

Vol 1: Propositional Logic

Logical Foundations
of Computer Science

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI • TOKYO

World Scientific

Peter A. Fejer & Dan A. Simovici
University of Massachusetts Boston, USA

Vol 1: Propositional Logic

Logical Foundations
of Computer Science

Published by

World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Control Number: 2024016854

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

LOGICAL FOUNDATIONS OF COMPUTER SCIENCE
(In 2 volumes)
Volume 1: Propositional Logic
Volume 2: Predicate Logic

Copyright © 2025 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy
is not required from the publisher.

ISBN 978-981-12-8936-1 (set_hardcover)
ISBN 978-981-12-8934-7 (set_ebook for institutions)
ISBN 978-981-12-8935-4 (set_ebook for individuals)
ISBN 978-981-12-8765-7 (vol. 1_hardcover)
ISBN 978-981-12-8766-4 (vol. 2_hardcover)

For any available supplementary material, please visit
https://www.worldscientific.com/worldscibooks/10.1142/13714#t=suppl

Desk Editors: Balasubramanian Shanmugam/Steven Patt

Typeset by Stallion Press
Email: enquiries@stallionpress.com

Printed in Singapore

https://www.worldscientific.com/worldscibooks/10.1142/13714#t=suppl

To our spouses
Elisabeth and Doina

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

Preface

In scientific reasoning, one starts with a collection of statements,
the premises, in order to justify another statement, via a process
of inference. Therefore, the study of logic is essential for students
of computer science, mathematics, and all who use mathematical
proofs.

Many of the fundamental computing concepts were created by
logicians. The most famous such concept is the idea of a general-
purpose computer, the Turing Machine. Computer programs are
written in symbolic languages, e.g., Python, Java, and Lisp, that
contain features of logical notations and symbolisms. Through such
connections, the study of logic helps in the design of programs. Logic
also has a role in the design of new programming languages, and it
is essential for work in artificial intelligence.

An introductory chapter presents a set of theoretical and algebraic
tools used throughout this book.

The syntactic and semantic concepts of propositional logic are
discussed in the second chapter: formulas, truth assignments, truth
tables, normal forms, clones of truth functions, and functional com-
pleteness. Some parts of logic are used by engineers in circuit design,
a topic discussed extensively in the same chapter.

The object of the third chapter is to introduce a variety of propo-
sitional formal methods: Hilbert/Frege formal systems, tableaux,
sequents, and natural deduction, and to examine transformation
methods between these formalisms. Additionally, we present several
variants of propositional resolution and the method of cutting planes.

vii

viii Logical Foundations of Computer Science — Volume 1

The second part of the work deals with predicate logic also known
as first-order logic. The development of this part parallels broadly
the presentation of propositional logic. The first chapter of this part
presents the syntax and semantics of predicate logic starting with the
first-order formulas and structures. Various syntactic aspects specific
to predicate logic are presented and then the focus shifts to semantics.
We discuss normal forms for formulas and present certain special sets
of formulas such as Hintikka sets and first-order theories. Also, the
reduction of first-order logic to propositional logic is examined. This
chapter concludes with a study of decidability in first-order logic.

In the following chapter, several important corresponding for-
malisms for first-order logic are examined: Hilbert/Frege formal sys-
tems, tableaux, sequents, and natural deduction. Resolution which
forms the basis for logic programming is discussed in various forms
and special attention is paid to the method of paramodulation for
languages with equality.

The last chapter includes the logical and mathematical analysis of
programs, which allows proof of program correctness and analysis of
the performance of programs. We discuss the use of logic for proving
a variety of assertions concerning the correctness of programs and
their performance.

The work contains more than 770 exercises and supplements that
can be used to deepen the understanding of the material. We give
detailed proofs and we do not shy away from technical difficulties.
It is hoped that the readers would enjoy this introduction to logic
and make good use of it in their own research.

Lexington and Brookline
Massachusetts

July 2023

About the Authors

Peter Fejer received his BA in Mathemat-
ics from Reed College and his SM and PhD
degrees in Mathematics from the University
of Chicago. He has held positions at Cornell
University in the Mathematics Department and
at the University of Massachusetts Boston in
the Computer Science Department. He was also
a Visiting Professor at Heidelberg University on
several occasions. At UMass Boston, he served
as Chair for 18 years and is now an Emeritus

Professor. Professor Fejer’s published research is in the area of Com-
putability Theory.

Dan Simovici obtained his PhD in Math-
ematics from the University of Bucharest,
Romania. His main research interests are in
machine learning, data mining, and multi-
valued logic. Dr. Simovici is a Computer Sci-
ence Professor and Graduate Program Director
at the University of Massachusetts in Boston,
was a Visiting Professor in France and Japan,
and serves as Editor-in-Chief of the Journal of
Multiple-Valued Logic and Soft Computing. He

is the author or co-author of more than 200 research publications and
of several books. Dr. Simovici directed so far 13 PhD dissertations.

ix

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

Contents

Preface vii

About the Authors ix

Volume 1. Propositional Logic 1

1. Preliminaries 3

1.1 Introduction . 3
1.2 Sequences, Occurrences, and Substitutions 3
1.3 Collections of Sets 12
1.4 Decidable and Semidecidable Sets 16
1.5 Signatures and Terms 20
1.6 Term Unification 30
1.7 Labeled Ordered Trees 43
1.8 Formal Systems . 53
1.9 Linear Orders . 66
1.10 Exercises and Supplements 69
1.11 Bibliographical Comments 98

2. Propositional Logic–Syntax and Semantics 99

2.1 Introduction . 99
2.2 Formulas . 100
2.3 Truth Assignments 110
2.4 The Compactness Theorem 125
2.5 Normal Forms for Formulas 128

xi

xii Logical Foundations of Computer Science — Volume 1

2.6 Substitutions and Formulas 171
2.7 Truth Sets and Hintikka Sets 175
2.8 Truth Functions . 185
2.9 Clones and Functional Completeness 214
2.10 Complete Sets of Connectives 227
2.11 Circuits and Truth Functions 235
2.12 Exercises and Supplements 267
2.13 Bibliographical Comments 324

3. Propositional Logic–Formal Systems 325

3.1 Introduction . 325
3.2 A Hilbert/Frege-Style Formal System 326
3.3 Tableaux . 339
3.4 The Cut Rule for Tableaux 364
3.5 Sequents . 376
3.6 Natural Deduction 393
3.7 Translations between Formal Systems 410

3.7.1 From Unsigned Tableaux to Hilbert–Frege
Proofs . 411

3.7.2 From Natural Deduction Trees to Sequent
Proofs . 412

3.7.3 Closing the Circle 417
3.8 Resolution . 417
3.9 Variations of Resolution 436
3.10 Cutting Planes . 453
3.11 Exercises and Supplements 460
3.12 Bibliographical Comments 506

Bibliography 507

List of Notations 511

List of Results 519

Index 521

Contents xiii

Preface vii

About the Authors ix

Volume 2. Predicate Logic 531

4. First-Order Logic–Syntax and Semantics 533

4.1 Introduction . 533
4.2 First-Order Languages 534
4.3 Terms and Formulas 538

4.3.1 Terms of First-Order Logic 538
4.3.2 Formulas of First-Order Logic 540
4.3.3 Occurrences in Formulas 548
4.3.4 Signed Formulas 560
4.3.5 Substitutions and Formulas 560
4.3.6 Substitutability of Terms 572

4.4 Structures . 580
4.5 Semantics of First-Order Logic 594

4.5.1 Assignments in Structures 594
4.5.2 Tarski’s Definition of Truth 597
4.5.3 Validity . 602
4.5.4 Specification of Congruences 618
4.5.5 The Morphism Theorem 621
4.5.6 Semantics of Signed Formulas 623

4.6 Semantics of Substitutions and Replacements . . . 625
4.6.1 The Substitution Theorem 626
4.6.2 The Replacement Theorem 634
4.6.3 Variants of Formulas 637

4.7 Definability in Structures 662
4.8 Propositional Forms and Tautologies 671
4.9 Normal Forms for Formulas 678
4.10 Reduction of First-Order Logic to Propositional

Logic . 692
4.11 Brand’s Modification Method 721
4.12 Hintikka Sets and Truth Sets 743

4.12.1 Constituents 743
4.12.2 Hintikka Sets of Unsigned Formulas 750
4.12.3 Truth Sets 761
4.12.4 Hintikka Sets of Signed Formulas 765

xiv Logical Foundations of Computer Science — Volume 1

4.13 Theories . 770
4.14 Decidability and Undecidability in First-Order

Logic . 778
4.15 Exercises and Supplements 786
4.16 Bibliographical Comments 855

5. First-Order Logic–Formal Systems 857

5.1 Introduction . 857
5.2 A Hilbert/Frege-Style Formal System 858

5.2.1 Completeness of HFL 869
5.2.2 Building Proofs in HFL 876

5.3 First-Order Tableaux 880
5.4 Cut Rule for First-Order Tableaux 914
5.5 First-Order Sequents 936
5.6 First-Order Natural Deduction 954
5.7 Transformations Between Formal Systems 976

5.7.1 From Unsigned Tableaux to Hilbert-Frege
Proofs . 976

5.7.2 From Natural Deduction Trees to
Sequent Proofs 981

5.7.3 Closing the Circle 987
5.8 First-Order Resolution 988
5.9 Variations of First-Order Resolution 1024
5.10 First-Order Resolution with Equality 1037

5.10.1 Equality Axioms and Resolution 1037
5.10.2 Brand’s Modification Method and

Resolution 1041
5.10.3 Paramodulation 1044
5.10.4 Semantic Trees for Languages with

Equality 1054
5.10.5 Completeness of Paramodulation 1083

5.11 Exercises and Supplements 1093
5.12 Bibliographical Comments 1148

6. Program Verification 1151

6.1 Introduction . 1151
6.2 The WHILEL Programming Language —

Syntax . 1153
6.3 The WHILEL Programming Language —

Semantics . 1161

Contents xv

6.4 Functions Computable by Programs 1171
6.5 Hoare Triples . 1185
6.6 Hoare Theories 1204
6.7 A Formal System for Hoare Triples 1224
6.8 Exercises and Supplements 1254
6.9 Bibliographical Comments 1278

Bibliography 1279

List of Notations 1283

List of Results 1291

Index 1293

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

Volume 1

Propositional Logic

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

Chapter 1

Preliminaries

1.1 Introduction

This chapter contains a rather eclectic collection of results, intended
to make the book self-contained. We cover set-theoretical concepts
(properties of finite character and closure systems), sequences of
symbols (including terms, substitutions, and unification), and trees
regarded as functions on certain sets of sequences. This chapter
concludes with a discussion of formal systems which are tools for
deducing conclusions from hypotheses — a fundamental process in
mathematical logic.

The reader may want to skim this rather voluminous introduction
and come back to it later, as needed.

1.2 Sequences, Occurrences, and Substitutions

In logic, the fundamental syntactic objects are sequences of symbols.
We remind the reader that a finite sequence is a function whose
domain is {0, . . . , n − 1} for some n ∈ N. An infinite sequence is a
function whose domain is N. If q is a finite sequence with domain
{0, . . . , n− 1}, then n is called the length of q and is denoted by |q|;
the elements of the range of q are called the entries of q. If the range
of q is contained in a set D, we refer to q as a finite sequence over D.
Similarly, if r is an infinite sequence whose range is contained in D,
then we refer to r as an infinite sequence over D. The set of sequences
of length n over D is denoted by Seqn(D) or Dn.

3

4 Logical Foundations of Computer Science — Volume 1

The set of sequences of length less than or equal to n over D
is denoted by Seq≤n(D) or D≤n. For any set D, the set Seq0(D)
consists of exactly one sequence, the null sequence, denoted by λ. In
this volume, we often identify an object d and the sequence of length
1 whose only entry is d. Under this convention, the sets D and D1 are
naturally identified. The set of all finite sequences over D is denoted
by Seq(D) or, if D is finite, by D∗. The set of all infinite sequences
over D is denoted by ISeq(D).

There are two commonly used notations for a finite sequence q
of length n: (q0, . . . , qn−1) and q0 · · · qn−1, where qi = q(i) for 0 ≤
i ≤ n − 1. The second notation is often reserved for sequences over
some fixed finite set of symbols, but we will use it more generally in
this volume. Observe that when n = 1, the above notations become
(q0) and q0, respectively. This is consistent with the identification of
a sequence of length one with its lone entry.

For n ∈ N and q = (q0, . . . , qn−1), r = (r0, . . . , rn−1) ∈ Seqn(D),
define the set

Δ(q, r) = {i ∈ {0, . . . , n− 1}|qi �= ri}

and define δ : Seqn(D) × Seqn(D) −→ N by δ(q, r) = |Δ(q, r)|
(see Exercises 1 and 2 for properties of Δ and δ).

Definition 1.2.1. Let q′, q′′ be two finite sequences of lengths n
and m, respectively. Then, the concatenation of q′ and q′′ is the
sequence q of length n+m given by

q(i) =

{
q′(i) if 0 ≤ i ≤ n− 1

q′′(i− n) if n ≤ i ≤ n+m− 1.

We will denote the concatenation of q′ and q′′ by q′q′′. It is easy to
show that concatenation is associative and that qλ = q = λq for
every finite sequence q.

Let S, S′ be two sets of finite sequences. The concatenation of
S and S′ is the set of sequences SS′ = {qq′ | q ∈ S and q′ ∈ S′}.
We will write qS and Sq for {q}S and S{q}, respectively.

If S is a set of sequences and r is a sequence, the quotient of S by
r is the set of sequences q such that rq ∈ S. We denote this quotient
by S[r].

Preliminaries 5

Example 1.2.2. Let S = {xx, xxyy, xyx} and S′ = {yyxy, xy}.
The concatenation of S and S′ is the set of sequences

SS′ = {xxyyxy, xxyyyyxy, xyxyyxy, xxxy, xyxxy}.

Also, we have S[xx] = {λ, yy}.

Definition 1.2.3. Let q and r be two finite sequences; r is a
subsequence of q if there are two finite sequences q1 and q2 such that
q = q1rq2. If q = rq2, then we refer to r as a prefix of q; if q = q1r,
r is a suffix of q.

If q = q0 · · · qn−1 is a finite sequence and i ∈ N, let pref(q, i) be
given by

pref(q, i) =

{
q0 · · · qi−1 if i ≤ n
q if i > n.

Similarly, suff(q, i) is given by

suff(q, i) =

{
qn−i · · · qn−1 if i ≤ n
q if i > n.

The sets of all prefixes and all suffixes of a finite sequence q will
be denoted by PREF(q) and SUFF(q), respectively.

A sequence r is a proper prefix (proper suffix) of q if r is a prefix
(suffix) of q, r �= λ and r �= q.

An occurrence of r in q is a pair (r, i) such that 0 ≤ i ≤ |q| − |r|
and r(�) = q(i+ �) for every �, 0 ≤ � ≤ |r| − 1.

The set of all occurrences of r in q is denoted by OCCr(q).

Clearly, there is an occurrence (r, i) of r in q if and only if r is a
subsequence of q. If |r| = 1, then an occurrence of r in q is called an
occurrence of the symbol r(0) in q.
|OCC(d)(q)| will be referred to as the number of occurrences of a

symbol d in a finite sequence q and be denoted by |q|d.

Definition 1.2.4. Let q be a finite sequence and let (r, i) and (r′, j)
be occurrences of r and r′ in q. The occurrence (r′, j) is a part of the
occurrence (r, i) if 0 ≤ j − i ≤ |r| − |r′|.

6 Logical Foundations of Computer Science — Volume 1

Fig. 1.1. Occurrence (r′, j) is a part of occurrence (r, i).

The situation described in Definition 1.2.4 is illustrated in
Figure 1.1.

Example 1.2.5. Consider the sequence q = xxyxyxz. The
occurrences (xy, 1), (yx, 2) and (xy, 3) are parts of the occurrence
(xyxy, 1).

Theorem 1.2.6. If (r, j) ∈ OCCr(q) and (s, i) ∈ OCCs(r), then
(s, i+ j) ∈ OCCs(q).

Proof. The argument is left to the reader. �

Definition 1.2.7. Let q be a finite sequence and let ζ = (r, i) be an
occurrence of r in q. If q = q0rq1, where |q0| = i, then the sequence
which results from the replacement of the occurrence ζ in q by the
finite sequence r′ is the sequence q0r′q1, denoted by replace (q, ζ, r′)
or alternatively by q[ζ → r′].

Example 1.2.8. For the occurrences (xy, 1), (xy, 3) of the sequence
xy in the sequence q = xxyxyxz, we have

replace (q, (xy, 1), zxz) = xzxzxyxz,

replace (q, (xy, 3), zxz) = xxyzxzxz.

Definition 1.2.9. A substitution is a function s whose range is a set
of finite sequences. If Dom(s) = X, we refer to s as a substitution
on X.

The carrier of a substitution s is the set carr(s) = {x | s(x) �= (x)}.

Preliminaries 7

Definition 1.2.10. Let s be a substitution and let q = q0 · · · qn−1 be
a finite sequence. We define s(q) to be the finite sequence q′0 · · · q′n−1,
where

q′i =
{
(qi) if qi �∈ Dom(s),

s(qi) otherwise.

Observe that if s is a substitution and x ∈ Dom(s), then
s((x)) = s(x).

Theorem 1.2.11. If s is a substitution and q, q′ are finite sequences,
then s(qq′) = s(q)s(q′).

Proof. The argument is a direct consequence of the definition of
s, and it is left to the reader. �

Whenever there is no risk of confusion, we shall write s(q) instead
of s(q).

Example 1.2.12. Let q be the sequence xyzxzyz and let s be
the substitution {(x, xyz), (z, xxy)}. We have s(q) = xyzyxxyxyzxx
yyxxy.

Theorem 1.2.13. Let q, r0, r1 be three finite sequences such that
there is an occurrence ζ of r0 in q. If s is a substitution, then there
is an occurrence ζ ′ of s(r0) in s(q) such that

s(replace (q, ζ, r1)) = replace (s(q), ζ ′, s(r1)).

Proof. We leave the argument to the reader since it is a simple
application of the previous definitions. �

Definition 1.2.14. A substitution s such that carr(s) is a finite set
is called a finite substitution.

Suppose that we are working in a context where a certain set X is
the domain of all substitutions under consideration. If x0, . . . , xn−1

are distinct members of X and r0, . . . , rn−1 are finite sequences, then
we write s

x0···xn−1
r0···rn−1 for the finite substitution s on X such that s(xi) =

ri for 0 ≤ i ≤ n− 1 and s(x) = (x) for x ∈ X − {x0, . . . , xn−1}. (For
n = 0, s

x0···xn−1
r0···rn−1 is the identity substitution on X, which maps x ∈ X

8 Logical Foundations of Computer Science — Volume 1

to (x) in accordance with our convention of identifying x with the
sequence (x).)

Note that every finite substitution on X can be represented as
s
x0···xn−1
r0···rn−1 for appropriate x0, . . . , xn−1, r0, . . . , rn−1.
Our notation s

x0···xn−1
r0···rn−1 is somewhat ambiguous in that it does

not mention the domain X, but this ambiguity is harmless in the
following sense. Let X,X ′ be two sets each containing x0, . . . , xn−1

and let s be s
x0···xn−1
r0···rn−1 considered as a substitution on X and s′ be

s
x0···xn−1
r0···rn−1 considered as a substitution on X ′. Then, for any sequence
r, s(r) = s′(r).

Example 1.2.15. We have syzz(q) = xzzzxzzzz when q is the
sequence xyzxzyz.

Theorem 1.2.16. For any finite sequence q and any x, y such that
y does not occur in q, we have

sy(x)(s
x
(y)(q)) = q.

Proof. The proof is a simple induction on |q|. �

Theorem 1.2.17. Let s = s
x0···xn−1
r0···rn−1 be a finite substitution such that

|ri| > 0 for 0 ≤ i ≤ n− 1. Then, for every finite sequence q, the set
of finite sequences r such that s(r) = q is finite.

Proof. Suppose that q = (q0, . . . , qm−1) is a sequence of length
m and Q = {q0, . . . , qm−1} is the set of symbols that occur in q.
If s(r) = q, then |r| ≤ m because none of the sequences ri is null
and r ∈ Seq(Q∪ {x0, . . . , xn−1}). Since Q∪ {x0, . . . , xn−1} is a finite
set, it follows that there are only finitely many sequences r with this
property. �

This theorem suggests the following definition:

Definition 1.2.18. A function f : A −→ B is finite-to-one if the set
f−1(b) = {a ∈ A|f(a) = b} is finite for every b ∈ B.

Using the term introduced above, we can regard a substitution on
X that satisfies the conditions of Theorem 1.2.17 as a finite-to-one
function on Seq(X).

Preliminaries 9

Theorem 1.2.19. Let s0, s1 be two substitutions. Define a substitu-
tion s with domain Dom(s0) ∪Dom(s1) by

s(x) =

{
s0(s1(x)) if x ∈ Dom(s1)

s0(x) if x ∈ Dom(s0)−Dom(s1).

Then, for every finite sequence q, we have s0(s1(q)) = s(q). Further,
s is the unique substitution with domain Dom(s0)∪Dom(s1) that has
the above property.

Proof. We begin by showing that s((x)) = s0(s1((x))) for every
symbol x. If x ∈ Dom(s1), then s0(s1((x))) = s0(s1(x)) = s(x) =
s((x)). If x ∈ Dom(s0) − Dom(s1), then s0(s1((x))) = s0((x)) =
s0(x) = s(x) = s((x)). In the remaining case, x �∈ Dom(s0) ∪
Dom(s1) = Dom(s), so s0(s1((x))) = (x) = s((x)). Now the reader
can verify immediately by induction on |q| that s0(s1(q)) = s(q) for
every finite sequence q.

Assume that s′ is a substitution such that Dom(s′) = Dom(s) and
s0(s1(q)) = s′(q) for every finite sequence q. Then, s′(x) = s′((x)) =
s0(s1((x))) = s((x)) = s(x) for every x ∈ Dom(s) = Dom(s′). Thus,
s = s′. �

We will use the phrase “composition of the substitutions s0 and
s1” to designate the substitution s whose existence is guaranteed by
Theorem 1.2.19, even though s is not the functional composition of
s0 and s1 as defined by set theory. We shall denote the composi-
tion (in this sense) of s0 and s1 by s0 ∗ s1. Observe that the state-
ment of Theorem 1.2.19 amounts to s0 ∗ s1 = s0 s1. Thus, for every
x ∈ Dom(s0) ∪ Dom(s1), we have s0 ∗ s1(x) = s0 ∗ s1((x)) =
s0(s1((x))).

Theorem 1.2.20. Let ι be a substitution such that ι(x) = (x) for
every x ∈ Dom(ι). For every substitution s such that Dom(ι) ⊆
Dom(s), we have

ι ∗ s = s = s ∗ ι.

If s0, s1, s2 are any substitutions, then

s2 ∗ (s1 ∗ s0) = (s2 ∗ s1) ∗ s0.

In other words, composition of substitutions is associative.

10 Logical Foundations of Computer Science — Volume 1

Proof. We leave the easy first part to the reader.
To prove the second part, note that

Dom(s2 ∗ (s1 ∗ s0))
= Dom(s2) ∪Dom(s1 ∗ s0) = Dom(s2) ∪Dom(s1) ∪Dom(s0)

= Dom(s2 ∗ s1) ∪Dom(s0) = Dom((s2 ∗ s1) ∗ s0).

Consider a symbol x ∈ Dom(s2) ∪Dom(s1) ∪Dom(s0). We have

s2 ∗ (s1 ∗ s0)(x)

= s2 ∗ (s1 ∗ s0)((x))
= s2(s1 ∗ s0((x)))
= s2(s1(s0((x))))

because of Theorem 1.2.19 and of the definition of “∗”. Similarly,
(s2 ∗ s1) ∗ s0(x) = s2(s1(s0((x)))). �

Theorem 1.2.21. The composition of two finite substitutions is a
finite substitution. In fact, if s0 = s

y0···ym−1
r0···rm−1 , s1 = s

x0···xn−1
q0···qn−1 , and

{yj0 , . . . , yjk−1
} = {y0, . . . , ym−1} − {x0, . . . , xn−1},

then s0 ∗ s1 = s
x0···xn−1yj0 ···yjk−1
z0···zn−1rj0 ···rjk−1

, where zi = s0(qi) for 0 ≤ i ≤ n− 1.

Proof. Let s′ = s
x0···xn−1yj0 ···yjk−1
z0···zn−1rj0 ···rjk−1

. We need to show that for every

x ∈ Dom(s0) ∪Dom(s1), s
′(x) = s0 ∗ s1(x) = s0(s1((x))).

Suppose first that x = xi. Then, x ∈ Dom(s1) and s1(x) = qi, so
s0(s1((x))) = s0(qi) = zi = s′(xi) = s′(x).

Now suppose that x = yjl . Regardless of whether x ∈ Dom(s1) or
not, we have s1((x)) = (x). Therefore, s0(s1((x))) = s0((x)) = rjl =
s′(x).

Finally, if x �∈ {x0, . . . , xn−1, y0, . . . , ym−1}, then

s0(s1((x))) = s0((x)) = (x) = s′(x).
�

Preliminaries 11

Theorem 1.2.22. Let {x0, . . . , xn−1} and {y0, . . . , ym−1} be two dis-
joint sets of symbols and let q0, . . . , qn−1, r0, . . . , rm−1 be sequences
such that no symbol xi occurs in any sequence rj for 0 ≤ i ≤ n − 1
and 0 ≤ j ≤ m− 1. We have

s
y0···ym−1
r0···rm−1 ∗ s

x0···xn−1
q0···qn−1 = s

x0···xn−1
w0···wn−1 ∗ s

y0···ym−1
r0···rm−1 ,

where wi = s
y0···ym−1
r0···rm−1 (qi), for 0 ≤ i ≤ n− 1.

Proof. By Theorem 1.2.21, we can write

s
y0···ym−1
r0···rm−1 ∗ s

x0···xn−1
q0···qn−1 = s

x0···xn−1y0···ym−1
w0···wn−1q0···qm−1 .

By the same corollary, we have

s
x0···xn−1
w0···wn−1 ∗ s

y0···ym−1
r0···rm−1 = s

y0···ym−1x0···xn−1
z0···zm−1w0···wn−1 ,

where for each j, zj = s
x0···xn−1
w0···wn−1(rj) = rj because no xi occurs in a

sequence rj . This gives the desired equality. �

Composition of substitutions is not commutative in general. For
example, let s0, s1 be the substitutions defined by Dom(s0) = {x}
and s0(x) = (y), and Dom(s1) = {y} and s1(y) = (x), where x �= y.
We have s0 ∗ s1(x) = (y), while s1 ∗ s0(x) = (x). The following result
gives sufficient conditions for two substitutions to commute.

Theorem 1.2.23. Let s0, s1 be two substitutions whose domains are
disjoint and no symbol that occurs in a sequence in Ran(si) belongs
to Dom(sj) for i �= j, i, j ∈ {0, 1}. Then, we have s0 ∗ s1 = s1 ∗ s0.

Proof. Since Dom(s0) ∩Dom(s1) = ∅, we can write

s0 ∗ s1(x) =
{
s0(s1(x)) if x ∈ Dom(s1)

s0(x) if x ∈ Dom(s0),

s1 ∗ s0(x) =
{
s1(s0(x)) if x ∈ Dom(s0)

s1(x) if x ∈ Dom(s1).

If x ∈ Dom(s1), the second condition guarantees that s0(s1(x)) =
s1(x). Similarly, if x ∈ Dom(s0), we have s1(s0(x)) = s0(x). Thus,
s0 ∗ s1(x) = s1 ∗ s0(x) for every x ∈ Dom(s0) ∪Dom(s1). �

12 Logical Foundations of Computer Science — Volume 1

1.3 Collections of Sets

In this section, we discuss two set-theoretical concepts — properties
of finite character and closure systems — that will have later use in
this volume.

As discussed in more detail in Section 1.2 of [13], we adopt the
extensional point of view in defining properties. That is, we regard
a property of the elements of a set S to be a subset of S. The set of
all subsets of S is called the power set of S and is denoted by P(S).
Thus, the set of all properties of the elements of S is P(S).

Definition 1.3.1. Let U be a set. A property of finite character of
the subsets of U is a collection C of subsets of U such that A belongs
to C if and only if every finite subset of A belongs to C. (In other
words, C(A) is true if and only if C(B) is true for every finite subset
B of A.)

It is easy to see that if C is a property of finite character of the
subsets of U and C(A) is true, then C(B) is true for every subset B
of A. We will refer to this by saying that C is downward closed.

Lemma 1.3.2. Let U be a set and let C be a property of finite charac-
ter of the subsets of U . If (A0, . . . , An, . . .) is a sequence of members
of C such that A0 ⊆ · · · ⊆ An ⊆ · · · , then A =

⋃
{Ai | i ≥ 0} ∈ C.

Proof. Let B = {u0, . . . , uk−1} be a finite subset of A. For every
u� ∈ B, let q� be the least integer such that u� ∈ Aq� for 0 ≤ � ≤ k−1.
If q = max{q0, . . . , qk−1}, then B ⊆ Aq, so B ∈ C. Since every finite
subset of A belongs to C, we obtain A ∈ C. �

If C is a property of the subsets of a set U , we call a set M a
maximal set in C if C(M) is true and there is no set M ′ such that
M ⊂M ′ and C(M ′) is true.

Theorem 1.3.3. Let U = {u0, . . . , un, . . .} be a countable set and
let C be a property of finite character of the subsets of U . Then, for
every subset A of U such that A ∈ C, there is a maximal set M in C
that contains A.

Preliminaries 13

Proof. Consider the sequence A0, . . . , An, . . . of subsets of U
defined recursively by A0 = A and

An+1 =

{
An ∪ {un} if An ∪ {un} ∈ C
An otherwise.

This sequence is nondecreasing and An ∈ C for every n ∈ N. Accord-
ing to Lemma 1.3.2, we have M =

⋃
{Ai | i ∈ N} ∈ C and, clearly

A ⊆ M . We claim that M is a maximal set in C. Indeed, assume
that M ⊂ M ′, where M ′ ∈ C. There exists um ∈ U such that
um ∈M ′−M . Since um �∈M , we have um �∈ Am+1. By the definition
of the sequence A0, . . . , An, . . . , this happens only if Am ∪{um} �∈ C.
Since Am ∪ {um} ⊆M ′ ∈ C, we obtain Am ∪ {um} ∈ C because C is
of finite character. This contradiction implies that M is maximal.

�

Definition 1.3.4. A closure system is a collection of sets C such
that

⋃
C ∈ C and for every nonempty collection D ⊆ C, we have⋂

D ∈ C.
If
⋃
C =M , we will refer to C as a closure system on the set M .

Example 1.3.5. Let C be the collection of all intervals [a, b] = {x ∈
R | a ≤ x ≤ b} with a, b ∈ R and a ≤ b, together with the empty
set and the set R. Note that

⋃
C = R ∈ C, so the first condition of

Definition 1.3.4 is satisfied.
Let D be a nonempty subcollection of C. If ∅ ∈ D, then

⋂
D =

∅ ∈ C. If D = {R}, then
⋂
D = R ∈ C. Therefore, we need to

consider only the case when D = {[ai, bi] | i ∈ I}. Then,
⋂
D = ∅,

unless a = sup{ai | i ∈ I} and b = inf{bi | i ∈ I} both exist and
a ≤ b, in which case,

⋂
D = [a, b]. Thus, C is a closure system.

Example 1.3.6. Let M be a set and let F be a set of operations
on M . A subset P of M is called closed under F or F -closed if P is
closed under f for every f ∈ F , that is, for every operation f ∈ F ,
if f is n-ary and p0, . . . , pn−1 ∈ P , then f(p0, . . . , pn−1) ∈ P . Note
thatM itself is closed under F . Further, if C is a nonempty collection
of F -closed subsets of M , then

⋂
C is also F -closed. Therefore, the

collection of all F -closed subsets of M is a closure system.

Definition 1.3.7. A mapping κ : P(M) −→ P(M) is a closure
operator on a set M if it satisfies the following conditions:

14 Logical Foundations of Computer Science — Volume 1

• H ⊆ κ(H) (expansiveness)
• H ⊆ L implies κ(H) ⊆ κ(L) (monotonicity)
• κ(κ(H)) = κ(H) (idempotency)

for H,L ∈ P(M).

Example 1.3.8. Let κ : P(R) −→ P(R) be defined by

κ(L) =

⎧⎪⎨
⎪⎩
∅ if L = ∅
[a, b] if both a = inf L and b = supL exist

R otherwise.

We leave to the reader the verification that κ is a closure operator.

Closure operators generate closure systems, as shown by the
following lemma.

Lemma 1.3.9. Let κ : P(M) −→ P(M) be a closure operator.
Define the family of sets Cκ = {H ∈ P(M) | H = κ(H)}. Then,
Cκ is a closure system on M .

Proof. Since M ⊆ κ(M) ⊆ M , we have M ∈ Cκ, so
⋃
Cκ =

M ∈ Cκ.
Let D = {Di | i ∈ I} be a nonempty collection of subsets of M

such that Di = κ(Di) for i ∈ I. Since
⋂
D ⊆ Di, we have κ(

⋂
D) ⊆

κ(Di) = Di for every i ∈ I. Therefore, κ(
⋂
D) ⊆

⋂
D, which implies

κ(
⋂
D) =

⋂
D. This proves our claim. �

Note that Cκ, as defined in Lemma 1.3.9, equals the range of κ.
Indeed, if L ∈ Ran(κ), then L = κ(H) for some H ∈ P(M), so
κ(L) = κ(κ(H)) = κ(H) = L, which shows that L ∈ Cκ. The reverse
inclusion is obvious.

We shall refer to the sets in Cκ as the κ-closed subsets of M .
In the reverse direction to Lemma 1.3.9, we show that every

closure system generates a closure operator.

Lemma 1.3.10. Let C be a closure system on the set M . Define the
mapping κC : P(M) −→ P(M) by κC(H) =

⋂
{L ∈ C | H ⊆ L}.

Then, κC is a closure operator on the set M .

Proof. Note that the collection {L ∈ C | H ⊆ L} is not empty
since it contains at least M , so κC(H) is defined and it is clearly

Preliminaries 15

the smallest element of C that contains H. Also, by the definition of
κC(H), it follows immediately that H ⊆ κC(H) for every H ∈ P(M).

Suppose that H1,H2 ∈ P(M) are such that H1 ⊆ H2. Since

{L ∈ C | H2 ⊆ L} ⊆ {L ∈ C | H1 ⊆ L},

we have ⋂
{L ∈ C | H1 ⊆ L} ⊆

⋂
{L ∈ C | H2 ⊆ L},

so κC(H1) ⊆ κC(H2).
We have κC(H) ∈ C for every H ∈ P(M) because C is a

closure system. Therefore, κC(H) ∈ {L ∈ C | κC(H) ⊆ L}, so
κC(κC(H)) ⊆ κC(H). Since the reverse inclusion clearly holds, we
obtain κC(κC(H)) = κC(H). �

Theorem 1.3.11. Let M be a set. For every closure system C on
M , we have C = CκC . For every closure operator κ on M , we have
κ = κCκ .

Proof. Let C be a closure system on M and let H ⊆M . Then, we
have the following equivalent statements:

(1) H ∈ CκC ,
(2) κC(H) = H,
(3) H ∈ C.
The equivalence between (2) and (3) follows from the fact that κC(H)
is the smallest element of C that contains H.

Conversely, let κ be a closure operator onM . To prove the equality
of κ and κCκ , consider the following list of equal sets, where H ⊆M :

(1) κCκ(H),
(2)

⋂
{L ∈ Cκ | H ⊆ L},

(3)
⋂
{L ∈ P(M) | H ⊆ L = κ(L)},

(4) κ(H).

We need to justify only the equality of the last two members of the
list. Since H ⊆ κ(H) = κ(κ(H)), we have κ(H) ∈ {L ∈ P(M) |
H ⊆ L = κ(L)}. Thus,

⋂
{L ∈ P(M) | H ⊆ L = κ(L)} ⊆ κ(H).

To prove the reverse inclusion, note that for every L ∈ {L ∈ P(M) |
H ⊆ L = κ(L)}, we have H ⊆ L, so κ(H) ⊆ κ(L) = L. Therefore,
κ(H) ⊆

⋂
{L ∈ P(M) | H ⊆ L = κ(L)}. �

16 Logical Foundations of Computer Science — Volume 1

Theorem 1.3.11 shows the existence of a natural bijection between
the set of closure operators on a setM and the set of closure systems
on M .

Example 1.3.12. Let κ be the closure operator given in
Example 1.3.8. Since the closure system Cκ equals the range of κ,
it follows that the members of Cκ, the κ-closed sets, are ∅, R, and
all closed intervals [a, b] with a ≤ b. Thus, Cκ is the closure system C
introduced in Example 1.3.5. Therefore, κ and C correspond to each
other under the bijection of Theorem 1.3.11.

1.4 Decidable and Semidecidable Sets

In this section, we present informally the notions of decidable and
semidecidable sets. Usually, these topics are treated in the context of
computability theory, where they receive a formal treatment, based
on the notion of partial recursive function. We undertake this infor-
mal treatment because we want to make this book self-contained.
The informality is due to the fact that we base our presentation
on the notion of algorithm, without defining this term precisely.
When introducing an algorithm, we make implicitly two effectiveness
assumptions: the inputs are given effectively and the algorithm pro-
vides an effective transformation of the inputs into the output. The
notion of construction is somewhat weaker: if inputs were given effec-
tively, we could use the construction to effectively produce the output
from the input. However, we do not assume effectively given inputs.

A set M is enumerable if M = ∅ or M can be written as
{m0,m1, . . .}. An effective version of this notion is introduced next.

Definition 1.4.1. A set M is effectively enumerable if M = ∅ or
there is an algorithm such that

(1) for every n ∈ N, the algorithm produces an element mn of M ,
(2) M = {m0,m1, . . .}.

We refer to the infinite sequence (m0,m1, . . .) as an effective enu-
meration of M .

Note that every finite set is effectively enumerable because the
enumerating algorithm may repeat the elements it generates.

Preliminaries 17

Theorem 1.4.2. Let U be an effectively enumerable set. The set
Seq(U) of finite sequences of elements of U is effectively enumerable.

Proof. Let (u0, u1, . . .) be an effective enumeration of the set U .
Consider the following algorithm for enumerating the set Seq(U):

Input: A number n ∈N.
Output: A sequence in Seq(U).
Method: If n ∈ {0, 1}, the output is λ. Otherwise, factor n

as a product of primes, n = pi00 · · · p
ik−1

k−1 , where ik−1 > 0 and
(p0, p1, . . .) is the sequence of prime numbers listed in increas-
ing order. Let (i′0, . . . , i′l−1) be the subsequence of the sequence
(i0, . . . , ik−1) that consists of its nonzero entries. Output the sequence
(ui′0−1, . . . , ui′l−1−1).

We claim that the algorithm enumerates the set Seq(U). Indeed,
it is clear that the empty sequence will be generated by the algorithm
(for n = 0 and n = 1). A sequence (ui0 , . . . , uik−1

), with k > 0, will

be produced by the algorithm when the input is n = pi0+1
0 · · · pik−1+1

k−1 .
�

Definition 1.4.3. Let (u0, u1, . . .) be an effective enumeration of a
set U , referred to in this context as a universal set. A subset A of U
is decidable if there is an algorithm which, given an element ui of U ,
returns 1 if ui ∈ A and 0 otherwise.

A subset A of U is semidecidable if there is an algorithm which,
given an element ui of U , returns 1 if ui ∈ A and does not return a
value if ui �∈ A.

If a subset A of U is decidable or semidecidable relative to an
effective enumeration (u0, u1, . . .), then it is decidable or semidecid-
able, respectively, with respect to any other effective enumeration
(u′0, u′1, . . .). Indeed, given an element u′i, we run the enumerating
algorithm for the effective enumeration (u0, u1, . . .) until we find
the first j such uj = u′i. Then, using the decision algorithm for A
determine whether uj ∈ A. This clearly allows us to decide whether
u′i ∈ A. A similar argument works for semidecidability.

In Exercise 42, we ask the reader to show that if set A is the
subset of two effectively enumerable sets U and U ′, then A is semide-
cidable a subset of U if and only if A is semidecidable as a subset of
U ′. However, the decidability of A as a subset of a universal set U

18 Logical Foundations of Computer Science — Volume 1

depends on this universal set. Thus, when dealing with decidability,
it is important to specify the universal set. If the set U is clear from
the context, then instead of saying that a subset A of U is a decidable
or semidecidable subset of U , we will simply say that A is a decidable
or semidecidable set.

Theorem 1.4.4. Every decidable subset A of an effectively enumer-
able set U is semidecidable.

Proof. We can produce a semidecidability algorithm for A starting
from the decidability algorithm for A and entering an infinite loop
when the decidability algorithm yields a 0. �

Theorem 1.4.5. If A is a decidable subset of an effectively enumer-
able set U , then U − A is also decidable. Further, if B is another
decidable subset of U , then A ∪B is decidable.

Proof. To obtain a decidability algorithm for U −A, we can apply
the decidability algorithm for A and replace 1 with 0 and 0 with 1
in the output.

We leave the second part to the reader. �

Theorem 1.4.6. Let U be an effectively enumerable set. A subset A
of U is decidable if and only if both A and U −A are semidecidable.

Proof. Let A be decidable. By Theorems 1.4.4 and 1.4.5, both A
and U −A are semidecidable.

Conversely, let A and U −A be semidecidable and let ui ∈ U . To
decide whether ui ∈ A, run the semidecidability algorithms for A and
U −A in parallel on ui until one of them gives an output of 1. Then,
decide that ui ∈ A if the one to return 1 was the semidecidability
algorithm for A and decide that ui �∈ A if 1 was returned by the
semidecidability algorithm for U −A. �

Theorem 1.4.7. A subset A of an effectively enumerable set U is
semidecidable if and only if it is itself effectively enumerable.

Proof. Suppose that A is an effectively enumerable subset of the
effectively enumerable set U . If A = ∅, then A is clearly semidecid-
able. Otherwise, given an element u of U , apply the enumeration
algorithm for A. Return 1 if ai the ith output of the enumeration

Preliminaries 19

algorithm of A equals u. This is clearly a semidecidability algorithm
for A.

Conversely, suppose that A is a semidecidable subset of the
effectively enumerable set U . If A = ∅, then A is effectively
enumerable. Otherwise, let E be an enumerating algorithm for U .
To enumerate effectively the set A, consider the following algorithm.
For i = 0, 1, 2, . . . , run E to produce u0, . . . , ui. Run the semidecid-
ing algorithm for A on each of u0, . . . , ui for i steps or until it halts,
whichever comes first, and add to the enumeration of A all those ujs
for which this algorithm returns 1. Note that every element of the set
A will appear infinitely often in this enumeration, so A is effectively
enumerable. �

The technique used in this informal proof is known in the com-
putability literature as “dovetailing.”

Definition 1.4.8. Let U, V be two effectively enumerable sets and
let A,B be subsets of U, V , respectively. A is many-one reducible to
B if there is an algorithm that computes a function f : U −→ V
such that u ∈ A if and only if f(u) ∈ B for all u ∈ U . This will be
denoted by A ≤m B. We will refer to the function f as a reduction
function.

If we have both A ≤m B and B ≤m A, then we say that the sets
A and B are m-equivalent and write A ≡m B.

If two sets are m-equivalent, membership in these sets is equally
difficult to verify.

Because we do not consider other types of reducibility, we will
often say that A is reducible to B when we mean that A is many-one
reducible to B.

Theorem 1.4.9. Let U, V be two effectively enumerable sets and let
A,B be subsets of U, V , respectively, such that A ≤m B:

(1) If B is decidable, then A is decidable.
(2) If B is semidecidable, then A is semidecidable.

Proof. Let f : U −→ V be a reduction function of A to B. Suppose
that B is decidable. A decision algorithm for A works as follows: given
an element ui of U , apply the decision algorithm for B to f(ui) and
return the same answer.

A similar argument works if B is semidecidable. �

20 Logical Foundations of Computer Science — Volume 1

1.5 Signatures and Terms

Terms as syntactic objects are built using two types of symbols:
variables and function symbols. Terms are notations which can be
used for describing computations by assigning values to variables
and functions to function symbols. Any such assignment results in a
value which is the result of the computation described by the term.
This idea is fundamental for first-order logic and has applications in
propositional logic as well.

Beginning with this section, we fix three objects denoted by

() .

The set P consisting of these symbols will be called the set of punc-
tuation symbols.

Definition 1.5.1. A signature is a pair S = (F, ν), where F is an
arbitrary set, disjoint from P , whose elements are called the function
symbols of S and ν : F −→ N is called the arity function of S.

If f ∈ F and ν(f) = n, we refer to f as an n-ary function symbol
of S. The set of all n-ary function symbols of S is denoted by FSn .

Elements of FS0 are called constant symbols of S.

Whenever there is no risk of confusion, we will write Fn rather
than FSn .

Definition 1.5.2. Let S = (F, ν) be a signature and let V be a set
disjoint from F and P . The elements of V are called variables.

We define the set TERMS(V) of terms of S over the set of variables
V to be the set of finite sequences of function symbols of S, variables,
and punctuation symbols constructed inductively as follows:

(1) Every variable in V is in TERMS(V).
(2) Every constant symbol of S is in TERMS(V).
(3) For each function symbol f of S of positive arity (say of arity

n) and each n-tuple (t0, . . . , tn−1) of terms of TERMS(V),
f(t0, . . . , tn−1) is in TERMS(V).

In the above definition, we identify an element of a set with the
sequence of length 1 whose only entry is that element.

Preliminaries 21

Note that Rule 3 of the definition actually consists of one rule
for each function symbol f of S of positive arity n, which we denote
by 3f :

3f For each n-tuple (t0, . . . , tn−1) of terms of TERMS(V), the
sequence f(t0, . . . , tn−1) is in TERMS(V).

Since constant symbols are function symbols with arity 0, we
could have omitted the second clause of the above definition if we
allowed any arity in the third clause, but then we would have gotten
terms of the form a() instead of the more usual a.

If the signature S and the set of variables V are clear from the
context, then we will refer to the terms of S over V as (S, V)-terms or
simply as terms. In general, we will use the letters t, u, v, w to denote
terms.

Example 1.5.3. Let S = ({a, f, g, h}, ν) be a signature with

ν(a) = 0, ν(f) = 1, ν(g) = ν(h) = 2

and let V = {x0, x1}. Since variables and constants’ symbols of S
are terms of S over V , we have x0, x1, a ∈ TERMS(V). Therefore,
by Definition 1.5.2, we obtain the terms t1 = f(a), t2 = f(f(a)), and
t3 = f(x1). The following are further terms:

g(t1, t2) = g(f(a), f(f(a))),

h(t1, x0) = h(f(a), x0),

h(t2, t3) = h(f(f(a)), f(x1)).

Let S = (F, ν) be a signature and let V be a set of variables.
If t ∈ TERMS(V), we write VS,V (t) to denote the set of variables
of V that occur in t. If S and V are understood from the context,
we write V(t) rather than VS,V (t). Similarly, we denote by CS,V (t)
or more simply, C(t), the set of constant symbols that occur in the
term t.

Definition 1.5.4. Let S = (F, ν) be a signature. The set of ground
terms of S, GTERMS, is the set TERMS(∅).

22 Logical Foundations of Computer Science — Volume 1

Note that the terms t1, t2, and g(t1, t2) from Example 1.5.3 are
ground terms of S, while g(t1, x0) is not.

Example 1.5.5. If S = (∅, ν), then ν is the empty function; in this
case, we have TERMS(V) = V .

Definition 1.5.6. Let S = (F, ν) and S′ = (F ′, ν ′) be two signa-
tures. Then, S is an extension of S′, written S′ � S, if F ′ ⊆ F and
ν ′ = ν |̀F ′. If S′ � S, we say that S′ is a reduct of S.

Theorem 1.5.7. Let S and S′ be two signatures such that S′ � S.
If V ′ ⊆ V , then TERMS′(V ′) ⊆ TERMS(V).

Proof. We leave this easy argument to the reader. �

Corollary 1.5.8. Let S be a signature and V a set of variables.
Then, GTERMS ⊆ TERMS(V).

Proof. Since GTERMS = TERMS(∅), the corollary follows imme-
diately from Theorem 1.5.7. �

Theorem 1.5.9. Let S be a signature and let V be a set of variables.
Then GTERMS consists of those terms of TERMS(V) that do not
contain any variables.

Proof. The proof is left to the reader in Exercise 51. �

Because we will be introducing functions by recursive definitions,
it is important to show that the definition of the set TERMS(V)
satisfies the unique readability condition. The following definition
and lemma will be used for this purpose.

Definition 1.5.10. Let S = (F, ν) be a signature and let V be a set
of variables. The function KS,V : F ∪ V ∪ P −→ Z is given by the
following table:

symbol s variable , () n-ary function symbol
KS,V (s) 1 0 −1 1 1− n

If the signature S and the set of variables V are clear from the
context, we will write K for KS,V .

Preliminaries 23

Lemma 1.5.11. Let S = (F, ν) be a signature and let V be a set
of variables. If t ∈ TERMS(V), then no proper prefix of t is in
TERMS(V).

Proof. We extend K to have domain consisting of all sequences
of variables, punctuation symbols, and function symbols of S by
defining

K((s0, . . . , sn−1)) = Σn−1
i=0K(si).

Now we can show by induction on terms in TERMS(V) that
K(t) = 1 for each term. If t is a variable or constant symbol, then
K(t) = 1 because a constant symbol is a 0-ary function symbol. If f
is an n-ary function symbol with n ≥ 1 and t0, . . . , tn−1 are terms
with K(ti) = 1 for each i, 0 ≤ i ≤ n− 1, then

K(f(t0, . . . , tn−1)) = K(f) +K(() +K(t0) +K(,) + · · ·
+ K(,) +K(tn−1) +K())

= (1− n)− 1 + n · 1 + 1

= 1.

Next, we can show that if t is a term in TERMS(V), then for
every proper prefix u of t, K(u) < 1. This implies that a proper
prefix of term cannot be a term (because for a term t, K(t) = 1).

The basis is immediate since variables and constant symbols have
no proper prefixes. Now let t = f(t0, . . . , tn−1), where f is an n-ary
function symbol with n > 0. Suppose that K(u) < 1 for every proper
prefix u of each term ti for 0 ≤ i ≤ n− 1. A proper prefix u of t has
one of the following forms:

• f ,
• f(,
• f(t0, . . . , ti−1, v,
• f(t0, . . . , ti,
• f(t0, . . . , ti.
We assume here that 0 ≤ i ≤ n − 1 and that v is a proper prefix
of ti. In the first case, K(u) = 1 − n < 1, while in the second case,
K(u) = −n < 1. In the third case, we have K(u) = (i−n)+K(v) ≤
−1 + K(v). By the inductive hypothesis, K(v) < 1, so K(u) < 0.
Finally, in the last two cases, K(u) = (i− n) + 1 ≤ 0. �

24 Logical Foundations of Computer Science — Volume 1

Theorem 1.5.12. For every signature S and set of variables V , the
definition of TERMS(V) (Definition 1.5.2) meets the unique read-
ability condition.

Proof. We need to show that every term t is put into TERMS(V)
by exactly one rule of Definition 1.5.2 and that if it is put in by one
of the rules 3f , that is, if t = f(t0, . . . , tn−1), then f and the terms
t0, . . . , tn−1 are uniquely determined.

If the first symbol of a term t is a variable, then t is put in
TERMS(V) by the first rule; if the first symbol of t is a constant
symbol, then t is put in by the second rule; finally, if the first symbol
of t is a function symbol f of positive arity n, then t is put in by
Rule 3f . In other words, the rule used to put in t is determined by
the first symbol of t.

Assume now that t = f(t0, . . . , tn−1) = f(t′0, . . . , t′n−1) for
f a function symbol of S and t0, . . . , tn−1, t

′
0, . . . , t

′
n−1 terms of

TERMS(V). Suppose that for some i, 0 ≤ i ≤ n− 1, we have ti �= t′i.
Let i0 be the least i with this property. Of course, for j < i, we have
tj = t′j and this gives

ti0 , . . . , tn−1) = t′i0 , . . . , t
′
n−1).

Since ti0 cannot be a proper prefix of t′i0 nor vice versa, ti0 = t′i0 ,
which contradicts the definition of i0. Therefore, ti = t′i for each i,
0 ≤ i ≤ n− 1. �

There is an alternative notation for terms called Polish notation
which dispenses with the use of punctuation symbols.

Definition 1.5.13. Let S = (F, ν) be a signature and let V be a set
of variables.

We define the set POLTERMS(V) of terms in Polish notation of S
over the set of variables V to be the set of finite sequences of function
symbols of S and variables constructed inductively as follows:

(1) Every variable in V is in POLTERMS(V).
(2) ft0 . . . tn−1 is in POLTERMS(V) for each n-ary function

symbol f of S and each n-tuple (t0, . . . , tn−1) of terms of
POLTERMS(V).

Preliminaries 25

Polish notation is more concise but also more difficult to read
than the notation for terms previously introduced.

Example 1.5.14. Let S = ({a, f, g, h}, ν) be the signature intro-
duced in Example 1.5.3. Since variables and constants symbols of
S are terms in Polish notation of S over V , we have x0, x1, a ∈
POLTERMS(V). Therefore, by Definition 1.5.13, we obtain the terms
in Polish notation t′1 = fa, t′2 = ffa and t′3 = fx1. The following are
further terms in Polish notation:

gt′1t
′
2 = gfaffa,

ht′1x0 = hfax0,

ht′2t
′
3 = hffafx1.

Theorem 1.5.15. For every signature S and set of variables V , the
definition of POLTERMS(V) (Definition 1.5.13) meets the unique
readability condition.

Proof. Let K be the function introduced in Definition 1.5.10.
An argument similar to one used in Lemma 1.5.11 shows that for
every term t in Polish notation, we have K(t) = 1 and for every
proper prefix u of a term in POLTERMS(V), we have K(u) < 1.
Consequently, no proper prefix of a term in POLTERMS(V) can
belong to POLTERMS(V). The proof of unique readability now pro-
ceeds as in Theorem 1.5.12. �

Terms, in either our initial notation or in Polish notation, are
descriptions of potential computations. The differences between the
two notations are not essential, and in fact there is a “natural” bijec-
tion between TERMS(V) and POLTERMS(V). This remark is made
precise by the following theorem.

Theorem 1.5.16. Let S = (F, ν) be a signature and let V be a
set of variables. Consider the mappings Ψ : POLTERMS(V) −→
TERMS(V) and Φ : TERMS(V) −→ POLTERMS(V) defined recur-
sively by

Ψ(x) = x,

Ψ(a) = a,

Ψ(fu0 . . . un−1) = f(Ψ(u0), . . . ,Ψ(un−1))

26 Logical Foundations of Computer Science — Volume 1

and

Φ(x) = x,

Φ(a) = a,

Φ(f(t0, . . . , tn−1)) = fΦ(t0) . . .Φ(tn−1),

for every variable x, constant symbol a ∈ F , f ∈ F (with n = ν(f) >
0), u0, . . . , un−1 ∈ POLTERMS(V) and t0, . . . , tn−1 ∈ TERMS(V).
Then, Φ and Ψ are bijections which are inverse of each other.

Proof. It suffices to show, for each u ∈ POLTERMS(V), that
Φ(Ψ(u)) = u and, for each t ∈ TERMS(V), that Ψ(Φ(t)) = t.
We show the first claim by induction on u and leave the sec-
ond for the reader. If u is a variable or constant symbol, then
Φ(Ψ(u)) = Φ(u) = u, by the definitions of Ψ and Φ. This shows
the basis steps of the induction. Now suppose that u = fu0 . . . un−1

and that Φ(Ψ(ui)) = ui for 0 ≤ i ≤ n− 1, where n > 0. Then,

Φ(Ψ(u)) = Φ(f(Ψ(u0), . . . ,Ψ(un−1)))

= fΦ(Ψ(u0)) . . .Φ(Ψ(un−1))

= fu0 . . . un−1 = u.
�

Definition 1.5.17. Let S be a signature and let V be a set of vari-
ables. An (S, V)-substitution is a substitution whose domain is the
set V and whose range is a subset of TERMS(V), i.e., a mapping
s : V −→ TERMS(V).

If the signature S and the set of variables V are clear from
the context, we will use the term “substitution” rather than
(S, V)-substitution.

Definition 1.5.18. Let S be a signature and let V be a set of
variables. The identity (S, V)-substitution is the substitution ι(S,V) :
V −→ TERMS(V) given by ι(S,V)(x) = x, for all x ∈ V .

When the signature and set of variables are clear from the context,
we will write ι rather than ι(S,V).

Preliminaries 27

Lemma 1.5.19. Let S be a signature, V be a set of variables, and s
be an (S, V)-substitution. Then,

s(x) = s(x),

s(a) = a,

s(f(t0, . . . , tn−1)) = f(s(t0), . . . , s(tn−1))

for all variables x, constant symbols a, n-ary function symbols f (with
n > 0), and terms t0, . . . , tn−1.

Proof. The argument follows from the definition of s and
Theorem 1.2.11. �

Theorem 1.5.20. Let s be an (S, V)-substitution and let t be a term
in TERMS(V). Then, s(t) ∈ TERMS(V).

Proof. The argument is by structural induction on the definition
of terms. If t is a variable, then s(t) = s(t) is a term by the definition
of (S, V)-substitution. If t is a constant symbol, then s(t) = t.

Let f be an n-ary function symbol (n > 0) and suppose that s(ti)
is a term for 0 ≤ i ≤ n−1. Then, by Lemma 1.5.19 and the definition
of term, s(f(t0, . . . , tn−1)) = f(s(t0), . . . , s(tn−1)) is a term. �

Whenever s is an (S, V)-substitution, we shall regard s as a func-
tion s : TERMS(V) −→ TERMS(V), rather than consider s(z) for
arbitrary sequences z, as we did in Section 1.2.

We remind the reader that every finite substitution s can be writ-
ten as s = s

x0···xn−1
t0···tn−1

for some n, distinct variables xi and terms ti for
0 ≤ i ≤ n− 1. Since we do not assume that ti �= xi, this representa-
tion is not unique. For instance, sx0x0 , s

x0x1
x0x1 , and s

x0···xn−1
x0···xn−1 all denote

the identity (S, V)-substitution, where x0, . . . , xn−1 all belong to V .

Example 1.5.21. Let S = ({a, f, g, h}, ν) be the signature intro-
duced in Example 1.5.3 and let V = {xn|n ∈ N} be a set of variables.

Let t ∈ TERMS(V) be the term h(x1, x0). If t1 = g(f(a),
f(f(a))), then sx0x1x0t1 (t) = h(g(f(a), f(f(a))), x0). Of course, sx0x1x0t1

is the same substitution as sx1t1 .

Example 1.5.22. Let S = ({a, f, }, ν) be a signature with ν(a) = 0
and ν(f) = 3 and let V = {x0, x1}. Consider the substitution sx0x1a x0 .

If t = f(x0, x1, a) ∈ TERMS(V), then sx0x1ax0 (t) = f(a, x0, a).

28 Logical Foundations of Computer Science — Volume 1

Theorem 1.5.23. Let s be an (S, V)-substitution and let t be a term
in TERMS(V). Then, V(s(t)) =

⋃
{V(s(x)) | x ∈ V(t)}.

Proof. The argument is left to the reader. �

The following theorem shows that {s | s is an (S, V)-substitu-
tion} is closed under composition.

Theorem 1.5.24. Let s0, s1 be two (S, V)-substitutions. Then, s0∗s1
is an (S, V)-substitution.

Proof. Let s = s0 ∗ s1. By Theorem 1.2.19, since Dom(s0) =
Dom(s1) = V , we have s(x) = s0(s1(x)) for all x ∈ V . Since s1(x)
is an (S, V)-term, by Theorem 1.5.20, s0(s1(x)) is an (S, V)-term for
every x ∈ V and this proves that s is an (S, V)-substitution. �

Theorem 1.5.25. Let S be a signature and let V ′ and V be two sets
of variables such that V ′ ⊆ V . If s0, s1 are two (S, V)-substitutions
such that s0 |̀V ′ and s1 |̀V ′ are (S, V ′)-substitutions, then (s0 ∗ s1)
|̀V ′ is an (S, V ′)-substitution.

Proof. For x ∈ V ′, s1(x) is an (S, V ′)-term, so by Theorem 1.5.23,
s0(s1(x)) is an (S, V ′)-term. By the definition of substitution com-
position, it follows that (s0 ∗ s1) |̀V ′ is an (S, V ′)-substitution. �

Definition 1.5.26. Let t be an (S, V)-term. A subterm of t is a
(S, V)-term which is a subsequence of t.

We denote the set of subterms of a term t by SUBT(t).
Any subterm of an (S, V)-term t distinct from t is a proper

subterm.

Note that we did not incorporate the signature into the notation
SUBT(t) because the set of subterms of t does not depend on the
signature.

Theorem 1.5.27 (Occurrence Theorem for Terms). Let S be a
signature and V be a set of variables. If an (S, V)-term t is a proper
subterm of an (S, V)-term u = f(t0, . . . , tn−1), then every occurrence
(t, j) of t in u is part of some term ti (or, more accurately, (t, j) is
a part of one of the occurrences (ti,mi), where 0 ≤ i ≤ n − 1 and
mi = 2 + i+

∑
0≤k≤i−1 |tk|).

Preliminaries 29

Proof. If j = 0, then t is a prefix of u, which implies by
Lemma 1.5.11 that t = u, thus contradicting the assumption that
t is a proper subterm of u. Since t may not begin with a parenthesis
or comma, the occurrence of t must begin inside one of the terms ti.
If the occurrence of t extended beyond the end of this ti, then a suf-
fix of ti would be a proper prefix of t which contradicts Exercise 53,
Part (a). �

Theorem 1.5.28. Let S be a signature and V be a set of variables.
The function SUBT satisfies the following conditions:

(1) If t is a constant symbol or a variable, then SUBT(t) = {t}.
(2) If f is an n-ary function symbol and t = f(t0, . . . , tn−1), then

SUBT(t) = {t} ∪
⋃

0≤i≤n−1

SUBT(ti).

Proof. This is an immediate consequence of Theorem 1.5.27 and
we leave the details to the reader. �

Example 1.5.29. Let S = ({a, f, g, h}, ν) be the signature intro-
duced in Example 1.5.3 and let V = {x0, x1}. The set of subterms of
the term t = h(f(f(a)), f(x1)) is given by

SUBT(t) = {t} ∪ SUBT(f(f(a))) ∪ SUBT(f(x1))

= {t, f(f(a)), f(a), a, f(x1), x1}.

Theorem 1.5.30. Let S be a signature and V be a set of vari-
ables. If t is an (S, V)-term and (u, j) is an occurrence of an (S, V)-
term u in t, then for every (S, V)-term w, replace (t, (u, j), w) is an
(S, V)-term.

Proof. The argument is by structural induction on the definition
of terms. If t is a variable, that is, if t = x, then we have u = x, j = 0
and replace (t, (u, j), w) = w, so the statement clearly holds. If t is
a constant symbol, a similar argument applies.

Let t = f(t0, . . . , tn−1) be an (S, V)-term. Suppose that for every
i, 0 ≤ i ≤ n − 1, replace (ti, (u, �), w) is an (S, V)-term for every
u,w ∈ TERMS(V) such that (u, �) ∈ OCCu(ti). Let (u, j) be an occur-
rence of u in t. If u = t, then j = 0 and replace (t, (u, j), w) = w,

30 Logical Foundations of Computer Science — Volume 1

which is a term. If u �= t, then Theorem 1.5.27 shows that the occur-
rence (u, j) is a part of some occurrence (ti,mi), where 0 ≤ i ≤ n−1
and mi = 2 + i+

∑
0≤k≤i−1 |tk|. By Exercise 8,

replace (t, (u, j), w) = f(t0, . . . , replace (ti, (u, �), w), . . . , tn−1),

where � = j− (2+ i+
∑

0≤k≤i−1 |tk|). Since replace (ti, (u, �), w) is a
(S, V)-term by the inductive hypothesis, replace (t, (u, j), w) is also
a (S, V)-term. �

1.6 Term Unification

Unification is a process through which we decide whether there exists
a substitution that maps all members of a finite set of terms into the
same term. In this section, we will give an algorithm that enables
us to make this decision. Unification is a tool used in the resolution
proof method in first-order logic, as we shall see in Chapter 5.

Definition 1.6.1. Let S be a signature, S′ be a reduct of S, V be
a set of variables, and let t0, . . . , tn−1 ∈ TERMS(V). An (S, S′, V)-
unifier for {t0, . . . , tn−1} is an (S′, V)-substitution s such that s(t0) =
· · · = s(tn−1). If s is a finite substitution, we refer to s as a finite
(S, S′, V)-unifier.

The finite set T = {t0, . . . , tn−1} of terms is (S, S′, V)-unifiable if

it has an (S, S′, V)-unifier. We shall denote by UNIFS,VS′ (T) the set
of (S, S′, V)-unifiers for the set T . An (S, S, V)-unifier will be referred

to as an (S, V)-unifier and the set UNIFS,VS (T) will be written as

UNIFS,V (T).

For any substitution s and any finite set of (S, V)-terms T ,
we have |s(T)| ≤ |T |. Note that if s is a unifier for T �= ∅, then
|s(T)| = 1.

Example 1.6.2. Let f be a binary function symbol of the signa-
ture S, a, b be two constant symbols of S, and let V be a set of
variables that contains u and v. The set T = {f(u, a), f(b, v)} is
(S, V)-unifiable because we have

s
u

b

v

a
(f(u, a)) = s

u

b

v

a
(f(b, v)) = f(b, a).

Preliminaries 31

Observe that the set {f(a, v), f(b, u)} is not (S, V)-unifiable because
any substitution will leave intact the distinct constant symbols a
and b.

If S′ is the reduct of S that contains only a and b, then s
u

b

v

a
is an

(S, S′, V)-unifier of T . If, on the other hand, S′′ is the reduct of S
that consists only of a, then T has no (S, S′′, V)-unifier.

Example 1.6.3. Let f be a binary function symbol of the signa-
ture S′. Suppose now that a, b, u, v are all constant symbols of S′
(contrast this with Example 1.6.2) and U is a set of variables. Then,
the set of terms T of that example is not (S′, U)-unifiable.

The point of this example is that unifiability is not an intrinsic
property of the set of terms involved. Rather, it depends also on the
signature and the set of variables involved because we need to be
able to discriminate between variables and constant symbols.

A set of terms T may have more than one unifier as shown by the
following example.

Example 1.6.4. Suppose that f, g are function symbols of S =
(F, ν), a is a constant symbol of S, and V is a set of variables that
contains x0 and x1. Assume that ν(f) = 2 and ν(g) = 1. The set

T = {f(g(x0), x1), f(g(a), x2)} is (S, V)-unifiable because both s
x0

a

x1

x2

and s
x0

a

x1

a

x2

a
are (S, V)-unifiers for T .

Note that for the substitutions s
x0

a

x1

x2
and s

x0

a

x1

a

x2

a
considered in

Example 1.6.4, we have s
x0

a

x1

a

x2

a
= s

x2

a
∗sx0

a

x1

x2
. We claim that for any

(S, V)-unifier s for the terms f(g(x0), x1), f(g(a), x2) we must have

a substitution s′ such that s = s′ ∗ sx0
a

x1

x2
. Indeed, arguing informally,

if s is an (S, V)-unifier for these terms, then s must map x0 into a
and must transform x1 and x2 into the same term t. This can always
be accomplished by transforming first x1 into x2 and, then, trans-

forming x2 into t. For instance, the (S, V)-unifier s
x0

a

x1

g(b)

x2

g(b)
can be

32 Logical Foundations of Computer Science — Volume 1

written as

s
x0

a

x1

g(b)

x2

g(b)
= s

x2

g(b)
∗ sx0

a

x1

x2
.

These remarks motivate the following definition.

Definition 1.6.5. Let S be a signature, S′ be a reduct of S, V be a
set of variables, and let T be a finite subset of TERMS(V).

A most general (S, S′, V)-unifier (mgu) for a finite set of (S, V)-
terms T is an (S, S′, V)-unifier s′ for T such that any (S, S′, V)-unifier
s′0 for T can be written as s′0 = s1∗s′ for some (S′, V)-substitution s1.

We shall denote by MGUNIFS,VS′ (T) the set of most general
(S, S′, V)-unifiers for the set T . A most general (S, S, V)-unifier
will be referred to as a most general (S, V)-unifier and the set

MGUNIFS,VS (T) will be written as MGUNIFS,V (T).

Let T be a set of (S, V)-terms. If s0, s1 are both most general
(S, S′, V)-unifiers for T , then s0 ≡ s1, where ≡ is the equivalence
on the set of (S′, V)-substitutions introduced in Supplement 68. We
extend this remark in the following theorem.

Theorem 1.6.6. Let T be a set of (S, V)-terms and let s0 be an
(S, S′, V) mgu of T . Then, an (S′, V)-substitution s1 is an (S, S′, V)-
mgu of T if and only if s0 ≡ s1.

Proof. We need to prove only that if s0 ≡ s1, then s1 is an
mgu of T . Suppose that s1 = s′ ∗ s0 and s0 = s′′ ∗ s1. We have
|s1(T)| = |s′ ∗ s0(T)| = |s′(s0(T))| = 1, due to the fact that s0 is a
unifier of T . Now suppose that z is an arbitrary (S′, V)-unifier of T .
Then for some substitution z′, z = z′ ∗ s0 because s0 is an mgu of T .
Therefore, z = z′ ∗ (s′′ ∗ s1) = (z′ ∗ s′′) ∗ s1, which shows that s1 is an
mgu of T . �

Let t, u be two distinct terms in TERMS(V). Since no term can
be a proper prefix of another, there is a least number i ∈N such that
0 ≤ i < min{|t|, |u|} and the i+1st symbols of t and u are different.
We will denote this number (called the disagreement position of t
and u) by DIS(t, u).

Example 1.6.7. Let t = f(x0, a) and u = f(f(x0, a), x0) be
two terms. Then, DIS(t, u) = 2 because the first two symbols of t

Preliminaries 33

and u are equal while the third symbols of t and u are x0 and f ,
respectively.

Let T = {t0, . . . , tn−1} be a finite set of (S, V)-terms, where n ≥ 2.
The disagreement position of T , denoted by DIS(T), is defined by
DIS(T) = min{DIS(t, u) | t, u ∈ T and t �= u}. In other words,
DIS(T) is the leftmost position in which not all terms of T have the
same symbol.

Theorem 1.6.8. Let t, u be two distinct (S, V)-terms. Then, there
is a subterm t′ of t beginning at position DIS(t, u) in t and there is
a subterm u′ of u beginning at position DIS(t, u) in u.

Proof. We will show by induction on the term t that for every term
u, u �= t, there is a subterm t′ of t that begins at position DIS(t, u)
in t. This suffices because the roles of t and u are reversible.

The basis steps, when t is a variable or a constant symbol, are
immediate because then DIS(t, u) = 0 and t′ = t.

Suppose now that t = f(t0, . . . , tn−1), where n > 0, and the state-
ment holds for t0, . . . , tn−1. If u does not begin with the symbol
f , then DIS(t, u) = 0 and t′ = t. Therefore, we can assume that
u = f(u0, . . . , un−1) and so, DIS(t, u) �∈ {0, 1}. This leaves three
cases to consider.

The first case occurs when the symbol of t in the disagreement
position is a comma immediately following one of the subterms ti of
t. More precisely, if this is the �th such comma, where 1 ≤ � ≤ n− 1,
we have DIS(t, u) = � + 1 +

∑
{|ti| | 0 ≤ i ≤ � − 1}. Note that

t0 = u0 because no term is a proper prefix of another. This implies
t1 = u1, and so on, until we get t�−1 = u�−1, which, in turn, means
that the symbol of u at position DIS(t, u) is also a comma, thereby
contradicting the definition of DIS(t, u).

The second case takes place when DIS(t, u) = |t|−1, so the symbol
of t at position DIS(t, u) is a close parenthesis. By the argument of
the previous case, we have ti = ui for 0 ≤ i ≤ n − 1. Thus, the
symbol of u at position DIS(t, u) is also a close parenthesis, thereby
contradicting the definition of DIS(t, u).

The third case occurs when the disagreement position falls within
one of the subterms ti, say tj. (More precisely, j+2+

∑
{|ti| | 0 ≤ i ≤

j − 1} ≤ DIS(t, u) < j + 2 +
∑
{|ti| | 0 ≤ i ≤ j}.) As in the previous

case, t0 = u0, . . . , tj−1 = uj−1. Further, since uj cannot be a proper

34 Logical Foundations of Computer Science — Volume 1

prefix of tj, DIS(t, u) falls within uj . By the inductive hypothesis,
there is a subterm t′ of tj starting at position

DIS(tj , uj) = DIS(t, u)−
(
j + 2 +

∑
{|ti| | 0 ≤ i ≤ j − 1}

)
.

Since t′, as a subterm of t, begins at position DIS(t, u) in t, this
concludes our argument. �

Corollary 1.6.9. Let T be a finite set of (S, V)-terms, where
|T | ≥ 2. Then, for each t ∈ T , there is a subterm t′ of t that begins
at position DIS(T).

Proof. The definition of DIS(T) implies the existence of two dis-
tinct terms u0, u1 ∈ T such that DIS(u0, u1) = DIS(T). We can write
u0 = xs0u

′
0 and u1 = xs1u

′
1, where |x| = DIS(T) and s0, s1 are two

distinct symbols. Let now t be an arbitrary term in T . The defini-
tion of DIS(T) implies that t can be written as t = xst′ for some
symbol s. Observe now that for some i ∈ {0, 1}, s �= si, and thus
DIS(t, ui) = DIS(u0, u1) = DIS(T). Applying Theorem 1.6.8 to t and
ui gives the result. �

This corollary justifies the following definition.

Definition 1.6.10. Let T be a finite set of (S, V)-terms with
|T | ≥ 2. The disagreement set of T is the set Δ(T) that consists
of all subterms beginning at position DIS(T) in each of the terms of
T . If |T | < 2, then Δ(T) = ∅.

Note that, if |T | > 1, each term of T contributes exactly one of its
subterms to Δ(T) because a position in a term determines at most
one subterm of that term. Of course, some of the terms contributed
may be the same, so in general |Δ(T)| ≤ |T |.

Example 1.6.11. Consider the set of (S, V)-terms

T = {f(x0, a), f(f(a, x1), x2), f(f(a, x1), a)},

where f is a binary function symbol, a is a constant symbol, and
x0, x1 and x2 are variables. We have DIS(T) = 2 and Δ(T) =
{x0, f(a, x1)}.

Preliminaries 35

Theorem 1.6.12. Let S be a signature, S′ be a reduct of S, and V
be a set of variables. For every finite set of (S, V)-terms T , we have

UNIFS,VS′ (T) ⊆ UNIFS,VS′ (Δ(T)).

Proof. Let T be a finite set of (S, V)-terms. If s ∈ UNIFS,VS′ (T),
then for some (S, V)-term w, s(t) = w, for every t ∈ T . Consider
now two (S, V)-terms u, u′ from Δ(T), such that u �= u′. There exist
t, t′ ∈ T such that t = vur and t′ = vu′r′, where v, r, r′ are sequences
of variables, function symbols, and punctuation symbols. Thus, we
have s(t) = s(v)s(u)s(r) and s(t′) = s(v)s(u′)s(r′), where w = s(t) =
s(t′), s(u) and s(u′) are all (S, V)-terms. Since both s(u) and s(u′)
are subterms of the term w that begin from the same position in
w, we have s(u) = s(u′) (because, otherwise, one of these terms
would be a proper prefix of the other). This shows that s is also an
(S, S′, V)-unifier for Δ(T). �

Corollary 1.6.13. Let S be a signature, S′ be a reduct of S, V
be a set of variables, and T be a finite set of (S, V)-terms. If the
disagreement set of T is not (S, S′, V)-unifiable, then the set T is not
(S, S′, V)-unifiable.

Proof. The corollary follows immediately from Theorem 1.6.12.
�

Definition 1.6.14. Let S be a signature, V be a set of variables,
x be a variable in V , and t �= x be an (S, V)-term. The pair (x, t)
passes the occurrence check if x does not occur in t. Otherwise, we
say that (x, t) fails the occurrence check.

A set of terms T passes the occurrence check if every pair of dis-
tinct terms (x, t) such that x, t ∈ Δ(T) and x is a variable passes
the occurrence check. Otherwise, we say that T fails the occurrence
check.

Lemma 1.6.15. Let S be a signature and V be a set of variables. If
T is a finite set of (S, V)-terms that fails the occurrence check, then
for every reduct S′ of S, T is not (S, S′, V)-unifiable.

36 Logical Foundations of Computer Science — Volume 1

Proof. Let T be a finite set of (S, V)-terms that fails the occurrence
check and let S′ be a reduct of S. By Corollary 1.6.13, it suffices to
show only that Δ(T) is not (S, S′, V)-unifiable.

Let x ∈ Δ(T) be a variable and let t ∈ Δ(T) be a term such
that |t| > 1 and x occurs in t. Suppose that Δ(T) has an (S, S′, V)-
unifier s. We must have s̄(x) = s̄(t) or s(x) = s̄(t). Since the term
t is not a variable it follows that it contains at least one func-
tion symbol and two parentheses besides the variable x. Therefore,
|s̄(t)| ≥ |s(x)|+3 and this contradicts the equality s(x) = s̄(t). Thus,
we conclude that T is not (S, S′, V)-unifiable. �

Another situation where T is not unifiable is given in the following
lemma.

Lemma 1.6.16. Let S be a signature, S′ be a reduct of S, V be
a set of variables, and let T be a finite set of (S, V)-terms. If the
disagreement set Δ(T) is nonempty and consists only of terms that
are not variables, then T is not (S, S′, V)-unifiable.

Proof. Note that if a set of terms U contains two terms that begin
with distinct function symbols, then U is not unifiable relative to
any signature. If Δ(T) is not empty, then it contains at least two
terms beginning with different symbols. Under the hypothesis of the
lemma, Δ(T) contains two terms which begin with different function
symbols, so Δ(T) is not (S, S′, V)-unifiable, which implies that T is
not (S, S′, V)-unifiable, by Corollary 1.6.13. �

Lemma 1.6.17. Let S be a signature, S′ be a reduct of S, V be
a set of variables, and let T be a finite set of (S, V)-terms. If the
disagreement set Δ(T) contains a variable x and a term t that is not
in TERMS′(V), then T is not (S, S′, V)-unifiable.

Proof. The term t contains some function symbol that is not in the
signature S′. Therefore, any (S′, V)-substitution applied to t yields
an (S, V)-term which is not in TERMS′(V). The same substitution
applied to x produces an (S′, V)-term, which implies that Δ(T) is
not (S, S′, V)-unifiable and therefore, T is not (S, S′, V)-unifiable, by
Corollary 1.6.13. �

Preliminaries 37

Algorithm 1.6.18 (Unification Algorithm).
Input: A signature S, a set of variables V , a reduct S′ of S, and
a finite set T of (S, V)-terms.
Output: A most general idempotent (S, S′, V)-unifier for the set
T , if T is (S, S′, V)-unifiable; otherwise, an announcement that T
is not (S, S′, V)-unifiable.
Method: We construct a sequence of sets of (S, V)-terms
T0, T1, . . . and a sequence of (S′, V)-substitutions s0, s1, . . .:

(1) Let n = 0, T0 = T , and s0 = ι.
(2) If |Tn| ≤ 1, output sn and stop. Otherwise, compute Δ(Tn).
(3) If Δ(Tn) does not contain a variable x and an (S′, V)-term

t �= x, then announce that T is not (S, S′, V)-unifiable and
stop. Otherwise, select one such pair (x, t). If (x, t) fails the
occurrence check, announce that T is not (S, S′, V)-unifiable
and stop. If (x, t) passes the occurrence check, then define

sn+1 = s
x

t
∗ sn, and construct Tn+1 = s

x

t
(Tn).

(4) Increment n by 1 and go to Step 2.

Proof of Correctness: Observe that the number of variables that
occur in the set Tn+1 is strictly less than the number of variables that
occur in the set Tn. Since T contains a finite number of variables,
the algorithm terminates after a finite number of steps.

Note that for all n such that Tn is defined, Tn = sn(T). Therefore,
if the algorithm terminates at Step 2 with n = k, then |sk(T)| ≤ 1,
so the output sk is clearly a unifier for T . (Note that |sk(T)| = 0 can
only happen if T = ∅.) It follows that if T is not (S, S′, V)-unifiable,
then the algorithm must halt at Step 3 with the announcement that
T is not (S, S′, V)-unifiable.

If the algorithm terminates at Step 3 with n = k, then the set
Tk is not (S, S′, V)-unifiable. Indeed, in this case, either Tk fails the
occurrence check or Δ(Tk) contains no variables or Δ(Tk) contains
a variable and a term u that is not an (S′, V)-term. Thus, Tk is not
(S, S′, V)-unifiable as follows from Lemmas 1.6.15, 1.6.16, or 1.6.17,
respectively.

38 Logical Foundations of Computer Science — Volume 1

We claim that if z is an (S, S′, V)-unifier for T and Tn is defined,
then z = z ∗ sn and z is an (S, S′, V)-unifier for Tn. The proof is by
induction on n.

The basis step, n = 0, is immediate because z = z ∗ ι.
Suppose that the claim is true for n and assume that Tn+1 is

defined. Then, T �= ∅ and, by inductive hypothesis, z = z ∗ sn and z
is an (S, S′, V)-unifier for Tn. Let x, t ∈ Δ(Tn) be such that sn+1 =

s
x

t
∗ sn. By Theorem 1.6.12, since z is an (S, S′, V)-unifier for Tn, it

is an (S, S′, V)-unifier for Δ(Tn), so z(x) = z(t). We have z = z ∗ s x
t

because z ∗ s x
t
(y) = z(y) if y �= x and z ∗ s x

t
(x) = z(t) = z(x).

Thus, z ∗ sn+1 = z ∗ (s x
t
∗ sn) = (z ∗ s x

t
) ∗ sn = z ∗ sn = z. Finally,

|z(Tn+1)| = |z(sn+1(T))| = |z ∗ sn+1(T)| = |z(T)| = 1, so z is an
(S, S′, V)-unifier for Tn+1.

Now, if T is (S, S′, V)-unifiable, then the algorithm cannot stop
at Step 3 because, as noted before, this would imply that the final set
Tk is not (S, S′, V)-unifiable and this would contradict what we have
just shown. So, the algorithm must stop in this case at Step 2 and
output a substitution sk. Since z = z ∗ sk for every (S, S′, V)-unifier
z for T , we conclude that sk is a most general (S, S′, V)-unifier for
T . Note that, in particular, sk = sk ∗ sk, so sk is also idempotent. �

Different strategies in picking the pair (x, t) at Step 3 of the Uni-
fication Algorithm will result in different variants of this algorithm.
Among such strategies, one could consider the following:

• Pick the first pair (x, t) with x �= t in some systematic search
through Δ(Tn); if T is (S, S′, V)-unifiable, this would result in
faster execution of the algorithm.

• Determine if Tn fails the occurrence check by searching through all
pairs (x, t) that can be formed in Δ(Tn). If it fails, pick the first
witness (x, t) to this failure; otherwise, pick the first pair (x, t).
This strategy sometimes is more efficient when T is not (S, S′, V)-
unifiable but takes a longer time when T is (S, S′, V)-unifiable
because of the need to scan the entire set Δ(Tn) for each n.

