded
with a description of an example modern motherboard, highlighting some of its interesting features.

With the information presented in this chapter, you should have a solid understanding of modern
computer components from the level of technical specifications down to the technologies used
in implementing the circuitry.

In the next chapter, we will explore the high-level services computer systems must implement,
such as disk I/O, network communications, and interactions with users. We’ll examine the soft-
ware layers that implement these features, starting at the level of the processor instruction set
and registers. Several key aspects of operating systems will be covered including booting, mul-

tithreading, and multiprocessing.

Exercises

1. Createacircuitimplementation of a NAND gate using two CMOS transistor pairs. Unlike
NPN transistor gate circuits, no resistors are required for this circuit.

2. Al6-gigabit DRAM integrated circuit has two bank group selection inputs, two bank
selection inputs, and 17 row address inputs. How many bits are in each row of a bank in

this device?

Join our community Discord space

Join the book’s Discord workspace for a monthly Ask me Anything session with the author:
https://discord.gg/7h8aNRhRuY




Hardware-Software Interface

Most computer software is not written at the processor instruction level in assembly language.
Almost all the applications we work with daily are written in one high-level programming lan-
guage or another, relying on pre-existing libraries of capabilities that the application program-
mers built upon during the software development process. Practical programming environments,
consisting of high-level languages and their associated libraries, offer many services, including
disk input/output (I/0), network communication, and interactions with users, all easily acces-

sible from program code.

This chapter describes the software layers thatimplement these features, beginning with processor
instructions within device drivers. Several key aspects of operating systems will be covered in this

chapter, including booting, process scheduling, multithreading, and multiprocessing.

After completing this chapter, you will understand the services provided by operating systems
and the functions of Basic Input/Output System (BIOS) and Unified Extensible Firmware Inter-
face (UEFI) firmware. You will have learned how threads of execution function at the processor
level and how multiple processor cores coordinate within a computer system. You will also have
a broad understanding of the process of booting into an operating system securely, beginning

with the first instruction executed.
We will cover the following topics:

e Device drivers
. BIOS
e Theboot process

e  Operating systems
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e  Processes and threads

e  Multiprocessing

Technical requirements

Files for this chapter, including answers to the exercises, are available at https://github.com/

PacktPublishing/Modern-Computer-Architecture-and-Organization-Second-Edition.

Device drivers

A device driver provides a standardized interface for software applications to interact with a cate-
gory of peripheral devices such as disk storage. This avoids the need for the application developer
to understand and implement all of the technical details required for the proper operation of each
device type. Device drivers also manage the coordination needed when applications written by
different developers attempt to access the same device at the same time. Most device drivers allow
multiple simultaneously executing applications to interact with multiple instances of associated

peripherals in a secure and efficient manner.

At the lowestlevel, the device driver code provides software instructions that manage communi-
cation interactions with the peripheral, including handling interrupts generated by device service
requests. A device driver controls the operation of hardware resources in the processor, in the

peripheral device, and in other system components such as the processor chipset.

In computer systems supporting privileged execution modes, device drivers usually operate at
an elevated privilege level. Code running with elevated privilege, which is typically restricted to
the operating system and device drivers, has full access to the capabilities of the processor and
peripheral devices. This grants access to I/O resources that are inaccessible to less privileged
code. Only trusted code is permitted to interact with these interfaces directly. If unprivileged
application code were able to access a peripheral’s hardware interface, a programming error
that caused the device to behave improperly would immediately affect all applications that at-
tempt to use the device. The steps involved in transitioning the flow of instruction execution and
data between unprivileged user code and privileged driver code will be discussed in Chapter 9,

Specialized Processor Extensions.

Drivers that execute with elevated privilege are referred to as kernel-mode drivers. The kernel
is the central core of the operating system, serving as the interface between computer hardware

and higher-level operating system functions such as the scheduler.
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As we learned in Chapter 3, Processor Elements, the two principal mechanisms for accessing I/O
devices are port-mapped I/O and memory-mapped I/O. Although memory-mapped 1/O is pre-
dominant in modern computers, some architectures, such as x86, continue to support and use
port-mapped I/O. In an x86 system, many modern peripheral devices provide a system interface

that combines port-mapped I/O and memory-mapped 1/0.

Programming tools for modern operating systems, such as those available for Linux and Windows,
provide resources for developing device drivers capable of interacting with peripheral devices
using port-mapped and memory-mapped I/O techniques. Installing a device driver in these op-

erating systems requires elevated privilege, but users of the driver do not require such privilege.

Although device drivers for sophisticated peripheral devices can be quite complex and difficult to
understand for those not intimately familiar with the device’s hardware and internal firmware,
some legacy devices are fairly simple. One example of this is the parallel printer port that was
introduced in early PCs and remained a standard component of personal computers for many
years. Even though modern computers rarely include these interfaces, inexpensive parallel port
expansion cards remain readily available and modern operating systems provide driver support
for these interfaces. Electronics hobbyists often use a parallel port as a simple interface for inter-
acting with external circuits using Transistor-Transistor Logic (TTL) 5V digital signals on PCs

running Linux or Windows.

The next section will examine the device-driver-level details of the parallel port interface.

The parallel port

The programming interface for the PC parallel printer port consists of three 8-bit registers, orig-
inally located at sequential I/O port numbers beginning at hexadecimal 378. This collection of
ports provides the interface for system printer number 1, identified as LPT1 in PC-compatible
computers running MS-DOS and Windows. Modern PCs may map the parallel port to a different
range of I/O ports during Peripheral Component Interconnect (PCI) device initialization, but

operation of the interface is otherwise unchanged from early PCs.

Device drivers for the parallel port in modern computers perform the same functions using the
same instructions as in early PCs. In this section, we’ll assume the printer port is mapped to the

legacy 1/O port range in a 64-bit version of Linux.

To interact with parallel port hardware, the x86 processor executes in and out instructions to

read from and write to I/O ports.
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If we assume the parallel port driver has been installed and initialized, a user application can call

a driver function to read from, and write to, the parallel port data lines.

The following driver instructions read the digital voltage levels present on the eight data lines of

the parallel port and store the resulting 8-bit value in the processor’s al register:

mov edx,0@x378

in al,dx

In x86 assembly language, instructions with two operands are written in the form opcode
destination, source.Thisexample usesthe al, edx, and dx processor registers. The al register
is the lowest 8 bits of the 32-bit eax register, and dx is the lowest 16 bits of the 32-bit edx register.
This sequence of instructions loads the immediate value x378 into the edx register, and then

reads the 8-bit data value from the port number contained in dx into al.

The C language source code that generated the preceding assembly instructions is:

char input_byte;
input_byte = inb(0x378);

The inb function is provided by the Linux operating system to perform 8-bit input from an I/O
port. This code will only function properly if itis running at elevated privilege under the operating
system. An application running at the user privilege level will fail if it attempts to execute these

instructions because it is not authorized to perform port 1/O directly.

The instructions for writing a byte to the parallel port data register, and thus setting the state of

the eight digital output signals, are shown in the following code segment:

mov edx,0x378
movzx eax,BYTE PTR [rsp+0x7]

out dx,al

These instructions set the edx register to the port number, and then load eax from a variable on
the stack. rspis the 64-bit stack pointer. rsp is 64 bits because this driver is running on a 64-bit
version of Linux. movzx stands for “move with zero extension,” which means moving the 8-bit
data value (designated by BYTE PTR) at the address given as rsp+0x7 into the lower 8 bits of the
32-bit eaxregister, and filling the 24 remaining bits in eax with zeros. The final instruction writes

the byte in al to the port number in dx.

The C source code that produces these instructions is:
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char output_byte = OxA5;
outb(output_byte,0x378);

Similar to inb, the outb function is provided by Linux to enable device drivers to write an 8-bit

value to the given I/O port.

This example demonstrates how interaction between software executing on the processor and
peripheral device hardware registers happens at the lowest level of device driver operation. Driv-
ers for more complex devices on x86 systems usually combine port-mapped I/O, as shown in the
preceding examples, with memory-mapped 1/O, which accesses a device interface using reads

and writes that are, in terms of processor instructions, identical to memory accesses.

These examples presented hardware access methods used by drivers on the original parallel PCI
bus architecture. The next section discusses features that allow unmodified legacy PCI drivers to
operate properly on modern PCle-based computers, taking full advantage of PCle’s high-speed

serial communication technology.

PCle device drivers

As we saw in the previous chapter, PCle uses high-speed serial connections as communication
paths between the processor and PCle peripheral devices. You may be wondering about the steps
a device driver must perform to interact with this impressive hardware. The simple answer is that
drivers do not need to do anything special to take full advantage of the high-performance capa-
bilities of PCle. PCle was expressly designed to be software-compatible with the parallel PCI bus
used in PCs of the 1990s. Device drivers written for PCI continue to work properly in computers
using the serial PCIe bus. The task of translating between processor I/O instructions such as in
and out and the sequential serial data transfers necessary to communicate with PCle devices is

handled transparently by the PCle subsystems in the processor, chipset, and PCle devices.

PCI and PCle devices perform an automated configuration operation during system startup and
when a device is hot-plugged in a running system. Hot plugging is the installation of hardware

in a system that is powered on.

Once the configuration is complete, the device interface is known to the operating system. The
interface between a PCI or PCle peripheral and the processor may include any combination of

the following communication mechanisms:

e  Oneormore /O portranges
e  One or more memory address regions supporting memory-mapped 1/O

e Connection to a processor interrupt handler
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The interface configuration procedure applies to both PCI and PCle drivers, enabling legacy PCI
drivers to work properly in PCle systems. Of course, the physical card interface differs greatly
between parallel PCI and serial PCle devices, so the cards themselves are not interchangeable
across bus technologies. The bus slots for PCle are intentionally different from PCI slots to prevent

the accidental insertion of PCI devices into PCle slots, and vice versa.

Bulk data transfer to and from peripheral devices generally relies on Direct Memory Access
(DMA) in both PCI and PCle systems. In PCle systems, DMA operations take full advantage of
the high data rates possible with multi-lane serial connections, blasting data across the interface
at close to the theoretical maximum bit rate that each single- or multi-lane link can support.
The technological evolution that supplanted legacy parallel bus PCI technology with the vastly
higher-performing multi-lane serial technology of PCle, all while retaining seamless device driver

compatibility, has been quite remarkable.

Device driver structure

A device driver is a software module that implements a set of predefined functions that allow
the operating system to associate the driver with compatible peripheral devices and perform
controlled access to those devices. This allows system processes and user applications to perform

I/O operations on shared devices.

This section provides a brief overview of some of the functions a Linux device driver must im-
plement for use by application developers. This example prefixes the function names with the

fictitious device name mydevice and is written in the C programming language.

The following functions perform initialization and termination of the driver itself:

int mydevice_init(void);

void mydevice_exit(void);

The operating system calls mydevice_init to configure the device driver at system startup or
at a later time if the device is connected by hot plugging. The mydevice_init function returns
an integer code indicating if the initialization was successful or, if unsuccessful, the error that

occurred. Successful driver initialization is indicated by a return code of zero.

When the driver is no longer needed, such as during system shutdown or when the device is
removed while the system is running, the system calls mydevice_exit to cleanly end access to

the device and release any system resources allocated by the driver.
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The next two functions allow system processes and user applications to initiate and terminate

communication sessions with the device:

int mydevice_open(struct inode *inode, struct file *filp);

int mydevice_release(struct inode *inode, struct file *filp);

mydevice_open attempts to initiate access to the device and reports any errors that may occur
while doing so. The inode parameter is a pointer to a data structure containing the information
required to access a specific file or another device. The filp parameter is a pointer to a data struc-
ture containing information about the open file. In Linux I/O, all device types are consistently
represented as files, even if the device itself is not inherently file-based. The name filpis short for
file pointer. All functions operating on the file receive a pointer to this structure as an input. Among

other details, the filp structure indicates whether the file is opened for reading, writing, or both.

Themydevice_release function closes the device or file and deallocates any resources allocated

in the call to mydevice_open.

Following a successful call to mydevice_open, application code can begin to read from and write

to the device. The functions performing these operations are:

ssize t mydevice_read(struct file *filp, char *buf,
size t count, loff t *f pos);
ssize_t mydevice_write(struct file *filp, const char *buf,

size_t count, loff_t *f _pos);

Themydevice_read function reads from the device or file and transfers the resulting data to a buffer
in application memory space. The count parameter indicates the requested amount of data and
f_pos indicates the offset from the start of the file at which to begin reading. The buf parameter is
the address of the destination for the data. The number of bytes actually read (which may be less

than the number requested) is provided as the function return value, with a data type of ssize_t.

Themydevice_write function has most of the same parameters asmydevice_read, except the buf
parameter is declared const (constant) because mydevice_write reads starting at the memory

address indicated by buf and writes the data to the file or device.

One point of interest in the implementation of these functions is that the privileged driver code
cannot (or at least should not, if the operating system permits it) access user memory directly.
This is to prevent driver code from accidentally or intentionally reading from or writing to inap-

propriate memory locations such as kernel space.
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To avoid this potential problem, special functions named copy_to_user and copy_from_user
are provided by the operating system for use by drivers to access user memory. These functions
take the necessary steps to validate the user space addresses provided in the function call before

copying data.

This section provided a brief introduction to the hardware interface operations performed by

device drivers and introduced the top-level structure of a device driver.

During system power-up, before the operating system boots and initializes its drivers, firmware
must execute to perform low-level self-testing and system configuration. The next section pres-

ents an introduction to the code that first executes when the computer receives power: the BIOS.

BIOS

A computer’s BIOS contains code that first executes at system startup. In the early days of per-
sonal computers, the BIOS provided a set of programming interfaces that abstracted the details

of peripheral interfaces such as keyboards and video displays.

In modern PCs, the BIOS performs system testing and peripheral device configuration during
startup. After that process has been completed, the processor (under software control) interacts

with peripheral devices directly without further intervention by the BIOS.

Early PCs stored the BIOS code in a read-only memory (ROM) chip on the motherboard. This
code was permanently programmed and could not be altered. Modern motherboards generally
store the motherboard BIOS in a reprogrammable flash memory device. This allows BIOS updates
to be installed to add new features or to fix problems found in earlier firmware versions. The

process of updating the BIOS is commonly known as flashing the BIOS.