In the interest of speeding up the algorithm, certain imple-
mentations associated with the PROLOG programming language

Preliminaries 39

omit the occurrence check for the selected pair (x, t) and just set

sn+1 = s
x

t
∗sn. This may cause the algorithm not to terminate when

T is not unifiable; however, even with this omission, if T is unifiable,
the algorithm will terminate and produce an mgu. If T is not unifi-
able and the algorithm terminates, it will correctly announce that
T is not unifiable.

Example 1.6.19. Let

T = {f(g(x0), x2, x0), f(x1, x3, x2), f(g(x0), h(x1), x0)}

be a set of (S, V)-terms where f is a ternary function symbol and
g, h are two unary function symbols. We have T0 = T and Δ(T0) =

{g(x0), x1}, so the set T1 = s
x1

g(x0)
(T0) is given by

T1 = {f(g(x0), x2, x0), f(g(x0), x3, x2), f(g(x0), h(g(x0)), x0)}.

The new disagreement set is Δ(T1) = {x2, x3, h(g(x0))} and here we
have four choices for the substitution:

s
x2

x3
, s

x3

x2
, s

x2

h(g(x0))
or s

x3

h(g(x0))
.

Suppose that we chose to continue the application of the algorithm

with the substitution s
x2

h(g(x0))
. We have

T2 = s
x2

h(g(x0))
(T1) = {f(g(x0), h(g(x0)), x0), f(g(x0), x3, h(g(x0)))}.

The new disagreement set is Δ(T2) = {x3, h(g(x0))} and this means

that the new substitution is s
x3

h(g(x0))
. This gives

T3 = {f(g(x0), h(g(x0)), x0), f(g(x0), h(g(x0)), h(g(x0)))}.

Finally, we conclude that the set T is not (S, V)-unifiable because
the new disagreement set is Δ(T3) = {x0, h(g(x0))} and x0 occurs in
h(g(x0)).

If the occurrence check were omitted, the algorithm continues

with the substitution s
x0

h(g(x0))
. This would yield Δ(T4) = Δ(T3) and

the process continues indefinitely.

40 Logical Foundations of Computer Science — Volume 1

Example 1.6.20. Consider the set of terms

T = {h(f(x0), g(a, x1)), h(f(f(x2)), g(a, x0))},

where f is a unary function symbol, g, h are two binary function
symbols, and a is a constant symbol of the signature S. We have

Δ(T) = {x0, f(x2)}. The new substitution is s
x0

f(x2)
, so the set T1 is

T1 = s
x0

f(x2)
(T) = {h(f(f(x2)), g(a, x1)), h(f(f(x2)), g(a, f(x2)))}.

Again |T1| > 1 and Δ(T1) = {x1, f(x2)}. Thus, the new substitution

is s
x1

f(x2)
. Now, this gives

T2 = s
x1

f(x2)
(T1) = {h(f(f(x2)), g(a, f(x2)))},

and, because |T2| = 1, we conclude that T is (S, V)-unifiable. The
substitution

s = s
x1

f(x2)
∗ s x0

f(x2)
∗ ι = s

x0

f(x2)

x1

f(x2)

is the mgu produced by the algorithm.

Example 1.6.21. Let T = {f(g(a), h(x0)), f(x1, x1)} be a set of
(S, V)-terms, where f is a binary function symbol, g, h are unary
function symbols, and a is a constant symbol. We have T0 = T and

Δ(T0) = {g(a), x1}. Therefore, s1 = s
x1

g(a)
and

T1 = s1(T0) = {f(g(a), h(x0)), f(g(a), g(a))}.

In turn, we obtain Δ(T1) = {h(x0), g(a)}. Since there is no variable
among the terms of Δ(T1), we conclude that T is not (S, V)-unifiable.

Example 1.6.22. Let

T = {f(g(x2), x2, x0), f(x1, x3, x2), f(g(x2), h(x0), x0)}

be a set of S-terms, where S is the signature considered in Exam-
ple 1.6.19 and let S′ be the reduct of S that contains just f and g.

Preliminaries 41

If we apply the unification algorithm to find an (S, S′, V)-unifier of T ,
we obtain T0 = T , Δ(T0) = {g(x2), x1}, and the new set of terms is

T1 = {f(g(x2), x2, x0), f(g(x2), x3, x2), f(g(x2), h(x0), x0)}.

The new difference set is Δ(T1) = {x2, x3, h(x0)}. Since h(x0) is not
an (S′, V)-term, we must replace x2 with x3 (or vice-versa), obtaining

T2 = {f(g(x3), x3, x0), f(g(x3), x3, x3), f((g(x3), h(x0), x0)}.

The new difference set is Δ(T2) = {x3, h(x0)} and here the pro-
cess halts with the conclusion that T is not (S, S′, V)-unifiable, since
h is not a function symbol in S′. Note however that the set T is
(S, V)-unifiable.

Let S be a signature and S0, S1 be two reducts of S. Define the
signature S0�S1 as the reduct of S that involves the function symbols
in both S0 and S1. Note that S0 � S1 is the largest common reduct
of S0 and S1.

Lemma 1.6.23. Let T be a set of (S, V)-terms. Define the reduct
rS,T,min of S that consists of all function symbols that occur in terms
of T .

If S′ is a reduct of S, then T is (S, S′, V)-unifiable if and only if
T is (rS,T,min, S

′ � rS,T,min, V(T))-unifiable.

Proof. Let T be a set of (S, V)-terms such that T is (S, S′, V)-
unifiable. The application of the Unification Algorithm to S, V, S′
and T yields an (S, S′, V)-unifier. This substitution is sp, where
s0, s1, . . . , sp and T0, T1, . . . , Tp are produced by the algorithm. We
will prove by induction on n that each substitution sn |̀ V(T) is an (S′�
rS,T,min, V(T))-substitution and each Tn is a set of (rS,T,min, V(T))-
terms.

For the basis step n = 0, this is obvious. Suppose that the result
holds for n < p. Since Tn is a set of (rS,T,min, V(T))-terms, so is Δ(Tn),
and, therefore, the term t chosen at the (n+1)st execution of the third
step of the algorithm is an (S′ � rS,T,min, V(T))-term. Since sn+1 =

s
x

t
∗ sn, by Theorem 1.5.25, sn+1 |̀ V(T) is an (S′ � rS,T,min, V(T))-

substitution. Finally, since Tn+1 = s
x

t
(Tn), it follows that Tn+1 is a

set of (rS,T,min, V(T))-terms.
The reverse direction is immediate. �

42 Logical Foundations of Computer Science — Volume 1

The following theorem shows that the unifiability of a set of terms
is independent of the function symbols in the signature that do not
occur in the set of terms.

Theorem 1.6.24. Let S be a signature, V be a set of variables,
S0, S1 be two reducts of S, and V0, V1 be two subsets of V . If T is a
set of (S, V)-terms such that T ⊆ TERMS0(V0)∩TERMS1(V1), then
T is (S0, V0)-unifiable if and only if T is (S1, V1)-unifiable.

Proof. The requirement that S0, S1 are reducts of S serves to
ensure that S0, S1 are coherent, that is, function symbols which
belong to both have the same arity.

By Lemma 1.6.23, the following statements are easily seen to be
equivalent:

(1) T is (S0, V0)-unifiable.
(2) T is (S0, S0, V0)-unifiable.
(3) T is (rS,T,min, S0 � rS,T,min, V(T))-unifiable.
(4) T is (rS,T,min, V(T))-unifiable.

In the same way, we can prove that T is (S1, V1)-unifiable if and only
if T is (rS,T,min, V(T))-unifiable, which allows us to reach the desired
conclusion. �

Lemma 1.6.25. Let S be a signature, V be a set of variables, S′
be a reduct of S, and T be a set of (S, V)-terms. If T is unifiable,
then the most general unifier produced by Algorithm 1.6.18 applied
to S, V, S′, and T is an (S′ � rS,T,min, V)-substitution.

Proof. This statement follows from the proof of Lemma 1.6.23. �

Theorem 1.6.26. Let S be a signature, V be a set of variables, S′
be a reduct of S, and T be a set of (S, V)-terms. If s is a most general
(S, S′, V)-unifier for T , then s is an (S′ � rS,T,min, V)-substitution.

Proof. Since T is (S, S′, V)-unifiable, an application of Algo-
rithm 1.6.18 would yield a most general (S, S′, V)-unifier z. By
Lemma 1.6.25, z is an (S′�rS,T,min, V)-substitution. Since s is a most
general (S, S′, V)-unifier, there is an (S′, V)-substitution s1 such that
z = s1∗s. It follows that s is an (S′�rS,T,min, V)-substitution. Indeed,
for every variable x ∈ V , z(x) = s1(s(x)) is an (S′�rS,T,min, V)-term,

Preliminaries 43

which means that s(x) must also be an (S′�rS,T,min, V)-term because
s1 does not affect any of the function symbols in s(x). �

1.7 Labeled Ordered Trees

Rooted trees are usually defined as acyclic and connected directed
graphs with a vertex selected as the root. In this section, we pursue a
different approach that originated with Gorn [17]. There are two new
features of the trees introduced here: the immediate descendants of
each node are ordered and nodes are labeled. As we shall see, labeled
ordered trees play an essential role in presenting proofs in various
formalized versions of logical deduction.

A variant of labeled ordered tree — marked labeled ordered
tree — is introduced to be used exclusively in natural deduction,
a formalism later discussed in Chapters 3 and 5.

Definition 1.7.1. A tree domain is a subset D of Seq(N) that
satisfies the following conditions:

(1) D �= ∅.
(2) If q ∈ D, then every r ∈ PREF(q) is also in D.
(3) For every m ≥ 0, if (q0, . . . , qm−1, qm) ∈ D and l < qm, then we

have (q0, . . . , qm−1, l) ∈ D.

Definition 1.7.2. A labeled ordered tree (or lot for short) is a func-
tion whose domain is a tree domain.

If T is a lot, U is a set, and Ran(T) ⊆ U , then we refer to T as a
U -lot.

The label of a node q of T is T(q).
A sublot a lot T is a lot T′ such that Dom(T′) ⊆ Dom(T) and

T′(q) = T(q) for q ∈ Dom(T′).

A U -lot can be regarded as a tree whose vertices have been labeled
by elements of the set U and in which the descendants of every vertex
have been numbered from left to right.

Note that a lot T is finite if and only if Dom(T) is finite; in this
case, we have |Dom(T)| = |T|.

44 Logical Foundations of Computer Science — Volume 1

Fig. 1.2. Representation of a lot.

Example 1.7.3. Consider the lot T whose domain is

Dom(T)

= {λ, (0), (1), (2), (0, 0), (0, 1), (2, 0), (2, 1), (2, 2), (2, 1, 0), (2, 1, 1)}

and whose values are given by

T(λ) = θ0 T(0) = θ3 T(1) = θ3 T(2) = θ2
T(0, 0) = θ1 T(0, 1) = θ2 T(2, 0) = θ0 T(2, 1) = θ2
T(2, 2) = θ5 T(2, 1, 0) = θ3 T(2, 1, 1) = θ4.

This lot is represented in Figure 1.2.

Definition 1.7.4. Let D be a tree domain. The elements of D are
called the nodes of D. If q and r are nodes of D and q is a prefix of
r, then we refer to r as a descendant of q and to q as an ancestor of
r. If r = qi for some i ∈ N, then we call r an immediate descendant
of q and q the immediate ancestor of r.

The root of every tree domain is λ. A leaf of D is a node of D with
no immediate descendants. We write LEAVES(D) to denote the set
of leaves of D.

A marked tree domain is a pair (D,M), where D is a tree domain
and M ⊆ LEAVES(D).

Preliminaries 45

An interior node of a tree domain is a sequence q ∈ D that is
not a leaf of D. The set of interior nodes of D will be denoted by
INTN(D).

The level of a node q of a tree domain D is |q|. The i-th level of
D is the set of nodes at level i of D.

If every node of a tree domainD has only finitely many immediate
descendants, we call D a finitely branching tree domain.

Definition 1.7.5. Let D be a tree domain. A path of D is a non-
empty subset P of D that satisfies the following conditions:

(1) If q ∈ P, then every r ∈ PREF(q) is also in P.
(2) For every q, r ∈ P, either q ∈ PREF(r) or r ∈ PREF(q).

A branch of D is a path of D which is not properly contained in
any other path of D.

The length of a finite path P of D is |P| − 1.
For a finite tree domain D, we define depth(D) to be the length

of the longest branch of D.

If D is a tree domain and q ∈ D, then it is easy to see that
PREF(q) is a path of D. We refer to this path as the path in D
leading to q.

Lemma 1.7.6. Let D be a tree domain and q be a node of D. Then,

• the path of D leading to q is a branch of D if and only if q is a
leaf of D,

• a branch of D is finite if and only if it is the path of D leading to
a leaf of D,

• an infinite path of D is a branch of D (so, a set of nodes of D is
an infinite path if and only if it is an infinite branch).

Proof. We leave the easy verification to the reader. �

Theorem 1.7.7 (König’s Lemma1). If a finitely branching tree
domain has no infinite path, then it is finite.

1Dénes König was born in 1884 in Budapest, Hungary, and died in 1944 in
Budapest. König studied in Budapest and in Göttingen and obtained his Ph.D. in
mathematics from the University of Budapest in 1907. He taught at the Technical
University in Budapest. His main contributions were in graph theory, geometry,
set theory, and partially ordered sets.

46 Logical Foundations of Computer Science — Volume 1

Proof. We show that in every infinite tree domain D which is
finitely branching there is an infinite path P, which clearly is equiv-
alent to the statement of the theorem. We will construct recursively
a sequence of nodes λ = q0, q1, . . . such that each qi+1 is an imme-
diate descendant of qi for all i ∈ N and then P = {q0, q1, . . .} will
be an infinite path of D. In order to make the construction work,
we ensure that each qi has infinitely many descendants in D. Define
q0 = λ. Since D is infinite, q0 has infinitely many descendants in D.
Now suppose that qi is defined and has infinitely many descendants
in D. Since D is finitely branching, there is a number k such that the
immediate descendants of qi are qi0, . . . , qik and at least one of these
immediate descendants has itself infinitely many descendants. Define
qi+1 = qij, where j is the least number such that qij has infinitely
many descendants. �

Observe that by the third part of Lemma 1.7.6, König’s lemma
is equivalent to saying that a finitely branching tree domain with no
infinite branch is finite.

If T is a lot, then by a node of T (or a node of (T,M)), we
mean a node of Dom(T). Similar terminology will be applied for
the other notions introduced in Definition 1.7.4 and in the defini-
tions that follow, where appropriate. Also, we write LEAVES(T) for
LEAVES(Dom(T)), INTN(T) for INTN(Dom(T)), and LEAVESθ(T)
for the set of leaves of T labeled by an object θ, that is,
LEAVESθ(T) = T−1(θ) ∩ LEAVES(T).

Note that if T is a finite lot, then |T| = |Dom(T)| is the number of
nodes of T.

Example 1.7.8. The leaves of the lot considered in Example 1.7.3
are (0, 0), (0, 1), (1), (2, 0), (2, 1, 0), (2, 1, 1), and (2, 2). The interior
nodes of the same lot are λ, (0), (2), and (2, 1).

Definition 1.7.9. A marked lot is a pair T = (T,M), where T is a
lot and M ⊆ LEAVES(T).

For a marked lot T = (T,M), we use the notions of leaves, inter-
nal nodes, etc. as they apply to the lot T. For example, the set
LEAVES(T) is the same as LEAVES(T).

Definition 1.7.10. Let T = (T,M) be a marked lot and θ be an
object. Then, Lθ(T) is the marked lot (T,M ∪ LEAVESθ(T)).

Preliminaries 47

The next result uses the notion of quotient of a set of sequences
by a sequence introduced in Definition 1.2.1.

Lemma 1.7.11. Let D be a tree domain and let r ∈ D. The quotient
D[r] = {q ∈ Seq(N) | rq ∈ D} is a tree domain.

Proof. The argument is straightforward and is left to the reader.
�

Definition 1.7.12. Let r be a node of the tree domain D. If D[r] is
a finite tree domain, then the depth of r in D is the depth of D[r].

We will denote this number by depth(D)(r).

Note that if D is a tree domain, M ⊆ LEAVES(D), and r ∈ D,
then M[r] ⊆ LEAVES(D[r]).

Definition 1.7.13. Let T be a lot with domain D and let r ∈ D.
The r-subtree of T is the lot T[r], where Dom(T[r]) = D[r] and T[r](q) =
T(rq).

If T = (T,M) is a marked lot, the marked r-subtree is the marked
lot T[r] = (T[r],M[r]).

In the above definition, we use a harmless abuse of the notation
introduced in Definition 1.2.1 by writing T[r] despite the fact that T
is a lot and not a set of sequences.

Let D0, . . . ,Dn−1 be n subsets of Seq(N). The set 〈D0, . . . ,Dn−1〉
is defined by

〈D0, . . . ,Dn−1〉 = {λ} ∪
⋃

0≤i≤n−1

iDi.

Observe that if n = 0, then 〈D0, . . . ,Dn−1〉 = {λ}.
Lemma 1.7.14. If D0, . . . ,Dn−1 are tree domains, then 〈D0, . . . ,
Dn−1〉 is also a tree domain.

Proof. Let D = 〈D0, . . . ,Dn−1〉. Clearly, D �= ∅ because λ ∈ D.
Suppose that q ∈ D and let r be a prefix of q. If r = λ, then r ∈ D
by the definition of D. If r �= λ, there exists i ∈ N such that q = iq′
and q′ ∈ Di. Since r is a nonnull prefix of q, there exists a sequence
r′ such that r = ir′ and r′ is a prefix of q′. This implies r′ ∈ Di, so
r ∈ iDi ⊆ D, that is, r ∈ D.

Finally, suppose that (q0, . . . , qm−1, qm) ∈ D for m ∈ N and
l < qm. If m = 0, then 0 < q0 ≤ n − 1, hence 0 ≤ l ≤ n − 1,

48 Logical Foundations of Computer Science — Volume 1

which gives (l) ∈ lDl ⊆ D. Otherwise, that is, if m > 0, we
have (q1, . . . , qm−1, qm) ∈ Dq0 , so (q1, . . . , qm−1, l) ∈ Dq0 . Therefore,
(q0, . . . , qm−1, l) ∈ q0Dq0 ⊆ D, which allows us to conclude that D is
indeed a tree domain. �

Theorem 1.7.15. Let D0, . . . ,Dn−1 be n tree domains. Then,

LEAVES(〈D0, . . . ,Dn−1〉)

=

{⋃
0≤i≤n−1 i LEAVES(Di) if n > 0

{λ} if n = 0

INTN(〈D0, . . . ,Dn−1〉)

=

{{λ} ∪⋃0≤i≤n−1 i INTN(Di) if n > 0

∅ if n = 0.

Proof. The argument is straightforward and is left to the reader.
�

Let (D0,M0), . . . , (Dn−1,Mn−1) be n marked tree domains. We
denote the pair

(〈D0, . . . ,Dn−1〉, 0M0 ∪ · · · ∪ (n − 1)Mn−1)

by 〈(D0,M0), . . . , (Dn−1,Mn−1)〉.

Theorem 1.7.16. Let (D0,M0), . . . , (Dn−1,Mn−1) be n marked tree
domains. Then the pair 〈(D0,M0), . . . , (Dn−1,Mn−1)〉 is a marked
tree domain.

Proof. This statement follows immediately from Theorem 1.7.15.
�

Definition 1.7.17. Let T0, . . . , Tn−1 be lots and let θ be an object.
The function T with domain 〈Dom(T0), . . . ,Dom(Tn−1)〉 given by

T(λ) = θ,

T(iq) = Ti(q)

for 0 ≤ i ≤ n−1 and q ∈ Dom(Ti) will be denoted by (T0, . . . , Tn−1; θ)
and referred to as the θ-join of T0, . . . , Tn−1. This construction is
illustrated in Figure 1.3.

Preliminaries 49

Fig. 1.3. Construction of the lot (T0, . . . , Tn−1; θ).

Theorem 1.7.18. For all lots T0, . . . , Tn−1 and objects θ, the map-
ping T = (T0, . . . , Tn−1; θ) is a lot.

Proof. The theorem is an immediate consequence of
Lemma 1.7.14. �

Let T0, . . . ,Tn−1 be n marked lots, where Ti = (Ti,Mi) for 0 ≤
i ≤ n − 1 and let θ be an object. We define (T0, . . . ,Tn−1; θ) to be
the pair

((T0, . . . , Tn−1; θ), 0M0 ∪ · · · ∪ (n− 1)Mn−1).

Theorems 1.7.16 and 1.7.18 imply that (T0, . . . ,Tn−1; θ) is a marked
lot.

Lemma 1.7.19. Let D be a finite tree domain such that |D| ≥ 2.
Then, there is m ∈ N such that D = 〈D[(0)], . . . ,D[(m)]〉.

If T is a finite lot with |Dom(T)| ≥ 2, then there is m ∈ N such
that T = (T[(0)], . . . , T[(m)]; T(λ)).

Proof. Since |D| ≥ 2, there must be a node q �= λ in D. Let (i) be
the prefix of length 1 of q. Since D is a tree domain, (i) ∈ D. In view
of the fact that D is finite, we can define m = max{i ∈ N | (i) ∈ D}.
Because D is a tree domain, (0), (1), . . . , (m) ∈ D. We claim that
D = 〈D[(0)], . . . ,D[(m)]〉. Let q ∈ D. If q = λ, then, obviously, q ∈
〈D[(0)], . . . ,D[(m)]〉. Suppose, therefore, that q �= λ and let q = (q0)q

′.
We have (q0) ∈ D, so 0 ≤ q0 ≤ m. Also, q′ ∈ D[(q0)], which gives
q ∈ q0D[(q0)] ⊆ 〈D[(0)], . . . ,D[(m)]〉.

Conversely, let q ∈ 〈D[(0)], . . . ,D[(m)]〉. If q = λ, then q ∈ D.
Otherwise, there is i with 0 ≤ i ≤ m such that q ∈ iD[(i)], which
immediately gives q ∈ D by the definition of D[(i)].

We leave the proof of the second part of the lemma to the reader.
�

50 Logical Foundations of Computer Science — Volume 1

Lemma 1.7.20. Let D,D′ be two tree domains and let r ∈ D. Then,
the set D[r → D′] = (D − r Seq(N)) ∪ rD′ is a tree domain.

Proof. Since rD′ �= ∅, it is clear that D[r → D′] �= ∅.
Let q ∈ D[r → D′] and let q′ be a prefix of q. If q ∈ (D−rSeq(N)),

then q′ cannot have r as a prefix, so q′ ∈ (D− r Seq(N)). If q ∈ rD′,
we can write q = rq1 with q1 ∈ D′. Observe that if q′ is a prefix of
r and q′ �= r, then q′ ∈ D − rSeq(N). Otherwise, q′ = rr′ for some
prefix r′ of q1 ∈ D′. Since D′ is prefix-closed, it follows that r′ ∈ D′
which means that q′ ∈ rD′.

To show that D[r → D′] satisfies the third condition of
Definition 1.7.1, let q = (q0, . . . , qm) be a sequence in D[r → D′]
and let l ∈ N be a number such that l < qm. If q ∈ (D −
r Seq(N)), then (q0, . . . , qm−1, l) = r or (q0, . . . , qm−1, l) ∈ (D −
r Seq(N)), so (q0, . . . , qm−1, l) ∈ D[r → D′]. Otherwise, that is,
if (q0, . . . , qm−1, qm) ∈ rD′, two cases are possible: either q = r
and (q0, . . . , qm−1, l) ∈ D[r → D′] because D is a tree domain or
q = rr′, for some r′ ∈ D′, r′ �= λ. In the last case, (q0, . . . , qm−1, l) ∈
D[r → D′] because D′ is a tree domain. �

Definition 1.7.21. Let T and T′ be two labeled ordered trees and
let r be a node of T. The lot T[r → T′] obtained by inserting T′ in T

at r is the lot defined on Dom(T)[r → Dom(T′)] given by

T[r→ T′](q) =
{
T(q) if q ∈ Dom(T)− r Seq(N)

T′(q′) if q = rq′ for q′ ∈ Dom(T′).

Theorem 1.7.22. Let T D be the collection of sets of sequences of
natural numbers given be the following inductive definition:

• {λ} ∈ T D.
• If D0, . . . ,Dk are in T D, then 〈D0, . . . ,Dk〉 ∈ T D, for every k ≥ 0.

Then, T D is the set of all finite tree domains.

Proof. Using structural induction and Lemma 1.7.14, it is clear
that every member of T D is a finite tree domain.

Conversely, we shall prove by induction on |D| that if D is a finite
tree domain, then D ∈ T D. If D is a tree domain such that |D| = 1,
then D = {λ}, so D ∈ T D. Now suppose that n ≥ 1 and the result is

Preliminaries 51

true for tree domains of cardinality less than or equal to n and let D
be a tree domain with |D| = n + 1. By Lemma 1.7.19, we can write
D = 〈D[(0)], . . . ,D[(m)]〉 for some m ∈N. Since |D[(i)]| < |D| = n+1,
for 0 ≤ i ≤ m, by the inductive hypothesis, each such D[(i)] ∈ T D,
which gives D ∈ T D. �

Corollary 1.7.23 (Induction Principle for Finite Tree
Domains). Let P be a property of finite tree domains. Suppose that

• P ({λ}) is true,
• if D0, . . . ,Dk are finite tree domains such that P (Di) is true for

0 ≤ i ≤ k, then P (〈D0, . . . ,Dk〉) is true, for every k ∈ N.

Then, P (D) is true for every finite tree domain D.

Proof. This follows immediately from Theorem 1.7.22. �

Corollary 1.7.24. Let U be a set and let LOT (U) be the collection
of lots given by the following inductive definition:

• If Dom(T) = {λ} and T(λ) ∈ U , then T ∈ LOT (U).
• If T0, . . . , Tk ∈ LOT (U) and θ ∈ U , then (T0, . . . , Tk; θ) ∈
LOT (U).

Then, LOT (U) is the set of all finite U -lots.

Proof. This is an immediate consequence of Theorem 1.7.22. �

Corollary 1.7.25 (Induction Principle for Finite U-Lots).
Let P be a property of finite U -lots. Suppose that

• P (T) is true for every U -lot whose domain is {λ},
• for every k ∈ N, if T0, . . . , Tk are finite U -lots such that P (Ti) is

true for 0 ≤ i ≤ k, then P ((T0, . . . , Tk; θ)) is true for every θ ∈ U .

Then, P (T) is true for every finite U -lot T.

Proof. This follows immediately from Theorem 1.7.22. �

Definition 1.7.26. A tree domain D′ is an extension of a tree
domain D if D ⊆ D′.

An extension D′ of a tree domain D is a leaf extension of D if for
every q ∈ D′ −D there is a leaf r of D that is a prefix of q.

52 Logical Foundations of Computer Science — Volume 1

The reader can verify without difficulty that if D′′ is a leaf exten-
sion of D′ and D′ is a leaf extension of D, then D′′ is a leaf extension
of D.

Since lots are functions, we can talk about one lot extending
another one, namely, T′ extends a lot T if Dom(T) ⊆ Dom(T′) and
T(q) = T′(q) for all q ∈ Dom(T).

Definition 1.7.27. An extension T′ of a lot T is called a leaf exten-
sion of T if Dom(T′) is a leaf extension of Dom(T).

Theorem 1.7.28. Let D0 ⊆ D1 ⊆ D2 ⊆ · · · be an increasing
sequence of tree domains. Then, D =

⋃
{Di | i ≥ 0} is a tree domain.

Further, if, for each i, Di is finite and Di+1 is a leaf extension of Di

and B is a branch of D, then, for every i, B contains a unique leaf qi
of Di. If Bi is the branch of Di that ends in qi, then Bi = B∩Di and
B =

⋃
{Bi | i ≥ 0}.

Proof. The argument for the first part of the theorem is straight-
forward and is left for the reader.

For the second part, let B be a branch of D. For a given i, we
distinguish two cases. If B ⊆ Di, then, certainly, B is a path of Di.
If B were not a branch of Di, there would be a path P of Di such
that B ⊂ P. Since P would also be a path of D, this would contradict
the assumption that B is a branch of D. Now, since Di is finite, by
Lemma 1.7.6, B contains a leaf qi of Di. If B �⊆ Di, then there is
r ∈ B−Di. Therefore, there is j > i with r ∈ Dj −Di. Since Dj is a
leaf extension of Di, there is a leaf qi of Di that is a prefix of r and
qi ∈ B because B is prefix closed. Since no leaf of Di can be a prefix of
a different leaf of Di, qi is uniquely determined. We will prove that
Bi = B ∩ Di. If r ∈ Bi, then r is a prefix of qi. Since qi is both in B

and in Di, we have r in both of them, because they are both prefix
closed, so Bi ⊆ B ∩Di. Conversely, if r ∈ B ∩ Di, then either r is a
prefix of qi or qi is a proper prefix of r. The second case is impossible,
since qi is a leaf of Di. Therefore, r ∈ Bi, so B ∩Di ⊆ Bi. This gives
immediately

⋃
{Bi | i ≥ 0} = B ∩ (

⋃
{Di | i ≥ 0}) = B. �

Preliminaries 53

1.8 Formal Systems

In this section, we introduce the notion of formal system that will be
useful later for exploring non-semantic approaches to propositional
logic and first-order logic.

Definition 1.8.1. A formal system is a triple F = (U,A, I), where
U is a set, called the set of objects of F , A is a subset of U , called the
set of axioms of F , and I is a set whose elements are called the rules
of inference of F . If R ∈ I, then there is a number n ∈ N, n > 0,
such that R is a nonempty subset of Un × U . In this case, we refer
to R as an n-ary rule of inference or, simply, as a rule of F .

If F is a formal system and R is an n-ary rule of F , then we write

θ0, . . . , θn−1

θ R

to mean ((θ0, . . . , θn−1), θ) ∈ R. When R is clear from the context,
we omit it. We refer to θ0, . . . , θn−1 as the hypotheses or premises
and to θ as the conclusion of this instance of the rule R and we
say that θ is obtained by applying rule R to θ0, . . . , θn−1. Following
established practice in logic, we will use the phrase “hypotheses of a
rule of inference” rather than “hypotheses of an instance of a rule of
inference” and similarly for the terms “premises” and “conclusion”.

Definition 1.8.2. Let F be a formal system. The set Thm(F) of
theorems of F is the set of objects of F given by the following induc-
tive definition:

• Every axiom of F is a theorem of F .
• If every hypothesis of an instance of a rule of F is a theorem of F ,

then so is the conclusion of that instance.

A formal system amounts essentially to an inductive definition of
its set of theorems. The axioms are objects which are theorems by

54 Logical Foundations of Computer Science — Volume 1

the basis rules of the definition and the rules of inference give the
inductive rules of the definition. More precisely, the rules of inference,
as we have defined them, are constructors on the set of objects, as
defined in [13], Section 4.6.

If θ is a theorem of a formal system F , we write �F θ.

Definition 1.8.3. A formal system F ′ is an extension of a formal
system F if Thm(F) ⊆ Thm(F ′).

The formal systems F ,F ′ are equivalent if Thm(F) = Thm(F ′).

Theorem 1.8.4. Let F = (U,A, I) and F ′ = (U ′, A′, I ′) be for-
mal systems such that U ⊆ U ′ and I = {R′ ∩ (Un × U) | R′ ∈ I ′
and R′ is n-ary}. Then, F ′ is an extension of F if and only if every
axiom of F is a theorem of F ′.

Proof. If F ′ is an extension of F , then every axiom of F is a
theorem of F and, therefore, is a theorem of F ′. Conversely, assume
that A ⊆ Thm(F ′). We will prove, by induction on Thm(F), that
every theorem of F is a theorem of F ′. The basis is our assumption.
Now, suppose that

θ0, . . . , θn−1

θ R ,

where θ0, . . . , θn−1 are theorems of F and R ∈ I (which means that
R = R′ ∩ (Un × U) for some R′ ∈ I ′). If we assume, by inductive
hypothesis, that θ0, . . . , θn−1 are theorems of F ′, then θ is a theorem
of F ′ because ((θ0, . . . , θn−1), θ) ∈ R′. �

Corollary 1.8.5. Let F = (U,A, I) and F ′ = (U,A′, I) be formal
systems such that A ⊆ Thm(F ′). Then, F ′ is an extension of F .

Proof. The corollary follows immediately from Theorem 1.8.4. �

Corollary 1.8.6. Let F = (U,A, I),F ′ = (U,A ∪A1, I) be two for-
mal systems, where A1 ⊆ Thm(F). Then, F and F ′ are equivalent.

Proof. The corollary follows immediately from Corollary 1.8.5. �

Definition 1.8.7. Let F = (U,A, I) be a formal system and let
G be a set of objects of F . Then, FG is the formal system FG =
(U,A ∪G, I) obtained from F by adding G to the set of axioms.

Preliminaries 55

We will write G �F θ for �FG θ. Observe that if θ ∈ G, then
G �F θ.

Corollary 1.8.8. Let F = (U,A, I) be a formal system and let
G0, G1 ⊆ U with G0 ⊆ Thm(FG1). Then, G0 �F θ implies G1 �F θ.

Proof. This statement follows immediately from Corollary 1.8.5
and Definition 1.8.7. �

To illustrate the notion of formal system, we will consider some
simple examples.

Example 1.8.9. Our first formal system is

Fab = ({a, b}∗, {λ}, {R0, R1, R2}),

where R0, R1, R2 are given by

u
aub R0

u
bua R1

u, v
uv R2

for all u, v ∈ {a, b}∗.
We can easily show that abba ∈ Thm(Fab). Indeed, λ is a theorem,

since it is an axiom. Then, by Rules R0 and R1, the words ab and
ba are also theorems of Fab. Finally, by Rule R2, we have abba ∈
Thm(Fab).

It is easy to show, by induction on theorems, that every theorem of
Fab contains the same number of as and bs. In fact, Thm(Fab) equals
the set S defined inductively in Example 4.3.9 of [13]. Example 4.4.11
of [13] shows that S equals the set of all words over {a, b} which
contain an equal number of as and bs.

Example 1.8.10. Consider the set of objects

U = {(x0, y0, x1, y1) ∈ R4 | x0 ≤ x1 and y0 ≤ y1}.

An object θ ∈ U can be interpreted as a rectangle whose sides are
parallel to the axes; if θ = (x0, y0, x1, y1), then (x0, y0) is the south-
west corner and (x1, y1) is the northeast corner of θ.

56 Logical Foundations of Computer Science — Volume 1

Consider the inference rules

(x0, y0, x1, y1), (x1, y0, x2, y1)
(x0, y0, x2, y1)

Rh

and

(x0, y0, x1, y1), (x0, y1, x1, y2)
(x0, y0, x1, y2)

Rv

for all xi, yi ∈ R, 0 ≤ i ≤ 2 such that x0 ≤ x1 ≤ x2, and y0 ≤ y1 ≤ y2.
The first rule involves two rectangles that have a common vertical
side and it yields a new rectangle by eliminating that common side.
The second rule involves two rectangles that have a common hori-
zontal side (see Figure 1.4).

If the set of axioms A consists of all squares of side 1 whose vertices
have integer coordinates,

A = {(x0, y0, x0 + 1, y0 + 1) | x0, y0 ∈ Z},

then it is easy to see that the set of theorems of the formal system
Frec = (U,A, {Rh, Rv}) consists of all rectangles whose vertices have
integer coordinates and whose sides are parallel to the axes.

(a)

(b)

Fig. 1.4. Application of rules Rh (a) and Rv (b).

Preliminaries 57

If F = (U,A, I) is a formal system, then F∅ denotes the formal
system (U, ∅, I) obtained from F by removing the axioms. Note that
if G ⊆ U , then G �F θ if and only if G ∪A �F∅ θ.

Example 1.8.11. LetM be a set. Fseq,M is the formal system having
Seq(M) as the set of objects, ∅ as the set of axioms, and three rules
Rintch, Rexp, and Rcont, which are given by

(x0, . . . , xi, xi+1, . . . , xn−1)
(x0, . . . , xi+1, xi, . . . , xn−1)

Rintch

(x0, . . . , xn−1)
(x0, . . . , xn−1, y)

Rexp

(x0, . . . , xn−1, xn−1)
(x0, . . . , xn−1)

Rcont

and are called the interchange, expansion, and contraction rule,
respectively.

Definition 1.8.12. Let F be a formal system. A sequence
(θ0, . . . , θn−1) of objects of F is a proof in F if for each i, 0 ≤ i ≤ n−1,
one of the following is true:

• θi is an axiom of F or
• there exist j0, . . . , jm−1 with jk < i for 0 ≤ k ≤ m − 1 such that

((θj0 , . . . , θjm−1), θi) is an instance of a rule of F .

A proof of the object θ is proof whose last entry is θ.

One simple measure of the complexity of a proof (θ0, . . . , θn−1) is
its length n. However, this measure does not reflect the complexity
of the objects that occur in the proof. To address this problem, we
assume the existence of a function size : U −→ N which we think
of intuitively as giving the size of objects. This function is extended
to proofs by defining size(θ0, . . . , θn−1) =

∑n−1
i=0 size(θi). Whenever

objects are or can be identified with strings over an alphabet, we will
take size(θ) to be the length of the word that represents θ.

Example 1.8.13. Let θ0 = λ, θ1 = ab, θ2 = ba, and θ3 = abba. The
sequence (θ0, θ1, θ2, θ3) is a proof in the formal system Fab introduced
in Example 1.8.9 as shown in the following table:

58 Logical Foundations of Computer Science — Volume 1

Object Justification

θ0 = λ Axiom
θ1 = ab Applying R0 to θ0
θ2 = ba Applying R1 to θ0
θ3 = abba Applying R2 to θ1 and θ2

The previous proof has length 4 and size 8.

Example 1.8.14. The sequence (θ0, . . . , θ6) whose entries are spec-
ified by the following table is a proof in the formal system Frec given
in Example 1.8.10:

Object Justification
θ0 = (2, 2, 3, 3) Axiom
θ1 = (3, 2, 4, 3) Axiom
θ2 = (2, 1, 3, 2) Axiom
θ3 = (3, 1, 4, 2) Axiom
θ4 = (2, 2, 4, 3) Applying Rh to θ0 and θ1
θ5 = (2, 1, 4, 2) Applying Rh to θ2 and θ3
θ6 = (2, 1, 4, 3) Applying Rv to θ4 and θ5

Example 1.8.15. Let Fseq,M be the formal system introduced in
Example 1.8.11. We claim that if q = (x0, . . . , xn−1), r = (y0, . . . ,
ym−1) are two sequences in Seq(M) such that {x0, . . . , xn−1} ⊆
{y0, . . . , ym−1}, then q �Fseq,M

r. We begin by observing that if
q0
q1

is an instance of a rule of Fseq,M , then sq0
sq1

is an instance of the

same rule for every s ∈ Seq(M). Therefore, if q′ �Fseq,M
q′′, then

sq′ �Fseq,M
sq′′.

The justification of the claim is by induction on n = |q|. If n = 0,
we have λ �Fseq,M

r by applying the expansion rule m times, namely,
we have the proof

(λ, (y0), (y0, y1), . . . , (y0, . . . , ym−1)).

Suppose that the claim is valid for sequences of length n and let
q = (x0, . . . , xn) be a sequence of length n+ 1 such that

{x0, . . . , xn} ⊆ {y0, . . . , ym−1}.

Preliminaries 59

Let q1 = (x1, . . . , xn). By the inductive hypothesis, we have
q1 �Fseq,M

r, so q �Fseq,M
(x0)r, by our initial observation. Note

that x0 occurs in the sequence r, say x0 = yi. The initial proof

((x0, . . . , xn), . . . , (x0, y0, . . . , ym−1))

can be continued as follows:

(x0, . . . , xn)
... (initial proof)

(x0, y0, . . . , yi = x0, . . . ym−1)
... repeated application of Rintch

(y0, . . . , yi−1, yi+1, . . . , ym−1, x0, x0)
Rcont

(y0, . . . , yi−1, yi+1, . . . , ym−1, x0)
... repeated application of Rintch

(y0, . . . , yi−1, x0 = yi, yi+1, . . . , ym−1)

which completes the argument.

It is clear that any initial segment of a proof in F is a proof in F .

Definition 1.8.16. An F-deduction tree, or a deduction tree in F ,
where F = (U,A, I) is a formal system, is a U -lot T such that

(1) T is finite,
(2) if q is an interior node of T, and its immediate descendants are

q0, . . . , qn, then

T(q0), . . . , T(qn)

T(q)

is an instance of a rule of F .
The set of deduction trees in the formal system F will be denoted
by DT F .

If a U -lot T satisfies only the second condition, then we refer to
T as a general F-deduction tree, or as a general deduction tree in F .
The set of general deduction trees in F will be denoted by GDT F .

An F-proof tree or a proof tree in F is an F-deduction tree T such
that if q is a leaf of T, then T(q) is an axiom of F . We will denote
the set of proof trees in the formal system F by PT F .

60 Logical Foundations of Computer Science — Volume 1

If T is an F-deduction (-proof) tree and T(λ) = θ, then we refer
to T as an F-deduction (-proof) tree of θ.

The size of an F-deduction tree T is

size(T) =
∑
{size(T(q)) | q ∈ Dom(T)}.

Example 1.8.17. We obtain the Fab-proof tree shown in Figure 1.5
from the proof of abba given in Example 1.8.13. Its size is 8.

Similarly, we have the Frec-proof tree of Figure 1.6 corresponding
to the proof considered in Example 1.8.14.

Lemma 1.8.18. Let F = (U,A, I) be a formal system. If
T0, . . . , Tn−1 are F-deduction (-proof) trees and there are a rule R ∈ I
and an object θ ∈ U such that ((T0(λ), . . . , Tn−1(λ)), θ) ∈ R, then the
U -lot T = (T0, . . . , Tn−1; θ) is an F-deduction (-proof) tree of θ.

Proof. Suppose that T0, . . . , Tn−1 are F-deduction trees. Theo-
rem 1.7.15 implies that if r �= λ is an internal node of T whose imme-
diate descendants are r0, . . . , rm, then there exists i, 0 ≤ i ≤ n − 1

Fig. 1.5. Proof tree for abba.

Fig. 1.6. Proof tree for θ6.

Preliminaries 61

such that r = iq for some internal node q of Ti whose immediate
descendants are q0, . . . , qm. Clearly, we have rj = iqj for 0 ≤ j ≤ m.
Since Ti is an F-deduction tree, there exists a rule R′ such that

Ti(q0), . . . , Ti(qm)

Ti(q)

is an instance of this rule. By the definition of T, we obtain that

T(iq0), . . . , T(iqm)

T(iq)
=

T(r0), . . . , T(rm)

T(r)

is an instance of R′. When r = λ, the needed condition is clearly
satisfied. Thus, T is an F-deduction tree.

Further, suppose that T0, . . . , Tn−1 are F-proof trees. The exis-
tence of a rule R such that ((T0(λ), . . . , Tn−1(λ)), θ) ∈ R means that
n > 0. Therefore, we have

LEAVES(T) =
⋃

0≤i≤n−1

i LEAVES(Ti),

according to Theorem 1.7.15. If r is a leaf of T, then r = iq, where q
is a leaf of Ti for some i, 0 ≤ i ≤ n− 1. Consequently, T(r) = T(iq) =
Ti(q). Since Ti(q) ∈ A, it follows that the labels of the leaves of T are
axioms of F . �

Lemma 1.8.19. Let F be a formal system and let T be an F-
deduction (-proof) tree. If r is a node of T, then T[r] is an F-deduction
(-proof) tree.

Proof. We leave this proof to the reader. �
Another way of defining proof trees is provided by the following

theorem.

Theorem 1.8.20. Let F = (U,A, I) be a formal system and let S
be the set of U -lots given by the following inductive definition:

• If T is a lot such that Dom(T) = {λ} and T (λ) ∈ A, then T belongs
to S.

• If T0, . . . , Tn−1 belong to S and there is a rule R of F such that
((T0(λ), . . . , Tn−1(λ)), θ) ∈ R for some object θ ∈ U , then the U -lot
T = (T0, . . . , Tn−1; θ) also belongs to S.

Then, S = PT F .

62 Logical Foundations of Computer Science — Volume 1

Proof. We show first that every member of S is an F-proof tree.
If T is a lot such that Dom(T) = {λ} and T(λ) ∈ A, then clearly T is
an F-proof tree.

Suppose now that T0, . . . , Tn−1 are F-proof trees and there is
a rule R of F such that ((T0(λ), . . . , Tn−1(λ)), θ) ∈ R. Then,
(T0, . . . , Tn−1; θ) is an F-proof tree by Lemma 1.8.18.

Conversely, we prove by strong induction on |Dom(T)| that every
F-proof tree T is a member of S. If |Dom(T)| = 1, then Dom(T) = {λ}
and T(λ) ∈ A, so T ∈ S.

Assume now that n ≥ 1 and that every F-proof tree with at
most n nodes is in S and let T be an F-proof tree with n + 1
nodes. Then, by Lemma 1.7.19, we have T = (T[(0)], . . . , T[(m)]; T(λ))
for some m ∈ N. Since each T[(i)] has fewer nodes than T and is
a proof tree by Lemma 1.8.19, by inductive hypothesis, T[(i)] ∈ S
for 0 ≤ i ≤ m. By the definition of F-proof tree, we have
((T[(0)](λ), . . . , T[(m)](λ)), T(λ)) = ((T(0), . . . , T(m− 1)), T(λ)) ∈ R for
some rule R of F . This allows us to conclude that T ∈ S. �

Theorem 1.8.21. Let F = (U,A, I) be a formal system and let S be
the set of U -lots given by the following inductive definition:

• If T is a one node U -lot, then T belongs to S.
• If T0, . . . , Tn−1 belong to S and there is a rule R of F such that

((T0(λ), . . . , Tn−1(λ)), θ) ∈ R for some object θ ∈ U , then the U -lot
T = (T0, . . . , Tn−1; θ) also belongs to S.

Then, S is the set of all F-deduction trees.

Proof. The argument is a simpler variant of the one made in the
previous theorem. �

Theorem 1.8.22 (Principle of Induction for Deduction
(Proof) Trees). Let F be a formal system, F = (U,A, I), and let
P be a property of F-deduction (-proof) trees. Suppose that

• if T is a one-node F-deduction (-proof) tree, then P (T) is true,
• if T0, . . . , Tn−1 are F-deduction (-proof) trees such that P (Ti) is

true for 0 ≤ i ≤ n − 1 and ((T0(λ), . . . , Tn−1(λ)), θ) ∈ R for some
rule R of F , then P ((T0, . . . , Tn−1; θ)) is true for every n ∈ N and
θ ∈ U .

Then, P (T) is true for every F-deduction (-proof) tree T.

Preliminaries 63

Proof. This follows immediately from Theorems 1.8.21 and 1.8.20.
�

Theorem 1.8.23. Let F = (U,A, I) be a formal system and let
θ ∈ U . The following statements are equivalent:

(1) θ is a theorem of F .
(2) There exists a proof of θ in F .
(3) There exists an F-proof tree of θ.

Proof. (1) implies (2). First we show, by induction on the def-
inition of theorems of F (Definition 1.8.2), that every theorem of F
has a proof in F . The basis step, that every axiom of F has a proof
in F , is obvious since for every axiom θ, the sequence (θ) is a proof
of θ. Now suppose that we have the following instance of a rule of F

θ0, . . . , θn−1

θ

and that, by inductive hypothesis,
0, . . . ,
n−1 are proofs in the
formal system F of θ0, . . . , θn−1, respectively. Then, a proof of θ
in F can be obtained by concatenating the sequences
0, . . . ,
n−1

and (θ).
(2) implies (3). Let θ be an object from U such that

(θ0, . . . , θn−1) is a proof of θ in F for some n ≥ 1. We prove, by
strong induction on n, that there exists an F-proof tree of θ.

For n = 1, θ = θ0, so θ is an axiom. Therefore, the one-node lot
T defined by T(λ) = θ is an F-proof tree of θ.

Assume that for every object that has a proof in F of length
less than n + 1 there exists an F-proof tree of the object and let
θ be an object that has a proof (θ0, . . . , θn) of length n + 1, where
θn = θ. If θ is an axiom, the implication is immediate. Otherwise,
the definition of proof implies the existence of j0, . . . , jm−1, all less
than n, such that ((θj0 , . . . , θjm−1), θn) is an instance of a rule of
F and (θ0, . . . , θj�) is a proof of length j� + 1 < n + 1 of θj� for
0 ≤ � ≤ m − 1. By the inductive hypothesis, we have F-proof trees
Tj0 , . . . , Tjm−1 of θj0 , . . . , θjm−1 , respectively. Lemma 1.8.18 implies
that T = (Tj0 , . . . , Tjm−1 ; θ) is an F-proof tree of θ.

(3) implies (1). Suppose that θ is an object for which there is
an F-proof tree T. Using the principle of induction for proof trees,
we will prove that θ is a theorem of F .

64 Logical Foundations of Computer Science — Volume 1

Let T be a one-node F-proof tree of θ. We have Dom(T) = {λ}
and T(λ) = θ. Therefore, θ is an axiom, so θ ∈ Thm(F).

Let now T0, . . . , Tn−1 be n F-proof trees such that Ti(λ) ∈
Thm(F) for 0 ≤ i ≤ n− 1 and suppose that ((T0(λ), . . . , Tn−1(λ)), θ)
is an instance of a rule of F . Let T = (T0, . . . , Tn−1; θ). Then, T(λ) = θ
is a theorem of F . �

Usually, when a formal system F is introduced, there is an exter-
nally defined set S of objects and the purpose of introducing the
formal system is to have Thm(F) = S. The proof of this equality
requires showing two containments. Namely, we need to show that
Thm(F) ⊆ S, which is called the soundness of F with respect to S,
and that S ⊆ Thm(F), which is called the completeness of F with
respect to S. When the set S is understood from the context, we will
use the terms “soundness of F” and “completeness of F”, without
mentioning the set S.

To prove the soundness of a formal system, one usually uses induc-
tion on the definition of the theorems, that is, one shows that the
axioms are in S, and that for every instance of a rule, if the hypothe-
ses are in S, then so is the conclusion. Proofs of completeness are
generally more difficult and require techniques which are specific to
the externally defined set S.

Definition 1.8.24. Let F = (U,A, I) be a formal system and let
R be a nonempty subset of Un × U for some n > 0. We refer to R
as a derived rule of F if for every ((θ0, . . . , θn−1), θ) ∈ R we have
{θ0, . . . , θn−1} �F θ.

Example 1.8.25. Example 1.8.15 shows that

(x0, . . . , xn−1)
(y0, . . . , ym−1)

Rstruc
,

where {x0, . . . , xn−1} ⊆ {y0, . . . , ym−1} is a derived rule of Fseq,M .
We refer to the rule Rstruc as the structural rule.

A characterization of derived rules is given in the following
theorem.

Theorem 1.8.26. Let F = (U,A, I) be a formal system, R �= ∅ be
a subset of Un × U for some n > 0, and F ′ be the formal system
(U,A, I ∪{R}). Then, R is a derived rule of F if and only if FG and
F ′
G are equivalent formal systems for all sets of objects G.

Preliminaries 65

Proof. Let R be a derived rule and let G ⊆ U . Since the inclu-
sion Thm(FG) ⊆ Thm(F ′

G) is obvious, we are left with showing the
reverse inclusion by induction on the theorems of F ′

G. The basis is
immediate. For the inductive step, suppose that ((θ0, . . . , θn−1), θ) is
an instance of a rule of F ′ and θi ∈ Thm(FG) for 0 ≤ i ≤ n−1. If the
rule belongs to I, then it is immediate that θ ∈ Thm(FG). If the rule
is R, then, by applying Corollary 1.8.8 with G0 = {θ0, . . . , θn−1} and
G1 = G, we obtain θ ∈ Thm(FG).

Conversely, suppose that FG and F ′
G are equivalent formal

systems for all G ⊆ U and ((θ0, . . . , θn−1), θ) ∈ R. Let G =
{θ0, . . . , θn−1}. Then θ ∈ Thm(F ′

G), so, by hypothesis, θ ∈ Thm(FG),
i.e., {θ0, . . . , θn−1} �F θ, as desired. �

Definition 1.8.27. An effectively specified formal system is a formal
system F = (U,A, I) which satisfies the following conditions:

(1) U is an effectively enumerable set.
(2) A is a decidable subset of U .
(3) The set P (F) is decidable, where P (F) consists of those

sequences of the form (θ0, . . . , θn), where there is a rule of
inference R ∈ I such that ((θi0 , . . . , θil−1

), θn) ∈ R for some
θi0 , . . . , θil−1

that occur in (θ0, . . . , θn−1).

Lemma 1.8.28. If F = (U,A, I) is an effectively specified formal
system, then the set of proofs in F is a decidable subset of Seq(U).

Proof. A sequence (θ0, . . . , θn−1) is a proof if for every i, 0 ≤
i ≤ n − 1, we have either θi ∈ A or (θ0, . . . , θi) ∈ P (F). Since
A and P (F) are decidable, it follows that the set of proofs is also
decidable. �

Theorem 1.8.29. If F = (U,A, I) is an effectively specified formal
system, then the set of its theorems Thm(F) is semidecidable.

Proof. Consider the following semideciding algorithm for Thm(F).
Given an object θ, enumerate Seq(U). Using the decidability of the
set of proofs of F , determine for each such sequence whether it is a
proof. If so, test whether the last entry of the proof equals θ. If it
does, output 1 and stop. �

66 Logical Foundations of Computer Science — Volume 1

Corollary 1.8.30. If F = (U,A, I) is an effectively specified for-
mal system and G is a decidable subset of U , then Thm(FG) is
semidecidable.

Proof. Since F is an effectively specified formal system, the for-
mal system FG = (U,A ∪ G, I) is also effectively specified, by the
second part of Theorem 1.4.5. The statement follows immediately
from Theorem 1.8.29. �

1.9 Linear Orders

Definition 1.9.1. A partial order on a set M is a binary relation �
that is reflexive, antisymmetric, and transitive. In other words, we
have the following:

• x � x for all x ∈M .
• x � y and y � x imply x = y for all x, y ∈M .
• x � y and y � z imply x � z for all x, y, z ∈M .

If in addition, we have x � y or y � x for all x, y ∈ M , we say
that the partial order � is a total order or a linear order. The pair
(M,�) is said to be a linearly ordered set.

Example 1.9.2. Let S be a signature and V be a set of variables.
Define a binary relation � on TERMS(V) as consisting of pairs (t, t′),
where t is a subterm of t′. It is immediate to verify that � is a partial
order on TERMS(V).

Example 1.9.3. The relation ≤ defined on R by x ≤ y if y− x is a
nonnegative number is a linear order on R.

Definition 1.9.4. A strict partial order on a set M is a binary rela-
tion ≺ that is irreflexive and transitive. In other words, we have the
following:

• x �≺ x for all x ∈M .
• x ≺ y and y ≺ z imply x ≺ z for all x, y, z ∈M .

If in addition, we have x ≺ y or y ≺ x for all x, y ∈M with x �= y,
we say that the strict partial order ≺ is a strict total order or a strict
linear order. The pair (M,≺) is said to be a strictly linearly ordered
set.

Preliminaries 67

Example 1.9.5. The relation < defined on R by x < y if y− x is a
positive number is a strict linear order on R.

We denote the relation {(x, x) | x ∈M} on a set M by ιM .

Theorem 1.9.6. If � is a partial order (linear order) on a set M ,
then � −ιM is a strict partial order (strict linear order) on M .
Furthermore, if ≺ is a strict partial order (strict linear order) on
M , then ≺ ∪ιM is a partial order (linear order) on M .

Proof. We leave this argument to the reader. �

Theorem 1.9.7. If � is a linear order on a set M and S is a finite
nonempty subset of M , then S has a greatest and a least element
under �.

Proof. The argument is by induction on n = |S|.
For the basis step, n = 1, the unique element of S is both the

greatest and the least element of S.
For the inductive step, suppose that the result is true for n ≥ 1

and that |S| = n+1. Let a be an element of S and let S′ = S−{a}. By
the inductive hypothesis, S′ has a greatest element b. If b � a, then
a is the greatest element of S, and if a � b, then b is the greatest ele-
ment of S. A similar argument proves that S has a least element.

�
We say that b is a predecessor of a relative to the linear order �

if b � a.

Theorem 1.9.8. If � is a linear order on a set M and every ele-
ment of M has only finitely many predecessors under �, then every
nonempty subset of M has a least element.

Proof. Let S be a nonempty subset of M , a ∈ S and let S′ = {b ∈
S | b � a}. By hypothesis, S′ is finite and nonempty because a ∈ S′.
Thus, by Theorem 1.9.7, S′ has a least element b. If c ∈ S − S′, we
have a � c because � is a linear order and we do not have c � a and
so by transitivity, we have b � c. Thus, b is the least element of S
under �. �

Definition 1.9.9. Let (M,�) and (M ′,�′) be two linearly order
sets. A bijection f :M −→M ′ is an isomorphism of linearly ordered
sets if x � y implies f(x) �′ f(y).

68 Logical Foundations of Computer Science — Volume 1

Theorem 1.9.10. If (M,�) is a linearly ordered set where M
is finite, then (M,�) is isomorphic to the linearly ordered set
({0, . . . , n− 1},≤), where n = |M |.

Proof. The argument is by induction on n.
For the basis step, n = 0, we have M = ∅ and (M,�) is clearly

isomorphic to (∅,≤).
For the inductive step, suppose that n ≥ 0 and the result holds for

n and |M | = n + 1. By Theorem 1.9.7, M has a greatest element a.
Let M ′ = M − {a} and let �′ be the restriction of � to M ′. By
inductive hypothesis, there is a function f ′ : {0, . . . , n − 1} −→ M ′
that is an isomorphism between ({0, . . . , n − 1},≤) and (M ′,�′).
Extend f ′ to f : {0, . . . , n} −→M by defining f(n) = a. The function
f is clearly an isomorphism between ({0, . . . , n},≤) and (M,�). �

Theorem 1.9.11. Let � be a linear order on an infinite set M such
that every element of M has only finitely many predecessors under
�. Then, (M,�) is isomorphic to (N,≤).

Proof. Let f : N −→ M be the function defined by taking f(n)
to be the least element under � of M − {f(0), . . . , f(n − 1)} which
exists by Theorem 1.9.8.

We claim that for n ≥ 0, we have {x ∈ M | x � f(n)} =
{f(0), . . . , f(n)}. The argument is by induction on n. In the basis
step, f(0) is the least element of M under �, so the result holds for
n = 0. For the inductive step, suppose the result holds for n ≥ 0.
Let x ∈ M be such that x � f(n + 1). If x � f(n), then, by induc-
tion hypothesis, x ∈ {f(0), . . . , f(n), f(n+1)}. If x �� f(n), then, by
inductive hypothesis, x ∈M − {f(0), . . . , f(n)}, so by the definition
of f(n+ 1), f(n+ 1) � x. By antisymmetry, x = f(n+ 1).

Conversely, suppose that x ∈ {f(0), . . . , f(n + 1)}. If x = f(n +
1), then x � f(n+1) by reflexivity. If x = f(i) for some i, 0 ≤ i ≤ n,
then by the definition of f , f(n + 1) �∈ {f(0), . . . , f(n)} so by the
inductive hypothesis, f(n + 1) �� f(n). Since � is a linear order,
f(n) � f(n+1). By inductive hypothesis, x � f(n), so x � f(n+1)
by transitivity.

To prove the injectivity of f , suppose that n,m ∈ N and n < m.
By the definition of f , we have f(m) �∈ {f(0), . . . , f(m − 1)}, so
f(n) �= f(m).

Preliminaries 69

To prove that f is surjective, suppose that a ∈M−Ran(f). Then,
by the previous claim, for each n ∈ N, a �� f(n). Since � is total,
f(n) � a for all n ≥ 0. Since f is injective, this means that a has
infinitely many predecessors under � contradicting the hypothesis of
the theorem.

To prove that f is monotonic, suppose that n,m ∈ N and n < m.
By the definition of f , f(m) �∈ {f(0), . . . , f(m− 1)}, so f(m) �� f(n)
by the previous claim. Since � is total, we have f(n) � f(m). �

1.10 Exercises and Supplements

Sequences, Occurrences, and Substitutions

(1) Prove that for q, q′, q′′ ∈ Seqn(D), we have

Δ(q, q′′) ⊆ Δ(q, q′) ∪Δ(q′, q′′).

(2) Prove that δ is a metric on Seqn(D), that is, prove that

(i) δ(q, q′) = 0 if and only if q = q′,
(ii) δ(q, q′) = δ(q′, q),
(iii) δ(q, q′′) ≤ δ(q, q′) + δ(q′, q′′)

for every q, q′, q′′ ∈ Seqn(D).
(3) Show that for every finite sequence s, there are |s|+ 1 occur-

rences of the empty sequence λ in s.
(4) Prove that every mapping f : {0, . . . , p − 1} −→ {0, . . . ,

q−1} is the composition of a surjection f0 : {0, . . . , p−1} −→
{0, . . . , r − 1} and an injection f1 : {0, . . . , r − 1} −→ {0, . . . ,
q − 1}, where r ≤ min{p, q}.
Solution. Let f({0, . . . , p − 1}) = {l0, . . . , lr−1}, where l0 <
· · · < lr−1. Define f0 : {0, . . . , p − 1} −→ {0, . . . , r − 1} by
f0(i) = j for j such that lj = f(i) and f1 : {0, . . . , r − 1} −→
{0, . . . , q − 1} by f1(i) = li.

(5) Let p, q be two natural numbers such that p < q. Prove
that every injection f : {0, . . . , p − 1} −→ {0, . . . , q − 1} is
the composition of injections f = gq−p−1 · · · g0 where g� :
{0, . . . , p + �− 1} −→ {0, . . . , p+ �} for 0 ≤ � ≤ q − p− 1.
Hint. The argument is by induction on q − p.

70 Logical Foundations of Computer Science — Volume 1

(6) Let q, q′, q′′ be finite sequences such that q′′ is a subsequence of
q′ and q′ is a subsequence of q. Show that q′′ is a subsequence
of q.

(7) Let q be a finite sequence and let OS(q) be the set of occur-
rences of subsequences of q in q. Define the binary relation
“�” on OS(q) by (r, i) � (r′, j) if the occurrence (r, i) is a
part of the occurrence (r′, j). Prove that “�” is a partial order
on OS(q).

(8) Let q be a finite sequence and let ζ = (r, i) ∈ OCCr(q). Show
that if q = q0q1q2 and ζ is a part of the occurrence (q1, |q0|) of
q1 in q, then replace (q, ζ, r′) = q0replace (q1, ζ

′, r′)q2, where
ζ ′ = (r, i − |q0|), for every sequence r′.

(9) Suppose that (r, i) is an occurrence of a sequence r in a
sequence q and that (r′′, j) is an occurrence of a sequence r′′
in a sequence r′. Prove that

(a) (r′′, i+ j) is an occurrence of r′′ in replace (q, (r, i), r′),
(b) we have

replace (q, (r, i), replace (r′, (r′′, j), s))

= replace (replace (q, (r, i), r′), (r′′, i+ j), s)

for every sequence s.

We extend the definition of replace (·, ·, ·) to allow the replacement
of multiple nonoverlapping occurrences in parallel.

Let q be a sequence and let (r0, k0), . . . , (rm−1, km−1) with k0 <
· · · < km−1 be nonoverlapping occurrences in q, that is, ki + |ri| ≤
ki+1, for 0 ≤ i ≤ m − 2. If q = q0r0q1r1 · · · rm−1qm, where ki =
|q0r0 · · · qi|, for 0 ≤ i ≤ m− 1, then the sequence

replace (q, ((r0, k0), . . . , (rm−1, km−1)), (r
′
0, . . . , r

′
m−1))

is the sequence q0r
′
0q1r

′
1 · · · r′m−1qm.

(10) Using the previous notation, define the sequences s0, s1, . . . ,
sm by s0 = q and sp = replace (sp−1, (rm−p, km−p), r′m−p) for
1 ≤ p ≤ m.

(a) Justify the definition of sp by showing that (rm−p, km−p)
is an occurrence in sp−1 for 1 ≤ p ≤ m,

Preliminaries 71

(b) prove that

sm = replace (q, ((r0, k0), . . . , (rm−1, km−1)), (r
′
0, . . . , r

′
m−1)).

Hint. Prove by induction on p, 0 ≤ p ≤ m, that

sp = q0r0 · · · qm−p−1rm−p−1qm−pr′m−pqm−p+1r
′
m−p+1 · · · r′m−1qm.

(11) Let q, r be two finite sequences and let x, y be such that y
occurs in neither q nor r. Prove that if sx(y)(q) = sx(y)(r), then
q = r.
Solution. By Theorem 1.2.16, we have

q = sy(x)(s
x
(y)(q)) = sy(x)(s

x
(y)(r)) = r.

(12) Let s be a substitution.

(a) Show that if λ �∈ Ran(s), then, for every finite sequence z,
|s(z)| ≥ |z|.

(b) Show that if λ �∈ Ran(s) and z = z0 · · · zn−1 is a finite
sequence such that s(z) = z, then s(zi) = zi for all 0 ≤
i ≤ n− 1 such that zi ∈ Dom(s).

(c) Show that if the hypothesis λ �∈ Ran(s) is dropped, then
the statement of the previous part becomes false.

(13) Let W be a set with at least two elements. Consider a sub-
stitution s with domain W such that if x, y ∈ W and x �= y,
then s(x) is not a suffix of s(y). Prove that s is injective on
Seq(W).
Solution. Note that s(x) �= λ for every x ∈W . We will show,
by induction on n = |q|, that if s(q) = s(q′), then q = q′ for
any q, q′ ∈ Seq(W). The basis, n = 0, is immediate because
s(x) �= λ for all x ∈W . Suppose now that the statement holds
for sequences of length n and let q be a sequence of length
n + 1, q = rx, where x ∈ W such that s(q) = s(q′). Then,
q′ �= λ, so we may write q′ = r′x′, where x′ ∈ W . Thus, we
have s(r)s(x) = s(r′)s(x′) and since s(x) = s(x) cannot be
a suffix of s(x′) = s(x′) and vice versa, if x �= x′, we must
have x = x′, which implies s(r) = s(r′). By the inductive
hypothesis, we have r = r′, so q = q′.

(14) Explain why in Supplement 13 we assume that W has at least
two elements.

72 Logical Foundations of Computer Science — Volume 1

(15) Let W be a set. Consider an injective substitution s with
domain W such that if x ∈ W , then |s(x)| = 1. Prove that s
is injective on Seq(W).
Solution. When W has at least two elements, the result fol-
lows from Supplement 13. If W has only one element x, and
s(x) = (y), then |s(xn)| = |(y)n| = n, which implies that s
is injective on Seq(W). Finally, when W = ∅, Seq(W) = {λ}
and every function defined on this set is injective.

(16) Formulate and prove a result similar to the one in Supple-
ment 13 in which the word “suffix” is replaced by “prefix”.

Collections of Sets

(17) Let U be a set.

(a) Show that if {Ci | i ∈ I} is a collection of properties of the
subsets of U such that each Ci is of finite character, then⋂
{Ci | i ∈ I} is a property of the subsets of U that has

finite character.
(b) Let C be any property of the subsets of U . Prove that there

is a smallest property of the subsets of U , C′, such that
C ⊆ C′ and C′ is of finite character.

(c) Show that property C′ introduced in Part (b) consists of
those subsets A of U such that for every finite subset A0

of A, there is a B ∈ C that contains A0.

(18) Let Rr(M),Rt(M),Rrt(M) be the collections of all reflex-
ive, transitive, reflexive, and transitive relations on a set M ,
respectively. Prove that these collections are closure systems
on M ×M . Determine the closure operators that correspond
to these closure systems.

A pre-closure operator on a set M is a mapping μ : P(M) −→ P(M)
that is expansive and monotonic; in other words, a pre-closure oper-
ator is a mapping which satisfies the first two properties of the defi-
nition of closure operator.

(19) Let μ : P(N) −→ P(N) be the mapping given by

μ(L) = L ∪ {2n | n ∈ L}.

Prove that μ is a pre-closure operator on N but not a closure
operator.

Preliminaries 73

(20) Let μ be a pre-closure operator on a set M and let Cμ = {H ⊆
M | μ(H) = H}. Show that Cμ is a closure system on M .
Solution. By analyzing the proof of Lemma 1.3.9, it is easily
seen that idempotency is not used in the argument.

(21) Let μ be a pre-closure operator on M .

(a) Show that the unique closure operator κ on M such that
Cκ = Cμ is given by

κ(L) =
⋂
{H ⊆M | L ⊆ H = μ(H)}.

(b) Prove that κ(L), defined above, is the least set H such
that L ⊆ H and H = μ(H).

(c) Determine explicitly the closure operator that corresponds
to the pre-closure operator defined in Exercise 19.

A topology on a set M is a collection T ⊆ P(M) of subsets of M ,
such that

(i) M ∈ T ,
(ii) for every subcollection C ⊆ T , we have

⋃
C ∈ T , and

(iii) if D is a finite, nonempty subcollection of T , then
⋂
D ∈ T .

We will refer to the pair (M,T) as a topological space. The members
of the topology T are called the open sets of the topological space,
while CL(M,T) = {M − L|L ∈ T } is the collection of closed sets of
(M,T).

(22) (a) Prove that condition (iii) in the definition of a topology
can be replaced with the following:

(iii′) if D,D′ ∈ T , then D ∩D′ ∈ T .
(b) Show, by considering C = ∅ in (ii), that for every topolog-

ical space (M,T), ∅ ∈ T .
(c) Show that in a topological space (M,T), CL(M,T) is a

closure system such that the union of every finite collection
of sets in CL(M,T) belongs to CL(M,T).

(23) Prove that the following two statements regarding a closure
operator κ on a set M are equivalent:

(a) κ(H ∪ L) = κ(H) ∪ κ(L) for all H,L ⊆M ,
(b) the union of any two κ-closed subsets of M is a κ-closed

subset of M .

74 Logical Foundations of Computer Science — Volume 1

(24) Let κ be a closure operator on M . Show that there is a topo-
logical space (M,T) such that Cκ = CL(M,T) if and only if
κ(H ∪ L) = κ(H) ∪ κ(L) for every H,L ⊆M and κ(∅) = ∅.
Hint. Use Exercise 23.

A collection C of sets has the finite intersection property if for every
nonempty finite subcollection D of C, we have

⋂
D �= ∅.

(25) Let M be a set. For each a ∈M , let I(a) be the collection of
all finite subsets of M that contain a.

(a) Prove that for every a ∈M , I(a) has the finite intersection
property.

(b) Prove that {I(a) | a ∈ M} has the finite intersection
property.

Solution. Part (a) is immediate. For Part (b), observe that

{a0, . . . , an−1} ⊆ I(a0) ∩ · · · ∩ I(an−1),

for every n > 0 and a0, . . . , an−1 ∈M .

A filter on a set M is a nonempty family F of subsets of M such
that the intersection of two members of F belongs to F and A ∈ F
and A ⊆ B ⊆ M imply B ∈ F . If F is a filter and ∅ �∈ F , then we
refer to F as a proper filter.

A proper filter F in M is an ultrafilter if it is strictly contained
in no proper filter on M .

The collection of all filters on the set M will be denoted by
FIL(M).

(26) Let F be a filter on a set M . Prove that for all A,B ⊆M , we
have A ∩B ∈ F if and only if A ∈ F and B ∈ F .

(27) Prove that for every set M , the collection {M} is a filter on
M . Moreover, prove that for every filter F ∈ FIL(M), we have
{M} ⊆ F .

(28) Let M be a set. A subset L of M is cofinite if M −L is finite.
Prove that the collection of all cofinite subsets of M is a filter
in M .

(29) Let {Fi | i ∈ I} be a nonempty family of filters on a set M .
Prove that

⋂
{Fi | i ∈ I} is a filter on M . Conclude that for

every collection C of subsets of a set M , there is a least filter
FC that contains C.

Preliminaries 75

(30) Let C be a collection of subsets of a set M . Prove that FC
consists of all subsets X of M such that X =M or

⋂
D ⊆ X

for some nonempty finite subcollection D of C. Also, show that
if C �= ∅, then the alternative X = M can be dropped from
the description of FC .

(31) Let C be a nonempty collection of subsets of a set M . Prove
that there is a proper filter on M that includes C if and only
if C has the finite intersection property.

(32) Let F be a filter on a set M , let A ∈ P(M) − F , and let
C = F ∪ {A}. Prove that

FC = F ∪ {Y ∈ P(M) | A ∩X ⊆ Y for some X ∈ F}.

(33) Prove that a filter F ∈ FIL(M) is an ultrafilter on M if and
only if for every A ⊆M exactly one of A and M −A is in F .

(34) Let U be an ultrafilter on a set M and let A,B ⊆ M . Prove
that

(a) A ∪B ∈ U if and only if A ∈ U or B ∈ U ,
(b) A−B ∈ U if and only if A ∈ U and B �∈ U .

(35) Let M be a set and let L be a subset of M .

(a) Prove that F{L} = {A ∈ P(M) | L ⊆ A}. We refer to F{L}
as the principal filter generated by L and we denote it by
FL.

(b) Prove that FL is an ultrafilter on M if and only if |L| = 1.

(36) Let M be a set and let m : P(M) −→ {0, 1} be a function
such that m(M) = 1 and A ∩ B = ∅ implies m(A ∪ B) =
m(A) +m(B) for every A,B ∈ P(M). We refer to such an m
as a two-valued measure on M .
Prove that if m is a two-valued measure on M , then the col-
lection {A ∈ P(M) | m(A) = 1} is an ultrafilter on M . Con-
versely, if U is an ultrafilter on a set M , prove that there is
a two-valued measure m on M such that U = {A ∈ P(M) |
m(A) = 1}.

(37) By considering inclusion among filters, we obtain the partially
ordered set (FIL(M),⊆).
(a) Prove that if {Fi | i ∈ I} ⊆ FIL(M) is a nonempty collec-

tion of filters such that i, j ∈ I implies Fi ⊆ Fj or Fj ⊆ Fi,
then

⋃
{Fi | i ∈ I} is also a filter on M .

76 Logical Foundations of Computer Science — Volume 1

(b) Using Zorn’s lemma (see Chapter 3 of [13]), show that if F
is a proper filter on a setM , then there exists an ultrafilter
U on M such that F ⊆ U .

Decidable and Semidecidable Sets

(38) Prove that if U, V are two effectively enumerable sets, then
U ∪ V , U ∩ V , and U × V are effectively enumerable.

(39) Let U be an effectively enumerable set and let A,B be decid-
able subsets of U . Prove that A∩B is a decidable subset of U .

(40) Let U be an effectively enumerable set and let A,B be semide-
cidable subsets of U . Prove that A∪B and A∩B are semide-
cidable subsets of U .

(41) Let U,U ′ be effectively enumerable sets such that U ⊆ U ′.
Prove that

(a) a subset of U is semidecidable as a subset of U if and only
if it is semidecidable as a subset of U ′,

(b) if a subset of U is decidable as a subset of U ′, then it is
decidable as a subset of U .

(42) Let U,U ′ be two effectively enumerable sets and A be a subset
of U ∩ U ′. Prove that A is semidecidable as a subset of U if
and only if A is semidecidable as a subset of U ′.
Solution. By Exercise 38, U ∪ U ′ is effectively enumerable.
A double application of the first part of Exercise 41 yields the
desired conclusion.

(43) Let U,U ′ be effectively enumerable sets such that U ⊆ U ′ and
U is decidable as a subset of U ′. Prove that a subset of U is
decidable as a subset of U ′ if and only if it is decidable as a
subset of U .

(44) Let U be an effectively enumerable set. Prove that a subset of
U is semidecidable if and only if it is effectively enumerable.

(45) Let U, V,W be three effectively enumerable sets and let
A,B,C be three subsets of U, V,W , respectively. Show that
if A ≤m B and B ≤m C, then A ≤m C.

(46) Let A,B,C be subsets of an effectively enumerable set U .
Prove that

(a) A ≡m A,
(b) if A ≡m B, then B ≡m A,
(c) if A ≡m B and B ≡m C, then A ≡m C.

Preliminaries 77

(47) Let U, V be effectively enumerable sets and let A,B be subsets
of U, V respectively. Prove that if A ≤m B, then (U −A) ≤m
(V −B).

Signatures and Terms

(48) Let S, S′, S′′ be three signatures. Prove that

(a) S � S,
(b) if S � S′ and S′ � S, then S = S′, and
(c) if S′′ � S′ and S′ � S, then S′′ � S.

(49) Let S be a finite signature.

(a) Prove that if V is a nonempty set of variables, then there
is a term t ∈ TERMS(V) that contains all the function
symbols of S if and only if both of the following hold:

i. S is nonempty and
ii. if S contains more than one constant symbol, then S

contains a function symbol of arity greater than 1.

(b) Prove that there is a term t ∈ GTERMS that contains all
function symbols of S if and only if both of the following
conditions hold:

i. S contains at least one constant symbol and
ii. if S contains more than one constant symbol, then S

contains a function symbol of arity greater than 1.

(50) Let S = (F, ν) be a signature, V be a set of variables, and let
ζ = (s, i) be an occurrence of a function symbol or a variable
in a term t ∈ TERMS(V). Then, there is an occurrence of an
(S, V)-term u in t starting at the same position, ξ = (u, i).
Solution. The argument is by induction on the term t. If t is
a variable or constant symbol, then s = t and i = 0 and we can
take u = t. Suppose that the statement holds for t0, . . . , tn−1

and that t = f(t0, . . . , tn−1). If i = 0, we can take u = t.
Otherwise, there is a term tj and an occurrence ζ ′ = (s, i− k)
in tj, where k = j + 2+

∑j−1
l=0 |tl|, so by inductive hypothesis,

there is an occurrence ξ′ = (u, i − k) in tj, so an occurrence
ξ = (u, i) in t.

(51) Let S = (F, ν) be a signature, V be a set of variables, and let
M be a subset of TERMS(V) which contains all the constant
symbols of F . Suppose that for every function symbol f of

78 Logical Foundations of Computer Science — Volume 1

positive arity n in F and n-tuple (t0, . . . , tn−1) of terms of
TERMS(V), we have

f(t0, . . . , tn−1) ∈M if and only if

ti ∈M for all i, 0 ≤ i ≤ n− 1.
(1.1)

(a) Prove that M equals TERMS(V ∩M).
(b) Derive Theorem 1.5.9 from the first part of this exercise.

Solution. (a) We prove by structural induction on the terms
t of TERMS(V) that if t is in M , then t ∈ TERMS(V ∩M).
If t is a variable or a constant symbol and is in M , then
t ∈ TERMS(V ∩ M) by definition. Assume now that t =
f(t0, . . . , tn−1) is a term and, by inductive hypothesis, if ti ∈
M , then ti ∈ TERMS(V ∩ M) for every i, 0 ≤ i ≤ n − 1.
If t ∈ M , then by 1.1, we have ti ∈ M for 0 ≤ i ≤ n − 1 and
therefore, by the inductive hypothesis, t0, . . . , tn−1 belong to
TERMS(V ∩M). Then, by the definition of TERMS(V ∩M),
we have t ∈ TERMS(V ∩M).

To prove the reverse inclusion, we show by induction on
the definition of TERMS(V ∩ M) that every member of
TERMS(V ∩M) is inM . If u is put in TERMS(V ∩M) by one
of the first two rules, then u ∈ M . Assume that u is put into
TERMS(V ∩M) by the third rule, that is, u = f(u0, . . . , un−1),
where (u0, . . . , un−1) is an n-tuple of terms in TERMS(V ∩M)
that belong to M (by the inductive hypothesis). By (1.1),
u = f(u0, . . . , un−1) ∈M .

(b) Let M be the set of terms in TERMS(V) that do not
contain variables. The result follows immediately from Part (a)
since V ∩M = ∅.

(52) Let S = (F, ν) be a signature and let V be a set of variables.
Show that if u and v are two sequences of symbols in F ∪
V ∪ P , then K(uv) = K(u) +K(v), where K is the function
introduced in Definition 1.5.10, extended to sequences as in
the proof of Lemma 1.5.11.

(53) Let S = (F, ν) be a signature and let V be a set of variables.

(a) Use Exercise 52 and the argument of Lemma 1.5.11
to prove that if w is a proper suffix of a term from
TERMS(V), then K(w) ≥ 1. Conclude that no suffix of a
term can be a proper prefix of a term.

Preliminaries 79

(b) Prove that no proper suffix of a term can be a term.

Hint for Part (b): If w is a proper suffix of f(t0, . . . , tn−1)
other than) and (t0, . . . , tn−1), show that K(w) ≥ 2; deal
separately with) and (t0, . . . , tn−1).

(54) Let S = (F, ν) be a signature and let V be a set of variables.

(a) Prove that Part (a) of Exercise 53 also holds for terms in
Polish notation, that is, for terms in POLTERMS(V).

(b) Let s be a sequence of symbols from F ∪ V . Prove that if
K(w) > 0 for every nonempty suffix w of s, then s is a
concatenation of K(s) terms from POLTERMS(V). Here
K is the function introduced in Definition 1.5.10.

(c) Show that a proper suffix of a term in Polish notation can
be a term in Polish notation. In fact, show that every non-
empty suffix of a term in Polish notation is a concatenation
of terms in Polish notation.

Hint for Part (b): Use induction on the length of s.
(55) Formulate and prove an analog of the Occurrence Theorem for

terms in Polish notation.
(56) Let S = (F, ν) be a signature and let V be a set of variables.

The set of terms in reverse Polish notation of the signature
S over the set of variables V , RPOLTERMS(V), is the set of
finite sequences of symbols from F and V defined inductively
as follows:

1. Every variable in V is in RPOLTERMS(V).
2. For each function symbol f of S (say of arity n) and

each n-tuple (t0, . . . , tn−1) of terms of RPOLTERMS(V),
t0 . . . tn−1f is in RPOLTERMS(V).

(a) Consider the signature S introduced in Example 1.5.3 and
the set of variables V = {x0, x1}. Show that the sequences

afaffg, afx0h, affx1fh

are terms in reverse Polish notation of S over V .
(b) Prove that the definition of the set RPOLTERMS(V) sat-

isfies the unique readability condition.
(c) Consider the mappings Ψ′ : RPOLTERMS(V) −→

TERMS(V) and Φ′ : TERMS(V) −→ RPOLTERMS(V)

80 Logical Foundations of Computer Science — Volume 1

defined recursively by

Ψ′(x) = x,

Ψ′(a) = a,

Ψ′(u0 . . . um−1g) = g(Ψ′(u0), . . . ,Ψ′(um−1))

and

Φ′(x) = x,

Φ′(a) = a,

Φ′(f(t0, . . . , tn−1)) = Φ′(t0) . . .Φ′(tn−1)f

for every variable x, constant symbol a ∈ F , g ∈ F
(with m = ν(g) > 0), f ∈ F (with n = ν(f) > 0),
u0, . . . , um−1 ∈ RPOLTERMS(V), and t0, . . . , tn−1 ∈
TERMS(V). Then, prove that Φ′ and Ψ′ are bijections
which are inverses of each other.

(d) Define explicitly two bijections

Ψ′′ : RPOLTERMS(V) −→ POLTERMS(V)

and

Φ′′ : POLTERMS(V) −→ RPOLTERMS(V)

which are inverses of each other.

Hint for Part (b): Show that, for a given signature S and
set of variables V , no proper suffix of a term in reverse Polish
notation can be a term in reverse Polish notation by proving
that for every proper suffix u of such a term we have K(u) < 1.
(Here K is the function introduced in Definition 1.5.10.)

(57) Let S be a signature and V be a set of variables. Show that
for every term t in TERMS(V), |OCC((t)| = |OCC)(t)|.

(58) Let S = (F, ν) be a signature and V be a set of vari-
ables. For t ∈ TERMS(V) and an occurrence of a symbol
(s, i) ∈ OCCs(t), define the level of the occurrence (s, i) to be
|OCC((u)| − |OCC)(u)|, where u is the prefix of t of length i.
In other words, the level of the occurrence (s, i) is given by
the difference between the number of left parentheses and the
number of right parentheses that precede the occurrence in t.

Preliminaries 81

(a) Prove that the level of every occurrence of a comma in t
is at least equal to 1.

(b) Prove that for every term t ∈ TERMS(V) that begins with
a function symbol, the number of commas in t at level 1
is max{ν(f)− 1, 0}, where f is the first symbol of t.

(c) Give another proof of unique readability of Definition 1.5.2
using Part (b).

(59) (a) Give an example of two signatures S = (F, ν) and
S′ = (F, ν ′), a set of variables V , and a term t in both
POLTERMS(V) and POLTERMS′(V) such that t con-
tains a function symbol f for which ν(f) �= ν ′(f).

(b) Show that no example as in Part (a) exists if we
replace the sets POLTERMS(V) and POLTERMS′(V) by
TERMS(V) and TERMS′(V), respectively, i.e., prove that
if t ∈ TERMS(V) ∩ TERMS′(V) and f occurs in t, then
ν(f) = ν ′(f).

Hint for Part (b): Use Part (b) of Exercise 58 and induction.
(60) Let S = (F, ν) and t ∈ POLTERMS(V). Let ΦS(t) be the sum

of the arities of the function symbols (counting multiplicities
of these symbols) that occur in t.

(a) Prove that ΦS(t) = |t| − 1.
(b) Conclude that if t ∈ POLTERMS(V)∩POLTERMS′(V ′),

then ΦS(t) = ΦS′(t).

(61) Recall that we defined rS,T,min as the reduct of S that consists
of all function symbols that occur in terms of T .
Let S0, S1 be two signatures, V0, V1 be two sets of variables,
and T be a set of terms in TERMS0(V0) ∩ TERMS1(V1). Show
that if rS0,T,min = rS1,T,min, then T is an (S0, V0)-unifiable set
of terms if and only if it is an (S1, V1)-unifiable set of terms.
Explain why the condition rS0,T,min = rS1,T,min is necessary.
Hint. The statement follows from a double application of
Theorem 1.6.24 and from the fact that the equality rS0,T,min =
rS1,T,min means that V(T) is the same regardless of whether it
is computed relative to S0 or to S1.

(62) Let S be a signature and let V be a set of variables. Is ι(S,V)

the same as the identity map 1V ?
Solution. No, because, strictly speaking, the range of ι(S,V) is

not V but rather V 1, the set of all sequences of length 1 over V ;

82 Logical Foundations of Computer Science — Volume 1

of course, in practice, we identify V and V 1 and, under this
identification, ι(S,V) and 1V are the same.

(63) Let s : V −→ TERMS(V) be a substitution.

(a) Let t ∈ TERMS(V) be a term. Prove that s̄(t) = t if and
only if s(x) = x for every variable x that occurs in t.

(b) Let z be an (S, V)-substitution such that z(x) = x for
every x in V(Ran(s)). Prove that z ∗ s = s.

(64) Show that if s is an (S, V)-substitution, then s is idempotent,
that is, s ∗ s = s, if and only if for all variables x and x′ if x′
occurs in s(x), then s(x′) = x′.
Solution. If s is idempotent, we have s(s(x)) = s(x) for all
variables x and so, by Exercise 63, we have s(x′) = x′ for every
variable x′ that occurs in s(x).
Conversely, suppose that the condition is satisfied. Then, for
every variable x, we have s(s(x)) = s(x) because all variables
occurring in s(x) are fixed by s and other symbols (function
symbols and punctuation) are not in the domain of s.

(65) An (S, V)-substitution s is a variable-pure substitution if
s(x) ∈ V for every variable x ∈ V .
Show that an (S, V)-substitution s is invertible, that is s∗s′ =
s′ ∗ s = ι for some (S, V)-substitution s′, if and only if s is
variable-pure and s is a bijection from V to itself.
Solution. Let s be an invertible substitution, and let s′ be
a substitution such that s ∗ s′ = s′ ∗ s = ι. Then, for every
variable x, s(s′(x)) = s′(s(x)) = ι(x) = x. Since s′(s(x)) = x,
by Exercise 12, we have 1 = |x| = |s′(s(x))| ≥ |s(x)|, so s(x)
is either a variable or a constant symbol. But, if s(x) is a
constant symbol a, we have s′(s(x)) = s′(a) = a �= x. Thus, s is
variable-pure and, therefore, for all variables x, x = s′(s(x)) =
s′(s(x)). Similarly, one can show that s′ is variable-pure and
for all variables x, x = s(s′(x)). It follows that s : V −→ V is
a bijection (with s′ as its inverse).
Conversely, suppose that s : V −→ V is a bijection and let
s′ be its inverse bijection. Then, for every x ∈ VAR, we have
s ∗ s′(x) = s(s′(x)) = s(s′(x)) = x = ι(x), so s ∗ s′ = ι.
Similarly, s′ ∗ s = ι, so s is an invertible substitution.

(66) Let A be a finite set, B be a superset of A, and f : A −→ B
be an injection. Prove that there is a bijection g : B −→ B
such that g |̀A = f and {b ∈ B | b �= g(b)} is finite.

Preliminaries 83

Solution. The function f is a bijection between A and f(A),
which means that |A| = |f(A)|. Since A is finite and is the
disjoint union A = (A− f(A)) ∪ (A ∩ f(A)), we have

|A− f(A)| = |A| − |A ∩ f(A)| = |f(A)| − |A ∩ f(A)|
= |f(A)−A|.

It follows that there is a bijection h : f(A)−A −→ A− f(A).
Now, g can be defined as

g(b) =

⎧⎪⎨
⎪⎩
f(b) if b ∈ A
h(b) if b ∈ f(A)−A
b if b �∈ (A ∪ f(A)).

It is clear that g extends f and {b ∈ B | b �= g(b)} is finite.
Suppose that g(b0) = g(b1). Note that b0, b1 cannot be co-
located in any of the sets A, f(A) − A, or B − (A ∪ f(A))
because f , h, and the identity map are injections. Since b ∈ A
implies g(b) = f(b) ∈ f(A), b ∈ f(A) − A implies g(b) =
h(b) ∈ A − f(A), and b ∈ B − (A ∪ f(A)) implies g(b) = b ∈
B − (A ∪ f(A)), it follows that g is injective. Observe that
if c ∈ f(A), then it is the image of some b ∈ A under g, if
c ∈ A− f(A), then it is the image of an element in f(A)−A,
and if c �∈ A ∪ f(A), then c = g(c). Thus, g is surjective and
therefore it is a bijection.

(67) Prove that the statement in Supplement 66 can fail if A is not
finite.

(68) Define the binary relation ≡ on the set SUBST(S, V) of
all (S, V)-substitutions by s0 ≡ s1 if there are two (S, V)-
substitutions s′ and s′′ such that s1 = s′ ∗ s0 and s0 = s′′ ∗ s1.
(a) Show that ≡ is an equivalence on the set SUBST(S, V).
(b) Show that for every term t ∈ TERMS(V) we have |s0(t)| =
|s1(t)|, if s0 ≡ s1.

(c) Suppose that s0 ≡ s1 and that s1 = s′ ∗ s0 and s0 =
s′′ ∗ s1 for some substitutions s′ and s′′. Prove that for all
variables x, x′, x′′, if x′ occurs in s0(x), then s′(x′) ∈ V and
if x′′ occurs in s1(x), then s′′(x′′) ∈ V . Furthermore, s′ is
injective on V(Ran(s0)) and s

′′ is injective on V(Ran(s1)).
(d) Show that if s1 ≡ s0, then there exist two variable-pure

substitutions s10 and s01 such that s1 = s10 ∗ s0 and

84 Logical Foundations of Computer Science — Volume 1

s0 = s01 ∗ s1; furthermore, s10 is injective on V(Ran(s0))
and s01 is injective on V(Ran(s1)).

(e) Prove that s0 ≡ s1 if and only if s1 = s10 ∗ s0 for
some variable-pure substitution s10 that is injective on
V(Ran(s0)).

(f) Prove that if s0 is a finite substitution, then s1 is a finite
substitution with s1 ≡ s0 if and only if there is a variable-
pure, finite bijection z from V to V with s1 = z ∗ s0.

Solution. We leave the easy verification of the Parts (a) and
(b) to the reader. The hypothesis of Part (c) implies that for
every variable x, s1(x) = s′(s0(x)) and s0(x) = s′′(s1(x)),
so s0(x) = s′′(s′(s0(x))) = s′′ ∗ s′(s0(x)). By Part (a) of
Exercise 63, we have s′′(s′(x′)) = s′′ ∗ s′(x′) = x′ for every
variable x′ in s0(x). By an argument similar to the one
used in Supplement 65, this implies that s′(x′) is a vari-
able for all such x′. Similarly, if x′′ occurs in s1(x), then
s′′(x′′) is a variable. Suppose that s′(x0) = s′(x1), where
x0, x1 ∈ V(Ran(s0)). Then, x0 = s′′ ∗ s′(x0) = s′′(s′(x0)) =
s′′(s′(x1)) = s′′ ∗ s′(x1) = x1, which shows that s′ is injec-
tive on V(Ran(s0)). In an analogous way, one shows that s′′ is
injective on V(Ran(s1)).
To prove Part (d), suppose that s1 and s0 are substitutions
such that s1 = s′ ∗ s0 and s0 = s′′ ∗ s1 for some substitutions
s′ and s′′. Consider the substitution s10 given by

s10(x
′) =

{
s′(x′) if x′ occurs in a term in Ran(s0),

x′ otherwise.

From Part (c), it follows that s10 is a variable-pure substitu-
tion and is injective on V(Ran(s0)). For all variables x, since
s10(s0(x)) = s′(s0(x)), it follows that s1(x) = s10(s0(x)) =
s10 ∗ s0(x), so s1 = s10 ∗ s0. In a similar way, we define s01.
For Part (e), note that s0 ≡ s1 implies the existence of the
variable-pure substitution s10 that is injective on V(Ran(s0))
such that s1 = s10 ∗ s0, by Part (d). Conversely, suppose s10
is a variable-pure substitution that is injective on V(Ran(s0))
such that s1 = s10 ∗ s0. Define s01 as

s01(x) =

{
y if y ∈ V(Ran(s0)) and s10(y) = x

x otherwise.

Preliminaries 85

Note that the substitution s10 is well defined because s10 is
injective on the set V(Ran(s0)). By this definition, if y ∈
V(Ran(s0)), we have

s01 ∗ s10(y) = s̄01(s10(y)) = y.

By Exercise 63, we have s0 = (s01 ∗s10)∗s0 = s01 ∗ (s10 ∗s0) =
s01 ∗ s1. Therefore, s0 ≡ s1.
To prove Part (f), suppose s1 = z ∗ s0 where z is a finite,
variable-pure substitution that is a bijection considered as a
function from V to V . By Theorem 1.2.21, s1 is finite and by
Part (e), s1 ≡ s0.
Conversely, let s1 be a finite substitution such that s1 ≡ s0.
By Part (e), there is a variable-pure substitution z such that z
is injective on V(Ran(s0)) and s1 = z ∗ s0. We shall prove that
there is a finite bijection z′ : V −→ V which agrees with z on
V(Ran(s0)) (and therefore s1 = z′ ∗ s0). Note that z is a finite
substitution, that is, carr(z) is a finite set, because carr(z) ⊆
carr(s0)∪carr(s1) and both carr(s0) and carr(s1) are finite sets.
Let Fz = V − carr(z) be the cofinite set of variables that are
invariant under z. The finiteness of s0 also implies that the set
V(Ran(s0)) is cofinite and therefore, the set Fz ∩ V(Ran(s0)) is
also cofinite. Define the finite set B = V − (Fz ∩ V(Ran(s0)))
and let A = carr(z) ∩ V(Ran(s0)). Note that A ⊆ B. Also,
z(A) ⊆ B. Indeed, suppose that v ∈ z(A) but v �∈ B, that is,
v ∈ Fz ∩ V(Ran(s0)), which implies z(v) = v. On the other
hand, v = z(x) for some x ∈ A ⊆ B. Note that x �= v because
x ∈ B and v �∈ B. Since both x and v are in V(Ran(s0)), this
contradicts the injectivity of z on V(Ran(s0)). Also, z |̀A is an
injection since A ⊆ V(Ran(s0)). By Supplement 66, there is a
bijection z′′ : B −→ B that extends z |̀A. The desired bijection
z′ : V −→ V is defined by

z′(x) =

{
z(x) if x ∈ V −B
z′′(x) otherwise

=

{
x if x ∈ V −B
z′′(x) otherwise.

Let s be an (S, V)-substitution, where S is a signature and V is a
set of variables. Denote by SIG(s, S) the reduct of S to the set of
function symbols that appear in some s(x) for x ∈ V .

86 Logical Foundations of Computer Science — Volume 1

(69) Let s′, z, s be three (S, V)-substitutions such that s′ = z ∗ s.
Prove that SIG(s, S) is a reduct of SIG(s′, S). Conclude that if
s ≡ s′, then SIG(s, S) = SIG(s′, S).

Term Unification

(70) Let T be a set of (S, V)-terms with no more than one element.

(a) Show that every (S, V)-substitution is a unifier of T .
(b) Show that the identity substitution ι is a most general

(S, V)-unifier for T .
(c) Furthermore, show that an (S, V)-substitution is a most

general (S, V)-unifier if and only if it is an injective map-
ping from V to V .

(71) Show that there exists a unifiable set of terms T and a substi-
tution s such that s(T) is not unifiable.

(72) Let T be a unifiable finite set of terms and let s be a most
general unifier for T . Show that if z is a unifier for T and
t ∈ T , then |s(t)| ≤ |z(t)|. Conclude that if s′ is another most
general unifier for T , then |s(t)| = |s′(t)| for all t ∈ T .

(73) Consider the terms

t = f(x1, x2, . . . , xn),

t′ = f(g(x0, x0), g(x1, x1), . . . , g(xn−1, xn−1)),

where f is an n-ary function symbol and g is a binary function
symbol. Prove that the set {t, t′} is unifiable and that a term
u resulting from the unification of t and t′ through the appli-
cation of a most general unifier of the set {t, t′} is of length
10 · 2n − 3n − 8 for n ≥ 1.

(74) Let S be a signature and V be a set of variables. Prove that
if s, z, s′ are (S, V)-substitutions such that s′ = z ∗ s, then
SIG(s, S) � SIG(s′, S).

(75) Let S, S′ be two signatures with S′ � S, V be a set of vari-
ables, and T be a finite set of (S, V)-terms. Prove that for any
two most general (S, S′, V)-unifiers s0 and s1 of T , we have
SIG(s0, S) = SIG(s1, S).

Let T be a finite set of (S, V)-terms and S′ be a reduct of S. Suppose
that T is (S, S′, V)-unifiable. Denote by MGUSIG(T, S, S′) the com-
mon signatures of all most general (S, S′, V)-unifiers (which exists by
Exercise 75). Also, we denote MGUSIG(T, S, S) by MGUSIG(T, S).

Preliminaries 87

(76) Let T be a finite set of (S, V)-terms and S′ be a reduct
of S. Suppose that T is (S, S′, V)-unifiable. Prove that
MGUSIG(T, S, S′) is a reduct of rS,T,min � S′.
Hint. Apply Theorem 1.6.26.

(77) Let S, S0, S1 be three signatures with S0, S1 � S, V be a set
of variables, and T be a finite set of (S0 � S1, V)-terms. Prove
that MGUNIFS0,V (T) = MGUNIFS1,V (T) and therefore T
is (S0, V)-unifiable if and only if it is (S1, V)-unifiable.
Solution. Let z ∈ MGUNIFS0,V (T). Since z is an
MGUSIG(T, S0)-substitution, it follows that it is an (rS0,T,min,
V)-substitution, by Exercise 76, and therefore is an (rS1,T,min,
V)-substitution, because rS0,T,min = rS1,T,min. Thus, z is an
(S1, V)-substitution, so is an (S1, V)-unifier of T .
To show that z is most general as an (S1, V)-unifier, let z1
be an (S1, V)-unifier of T . We need to prove that z1 can be
factored through z as z1 = w1∗z, for some (S1, V)-substitution
w1. Let z

′
1 be an (S1, V)-most general unifier of T . Note that

z′1 is also an (S0, V)-unifier by the first part of the argument
and therefore, z′1 = w ∗ z for some (S0, V)-substitution w and
w can be chosen to be also an (S1, V)-substitution since z′1
is an (S1, V)-substitution. By the definition of most general
unifier, there is an (S1, V)-substitution w′ with z1 = w′ ∗ z′1.
We now have z1 = w′ ∗ z′1 = w′ ∗ (w ∗ z) = (w′ ∗ w) ∗ z, and
therefore w1 = w′ ∗ w is the desired (S1, V)-substitution.
We have thus shown that MGUNIFS0,V (T) ⊆
MGUNIFS1,V (T). The reverse inclusion can be shown in a
similar manner.

(78) Let T be a finite set of (S, V)-terms and S′ be a reduct of S.
Prove that

(a) T is (S, S′, V)-unifiable if and only if T is (S, V)-unifiable
and MGUSIG(T, S) is a reduct of S′,

(b) if T is (S, S′, V)-unifiable, then

MGUNIFS,VS′ (T) = MGUNIFS,V (T).

Solution. Suppose first that T is (S, S′, V)-unifiable and let
s′ be a most general (S, S′, V)-unifier of T . Then, s′ is also
an (S, V)-unifier of T . Let s be a most general (S, V)-unifier
of T . Then, s′ = z ∗ s for some (S, V)-substitution z.

88 Logical Foundations of Computer Science — Volume 1

It follows from Exercise 74 that MGUSIG(T, S) = SIG(s, S) �
SIG(s′, S) � S′. We leave to the reader the argument for the
reverse implication.
For the second part, let s ∈ MGUNIFS,VS′ (T). This means
that s is an (S′, V)-substitution, hence an (S, V)-substitution
and |s(T)| ≤ 1, so s is an (S, V)-unifier of T , and, consequently,
there is a most general (S, V)-unifier s1 of T . By Part (a), s1 is
an (S′, V)-substitution. In turn, this implies that s1 is also an
(S, S′, V)-unifier of T . Hence, there is an (S′, V)-substitution
z1 (which is also an (S, V)-substitution because S′ is a reduct
of S) such that s1 = z1 ∗ s. Now, let s′ be any (S, V)-unifier
of T . Since s1 is a most general (S, V)-unifier of T , there is an
(S, V)-substitution z with s′ = z ∗s1 = z ∗(z1 ∗s) = (z ∗z1)∗s,
which shows that s is a most general (S, V)-unifier of T .
Conversely, suppose that s ∈ MGUNIFS,V (T), that is, s
is an (S, V)-substitution, |s(T)| ≤ 1, and for every (S, V)-
substitution z with |z(T)| ≤ 1, these is an (S, V)-substitution
z′′ such that z = z′′ ∗ s. Since MGUSIG(T, S) is a reduct of S′,
by the first part, it follows that s is an (S′, V)-substitution.
Let z be an (S′, V)-substitution with |z(T)| ≤ 1. Note that z is
also an (S, V)-substitution, so there is an (S, V)-substitution
z′′ with z = z′′ ∗ s. Let z′ be the (S′, V)-substitution obtained
from z′′ by defining z′(x) = x for all variables x that do
not appear in the range of s. Then, z = z′ ∗ s, so s ∈
MGUNIFS,VS′ (T).

(79) Let S, S′, S0, S′
0 be four signatures such that

S′ � S, S′
0 � S0, S0 � S, S′

0 � S′,

and let V be a set of variables. Suppose that T is a finite set
of (S0, V)-terms such that rS0,T,min � S′ � S′

0. Show that T
is (S, S′, V)-unifiable if and only if it is (S0, S

′
0, V)-unifiable;

furthermore, prove that

MGUNIFS,VS′ (T) = MGUNIFS0,V
S′
0

(T). (1.2)

Solution. Clearly, if T is (S0, S
′
0, V)-unifiable, then it is

(S, S′, V)-unifiable. Conversely, suppose that T is (S, S′, V)-
unifiable. Let s be a most general (S, S′, V)-unifier of T . By
Exercise 76, SIG(s, S) is a reduct of rS,T,min � S′ = rS0,T,min �
S′ � S′

0. Thus, s is an (S0, S
′
0, V)-unifier of T , which estab-

lishes the reverse implication.

Preliminaries 89

If T is not (S, S′, V)-unifiable, then it is not (S0, S
′
0, V)-

unifiable by the first part, and hence both sides of
Equality (1.2) are empty. On the other hand, if T is (S, S′, V)-
unifiable, then, again by the first part, it is (S0, S

′
0, V)-unifiable

and Equality (1.2) follows from Supplements 78 and 77.
(80) Let S, S′ be signatures such that S′ is a reduct of S, V be

a set of variables, T be a finite, unifiable set of (S, V)-terms,
and s be a most general (S, S′, V)-unifier for T . Show that if
y0, y1 ∈ V − V(T), then s(y0), s(y1) are distinct variables in V .
Conclude that for a finite, unifiable set T of (S, V)-terms and a
most general (S, V)-unifier s for T , s(y) is a variable for every
y ∈ V − V(T) and furthermore the restriction of s to V − V(T)
is injective.
Solution. Let s0 be the most general (S, S′, V)-unifier of
T produced by the unification algorithm. By the proof of
Lemma 1.6.23, s0(y0) = y0 and s0(y1) = y1. Since s is a
most general (S, S′, V)-unifier, there is an (S′, V)-substitution
z such that s0 = z ∗ s. In particular, y0 = s0(y0) = z̄(s(y0))
and y1 = s0(y1) = z̄(s(y1)). Since z̄ does not affect function
symbols, it follows that s(y0), s(y1) are variables, and they are
distinct.

(81) Let S, S′ be signatures such that S′ is a reduct of S, V be a set
of variables, T be a finite, unifiable set of (S, V)-terms, and s
be a most general (S, S′, V)-unifier for T . Prove that

(a) |V(s(T))| ≤ |V(T)|,
(b) |V(T)− V(s(T))| ≥ |V(s(T))− V(T)|.
Solution. Let s∗ be an mgu of T produced by the unifica-
tion algorithm. Note that for the sequence of sets of terms
T0, T1, . . . , Tn produced by the algorithm, V(T) = V(T0) ⊃
V(T1) ⊃ · · · ⊃ V(Tn) = V(s∗(T)), so the result holds for s∗.
If s is an arbitrary mgu, then by Supplement 68, there is a
substitution z such that s∗ = z ∗ s and z is variable-pure and
injective on V(Ran(s)). This implies that

|V(T)| ≥ |V(s∗(T))| = |V(z ∗ s(T))| = |V(z(s(T)))| = |V(s(T))|.

The second part follows from elementary set-theoretical
arguments.

(82) Prove the following generalization of Supplement 81: Let S, S′
be signatures such that S′ is a reduct of S, V be a set of

90 Logical Foundations of Computer Science — Volume 1

variables, T be a finite, unifiable set of (S, V)-terms, and V0
be a finite set of variables such that V(T) ⊆ V0. Let s be a
most general (S, S′, V)-unifier for T . Prove that

(a) |V(s(V0))| ≤ |V0|,
(b) |V0 − V(s(V0))| ≥ |V(s(V0))− V0|.
Solution. Clearly, |V0 − V(T)| ≥ |s(V0 − V(T))|. By Sup-
plement 80, since s is an mgu of T , we have |V0 − V(T)| ≥
|V(s(V0 − V(T))|. This allows us to write

|V0| = |V(T)|+ |V0 − V(T)|
≥ |V(s(T))|+ |V(s(V0 − V(T)))|

(by Supplement 81)

≥ |V(s(V0))|.

We leave to the reader the proof of the second part.
(83) Let S, S′ be signatures such that S′ is a reduct of S, V be a set

of variables, T be a finite, unifiable set of (S, V)-terms, and s
be a most general (S, S′, V)-unifier for T . If V0 is a finite set
of variables such that V(T) ⊆ V0, prove that there is a finite
most general (S, S′, V)-unifier s′ of T such that s′(v) = s(v)
for every v ∈ V0.
Solution. The second inequality of Supplement 82 allows us
to infer the existence of an injection f : V(s(V0) − V0) −→
V0 − V(s(V0)). This, in turn, allows us to define the (S′, V)-
substitution s′ as

s′(x) =

⎧⎪⎨
⎪⎩
s(x) if x ∈ V0
f(x) if x ∈ V(s(V0))− V0
x if x �∈ V0 ∪ V(s(V0)).

By definition, s′ agrees with s on V0 and since V(T) ⊆ V0, it
follows that s′ is a unifier of T . Moreover, since V0 ∪ V(s(V0))
is finite, it follows that s′ is a finite substitution. Since s is an
mgu of T and s′ is a unifier of T , we have s′ = z′ ∗ s, for some
substitution z′. To complete the proof that s′ is an mgu of T ,
we will show that there is a substitution z such that s = z ∗s′.

Preliminaries 91

This establishes that s′ ≡ s and hence by Theorem 1.6.6, s′ is
an mgu of T . Let z be the (S′, V)-substitution given by

z(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
y if y ∈ V(s(V0))

s(f−1(y)) if y ∈ Ran(f)

s(y) if y �∈ V0 ∪ V(s(V0))
y if y ∈ V0 − (Ran(f) ∪ V(s(V0))).

We need to consider three cases for a variable x ∈ V and show
that s(x) = z(s′(x)).
Case 1: x ∈ V0. We have z(s′(x)) = z(s(x)) = s(x) since
z(y) = y for all y ∈ V(s(V0)).
Case 2: x ∈ V(s(V0))− V0. Then,

z(s′(x)) = z(f(x)) = s(f−1(f(x))) = s(x).

Case 3: x �∈ V0 ∪ V(s(V0)). This allows us to write z(s′(x)) =
z(x) = s(x).

(84) Let S, S′ be signatures such that S′ is a reduct of S and let
V be a set of variables. Suppose that V0, V1 are two disjoint
subsets of V and let T0, T1 be two finite sets of (S, V)-terms
such that V(Ti) ⊆ Vi, for i = 0, 1. Further, for i = 0, 1, let si be
a most general (S, S′, V)-unifier of Ti such that V(si(Ti)) ⊆ Vi.
Let z be a most general (S, S′, V)-unifier of s0(T0) ∪ s1(T1).
Define

s(x) =

⎧⎪⎨
⎪⎩
s0(x) if x ∈ V0
s1(x) if x ∈ V1
x if x �∈ V0 ∪ V1.

Prove that z01 = z ∗ s is a most general (S, S′, V)-unifier of
T0 ∪ T1.
Solution. We have z01(T0 ∪ T1) = z ∗ s(T0 ∪ T1) = z(s(T0) ∪
s(T1)) = z(s0(T0) ∪ s1(T1)). Since z is a unifier of s0(T0) ∪
s1(T1), we have |z01(T0 ∪T1)| = 1, so z01 is a unifier of T0 ∪T1
(see Figure 1.7).
Let z′ be an (S, S′, V)-unifier of T0 ∪ T1. Since z′ unifies both
T0 and T1, there are z′0 and z′1 such that z′ = z′0 ∗ s0 and

92 Logical Foundations of Computer Science — Volume 1

T0 T1 T1 ∪ T1(S, V0)-terms (S, V1)-terms

s0: an (S, S , V)-mgu s1: an (S, S , V)-mgu

s0(T0) s0(T0)

z(s0(T0) ∪ s1(T1))
z: an (S, S , V)-mgu

z01(T0 ∪ T1)

Fig. 1.7. z01 = z ∗ s is a most general (S, S′, V)-unifier of T0 ∪ T1.

z′ = z′1 ∗ s1. Define z′′ by

z′′(x) =

⎧⎪⎨
⎪⎩
z′0(x) if x ∈ V0
z′1(x) if x ∈ V1
z′(x) if x �∈ V0 ∪ V1.

Then, z′′(s0(T0) ∪ s1(T1)) = z′′(s0(T0)) ∪ z′′(s1(T1)) =
z′0(s0(T0)) ∪ z′1(s1(T1)) = z′(T0) ∪ z′(T1) = z′(T0 ∪ T1). There-
fore, |z′′(s0(T0) ∪ s1(T1))| = |z′(T0 ∪ T1)| = 1, so we can
conclude that z′′ is an (S, S′, V)-unifier of s0(T0) ∪ s1(T1).
Since z is a most general unifier of s0(T0) ∪ s1(T1), we can
write z′′ = ẑ ∗ z. We claim that z′ = ẑ ∗ z01. First, note
that ẑ ∗ z01 = ẑ ∗ (z ∗ s) = (ẑ ∗ z) ∗ s = z′′ ∗ s. Hence,
it suffices to show that z′ = z′′ ∗ s. For x ∈ V0, we have
z′′ ∗ s(x) = z′′(s0(x)) = z′0(s0(x)) = z′(x); similarly, for
x ∈ V1, we have z′′ ∗ s(x) = z′′(s1(x)) = z′1(s1(x)) = z′(x).
If x �∈ V0 ∪ V1, then z′′ ∗ s(x) = z′′(x) = z′(x). We have shown
that z′ is factorable through z01 and hence z01 is an (S, S′, V)-
mgu of T0 ∪ T1.

Labeled Ordered Trees

(85) Prove that the set D = {(a0, . . . , an−1) ∈ Seq(N) | n ∈N
and 0 ≤ aj ≤ j for all j, 0 ≤ j ≤ n− 1} is a tree domain.

(86) Let D,E be tree domains.

(a) Prove that D ∪ E and D ∩E are tree domains.
(b) Prove that if q, qr ∈ D, then (D[q])[r] = D[qr].

Preliminaries 93

(c) Prove that if q ∈ D ∩E, then

(D ∪ E)[q] = D[q] ∪ E[q],

(D ∩ E)[q] = D[q] ∩ E[q].

(d) Prove that if D0, . . . ,Dn−1 are n tree domains and 0 ≤
i ≤ n− 1, then

〈D0, . . . ,Dn−1〉[i] = Di.

(87) Let D,D′ be tree domains and let r ∈ D. Prove that

LEAVES(D[r → D′])

= (LEAVES(D)− rSeq(N)) ∪ rLEAVES(D′).

(88) Let D,D1,D2 be three tree domains and let r1, r2 ∈ D be two
sequences such that neither of them is a prefix of the other.
Prove that

(D[r1 → D1])[r2 → D2] = (D[r2 → D2])[r1 → D1].

(89) Let D0, . . . ,Dn−1,D be tree domains. Prove that

〈D0, . . . ,Dn−1〉[ir → D] = 〈D0, . . . ,Di[r → D], . . . ,Dn−1〉

for 0 ≤ i ≤ n− 1 and r ∈ Di.
(90) Let D be a tree domain such that no path of D has length

greater than k and no node has more than n immediate descen-
dants. Prove that |D| ≤ 1 + n + · · · + nk and D has no more
than nk leaves.
Hint. Use strong induction on k.

(91) Prove that the recursive definition of the set of finite tree
domains given in Theorem 1.7.22 satisfies the unique read-
ability condition.

A tree semi-domain is a subset D of Seq(N) that satisfies the
first two conditions of Definition 1.7.1. The notions introduced in
Definitions 1.7.4 and 1.7.5 carry over to tree semi-domains.

(92) Show that König’s lemma holds for tree semi-domains.
(93) Let T0, . . . , Tn−1 be n lots and r be a node of Ti. Prove that

(T0, . . . , Tn−1; θ)[ir] = (Ti)[r].

94 Logical Foundations of Computer Science — Volume 1

Conclude that

(T0, . . . , Tn−1; θ)[i] = Ti

for 0 ≤ i ≤ n− 1 by taking r = λ.
(94) Let T0, . . . ,Tn−1 be n marked lots and r be a node of Ti. Prove

that

(T0, . . . ,Tn−1; θ)[ir] = (Ti)[r].
Conclude that

(T0, . . . ,Tn−1; θ)[i] = Ti
for 0 ≤ i ≤ n− 1 by taking r = λ.

(95) Let T, T′ be lots and let r be a node of T. Show that

LEAVESθ(T[r → T′])

= (LEAVESθ(T)− rSeq(N)) ∪ rLEAVESθ(T
′)

for every object θ.
(96) Prove that the recursive definition of the set of finite U -

lots given in Corollary 1.7.24 satisfies the unique readability
condition.

Let T be a lot and let f be a function such that Ran(T) ⊆ Dom(f).
Then f(T) denotes the lot f ◦ T. If T = (T,M) is a marked lot and
f is a function which satisfies the same condition, then f(T) is the
marked lot (f(T),M).

(97) Let T = (T,M) be a marked lot, θ be an object, and f be a
function such that Ran(T) ∪ {θ} ⊆ Dom(f). Prove that if f is
injective on the set {T(q) | q ∈ LEAVES(T)} ∪ {θ}, then

f(Lθ(T)) = Lf(θ)(f(T)).
Solution. We have

f(Lθ(T)) = (f(T),M ∪ LEAVESθ(T)) and

Lf(θ)(f(T)) = (f(T),M ∪ LEAVESf(θ)(f(T))).

Thus, it suffices to show that

LEAVESθ(T) = LEAVESf(θ)(f(T)).

If q ∈ LEAVESθ(T), then q ∈ LEAVES(T) = LEAVES(f(T))
and T(q) = θ, so f(T)(q) = f(θ) and q ∈ LEAVESf(θ)(f(T)).

Preliminaries 95

Conversely, if q ∈ LEAVESf(θ)(f(T)), then q ∈
LEAVES(f(T)) = LEAVES(T) and f(T(q)) = f(θ). Since f
is injective on {T(q) | q ∈ LEAVES(T)} ∪ {θ}, it follows that
T(q) = θ, so q ∈ LEAVESθ(T).

(98) Let T0, . . . , Tn−1, T be lots. Prove that

(T0, . . . , Tn−1; θ)[ir → T] = (T0, . . . , Ti[r → T], . . . , Tn−1; θ)

for all i ∈ {0, . . . , n− 1}, r ∈ Dom(Ti) and objects θ.

Let T = (T,M), T ′ = (T′,M ′) be two marked lots and let r ∈
D = Dom(T). Denote the pair (T[r → T′], (M − rSeq(N)) ∪ rM ′) by
T [r → T ′].

(99) Let T ,T ′ be two marked lots and let r be a node of T . Prove
that the pair T [r → T ′] is a marked lot.

(100) Let θ be an object. Show that Lθ(Lθ(T)) = Lθ(T) for every
marked lot T .

(101) Let T ,T ′ be two marked lots and let θ be an object. If r is a
node of T , show that

Lθ(T [r → T ′]) = Lθ(T)[r → Lθ(T ′)].

(102) Let T0, . . . ,Tn−1,T be marked lots. If r is a node of Ti, prove
that

(T0, . . . ,Tn−1; θ)[ir → T] = (T0, . . . ,Ti[r → T], . . . ,Tn−1; θ)

for every object θ.
Hint. Use Exercise 98.

(103) Let S = (F, ν) be a signature and let V be a set of variables.
An (S, V)-term tree is a finite lot T satisfying the following
properties:

• If q is a leaf of T, then T(q) ∈ V ∪ FS0 .
• If q is an interior node of T, and its immediate descendants
are q0, . . . , qn, then there exists an n+1-ary function symbol
f ∈ F such that T(q) = f(T(q0), . . . , T(qn)).

(a) Prove that a finite sequence is an (S, V)-term if and only
if there is an (S, V)-term tree whose root is labeled with
the sequence.

96 Logical Foundations of Computer Science — Volume 1

(b) Prove that if T is an (S, V)- term tree with root labeled
t, then the set of labels of T equals SUBT(t).

Formal Systems

(104) Show the following converse of Corollary 1.8.8. Let F =
(U,A, I) be a formal system and let G0, G1 ⊆ U . Prove
that if G0 �F θ implies G1 �F θ for every θ ∈ U , then
G0 ⊆ Thm(FG1).

(105) Give an example of a formal system F = (U,A, I) and a non-
empty subset R of Un×U for some n > 0 such that the formal
system F ′ = (U,A, I ∪ {R}) is equivalent to F , but R is not a
derived rule of F .

(106) Let F = (U,A, I) be a formal system and let κ : P(U) −→
P(U) be the mapping given by κ(G) = Thm(FG). Prove that
κ is a closure operator.

(107) Consider the formal system Ftd = (P(Seq(N)), {{λ}}, {Rk |
k ≥ 1}), where Rk is the rule

D0, . . . ,Dk−1

〈D0, . . . ,Dk−1〉
.

Prove that Thm(Ftd) equals the set of all finite tree domains.
(108) The game of tick-tack-toe can be regarded as a formal system

as follows. The set of objects U is the set of 3 × 3-matrices
whose entries are in the set {X,O, �}. (The symbol � stands
for blank.) The number of X entries (O entries) of an object
M is denoted by MX (MO). An object M is

• X-winning (O-winning) if it has a row, column, or diagonal
of Xs (Os),

• winning if it is either X-winning or O-winning,
• X-turn if MX =MO,
• O-turn if MX =MO + 1.

The single axiom is the matrix all of whose entries are � and
the set of rules is {RX , RO}, where
• the rule RX is defined by

M
M ′ RX

if and only if M is X-turn and not winning, and M ′ is
obtained from M by changing a � into an X,

Preliminaries 97

• the rule RO is defined by

M
M ′ RO

if and only if M is O-turn and not winning, and M ′ is
obtained from M by changing a � into an O.

Prove that M is a theorem of this formal system if and only
if either M is X-turn and not X-winning, or M is O-turn
and not O-winning; in other words, prove the soundness and
completeness of the formal system for the above set of objects.

(109) Recall that (see [13]) a context-free grammar is a quadru-
ple G = (N,T, S, P), where N and T are disjoint alphabets
referred to as the nonterminal and terminal alphabet, respec-
tively, S ∈ N is the start symbol, and P is a finite subset of
N × (N ∪ T)∗ whose elements are referred to as productions.

We also defined the relations ⇒
G

and
∗⇒
G
. A word α ∈ (N ∪T)∗

is called a sentential form of G if S
∗⇒
G
α.

Starting from a context-free grammar G, define a formal sys-
tem FG = ((N ∪ T)∗, S, {RX→α | X → α ∈ P}), where

γXγ′

γαγ′ RX→α

for every γ, γ′ ∈ (N ∪ T)∗.
Prove that Thm(FG) equals the set of sentential forms of G.

(110) A formal system F = (U,A, I) is semi-effectively specified if U
is an effectively enumerable set, A is a semidecidable subset
of U , and P (F) is a semidecidable set, where P (F) is the set
introduced in Definition 1.8.27.
Prove that

(a) if F = (U,A, I) is a semi-effectively specified formal sys-
tem, then the set of proofs in F is a semidecidable subset
of Seq(U),

(b) under the conditions of Part (a), show that Thm(F) is also
semidecidable,

(c) if F = (U,A, I) is an effectively specified formal system
and G is a semidecidable subset of U , then {θ | G �F θ}
is a semidecidable subset of U .

98 Logical Foundations of Computer Science — Volume 1

Linear Orders

(111) Let (M,�) be a linearly ordered set. Define a relation ≺′ on
Seq(M) by q ≺ r if either q is a proper prefix of r or for
some i such that i < min(|q|, |r|) we have q |̀ {0, . . . , i − 1} =
r |̀ {0, . . . , i− 1} and q(i) ≺ r(i).
Prove that

(a) ≺′ is a strict linear order on Seq(M),
(b) (Seq(M),�′) is isomorphic to (N,≤) if and only if
|M | = 1.

(112) Let (M,�) be a linearly ordered set. Define a relation ≺′′ on
Seq(M) by q ≺′′ r if either |q| < |r| or |q| = |r| and q ≺′ r,
where ≺′ was introduced in Exercise 111.
Prove that

(a) ≺′′ is a strict linear order on Seq(M),
(b) (Seq(M),�′′) is isomorphic to (N,≤) if and only if M is

a finite, nonempty set.

1.11 Bibliographical Comments

The notion of formal system is due to David Hilbert [19–22] who
built on Frege’s work [14]. See also Smullyan’s book [35].

The notion of property of finite character is due to Smullyan [36].
Closure systems are presented in [8].

Chapter 2

Propositional Logic–Syntax and
Semantics

2.1 Introduction

Propositional logic is a mathematical model of a certain simple
type of reasoning. A brief introduction to this area is contained in
Section 4.8 of [13]. Here we undertake a more detailed study of the
subject. The presentation will be self-contained, but we will refer
occasionally to the previous reference, mainly for motivation.

Propositional logic deals with statements (also known as
propositions). For us, a statement is simply an assertion which is
either true or false; statements are usually expressed by declarative
sentences. Statements can be built from simpler statements using
connectives; the truth value of a statement built up in this man-
ner is determined in a fixed way by the truth values of the simpler
statements.

We will be concerned primarily with the following connec-
tives: conjunction, disjunction, implication (also called conditional),

99

100 Logical Foundations of Computer Science — Volume 1

biimplication (also called biconditional), and negation. The linguistic
counterparts of these connectives are given in the following table:

Connective English Counterpart
conjunction and
disjunction or
implication implies

if . . . then
biimplication if and only if
negation not

Disjunction is used here in the inclusive sense; in other words, the
disjunction of two statements is true if at least one of the statements
is true. The alternative (the exclusive sense) generates a statement
which is true when exactly one of the statements is true.

We refer the reader to Section 4.8 of [13] for a more detailed
discussion of these connectives.

2.2 Formulas

Since we are interested only in the forms that statements can have,
and not the actual statements themselves, we need to build symbolic
representations for complex statements. These representations are
known as formulas and we define them in this section.

We build formulas of propositional logic using the following
components, called the symbols of propositional logic:

• a countably infinite set SV = {p0, p1, . . .} whose elements are
called statement variables,

• five connective symbols: ¬,∨,∧,→,↔,
• two punctuation symbols denoted by the left and right parentheses.

We assume that all symbols specified above are distinct.
The five connective symbols are meant to stand for connectives

according to the following table:

Propositional Logic–Syntax and Semantics 101

Connective Symbol Connective
¬ negation
∨ disjunction
∧ conjunction
→ implication
↔ biimplication

Definition 2.2.1. The set PLFORM of formulas of propositional
logic (also called the set of statement forms) is the set of sequences
of symbols of propositional logic given by the following inductive
definition:

(1) Every statement variable is a formula of propositional logic.
(2) If ϕ is a formula of propositional logic, then so is (¬ϕ).
(3) If ϕ and ψ are formulas of propositional logic, then so are (ϕ∨ψ),

(ϕ ∧ ψ), (ϕ→ ψ), and (ϕ↔ ψ).

We refer to the formula (ϕ ∨ ψ) as the disjunction of ϕ and ψ and
to the formula (ϕ ∧ ψ) as the conjunction of ϕ and ψ.

In the above definition, we have followed the usual convention
of identifying an element of a set with the sequence of length 1
whose only entry is that element, and we have denoted concatena-
tion of sequences as juxtaposition even though the set over which the
sequences are drawn is not an alphabet.

Observe that Rule 3 of the definition actually incorporates four
rules: 3∨, 3∧, 3→, 3↔, where, for example, 3∨ is the rule:

3∨ If ϕ and ψ are formulas of propositional logic, then so is (ϕ∨ψ).

Example 2.2.2. The sequence ((¬(p0 ∨ p1)) ↔ p6) is a formula
because

(1) p0 is a formula by Rule 1,
(2) p1 is a formula by Rule 1,
(3) p6 is a formula by Rule 1,
(4) (p0 ∨ p1) is a formula because of Steps 1 and 2 and Rule 3∨,

102 Logical Foundations of Computer Science — Volume 1

(5) (¬(p0 ∨ p1)) is a formula because of Step 4 and Rule 2,
(6) ((¬(p0 ∨ p1)) ↔ p6) is a formula because of Step 5, Step 3, and

Rule 3↔.

We use the letters p, q, r to denote statement variables and
ϕ,ψ, θ, α, β, γ to denote formulas of propositional logic.

Definition 2.2.3. A negative formula is a formula ϕ such that ϕ =
(¬ψ) for some formula ψ ∈ PLFORM. A formula is positive if it is
not negative.

Note that if ϕ = (¬ψ), then the formula ψ is uniquely determined
by ϕ as the substring obtained from ϕ by removing the first two
symbols and the last symbol.

Definition 2.2.4. A literal is a formula � which is either p or (¬p)
for some statement variable p. In the former case, � is a positive literal
while in the latter case, � is a negative literal.

The set of all literals will be denoted by LIT.
If S is a set of statement variables and p ∈ S, we refer to both p

and (¬p) as literals over S.

Next, we introduce a notation that is a sort of “optimized
negation.”

Definition 2.2.5. Let ϕ be a formula. Then ϕ, the complement of
ϕ, is defined by

ϕ =

{
(¬ϕ) if ϕ is a positive formula,

ψ if ϕ = (¬ψ) is a negative formula.

Note that the complement of a literal is a literal.
The ϕ notation is naturally extended to sets of formulas and

sequences of formulas. For example, if k = (ϕ0, . . . , ϕn−1), then

k = (ϕ0, . . . , ϕn−1).
It is sometimes important to encode formulas of proposi-

tional logic as words over a fixed alphabet. Here, we specify one
way in which this can be done. We take our alphabet to be

Propositional Logic–Syntax and Semantics 103

V = {p, 0, 1,¬,∨,∧,→,↔, (,)} and we order the symbols of V as
they were just listed. Let kn be the usual binary representation for
the natural number n (so k0 = 0 and for n > 0, kn has no leading 0s).
We encode every symbol x of propositional logic as a word code(x)
over V as follows: every statement variable pi is encoded as the word
pki; the other symbols are encoded as themselves. The code code(ϕ)
of a formula ϕ is obtained by concatenating the codes of the symbols
which make up the formula.

Example 2.2.6. The formula discussed in Example 2.2.2 is
encoded as

((¬(p0 ∨ p1))↔ p110).

Note that if x, y are two distinct symbols of propositional logic,
then code(x) is not a suffix of code(y). Therefore, by Supplement 13
of Chapter 1, the mapping code : PLFORM −→ V ∗ is injective, so
PLFORM is countably infinite.

When an algorithm which takes formulas as inputs is being ana-
lyzed and it is desired to measure the size of the input in order to say
something about the running time of the algorithm as a function of
input size, formulas are coded as strings over V or some other (finite)
alphabet.

Definition 2.2.7. The size of a formula ϕ ∈ PLFORM is size(ϕ) =
|code(ϕ)|.

Example 2.2.8. Let θi = (p2i−1 ∨ p2i) for i ≥ 1 and let θ0 = p0.
The sizes of p2i−1 and p2i are 2 + �log2(2i − 1)	 and 2 + �log2(2i)	,
respectively.

Therefore, we have

size(θi) =

{
�log2(2i − 1)	+ �log2(2i)	 + 7 if i > 0

2 if i = 0.

We can define a well-ordering “
” on PLFORM as follows: ϕ

ψ if |code(ϕ)| < |code(ψ)| or if |code(ϕ)| = |code(ψ)| and code(ϕ)

104 Logical Foundations of Computer Science — Volume 1

precedes code(ψ) in the lexicographic order on V ∗. We will refer to

 as the standard ordering of the formulas.

If ϕ is a formula of propositional logic, then we will denote the
set of variables that occur in ϕ by SV (ϕ), that is,

SV (ϕ) = {p ∈ SV | OCCp(ϕ) �= ∅}.

If Γ is a set of formulas, then we denote by SV (Γ) the set of statement
variables that occur in some formula of Γ. In other words, SV (Γ) =⋃
{SV (ϕ) | ϕ ∈ Γ}.
Definition 2.2.1 uses infix notation for connective symbols in for-

mulas. This is possible since we use connective symbols of arity at
most two. Later, when we wish to consider connective symbols of
arbitrary arities, we will use prefix notation for connective sym-
bols, by treating formulas as terms over an appropriate signature.
We chose to use infix notation because this most common method
yields easily readable formulas. However, this choice necessitates a
distinct proof of unique readability.

Theorem 2.2.9. For every formula ϕ ∈ PLFORM, we have |ϕ|(=
|ϕ|). Furthermore, if w is a proper prefix of a formula, then |w|(>
|w|) and if w is a proper suffix of a formula, then |w|(< |w|).

Proof. To prove the first part of the theorem, we use induction on
ϕ. If ϕ is a statement variable, then |ϕ|(= |ϕ|) = 0. Suppose now
that ϕ = (¬ψ), where |ψ|(= |ψ|). Clearly, we can write

|ϕ|(= 1 + |ψ|(= 1 + |ψ|) = |ϕ|).

Assume that ϕ = (ψCθ), where C is one of the connective symbols
∨,∧. →, or ↔ and that |ψ|(= |ψ|), |θ|(= |θ|). By the inductive
hypothesis, we have

|ϕ|(= 1 + |ψ|(+ |θ|(= 1 + |ψ|) + |θ|) = |ϕ|).

This concludes the argument for the first part.
Again, the argument for the second part of the theorem is by

induction on ϕ. If ϕ is a statement variable, then it has no proper
prefixes and the statement is vacuously true.

Consider a formula ϕ = (¬ψ), where |w|(> |w|) for every proper
prefix w of ψ. If u is a proper prefix of ϕ, then one of the cases shown
in the following must hold, where w represents a proper prefix of ψ:

Propositional Logic–Syntax and Semantics 105

Proper prefix u |u|(|u|)
(1 0
(¬ 1 0
(¬w 1 + |w|(|w|)
(¬ψ 1 + |ψ|(|ψ|)

By the inductive hypothesis and the first part of the theorem, we
obtain |u|(> |u|) in all cases.

Let now ϕ be (ψCθ), where ψ and θ are formulas of propositional
logic such that for every proper prefix v of ψ and for every proper
prefix w of θ, we have |v|(> |v|) and |w|(> |w|), respectively. If u is
a proper prefix of ϕ, one of the following cases must hold, where v is
a proper prefix of ψ and w is a prefix of θ:

Proper prefix u |u|(|u|)
(1 0
(v 1 + |v|(|v|)
(ψ 1 + |ψ|(|ψ|)
(ψC 1 + |ψ|(|ψ|)
(ψCw 1 + |ψ|(+ |w|(|ψ|) + |w|)
(ψCθ 1 + |ψ|(+ |θ|(|ψ|) + |θ|)

It is easy to see, by the inductive hypothesis and the first part of the
theorem, that in each case |u|(> |u|).

If w is a proper suffix of a formula ϕ, then we have ϕ = uw, where
u is a proper prefix of ϕ. Using the first two parts of the theorem,
we can write |w|) = |ϕ|) − |u|) > |ϕ|(− |u|(= |w|(. �

Corollary 2.2.10. No proper prefix of a formula of propositional
logic is a suffix of a formula of propositional logic and therefore, no
proper prefix of a formula of propositional logic is a formula.

Proof. The proof is an immediate consequence of the previous
theorem. �

Theorem 2.2.11. Definition 2.2.1 of the set of formulas of propo-
sitional logic satisfies the unique readability condition.

Proof. Note that if a formula ϕ enters the set PLFORM by Rule 1
of Definition 2.2.1, then ϕ is a variable. Otherwise, that is, if ϕ enters
PLFORM by Rules 2 or 3, then ϕ begins with a left parenthesis.

106 Logical Foundations of Computer Science — Volume 1

This shows that a formula that enters PLFORM by Rule 1 may not
be put there by any other rule.

Let ϕ be a formula that enters PLFORM by Rule 2. We have
ϕ = (¬ψ) for some formula ψ. Observe that in this case ϕ may
not be put in PLFORM by any of the Rules 3C . Indeed, if ϕ enters
PLFORM due to a Rule 3C , we have (¬ψ) = (αCβ), so α begins with
¬, which is impossible. On the other hand, the formula ψ is uniquely
determined, which shows that the unique readability is satisfied in
this case.

Consider now a formula ϕ that enters PLFORM because of a
Rule 3C , that is, ϕ = (ψCθ). Suppose that ϕ can also be obtained
by applying another Rule 3C′ . This implies ϕ = (ψCθ) = (ψ′C ′θ′).
If ψ �= ψ′, then either ψ is a proper prefix of ψ′ or ψ′ is a proper
prefix of ψ. Neither case is possible because of Corollary 2.2.10, so
ψ = ψ′. This implies C = C ′ and θ = θ′ which means that in this
last case the unique readability condition is satisfied. �

Theorem 2.2.12 (Occurrence Theorem for Propositional
Logic). Let ϕ, ψ, α be formulas. If α �= (¬ϕ), then every occur-
rence of α in (¬ϕ) is part of ϕ. (More exactly, each occurrence of α
in (¬ϕ) is part of the occurrence (ϕ, 2).)

Let C be a binary connective symbol. If α �= (ϕCψ), then every
occurrence of α in (ϕCψ) is either part of ϕ or part of ψ. (More
exactly, each occurrence of α in (ϕCψ) is either a part of (ϕ, 1) or a
part of (ψ, |ϕ|+ 2).)

Proof. We show only the second part of the theorem. Let (α, j)
be an occurrence of α in (ϕCψ). We have j �= 0 because α �= (ϕCψ)
and no formula can be a proper prefix of another formula. Since no
formula starts with a connective or a close parenthesis, the occurrence
of α in (ϕCψ) must begin either within ϕ or ψ, i.e., 1 ≤ j ≤ |ϕ| or
|ϕ|+2 ≤ j ≤ |ϕ|+ |ψ|+1. If the occurrence extends beyond the end
of ϕ, in the first case, or the end of ψ, in the second case, this would
imply that a suffix of a formula is a proper prefix of another formula,
thus contradicting Corollary 2.2.10. �

Definition 2.2.13. Let ϕ be a formula. A subformula of ϕ is a for-
mula ψ that is a subsequence of ϕ. If ψ is a subformula of ϕ and
ψ �= ϕ, then ψ is a proper subformula of ϕ.

Propositional Logic–Syntax and Semantics 107

If ϕ = (¬ψ), then we call ψ the immediate subformula of ϕ;
similarly, if ϕ = (ψCθ) for some binary connective symbol C, then
we refer to ψ and θ as the immediate subformulas of ϕ.

The sets of subformulas and proper subformulas of a formula ϕ
are denoted by SUBF(ϕ) and PRSUBF(ϕ), respectively.

If Γ is a set of formulas, then SUBF(Γ) =
⋃
{SUBF(ϕ) | ϕ ∈ Γ}

and PRSUBF(Γ) =
⋃
{PRSUBF(ϕ) | ϕ ∈ Γ}.

Observe that SUBF(SUBF(Γ)) = SUBF(Γ) for every set Γ of
formulas.

We will now define the set U(Γ) for every set of formulas Γ. The
idea is that Γ ∪ U(Γ) will be the “analytical universe” of Γ, i.e., the
set of formulas that can be obtained by analyzing the structure of
formulas in Γ.

Theorem 2.2.14. Let U : P(PLFORM) −→ P(PLFORM) be the
function defined by

U(Γ) = PRSUBF(Γ) ∪ {(¬ψ) | ψ ∈ PRSUBF(Γ)},

for every Γ ⊆ PLFORM. Then,

(1) for every Γ,Γ′ ⊆ PLFORM, U(Γ ∪ Γ′) = U(Γ) ∪ U(Γ′),
(2) for every k ≥ 1, Uk(Γ) ⊆ U(Γ).

Proof. We leave the argument to the reader. �

Note that the first property of the theorem implies monotonicity
of U . In other words, if Γ0 ⊆ Γ1, then U(Γ0) ⊆ U(Γ1), for all Γ0,Γ1 ⊆
PLFORM.

The notation replace (ϕ, (ψ, i), α) used in the following theorem
was introduced in Section 1.2.

Theorem 2.2.15. Let ϕ,ψ, α be formulas. If (ψ, i) is an occurrence
of ψ in ϕ, then replace (ϕ, (ψ, i), α) is a formula.

Proof. As is the case for similar theorems, the argument is by
induction on the definition of formulas. If ϕ is a statement variable,
then we have ϕ = ψ = p, where p ∈ SV and i = 0. Clearly, in this
case, we have replace (ϕ, (ψ, i), α) = α and the statement of the
theorem is true.

Suppose now that ϕ = (¬ϕ0) and the statement is valid for ϕ0.
If ψ = ϕ, then i = 0, replace (ϕ, (ψ, i), α) = α, and the statement

108 Logical Foundations of Computer Science — Volume 1

of the theorem is trivially true. Therefore, let us assume that ψ �= ϕ.
Theorem 2.2.12 implies that the occurrence (ψ, i) in ϕ is a part of
the occurrence (ϕ0, 2) and we have

replace (ϕ, (ψ, i), α) = (¬replace (ϕ0, (ψ, i− 2), α)).

By the inductive hypothesis, replace (ϕ0, (ψ, i− 2), α)) is a formula
and this shows that replace (ϕ, (ψ, i), α) is a formula.

Let ϕ = (ϕ0Cϕ1) be a formula, where C is a binary connective
symbol and suppose that the statement holds for ϕ0 and ϕ1. If ψ = ϕ,
then i = 0 and replace (ϕ, (ψ, i), α) = α, so the statement is true.
If ψ �= ϕ, then, by Theorem 2.2.12, we have one of the following
cases:

(1) The occurrence (ψ, i) is a part of the occurrence (ϕ0, 1). In this
case, we can write

replace (ϕ, (ψ, i), α) = (replace (ϕ0, (ψ, i− 1), α)Cϕ1).

By the inductive hypothesis, replace (ϕ0, (ψ, i − 1), α) is a for-
mula and this implies that replace (ϕ, (ψ, i), α) is a formula.

(2) The occurrence (ψ, i) is a part of the occurrence (ϕ1, |ϕ0| + 2).
We have

replace (ϕ, (ψ, i), α) = (ϕ0C replace (ϕ1, (ψ, i−(|ϕ0|+2)), α)).

Again, by the inductive hypothesis, replace (ϕ1, (ψ, i − (|ϕ0| +
2)), α) is a formula and this implies that replace (ϕ, (ψ, i), α) is
a formula. �
We introduce a notation for certain formulas that needs

fewer parentheses than the standard notation. Let DISJ,CONJ :
Seq+(PLFORM) −→ PLFORM be defined by

DISJ(ϕ0) = ϕ0,

DISJ(ϕ0, . . . , ϕn) = (DISJ(ϕ0, . . . , ϕn−1) ∨ ϕn)
and

CONJ(ϕ0) = ϕ0,

CONJ(ϕ0, . . . , ϕn) = (CONJ(ϕ0, . . . , ϕn−1) ∧ ϕn).
The formulas DISJ(ϕ0, . . . , ϕn−1) and CONJ(ϕ0, . . . , ϕn−1) will

be denoted by (ϕ0 ∨ · · · ∨ ϕn−1) and (ϕ0 ∧ · · · ∧ ϕn−1),
respectively. We shall also use the notations

∨
0≤i≤n−1 ϕi and

Propositional Logic–Syntax and Semantics 109

∧
0≤i≤n−1 ϕi, respectively. We shall refer to α =

∨
0≤i≤n−1 ϕi as the

disjunction of the sequence (ϕ0, . . . , ϕn−1) and to β =
∧

0≤i≤n−1 ϕi
as the conjunction of the same sequence of formulas.

Note that a formula can be the conjunction or disjunction on sev-
eral sequences of formulas. For example, the sequences (ϕ0, ϕ1, ϕ2),
((ϕ0 ∧ ϕ1), ϕ2), and (((ϕ0 ∧ ϕ1) ∧ ϕ2)) have the same conjunc-
tion. However, we do have the following limited unique readability
result.

Theorem 2.2.16. If (ϕ0, . . . , ϕn−1), (ψ0, . . . , ψm−1) are two
sequences of formulas that have the same conjunction (disjunction)
and neither ϕ0 nor ψ0 is the conjunction (disjunction) of two for-
mulas, then n = m and ϕi = ψi for 0 ≤ i ≤ n− 1.

Proof. We discuss only the case of conjunctions. The argument
is by induction on n. For the basis step, n = 1, we suppose that
ϕ0 = (ψ0∧· · ·∧ψm−1). If m > 1, ϕ0 would be the conjunction of two
formulas, which contradicts the hypothesis. Therefore, m = 1 = n
and so ϕ0 = ψ0.

Suppose now that the result is true for n − 1 where n ≥ 2 and
that (ϕ0∧ · · ·∧ϕn−1) = (ψ0∧ · · ·∧ψm−1). If m were 1, the right side
would be reduced to ψ0 and thus, ψ0 would be a conjunction of two
formulas, contrary to hypothesis. The fact that both n and m are at
least 2 allows us to write

((ϕ0 ∧ · · · ∧ ϕn−2) ∧ ϕn−1) = ((ψ0 ∧ · · · ∧ ψm−2) ∧ ψm−1).

By unique readability, we have (ϕ0 ∧ · · · ∧ϕn−2) = (ψ0 ∧ · · · ∧ψm−2)
and ϕn−1 = ψm−1. By the inductive hypothesis, we have n−1 = m−1
and ϕi = ψi for 0 ≤ i ≤ n− 2. �

We will refer to the formulas ϕ0, . . . , ϕn−1 as the disjuncts of
(ϕ0 ∨ · · · ∨ ϕn−1) and as the conjuncts of (ϕ0 ∨ · · · ∨ ϕn−1). The
discussion preceding Theorem 2.2.16 shows that these notions are
ambiguous. In practice, however, we will use these terms only when
the context makes it clear which formulas are meant.

Observe that for n = 1, both the notations (ϕ0 ∨ · · · ∨ ϕn−1) and
(ϕ0 ∧ · · · ∧ ϕn−1) become (ϕ0). This ambiguity is harmless since, for
n = 1 both (ϕ0 ∨ · · · ∨ ϕn−1) and (ϕ0 ∧ · · · ∧ ϕn−1) are notations
for ϕ0.

110 Logical Foundations of Computer Science — Volume 1

2.3 Truth Assignments

We want to specify how to assign a meaning to a formula of proposi-
tional logic in a certain context, so we must specify what a meaning
is and what the context is in which we can assign such a meaning. It
is easier to specify a meaning. For us, a meaning will be one of the
two symbols T and F, called truth values. The symbols T and F can
represent any two distinct objects; a common choice is for T to be 1
and for F to be 0, but any other choice would do. We denote {T,F}
by Bool. Our idea, of course, is that T stands for true and F stands
for false.

We will also use the notation b defined as

b =

{
T if b = F,

F if b = T.

A context in which we can assign a meaning to a formula is a
mapping from SV to Bool.

Definition 2.3.1. A truth assignment is a mapping v : SV −→
Bool.

We will denote by TA the set of all truth assignments SV −→
Bool.

The mathematical equivalent of a connective is a truth function.

Definition 2.3.2. An n-ary truth function is a function f :
Booln −→ Bool, for n ∈ N; 1-ary truth functions are called unary
truth functions, and 2-ary truth functions are called binary truth
functions.

The connectives conjunction, disjunction, conditional, bicondi-
tional, and negation correspond to the truth functions f∧, f∨, f→,
f↔, and f¬ given by the following tables:

a b f∧(a, b) f∨(a, b) f→(a, b) f↔(a, b)
F F F F T T
F T F T T F
T F F T F F
T T T T T T

Propositional Logic–Syntax and Semantics 111

a f¬(a)
F T
T F

Definition 2.3.3. Let v be a truth assignment. The truth valuation
generated by v is the function v̄ : PLFORM −→ Bool given by the
following recursive definition:

v̄(q) = v(q) for each statement variable q,

v̄((¬ϕ)) = f¬(v̄(ϕ)),

v̄((ϕ ∧ ψ)) = f∧(v̄(ϕ), v̄(ψ)),

v̄((ϕ ∨ ψ)) = f∨(v̄(ϕ), v̄(ψ)),

v̄((ϕ→ ψ)) = f→(v̄(ϕ), v̄(ψ)),

v̄((ϕ↔ ψ)) = f↔(v̄(ϕ), v̄(ψ)).

Theorem 2.2.11 ensures that there is a unique function v̄ satisfying
the conditions of the above definition. To simplify notation, we will
often write v(ϕ) instead of v̄(ϕ). We will refer to v(ϕ) as the truth
value of ϕ under the assignment v. If v(ϕ) = T, then we say that v
satisfies ϕ. If Γ is a set of formulas and v satisfies every formula in
Γ, then we say that v satisfies Γ.

Truth valuations can be defined independently of the notion of
truth assignment.

Definition 2.3.4. A truth valuation is a mapping w : PLFORM −→
Bool which satisfies the following conditions:

w((¬ϕ)) = f¬(w(ϕ)),

w((ϕ ∧ ψ)) = f∧(w(ϕ), w(ψ)),

w((ϕ ∨ ψ)) = f∨(w(ϕ), w(ψ)),

w((ϕ→ ψ)) = f→(w(ϕ), w(ψ)),

w((ϕ↔ ψ)) = f↔(w(ϕ), w(ψ)).

112 Logical Foundations of Computer Science — Volume 1

We show now that there are no truth valuations except for the
ones generated by truth assignments.

Theorem 2.3.5. A function w : PLFORM −→ Bool is a truth
valuation if and only if there is a truth assignment v such that
w = v̄. Further, if w is a truth valuation, then there is a unique
truth assignment v with w = v̄.

Proof. It is obvious, by Definition 2.3.3, that if v is a truth
assignment, then v̄ is a truth valuation. Conversely, let w be a truth
valuation. Define the truth assignment v by v(p) = w(p) for every
variable p. Then, it is easy to show by induction on formulas that
w = v̄. The proof of the uniqueness of the truth assignment v is left
to the reader. �

Theorem 2.3.6. For every truth assignment v and nonempty
sequence of formulas (ϕ0, . . . , ϕn−1), we have

v

⎛
⎝ ∨

0≤i≤n−1

ϕi

⎞
⎠ =

{
T if v(ϕi) = T for some i, 0 ≤ i ≤ n− 1

F otherwise

and

v

⎛
⎝ ∧

0≤i≤n−1

ϕi

⎞
⎠ =

{
T if v(ϕi) = T for every i, 0 ≤ i ≤ n− 1

F otherwise.

Proof. The argument is by induction on n and is left to the reader.
�

Definition 2.3.7. Let ϕ and ψ be two formulas and let Γ be a set
of formulas:

• ϕ is a tautology (denoted |= ϕ) if v(ϕ) = T for every truth assign-
ment v.

• ϕ is satisfiable if there is some truth assignment v such that
v(ϕ) = T. Otherwise, ϕ is said to be unsatisfiable.

• ϕ is a contradiction if v(ϕ) = F for every truth assignment v.
• ϕ logically implies ψ (denoted by ϕ |= ψ) if for every truth assign-

ment v, v(ϕ) = T implies v(ψ) = T.
• ϕ is logically equivalent to ψ (denoted by ϕ ≡ ψ) if v(ϕ) = v(ψ)

for every truth assignment v.

Propositional Logic–Syntax and Semantics 113

• Γ logically implies ψ (denoted by Γ |= ψ) if every truth assignment
that satisfies Γ also satisfies ϕ.

• Γ is satisfiable if there is a truth assignment v which satisfies every
formula in Γ. Otherwise, we say that Γ is unsatisfiable.

Example 2.3.8. Let ϕ = ((p1 → p2)→ ((p0 ∨ p1)→ p2)), and let v
be a truth assignment such that v(p0) = v(p1) = v(p2) = F. Applying
Definition 2.3.3, we have v(ϕ) = f→(v((p1 → p2)), v(((p0 ∨ p1) →
p2))). In turn, v((p1 → p2)) = f→(v(p1), v(p2)) = f→(F,F) = T,
and

v(((p0 ∨ p1)→ p2)) = f→(f∨(v(p0), v(p1)), v(p2))

= f→(f∨(F,F),F) = f→(F,F) = T.

Thus, v(ϕ) = f→(T,T) = T.
A similar analysis can be carried out for other choices of values

of v(p0), v(p1), v(p2). Since there are two choices (F and T) for each
v(pi), we need to consider the following eight cases in order to com-
pute v(ϕ) for any truth assignment v:

v(p0) v(p1) v(p2) v((p1 → p2)) v(((p0 ∨ p1)→ p2)) v(ϕ)
F F F T T T
F F T T T T
F T F F F T
F T T T T T
T F F T F F
T F T T T T
T T F F F T
T T T T T T

This shows that ϕ is not a tautology; however, ϕ is satisfiable.
Consider now the formula

ψ = ((p0 → p2)→ ((p1 → p2)→ ((p0 ∨ p1)→ p2))).

We claim that ψ is a tautology. Clearly, we can write ψ = ((p0 →
p2) → ϕ), where ϕ is the previous formula. The eight possible cases
are enclosed in the following table:

114 Logical Foundations of Computer Science — Volume 1

v(p0) v(p1) v(p2) v((p0 → p2)) v(ϕ) v(ψ)
F F F T T T
F F T T T T
F T F T T T
F T T T T T
T F F F F T
T F T T T T
T T F F T T
T T T T T T

This confirms that ψ is a tautology.

Example 2.3.9. Let ϕ be a formula. For a truth assignment v, we
have v(ϕ) = T if and only if v((¬ϕ)) = F. Also, (ϕ ∨ (¬ϕ)) is a
tautology and (ϕ ∧ (¬ϕ)) is a contradiction.

The first statement follows immediately from v((¬ϕ)) = f¬(v(ϕ))
and the definition of the function f¬.

For the second part, there are two possible cases, depending on
v(ϕ):

v(ϕ) v((¬ϕ)) v((ϕ ∨ (¬ϕ))) v((ϕ ∧ (¬ϕ)))
F T T F
T F T F

For every truth assignment v, v((ϕ ∨ (¬ϕ))) = T and v((ϕ ∧
(¬ϕ))) = F.

Example 2.3.10. Let p be a statement variable. Example 2.3.9
implies that (p∨(¬p)) is a tautology and (p∧(¬p)) is a contradiction.

On the other hand, if p, q are two distinct statement variables,
then the formula (p ∧ (¬q)) is satisfiable. Indeed, since p �= q, there
is a truth assignment v such that v(p) = T and v(q) = F. This gives
v((¬q)) = T and

v(p ∧ (¬q)) = f∧(v(p), v((¬q))) = f∧(T,T) = T.

Example 2.3.11. The formula (ϕ → (ψ → ϕ)) is a tautology for
any formulas ϕ,ψ. In order to justify this claim, note that for a truth

Propositional Logic–Syntax and Semantics 115

assignment v there are four cases to consider depending on the values
of v(ϕ) and v(ψ):

v(ϕ) v(ψ) v((ψ → ϕ)) v((ϕ→ (ψ → ϕ)))
F F T T
F T F T
T F T T
T T T T

Clearly, in all cases, v((ϕ→ (ψ → ϕ))) = T.
Consider a similar formula, ((ϕ → ψ) → ϕ). The four cases that

occur for this formula are summarized in the following:

v(ϕ) v(ψ) v((ϕ→ ψ)) v(((ϕ→ ψ)→ ϕ))
F F T F
F T T F
T F F T
T T T T

Note that this formula is logically equivalent to ϕ. Of course, if ϕ is
not a tautology, then neither is ((ϕ→ ψ)→ ϕ).

Theorem 2.3.12. Let ϕ,ψ, and θ be formulas. Then,

(1) (a) ϕ |= ϕ,
(b) if ϕ |= ψ and ψ |= θ, then ϕ |= θ,

(2) (a) ϕ ≡ ϕ,
(b) if ϕ ≡ ψ, then ψ ≡ ϕ,
(c) if ϕ ≡ ψ and ψ ≡ θ, then ϕ ≡ θ,

(3) ϕ ≡ ψ if and only if ϕ |= ψ and ψ |= ϕ.

Proof. The arguments for all the parts are straightforward and are
left to the reader. �

Theorem 2.3.13. If ϕ0, ϕ1, ψ0, ψ1 are formulas such that ϕ0 |= ϕ1

and ψ0 |= ψ1, then

(¬ϕ1) |= (¬ϕ0),

(ϕ0 ∨ ψ0) |= (ϕ1 ∨ ψ1),

(ϕ0 ∧ ψ0) |= (ϕ1 ∧ ψ1),

(ϕ1 → ψ0) |= (ϕ0 → ψ1).

116 Logical Foundations of Computer Science — Volume 1

Proof. We provide the argument only for the last part of the
theorem. Suppose that v is a truth assignment such that v((ϕ1 →
ψ0)) = T. We distinguish two cases:

Case 1: v(ϕ0) = F. Then, v((ϕ0 → ψ1)) = T.
Case 2: v(ϕ0) = T. Since ϕ0 |= ϕ1, we have v(ϕ1) = T. Thus,

v(ψ0) = T because v((ϕ1 → ψ0)) = T. This allows us to
conclude that v(ψ1) = T, so v((ϕ0 → ψ1)) = T. �

Theorem 2.3.14. If ϕ,ϕ′, ψ, ψ′ are formulas such that ϕ ≡ ϕ′ and
ψ ≡ ψ′, then

(¬ϕ) ≡ (¬ϕ′),

(ϕ ∨ ψ) ≡ (ϕ′ ∨ ψ′),

(ϕ ∧ ψ) ≡ (ϕ′ ∧ ψ′),

(ϕ→ ψ) ≡ (ϕ′ → ψ′),

(ϕ↔ ψ) ≡ (ϕ′ ↔ ψ′).

Proof. The statements of the theorem (except for the fifth one)
are immediate consequences of Theorem 2.3.13. We can also give a
direct argument for the last four logical equivalences. Let C be a
binary connective symbol and let v be a truth assignment. Then, we
have

v((ϕCψ)) = fC(v(ϕ), v(ψ)) = fC(v(ϕ
′), v(ψ′)) = v((ϕ′Cψ′)),

which shows that (ϕCψ) ≡ (ϕ′Cψ′).
We leave for the reader the proof of the first logical equivalence

of the theorem. �

Theorem 2.3.15. Let ϕ,ψ, and θ be formulas and let Γ,Γ′ be sets
of formulas. Then,

(1) ∅ |= ϕ if and only if |= ϕ,
(2) {ϕ} |= ψ if and only if ϕ |= ψ,
(3) if Γ′ is satisfiable and Γ ⊆ Γ′, then Γ is satisfiable,
(4) {ϕ} is satisfiable if and only if ϕ is satisfiable,
(5) if Γ |= ϕ and Γ ⊆ Γ′, then Γ′ |= ϕ.

Proof. Again, we leave the simple arguments of the theorem to the
reader. �

Propositional Logic–Syntax and Semantics 117

Lemma 2.3.16. If ϕ,ψ ∈ PLFORM and v is a truth assignment
such that v(ϕ) = T and v((ϕ→ ψ)) = T, then v(ψ) = T.

Proof. Indeed, we have

T = v((ϕ→ ψ)) = f→(v(ϕ), v(ψ)) = f→(T, v(ψ)).

According to the definition of function f→, this may happen only if
v(ψ) = T. �

Theorem 2.3.17. Let ϕ and ψ be formulas and let Γ be a set of
formulas. Then,

(1) Γ |= ϕ if and only if Γ ∪ {¬ϕ} is unsatisfiable,
(2) if Γ |= ϕ and Γ |= (ϕ→ ψ), then Γ |= ψ,
(3) Γ ∪ {ϕ} |= ψ if and only if Γ |= (ϕ→ ψ).

Proof. The argument is left to the reader. �

Theorem 2.3.18. Let Γ be a set of formulas. The following state-
ments are equivalent:

(1) Γ is unsatisfiable.
(2) Γ |= ϕ for every formula ϕ.
(3) Γ |= ϕ for every contradiction ϕ.
(4) Γ |= ϕ for some contradiction ϕ.

Proof. (1) implies (2). Let Γ be unsatisfiable. Since there is no
truth assignment that satisfies Γ, Γ |= ϕ holds vacuously for every
formula ϕ.

It is immediate that (2) implies (3) and that (3) implies (4).
(4) implies (1). Let Γ be such that Γ |= ϕ for some contradic-

tion ϕ. No truth assignment could satisfy Γbecause any such truth
assignment would have to satisfy ϕ. �

Theorem 2.3.19. Let Γ = {ϕ0, . . . , ϕn−1} be a nonempty, finite set
of formulas. Then, Γ is unsatisfiable if and only if ((¬ϕ0) ∨ · · · ∨
(¬ϕn−1)) is a tautology.

Proof. The argument is straightforward and is left to the
reader. �

118 Logical Foundations of Computer Science — Volume 1

A set Γ of formulas is closed if it contains both ϕ and (¬ϕ) for
some formula ϕ. Clearly, any closed set of formulas is unsatisfiable,
though an unsatisfiable set of formulas need not be closed.

Theorem 2.3.20. Let ϕ,ψ be two formulas. Then, we have

(1) ϕ is a satisfiable if and only if (¬ϕ) is not a tautology,
(2) ϕ is a contradiction if and only if (¬ϕ) is a tautology,
(3) ϕ |= ψ if and only if (ϕ→ ψ) is a tautology,
(4) ϕ ≡ ψ if and only if (ϕ↔ ψ) is a tautology.

Proof. The first two parts of the theorem are straightforward and
their proof is omitted.

The third part follows from Part 3 of Theorem 2.3.17 with Γ = ∅.
To prove the fourth part of the theorem, assume that ϕ ≡ ψ and

let v be an arbitrary truth assignment. We have

v((ϕ↔ ψ)) = f↔(v(ϕ), v(ψ)).

Since v(ϕ) = v(ψ), according to the definition of f↔, f↔(v(ϕ),
v(ψ)) = T, hence v((ϕ ↔ ψ)) = T for every truth assignment v,
so (ϕ↔ ψ) is a tautology.

Conversely, let ϕ,ψ be formulas such that (ϕ ↔ ψ) is a tautol-
ogy, that is, v((ϕ ↔ ψ)) = T for every v. We have v((ϕ ↔ ψ)) =
f↔(v(ϕ), v(ψ)) = T. Since f↔(w,w′) = T if and only if w = w′ for
w,w′ ∈ Bool, we have v(ϕ) = v(ψ) for every truth assignment v, so
ϕ ≡ ψ. �

Corollary 2.3.21. The formula (ϕ ↔ ψ) is a tautology if and only
if both formulas (ϕ→ ψ) and (ψ → ϕ) are tautologies.

Proof. The statement of the corollary follows immediately from
the previous theorem and from Part 3 of Theorem 2.3.12. �

The following theorem shows that the value of v̄(ϕ) is determined
by the values of v(p) for p ∈ SV (ϕ).

Theorem 2.3.22 (Agreement Theorem for Propositional
Logic). Let v,w ∈ TA and let ϕ be a formula such that v(p) = w(p)
for all p ∈ SV (ϕ). Then v̄(ϕ) = w̄(ϕ).

Proof. The argument, by induction on ϕ, uses Exercise 1 and is
left to the reader. �

Propositional Logic–Syntax and Semantics 119

Definition 2.3.23. A partial truth assignment is a partial function
from SV to Bool, i.e., a member of the set SV � Bool.

If S ⊆ SV , then a truth assignment over S is a partial truth
assignment whose domain is S.

The set S −→ Bool of truth assignments over S will be denoted
by TAS .

Note that if S is a finite set of statement variables, then
|TAS | = 2|S|.

Let ϕ be a formula and v be a partial truth assignment such that
SV (ϕ) ⊆ Dom(v). The Agreement Theorem shows that if w1, w2 ∈
TA both extend v, then w1(ϕ) = w2(ϕ). This allows us to make the
following definition.

Definition 2.3.24. Let v be a partial truth assignment and let ϕ be
a formula such that SV (ϕ) ⊆ Dom(v). The truth value v(ϕ) equals
w(ϕ) for any truth assignment w that extends v.

By Exercise 1, if ϕ,ψ ∈ PLFORM, C is a binary connective
symbol, and v is a partial truth assignment, then

v((¬ϕ)) = f¬(v(ϕ)) (2.1)

if Dom(v) ⊇ SV (ϕ) and

v((ϕCψ)) = fC(v(ϕ), v(ψ)) (2.2)

if Dom(v) ⊇ SV (ϕ) ∪ SV (ψ). Also, if ϕ0, . . . , ϕn−1 ∈ PLFORM
and v : SV � Bool is a partial truth assignment such that⋃

0≤i≤n−1 SV (ϕi) ⊆ Dom(v), then

v

⎛
⎝ ∨

0≤i≤n−1

ϕi

⎞
⎠ =

{
T if v(ϕi) = T for some i, 0 ≤ i ≤ n− 1

F otherwise

and

v

⎛
⎝ ∧

0≤i≤n−1

ϕi

⎞
⎠ =

{
T if v(ϕi) = T for every i, 0 ≤ i ≤ n− 1

F otherwise.

Corollary 2.3.25. Let v,w be two partial truth assignments and let
ϕ be a formula such that SV (ϕ) ⊆ Dom(v)∩Dom(w). If v(p) = w(p)
for every p ∈ SV (ϕ), then v(ϕ) = w(ϕ).

120 Logical Foundations of Computer Science — Volume 1

Proof. Let v1, w1 be truth assignments that extend v and w,
respectively. Then, v(ϕ) = v1(ϕ) and w(ϕ) = w1(ϕ), by defini-
tion. By the Agreement Theorem, we have v1(ϕ) = w1(ϕ) because
v1(p) = v(p) = w(p) = w1(p) for every p ∈ SV (ϕ). �

Definition 2.3.26. Let S be a set of statement variables. A truth
table over S is a mapping τ : TAS −→ Bool.

If S is a finite set of statement variables, S = {pi0 , . . . , pin−1},
where i0 < · · · < in−1, then a truth table over S is represented
graphically as follows:

v(pi0) · · · v(pin−1) τ(v)
v0(pi0) · · · v0(pin−1) τ(v0)
...

...
...

...
v2n−1(pi0) · · · v2n−1(pin−1) τ(v2n−1)

where v0, . . . , v2n−1 are the elements of TAS listed in lexico-
graphic order of the sequence (vi(pi0), . . . , vi(pin−1)). Note that in
this representation of a truth table, each row corresponds to a
truth assignment over S. For this reason, we will sometimes refer
to truth assignments over finite sets of statement variables as rows
of truth tables. We denote the set of truth tables over S by TTS .

Observe that |TTS | = 22
|S|
.

Definition 2.3.27. Let ϕ be a formula and let S be a set of state-
ment variables such that SV (ϕ) ⊆ S. Then, τϕ,S, the truth table of
ϕ over S, is defined by τϕ,S(v) = v(ϕ).

The truth table τϕ of ϕ is τϕ,SV (ϕ).

Example 2.3.28. Consider the formula ϕ = (p1∨(¬p4)). The truth
table of ϕ over the set of variables S = {p1, p4, p10} is

v(p1) v(p4) v(p10) τϕ,S(v)
F F F T
F F T T
F T F F
F T T F
T F F T
T F T T
T T F T
T T T T

Propositional Logic–Syntax and Semantics 121

On the other hand, since SV (ϕ) = {p1, p4}, the truth table of formula
ϕ is given by

v(p1) v(p4) τϕ(v)
F F T
F T F
T F T
T T T

We may abbreviate the notation for the heading of a truth
table of a formula ϕ by writing pi0 , . . . , pin−1 , ϕ instead of
v(pi0), . . . , v(pin−1), τϕ,S(v), respectively. With this convention, the
first truth table considered in this example becomes

p1 p4 p10 ϕ
F F F T
F F T T
F T F F
F T T F
T F F T
T F T T
T T F T
T T T T

Theorem 2.3.29. A formula ϕ is a tautology if and only if τϕ(v) =
T, for every row v of τϕ.