One downside of BIOS reprogrammability is that this capability makes it possible for malicious
code to be introduced into a system by writing to the BIOS flash memory. When this type of
attack is successful, it enables the malicious code to execute every time the computer starts up.

Fortunately, successful BIOS firmware attacks have proven to be quite rare.

As the BIOS takes control during system startup, one of the first things it does is run a Power-On
Self-Test (POST) of key system components. During POST, the BIOS attempts to interact with
system components, including the keyboard, video display, and the boot device, typically a disk
drive. Although the computer may contain a high-performance graphics processor, the video inter-

face used by the BIOS during startup may be a primitive video mode, supporting text display only.
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The BIOS uses the video and keyboard interfaces to display any errors detected during system
testing and to allow the user to change stored settings. The keyboard and video interfaces pro-
vided by the BIOS enable the initial setup and configuration of a computer that does not yet

contain a boot device.

When the video interface is not working properly, the BIOS will be unable to display informa-
tion related to the error. In this situation, the BIOS attempts to use the PC speaker, if present, to
indicate the error using a pattern of beeps. Motherboard documentation provides information
about the type of error indicated by each beep pattern. Some motherboards provide a numerical

digit display for reporting POST errors and other status information.

Depending on the system configuration, either the BIOS or the operating system manages the
initialization of PCle devices during system startup. Upon completion of a successful configura-
tion process, all PCle devices have been assigned compatible 1/O port ranges, memory-mapped

I/O ranges, and interrupt numbers.

As startup proceeds, the operating system identifies the appropriate driver to associate with each
peripheral based on the manufacturer and device identification information provided by the
peripheral over PCle. Following successful initialization, the driver interacts directly with each
peripheral to perform I/O operations upon request. System processes and user applications call
a set of standardized driver functions, introduced in the previous section, to initiate access to the

device, perform read and write operations, and close the device.

One common BIOS-related procedure that users perform is selecting the boot order among the
available storage devices. For example, this feature lets you configure the system to first attempt
to boot from an optical disk containing a valid operating system image, if such a disk is in the
drive. If no bootable optical disk is found, the system might then attempt to boot from the main
disk drive. Several mass storage devices can be configured to attempt booting an operating sys-

tem in priority order.

BIOS configuration mode is sometimes accessed by pressing a specific key, such as Esc or the F2
function key, during the early stage of the boot process. The appropriate key to press is usually
indicated on screen shortly after power-on. Upon entering BIOS configuration mode, settings
are displayed in a menu format. You can select among different screens to modify parameters
associated with features such as boot priority order. After making parameter changes, an option
is provided to save the changes to nonvolatile memory (NVM) and resume the boot process. Be
careful when doing this because making inappropriate changes to the BIOS settings can leave

the computer unbootable.
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The capabilities of BIOS implementations have grown substantially over the years since the in-
troduction of the IBM PC. As PC architectures grew to support 32-bit and then 64-bit operating
systems, the legacy BIOS architecture failed to keep pace with the needs of the newer, more ca-
pable systems. Major industry participants undertook an initiative to define a system firmware
architecture that left behind the limitations of the BIOS. The result of this effort was the UEFI

standard, which has replaced the traditional BIOS capabilities in modern motherboards.

UEFI

The Unified Extensible Firmware Interface (UEFI) is a 2007 standard defining an architecture for
firmware thatimplements the functions provided by the legacy BIOS and adds several significant

enhancements. As with BIOS, UEFI contains code executed immediately upon system startup.

UEFI supports a number of design goals, including enabling support for boot disk devices larger
than 2 terabytes (TB), faster startup times, and improved security during the boot process. UEFI
provides several features that, when enabled and used properly, substantially reduce the possibility

of accidental or malicious corruption of firmware stored in UEFI flash memory.

In addition to the capabilities provided by legacy BIOS implementations described previously,
the UEFI supports these features:

e UEFI applications are executable code modules stored in UEFI flash memory. UEFI appli-
cations provide extensions to capabilities available in the motherboard pre-boot environ-
ment and, in some cases, provide services for use by operating systems during runtime.
One example of a UEFI application is the UEFI shell, which presents a command-line
interface for interacting with the processor and peripheral devices. The UEFI shell supports

device data queries and permits the modification of nonvolatile configuration parameters.

e The GNU GRand Unified Bootloader (GRUB) is another example of a UEFI application.
GRUB supports multi-boot configurations by presenting a menu from which the user se-

lects one of multiple available operating system images to boot during system startup.

e  Architecture-independent device drivers provide processor-independent implemen-
tations of device drivers for use by UEFI. This enables a single implementation of UEFI
firmware to be used on architectures as diverse as x86 and Advanced RISC Machine
(ARM) processors. Architecture-independent UEFI drivers are stored in a byte-code format
thatisinterpreted by processor-specific firmware. These drivers enable UEFI interaction

with peripherals such as graphics cards and network interfaces during the boot process.
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e Secure Boot employs cryptographic certificates to ensure that only legitimate device
drivers and operating system loaders are executed during system startup. This feature
validates the digital signature of each firmware component before allowing it to execute.

This validation process protects against many classes of malicious firmware-based attacks.

e  Faster booting is achieved by performing operations in parallel that took place sequen-
tially under BIOS. In fact, booting is so much faster that many UEFI implementations do
not offer the user an option to press a key during booting because waiting for a response
would delay system startup. Instead, operating systems such as Windows enable entry to
UEFI settings by allowing the user to request access while the operating system is running,

followed by a reboot to enter the UEFI configuration screen.

UEFI does not simply replace the functions of the old BIOS. It is a miniature operating system that
supports advanced capabilities, such as allowing a remotely located technician to use a network

connection to troubleshoot a PC that refuses to boot.

Following POST and the low-level configuration of system devices, and having identified the
appropriate boot device based on boot priority order, the system begins the operating system

boot process.

The boot process

The procedure for booting a system image varies depending on the partition style of the mass
storage device containing the image and the security features enforced during boot. The goal of
the boot process is to bring up the system following power application and initialize the operating

system, leaving the computer in a known state and ready to perform useful work.

Beginning in the early 1980s, the standard disk partition format was called the master boot
record (MBR). An MBR partition has a boot sector located at the logical beginning of its storage
space. The MBR boot sector contains information describing the device’s logical partitions. Each

partition contains a filesystem organized as a tree structure of directories and the files within them.

Due to the fixed format of MBR data structures, an MBR storage device can contain a maximum
of four logical partitions and can be no larger than 2 TB in size, equal to 2™ 512-byte data sectors.
These limits have become increasingly constraining as commercially available disk sizes grew be-
yond 2 TB. To resolve these issues, and in tandem with the development of UEFI, a new partition
format called GUID partition table (GPT), where GUID stands for globally unique identifier,
was developed to eliminate restrictions on disk size and the number of partitions, while providing

some additional enhancements.
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A GPT-formatted disk has a maximum size of 2** 512-byte sectors, accommodating over 8 billion
TB of data. As normally configured, GPT supports up to 128 partitions per drive. The type of each
partition is indicated by a 128-bit GUID, allowing an effectively unlimited number of new par-
tition types to be defined in the future. Most users do not need very many partitions on a single

disk, so the most obvious user benefit of GPT is its support for larger drives.

The boot process takes place with some differences between BIOS and UEFI motherboards, as

described in the following sections.

BIOS boot

In a BIOS motherboard, following POST and PCle device configuration, BIOS begins the boot
process. BIOS attempts to boot from the first device in the configured priority sequence. If a valid
device is present, the firmware reads a small piece of executable code called the boot loader from
the MBR boot sector and transfers control to it. At that point, the BIOS firmware has completed
execution and is no longer active for the duration of system operation. The boot loader initiates

the process of loading and starting the operating system.

If a boot manager is used with a BIOS motherboard, the MBR boot sector code must start the man-
ager rather than directly loading an operating system. The boot manager (such as GRUB) displays
a list from which the user selects the desired operating system image. The BIOS firmware itself
has no knowledge of multi-booting, and the boot manager operating system selection process

takes place without BIOS involvement.

MULTI-BOOTING VERSUS BOOT PRIORITY ORDER

V4 Multi-booting within a boot manager allows the user to select the desired operat-
\E/‘ ing system from a menu of available choices. This differs from the boot priority list
maintained by the BIOS, which empowers the BIOS itself to select the first available

operating system image.

UEFI boot

In a UEFI motherboard, after the POST and device configuration stages have been completed (in
a manner very similar to the corresponding BIOS steps), UEFI begins the boot process. A boot
manager may be displayed as part of the startup procedure. A UEFI boot manager, which is part
of the UEFI firmware, presents a menu from which the user can select the desired operating

system image.
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If the user does not select an operating system from the boot manager within a few seconds (or
if no boot manager menu is displayed), the UEFI attempts to boot from the first device in the

configured priority sequence.

The UEFI firmware reads the boot manager executable code (which is separate from the UEFI
boot manager) and boot loader files from configured locations on the system disk and executes

these files during the startup process.

The following screenshot shows portions of the system boot configuration data (BCD) informa-
tion stored on a Windows 10 system. To display this information on your computer, you must run

the bcdedit command from Command Prompt with Administrator privileges:

C:\>bcdedit

Windows Boot Manager

identifier {bootmgr}

device partition=\Device\HarddiskVolumel
path \EFI\MICROSOFT\BOOT\BOOTMGFW.EFI

Windows Boot Loader

identifier {current}

device partition=C:
path \WINDOWS\system32\winload.efi

In this example, the Windows Boot Manager is located at \EFI\MICROSOF T\BOOT\BOOTMGFW. EFI.
This file is normally stored on a hidden disk partition and is not readily available for display in

directory listings.

The Windows boot loader is identified as \WINDOWS\system32\winload.efi and is located at
C:\Windows\System32\winload.efi.

The possibility of malicious modification of the UEFI firmware or the on-disk software compo-
nents executed during system boot necessitates additional protection, provided by the trusted

boot process.
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Trusted boot

The goal of the trusted boot process is to perform the entire boot sequence while ensuring that
all of the software executed is properly authorized and has not been modified. The boot software
verifies the authenticity of firmware and software files by computing the cryptographic hash of
the bytes comprising each software component and ensuring the resulting hash value is valid

using a digital signature.

A cryptographic hash function generates a “fingerprint” for a block of data of arbitrary length.
The output value produced by a given cryptographic hash function is always the same length. For
example, the 256-bit Secure Hashing Algorithm (SHA-256) always produces a 256-bit output
regardless of the length of its input data.

The feature that makes a cryptographic hash function secure is that any attempt to modify the
data used as input to the function will cause the hash output to also be different. It is effectively
impossible toidentify a set of modifications to an input data block that will produce the same hash
output as the original data block. While it is theoretically possible to come up with a modified data
set with the same SHA-256 hash as the original block, the computations required to do so would
take longer than the Earth’s remaining lifetime on the fastest supercomputer available today. We

will discuss hash functions in more detail in Chapter 15, Blockchain and Bitcoin Mining Architectures.

To create a digital signature, a software publisher must compute the hash value for the firmware or
software component memory image. The next step is to encrypt the hash using a private signing
key. This private encryption key is associated with a publicly available decryption key. The encrypt-

ed hash value forms the digital signature that is stored along with the firmware or software file.

The public key is made available to users of the firmware or software. This key is used to decrypt
the encrypted hash value, which can then be compared to the hash value computed from the
file’s data bytes during boot. The two hash values must match exactly to confirm the file is un-
modified since it was digitally signed. As with the cryptographic hash algorithm, it is effectively
impossible to alter the digital signature in a manner that would enable undetected modifications

to the protected data file.

While the public key is not intended to be kept secret, the users of the key must ensure that the
key itselfis from the trusted source and has not been replaced by a malicious actor. To ensure that
only trusted public keys are used during the boot process, these keys are stored in a hardware
location that is inaccessible to unauthorized users and software. The standard mechanism for
this in PCs is called the Trusted Platform Module (TPM). A TPM is, in effect, a microcontroller
carefully designed to protect cryptographic keys.
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In newer computers, TPM keys are configured by the system manufacturer to ensure the system

boots in a secure manner from the moment of its initial power-on.

Unlike personal computers, most embedded devices use a much simpler boot process that does

not involve the BIOS or UEFI. The next section discusses the boot process in embedded devices.

Embedded devices

Most embedded systems, such as smartphones, do not generally have separate boot firmware
such as the BIOS or UEFI in a PC. As we saw with the 6502, these devices perform a processor
hardware reset when power is applied and begin code execution at a specified address. All code

in these devices is typically located in a nonvolatile storage region such as flash memory.

During startup, embedded devices perform a sequence of events similar to the PC boot process.
Peripheral devices are tested for proper operation and initialized prior to first use. The bootloader
in such devices may need to select among multiple memory partitions to identify an appropriate
system image. As with UEFI, embedded devices often incorporate security features during the
boot process to ensure that the boot loader and operating system image are authentic before

allowing the boot process to proceed.

In both PC and embedded systems, execution of the boot loader is the first step in bringing up

the operating system. We’ll look at operating system startup next.

Operating systems

An operating system is a multilayer suite of software that provides an environment in which ap-
plications perform useful functions such as word processing, placing telephone calls, or managing
the operation of a car engine. Applications running under control of the operating system execute
algorithms implemented as processor instruction sequences and perform I/O interactions with

peripheral devices as required to complete their tasks.

The operating system provides standardized programming interfaces that application develop-
ers use to access system resources such as processor execution threads, disk files, input from a
keyboard or other peripherals, and output to devices such as a computer screen or instruments

on an automotive dashboard.
Operating systems can be broadly categorized as real-time or non-real-time:

e  Areal-time operating system (RTOS) provides features to ensure that responses to inputs

occur within a defined time limit.
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Processors performing tasks such as managing the operation of a car engine or a kitchen
appliance typically run an RTOS to ensure that the electrical and mechanical components

they control receive responses to any change in inputs within a bounded time.

e Non-real-time operating systems do not attempt to ensure that responses are generated
within any particular time limit. Instead, these systems attempt to perform processing as

quickly as possible, even if it sometimes takes a long time to complete the work.

REAL-TIME VERSUS NON-REAL-TIME OPERATING SYSTEMS

V4 RTOSes are not necessarily faster than non-real-time operating systems. A non-real-
\E/‘ time operating system may be faster on average compared to an RTOS, but the non-
real-time system may occasionally exceed the time limits specified for applications

executing on the RTOS. The goal of the RTOS is to never exceed the response time limit.