Proof. Suppose that ϕ is a tautology and let v be a row of the truth
table of ϕ. Let w be a truth assignment such that v = w |̀SV (ϕ).
Since v(ϕ) = w(ϕ) = T, we have τϕ(v) = T.

Conversely, suppose that for every row v of τϕ, we have v(ϕ) =
τϕ(v) = T and let w be a truth assignment. Observe that u =
w |̀SV (ϕ) is one of the rows of τϕ and therefore, w(ϕ) = u(ϕ) = T.

�
Since there are only finitely many rows in the truth table of a

formula ϕ, and for each row v we can compute v(ϕ) using equa-
tions (2.1) and (2.2), Theorem 2.3.29 gives an algorithm that allows
us to check whether a formula is a tautology. Thus, we have shown
that the set of tautologies is decidable.

122 Logical Foundations of Computer Science — Volume 1

As we saw in Theorem 2.3.20, we can reduce several problems of
propositional logic to the determination of whether or not a certain
formula is a tautology or a nontautology. Therefore, the algorithm
to determine whether or not a formula is a tautology also provides
algorithms for testing whether a formula is satisfiable or is a con-
tradiction. We also obtain algorithms to test whether one formula
logically implies another and if two formulas are equivalent.

These algorithms can be rephrased somewhat more directly as
follows:

• ϕ is satisfiable if and only if there is a row v in its truth table such
that τϕ(v) = T.

• ϕ is a contradiction if and only if for every row v in its truth table,
τϕ(v) = F.

• ϕ |= ψ if and only if for every row v of the truth tables τϕ,S, τψ,S
we have τψ,S(v) = T whenever τϕ,S(v) = T, where S = SV (ϕ) ∪
SV (ψ).

• ϕ ≡ ψ if and only if for every row v of the truth tables τϕ,S, τψ,S
we have τψ,S(v) = τϕ,S(v), where S = SV (ϕ) ∪ SV (ψ).

We conclude that both the set of satisfiable formulas and the set
of contradictions are decidable. Similarly, the set of pairs (ϕ,ψ) of
formulas such that ϕ |= ψ is decidable and so is the set of pairs (ϕ,ψ)
of formulas such that ϕ ≡ ψ.

The following theorem presents a useful list of equivalent formulas.

Theorem 2.3.30. Let p0, p1 and p2 be statement variables. Then,
we have the following:

(p0 ∧ p0) ≡ p0 (idempotency of ∧),
(p0 ∨ p0) ≡ p0 (idempotency of ∨),
(p0 ∧ p1) ≡ (p1 ∧ p0) (commutativity of ∧),
(p0 ∨ p1) ≡ (p1 ∨ p0) (commutativity of ∨),

(p0 ∧ (p1 ∧ p2)) ≡ ((p0 ∧ p1) ∧ p2) (associativity of ∧),
(p0 ∨ (p1 ∨ p2)) ≡ ((p0 ∨ p1) ∨ p2) (associativity of ∨),

(¬(¬p0)) ≡ p0 (double negation),

(p0 ∧ (p0 ∨ p1)) ≡ p0 (absorption laws),

(p0 ∨ (p0 ∧ p1)) ≡ p0 ”,

Propositional Logic–Syntax and Semantics 123

(p0 ∧ (p1 ∨ p2)) ≡ ((p0 ∧ p1) ∨ (p0 ∧ p2)) (distributivity laws),

((p1 ∨ p2) ∧ p0) ≡ ((p1 ∧ p0) ∨ (p2 ∧ p0)) ”,

(p0 ∨ (p1 ∧ p2)) ≡ ((p0 ∨ p1) ∧ (p0 ∨ p2)) ”,

((p1 ∧ p2) ∨ p0) ≡ ((p1 ∨ p0) ∧ (p2 ∨ p0)) ”,

(¬(p0 ∨ p1)) ≡ ((¬p0) ∧ (¬p1)) (De Morgan′s laws),
(¬(p0 ∧ p1)) ≡ ((¬p0) ∨ (¬p1)) ”,

(p0 → p1) ≡ ((¬p0) ∨ p1),
(p0 ↔ p1) ≡ ((p0 → p1) ∧ (p1 → p0)).

Proof. We show only the first De Morgan’s law by building the
truth tables of the formulas (¬(p0 ∨ p1)) and ((¬p0) ∧ (¬p1)):

p0 p1 (p0 ∨ p1) (¬(p0 ∨ p1)) (¬p0) (¬p1) ((¬p0) ∧ (¬p1))
F F F T T T T
F T T F T F F
T F T F F T F
T T T F F F F

Thus, it is apparent that the truth tables of these formulas are
identical and, therefore, they are equivalent. This proves the first
De Morgan’s law. Similar arguments can be used to prove the remain-
ing logical equivalences of this theorem. �

We introduce now the notion of signed formula which allows us to
give more elegant presentations of certain formal systems associated
with propositional logic in Chapter 3.

Definition 2.3.31. A signed formula is a pair (b, ϕ) with b ∈ Bool
and ϕ ∈ PLFORM. A signed formula (b, ϕ) will be denoted as bϕ.

The size size(bϕ) of the signed formula bϕ is size(ϕ).

Example 2.3.32. The signed formulas (T, (p0 → p1)) and (F, (p0∨
p1)) are denoted by T(p0 → p1) and F(p0 ∨ p1), respectively.

The set of signed formulas will be denoted by SPLFORM.
We will introduce a standard order on SPLFORM as

Tϕ0,Fϕ0,Tϕ1,Fϕ1, . . . ,

where ϕ0, ϕ1, . . . is the standard order on PLFORM.

124 Logical Foundations of Computer Science — Volume 1

The notion of signed subformula of a signed formula is based on
the notion of subformula of a formula.

Definition 2.3.33. Let bϕ be a signed formula. A signed subformula
of bϕ is a signed formula b′ψ, where ψ is a subformula of ϕ.

Example 2.3.34. The signed formula T((α∨β)→ γ) has T(α∨β),
F(α ∨ β), Fα, Tβ, and Tγ among its signed subformulas.

Definition 2.3.35. A set Δ of signed formulas is closed if there is a
formula ϕ such that both Tϕ and Fϕ belong to Δ.

The notions of satisfiability and logical implication can be formu-
lated for sets of signed formulas.

Definition 2.3.36. Let ϕ be a formula and let b ∈ Bool. A truth
assignment v satisfies the signed formula bϕ if v(ϕ) = b.

A truth assignment satisfies a set Δ of signed formulas if it sat-
isfies all signed formulas of Δ.

A set Δ of signed formulas is satisfiable if there is a truth assign-
ment that satisfies Δ.

A set of signed formulas Δ logically implies a signed formula bϕ
if every truth assignment that satisfies Δ also satisfies bϕ.

Example 2.3.37. The set of signed formulas {Tp0,T(p0 → p1),
F(p1 → p2)} is satisfiable because any truth assignment v with
v(p0) = T, v(p1) = T, and v(p2) = F satisfies every signed formula
of the set.

A closed set of signed formulas is unsatisfiable. Note however that
a set may be unsatisfiable without being closed, as illustrated by
Δ = {Fϕ,T(ϕ ∧ ψ)}.

The following theorem relates logical implication for unsigned for-
mulas to unsatisfiability of set of signed formulas. This is the basis
for certain formal systems that we discuss in Chapter 3.

Theorem 2.3.38. Let Γ be a set of formulas and let ϕ be a formula.
Then, Γ |= ϕ if and only if the set of signed formulas {Tψ | ψ ∈
Γ} ∪ {Fϕ} is unsatisfiable.

Proof. We leave this simple proof to the reader. �

Propositional Logic–Syntax and Semantics 125

Theorem 2.3.39. Let Δ be a set of signed formulas and let bϕ be a
signed formula. The set of signed formulas Δ ∪ {bϕ} is unsatisfiable
if and only if Δ |= bϕ.

Proof. The argument is left to the reader. �

2.4 The Compactness Theorem

There are two equivalent versions of this important result. In this
section, we state both versions and show that they are equivalent.

Theorem 2.4.1. The following two statements are equivalent:

(1) A set of formulas is satisfiable if and only if each of its finite
subsets is satisfiable.

(2) If Γ is a set of formulas and ϕ is a formula, then Γ |= ϕ if and
only if there is a finite subset Γ0 of Γ such that Γ0 |= ϕ.

Proof. (1) implies (2). Suppose that (1) holds. Then, for every
set of formulas Γ and formula ϕ, we have the following sequence of
equivalent statements:

(a) Γ |= ϕ.
(b) Γ ∪ {(¬ϕ)} is unsatisfiable.
(c) There is a finite subset of Γ ∪ {(¬ϕ)} that is unsatisfiable.
(d) Γ0 ∪ {(¬ϕ)} is unsatisfiable for some finite subset Γ0 of Γ.
(e) Γ0 |= ϕ for some finite subset Γ0 of Γ.

The equivalence of (a) and (b) and of (d) and (e) follows from
Theorem 2.3.17. The first statement of the theorem implies that (b)
and (c) are equivalent. The equivalence of (c) and (d) follows from the
fact that every superset of an unsatisfiable set is also unsatisfiable.

(2) implies (1). Suppose that (2) holds. Then, for any set of
formulas Γ, the following statements are equivalent:

(a) Γ is satisfiable.
(b) For every contradiction ϕ, we have Γ �|= ϕ.
(c) For every contradiction ϕ, we have Γ0 �|= ϕ for every finite subset

Γ0 of Γ.
(d) Every finite subset Γ0 of Γ is satisfiable.

126 Logical Foundations of Computer Science — Volume 1

The equivalence of (a) and (b) and of (c) and (d) follows from
Theorem 2.3.18, while the equivalence of (b) and (c) follows from
the second statement of the theorem. �

Definition 2.4.2. A set of formulas is finitely satisfiable if each of
its finite subsets is satisfiable.

It is clear that if Γ is a set of formulas that is satisfiable, then Γ
is finitely satisfiable. The following theorem shows that the converse
of this statement also holds.

Theorem 2.4.3 (Compactness Theorem of Propositional
Logic). Let Γ be a set of formulas. Then, Γ is satisfiable if and
only if Γ is finitely satisfiable.

Proof. As stated above, it is obvious that if Γ is satisfiable, then
Γ is finitely satisfiable.

Let Γ be a finitely satisfiable set of formulas. Define the set Γn =
{ϕ ∈ Γ | SV (ϕ) ⊆ {p0, . . . , pn−1}} for n ∈ N. Of course, Γ0 = ∅ and
Γ0 ⊆ Γ1 ⊆ · · · ⊆ Γn ⊆ · · · .

Observe that, in general, a set Γn may be infinite since its mem-
bers can be arbitrarily long formulas. Nevertheless, formulas in Γn
are written using a finite set of statement variables, namely Vn =
{p0, . . . , pn−1} for n ∈ N. Therefore, if Tn = {τϕ,Vn | ϕ ∈ Γn}, then
Tn is a finite set (which contains at most 22

n
elements). Consequently,

there exists a finite subset Γ′
n of Γn such that Tn = {τϕ,Vn | ϕ ∈ Γ′

n}.
By hypothesis, Γ′

n is satisfiable. Since every formula of Γn is logically
equivalent to a formula of Γ′

n (because they have the same truth
tables over Vn), it follows that every set Γn is satisfiable. Let wn be
a truth assignment that satisfies Γn. Clearly, wn satisfies Γi for all
i ≤ n.

Define the truth assignment v recursively by

v(pn) =

{
T if v |̀Vn ∪ {(pn,T)} ⊆ wm for infinitely many m

F otherwise.

We claim that for all n, v |̀Vn ⊆ wm for infinitely many m. For n = 0,
this is trivial since V0 = ∅. Suppose that the statement is true for
n. Then, there are infinitely many m such that v |̀Vn ⊆ wm, and for

Propositional Logic–Syntax and Semantics 127

each suchm, either v |̀Vn∪{(pn,T)} ⊆ wm or v |̀Vn∪{(pn,F)} ⊆ wm.
Thus, if there are only finitely many m such that v |̀Vn∪{(pn,T)} ⊆
wm, then there are infinitely many m such that v |̀Vn ∪ {(pn,F)} ⊆
wm. Consequently, whichever alternative holds in the definition of
v(pn), there are infinitely many m such that v |̀Vn+1 ⊆ wm.

Let ϕ ∈ Γ. Then there is an n such that ϕ ∈ Γn and for every
m ≥ n, wm(ϕ) = T. Since v |̀Vn ⊆ wm for infinitely many m, it fol-
lows that for some m ≥ n, we have v(ϕ) = v |̀Vn(ϕ) = wm(ϕ) = T.

�

Corollary 2.4.4. If Γ is a set of formulas and ϕ is a formula, then
Γ |= ϕ if and only if there is a finite subset Γ0 of Γ such that Γ0 |= ϕ.

Proof. The corollary follows directly from Theorems 2.4.1
and 2.4.3. �

As an application of the Compactness Theorem, we will prove a
result from graph theory concerning the possibility of coloring the
vertices of a graph so that no two adjacent vertices are colored with
the same color. We remind the reader that a graph is a pair G =
(V,E), where V is a set and E is a collection of two-element subsets
of V . The elements of V are called the vertices of G and the elements
of E are called the edges of G. The graph G is called finite (countable)
if V is finite (countable). A graph (V ′, E′) is called a subgraph of a
graph (V,E) if V ′ ⊆ V and E′ ⊆ E.

Definition 2.4.5. Let G = (V,E) be a graph and let k be a positive
integer. A k-coloring of G is a function c : V −→ {0, . . . , k− 1} such
that for every x, y ∈ V , if {x, y} ∈ E, then c(x) �= c(y). If there is a
k-coloring of G, we call G k-colorable.

If c(x) = i, we say that the vertex x has been colored with the
color i by c.

Theorem 2.4.6. Let G = (V,E) be a countable graph and k be a
positive integer. If every finite subgraph of G is k-colorable, then G
is k-colorable.

Proof. Since G is countable, we can attach to every vertex x ∈ V
and color i ∈ {0, . . . , k − 1} a distinct statement variable pix. Let Γ

128 Logical Foundations of Computer Science — Volume 1

be the set of formulas which consists of the following families of
formulas:

• {(p0x ∨ · · · ∨ pk−1
x) | x ∈ V },

• {(¬(pix ∧ p
j
x)) | x ∈ V, i, j ∈ {0, . . . , k − 1} and i �= j},

• {(¬(pix ∧ piy)) | x, y ∈ V, i ∈ {0, . . . , k − 1} and {x, y} ∈ E}.

We claim that every finite subset of Γ is satisfiable. To see this, let
Γ′ ⊆ Γ be finite and let V ′ = {x ∈ V | pix ∈ SV (Γ′) for some i}.
Consider the finite subgraph G′ = (V ′, E′) of G, where E′ consists
of those edges {x, y} of E such that x, y ∈ V ′. By hypothesis, G′ is
k-colorable. Let c′ be a k-coloring of G′. Define a partial truth assign-
ment v′ over SV (Γ′) by letting v′(pix) = T if c′(x) = i and v′(pix) = F,
otherwise. It is easy to verify that v′ satisfies Γ′. Therefore, by the
Compactness Theorem, Γ is satisfiable, so let v be a truth assignment
that satisfies Γ. Since v satisfies the formulas (p0x ∨ · · · ∨ pk−1

x) and

(¬(pix ∧ p
j
x)) for every x in V and all colors i and j, it follows that

for each x ∈ V there is a unique i with v(pix) = T. This allows us
to define a function c by c(x) = i, where v(pix) = T. Since v also
satisfies {(¬(pix ∧ piy)) | x, y ∈ V, i ∈ {0, . . . , k − 1} and {x, y} ∈ E},
the mapping c is a k-coloring of G. �

The previous result was obtained in 1951 using graph theoretical
methods in [29]. Two years later, Beth pointed out in [1] that the
result could be obtained as an easy consequence of the compactness
theorem. Our proof is a modified version of Beth’s proof.

2.5 Normal Forms for Formulas

In this section, we show that for every formula ϕ there exist logically
equivalent formulas that satisfy certain syntactic prescriptions. These
restricted formulas are referred to as normal forms for ϕ.

Definition 2.5.1. Let ϕ be a formula and let b ∈ Bool. The formula
ϕb is given by

ϕb =

{
ϕ if b = T

(¬ϕ) if b = F.

At times, we will use ϕ1 for ϕT and ϕ0 for ϕF.

Propositional Logic–Syntax and Semantics 129

Lemma 2.5.2. Let ϕ be a formula and let v and w be two partial
truth assignments, v,w ∈ TAS, where SV (ϕ) ⊆ S. Then, we have

w(ϕv(ϕ)) =

{
T if w(ϕ) = v(ϕ)

F otherwise.

Proof. The reader can verify the statement by examining the four
possible cases determined by v(ϕ) and w(ϕ). �

Definition 2.5.3. Let S be a nonempty set of n statement variables,
S = {pi0 , . . . , pin−1} with i0 < · · · < in−1.

A conjunction μ = (pa0i0 ∧ · · · ∧ p
an−1

in−1
), where a0, . . . , an−1 ∈ Bool

is called a minterm over S. The set of literals {pa0i0 , . . . , p
an−1

in−1
} will

be denoted by LIT(μ). The set of minterms over S will be denoted
by MINTRM(S). A partial minterm over S is a minterm over a non-
empty subset of S. The set of partial minterms over S will be denoted
by PMINTRM(S).

A maxterm over S is a disjunction (pa0i0 ∨ · · · ∨ p
an−1

in−1
), where

a0, . . . , an−1 ∈ Bool. The set of maxterms over S will be denoted
by MAXTRM(S). A partial maxterm over S is a maxterm over a
nonempty subset of S. The set of partial maxterms over S will be
denoted by PMAXTRM(S).

A formula ϕ is a minterm (maxterm) if there is a set S of state-
ment variables such that ϕ is minterm (maxterm) over S.

The set PMINTRM(SV) is the set of all minterms. Observe also
that if S is a finite set of statement variables, then |PMINTRM(S)| =
3|S| − 1.

Example 2.5.4. Let S = {p0, p2, p3}. Then (p0 ∧ (¬p2) ∧ p3) and
((¬p0) ∧ p2 ∧ p3) are both minterms over S.

The formula ((¬p0) ∨ (¬p2) ∨ p3) is a maxterm over S.

Definition 2.5.5. Let S = {pi0 , . . . , pin−1} with i0 < · · · < in−1 be
a nonempty set of statement variables and let v ∈ TAS .

The minterm (p
v(pi0)
i0

∧ · · · ∧ pv(pin−1
)

in−1
) will be denoted by μv and

the maxterm (p
v′(pi0)
i0

∨ · · · ∨ pv
′(pin−1

)

in−1
) where v′(p) = f¬(v(p)) for

every p ∈ S will be denoted by νv.
For v defined by v(pij) = T, for 0 ≤ j ≤ n − 1, we use the

alternative notations μS, νS for μv, νv, respectively. In other words,
we have μS = (pi0 ∧ · · · ∧ pin−1) and νS = ((¬pi0) ∨ · · · ∨ (¬pin−1)).

130 Logical Foundations of Computer Science — Volume 1

Note that a formula is a minterm (maxterm) over a set of variables
S if and only if it equals μv (νv) for some truth assignment v over S
and in this case v is unique.

Example 2.5.6. Let S = {p0, p1, p2} and let v ∈ TAS be given by
v(p0) = T, v(p1) = F, v(p2) = F. The minterm and the maxterm
corresponding to this truth assignment are

μv = (pT0 ∧ pF1 ∧ pF2) = (p0 ∧ (¬p1) ∧ (¬p2))

and

νv = (pF0 ∨ pT1 ∨ pT2) = ((¬p0) ∨ p1 ∨ p2),

respectively.

Theorem 2.5.7. Let v be a truth assignment over a finite, nonempty
set S of statement variables. Then, for all w ∈ TAS, we have

w(μv) =

{
T if v = w

F otherwise,

w(νv) =

{
T if v �= w

F otherwise.

Proof. Let S = {pi0 , . . . , pin−1} and let v,w ∈ TAS . We have

w(μv) = T if and only if w(p
v(pik)

ik
) = T for all k, 0 ≤ k ≤ n − 1.

By Lemma 2.5.2, we can rephrase this as w(μv) = T if and only if
w(pik) = v(pik) for every k, 0 ≤ k ≤ n− 1, which amounts to v = w.

We leave the second part of the theorem to the reader. �

Definition 2.5.8. A formula is in disjunctive normal form (dnf) if it
is a disjunction of conjunctions of literals. Each conjunction is called
a disjunct of the formula.

A formula is in conjunctive normal form (cnf) if it is a conjunction
of disjunctions of literals. Each disjunction is called a conjunct of the
formula.

Example 2.5.9. The formula ((p0 ∧ (¬p1))∨ (p1∧ (¬p2))) is in dnf,
while ((p0 ∨ (¬p1)) ∧ (p1 ∨ (¬p2))) is in cnf.

Propositional Logic–Syntax and Semantics 131

If p is a statement variable, then the formula p is in both dnf and
cnf. Indeed, if we regard p as a disjunction of one literal, then we
can view the formula p as a conjunction whose single conjunct is the
disjunction p. A similar argument allows us to view p as a disjunction
whose single disjunct is the one-literal conjunction p.

By a similar argument, (p0 ∧ (¬p1)) is both in dnf and cnf.

Theorem 2.5.10. Let S be a finite, nonempty set of statement vari-
ables and let τ ∈ TTS. Then, there is a formula ψ in disjunctive
normal form with SV (ψ) = S such that τψ,S = τ . In addition, if

τ(v) = T for at least one v ∈ TAS, then such a ψ exists each of
whose disjuncts is a minterm over S.

Proof. Suppose first that there is at least one truth assignment v
over S such that τ(v) = T. Then, let {v0, . . . , vn−1} = {v ∈ TAS |
τ(v) = T}. Define ψ =

∨
0≤i≤n−1 μvi . For each w ∈ TAS , we have

τψ,S(w) = w(ψ)

= w

⎛
⎝ ∨

0≤i≤n−1

μvi

⎞
⎠

=

{
T if w(μvi) = T for some i, 0 ≤ i ≤ n− 1

F otherwise

=

{
T if w = vi for some i, 0 ≤ i ≤ n− 1

F otherwise

= τ(w).

Therefore, τψ,S = τ .

If there is no truth assignment v ∈ TAS such that τ(v) = T, then
we can take for ψ the contradiction ψ = (pi0∧(¬pi0)∧pi1∧· · ·∧pin−1),
where S = {pi0 , . . . , pin−1}. �

132 Logical Foundations of Computer Science — Volume 1

Note that the proof of Theorem 2.5.10 provides an effective
method of producing a disjunctive normal form for a given formula.

Example 2.5.11. Consider the set of variables S = {p0, p4, p6} and
the truth table τ over S given in the following:

v(p0) v(p4) v(p6) τ(v)
F F F F
F F T T
F T F F
F T T F
T F F F
T F T T
T T F F
T T T T

A formula in disjunctive normal form obtained using the method of
Theorem 2.5.10 whose truth table is τ is

ψ = (((¬p0) ∧ (¬p4) ∧ p6) ∨ (p0 ∧ (¬p4) ∧ p6) ∨ (p0 ∧ p4 ∧ p6)).

Corollary 2.5.12. Let ϕ ∈ PLFORM. Then, there is a formula ψ
in disjunctive normal form such that SV (ϕ) = SV (ψ) and ϕ ≡ ψ.
If ϕ is not a contradiction, then such a ψ exists each of whose dis-
juncts is a minterm over SV (ϕ).

Proof. By applying Theorem 2.5.10, to the set S = SV (ϕ) and
to the truth table τϕ = τϕ,S, we get a formula ψ in dnf such that
SV (ψ) = S and τψ,S = τϕ,S, which implies that ϕ ≡ ψ. From the

second part of Theorem 2.5.10, it follows that if ϕ is not a contra-
diction, then we can chose ψ to be a disjunction of minterms over S.

�

A formula ψ which is in disjunctive normal form and is logically
equivalent to ϕ is called a disjunctive normal form for ϕ.

Example 2.5.13. Let ϕ = ((p4 → p0) ∧ p6). Then, the truth table
of ϕ is the one given in Example 2.5.11. Consequently, the formula
ψ given in this example is a disjunctive normal form for ϕ.

Propositional Logic–Syntax and Semantics 133

Theorem 2.5.14. If ψ = μ0 ∨ · · · ∨ μn−1 is a disjunctive normal
form for ϕ such that each μi is a minterm over SV (ϕ), then {μi |
0 ≤ i ≤ n− 1} = {μv | v ∈ TASV(ϕ) and v(ϕ) = T}.
Proof. For every minterm μi, there exists a truth assignment v
over SV (ϕ) such that μi = μv. Then, v(μi) = T, so v(ϕ) = v(ψ) =
T, which means that μi ∈ {μv | v ∈ TASV(ϕ) and v(ϕ) = T}.
Conversely, if v ∈ TASV(ϕ) is such that v(ϕ) = T and μv �= μi
for all i, 0 ≤ i ≤ n− 1, then v(μi) = F for all i (since each μi = μw
for some w ∈ TASV(ϕ)), so v(ψ) = F, which contradicts ϕ ≡ ψ. �

Theorem 2.5.14 shows that the disjunctive normal form for a sat-
isfiable formula ϕ as constructed in Corollary 2.5.12 is the unique (up
to order and repetitions of minterms) disjunctive normal form for ϕ
which consists of minterms over SV (ϕ). If ψ is a disjunctive normal
form for ϕ that consists of distinct minterms over SV (ϕ), we refer
to ψ as a standard disjunctive normal form for ϕ. Observe that any
formula obtained from a standard disjunctive normal form for ϕ by
permuting the minterms is also a standard disjunctive normal form
for ϕ. We shall refer to the minterms that occur in a standard disjunc-
tive normal form for ϕ (i.e., to {μv | v ∈ TASV(ϕ) and v(ϕ) = T}) as
the minterms of ϕ. We will denote the set of minterms of ϕ by Mϕ.

Theorem 2.5.15. Let ϕ be a formula and let S = SV (ϕ). Then,

Mϕ = {μ ∈ MINTRMS | μ |= ϕ}.
Proof. Let μ ∈ Mϕ. Then, μ ∈ MINTRM(S) and μ = μv for
some v ∈ TASV(ϕ) such that v(ϕ) = T. If w ∈ TASV(ϕ) is such that
w(μ) = T, then w = v, so w(ϕ) = T. Thus, μ |= ϕ, and we have
Mϕ ⊆ {μ ∈ MINTRM(S) | μ |= ϕ}.

Conversely, suppose that μ ∈ MINTRM(S) and μ |= ϕ. There is
v ∈ TASV(ϕ) such that μ = μv. Since v(μ) = T, v(ϕ) = T and this
shows the reverse inclusion. �

Although the standard disjunctive normal form for a satisfiable
formula is essentially unique, several disjunctive normal forms can
exist if we allow minterms over subsets of SV (ϕ).

Example 2.5.16. The reader can easily verify that the following
formulas

(((¬p0) ∧ (¬p4) ∧ p6) ∨ (p0 ∧ p6))
(((¬p4) ∧ p6) ∨ (p0 ∧ p4 ∧ p6))

134 Logical Foundations of Computer Science — Volume 1

are alternative disjunctive normal forms for the formula ψ introduced
in Example 2.5.11.

Given a formula ϕ of propositional logic, it is often desirable to
find the “simplest” formula ψ which is logically equivalent to ϕ, where
“simplest” is a term which we do not define precisely here. (One pos-
sible definition of “simplest” is “shortest”.) We now give techniques
which allow for the solution of this problem, if we restrict our atten-
tion to formulas ψ in disjunctive normal form.

Definition 2.5.17. Let ϕ be a formula. An implicant of ϕ is a
partial minterm μ over SV (ϕ) such that μ |= ϕ.

The set of implicants of a formula ϕ will be denoted by IMPL(ϕ).

Note that |IMPL(ϕ)| < 3|SV(ϕ)|. The following theorem helps us
to explain the role of implicants in optimizing disjunctive normal
forms for formulas.

Theorem 2.5.18. If ψ = μ0 ∨ · · · ∨ μn−1 is a disjunctive normal
form for ϕ, where μ0, . . . , μn−1 are partial minterms over SV (ϕ),
then each μi is an implicant of ϕ, for 0 ≤ i ≤ n− 1.

Proof. We leave the argument to the reader. �

Observe that μ is an implicant of ϕ with SV (μ) = SV (ϕ) if and
only if μ = μv for some v ∈ TASV(ϕ) such that v(ϕ) = T.

Definition 2.5.19. The domination relation is the relation ≤
defined on the set of all minterms by μ ≤ μ′ if μ |= μ′. If μ ≤ μ′, we
shall say that μ′ dominates μ.

Theorem 2.5.20. If μ, μ′ are minterms, then μ |= μ′ if and only if
every literal conjunct of μ′ is also a conjunct of μ.

Proof. If every literal conjunct of μ′ is also a conjunct of μ, it is
clear that μ |= μ′ because both μ and μ′ are conjunctions of literals.

Conversely, suppose that μ |= μ′ and suppose that there exists
a literal conjunct of μ′ that is not a conjunct of μ. This means
that there exists a statement variable pj such that pbj is a conjunct

of μ′ and either pj �∈ SV (μ), or p
f¬(b)
j is a conjunct of μ, where

μ = (pa0i0 ∧ · · · ∧ p
am−1

im−1
).

Propositional Logic–Syntax and Semantics 135

Suppose, for instance, that pj is a conjunct of μ′ and pj �∈ SV (μ).
Consider v ∈ TA such that v(pik) = ak for 0 ≤ k ≤ m − 1 and
v(pj) = F. We have v(μ) = T and this implies v(μ′) = T. This leads
to a contradiction because pj is a conjunct of μ′. A similar argument
works when (¬pj) is a conjunct of μ′ and pj �∈ SV (μ). Suppose now

that pbj is a conjunct of μ′ and pf¬(b)j is a conjunct of μ. If v is a truth

assignment such that v(μ) = T, then v(pj) = f¬(b) and v(μ′) = T.
This, in turn, implies v(pj) = b, which is a contradiction. Therefore,
every literal conjunct of μ′ is also a conjunct of μ. �

Corollary 2.5.21. The pair (PMINTRM(SV),≤) is a partially
ordered set.

Proof. We need to verify that “≤” is reflexive, antisymmetric, and
transitive. The reflexivity and transitivity properties are immediate
consequences of Theorem 2.3.12, so we prove only the antisymmetry
property.

Let μ, μ′ ∈ PMINTRM(SV) be such that μ ≤ μ′ and μ′ ≤ μ.
From Theorem 2.5.20, we infer that these conjunctions consist of
exactly the same literals. Since every member of PMINTRM(SV) is
determined by the set of literals it contains, we conclude that μ = μ′
which proves that ≤ is antisymmetric. �

Corollary 2.5.22. If S, S′ are two finite nonempty sets of variables
such that S ⊆ S′, then μS′ |= μS.

Proof. This is an immediate consequence of Theorem 2.5.20. �

Corollary 2.5.23. If μ, μ′ ∈ IMPL(ϕ), then μ ≤ μ′ if and only if
every literal conjunct of μ′ is also a conjunct of μ.

Proof. This statement follows immediately from Theorem 2.5.20.
�

Corollary 2.5.24. If μ, μ′ ∈ IMPL(ϕ), then μ < μ′ implies
SV (μ′) ⊂ SV (μ).

Proof. This statement follows immediately from Theorem 2.5.20.
�

136 Logical Foundations of Computer Science — Volume 1

Theorem 2.5.25. The minimal elements of the finite poset
(IMPL(ϕ),≤) are the minterms of ϕ.

Proof. It is clear that every minterm μv with v ∈ TASV(ϕ)

and v(ϕ) = T is a minimal element of the poset (IMPL(ϕ),≤).
Conversely, let μ be a minimal element of (IMPL(ϕ),≤) and let
v ∈ TASV(ϕ) be such that v(μ) = T. This gives μv ≤ μ and the
minimality of μ implies μ = μv. �

Definition 2.5.26. The prime implicants of the formula ϕ are the
maximal elements of the poset (IMPL(ϕ),≤).

Definition 2.5.27. The rank of an implicant μ ∈ IMPL(ϕ) is r(μ) =
|SV (ϕ)| − |SV (μ)|.

The n-th implicant layer of the formula ϕ is the set Ln(ϕ) that
consists of all implicants of rank n of ϕ for 0 ≤ n ≤ |SV (ϕ)| − 1.

Corollary 2.5.24 implies that if μ < μ′ for μ, μ′ ∈ IMPL(ϕ), then
r(μ) < r(μ′).

It follows from a previous comment that if ϕ is satisfiable, then
L0(ϕ) consists of all the minterms of ϕ. Note that

IMPL(ϕ) =
⋃

0≤i≤|SV(ϕ)|−1

Li(ϕ).

Definition 2.5.28. Let μ0, μ1 be minterms such that SV (μ0) =
SV (μ1), and

μ0 = (pa0i0 ∧ · · · ∧ p
am−1

im−1
),

μ1 = (pb0i0 ∧ · · · ∧ p
bm−1

im−1
),

where m > 1, ak = bk for 0 ≤ k ≤ m − 1, k �= j, and aj = f¬(bj).
The formula μ0 � μ1 is the conjunction

(pa0i0 ∧ · · · ∧ p
aj−1

ij−1
∧ paj+1

ij+1
∧ · · · ∧ pam−1

im−1
).

Lemma 2.5.29. If μ0, μ1 ∈ IMPL(ϕ) are such that μ0 � μ1 is
defined, then μ0 � μ1 ∈ IMPL(ϕ); furthermore, μ0 � μ1 = sup{μ0, μ1}
in the poset (IMPL(ϕ),≤).

Propositional Logic–Syntax and Semantics 137

Proof. Let v ∈ TASV(ϕ) be such that v(μ0 � μ1) = T, where

μ0 = (pa0i0 ∧ · · · ∧ p
aj
ij
∧ · · · ∧ pam−1

im−1
),

μ1 = (pa0i0 ∧ · · · ∧ p
aj
ij
∧ · · · ∧ pam−1

im−1
),

and aj = f¬(aj). If v(pij) = aj, we have v(μ0) = T, so v(ϕ) = T;
otherwise, that is, if v(pij) = f¬(aj), we have v(μ1) = T, so again
v(ϕ) = T. Thus, μ0 � μ1 is an implicant of ϕ. We leave it to the
reader to verify that μ0 � μ1 = sup{μ0, μ1} in (IMPL(ϕ),≤). �

Lemma 2.5.29 shows that � is a partial operation on IMPL(ϕ);
observe that r(μ0 � μ1) = r(μ0) + 1 = r(μ1) + 1.

Theorem 2.5.30. For every formula ϕ, we have

Ln+1(ϕ) = {μ0 � μ1 | μ0, μ1 ∈ Ln(ϕ) and μ0 � μ1 is defined}

for 0 ≤ n ≤ |SV (ϕ)| − 2.

Proof. Lemma 2.5.29 implies

{μ0 � μ1 | μ0, μ1 ∈ Ln(ϕ) and μ0 � μ1 is defined} ⊆ Ln+1(ϕ)

for 0 ≤ n ≤ |SV (ϕ)|−2. Therefore, we need to prove only the reverse
inclusion.

Let μ ∈ Ln+1(ϕ). Since |SV (ϕ)| − |SV (μ)| = n + 1 ≥ 1, there
exists a variable pl ∈ SV (ϕ) that does not occur in μ. If μ = (pa0i0 ∧
· · · ∧ pam−1

im−1
), then both μ0 and μ1 belong to Ln(ϕ), where

μ0 = (pa0i0 ∧ · · · ∧ (¬pl) ∧ · · · ∧ pam−1

im−1
),

μ1 = (pa0i0 ∧ · · · ∧ pl ∧ · · · ∧ p
am−1

im−1
)

have been obtained from μ by inserting (¬pl) and pl, respectively, in
the appropriate position. Also, it is clear that μ = μ0 � μ1 and this
proves the reverse inclusion. �

Theorem 2.5.30 proves that the following algorithm can be used
to generate the set of all implicants of a formula ϕ:

138 Logical Foundations of Computer Science — Volume 1

Algorithm 2.5.31 (Quine1–McCluskey2Algorithm for con-
structing the set IMPL(ϕ)).
Input: A satisfiable formula ϕ ∈ PLFORM.
Output: The collection of all implicant layers of ϕ.
Method:

(A) Let L0(ϕ) be the set of minterms of ϕ.
(B) For every i, 0 ≤ i ≤ |SV (ϕ)|−2, construct the layer Li+1(ϕ) =
{μ0 � μ1 | μ0, μ1 ∈ Li(ϕ) and μ0 � μ1 is defined}.

(C) Output the collection {Li|0 ≤ i ≤ |SV (ϕ)| − 1}.

Proof of Correctness: The correctness of the algorithm follows
immediately from Theorem 2.5.30. �

Example 2.5.32. Consider the formula ϕ = (p0 → (p1 ↔ p2)). Its
truth table is

p0 p1 p2 ϕ
F F F T
F F T T
F T F T
F T T T
T F F T
T F T F
T T F F
T T T T

The set of minterms obtained in Step (A) of Algorithm 2.5.31 is

L0 = {μv0 , μv1 , μv2 , μv3 , μv4 , μv7},

1Willard Van Orman Quine was born on June 15, 1908, in Akron, Ohio, and
died on December 25, 2000, in Boston, Massachusetts. Quine studied at Oberlin
College and Harvard where he got his Ph.D. in 1932 and taught at Harvard.
Quine’s contributions were in both philosophy and mathematical logic and he
was the author of several influential books. He was a former president of the
American Philosophical Association.
2Edward J. McCluskey was born on October 16, 1929, and died on February
13, 2016. He studied at Bowdoin College and received his doctorate from MIT in
1956. McCluskey worked at Bell Labs and then taught at Princeton and Stanford.
He served as the Director of the Center for Reliable Computing at Stanford.
His research interests were in the areas of fault-tolerant computing, computer
architecture, and logic design.

Propositional Logic–Syntax and Semantics 139

where

μv0 = (pF0 ∧ pF1 ∧ pF2),
μv1 = (pF0 ∧ pF1 ∧ pT2),
μv2 = (pF0 ∧ pT1 ∧ pF2),
μv3 = (pF0 ∧ pT1 ∧ pT2),
μv4 = (pT0 ∧ pF1 ∧ pF2),
μv7 = (pT0 ∧ pT1 ∧ pT2).

Layer L1, constructed in Step (C), consists of the conjunctions
listed in the following table:

Conjunction Obtained from
(pF0 ∧ pF1) μv0 � μv1
(pF0 ∧ pF2) μv0 � μv2
(pF1 ∧ pF2) μv0 � μv4
(pF0 ∧ pT2) μv1 � μv3
(pF0 ∧ pT1) μv2 � μv3
(pT1 ∧ pT2) μv3 � μv7

Layer L2 consists of

Conjunction Obtained from
pF0 (pF0 ∧ pF1) � (pF0 ∧ pT1)

or
(pF0 ∧ pF2) � (pF0 ∧ pT2)

The Hasse diagram of the poset (IMPL(ϕ),≤) is given in
Figure 2.1. The prime implicants of ϕ are (¬p0), (p1 ∧ p2) and
((¬p1) ∧ (¬p2)).

Definition 2.5.33. A nonempty set Q = {μ0, . . . , μm−1} of impli-
cants of ϕ is a cover of ϕ if ϕ ≡ (μ0∨· · ·∨μm−1), i.e., if (μ0∨· · ·∨μm−1)
is a disjunctive normal form for ϕ.

Q is a minimal cover of ϕ if Q is a cover of ϕ and no proper subset
of Q is a cover of ϕ.

Observe that for every nonempty set Q = {μ0, . . . , μm−1} of impli-
cants of ϕ we have (μ0 ∨ · · · ∨μm−1) |= ϕ. Therefore, Q is a cover for
ϕ if and only if ϕ |= (μ0 ∨ · · · ∨ μm−1).

140 Logical Foundations of Computer Science — Volume 1

� � � � � �

�

µv0 µv1 µv2 µv3 µv4 µv7

(pF
0 ∧ pF

1) (pF
0 ∧ pF

2) (pF
0 ∧ pT

2) (pF
1 ∧ pF

2) (pF
0 ∧ pT

1) (pT
1 ∧ pT

2)

pF
0

�����������������

�
�

�
�

��

�
�

�
�

��

������������

�
�

�
�

��

������������

�
�

�
�

��
�

�
�

�
�

�
�

��

�
�
�
�
��

�
�

�
�

��

��������������

Fig. 2.1. Hasse diagram of (IMPL(ϕ),≤).

Let ϕ be a satisfiable formula. The set of all minterms of ϕ is
clearly a cover of ϕ. However, other covers may exist for ϕ and it is
important from the point of view of circuit designers (as we shall see
in Section 2.11) to be able to find covers for formulas which have as
few occurrences of statement variables as possible.

Since (IMPL(ϕ),≤) is a finite poset, for every μ ∈ IMPL(ϕ), there
is a prime implicant μ′ such that μ ≤ μ′.
Theorem 2.5.34. Let ϕ be a satisfiable formula. A set of implicants
of ϕ, Q = {μ0, . . . , μm−1}, is a cover of ϕ if and only if for every
minterm μv of ϕ there is an implicant μi ∈ Q such that μv ≤ μi (i.e.,
μv |= μi).

Proof. First, suppose that the condition of the theorem is met. Let
{v ∈ TASV(ϕ) | v(ϕ) = T} = {v0, . . . , vk−1}. Then, since

ϕ ≡
∨

0≤i≤k−1

μvi |=
∨

0≤l≤m−1

μl |= ϕ,

it is immediate that Q is a cover for ϕ.
Conversely, let Q be a cover of ϕ and suppose that v ∈ TASV(ϕ)

is such that v(ϕ) = T and μv �|= μl for all l, 0 ≤ l ≤ m− 1. Then, for
every l, there is a truth assignment wl ∈ TASV(ϕ) such that wl(μv) =
T and wl(μl) = F. By Theorem 2.5.7, we have wl = v for every l,
0 ≤ l ≤ m − 1, which implies v(μl) = F for every l, 0 ≤ l ≤ m − 1.
Since Q is a cover, we obtain that v(ϕ) = F, thereby contradicting
the choice of v. �

Corollary 2.5.35. Let ϕ be a satisfiable formula. If Q =
{μ0, . . . , μm−1} is a cover for ϕ and μ is an implicant of ϕ

Propositional Logic–Syntax and Semantics 141

such that μi < μ for some i, 0 ≤ i ≤ m − 1, then Q′ =
{μ0, . . . , μi−1, μ, μi+1, . . . , μm−1} is also a cover for ϕ.

Proof. The statement follows immediately from Theorem 2.5.34.
�

Since for every nonprime implicant μ of a satisfiable formula ϕ
there is a prime implicant μ′ with μ < μ′, Corollary 2.5.35 shows that,
by any reasonable definition of simplicity, the cover of ϕ which gives
the simplest disjunctive normal form for ϕ must consist of prime
implicants. In general, there are several sets of prime implicants
that satisfy the condition of Theorem 2.5.34. The following algo-
rithm allows us to identify the minimal covers consisting of prime
implicants for a satisfiable formula ϕ.

Algorithm 2.5.36 (Quine–McCluskey Tabular Algorithm).
Input: The set of all prime implicants and the set of all minterms
of a satisfiable formula ϕ ∈ PLFORM.
Output: All minimal covers of prime implicants of ϕ.
Method:

(A) Prepare table TA having one row for each prime implicant and
one column for each minterm of ϕ. For each prime implicant μ
and each minterm μv, place a check mark at the intersection
of the line of μ and the column of μv if μv ≤ μ.

(B) Examine the columns of table TA. If a column contains a sin-
gle check mark that corresponding prime implicant will be
referred to as an essential prime implicant. Construct table
TB by eliminating from TA all essential prime implicants and
the columns corresponding to the minterms they dominate.

(C) Construct table TC as follows: first, if the set of rows of
the table TB in which a column μv has check marks strictly
includes the set of rows in which some other column μv′ has
check marks, then eliminate column μv; second, if, among the
remaining columns, several have the same check mark pattern,
then retain only one of them.

(D) Construct table TD by eliminating from TC all rows that con-
tain no check marks.

(E) The output consists of every minimal set of rows in TD such
that at least one check mark exists in these rows for every
column, to each of which we add the set of essential prime
implicants determined at Step (B).

142 Logical Foundations of Computer Science — Volume 1

Proof of Correctness: If μ is an essential prime implicant for ϕ,
then there exists a minterm of ϕ that is not dominated by any other
implicant. Thus, the set E of essential prime implicants of ϕ must be
contained in any cover by prime implicants of ϕ. Since, the columns
of TB correspond to the set of minterms not covered by the essential
prime implicants of ϕ, it follows that any set of prime implicants Q
is a minimal cover if and only if Q = E ∪ Q′, where each minterm
corresponding to a column of TB is covered by an element of Q′ and
Q′ is minimal with this property.

If, in table TB, the column that corresponds to μv has check marks
on every row in which the column that corresponds to μv′ has such
check marks, this means that any prime implicant that dominates μv′
also dominates μv. Consequently, we can use table TC in place of TB
when computing the minimal covers as in the previous paragraph.
Finally, it is clear that a subset Q′ as above cannot include any
prime implicant removed in Step (D). Thus the output in Step (E)
is correct. �

It should be noted that the set of all minimal covers of prime
implicants of ϕ could be obtained directly from table TA of the pre-
vious algorithm. The point of the algorithm is to make this task
somewhat simpler by reducing the number of rows and columns
involved.

Example 2.5.37. Let ϕ be the formula considered in Exam-
ple 2.5.32. The minterms over SV (ϕ) are

μv0 = ((¬p0) ∧ (¬p1) ∧ (¬p2)),
μv1 = ((¬p0) ∧ (¬p1) ∧ p2),
μv2 = ((¬p0) ∧ p1 ∧ (¬p2)),
μv3 = ((¬p0) ∧ p1 ∧ p2),
μv4 = (p0 ∧ (¬p1) ∧ (¬p2)),
μv7 = (p0 ∧ p1 ∧ p2).

The prime implicants of ϕ are (¬p0), (p1 ∧ p2), and ((¬p1) ∧
(¬p2)).

Propositional Logic–Syntax and Semantics 143

(A) Table TA is given by

TA μv0 μv1 μv2 μv3 μv4 μv7
(¬p0)

√ √ √ √

(p1 ∧ p2)
√ √

((¬p1) ∧ (¬p2))
√ √

(B) Note that every prime implicant is essential; the column that
corresponds to μv1 contains a unique check mark on the line corre-
sponding to (¬p0), the column that corresponds to μv7 contains a
single check mark on the line corresponding to (p1 ∧ p2)), and the
column that corresponds to μv4 contains a single check mark on the
line corresponding to ((¬p1) ∧ (¬p2)).

Therefore, table TB is empty as are all the subsequent tables and
the output is the original set of prime implicants. The only disjunc-
tive normal forms for ϕ that consist of prime implicants are the
disjunctions of this set.

Example 2.5.38. Consider the formula

ϕ = ((p0 ∧ p1 ∧ p2) ∨ (p0 ∧ (¬p2)) ∨ (p0 ∧ p1 ∧ (¬p3))
∨((¬p0) ∧ p2) ∨ ((¬p0) ∧ (¬p1) ∧ (¬p2) ∧ (¬p3))).

Its truth table is

p0 p1 p2 p3 ϕ
F F F F T
F F F T F
F F T F T
F F T T T
F T F F F
F T F T F
F T T F T
F T T T T
T F F F T
T F F T T
T F T F F
T F T T F
T T F F T
T T F T T
T T T F T
T T T T T

144 Logical Foundations of Computer Science — Volume 1

The set of minterms L0 obtained in Step (A) of Algorithm 2.5.31 is

μv0 = (pF0 ∧ pF1 ∧ pF2 ∧ pF3), μv9 = (pT0 ∧ pF1 ∧ pF2 ∧ pT3),
μv2 = (pF0 ∧ pF1 ∧ pT2 ∧ pF3), μv12 = (pT0 ∧ pT1 ∧ pF2 ∧ pF3),
μv3 = (pF0 ∧ pF1 ∧ pT2 ∧ pT3), μv13 = (pT0 ∧ pT1 ∧ pF2 ∧ pT3),
μv6 = (pF0 ∧ pT1 ∧ pT2 ∧ pF3), μv14 = (pT0 ∧ pT1 ∧ pT2 ∧ pF3),
μv7 = (pF0 ∧ pT1 ∧ pT2 ∧ pT3), μv15 = (pT0 ∧ pT1 ∧ pT2 ∧ pT3),
μv8 = (pT0 ∧ pF1 ∧ pF2 ∧ pF3).

The layers produced by Algorithm 2.5.31 are shown in Figure 2.2.
A check mark next to an implicant means that the implicant was used
to produce an implicant in the next layer and therefore is not a prime
implicant. Thus, the prime implicants are

(pF0 ∧ pF1 ∧ pF3), (pF1 ∧ pF2 ∧ pF3), (pF0 ∧ pT2),
(pT0 ∧ pF2), (pT1 ∧ pT2), (pT0 ∧ pT1).

(A) The table TA is given in Figure 2.3.
(B) The essential prime implicants are the formulas (pF0 ∧ pT2) and

(pT0 ∧pF2) because the column of μv3 contains a single check mark
which corresponds to the first formula, and the column of μv9

L0 L1 L2

(pF
0 ∧ pF

1 ∧ pF
2 ∧ pF

3)
√

(pF
0 ∧ pF

1 ∧ pF
3) (pF

0 ∧ pT
2)

(pF
0 ∧ pF

1 ∧ pT
2 ∧ pF

3)
√

(pF
0 ∧ pF

1 ∧ pT
2)

√
(pT

0 ∧ pF
2)

(pF
0 ∧ pF

1 ∧ pT
2 ∧ pT

3)
√

(pF
0 ∧ pT

2 ∧ pF
3)

√
(pT

1 ∧ pT
2)

(pF
0 ∧ pT

1 ∧ pT
2 ∧ pF

3)
√

(pF
0 ∧ pT

2 ∧ pT
3)

√
(pT

0 ∧ pT
1)

(pF
0 ∧ pT

1 ∧ pT
2 ∧ pT

3)
√

(pF
0 ∧ pT

1 ∧ pT
2)

√
(pT

0 ∧ pF
1 ∧ pF

2 ∧ pF
3)

√
(pF

1 ∧ pF
2 ∧ pF

3)
(pT

0 ∧ pF
1 ∧ pF

2 ∧ pT
3)

√
(pT

0 ∧ pF
1 ∧ pF

2)
√

(pT
0 ∧ pT

1 ∧ pF
2 ∧ pF

3)
√

(pT
0 ∧ pF

2 ∧ pF
3)

√
(pT

0 ∧ pT
1 ∧ pF

2 ∧ pT
3)

√
(pT

0 ∧ pF
2 ∧ pT

3)
√

(pT
0 ∧ pT

1 ∧ pT
2 ∧ pF

3)
√

(pT
0 ∧ pT

1 ∧ pF
2)

√
(pT

0 ∧ pT
1 ∧ pT

2 ∧ pT
3)

√
(pT

1 ∧ pT
2 ∧ pF

3)
√

(pT
0 ∧ pT

1 ∧ pF
3)

√
(pT

1 ∧ pT
2 ∧ pT

3)
√

(pT
0 ∧ pT

1 ∧ pT
3)

√
(pT

0 pT
1 pT

2)
√

Fig. 2.2. Layers of implicants for the formula of Example 2.5.38.

Propositional Logic–Syntax and Semantics 145

TA µv0 µv2 µv3 µv6 µv7 µv8 µv9 µv12 µv13 µv14 µv15
(pF

0 ∧ pF
1 ∧ pF

3)
√ √

(pF
1 ∧ pF

2 ∧ pF
3)

√ √

(pF
0 ∧ pT

2)
√ √ √ √

(pT
0 ∧ pF

2)
√ √ √ √

(pT
1 ∧ pT

2)
√ √ √ √

(pT
0 pT

1)
√ √ √ √

Fig. 2.3. Table TA for Example 2.5.38.

contains a single check mark which corresponds to the second
formula. The table TB is given in the following:

TB μv0 μv14 μv15
(pF0 ∧ pF1 ∧ pF3)

√

(pF1 ∧ pF2 ∧ pF3)
√

(pT1 ∧ pT2)
√ √

(pT0 ∧ pT1)
√ √

(C) Table TC can be obtained by eliminating either column μv14 or
column μv15 . We chose to eliminate the latter column and obtain
the table

TC μv0 μv14
(pF0 ∧ pF1 ∧ pF3)

√

(pF1 ∧ pF2 ∧ pF3)
√

(pT1 ∧ pT2)
√

(pT0 ∧ pT1)
√

(D) Table TD coincides with TC since there is no row without check
marks.

(E) There are four minimal sets of rows in TD such that each col-
umn contains one check mark in one of the rows. By adding the
essential prime implicants, we obtain the following four sets of
implicants:

{(pF0 ∧ pT2), (pT0 ∧ pF2), (pF0 ∧ pF1 ∧ pF3), (pT1 ∧ pT2)},
{(pF0 ∧ pT2), (pT0 ∧ pF2), (pF0 ∧ pF1 ∧ pF3), (pT0 ∧ pT1)},
{(pF0 ∧ pT2), (pT0 ∧ pF2), (pF1 ∧ pF2 ∧ pF3), (pT1 ∧ pT2)},
{(pF0 ∧ pT2), (pT0 ∧ pF2), (pF1 ∧ pF2 ∧ pF3), (pT0 ∧ pT1)}.

146 Logical Foundations of Computer Science — Volume 1

Example 2.5.39. The truth table of the formula ψ = ((p0 ↔ p1) ∨
(p1 ↔ p2)) is

p0 p1 p2 ψ
F F F T
F F T T
F T F F
F T T T
T F F T
T F T F
T T F T
T T T T

The set of minterms L0 obtained in Step (A) of Algorithm 2.5.31 is

μv0 = ((¬p0) ∧ (¬p1) ∧ (¬p2)),
μv1 = ((¬p0) ∧ (¬p1) ∧ p2),
μv3 = ((¬p0) ∧ p1 ∧ p2),
μv4 = (p0 ∧ (¬p1) ∧ (¬p2)),
μv6 = (p0 ∧ p1 ∧ (¬p2)),
μv7 = (p0 ∧ p1 ∧ p2).

The Hasse diagram of the poset (IMPL(ψ),≤) is given in Figure 2.4.

� � � � � �

� � � � � �

µv0 µv1 µv3 µv4 µv6 µv7

(pF
0 ∧ pF

1) (pF
1 ∧ pF

2) (pF
0 ∧ pT

2) (pT
1 ∧ pT

2) (pT
0 ∧ pF

2) (pT
0 ∧ pT

1)

�
�

�
�

��

������������

������������

Fig. 2.4. Hasse diagram of (IMPL(ψ),≤).

(A) Table TA having one row for each prime implicant and one col-
umn for each minterm over SV (ϕ) is

Propositional Logic–Syntax and Semantics 147

TA μv0 μv1 μv3 μv4 μv6 μv7
θ0 = ((¬p0) ∧ (¬p1))

√ √

θ1 = ((¬p1) ∧ (¬p2))
√ √

θ2 = ((¬p0) ∧ p2)
√ √

θ3 = (p1 ∧ p2)
√ √

θ4 = (p0 ∧ (¬p2))
√ √

θ5 = (p0 ∧ p1)
√ √

(B) No essential prime implicants exist. Table TB coincides with TA.
(C) No columns can be eliminated at Step (C). Therefore, table TC

coincides with table TB .
(D) No rows can be eliminated in this step. Table TD coincides with

table TC and, therefore, with table TA.
(E) There are five minimal sets of rows in TD such that at least

one check mark exists in these rows for every column. They
correspond to the sets of implicants

{((¬p0) ∧ (¬p1)), (p1 ∧ p2), (p0 ∧ (¬p2))},
{((¬p1) ∧ (¬p2)), ((¬p0) ∧ p2), (p0 ∧ p1)},
{((¬p1) ∧ (¬p2)), ((¬p0) ∧ p2), (p1 ∧ p2), (p0 ∧ (¬p2))},
{((¬p0) ∧ (¬p1)), ((¬p0) ∧ p2), (p0 ∧ (¬p2)), (p0 ∧ p1)},
{((¬p0) ∧ (¬p1)), ((¬p1) ∧ (¬p2)), (p1 ∧ p2), (p0 ∧ p1)},

respectively. By any reasonable measure of “simplicity”, the first
two sets of implicants will result in the simplest disjunctive nor-
mal forms.

We gave no explanation in Step (E) of Algorithm 2.5.36 of how to
find the minimal covers of prime implicants. Sometimes, this is easily
done by inspection (as in Example 2.5.38). In other cases (such as
Example 2.5.39), it is not so easy to find the minimal covers and it is
useful to have a systematic search procedure. We describe one such
in the following after we introduce some helpful notation.

Definition 2.5.40. Let S ⊆ SV and let Z ⊆ MINTRM(S). The set
LZ is the set

⋂
{LIT(μ) | μ ∈ Z}.

148 Logical Foundations of Computer Science — Volume 1

Let μ ∈ MINTRM(S) and let T ⊆ SV be a set of variables such
that T ∩ S �= ∅. Then, the projection of μ on T is the minterm
μT ∈ MINTRM(T) that is the conjunction of those literals over T
that are conjuncts of μ. The set ZT is {μT | μ ∈ Z}.

For θ ∈ MINTRM(T), we define the set of minterms

Bθ,S = {μ ∈ MINTRM(S) | μT = θ}
= {μ ∈ MINTRM(S) | μ |= θ}.

The equivalence of the two expressions for Bθ,S is immediate from
Theorem 2.5.20. When S is clear from context, we will write Bθ for
Bθ,S .

Example 2.5.41. Let S = {p0, p1, p2, p3} and T = {p1, p3}. The
projection of the minterm μ = (pF0 ∧ pT1 ∧ pF2 ∧ pF3) ∈ MINTRM(S)
on T is the minterm θ = (pT1 ∧ pF3) ∈ MINTRM(T). The set Bθ,S
consists of the following minterms:

(pF0 ∧ pT1 ∧ pF2 ∧ pF3),
(pF0 ∧ pT1 ∧ pT2 ∧ pF3),
(pT0 ∧ pT1 ∧ pF2 ∧ pF3),
(pT0 ∧ pT1 ∧ pT2 ∧ pF3).

Algorithm 2.5.42.
Input: The table TD produced by Algorithm 2.5.36 for a satisfi-
able formula ϕ ∈ PLFORM with rows corresponding to the prime
implicants θ0, . . . , θm−1 and columns corresponding to minterms
μv0 , . . . , μvn−1 .
Output: Every minimal set of rows in TD such that at least one
check mark exists in these rows for every column.
Method:

(A) For 0 ≤ j ≤ n− 1, define Pj = {θi | μvj ∈ Bθi,S}.
(B) For each tuple t ∈ P0 × · · · × Pn−1, let C(t) be the set of all

implicants θi that occur in t. Define C = {C(t) | t ∈ P0×· · ·×
Pn−1}.

(C) Find the minimal-size members of C and add them to the
output. Eliminate these sets and their supersets from C. If
C = ∅, then halt; otherwise, repeat step (C).

Propositional Logic–Syntax and Semantics 149

Proof of Correctness: We call a set of rows sufficient if at least
one check mark exists in these rows for every column. It is clear
that for the value of C at the end of Step (B), every member of C is
sufficient and each sufficient set of rows contains a subset that belongs
to C (and, therefore, each minimal sufficient set of rows belongs to C).
Thus, Step (C), which finds the minimal elements of the original C,
yields the desired output. �

The above algorithm is clearly inefficient in that it may require
time exponential in the number of minterms. This inefficiency is
inherent in the nature of the problem.

Example 2.5.43. In this example, we apply Algorithm 2.5.42 to
compute the minimal sets of prime implicants for the formula con-
sidered in Example 2.5.39. In Step (A), we obtain the sets

P0 = {θ0, θ1} P3 = {θ1, θ4},
P1 = {θ0, θ2} P4 = {θ4, θ5},
P2 = {θ2, θ3} P5 = {θ3, θ5}.

For t0 = (θ0, θ0, θ2, θ1, θ4, θ3), we have C(t0) = {θ0, θ1, θ2, θ3, θ4}.
Continuing this process for the remaining 63 6-tuples contained in
the product P0×· · ·×P5, we obtain the following collection of sets C:

{θ0, θ3, θ4} {θ1, θ2, θ5} {θ0, θ1, θ2, θ5}
{θ0, θ1, θ3, θ4} {θ0, θ1, θ3, θ5} {θ0, θ2, θ3, θ4}
{θ0, θ2, θ4, θ5} {θ0, θ3, θ4, θ5} {θ1, θ2, θ3, θ4}
{θ1, θ2, θ3, θ5} {θ1, θ2, θ4, θ5} {θ0, θ1, θ2, θ3, θ4}
{θ0, θ1, θ2, θ3, θ5} {θ0, θ1, θ2, θ4, θ5} {θ0, θ1, θ3, θ4, θ5}
{θ0, θ2, θ3, θ4, θ5} {θ1, θ2, θ3, θ4, θ5} {θ0, θ1, θ2, θ3, θ4, θ5}.

In the first application of Step (C), the minimal-size members of C
are {θ0, θ3, θ4} and {θ1, θ2, θ5}. After eliminating the supersets of
these sets, the value of C for the new application of Step (C) consists
of the following sets:

{θ0, θ1, θ3, θ5}, {θ0, θ2, θ4, θ5}, {θ1, θ2, θ3, θ4}.

All these sets are of minimal-size, so we add these to the output. The
new value of C is ∅ and the algorithm halts.

150 Logical Foundations of Computer Science — Volume 1

We will now present an alternative to the Quine–McCluskey algo-
rithms (Algorithms 2.5.31 and 2.5.36) which is the Karnaugh3 map.
While the Quine–McCluskey algorithms are suitable for any num-
ber of statement variables and lend themselves to automation, the
Karnaugh map is appropriate for a small number of statement vari-
ables (usually less than six) and is inherently visual.

Theorem 2.5.44. Let ϕ be a formula and S = SV (ϕ). Let θ, θ′ be
partial minterms over S:

(1) θ ∈ IMPL(ϕ) if and only if Bθ,S ⊆ Mϕ, where Mϕ is the set of
minterms of ϕ.

(2) θ |= θ′ if and only if Bθ,S ⊆ Bθ′,S.
(3) If θ �= θ′, then Bθ,S �= Bθ′,S.
(4) θ is a prime implicant of ϕ if and only if Bθ,S ⊆ Mϕ and there

is no θ1 ∈ PMINTRM(S) such that Bθ,S ⊂ Bθ1,S ⊆Mϕ.

Proof. For the first part, suppose that θ ∈ IMPL(ϕ) and let μ ∈
Bθ,S . Since μ |= θ |= ϕ, it follows from Theorem 2.5.15 that μ ∈Mϕ.
Conversely, suppose Bθ,S ⊆Mϕ and let v ∈ TAS such that v(θ) = T.
Then, μv |= θ and thus μv ∈ Bθ,S ⊆Mϕ. Consequently, μv |= ϕ which
means that v(ϕ) = T. We conclude that θ ∈ IMPL(ϕ).

For the second part, suppose that θ |= θ′ and let μ ∈ Bθ,S. We
have μ |= θ |= θ′, so μ ∈ Bθ′,S . Conversely, suppose that Bθ,S ⊆ Bθ′,S
and let v ∈ TAS be such that v(θ) = T. Then, μv ∈ Bθ,S ⊆ Bθ′,S , so
μv |= θ′ which implies v(θ′) = T. Thus, θ |= θ′.

For the third part, suppose that Bθ,S = Bθ′,S. Then, by
Part (2), θ |= θ′ and θ′ |= θ, which implies LIT(θ) = LIT(θ′), by
Theorem 2.5.20. Since both θ and θ′ are minterms, this amounts to
θ = θ′.

The fourth part follows from the previous parts. �

3Maurice Karnaugh was born on October 4, 1924, in New York City and died on
November 8, 2022, in New York City. He studied at City College of New York and
received his Ph. D. from Yale. He was affiliated with Bell Labs and AT&T and
later joined IBM. His research interests span areas from applications of computers
in telecommunications to artificial intelligence.

Propositional Logic–Syntax and Semantics 151

The following algorithm uses a top-down approach to find the
prime implicants of a formula.

Algorithm 2.5.45.
Input: A formula ϕ.
Output: All prime implicants of ϕ.
Method:

(A) Obtain a standard disjunctive normal form for ϕ and use it to
obtain the set Mϕ as defined above.

(B) Set I = ∅ and i = 1.
(C) For each T ⊆ SV (ϕ) with |T | = i and θ ∈ MINTRM(T), if

Bθ,S ⊆ Mϕ and if for every θ′ ∈ I, Bθ,S �⊆ Bθ′,S, then add θ
to I.

(D) If i = n, halt with I as output. Otherwise, increase i by one
and go to (C).

Proof of Correctness: The correctness of the algorithm follows
from Theorem 2.5.44. �

Algorithm 2.5.45, as presented above, is quite impractical, as the
following example will show. The problem is that even for a small
number of variables, there are too many sets of the form Bθ,S to
consider. Specifically, there are 3n − 1 such sets, where n = |S|.
However, we presented the algorithm because, together with a display
technique which allows for the visual recognition of the sets Bθ,S , it
serves as the basis for a method which can be used when n is not too
large (usually no larger than 5).

Example 2.5.46. Consider the formula ϕ introduced in Exam-
ple 2.5.38, where the set Mϕ was determined. In Figure 2.5, we dis-
play the set Mϕ together with the sets Bθ,S for minterms θ that
contain one variable in S = {p0, p1, p2, p3}. As can be seen from
the figure, none of the one-variable minterms is a prime implicant.
There are 24 two-variable minterms and 32 three-variable minterms
to consider, which makes an exhaustive examination prohibitive.
In Figure 2.6, we illustrate the case of two-variable minterms.
By computing the remaining 20 columns of this table, the reader
could reach the conclusion that the two-variable prime implicants of
ϕ are p̄0 ∧ p2, p0 ∧ p̄2, p1 ∧ p2, and p0 ∧ p1.

152 Logical Foundations of Computer Science — Volume 1

Minterm Mϕ Bθ,S

p0 p̄0 p1 p̄1 p2 p̄2 p3 p̄3

p̄0 ∧ p̄1 ∧ p̄2 ∧ p̄3
√ √ √ √ √

p̄0 ∧ p̄1 ∧ p̄2 ∧ p3
√ √ √ √

p̄0 ∧ p̄1 ∧ p2 ∧ p̄3
√ √ √ √ √

p̄0 ∧ p̄1 ∧ p2 ∧ p3
√ √ √ √ √

p̄0 ∧ p1 ∧ p̄2 ∧ p̄3
√ √ √ √

p̄0 ∧ p1 ∧ p̄2 ∧ p3
√ √ √ √

p̄0 ∧ p1 ∧ p2 ∧ p̄3
√ √ √ √ √

p̄0 ∧ p1 ∧ p2 ∧ p3
√ √ √ √ √

p0 ∧ p̄1 ∧ p̄2 ∧ p̄3
√ √ √ √ √

p0 ∧ p̄1 ∧ p̄2 ∧ p3
√ √ √ √ √

p0 ∧ p̄1 ∧ p2 ∧ p̄3
√ √ √ √

p0 ∧ p̄1 ∧ p2 ∧ p3
√ √ √ √

p0 ∧ p1 ∧ p̄2 ∧ p̄3
√ √ √ √ √

p0 ∧ p1 ∧ p̄2 ∧ p3
√ √ √ √ √

p0 ∧ p1 ∧ p2 ∧ p̄3
√ √ √ √ √

p0 p1 p2 p3
√ √ √ √ √

Fig. 2.5. The sets Mϕ and Bθ,S for one-variable minterms.

Minterm Mϕ Bθ,S

p0 ∧ p1 · · · p0 ∧ p̄2 p1 ∧ p2 · · · p̄2 ∧ p̄3

p̄0 ∧ p̄1 ∧ p̄2 ∧ p̄3
√ √

p̄0 ∧ p̄1 ∧ p̄2 ∧ p3

p̄0 ∧ p̄1 ∧ p2 ∧ p̄3
√

p̄0 ∧ p̄1 ∧ p2 ∧ p3
√

p̄0 ∧ p1 ∧ p̄2 ∧ p̄3
√

p̄0 ∧ p1 ∧ p̄2 ∧ p3

p̄0 ∧ p1 ∧ p2 ∧ p̄3
√ √

p̄0 ∧ p1 ∧ p2 ∧ p3
√ √

p0 ∧ p̄1 ∧ p̄2 ∧ p̄3
√ √ √

p0 ∧ p̄1 ∧ p̄2 ∧ p3
√ √

p0 ∧ p̄1 ∧ p2 ∧ p̄3

p0 ∧ p̄1 ∧ p2 ∧ p3

p0 ∧ p1 ∧ p̄2 ∧ p̄3
√ √ √ √

p0 ∧ p1 ∧ p̄2 ∧ p3
√ √ √

p0 ∧ p1 ∧ p2 ∧ p̄3
√ √ √

p0 p1 p2 p3
√ √ √

Fig. 2.6. The sets Mϕ and Bθ,S for two-variable minterms θ.

Propositional Logic–Syntax and Semantics 153

We can eliminate 13 three-variable minterms θ′ because Bθ′,S ⊆
Bθ,S for some previously identified two-variable prime implicant θ.
Among the remaining 19 three-variable minterms, using the tabular
method, we find the prime implicants p̄0 ∧ p̄1 ∧ p̄3 and p̄1 ∧ p̄2 ∧ p̄3.

Since Mϕ is contained in the union of the sets of the form Bθ,S
for the prime implicants θ obtained so far, there are no four-variable
prime implicants.

We now proceed to establish the basis for the visual method pre-
viously mentioned. There are two steps in this process. The first is
to partition the set S of variables into two sets U and V and use a
bijection between MINTRM(S) and MINTRM(U) × MINTRM(V)
to give a two-dimensional representation of the sets Mϕ and Bθ,S.
The second is to use a special ordering of the minterms over U and
V that makes the sets Bθ,S easy to identify visually.

Theorem 2.5.47. Let S ⊆ SV , T ⊆ S, and θ, θ′ ∈ MINTRM(T).
Then, LIT(θ) = LBθ,S . Furthermore, if Bθ,S = Bθ′,S, then θ = θ′.

Proof. We leave the easy proof of the first equality to the reader.
If Bθ,S = Bθ′,S, then LIT(θ) = LIT(θ′), which implies θ = θ′. �

Suppose that S = {pi0 , . . . , pin−1}, where i0 < · · · < in−1 and that
U = {pi0 , . . . , pik−1

}, V = {pik , . . . , pin−1} is a partition of S with
0 < k < n. There is a bijection F : MINTRM(U)×MINTRM(V) −→
MINTRM(S) given by

F (pa0i0 ∧ · · · ∧ p
ak−1

ik−1
, pakik ∧ · · · ∧ p

an−1

in−1
) = pa0i0 ∧ · · · ∧ p

an−1

in−1
.

For ξ ∈ MINTRM(U) and ζ ∈ MINTRM(V), we will abuse notation
slightly and write F (ξ, ζ) as ξ ∧ ζ.

Theorem 2.5.48. Let S ⊆ SV , T,U ⊆ S, and θ ∈ MINTRM(T) :

(1) We have

(Bθ,S)U =

{
BθU ,U if U ∩ T �= ∅
MINTRMU otherwise.

(2) Let {U, V } be a partition of S = {pi0 , . . . , pin−1}, where i0 <
· · · < in−1. Suppose that U = {pi0 , . . . , pik−1

} and V =
{pik , . . . , pin−1}. Then,

Bθ,S = {ξ ∧ ζ | ξ ∈ (Bθ,S)U , ζ ∈ (Bθ,S)V }.

154 Logical Foundations of Computer Science — Volume 1

Proof. Suppose that U∩T �= ∅. Let η ∈ (Bθ,S)U . Then, η = μU for
some μ ∈ MINTRM(S) such that μT = θ. Then, η ∈ MINTRM(U)
and since ηT∩U = (μU)T∩U = μT∩U = (μT)T∩U = θT∩U = θU ,
we have η ∈ BθU ,U . Conversely, suppose that η ∈ BθU ,U . We have
η ∈ MINTRM(U) and ηT∩U = θU = θT∩U . Therefore, there exists
a minterm μ ∈ MINTRM(S) such that μT = θ and μU = η, which
shows that η ∈ (Bθ,S)U .

Suppose that U ∩ T = ∅ and let η ∈ MINTRM(U). The disjoint-
ness of U and T implies the existence of μ ∈ MINTRM(S) such that
μU = η and μT = θ. Thus, η ∈ (Bθ,S)U , so MINTRM(U) ⊆ (Bθ,S)U .
Since the reverse inclusion is obvious, this completed the proof of the
first part of the theorem.

Let now {U, V } be a partition of S as defined prior to
Theorem 2.5.48, and let μ ∈ Bθ,S . Since μ = μU ∧ μV and μU ∈
(Bθ,S)U , μV ∈ (Bθ,S)V , we have Bθ,S ⊆ {ξ ∧ ζ | ξ ∈ (Bθ,S)U, ζ ∈
(Bθ,S)V }.

Conversely, let ξ ∈ (Bθ,S)U , ζ ∈ (Bθ,S)V . Then ξ = μU , ζ = μ′V ,
where μ, μ′ ∈ MINTRM(S) and μT = μ′T = θ. Therefore, ξ ∧ ζ ∈
MINTRM(S) and

(ξ ∧ ζ)T = ξT ∧ ζT = ξT∩U ∧ ζT∩V
= μT∩U ∧ μ′T∩V = θT∩U ∧ θT∩V = θ.

Thus, {ξ ∧ ζ | ξ ∈ (Bθ,S)U , ζ ∈ (Bθ,S)V } ⊆ Bθ,S. �

Theorem 2.5.49. Let S ⊆ SV , {U, V } be a partition of S as above,
and let Z ⊆ MINTRM(S). There is θ ∈ PMINTRM(S) such that
Z = Bθ,S if and only if the following conditions are met:

(i) either ZU = MINTRM(U) or ZU = Bθ′,U for some partial
minterm θ′ over U ,

(ii) either ZV = MINTRM(V) or ZV = Bθ′′,V for some partial
minterm θ′′ over V ,

(iii) either ZU �= MINTRM(U) or ZV �= MINTRM(V),
(iv) Z = {ξ ∧ ζ | ξ ∈ ZU and ζ ∈ ZV }.
Furthermore, if such a θ exists, then one of the following three cases
occurs:

• θ = θ′ ∧ θ′′ if ZU = Bθ′,U for some θ′ ∈ PMINTRM(U) and
ZV = Bθ′′,V for some θ′′ ∈ PMINTRM(V),

Propositional Logic–Syntax and Semantics 155

• θ = θ′ if ZU = Bθ′,U for some θ′ ∈ PMINTRM(U) and ZV =
MINTRM(V),

• θ = θ′′ if ZV = Bθ′′,V for some θ′′ ∈ PMINTRM(V) and ZU =
MINTRM(U).

Proof. Suppose that there is θ ∈ MINTRM(T), with T ⊆ S such
that Z = Bθ,S. By Theorem 2.5.48, we have conditions (i), (ii), and
(iv). Condition (iii) is also satisfied for otherwise, T would be empty.

Conversely, suppose that conditions (i)–(iv) are satisfied. We need
to consider three cases:

(A) Suppose that ZU = Bθ′,U and ZV = Bθ′′,V , where θ′ ∈
MINTRM(T ′), θ′′ ∈ MINTRM(T ′′), and T ′ ⊆ U, T ′′ ⊆ V . Let
θ = θ′ ∧ θ′′ ∈ MINTRM(T ′ ∪ T ′′). By Theorem 2.5.48, we have

(Bθ,S)U = BθU ,U = Bθ′,U = ZU ,

(Bθ,S)V = BθV ,V = Bθ′′,V = ZV ,

so, again by Theorem 2.5.48, we obtain

Bθ,S = {ξ ∧ ζ | ξ ∈ (Bθ,S)U , ζ ∈ (Bθ,S)V }
= {ξ ∧ ζ | ξ ∈ ZU , ζ ∈ ZV }
= Z.

(B) Now, suppose that ZU = Bθ′,U , θ
′ ∈ MINTRM(T ′), T ′ ⊆ U ,

and ZV = MINTRM(V). Define θ = θ′. We have

(Bθ,S)U = BθU ,U = Bθ′,U = ZU ,

(Bθ,S)V = MINTRM(V) = ZV ,

which, as in Case (A), implies Bθ,S = Z.
(C) Suppose that ZU = MINTRM(U) and ZV = Bθ′′,V , where θ

′′ ∈
MINTRM(T ′′) and T ′′ ⊆ V . Then, we let θ = θ′′ and we proceed
as in Case (B).

The second part of the theorem follows from the proof of the first
part and Theorem 2.5.47, which also establishes the uniqueness of θ.

�

Corollary 2.5.50. Let S ⊆ SV , {U, V } be a partition of S as above,
and let Z ⊆ MINTRM(S). If there is θ ∈ PMINTRM(S) such that
Z = Bθ,S, then θ is the minterm defined as follows:

156 Logical Foundations of Computer Science — Volume 1

(1) If LZU �= ∅ and LZV �= ∅, then θ = θ′ ∧ θ′′, where θ′ is the
minterm that is the conjunction of the literals in LZU and θ′′ is
the minterm that is the conjunction of the literals in LZV .

(2) If LZU �= ∅ and LZV = ∅, then θ is the conjunction of the literals
in LZU .

(3) If LZU = ∅ and LZV �= ∅, then θ is the conjunction of the literals
in LZV .

Proof. The result follows immediately from Theorem 2.5.49 and
the fact that LZ = LZU ∪ LZV . �

Let ϕ be a formula such that the set S = SV (ϕ) has at least two
elements and let U, V be a partition of S as defined in the notation
introduced before Theorem 2.5.48. Let

MINTRM(U) = {ξ0, . . . , ξ2k−1},
MINTRM(V) = {ζ0, . . . , ζ2n−k−1}

be two fixed orderings of MINTRM(U) and MINTRM(V). We denote
F (ξi, ζj) as μij.

A minterm μ ∈ MINTRM(S) is represented graphically as in
Figure 2.7. Namely, if μ = ξi ∧ ζj, we mark the intersection of the
row labeled ξi and the column labeled ζj . A set of minterms over S is
represented by marking each square that corresponds to a minterm
in the set. We refer to a set of squares that represents a set Bθ,S as

√

ζjζ0 ζ2n−k 1

ξ2k−1

ξi

ξ0

...

...

Fig. 2.7. Representation of a minterm.

Propositional Logic–Syntax and Semantics 157

the θ-region. Any set of squares that is the θ-region for some minterm
θ is referred to as a region.

The ease of finding regions visually can vary greatly depending on
the order chosen for MINTRM(U) and MINTRM(V). For example,
let S = {p0, p1, p2, p3}, U = {p0, p1}, and V = {p2, p3}. Assume
initially that

MINTRM(U) = {p̄0 ∧ p̄1, p̄0 ∧ p1, p0 ∧ p̄1, p0 ∧ p1},
MINTRM(V) = {p̄2 ∧ p̄3, p̄2 ∧ p3, p2 ∧ p̄3, p2 ∧ p3}.

In Figure 2.8, we show two 2×2 areas marked with ∗ and ♦. The one
marked with asterisks corresponds to the set Bp0∧p̄2 , while the one
marked with diamonds is not a region. With the current choice of
the orderings on MINTRM(U) and MINTRM(V), there is no eas-
ily stateable method for identifying those areas that are regions.
By choosing the orderings

MINTRM(U) = {p̄0 ∧ p̄1, p0 ∧ p̄1, p0 ∧ p1, p̄0 ∧ p1},
MINTRM(V) = {p̄2 ∧ p̄3, p2 ∧ p̄3, p2 ∧ p3, p̄2 ∧ p3},

as illustrated in Figure 2.9, any 2× 2 area is a region. For example,
the area marked with asterisks is the region corresponding to p0∧p2.

p̄2 p̄3 p̄2 p3 p2 p̄3 p2 p3

p̄0 ∧ p̄1

p̄0 ∧ p1

p0 ∧ p̄1

p0 ∧ p1 ∗

∗ ∗

∗

�

� �

�

Fig. 2.8. A region and a nonregion.

158 Logical Foundations of Computer Science — Volume 1

∗ ∗

∗ ∗

p̄2 p̄3 p2 p̄3 p2 p3 p̄2 p3

p̄0 ∧ p̄1

p0 ∧ p̄1

p0 ∧ p1

p̄0 ∧ p1

Fig. 2.9. Representation of a region.

We will show next how to systematically generate such orderings and
how to identify regions visually.

Definition 2.5.51. Let k be a positive natural number. The Gray
sequence of order k is the sequence grayk in Seq(Boolk) of length 2k

defined recursively as follows:

• gray1 = (F,T),
• for k > 1,

grayk = (grayk−1
0 F, . . . , grayk−1

2k−1−1
F, grayk−1

2k−1−1
T, . . . , grayk−1

0 T).

Theorem 2.5.52. Let k ≥ 1. Then, {grayki | 0 ≤ i ≤ 2k − 1} =

Boolk. Further, δ(grayki , gray
k
i+1) = 1 for 0 ≤ i ≤ 2k − 2 and

δ(grayk
2k−1

, grayk0) = 1.

Proof. We leave this easy proof by induction on k to the reader.
�

Example 2.5.53. Starting from the Gray sequence of order 1,
gray1 = (F,T), we obtain the Gray sequence of order 2:

gray2 = ((F,F), (T,F), (T,T), (F,T)).

Propositional Logic–Syntax and Semantics 159

Then, the Gray sequence of order 3 is given by

gray3 = ((F,F,F), (T,F,F), (T,T,F), (F,T,F)

= (F,T,T), (T,T,T), (T,F,T), (F,F,T)).

Let S = {pi0 , . . . , pin−1} be a set of statement variables, where
i0 < · · · < in−1 and let �a = (a0, . . . , an−1) ∈ Booln. We denote by
v�a,S the partial truth assignment given by v�a,S(pik) = ak for every k,
0 ≤ k ≤ n− 1.

Let S = {pi0 , . . . , pik−1
}, with i0 < · · · < ik−1, be a nonempty,

finite set of statement variables. The Gray ordering of MINTRM(S)
is given by

MINTRM(S) = {μ0, . . . , μ2k−1} where μi = μvgrayki ,W
.

Example 2.5.54. Let S = {pi0 , pi1 , pi2}, where i0 < i1 < i2. Denote
these variables as p, q, r. The Gray ordering of MINTRM(S) is

MINTRM(S) = {p̄ ∧ q̄ ∧ r̄, p ∧ q̄ ∧ r̄, p ∧ q ∧ r̄, p̄ ∧ q ∧ r̄,
p̄ ∧ q ∧ r, p ∧ q ∧ r, p ∧ q̄ ∧ r, p̄ ∧ q̄ ∧ r}.

Let ϕ be a formula such that the set S = SV (ϕ) has at least
two elements. Suppose that S = {pi0 , . . . , pin−1}, where i0 < · · · <
in−1. The Karnaugh map that corresponds to the partition U =
{pi0 , . . . , pik−1

}, V = {pik , . . . , pin−1} of S with 0 < k < n is the
representation of the set Mϕ obtained as above where MINTRM(U)
and MINTRM(V) are ordered by the Gray ordering.

The usefulness of Karnaugh maps is based on the ease of iden-
tifying the sets Bθ,S and to this end, by Theorem 2.5.49, we need
to be able to recognize sets of the form Bθ′,U and Bθ′′,V , when
MINTRM(U) and MINTRM(V) are ordered according to the Gray
sequence. The following two examples describe such sets when
|U | = 2 or |U | = 3. The same considerations apply to V .

Example 2.5.55. Let U = {p0, p1}. Figure 2.10 shows a table where
the columns correspond to the minterms over U , listed in the Gray
ordering and the rows correspond to sets of the form Bθ′,U , where
the presence of an asterisk in column μ, row θ′ means that μ ∈ Bθ′,U .

160 Logical Foundations of Computer Science — Volume 1

μ0 = p̄0 ∧ p̄1

μ1 = p0 ∧ p̄1

μ2 = p0 ∧ p1

μ3 = p̄0 ∧ p1

μ0 μ1 μ2 μ3 θ′

∗ ∗ p0

∗ ∗ p1

∗ ∗ p̄0

∗ ∗ p̄1

∗ p̄0 ∧ p̄1

∗ p0 ∧ p̄1

∗ p0 ∧ p1

p̄0 p1

Fig. 2.10. Representation of the sets Bθ′,U , where |U | = 2.

As can be seen, the sets Bθ′,U , where θ
′ contains a single literal, are

those sets consisting of two consecutive minterms, where we regard
the last and first minterms as being consecutive. We describe this
succinctly by saying that these regions consist of two consecutive
minterms with wraparound. Obviously, the sets of the form Bθ′,U ,
where θ′ is a conjunction of two literals, are the sets consisting of a
single minterm.

It is clear that the same representation would work for any set U
of two variables.

Example 2.5.56. Figure 2.11 shows the sets Bθ′,U , for U =
{p0, p1, p2}, using a format similar to the one used in Figure 2.10.
To save space, the table omits θ′ consisting of three literals. The
description of the regions is now more intricate; nevertheless, it is
simple enough to be practical. We refer to the first four columns
(μ0 through μ3) as the first half of MINTRM(U) and the remaining

μ0 = p̄0 ∧ p̄1 ∧ p̄2
μ1 = p0 ∧ p̄1 ∧ p̄2
μ2 = p0 ∧ p1 ∧ p̄2
μ3 = p̄0 ∧ p1 ∧ p̄2
μ4 = p̄0 ∧ p1 ∧ p2
μ5 = p0 ∧ p1 ∧ p2
μ6 = p0 ∧ p̄1 ∧ p2
μ7 = p̄0 ∧ p̄1 ∧ p2

μ0 μ1 μ2 μ3 μ4 μ5 μ6 μ7 θ′
∗ ∗ ∗ ∗ p0

∗ ∗ ∗ ∗ p1
∗ ∗ ∗ ∗ p̄0
∗ ∗ ∗ ∗ p̄1

∗ ∗ ∗ ∗ p2
∗ ∗ ∗ ∗ p̄2
∗ ∗ p̄0 ∧ p̄1

∗ ∗ p0 ∧ p̄1
∗ ∗ p0 ∧ p1

∗ ∗ p̄0 ∧ p1
∗ ∗ p0 ∧ p2

∗ ∗ p1 ∧ p2
∗ ∗ p̄0 ∧ p2

∗ ∗ p̄1 ∧ p2
∗ ∗ p0 ∧ p̄2

∗ ∗ p1 ∧ p̄2
∗ ∗ p̄0 ∧ p̄2
∗ ∗ p̄1 ∧ p̄2

.

.

.

Fig. 2.11. Representation of the sets Bθ′,U , where |U | = 3.

Propositional Logic–Syntax and Semantics 161

columns (μ4 through μ7) as the second half. The six regions corre-
sponding to θ′ with one literal consist of the two halves plus four
regions obtained by taking two consecutive columns in the first half
(with wraparound) and their symmetric images in the second half.
The twelve regions that correspond to θ′ with two literals consist of
either two consecutive columns in one half (with wraparound) or one
column in one half and its symmetric image in the other half.

Let S be a set of four variables and let ϕ be a formula such that
SV (ϕ) = S. Depending on the partition {U, V } we choose for S, we
can have three possible Karnaugh maps for ϕ. The most practical is
the one where |U | = |V | = 2. The following example describes the
regions for such a Karnaugh map.

Example 2.5.57. Let S = {p0, p1, p2, p3} be partitioned as U =
{p0, p1} and V = {p2, p3}. The Gray orderings of MINTRM(U) and
MINTRM(V) are given by

ξ0 = p̄0 ∧ p̄1, ζ0 = p̄2 ∧ p̄3,
ξ1 = p0 ∧ p̄1, ζ1 = p2 ∧ p̄3,
ξ2 = p0 ∧ p1, ζ2 = p2 ∧ p3,
ξ3 = p̄0 ∧ p1, ζ3 = p̄2 ∧ p3.

There are 80 regions corresponding to the minterms over subsets
of S, which are described in the following table. In this table,
the term “consecutive” should be understood as “consecutive with
wraparound”.

Number of
literals in θ

Number
of such θ

Size of
Bθ,S

Description of
Bθ,S

1 8 8 2 consecutive rows or
columns

2 24 4 Single rows, single
columns, and products
of two consecutive
rows with two
consecutive columns

3 32 2 Two consecutive cells,
horizontally or
vertically

4 16 1 Single cell

162 Logical Foundations of Computer Science — Volume 1

In Figures 2.12–2.14, we give examples of regions and the
minterms they correspond to, for one, two, and three literals,
respectively.

p̄2 p̄3

p̄0∧p̄1

p0∧p̄1

p0∧p1

p̄0∧p1

p2 p̄3 p2 p3 p̄2 p3

∗

∗

∗

∗

∗

∗

∗

∗

p̄3

Fig. 2.12. Region for minterm p̄3.

p̄2∧p̄3

p̄0∧p̄1

p0∧p̄1

p0∧p1

p̄0∧p1

p2∧p̄3 p2∧p3 p̄2∧p3 p̄2∧p̄3

p̄0∧p̄1

p0∧p̄1

p0∧p1

p̄0∧p1

p2∧p̄3 p2∧p3 p̄2∧p3

p̄2∧p̄3

p̄0∧p̄1

p0∧p̄1

p0∧p1

p̄0∧p1

p2∧p̄3 p2∧p3 p̄2∧p3 p̄2∧p̄3

p̄0∧p̄1

p0∧p̄1

p0∧p1

p̄0∧p1

p2∧p̄3 p2∧p3 p̄2∧p3

∗ ∗ ∗ ∗

p0 ∧ p̄1

∗

∗ ∗

∗

p0 ∧ p̄2

(b)(a)

(d)(c)

∗ ∗

∗ ∗

p̄1 ∧ p̄3

∗ ∗

∗ ∗

p̄0 ∧ p̄2

Fig. 2.13. Regions for two-literal minterms.

Propositional Logic–Syntax and Semantics 163

p̄2∧p̄3

p̄0∧p̄1

p0∧p̄1

p0∧p1

p̄0∧p1

p2∧p̄3 p2∧p3 p̄2∧p3 p̄2∧p̄3

p̄0∧p̄1

p0∧p̄1

p0∧p1

p̄0∧p1

p2∧p̄3 p2∧p3 p̄2∧p3

∗ ∗

p0 ∧ p̄1 ∧ p2

∗ ∗

p0 ∧ p1 ∧ p̄2

(a) (b)

Fig. 2.14. Regions for three-literal minterms.

p̄2 p̄3

p̄0∧p̄1

p0∧p̄1

p0∧p1

p̄0∧p1

p2 p̄3 p2 p3 p̄2 p3

∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

Fig. 2.15. The Karnaugh map for the formula ϕ.

When the number of variables in the formula ϕ is less than 5,
we now have a practical alternative to Algorithm 2.5.31 to find the
prime implicants of ϕ, using Algorithm 2.5.45 and the Karnaugh
map. We illustrate this approach by finding the prime implicants of
the formula ϕ considered in Example 2.5.38.

Example 2.5.58. Figure 2.15 shows the Karnaugh map for the for-
mula ϕ of Example 2.5.38.

It is clear that Mϕ does not contain any two consecutive rows or
columns and so ϕ has no prime implicants that contain one literal.
In the next step, we look for regions corresponding to minterms with
two literals that are contained in Mϕ and we find four such regions:
one row and three 2× 2 regions, two of which have wraparound (see
Figure 2.16).

We can use Theorems 2.5.47 and 2.5.49 to identify the minterms
that correspond to each of the regions. For instance, for the region
Z in Figure 2.16(a), LZU = {p0, p1}, so ZU = Bp0∧p1,U and

164 Logical Foundations of Computer Science — Volume 1

p̄2∧p̄3

p̄0∧p̄1

p0∧p̄1

p0∧p1

p̄0∧p1

p2∧p̄3 p2∧p3 p̄2∧p3

∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗

∗ ∗
p̄2∧p̄3

p̄0∧p̄1

p0∧p̄1

p0∧p1

p̄0∧p1

p2∧p̄3 p2∧p3 p̄2∧p3

∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

p̄2∧p̄3

p̄0∧p̄1

p0∧p̄1

p0∧p1

p̄0∧p1

p2∧p̄3 p2∧p3 p̄2∧p3

∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗

∗ ∗
p̄2∧p̄3

p̄0∧p̄1

p0∧p̄1

p0∧p1

p̄0∧p1

p2∧p̄3 p2∧p3 p̄2∧p3

∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

�� �� �
�

	

	

�
� � 	

�

p0 ∧ p1 p1 ∧ p2

(a) (b)

(c) (d)

p0 ∧ p̄2 p̄0 ∧ p2

Fig. 2.16. Regions corresponding to two-literal minterms.

ZV = MINTRM(V), so Z = Bp0∧p1,S. Further, for the region Z in
Figure 2.16(c), we have LZU = {p0}, LZV = {p̄2}, so Z = Bp0∧p̄2,S.
Each of these regions corresponds to a prime implicant. Among the
regions that are contained in Mϕ and correspond to minterms with
three literals, only the two shown in Figure 2.17 are not contained
in the region of a prime implicant found earlier. Thus, these regions
correspond to the last two prime implicants.

So far, the Karnaugh map has been used as an alternative to the
first Quine–McCluskey algorithm (Algorithm 2.5.31) as a method for
identifying the prime implicants of a formula. We can also use the
Karnaugh map to identify minimal covers. To this end, we locate
those cells in Mϕ that are contained in a single prime implicant of
ϕ. The corresponding prime implicants are the essential ones and
they must appear in every cover of ϕ. After this, the minimal covers

Propositional Logic–Syntax and Semantics 165

p̄2∧p̄3

p̄0∧p̄1

p0∧p̄1

p0∧p1

p̄0∧p1

p2∧p̄3 p2∧p3 p̄2∧p3

∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗

∗ ∗
p̄2∧p̄3

p̄0∧p̄1

p0∧p̄1

p0∧p1

p̄0∧p1

p2∧p̄3 p2∧p3 p̄2∧p3

∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

�
�

�
�

�� ��

p̄1 ∧ p̄2 ∧ p̄3 p̄0 ∧ p̄1 ∧ p̄3

(a) (b)

Fig. 2.17. Regions corresponding to three-literal minterms.

p̄2 p̄3

p̄0∧p̄1

p0∧p̄1

p0∧p1

p̄0∧p1

p2 p̄3 p2 p3 p̄2 p3

∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

	
� �

� 	

Fig. 2.18. The prime implicants of ϕ.

can often be identified visually. The following example illustrates
this.

Example 2.5.59. Figure 2.18 shows all the prime implicants of the
formula ϕ considered most recently in Example 2.5.58. Observe that
the cells that correspond to p̄0 ∧ p̄1 ∧ p2 ∧ p3 and p0 ∧ p̄1 ∧ p̄2 ∧ p3
are contained in the regions corresponding to the prime implicants
p̄0 ∧ p2 and p0 ∧ p̄2, respectively, and in no other region. Thus, these
two prime implicants are essential. The cells of Mϕ not covered by
the essential prime implicants correspond to the minterms

μv0 = p̄0 ∧ p̄1 ∧ p̄2 ∧ p̄3,
μv14 = p0 ∧ p1 ∧ p2 ∧ p̄3,
μv15 = p0 ∧ p1 ∧ p2 ∧ p3.

166 Logical Foundations of Computer Science — Volume 1

The cell μv0 can be covered with either p̄1 ∧ p̄2 ∧ p̄3 or p̄0 ∧ p̄1 ∧ p̄3.
Both μv14 and μv15 can be covered with either p0 ∧ p1 or p1 ∧ p2.
Thus, we retrieve the minimal covers found in Example 2.5.38.

Theorem 2.5.60. Let S be a finite, nonempty set of statement vari-
ables and let τ ∈ TTS. Then, there is a formula ψ in conjunctive
normal form with SV (ψ) = S such that τψ,S = τ . In addition, if

τ(v) = F for at least one v ∈ TAS, then such a ψ exists each of
whose conjuncts is a maxterm over S.

Proof. Suppose first that there is at least one truth assignment v
over S such that τ(v) = F. Then, let {v0, . . . , vn−1} = {v ∈ TAS |
τ(v) = F}. Define ψ =

∧
0≤i≤n−1 νvi . For each w ∈ TAS, we have

τψ,S(w) = w(ψ)

= w

⎛
⎝ ∧

0≤i≤n−1

νvi

⎞
⎠

=

{
T if w(νvi) = T for all i, 0 ≤ i ≤ n− 1

F otherwise

=

{
T if w �= vi for all i, 0 ≤ i ≤ n− 1

F otherwise

= τ(w).

Therefore, τψ,S = τ .

If there is no truth assignment v ∈ TAS such that τ(v) = F, then
we can take for ψ the tautology ψ = (pi0 ∨ (¬pi0) ∨ pi1 ∨ · · · pin−1),
where S = {pi0 , . . . , pin−1}. �

Note that the proof of Theorem 2.5.60 provides an effective
method of producing a conjunctive normal form for a given formula.

Corollary 2.5.61. Let ϕ ∈ PLFORM. Then there is a formula ψ
in conjunctive normal form such that ϕ ≡ ψ. If ϕ is not a tautology,
then such a ψ exists each of whose conjuncts is a maxterm over
SV (ϕ).

Proof. By applying Theorem 2.5.60, to the set S = SV (ϕ) and
to the truth table τϕ = τϕ,S , we get a formula ψ in cnf such that

Propositional Logic–Syntax and Semantics 167

SV (ψ) = S and τψ,S = τϕ,S, which implies that ϕ ≡ ψ. From the

second part of Theorem 2.5.60, it follows that if ϕ is not a tautology,
then we can chose ψ to be a conjunction of maxterms over S. �

A formula ψ which is in conjunctive normal form and is logi-
cally equivalent to ϕ is called a conjunctive normal form for ϕ. If,
in addition, ψ consists of distinct maxterms over SV (ϕ), we refer to
ψ as a standard conjunctive normal form for ϕ. Observe that any
formula obtained from a standard conjunctive normal form for ϕ by
permuting the maxterms is also a standard conjunctive normal form
for ϕ.

Example 2.5.62. Let τ be the truth table considered in Exam-
ple 2.5.11. A formula in conjunctive normal form whose truth table
is τ is

ψ = ((p0 ∨ p4 ∨ p6) ∧ (p0 ∨ (¬p4) ∨ p6) ∧ (p0 ∨ (¬p4) ∨ (¬p6))
∧((¬p0) ∨ p4 ∨ p6) ∧ ((¬p0) ∨ (¬p4) ∨ p6)).

We have thus found a conjunctive normal form for the formula
((p4 → p0) ∧ p6).

Definition 2.5.63. A formula ϕ =
∧

0≤i≤n−1

∨
0≤j≤mi−1 �ij in con-

junctive normal form, where each �ij is a literal, is a Horn4 formula
if every conjunct

∨
0≤j≤mi−1 �ij contains at most one positive literal.

Example 2.5.64. The formula

ψ = (((¬p0) ∨ (¬p1) ∨ p2) ∧ p1 ∧ ((¬p2) ∨ (¬p1) ∨ (¬p0)) ∧ (¬p2))

is a Horn formula, while θ = (p0 ∨ p1) is not.

For checking satisfiability for arbitrary formulas, even ones in
conjunctive normal form, we have no method essentially more effi-
cient than the construction of their truth table. For Horn formulas,

4Alfred Horn, born in 1918 in New York City and deceased in Los Angeles in 2001,
was an American mathematician whose main contributions were in the areas of
logic, lattice theory, and universal algebra. Horn was educated at City College of
New York and New York University and received his Ph.D. from the University
of California, Berkeley. He taught at the University of California at Los Angeles.

168 Logical Foundations of Computer Science — Volume 1

however, the following algorithm gives an efficient test for satisfiabil-
ity. The algorithm involves a process of marking variables that occur
in the formula.

Algorithm 2.5.65 (Satisfiability of Horn Formulas).
Input: A Horn formula ϕ.
Output: “Yes” if ϕ is satisfiable and “No” otherwise.
Method:

(A) If there is a conjunct of ϕ containing only negative literals
whose variables are marked, then output “No” and stop.

(B) If there is a conjunct of ϕ containing a positive literal whose
variable is unmarked and all variables occurring in the nega-
tive literals of the conjunct (if any) are marked, then, for each
such conjunct, mark the variable of the positive literal of the
conjunct and then go to step (A).

(C) Output “Yes” and stop.

Proof of Correctness: The algorithm always halts because each
time step (B) is executed (except the last time) a new variable is
marked and there are only finitely many variables which occur in ϕ.

Suppose that v is a truth assignment such that v(ϕ) = T.
We claim that for every marked variable p, we have v(p) = T.
We prove this claim by course-of-values induction on the order in
which the variables are marked. Suppose that the variable p is
marked at some point in the algorithm and v(q) = T for all vari-
ables q marked earlier in the algorithm. Then, p occurs positively
in some conjunct of ϕ in which all variables in negative literals have
been already marked. Because ϕ is a Horn formula, p is the only vari-
able appearing in a positive literal of that conjunct. By the inductive
hypothesis, for all of the other variables q occurring in the conjunct,
v(q) = T. Since these variables occur in negative literals, we must
have v(p) = T.

If the algorithm halts with output “No”, then there is a conjunct
of ϕ which consists of negative literals whose variables are marked.
Suppose that ϕ is satisfiable. Then, by the previous argument, for
any truth assignment v such that v(ϕ) = T, we would have v(p) = T
for all variables occurring in this conjunct and this would imply that

Propositional Logic–Syntax and Semantics 169

v makes the conjunct (and therefore the formula) false. Hence, there
can be no such v and ϕ is unsatisfiable.

Now suppose that the algorithm outputs “Yes”. Let v0 ∈ TASV (ϕ)

be defined by v0(p) = T if and only if p is a marked variable. We show
that v0(ϕ) = T and, therefore, ϕ is satisfiable. Let ψ be a conjunct of
ϕ. We consider two cases. In the first case, suppose that ψ contains a
positive literal p. If p is marked, then v0(p) = T, so v0(ψ) = T. If p is
not marked, then, there must be a variable q in ϕ which occurs in a
negative literal of this conjunct and is unmarked. Then, v0(q) = F, so
v0(ψ) = T. In the second case, ψ does not contain any positive literal.
Observe that step (C) can be reached only after executing steps (A)
and (B) in succession and this means that at the last execution of
step (A), ψ could not contain only marked variables. Therefore, ψ
contains at least one unmarked variable in a negative literal and thus
v0(ψ) = T. �

Example 2.5.66. Consider the Horn formula

ϕ = (p0 ∧ ((¬p0) ∨ p1) ∧ ((¬p1) ∨ p2) ∧ ((¬p2) ∨ (¬p0))).

The application of Algorithm 2.5.65 to ϕ is given in the following
table. Marked variables are underlined.

Step Effect
A go to B
B (p0 ∧ ((¬p0) ∨ p1) ∧ ((¬p1) ∨ p2) ∧ ((¬p2) ∨ (¬p0)))

(mark p0 and go to A)
A go to B
B (p0 ∧ ((¬p0) ∨ p1) ∧ ((¬p1) ∨ p2) ∧ ((¬p2) ∨ (¬p0)))

(mark p1 and go to A)
A go to B
B (p0 ∧ ((¬p0) ∨ p1) ∧ ((¬p1) ∨ p2) ∧ ((¬p2) ∨ (¬p0)))

(mark p2 and go to A)
A output “No” and stop

We conclude that ϕ is not satisfiable.
Let ψ be the Horn formula considered in Example 2.5.64:

ψ = (((¬p0) ∨ (¬p1) ∨ p2) ∧ p1 ∧ ((¬p2) ∨ (¬p1) ∨ (¬p0)) ∧ (¬p2)).

By applying Algorithm 2.5.65, we conclude that ψ is satisfiable.

170 Logical Foundations of Computer Science — Volume 1

Step Effect
A go to B
B (((¬p0) ∨ (¬p1) ∨ p2) ∧ p1 ∧ ((¬p2) ∨ (¬p1) ∨ (¬p0)) ∧ (¬p2))

(mark p1 and go to A)
A go to B
B no variable can be marked; go to C
C output “Yes” and stop

If S is a set of statement variables and v,w ∈ TAS , we define
v ≤ w to mean that w(p) = T for every p ∈ S such that v(p) = T.
It is easy to verify that “≤” is a partial order on TAS .

Theorem 2.5.67. For every satisfiable Horn formula ϕ, there exists
a truth assignment v0 ∈ TASV (ϕ) such that v0(ϕ) = T and for every
truth assignment v ∈ TASV (ϕ) with v(ϕ) = T, we have v0 ≤ v.

Proof. The correctness proof of Algorithm 2.5.65 contains the
argument. �

Corollary 2.5.68. For every satisfiable Horn formula ϕ, there exists
a truth assignment w0 ∈ TA such that w0(ϕ) = T and for every truth
assignment w ∈ TA with w(ϕ) = T, we have w0 ≤ w.

Proof. Let v0 be as in Theorem 2.5.67. Define w0 by

w0(p) =

{
v0(p) if p ∈ SV (ϕ)

F otherwise.

Since w0 and v0 agree on all variables in ϕ, we have w0(ϕ) =
v0(ϕ) = T. Let w be a truth assignment such that w(ϕ) = T and let
v = w |̀SV (ϕ). Again, since v agrees with w on all variables in ϕ, we
have v(ϕ) = T. Theorem 2.5.67 implies that v0 ≤ v and this gives
w0 ≤ w. �

Note that if ϕ ≡ ψ and ϕ is a Horn formula, then Corollary 2.5.68
applies to ψ.

Example 2.5.69. Not every formula is equivalent to a Horn
formula. For instance, let ϕ = (p0 ∨ p1). Consider the truth

Propositional Logic–Syntax and Semantics 171

assignments u and u′ given by

u(p) =

{
T if p = p0

F otherwise
and u′(p) =

{
T if p = p1

F otherwise.

Note that u(ϕ) = u′(ϕ) = T. If ϕ were equivalent to a Horn formula,
this would imply the existence of a truth assignment w0 such that
w0 ≤ u, u′ and w0(ϕ) = T. But, the single truth assignment w0 such
that w0 ≤ u, u′ is the one given by w0(p) = F for all p ∈ SV and for
this w0, w0(ϕ) = F.

2.6 Substitutions and Formulas

In this section, we examine the effects that substitutions have on
formulas of propositional logic. Naturally, we are interested in sub-
stitutions that replace statement variables with formulas.

Definition 2.6.1. A propositional substitution is a substitution
defined on SV with values in PLFORM.

For the remainder of this section, we will use the word “sub-
stitution” rather than “propositional substitution”. (Notations and
conventions involving substitutions can be found in Section 1.2 of
Chapter 1.)

Lemma 2.6.2. Let s be a substitution. Then, for the extension s of
s, we have

s(v) = s(v),

s((¬ϕ)) = (¬s(ϕ)),
s((ϕ C ψ)) = (s(ϕ) C s(ψ)),

for every statement variable v, all formulas ϕ and ψ, and every
binary connective symbol C.

Proof. The argument follows from the definition of s and
Theorem 1.2.11. �

Theorem 2.6.3. If s is a substitution and ϕ is a formula, then s(ϕ)
is a formula.

172 Logical Foundations of Computer Science — Volume 1

Proof. Using Lemma 2.6.2, this is easily shown by induction on
formulas. The details are left to the reader. �

We define the effect of a substitution s on a signed formula bϕ by
s̄(bϕ) = bs̄(ϕ).

Example 2.6.4. Let s be a substitution such that s(p0) = (p2 ∧ p3)
and s(p1) = (¬p3). If ϕ = ((p0 ∧ p1) ∨ p0), then

s(ϕ) = (((p2 ∧ p3) ∧ (¬p3)) ∨ (p2 ∧ p3)),
s(Fϕ) = F(((p2 ∧ p3) ∧ (¬p3)) ∨ (p2 ∧ p3)).

Theorem 2.6.5. Let s be a substitution. Then for every formula ϕ,

SV (s(ϕ)) =
⋃

p∈SV (ϕ)

SV (s(p)).

Proof. The argument is by induction on the definition of formulas
and is left to the reader. �

The following theorem shows that the truth value under a given
truth assignment of a formula obtained by substitution from another
is the same as the truth value of the original formula under a modified
truth assignment.

Theorem 2.6.6. Let s be a substitution and v be a truth assignment.
For every formula ϕ, we have v(s(ϕ)) = v′(ϕ), where v′ is the truth
assignment given by v′(p) = v(s(p)) for every p ∈ SV .

Proof. The proof is by induction of ϕ. The basis step (ϕ = p) is
immediate by the definition of v′. Suppose that the statement holds
for α and β and let ϕ = (αCβ), where C is a binary connective
symbol. Then, we can write

v(s(ϕ)) = v((s(α)Cs(β)))

= fC(v(s(α)), v(s(β)))

= fC(v
′(α), v′(β))

= v′(ϕ).

We leave to the reader the case ϕ = (¬α). �

Propositional Logic–Syntax and Semantics 173

Corollary 2.6.7. Let s be a substitution and v be a partial truth
assignment over a set S. For every formula ϕ such that SV (s(ϕ)) ⊆
S, we have v(s(ϕ)) = v′(ϕ) for every partial truth assignment v′ such
that Dom(v′) ⊇ SV (ϕ) and v′(p) = v(s(p)) for every p ∈ SV (ϕ).

Proof. Let v1 be a truth assignment that extends v and let v′1 be
the truth assignment defined by v′1(p) = v1(s(p)), for p ∈ SV . By
Definition 2.3.24, v(s(ϕ)) = v1(s(ϕ)). By Theorem 2.6.6, v1(s(ϕ)) =
v′1(ϕ). If p ∈ SV (ϕ), we have v′(p) = v(s(p)) = v1(s(p)) = v′1(p).
Thus, by Corollary 2.3.25, v′1(ϕ) = v′(ϕ). �

Corollary 2.6.8. If ϕ is a tautology, then s(ϕ) is also a tautology
for every substitution s.

Proof. For every truth assignment v, we have v(s(ϕ)) = v′(ϕ) = T,
where v′(p) = v(s(p)) for p ∈ SV , because of Theorem 2.6.6. �

Example 2.6.9. The formula α = ((p→ (¬p))→ (¬p)) is a tautol-
ogy, as shown by the following table:

v(p) v((p→ (¬p)) v(α)
T F T
F T T

Consequently, by Corollary 2.6.8, the formula ((ϕ→ (¬ϕ))→ (¬ϕ))
is a tautology for every formula ϕ.

Substitutions preserve logical equivalence of formulas according
to the following corollary.

Corollary 2.6.10. If ϕ,ψ are logically equivalent formulas, then
s(ϕ) and s(ψ) are also logically equivalent for every substitution s.

Proof. Let v be a truth assignment. Because of Theorem 2.6.6,
we have v(s(θ)) = v′(θ) for every formula θ, where v′ is the truth
assignment given by v′(p) = v(s(p)) for every p ∈ SV . This allows
us to write

v(s(ϕ)) = v′(ϕ)
= v′(ψ) since ϕ,ψ are logically equivalent

= v(s(ψ)),

for every truth assignment v, which proves that s(ϕ) and s(ψ) are
logically equivalent. �

174 Logical Foundations of Computer Science — Volume 1

Corollary 2.6.10 and Theorem 2.3.30 allow us to obtain the list of
equivalent formulas given in the following theorem.

Theorem 2.6.11. Let ϕ,ψ, and θ be formulas. Then, we have

(ϕ ∧ ϕ) ≡ ϕ (idempotency of ∧),
(ϕ ∨ ϕ) ≡ ϕ (idempotency of ∨),
(ϕ ∧ ψ) ≡ (ψ ∧ ϕ) (commutativity of ∧),
(ϕ ∨ ψ) ≡ (ψ ∨ ϕ) (commutativity of ∨),

(ϕ ∧ (ψ ∧ θ)) ≡ ((ϕ ∧ ψ) ∧ θ) (associativity of ∧),
(ϕ ∨ (ψ ∨ θ)) ≡ ((ϕ ∨ ψ) ∨ θ) (associativity of ∨),

(¬(¬ϕ)) ≡ ϕ (double negation),

(ϕ ∧ (ϕ ∨ ψ)) ≡ ϕ (absorption laws),

(ϕ ∨ (ϕ ∧ ψ)) ≡ ϕ ”,

(ϕ ∧ (ψ ∨ θ)) ≡ ((ϕ ∧ ψ) ∨ (ϕ ∧ θ)) (distributivity laws),

((ψ ∨ θ) ∧ ϕ) ≡ ((ψ ∧ ϕ) ∨ (θ ∧ ϕ)) ”,

(ϕ ∨ (ψ ∧ θ)) ≡ ((ϕ ∨ ψ) ∧ (ϕ ∨ θ)) ”,

((ψ ∧ θ) ∨ ϕ) ≡ ((ψ ∨ ϕ) ∧ (θ ∨ ϕ)) ”,

(¬(ϕ ∨ ψ)) ≡ ((¬ϕ) ∧ (¬ψ)) (De Morgan′s laws),
(¬(ϕ ∧ ψ)) ≡ ((¬ϕ) ∨ (¬ψ)) ”,

(ϕ→ ψ) ≡ ((¬ϕ) ∨ ψ),
(ϕ↔ ψ) ≡ ((ϕ→ ψ) ∧ (ψ → ϕ)).

Proof. Let ϕ,ψ, and θ be three formulas and let s be the substi-
tution defined by s(p0) = ϕ, s(p1) = ψ, s(p2) = θ, and s(pi) = pi for
i > 2. Applying this substitution to the pairs of equivalent formu-
las from Theorem 2.3.30 and taking into account Corollary 2.6.10,
we obtain immediately the equivalent formulas mentioned in this
theorem. �

Theorem 2.6.12 (Replacement Theorem for PLFORM). Let
ϕ be a formula. If α, β are logically equivalent formulas and (α, i)
is an occurrence of α in ϕ, then ϕ is logically equivalent to
replace (ϕ, (α, i), β).

Proof. Note that by Theorem 2.2.15, replace (ϕ, (α, i), β) is a
formula. If ϕ = α, then i = 0 and replace (ϕ, (α, i), β) = β, so
the result follows immediately.

Propositional Logic–Syntax and Semantics 175

The argument is by induction on the definition of ϕ. If ϕ is a
statement variable, then ϕ = α and we are done by the previous
remark.

Suppose that ϕ = (¬ϕ1), where ϕ1 is a formula for which the
statement holds. If ϕ = α, the conclusion is immediate. If ϕ �= α, we
have shown in the proof of Theorem 2.2.15 that

replace (ϕ, (α, i), β) = (¬ replace (ϕ1, (α, i− 2), β)).

We have ϕ1 ≡ replace (ϕ1, (α, i−2), β) by the inductive hypothesis.
Therefore, by Theorem 2.3.14, we have

ϕ = (¬ϕ1) ≡ (¬ replace (ϕ1, (α, i− 2), β))

= replace (ϕ, (α, i), β).

We leave to the reader the argument for the last case, that is, for
the case when ϕ = (ϕ1Cϕ2), where C is a binary connective symbol
and ϕ1, ϕ2 ∈ PLFORM. �

2.7 Truth Sets and Hintikka Sets

In this section, we first introduce the notion of constituent of a for-
mula. A formula that is not a literal has one constituent for each
distinct way that it can be satisfied. Further, since a constituent
of a formula ϕ consists of subformulas or negated subformulas of
ϕ (that is of members of the set U({ϕ}), where U is the function
defined in Theorem 2.2.14), constituents of formulas can be built by
“analyzing” their structure. This property of constituents is known
as their analyticity. Constituents allow us to introduce truth sets and
Hintikka5 sets, a generalization of truth sets.

We will see that every satisfiable set Γ is contained in a truth
set Γ′. This is interesting because truth sets are not merely satis-
fiable, but they explicitly specify the satisfying truth assignment.

5Jaakko Hintikka was born in Helsinki, Finland, in 1929 and died in Porvoo,
Finland, in 2015. He received his Ph.D. from the University of Helsinki in 1956.
Hintikka’s contributions were in general philosophy, philosophy of mathemat-
ics, and logic. He taught at the University of Helsinki, Florida State University,
Stanford, and Boston University.

176 Logical Foundations of Computer Science — Volume 1

However, the truth set Γ′ may contain formulas that have no relation
to the formulas in Γ. Hintikka sets maintain the property of explicitly
specifying which truth assignments satisfy them. (In general, several
satisfying truth assignments exist for a Hintikka set.) The advantage
of Hintikka sets over truth sets is that every satisfiable set Γ can be
extended to a Hintikka set Γ′ such that the formulas of Γ′ have a
simple syntactic relationship to the formulas of Γ.

Definition 2.7.1. The function

d : PLFORM− {p, (¬p) | p ∈ SV } −→ Seq(P(PLFORM))

is given by the following table:

Formula α d(α)
(¬(¬ϕ)) ({ϕ})
(ϕ ∧ ψ) ({ϕ,ψ})

(¬(ϕ ∧ ψ)) ({(¬ϕ)}, {(¬ψ)})
(ϕ ∨ ψ) ({ϕ}, {ψ})

(¬(ϕ ∨ ψ)) ({(¬ϕ), (¬ψ)})
(ϕ→ ψ) ({(¬ϕ)}, {ψ})

(¬(ϕ→ ψ)) ({ϕ, (¬ψ)})
(ϕ↔ ψ) ({ϕ,ψ}, {(¬ϕ), (¬ψ)})

(¬(ϕ↔ ψ)) ({ϕ, (¬ψ)}, {(¬ϕ), ψ})

The constituent sequence of ϕ is the sequence d(ϕ). The constituent
set of ϕ is the set D(ϕ) that consists of all sets of formulas that occur
in d(ϕ). Every such set of formulas is called a constituent of ϕ.

Theorem 2.7.2. If ϕ is not a literal, then a truth assignment v
satisfies ϕ if and only if it satisfies at least one of the constituents
of ϕ.

Proof. We leave the easy verification to the reader. �
Note that the length of each formula in a constituent of a formula

ϕ is smaller than |ϕ|. Also, the formulas in any constituent K of ϕ
are proper subformulas of ϕ or negations of proper subformulas of
ϕ. In other words, K ⊆ U({ϕ}), where U is the mapping defined in
Theorem 2.2.14.

Theorem 2.7.3. Let Γ be a set of formulas such that for every
formula ϕ, (¬ϕ) ∈ Γ if and only if ϕ �∈ Γ and let C be a

Propositional Logic–Syntax and Semantics 177

binary connective symbol. Then, the following pairs of statements are
equivalent, where in each condition ϕ ranges over the set {(αCβ) |
α, β ∈ PLFORM}:
• Cpd: ϕ ∈ Γ implies K ⊆ Γ for some K ∈ D(ϕ),
• Cnpu: H ⊆ Γ for some H ∈ D((¬ϕ)) implies (¬ϕ) ∈ Γ

and

• Cpu: K ⊆ Γ for some K ∈ D(ϕ) implies ϕ ∈ Γ,
• Cnpd: (¬ϕ) ∈ Γ implies H ⊆ Γ for some H ∈ D((¬ϕ)).
Proof. The argument follows by inspection of the definition of
constituent. �

The subscripts p, np of the indices of the statements of
Theorem 2.7.3 indicate that the formula involved is positive or
negated positive, respectively. The subscript d refers to a “down-
ward” implication from a formula to its constituents, while u refers
to an “upward” implication. In addition, we will use the following
two conditions:

• Knnd for every formula ϕ, (¬(¬ϕ)) ∈ Γ implies ϕ ∈ Γ.
• Knnu for every formula ϕ, ϕ ∈ Γ implies (¬(¬ϕ)) ∈ Γ.

Definition 2.7.4. A set of formulas Γ is

• p-downward closed if it satisfies the condition Cpd for every binary
connective symbol C,

• np-downward closed if it satisfies the condition Cnpd for every
binary connective symbol C,

• nn-downward closed if it satisfies the condition Knnd,
• p-upward closed if it satisfies the condition Cpu for every binary

connective symbol C,
• np-upward closed if it satisfies the condition Cnpu for every binary

connective symbol C,
• nn-upward closed if it satisfies the condition Knnu,
• downward closed if it is p-downward, np-downward, and nn-

downward closed,
• upward closed if it is p-upward, np-upward, and nn-upward closed,
• saturated if for every formula ϕ, ϕ ∈ Γ if and only if (¬ϕ) �∈ Γ and

Γ is both upward and downward closed.

178 Logical Foundations of Computer Science — Volume 1

Theorem 2.7.5. Let Γ be a set of formulas such that for every for-
mula ϕ, exactly one of ϕ and (¬ϕ) belongs to Γ. Then, we have

(1) Γ is upward closed if and only if Γ is both p-upward and np-
upward closed,

(2) Γ is downward closed if and only if Γ is both p-downward and
np-downward closed.

Proof. It is clear that if Γ is upward closed, then it is both
p-upward and np-upward closed. Conversely, let Γ be both p-upward
and np-upward closed. We only need to show that the conditionKnnu

is satisfied, that is, if {ϕ} ⊆ Γ, then (¬(¬ϕ)) ∈ Γ. Since ϕ ∈ Γ, we
have (¬ϕ) �∈ Γ, so (¬(¬ϕ)) ∈ Γ. This concludes the proof of Part (1).
Part (2) is entirely similar. �

Definition 2.7.6. A set of formulas Γ is a truth set if the following
conditions are satisfied:

(1) for every formula ϕ, (¬ϕ) ∈ Γ if and only if ϕ �∈ Γ,
(2) for every positive formula ϕ that is not a variable, we have ϕ ∈ Γ

if and only if at least one of its constituents is included in Γ.

Theorem 2.7.7. By replacing the second condition of the definition
of truth set (Definition 2.7.6) by any of the following statements, one
obtains an equivalent definition:

(1) Γ is both np-upward and np-downward closed.
(2) Γ is both p-upward and np-upward closed.
(3) Γ is both p-downward and np-downward closed.
(4) Γ is upward closed.
(5) Γ is downward closed.
(6) Γ is both upward and downward closed.

Proof. The equivalence of the original definition with the first
three modified definitions follows immediately from Theorem 2.7.3.
The equivalence of the second and fourth modified definitions, on
one hand, and of the third and fifth modified definitions, on the
other hand, follows from Theorem 2.7.5. The equivalence of the last
modified definition with the others is now immediate. �

Propositional Logic–Syntax and Semantics 179

Note that this shows that Γ is saturated if and only if it is a
truth set.

We will now investigate the connection between truth sets and
truth valuations.

Definition 2.7.8. For every function w : PLFORM −→ Bool, let
Γw = {ϕ | w(ϕ) = T}.

For Γ ⊆ PLFORM, define the function wΓ : PLFORM −→ Bool
by

wΓ(ϕ) =

{
T if ϕ ∈ Γ

F otherwise.

It is straightforward to show that for any w : PLFORM −→ Bool
and for any set of formulas Γ we have ΓwΓ

= Γ and wΓw = w. Further,
w is a truth valuation if and only if Γw is a truth set.

Theorem 2.7.9. Γ is a truth set if and only if Γ = Γw for some
truth valuation w and w is a truth valuation if and only if w = wΓ

for some truth set Γ.

Proof. The proof is left to the reader. �

Corollary 2.7.10. Every satisfiable set Γ is contained in a truth set.

Proof. If Γ is satisfied by the truth assignment w, then Γ ⊆ Γw
and Γw is a truth set by Theorem 2.7.9. �

Definition 2.7.11. A maximally satisfiable set of formulas is a set
of formulas Γ that is satisfiable and for which there is no satisfiable
set of formulas Γ′ such that Γ ⊂ Γ′.

Theorem 2.7.12. Let Γ be a satisfiable set of formulas. Then, Γ is
maximally satisfiable if and only if exactly one of the formulas ϕ and
(¬ϕ) belongs to Γ for every formula ϕ ∈ PLFORM.

Proof. Let Γ be a satisfiable set such that exactly one of the for-
mulas ϕ and (¬ϕ) belongs to Γ for every formula ϕ ∈ PLFORM.
Suppose that there exists a satisfiable set Γ1 such that Γ ⊂ Γ1 and
let ψ ∈ Γ1 − Γ. Since ψ �∈ Γ, we have (¬ψ) ∈ Γ. Therefore, both ψ

180 Logical Foundations of Computer Science — Volume 1

and (¬ψ) belong to Γ1 and this is a contradiction because Γ1 was
supposed to be satisfiable. This shows that Γ is maximally satisfiable.

Conversely, suppose that Γ is a maximally satisfiable set. If there
exists a formula ϕ such that neither ϕ nor (¬ϕ) belong to Γ, then one
of the sets Γ ∪ {ϕ} or Γ ∪ {(¬ϕ)} is satisfiable and strictly includes
Γ. This contradicts the maximality of Γ. Since Γ may not contain
both ϕ and (¬ϕ), it follows that exactly one of the formulas ϕ, (¬ϕ)
belongs to Γ. �

Theorem 2.7.13. A set of formulas Γ is maximally satisfiable if
and only if Γ is a truth set.

Proof. Let Γ be a maximally satisfiable set. Then, there is some
truth valuation w such that Γ ⊆ Γw. Since Γ is maximally satisfiable,
we have Γ = Γw, so Γ is a truth set by Theorem 2.7.9. Conversely,
if Γ is a truth set, then Γ = Γw for some truth valuation w, so Γ
is satisfiable. Since for every formula ϕexactly one of ϕ and (¬ϕ)
belongs to Γ, by Theorem 2.7.12, Γ is maximally satisfiable. �

We focus now on the generalization of truth set mentioned in the
introduction.

Definition 2.7.14. A Hintikka set is a set Γ of formulas that sat-
isfies the following conditions:

(1) for every statement variable p, at most one of the literals p and
(¬p) is in Γ,

(2) Γ is downwards closed.

Theorem 2.7.15. Every truth set is a Hintikka set.

Proof. Clearly, the first condition of the definition of truth set
implies the first condition of the definition of Hintikka set. By Part (5)
of Theorem 2.7.7, every truth set is downwards closed. �

Theorem 2.7.16. Let Γ be a Hintikka set of formulas and let v be a
truth assignment. Then, v satisfies Γ if and only if for each p ∈ SV ,
v(p) = T if p ∈ Γ and v(p) = F if (¬p) ∈ Γ.

Proof. Suppose first that v(p) = T if p ∈ Γ and v(p) = F if (¬p) ∈
Γ for each p ∈ SV . We must show that if ϕ ∈ Γ, then v satisfies ϕ. We

Propositional Logic–Syntax and Semantics 181

prove this statement using course-of-values induction on the length
of ϕ. Suppose that the result is true for formulas shorter than ϕ
and that ϕ ∈ Γ. If ϕ is a literal, then v(ϕ) = T by our assumption
about v. Otherwise, since Γ is a Hintikka set, there is a constituent
K of ϕ such that K ⊆ Γ. Since each element of K is shorter than
ϕ, by inductive hypothesis, v satisfies K, so by Theorem 2.7.2, v
satisfies ϕ.

The converse implication is straightforward. �

Corollary 2.7.17. Every Hintikka set of formulas is satisfiable.

Proof. Since a Hintikka set may not contain both p and (¬p) for
any statement variable p, a truth assignment as in Theorem 2.7.16
always exists. �

Definition 2.7.18. A consistency property is a collection C of sets
of formulas such that

• no set with property C contains both p and (¬p) for any statement
variable p,

• if Γ has property C, ϕ ∈ Γ and ϕ is not a literal, then Γ ∪K has
property C for some constituent K of ϕ.

A collection of sets of formulas I is an inconsistency property if
the collection of sets P(PLFORM)− I is a consistency property.

Note that a collection of sets of formulas I is an inconsistency
property if and only if the following conditions are satisfied:

• Every set of formulas including {p, (¬p)} for some statement vari-
able p belongs to I.

• If Γ is a set of formulas and ϕ ∈ Γ is such that for every constituent
K of ϕ, Γ ∪K ∈ I, then Γ ∈ I.

Example 2.7.19. Let C be the collection of all satisfiable sets of
formulas. Then, by Theorem 2.7.2, C is a consistency property.

Example 2.7.20. Let ϕ be a formula and let Iϕ be the collection
of all sets of formulas Γ such that Γ |= ϕ. We leave to the reader the
easy verification that Iϕ is an inconsistency property. This shows
that Cϕ, the collection of all sets of formulas Γ such that Γ �|= ϕ, is

a consistency property.

182 Logical Foundations of Computer Science — Volume 1

Theorem 2.7.21. Every member of a consistency property is a satis-
fiable set of formulas. In fact, if Γ is a member of a consistency prop-
erty, there is a Hintikka set Γ′ such that Γ ⊆ Γ′ and every formula
in Γ′ is either a subformula or the negation of a proper subformula
of a formula of Γ.

Proof. Let C be a consistency property and let Γ have prop-
erty C. We shall construct a Hintikka set Γ′ such that Γ ⊆ Γ′.
By Corollary 2.7.17, we can then conclude that Γ is satisfiable.
We build recursively a sequence of sets Γ0,Γ1, . . . , each with prop-
erty C such that every formula in Γn is either a subformula or a
negation of a proper subformula of a formula in Γ. Then, we set
Γ′ =

⋃
{Γn | n ∈ N}.

We define Γ0 = Γ. Suppose that Γn is defined and is in C. Then,
there are two cases:

• If Γn is a Hintikka set, Γn+1 = Γn.
• If Γn is not a Hintikka set, then, since no set with property C may

contain both a variable and its negation, there must be a formula
ϕ ∈ Γn such that none of its constituents is included in Γn. Let
ϕ be the first such formula in the standard ordering and let K be
the first constituent of ϕ in the sequence d(ϕ) such that Γn ∪K is
in C. Define Γn+1 = Γn ∪K.

First, we show that every Γn ⊆ Γ∪U(Γ), that is, every formula in
Γn, is either a subformula or a negation of a proper subformula of a
formula in Γ. The argument is by induction on n. The basis, n = 0, is
obvious. Suppose that Γn ⊆ Γ∪U(Γ). If Γn+1 = Γn, there is nothing
to prove. Otherwise, Γn+1 = Γn ∪ K, where K is a constituent of
a formula ϕ ∈ Γn ⊆ Γ ∪ U(Γ). Since K ⊆ U({ϕ}), we have, by
Theorem 2.2.14, K ⊆ U(Γ∪U(Γ)) = U(Γ)∪U(U(Γ)) = U(Γ). Thus,
Γn+1 ⊆ Γ ∪ U(Γ), so Γ′ ⊆ Γ ∪ U(Γ).

Note that Γ′ cannot contain both p and (¬p) for any p ∈ SV .
Suppose that Γ′ is not a Hintikka set. Then, there exists a formula
in Γ′ that is not a literal and none of whose constituents is contained
in Γ′. Let ϕ be the first such formula in the standard order. Choose
n large enough to satisfy the following conditions:

• ϕ ∈ Γn.
• For all predecessors ψ of ϕ in the standard order that are not

literals and are in Γ′, some constituent of ψ is included in Γn.

Propositional Logic–Syntax and Semantics 183

Such an n exists because for all predecessors of ϕ in the standard
order that are not literals and belong to Γ′, one of their constituents
is included in Γ′ and each such constituent is finite. By construction,
Γn+1 will include a constituent of ϕ, contradicting our choice of ϕ,
in view of the fact that Γn+1 ⊆ Γ′. �

The fact that the set Γ′ constructed in the previous theorem con-
sists of subformulas and negated proper subformulas of formulas of
Γ allows us to say that Γ′ was obtained analytically from Γ, that is,
the members of Γ′ were obtained by analyzing the structure of the
formulas of Γ.

Corollary 2.7.22. For every satisfiable set Γ, there is a Hintikka set
Γ′ such that Γ ⊆ Γ′ and every formula in Γ′ is either a subformula
or the negation of a proper subformula of a formula of Γ.

Proof. Since satisfiability is a consistency property, this statement
follows immediately from Theorem 2.7.21. �

Example 2.7.23. We can use Theorem 2.7.21 to give another proof
of the Compactness Theorem (Theorem 2.4.3). In order to do this,
we will prove (without using the Compactness Theorem) that finite
satisfiability is a consistency property. Then, Theorem 2.7.21 will
establish the nontrivial part of the Compactness Theorem. In fact,
we will prove that the property of not being finitely satisfiable is an
inconsistency property.

It is clear that any set that contains both p and (¬p), where p is
a statement variable, is not finitely satisfiable.

Now, we suppose that Γ is a set of formulas, ϕ ∈ Γ is not a literal
and for no constituent K of ϕ is Γ ∪ K finitely satisfiable, and we
show that Γ is not finitely satisfiable. By our hypotheses, for each
constituentK of ϕ, there is an unsatisfiable, finite subset ΞK of Γ∪K.
Let ΓK = Γ ∩ ΞK . Then, ΓK is a finite subset of Γ and ΓK ∪ K
is unsatisfiable. Let Γ0 =

⋃
{ΓK | K is a constituent of ϕ} ∪ {ϕ}.

Clearly, Γ0 is a finite subset of Γ. We claim that Γ0 is unsatisfiable.
Suppose that v were a truth assignment that satisfied Γ0. Then v
would satisfy ϕ and, therefore, it would satisfy one of its constituents
K0. Since v also satisfies ΓK0 , it follows that v satisfies ΓK0∪K0 which
is known to be unsatisfiable.

184 Logical Foundations of Computer Science — Volume 1

We introduce now the notion of constituent for signed formulas.
This will allow us to introduce Hintikka sets of signed formulas.

Definition 2.7.24. The mapping

d : (SPLFORM− (Bool × SV)) −→ Seq(P(SPLFORM))

is given by the following table:

Signed Formula bα d(bα)
T(¬ϕ) ({Fϕ})
F(¬ϕ) ({Tϕ})

T(ϕ ∧ ψ) ({Tϕ,Tψ})
F(ϕ ∧ ψ) ({Fϕ}, {Fψ})
T(ϕ ∨ ψ) ({Tϕ}, {Tψ})
F(ϕ ∨ ψ) ({Fϕ,Fψ})
T(ϕ→ ψ) ({Fϕ}, {Tψ})
F(ϕ→ ψ) ({Tϕ,Fψ})
T(ϕ↔ ψ) ({Tϕ,Tψ}, {Fϕ,Fψ})
F(ϕ↔ ψ) ({Tϕ,Fψ}, {Fϕ,Tψ})

Let bϕ be a signed formula such that ϕ is not a variable. The con-
stituent sequence of bϕ is the sequence d(bϕ). The constituent set of
bϕ is the set D(bϕ) that consists of all sets of formulas that occur in
d(bϕ). Every such set of formulas is called a constituent of bϕ.

The signed formulas of a constituent of a signed formula bϕ are
signed subformulas of ϕ. Thus, constituents of signed formulas are
obtained analytically, just as constituents of unsigned formulas.

Theorem 2.7.25. If ϕ is not a statement variable, then a truth
assignment v satisfies the signed formula bϕ if and only if it satisfies
at least one constituent of bϕ.

Proof. We leave this easy verification to the reader. �

Corollary 2.7.26. A set of signed formulas Δ∪{bϕ} is unsatisfiable
if and only if the set of signed formulas Δ ∪ K is unsatisfiable for
every constituent K of bϕ.

Proof. This follows immediately from Theorem 2.7.25. �

Propositional Logic–Syntax and Semantics 185

It is easy to verify that if b′θ belongs to a constituent of the signed
formula bϕ, then θ is an immediate subformula of ϕ.

Definition 2.7.27. A Hintikka set of signed formulas is a set Δ of
signed formulas that satisfies the following conditions:

(1) for every statement variable p, at most one of the signed formulas
Tp and Fp is in Δ,

(2) if bϕ ∈ Δ − (Bool × SV), then there is a constituent K of bϕ
such that K ⊆ Δ.

Theorem 2.7.28. Let Δ be a Hintikka set of signed formulas and let
v be a truth assignment. Then, v satisfies Δ if and only if v(p) = b
for each signed variable bp ∈ Δ.

Proof. Suppose first that v(p) = b for each signed variable bp ∈
SV . We will show by induction on formulas ϕ that if bϕ ∈ Δ, then
v satisfies bϕ. If ϕ is a statement variable, then the statement holds
by our assumption about v. Now, suppose that the statement is true
for ϕ and b(¬ϕ) ∈ Δ. Since Δ is a Hintikka set, f¬(b)ϕ ∈ Δ. By
inductive hypothesis, v(ϕ) = f¬(b), so v(¬ϕ) = b, which means that
v satisfies b(¬ϕ).

Now suppose that the result holds for ϕ and ψ and b(ϕCψ) ∈ Δ
for some binary connective symbol C. Since Δ is a Hintikka set, there
is a constituent K of b(ϕCψ) which is contained in Δ. Since K con-
sists of signed formulas involving ϕ and ψ, by the inductive hypoth-
esis, v satisfies K and hence, v satisfies b(ϕCψ) by Theorem 2.7.25.

The converse implication is immediate. �

Corollary 2.7.29. Every Hintikka set of signed formulas is satisfi-
able.

Proof. Since a Hintikka set may not contain both Tp and Fp for
any statement variable p, a truth assignment as in Theorem 2.7.28
always exists. �

2.8 Truth Functions

In Section 2.3, we defined four binary operations f∧, f∨, f→, f↔ and
one unary operation f¬ on the set Bool. This section is dedicated

186 Logical Foundations of Computer Science — Volume 1

to a study of the algebraic properties of these operations and, in
general, of operations that can be defined on Bool. Properties of
truth functions discussed in this section are important not only for
propositional logic but also for a number of applications that interest
engineers and computer scientists.

The set of truth functions Booln −→ Bool will be denoted in
the sequel by TFn for n ∈ N. The set of all truth functions

⋃
n∈N TFn

will be denoted by TF∗; we shall use frequently the notation TF =⋃
n≥1 TFn.

Note that there are exactly two 0-ary truth functions, f�() = T
and f⊥() = F and hence TF∗ = TF ∪ {f�, f⊥}.

For everym ∈ N, let cmF , c
m
T be the constantm-ary truth functions

given by

cmF (x0, . . . , xm−1) = F, (2.3)

cmT (x0, . . . , xm−1) = T,

for every (x0, . . . , xm−1) ∈ Boolm. Note that c0F = f⊥ and c0T = f�.
Note that despite the simplicity of the set Bool, the number of

truth functions of n arguments that can be defined on Bool grows
very fast. Indeed, there are 22

n
functions in the set TFn; even for

n = 10 we have 21024 such functions, a number of the order of mag-
nitude of 10308! This shows that even for a relatively small number of
arguments listing all the truth functions that have certain properties
might be very costly.

Definition 2.8.1. Let n, i ∈ N be such that 0 ≤ i ≤ n − 1. The
projection πni is the truth function πni : Booln −→ Bool which is
given by πni (a0, . . . , an−1) = ai for all a0, . . . , an−1 ∈ Bool.

The set of all projections will be denoted by PROJ.

Example 2.8.2. The projection π10 is the identity function on
Bool. The projections π20 and π21 are given by π20(a0, a1) = a0 and
π21(a0, a1) = a1 for every a0, a1 ∈ Bool.

We remind the reader of the definition of composition of functions
as it pertains to truth functions.

Definition 2.8.3. Let f : Boolm −→ Bool, where m > 0,
and let gi : Booln −→ Bool for 0 ≤ i ≤ m − 1 be truth

Propositional Logic–Syntax and Semantics 187

functions. The composition of f with g0, . . . , gm−1 is the function
f(g0, . . . , gm−1) : Booln −→ Bool given by

f(g0, . . . , gm−1)(a0, . . . , an−1)

= f(g0(a0, . . . , an−1), . . . , gm−1(a0, . . . , an−1))

for every a0, . . . , am−1 ∈ Bool.

Let a, b be two arbitrary elements of Bool. We use the infix nota-
tion a∧b, a∨b, a→ b and a↔ b instead of f∧(a, b), f∨(a, b), f→(a, b)
and f↔(a, b), respectively. Instead of a ↔ b, it is convenient to use
sometimes the notation ab. Also, we shall write ā instead of f¬(a).

It is easy to check that for every a, b ∈ Bool:

ab =

{
a if b = T,

ā if b = F.

Theorem 2.8.4. The operations ∨, ∧, and ¬ on Bool have the
following properties:

a∧ a = a (idempotency of ∧),

a∨ a = a (idempotency of ∨),

a ∧ b = b∧ a (commutativity of ∧),

a ∨ b = b∨ a (commutativity of ∨),

(a ∧ b)∧ c = a∧ (b ∧ c) (associativity of ∧),

(a ∨ b)∨ c = a∨ (b ∨ c) (associativity of ∨),

¬¬a = a (involutive property of ¬)

a ∧ (a∨ b) = a (absorption property of ∧),

a ∨ (a∧ b) = a (absorption property of ∨),

a∧ (b ∨ c) = (a ∧ b)∨ (a ∧ c) (distributivity),

(b ∨ c)∧ a = (b ∧ a)∨ (c∧ a) ”,

a∨ (b ∧ c) = (a ∨ b)∧ (a ∨ c) ”,

(b ∧ c)∨ a = (b ∨ a)∧ (c∨ a) ”,

¬(a∧ b) = (¬a)∨ (¬b) (De Morgan properties),

¬(a∨ b) = (¬a)∧ (¬b) ”,

for every a, b, c ∈ Bool.

188 Logical Foundations of Computer Science — Volume 1

Proof. The argument parallels the one for Theorem 2.3.30. �
The binary operation “+” is defined by

a+ b =

{
T if a �= b,

F if a = b,

for every a, b ∈ Bool.

Theorem 2.8.5. The operation “+” is commutative and associa-
tive. In other words, we have

a+ b = b+ a (commutativity of +),

(a+ b)+ c = a+ (b+ c) (associativity of +),

for every a, b, c ∈ Bool. Also, for every a ∈ Bool, we have

a+ a = F,

a+F = a,

a+T = ā.

The operation “∧” is distributive with respect to “+”, that is,

a ∧ (b+ c) = (a ∧ b)+ (a∧ c),

(b+ c)∧ a = (b ∧ a)+ (c∧ a),

for every a, b, c ∈ Bool.

Proof. We shall prove only the first distributivity equality and
leave the proof of the other parts to the reader. Consider the cases
summarized by the following table:

a b c b+ c a∧ (b+ c) a∧ b a ∧ c (a ∧ b)+ (a∧ c)
F F F F F F F F
F F T T F F F F
F T F T F F F F
F T T F F F F F
T F F F F F F F
T F T T T F T T
T T F T T T F T
T T T F F T T F

By comparing the fifth and the last column of the table, we conclude
that the first distributivity property is satisfied. �

Propositional Logic–Syntax and Semantics 189

The operations introduced thus far on Bool allow us to define
similar operations on the set of truth functions.

Definition 2.8.6. Let f, g : Booln −→ Bool be two n-ary truth
functions for n ∈ N. The functions f ∨ g, f ∧ g, f → g, f ↔ g,
f + g, and ¬f are given by

(f ∨ g)(x0, . . . , xn−1) = f(x0, . . . , xn−1)∨ g(x0, . . . , xn−1),

(f ∧ g)(x0, . . . , xn−1) = f(x0, . . . , xn−1)∧ g(x0, . . . , xn−1),

(f → g)(x0, . . . , xn−1) = f(x0, . . . , xn−1) → g(x0, . . . , xn−1),

(f ↔ g)(x0, . . . , xn−1) = f(x0, . . . , xn−1) ↔ g(x0, . . . , xn−1),

(f + g)(x0, . . . , xn−1) = f(x0, . . . , xn−1)+ g(x0, . . . , xn−1),

(¬f)(x0, . . . , xn−1) = ¬f(x0, . . . , xn−1)

for every (x0, . . . , xn−1) ∈ Booln.

An alternative notation for (¬f) is f̄ .
Consider the function OR : Seq(Bool) −→ Bool defined recur-

sively by

OR(λ) = F,

OR(a0, . . . , an) = OR(a0, . . . , an−1)∨ an,

for every a0, . . . , an ∈ Bool and n ∈ N. The usual notations for
OR(�a) (where �a = (a0, . . . , an−1)) are a0∨· · ·∨an−1 and

∨
0≤i≤n−1ai.

Similarly, define the function AND : Seq(Bool) −→ Bool by

AND(λ) = T,

AND(a0, . . . , an) = AND(a0, . . . , an−1)∧ an,

for every a0, . . . , an ∈ Bool and n ∈ N. The usual notations
for AND(�a) (where �a = (a0, . . . , an−1)) are a0 ∧ · · · ∧ an−1 and∧

0≤i≤n−1ai.

The operation “+” can be extended to sequences by defining the
function SUM : Seq(Bool) −→ Bool:

SUM(λ) = F,

SUM(a0, . . . , an) = SUM(a0, . . . , an−1)+ an,

190 Logical Foundations of Computer Science — Volume 1

for every a0, . . . , an ∈ Bool and n ∈ N. The usual notations
for SUM(�a) (where �a = (a0, . . . , an−1)) are a0 + · · · + an−1 and∑

0≤i≤n−1 ai.

Lemma 2.8.7. Let (a0, . . . , an−1) be a sequence of elements of Bool.
The following statements hold:

(1)
∨

0≤i≤n−1ai = T if and only if there is an i, 0 ≤ i ≤ n− 1, such
that ai = T,

(2)
∧

0≤i≤n−1ai = T if and only if for every i, 0 ≤ i ≤ n−1, ai = T,
(3)

∑
0≤i≤n−1 ai = T if and only if |{i | 0 ≤ i ≤ n− 1 and ai = T}|

is odd.

Proof. The proof of all three statements is by induction on n. We
give here only the proof of the third statement. The basis step, n = 0,
is immediate because we defined the sum of the empty sequence
to be F. Suppose that the third statement is true for sequences of
length n. Then, the following statements are equivalent:

(i)
∑

0≤i≤n ai = T,
(ii) either

∑
0≤i≤n−1 ai = T and an = F or

∑
0≤i≤n−1 ai = F and

an = T,
(iii) either |{i | 0 ≤ i ≤ n − 1 and ai = T}| is odd and an = F or

|{i | 0 ≤ i ≤ n− 1 and ai = T}| is even and an = T,
(iv) |{i | 0 ≤ i ≤ n and ai = T}| is odd.

�

Theorem 2.8.8. Let (a0, . . . , an−1) be a sequence in Seq(Bool). For
every permutation (ai0 , . . . , ain−1) of the sequence, we have

∨
0≤j≤n−1

aj =
∨

0≤j≤n−1
aij ,∧

0≤j≤n−1
aj =

∧
0≤j≤n−1

aij ,∑
0≤j≤n−1

aj =
∑

0≤j≤n−1

aij .

Proof. The proof follows from Lemma 2.8.7. �

Propositional Logic–Syntax and Semantics 191

Theorem 2.8.9. Let (a0, . . . , an−1), (b0, . . . , bm−1) be in Seq(Bool).
We have∨

0≤i≤n−1
ai ∨

∨
0≤j≤m−1

bj = a0 ∨ · · ·∨ an−1 ∨ b0 ∨ · · ·∨ bm−1,∧
0≤i≤n−1

ai ∧
∧

0≤j≤m−1
bj = a0 ∧ · · ·∧ an−1 ∧ b0 ∧ · · ·∧ bm−1,∑

0≤i≤n−1

ai +
∑

0≤j≤m−1

bj = a0 + · · ·+ an−1 + b0 + · · ·+ bm−1.

Proof. We prove only the third assertion of the theorem, by giving
a semantic argument. Let pa be the number of i, 0 ≤ i ≤ n − 1,
such that ai = T and let pb be the analogous number for the
sequence (b0, . . . , bn−1). The following statements are easily seen to
be equivalent:

•
∑

0≤i≤n−1 ai +
∑

0≤j≤m−1 bj = F,
• the numbers pa and pb have the same parity,
• pa + pb is an even number,
• a0 + · · ·+ an−1 + b0 + · · ·+ bm−1 = F. �

Theorem 2.8.10. Let (a0, . . . , an−1), (b0, . . . , bn−1) be in Seq(Bool).
We have∨

0≤i≤n−1
ai ∨

∨
0≤j≤n−1

bj =
∨

0≤i≤n−1
(ai ∨ bi),∧

0≤i≤n−1
ai ∧

∧
0≤j≤n−1

bj =
∧

0≤i≤n−1
(ai ∧ bi),∑

0≤i≤n−1

ai +
∑

0≤j≤n−1

bj =
∑

0≤i≤n−1

(ai + bi).

Proof. Again, we prove only the third part of the theorem. The
basis step, n = 0, of the induction argument on n is trivial. Suppose
the statement holds for n. We have

∑
0≤i≤n

ai +
∑

0≤j≤n
bj =

⎛
⎝ ∑

0≤i≤n−1

ai + an

⎞
⎠+

⎛
⎝ ∑

0≤j≤n−1

bj + bn

⎞
⎠

=
∑

0≤i≤n−1

ai + an +
∑

0≤j≤n−1

bj + bn

192 Logical Foundations of Computer Science — Volume 1

(by Theorem 2.8.9, Part (3))

=
∑

0≤i≤n−1

ai +
∑

0≤j≤n−1

bj + an + bn

(by Theorem 2.8.8)

=

⎛
⎝ ∑

0≤i≤n−1

ai +
∑

0≤j≤n−1

bj

⎞
⎠+ (an + bn)

=
∑

0≤i≤n−1

(ai + bi)+ (an + bn)

(by inductive hypothesis)

=
∑

0≤i≤n
(ai + bi).

�

Theorem 2.8.11. Let (b0, . . . , bn−1) be a sequence in Seq(Bool) and
let a ∈ Bool. We have the following generalized distributivity laws:

a∧
(∨

0≤i≤n−1
bi

)
=

∨
0≤i≤n−1

(a∧ bi),(∨
0≤i≤n−1

bi

)
∧ a =

∨
0≤i≤n−1

(bi ∧ a),

a∨
(∧

0≤i≤n−1
bi

)
=

∧
0≤i≤n−1

(a∨ bi),(∧
0≤i≤n−1

bi

)
∨ a =

∧
0≤i≤n−1

(bi ∨ a),

a∧
⎛
⎝ ∑

0≤i≤n−1

bi

⎞
⎠ =

∑
0≤i≤n−1

(a ∧ bi),

⎛
⎝ ∑

0≤i≤n−1

bi

⎞
⎠∧ a =

∑
0≤i≤n−1

(bi ∧ a).

Proof. The argument for each of the equalities is by induction on
n and is left to the reader. �

Propositional Logic–Syntax and Semantics 193

Let f0, . . . , fm−1 be a sequence of n-ary truth functions, where
m,n ∈ N. We define the n-ary truth functions

∨
0≤i≤m−1fi and∧

0≤i≤m−1fi, and
∑

0≤i≤m−1 fi by(∨
0≤i≤m−1

fi

)
(�b) =

∨
0≤i≤m−1

fi(�b),(∧
0≤i≤m−1

fi

)
(�b) =

∧
0≤i≤m−1

fi(�b),⎛
⎝ ∑

0≤i≤m−1

fi)(�b

⎞
⎠ =

∑
0≤i≤m−1

fi(�b),

for every �b ∈ Booln.
In order to simplify the notation for truth functions, we shall

assume that the following order of priority has been imposed on the
operations mentioned so far:

(1) ¬ has the highest priority,
(2) ∨,∧,→ and ↔ have the second highest priority, and
(3) + has the lowest priority.

Parentheses will be used whenever we need to eliminate ambiguities.
Let �a = (a0, . . . , an−1) and �b = (b0, . . . , bn−1) be two sequences

over Bool having the same length. We use the notation �a
�b for

�a
�b = ab00 ∧ · · ·∧ a

bn−1

n−1 ,

where we use the notation ab introduced just before Theorem 2.8.4.

Note that �a
�b = T if and only if �a = �b, that is, if and only if ai = bi

for all i, 0 ≤ i ≤ n− 1.

Definition 2.8.12. Let f ∈ TFn be a truth function for n ∈ N.
The dual of f is the function fd ∈ TFn given by

fd(a0, . . . , an−1) = f(a0, . . . , an−1),

for every (a0, . . . , an−1) ∈ Booln.

Example 2.8.13. The dual of the function f∧ is the function f∨
since, by the De Morgan laws, we have

a∧ b = a∨ b = a ∨ b,

for every a, b ∈ Bool. In a similar manner, it is easy to see that the
dual of f∨ is f∧.

194 Logical Foundations of Computer Science — Volume 1

It is easy to prove that the dual of the dual of a function f :
Booln −→ Bool is f itself. Indeed, we have

(fd)d(a0, . . . , an−1) = fd(a0, . . . , an−1)

= f(a0, . . . , an−1)

= f(a0, . . . , an−1),

for every a0, . . . , an−1 ∈ Bool.

Definition 2.8.14. A truth function f is self-dual if f = fd. The
sets SD∗, SD, and SDn (for n ∈N) are given by

SD∗ = {f ∈ TF∗ | f is self-dual},
SD = SD∗ ∩ TF,
SDn = SD∗ ∩ TFn.

Note that a function f ∈ TFn is self-dual if and only if

f(a0, . . . , an−1) = f(a0, . . . , an−1),

for every a0, . . . , an−1 ∈ Bool.
Since neither of the functions f� and f⊥ is self-dual, we have

SD∗ = SD.

Example 2.8.15. The function f¬ is self-dual. Indeed, we have

fd¬(x) = f¬(x) = x = x = f¬(x),

for every x ∈ Bool.
It is easy to see that the identity π10 is also self-dual. In general,

every projection πni is self-dual.
Note that the set TF1 consists of four functions, TF1 =

{f¬, π10 , f0, f1}, where f0 and f1 are the two constant functions, given
by f0(x) = F and f1(x) = T for x ∈ Bool, respectively. Therefore,
among the truth functions in TF1, only f0 and f1 are not self-dual.

Propositional Logic–Syntax and Semantics 195

Definition 2.8.16. For n ∈ N, a function f ∈ TFn is linear if there
exist n+ 1 elements k, k0, . . . , kn−1 of Bool such that

f(a0, . . . , an−1) = k+ (k0 ∧ a0)+ . . .+ (kn−1 ∧ an−1)

for every a0, . . . , an−1 ∈ Bool. The sets LIN ∗, LIN , and LINn

(for n ∈N) are given by

LIN ∗ = {f ∈ TF∗ | f is linear},
LIN = LIN ∗ ∩ TF,
LINn = LIN ∗ ∩ TFn.

Note that both f� and f⊥ are linear, so LIN ∗ = LIN ∪{f�, f⊥}.

Example 2.8.17. The truth function f¬ is linear; indeed, we have

f¬(a0) = T+ (T∧ a0) = T+ a0

for every a ∈ Bool.
The truth function f↔ is also linear because

f↔(a0, a1) = T+ a0 + a1

for a0, a1 ∈ Bool.
For n ≥ 1, the n-ary parity function fPn ∈ TFn takes the value

T if an even number of its arguments have the value T. Every such
function is linear since we can write

fPn(a0, . . . , an−1) = T+ a0 + · · ·+ an−1

for every a0, . . . , an−1 ∈ Bool. Note that f¬ = fP1 and f↔ = fP2 , so
this observation generalizes the previous ones.

None of the functions f∧, f∨, f→ is linear. We show this here
only for f→. Later, in Example 2.8.33, we prove that f∧ and
f∨ are nonlinear, using a characterization of linear binary truth
functions.

Suppose that f→ were linear. Then, there are k, k0, k1 ∈ Bool
such that

a0 → a1 = k+ (k0 ∧ a0)+ (k1 ∧ a1)

196 Logical Foundations of Computer Science — Volume 1

for every a0, a1 ∈ Bool. This gives the following equalities:

F → F = T = k,

F → T = T = k+ k1,

T → F = F = k+ k0,

T → T = T = k+ k0 + k1.

The first three equalities give k = T, k1 = F, and k0 = T. These val-
ues, however, do not satisfy the last equality, which is a contradiction.

In a similar way, one can show that the minority function fmin ∈
TF3 defined by fmin(a0, a1, a2) = T if at most one of its arguments is
T is not linear.

We introduce a relation “≤” on Bool by

≤= {(F,F), (T,T), (F,T)}.

It is easy to check that ≤ is a partial order on Bool. Also, for n ∈ N,
we use the partially ordered set (Booln,≤), where (a0, . . . , an−1) ≤
(b0, . . . , bn−1) if ai ≤ bi for all i, 0 ≤ i ≤ n− 1.

Let n ∈ N. We define a bijection βn : Booln −→ {0, . . . , 2n − 1},
which allows us to define a total order � on Booln, by

βn(a0, . . . , an−1) = 2n−1d0 + · · ·+ 2dn−2 + dn−1,

where

di =

{
1 if ai = T

0 if ai = F

for 0 ≤ i ≤ n − 1. The relation � on Booln is given by �a � �b if
βn(�a) ≤ βn(�b). Since (Booln,�) is a chain, we can list its elements as

−→
bn0 �

−→
bn1 � · · ·�

−→
bn2n−1 .

Example 2.8.18. For the totally ordered set (Bool3,�), we have

(F,F,F)� (F,F,T)� (F,T,F)� (F,T,T)�
(T,F,F)� (T,F,T)� (T,T,F)� (T,T,T).

Recall the notation δ(�a,�b) introduced in Section 1.2.

Propositional Logic–Syntax and Semantics 197

Lemma 2.8.19. Let n ∈ N and let �a,�b ∈ Booln be two
sequences. If δ(�a,�b) = k, then there is a sequence �c(0), . . . ,�c(k)

in (Booln,≤) such that �c(0) = �a, �c(k) = �b and δ(�c(i),

�c(i+ 1)) = 1 for 0 ≤ i ≤ k − 1. Furthermore, if �a ≤ �b, then we may
choose the sequence to be a chain �c(0) < · · · < �c(k) in (Booln,≤).

Proof. The proof is by induction on k and it is left to the reader.
�

Definition 2.8.20. For n ∈ N, a function f ∈ TFn is monotonic if
for every (a0, . . . , an−1), (b0, . . . , bn−1) ∈ Booln we have

(a0, . . . , an−1) ≤ (b0, . . . , bn−1) implies

f(a0, . . . , an−1) ≤ f(b0, . . . , bn−1).

The setsMON ∗,MON , andMON n (for n ∈ N) are given by

MON ∗ = {f ∈ TF∗ | f is monotonic},
MON =MON ∗ ∩ TF,
MON n =MON ∗ ∩ TFn.

Both f� and f⊥ are trivially monotonic functions and hence
MON ∗ =MON ∪ {f�, f⊥}.

A technical result that is a consequence of Lemma 2.8.19 is given
in the following.

Lemma 2.8.21. Let f ∈ TFn − MON be a nonmonotonic truth
function. There exist �c, �d ∈ Booln such that �c ≤ �d, δ(�c, �d) = 1,

f(�c) = T and f(�d) = F.

Proof. Since f is nonmonotonic, there is a pair of sequences

�a = (a0, . . . , an−1),�b = (b0, . . . , bn−1)

such that �a ≤ �b, f(a0, . . . , an−1) = T, and f(b0, . . . , bn−1) = F.
By Lemma 2.8.19, there is a chain �c(0) < · · · < �c(k) in (Booln,≤)

such that �c(0) = �a, �c(k) = �b and δ(�c(i),�c(i+1)) = 1 for 0 ≤ i ≤ k−1.
Since f(�a) = T and f(�b) = F, there is j such that 0 ≤ j ≤ k − 1,
f(�c(j)) = T and f(�c(j + 1)) = F. In this case, �c(j) and �c(j + 1) are
sequences that satisfy the conditions of the lemma. �

198 Logical Foundations of Computer Science — Volume 1

Definition 2.8.22. A function f ∈ TFn is symmetric if for
every permutation π of {0, . . . , n − 1}, we have f(a0, . . . , an−1) =
f(aπ(0), . . . , aπ(n−1)) for every a0, . . . , an−1 ∈ Bool.

Let 1 ≤ k ≤ n. The threshold function thk,n is the n-ary truth
function defined by

thk,n(a0, . . . , an−1) =

{
T if at least k among a0, . . . , an−1 are T

F otherwise.

Note that the threshold functions are exactly the nonconstant,
monotonic, symmetric truth functions.

Definition 2.8.23. For each n ∈ N and �b ∈ Booln, the n-ary
minterm function generated by �b is the function f�b ∈ TFn given by

f�b(x0, . . . , xn−1) = (x0, . . . , xn−1)
�b

for every (x0, . . . , xn−1) ∈ Booln.

Similarly, for every n ∈N and �b ∈ Booln, the n-ary maxterm
function generated by �b is the function g�b ∈ TFn given by

g�b(x0, . . . , xn−1) = xb00 ∨ · · ·∨ x
bn−1

n−1

for every (x0, . . . , xn−1) ∈ Booln.

Note that if �b = (b0, . . . , bn−1), then

f�b(x0, . . . , xn−1) =

{
T if x0 = b0, . . . xn−1 = bn−1,

F otherwise,

for every x0, . . . , xn−1 ∈ Bool.

For a sequence �b = (b0, . . . , bn−1) ∈ Booln, we denote by ¬�b the
sequence ¬�b = (b0, . . . , bn−1). It is easy to see that

g�b = f¬�b,

f�b = g¬�b,

g�b = f¬�b,

f�b = g¬�b.

Also, g�b is the dual of the mintern function f�b.

Propositional Logic–Syntax and Semantics 199

There are 2n distinct n-ary minterm functions and an equal num-
ber of n-ary maxterm functions.

For f ∈ TFn, we denote by T (f) and F (f) the sets

T (f) = {�b ∈ Booln|f(�b) = T},

F (f) = {�b ∈ Booln|f(�b) = F}.
Definition 2.8.24. Let m,n ∈ N with n ≥ 1.

An n-ary conjunction is a truth function f ∈ TFn such that f(�x) =
�0(�x)∧ · · ·∧ �m−1(�x) for all �x ∈ Booln, where each �i, 0 ≤ i ≤ m−1,
is either an n-ary projection πnj or is f¬(πnj), for some j ∈ N. If every
�i is an n-ary projection, then f is a positive n-ary conjunction.

An n-ary disjunction is a truth function f ∈ TFn, such that f(�x) =
�0(�x)∨ · · ·∨ �m−1(�x) for all �x ∈ Booln, where each �i, 0 ≤ i ≤ m−1,
is either an n-ary projection πnj or is f¬(πnj), for some j ∈ N. If every

�i is an n-ary projection, then f is a positive n-ary disjunction.

Example 2.8.25. The function f ∈ TF4 given by f(x0, x1, x2, x3) =
x1 ∧ x3 for (x0, x1, x2, x3) ∈ Bool4 is a 4-ary conjunction since we
have

f(x0, x1, x2, x3) = π41(x0, x1, x2, x3)∧ f¬(π43(x0, x1, x2, x3))

for every x0, x1, x2, x3 ∈ Bool.
The function g ∈ TF4 given by

g(x0, x1, x2, x3) = x0 ∨ x2 ∨ x3

for every x0, x1, x2, x3 ∈ Bool is a 4-ary disjunction since

g(x0, x1, x2, x3)

=f¬(π4
0(x0, x1, x2, x3))∨ π4

2(x0, x1, x2, x3)∨ f¬(π4
3(x0, x1, x2, x3))

for every x0, x1, x2, x3 ∈ Bool.

Let I be a finite set with |I| = n, and let h : I −→ Bool. We
define ∨

{f(i) | i ∈ I} =
∨

0≤j≤n−1
h(ij),∧

{f(i) | i ∈ I} =
∧

0≤j≤n−1
h(ij),∑

{f(i) | i ∈ I} =
∑

0≤j≤n−1

h(ij),

200 Logical Foundations of Computer Science — Volume 1

where (i0, . . . , in−1) is an arbitrary permutation of I. By
Theorem 2.8.8, these definitions are independent of the permutation
chosen.

Definition 2.8.26. Let f be an n-ary truth function. If

f(�x) = f0(�x)∨ · · ·∨ fk−1(�x), (2.4)

for every �x ∈ Booln, where f0, . . . , fk−1 are n-ary conjunctions, then
the right member of equation (2.4) is called a disjunctive normal
form of f .

If

f(�x) = f0(�x)∧ · · ·∧ fk−1(�x), (2.5)

for every �x ∈ Booln, where f0, . . . , fk−1 are n-ary disjunctions, then
the right member of equation (2.5) is called a conjunctive normal
form of f .

There exists at least one disjunctive normal form for any truth
function and one conjunctive normal form, as shown by the following
two theorems.

Theorem 2.8.27 (Full Disjunctive Normal Form Theorem).
For every function f ∈ TFn, we have

f(x0, . . . , xn−1) =
∨
{f�b(x0, . . . , xn−1)|�b ∈ T (f)} (2.6)

for every x0, . . . , xn−1 ∈ Bool. The right member of equality (2.6) is
called the full disjunctive normal form of the function f .

Proof. Consider an n-tuple �x = (x0, . . . , xn) ∈ Booln. Two cases
are possible:

(1) If �x �∈ T (f), then f(�x) = F. Since �x �= �b for every �b ∈ T (f), we
have f�b(�x) = F, so both sides are equal to F.

(2) If �x ∈ T (f), then f�x(�x) = T. Since the right member of the
equality of the theorem is a disjunction, it follows that it is equal
to T and so, the equality is satisfied. �

Theorem 2.8.28 (Full Conjunctive Normal Form Theorem).
For every function f ∈ TFn, we have

f(x0, . . . , xn−1) =
∧
{g�b′(x0, . . . , xn−1)|�b ∈ F (f)} (2.7)

Propositional Logic–Syntax and Semantics 201

for every x0, . . . , xn−1 ∈ Bool, where �b′ = ¬�b for every �b ∈ Booln.
The right member of equality (2.7) is called the full conjunctive nor-
mal form of the function f .

Proof. By applying the full disjunctive normal form theorem to
the function f̄ , we obtain

f̄(�x) =
∨
{f�b(x0, . . . , xn−1)|�b ∈ T (f̄)}

=
∨
{f�b(x0, . . . , xn−1)|�b ∈ F (f)}.

This, in turn, implies, by the De Morgan laws

f(�x) =
∧
{f̄�b(�x)|�b ∈ F (f)}

=
∧
{g�b′(�x)|�b ∈ F (f)},

for every �x ∈ Booln. �

Example 2.8.29. Consider the function f : Bool3 −→ Bool
defined by the following table:

x0 x1 x2 f(x0, x1, x2)
F F F T
F F T F
F T F F
F T T T
T F F F
T F T T
T T F T
T T T T

The sets T (f) and F (f) are given by

T (f) = {(F,F,F), (F,T,T), (T,F,T),

(T,T,F), (T,T,T)},
F (f) = {(F,F,T), (F,T,F), (T,F,F)}.