For the most part, general-purpose operating systems such as Linux and Windows are non-real-
time operating systems. They try to get assigned tasks—such as reading a file into a word processor
or computing a spreadsheet—finished as quickly as possible, although the time to complete an

operation may vary widely, depending on other tasks the system may be performing.

Some aspects of general-purpose operating systems, particularly audio and video output, have
specificreal-time requirements. We've all seen poor video replay at one time or another, in which
the video stutters and appears jerky. This behavior is the result of failing to meet the real-time
performance demands of a video display. Cell phones have similar real-time requirements for

supporting two-way audio during telephone calls.

For both real-time and non-real-time operating systems, in standard PCs as well asin embedded
devices, operating system startup tends to follow a similar sequence of steps. The boot loader
either loads the operating system kernel into memory or simply jumps to an address in nonvol-

atile memory to begin executing the operating system code.

Once started, an operating system kernel performs the following steps, though not necessarily

in this order:

e  The processor and other system devices are configured. This includes setting up any re-
quired registers internal to the processor and any associated I/O management devices,

such as a chipset.

e In systems using paged virtual memory (introduced in Chapter 7, Processor and Memory

Architectures), the kernel configures the memory management unit.



Chapter 5 133

e  Base-level system processes, including the scheduler and the idle process, are started. The
scheduler manages the sequence of execution for process threads. The idle process contains
the code that executes when there are no other threads ready for the scheduler to run.

e Devicedrivers are enumerated and associated with each peripheral in the system. Initial-

ization code is executed for each driver, as discussed earlier in this chapter.

e Interrupts are configured and enabled. Once interrupts have been enabled, the system
begins to perform 1/O interactions with peripheral devices.

e System services are started. These processes support non-operating system activities
(such as networking) and persistent, installed capabilities (for example, a web server).

e  For PC-type computers, a user interface process is started, which presents a login screen.
This screen allows the user to initiate an interactive session with the computer. In embed-
ded devices, the real-time application begins execution. The basic operational sequence
for a simple embedded application is to read inputs from 1/O devices, execute a compu-
tation algorithm to generate outputs, and write the outputs to I/O devices, repeating this

procedure at fixed time intervals.

This section uses the term process to indicate a program running on a processor. The term thread
indicates a flow of execution within a process, of which there may be more than one. The next

section examines these topics in more detail.

Processes and threads

Many, but not all, operating systems support the concept of multithreaded execution. A thread
is a sequence of program instructions that logically executes in isolation from other threads. An
operating system running on a single-core processor creates the illusion of multiple simultane-

ously running threads by performing time-slicing.

In time-slicing, an operating system scheduler grants each ready-to-run thread a period of time
in which to execute. As a thread’s execution interval ends, the scheduler interrupts the running
thread and continues executing the next thread in its queue. In this manner, the scheduler gives

each thread a bit of time to run before going back to the beginning of the list and starting over again.

In operating systems capable of supporting multiple runnable programs simultaneously, the
term process refers to a running instance of a computer program. The system allocates resources,

such as memory and membership in the scheduler’s queue of runnable threads, to each process.

When a process first begins execution, it consists of a single thread. The process may create more

threads as it executes.
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Programmers create multithread applications for various reasons, including the following:

One thread can perform I/O while a separate thread executes the main algorithm of the
program. For example, a primary thread can periodically update a user display with re-
ceived information while a separate thread waits in a blocked state for user input from

the keyboard.

Applications with substantial computational requirements can take advantage of multi-
processor and multi-core computer architectures by splitting large computational jobs into
groups of smaller tasks capable of execution in parallel. By running each of these smaller
tasks as a separate thread, programs enable the scheduler to assign different threads to

execute on multiple cores simultaneously.

A process passes through a series of states during its life cycle. Some process states assigned by

operating systems are as follows:

Initializing: When a process is first started, perhaps as the result of a user double-click-
ing an icon on the desktop, the operating system begins loading the program code into
memory and assigning system resources for its use.

Waiting: After process initialization has been completed, it is ready to run. At this point,
its thread is assigned to the scheduler’s queue of runnable threads. The process remains
in the Waiting state until the scheduler permits it to start running.

Running: The thread is executing the program instructions contained in its code section.
Blocked: The thread enters this state when it requests I/O from a device that causes execu-
tion to pause. For example, reading data from a file normally causes blocking. In this state,
the thread waits in the Blocked state for the device driver to finish processing the request.
As soon as a running thread becomes blocked, the scheduler is free to switch to another
runnable thread while the first thread’s I/O operation is in progress. When the operation
completes, the blocked thread returns to the Waiting state in the scheduler queue and

eventually returns to the Running state, where it processes the results of the I/O operation.

Ready-to-run processes rely on the scheduler to receive the execution time. The scheduler process

is responsible for granting execution time to all system and user threads.

The scheduler is an interrupt-driven routine that executes at periodic time intervals, as well as

in response to actions taken by threads, such as the initiation of I/O operations. During operat-

ing system initialization, a periodic timer is attached to the scheduler interrupt handler and the

scheduler timer is started.



Chapter 5 135

While each process is in the Initializing state, the kernel adds a data structure called a process
control block (PCB) to its list of running processes. The PCB contains information the system
requires to maintain and interact with the process over its lifetime, including its memory alloca-
tions and details regarding the file containing its executable code. In most operating systems, a

process is identified by an integer that remains unique during its lifetime.

In Windows, the Resource Monitor tool (you can start this tool by typing Resource Monitor into
the Windows search box and clicking on the result identified as Resource Monitor) displays
information about running processes, including the process identifier (PID) associated with
each process. In Linux, the top command displays the processes consuming the most system

resources, identifying each by its PID.

The scheduler maintains information associated with each thread in a thread control block
(TCB). Each process has a list of associated TCBs, with a minimum of one entry in the list. The
TCB contains information related to the thread, such as processor context. The processor con-
text is the collection of information the kernel uses to resume execution of a waiting or blocked

thread, consisting of these items:

e  The saved processor registers
e  The stack pointer
e  Theflagsregister

e Theinstruction pointer

Similar to the PID, each thread has an integer thread identifier (TID) that remains unique during

its lifetime.

The scheduler uses one or more scheduling algorithms to ensure execution time is allocated eq-
uitably among system and user processes. Two main categories of thread scheduling algorithms

have been widely used since the early days of computing—non-preemptive and preemptive:

¢ Non-preemptive scheduling grants a thread complete execution control, allowing it to
run until it terminates or until it voluntarily releases control to the scheduler so that other

threads can have a chance to run.

e Inpreemptive scheduling, the scheduler has the authority to stop a running thread and

hand execution control to another thread without approval from the first thread.
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When a preemptive scheduler switches execution from one thread to another, it performs

the following steps:

1. Either a timer interrupt occurs that causes the scheduler to begin execution, or
a running thread performs an action that causes blocking, such as initiating an
I/O operation.

2. The scheduler copies the departing thread’s processor registers into the context
fields of the thread’s TCB.

3. The scheduler consults its list of runnable threads and determines which thread

to place in the Running state.
4. Theschedulerloads the context of the incoming thread into the processor registers.

5. The scheduler resumes execution of the incoming thread by jumping to the

instruction pointed to by the thread’s program counter.

Thread scheduling occurs at a high frequency, which implies the code involved in scheduler
activity has to be as efficient as possible. In particular, storing and retrieving processor context
takes some time, so operating system designers make every effort to optimize the performance

of the scheduler’s context switching code.

Because there may be numerous processes competing for execution time at a given moment, the
scheduler must ensure that critical system processes can execute at their required intervals. At
the same time, from the user’s point of view, applications must remain responsive to user inputs

while providing an acceptable level of performance during lengthy computations.

Various algorithms have been developed over the years to efficiently manage these competing
demands. A key feature of most thread scheduling algorithms is the use of process priorities. The

next section introduces several priority-based thread scheduling algorithms.

Scheduling algorithms and process priority

Operating systems supporting multiple processes generally provide a prioritization mechanism
to ensure that the mostimportant system functions receive adequate processing time, even when
the system is under heavy load, while continuing to provide adequate time for the execution of
lower-priority user processes. Several algorithms have been developed to meet various perfor-
mance goals for different types of operating systems. Some scheduling algorithms that have been

popular over the years, beginning with the simplest, are as follows:



Chapter 5 137

e  First come, first served (FCFS): This non-preemptive approach was common in legacy
batch processing operating systems. In an FCFS scheduling algorithm, each process is
granted execution control and retains control until execution is completed. There is no
prioritization of processes, and the time to complete any process is dependent on the

execution time of processes preceding it in the input queue.

e  Cooperative multithreading: Early versions of Windows and macOS used a non-pre-
emptive multithreading architecture that relied on each thread to voluntarily relinquish
control to the operating system at frequent intervals. This required significant effort by
application developers to ensure a single application did not starve other applications
of opportunities to execute by failing to release control at appropriate intervals. Each
time the operating system received control, it selected the next thread to execute from a

prioritized list of runnable threads.

e Round-robin scheduling: A preemptive round-robin scheduler maintains alist of runna-
ble threads and grants each an execution interval in turn, starting over at the beginning
of the list when reaching the end. This approach effectively sets all process priorities as
equal, giving each an opportunity to execute for defined periods of time, at time intervals

dependent on the number of processes in the scheduler’s list.

o  Fixed-priority preemptive scheduling: In this algorithm, each thread is assigned a prior-
ity indicating the importance of its receiving execution control when it is in the Waiting
state. When a thread enters the Waiting state, if it has a higher priority than the currently
running thread, the scheduler immediately stops the running thread and turns control
over to the incoming thread. The scheduler maintains the list of Waiting processes in
priority order, with the highest priority threads at the head of the line. This algorithm can
result in the failure of lower-priority threads to get any execution time if higher-priority

threads monopolize the available execution time.

e Rate-monotonic scheduling (RMS): This is a fixed-priority preemptive scheduling algo-
rithm commonly used in real-time systems with hard deadlines (a hard deadlineis one that
cannot be missed). Under RMS, threads that execute more frequently are assigned higher
priorities. As long as a few criteria are satisfied (the thread execution interval equals the
deadline, there can be no delay-inducing interactions between threads, and the context
switch time is negligible), if the maximum possible execution time of each thread is below

amathematically derived limit, deadlines are guaranteed to be met.
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Fair scheduling: Fair scheduling attempts to maximize the utilization of processor time
while ensuring each user is granted an equal amount of execution time. Rather than as-
signing numeric priorities to threads, the effective priority of each thread is determined by
the amount of execution time it has consumed. As a thread uses more and more processor
time, its priority declines, giving other threads more opportunities to run. This approach
has the benefit that, for interactive users who do not consume much execution time, the
responsiveness of the system is improved. The Linux kernel uses a fair scheduling algo-

rithm as its default scheduler.

Multilevel feedback queue: This algorithm uses multiple queues, each with a different pri-
ority level. New threads are added at the tail of the highest-priority queue. At each sched-
uling interval, the scheduler grants execution to the thread at the head of the high-priority
queue and removes the thread from the queue, which moves the remaining threads closer
to execution. Eventually, the newly created thread receives an opportunity to execute. If
the thread consumes all the execution time granted to it, it is preempted at the comple-
tion of its interval and added to the tail of the next lower-priority queue. The Windows

Scheduler is a multilevel feedback queue.

The system idle process contains the thread that executes when there is no user- or system-as-

signed thread in the Waiting state. An idle process may be as simple as a single processor instruc-

tion that forms an infinite loop, jumping to itself. Some operating systems place the system in a

power-saving mode during idle periods rather than executing an idle loop.

The percentage of processor time consumed by running processes is computed by determining

the fraction of time the system was executing a non-idle thread over a measurement period. The

following screenshot is a Windows Resource Monitor view of running processes consuming the

highest average share of processor time:
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Figure 5.1: Windows Resource Monitor process display

In this figure, the PID column displays the numeric process identifier and the Threads column

shows the number of threads in the process. The process state is Running for all of the processes

visible in this display.
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The following screenshot shows the result of running the top command on a Linux system:
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Figure 5.2: Linux top command process display

The upper part of the display contains summary information, including the number of processes

(referred to as Tasks here) in each state.

Each row in the lower part of the display presents information about one running process. As in
Windows, the PID column indicates the PID. The state of each process is shown in the S column,

with these possible values:

e  R:Runnable, meaning either running or in the queue of ready-to-run threads
e  S:Sleeping: Paused while blocked; waiting for an event to complete
e T:Stopped in response to a job control command (pressing CTRL+Z will do this)

e  Z:Zombie, which occurs when a child process belonging to another process terminates,
but the child process information continues to be maintained by the system until the

parent process ends

The PR column displays the scheduling priority of the process. Smaller numbers represent higher

priorities.
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Up to this point, we have referred to the computer processor as a singular entity. In most modern
PCs, the processor integrated circuit contains two or more processor cores, each implementing
the features of a complete, independent processor, including a control unit, register set, and ALU.

The next section discusses the attributes of systems containing multiple processing units.

Multiprocessing

A multiprocessing computer contains two or more processors that simultaneously execute se-
quences of instructions. The processors in such a system typically share access to system resources,
such as main memory and peripheral devices. The processors in a multiprocessing system may
be of the same architecture, or individual processors may be of different architectures to support
unique system requirements. Systems in which all processors are treated as equal are referred to
as symmetric multiprocessing systems. Devices that contain multiple processors within a single

integrated circuit package are called multi-core processors.

At the level of the operating system scheduler, a symmetric multiprocessing environment sim-
ply provides more processors for use in thread scheduling. In such systems, the scheduler treats

additional processors as resources when assigning threads for execution.

In a well-designed symmetric multiprocessing system, throughput can approach the ideal scenario
of scaling linearly with the number of available processor cores, assuming contention for shared
resources is minimal. If multiple threads on separate cores attempt to perform heavy simultane-
ous access to main memory, for example, there will be inevitable performance degradation as the
system arbitrates access to the resource and shares it among competing threads. A multichannel

interface to DRAM can improve overall system performance in this scenario.