Consequently, the full disjunctive normal form of f is given by

f(x0, x1, x2) = (x̄0 ∧ x̄1 ∧ x̄2)∨ (x̄0 ∧ x1 ∧ x2)

∨ (x0 ∧ x̄1 ∧ x2)∨ (x0 ∧ x1 ∧ x̄2)

∨ (x0 ∧ x1 ∧ x2),

202 Logical Foundations of Computer Science — Volume 1

while its full disjunctive normal form is

f(x0, x1, x2) = (x0 ∨ x1 ∨ x̄2)∧ (x0 ∨ x̄1 ∨ x2)

∧ (x̄0 ∨ x1 ∨ x2).

Let us denote by Pnm the set of all subsets of {0, . . . , n−1} having
m elements, for m,n ∈ N and 0 ≤ m ≤ n. Pn will denote the
power set of {0, . . . , n − 1}. Observe that, for n ≥ 1, the function
taking L ∈ Pn−1 to L ∪ {n − 1} is a bijection between Pn−1

and Pn − Pn−1 for n ≥ 1. For �x = (x0, . . . , xn−1) ∈ Booln and
L = {i0, . . . , im−1}, 0 ≤ i0 < · · · < im−1 ≤ n − 1, denote by �xL the
conjunction xi0 ∧ . . .∧ xim−1 .

For monotonic truth functions, we have a refinement of
Theorem 2.8.27.

Theorem 2.8.30 (Monotonic Disjunctive Normal Form
Theorem). For every monotonic function f ∈ TFn, there is a dis-
junctive normal form of f that consists of positive n-ary conjunc-
tions.

Proof. If g = �0∧ · · ·∧ �m−1 is an n-ary conjunction, we denote by
g+ the n-ary conjunction �i0∧ · · ·∧�ip−1 , where �i0 , . . . �ip−1 are those
members of {�0, . . . , �m−1} that are n-ary projections. It is easy to
see that g(�x) ≤ g+(�x), for all �x ∈ Booln. (Note that when p = 0,
then g+(x0, . . . , xn−1) = T for all x0, . . . , xn−1 ∈ Bool.)

Let f =
∨

0≤i≤k−1fi be the full disjunctive normal form of f and

let h =
∨

0≤i≤k−1f
+
i . It is clear that f(�x) ≤ h(�x) for all �x ∈ Booln.

To show the opposite inequality, let �x ∈ Booln be such that h(�x) =
T. Then, there is an i such that 0 ≤ i ≤ k − 1 and f+i (�x) = T.
We can write fi(�x) = �0(�x) ∧ · · · ∧ �n−1(�x), where �r is either πnr or
f¬(πnr), and

f+i (�x) = �j0(�x)∧ · · · ∧ �jp−1(�x) = xj0 ∧ · · ·∧ xjp−1 = T.

Define �x′ ∈ Booln by

x′i =

{
T if i ∈ {j0, . . . , jp−1}
F otherwise.

Since �0(�x
′) = · · · = �n−1(�x

′) = T, we have fi(�x
′) = T, so f(�x′) = T.

The inequality �x′ ≤ �x and the monotonicity of f imply f(�x) = T, as
desired. �

Propositional Logic–Syntax and Semantics 203

Theorem 2.8.31 (Polynomial Normal Form Theorem). Let
f ∈ TFn, n ≥ 1 be a truth function. There is an indexed set {aL |
L ∈ Pn} of elements of Bool such that

f(�x) =
∑
{aL ∧ �xL|L ∈ Pn},

for every �x ∈ Booln. The coefficients aL are uniquely determined by
the function f .

If L = {i0, . . . , im−1}, i0 < · · · < im−1, we shall denote the coeffi-
cient aL by ai0...im−1 . Also, a∅ will be denoted simply by a.

Proof. The argument is by induction on n, the number of argu-
ments of the truth function f . If n = 1, we have the cases summarized
as follows:

f a a0 Polynomial Form
f = π10 F T f(x) = F+T∧ x
f = f0 F F f(x) = F+F∧ x
f = f1 T F f(x) = T+F∧ x
f = f¬ T T f(x) = T+T∧ x

Suppose that for n ≥ 2 every function of n − 1 arguments can
be written as above and consider the functions f0, f1 : Booln−1 −→
Bool given by

f0(x0, . . . , xn−2) = f(x0, . . . , xn−2,F),

f1(x0, . . . , xn−2) = f(x0, . . . , xn−2,T),

for every x0, . . . , xn−2 ∈ Bool. Note that

f(x0, . . . , xn−1) = f0(x0, . . . , xn−2)+ (f0(x0, . . . , xn−2)

+f1(x0, . . . , xn−2))∧ xn−1

for every x0, . . . , xn−2 ∈ Bool. By the inductive hypothesis, there
are a0L, a

1
L such that

f0(x0, . . . , xn−2) =
∑
{a0L ∧ xL|L ∈ Pn−1}

and

f1(x0, . . . , xn−2) =
∑
{a1L ∧ xL|L ∈ Pn−1},

for every x0, . . . , xn−2 ∈ Bool.

204 Logical Foundations of Computer Science — Volume 1

By combining the expansions of the truth functions, we obtain
the needed expansion for the function f :

f(x0, . . . , xn−1) =
∑
{a0L ∧ xL | L ∈ Pn−1}

+
(∑

{a0L ∧ xL | L ∈ Pn−1}

+
∑
{a1L ∧ xL | L ∈ Pn−1}

)
∧ xn−1.

The last summand can be rewritten as follows:(∑
{a0L ∧ xL | L ∈ Pn−1}+

∑
{a1L ∧ xL | L ∈ Pn−1}

)
∧ xn−1

=
∑
{a0L ∧ xL + a1L ∧ xL | L ∈ Pn−1}∧ xn−1

(by Part (3) of Theorem 2.8.10)

=
∑
{(a0L + a1L)∧ xL | L ∈ Pn−1}∧ xn−1

=
∑
{(a0L + a1L)∧ (xL ∧ xn−1) | L ∈ Pn−1}

(by Theorem 2.8.11 and associativity of ∧)

=
∑
{(a0L + a1L)∧ xL∪{n−1} | L ∈ Pn−1}

=
∑
{(a0L−{n−1} + a1L−{n−1})∧ xL | L ∈ Pn − Pn−1}.

Thus, we can write

f(x0, . . . , xn−1)

=
∑
{a0L ∧ xL | L ∈ Pn−1}

+
∑
{(a0L−{n−1} + a1L−{n−1})∧ xL | L ∈ Pn − Pn−1}

=
∑
{aL ∧ xL | L ∈ Pn},

where

aL =

{
a0L if n− 1 �∈ L,
a0L−{n−1} + a1L−{n−1} if n− 1 ∈ L.

The uniqueness of the polynomial normal form for truth functions
follows from the fact that for n ≥ 1 there are 22

n
distinct expressions

Propositional Logic–Syntax and Semantics 205

of the form
∑
{aL ∧ �xL | L ∈ Pn} and an equal number of n-ary

truth functions. Since every n-ary truth function has a polynomial
normal form, it follows that no such function can have more than
one such form. �

Example 2.8.32. The functions f∧, f∨ are not linear because their
polynomial normal forms are given by

f∧(x0, x1) = F+ (F∧ x0)+ (F∧ x1)+ (T ∧ x0 ∧ x1),

f∨(x0, x1) = F+ (T∧ x0)+ (T∧ x1)+ (T ∧ x0 ∧ x1)

for x0, x1 ∈ Bool. If either of these functions were linear, this would
contradict the uniqueness of polynomial normal form.

Example 2.8.33. For a binary truth function f : Bool2 −→ Bool,
the polynomial normal form is

f(x0, x1) = a+ a0 ∧ x0 + a1 ∧ x1 + a01 ∧ x0 ∧ x1,

for every x0, x1 ∈ Bool. This gives the following equalities:

f(F,F) = a,

f(F,T) = a+ a1,

f(T,F) = a+ a0,

f(T,T) = a+ a0 + a1 + a01.

These equalities allow us to compute the coefficients:

a = f(F,F),

a0 = f(F,F)+ f(T,F),

a1 = f(F,F)+ f(F,T),

a01 = f(F,F)+ f(F,T)+ f(T,F)+ f(T,T).

This shows that a binary truth function f is linear if and only if
f(F,F) + f(F,T) + f(T,F) + f(T,T) = F. In other words, f is
linear if and only if the sequence (f(F,F), f(F,T), f(T,F), f(T,T))
contains an even number of entries that are T. This implies that
neither f∧ nor f∨ is linear. In fact, the binary truth functions that are
linear are the constant functions, the projections and their negations,
f↔, and its negation.

206 Logical Foundations of Computer Science — Volume 1

The next normal form, called Lupanov’s (k, s)-representation, was
introduced in [28] and will be used in Section 2.11 to derive minimal-
size implementations of truth functions.6 If B ⊆ Booln and f ∈ TFn,
define the trace of f on the set B as fB ∈ TFn, where

fB(x) =

{
f(x) if x ∈ B
F otherwise.

Lemma 2.8.34. Let n ∈ N and let B0, . . . , B�−1 be a collection of
subsets of Booln whose union is Booln. For f ∈ TFn, we have

f =
∨
{fBi | 0 ≤ i ≤ �− 1}.

Proof. Let x ∈ Booln. If f(x) = T, then fBi(x) = T for those Bi
such that x ∈ Bi and there is at least one such Bi because

⋃
{Bi |

0 ≤ i ≤ �− 1} = Booln. If f(x) = F, then fBi(x) = F for every Bi.
The result follows from these observations. �

Definition 2.8.35. Let n, k, s ∈ N be such that 1 ≤ k ≤ n and
1 ≤ s ≤ 2k. An s-partition of Boolk is a partition A0, . . . , A�−1 of
Boolk such that |A0| = · · · = |A�−2| = s and |A�−1| ≤ s.

If A0, . . . , A�−1 is an s-partition of Boolk, then the (k, s)-partition
of Booln induced by the s-partition is B0, . . . , B�−1, where

Bi = {(x0, . . . , xn−1) | (x0, . . . , xk−1) ∈ Ai}

for 0 ≤ i ≤ �− 1.

Note that an s-partition of Boolk, and therefore, a (k, s)-partition

of Booln, has � = �2ks � blocks.

Example 2.8.36. The standard s-partition of Boolk is the partition
whose blocks consist of consecutive k-tuples in lexicographic order.

6O. B. Lupanov was born in St. Petersburg in 1932 and died in Moscow in 2006.
He graduated from Moscow State University where he served as a professor and
a dean. He is known for the representation of Boolean functions which bears his
name.

Propositional Logic–Syntax and Semantics 207

For example, the standard 3-partition of Bool3 has the following
blocks:

A0 = {(F,F,F), (F,F,T), (F,T,F)},
A1 = {(F,T,T), (T,F,F), (T,F,T)},
A2 = {(T,T,F), (T,T,T)}.

The (3, 3)-partition of Bool5 induced by the partition A0, A1, A2

consists of three blocks B0, B1, B2, where |B0| = |B1| = 12 and
|B2| = 8.

Definition 2.8.37. Let f ∈ TFn and let A0, . . . , A�−1 be an
s-partition of Boolk, where 1 ≤ k ≤ n and 1 ≤ s ≤ 2k. Denote
the induced (k, s)-partition of Booln by B0, . . . , B�−1.

The first Lupanov decomposition of f generated by A0, . . . , A�−1

is the set of functions {f0, . . . , f�−1}, where fi = fBi for 0 ≤ i ≤ �−1.

By Lemma 2.8.34, f equals the disjunction of the functions in any
of its first Lupanov decompositions.

Example 2.8.38. Let f ∈ TF4 be given by the following table:

x0 x1 x2 x3 f(x0, x1, x2, x3)
F F F F F
F F F T T
F F T F F
F F T T F
F T F F T
F T F T F
F T T F T
F T T T F
T F F F F
T F F T T
T F T F T
T F T T T
T T F F T
T T F T T
T T T F T
T T T T T

208 Logical Foundations of Computer Science — Volume 1

Consider the 2-partition A0 = {(F,F), (F,T)}, A1 = {(T,F),
(T,T)} of Bool2 and the corresponding (2, 2)-partition of Bool4.
To obtain the first Lupanov decomposition of f , it is convenient to
redraw the table defining f as follows:

x2 F F T T
x3 F T F T

x0 x1

A0 F F F T F F
F T T F T F

A1 T F F T T T
T T T T T T

The decomposition of f consists of the two functions f0, f1
given by

f0 x2 F F T T
x3 F T F T

x0 x1

A0 F F F T F F
F T T F T F

A1 T F F F F F
T T F F F F

f1 x2 F F T T
x3 F T F T

x0 x1

A0 F F F F F F
F T F F F F

A1 T F F T T T
T T T T T T

We now proceed to further decompose each of the functions fi in
a first Lupanov decomposition of f .

Definition 2.8.39. Let f ∈ TFn and let A0, . . . , A�−1 be
an s-partition of Boolk, where 1 ≤ k ≤ n and 1 ≤ s ≤ 2k, and
let {f0, . . . , f�−1} be the first Lupanov decomposition of f generated
by the partition.

For ω : Ai −→ Bool, let CAi,ω be the subset of Booln−k given by

CAi,ω = {(y0, . . . , yn−k−1) | f(x0, . . . , xk−1, y0, . . . , yn−k−1)

= ω(x0, . . . , xk−1) for every (x0, . . . , xk−1) ∈ Ai}
and let DAi,ω be the subset of Booln defined by

DAi,ω = {(x0, . . . , xk−1, y0, . . . , yn−k−1) | (x0, . . . , xk−1) ∈ Boolk,

(y0, . . . , yn−k−1) ∈ CAi,ω}.

Propositional Logic–Syntax and Semantics 209

The function fi,ω is the trace of the function fi on the set DAi,ω.

Observe that for a truth function f ∈ TFn and each i, the block
Ai of a (k, s)-partition generates a partition {CAi,ω | ω : Ai −→
Bool and CAi,ω �= ∅} of Booln−k. Therefore, the collection

{DAi,ω | ω : Ai −→ Bool and CAi,ω �= ∅}

is a partition of Booln.

Theorem 2.8.40. Let f ∈ TFn and let {f0, . . . , f�−1} be the first
Lupanov decomposition generated by a (k, s)-partition A0, . . . , A�−1.
We have

fi =
∨
{fi,ω | ω : Ai −→ Bool and CAi,ω �= ∅}

for 0 ≤ i ≤ �− 1 and

f =
∨
{fi,ω | 0 ≤ i ≤ �− 1, ω : Ai −→ Bool and CAi,ω �= ∅}.

Proof. The first equality of the theorem follows from Lemma 2.8.34
and the fact that

⋃
{DAi,ω | ω : Ai −→ Bool and CAi,ω �= ∅} =

Booln. Since f is the disjunction of the functions fi, the second
equality follows immediately from the first. �

Definition 2.8.41. Let f ∈ TFn and let A0, . . . , A�−1 be an
s-partition of Boolk, where 1 ≤ k ≤ n and 1 ≤ s ≤ 2k. The sec-
ond Lupanov decomposition generated by A0, . . . , A�−1 is the set of
functions {fi,ω | 0 ≤ i ≤ �− 1, ω : Ai −→ Bool and CAi,ω �= ∅}.

Example 2.8.42. For the function considered in Example 2.8.38,
the sets CAi,ω are given by the following tables:

ω0 ω1 ω2 ω3

A0 F F F F T T
F T F T F T

CA0,ω

(
T
T

) (
F
F

)
,

(
T
F

) (
F
T

)
∅

210 Logical Foundations of Computer Science — Volume 1

and

ω4 ω5 ω6 ω7

A1 T F F F T T
T T F T F T

CA1,ω ∅
(
F
F

)
∅

(
F
T

)
,

(
T
F

)
,

(
T
T

)

If CAi,ω = ∅, then fi,ω is the n-ary constant truth function whose
value is F. These functions are not part of the second Lupanov
decomposition. Thus, the second Lupanov decomposition of f con-
sists of the functions {f0,ω0 , f0,ω1 , f0,ω2 , f1,ω5 , f1,ω7}, whose tables are
given in Figure 2.19.

f0,ω0 x2 F F T T
x3 F T F T

x0 x1

A0 F F F F F F
F T F F F F

A1 T F F F F F
T T F F F F

f1,ω5 x2 F F T T
x3 F T F T

x0 x1

A0 F F F F F F
F T F F F F

A1 T F F F F F
T T T F F F

f0,ω1 x2 F F T T
x3 F T F T

x0 x1

A0 F F F F F F
F T T F T F

A1 T F F F F F
T T F F F F

f1,ω7 x2 F F T T
x3 F T F T

x0 x1

A0 F F F F F F
F T F F F F

A1 T F F T T T
T T F T T T

f0,ω2 x2 F F T T
x3 F T F T

x0 x1

A0 F F F T F F
F T F F F F

A1 T F F F F F
T T F F F F

Fig. 2.19. Second Lupanov decomposition of f .

Propositional Logic–Syntax and Semantics 211

Theorem 2.8.43. Let f ∈ TFn and let A0, . . . , A�−1 be an s-partition
of Boolk, where 1 ≤ k ≤ n and 1 ≤ s ≤ 2k. For every function fi,ω
in the corresponding second Lupanov decomposition of f , we have
fi,ω = f0i,ω ∧ f1i,ω, where

f0i,ω(x0, . . . , xn−1) =

{
ω(x0, . . . , xk−1) if (x0, . . . , xk−1) ∈ Ai
F otherwise

and

f1i,ω(x0, . . . , xn−1) =

{
T if (xk, . . . , xn−1) ∈ CAi,ω
F otherwise.

Proof. Because fi,ω is the trace of fi on DAi,ω, we have

fi,ω(x0, . . . , xn−1) =

{
fi(x0, . . . , xn−1) if (x0, . . . , xn−1) ∈ DAi,ω

F otherwise.

The definition of DAi,ω allows us to write

fi,ω(x0, . . . , xn−1) =

{
fi(x0, . . . , xn−1) if (xk, . . . , xn−1) ∈ CAi,ω
F otherwise.

Since fi is the trace of f on Bi, taking into account the definition of
Bi, we obtain

fi,ω(x0, . . . , xn−1) =

⎧⎪⎨
⎪⎩
f(x0, . . . , xn−1) if (xk, . . . , xn−1) ∈ CAi,ω

and (x0, . . . , xk−1) ∈ Ai
F otherwise.

The definition of CAi,ω allows us to further write

fi,ω(x0, . . . , xn−1) =

⎧⎪⎨
⎪⎩
ω(x0, . . . , xk−1) if (xk, . . . , xn−1) ∈ CAi,ω

and (x0, . . . , xk−1) ∈ Ai
F otherwise.

Taking into account the definitions of f0i,ω and f1i,ω, we have

fi,ω(x0, . . . , xn−1)=

{
f0i,ω(x0, . . . , xn−1) if (xk, . . . , xn−1) ∈ CAi,ω
F otherwise

=f0i,ω(x0, . . . , xn−1)∧ f1i,ω(x0, . . . , xn−1). �

212 Logical Foundations of Computer Science — Volume 1

We stress that in the above theorem the function f0i,ω depends

only on the first k arguments while f1i,ω depends only on the last
n− k arguments.

Theorem 2.8.43 implies the equality

f =
∨
{f0i,ω ∧ f1i,ω | 0 ≤ i ≤ �− 1, ω : Ai −→ Bool

and CAi,ω �= ∅}. (2.8)

Definition 2.8.44. Let f ∈ TFn and let A0, . . . , A�−1 be the stan-
dard s-partition of Boolk, where 1 ≤ k ≤ n and 1 ≤ s ≤ 2k.
Lupanov’s (k, s)-representation of f is the representation given by
Equation (2.8).

Example 2.8.45. For the functions f0,ω1 , f1,ω7 of Example 2.8.42,
the tables of f00,ω1

, f01,ω7
and f10,ω1

, f11,ω7
of Lupanov’s (2, 2)-

representation of f are given in Figure 2.20. The full representation
can be obtained by applying the same process to all functions fi,ω of
the second Lupanov decomposition.

We examine now the relationship that exists between truth tables
and truth functions.

f0
0,ω1

x2 F F T T
x3 F T F T

x0 x1

A0 F F F F F F
F T T T T T

A1 T F F F F F
T T F F F F

f0
1,ω7

x2 F F T T
x3 F T F T

x0 x1

A0 F F F F F F
F T F F F F

A1 T F T T T T
T T T T T T

f1
0,ω1

x2 F F T T
x3 F T F T

x0 x1

A0 F F T F T F
F T T F T F

A1 T F T F T F
T T T F T F

f1
1,ω7

x2 F F T T
x3 F T F T

x0 x1

A0 F F F T T T
F T F T T T

A1 T F F T T T
T T F T T T

Fig. 2.20. Some functions of the Lupanov’s (2, 2)-representation.

Propositional Logic–Syntax and Semantics 213

Definition 2.8.46. Let S = {pi0 , . . . , pin−1} be a set of state-
ment variables, where i0 < · · · < in−1 and n ∈ N, and let

f ∈ TFn. The truth table defined by f and S is the truth table τ fS
given by

τ fS (v) = f(v(pi0), . . . , v(pin−1))

for every v ∈ TAS .

Let S = {pi0 , . . . , pin−1} be a set of statement variables, where
i0 < · · · < in−1 and let �a = (a0, . . . , an−1) ∈ Booln. Recall
from Section 2.5 that v�a,S is the partial truth assignment given by
v�a,S(pik) = ak for every k, 0 ≤ k ≤ n− 1.

Definition 2.8.47. Let τ : TAS −→ Bool be a truth table over
the set S of statement variables, where S = {pi0 , . . . , pin−1} and
i0 < · · · < in−1.

The truth function defined by τ is the function fτ : Booln −→
Bool, where fτ (�a) = τ(v�a,S) for every �a ∈ Booln.

Theorem 2.8.48. Let S be a finite set of statement variables with
|S| = n. Define ΦS : TTS −→ TFn by ΦS(τ) = fτ for all

τ ∈ TTS and define ΨS : TFn −→ TTS by ΨS(f) = τ fS for all
f ∈ TFn. Then ΦS and ΨS are bijections which are inverses of each
other.

Proof. We must show that ΨS ◦ ΦS = 1TTS and that ΦS ◦ ΨS =

1TFn , in other words, that τ fτS = τ for every τ ∈ TTS and that f
τfS

= f

for every f ∈ TFn.
In order to show the first of these equalities, we define, for each

v ∈ TAS, the sequence �av = (v(pi0), . . . , v(pin−1)) ∈ Booln. It is
easy to see that v = v�av ,S. For each τ ∈ TTS and v ∈ TAS, we

have τ(v) = τ(v�av ,S) = fτ (�av) = τ fτS (v), which establishes the first
equality.

To establish the second equality, let f ∈ TFn be an arbitrary n-
ary truth function. Then, for every �a ∈ Booln, we have f

τfS
(�a) =

τ fS (v�a,S) = f(v�a,S(pi0), . . . , v�a,S(pin−1)) = f(�a), which finishes the
proof. �

214 Logical Foundations of Computer Science — Volume 1

2.9 Clones and Functional Completeness

In this section, we characterize those sets of truth functions such
that every truth function can be built starting from these functions
by composition. Following standard practice in this field, we initially
exclude 0-ary truth functions from our discussion. However, in the
latter part of this section, we extend the usual definition of compo-
sition of functions in order to include 0-ary functions.

Definition 2.9.1. Let T be a set of truth functions, T ⊆ TF. T is a
clone if it contains all projections and is closed under composition.

Note that the set of truth functions TF is a clone and so is the set
PROJ.

If T is a clone and f is an n-ary truth function that belongs to
T , then any function that can be obtained from f by permuting or
“fusing” of variables also belongs to T . In other words, let us consider
a sequence (i0, . . . , im−1) of elements of the set {0, . . . , n − 1}. The
truth function g : Booln −→ Bool defined by

g = f(πni0 , . . . , π
n
im−1

)

is also a member of T . For instance, if f : Bool4 −→ Bool is a
function from T , then g(x0, x1) = f(x1, x0, x0, x0) for every x0, x1 ∈
Bool is also a function in T because g = f(π21, π

2
0 , π

2
0 , π

2
0). To make

this concept more precise, consider the following definition.

Definition 2.9.2. Let ℘ : {0, . . . , k − 1} −→ {0, . . . , n − 1} and let
g ∈ TFk. The ℘-conjugate of g is the truth function g℘ ∈ TFn defined
by

g℘(x0, . . . , xn−1) = g(x℘(0), . . . , x℘(k−1))

for x0, . . . , xn−1 ∈ Bool.
If f is the ℘-conjugate of g for some ℘, then we refer to f as a

conjugate of g.

It is easy to see that any conjugate of a member of a clone is also
a member of the clone.

In the sequel, we consider five all-important examples of clones.

Propositional Logic–Syntax and Semantics 215

Example 2.9.3. Let T0,∗ = {f ∈ TF∗|f(F, . . . ,F) = F} be the set
of all truth functions that preserve F and let T0 = T0,∗ ∩ TF.

Since f⊥ is in T0,∗ and f� is not, we have T0,∗ = T0 ∪ {f⊥}.
Note that for every πni ∈ PROJ we have πni (F, . . . ,F) = F, so

PROJ ⊆ T0.
If f ∈ TFm ∩ T0 and gi ∈ TFn ∩ T0 for 0 ≤ i ≤ m− 1, then

f(g0, . . . , gm−1)(F, . . . ,F)

= f(g0(F, . . . ,F), . . . , gm−1(F, . . . ,F))

= f(F, . . . ,F) = F,

which proves that T0 is closed under composition. Therefore, T0 is
indeed a clone.

Example 2.9.4. Let T1,∗ = {f ∈ TF∗|f(T, . . . ,T) = T} be the set
of all truth functions that preserve T and let T1 = T1,∗ ∩ TF.

Since f� is in T1,∗ and f⊥ is not, we have T1,∗ = T1 ∪ {f�}.
Using an argument similar to the one in Example 2.9.3, the reader

can easily show that T1 is a clone.

Example 2.9.5. The set of self-dual truth functions SD is a clone.
We pointed out that every projection is self-dual. Therefore, we need
to show only that if f ∈ SDm, gi ∈ SDn for 0 ≤ i ≤ m − 1, then
f(g0, . . . , gm−1) ∈ SDn. We have

(f(g0, . . . , gm−1))
d(a0, . . . , an−1)

= f(g0, . . . , gm−1)(a0, . . . , am−1)

= f(g0(a0, . . . , an−1), . . . , gm−1(a0, . . . , an−1))

= f(g0(a0, . . . , an−1), . . . , gm−1(a0, . . . , an−1))

= f(g0(a0, . . . , an−1), . . . , gm−1(a0, . . . , an−1))

= f(g0, . . . , gm−1))(a0, . . . , an−1),

for every a0, . . . , an−1 ∈ Bool. This proves that f(g0, . . . , gm−1) is
self-dual, so SD is a clone.

Example 2.9.6. The set of monotonic truth functions MON is a
clone. We leave it to the reader to prove that every projection is
monotonic and that the composition of monotonic truth functions is
monotonic.

216 Logical Foundations of Computer Science — Volume 1

Example 2.9.7. The set LIN of linear truth functions LIN is a
clone. Indeed, for πni we have

πni (a0, . . . , an−1) = ai

= F+ (F∧ a0)+ · · · (F∧ ai−1)

+(T∧ ai)+ (F ∧ ai+1)+ · · ·+ (F∧ an−1)

for every a0, . . . , an−1 ∈ Bool, which shows that every projection
is linear. Using elementary properties of the operations ∧ and +,
it is tedious but straightforward to verify that if f ∈ LINm and
g0, . . . , gm−1 ∈ LINn, then f(g0, . . . , gm−1) ∈ LINn, so LIN is
indeed a clone.

Lemma 2.9.8. The clones T0, T1, SD, LIN , MON are pairwise
distinct and proper subsets of TF.

Proof. Consider the functions f0, f1, and f¬. The following table
shows the memberships of these functions in the above clones:

f T0 T1 SD LIN MON
f0 yes no no yes yes
f1 no yes no yes yes
f¬ no no yes yes no

We have seen in Example 2.8.17 that f∨ �∈ LIN . Thus, the above
classes are distinct and properly included in TF. �

An immediate application of the fact that LIN is a clone is con-
tained in the following example.

Example 2.9.9. We saw in Example 2.8.17 that f¬ ∈ TF1 is a linear
function while f∨ ∈ TF2 is not. Consider the function f| defined by
f|(a, b) = f¬(f∧(a, b)) for every a, b ∈ Bool. This function is also
known as the Sheffer function. We have f∨ = f|(f¬, f¬) and this
shows that f| is not linear since otherwise, f∨ would be linear and

this is not the case.

It is easy to verify that the intersection of an arbitrary nonempty
collection of clones is also a clone. Thus, the collection of all clones
is a closure system.

Propositional Logic–Syntax and Semantics 217

Definition 2.9.10. Let F be a set of truth functions, F ⊆ TF. The
clone generated by F is the set F̂ given by the following inductive
definition:

(1) every projection πnj : Booln −→ Bool belongs to F̂ for n ∈ N,
n ≥ 1 and 0 ≤ i ≤ n− 1,

(2) every function f from F belongs to F̂ , and

(3) if f ∈ TFm and g0, . . . , gm−1 ∈ TFn such that f, g0, . . . , gm−1 ∈ F̂ ,
then their composition f(g0, . . . , gm−1) also belongs to F̂ .

Let F ⊆ TF. By the definition of F̂ , F̂ is the intersection of all
clones that contain F . In other words, F̂ is the closure of the set F
under the closure operator corresponding to the closure system of all

clones. Note that ∅̂ = PROJ.

Definition 2.9.11. A set of truth functions F ⊆ TF is complete if
F̂ = TF.

In order to discuss a characterization of complete sets of truth
functions, we need several technical results.

If f ∈ TF2, then, for n ≥ 1, denote by f (n) the n-ary truth func-
tions defined inductively by

f (1)(x0) = x0,

f (n+1)(x0, . . . , xn) = f(f (n)(x0, . . . , xn−1), xn),

for every x0, . . . , xn ∈ Bool.

Lemma 2.9.12. If T is a clone and f ∈ T ∩ TF2, then f (n) ∈ T for
n ≥ 1.

Proof. The argument is by induction on n, where n ≥ 1. For
n = 1, the statement is obviously true since f (1) = π10. Suppose that
f (n) ∈ T . The function h ∈ TFn given by

h(x0, . . . , xn) = f (n)(π
(n+1)
0 (x0, . . . , xn), . . . , π

(n+1)
n−1 (x0, . . . , xn))

218 Logical Foundations of Computer Science — Volume 1

for x0, . . . , xn−1 ∈ Bool, clearly belongs to T . Since

f (n+1)(x0, . . . , xn) = f(h(x0, . . . , xn), π
(n+1)
n (x0, . . . , xn)),

we infer that f (n+1) ∈ T . �

Theorem 2.9.13. The set of truth functions F = {f¬, f∧} is
complete.

Proof. Let us note that f∨ ∈ F̂ since, according to the De Morgan
laws, we have

f∨(x0, x1) = f¬(f∧(f¬(x0), f¬(x1))),

for every x0, x1 ∈ Bool. Therefore, by Lemma 2.9.12, f
(n)
∨ ∈ F̂ for

n ≥ 1.
Consider the function gb ∈ TF1 given by gb(x0) = xb0 for x0, b ∈

Bool. We have gb ∈ F̂ because gb = π10 if b = T and gb = f¬ when
b = F.

By Lemma 2.9.12, the function f
(n)
∧ belongs to F̂ , for all n ≥ 1.

We claim that every minterm function f�b, where
�b = (b0, . . . , bn−1)

and n ≥ 1, also belongs to F̂ . Indeed, the minterm function f�b can
be written as

f�b(x0, . . . , xn−1) = f
(n)
∧ (gb0(x0), . . . , gbn−1(xn−1)),

so f�b ∈ F̂ .
Let f ∈ TFn and let T (f) = {�b0, . . . ,�bk−1}. Suppose initially that

k ≥ 1. Then, according to Theorem 2.8.27, we can write

f = f
(k)
∨ (f�b0 , . . . , f�bk−1

),

which proves that f ∈ F̂ . If k = 0, then f is the n-ary constant
function whose value is F and we have f = f∧(πn0 , f¬(π

n
0)), so f ∈ F̂ .

�

Lemma 2.9.14. If a clone T contains a truth function f ∈ TFn,
n ≥ 1, that is not self-dual and the function f¬, then it also contains
the one-argument constant truth functions f0 and f1.

Proof. Let f ∈ T ∩ TFn be a truth function that is not self-dual.
There is (c0, . . . , cn−1) ∈ Booln such that

f(c0, . . . , cn−1) = f(c0, . . . , cn−1).

Propositional Logic–Syntax and Semantics 219

Consider the one-argument truth functions gi given by gi(x) = xci

for 0 ≤ i ≤ n − 1. Note that we have either gi = π10 or gi = f¬,
so gi ∈ T for 0 ≤ i ≤ n − 1. Therefore, the one-argument function
h = f(g0, . . . , gn−1) is in the clone T . On the other hand,

h(T) = f(T c0 , . . . ,T cn−1) = f(c0, . . . , cn−1)

and

h(F) = f(F c0 , . . . ,F cn−1) = f(c0, . . . , cn−1),

which shows that h is a constant function. If h = f0, we have f1 =
f¬(f0), so both f0 and f1 belong to T . A similar argument works
when h = f1. �

Lemma 2.9.15. If a clone T contains a nonmonotonic truth func-
tion f ∈ TFn, n ≥ 1, and the constant functions f0 and f1, then it
also contains f¬.

Proof. Since f is nonmonotonic, by Lemma 2.8.21, there are

(a0, . . . , an−1), (b0, . . . , bn−1) ∈ Booln

such that ai ≤ bi for 0 ≤ i ≤ n − 1, |Δ(�a,�b)| = 1 and
f(a0, . . . , an−1) = T and f(b0, . . . , bn−1) = F.

There exists � ∈ {0, . . . , n− 1} such that bi = ai for i �= �, a� = F
and b� = T. If hi is the one-argument constant function given by

hi =

{
f0 if ai = F,

f1 if ai = T,

for 0 ≤ i ≤ n− 1 and i �= �, it is clear that all functions hi belong to
T . Therefore, the function g defined by

g(x0) = f(h0(x0), . . . , h�−1(x0), π
1
0(x0), h�+1(x0), . . . , hn−1(x0))

for x0 ∈ Bool is a member of T . Since g(F) = T and g(T) = F, we
have g = f¬, so f¬ ∈ T . �

Lemma 2.9.16. Let T be a clone that contains a nonlinear function
f ∈ TFn, n ≥ 1. If T contains all one-argument functions, then it
also contains f∧.

Proof. Consider the polynomial normal form expansion of the
function f :

f(�x) =
∑
{aL ∧ �xL|L ∈ Pn},

220 Logical Foundations of Computer Science — Volume 1

Since f is nonlinear, n > 1, and there is L ∈ Pn such that |L| ≥ 2
and aL = T. To simplify notation, we assume that {x0, x1} ⊆ L. The
argument would be similar if different variables were involved, but
the notation would become messier. By applying the distributivity of
∧ over +, we obtain the existence of the truth functions g, h, k, l ∈
TFn−2 such that

f(x0, x1, . . . , xn−1)

= x0 ∧ x1 ∧ g(x2, . . . , xn−1)+ x0 ∧ h(x2, . . . , xn−1)

+x1 ∧ k(x2, . . . , xn−1)+ l(x2, . . . , xn−1),

for x0, . . . , xn−1 ∈ Bool. The function g cannot be the constant
F function since otherwise we could produce a different polynomial
normal form for f where the coefficient of every term containing
both x0 and x1 is F, which would contradict the uniqueness of the
polynomial normal form. Therefore, there are a2, . . . , an−1 ∈ Bool
such that g(a2, . . . , an−1) = T. Consider the function f ′ ∈ TF2
defined by f ′(x0, x1) = f(x0, x1, a2, . . . , an−1). Since T contains the
projections and the constant functions, we have f ′ ∈ T and we
can write

f ′(x0, x1) = x0 ∧ x1 + x0 ∧ a+ x1 ∧ b+ c,

where

a = h(a2, . . . , an−1),

b = k(a2, . . . , an−1),

c = l(a2, . . . , an−1).

Let rd ∈ TF1 be the function given by rd = π10 if d = F and
rd = f¬ if d = T. It is easy to see that rd(x0) = x0+ d for d ∈ Bool.
By hypothesis, it is clear that rd ∈ T for d ∈ Bool. Therefore, the
truth function � ∈ TF2 given by �(x0, x1) = f ′(rb(x0), ra(x1)) belongs
to T . We have

�(x0, x1) = (x0 + b)∧ (x1 + a)+ (x0 + b)∧ a+ (x1 + a)∧ b+ c

= x0 ∧ x1 + a ∧ b+ c.

If e = a ∧ b + c, then x0 ∧ x1 = �(x0, x1) + e, or f∧(x0, x1) =
re(�(x0, x1)), so f∧ ∈ T . �

Propositional Logic–Syntax and Semantics 221

Theorem 2.9.17 (Post7Completeness Theorem). A set F of
truth functions, F ⊆ TF, is complete if and only if it is not included
in any of the clones T0, T1, SD, LIN , orMON .

Proof. Suppose that F is not included in any of the clones men-
tioned above. In this case, the clone generated by F , F̂ is also not
included in any of these clones. This means that F̂ contains

• a function fnf that does not preserve F,
• a function fnt that does not preserve T,
• a function fnsd that is not self-dual,
• a function fnl that is not linear,
• a function fnm that is not monotonic.

We claim initially that F̂ contains the constant functions f0, f1
from TF1. Define the function f ∈ TF1 by f = fnf(π

1
0 , . . . , π

1
0). Then,

f ∈ F̂ . Let b = fnf(T, . . . ,T). If b = T, then, since fnf (F, . . . ,F) =
T, the function f is the constant function f1. If b = F, we have
f(F) = T and f(T) = F, so f = f¬.

A similar argument applied to the function fnt shows that F̂ con-
tains one of the functions f0 or f¬. Note that the following cases may
occur:

(1) f¬ ∈ F̂ ,
(2) f¬ �∈ F̂ and, therefore, f0, f1 ∈ F̂ , which justifies our claim.

In the first case, we obtain the existence of the constant functions in
F̂ from Lemma 2.9.14. Therefore, the initial claim is justified.

By Lemma 2.9.15, F̂ also contains f¬. Therefore, F̂ contains all
four one-argument truth functions and, by Lemma 2.9.16, it also
contains f∧. Since {f¬, f∧} ⊆ F̂ , by Theorem 2.9.13, we have F̂ = TF,
hence F is a complete set.

In order to prove the necessity of the condition, suppose that F
would be included in any of the clones T0, T1, SD, LIN , orMON .

7Emil Leon Post was born in Augustòw, Poland, on February 11, 1897, and died
in New York on April 21, 1954. He attended the College of the City of New
York and received his Ph.D. from Columbia University in 1920. He was affiliated
with Princeton, Columbia, Cornell, and eventually with the City College of New
York, where he taught from 1932 on. His main contributions were in proof theory,
algebra, and computability.

222 Logical Foundations of Computer Science — Volume 1

This would imply that F̂ is included in one of these clones and by
Lemma 2.9.8, this would prevent F from being complete. �

Example 2.9.18. Let f+ ∈ TF2 be defined by f+(a0, a1) = a0 + a1
for every (a0, a1) ∈ Bool2. Based on Theorem 2.8.31, we could make
an argument similar to the proof of Theorem 2.9.13 to show that
the set of truth functions {f0, f1, f+, f∧} is complete. Here we give
an argument based on Theorem 2.9.17 to show the slightly stronger
result that {f1, f+, f∧} is complete.

The function f1 does not preserve F and the function f+ does
not preserve T. The function f1 is not self-dual, f∧ is not linear, by
Example 2.8.33, and f+ is not monotonic. Therefore, {f1, f+, f∧} is
complete.

Example 2.9.19. Every function f ∈ TF − (T0 ∪ T1 ∪ SD ∪
LIN ∪MON) defines a one-element complete set {f}. Consider,
for instance, the truth function f| defined by f|(a, b) = f¬(f∧(a, b))
for every a, b ∈ Bool. Note that

(1) f| �∈ T0 because f|(F,F) = T,
(2) f| �∈ T1 because f|(T,T) = F,

(3) f| �∈ SD because fd| (a0, a1) = a0 ∧ a1,

(4) f| �∈ LIN as we have shown in Example 2.9.9,
(5) f| �∈ MON because (F,F) ≤ (T,T), while f|(F,F) = T and

f|(T,T) = F.

This shows that {f|} is a complete set.
Using a similar argument, it is possible to show that the function

f↓ defined by f↓(a0, a1) = f¬(f∨(a0, a1)) for every a0, a1 ∈ Bool also
defines a one-element complete set {f↓}.

Example 2.9.20. Consider the set of truth functions {fP4 , fmin},
where fP4 is the four-argument parity function and fmin is the minor-
ity function both introduced in Example 2.8.17. It is easy to verify
that fP4 does not belong to T0,SD, or MON . It is clear that fmin

does not belong to T1 and we saw in Example 2.8.17 that fmin is not
linear. Thus, by Theorem 2.9.17, the set {fP4 , fmin} is complete.

The exclusion of the 0-ary truth functions in the discussion of
clones is a common but unnecessary practice in the literature. We
now present an extension of the idea of functional completeness that

Propositional Logic–Syntax and Semantics 223

incorporates 0-ary truth functions. We will need this extension in
Section 2.10.

We begin by extending the idea of composition.

Definition 2.9.21. Let f be a 0-ary truth function and let g be
an n-ary truth function with n > 0. We say that g is obtained
from f by degenerate composition if g(x0, . . . , xn−1) = f() for every
(x0, . . . , xn−1) ∈ Booln.

A function is obtained by extended composition from a set of func-
tions if it is obtained from these functions by composition in the sense
of Definition 2.8.3 or by degenerate composition.

Definition 2.9.22. Let T be a set of truth functions, T ⊆ TF∗. T
is an extended clone if it contains all projections and is closed under
extended composition.

It is obvious that TF∗, TF, and PROJ are extended clones.

Theorem 2.9.23. Every clone is an extended clone. If C is an
extended clone, then C ∩ TF is a clone.

Proof. The first part of the theorem is immediate since every clone
is vacuously closed under degenerate composition because it does not
contain any 0-ary functions.

For the second part, note that PROJ ⊆ C∩TF because PROJ ⊆ C.
In addition, the composition of non-0-ary functions from C results in
a non-0-ary function in C, which shows that C ∩ TF is closed under
composition. �

Note that if an extended clone contains f⊥, then it contains for
every n ∈N the n-ary truth function g such that g(x0, . . . , xn−1) = F
for every (x0, . . . , xn−1) ∈ Booln. Similarly, if an extended clone
contains f�, then for every n ∈ N, it contains the function h such
that h(x0, . . . , xn−1) = T for every (x0, . . . , xn−1) ∈ Booln.

In Section 2.8, we introduced the following families of functions:

T0,∗ = T0 ∪ {f⊥},
T1,∗ = T1 ∪ {f�},
SD∗ = SD,
MON ∗ =MON ∪ {f�, f⊥},
LIN ∗ = LIN ∪ {f�, f⊥}.

224 Logical Foundations of Computer Science — Volume 1

If C is one of the clones T0,T1,SD,MON , or LIN , then we
denote by C∗ the corresponding “starred” set given above.

Theorem 2.9.24. The sets T0,∗,T1,∗,SD∗,MON ∗, and LIN ∗ are
all extended clones.

Proof. We give the argument for T0,∗ and leave the others to the
reader. Since T0 was shown to be a clone in Example 2.9.3, we need
only show that f(f⊥, . . . , f⊥) ∈ T0,∗ when f ∈ T0 in order to show
that T0,∗ is closed under composition. This is clearly the case because
f(f⊥, . . . , f⊥) = f⊥. In addition, T0,∗ is closed under degenerate com-
position because if g is obtained from f⊥ by degenerate composition,
then g(F, . . . ,F) = f⊥() = F. �

Definition 2.9.25. Let F ⊆ TF∗. The extended clone generated by

F is the set
̂̂
F given by the following inductive definition:

(1) every projection πnj : Booln −→ Bool belongs to
̂̂
F for n ≥ 1

and 0 ≤ i ≤ n− 1,

(2) every function f from F belongs to
̂̂
F ,

(3) for every 0-ary function h from F and n ∈ N, the n-ary function

g obtained from h by degenerate composition is a member of
̂̂
F ,

and
(4) if f ∈ TFm and g0, . . . , gm−1 ∈ TFn are such that f, g0, . . . , gm−1 ∈̂̂

F , form ≥ 1, then their composition f(g0, . . . , gm−1) also belongs

to
̂̂
F .

Observe that
̂̂
F is the intersection of all extended clones

containing F .
The next result is the analog of Lemma 2.9.12 for extended clones.

Lemma 2.9.26. If T is an extended clone and f ∈ T ∩ TF2, then
f (n) ∈ T for n ≥ 1.

Proof. Since f ∈ T ∩ TF, it follows by Lemma 2.9.12 that f (n) ∈
T ∩ TF ⊆ T because T ∩ TF is clone by Theorem 2.9.23. �

Theorem 2.9.27. Let F = {f∧, f∨, f�, f⊥}. The extended clone gen-

erated by F ,
̂̂
F , equals MON ∗.

Propositional Logic–Syntax and Semantics 225

Proof. Since f∧, f∨, f�, f⊥ ∈ MON ∗, it is clear that
̂̂
F ⊆MON ∗.

Conversely, let f ∈ TFn be monotonic. Note that by degenerate

composition, both cnT and cnF belong to
̂̂
F , where the functions cmF , c

m
T

were introduced in Equalities (2.3). Lemma 2.9.26 implies that f
(m)
∨

and f
(m)
∧ belong to

̂̂
F for all m ≥ 1. This allows us to conclude that

every positive n-ary conjunction �0 ∧ · · · ∧ �p−1 belongs to
̂̂
F . (For

the special case p = 0, this follows because the n-ary conjunction
reduces to cnT.) By Theorem 2.8.30, f can be written as

∨
0≤i≤k−1gi,

where each gi is a positive n-ary conjunction. If k = 0, f ∈ ̂̂
F because

f = cnF. If k > 0, the same conclusion can be reached from the facts
established above. �

Theorem 2.9.28. If F ⊆ TF, then
̂̂
F = F̂ .

Proof. Since every clone is an extended clone,
̂̂
F ⊆ F̂ . To prove

the converse inclusion, observe that, by Theorem 2.9.23,
̂̂
F ∩ TF is

a clone and F is a subset of this clone because F ⊆ TF. Therefore,̂̂
F ⊇ ̂̂

F ∩ TF ⊇ F̂ . �
We can now extend the notion of complete set of non-0-ary truth

functions to arbitrary sets of truth functions.

Definition 2.9.29. A set F ⊆ TF∗ is complete if
̂̂
F ⊇ TF.

A seemingly more natural notion of completeness could be defined

by requiring that
̂̂
F = TF∗. The current definition has the advantage

of being conservative, as shown by the following theorem. (The rela-
tionship between these two possible definitions of completeness is
discussed in Supplement 143.)

Theorem 2.9.30. Let F ⊆ TF. Then F is complete in the sense of
Definition 2.9.11 if and only if it is complete in the sense of Defini-
tion 2.9.29.

Proof. This theorem follows immediately from Theorem 2.9.28 and
the fact that we always have F̂ ⊆ TF. �

Lemma 2.9.31. Let C be one of the clones T0,T1,SD,MON , or
LIN , let f be a 0-ary truth function and let g be a non-0-ary truth

226 Logical Foundations of Computer Science — Volume 1

function obtained from f by degenerate composition. Then, we have
f ∈ C∗ if and only if g ∈ C.

Proof. Suppose first that C = T0. If f = f⊥, then f ∈ C∗ and g is
a constant function with range {F}, so g ∈ C. If f = f�, then f �∈ C∗
and g is a constant function with range {T}, so g �∈ C.

Now suppose that C = SD. Observe that no 0-ary function is in
SD∗ and no constant function is in SD, which gives immediately the
result.

The remaining cases are left to the reader. �

We can now extend the Post Completeness Theorem to arbitrary
sets of truth functions.

Theorem 2.9.32. A set F of truth functions is complete if and only
if it is not included in any of the extended clones T0,∗, T1,∗, SD∗,
LIN ∗, orMON ∗.

Proof. If F is contained in one of the given extended clones, then̂̂
F is also contained in the same clone, so F is not complete.

Suppose now that F is not contained in any of the given extended
clones. Then F must contain

• a function fnf not in T0,∗,
• a function fnt not in T1,∗,
• a function fnsd not in SD∗,
• a function fnl not in LIN ∗,
• a function fnm not inMON ∗.

Let f ′nf be the truth function defined by

f ′nf =

⎧⎪⎨
⎪⎩
fnf if fnf is not 0-ary,

the unary function obtained from fnf by

degenerate composition, otherwise.

Then, f ′nf ∈
̂̂
F and, by Lemma 2.9.31, f ′nf �∈ T0. Let f ′nt, f ′nsd, f ′nl,

and f ′nm be defined similarly. By the same argument as the one used

for f ′nf , we have f ′nt, f ′nsd, f
′
nl, f

′
nm ∈

̂̂
F and f ′nt �∈ T1, f ′nsd �∈ SD,

f ′nl �∈ LIN and f ′nm �∈ MON . Thus, by the Post Completeness

Theorem,
̂̂
F ∩ TF is complete, i.e., the clone generated by

̂̂
F ∩ TF

Propositional Logic–Syntax and Semantics 227

equals TF. Since, by Theorem 2.9.23,
̂̂
F ∩ TF is itself a clone, we havê̂

F ∩ TF = TF, so
̂̂
F ⊇ TF, which shows that F is complete. �

2.10 Complete Sets of Connectives

The notion of connective, as a tool for building complex statements
from simpler ones, has a linguistic nature. In previous sections, in our
mathematical modeling of this notion, we have used connective sym-
bols equipped with an appropriate semantics, which was expressed
by truth functions attached to the connective symbol.

Intuitively, a complete set of connectives is one such that every
statement can be built up using only connectives from the set. When
we talk about complete sets of connectives, we want to consider
arbitrary connectives, not necessarily the ones that we used initially
(negation, conjunction, disjunction, implication, and biconditional).
In formalizing this notion, we need to consider arbitrary collections
of connective symbols and their semantics given by truth functions,
not necessarily unary or binary. Because these connective symbols
can have arbitrary arities, we must introduce an alternative way of
building formulas of propositional logic.

Let F = {fC | C ∈ C} be a collection of truth functions indexed
by a set of symbols C. We shall refer to the elements of C as connec-
tive symbols of F or just connective symbols when F is understood
from the context.

Definition 2.10.1. Let F = {fC | C ∈ C} be a collection of truth
functions indexed by C. The F -signature of propositional logic is
SF = (C, ν) where for each C ∈ C, ν(C) is the arity of fC .

The set of F -formulas of propositional logic is

PLFORMF = TERMSF (SV).

If ϕ is a formula from PLFORMF , then again we will denote the
set of variables that occur in ϕ by SV (ϕ).

Example 2.10.2. Consider the set F = {f¬, f∧, f∨, f→, f↔} indexed
by the standard collection of connective symbols C = {¬,∧,∨,→,
↔}. The set PLFORMF differs from PLFORM because in the

228 Logical Foundations of Computer Science — Volume 1

former set, connective symbols are treated as function symbols and
formulas are terms. For instance, the formula

(((p0 → p1) ∧ (p1 → p2))→ (p0 → p2))

from PLFORM corresponds to the F -formula

→ (∧(→ (p0, p1),→ (p1, p2)),→ (p0, p2)).

Recall that we have the unique readability property for PLFORM
by Theorem 2.2.11 and the same property for PLFORMF by
Theorem 1.5.12. This justifies the definitions of Φ and Ψ given
next.

Although the sets PLFORM and PLFORMF are not the same,
there are natural bijections Φ : PLFORM −→ PLFORMF and
Ψ : PLFORMF −→ PLFORM which allow us to go back and forth
between these sets while preserving the semantics of the formulas
as defined in the following (see Exercise 149). These mappings are
recursively defined by

Φ(p) = p,

Φ((¬α)) = ¬(Φ(α)),
Φ((αCβ)) = C(Φ(α),Φ(β)),

for all α, β ∈ PLFORM, and

Ψ(p) = p,

Ψ(¬(α)) = (¬Ψ(α)),

Ψ(C(α, β)) = (Ψ(α)CΨ(β)),

for all α, β ∈ PLFORMF , where C is a binary connective symbol
in C. We leave it to the reader (see Exercise 148) to verify that Φ
and Ψ are inverse bijections.

Example 2.10.3. Let F = {fP4 , fmin} be the set truth functions,
considered in Example 2.9.20, indexed by the set of connective sym-
bols C = {min, P4}. The following string of symbols

P4(min(p0, p1, p2), p3, p4,min(p0, p1, p3))

is an F -formula.

Propositional Logic–Syntax and Semantics 229

Definition 2.10.4. Let F = {fC | C ∈ C} be a collection of truth
functions indexed by C. An F -substitution is a substitution defined
on SV with values in PLFORMF .

If ϕ ∈ PLFORMF and s is an F -substitution, then, according to
Theorem 1.5.20, s(ϕ) ∈ PLFORMF .

Definition 2.10.5. Let F = {fC | C ∈ C} be a collection of
truth functions indexed by C and let v be a truth assignment.
The truth valuation on PLFORMF generated by v is the function
v̄ : PLFORMF −→ Bool given by the following recursive definition:

v̄(q) = v(q),

v̄(C0) = fC0(),

v̄(C(ϕ0, . . . , ϕn−1)) = fC(v̄(ϕ0), . . . , v̄(ϕn−1))

for each statement variable q, 0-ary connective symbol C0, n-ary
connective symbol C with n ≥ 1, and F -formulas ϕ0, . . . , ϕn−1 ∈
PLFORMF .

As before, we will often write v(ϕ) instead of v̄(ϕ).

Theorem 2.10.6. Let F = {fC | C ∈ C} be a set of truth functions
indexed by C and let ϕ ∈ PLFORMF . If v,w are two truth assign-
ments such that v(p) = w(p) for every p ∈ SV (ϕ), then v̄(ϕ) = w̄(ϕ).

Proof. The argument is by induction on ϕ and is left to the reader.
�

Let S be a set of statement variables, F = {fC |C ∈ C} be a
collection of truth functions, and let v be a partial truth assignment
over S. For every formula ϕ ∈ PLFORMF with SV (ϕ) ⊆ S, we
can define v(ϕ) as we did in Section 2.3, by applying the Agreement
Theorem. Again, if v is a partial truth assignment such that SV (ϕ) ⊆
Dom(v), then for every connective symbol C we have

v(C(ϕ0, . . . , ϕn−1)) = fC(v(ϕ0), . . . , v(ϕn−1)),

for ϕ0, . . . , ϕn−1 ∈ PLFORMF .

Corollary 2.10.7. Let F = {fC | C ∈ C} be a set of truth functions
indexed by C and let ϕ ∈ PLFORMF . If v,w are two partial truth
assignments whose domains contain SV (ϕ) such that v(p) = w(p)
for every p ∈ SV (ϕ), then v̄(ϕ) = w̄(ϕ).

230 Logical Foundations of Computer Science — Volume 1

Proof. Let v′, w′ be truth assignments which extend v,w, respec-
tively. Then, since v′(p) = w′(p) for all p ∈ SV (ϕ), we have
v′(ϕ) = w′(ϕ) because of Theorem 2.10.6. Since v(ϕ) = v′(ϕ) and
w(ϕ) = w′(ϕ), the statement follows immediately. �

Theorem 2.10.8. Let s be an F -substitution and v be a truth assign-
ment. For every formula ϕ ∈ PLFORMF , we have v(s(ϕ)) = v′(ϕ),
where v′ is the truth assignment given by v′(p) = v(s(p)) for every
p ∈ SV .

Proof. The proof is by induction on formulas and is similar to the
proof of Theorem 2.6.6. �

Corollary 2.10.9. Let F = {fC |C ∈ C} be a collection of truth
functions indexed by C. If s is an F -substitution and v is a par-
tial truth assignment over a set S, then, for every formula ϕ such
that SV (s(ϕ)) ⊆ S, we have v(s(ϕ)) = v′(ϕ) for every partial truth
assignment v′ such that Dom(v′) ⊇ SV (ϕ) and v′(p) = v(s(p)) for
every p ∈ SV (ϕ).

Proof. The statement is a consequence of Theorem 2.10.8; the
argument is similar to that of Corollary 2.6.7. �

Definition 2.3.27 can be reformulated in this new setting as
follows.

Definition 2.10.10. Let F = {fC |C ∈ C} be a collection of truth
functions, ϕ be a formula in PLFORMF , and let S be a set of state-
ment variables such that SV (ϕ) ⊆ S. Then, τϕ,S, the truth table of
ϕ over S, is defined by τϕ,S(v) = v(ϕ).

The truth table τϕ of ϕ is τϕ,SV (ϕ).

Now, we introduce the notion of completeness of a set of con-
nectives. This will turn out to be closely related to the notion of
completeness of a set of truth functions introduced in Section 2.8.

Definition 2.10.11. Let F = {fC | C ∈ C} be a set of truth func-
tions indexed by C. The set C is complete if for every finite, non-
empty set of statement variables S and τ ∈ TTS , there is a formula
ϕ ∈ PLFORMF with SV (ϕ) ⊆ S such that τ = τϕ,S.

We use the terminology “complete set C” in order to follow stan-
dard but abusive practice. It would be more correct to refer to com-
pleteness of F .

Propositional Logic–Syntax and Semantics 231

To relate the notion of completeness just introduced to the notion
of completeness from Section 2.9, we need the following preliminary
results.

Lemma 2.10.12. Let F = {fC | C ∈ C} be a set of truth functions
indexed by C and let C be the extended clone generated by the set
{fC | C ∈ C}. For every n-ary truth function f ∈ C and set of
variables S such that |S| = n, there exists a formula ϕ ∈ PLFORMF

such that SV (ϕ) ⊆ S and τ fS = τϕ,S.

Proof. The proof is by induction on the definition of C as given in
Definition 2.9.25.

First, let f be a projection, say f = πnj , and let S = {pi0 ,
. . . , pin−1}. Then, if we take ϕ = pij , we obtain the desired con-
clusion.

Now suppose that f = fC for some C ∈ C, where f is n-ary. Let
S = {pi0 , . . . , pin−1}. If n > 0, take ϕ = C(pi0 , . . . , pin−1). We have,
for every v ∈ TAS ,

τ fS (v) = f(v(pi0), . . . , v(pin−1))

= fC(v(pi0), . . . , v(pin−1))

= v(C(pi0 , . . . , pin−1))

= v(ϕ)

= τϕ,S(v).

If n = 0, we can take ϕ = C.
Let g be a 0-ary function for which the statement holds and let

f be an n-ary function obtained from g by degenerate composition.
By the inductive hypothesis, there is a formula ψ with SV (ψ) = ∅
such that τ g∅ = τψ,∅, that is, g() = v0(ψ), where v0 is the unique

partial truth assignment defined on ∅. Let S = {pi0 , . . . , pin−1}. We

claim that τ fS = τψ,S. Indeed, let v ∈ TAS . Observe that v(ψ) =

v0(ψ) since v and v0 coincide on SV (ψ) = ∅. Therefore,
τ fS (v) = f(v(pi0), . . . , v(pin−1))

= g()

= v0(ψ)

= v(ψ)

= τψ,S(v).

232 Logical Foundations of Computer Science — Volume 1

Suppose that the hypothesis is true for g, h0, . . . , hm−1 where g
is m-ary, m ≥ 1, and h0, . . . , hm−1 are n-ary functions and that the
function f is given by f = g(h0, . . . , hm−1). Let S = {pi0 , . . . , pin−1}.
By the inductive hypothesis, if T = {p0, . . . , pm−1}, there is a formula
ψ with SV (ψ) ⊆ T such that τ gT = τψ,T . Therefore, we have

w(ψ) = g(w(p0), . . . , w(pm−1))

for every w ∈ TAT . For the same reason, there are formulas

ψ0, . . . , ψm−1 with SV (ψj) ⊆ S and τ
hj
S = τψj ,S

for all j, 0 ≤ j ≤
m− 1. This amounts to

v(ψj) = hj(v(pi0), . . . , v(pin−1))

for every v ∈ TAS and 0 ≤ j ≤ m− 1.

Let s be the finite substitution s
p0

ψ0

···
···
pm−1

ψm−1

and ϕ = s(ψ). By

Theorem 2.6.5, we have SV (ϕ) ⊆ S. We claim that τ fS = τϕ,S.
Indeed, let v be an arbitrary truth assignment from TAS and let
w ∈ TAT be such that w(pj) = hj(v(pi0), . . . , v(pin−1)) = v(ψj) for
0 ≤ j ≤ m− 1. This implies

w(ψ) = g(h0(v(pi0), . . . , v(pin−1)), . . . , hm−1(v(pi0), . . . , v(pin−1)))

= f(v(pi0), . . . , v(pin−1))

= τ fS (v).

On the other hand, τϕ,S(v) = v(ϕ) = v(s(ψ)) = w(ψ) because of
Corollary 2.10.9. This concludes our argument. �

Lemma 2.10.13. Let F = {fC | C ∈ C} be a set of truth functions
indexed by C and let C be the extended clone generated by the set
{fC | C ∈ C}. For every formula ϕ ∈ PLFORMF and set of variables
S such that SV (ϕ) ⊆ S and |S| = n, there exists an n-ary truth

function f ∈ C such that τ fS = τϕ,S.

Proof. The argument is by induction on the definition of formulas.
For the basis step, let ϕ be a statement variable, ϕ = p, and let S be
a set of statement variables, S = {pi0 , . . . , pin−1}, where p = pij for

Propositional Logic–Syntax and Semantics 233

some j, 0 ≤ j ≤ n − 1. We claim that τpij ,S = τ
πnj
S . Indeed, let v be

a truth assignment, v ∈ TAS . We have τpij ,S(v) = v(pij) and

τ
πnj
S (v) = πnj (v(pi0), . . . , v(pin−1)) = v(pij),

and this shows that the statement holds since πnj ∈ C.
If ϕ = C where C is a 0-ary connective symbol, we consider two

cases. If S = ∅, then fC ∈ C and we claim that τC,∅ = τ fC∅ . Indeed,
let v0 be the unique partial truth assignment defined on ∅. Because
of Definition 2.10.5, we have τC,∅(v0) = v0(C) = fC() = τ fC∅ (v0).
If S = {pi0 , . . . , pin−1} with n > 0, then let g be the n-ary function
obtained from fC ∈ C by degenerate composition. Clearly, g ∈ C and
we claim that τC,S = τ gS. In fact, if v ∈ TAS , we have τC,S(v) =
v(C) = fC() = g(v(pi0), . . . , v(pin−1)) = τ gS(v).

Let now ϕ = C(ψ0, . . . , ψm−1), where C is an m-ary connec-
tive symbol, m > 0, and ψ0, . . . , ψm−1 ∈ PLFORMF . Let S =
{pi0 , . . . , pin−1} be a set of statement variables such that SV (ϕ) ⊆ S.
Note that SV (ψj) ⊆ S for 0 ≤ j ≤ m − 1. Suppose, by inductive
hypothesis, that for each j, 0 ≤ j ≤ m−1, there exists an n-ary truth

function hj ∈ C such that τψj ,S
= τ

hj
S and let f be the truth func-

tion given by f = fC(h0, . . . , hm−1) ∈ C. We claim that τ fS = τϕ,S.
Indeed, we can write

τ fS (v) = f(v(pi0), . . . , v(pin−1))

= fC(h0(v(pi0), . . . , v(pin−1)), . . . , hm−1(v(pi0), . . . , v(pin−1)))

= fC(τ
h0
S (v), . . . , τ

hm−1

S (v))

= fC(τψ0,S
(v), . . . , τψm−1,S

(v))

= fC(v(ψ0), . . . , v(ψm−1))

= v(C(ψ0, . . . , ψm−1))

= v(ϕ)

= τϕ,S(v),

for every v ∈ TAS , which justifies our claim. �

234 Logical Foundations of Computer Science — Volume 1

Theorem 2.10.14. Let F = {fC | C ∈ C} be a set of truth functions
indexed by C. The set C is complete in the sense of Definition 2.10.11
if and only if the set {fC | C ∈ C} is complete in the sense of
Definition 2.9.29.

Proof. We will prove initially that algebraic completeness, that is,
completeness in the sense of Definition 2.9.29, implies logical com-
pleteness, that is, completeness in the sense of Definition 2.10.11.

Suppose that {fC | C ∈ C} is a complete set of truth functions
indexed by C. This means that the extended clone C generated by
this set includes TF. Let S be a finite, nonempty set of statement
variables and let τ ∈ TTS . The truth function fτ belongs to C and,
by Lemma 2.10.12, there exists a formula ϕ such that SV (ϕ) ⊆ S

and τ fτS = τϕ,S. Since, by Theorem 2.8.48, τ = τ fτS , this proves
that τ = τϕ,S and we obtain the completeness of C according to
Definition 2.10.11.

Conversely, let F = {fC | C ∈ C} be a set of truth functions
indexed by C and suppose that C is a complete set of connectives.
This means that for every finite, nonempty set of statement variables
S and τ ∈ TTS , there is a formula ϕ ∈ PLFORMF with SV (ϕ) ⊆ S
such that τ = τϕ,S.

Let f ∈ TFn be an arbitrary n-ary truth function, n > 0. If

S = {p0, . . . , pn−1}, consider the truth table τ fS . By the logical
completeness of C, there is a formula ϕ ∈ PLFORMF such that

SV (ϕ) ⊆ S and τ fS = τϕ,S . There exists an n-ary truth function
g in the extended clone C generated by {fC | C ∈ C} such that

τ gS = τϕ,S = τ fS because of Lemma 2.10.13. By Theorem 2.8.48,
we obtain f = g ∈ C. This shows that the set F is algebraically
complete. �

Example 2.10.15. Let C = {P4,min} be a set of connec-
tive symbols, where the truth functions fP4 and fmin are as
defined in Example 2.8.17. In Example 2.9.20, we have shown that
the set {fP4 , fmin} is complete in the sense of Definition 2.9.11.
Theorem 2.9.30 implies that this set is complete in the sense of
Definition 2.9.29, which means by Theorem 2.10.14 that C is log-
ically complete.

Example 2.10.16. The set F = {fP3 , fP4} indexed by C = {P3, P4}
is not algebraically complete because both fP3 and fP4 are linear

Propositional Logic–Syntax and Semantics 235

functions, as we saw in Example 2.8.17. Consequently, C is not a
logically complete set of connectives.

2.11 Circuits and Truth Functions

We begin by introducing a model of computations of truth
functions.

Recall that we introduced the functions cmF , c
m
T in Equalities 2.3.

Definition 2.11.1. Let m ∈ N. An m-ary data set is a set of
functions D that consists of m-ary projections and m-ary constant
functions; in other words, D ⊆ {πm0 , . . . , πmm−1} ∪ {cmF , cmT }.

Note that if m = 0, then an m-ary data set is a subset of the set
{c0F, c0T} since no 0-ary projections exist.

Definition 2.11.2. Let C be a set of connective symbols and let
F = {fC | C ∈ C} be a set of truth functions indexed by the
elements of C. If D is an m-ary data set, then an (F,D)-computation
is a sequence of functions c = (f0, . . . , fn−1) such that n ≥ 1 and for
every i, 0 ≤ i ≤ n− 1, one of the following cases occurs:

(1) fi ∈ D,
(2) fi = fC(fj0 , . . . , fjk−1

) for some k-ary connective symbol C ∈ C
and 0 ≤ j0, . . . , jk−1 ≤ i− 1.

In the last case, we refer to {fj0 , . . . , fjk−1
} as a set of inputs of fi.

The target of the computation c is the function fn−1. The number
n is the length of the computation.

Note that the target of an (F,D)-computation belongs to the
extended clone generated by the set of functions {fC | C ∈ C} ∪D.

Example 2.11.3. Let D = {π30 , π31 , π32 , c3T} be a ternary data set.
Consider the set C = {∧,+} of binary connectives and the compu-
tation c = (f0, f1, f2, f3, f4, f5, f6, f7) such that

f0 = π30, f4 = f+(f0, f3),

f1 = π31, f5 = f∧(f1, f2),
f2 = π32, f6 = f∧(f4, f5),
f3 = c3T, f7 = f+(f6, f3).

236 Logical Foundations of Computer Science — Volume 1

We have

f0(x0, x1, x2) = x0,

f1(x0, x1, x2) = x1,

f2(x0, x1, x2) = x2,

f3(x0, x1, x2) = T,

f4(x0, x1, x2) = x0 +T,

f5(x0, x1, x2) = x1 ∧ x2,

f6(x0, x1, x2) = (x0 +T)∧ (x1 ∧ x2),

f7(x0, x1, x2) = ((x0 +T)∧ (x1 ∧ x2))+T,

for x0, x1, x2 ∈ Bool. The target of c is the function f : Bool3 −→
Bool given by

f(x0, x1, x2) = ((x0 +T)∧ (x1 ∧ x2))+T

for x0, x1, x2 ∈ Bool.

We remind the reader that a directed graph is a pair of sets (V,U),
where V is the set of vertices of G and U is the set of edges of G,
U ⊆ V × V . For a vertex v, the in-degree d−G(v) is the number of
incoming edges, d−G(v) = |{(v′, v) | (v′, v) ∈ U}|, while the out-
degree is the number of outgoing edges d+G(v) = |{(v, v′) | (v, v′) ∈
U}|. We refer the reader to [13] for further terminology in graph
theory.

Definition 2.11.4. Let Sm be the set {p0, . . . , pm−1} of statement
variables, where m ∈ N, and let C be a set of connective symbols
that indexes the set of truth functions F . An (F,m)-circuit with p
outputs is a quadruple K = (G,�, q, rout), where G = (V,U) is a
finite acyclic digraph, � : V −→ C ∪Bool ∪ Sm is a function called
the labeling function of K, the sequence q = (e0, . . . , en−1) is a listing
of the edges of G, and rout is a sequence of p distinct vertices of G
called the output sequence of the circuit such that for every vertex v

of G:

(1) if �(v) ∈ Sm ∪ Bool, then d−G(v) = 0,
(2) if �(v) = C, where C ∈ C is a k-ary connective symbol, then

d−G(v) = k.

Propositional Logic–Syntax and Semantics 237

An output vertex of K is a member of the sequence rout.
If Ran(�) ⊆ C∪Sm, then we refer to K as a constant-free circuit.
The numbers

fo(K) = max{d+G(v)|v ∈ V },
fi(K) = max{d−G(v)|v ∈ V }

are the fan-out and the fan-in of the (F,m)-circuit K, respectively.
We say that K is an F -circuit if K is an (F,m)-circuit for

some m.

If K = (G,�, q, rout) where rout = (vout), then we denote the
single-output circuit K simply by (G,�, q, vout).

Unless stated otherwise, we will consider only single-output cir-
cuits. Note that an (F,m)-circuit is also an (F,m + k)-circuit for
every k ∈ N.

The vertices of a circuit K labeled by connective symbols are
alternatively referred to as the gates of the circuit. Those vertices
labeled by constants or variables are the inputs of the circuit.

Definition 2.11.5. The size of a circuit K is the number of gates of
K. We denote the size of K by ||K||.

Observe that the fan-out of a circuit K indicates the maximum
number of times a gate of the circuit may be used to provide an input
for another gate of the circuit. A circuit with fan-out 0 or 1 is called
a formula circuit.

Definition 2.11.6. Let K = (G,�, q, rout) be an (F,m)-circuit. The
depth of a vertex v of K, depth(v) is defined to be the maximum
length of a path ending in v.

The delay of the circuit K, delay(K), is the largest number
depth(v) where v is an output vertex.

The definition of the depth of a vertex is meaningful because of
the acyclicity of the underlying graph of the circuit. Indeed, since
the graph is acyclic, the length of any path has to be less than the
number of vertices of the graph. Moreover, delay(K) ≤ ||K|| because
the number of gates on a longest path that ends at an output vertex is
either delay(K) or delay(K)+1. (The latter case may occur when a

238 Logical Foundations of Computer Science — Volume 1

longest path that ends in an output vertex begins with a gate labeled
with a 0-ary connective.)

Starting from a circuit we define the function computed at each
vertex of the circuit as follows.

Definition 2.11.7. Let K = (G,�, q, rout) be an (F,m)-circuit,
where G = (V,U) and q = (e0, . . . , en−1).

Define the mapping ΘK : V −→ TFm as follows:

(1) If depth(v) = 0, then

ΘK(v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

πmj if �(v) = pj

cmT if �(v) = T

cmF if �(v) = F

cmT if �(v) = C and fC = c0T
cmF if �(v) = C and fC = c0F.

(2) If depth(v) > 0 and �(v) = C, where C is a k-ary con-
nective symbol, then let the incoming edges of vertex v be
(e�0 , . . . , e�k−1

), where �0 < · · · < �k−1 and edge e�r begins at ver-
tex v�r for 0 ≤ r ≤ k − 1. We define ΘK(v) = fC(f�0 , · · · , f�k−1

),
where f�r = ΘK(v�r) for 0 ≤ r ≤ k − 1.

The function computed at vertex v by the circuit K is the
function ΘK(v). The sequence of functions computed by K is
(ΘK(v0), . . . ,ΘK(vp−1)), where rout = (v0, . . . , vp−1) is the output
sequence of K. If p = 1, we refer to ΘK(v0) as the function computed
by the circuit and we denote it by fK.

Consider the m-ary data set

D = {ΘK(v) | d−G(v) = 0}.

It is easy to verify that if (v0, . . . , vk) is a topological sort of G, then
the sequence (ΘK(v0), . . . ,ΘK(vk)) is an (F,D)-computation.

Let Vv be the set that consists of those vertices u of the circuit
K = (G,�, q, rout) such that there is a path from u to v. It is easy
to see that if u ∈ Vv, then Vu ⊆ Vv. The subgraph of G determined
by Vv will be denoted by Gv and the restriction of � to Vv will be
denoted by �v. The sequence qv obtained from q by removing those

Propositional Logic–Syntax and Semantics 239

edges not connecting vertices in Vv is clearly a listing of the set of
edges of Gv. This justifies the following definition.

Definition 2.11.8. The subcircuit of the circuit K = (G,�, q, rout)
determined by the vertex v is the single-output circuit Kv =
(Gv,�v, qv, v).

Note that the depth of a vertex in Kv is the same as the depth of
the vertex in K.

Theorem 2.11.9. Let K = (G,�, q, rout) be an (F,m)-circuit. For
all vertices v, v′, w of G such that w ∈ Vv ∩ Vv′, we have ΘKv(w) =
ΘKv′ (w).

Proof. The argument is by induction on the depth of w in K. The
basis step, depth(w) = 0, is immediate. Suppose that depth(w) > 0
and that the statement holds for vertices of smaller depth. Let the
incoming edges of w be (v�0 , w), . . . , (v�n−1 , w), where the edges are
ordered according to q, and assume that �(w) = C. We have

ΘKv(w) = fC(ΘKv(v�0), . . . ,ΘKv(v�n−1))

= fC(ΘKv′ (v�0), . . . ,ΘKv′ (v�n−1))

(by the inductive hypothesis)

= ΘKv′ (w). �

Corollary 2.11.10. Let K = (G,�, q, rout) be an (F,m)-circuit. For
all vertices v, w of G such that w ∈ Vv, we have ΘKv(w) = ΘKw(w).

Proof. This follows immediately from Theorem 2.11.9. �
Let F be a nonempty set of truth functions. Observe that every

truth function that is computed by an (F,m)-circuit with s gates
is also computed by an (F,m)-circuit with s′ gates for all s′ ≥ s.
Indeed, if K is an (F,m)-circuit with s gates that computes f , we
can obtain an (F,m)-circuit K′ that computes the same function f
by adding s′ − s new gates with out-degrees 0 and connecting those
gates to new input vertices.

Example 2.11.11. Let F = {f→, f∧}. Figure 2.21 gives an (F, 2)-
circuit K = (G,�, (e0, . . . , e5), v4). The gates of K are v2, v3, and v4
and the inputs are v0 and v1.

240 Logical Foundations of Computer Science — Volume 1

Fig. 2.21. The (F, 2)-circuit K.

The functions fi = ΘK(vi) are given by

f0 = π20 ,

f1 = π21 ,

f2 = f→(f0, f1),

f3 = f→(f1, f0),

f4 = f∧(f2, f3).

Since f0(b0, b1) = b0 and f1(b0, b1) = b1, it is easy to see that
f4(b0, b1) = (b0 → b1) ∧ (b1 → b0) = b0 ↔ b1. Note that the order
of the incoming edges is significant here because f→(b, b′) is distinct
from f→(b′, b).

Example 2.11.12. Let d : Bool4 −→ Bool be the discriminator
function defined by

d(a0, a1, a2, a3) =

{
a2 if a0 = a1,

a3 otherwise,

for every (a0, a1, a2, a3) ∈ Bool4 and let F = {f+, f∧, f∨}. An (F, 4)-
circuit that computes d is given in Figure 2.22. Its fan-out is equal
to 2. We omitted the listing of the edges because the functions in F
are symmetric in their input arguments, that is, their value does not
change when the inputs are permuted.

Propositional Logic–Syntax and Semantics 241

Fig. 2.22. Circuit for computing the function d.

Indeed, the functions fi = ΘK(vi) are given by

f0 = π42 ,

f1 = π40 ,

f2 = π41 ,

f3 = π43 ,

f4 = c4T,

f5 = f+(f1, f2),

f6 = f+(f5, f4),

f7 = f∧(f5, f3),

f8 = f∧(f0, f6),

f9 = f∨(f8, f7).

It is not difficult to see that d = f9.

Example 2.11.13. The two-output circuit K = (G,�, q, (v0, v1))
given in Figure 2.23 computes the sequence of functions (f∧, f∨).
This circuit is known as the comparator circuit since its two outputs
give the smaller and larger inputs according to the order previously
introduced on Bool.

242 Logical Foundations of Computer Science — Volume 1

Fig. 2.23. The comparator circuit.

Fig. 2.24. Single-pass circuit for bubble sort for n = 4.

Example 2.11.14. The well-known bubble sort algorithm can be
used to sort sequences of truth values, that is, to rearrange such a
sequence in increasing order according to the order defined on Bool.
For a sequence of length n > 0, �a0 = (a00, . . . , a

0
n−1), the algorithm

makes n− 1 passes over the sequence. The ith pass involves the first
n− i+1 members of the output �ai−1 = (ai−1

0 , . . . , ai−1
n−1) of the i−1st

pass and consists of comparing the first two elements, swapping them
if they are not in order, comparing the second and the third element,
swapping them if they are not in order, etc. At the end of the ith
pass, the last i elements of �ai are in their final positions, as can be
easily seen by the reader.

The circuit shown in Figure 2.24 implements the first pass of the
bubble sort algorithm when n = 4. It can be seen that the gates in

Propositional Logic–Syntax and Semantics 243

Fig. 2.25. Schematic representation of single-pass circuit for n = 4.

this circuit can be grouped together to form comparators, and this
allows us to give a schematic representation of the circuit as shown in
Figure 2.25. Whenever practical, we will use this alternative “black
box” representation of circuits.

A circuit that performs a bubble sort pass over n > 0 inputs is
shown in Figure 2.26. We will denote this circuit by BPn. Clearly,
since the circuit involves n−1 comparators, we have ||BPn|| = 2n−2,
for n ≥ 1. Using circuits of the form BPk as building blocks, we can
construct an (F, n)-circuit with n outputs that uses bubble sort to
produce the sorted permutation of the values at the input nodes
(see Figure 2.27). Here F = {f∧, f∨}. The size of this sorting cir-
cuit is easily seen to be n2 − n. With the natural ordering of the
output nodes, the multiple-output circuit computes the sequence
(thn,n, thn−1,n, . . . , th1,n), where the functions th were introduced in
Definition 2.8.22.

Let F be a set of truth functions indexed by the set C of connec-
tive symbols. For a sequence of m-ary truth functions (f0, . . . , fp−1),
let CIRCn

F (f0, . . . , fp−1) be the collection of all (F,m)-circuits with
fan-out less than or equal to n that compute (f0, . . . , fp−1). If n, p ∈
N and n ≤ p, then

CIRCn
F (f) ⊆ CIRCp

F (f). (2.9)

244 Logical Foundations of Computer Science — Volume 1

Fig. 2.26. Schematic representation of the circuit BPn.

The collection of all circuits that compute the function f will be
denoted by CIRCF (f), where

CIRCF (f) =
⋃
n∈N

CIRCn
F (f).

Definition 2.11.15. The combinational complexity with fan-out n
over the set F is a partial mapping COMBnF : TF −→ N, where f
belongs to Dom(COMBnF) if and only if CIRCn

F (f) �= ∅ and in this
case,

COMBnF (f) = min{||K|| | K ∈ CIRCn
F (f)}.

COMB1
F (f) is the formula complexity of f .

A circuit K ∈ CIRCn
F (f) such that ||K|| = COMBnF (f) is a fan-

out n, F -optimal circuit for f .
The combinational complexity with arbitrary fan-out over the

set F is a partial mapping COMB∞
F : TF −→ N, where f ∈

Dom(COMB∞
F) if and only if CIRCF (f) �= ∅ and in this case,

COMB∞
F (f) = min{||K|| | K ∈ CIRCF (f)}.

Propositional Logic–Syntax and Semantics 245

Fig. 2.27. Circuit for bubble sort.

A circuit K ∈ CIRC∞
F (f) such that ||K|| = COMB∞

F (f) is an unlim-
ited fan-out, F -optimal circuit for f .

The delay complexity over F is a partial mapping DELAYF :
TF −→ N, where f ∈ Dom(DF) if and only if CIRCF (f) �= ∅ and

DELAYF (f) = min{delay(K) | K ∈ CIRCF (f)}.

Whenever some of these complexity measures are undefined for
a function f , we may say that their corresponding value is ∞. For
example, if there is no (F,m)-circuit that computes f ∈ TFm with
fan-out n, then we write COMBnF (f) =∞.

The inclusion (2.9) implies

COMB∞
F (f) ≤ COMBpF (f) ≤ COMBnF (f) (2.10)

for every f ∈ Dom(COMBnF) and every n, p ∈ N such that n ≤ p.

246 Logical Foundations of Computer Science — Volume 1

Theorem 2.11.16. Let C be a set of connective symbols and F =
{fC | C ∈ C} be a set of truth functions indexed by C.

For every formula ϕ ∈ PLFORMF and m ∈ N such that SV (ϕ) ⊆
Sm, there is a constant-free single-output (F,m)-circuit Kϕ,m that
satisfies the following conditions:

(1) Kϕ,m is a formula circuit and
(2) the function computed by the circuit equals fτϕ,Sm .

Proof. The argument is by induction on the definition of the
formula ϕ. If ϕ = pi ∈ Sm, let K = (G,�, q, v), where G is
the graph having a single vertex v and no edges, �(v) = pi and
q = λ is the empty sequence. Clearly, the fan-out of G is 0 and
ΘK(v) = πmi = fτpi,Sm .

Suppose now that ϕ = C(ϕ0, . . . , ϕn−1), where C is an n-ary
connective symbol with n ≥ 1, or ϕ = C, where C is a 0-ary con-
nective symbol, and that for every formula ϕi there exists a circuit
Ki = (Gi,�i, qi, vi) such that the graph Gi = (Vi, Ui) has fan-out
no greater than 1, and the function computed by Ki is fτϕi,Sm for
0 ≤ i ≤ n − 1. We assume that the set of vertices Vi of the graphs
Gi is pairwise disjoint and that v �∈

⋃
0≤i≤n−1 Vi.

Consider the graph G = (V,U), where V = {v} ∪
⋃

0≤i≤n−1 Vi,
U = {(v0, v), . . . , (vn−1, v)} ∪

⋃
0≤i≤n−1 Ui, shown in Figure 2.28.

The sequence q is the concatenation of the sequences q0, . . . , qn−1

followed by the sequence ((v0, v), . . . , (vn−1, v)), and the mapping �
is given by

�(z) =

{
�i(z) if z ∈ Vi for 0 ≤ i ≤ n− 1,

C if z = v.

Fig. 2.28. The circuit K′.

Propositional Logic–Syntax and Semantics 247

Let K = (G,�, q, v). It is clear that K is a formula circuit. We
claim that ΘK(v), the function computed by the circuit equals fτϕ,Sm .
Indeed, we have

fτϕ,Sm (�a) = τϕ,Sm(v�a,Sm)

= v�a,Sm(ϕ)

= fC(v�a,Sm(ϕ0), . . . , v�a,Sm(ϕn−1))

= fC(fτϕ0,Sm (�a), . . . , fτϕn−1,Sm
(�a))

= fC(ΘK0(v0)(�a), . . . ,ΘKn−1(vn−1)(�a))

(by inductive hypothesis)

= fC(ΘK(v0)(�a), . . . ,ΘK(vn−1)(�a))

(by Corollary 2.11.10)

= ΘK(v)(�a).
�

Note that if f ∈ TFm and ϕ is a formula such SV (ϕ) = Sm and

τϕ = τ fSm, then COMB1
F (f) ≤ ||Kϕ,m||.

Theorem 2.11.17. Let C be a set of connective symbols, F = {fC |
C ∈ C}, and K = (G,�, q, rout) be an (F,m)-circuit:

(a) If K is constant-free, then for every vertex v of the graph G there
exists a formula ϕv ∈ PLFORMF such that ΘK(v) = fτϕv,Sm .

(b) Let C0 = C ∪ {�,⊥}, where �,⊥ �∈ C, and let F0 = {fC | C ∈
C0}, where f� = c0T and f⊥ = c0F. Then, for every vertex v of
the graph G there exists a formula ϕv ∈ PLFORMF0 such that
ΘK(v) = fτϕv,Sm

.

Proof. For Part (a), the proof is by induction on depth(v). For
the basis step, depth(v) = 0, the formula ϕv is given by ϕv = pj if
�(v) = pj and by ϕv = C if �(v) = C, where C is a 0-ary connective
symbol.

For the inductive step, suppose that the statement holds for
vertices of depth less than depth(v) > 0 and that �(v) = C.
If the incoming edges of v are (v0, v), . . . , (vn−1, v) listed in the
order specified by q, then, by inductive hypothesis, we have formulas
ϕv0

, . . . , ϕvn−1
such that ΘK(vi) = fτϕvi

,Sm
for 0 ≤ i ≤ n−1. We leave

248 Logical Foundations of Computer Science — Volume 1

it to the reader to prove that the formula ϕv = C(ϕv0 , . . . , ϕvn−1
) has

the desired property.
The proof of Part (b) differs only in the basis step and is left to

the reader. �

Corollary 2.11.18. Let F be an indexed set of truth functions and
f ∈ TFm be a truth function. The following four statements are
equivalent:

(1) f ∈ ̂̂
F ,

(2) there is a formula ϕ ∈ PLFORMF such that SV (ϕ) ⊆ Sm and
f = fτϕ,Sm ,

(3) there is a constant-free single-output (F,m)-circuit K of fan-out
less than or equal to one such that f = fK,

(4) there is a constant-free single-output (F,m)-circuit K such that
f = fK.

Proof. The equivalence of (1) and (2) is a consequence of
Lemma 2.10.12, Lemma 2.10.13, and Theorem 2.8.48. The second
statement implies (3) by Theorem 2.11.16, (3) implies (4) trivially,
and (4) implies (2) by Theorem 2.11.17, Part (a). �

Corollary 2.11.19. Let F be an indexed set of truth functions, F0 =
F ∪ {f�, f⊥}, and f ∈ TFm be a truth function. The following four
statements are equivalent:

(1) f ∈ ̂̂
F0,

(2) there is a formula ϕ ∈ PLFORMF0 such that SV (ϕ) ⊆ Sm and
f = fτϕ,Sm ,

(3) there is a single-output (F,m)-circuit K of fan-out less than or
equal to one such that f = fK,

(4) there is a single-output (F,m)-circuit K such that f = fK.

Proof. By Corollary 2.11.18 applied to F0, the first statement is
equivalent to the second. Suppose now that (2) holds. By the same
corollary, there is a constant-free (F0,m)-circuit K′ of fan-out less
than or equal to one such that f = fK′ . Let K be the (F,m)-circuit
obtained from K′ by replacing all labels ⊥ with F and � with T.
Then, it is easy to see that fK = fK′ = f , which shows that (2)
implies (3). It is immediate that (3) implies (4) and (4) implies (2)
by Theorem 2.11.17, Part (b). �

Propositional Logic–Syntax and Semantics 249

Thus, if F0 is a complete set of truth functions in the sense of
Definition 2.9.29, then, for every m-ary truth function, there is an
(F,m)-circuit that computes the function.

Corollary 2.11.20. For every single-output (F,m)-circuit K, there
exists a single-output (F,m)-circuit K′ such that K′ has fan-out less
than or equal 1 and computes the same m-ary function as K.

Proof. For m = 0, the function computed by K is necessarily c0F or
c0T. The one-vertex circuit labeled by F or T, respectively, computes
the same function and has fan-out 0.

Now supposem > 0 and let f be the m-ary function computed by
K. By Theorem 2.11.17, there is an F -formula ϕ such that f = fτϕ,Sm .
By Theorem 2.11.16, there is an (F,m)-circuit K′ of fan-out less than
or equal to 1 that computes the function f . �

The previous corollary implies that all functions COMBnF have
the same domain for n ∈ N ∪ {∞} and n > 0. Any member of this
domain is called a function computable by F -circuits.

Suppose we have an (F,m)-circuit K that computes a function
g ∈ TFm and that f ∈ TFn is a conjugate of g, say f = g℘, where
℘ : {0, . . . ,m−1} −→ {0, . . . , n−1}. By Corollary 2.11.19, there is an
(F, n)-circuit K′ that computes f . Such a circuit can be constructed
effectively from K by a suitable change of the statement variables
that label the input nodes of K. Namely, each label pi of an input
node is replaced by p℘(i). The resulting circuit will be denoted by
K℘. We leave it to the reader to prove that the function computed
by K℘ is g℘ (see Exercise 173).

Theorem 2.11.21. Let F,F ′ be two finite, complete indexed sets of
truth functions. There is a constant c such that for all truth func-
tions f ,

COMB∞
F (f) ≤ c · COMB∞

F ′(f).

Proof. Let f be a truth function and let K′ be an unlimited fan-out
F ′-optimal circuit for f . The completeness of F implies that for every
fC′ ∈ F ′, there is an unlimited fan-out, F -optimal circuit KC′ for fC′ .
Let K′′ be the circuit obtained from K′ by replacing each gate labeled
by a connective symbol C ′ by a copy of KC′ . In this circuit, the node
linked to the ith input of the gate labeled C ′ is directly connected to

250 Logical Foundations of Computer Science — Volume 1

the nodes of KC′ that were linked to the inputs of KC′ labeled pi−1.
Of course, the input nodes of KC′ labeled with variables are removed.
Observe that ||K′′|| ≤ c||K||, where c = max{||KC′ || | fC′ ∈ F ′}.
Therefore, COMB∞

F (f) ≤ cCOMB∞
F ′(f). �

A similar result for fan-out n where 1 < n < ∞ is shown in
Corollary 2.11.27.

Theorem 2.11.22. Let F,F ′ be two finite, complete sets of truth
functions. There is a constant d such that for all truth functions f ,
DELAYF (f) ≤ d · DELAYF ′(f).

Proof. Let f be a truth function and let K′ be an F ′-circuit for f of
minimal delay. The completeness of F implies that for every fC′ ∈ F ′,
there is an F -circuit KC′ for fC′ that has minimal delay. Let K′′ be
the circuit obtained from K′ by replacing each gate labeled by a
connective symbol C ′ by a copy of KC′ , as in the previous theorem.
Note that delay(K′′) ≤ d · delay(K′), where d = max{delay(KC′) |
fC′ ∈ F ′}. Therefore,

DELAYF (f) ≤ dDELAYF ′(f). �
We now investigate the relationships between COMB2

F , . . . ,
COMB∞

F for given F .
Observe that if F consists only of constant functions, then the

function computed by an (F,m)-circuit is either a projection or a
constant function. Therefore, since each such function is computable
by a one-vertex circuit without gates, we have COMBnF (f) = 0 for
every f ∈ Dom(COMBnF). This shows that sets of connectives that
denote only constant functions are of little interest for our study;
thus, we will consider from now on sets F that contain at least one
non-constant function.

Lemma 2.11.23. Let F be an indexed set of truth functions. If K
is a fan-out n, F -optimal circuit, or an unlimited fan-out F -optimal
circuit for a truth function f , then the number of vertices of K with
positive out-degree is at least ||K||.

Proof. Since K is an optimal circuit with limited or unlimited fan-
out, there is no gate with out-degree 0 except the output gate. (Note
that the output vertex can be an input vertex.) Also, no vertex of
K is labeled with a 0-ary connective symbol because any such gate

Propositional Logic–Syntax and Semantics 251

could be replaced with an input vertex labeled with a truth value,
thereby decreasing the number of gates of the circuit.

If the output vertex of K is an input vertex, then the result follows
immediately because the optimality of the circuit implies ||K|| = 0.
Therefore, suppose that the output vertex rout is a gate. The acyclic-
ity of the underlying graph of K implies the existence of a vertex
v with in-degree 0 that is joined by a path to rout. The vertex v is
an input because it cannot be labeled by a 0-ary connective symbol.
Consequently, v �= rout and this proves the existence of an input ver-
tex with positive out-degree which implies the desired inequality.

�

Lemma 2.11.24. Let F be a set of truth functions that contains at
least one nonconstant function. Then, there is an (F, 1)-circuit Kid,F
of depth one or two and size equal to the depth that computes the
identity function.

Proof. Let fC be a nonconstant n-ary function in F . There
are two n-tuples �c, �d in Booln such that fC(�c) �= fC(�d). By
Lemma 2.8.19, there is a sequence �a(0), . . . ,�a(k) with |Δ(�a(i),

�a(i + 1))| = 1, �a(0) = �c, and �a(k) = �d. Clearly, there must be two
consecutive vectors in this sequence (b0, . . . , bj−1, bj , bj+1, . . . bn−1),
(b0, . . . , bj−1, bj , bj+1, . . . bn−1) such that

fC(b0, . . . , bj−1, bj , bj+1, . . . bn−1) �= fC(b0, . . . , bj−1, bj , bj+1, . . . bn−1).

If fC(b0, . . . , bj , . . . , bn−1) = bj , then the desired (F, 1)-circuit is given
in Figure 2.29(a). Otherwise, that is, if fC(b0, . . . , bj , . . . , bn−1) = bj,
then the desired (F, 1)-circuit is given in Figure 2.29(b). �

Theorem 2.11.25. Let F be a finite set of truth functions that con-
tains at least one nonconstant function and let k be the maximum
arity of a function in F . There is a number �(F) = ||Kid,F || ∈ {1, 2}
such that

COMBnF (f) ≤
(
1 + �(F)

k − 1

n − 1

)
COMB∞

F (f)

for every f ∈ Dom(COMBnF) and n ∈ N such that n ≥ 2.

Proof. Let COMB∞
F (f) = c and let K = (G,�, q, rout) be a circuit

with c gates that computes f . For each vertex v of K, define rv to be
the fan-out of v.

252 Logical Foundations of Computer Science — Volume 1

(a) (b)

Fig. 2.29. Circuits that compute the identity function.

In order to create a circuit K′ with fan-out bounded by n for f
starting from K, we rearrange the edges emerging from every vertex
v as follows. If rv ≤ n, no changes are needed at vertex v. Otherwise,
that is, if rv > n, the first n − 1 edges are left alone, while the last
rv − (n − 1) edges are replaced by a single edge connecting v to a
copy of the circuit Kid,F defined in Lemma 2.11.24, where the input
vertex of Kid,F labeled p0 is replaced by the edge. If rv ≤ 2n − 1,
then the output of the copy of Kid,F , which is the same as the output
of v, is sent through rv − (n − 1) edges to the vertices of the circuit
that would have received the last rv − (n − 1) original edges. Oth-
erwise, we repeat the process as shown in Figure 2.30 until we have
enough edges to compensate for the initial rv edges. The number mv

of copies of Kid,F introduced by this process applied to the vertex v is
defined by

(n− 1)mv + n ≥ rv > (n − 1)(mv − 1) + n,

which gives mv < (rv − 1)/(n − 1).
For those vertices v such that 0 < rv ≤ n, define mv = 0. Then,

for every vertex v with rv > 0, we have mv ≤ (rv − 1)/(n − 1).
Since ||K′|| = c+

∑
{mv�(F) | rv > 0}, we have

COMBnF (f) ≤ c+
∑
{mv�(F) | rv > 0}

= c+ �(F)
∑
{mv | rv > 0}

Propositional Logic–Syntax and Semantics 253

Fig. 2.30. Construction of K′.

≤ c+ �(F)

n− 1

∑
{(rv − 1) | rv > 0}

= c+
�(F)

n− 1

(∑
{rv | rv > 0} − |{v | rv > 0}|

)
.

Observe that the number of outgoing edges of K,
∑
{rv | rv > 0}

equals the number of incoming edges and the latter number is
bounded by ck; also, by Lemma 2.11.23, we have c ≤ |{v | rv > 0}|.
Using the last inequality, we obtain

COMBnF (f) ≤ c+
�(F)

n− 1
(ck − c)

=

(
1 + �(F)

k − 1

n − 1

)
COMB∞

F (f).

�

254 Logical Foundations of Computer Science — Volume 1

Corollary 2.11.26. Let F be a finite set of truth functions that
contains at least one nonconstant function. For every p, q ∈ N∪{∞}
such that 2 ≤ p, q, there are constants cpqF , c

qp
F such that for every

truth function computable by F -circuits,

COMBpF (f) ≤ c
pq
F COMBqF (f),

COMBqF (f) ≤ c
qp
F COMBpF (f).

Proof. Suppose p < q. Then, we can take cqpF = 1. By Theo-
rem 2.11.25, we have

COMBpF (f) ≤ c
pq
F COMB∞

F (f) ≤ cpqF COMBqF (f),

where cpqF = 1 + �(F)k−1
p−1 and k is the maximum arity of a function

in F . �

The last corollary shows that for finite F , there are essentially two
different complexity measures up to multiplicative constants, namely,
COMB1

F , the formula complexity, and COMB∞
F .

Corollary 2.11.27. Let F,F ′ be two finite, complete sets of truth
functions. For n ∈ N and n ≥ 2, there is a constant cn such that for
all truth functions f , COMBnF (f) ≤ cnCOMBnF ′(f).

Proof. By Theorem 2.11.21 and Corollary 2.11.26, there exist con-
stants c, cn∞F and c∞n

F ′ such that

COMBnF (f) ≤ cn∞F COMB∞
F (f)

≤ cn∞F c COMB∞
F ′(f) ≤ c∞n

F ′ cn∞F c COMBnF ′(f)

for every f ∈ TF. �

Theorem 2.11.28. Let F be a finite set of truth functions that con-
tains a non-constant function and let k be the maximum arity of a
function in F . For s ≥ 2, there are no more than

cF (s,m) =
(|F |(s +m+ 1)k)ss

s!

truth functions computable by (F,m)-circuits of size less than or equal
to s.

Propositional Logic–Syntax and Semantics 255

Proof. We noted earlier that if a function is computed by a circuit
with fewer than s gates, then it is also computed by a circuit with s
gates. The output vertex of such a circuit is either an input vertex
or a gate.

There are m + 2 functions that are computed by (F,m)-circuits
that have an input vertex as the output. It is easy to see that any
of these functions can also be computed by circuits whose output
is a gate and have at most two gates. In fact, such circuits can be
obtained from the circuit Kid,F by replacing the label of the input p0
with a suitable truth value or variable pi.

Therefore, it remains only to count those functions that are com-
puted by (F,m)-circuits of size s whose output vertex is a gate. Since
we have no limits on the fan-out of the circuits, for every (F,m)-
circuit of size s, there is an (F,m)-circuit with equal size that com-
putes the same function and has no more than m+2 input vertices,
so we give now an upper bound on the number of such circuits.

For each gate in a circuit of size s, there are |F | ways of choosing
the connective symbol that labels the gate; also, each of its input
edges can be connected to one of the other vertices of which there
are no more than s+m+1. This gives us no more than |F |(s+m+1)k

ways of labeling and connecting each vertex, so we have no more than
(|F |(s+m+ 1)k)s ways of labeling and “wiring” the graph. Finally,
we have s choices for the output gate, which shows that there are
no more than ((|F |(s+m+1)k)ss (F,m)-circuits with size s and no
more than m+ 2 input vertices.

We claim that for each function f computable by an (F,m)-circuit
with s gates whose output is a gate, there are at least s! (F,m)-
circuits of size s whose output is a gate, which have no more than
m + 2 input vertices, and which compute f . Indeed, there is such a
circuit having no two gates with the same label and sequence of input
vertices. But then all of the s! circuits obtained by permutations of
the gates also compute f . Thus, the number of functions computable
by an (F,m)-circuit with s gates whose output is a gate does not

exceed (|F |(s+m+1)k)ss
s! . �

Theorem 2.11.29. Let F be a finite set of truth functions and let k
be the maximum arity of a function in F . For each m ≥ 3, there is a
truth function in TFm that cannot be computed by any (F,m)-circuit
with fewer than 2m

km+log2 |F | gates.

256 Logical Foundations of Computer Science — Volume 1

Proof. If F contains only constant functions, then no nonconstant
function other than the projections can be computed by (F,m)-
circuits, so the statement follows immediately.

Therefore, we may assume that F contains a nonconstant function
and hence, that the maximum arity k of a function in F is at least 1.
It is easy to observe that ifm ≥ 3, then we have both 1

km+log2 |F | < 0.5

and m+1
2m ≤ 0.5, which gives 1

km+log2 |F | +
m+1
2m < 1, or equivalently,

2m

km+ log2 |F |
+m+ 1 < 2m.

By choosing s = 2m

km+log2 |F | , we have s + m + 1 < 2m, so log2(s +

m+ 1) < m. In turn, this implies

2m

km+ log2 |F |
(log2 |F |+ k log2(s+m+ 1)) < 2m,

which amounts to s (log2 |F |+ k log2(s+m+ 1)) < 2m. This
inequality yields

(
|F |(s +m+ 1)k

)s
< 22

m
, so cF (s,m) < 22

m

because s ≤ s!. By Theorem 2.11.28 and the fact that there are
22
m
m-ary truth functions, for m ≥ 3, there is an m-ary truth func-

tion that cannot be computed by any (F,m)-circuit with fewer than
2m

km+log2 |F | gates. �

Lemma 2.11.30. Let F be a finite set of truth functions that con-
tains a nonconstant function and assume that the maximum arity k
of a function of F is greater than 1. For ε > 0 and m a positive

integer, define rε(m) = 2m

m
log2m
1+ε . Then, for all m large enough, if

sm = 2m

(k−1)m , we have

cF (sm,m) ≤ 22
m−rε(m).

Proof. It is clear that for sufficiently large m, we have sm > m+1.
Therefore, we can write for all sufficiently large m:

cF (sm,m) =
(|F |(sm +m+ 1)k)smsm

sm!

≤ (|F |(sm +m+ 1)k)smsm√
2π s

sm+0.5
m
esm

(by Stirling’s Formula)

Propositional Logic–Syntax and Semantics 257

≤ (e · |F | · (sm +m+ 1)k)smsm

ssm+0.5
m

≤ (e|F |2k)sm · s(k−1)sm
m · s0.5m .

Thus it suffices to show that

(e|F |2k)sm · s(k−1)sm
m · s0.5m ≤ 22

m−rε(m)

or equivalently

sm log2(e · |F | · 2k) + (k − 1)sm log2 sm + 0.5 log2 sm ≤ 2m − rε(m).

Substituting the values of sm and rε(m) in the last inequality, after
elementary transformations we obtain the equivalent inequality

0.5(m − log2(k − 1)− log2m)

≤ 2m

m

(
log2(k − 1) +

ε log2m

1 + ε
− log2(e · |F | · 2k)

k − 1

)
,

which holds for m sufficiently large. �

Definition 2.11.31. Let P be a property of truth functions, that is,
P ⊆ TF∗, and let Pn = P ∩ TFn, for n ∈ N. P holds for almost all
truth functions if

lim
n→∞

|Pn|
22n

= 1.

The next result is both weaker and stronger than Theo-
rem 2.11.29. It is weaker in that it holds only for large m, and it
is stronger in that it shows that almost all m-ary truth functions
require large (F,m)-circuits.

Theorem 2.11.32. Let F be a finite collection of truth functions.
Let K be the larger of 2 and the maximum arity of a function in F .
Then, for almost all truth functions f , COMB∞

F (f) ≥ 2m

(K−1)m , where

m is the arity of f .

Proof. If F contains only constant functions, then for each m,
there are at most m + 2 truth functions that are computable by
(F,m)-circuits. If F contains no function of arity greater than 1,

258 Logical Foundations of Computer Science — Volume 1

then for each m, there are at most 2m+2 such functions. In either of
these cases, the theorem holds. Thus, we can assume that F contains
a nonconstant function and the maximum arity of a function in F is
greater than 1.

Fix ε > 0. By Theorem 2.11.28, the number of truth func-
tions computable by (F,m)-circuits of size less than or equal to
sm = 2m

(K−1)m does not exceed cF (sm,m) and by Lemma 2.11.30,

the number of these functions does not exceed 22
m−rε(m). Conse-

quently, for at least 22
m − 22

m−rε(m) m-ary truth functions f , we
have COMBmF (f) ≥ 2m

(K−1)m . Note that

lim
m→∞

22
m − 22

m−rε(m)

22m
= 1

because limm→∞ rε(m) =∞, which yields the desired result. �
In the following corollary, we use the standard asymptotic nota-

tion Ω.8

Corollary 2.11.33. Let F be a complete set of truth functions.
Almost all truth functions f require (F,m)-circuits of size Ω(2m/m),
where m is the arity of f .

Proof. The statement follows directly from Theorem 2.11.32. �
Next, we will establish that for a complete set of truth functions

the asymptotic lower bound of Corollary 2.11.33 is in fact an asymp-
totic upper bound as well. Initially, we will establish this result for a
particular complete set of truth functions, namely, {f¬, f∧, f∨}. By
Theorem 2.11.21, the result is translatable to any complete set of
truth functions.

Lemma 2.11.34. Let �b = (b0, . . . , bn−1) ∈ Booln and let f = f�b be

the minterm function that corresponds to �b. If n = k + l and �bi,j =

(bi, . . . , bj) for 0 ≤ i ≤ j ≤ n−1, we have f = (f�b0,k−1
)℘

′∧(f�bk,n−1
)℘

′′
,

where ℘′ : {0, . . . , k − 1} −→ {0, . . . , n − 1}, ℘′′ : {0, . . . , l − 1} −→
{0, . . . , n−1} are given by ℘′(i) = i and ℘′′(j) = j+k for 0 ≤ i ≤ k−1
and 0 ≤ j ≤ l − 1.

8We write f = Ω(g), where f, g : N −→ R if there is a positive real number c
and a natural number n0 such that n ≥ n0 implies 0 ≤ cg(n) ≤ f(n).

Propositional Logic–Syntax and Semantics 259

Proof. The proof amounts to the direct application of the defini-
tion of conjugate function. �

Example 2.11.35. Let �b = (F,T,T,F,T) ∈ Bool5. We have the
minterm function

f�b(x0, x1, x2, x3, x4) = x0 ∧ x1 ∧ x2 ∧ x3 ∧ x4,

for x0, . . . , x4 ∈ Bool. For k = 3 and l = 2, the decomposition
described in Lemma 2.11.34 amounts to the obvious equality

x0 ∧ x1 ∧ x2 ∧ x3 ∧ x4 = (x0 ∧ x1 ∧ x2)∧ (x3 ∧ x4).

Indeed, with the choices of ℘′ and ℘′′ of the lemma, for
f�b0,2(x0, x1, x2) = x0 ∧ x1 ∧ x2 and f�b3,4(x0, x1) = x0 ∧ x1, we have

f℘
′

�b0,2
(x0, . . . , x4) = x0 ∧ x1 ∧ x2,

f℘
′′

�b3,4
(x0, . . . , x4) = x3 ∧ x4

for x0, . . . , x4 ∈ Bool.

Lemma 2.11.36. Let F = {f∧, f¬}. For n ∈ N, there is an (F, n)-
circuit Kn of size 2n + O(n2n/2) such that for every n-ary minterm
function f�b, there is a vertex v in Kn such that ΘKn(v) = f�b.

Proof. Note that for eachm there are 2m m-ary minterm functions
and each one can be computed by an (F,m)-circuit of size at most
2m−1. Therefore, there is an (F,m)-circuit Hm of size O(m2m) such
that for every m-ary minterm function there is a vertex v in Hm such
that ΘHm(v) is that minterm function.

Since n = �n/2� + �n/2	, by Lemma 2.11.34, for n ≥ 2, every n-
ary minterm function f can be expressed as g℘

′ ∧ h℘
′′
, where g is an

�n/2�-ary minterm function, h is an �n/2	-ary minterm function, and
℘′ : {0, . . . , �n/2�−1} −→ {0, . . . , n−1}, ℘′′ : {0, . . . , �n/2	−1} −→
{0, . . . , n − 1} are fixed functions independent of f . For n ≥ 2, the

circuit Kn consists of the circuits H℘
′

�n/2� and H℘
′′

�n/2� supplemented

by a set of 2n ∧-gates, {vf | f is an n-ary minterm function}. More
specifically, if f, g, h are as above and g = ΘH�n/2�(v

′), and h =

ΘH�n/2�(v
′′), then we add edges from v′ and v′′ to vf . The total

number of gates of Kn is 2n + O(�n/2�2�n/2�) + O(�n/2	2�n/2�) =
2n +O(n2n/2). �

260 Logical Foundations of Computer Science — Volume 1

In the following theorem, we use the asymptotic notation o.9

Theorem 2.11.37. For every truth function f ,

COMB∞
F (f) ≤ 2n

n
+ o

(
2n

n

)
,

where f ∈ TFn and F = {f¬, f∧, f∨}.

Proof. Let A0, . . . , A�−1 be the standard s-partition of Boolk for
some k and s such that 1 ≤ k ≤ n and 1 ≤ s ≤ 2k. Here � =
�2k/s�. Consider Lupanov’s (k, s)-representation of f introduced by
Equation (2.8):

f =
∨
{f0i,ω ∧ f1i,ω | 0 ≤ i ≤ �− 1, ω : Ai −→ Bool and CAi,ω �= ∅}.

Recall that

f0i,ω(x0, . . . , xn−1) =

{
ω(x0, . . . , xk−1) if (x0, . . . , xk−1) ∈ Ai
F otherwise

and

f1i,ω(x0, . . . , xn−1) =

{
T if (xk, . . . , xn−1) ∈ CAi,ω
F otherwise.

Define the functions gi,ω ∈ TFk and hi,ω in TFn−k by

gi,ω(x0, . . . , xk−1) =

{
ω(x0, . . . , xk−1) if (x0, . . . , xk−1) ∈ Ai
F otherwise

and

hi,ω(x0, . . . , xn−k−1) =

{
T if (x0, . . . , xn−k−1) ∈ CAi,ω
F otherwise.

Note that f0i,ω = g℘
′

i,ω and f1i,ω = h℘
′′
i,ω, where ℘

′ : {0, . . . , k − 1} −→
{0, . . . , n− 1}, ℘′′ : {0, . . . , n− k− 1} −→ {0, . . . , n− 1} are given by
℘′(j) = j and ℘′′(l) = k + l. By Lemma 2.11.36, there is an (F, k)-
circuit Kk of size O(2k) that computes every k-ary minterm function,

9We write f = o(g), where f, g : N −→ R+ if limn→∞
f(n)
g(n)

= 0.

Propositional Logic–Syntax and Semantics 261

and there is an (F, n−k)-circuit Kn−k of size O(2n−k) that computes
every n− k-ary minterm function.

Next, we construct an (F, k)-circuit Hg that computes all of the
functions gi,ω using their disjunctive normal forms and the circuit
Kk. A k-ary minterm function is used in constructing gi,ω only if its
corresponding k-tuple belongs to Ai. Since A0, . . . , A� is a partition,
and there are no more than 2s choices for ω for a given Ai, each
minterm function is used no more than 2s times in building Hg. It
follows that the number of additional gates used in building Hg from
Kk does not exceed 2k2s.

Similarly, we construct an (F, n− k)-circuit Hh that computes all
the functions hi,ω using their disjunctive normal forms and the circuit

Kn−k. Since for each i the sets Ci,ω form a partition of Booln−k, no
n − k-ary minterm function is used more than � times in building
Hh. Thus, Hh is constructed from Kn−k using no more than 2n−k�
additional gates beyond the ones used in building Kn−k.

The circuit H℘
′
g computes all the functions f0i,ω and the circuit

H℘
′′
h computes all the functions f1i,ω.
Using Lupanov’s (k, s)-representation, the function f is computed

by a circuit K which we build by using copies of H℘
′
g and H℘

′′
h and

no more than 2�2s additional gates. The total number of gates in K
is no more than

O(2k) +O(2n−k) + 2k2s + �2n−k + 2�2s.

Since � ≤ 2k/s+ 1, we obtain the upper bound

O(2k + 2n−k) + 2k+s +
2n

s
+ 2n−k +

2s+1+k

s
+ 2s+1.

Let k = �3 log2 n� and s = n − �5 log2 n�. For sufficiently large
values of n, we have k ≤ n and s ≥ 1. Therefore, ||K|| ≤ 2n/n +
o(2n/n), which gives the desired result. �

Corollary 2.11.38. For every complete set of connectives F and for
every truth function f , COMB∞

F (f) = O(2
n

n), where f ∈ TFn.

Proof. This statement is a consequence of Theorems 2.11.37
and 2.11.21. �

Next, we prove a lower bound on the combinational complexity
of the threshold functions th2,n introduced in Definition 2.8.22.

262 Logical Foundations of Computer Science — Volume 1

Lemma 2.11.39. For n ≥ 3 and 1 < k < n, there are no numbers i
and j and truth functions f ∈ TFn−1 and g ∈ TF2 such that 0 ≤ i <
j ≤ n− 1 and

thk,n(a0, . . . , an−1)

= f(a0, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , an−1, g(ai, aj))

for a0, . . . , an−1 ∈ Bool.

Proof. For 0 ≤ i < j ≤ n− 1 and a, b ∈ Bool, define hi,ja,b ∈ TFn−2

by

hi,ja,b(a0, . . . , an−3)

= thk,n(a0, . . . , ai−1, a, ai, . . . , aj−2, b, aj−1, . . . , an−3)

for a0, . . . , an−3 ∈ Bool. Observe that the functions hi,j0,0, h
i,j
0,1, h

i,j
1,1

are all distinct because 1 < k < n.
If thk,n had a representation as in the statement of the lemma,

then there would be at most two distinct functions among the hi,ja,b,
which shows the impossibility of such a decomposition of thk,n. �

Theorem 2.11.40. For all n ≥ 2, we have COMB∞
TF2

(th2,n) ≥
2n − 3.

Proof. The proof is by induction on n. The basis step, n = 2,
is trivial. For the inductive step, assume that n > 2 and
COMB∞

TF2
(th2,n−1) ≥ 2(n− 1)− 3 = 2n− 5 and let K be an optimal

TF2-circuit with unlimited fan-out for th2,n. Since th2,n is neither a
constant function nor a projection, K must contain at least one gate.
Hence, by the acyclicity of the graph underlying K, there is a gate
v directly connected to two input nodes. This gate cannot be the
output gate for otherwise the function computed by K would depend
on at most two arguments. We claim that the inputs to v are labeled
by two distinct variables pi and pj . If this were not the case, the
function ΘK(v) computed at v would be either a constant function,
a projection, or the negation of a projection. We claim that in any
of these cases, we could modify K into a circuit K′ with one fewer
gate that computes th2,n, thereby contradicting the optimality of K.
If ΘK(v) is a constant, we replace the gate v by an input labeled by
this constant. If ΘK(v) is the projection πni , then the gate v can be

Propositional Logic–Syntax and Semantics 263

replaced by an input labeled pi. Suppose now that ΘK(v) = f¬πni and
the outgoing edges of v connect v to the gates v0, . . . , vl−1, labeled
by the connective symbols C0, . . . , Cl−1, where l ≥ 1. The circuit
K′ is obtained by replacing the gate v with an input labeled pi and
changing the labels C0, . . . , Cl−1 to C ′

0, . . . , C
′
l−1 as follows:

(1) if v is linked to the first input of vi but not the second, let
C ′
i be a connective symbol such that fC′

i
(a, b) = fCi(a, b), for

a, b ∈ Bool,
(2) if v is linked to the second input of vi but not the first, let C

′
i be a

connective symbol such that fC′
i
(a, b) = fCi(a, b), for a, b ∈ Bool,

(3) if v is linked to both inputs of vi, let C
′
i be a connective symbol

such that fC′
i
(a, b) = fCi(a, b), for a, b ∈ Bool.

Next, we claim that there is another gate v′ that is directly con-
nected to an input labeled by one of the variables pi, pj that label
the inputs directly connected to v. Indeed, otherwise, th2,n would be
decomposable in the way shown to be impossible in Lemma 2.11.39.
Without loss of generality, we may assume that it is pi which labels
nodes directly connected to v and v′.

Let K̃ be the circuit obtained from K by relabeling each input
labeled pi with F and each input labeled pk where k > i with pk−1.

The function computed by K̃ is th2,n−1.

Next, we show that there is a circuit K̂ equivalent to K̃ with two
fewer gates.

Suppose initially that v′ is not the output gate. Each of the func-
tions ΘK̃(v) and ΘK̃(v

′) can be a constant function, a projection, or
the negation of a projection. Then, we can eliminate v, v′ using the
same argument as above.

For the case when v′ is the output gate, let v′′ be the other node
directly connected to v′. Observe first that v′′ is a gate since otherwise
the function computed by K would depend on at most two variables.
Second, v′′ is distinct from v for the same reason. The gate v can be
eliminated as before. The gate v′ is eliminated by making v′′ the new
output gate and relabeling v′′ with Ĉ ′′ where

f
Ĉ′′(a, b) = fC′(fC′′(a, b),F),

C ′′ was the previous label of v′′, C ′ is the label of v′, and a, b ∈
Bool. We assumed here that v′′ is connected to the first input of v′.

264 Logical Foundations of Computer Science — Volume 1

A similar definition works when v′′ is connected to the second input
of v′.

We have

||K|| = ||K̂||+ 2

≥ 2(n − 1)− 3 + 2 (by the inductive hypothesis)

= 2n − 3,

which concludes the argument. �

Definition 2.11.41. A family of truth functions is a infinite
sequence F = (f0, f1, . . . , fn, . . .) of truth functions such that fn ∈
TFn for n ∈ N.

Let F be a collection of truth functions. The F -circuit complexity
of F is the function combF,F : N −→ N∪{∞} given by combF,F(n) =
COMB∞

F (fn), for n ∈ N.
A function g : N −→ N ∪ {∞} is a lower bound on the F -circuit

complexity of F if g(n) ≤ combF,F(n) for all n ∈N.
A function h : N −→ N∪{∞} is an upper bound on the F -circuit

complexity of F if g(n) ≥ combF,F(n) for all n ∈N.

Note that if F,F ′ ⊆ TF are such that F ⊆ F ′, then any lower
bound on the F ′-circuit complexity of a family F is also a lower
bound on the F -circuit complexity of F. Further, any upper bound
on the F -circuit complexity of F is also an upper bound on the
F ′-circuit complexity of F.

Example 2.11.42. Let F2 = (th2,0, th2,1, th2,2, . . .), where the func-
tions th2,0, th2,1 are defined by th2,0 = c0F and th2,1 = c1F. It follows
from Example 2.11.14 that the function g given by

g(n) =

{
n2 − n if n ≥ 2

0 if n < 2

is an upper bound on the F -circuit complexity of F2, where F =
{f∧, f∨}.

A slightly more complicated argument allows us to prove a
stronger result about circuits that compute threshold functions. We
start by modifying the circuit BPn introduced in Example 2.11.14

Propositional Logic–Syntax and Semantics 265

by removing the ∨-gate of the last comparator. This eliminates the
last output gate, thereby leaving us with a circuit BP ′

n which has
n inputs and n − 1 outputs, for n ≥ 1. We also use the circuits
Kp∨ which compute the functions fp(a0, . . . , ap−1) =

∨
0≤i≤p−1ai, for

a0, . . . , ap−1 ∈ Bool and p ≥ 1, using p − 1 ∨-gates. The circuit
shown in Figure 2.31 computes the function thk,n, where 1 ≤ k ≤ n,
because thk,n(a0, . . . , an−1) = T if and only if at least one of the
least n − k + 1 members of the sequence (a0, . . . , an−1) is T. We
leave to the reader the verification that the size of this circuit is
n(2k−1)−k2−k+1. For k = 2, the size of the circuit is 3n−5. Thus,
we can improve the result of the first paragraph to say that the family
F2 has the function g

′ as an upper bound on its F -circuit complexity,

Fig. 2.31. Circuit for the function thk,n.

266 Logical Foundations of Computer Science — Volume 1

where

g′(n) =

{
3n − 5 if n ≥ 2

0 if n < 2.

On the other hand, Theorem 2.11.40 can be restated by saying
that the family F2 has the function h(n) = 2n−3 as a lower bound on
its TF2-circuit complexity. Thus, we have asymptotically tight bounds
on both the F - and TF2-circuit complexities of F2.

There are explicitly given families of truth functions such that any
superpolynomial lower bound on their TF2-circuit complexity would
have profound implications for complexity theory. (Namely, it would
settle the well-known P = NP? problem in the negative.) Thus, one
is compelled to inquire about the existence of any family of truth
functions with this property.

By Theorem 2.11.32, for every finite set of truth functions F , there
is a number n0 and a family of truth functions F = (f0, . . . , fn, . . .)
such that for all n ≥ n0, we have COMB∞

F (fn) ≥ 2n

kn for some fixed

constant k. (Note that 2n

kn = Ω(an), for any a ∈ (1, 2), so this family,
in fact, has an exponential lower bound on its circuit complexity.) To
make the construction of the family F more specific, for n ≥ n0, we
could define fn as the first function f in TFn in some fixed effective
order of truth functions such that COMB∞

F (f) ≥ 2n

kn . Nevertheless,
this definition does not meet the intuitive requirements of an explicit
definition and one might ask what lower bounds could be obtained
for explicitly defined families of functions. Here the results are rather
poor since the best lower bound obtained so far on the TF2-circuit
complexity of any explicitly defined family of truth functions is linear.
In fact, the result obtained in Theorem 2.11.40 is close to the best
known lower bound due to Blum [3], namely, 3n − 3. In view of
the difficulty of finding lower bounds for explicitly defined families
of functions for general circuits, attention has focused on restricting
the circuits in some way and then obtaining lower bounds. Some
of the restrictions studied include bounding the delay of the circuits,
restricting the circuits to have fan-out 1, or limiting the type of gates
to ∧ and ∨ gates (which limits the type of function that can be
computed to monotonic functions). In each of these cases, higher
lower bounds have been obtained, but this has not led, so far, to any
progress in the general case.

Propositional Logic–Syntax and Semantics 267

2.12 Exercises and Supplements

Formulas

(1) Let p be a statement variable, C be a binary connective sym-
bol, and ϕ,ψ ∈ PLFORM. Prove that

SV (p) = {p},
SV ((¬ϕ)) = SV (ϕ),

SV ((ϕCψ)) = SV (ϕ) ∪ SV (ψ).

(2) Show that for every formula ϕ, {ϕ, (¬ϕ)} = {ψ,ψ} for some
formula ψ. Show also that for every formula ϕ, there is a for-
mula ψ such that {ϕ,ϕ} = {ψ, (¬ψ)}.

(3) Prove that if n > 0, then for the binary representation kn of
n, we have |kn| = �log2(n)	+ 1.

(4) Let (α, i), (β, j) be two occurrences of the formulas α, β
in a formula ϕ. Prove that one of the following situations
occurs:

(a) (α, i) � (β, j), or
(b) (β, j) � (α, i), or
(c) |α|+ i ≤ j, or
(d) |β|+ j ≤ i.
We used here the notation “�” introduced in Exercise 7 of
Chapter 1. Note that in the first two cases, one occurrence is
part of the other, while in the last two cases, the occurrences
are disjoint.
Hint. Use Corollary 2.2.10.

(5) Prove that the standard ordering of the formulas of proposi-
tional logic
 is a well-ordering on PLFORM.

(6) Prove that for every formula ϕ ∈ PLFORM we have |ϕ|¬ +
|ϕ|∨ + |ϕ|∧ + |ϕ|→ + |ϕ|↔ = |ϕ|(= |ϕ|). Also, for every proper
prefix u of a formula, |u|(≥ |u|¬ + |u|∨ + |u|∧ + |u|→ + |u|↔ ≥
|u|).

(7) Prove that for every formula ϕ ∈ PLFORM, we have

∑
{|ϕ|p | p ∈ SV } − 1 = |ϕ|∨ + |ϕ|∧ + |ϕ|→ + |ϕ|↔.

268 Logical Foundations of Computer Science — Volume 1

(8) Prove that for every formula ϕ ∈ PLFORM, we have

|SUBF(ϕ)| = |ϕ|¬ + |ϕ|∨ + |ϕ|∧ + |ϕ|→ + |ϕ|↔
+

∑
{|ϕ|p | p ∈ SV }.

Conclude that |SUBF(ϕ)| ≤ |ϕ|.
(9) Let PLFORM′ be the set of formulas defined as follows:

1. For every statement variable p, p ∈ PLFORM′.
2. For every statement variable p, (¬p) ∈ PLFORM′.
3. For all formulas ϕ,ψ ∈ PLFORM′ and every binary con-

nective symbol, (ϕCψ) ∈ PLFORM′.
4. For every formula ϕ ∈ PLFORM′, (¬(¬ϕ)) ∈ PLFORM′.
5. For all formulas ϕ,ψ ∈ PLFORM′ and every binary con-

nective symbol, (¬(ϕCψ)) ∈ PLFORM′.
Observe that Rules 3 and 5 each incorporate four rules, one
for each binary connective symbol:

(a) Show that PLFORM′ = PLFORM.
(b) Show that the alternate definition of PLFORM given

above satisfies the unique readability condition.

(10) Show that for n ≥ 1 and ϕ0, . . . , ϕn−1 ∈ PLFORM, we have

size

(
n−1∧
i=0

ϕi

)
=

n−1∑
i=0

size(ϕi) + 3(n − 1).

We write f = Θ(g), where f, g : N −→ R if there are positive real
numbers c, d and a natural number n0 such that n ≥ n0 implies
0 ≤ cg(n) ≤ f(n) ≤ dg(n).
(11) Recall that we defined the formulas θi in Example 2.2.8 as

θ0 = p0 and θi = (p2i−1 ∨ p2i) for i ≥ 1. Define the formulas
ϕn =

∧n−1
i=0 θi for n ≥ 1. Show that

size(ϕn) = (2n − 1)�log2(2n− 2)	 − 2 · 2�log2(2n−2)�

+10n − 6,

for n ≥ 2. Conclude that size(ϕn) = Θ(n log n).
Hint. This follows from Example 2.2.8, Exercise 10, and Exer-
cise 42 (b) of Section 1.2.4 of [27].

Propositional Logic–Syntax and Semantics 269

Let Γ = {ϕ0, . . . , ϕn−1} be a finite set of formulas. Define size(Γ) as∑n−1
i=1 size(ϕi). If Δ is a finite set of signed formulas, then size(Δ)

is the sum of the sizes of the signed formulas in Δ.

(12) Let αi, βi be the formulas defined by

αi = (ϕi → p2i−1), βi = (ϕi → p2i)

for i ≥ 1, where the formulas ϕi are the ones introduced in
Exercise 11. Also, define the formulas γi for i ∈ N as γ0 = p0
and γi = (αi ∨ βi), for i ≥ 1. Prove that

size({γ0, . . . , γn}) = Θ(n2 log n).

(13) Let ϕ0, . . . , ϕn−1 ∈ PLFORM. Show that

SV

⎛
⎝ ∨

0≤i≤n−1

ϕi

⎞
⎠ =

⋃
0≤i≤n−1

SV (ϕi),

SV

⎛
⎝ ∧

0≤i≤n−1

ϕi

⎞
⎠ =

⋃
0≤i≤n−1

SV (ϕi).

(14) Let ϕ0, . . . , ϕn−1, ψ0, . . . , ψm−1 be formulas, where n ≥ 1 and
m ≥ 0. Prove that

DISJ(DISJ(ϕ0, . . . , ϕn−1), ψ0, . . . , ψm−1)

= DISJ(ϕ0, . . . , ϕn−1, ψ0, . . . , ψm−1).

Show a similar result for CONJ.
Hint. The proof is by induction on m.

We introduce the notion of one formula occurring positively or neg-
atively in another formula.

Define the functions Pos,Neg : PLFORM −→ P(PLFORM) by

Pos(p) = {p},
Neg(p) = ∅,

Pos((¬ϕ)) = Neg(ϕ) ∪ {(¬ϕ)},
Neg((¬ϕ)) = Pos(ϕ),

270 Logical Foundations of Computer Science — Volume 1

Pos((ϕCψ)) = Pos(ϕ) ∪ Pos(ψ) ∪ {(ϕCψ)},
Neg((ϕCψ)) = Neg(ϕ) ∪ Neg(ψ),

Pos((ϕ→ ψ)) = Neg(ϕ) ∪ Pos(ψ) ∪ {(ϕ→ ψ)},
Neg((ϕ→ ψ)) = Pos(ϕ) ∪ Neg(ψ),

Pos((ϕ↔ ψ)) = Pos(ϕ) ∪ Neg(ϕ) ∪ Pos(ψ) ∪ Neg(ψ) ∪ {(ϕ↔ ψ)},
Neg((ϕ↔ ψ)) = Pos(ϕ) ∪ Neg(ϕ) ∪ Pos(ψ) ∪ Neg(ψ),

for every p ∈ SV , C ∈ {∨,∧}, ϕ,ψ ∈ PLFORM. A formula θ occurs
positively in ϕ if θ ∈ Pos(ϕ); if θ ∈ Neg(ϕ), we say that θ occurs
negatively in ϕ.

A formula occurs positively (negatively) in a set of formulas if it
occurs positively (negatively) in some formula of the set.

(15) Prove that for all formulas α, β, γ in PLFORM the following
statements hold:

(a) if α occurs positively in β and β occurs positively in γ,
then α occurs positively in γ,

(b) if α occurs positively in β and β occurs negatively in γ,
then α occurs negatively in γ,

(c) if α occurs negatively in β and β occurs positively in γ,
then α occurs negatively in γ,

(d) if α occurs negatively in β and β occurs negatively in γ,
then α occurs positively in γ.

Hint. Use induction on γ to prove all four statements simul-
taneously.

The formula ψ occurs positively (negatively) in the signed formula
Tϕ if ψ occurs positively (negatively) in ϕ. The formula ψ occurs
positively (negatively) in the signed formula Fϕ if ψ occurs negatively
(positively) in ϕ.

A formula occurs positively (negatively) in a set of signed formulas
if it occurs positively (negatively) in some signed formula of the set.

(16) Identify the formulas that occur positively and the formulas
that occur negatively in the signed formula F((p→ q)→ r).

Propositional Logic–Syntax and Semantics 271

Truth Assignments

(17) Use Theorem 2.3.5 to recast Definition 2.3.7 in terms of truth
valuations.

(18) (a) Prove that for every formula ϕ, ϕ ≡ (¬ϕ).
(b) Prove that for every formula ϕ, ϕ ≡ ϕ.
(c) For which formulas ϕ, do we have ϕ = ϕ?

(19) Let (ϕ0, . . . , ϕn−1) and (ψ0, . . . , ψm−1) be two nonempty
sequences of formulas such that {ϕ0, . . . , ϕn−1} = {ψ0, . . . ,
ψm−1}. Prove that

∨
0≤i≤n−1

ϕi ≡
∨

0≤i≤n−1

ψi,

∧
0≤i≤n−1

ϕi ≡
∧

0≤i≤n−1

ψi.

Hint. Use Theorem 2.3.6.
(20) Let ϕ =

∨
0≤i≤n−1 ϕi, where ϕi0 |= ϕi1 for some i0, i1 with 0 ≤

i0, i1 ≤ n−1 and i0 �= i1. Prove that for ϕ
′ =

∨
0≤i≤n−1,i �=i0 ϕi,

we have ϕ ≡ ϕ′.
(21) Let ϕ =

∧
0≤i≤n−1 ϕi, where ϕi1 |= ϕi0 for some i0, i1 with 0 ≤

i0, i1 ≤ n−1 and i0 �= i1. Prove that for ϕ
′ =

∧
0≤i≤n−1,i �=i0 ϕi,

we have ϕ ≡ ϕ′.
(22) Let m0, . . . ,mn−1 be n positive natural numbers for some n ≥

1 and let {ϕij | 0 ≤ i ≤ n − 1, 0 ≤ j ≤ mi − 1} be a family of
formulas. Prove that

∨
0≤i≤n−1

∨
0≤j≤mi−1

ϕij

≡ (ϕ00 ∨ · · · ∨ ϕ0 m0−1 ∨ · · · ∨ ϕn−1 0 ∨ · · · ∨ ϕn−1 mn−1−1)∧
0≤i≤n−1

∧
0≤j≤mi−1

ϕij

≡ (ϕ00 ∧ · · · ∧ ϕ0 m0−1 ∧ · · · ∧ ϕn−1 0 ∧ · · · ∧ ϕn−1 mn−1−1).

272 Logical Foundations of Computer Science — Volume 1

For m ∈ N, let Sm = {0, . . . ,m− 1}. This notation can be extended
to a finite sequence m = (m0, . . . ,mn−1) ∈ Seqn(N), by defining
Sm = Sm0 × · · · × Smn−1 . If s, t ∈ Sm, we write s ≤ t if s = t or
there is a number k, 0 ≤ k ≤ n − 1 such that for 0 ≤ i ≤ k − 1 we
have s(i) = t(i) and s(k) < t(k). This relation is a total order known
as the lexicographic order on Sm. We can list the elements of Sm in
this order as (s0, . . . , sM−1), where M = m0 · · · · ·mn−1.

(23) Let m0, . . . ,mn−1 be n positive natural numbers for some n ≥
1, m = (m0, . . . ,mn−1), and M = m0 · · · · · mn−1. We use
here the notations introduced above. For 0 ≤ i ≤ n − 1, let
ϕi 0, . . . , ϕi mi−1 be mi formulas. Prove that

n−1∨
i=0

mi−1∧
j=0

ϕij ≡
M−1∧
k=0

n−1∨
i=0

ϕi sk(i),

n−1∧
i=0

mi−1∨
j=0

ϕij ≡
M−1∨
k=0

n−1∧
i=0

ϕi sk(i).

Solution. We prove the first logical equivalence. Let v ∈ TA

be such that v
(∨n−1

i=0

∧mi−1
j=0 ϕij

)
= T. Then, there exists

i0 such that v
(∧mi0−1

j=0 ϕi0j

)
= T, which implies v(ϕi00) =

· · · = v(ϕi0 mi0−1) = T. For k with 0 ≤ k ≤ M − 1,

v(ϕi0 sk(i0)) = T, so v
(∨n−1

i=0 ϕi sk(i)

)
= T, which implies

that v
(∧M−1

k=0

∨n−1
i=0 ϕi sk(i)

)
= T. On the other hand, if

v
(∨n−1

i=0

∧mi−1
j=0 ϕij

)
= F, then for every i, 0 ≤ i ≤ n − 1,

we have v
(∧mi−1

j=0 ϕij

)
= F, which implies the existence of

ji such that 0 ≤ ji ≤ mi − 1 and v(ϕi ji) = F. Consider the

sequence sk = (j0, . . . , jn−1). We have v
(∨n−1

i=0 ϕi sk(i)

)
= F,

so

v

(
M−1∧
k=0

n−1∨
i=0

ϕi sk(i)

)
= F.

(24) Prove that if Γ,Γ′ are sets of formulas such that Γ ⊆ Γ′ and
ϕ,ψ are formulas such that (ϕ→ ψ) is a tautology, then Γ |= ϕ
implies Γ′ |= ψ.

Propositional Logic–Syntax and Semantics 273

(25) Let ϕ be a formula of propositional logic. Prove that the fol-
lowing statements are equivalent:

(a) ϕ is a tautology,
(b) (ϕ ∨ ψ) ≡ ϕ for every formula ψ,
(c) (ϕ ∧ ψ) ≡ ψ for every formula ψ.

Also, prove that the following statements are equivalent:

(a) ϕ is a contradiction,
(b) (ϕ ∨ ψ) ≡ ψ for every formula ψ,
(c) (ϕ ∧ ψ) ≡ ϕ for every formula ψ.

(26) Let ϕ,ψ be two formulas. Prove that the formula (ϕ → ψ) is
logically equivalent to the formula ((¬ϕ)∨ψ). Also, prove that
(ϕ↔ ψ) ≡ ((ϕ→ ψ) ∧ (ψ → ϕ)).

(27) Let Γ = {ϕ0, . . . , ϕn−1} be a set of n formulas. If Γ |= ψ, show
that for every bijection f : {0, . . . , n − 1} −→ {0, . . . , n − 1}
the formula (ϕf(0) → (ϕf(1) → (· · · (ϕf(n−1) → ψ) · · ·))) is a
tautology.

(28) Let ϕ and ψ be formulas:

(a) Show that if either ϕ is a contradiction or ψ is a tautology,
then (ϕ→ ψ) is a tautology.

(b) Show that if SV (ϕ)∩SV (ψ) = ∅ and (ϕ→ ψ) is a tautol-
ogy, then either ϕ is a contradiction or ψ is a tautology.

(c) Show that the previous part can fail if SV (ϕ)∩SV (ψ) �= ∅.
(29) (a) Prove that for any formulas ϕ0, ϕ1, ϕ2 we have

((ϕ0 ↔ ϕ1)↔ ϕ2) ≡ (ϕ0 ↔ (ϕ1 ↔ ϕ2))

and that

(ϕ0 ↔ ϕ1) ≡ (ϕ1 ↔ ϕ0).

(b) Prove that if (ϕ ↔ ψ) is a tautology and SV (ϕ) ∩
SV (ψ) = ∅, then either both ϕ and ψ are tautologies or
both are contradictions.

(c) Show that the previous part can fail if SV (ϕ)∩SV (ψ) �= ∅.
(d) Let BIC : Seq+(PLFORM) −→ PLFORM be defined by

BIC(ϕ0) = ϕ0,

BIC(ϕ0, . . . , ϕn) = (BIC(ϕ0, . . . , ϕn−1)↔ ϕn),

for n > 0.

274 Logical Foundations of Computer Science — Volume 1

The formula BIC(ϕ0, . . . , ϕn−1) will be denoted by (ϕ0 ↔
· · · ↔ ϕn−1).
Show that for every truth assignment v, we have v(ϕ0 ↔
· · · ↔ ϕn−1) = T if and only if |{i | 0 ≤ i ≤ n −
1 and v(ϕi) = T}| has the same parity as n.

(e) Prove that for all n ≥ 1 and all formulas ϕ0, . . . , ϕn−1, ψ,
we have

(ϕ0 ↔ · · · ↔ ϕn−1)↔ ψ ≡ (ϕ0 ↔ · · · ↔ (ϕn−1 ↔ ψ)).

(f) Let ϕ be a formula whose only connective symbol is ↔
and let p be a statement variable such that p occurs in
ϕ and ϕ �= p. Prove that there is a formula ϕ′ such that
ϕ ≡ (ϕ′ ↔ p), the only connective symbol in ϕ′ is ↔, and
for all variables q, |(ϕ′ ↔ p)|q = |ϕ|q.
Hint. The Replacement Theorem of Section 2.6 is useful
in the argument.

(g) Let ϕ be a formula whose single connective symbol is ↔.
If SV (ϕ) = {pi0 , . . . , pin−1}, show that ϕ ≡ ψ, where ψ =
(ϕ0 ↔ · · · ↔ ϕn−1), ϕj = (pij ↔ · · · ↔ pij), and |ϕj |pij =
|ϕ|pij .

(h) Prove that a formula whose only connective symbol is ↔
is a tautology if and only if every variable occurs an even
number of times.

(30) Prove that for every set of formulas Γ, if Γ is unsatisfiable,
then Γ |= ϕ for every ϕ ∈ PLFORM. Also, show that if Γ |= ϕ
and ϕ is a contradiction, then Γ is unsatisfiable.

(31) A formula ϕ depends on a variable p if there are truth assign-
ments v0, v1 such that v0(q) = v1(q) for all q �= p and
v0(ϕ) �= v1(ϕ).
Prove that if ϕ depends on p and ϕ ≡ ψ, then p ∈ SV (ψ).
Hint. Use the Agreement Theorem.

(32) Let ϕ be a formula and let V0(ϕ), V1(ϕ) be the subsets of the
set TA of truth assignments defined by

V0(ϕ) = {v ∈ TA|v(ϕ) = F},
V1(ϕ) = {v ∈ TA|v(ϕ) = T}.

(a) Show that ϕ |= ψ if and only if V1(ϕ) ⊆ V1(ψ) and that
the following three conditions are equivalent:

Propositional Logic–Syntax and Semantics 275

(i) ϕ ≡ ψ,
(ii) V1(ϕ) = V1(ψ),
(iii) V0(ϕ) = V0(ψ).

(b) Prove that for any formulas ϕ,ψ ∈ PLFORM we have

V1(ϕ) = TA− V0(ϕ),
V1((¬ϕ)) = V0(ϕ),

V1((ϕ ∨ ψ)) = V1(ϕ) ∪ V1(ψ),
V1((ϕ ∧ ψ)) = V1(ϕ) ∩ V1(ψ),
V1((ϕ→ ψ)) = V0(ϕ) ∪ V1(ψ),
V1((ϕ↔ ψ)) = (V1(ϕ) ∩ V1(ψ)) ∪ (V0(ϕ) ∩ V0(ψ)).

(c) Give another proof of Theorem 2.3.14 using Parts (a)
and (b).

(33) Let Γ be a set of formulas. Prove that Γ is unsatisfiable if and
only if TA =

⋃
{V1((¬ϕ))|ϕ ∈ Γ}.

Solution. Suppose that TA =
⋃
{V1((¬ϕ))|ϕ ∈ Γ}. For every

v ∈ TA, there is a formula ϕ ∈ Γ such that v((¬ϕ)) = T, or,
equivalently, v(ϕ) = F. This proves that Γ is not satisfiable.
Conversely, if Γ is not satisfiable, for every truth assignment
v, there is a formula ϕ in Γ such that v(ϕ) = F, or v((¬ϕ)) =
T which means that v ∈ V1((¬ϕ)). This shows that TA =⋃
{V1((¬ϕ))|ϕ ∈ Γ}.

(34) Let Δn = {Tγ0, . . . ,Tγn,Fp2n−1,Fp2n}, where the formulas
γi were introduced in Exercise 12 and n ≥ 1. Prove that for
every n ≥ 1, Δn is an unsatisfiable set of signed formulas.
Solution. Suppose that v were a truth assignment that sat-
isfies Δn. We prove by strong induction on i with 0 ≤ i ≤ n
that v(θi) = T, where θ0 = p0 and θi = (p2i−1∨p2i) (see Exer-
cise 11). The basis step, i = 0, is obvious because γ0 = p0.
Suppose that 0 ≤ i < n and v(θj) = T for 0 ≤ j ≤ i.

Since ϕi+1 =
∧i
j=0 θj , we have v(ϕi+1) = T. We also have

v(γi+1) = v(((ϕi+1 → p2i+1) ∨ (ϕi+1 → p2i+2))) = T and
this implies v((p2i+1 ∨ p2i+2)) = v(θi+1) = T, completing the
induction. In particular, v((p2n−1∨p2n)) = T and this conflicts
with v(Fp2n−1) = v(Fp2n) = T.

276 Logical Foundations of Computer Science — Volume 1

The Compactness Theorem

(35) Show that finite satisfiability is a property of finite character.
(36) Let Γ be a finitely satisfiable set of formulas and let ϕ be a

formula. Prove that at least one of Γ ∪ {ϕ} and Γ ∪ {(¬ϕ)} is
finitely satisfiable.
Solution. Suppose that neither Γ ∪ {ϕ} nor Γ ∪ {(¬ϕ)} is
finitely satisfiable. Then, there are two finite subsets Γ′ and
Γ′′ of Γ such that Γ′ ∪ {ϕ} and Γ′′ ∪ {(¬ϕ)} are unsatisfiable.
We claim that Γ′∪Γ′′ is unsatisfiable. Indeed, if v were a truth
assignment that satisfies Γ′ ∪ Γ′′, then v would satisfy one of
the sets Γ′ ∪ {ϕ} or Γ′′ ∪ {(¬ϕ)}, which is impossible. This
contradicts the finite satisfiability of Γ.

(37) Prove that if Γ is a maximal finitely satisfiable set, then, for
every formula ϕ, (¬ϕ) ∈ Γ if and only if ϕ �∈ Γ.

(38) Let Γ be a set of formulas such that every truth assignment sat-
isfies at least one formula in Γ. Prove that there is a disjunction
of formulas of Γ that is a tautology.
Hint. Consider the set {(¬ϕ) | ϕ ∈ Γ} and apply the
Compactness Theorem.

(39) Let (M,μ) be a partially ordered set (see Chapter 3 of [13] for
definitions of terms used here).

(a) Prove that if M is finite, then there is a total order μ′ on
M such that μ ⊆ μ′.

(b) Using the Compactness Theorem and Part (a) prove that
if M is countable, then there is a total order μ′ on M such
that μ ⊆ μ′.

Solution. The argument for Part (a) is by induction on
n = |M |. The basis step, n = 1, is trivial. Suppose that the
statement holds for n and that |M | = n + 1. Since (M,μ)
is a finite poset, there is a minimal element z ∈ M . Let
P = M − {z} and π = μ ∩ (P × P). Then, (P, π) is a poset
and |P | = n, so, by inductive hypothesis, there is a total order
π′ on P such that π ⊆ π′. Let μ′ = π′ ∪ {(z, x) | x ∈ M}.
(This argument is essentially the proof of the existence of a
topological sort of a directed acyclic graph from Chapter 2
of [13].)
For the second part, let M be countable. Since M × M is
countable, we can choose for every pair (a, b) ∈ M × M a

Propositional Logic–Syntax and Semantics 277

distinct variable pab. Let Γ be the union of the following sets
of formulas:

(I) {pab | (a, b) ∈ μ},
(II) {(pab ∨ pba) | a, b ∈M},
(III) {((pab ∧ pbc)→ pac) | a, b, c ∈M},
(IV) {(¬(pab ∧ pba)) | a, b ∈M and a �= b}.
We show that Γ is finitely satisfiable. Let Γ0 be a finite subset
of Γ and let V0 = SV (Γ0) be the set of variables that occur in
Γ0. Denote by M0 the finite set of elements of M that occur
in subscripts of variables in V0 and by μ0 the partial order
μ ∩ (M0 ×M0). By Part (a), there is a total order μ′0 on M0

such that μ0 ⊆ μ′0. Define a truth assignment v by v(p) = T if
and only if p = pab, where (a, b) ∈ μ′0. Let ϕ be a formula in Γ0.
If ϕ belongs to the first group, then ϕ = pab, where (a, b) ∈ μ
and a, b ∈M0. Thus, (a, b) ∈ μ0 ⊆ μ′0, so v(pab) = T. Let now
ϕ be in the second group, say ϕ = (pab∨pba), where a, b ∈M0.
Since μ′0 is a total order on M0, we have either (a, b) ∈ μ′0 or
(b, a) ∈ μ′0, so either v(pab) = T or v(pba) = T, which implies
v(ϕ) = T. We leave to the reader to prove that v(ϕ) = T
when ϕ belongs to the last two groups of formulas.
By the Compactness Theorem, Γ is satisfiable, so there is
a truth assignment w that satisfies Γ. Define μ′ = {(a, b) |
w(pab) = T}. It is easy to see that μ′ is a total order such that
μ ⊆ μ′.

(40) This exercise gives another proof of the Compactness
Theorem.
Let Γ be a finitely satisfiable set of formulas. Construct a
sequence of sets Γ = Γ0,Γ1, . . . as follows:

Γn+1 =

{
Γn ∪ {pn} if Γn ∪ {pn} is finitely satisfiable

Γn ∪ {(¬pn)} otherwise.

(a) Prove that each Γn is finitely satisfiable.
(b) Define a truth assignment v by

v(p) =

{
T if p ∈

⋃
n ∈ N Γn

F otherwise.

Prove that v satisfies Γ.

278 Logical Foundations of Computer Science — Volume 1

Hint. To prove Part (b), let q0, . . . , qm−1 be the variables that
occur in a formula ϕ ∈ Γ. Let �i be qi if qi ∈

⋃
n ∈ N Γn and be

(¬qi) otherwise, for 0 ≤ i ≤ m− 1. Note that there is a truth
assignment w that satisfies the set {ϕ, �0, . . . , �m−1} because
this set is included in some set Γk. Compare w and v.

(41) The proof given in the text for the Compactness Theorem is
similar to the proof of König’s lemma we gave. In this exercise,
we show how the connection can be made more explicit.
If q ∈ Seq({0, 1}), we define the partial truth assignment vq by

vq(pi) =

{
T if qi = 1

F otherwise,

for 0 ≤ i ≤ |q| − 1.
Let Γ be a finitely satisfiable set of formulas and let Γn be as
defined in the proof of the Compactness Theorem. Define the
set D = {q ∈ Seq({0, 1}) | vq satisfies Γ|q|}.
(a) Show that D is an infinite tree semi-domain.
(b) By applying König’s lemma for tree semi-domains (see

Exercise 92 of Chapter 1) to D, conclude that D has an
infinite branch. Show that this infinite branch defines a
truth assignment that satisfies Γ.

Let V = {vi | i ∈ I} be a set of truth assignments indexed by some
set I. If F is a filter on the set I, F ∈ FIL(I) (see page 67), then let
vV,F be the truth assignment given by

vV,F(p) = T if and only if {i ∈ I | vi(p) = T} ∈ F .
The truth assignment vV,F is called the reduced product of the indexed
set V relative to the filter F . If U is an ultrafilter, then we refer to
the truth assignment vV,U as an ultraproduct of the indexed set V of
truth assignments relative to the ultrafilter U .
(42) Let V = {vi | i ∈ I} be a set of truth assignments indexed

by some set I and let U be an ultrafilter on I. Prove that for
every formula ϕ

vV,U(ϕ) = T if and only if {i ∈ I | vi(ϕ) = T} ∈ U .
Solution. The argument is by induction on formulas.
The basis step, when ϕ is a statement variable, is immediate.
There are several inductive steps. Suppose that the equality

Propositional Logic–Syntax and Semantics 279

holds for the formulas α, β. If ϕ = (α ∧ β), then the following
statements are equivalent:

• vV,U (ϕ) = T.
• vV,U (α) = T and vV,U (β) = T.
• {i ∈ I | vi(α) = T} ∈ U and {i ∈ I | vi(β) = T} ∈ U .
• {i ∈ I | vi(α) = T and vi(β) = T} ∈ U .
• {i ∈ I | vi(ϕ) = T} ∈ U .
The equivalence of the third and fourth statements follows
from Exercise 26 of Chapter 1.
Assume now that ϕ = (¬α). The following statements are
equivalent:

• vV,U (ϕ) = T.
• vV,U (α) = F.
• {i ∈ I | vi(α) = T} �∈ U .
• {i ∈ I | vi(α) = F} ∈ U .
• {i ∈ I | vi((¬α)) = T} ∈ U .
• {i ∈ I | vi(ϕ) = T} ∈ U .
The equivalence of the third and fourth statements follows
from Exercise 33 of Chapter 1.
If ϕ = (α → β), then we have the following equivalent state-
ments:

• vV,U (ϕ) = T.
• vV,U (α) = F or vV,U(β) = T.
• {i ∈ I | vi(α) = T} �∈ U or {i ∈ I | vi(β) = T} ∈ U .
• {i ∈ I | vi(α) = F} ∈ U or {i ∈ I | vi(β) = T} ∈ U .
• {i ∈ I | vi(α) = F or vi(β) = T} ∈ U .
• {i ∈ I | vi((α→ β)) = T} ∈ U .
• {i ∈ I | vi(ϕ) = T} ∈ U .
The equivalence of the third and fourth statements follows
from Exercise 33 of Chapter 1, while the equivalence of the
fourth and fifth statements follows from Part (a) of Exercise 34
of the same chapter.
We leave to the reader the case when ϕ = (α ∨ β) and ϕ =
(α↔ β).

Let Γ be a set of formulas that is finitely satisfiable. For Γ0 ∈
Pfin(Γ), where Pfin(Γ) is the set of all finite subsets of Γ, let vΓ0

280 Logical Foundations of Computer Science — Volume 1

be a truth assignment that satisfies Γ0. Using the notation of
Supplement 25 of Chapter 1, I(ϕ) is the collection of all finite sub-
sets of Γ that contain ϕ, where ϕ ∈ Γ; we define the collection
CΓ = {I(ϕ) | ϕ ∈ Γ}.
(43) Let Γ be a set of formulas that is finitely satisfiable.

(a) Prove, using Zorn’s lemma, that there exists an ultrafilter
UΓ on Pfin(Γ) including CΓ, that is, for every ϕ ∈ Γ, I(ϕ) ∈
UΓ. Show that for every ϕ ∈ Γ, {Γ0 ∈ Pfin(Γ) | vΓ0(ϕ) =
T} ∈ UΓ.

(b) Prove the following version of the Compactness Theorem:
the ultraproduct of the collection of truth assignments
{vΓ0 | Γ0 ∈ Pfin(Γ)} with respect to the ultrafilter UΓ
satisfies Γ.

Hint. For Part (a), use Supplement 25(b) and Exercises 31
and 37 of Chapter 1.

A subcollection B of a topology T is a base for T if every set L ∈ T
can be written as a union of some sets in B. The topology T is said
to be generated by the base B.
(44) (a) Prove that if B is a base for a topology T on a setM , then

T = {
⋃
C | C ⊆ B}. Conclude that a collection B ⊆ P(M)

can be a base for at most one topology on M .
(b) Prove that a collection of subsets B of M is a base for a

topology if and only if M =
⋃
B and, for every P,Q ∈ B

and x ∈ P ∩Q, there is R ∈ B such that x ∈ R ⊆ P ∩Q.
(c) Prove that the collection Bl = {V1(ϕ)|ϕ ∈ PLFORM} is

a base for a topology on the set TA of truth assignments.
Moreover, in this topology, for every ϕ ∈ PLFORM, V1(ϕ)
is both open and closed.

A topological space (M,T) is compact if every collection C ⊆ T such
that M =

⋃
C contains a finite subcollection D such that M =

⋃
D.

(45) (a) Let (M,T) be a topological space and let B be a base for
T . Prove that (M,T) is compact if and only if for every
collection E ⊆ B such that M =

⋃
E , E contains a finite

subcollection D such that M =
⋃
D.

(b) Let Tl be the topology on TA generated by the base Bl.
Prove that the Compactness Theorem is equivalent to the
assertion that (TA,Tl) is a compact topological space.

Propositional Logic–Syntax and Semantics 281

Normal Forms

(46) Prove that if μ is a conjunction of variables, then μ ≡ μS for
some finite, nonempty set of variables S. Prove a similar result
for disjunctions of negated variables.

(47) Let ϕ be a formula in disjunctive normal form that contains
no negative literals. Show how to obtain a formula ψ such that
ψ ≡ ϕ, SV (ψ) ⊆ SV (ϕ), and ψ =

∨
0≤i≤m−1 μSi , where for

i �= j, Si �⊆ Sj.
(48) Let S = {pi0 , . . . , pin−1} be a set of statement variables such

that n > 0 and i0 < · · · < in−1. Show that

|
⋃
{MINTRM(T) | ∅ �= T ⊆ S}| = 3n − 1.

(49) Prove that for every formula ϕ and b ∈ Bool, we have ϕf¬(b) ≡
(¬ϕb).

The set NNF of formulas in negation normal form is given by the
following inductive definition:

• For every p ∈ SV , both p and (¬p) are in NNF.
• If ϕ,ψ ∈ NNF, then (ϕ ∨ ψ) and (ϕ ∧ ψ) belong to NNF.

Observe that formulas in either disjunctive normal form or conjunc-
tive normal form are in negation normal form. Therefore, for every
formula ϕ ∈ PLFORM, there is a logically equivalent formula in
negation normal form.

(50) (a) Prove that if (ϕ∨ψ) or (ϕ∧ψ) belongs to NNF, then both
ϕ and ψ belong to NNF.

(b) Prove that if n > 0 and ϕi ∈ NNF for 0 ≤ i ≤ n− 1, then
both

∨n−1
i=0 ϕi and

∧n−1
i=0 ϕi belong to NNF.

(51) Define a mapping ∼: NNF −→ NNF such that ∼ (ϕ) ≡ (¬ϕ)
for every ϕ ∈ NNF.
Hint. Define ∼ by

∼ (p) = (¬p),
∼ ((¬p)) = p,

∼ ((ϕ ∨ ψ)) = (∼ (ϕ)∧ ∼ (ψ)),

∼ ((ϕ ∧ ψ)) = (∼ (ϕ)∨ ∼ (ψ)).

282 Logical Foundations of Computer Science — Volume 1

(52) Prove that ∼ (∼ (ϕ)) = ϕ for every ϕ ∈ NNF, where ∼ is as
in Exercise 51.

(53) Using the inductive definition of formulas discussed in Exer-
cise 9 and the function ∼ introduced in Exercise 51, give an
inductive definition of a function Φ : PLFORM −→ PLFORM
such that Φ(ϕ) is in negation normal form, and Φ(ϕ) ≡ ϕ for
every formula ϕ.
Hint. For instance, Φ((ϕ → ψ)) = (∼ (Φ(ϕ)) ∨ Φ(ψ)) and
Φ((¬(ϕ→ ψ))) = (Φ(ϕ)∧ ∼ (Φ(ψ))).

(54) Let ϕ be the formula

(((¬p0) ∧ p3) ∨ (p1 ∧ p2 ∧ p3) ∨ (p0 ∧ p3) ∨ (¬p1)).
(a) Apply the Quine–McCluskey algorithms to obtain the set

of prime implicants of ϕ and the collection of all its min-
imal covers.

(b) Use a Karnaugh map to compute the same sets.

(55) (a) Let ϕ be a formula with four variables. Using a Karnaugh
map, prove that if ϕ has more than eight minterms, then
there is a prime implicant of ϕ that is not a minterm of ϕ.

(b) Give a simple formula with four variables such that
the formula has eight minterms, all of which are prime
implicants.

Let K be a collection of nonempty subsets of a set U . A hitting set
for K is a subset H of U such that H ∩K �= ∅ for every K ∈ K. A
hitting set H for K is minimal if no proper subset of H is a hitting
set.

(56) Explain how Algorithm 2.5.42 can be viewed in a more general
context as an algorithm to find all the minimal hitting sets for
a collection of subsets of a finite set.

Let K be a collection of subsets of a set U . Denote by MIN(K) the
collection of all minimal elements of K.

For P ⊆ U , let K ∗ P = {K ∪ {p} | K ∈ K, p ∈ P}.
(57) Let K = {P0, . . . , Pn−1} be a collection of subsets of a set U .

Define the sequence of collections of sets K0, . . . ,Kn by

K0 = {∅},
Ki+1 = MIN(Ki ∗ Pi).

Prove that Kn consists of all minimal hitting sets for K.

Propositional Logic–Syntax and Semantics 283

(58) Use Exercise 57 to obtain a variant of Algorithm 2.5.42. Apply
this algorithm to the formula considered in Example 2.5.43 to
obtain all its minimal covers.

(59) Let ϕ be a formula such that SV (ϕ) = {p0, p1, p2} and for
every truth assignment v, v(ϕ) = T if and only if at least
two of v(p0), v(p1), v(p2) are T. Prove that there is no formula
logically equivalent to ϕ that is a Horn formula.

(60) Find the least n such that the number of formulas in disjunc-
tive normal form consisting of distinct minterms over some
subset of a set S of statement variables with |S| = n exceeds
one U.S. quadrillion (1015). (Here we identify two disjunctive
normal forms if they consist of the same minterms in different
orders.)

The problem of determining whether a formula in conjunctive normal
form is satisfiable is believed to be an algorithmically hard problem.
The next three items will show that this problem can be efficiently
reduced to other problems, thereby showing that these problems are
also probably algorithmically hard.

(61) Let ϕ be a nonempty disjunction of n distinct literals, ϕ =
(�0 ∨ · · · ∨ �n−1). Consider the functions v : N −→ N and
conj : N −→ N given by

v(n) =

{
3− n if n ≤ 3

n− 3 if n > 3
and conj(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4 if n = 1

2 if n = 2

1 if n = 3

n− 2 if n > 3.

Let q0, . . . , qv(n)−1 be v(n) variables that do not occur in
SV (ϕ). Define the formula ψ in conjunctive normal form
(whose conjuncts consist of three distinct literals each) as
follows:

• If n = 1, then

ψ = (�0 ∨ q0 ∨ q1) ∧ (�0 ∨ q0 ∨ q1)
∧(�0 ∨ q0 ∨ q1) ∧ (�0 ∨ q0 ∨ q1).

• If n = 2, then

ψ = (�0 ∨ �1 ∨ q0) ∧ (�0 ∨ �1 ∨ q0).
• If n = 3, ψ = ϕ.

284 Logical Foundations of Computer Science — Volume 1

• If n ≥ 4, define

ψ = (�0 ∨ �1 ∨ q0) ∧ (q0 ∨ �2 ∨ q1)
∧(q1 ∨ �3 ∨ q2) ∧ · · · ∧ (qn−4 ∨ �n−2 ∨ �n−1).

(A formula in conjunctive normal form whose conjuncts each
contain three literals is said to be in 3-cnf.) Prove that the
following conditions are satisfied by ψ:

(a) every truth assignment v ∈ TASV (ϕ) such that v(ϕ) = T
can be extended to a truth assignment v′ ∈ TASV (ψ) such

that v′(ψ) = T,
(b) for every truth assignment v′ such that v′(ψ) = T there

exists a literal � that occurs in ϕ such that v′(�) = T,
(c) the length of ψ is no greater than 19conj(n).

Solution. Observe that in all cases |SV (ψ)− SV (ϕ)| = v(n)
for n ≥ 1 and that ψ is a formula in conjunctive normal form
that consists of conj(n) conjuncts. Let v ∈ TASV (ϕ) be such
that v(ϕ) = T. If n ≤ 3, then for any extension v′ of v to
SV (ψ), we have v′(ψ) = T. Assume, therefore, that ϕ is a
disjunction of n ≥ 4 literals and let v be a truth assignment
such that v(ϕ) = T. Let j = min{i|0 ≤ i ≤ n− 1, v(�i) = T}.
If j ∈ {0, 1}, then we define v′(qi) = F for 0 ≤ i ≤ n − 4.
If j ∈ {n− 2, n− 1}, then let v′(qi) = T for 0 ≤ i ≤ n− 4. For
the remaining case, that is, when 2 ≤ j ≤ n− 3, define

v′(qi) =
{
T if 0 ≤ i ≤ j − 2

F if j − 1 ≤ i ≤ n− 4.

It is easy to see that v′(ψ) = T.
We leave to the reader to prove that for every v′ ∈ TASV (ψ)

such that v′(ψ) = T there exists a literal � in ϕ such that
v′(�) = T. Also, the evaluation of an upper bound on the
length of ψ is left to the reader.

(62) Let ϕ =
∧m
i=0 ϕi be a formula in conjunctive normal form,

where each conjunct ϕi contains ni disjuncts for 0 ≤ i ≤ m.
Prove that there exists a formula ψ in 3-cnf such that the
following conditions are satisfied:

(a) SV (ϕ) ⊆ SV (ψ) and SV (ψ)−SV (ϕ) contains
∑m

i=0 v(ni)
variables,

Propositional Logic–Syntax and Semantics 285

(b) ψ contains
∑m

i=0 conj(ni) conjuncts, and
(c) ψ is satisfiable if and only if ϕ is satisfiable.

Hint. Use Exercise 61.
(63) Let ϕ =

∧
0≤i≤n−1 αi be a formula in conjunctive normal form.

Assume that αi = (�i0 ∨ · · · ∨ �iki−1), where �i0, . . . , �iki−1 are
literals for 0 ≤ i ≤ n − 1. Consider the graph Gϕ whose
set of vertices consists of pairs of the form (αi, �ij). An edge
((αi, �ij), (αh, �hk)) exists in Gϕ if and only if i �= h and �ij �=
�hk. Prove that ϕ is satisfiable if and only if the graph Gϕ
contains a set of n vertices such that each pair of such vertices
is connected by an edge.10

Solution. Suppose that ϕ is satisfiable and let v be a truth
assignment such that v(ϕ) = T. Then, v(αi) = T for 0 ≤
i ≤ n − 1. Each conjunct αi must contain a literal �imi such
that v(�imi) = T for 0 ≤ i ≤ n − 1. We claim that W =
{(αi, �imi)|0 ≤ i ≤ n− 1} is the desired set of vertices. Indeed,
if (αi, �imi) and (αj, �jmj) would be two distinct vertices not
joined by an edge in Gϕ, then we would have i �= j and �imi =

�jmj . This, however, would lead to a contradiction because

v(�imi) = v(�jmj) = f¬(v(�jmj)) = f¬(T) = F.

Conversely, assume that Gϕ has a set W of n vertices such
that each pair of distinct vertices is joined by an edge. The set
of first components of these vertices must consist of n distinct
elements, so W = {(αi, �imi) | 0 ≤ i ≤ n − 1}. Note that a
variable that occurs in a positive literal �hmh of the set L =
{�imi | 0 ≤ i ≤ n− 1} may not occur in a negative literal �kmk
of the same set since, otherwise, the vertices (αh, �hmh) and
(αk, �kmk) would not be joined by an edge. This remark allows
us to define the truth assignment v ∈ TASV (ϕ) by

v(p) =

⎧⎪⎨
⎪⎩

T if p occurs in a positive literal of L

F if p occurs in a negative literal of L

arbitrary otherwise.

Clearly, v(ϕ) = T.

10The graph-theoretical term for such a set of vertices is clique.

286 Logical Foundations of Computer Science — Volume 1

(64) Craig’s11 Interpolation Lemma Let ϕ,ψ be two formulas
such that SV (ϕ)∩SV (ψ) �= ∅. Prove that the following asser-
tions are true:

(a) If (ϕ → ψ) is a tautology, then there exists a formula θ
such that SV (θ) ⊆ SV (ϕ)∩SV (ψ) and both (ϕ→ θ) and
(θ → ψ) are tautologies.