A symmetric multiprocessing system is an example of a multiple instruction, multiple data
(MIMD) architecture. MIMD is a parallel processing configuration in which each processor core
executes an independent sequence of instructions on its own set of data. A single instruction,
multiple data (SIMD) parallel processing configuration, in comparison, executes the same in-

struction operation on multiple data elements simultaneously.

Modern processors implement SIMD instructions to perform parallel processing on large datasets
such as graphical images and audio data sequences. In current-generation PCs, the use of multi-
core processors enables MIMD execution parallelism, while specialized instructions within the
processors provide a degree of SIMD execution parallelism. SIMD processing will be discussed

further in Chapter 8, Performance-Enhancing Techniques.
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Processor clock speeds have grown from the 4.77 MHz of the original PC to over 4 GHz in modern
processors, nearly a thousand-fold increase. Future clock speed increases are likely to be more
limited as fundamental physical limits present looming obstacles. To compensate for limited
future performance gains from increases in clock speed, the processor industry has turned to
emphasizing various forms of execution parallelism in personal computer systems and smart
devices. Future trends are likely to continue the growth in parallelism as systems integrate doz-
ens, then hundreds, and eventually thousands of processor cores executing in parallel in PCs,

smartphones, and other digital devices.

Summary

This chapter began with an overview of device drivers, including details on the instruction se-
quences used by driver code to read from and write to a simple I/O device: the PC parallel port. We
continued with a discussion of the legacy BIOS and the newer UEFI, which provide the code that
first executes on PC power-up, performs device testing and initialization, and initiates loading
of the operating system. We saw how the trusted boot process can ensure that only authorized

and unmodified code can be permitted to execute during system startup.

We continued with a description of some of the fundamental elements of operating systems,
including processes, threads, and the scheduler. Various scheduling algorithms used in past
computers and the systems of today were introduced. We examined the output of tools available

in Linux and Windows that present information about running processes.

The chapter concluded with a discussion of multiprocessing and its performance impact on the
computer systems of today, as well as the implications of MIMD and SIMD parallel processing

for the future of computing.

The next chapter will introduce specialized computing domains and their unique processing
requirements in the areas of real-time computing, digital signal processing, and graphics pro-

cessing unit (GPU) processing.

Exercises

1. Restart your computer and enter the BIOS or UEFI settings. Examine each of the menus
available in this environment. Does your computer have BIOS or does it use UEFI? Does
your motherboard support overclocking? When you are finished, be sure to select the
option to quit without saving changes unless you are absolutely certain you want to

make changes.
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2. Run the appropriate command on your computer to display the currently running pro-

cesses. What is the PID of the process you are using to run this command?

Join our community Discord space

Join the book’s Discord workspace for a monthly Ask me Anything session with the author:
https://discord.gg/7h8aNRhRuY







Specialized Computing
Domains

Most computer users are at least superficially familiar with key performance-related attributes
of personal computers and smart digital devices such as processor speed and random-access
memory (RAM) size. This chapter explores the performance requirements of computing domains
that tend to be less directly visible to users, including real-time systems, digital signal processing,

and graphics processing unit (GPU) processing.

We will examine the unique computing features associated with each of these domains and review

some examples of modern devices implementing these concepts.

After completing this chapter, you will be able to identify application areas that require real-time
computing and will understand the underlying concepts of digital signal processing, with an
emphasis on its widespread use in wireless communication. You will also understand the basic
architecture of modern GPUs and will be familiar with some modern implementations of com-

ponents in the computing domains discussed in this chapter.
This chapter covers the following topics:

e  Real-time computing
o Digital signal processing
e  GPU processing

e  Examples of specialized architectures
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Technical requirements

The files for this chapter, including the answers to the exercises, are available at https://github.

com/PacktPublishing/Modern-Computer-Architecture-and-Organization-Second-Edition.

Real-time computing

The last chapter provided a brief introduction to some of the requirements of real-time computing
in terms of a system’s responsiveness to changes in its inputs. These requirements are specified
in the form of timing deadlines that limit how long the system can take to produce an output in
response to a change in its input. This section looks at these timing specifications in more detail
and presents some of the features real-time computing systems implement to ensure timing

requirements are met.

Real-time computing systems can be categorized as providing soft or hard guarantees of re-
sponsiveness. A soft real-time system is considered to perform acceptably if it meets its desired
response time most, but not necessarily all, of the time. An example of a soft real-time applica-
tion is the clock display on a cell phone. When opening the clock display, some implementations
momentarily present the time that was shown the last time the clock display was used before
quickly updating to the correct, current time. Of course, users would like the clock to show the
correct time whenever it is displayed, but momentary glitches such as this are not typically seen

as significant problems.

Ahardreal-time system, on the other hand, is considered to have failed if it ever misses any of its
response-time deadlines. Safety-critical systems such as airbag controllers in automobiles and
flight control systems for commercial aircraft have hard real-time requirements. Designers of
these systems take timing requirements very seriously and devote substantial effort to ensuring

the real-time processor satisfies its timing requirements under all possible operating conditions.

The control flow of a simple real-time system is shown in the following figure:


https://github.com/PacktPublishing/Modern-Computer-Architecture-and-Organization-Second-Edition
https://github.com/PacktPublishing/Modern-Computer-Architecture-and-Organization-Second-Edition
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Figure 6.1: Real-time system control flow

Figure 6.1 represents a real-time computing system using a hardware interval timer to control the

time sequencing of its operation. A down-counting interval timer performs a repetitive cycle of

the following steps:

1. Load the counter register with a predefined numeric value

2. Decrement the counter at a fixed clock rate

3.  When the count reaches zero, generate an event such as setting a bit in a register or trig-

gering a processor interrupt

4. Gobacktostep1

An interval timer generates a periodic sequence of events with timing accuracy that depends

on the characteristics of the system clock, which is often driven by a quartz crystal. By waiting

for the timer event at the top of each loop, the system in Figure 6.1 begins each execution pass at

fixed, nearly equal time intervals.
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To satisfy the demands of hard real-time operation, the execution time of the code inside the
loop (the code contained in the Read inputs, Compute outputs, and Write outputs blocks in
Figure 6.1) must always be less than the timer interval. Prudent system developers ensure that
no path through the code results in execution time anywhere close to the hard real-time limit. A
conservative system design rule might insist that the longest execution path for code inside the

loop consumes no more than 50% of the timer interval.

Practical real-time systems constructed in this configuration might be based on an 8-, 16-, or
32-bit processor running at a clock frequency in the tens to hundreds of MHz range. The timer
employed in the main loop of such systems generates events at a developer-selected frequency,

often in the 10 to 1,000 Hz range.

Inless complex system designs, the code represented by the blocks in Figure 6.1 often runs directly
on the processor hardware with no intervening software layers. This configuration contains no
operating system of the type described in Chapter 5, Hardware-Software Interface. A sophisticated
real-time application, on the other hand, is likely to have more extensive needs than can be met

by this simplistic architecture, which makes the use of a real-time operating system attractive.

Real-time operating systems

A real-time operating system (RTOS) contains several features superficially similar to the gen-
eral-purpose operating systems discussed in Chapter 5, Hardware-Software Interface. An RTOS
design differs significantly from general-purpose operating systems, however, in that all RTOS
aspects—from kernel internals to device drivers, to system services— are focused on meeting

hard real-time requirements.

Most RTOS designs employ preemptive multithreading, often referred to as multitasking in
RTOS literature. The terms task and thread are somewhat synonymous in the RTOS context, so

for consistency we will continue to use the term thread to indicate an RTOS task.

RTOS designs at the lower end of the sophistication scale typically support multithreading within
the context of a single application process. These simpler RTOSes support thread prioritization

but often lack memory protection features.

More sophisticated RTOS architectures provide operating system features such as memory pro-
tection in addition to prioritized preemptive multithreading. These RTOSes allow multiple pro-
cesses to be in the Running state simultaneously, each potentially containing several threads.
In protected memory systems, kernel memory access by application threads is prohibited and

applications cannot reach into each other’s memory regions.
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RTOS environments, from lower to higher levels of sophistication, provide several data structures
and communication techniques geared toward efficient data transfer between threads, and to
support controlled access to shared resources. These capabilities are often available in non-RTOSes

as well. Some examples of these features are:

e  Mutex: A mutex (short for mutual exclusion) is a mechanism for a thread to claim access
to a shared resource without blocking the execution of other threads. In its simplest form,
amutex is a variable accessible to all threads that holds the value 0 when the resource is
free and 1 when the resource is in use. A thread that wants to use the resource reads the
current value of the mutex variable and, if it is O, sets it to 1 and performs the operation
using the resource. After completing the operation, the thread sets the mutex back to 0.

There are, however, some potential problems with mutexes:

o Thread preemption: Let’s say a thread reads the mutex variable and sees that it
is 0. Because the scheduler can interrupt an executing thread at any time, that
thread might be interrupted before it has a chance to set the mutex to 1. A different
thread then resumes execution and takes control of the same resource because it
sees the mutex is still 0. When the original thread resumes, it finishes setting the
mutex to 1 (even though, by now, it has already been set to 1). At this point, both
threads incorrectly believe they have exclusive access to the resource, which is

likely to lead to serious problems when both threads try to use the resource.

To prevent this scenario, many processors implement some form of a test-and-
set instruction. A test-and-set instruction reads a value from a memory address
and sets thatlocation to 1in a single, uninterruptable (also referred to as atomic)
action. In the x86 architecture, the BTS (bit test and set) instruction performs this
operation. In processor architectures that lack a test-and-set instruction (such as
the 6502), the risk of preemption can be eliminated by disabling interrupts before
checking the state of the mutex variable, and then re-enabling interrupts after
setting the mutex to 1. This approach has the disadvantage of reducing real-time

responsiveness while interrupts are disabled.

e  Priority inversion: Priority inversion occurs when a higher-priority thread at-
tempts to gain access to a resource while the corresponding mutex is held by a
lower-priority thread. In this situation, RTOS implementations generally place
the higher-priority thread in a blocked state, allowing the lower-priority thread

to complete its operation and release the mutex.
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The priority inversion problem occurs when a thread with a priority between the
upper and lower levels of the two threads begins execution. While this mid-priority
thread is running, it prevents the lower-priority thread from executing and releas-
ing the mutex. The higher-priority thread must now wait until the mid-priority
thread finishes execution, effectively disrupting the entire thread prioritization

scheme. This can lead to a failure of the high-priority thread to meet its deadline.

One method to prevent priority inversion is priority inheritance. In an RTOS im-
plementing priority inheritance, whenever a higher-priority thread (hi_thread)

requests a mutex held by a lower-priority thread (1o_thread), lo_thread is tem-
porarily raised in priority to the level of hi_thread. This eliminates any possibility
of amid-priority thread delaying the completion of the (originally) lower-priority
lo_thread. When lo_thread releases the mutex, the RTOS restores the thread’s

original priority.

e Deadlock: Deadlock can occur when multiple threads attempt to lock multiple
mutexes. If threadl and thread2 both require mutex1 and mutex2, a situation
may arise in which thread1 locks mutex1 and attempts to lock mutex2, while at
the same time thread2 has already locked mutex2 and attempts to lock mutex1.
Neither task can proceed from this state, hence the term deadlock. Some RTOS im-
plementations check the ownership of mutexes during lock attempts and report
an error in a deadlock situation. In simpler RTOS designs, it is up to the system

developer to ensure deadlock cannot occur.

Semaphore: A semaphore is a generalization of the mutex. Semaphores can be of two
types: binary and counting. A binary semaphore is like a mutex except that rather than
controlling access to a resource, the binary semaphore is intended to be used by one task
to send a signal to another task. If thread1 attempts to take semaphorel while it is unavail-

able, thread1 will block until another thread or interrupt service routine gives semaphorel.

e A counting semaphore contains a counter with an upper limit. Counting sema-
phores are used to control access to multiple interchangeable resources. When a
thread takes the counting semaphore, the counter increments and the task pro-
ceeds. When the counter reaches its limit, a thread attempting to take the sema-

phore blocks until another thread gives the semaphore, decrementing the counter.

Consider the example of a system that supports a limited number of simultane-

ously open files.
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A counting semaphore can be used to manage file open and close operations. If
the system supports up to 10 open files and a thread attempts to open an 11" file,
a counting semaphore with a limit of 10 will block the file open operation until

another file is closed and its descriptor becomes available.

¢ Queue: A queue (also referred to as a message queue) is a unidirectional communication
path between processes or threads. The sending thread places data items into the queue
and the receiving thread retrieves those items in the same order they were sent. The
RTOS synchronizes access between the sender and receiver so the receiver only retrieves
complete data items. Queues are commonly implemented with a fixed-size storage buffer.
The buffer will eventually fill and block further insertions if a sending thread adds data

items faster than the receiving thread retrieves them.

RTOS message queues provide a programming interface for the receiving thread to check
if the queue contains data. Many queue implementations also support the use of a sema-

phore to signal a blocked receiving thread when data becomes available.

e  Critical section: It is common for multiple threads to require access to a shared data
structure. When using shared data, it is vital that read and write operations from dif-
ferent threads do not overlap in time. If such an overlap occurs, the reading thread may
receive inconsistent information if it accesses the data structure while another thread
is performing an update. The mutex and semaphore mechanisms provide options for
controlling access to shared data structures. The use of a critical section is an alternate
approach thatisolates the code accessing the shared data structure and allows only one

thread to execute that sequence at a time.

e Asimple method to implement a critical section is to disable interrupts just before entering
a critical section and re-enable interrupts after completing the critical section. This pre-
vents the scheduler from running and ensures the thread accessing the data structure has
sole control until it exits the critical section. However, this method has the disadvantage
of impairing real-time responsiveness by preventing responses to interrupts, including

thread scheduling, while interrupts are disabled.

Some RTOS implementations provide a more sophisticated implementation of the critical sec-
tion technique involving the use of critical section data objects. Critical section objects typically
provide options to allow a thread to either enter a blocked state until the critical section becomes
available or test if the critical section is in use without blocking. The option for testing critical
section availability allows the thread to perform other work while waiting for the critical section

to become free.
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There are far more real-time computing systems in operation today than there are PCs we think
of as computers. General-purpose computers represent less than 1% of the digital processors pro-
duced each year. Devices ranging from children’s toys to digital thermometers, to televisions, to
automobiles, to spacecraft contain at least one, and often dozens of, embedded processors, each

running some type of RTOS.

This section provided a brief introduction to some of the communication and resource manage-
ment capabilities common in RTOS implementations. The next section introduces processing

architectures used in the processing of digital samples of analog signals.

Digital signal processing

A digital signal processor (DSP) is optimized to perform computations on digitized representa-
tions of analog signals. Real-world signals such as audio, video, cell phone radio frequency (RF)
transmissions, and radar are analog in nature, meaning the information being processed is the
response of an electrical sensor to a continuously varying input voltage. Before a digital proces-
sor can begin to work with an analog signal, the signal voltage must be converted to a digital
representation by an analog-to-digital converter (ADC). The following section describes the

operation of ADCs and digital-to-analog converters (DACs).

ADCs and DACs

An ADC measures an analog input voltage and produces a digital output word representing the
input voltage. A DAC performs the reverse operation of an ADC, converting a digital word to an

analog voltage. ADCs often use a DAC internally during the conversion process.

Avariety of circuit architectures are used in DAC applications, generally with the goal of achieving
a combination of low cost, high speed, and high precision. One of the simplest DAC designs is

the R-2R ladder, shown here in a 4-bit input configuration:

d d d d

a 1 2 3

Figure 6.2: R-2R ladder DAC
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This DAC uses a 4-bit data word on the inputs d, — ds;, where d; is the most significant bit, to
generate an analog voltage, V, If we assume each bit of the 4-bit word d is driven at either O V
(for a 0 bit) or 5 V (for a 1bit), the output V, equals (d / 2*) * 5 V, where d is a data value in the
range O to 15. An input word of 0 has an output of O V, and an input word of 15 has an output of
(15/16) * 5V = 4.6875 V. Intermediate values of d produce equally spaced output voltages at in-
tervals of (1/16) * 5V =0.3125 V.

An ADC can use an internal DAC like this (though usually with a larger number of bits, with a
correspondingly finer voltage resolution) together with a sample-and-hold circuit to determine
the digital equivalent of an analog input voltage. Because the analog input signal can vary con-
tinuously over time, ADC circuits generally use a sample-and-hold circuit to maintain a constant
analog inputvoltage during the conversion process. A sample-and-hold circuitis an analog device
with a digital hold input signal. When the hold input is inactive, the sample-and-hold output
tracks the input voltage. When the hold input is asserted, the sample-and-hold circuit freezes its

output voltage at the input voltage that was present at the moment the hold signal became active.

With the sample-and-hold output held constant, the ADC uses its DAC to determine the digital
equivalent of the input voltage. To make this determination, the ADC uses a comparator, which
is a circuit that compares two analog voltages and produces a digital output signal indicating
which is the higher voltage. The ADC feeds the sample-and-hold output voltage into one input
of the comparator and the DAC output into the other input, as shown in the following diagram,

in which the DAC input word size is n bits:

Analog
input Sample N
»| and hold "
Comparator
Comparator output
DAC >
},
Sample and DAC
hold control input

Figure 6.3: ADC architecture
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The job of the ADC is to determine the DAC input word that causes the comparator to change
state. A simple way to do this is to count upward from zero, writing each numeric value to the DAC
inputs and observing the comparator output to see if it changed state. The DAC output that first
causes the comparator to change state is the smallest DAC output voltage thatis greater than the
sample-and-hold output voltage. The actual sampled analog voltage is between this DAC output
and the DAC output when driven by a data word one count smaller. This ADC configuration is

called a counter type ADC.

While simple in concept, the counter type ADC can be quite slow, especially if the word size
is large. A faster method is to sequentially compare each bit in the DAC data word, beginning
with the most significant bit (d;). Starting with a data word of 1000b in our 4-bit example, the
first comparator reading indicates if the analog input voltage is above or below the DAC voltage
midpoint. This determines if bit d; of the ADC reading is O or 1. Using the now-known value of
ds, d,is set to 1 to indicate which quarter of the full-scale range the input voltage lies within. This
procedure is repeated to sequentially determine each of the remaining bits, ending with the least

significant bit.

This ADC conversion technique is referred to as successive approximation. A successive ap-
proximation ADC is much faster than a counter type ADC. In our example, the maximum pos-
sible number of comparisons drops from 16 to 4. In a 12-bit successive approximation ADC, the
maximum possible number of comparisons drops from 4,096 to 12. In general, using successive
approximation rather than counting reduces the maximum number of steps for an n-bit ADC
from 2" to n. Successive approximation ADCs are available with resolutions from 8 to 18 bits, with

maximum conversion rates up to several MHz.

ADCs and DACs are characterized by resolution and maximum conversion speed. The resolution
of an ADC or DAC s determined by the number of bits in its data word. The maximum conversion

speed determines how quickly the ADC or DAC can produce sequential outputs.

To process real-time data, an ADC produces a sequence of measurements at periodic time intervals
for use as input to further processing. Requirements for data word resolution and sample rate
vary widely depending on the particular DSP application. Some examples of standard digitized

analog data formats are:

e  Compactdiskdigital audio is sampled at 44.1 kHz with 16 bits per sample in two channels,

corresponding to the left and right speakers.
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e Video cameras measure the analog light intensity received at each pixel in a two-dimen-
sional array and convert the reading to a digital word, usually 8 bits wide. Separate closely
spaced sensors with color filters produce red, green, and blue measurements for each
pixel in the image. The complete dataset for a single pixel consists of 24 bits, composed
of three 8-bit color values. A single image can contain tens of millions of pixels, and vid-
eo cameras typically output 30 to 60 frames per second. Because digital video produces
such an enormous quantity of data, compression algorithms are generally used to reduce

storage and transmission requirements.

e Amobile phone contains an RF transceiver that down-converts the received RF signal to
a frequency range suitable for input to an ADC. Typical parameters for a mobile phone

ADC are 12 bits of resolution and a sample rate of 50 MHz.

e  An automotive radar system samples RF energy reflected from nearby obstacles with a

resolution of 16 bits at a rate of 5 MHz.

In the next section, we will examine signal processing requirements for data sequences captured
by ADCs.

DSP hardware features

DSPs are optimized to execute signal processing algorithms on digitized samples of analog infor-
mation. The dot productis a fundamental operation used in many algorithms performed by DSPs.
If A and B are two equal-length vectors (a vector is a one-dimensional array of numeric values),
the dot product of A and B is formed by multiplying each element of A by the corresponding el-
ement of B, and summing the resulting products. Mathematically, if the length of each vector is

n (indexed from 0 to n-1), the dot product of the vectors is:

n-1
A'B= ZAl-Bi = AyBy+ AyB; + AyBy + - + Ay_1B,_y
i=0

L
The repetitive nature of the dot product calculation provides a natural path for performance

optimization in digital systems. The basic operation performed in the dot product computation

is called multiply-accumulate (MAC).

A single MAC operation consists of multiplying two numbers together and adding the result to an
accumulator, which was initialized to zero at the beginning of the dot product calculation. The
mathematical performance of DSP chips is commonly measured in terms of MACs per second.

Many DSP architectures are capable of performing one MAC per instruction clock cycle.
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To perform a MAC operation on every clock cycle, a DSP cannot dedicate separate clock cycles to
read a MAC instruction from program memory, read each of the vector elements to be multiplied
from data memory, compute the product, and add it to the accumulator. All of these things must

happen in one step.

The von Neumann architecture, introduced in Chapter 1, Introducing Computer Architecture, uses
a single memory region for program instructions and data. This configuration results in a lim-
itation known as the von Neumann bottleneck, resulting from the need to pass both program

instructions and data values across a single processor-to-memory interface.

This effect can be mitigated with an architecture that separates program instructions and data
storage into two separate memory regions, each with its own processor interface. This configu-
ration, called the Harvard architecture, allows program instruction and data memory access to
occur in parallel, enabling instructions to execute in a smaller number of clock cycles. The Har-

vard architecture will be discussed in more detail in Chapter 7, Processor and Memory Architectures.

A DSP with a Harvard architecture must perform two data memory accesses to retrieve the el-
ements of the A and B vectors to be multiplied in a MAC operation. This normally requires two
clock cycles, failing to meet the performance goal of one MAC per clock cycle. A modified Harvard
architecture supports the use of program memory to store data values in addition to instructions.
In many DSP applications, the values of one of the vectors (let’s say the A vector) involved in the
dot product are constant values known at the time the application is compiled. In a modified
Harvard architecture, the elements of the A vector can be stored in program memory and the

elements of the B vector, representing input data read from an ADC, are stored in data memory.

To perform each MAC operation in this architecture, one element of the A vector is read from
program memory, one element of the B vector is read from data memory, and the accumulated
productis stored in an internal processor register. If the DSP contains cache memory for program
instructions, the MAC instruction performing each step of the dot product will be retrieved from
the cache once the first MAC operation reads it from program memory, avoiding further memory
access cycles to bring in the instruction. This configuration (a modified Harvard architecture with
program instruction caching) enables single-cycle MAC operations for all iterations of the dot
product once the first MAC operation is complete. Since the vectors involved in real-world dot
product computations commonly contain hundreds or even thousands of elements, the overall
performance of the dot product operation can closely approach the ideal of one MAC operation

per DSP clock cycle.
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ADSP can be categorized as having a fixed-point or a floating-point architecture. Fixed-point DSPs
use signed or unsigned integers to perform mathematical operations such as MAC. Fixed-point
DSPs are generally less costly than floating-point DSPs. However, fixed-point mathematics has
the potential for numeric issues such as overflow, which can manifest by exceeding the range of

the dot product accumulator.

To reduce the possibility of overflow, DSPs often implement an extended range accumulator,
sometimes 40 bits wide in a 32-bit architecture, to support dot products on lengthy vectors. Due
to concerns regarding overflow and related numerical issues, programming fixed-point DSPs

requires extra effort to ensure these effects don’t result in unacceptable performance degradation.

Floating-point DSPs often use a 32-bit wide numeric format for internal calculations. Once an
integer ADC reading has been received by the DSP, all further processing is performed using
floating-point operations. By taking advantage of floating-point operations, the potential for

issues such as overflow is drastically reduced, resulting in quicker software development cycles.

The use of floating-point processing also improves the fidelity of computation results, realized
in terms of improved signal-to-noise ratio (SNR) in comparison to an equivalent fixed-point
implementation. Fixed-point calculations quantize the result of each mathematical operation
at the level of the integer’s least significant bit. Floating-point operations generally maintain
accurate results from each operation that are within a small fraction of the corresponding fixed-

point least significant bit.

Signal processing algorithms

Building upon our understanding of DSP hardware and the operations it supports, we will next

look at some examples of digital signal processing algorithms in real-world applications.

Convolution

Convolution is a formal mathematical operation on a par with addition and multiplication. Unlike
addition and multiplication, which operate on pairs of numbers, convolution operates on pairs
of signal vectors. In the DSP context, a signal is a series of digitized samples of a time-varying
input measured at equally spaced time intervals. Convolution is the most fundamental operation
in the field of DSP.

In many practical applications, one of the two signals involved in a convolution operation is a
fixed vector of numbers stored in memory. The other signal is a sequence of samples originating

from ADC measurements.
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To implement the convolution operation, as each ADC measurement is received, the DSP computes
an updated output, which is simply the dot product of the fixed data vector (let’s say the length
of this vector is ) and the most recent # input samples received from the ADC. To compute the
convolution of these vectors, the DSP must perform n MAC operations each time it receives an
ADC sample.

The fixed vector in this example, referred to as 4, is called the impulse response. A digital impulse
is defined as a theoretically infinite sequence of samples in which one sample is 1 and all the
preceding and following samples are 0. Using this vector as the input to a convolution with the
vector h produces an outputidentical to the sequence k, surrounded by preceding and following
zeros. The single 1 value in the impulse sequence multiplies each element of /& on successive

iterations, while all other elements of & are multiplied by 0.

The particular values contained in the & vector determine the effects of the convolution operation

on the input data sequence. Digital filtering is one common application of convolution.

Digital filtering
A frequency selective filter is a circuit or algorithm that receives an input signal and attempts
to pass desired frequency ranges to the output without distortion while eliminating, or at least

reducing to an acceptable level, frequency ranges outside the desired ranges.

We are all familiar with the bass and treble controls in audio entertainment systems. These are
examples of frequency selective filters. The bass function implements a variable gain lowpass
filter, meaning the audio signal is filtered to select the lower frequency portion of the signal, and
this filtered signal is fed to an amplifier that varies its output power in response to the position of
the bass control. The treble section is implemented similarly, using a highpass filter to select the
higher frequencies in the audio signal. The outputs of these amplifiers are combined to produce

the signal sent to the speakers.

Frequency selective filters can be implemented with analog technology or with digital signal
processing techniques. Simple analog filters are cheap and only require a few circuit components.

However, the performance of these simple filters leaves much to be desired.

Some key parameters of a frequency selective filter are stopband suppression and the width of
the transition band. Stopband suppression indicates how good a job the filter does of eliminat-
ing undesired frequencies in its output. In general, a filter does not entirely eliminate undesired
frequencies, but for practical purposes, these frequencies can be reduced to a level thatis so small

they are irrelevant.
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The transition band of a filter describes the frequency span between the passband and the stop-
band. The passband is the range of frequencies to be passed through the filter, and the stopband is
the range of frequencies to be blocked by the filter. It is not possible to have a perfectly sharp edge
between the passband and stopband. Some separation between the passband and the stopband
is required, and trying to make the transition from passband to stopband as narrow as possible

requires a more complex filter than one with a wider transition band.

A digital frequency selective filter is implemented with a convolution operation using a carefully
selected set of values for the & vector. With the proper selection of elements in 4, it is possible to
design highpass, lowpass, bandpass, and bandstop filters. As discussed in the preceding para-
graphs, highpass and lowpass filters attempt to pass the high and low frequency ranges, respec-
tively, while blocking other frequencies. A bandpass filter attempts to pass only the frequencies
within a specified range and block all other frequencies outside that range. A bandstop filter

attempts to pass all frequencies except those within a specified range.

The goals of a high-performance frequency selective filter are to impart minimal distortion of
the signal in the passband, provide effective blocking of frequencies in the stopband, and have

as narrow a transition band as possible.

An analog filter implementing high-performance requirements may require a complex circuit de-
sign involving costly precision components. A high-performance digital filter, on the other hand,
is still just a convolution operation. A digital circuit implementing a high-performance lowpass
filter with minimal passband distortion and a narrow transition band may require a lengthy &
vector, possibly containing hundreds—or even thousands—of elements. The design decision
to implement such a filter digitally depends on the availability of cost-effective DSP resources

capable of performing MAC operations at the rate required by the filter design.

Fast Fourier transform (FFT)

The Fourier transform, named after the French mathematician Jean-Baptiste Joseph Fourier,
decomposes a time-domain signal into a collection of sine and cosine waves of differing frequen-
cies and amplitudes. The original signal can be reconstructed by summing these waves together

through a process called the inverse Fourier transform.

DSPs operate on time-domain signals sampled at fixed intervals. Because of this sampling, the
DSP implementation of the Fourier transform is called the discrete Fourier transform (DFT). In
general, a DFT converts a sequence of n equally spaced time samples of a function into a sequence

of n DFT samples, equally spaced in frequency.



160 Specialized Computing Domains

Each DFT sample is a complex number, composed of a real number and an imaginary number.

An imaginary number, when squared, produces a negative result.

We won’t delve into the mathematics of imaginary numbers here. An alternative way to view the
complex number representing a DFT frequency component (called a frequency bin) is to consider
the real part of the complex number to be a multiplier for a cosine wave at the bin frequency and
theimaginary part to be a multiplier for a sine wave at the same frequency. Summing these wave

components produces the time-domain representation of that DFT frequency bin.

The simplest implementation of the DFT algorithm for a sequence of length 7 is a double-nested
loop in which each loop iterates n times. If an increase in the length of the DFT is desired, the
number of mathematical operations increases as the square of n. For example, to compute the

DFT for a signal with a length of 1,000 samples, at least a million operations are required.

In 1965, James Cooley of IBM and John Tukey of Princeton University published a paper describ-
ing the computer implementation of a more efficient DFT algorithm, which came to be known
as the Fast Fourier Transform, (FFT). The algorithm they described was originally invented by

the German mathematician Carl Friedrich Gauss around 1805.

The FFT algorithm breaks a DFT into smaller DFTs, where the lengths of the smaller DFTs can be
multiplied together to form the number of samples in the original DFT. The efficiency improve-
ment provided by the FFT algorithm is greatest when the DFT length is a power of 2, enabling
recursive decomposition through each factor of 2 in the DFT length. A 1,024-point FFT requires
only a few thousand operations compared to over a million for the double-nested loop DFT

implementation.

Itis important to understand that the FFT operates on the same input data sequence as the DFT

and produces the same output as the DFT; the FFT just does it much faster for longer sequences.
The FFT is used in many practical applications in signal processing. Some examples are:

e  Spectral analysis: The output from a DFT on a time-domain sample sequence is a set of
complex numbers representing the amplitude of sine and cosine waves over a frequency
range representing the signal. These amplitudes directly indicate which frequency com-
ponents are present at significant levels in the signal and which frequencies contribute

smaller or negligible content.

Spectral analysis is used in applications such as audio signal processing, image processing,
and radar signal processing. Laboratory instruments called spectrum analyzers are com-

monly used for testing and monitoring RF systems such as radio transmitters and receivers.
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A spectrum analyzer displays a periodically updated image representing the frequency

content of its input signal, derived from an FFT computed over samples of that signal.

e  Filter banks: A filter bank is a series of individual frequency-selective filters, each pro-
cessing a separate frequency band. The complete set of filters in the bank covers the en-
tire frequency range of the input signal. A graphic equalizer, used in high-fidelity audio

applications, is an example of a filter bank.

An FFT-based filter bank is useful for decomposing multiple frequency-separated data
channels transmitted as a single combined signal. At the receiver, the FFT separates the
received signal into multiple bands, each of which contains an independent data channel.

The signal contained in each of these bands is further processed to extract its data content.

The use of FFT-based filter banks is common in radio receivers for wideband digital data

communication services such as digital television and 5G mobile communications.

e Data compression: A signal can be compressed to a smaller size by performing an FFT
and discarding frequency components considered unimportant. The remaining frequency
components form a smaller dataset that can be further compressed using standardized

coding techniques.

This approach is referred to as lossy compression because some of the information in
the input signal is lost. Lossy compression will generally produce a greater degree of
signal compression compared to lossless compression. Lossless compression algorithms
are used in situations where any data loss is unacceptable, such as when compressing

computer data files.

e Discrete cosine transform (DCT): The DCT is similar in concept to the DFT except that
rather than decomposing the input signal into a set of sine and cosine functions as in the
DFT, the DCT decomposes the input signal into only cosine functions, each multiplied by
areal number. Computation of the DCT can be accelerated using the same technique the

FFT employs to accelerate the computation of the DFT.

The DCT has the valuable property that, in many data compression applications, most of the
signalinformation is represented in a smaller number of DCT coefficients in comparison to
alternative algorithms such as the DFT. This allows a larger number of the less significant

frequency components to be discarded, thereby increasing data compression effectiveness.

DCT-based data compression is employed in many application areas that computer users and
consumers of audio and video entertainment interact with daily, including MP3 audio, Joint

Photographic Experts Group (JPEG) images, and Moving Picture Experts Group (MPEG) video.
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DSPs are often used in applications involving one- and two-dimensional data sources. Some ex-
amples of one-dimensional data are audio signals and the RF signal received by a mobile phone
radio transceiver. One-dimensional signal data consists of one sample value at each instant of

time for each of possibly several input channels.

A photographic image is an example of two-dimensional data. A two-dimensional image is de-
scribed in terms of the width and height of the image in pixels, and the number of bits representing
each pixel. Each pixel in the image is separated from the surrounding pixels by horizontal and

vertical spatial offsets. Every pixel in the image is (theoretically) sampled at the same pointin time.

Motion video represents three-dimensional information. One way to define a video segment is
as a sequence of two-dimensional images presented sequentially at regular time intervals. While
traditional DSPs are optimized to work with the two-dimensional data of a single image, they are

not necessarily ideal for processing sequential images at a high update rate.

The next section introduces GPUs, which are processors dedicated to handling the computing

requirements of video synthesis and display.

GPU processing

A GPU is a digital processor optimized to perform the mathematical operations associated with
generating and rendering graphical images for display on a computer screen. The primary appli-
cations for GPUs are playing video recordings and creating synthetic images of three-dimensional

scenes.

The performance of a GPU is measured in terms of screen resolution (the pixel width and height of
theimage) and the image update rate in frames per second. Video playback and scene generation
are hard real-time processes in which any deviation from smooth, regularly time-spaced image

updates is likely to be perceived by users as unacceptable graphical stuttering.

As with the video cameras described earlier in this chapter, GPUs generally represent each pixel
using three 8-bit color values, which indicate the intensities of red, green, and blue. Any percepti-
ble color can be produced by combining appropriate values for each of these three colors. Within
each color channel, the value 0 indicates the color is absent, and 255 is maximum intensity. Black
is represented by the color triple (red, green, blue) = (0, 0, 0), and white is (255, 255, 255). With
24 bits of color data, over 16 million unique colors can be displayed. The granularity between

adjacent 24-bit color values is, in general, finer than the human eye can distinguish.
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In modern personal computers, GPU functionality is available in a variety of configurations:

e A GPU card can be installed in a PCle slot

e Asystem can provide a GPU as one or more discrete integrated circuits on the main pro-

cessor board

e  GPU functionality can be built into the central processor’s integrated circuit

The most powerful consumer-class GPUs are implemented as PCIe expansion cards. These high-
end GPUs contain dedicated graphics memory and feature a fast communication path with the
main system processor (typically using a PCle x16 slot) for receiving commands and data repre-
senting the scene to be displayed. Some GPU designs support the use of multiple identical cards
in a single system to generate scenes for a single graphical display. This technology features a
separate high-speed communication bus linking the GPUs to each other. The use of multiple

GPUs in a system effectively increases the parallelization of graphics processing.

GPUs exploit the concept of data parallelism to perform identical computations simultaneously
on a vector of data items, producing a corresponding vector of outputs. Modern GPUs support
thousands of simultaneously executing threads, providing the capability to render complex,

three-dimensional images containing millions of pixels at 60 or more frames per second.

The architecture of a typical GPU consists of one or more multi-core processors, each supporting
multithreaded execution of data-parallel algorithms. The interface between the GPU processors
and graphics memory is optimized to provide maximum average data throughput, rather than
attempting to minimize access latency (which is the design goal for main system memory). GPUs
can afford to sacrifice a degree of latency performance to achieve peak streaming rate between the
GPU and its dedicated memory because maximizing throughput results in the highest possible

frame update rate.

In computer systems with less extreme graphical performance demands, such as business appli-
cations, a lower-performance GPU integrated within the same circuit die as the main processor
is alower-cost and often perfectly acceptable configuration. Integrated GPUs can play streaming
video and provide a more limited level of three-dimensional scene-rendering capabilities com-

pared to the higher-end GPUs.

Rather than relying on dedicated graphics memory, integrated GPUs use a portion of system mem-
ory for graphics rendering. Although the use of system memory rather than specialized graphics
memory results in a performance hit, such systems provide sufficient graphics performance for

most home and office uses.
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Smart devices such as portable phones and tablets contain GPUs as well, providing the same
video playback and three-dimensional scene-rendering capabilities as larger personal computer
systems. The constraints of small physical size and reduced power consumption necessarily limit
the performance of portable device GPUs. Nevertheless, modern smartphones and tablets are fully

capable of playing high-definition streaming video and rendering sophisticated gaming graphics.

GPUs as data processors

For many years, GPU architectures were designed very specifically to support the computational
needs of real-time three-dimensional scene rendering. In recent years, users and GPU vendors
have increasingly recognized that these devices are in fact small-scale supercomputers suitable
for use across a much broader range of applications. Modern GPUs provide floating-point execu-
tion speed measured in trillions of floating-point operations per second (teraflops). As of 2021,
a high-end GPU provides floating-point performance measured in the dozens of teraflops and
can execute data-parallel mathematical algorithms hundreds of times faster than a standard

desktop computer.

Taking advantage of the immense parallel computing power available in high-end GPUs, vendors
of these devices provide programming interfaces and expanded hardware capabilities to enable
the implementation of more generalized algorithms. Of course, GPUs, even with enhancements
to support general computing needs, are only truly effective at speeding up algorithms that ex-

ploit data parallelization.

Some application areas that have proven to be suitable for GPU acceleration are as follows.

Big data

In fields as diverse as climate modeling, genetic mapping, business analytics, and seismic data
analysis, problem domains share the need to analyze enormous quantities of data, often measured
in terabytes (TB) or petabytes (PB) (1PBis 1,024 TB) in as efficient a manner as possible. In many
cases, these analysis algorithms iterate over large datasets searching for trends, correlations, and
more sophisticated connections among what may seem at first to be disparate, unrelated masses

of samples.
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Until recently, analysis of these datasets at the appropriate level of granularity has often been
dismissed as infeasible due to the extensive execution time required for such processing. Today,
however, many big data applications produce results in a reasonable length of time by com-
bining the use of GPU processing, often on machines containing multiple interconnected GPUs,
and splitting the problem across multiple computer systems in a cloud environment. The use of
multiple computers, each containing multiple GPUs, to execute highly parallel algorithms across
an enormous dataset can be accomplished at a surprisingly low cost these days in comparison

to the historical costs associated with supercomputing systems.

Deep learning

Deep learning is a category of artificial intelligence (AI) that uses multilayer networks of artifi-
cial neurons to model the fundamental operations of human brain cells. A biological neuron s a
type of nerve cell that processes information. Neurons are interconnected via synapses and use
electrochemical impulses to pass information among themselves. During learning, the human
brain adjusts the connections among neurons to encode the information being learned for later

retrieval. The human brain contains tens of billions of neurons.

Artificial neural networks (ANNs) employ a software model of neuron behavior to mimic the
learning and retrieval processes of the human brain. Each artificial neuron receives input from
potentially many other neurons and computes a single numeric output. Some neurons are driven
directly by the input data to be processed and others produce outputs that are retrieved as the
result of the ANN computation. Each communication path between neurons has a weighting factor
associated with it, which is simply a number that multiplies the strength of the signal traveling
along that path. The numeric input to a neuron is the sum of the input signals it receives, each

multiplied by the weight of the associated path.

The neuron computes its output using a formula called the activation function. The activation

function determines the degree to which each neuron is “triggered” by its inputs.

The next diagram represents an example of a single neuron that sums the inputs from three other
neurons (N, — N3), each multiplied by a weighting factor (w, —ws) The sum passes to the activation

function, F(x), which produces the neuron’s output signal.
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The use of three inputs in this example is arbitrary; in actual applications, each neuron can receive

input from any number of other neurons.

=

Sum F(x)

O,
2 (=
v

Figure 6.4: A neuron receiving inputs from three neurons

ANNs are organized in layers, where the first layer, called the input layer, is followed by one or
more internal layers (called hidden layers), which are followed by an output layer. Some ANN
configurations are arranged in a data flow sequence from input to output, called a feedforward
network, while other configurations provide feedback from some neurons to neurons in preceding

layers. This configuration is called a recurrent network.

The next figure shows an example of a simple feedforward network with three input neurons, a
hidden layer consisting of four neurons, and two output neurons. This network is fully connected,
meaning each neuron in the input and hidden layers connects to all neurons in the following layer.

The connection weights are not shown in this diagram.

Figure 6.5: A three-layer feedforward network

Training an ANN consists of adjusting the weighted connections between neurons so that, when

presented with a particular set of input data, the desired output is produced.
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Using an appropriate learning algorithm, an ANN can be trained with a dataset composed of

known correct outputs for a wide variety of inputs.

Training a large, sophisticated ANN to perform a complex task such as driving a car or play-
ing chess requires a tremendous number of training iterations drawn from a very large dataset.
During training, each iteration makes small adjustments to the weighting factors within the
network, slowly driving the network to a state of convergence. Once fully converged, the network
is considered trained and can be used to produce outputs when presented with novel input. In
other words, the network generalizes the information it learned during training and applies that

knowledge to new situations.

The feature that makes ANNs particularly suitable for GPU processing is their parallel nature.
The human brain is effectively a massively parallel computer with billions of independent pro-
cessing units. This form of parallelism is exploited during the ANN training phase to accelerate
network convergence by performing the computations associated with multiple artificial neurons

in parallel.

The next section will present some examples of computer system types in terms of the architec-

tural concepts presented in this chapter.

Examples of specialized architectures

This section examines some application-focused computing system configurations and high-
lights the specialized architectural requirements addressed in each. The configurations we will

look at are:

¢ Cloud compute server: Several vendors offer access to computing platforms accessible to
customers via the internet. These servers allow users to load software applications onto the
cloud server and perform any type of computation they desire. In general, these services
bill their customers based on the type and quantity of computing resources allocated and
the length of time they are in use. The advantage for the customer is that these services

cost nothing when they are not in use.

At the higher end of performance, servers containing multiple interconnected GPU
cards can be harnessed to perform large-scale, floating-point intensive computations
on huge datasets. In the cloud context, it is straightforward and often cost-effective to
break a computation into smaller parts suitable for parallel execution across multiple

GPU-enabled servers.



168

Specialized Computing Domains

This makes it feasible for organizations—and even individuals with limited funding—to
harness computing capabilities that, until just a few years ago, were the exclusive prov-
ince of government, big business, and research universities possessing the wherewithal

to implement supercomputing facilities.

Business desktop computer: Business information technology managers strive to pro-
vide employees with the computing capability they need to do their jobs at the lowest
cost. Most office workers do not require exceptional graphics or computing performance,
though their computer systems must support modest video presentation requirements

for such purposes as displaying employee training videos.

For business users, the GPU integrated into modern processors is usually more than suf-
ficient. For a reasonable price, business buyers can purchase computer systems with pro-
cessors in the midrange of performance that include integrated graphics. These systems
provide full support for modern operating systems and standard office applications such
as word processing, email, and spreadsheets. Should the need arise to expand a system’s
capabilities with higher-performance graphics, the installation of a GPU in an expansion

slot is a straightforward upgrade.

High-performance gaming computer: Computer gaming enthusiasts running the latest
3D games demand an extreme level of GPU performance to display detailed, high-reso-
lution scenes at the highest achievable frame rate. These users are willing to invest in a
powerful, power-hungry, and costly GPU (or even multiple GPUs) to achieve the best

possible graphics performance.

Almost as important as the graphics performance, a high-performance gaming com-
puter must have a fast system processor. The processor and GPU work together over the
high-speed interface connecting them (typically PCle x16) to compute the position and
viewing direction of the scene observer as well as the type, location, visual characteristics,
and orientation of all objects in the scene. The system processor passes this geometric
information to the GPU, which performs the mathematical operations necessary to render
a lifelike image for display. This process repeats at a rate sufficient to deliver a smooth

presentation of complex, rapidly changing scenes.

High-end smartphone: Today’s smartphones combine high-performance computational
and graphical display capabilities with strict limits on power consumption and heat gen-
eration. Users insist on fast, smooth, vibrant graphics for gaming and video display, but

will not tolerate short battery life or a device that becomes hot to the touch.
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Modern phone displays contain millions of full-color pixels, up to 12 GB of RAM, and sup-
port up to 1 TB of flash storage. These devices generally come with two high-resolution
cameras (one on the front and one on the back), capable of capturing still images and
recording video. High-end phones contain a 64-bit multi-core processor with an inte-
grated GPU, as well as a variety of features providing an optimal combination of energy

efficiency and high performance.

Smartphone architectures contain DSPs to perform tasks such as encoding and decod-
ing voice audio during telephone calls and processing the received and transmitted RF
signals flowing through the phone’s various radio transceivers. A typical phone supports
digital cellular service, Wi-Fi, Bluetooth, and near-field communication (NFC). Modern
smartphones are powerful, well-connected computing platforms optimized for operation

under battery power.

This section discussed computer system architectures representing just a tiny slice of current and
future applications of computing technology. Whether a computer system sits on an office desk,
resides in a smartphone, or is flying a passenger aircraft, a common set of general architectural

principles applies during the process of system design and implementation.

Summary

This chapter examined several specialized domains of computing, including real-time systems,
digital signal processing, and GPU processing. After completing this chapter, you should have
greater familiarity with the features of modern computers related to real-time operation, the
processing of analog signals, and graphics processing in application areas including gaming,
voice communication, video display, and the supercomputer-like applications of GPUs. These
capabilities are important extensions to the core computing tasks performed by the central pro-

cessor, whether in a cloud server, a desktop computer, or a smartphone.

The next chapter will take a deeper look at modern processor architectures, specifically the von
Neumann, Harvard, and modified Harvard variants. The chapter will also cover the use of paged

virtual memory and the features and functions of a memory management unit.

Exercises

1. Rate monotonic scheduling (RMS) is an algorithm for assigning thread priorities in

preemptive, hard, real-time applications in which threads execute periodically.
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RMS assigns the highest priority to the thread with the shortest execution period, the
next-highest priority to the thread with the next-shortest execution period, and so on.
An RMS system is schedulable, meaning all tasks are guaranteed to meet their deadlines
(assuming no inter-thread interactions or other activities such as interrupts cause pro-

cessing delays) if the following condition is met:
C,
ke1p, ST V" -1)
This formula represents the maximum fraction of available processing time that can be

consumed by # threads. In this formula, C; is the maximum execution time required for

thread i, and T; is the execution period of thread i.

Is the following system composed of three threads schedulable?

Thread Execution Time (C;)), ms | Execution Period (T;), ms
Thread1 | 50 100

Thread2 | 100 500

Thread 3 | 120 1000

A commonly used form of the one-dimensional discrete cosine transform is:
- signs {34
X, = X3 xpcos [N (n +3 k
In this formula, k, the index of the DCT coefficient, runs from O to N-1.

Write a program to compute the DCT of the following sequence:

x = {0.5,0.2,0.7, —0.6,0.4,—0.2, 1.0, —0.3}

The cosine terms in the formula depend only on the indexes 7 and k, and do not depend
on the input data sequence x. This means the cosine terms can be computed once and
stored as constants for later use. Using this as a preparatory step, the computation of each

DCT coefficient reduces to a sequence of MAC operations.

This formula represents the unoptimized form of the DCT computation, requiring N’

iterations of the MAC operation to compute all N DCT coefficients.

The hyperbolic tangent is often used as an activation function in ANNs. The hyperbolic

tangent function is defined as follows:

eX—e™X

tanh(x) =

eXt+e™x
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Given a neuron with inputs from three preceding neurons as depicted in Figure 6.4, com-
pute the neuron’s output with the hyperbolic tangent as the activation function F(x) using

the following preceding neuron outputs and path weights:

Neuron | Neuron Output | Weight
N 0.6 0.4
N, -0.3 0.8
N; 0.5 -0.2

Join our community Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the author:

https://discord.gg/7h8aNRhRuY







Processor and Memory
Architectures

This chapter takes a deeper look at modern processor architectures, specifically the von Neu-
mann, Harvard, and modified Harvard variants, as well as the computing domains in which each
architecture tends to be applied. The concepts and benefits of paged virtual memory, employed
extensively in consumer and business computing and in portable smart devices, are also intro-
duced. We will examine the practical details of memory management in the real-world context
of Windows NT and later Windows versions. The chapter concludes with a discussion of the

features and functions of the memory management unit.

After completing this chapter, you will have learned the key features of modern processor ar-
chitectures and the use of physical and virtual memory. You will also understand the benefits of

memory paging and the functions of the memory management unit.
This chapter covers the following topics:

e Thevon Neumann, Harvard, and modified Harvard architectures
e  Physical and virtual memory
e  Paged virtual memory

e  Memory management unit

Technical requirements

The files for this chapter, including the answers to the exercises, are available at https://github.

com/PacktPublishing/Modern-Computer-Architecture-and-Organization-Second-Edition.


https://github.com/PacktPublishing/Modern-Computer-Architecture-and-Organization-Second-Edition
https://github.com/PacktPublishing/Modern-Computer-Architecture-and-Organization-Second-Edition
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The von Neumann, Harvard, and modified Harvard
architectures

In earlier chapters, we touched briefly on the history and modern applications of the von Neu-
mann, Harvard, and modified Harvard processor architectures. In this section, we’ll examine each
of these configurations in greater detail and look at the computing applications in which each of

these architectures tends to be applied.

The von Neumann architecture

The von Neumann architecture was introduced by John von Neumann in 1945. This processor
configuration consists of a control unit, an arithmetic logic unit, a register set, and a memory
region containing program instructions and data. The key feature distinguishing the von Neu-
mann architecture from the Harvard architecture is the use of a single area of memory for program
instructions and the data acted upon by those instructions. Itis conceptually straightforward for
programmers, and relatively easier for circuit designers, to locate all the code and data a program

requires in a single memory region.

This diagram shows the elements of the von Neumann architecture:

Processor

Control
unit
I/0 device |[¢—» <+—»| |/0 device
Registers

ALU

Memory

Figure 7.1: The von Neumann architecture

Although the single-memory architectural approach simplified the design and construction of
early generations of processors and computers, the use of shared program and data memory has

presented some challenges related to system performance and, in recent years, security.
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Some of the more significant issues are as follows:

¢ The von Neumann bottleneck: Using a single interface between the processor and the
main memory for instruction and data access often requires multiple memory cycles to
retrieve a processor instruction and access the data it requires. In the case of an immediate
value stored next to its instruction opcode, there might be little or no bottleneck penalty
because, at least in some cases, the immediate value gets loaded along with the opcode
in a single memory access. Most programs, however, spend much of their time working
with data stored in memory allocated separately from the program instructions. In this
situation, multiple memory access operations are required to retrieve the opcode and

any required data items.

The use of cache memories for program instructions and data, discussed in detail in
Chapter 8, Performance-Enhancing Techniques, can significantly mitigate this limitation.
However, when working with code sequences and data objects that exceed the size of
cache memory, the benefit of caching is reduced, possibly by a substantial amount. There
is no avoiding the fact that placing code and data in the same memory region with a
shared communication path to the processor will, at times, act as a limitation on system

performance.

e von Neumann security considerations: The use of a single memory area for code and
data opens possibilities for creative programmers to store sequences of instructions in
memory as “data,” and then direct the processor to execute those instructions. Programs
that write code into memory and then execute it are implementing self-modifying code.
Besides being difficult to troubleshoot (because many software debugging tools expect
the program in memory to contain the instructions that were originally compiled into

it), this capability has been exploited for years by hackers with more sinister motives.

Buffer overflow is a distressingly common flaw in widely used software tools such as
operating systems, web servers, and databases. Buffer overflow occurs when a program
requests input and stores thatinput in a fixed-length data buffer. If the code is not careful
to check the length of the input provided by the user, itis possible for the user to enter an
input sequence longer than the available storage space. When this happens, the additional

data overwrites memory intended for other purposes.

If the buffer being overwritten is stored on the program’s stack, it is possible for a creative
user to provide a lengthy input sequence that overwrites the return address of the currently

executing function, which happens to be stored on the same stack.
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By carefully crafting the contents of the input data sequence, the attacker can seize control
of the executing application and direct it to execute any desired sequence of instructions.
To do this, the hacker must prepare an input sequence that overflows the input buffer,
overwrites the function’s return address with a different, carefully chosen, address, and
writes a sequence of instructions into memory that begins execution at this address. The
sequence of instructions inserted by the attacker begins execution when the function that
originally requested user input returns, transferring control to the hacker’s code. This

allows the hacker to “own” the computer.

Various attempts to resolve the buffer overflow problem have occupied an enormous amount of
computer security researchers’ time over the years since the first widespread occurrence of this
type of attack in 1988. Processor vendors and operating system developers have implemented a va-
riety of features to combat buffer overflow attacks, with names such as data execution prevention
(DEP) and address space layout randomization (ASLR). While these fixes have been effective to
some degree, the fundamental processor feature that enables this type of exploitation is the use

of the same memory region for program instructions and data in the von Neumann architecture.

The Harvard architecture

The Harvard architecture was originally implemented in the Harvard Mark I computer in 1944.
A strict Harvard architecture uses one address space and memory bus for program instructions
and a separate address space and memory bus for data. This configuration has the immediate
benefit of enabling simultaneous access to instructions and data, thereby implementing a form
of parallelism. Of course, this enhancement comes at the expense of essentially duplicating the
number of address lines, data lines, and control signals that must be implemented by the pro-

cessor to access both memory regions.

The following diagram shows the layout of a processor implementing the Harvard architecture:

Processor
I/O device |[¢— COnt.rol =l fodeiice
unit
Instruction Registers
> < » Data memory
memory
ALU

Figure 7.2: Harvard architecture
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The Harvard architecture potentially provides a higher performance level by parallelizing accesses
to instructions and data. This architecture also removes the entire class of security issues associ-
ated with maliciously executing data as program instructions, provided the instruction memory
cannot be modified by program instructions. This assumes the program memory is loaded with

instructions in a trustworthy manner.

In hindsight, with knowledge of the proliferation of von Neumann architecture-enabled security
threats, there is reason to wonder if the entire information technology industry would not have
been vastly better off had there been early agreement to embrace the Harvard architecture and

its complete separation of code and data memory regions, despite the costs involved.

In practice, a strict Harvard architecture is rarely used in modern computers. Several variants of
the Harvard architecture are commonly employed, collectively called modified Harvard archi-

tectures. These architectures are the topic of the next section.

The modified Harvard architecture

Computers designed with a modified Harvard architecture have, in general, some degree of
separation between program instructions and data. This reduces the effects of the von Neumann
bottleneck and mitigates the security issues we’ve discussed. The separation between instructions
and datais rarely absolute, however. While systems with modified Harvard architectures contain
separate program instruction and data memory regions, these processors typically support some

means of storing data in program memory and, in some cases, storing instructions in data memory.

The following diagram shows a modified Harvard architecture representing many real-world

computer systems:

Processor
/0 device [&— | Control [ le —3f1/0 device
unit
Instruction Registers
memory . <4—»| Data memory
------------- - ALU
Data memory

Figure 7.3: Modified Harvard architecture

As we saw in the previous chapter, digital signal processors (DSPs) achieve substantial benefits

from the use of a Harvard-like architecture.
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By storing one numeric vector in instruction memory and a second vector in data memory, a
DSP can execute one multiply-accumulate (MAC) operation per processor clock cycle. In these
systems, instruction memory and the data elements it contains are typically read-only memory
regions. This is indicated by the unidirectional arrow connecting the instruction memory to the
processor in Figure 7.3. Consequently, only constant data values are suitable for storage in the

instruction memory region.

Besides DSPs, most modern general-purpose processors contain separate instruction and data
caches, thereby implementing significant aspects of the Harvard architecture. Processor archi-
tectures such as x86 and ARM support parallel and independent access to instructions and data
when the requested items happen to reside in the first level of cache memory. When on-chip
cache lookups are unsuccessful, the processor must access the main memory over the von Neu-

mann-style shared bus, which takes significantly longer.

As a practical matter, the implementation details of a particular processor in terms of von
Neumann versus Harvard architectural features seldom matter to software developers, other
than in terms of performance considerations. Programmers generally develop programs in their
high-level language of choice and the compiler or interpreter handles the details related to allo-

cating data and instructions to the appropriate memory regions.

The next section discusses the benefits of memory virtualization.

Physical and virtual memory

Memory devices in computers can be categorized as random-access memory (RAM), which can
be read from and written to at will, and read-only memory (ROM), which, as the name indicates,
can beread but not written. Some types of memory devices, such as flash memory and electrically
erasable programmable read-only memory (EEPROM), inhabit a middle ground, where the
data content of the devices can be changed, just not as easily, or as quickly, or updated as many

times, as standard RAM.

Memory devices within a computer must be configured to ensure each device occupies a unique
span of the system address space, enabling the processor to access each of possibly several RAM
and ROM devices by setting the address lines appropriately. Modern computer systems generally

perform this address space allocation automatically, based on the slot a memory device occupies.

Software running on early computer systems, and on the less-sophisticated computers and em-
bedded processors of today (such as 6502-based systems), uses addresses within RAM and ROM

devices in program instructions to perform reads and writes.
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For example, a 6502 instruction such as JMP $1000 instructs the processor to load its instruction
pointer with the hexadecimal value $1000 and execute the instruction at that memory location.
In processing this instruction, the 6502 control unit places the value $1000 on the 6502’s 16 ad-
dress lines and reads the byte from that memory address. This byte is interpreted as the opcode
of the next instruction to be executed. Similarly, loading a byte from memory with an instruction
such as LDA $0200 places the value $0200 on the address lines and copies the byte at that address

into the A register.

In systems that use physical addressing, the memory addresses in instructions are the actual
addresses of the referenced instruction or data item. This means the memory address contained
in an instruction is the same address used to electrically access the appropriate location in a

memory device.

This architectural approach is conceptually straightforward to implement in processor designs,
but in a scenario involving multiple simultaneously executing programs (referred to as multi-
programming), the burden of software development can quickly become excessive. If each one
of multiple programs is developed in isolation from the others (in a scenario involving multiple
independent developers, for example), there must be some way to allocate the available RAM and
ROM address spaces to individual programs to ensure multiple programs can be in the running
state simultaneously (perhaps in the context of an RTOS) without interfering with each other’s

use of memory.

One well-known early effort to support the execution of multiple programs in a single address
space on PCs is the MS-DOS terminate and stay resident (TSR) program concept. TSR programs
allocate memory and load their code into it, and then return control to the operating system.
Users can continue to work with the system normally, loading and using other applications (one
at a time, of course), but they can also access the TSR as needed, typically by typing a special key
combination. It is possible to load multiple TSR programs into memory simultaneously, each
accessible via its own key combination. After activating a TSR program, the user interacts with

it as needed, then executes a TSR command to return to the currently running main application.

While limited in many ways (including consuming a portion of the maximum of 640 KB of RAM
available in early PCs), TSR programs effectively enabled the execution of multiple programs in

a single RAM address space.

Developing TSR applications was a challenging task. The more advanced TSR programs avail-
able in the 1980s and 1990s took advantage of undocumented MS-DOS features to provide the

maximum utility to their users.
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As aresult of this complexity, TSR programs developed a reputation for causing system instability.

A different approach for supporting multiprogramming was clearly needed.

The use of virtual memory overcomes the biggest challenges that prohibited the widespread
use of multiprogramming in the original PC design. Virtual memory is a method of memory
management that enables each application to operate in its own memory space, seemingly inde-
pendent of any other applications that may be in the running state simultaneously on the same
system. In a computer with virtual memory management, the operating system is responsible
for the allocation of physical memory to system processes and to user applications. The memory
management hardware and software translate memory requests originating in the application’s

virtual memory context to physical memory addresses.

Apart from easing the process of developing and running concurrent applications, virtual mem-
ory also enables the allocation of a larger amount of memory than exists in the computer. This
is possible using secondary storage (typically a disk file) to temporarily hold copies of sections
of memory removed from physical memory to enable a different program (or a different part of

the same program) to run in the now-free memory.

In modern general-purpose computers, memory sections are usually allocated and moved in
multiples of a fixed-size chunk, called a page. Memory pages are typically 4 KB or larger. Moving
memory pages to and from secondary storage in virtual memory systems is called page swapping.

The file containing the swapped-out pages is the swap file.

In avirtual memory system, neither application developers nor the code itself need to be concerned
with how many other applications are running on the system or how full the physical memory
may be getting. As the application allocates memory for data arrays and places calls to library
routines (which requires the code for those routines to be loaded into memory), the operating
system manages the allocation of physical memory and takes the steps necessary to ensure each
application receives memory upon request. Only in the unusual case of completely filling the
available physical memory while also filling the swap file to its limit is the system forced to return

a failure code in response to a memory allocation request.

Virtual memory provides several notable benefits in addition to making things easier for pro-

grammers:

e Notonly are applications able to ignore each other’s presence, they are prevented from
interfering with each other, accidentally or intentionally. The virtual memory management
hardware is responsible for ensuring each application can only access memory pages that

have been assigned to it.
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Attempts to access another process’s memory, or any other address outside its assigned

memory space, result in an access violation exception.

e Each memory page has a collection of attributes that restrict the types of operations
supported within it. A page may be marked read-only, causing any attempts to write data
to the page to fail. A page may be marked executable, meaning it contains code that can
be executed as processor instructions. A page may be marked read-write, indicating the
application is free to modify the page at will. By setting these attributes appropriately,
operating systems can improve system stability by ensuring processor instructions can’t
be modified and that the execution of data as instructions cannot occur, whether such

an attempt is the result of an accident or malicious intent.

e  Memory pages can be marked with a minimum required privilege level, allowing pages to
be restricted for access only by code running with kernel privilege. This restriction ensures
the operating system continues operating properly even in the presence of misbehaving
applications. This allows system memory to be mapped into each process’s address space
while prohibiting application code from interacting directly with that memory. Applica-
tions can only access system memory indirectly, via a programming interface consisting

of system calls.

e  Memory pages can be marked as shareable among applications, meaning a page can be
explicitly authorized as accessible from more than one process. This enables efficient

interprocess communication.

Early versions of Microsoft Windows implemented some features of memory virtualization using
80286 and 80386 processor memory segmentation capabilities. In the Windows context, the
use of virtual memory came into its own with the introduction of Windows NT 3.1in 1993. The
Windows NT system architecture was based on the Digital Equipment Corporation Virtual Ad-
dress Extension (VAX) architecture, developed in the 1970s. The VAX architecture implemented
a 32-bit virtual memory environment with a 4 GB virtual address space available to each of po-
tentially many applications running in a multiprogramming context. One of the key architects of
the VAX operating system, Virtual Memory System (VMS), was David Cutler, who later led the
development of Microsoft Windows NT.

Windows NT has a flat 32-bit memory organization, meaning any address in the entire 32-bit
space is directly accessible using a 32-bit address. No additional programmer effort is required
to manipulate segment registers. By default, the Windows NT virtual address space is divided
into two equal-sized chunks: a 2 GB user address space in the lower half of the range, and a 2 GB

kernel space in the upper half.
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The next section delves into the implementation of paged virtual memory in 32-bit Windows NT
on Intel processors. While Windows NT is not entirely representative of virtual memory imple-
mentations in other operating systems, similar principles apply even though other environments
differ in the details. This introduction provides background on the concepts of virtual memory
while deferring additional details related to more modern architectures, such as 64-bit processors

and operating systems, until later chapters.

Paged virtual memory

In 32-bit Windows NT on Intel processors, memory pages are 4 KB in size. This implies that
addressing a location within a particular page requires 12 address bits (because 2°=4,096). The

remaining 20 bits of a 32-bit virtual address are used in the virtual-to-physical translation process.

In Windows NT, all memory addresses in a program (both those referenced in the source code
and in compiled executable code) are virtual addresses. They are not associated with physical

addresses until the program runs under the control of the memory management unit.

A contiguous 4 KB section of Windows NT physical memory is called a page frame. The page
frame is the smallest unit of memory managed by the Windows virtual memory system. Each
page frame starts on a 4 KB boundary, meaning the lower 12 address bits are all zero at the base

of any page frame. The system tracks information related to page frames in page tables.

A windows NT page table is sized to occupy a single 4 KB page. Each 4-byte entry in a page table
enables the translation of a 32-bit address from the virtual address space used by program in-
structions to a physical address required to access a location in RAM or ROM. A 4 KB page table
contains 1,024 page address translations. A single page table manages access to 4 MB of address
space: each page table contains 1,024 page frames multiplied by 4 KB per page. A process may

have several associated page tables, all of which are managed by a page table directory.

A page table directory is a 4 KB page containing a series of 4-byte references to page tables. A
page table directory can contain 1,024 page table references. A single page table directory covers
the entire 4 GB address space (4 MB per page table multiplied by 1,024 page table references) of
32-bit Windows NT.

Each Windows NT process has a page table directory, set of page tables, and collection of page
frames allocated for its use. The process page tables apply to all threads within the process because

all the process’s threads share the same address space and memory allocations.
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When the system scheduler switches from one process to another, the virtual memory context

of the incoming process replaces the context of the outgoing process.

Intel x86 processors maintain the address of the current process page table directory in the CR3
register, also known as the Page Directory Base Register (PDBR). This is the entry point to the
page table directory and the page tables, enabling the processor to translate any valid virtual

address to the corresponding physical address.

In accessing an arbitrary (valid) location in memory, and assuming information that would ex-
pedite the access is not already stored in the cache of recent virtual-to-physical address transla-
tions, the processor firstlooks up the physical address of the relevant page table in the page table
directory using the upper 10 bits of the virtual address. It then accesses the page table and uses
the next most significant 10 address bits to select the physical page containing the requested data.
The lower 12 bits of the address then specify the memory location in the page frame requested

by the executing instruction.

Page frames do not represent actual divisions in physical memory.

\/V Physical memory is not actually divided into page frames. The page structure is mere-
ly a method the system uses to keep track of the information required to translate

virtual addresses to physical memory locations.

To meet users’ performance expectations, each memory access mustbe as fast as possible. At least
one virtual-to-physical translation takes place during the execution of every instruction to fetch
instruction opcodes and data. Due to the high-frequency repetition of this process, processor de-

signers expend great effort ensuring virtual address translation takes place as efficiently as possible.

In modern processors, a translation cache retains the results of recent virtual memory translation
lookups. This approach enables a very high percentage of virtual memory translations to occur
internally in the processor, without any of the clock cycles that would be required if the processor
needed to look up a page table address in the page table directory and then access the page table

to determine the requested physical address.

The data structures used in virtual-to-physical address translations are not accessible to appli-
cations running at user privilege level. All the activity related to address translation takes place

in processor hardware and in kernel mode software processes.
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To help clarify the operation of virtual address translation, the following diagram presents an

example of how Windows translates a 32-bit virtual address to a physical address:

Bit Number: 31 22 21 12 11 0
32-bit virtual | Directory | Table Frame
address: Offset Offset Offset

$00402003 | oooo000001 | 0000000010 |oooo 0ooo 0011

CR3 Register
Page Page Page
Directory Table Frame
Offset 0 Offset 0 Byte 0
— Offset 1 Offset 1 Byte 1
Offset 2 —— 1 Offset 2 Byte 2
Data
Offset 3 Offset 3 — b Byte 3 —
Offset 1023 Offset 1023 Byte 4095

Figure 7.4: Virtual to physical address translation

We’ll go through the translation process in Figure 7.4 step by step. Assume the processor is
requesting the 8-bit data value stored at virtual address $00402003 with an instruction such as
mov al, [ebx], where ebx has previously been loaded with the value $00402003. We will assume
the translation for this address is not already stored in the processor’s cache of recent virtual-
to-physical address translations, and we’ll also assume the page is resident in the main memory.

The following procedure describes the translation process:

1. The processor attempts to execute the mov al, [ebx] instruction, but it cannot complete
it because it does not have immediate access to the information needed to perform the
translation of the virtual address in ebx to the corresponding physical address. This gen-
erates a page fault, which transfers control to the operating system so it can resolve the
address translation. The use of the term fault here does not imply that an error of some

kind occurred. Page faults are a routine part of application execution.
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2. The requested virtual address is shifted right by 22 bit positions, leaving the 10-bit direc-
tory offset, which has the value 1 in this example.

3. The directory offset is shifted left by 2 bit positions (because each entry in the page di-
rectory is 4 bytes) and is added to the content of processor register CR3 (the PDBR). The
result is the address of the page table directory entry containing the address of the rele-
vant page table.

4. Therequested virtual address is shifted right by 12 bit positions and masked to leave only
the 10-bit table offset, which has the value 2 in this example.

5. Thetable offset is shifted left by 2 bit positions (because each entry in this table is also 4
bytes) and added to the page table address identified in Step 3. The 32-bit address read

from this location is the physical address of the page frame containing the requested data.

6. The processor stores the translation, which is a conversion from the upper 20 bits of a
virtual address to the corresponding upper 20 bits of a page frame address, in its trans-
lation cache.

7. The processor restarts the mov al, [ebx] instruction, which will now succeed in moving
the requested data byte into the al register using the cached virtual-to-physical transla-
tion. The lower 12 bits of the virtual address (the frame offset), which contain the value
3 in this example, are added to the page frame address computed in Step 5 to access the

requested byte.

Once these steps are complete, the translation for the requested page frame remains available
in processor translation cache memory for some time. As long as the translation remains in the
cache, subsequent requests for the same virtual address or for other locations in the same page
frame will execute without delay until the cache entry for this page frame is overwritten by sub-

sequent code execution.

The page fault procedure described in the preceding steps is called a soft fault. A soft fault sets
up the virtua