(b) If ϕ |= ψ, then there exists a formula θ such that SV (θ) ⊆
SV (ϕ) ∩ SV (ψ) and both ϕ |= θ and θ |= ψ.

(c) If (ϕ ∨ ψ) is a tautology, then there exists a formula θ
such that SV (θ) ⊆ SV (ϕ) ∩ SV (ψ) and both (ϕ ∨ θ) and
(ψ ∨ (¬θ)) are tautologies.

Solution. Consider the sets of variables V0 = SV (ϕ)∩SV (ψ)
and W0 = SV (ϕ) ∪ SV (ψ). Since (ϕ → ψ) is a tautology,
for every truth assignment w ∈ TAW0 , if w

′(ϕ) = T, then
w′′(ψ) = T, where w′ = w |̀SV (ϕ) and w′′ = w |̀SV (ψ). Define
the truth table τ : TAV0 −→ Bool by

τ(v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T if there exists an extension

w′ of v to SV (ϕ) such that

w′(ϕ) = T

F otherwise.

Let θ be a formula whose truth table is τ (for instance, θ
could be taken to be in disjunctive normal form) and let v an
arbitrary truth assignment. If v(ϕ) = T, then v(θ) = T due
to the definition of θ so v(ϕ → θ) = T, which proves that
(ϕ→ θ) is a tautology.
Consider now a truth assignment u such that u(θ) = T and
let u0 = u |̀V0. Since u0(θ) = T, there is an extension w′ of u0

11William Craig was born in 1918 in Nuremberg, Germany, and emigrated to
the United States in 1937. He studied at Cornell, the University of California
at Berkeley, Harvard, the Swiss Federal Institute of Technology, and Princeton
and got his Ph.D. from Harvard in 1951. Craig taught at Pennsylvania State
University and the University of California at Berkeley where he was a professor
of philosophy. Craig’s interests were in both the mathematical and philosophical
aspects of logic. He served as the president of the Association for Symbolic Logic.
Craig died on January 13, 2016.

Propositional Logic–Syntax and Semantics 287

to SV (ϕ) such that w′(ϕ) = T. Observe that u |̀V0 = w′ |̀V0.
Define w′′ :W0 −→ Bool by

w′′(p) =
{
w′(p) if p ∈ SV (ϕ)

u(p) if p ∈ SV (ψ)− SV (ϕ).

Since w′′ coincides with w′ on SV (ϕ), we have w′′(ϕ) = T, so
w′′(ψ) = T. Note that w′′ coincides with u on SV (ψ) because,
if p ∈ V0 = SV (ϕ) ∩ SV (ψ), then w′′(p) = w′(p) = u(p). This
implies u(ψ) = T, so (θ → ψ) is a tautology.
The second and the third parts are immediate consequences
of the first.

Substitutions and Formulas

(65) Prove that s(ϕ) a tautology does not necessarily imply ϕ a
tautology, where s is a substitution and ϕ is a formula.

(66) Prove that if ϕ is a contradiction and s is a substitution, then
s(ϕ) is a contradiction.

(67) Let ϕ be a formula in conjunctive normal form such that ϕ
contains no negative literals. Prove that there is a formula ψ
in disjunctive normal form such that ψ ≡ ϕ, SV (ψ) = SV (ϕ),
and ψ contains no negative literals.
Solution. The argument is by induction on n, the number of
conjuncts of ϕ. The basis step, n = 1, is immediate. Suppose
that the statement holds for n and let ϕ = α∧(pi0∨· · ·∨pim−1),
where α is a formula in conjunctive normal form that contains
n conjuncts and no negative literals. By inductive hypothesis,
there is a formula β in disjunctive normal form, β = (μ0 ∨
· · · ∨ μl−1) such that β ≡ α, SV (β) = SV (α), and each μi is
a conjunction of statement variables. By Theorem 2.6.12, we
have ϕ ≡ (μ0∨· · ·∨μl−1)∧(pi0∨· · ·∨pim−1). An easy semantic
argument shows that ϕ is equivalent to the formula

(μ0 ∧ pi0) ∨ · · · ∨ (μ0 ∧ pim−1) ∨ · · · ∨ (μl−1 ∧ pim−1)

which has the desired form.
Note that this argument contains an algorithm for obtaining
ψ from ϕ.

(68) Let ϕ be a formula and s be a substitution. Suppose
that the list of all occurrences of variables in ϕ is

288 Logical Foundations of Computer Science — Volume 1

(pj0 , i0), . . . , (pjn−1 , in−1), where i0 > · · · > in−1. Prove that
there is a sequence of formulas ϕ0, . . . , ϕn such that the fol-
lowing conditions are satisfied:

(a) ϕ0 = ϕ,
(b) ϕl+1 = replace (ϕl, (pjl , il), s(pjl)), for 0 ≤ l ≤ n − 1,

where (pjl , il) is an occurrence in ϕl,
(c) ϕn = s(ϕ).

(69) Let ϕ ∈ PLFORM and let p, q be two statement variables.
Define the substitutions s1pq, s

0
pq by

s1pq(r) =

{
r if r �= p

(q ∨ (¬q)) if r = p

and

s0pq(r) =

{
r if r �= p

(q ∧ (¬q)) if r = p,

respectively. Prove that ϕ is a tautology if and only if (s1pq(ϕ)∧
s0pq(ϕ)) is a tautology.

(70) Let (α, i) be an occurrence of a formula α in a formula ϕ.
Prove that

SV (β) ∪ (SV (ϕ)− SV (α))

⊆ SV (replace (ϕ, (α, i), β) ⊆ SV (ϕ) ∪ SV (β)

for every formula β.

Let ϕ,ψ be two formulas such that ϕ = q0ψq1 · · ·ψqn, where ψ does
not occur in any sequence qi for 0 ≤ i ≤ n. By Exercise 4, this
representation is unique and there are n occurrences of ψ in ϕ. For
a formula θ, define R(ϕ,ψ, θ) = q0θq1 · · · θqn.
(71) Prove that the function R introduced above can be defined

recursively by

R(ϕ,ψ, θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ if ϕ = ψ

ϕ if ϕ = p �= ψ, where p ∈ SV

(¬R(α,ψ, θ)) if ϕ = (¬α) and ϕ �= ψ

(R(α, ψ, θ)CR(β, ψ, θ)) if ϕ = (αCβ) and ϕ �= ψ,

where ϕ,ψ, θ ∈ PLFORM. Further, prove that R(ϕ,ψ, θ) is a
formula.

Propositional Logic–Syntax and Semantics 289

Truth Sets and Hintikka Sets

(72) (a) Prove that ϕ is a tautology if and only if it belongs to
every truth set.

(b) Prove that Γ |= ϕ if and only if ϕ is a member of every
truth set which contains Γ.

(c) Reformulate the remaining parts of Definition 2.3.7 using
the notion of truth set.

(73) Prove that every satisfiable set is contained in a maximally
satisfiable set.

(74) Let Γ0 ⊆ Γ1 ⊆ · · · be an ascending chain of Hintikka sets.
Prove that

⋃
{Γi | i ≥ 0} is a Hintikka set.

(75) Give a semantic proof of Theorem 2.7.15.
Solution. Let Γ be a truth set. By Theorem 2.7.9, Γ = Γw
for some truth valuation w. It is also clear, by the definition
of truth set, that exactly one of p and (¬p) belongs to Γ, for
every statement variable p. Let ϕ ∈ Γ be a formula that is not
a literal. Then, since w(ϕ) = T, by Theorem 2.7.2, w satisfies
some constituent K of ϕ, so K ⊆ Γw = Γ.

(76) Let Γ be a Hintikka set that contains both formulas ϕ and
(ϕ→ ψ). Prove that ψ ∈ Γ.

(77) Let C be a consistency property. Prove that C′, the smallest
property of finite character of the subsets of PLFORM that
contains C, is a consistency property (see Exercise 17 of Chap-
ter 1).
Solution. We claim that no set Γ′ ∈ C′ contains both a state-
ment variable and its negation. Indeed, if Γ′ were to contain
both a statement variable p and (¬p), then {p, (¬p)}, as a
finite subset of Γ′, would be included in a set Γ of C, by the
characterization of C′ given in Exercise 17 of Chapter 1. This
contradicts the assumption that C is a consistency property.
Let ϕ be a formula that is not a literal such that ϕ ∈ Γ′ ∈ C′.
We must show that there is a constituent K of ϕ such that
Γ′ ∪K ∈ C′.
Let ϕ0, ϕ1, . . . be the standard enumeration of PLFORM and
consider the increasing sequence Γ′

0,Γ
′
1, . . . of finite subsets of

Γ′ defined by Γ′
n = ({ϕ0, . . . , ϕn−1} ∩ Γ′) ∪ {ϕ}, for n ∈ N.

Again, by Exercise 17 of Chapter 1, for each n, there is a set
Γn ∈ C such that Γ′

n ⊆ Γn. Since ϕ ∈ Γ′
n ⊆ Γn, there is a

constituent Kn of ϕ such that Γn ∪Kn ∈ C. Since ϕ has only

290 Logical Foundations of Computer Science — Volume 1

finitely many constituents, there is a constituent K of ϕ such
that Kn = K for infinitely many n. We claim that Γ′∪K ∈ C′.
Any finite subset of Γ′ ∪ K can be written as Γ̂ ∪ K̂, where
Γ̂ is a finite subset of Γ′ and K̂ is a finite subset of K. For
all n large enough, Γ̂ ⊆ Γ′

n because Γ′
0,Γ

′
1, . . . is an increasing

sequence of sets whose union is Γ′. Since for infinitely many n
we have K̂ ⊆ K = Kn, it follows that there is an n such that
Γ̂ ∪ K̂ ⊆ Γ′

n ∪Kn ⊆ Γn ∪Kn ∈ C, which implies Γ′ ∪K ∈ C′,
by Exercise 17 of Chapter 1.

(78) Let C be a consistency property. Prove that every maximal
element of C is a Hintikka set.

(79) Use Supplement 77 and Exercise 78 to provide an alternative
proof of the fact that every member of a consistency property
is contained in a Hintikka set and therefore is satisfiable.
Hint. Use Theorem 1.3.3.

(80) Let � : PLFORM −→ PLFORM be a unary operation
on formulas. We denote �(ϕ) by ϕ�. Extend � to signed
formulas by (bϕ)� = bϕ� and further extend the applica-
tion of � to sequences of sets of signed formulas in the
natural way:

(a) Prove that if (¬ϕ)� = (¬ϕ�) for a formula ϕ, then for
b ∈ Bool, d((b(¬ϕ))�) = (d(b(¬ϕ)))�.

(b) Prove that if (ϕCψ)� = (ϕ�Cψ�), for the formulas ϕ,ψ and
the binary connective symbol C, then

d((b(ϕCψ))�) = (d(b(ϕCψ)))�.

(81) Let s be a propositional substitution and let ϕ be a formula:

(a) Prove that if ϕ is not a literal, then d(s(ϕ)) = s(d(ϕ)).
(b) Prove that if ϕ is not a statement variable and b ∈ Bool,

then d(s(bϕ)) = s(d(bϕ)).

Hint. One can prove this directly; the second part can also
be shown by using Exercise 80.

(82) Let C be a connective symbol and let α, β be two formulas.
If K is a constituent of the formula ϕ = (αCβ) and H is
a constituent of the formula ψ = (¬(αCβ)), prove that there
exists an immediate subformula γ of ϕ such that the set K∪H
contains both γ and (¬γ).

Propositional Logic–Syntax and Semantics 291

Solution. The four possible cases are summarized by the fol-
lowing table:

C constituent K of constituent H of
(αCβ) (¬(αCβ))

∧ {α, β} {(¬α)} or {(¬β)}
∨ {α} or {β} {(¬α), (¬β)}
→ {(¬α)} or {β} {α, (¬β)}
↔ {α, β} or {(¬α), (¬β)} {α, (¬β)} or {(¬α), β}

Note that in every case, K ∪ H contains a formula γ and its
negation (¬γ). For instance, if C = ∧, then for H = {(¬α)},
γ = α; for H = {(¬β)}, we have γ = β. We leave to the reader
the easy verification of the remaining cases.

(83) Let ϕ be (αCβ) or (¬(αCβ)) for some formulas α, β and some
connective symbol C. Suppose that d(ϕ) = (K0, . . . ,Kn−1)
and that Γ = {ψi | 0 ≤ i ≤ n − 1} is a set of formulas such
that ψi ∈ Ki for 0 ≤ i ≤ n−1 and Γ does not contain any pair
of formulas γ, (¬γ). Prove that there exist formulas θi ≡ (¬ψi)
for 0 ≤ i ≤ n−1 such that {θi | 0 ≤ i ≤ n−1} is a constituent
of ϕ.
Hint. An argument can be made by considering the eight
cases that result from the four possible choices for C.

(84) (a) Let

Γ =

⎧⎪⎨
⎪⎩(¬(¬(· · · (¬︸ ︷︷ ︸

2k

ψ) · · ·))) | ψ is a positive formula and k ∈ N

⎫⎪⎬
⎪⎭ .

Show that for all formulas ϕ, ϕ ∈ Γ if and only if (¬ϕ) �∈ Γ
and that Γ is p-upward closed but that Γ is not a truth set.
(Hence, in Theorem 2.7.7, “Γ is p-upward closed” cannot
be added to the list of equivalent conditions.)

(b) Show by a similar example that “Γ is np-upward closed”
cannot be added to the list of equivalent conditions in
Theorem 2.7.7.

(85) Show that by replacing the first condition in the definition of
truth set (Definition 2.7.6) by

1′. for every literal �, � ∈ Γ if and only if � �∈ Γ,

292 Logical Foundations of Computer Science — Volume 1

and the second condition by

2′. Γ is both upward and downward closed,

one obtains an equivalent definition of truth set.
Solution. Suppose that Γ satisfies both 1′ and 2′. We begin by
proving (by induction on formulas) that for no formula ϕ can
we have {ϕ, (¬ϕ)} ⊆ Γ. The basis step, when ϕ = p, follows
immediately from condition (1′). For the first inductive step,
suppose that the statement holds for ψ and that ϕ = (¬ψ).
If {ϕ, (¬ϕ)} ⊆ Γ, that is, {(¬ψ), (¬(¬ψ))} ⊆ Γ, then, by
the downward closure of Γ, we would have {(¬ψ), ψ} ⊆ Γ,
which would contradict the inductive hypothesis. For the sec-
ond inductive step, suppose that the statement holds for α
and β and let ϕ = (αCβ), where C is a binary connective
symbol. If {ϕ, (¬ϕ)} ⊆ Γ, then, by the downward closure of Γ,
there would be constituents K and H of ϕ and (¬ϕ), respec-
tively, with K ∪H ⊆ Γ. Then, by Supplement 82, there would
be a formula γ ∈ {α, β} such that {γ, (¬γ)} ⊆ K ∪ H ⊆ Γ,
contradicting the inductive hypothesis.
We show now, again by induction on formulas, that for every
formula ϕ at least one of ϕ, (¬ϕ) belongs to Γ. The basis step
(ϕ = p) follows immediately from condition (1′). For the first
inductive step, suppose that the statement holds for ψ, that is,
at least one of the formulas ψ, (¬ψ) is in Γ, and let ϕ = (¬ψ).
By the upward closure of Γ, ψ ∈ Γ implies (¬(¬ψ)) ∈ Γ,
so at least one of ϕ, (¬ϕ) is in Γ. For the second inductive
step, suppose that the statement holds for α and β and let
ϕ = (αCβ), where C is a binary connective symbol. We dis-
cuss the case when C =↔ and leave the remaining cases
to the reader. If (α ↔ β) ∈ Γ, we are done. Suppose that
(α ↔ β) �∈ Γ. Then, by upward closure of Γ, {α, β} �⊆ Γ and
{(¬α), (¬β)} �⊆ Γ. Suppose α �∈ Γ. (The argument for β �∈ Γ
is similar.) Then, (¬α) ∈ Γ, by the inductive hypothesis and
this implies (¬β) �∈ Γ because {(¬α), (¬β)} �⊆ Γ. Therefore,
β ∈ Γ, again by inductive hypothesis, so {(¬α), β} ⊆ Γ. Since
{(¬α), β} is a constituent of (¬(α ↔ β)), by upward closure
of Γ, (¬ϕ) ∈ Γ. Thus, Γ is a truth set.
Conversely, every truth set obviously satisfies 1′ and satisfies
condition 2′ by Theorem 2.7.7.

Propositional Logic–Syntax and Semantics 293

(86) Show, with examples, that a set of formulas Γ such that � ∈ Γ
if and only if � �∈ Γ for all literals �, can satisfy any five of the
following six conditions and fail to be a truth set:

• Γ is p-upward closed.
• Γ is np-upward closed.
• Γ is nn-upward closed.
• Γ is p-downward closed.
• Γ is np-downward closed.
• Γ is nn-downward closed.

Hint. Let Γ be the set of formulas defined by

• p ∈ Γ for all p ∈ SV .
• If ϕ = (αCβ) or ϕ = (¬(αCβ)) for some connective symbol
C and formulas α, β and some constituent of ϕ is included
in Γ, then ϕ ∈ Γ.

It is easy to see that (¬p) �∈ Γ for all p ∈ SV ; also, Γ satisfies
all the conditions except the third but does not satisfy the
third condition (since, for example, p ∈ Γ but (¬(¬p)) �∈ Γ).
Similar examples can be given to show that either of the first
two conditions can be omitted.
Now let Γ be the set of formulas defined by the following:

• Every positive formula is in Γ.
• If a constituent of a formula is included in Γ, then the for-

mula is in Γ.

Then Γ is clearly upward closed and is np- and nn-downward
closed. Note that Γ is not p-downward closed since, for exam-
ple, the positive formula ((¬p)∨ (¬q)) ∈ Γ, while neither con-
stituent {(¬p)}, {(¬q)} is contained in Γ. We invite the reader
to provide similar examples for the remaining cases.

(87) Prove that if Γ is a set of formulas such that � ∈ Γ if and
only if � �∈ Γ for all literals � and Γ is upward closed, then Γ
contains a truth set.
Hint. For all p ∈ SV , define w(p) = T if and only if p ∈ Γ
and prove that Γw ⊆ Γ.

(88) Prove that a set of formulas is a truth set if and only if it is a
maximal Hintikka set.

(89) Prove that a set of formulas is a Hintikka set if and only if it
is downward closed subset of a truth set.

294 Logical Foundations of Computer Science — Volume 1

(90) Give an example of a Hintikka set of formulas that is not a
maximally satisfiable set of formulas.

(91) A set of formulas Γ is semantically consistent if there is no
formula ϕ such that Γ |= ϕ and Γ |= (¬ϕ). Prove that for any
set of formulas Γ, the following conditions are equivalent:

(a) Γ is satisfiable.
(b) Γ is semantically consistent.
(c) There is a formula ϕ such that Γ �|= ϕ.

(92) Prove that for any set of formulas Γ, the following conditions
are equivalent:

(a) Γ is satisfiable.
(b) Every finite subset of Γ is semantically consistent.
(c) For every finite subset Γ1 of Γ, there is a formula ϕ such

that Γ1 �|= ϕ.
(d) There is a formula ϕ such that for every finite subset Γ1

of Γ, we have Γ1 �|= ϕ.

Solution. The equivalence of the first three conditions
follows from the Compactness Theorem and Exercise 91.
Condition (d) immediately implies Condition (c). On the other
hand, Condition (a) implies Condition (d) because if Γ is sat-
isfiable, by Condition (c) of Exercise 91, there is a formula ϕ
such that Γ �|= ϕ and, therefore, Γ1 �|= ϕ for every finite subset
Γ1 of Γ.

(93) (a) Let Γ be a maximal finitely satisfiable set of formulas.
Prove that Γ is upward closed. Using Exercise 37 and
Theorem 2.7.7, conclude that every maximal finitely sat-
isfiable set of formulas is a truth set.

(b) Use Part (a) of this exercise, Exercise 35, and The-
orem 1.3.3 to give another proof of the Compactness
Theorem.

Solution. In order to prove Part (a), it suffices to prove that
if K ⊆ Γ is a constituent of a formula ϕ, then Γ∪{ϕ} is finitely
satisfiable because then, the maximality of Γ would imply that
ϕ ∈ Γ. To do this, it suffices to prove that if Γ0 is a finite subset
of Γ, then Γ0 ∪ {ϕ} is satisfiable. Since K ⊆ Γ, the finite set
Γ0 ∪K is satisfiable. By Theorem 2.7.2, any truth assignment
that satisfies Γ0∪K also satisfies ϕ, and so it satisfies Γ0∪{ϕ}.

Propositional Logic–Syntax and Semantics 295

The alternative proof of the Compactness Theorem mentioned
in Part (b) is obtained as follows. Let Γ be a finitely satisfiable
set. By Exercise 35 and Theorem 1.3.3, there is a maximal
finitely satisfiable set Γ1 that includes Γ. By Part (a), Γ1 is
a truth set and, therefore, it is satisfiable, which implies the
satisfiability of Γ.

(94) Let bϕ be a signed formula. Prove that if the formula α occurs
positively (negatively) in some constituent of bϕ, then α occurs
positively (negatively) in bϕ.

(95) Let Γ be a set of formulas and let v be a truth assignment.
Prove that the set of signed formulas {v(ϕ)ϕ | ϕ ∈ Γ} is
satisfiable.

Define the unsigning function u : SPLFORM −→ PLFORM and the
signing function s : PLFORM −→ SPLFORM by

u(bϕ) =

{
ϕ if b = T

(¬ϕ) if b = F
(2.11)

for every bϕ ∈ SPLFORM and

s(ϕ) =

{
Tϕ if ϕ is positive

Fψ if ϕ = (¬ψ) (2.12)

for every ϕ ∈ PLFORM.

(96) Prove that the following identities hold:

u(s(ϕ)) = ϕ,

s(u(Fϕ)) = Fϕ,

s(u(Tϕ)) =

{
Tϕ if ϕ is positive

Fψ if ϕ = (¬ψ),
for every formula ϕ ∈ PLFORM. Conclude that s is a one-to-
one function and u is an onto function.

(97) Prove that a truth assignment v satisfies bϕ if and only if v
satisfies u(bϕ); further, prove that v satisfies ϕ if and only it
satisfies s(ϕ), for every ϕ ∈ PLFORM and b ∈ Bool.

(98) Define a function Ξ : P(SPLFORM) −→ P(PLFORM) by
Ξ(Δ) = {ϕ | Tϕ ∈ Δ} ∪ {(¬ϕ) | Fϕ ∈ Δ}. Observe that Ξ(Δ)
is the extension of the function u, defined above, to sets of
signed formulas:

296 Logical Foundations of Computer Science — Volume 1

(a) Prove that a truth assignment satisfies Δ if and only if it
satisfies Ξ(Δ).

(b) Show that if ϕ is a positive formula, then ϕ ∈ Ξ(Δ) if and
only if Tϕ ∈ Δ.

(c) Let Δ be a Hintikka set of signed formulas. Prove that
(¬ϕ) ∈ Ξ(Δ) if and only if Fϕ ∈ Δ.

(d) Show that if bϕ does not have the form T(¬α) for some
α, and d(bϕ) = (K0, . . . ,Kl−1), then Ξ({bϕ}) = {ψ} for
some ψ and d(ψ) = (Ξ(K0), . . . ,Ξ(Kl−1)).

(e) Prove that if Δ is a Hintikka set of signed formulas, then
Ξ(Δ) is a Hintikka set of formulas.

(f) Give an example of a set of signed formulas Δ such that
Ξ(Δ) is a Hintikka set of formulas although Δ is not a
Hintikka set of signed formulas.

(g) Use the previous parts to derive Theorem 2.7.28 from The-
orem 2.7.16.

Solution. We leave to the reader the arguments for Parts (a)
and (b).
(c) Note that if (¬ϕ) ∈ Ξ(Δ), then T(¬ϕ) ∈ Δ or Fϕ ∈ Δ. In
the former case, since Δ is a Hintikka set of signed formulas,
we have Fϕ ∈ Δ. The reverse implication is trivial.
(d) We leave the verification of this statement to the reader.
(e) Let Δ be a Hintikka set of signed formulas. By Parts (b)
and (c), for no statement variable p we can have both p
and (¬p) in Ξ(Δ). We need to verify that for every formula
ϕ ∈ Ξ(Δ) that is not a literal there is a constituent which is
included in Ξ(Δ). Suppose first that ϕ is a positive formula.
By Part (b), Tϕ ∈ Δ, so some K in d(Tϕ) is included in Δ.
By Part (d), Ξ(K) is a constituent of ϕ which is contained in
Ξ(Δ). When ϕ is negative, the same result can be obtained
using Parts (c) and (d).
(f) Take Δ = {T(¬p)} for p a statement variable.
(g) This part is left to the reader.

(99) Let Υ : P(PLFORM) −→ P(SPLFORM) be given by Υ(Γ) =
{Tϕ | ϕ ∈ Γ} ∪ {Fϕ | (¬ϕ) ∈ Γ}:

(a) Prove that a truth assignment satisfies Γ if and only if it
satisfies Υ(Γ).

Propositional Logic–Syntax and Semantics 297

(b) Show that Υ(Γ) is a Hintikka set of signed formulas if and
only if Γ is a Hintikka set of formulas.

(c) Use the previous parts to derive Theorem 2.7.16 from
Theorem 2.7.28.

Hint. Use an argument similar to that of Supplement 98.
(100) Let Ξ and Υ be as in Supplements 98 and 99. Prove that for

every set Δ of signed formulas and for every set Γ of unsigned
formulas, we have

Ξ(Υ(Γ)) = Γ,

Υ(Ξ(Δ)) = Δ ∪ {T(¬ϕ) | Fϕ ∈ Δ} ∪ {Fϕ | T(¬ϕ) ∈ Δ}.

A maximally satisfiable set of signed formulas is a set of signed
formulas Δ that is satisfiable and for which there is no satisfiable
set of signed formulas Δ′ such that Δ ⊂ Δ′.

A set of signed formulas Δ isT-downward closed if for every signed
formula Tϕ ∈ Δ− (Bool× SV) there exists a constituent K of Tϕ
such that K ⊆ Δ. A set of signed formulas Δ is F-downward closed
if for every signed formula Fϕ ∈ Δ − (Bool × SV) there exists a
constituent K of Fϕ such that K ⊆ Δ. Δ is downward-closed if it is
both T- and F-downward closed.

The notions of T-upward, F-upward, and upward closed are
defined similarly.

Δ is a saturated set of signed formulas if it satisfies the following
conditions:

• For every ϕ ∈ PLFORM, Tϕ ∈ Δ if and only if Fϕ �∈ Δ.
• Δ is both upward and downward closed.

(101) Let Δ be a satisfiable set of signed formulas. Prove that Δ is
maximally satisfiable if and only if exactly one of the formulas
Tϕ and Fϕ belongs to Δ for every formula ϕ ∈ PLFORM.

(102) If v is a truth assignment, define

Δv = {bϕ ∈ SPLFORM | v satisfies bϕ}.

Prove that a set of signed formulas Δ is maximally satisfiable
if and only if Δ = Δv for some truth assignment v.

298 Logical Foundations of Computer Science — Volume 1

Solution. Let Δ be a maximally satisfiable set of signed for-
mulas and let v be a truth assignment that satisfies Δ. Then,
Δ ⊆ Δv and since Δv is clearly satisfiable, we obtain Δ = Δv.
Conversely, since exactly one of the formulas Tϕ and Fϕ
belongs to Δv, for every ϕ ∈ PLFORM, by Exercise 101, Δv

is maximally satisfiable.
(103) Show that a set of signed formulas is maximally satisfiable if

and only if it is a saturated set.
Solution. Let Δ be a maximally satisfiable set of signed for-
mulas. By Supplement 102, Δ = Δv for some truth assign-
ment v. It follows easily from Theorem 2.7.25 that Δ = Δv is
a saturated set.
Conversely, suppose that Δ is a saturated set of signed formu-
las. Since Δ is a Hintikka set, Δ is satisfiable and therefore,
by Exercise 101, it is maximally satisfiable.

If bϕ ∈ SPLFORM, let bϕ be the signed formula f¬(b)ϕ. Observe that

bϕ = bϕ. This notation is extended naturally to sets and sequences
of signed formulas.

(104) Let ϕ be a formula that is not a variable. Suppose that K is a
constituent of the signed formula Tϕ and H is a constituent of
the signed formula Fϕ. Prove that there exists an immediate
subformula γ of ϕ such that the set K ∪H contains both Tγ
and Fγ.

(105) Let bϕ ∈ SPLFORM−(Bool×SV), d(bϕ) = (K0, . . . ,Km−1).
Prove that if bjψj ∈ Kj is a signed formula for each j, 0 ≤
j ≤ m− 1, such that the set L = {bjψj | 0 ≤ j ≤ m− 1} does
not contain both Tγ and Fγ for any formula γ, then there is
a constituent H of bϕ such that H = {bjψj | 0 ≤ j ≤ m− 1}.
Solution. The proof consists in verifying all possible choices
for the formulas biθi for the constituents Ki of bϕ. We limit
our discussion to bϕ = T(α ↔ β). The constituents of bϕ
are {Tα,Tβ} and {Fα,Fβ} and there are four choices for
L: {Tα,Fα}, {Tα,Fβ}, {Fα,Tβ}, {Fβ,Tβ}. (Of course,
if α = β, then not all of these choices are distinct.) The
first and last choices contain both a formula and its nega-
tion. The remaining two choices yield two choices for {bϕ |
bϕ ∈ L}: {Fα,Tβ}, {Tα,Fβ}, which are constituents of

Propositional Logic–Syntax and Semantics 299

bϕ = F(α ↔ β). We leave to the reader the verification of
the other cases.

(106) Let Δ be a set of signed formula such that exactly one of the
formulas Tϕ and Fϕ belongs to Δ for every ϕ ∈ PLFORM.
Prove the following:

(a) Δ is T-upward closed if and only if Δ is F-downward
closed.

(b) Δ is F-upward closed if and only if Δ is T-downward
closed.

Solution. Let Δ be a set of signed formulas such that Δ is
T-upward closed and exactly one of the formulas Tϕ and Fϕ
belongs to Δ for every ϕ ∈ PLFORM and let Fϕ ∈ Δ, where
ϕ is not a variable. Suppose that d(Tϕ) = (K0, . . . ,Kl−1).
Since Tϕ �∈ Δ, no Ki is included in Δ because Δ is T-upward
closed. Therefore, each Ki contains a signed formula biθi such
that biθi �∈ Δ. Observe that the set L = {biθi | 0 ≤ i ≤ l − 1}
is included in Δ and may not contain both cγ and cγ for some
cγ ∈ SPLFORM since this would violate the hypothesis made
about Δ. Therefore, by Supplement 105, L is a constituent
of Fϕ and L ⊆ Δ, which allows us to conclude that Δ is
F-downward closed.
Conversely, suppose that Δ is an F-downward closed set of
signed formulas such that exactly one of the formulas Tϕ and
Fϕ belongs to Δ for every ϕ ∈ PLFORM and let Tϕ be a
formula such that a constituent K of Tϕ is included in Δ. If
Fϕ ∈ Δ, at least one constituent K ′ of Fϕ is also included in
Δ because Δ is F-downward closed. However, this contradicts
the hypothesis, by Supplement 104. Therefore, Fϕ �∈ Δ, so
Tϕ ∈ Δ which shows that Δ is T-upward closed.
We leave to the reader the similar argument needed for
Part (b).

(107) Let Δ be a set of signed formulas such that exactly one of
the formulas Tϕ and Fϕ belongs to Δ for every formula ϕ ∈
PLFORM. Prove that the following statements are equivalent:

(a) Δ is T-upward closed and F-upward closed, that is, Δ is
upward closed.

(b) Δ is T-upward and T-downward closed.

300 Logical Foundations of Computer Science — Volume 1

(c) Δ is F-downward and T-downward closed, that is, Δ is
downward closed.

(d) Δ is F-downward and F-upward closed.
(e) Δ is both upward and downward closed.

It follows that the second condition of the definition of sat-
urated set can be replaced by any of the conditions given as
follows.
Hint. Use Supplement 106.

(108) Let Δ = {Tϕ | ϕ ∈ PLFORM}. Show that for all signed
formulas Tϕ, Tϕ ∈ Δ if and only if Fϕ �∈ Δ and that Δ is
T-upward closed but that Δ is not a saturated set. (Hence, in
Supplement 107, “Δ is T-upward closed” cannot be added to
the list of equivalent conditions.)

(109) Show by a similar example that “Δ is F-upward closed” cannot
be added to the list of equivalent conditions in Supplement 107.

(110) Prove that Δ is a saturated set of signed formulas if and only
if for every statement variable p, Tp ∈ Δ if and only if Fp �∈ Δ
and Δ is both upward and downward closed.
Solution. The only nontrivial part of the solution is to prove
that if Δ is a set of signed formulas such that for every state-
ment variable p, Tp ∈ Δ if and only if Fp �∈ Δ and Δ is
both upward and downward closed, then for every formula ϕ,
Tϕ ∈ Δ if and only if Fϕ �∈ Δ. We show this by induction
on ϕ. The basis step, when ϕ is a statement variable, is imme-
diate. Now suppose that this property holds for all immediate
subformulas of a formula ϕ where ϕ �∈ SV .
If Tϕ ∈ Δ, then, since Δ is downward closed, there is a con-
stituent K of Tϕ such that K ⊆ Δ. If Fϕ ∈ Δ, then there is a
constituent H of Fϕ included in Δ. By Supplement 104, this
contradicts the inductive hypothesis. Therefore, Fϕ �∈ Δ.
Assume now that Fϕ �∈ Δ. Since Δ is upward closed, no con-
stituent of Fϕ is contained in Δ If d(Fϕ) = (H0, . . . ,Hl−1),
then for each i with 0 ≤ i ≤ l − 1, there is a signed formula
biθi ∈ Hi−Δ where each θi is an immediate subformula of ϕ.
Let L = {biθi | 0 ≤ i ≤ l−1}. By inductive hypothesis, L ⊆ Δ
and there is no i such that Tθi and Fθi belong to L. Therefore,
by Supplement 105, L is a constituent of Tϕ, so by upward
closure of Δ, Tϕ ∈ Δ.

Propositional Logic–Syntax and Semantics 301

(111) Show with examples that a set of signed formulas Δ such that
Tp ∈ Δ if and only if Fp �∈ Δ for all p ∈ SV can satisfy any
three of the following four conditions and fail to be a saturated
set:

• Δ is T-upward closed.
• Δ is F-upward closed.
• Δ is T-downward closed.
• Δ is F-downward closed.

(112) Prove that a set of signed formulas is a Hintikka set if and only
if it is a downward closed subset of a saturated set of signed
formulas.

(113) Give an example of a Hintikka set of signed formulas that is
not a saturated set of signed formulas.

The notion of consistency property can be formulated for signed for-
mulas. Namely, a consistency property is a collection C of sets of
signed formulas such that we have the following:

• No set with property C contains both Tp and Fp for any statement
variable p.

• If Δ has property C, bϕ ∈ Δ and ϕ is not a statement variable,
then Δ ∪K has property C for some constituent K of bϕ.

A collection of sets of signed formulas I is an inconsistency prop-
erty if the collection of sets P(SPLFORM) − I is a consistency
property.

Note that a collection of sets of signed formulas I is an
inconsistency property if and only if the following conditions are
satisfied:

• Every set of signed formulas that includes {Tp,Fp} for some state-
ment variable p belongs to I.

• If Δ is a set of signed formulas and bϕ ∈ Δ is such that for every
constituent K of ϕ, Δ ∪K ∈ I, then Δ ∈ I.

(114) Let C be the collection of all satisfiable sets of signed formulas.
Show that C is a consistency property.

(115) Show that every member of a consistency property of signed
formulas is a satisfiable set. In fact, prove that if Δ belongs to
a consistency property, then there is a Hintikka set of signed

302 Logical Foundations of Computer Science — Volume 1

formulas Δ′ such that Δ ⊆ Δ′ and every formula in Δ′ is a
signed subformula of a formula in Δ.
Hint. Adapt the proof of Theorem 2.7.21.

(116) Prove that every satisfiable set of signed formulas Δ is con-
tained in a Hintikka set of signed formulas Δ′ such that every
formula in Δ′ is a signed subformula of a formula in Δ.
Hint. Use both Exercises 114 and 115.

(117) Use Part (a) of Supplement 98 to show that if Δ is a set of
signed formulas such that every finite subset of Δ is satisfiable,
then Δ is satisfiable. (This is the Compactness Theorem for
Signed Formulas. We will encounter this result later in this
book in Theorem 3.3.41.)

(118) Use the notion of consistency property to show that if Δ is
an unsatisfiable set of signed formulas, then there is a finite
subset Δ′ of Δ that is unsatisfiable. (This gives another proof
of the Compactness Theorem for Signed Formulas.)

Truth Functions

(119) Let v be a truth assignment and let ϕ0, . . . , ϕn−1 be a nonnull
sequence of formulas. Prove that

v

⎛
⎝ ∨

0≤i≤n−1

ϕi

⎞
⎠ =

∨
0≤i≤n−1

v(ϕi),

v

⎛
⎝ ∧

0≤i≤n−1

ϕi

⎞
⎠ =

∧
0≤i≤n−1

v(ϕi).

(120) A function f ∈ TFn depends essentially on the ith argument,
where 0 ≤ i ≤ n− 1, if

f(a0, . . . , ai−1,F, ai+1, . . . , an−1)

�= f(a0, . . . , ai−1,T, ai+1, . . . , an−1)

for some a0, . . . , ai−1, ai+1, . . . , an−1 ∈ Bool; f is nondegener-
ate if it depends essentially on all its arguments. The number
of nondegenerate n-ary truth functions is denoted by nd(n).

(a) Show that every 0-ary truth function is nondegenerate,
that is, nd(0) = 2.

Propositional Logic–Syntax and Semantics 303

(b) Prove that

n∑
k=0

(
n

k

)
nd(k) = |TFn|

for all n ∈N.

(121) Let f+ be the binary truth function defined by f+(a, b) = a+ b
for a, b ∈ Bool. Prove that f+ is a linear function which is
neither self-dual nor monotonic.

(122) Prove that the operation ↔ is commutative and associative.
Moreover, show that a↔ a = T, a↔ F = a, and a↔ T = a,
for a ∈ Bool.

(123) The operation “↔” can be extended to sequences by defining
the function BIC : Seq(Bool) −→ Bool:

BIC(λ) = T,

BIC(a0, . . . , an) = BIC(a0, . . . , an−1) ↔ an,

for every a0, . . . , an ∈ Bool and n ∈ N. BIC(a0, . . . , an−1)
will be denoted by a0 ↔ · · ·↔ an−1.
Prove that a0 ↔ · · ·↔ an−1 = T if and only if |{i | 0 ≤ i ≤
n− 1 and ai = T}| has the same parity as n.

(124) Let fmaj : Bool3 −→ Bool be the majority truth function that
takes the value T if and only if at least two of its arguments
are T. Prove that fmaj is a monotonic, self-dual function which
is not linear.

(125) (a) Let A,B,C be three sets and let ξ : A −→ B be a bijec-
tion. Define the functions Φ : (B −→ C) −→ (A −→ C)
by Φ(f) = fξ and Ψ : (A −→ C) −→ (B −→ C) by
Ψ(g) = gξ−1. Prove that Φ and Ψ are bijections that are
inverses of each other.

(b) Let S be a finite set of statement variables with |S| = n.
Consider the mappings ξS : Booln −→ TAS and ζS :
TAS −→ Booln given by ξS(�a) = v�a,S and ζS(v) = �av for
every �a ∈ Booln and v ∈ TAS . (The notation v�a,S was
introduced just prior to Definition 2.8.47 and the notation
�av in the proof of Theorem 2.8.48.)
Show that ξS and ζS are bijections which are inverse to
each other.

304 Logical Foundations of Computer Science — Volume 1

(c) Let S be a finite set of statement variables. Reprove
Theorem 2.8.48 using the previous two parts of this
exercise.

(126) Let ϕ0, . . . , ϕm−1 be a nonnull sequence of formulas and let
S be a set of statement variables such that SV (ϕi) ⊆ S for
0 ≤ i ≤ m− 1. Show that

ΦS

(
τ∨

0≤i≤m−1ϕi,S

)
=

∨
0≤i≤m−1

ΦS(τϕi,S),

ΦS

(
τ∧

0≤i≤m−1ϕi,S

)
=

∧
0≤i≤m−1

ΦS(τϕi,S),

where the function ΦS was defined in Theorem 2.8.48.
Solution. We prove the first equality and leave the second to
the reader. Suppose that |S| = n and that �b ∈ Booln. Then,
applying the definition of ΦS , we can write

ΦS

(
τ∨

0≤i≤m−1ϕi,S

)
(�b) = fτ

∨
0≤i≤m−1ϕi,S

(�b)

= τ∨
0≤i≤m−1ϕi,S

(v�b,S)

= v�b,S

⎛
⎝ ∨

0≤i≤m−1

ϕi

⎞
⎠

=
∨

0≤i≤m−1
v�b,S(ϕi)

=
∨

0≤i≤m−1
τϕi,S(v�b,S)

=
∨

0≤i≤m−1
fτϕi,S

(�b)

=
∨

0≤i≤m−1
ΦS(τϕi,S)(

�b)

for every �b ∈ Booln. This gives the first equality of the
exercise.

Propositional Logic–Syntax and Semantics 305

(127) Let n ≥ 1 and suppose that S is a set of n statement variables.

Show that, for every �b ∈ Booln, we have

f�b = ΦS(τμv�b,S
),

g�b = ΦS(τνv�b′,S
),

where �b′ = ¬�b, and the notations f�b, g�b were introduced in
Definition 2.8.23.
Solution. Let ϕ = μv�b,S . We have

ΦS(τϕ)(�x) = fτϕ(�x)

= τϕ(v�x,S)

= v�x,S(ϕ)

= v�x,S(μv�b,S)

=

{
T if v�x,S = v�b,S
F otherwise

=

{
T if �x = �b

F otherwise

= f�b(�x).

We leave to the reader the second part of the argument.
(128) Let S = {p0, . . . , pn−1} be a nonempty set of statement vari-

ables. Prove that an n-ary truth function f is an n-ary minterm
(maxterm) function if and only if f = ΦS(τϕ), where ϕ is a
minterm (maxterm) over S.
Solution. Suppose first that f is an n-ary minterm function,
say f = f�b, with

�b ∈ Booln. Then, the existence of ϕ follows
immediately from Exercise 127.
Conversely, let μv be a minterm over S. If �b = (v(p0), . . . ,
v(pn−1)), then v = v�b,S and, by Exercise 127, ΦS(τμv) is the

n-ary minterm function f�b.
The argument for maxterms is similar and is left to the reader.

(129) Obtain alternate proofs of Theorems 2.8.27 and 2.8.28 by
using Exercises 126 and 127 and the proofs of Theorems 2.5.10
and 2.5.60.

306 Logical Foundations of Computer Science — Volume 1

(130) Prove that for n ∈ N there are 2n+1 linear n-ary truth
functions.
Hint. Use the uniqueness of the polynomial normal form.

(131) Prove that for n ∈ N there are 2n linear, self-dual n-ary truth
functions.
Hint. Prove that an n-ary linear function presented as in
Definition 2.8.16 is self-dual if and only if k0+ · · ·+kn−1 = T.

(132) Prove that if f ∈ TF2 and f is nonlinear, then there are
a, b ∈ Bool such that the functions f(a, x1) and f(x0, b) are
constant.
Hint. Use the polynomial normal form of f .

(133) Prove that for n ∈N, f ∈ TFn is linear if and only if f¬ is
linear.

(134) Let f ∈ TF2. Define the functions g, h, l ∈ TF2 by g(a, b) =
f(f¬(a), b), h(a, b) = f(a, f¬(b)), and l(a, b) = f(f¬(a), f¬(b)),
for a, b ∈ Bool. Prove that if any one of the functions f, g, h, l
is linear, then the other three are also linear. Generalize this
result to functions in TFn.

Clones and Functional Completeness

(135) Let ℘ : {0, . . . , k − 1} −→ {0, . . . , n− 1} be a function and let
f ∈ TF�, g0, . . . , g�−1 ∈ TFk. Prove that

(f(g0, . . . , g�−1))
℘ = f(g℘0 , . . . , g

℘
�−1).

(136) Let ℘ : {0, . . . , k − 1} −→ {0, . . . , n − 1} be a function. Prove
that for every projection πki , we have (πki)

℘ = πn℘(i).

(137) Prove that if T is a clone and T ⊂ TF, then T is contained in
at least one of the clones T0, T1, SD, LIN orMON .

(138) Prove that none of the clones T0, T1, SD, LIN , or MON is
included in any of the others, thereby obtaining a strengthen-
ing of Lemma 2.9.8.
Hint. For each pair of clones, it is necessary to find a
truth function included in one but not the other. The
required examples can be found among the truth functions
f0, f1, f¬, f+, f↔, and fmaj. (Recall that f+ and fmaj are intro-
duced in Example 2.9.18 and Exercise 124, respectively.)

(139) We call a clone T maximal if T ⊂ TF and there is no clone T ′
such that T ⊂ T ′ ⊂ TF. Using Exercises 137 and 138, prove

Propositional Logic–Syntax and Semantics 307

that the maximal clones are exactly the clones T0, T1, SD,
LIN , andMON .

(140) Prove that

SD ∩ (MON ∪ T1) ⊆ T0, SD ∩ (MON ∪ T0) ⊆ T1.

(141) Let T = {f∧, f0, f1, f}, where f ∈ TF3 is given by f(x0, x1,
x2) = x0 + x1 + x2 for every x0, x1, x2 ∈ Bool:

(a) Prove that T is a complete set of functions.
(b) Prove that the set T is minimally complete, that is, no

proper subset of T is complete.

Solution. The completeness of T follows from the fact that
f1 �∈ T0, f0 �∈ T1, f0 �∈ SD, f �∈ MON , and f∧ �∈ LIN .
For the second part, observe that every three-element subset of
T is contained in one of the clones specified in Theorem 2.9.17.
Namely, we have

{f0, f1, f} ⊆ LIN , {f∧, f1, f} ⊆ T1,
{f∧, f0, f} ⊆ T0, {f∧, f0, f1} ⊆MON .

(142) Let F ⊆ TF2 be a complete set of functions. Prove that there
is a subset T ′ of T such that T ′ is complete and |T ′| ≤ 4.
Solution. Since T is complete, Theorem 2.9.17 implies that
T contains a function g0 that does not belong to T0. By Exer-
cise 140, either g0 is not self-dual, or g0 is neither monotonic
nor a member of T1. Therefore, g0 lies outside of at least two
maximal clones, so we can form a subset T ′ of T that con-
tains g0 and at most three other functions such that T ′ is not
contained in any of the maximal clones.

(143) Let F ⊆ TF∗ be a set of functions. Prove that
̂̂
F = TF∗ if and

only if F is complete and contains a 0-ary truth function.

Solution. Suppose that F is complete, that is,
̂̂
F ⊇ TF, and F

contains a 0-ary truth function f . Since F is complete, f¬ ∈ ̂̂
F

and, therefore, g = f¬(f) ∈ ̂̂
F . Since f and g are the two 0-ary

truth functions, and both are in
̂̂
F ,

̂̂
F = TF∗.

Now suppose that
̂̂
F = TF∗. Then F is complete. If F ⊆ TF,

then, by Theorem 2.9.28, we would have
̂̂
F = F̂ ⊆ TF. Thus,

F must contain a 0-ary truth function.

308 Logical Foundations of Computer Science — Volume 1

(144) Show that every monotonic truth function that is not a con-
stant function belongs to T0 ∩ T1.

(145) Show that the set of all monotonic, nonconstant truth func-
tions is a clone.
Hint. Prove that this set equalsMON ∩ T0 ∩ T1.

(146) Show that the clone generated by {f∧, f∨} is the clone of all
monotonic, nonconstant functions.

(147) Prove that the set F = {f�, f⊥, f∧, f∨} is a minimal generating
set for the extended cloneMON ∗ in the sense that no proper
subset of F generatesMON ∗.

Complete Sets of Connectives

(148) Prove that the mappings Φ : PLFORM −→ PLFORMF and
Ψ : PLFORMF −→ PLFORM of Example 2.10.2 are inverse
bijections.

(149) Prove that the mappings Φ,Ψ of Example 2.10.2 preserve the
semantics of formulas, that is, for every truth assignment v,
α ∈ PLFORM and β ∈ PLFORMF , we have v(Φ(α)) = v(α)
and v(Ψ(β)) = v(β).

Let F = {fC |C ∈ C} be a collection of truth functions indexed by
a set of connective symbols C. F will remain fixed throughout this
discussion.

Let S be a set of statement variables and let PTAS be the set of
all partial truth assignments defined on subsets of the set S, i.e.,

PTAS =
⋃
S1⊆S

TAS1 .

Similarly, we define PTA+
S to be the set of all partial truth assign-

ments defined on nonempty subsets of S.
If S = SV (ϕ) for some formula ϕ ∈ PLFORMF , we shall use the

alternative notation PTA(ϕ) for PTASV(ϕ).
Partial truth assignments over a finite set of statement variables

S = {pi0 , . . . , pin−1}, where i0 < · · · < in−1, can be represented as
sequences over the set Bool ∪ {−} as follows. If v ∈ PTAS , define
the sequence qv : {0, . . . , n − 1} −→ Bool ∪ {−} by

qv(k) =

{
v(pik) if pik ∈ Dom(v)

− otherwise

for 0 ≤ k ≤ n− 1.

Propositional Logic–Syntax and Semantics 309

For instance, if v ∈ PTAS , where S = {p2, p5, p6, p8} and
Dom(v) = {p2, p6}, then qv = (v(p2),−, v(p6),−).

For v,w ∈ PTAS, define v ≤ w if v ⊆ w. In other words, v ≤ w if
Dom(v) ⊆ Dom(w) and v = w |̀Dom(v). It is immediate that ≤ is a

partial order on PTAS . The least element of the poset (PTAS,≤) is
the empty truth assignment v∅.

If ϕ ∈ PLFORMF , define the set of partial truth assignments
PTAb(ϕ) by

PTAb(ϕ) = {v ∈ PTA(ϕ) | w(ϕ) = b for all w ∈ TASV(ϕ) such that v ≤ w}

for b ∈ Bool. In other words, PTAb(ϕ) consists of those partial truth
assignments of ϕ all of whose extensions to SV (ϕ) satisfy bϕ.

Let u, v ∈ PTAS be two partial truth assignments such that
Dom(u) = Dom(v) and for some variable q ∈ Dom(u) = Dom(v)
we have u(p) = v(p) for all p ∈ Dom(u) = Dom(v) with p �= q, and
u(q) �= v(q). Define the partial truth assignment w by Dom(w) =
Dom(u) − {q} = Dom(v) − {q} and w(p) = u(p) = v(p) for every
p ∈ Dom(w). We will denote w by u � v.

Another useful order on PTAS is introduced starting from the
total order �0 defined on Bool ∪ {−} by T �0 F �0 −. Namely, we
define v � w if qv is less than or equal to qw in the lexicographic order
on (Bool∪{−})|S| induced by �0. For instance, if qv = (−,F,F) and
qw = (−,−,T), then v � w.

(150) Show that if v,w ∈ PTAS, then v ≤ w implies w � v.
(151) Show that if S, S′ are two sets of statement variables such that

v,w ∈ PTAS ∩ PTAS′ , then v ≤ w in the poset (PTAS ,≤) if
and only if v ≤ w in the poset (PTAS′ ,≤). Prove that a similar
result holds when ≤ is replaced by �.

(152) Show that if v0, v1 ∈ PTAb(ϕ) and v0 � v1 is defined, then
v0 � v1 ∈ PTAb(ϕ). Furthermore, v0 � v1 = inf{v0, v1} in the
poset (PTA(ϕ),≤).
Solution. Suppose that v0, v1 ∈ PTAb(ϕ) and let v = v0 � v1.
Then, Dom(v) = Dom(v0) − {q} = Dom(v1) − {q}, where q
is a statement variable from Dom(v0) = Dom(v1) and v0(q) �=
v1(q). If w is a truth assignment such that Dom(w) = SV (ϕ)
and v ≤ w, then v(p) = w(p) for every p ∈ Dom(v) and, since
v0(q) �= v1(q), we have either w(q) = v0(q) or w(q) = v1(q).

310 Logical Foundations of Computer Science — Volume 1

In the first case, w is an extension of v0; in the second, w is an
extension of v1, so in either case, w(ϕ) = b. The second part
of the statement is left to the reader.

The rank of a partial truth assignment v with finite domain is
r(v) = |Dom(v)|.

The n-th layer of the T-partial truth assignments of ϕ is the set

PTAT
n (ϕ) = {v ∈ PTAT(ϕ) | r(v) = n}

for 0 ≤ n ≤ |SV (ϕ)|.
The n-th layer of the F-truth assignments of ϕ is the set

PTAF
n(ϕ) = {v ∈ PTAF(ϕ) | r(v) = n}

for 0 ≤ n ≤ |SV (ϕ)|.
Clearly, if S is a finite set of statement variables, v, v′ ∈ PTAS

and v ≤ v′, then r(v) ≤ r(v′).
(153) Prove that

PTAbn−1(ϕ) = {u � v | u, v ∈ PTAbn(ϕ) and u � v is defined}
for b ∈ Bool and 1 ≤ n ≤ |SV (ϕ)|.
Solution. Supplement 152 implies that

{u � v | u, v ∈ PTAbn(ϕ) and u � v is defined} ⊆ PTAbn−1(ϕ)

for b ∈ Bool and 1 ≤ n ≤ |SV (ϕ)|. Therefore, we need to
prove only the reverse inclusion.
Let v ∈ PTAbn−1(ϕ). Every extension w of v to SV (ϕ) belongs

to PTAb(ϕ). Since r(v) < |SV (ϕ)|, there exists a statement
variable q such that q �∈ Dom(v). Let u0, u1 be two partial
truth assignments such that Dom(u0) = Dom(u1) = Dom(v)∪
{q}. These assignments are defined by

u0(p) =

{
v(p) if p ∈ Dom(v)

F if p = q

and

u1(p) =

{
v(p) if p ∈ Dom(v)

T if p = q.

It is immediate that both u0 and u1 belong to PTA
b
n(ϕ), u0 � u1

is defined and u0 � u1 = v. This shows the reverse inclusion.

Propositional Logic–Syntax and Semantics 311

(154) Consider the formula ϕ = ((p0 ∧ p1)∨ ((¬p0)∧ p2)∨ (p1 ∧ p2))
whose truth table is as follows:

v(p0) v(p1) v(p2) v(ϕ)
F F F F
F F T T
F T F F
F T T T
T F F F
T F T F
T T F T
T T T T

Construct the Hasse diagrams of (PTAT(ϕ),≤) and
(PTAF(ϕ),≤).
Solution. The Hasse diagrams are given in Figures 2.32
and 2.33.
Observe that out of the twelve partial truth assignments
v ∈ PTA(ϕ) whose domain contains two variables only six
are obtained by using the � operation: (F,−,T), (−,T,T),
(T,T,−) in PTAT(ϕ) and (F,−,F), (−,F,F), (T,F,−) in
PTAF(ϕ). A partial truth assignment such as (T,−,F) is nei-
ther in PTAT(ϕ) nor in PTAF(ϕ) because its extensions u, v
defined by (T,F,F) and (T,T,F), respectively, are such that
u(ϕ) = F and v(ϕ) = T.

Fig. 2.32. Hasse diagram of the poset (PTAT(ϕ),≤).

Fig. 2.33. Hasse diagram of the poset (PTAF(ϕ),≤).

312 Logical Foundations of Computer Science — Volume 1

(155) Show that if v ∈ PTAT(ϕ) and v′ ∈ PTAF(ϕ), then there
exists a statement variable p such that p ∈ Dom(v)∩Dom(v′)
and v(p) �= v′(p).
Solution. Let v ∈ PTAT(ϕ) and v′ ∈ PTAF(ϕ) be two par-
tial truth assignments. If v and v′ agreed on all variables in
Dom(v) ∩Dom(v′), then v and v′ would have a common exten-
sion w with domain SV (ϕ), which is impossible (because this
would imply both w(ϕ) = T and w(ϕ) = F). Thus, the desired
conclusion holds.

Since PTA(ϕ) is a finite set for every formula ϕ ∈ PLFORMF , it is
clear that for every w ∈ PTAb(ϕ) there is a minimal truth assignment
v ∈ PTAb(ϕ) such that w ≥ v. We will denote the set of minimal
elements of PTAb(ϕ) by MINPTAb(ϕ) for b ∈ Bool.

Recall that the domination relation between minterms was intro-
duced in Definition 2.5.19 and the minterm μv was introduced in
Definition 2.5.5.

(156) Let S be a nonempty set of statement variables. Define the
mapping Ψ : PTA+

S −→ PMINTRM(S) by Ψ(v) = μv. Prove
that

(a) Ψ is a bijection,
(b) for every v,w ∈ PTA+

S , we have v ≤ w if and only if
Ψ(v) ≥ Ψ(w),

(c) for every v,w ∈ PTA+
S , v � w is defined if and only if

Ψ(v) �Ψ(w) is defined and, if v �w is defined, then Ψ(v) �
Ψ(w) = Ψ(v � w).

Let F = {fC | C ∈ C} be a collection of truth functions indexed by
a set of connective symbols C. Let C ∈ C be an n-ary connective
symbol. Define ϕC ∈ PLFORMF by ϕC = C(p0, . . . , pn−1), if n > 0,
and ϕC = C, if n = 0.

(157) Let S = {p0, . . . , pn−1} and let ψC ∈ PLFORM be a formula
using the standard connective symbols such that SV (ψC) = S
and v(ϕC) = fC(v(p0), . . . , v(pn−1)) = v(ψC), for every v ∈
TAS , where C is an n-ary connective symbol. Prove that for
every v ∈ PTA+

S and b ∈ Bool, we have

(a) v ∈ PTAb(ϕC) if and only if μv ∈ IMPL(ψbC),

Propositional Logic–Syntax and Semantics 313

(b) if fC is not a constant function, then v ∈ MINPTAb(ϕC)
if and only if μv is a prime implicant of ψbC . (Thus, Ψ
induces a bijection between MINPTAb(ϕC) and the prime
implicants of ψbC .)

A signed F -formula is a pair (b, ϕ) ∈ Bool×PLFORMF . The set of
signed F -formulas will be denoted by SPLFORMF .

Let ϕ = C(ϕ0, . . . , ϕn−1) (or ϕ = C, if n = 0) be a formula from
PLFORMF − SV . If v ∈ PTA(ϕC), define the set of signed formulas
Kv(ϕ) = {v(pi)ϕi | pi ∈ Dom(v)}. If b ∈ Bool, define a sequence of
sets of signed formulas

d(bϕ) = (Kv0(ϕ), . . . ,Kvm−1(ϕ)),

where MINPTAb(ϕC) = {v0, . . . , vm−1} and v0 � · · · � vm−1.
Define D(bϕ) as the collection of sets of signed formulas that con-

sists of the sets that occur in the sequence d(bϕ). The elements of
D(bϕ) are called the constituents of the signed formula bϕ. In the spe-
cial case when fC is the constant function fC(a0, . . . , an−1) = b, we

have MINPTAb(ϕC) = {v∅} and MINPTAf¬(b)(ϕC) = ∅. This gives
D(bϕ) = {∅} and D(f¬(b)ϕ) = ∅ (since Kv∅(ϕ) = ∅).
(158) Let F = {f¬, f∧, f∨, f→, f↔} be the set of truth functions

indexed by the standard set of connective symbols. The func-
tion Φ introduced in Example 2.10.2 can be expanded to
SPLFORM by defining Φ(bα) = bΦ(α) and can be fur-
ther expanded to Seq(P(SPLFORM)) by Φ(Δ0, . . . ,Δm−1) =
(Φ(Δ0), . . . ,Φ(Δm−1)).
Show that the constituent sequence of formulas in SPLFORM
and SPLFORMF are the same up to translation by the bijec-
tions Φ and Ψ, that is, d(bα) = Φ(d(bΨ(α))) for every bα in
SPLFORMF that is not a signed variable.

(159) Prove that a truth assignment v satisfies a signed formula bϕ,
where ϕ ∈ PLFORMF − SV if and only if it satisfies at least
one of the constituents of bϕ.
Solution. Suppose that v is a truth assignment that satisfies
bϕ, where ϕ = C(ϕ0, . . . , ϕn−1), or ϕ = C, that is,

fC(v(ϕ0), . . . , v(ϕn−1)) = b.

Define the partial truth assignment u on {p0, . . . , pn−1}
by u(pj) = v(ϕj) for 0 ≤ j ≤ n − 1. We have

314 Logical Foundations of Computer Science — Volume 1

u(ϕC) = fC(u(p0), . . . , u(pn−1)) = b, so u ∈ PTAb(ϕC). This
implies the existence of w ∈ MINPTAb(ϕC) such that w ≤ u.
If Dom(w) = {pi0 , . . . , pil−1

}, we have w(pij) = u(pij) = v(ϕij)
for 0 ≤ j ≤ l − 1. Since

Kw(ϕ) = {w(pi0)ϕi0 , . . . , w(pil−1
)ϕil−1

},

it follows that v satisfies every signed formula w(pij)ϕij for

0 ≤ j ≤ l − 1, so v satisfies the constituent Kw(ϕ) of bϕ.
Conversely, let v be a truth assignment that satisfies a con-
stituent Kw(ϕ) for some w ∈ MINPTAb(ϕC). If

Kw(ϕ) = {w(pi0)ϕi0 , . . . , w(pil−1
)ϕil−1

},

we have v(ϕij) = w(pij) for 0 ≤ j ≤ l − 1. Define the par-

tial truth assignment u as an extension of w to SV (ϕC) =
{p0, . . . , pn−1} as u(pi) = v(ϕi) for 0 ≤ i ≤ n − 1. By the
definition of MINPTAb(ϕC), we have u(ϕC) = b, that is,
fC(u(p0), . . . , u(pn−1)) = b. This, in turn, implies

v(ϕ) = fC(v(ϕ0), . . . , v(ϕn−1))

= fC(u(p0), . . . , u(pn−1))

= u(ϕC) = b,

which shows that v satisfies bϕ.
(160) Let ϕ ∈ PLFORMF − SV and let K ∈ D(bϕ) and H ∈

D(f¬(b)ϕ) for some b ∈ Bool. Show that there exists an imme-
diate subformula γ of ϕ such that

{Tγ,Fγ} ⊆ K ∪H.

Solution. This is an immediate consequence of Supple-
ment 155.

(161) Let ϕ = C(ϕ0, . . . , ϕn−1) or ϕ = C and assume that

d(bϕ) = (K0, . . . ,Km−1).

Prove that if bjψj ∈ Kj is a signed formula for each j, 0 ≤
j ≤ m− 1 such that the set L = {bjψj | 0 ≤ j ≤ m− 1} does
not contain both Tγ and Fγ for any formula γ, then there is
a constituent H of f¬(b)ϕ such that H ⊆ {f¬(bj)ψj | 0 ≤ j ≤
m− 1}.

Propositional Logic–Syntax and Semantics 315

Solution. Let MINPTAb(ϕC) = {v0, . . . , vm−1}, where v0 �
v1 � · · · � vm−1 and Ki = Kvi(ϕ) for 0 ≤ i ≤ m− 1. For each
j, 0 ≤ j ≤ m−1, there is ij with bj = vj(pij), and ψj = ϕij . We

claim that the set of pairs {(pij , bj) | 0 ≤ j ≤ m−1} is a partial
truth assignment. Indeed, if pij = pik (that is, ij = ik) and
bj �= bk, then we have bjϕij and bkϕik = bkϕij in L, which is in
conflict with the assumption that L does no contain both Tα
and Fα for any formula α. Therefore, w = {(pij , f¬(bj)) | 0 ≤
j ≤ m−1} is a partial truth assignment. We further claim that

w ∈ PTAf¬(b)(ϕC). Indeed, let z be an arbitrary extension of
w to SV (ϕC). Since z(pij) = w(pij) = f¬(bj) = f¬(vj(pij)) for
each vj ∈ MINPTAb(ϕC), we have vj �≤ z for each such vj . This

implies that z �∈ PTAb(ϕC). Therefore, z satisfies f¬(b)ϕC and

we may conclude that w ∈ PTAf¬(b)(ϕC). In turn, this means

that there exists w′ ∈ MINPTAf¬(b)(ϕC) such that w′ ≤ w. If
H = Kw′(ϕ), we obtain the desired constituent of f¬(b)ϕ.

The notions of maximally satisfiable, T-downward closed,
F-downward closed, downward closed, T-upward closed, F-upward
closed, upward closed, and saturated extend obviously from sets of
signed formulas to sets of signed F -formulas. Also, the notion of
Hintikka set can be naturally extended to sets of signed F -formulas.

(162) Prove that every Hintikka set of signed F -formulas is satisfi-
able.

The reader should note the parallels between Supplements 104
and 160 and between Supplements 105 and 161. Observe, however,
that in Supplement 105 we have H = {f¬(bj)ψj | 0 ≤ j ≤ m − 1}
while in Supplement 161, H ⊆ {f¬(bj)ψj | 0 ≤ j ≤ m − 1}. The
latter inclusion suffices for the following exercise.

(163) Formulate and prove analogues of Supplements 101, 102, 103,
106, 107, 110, and 112 for signed F -formulas.

(164) Let F be a set of truth functions, F = {fC | C ∈ C},
and let ϕC = C(p0, . . . , pm−1). For the signed formula bϕ ∈
SPLFORMF given by ϕ = C(ϕ0, . . . , ϕn−1), define d′(bϕ) =

(Kv0(ϕ), . . . ,Kvm−1(ϕ)), where {v0, . . . , vm−1} = TAb(ϕC)
and v0 � · · · � vm−1. Also, let D′(bϕ) be the collection of
sets that occur in d′(bϕ):

316 Logical Foundations of Computer Science — Volume 1

(a) Prove that a truth assignment v satisfies bϕ if and only
if it satisfies an element of D′(bϕ). Thus, the members of
D′(bϕ) can be regarded as an alternative to constituents of
signed formulas.

(b) Show that the statement contained in Exercise 158 does
not carry over to d′.

(c) Prove that statement of Exercise 160 remains true when
D is replaced by D′.

(d) Show that Exercise 161 fails with d replaced by d′, when
F = {fmaj}.

(165) Let F = {fC}, where fC(x0, x1, x2) = T if and only if x0 = x1
or x0 = x2:

(a) Starting from Example 2.5.39, show that |d(Tϕ)| = 6,
where ϕ = fC(ϕ0, ϕ1, ϕ2).

(b) Using the same example, show how to define a “con-
stituent sequence” of length three for Tϕ such that the
statement of Exercise 159 remains true.

We will now show how to extend the notion of constituent of an
unsigned formula to unsigned formulas involving an arbitrary set of
connectives that contains negation. In other words, if F = {fC | C ∈
C}, then for some fixed N ∈ C, fN = f¬. We will write a formula
N(ϕ) as (¬ϕ). A formula ϕ ∈ PLFORMF is negative if it has the form
N(ψ); otherwise, we say that ϕ is positive. We extend the notation
introduced in Definition 2.5.1 to formulas in PLFORMF for such an
F , namely, ϕT = ϕ and ϕF = (¬ϕ) for every ϕ ∈ PLFORMF . Also,
if ϕ ∈ PLFORMF , we define ϕ to be N(ϕ) if ϕ is positive and to be
ψ if ϕ = N(ψ).

Let C ∈ C be a connective symbol and let ϕ = C(ϕ0, . . . , ϕn−1)
(or ϕ = C if n = 0) be a formula in PLFORMF − SV . For v ∈
PTA(ϕC), define the set of formulas Hv(ϕ) = {ϕv(pi)i | pi ∈ Dom(v)}.
If C �= N , then we define

d(ϕ) = (Hvi0
(ϕ), . . . ,Hvim−1

(ϕ)),

where MINPTAT(ϕC) = {vi0 , . . . , vim−1} and vi0 � · · · � vim−1 . If
ϕ = N(ψ) where ψ = C ′(ψ0, . . . , ψm−1), then we define

d(ϕ) = (Hvj0
(ψ), . . . ,Hvjl−1

(ψ)),

Propositional Logic–Syntax and Semantics 317

where MINPTAF(ϕC′) = {vj0 , . . . , vjl−1
} and vj0 � · · · � vjl−1

. Note
that d(ϕ) is not defined when ϕ = p or ϕ = (¬p) for some p ∈ SV .

When d(ϕ) is defined, we define D(ϕ) to be the collection of sets
that occur in d(ϕ). The members of D(ϕ) are called the constituents
of ϕ.

(166) Verify that D(N(N(ϕ))) = {{ϕ}} for every formula ϕ ∈
PLFORMF .

(167) Let C = {¬,∨,∧,→,↔} and F = {fC | C ∈ C}. Show
that the constituent sequence of formulas in PLFORM and
PLFORMF are the same up to translation by the bijections Φ
and Ψ, that is, d(α) = Φ(d(Ψ(α))) for every α in PLFORMF

that is not a variable. Here, Φ,Ψ are the bijections mentioned
in Exercise 148.

(168) Let C be a set of connective symbols that contains in addition
to N , a symbol N ′ such that fN ′ = f¬. Verify that D(N ′(ϕ)) =
{{N(ϕ)}}.

(169) Let ϕ be a positive formula in PLFORMF − SV and let K ∈
D(ϕ) and H ∈ D(N(ϕ)). Show that there exists an immediate
subformula γ of ϕ such that

{γ,N(γ)} ⊆ K ∪H.

Solution. This is an immediate consequence of Supple-
ment 155.

(170) Let ϕ be C(ϕ0, . . . , ϕn−1), or N(C(ϕ0, . . . , ϕn−1)) (or C, or
N(C) when n = 0) for some formulas ϕ0, . . . , ϕn−1 and some
connective symbol C ∈ C other than N . Suppose that d(ϕ) =
(H0, . . . ,Hm−1) and that L = {ψi | 0 ≤ i ≤ m − 1} is a
set of formulas such that ψi ∈ Hi for 0 ≤ i ≤ m − 1 and L
does not contain any pair of formulas γ, (¬γ). Prove that there
exist formulas θi such that for every i, 0 ≤ i ≤ m − 1, either
θi = (¬ψi) or ψi = (¬θi) holds and {θi | 0 ≤ i ≤ m − 1}
contains a constituent H of ϕ.
Solution. Let b = T and γ = ϕ if ϕ = C(ϕ0, . . . , ϕn−1)
or ϕ = C, and let b = F and γ = ϕ if ϕ =
N(C(ϕ0, . . . , ϕn−1)) or ϕ = N(C). For each of the constituents
Hj in d(ϕ) = (H0, . . . ,Hm−1), we have Hj = Hvj(γ), where

MINPTAb(ϕC) = {v0, . . . , vm−1} and v0 � · · · � vm−1. For
each of the formulas ψj, there is kj with 0 ≤ kj ≤ n − 1

318 Logical Foundations of Computer Science — Volume 1

such that ψj = ϕ
vj(pkj)

kj
. Observe that if kj = kj′ , then

vj(pkj) = vj′(pkj′). Indeed, if vj(pkj) �= vj′(pkj′), this would
imply that the set L contains both a formula and its negation
represented by ψj and ψj′ . Therefore, the set {(pkj , vj(pkj)) |
0 ≤ j ≤ m− 1} is a partial truth assignment and this implies
that w = {(pkj , f¬(vj(pkj))) | 0 ≤ j ≤ m−1} is a partial truth

assignment. We further claim that w ∈ PTAf¬(b)(ϕC). Indeed,
let z be an arbitrary extension of w to SV (ϕC). Since z(pkj) =
w(pkj) = f¬(vj(pkj)) for each j, 0 ≤ j ≤ m−1, we have vj �≤ z
for each such j. This implies that z �∈ PTAb(ϕC). Therefore,

z(ϕC) = f¬(b) and we may conclude that w ∈ PTAf¬(b)(ϕC).

In turn, this means that there exists w′ ∈ MINPTAf¬(b)(ϕC)
such that w′ ≤ w. Let

H = Hw′(γ) = {ϕw
′(pl)

l | pl ∈ Dom(w′)}

= {ϕ
f¬(vj (pkj))
kj

| pkj ∈ Dom(w′)}.

Since C �= N , it is clear that H ∈ D(ϕ). Define

θj =

{
ϕ
f¬(vj(pkj))
kj

if pkj ∈ Dom(w′)
(¬ψj) otherwise.

We have H ⊆ {θj | 0 ≤ j ≤ m − 1}. Suppose that pkj ∈
Dom(w′). If vj(pkj) = T, we have ψj = ϕkj and θj = (¬ϕkj) =
(¬ψj). If vj(pkj) = F, we have ψj = (¬ϕkj) and θj = ϕkj , so

ψj = (¬θj). Thus, the formulas θj are as desired.
(171) Formulate analogues for (unsigned) F -formulas of the concepts

of truth set, Hintikka set, and the upwards and downwards clo-
sure properties and examine the possibility of extending results
presented in Sections 2.7 and 2.12 from the standard connec-
tives to arbitrary sets of connectives that contain a negation-
like symbol N .

Circuits and Truth Functions

(172) Let K = (G,�, q) be an (F,m)-circuit, where G = (V,U):

(a) Prove that if (v, v′) is an edge in G, then depth(v) <
depth(v′).

Propositional Logic–Syntax and Semantics 319

(b) Prove that for every node v of K, depth(v) is the length
of the longest path that joins an input to v.

(c) Prove that the depth of a vertex of K can be defined induc-
tively as follows:

i. If d−G(v) = 0, then depth(v) = 0.
ii. Suppose that we have defined the depth of all vertices

of Vv − {v}, where d−G(v) > 0; define depth(v) = 1 +
max{depth(y) | y ∈ Vv − {v}}}.

(d) Prove that the last condition of the previous inductive
definition can be replaced by the following:

Suppose that we have defined the depth of all ver-
tices of v′ with (v′, v) ∈ U ; define

depth(v) = 1 + max{depth(y) | (y,v) ∈ U}.

(173) Let K be a single-output (F,m)-circuit that computes a func-
tion g ∈ TFm and let ℘ : {0, . . . ,m − 1} −→ {0, . . . , n − 1}.
Consider the (F, n)-circuit K℘ obtained from K by replacing
each label pi of an input node by p℘(i):

(a) Prove that for every vertex v of K, we have ΘK℘(v) =
(ΘK(v))℘.

(b) Prove that the function computed by K℘ is g℘.

Hint. Use Exercise 135 for Part (a).
(174) Let F be a set of truth functions. Determine the Boolean func-

tions that belong to the domain of COMB0
F .

(175) Show that the circuits Kn defined in Lemma 2.11.36 can be
built such that their depth is O(log n).

(176) Prove that COMB∞
TF2

(f) ≥ n−1 for every nondegenerate func-
tion f ∈ TFn.
Solution. Let K be a fan-out ∞, TF2-optimal circuit for f ,
that is ||K|| = COMB∞

TF2
(f). The statement holds trivially for

n = 0, 1. Therefore, we may assume that n ≥ 2. Note that for
each i with 0 ≤ i ≤ n− 1, there is an input node labeled with
pi whose out-degree is at least 1, since otherwise, the f would
be degenerate. Further, each gate except for the output gate
must have fan-out at least 1 since otherwise K would not be
optimal. Thus, the number of edges of K is at least n+||K||−1.
Since each gate has fan-in 2, the number of edges is 2||K||. So,
2||K|| ≥ n+ ||K|| − 1, which gives the desired inequality.

320 Logical Foundations of Computer Science — Volume 1

(177) For each n ≥ 1, give examples of non-degenerate n-ary truth
functions f such that COMB∞

TF2
(f) = n−1 (i.e., such that the

lower bound of Supplement 176 is attained).
(178) Give a direct proof that the family of truth functions F2 of

Example 2.11.42 has g-size F -circuits, where F = {∧,∨} and

g(n) =

{
n2 − n− 1 if n ≥ 2

0 if n < 2.

Hint. Start from the formula

ϕn =
∨

0≤i<j≤n−1

(pi ∧ pj).

(179) Prove the following extension of Theorem 2.11.40. For all n ≥ 3
and 2 ≤ k ≤ n− 1, we have COMB∞

TF2
(thk,n) ≥ 2n− 3.

Hint. Use induction on n and an argument similar to the one
used in Theorem 2.11.40.

Let Fnl be the set of nonlinear binary truth functions. By Exer-
cise 130, Fnl consists of 8 functions, which by Example 2.8.33 are the
binary truth functions distinct from the constants, the projections
and their negations, and f↔ and its negation. In the following sup-
plements, we prove that COMB∞

Fnl
(f+,n) = COMB∞

Fnl
(f↔,n) = 3n−3,

for n ≥ 1, where the functions f+,n and f↔,n are defined by

f+,n(a0, . . . , an−1) = a0 + · · ·+ an−1,

f↔,n(a0, . . . , an−1) = a0 ↔ · · ·↔ an−1,

for a0, . . . , an−1 ∈ Bool.

(180) Let f ∈ TFn be a truth function that is not a projection
or the negation of a projection. Prove that COMB∞

Fnl
(f) =

COMB∞
Fnl

(f¬f).
Hint. The statement follows from Exercise 133.

(181) Prove that COMB∞
Fnl

(f+,n) ≤ 3n− 3, for n ≥ 1.
Solution. Let g, h be the nonlinear functions given by
g(a, b) = a ∧ b and h(a, b) = a ∧ b, for a, b ∈ Bool. Since
f+,2(a, b) = g(a, b)∨h(a, b), it follows that COMB∞

Fnl
(f+,2) ≤ 3.

Therefore, COMB∞
Fnl

(f+,n) ≤ 3(n− 1), for n ≥ 2. The inequal-
ity for n = 1 is trivial.

Propositional Logic–Syntax and Semantics 321

Fig. 2.34. The Fnl-circuit K.

(182) Prove that COMB∞
Fnl

(f+,2) ≥ 3.
Solution. Since f+,2 is linear, it is clear that COMB∞

Fnl
(f+,2) ≥

2. Suppose that K is an Fnl-circuit of size 2 that computes
f+,2, say the circuit shown in Figure 2.34, which means that
f+,2(a, b) = h(g(a, b), b) for a, b ∈ Bool. Note that for every
b ∈ Bool, the one-argument function f+,2(x0, b) depends
essentially on x0. Since h is a nonlinear function, by Exer-
cise 132, there is b ∈ Bool such that h(x0, b) is a constant.
Therefore, h(g(x0, b), b) is a constant, contradicting the fact
that f+,2(x0, b) is not a constant. Similar arguments can be
used to rule out all other Fnl-circuits of size 2.

(183) Prove that COMB∞
Fnl

(f+,n) ≥ 3n− 3 for all n ≥ 1. (Note that
in combination with Supplement 181, this statement provides
a tight lower bound.)
Solution. The argument is by induction on n. The case n = 1
is trivial and the case n = 2 was dealt with in Supplement 182.
Suppose n ≥ 3 and the result is true for n − 1. Let K be an
Fnl-circuit of minimal size that commutes f+,n. It follows as
in the proof of Theorem 2.11.40 that K contains a gate whose
inputs are labeled by two distinct variables pi, pj . (Note that
the functions fC′

i
mentioned in that argument are nonlinear by

Exercise 134.) Again as in the proof of Theorem 2.11.40, we
claim that there is another gate v′ that is directly connected
to an input labeled by pi. The argument this time relies on
Exercise 132. Suppose that there is no such v′. By this exercise,
there is a truth value b such that ΘK(v)(x0, b) is a constant
function. By replacing all the input nodes labeled pj by nodes

322 Logical Foundations of Computer Science — Volume 1

labeled by b, we obtain a circuit K′. Since K computes f+,n, K′
computes f+,n(a0, . . . , aj−1, b, aj+1, . . . , an−1), which depends
essentially on the ith variable. On the other hand, the function
computed by K′ cannot depend on the ith variable because no
other gate than v is directly connected to a node labeled pi.
This contradiction shows the existence of v′.
The gate v cannot be the output gate of K since this would
imply that the function computed by the circuit depends only
on xi and xj . We claim that there is a gate v′′ such that v′′ �= v′
and there is an edge from v to v′′. If not, then there would be
only one edge leaving from v and that edge leads to v′, mean-
ing that the subcircuit Kv′ is one of the two circuits shown in
Figure 2.35. Let K′ be the circuit obtained from Kv′ by replac-
ing the labels pi and pj by p0 and p1, respectively. The function
ΘK′ is different from both f+,2 and f↔,2, by the basis step and
Exercise 180. Thus this function is either in Fnl, or is a projec-
tion, a constant function or the negation of a projection. In the
first case, we could replace Kv′ with one Fnl-gate, thus contra-
dicting the minimality of K. In the second and third cases, Kv′

could be replaced by a single input node. Finally, if ΘK(v′) is
the negation of a projection, then we can replace Kv with a
single input node labeled with a variable and modify the labels
of all the gates for which v′ is an input, using Exercise 134.
Let u, u′ be the other inputs to v′ and v′′, respectively. A typical
configuration of the nodes mentioned is shown in Figure 2.36.
Note that if v′ is the output node of K, then u cannot be

(a) (b)

Fig. 2.35. The possible subcircuits Kv′ .

Propositional Logic–Syntax and Semantics 323

Fig. 2.36. Typical configuration of the nodes in Exercise 183.

an input node, since otherwise the function computed by the
circuit would depend on only two arguments. Also, if v′′ is
the output node, then u′ cannot be an input node, since this
would either imply that the output of K depends on only two
inputs or would imply that f+,3 is computable by two gates
and therefore f+,2 is computable by at most two gates.
Let b ∈ Bool be such that fC(b, aj) is constant for aj ∈ Bool.
The existence of b is implied by Exercise 132 since fC is nonlin-
ear. Let H be the circuit obtained from K by relabeling with b
the input nodes labeled by pi and relabeling each input labeled
pk with pk−1 for k > i. The circuit H computes either f+,n−1

or f¬f+,n−1, depending on the value of b. We claim that there
is a circuit H′ that computes the same function as H with
three fewer gates. Since the output of v in H is constant c, one
can replace v with an input node labeled by c, thus obtain-
ing a circuit H0. As one of the inputs of v′ in H0 is constant,
the output of v′ is either a constant c′, ΘH0(u) or f¬ΘH0(u).
In the first case, we replace v′ by an input node labeled by c′.
In the second case, if v′ is the output node, we eliminate it
and make u the output node. Otherwise, we eliminate v′ and
connect u to all former connections of v′. In the last case, if v′

324 Logical Foundations of Computer Science — Volume 1

is the output node, we make u the output node and replace its
connective symbol Cu by C̃u, where fC̃u

is the nonlinear func-

tion f¬fCu. If v
′ is not the output function, the elimination of

v′ is followed by modifications of the connective symbols of all
gates where v′ is an input. This process is similar to the one in
Theorem 2.11.40 and uses Exercise 134. Let H1 be the result-
ing circuit. We obtain H′ from H1 by eliminating v′′ using a
similar process. We have ||H′|| = ||H|| − 3 = ||K|| − 3 and H′
computed either f+,n−1 or f¬f+,n−1. By inductive hypothesis
and Exercise 180, ||H′|| ≥ 3(n− 1)− 3, so ||K|| ≥ 3n− 3.

2.13 Bibliographical Comments

The Quine–McCluskey algorithm was introduced by Quine [31, 32]
and developed by McCluskey [12]. The graphical method for sim-
plifying Boolean expressions was created by Karnaugh [26]. Gray
orderings are related to Gray codes introduced in [18].

Algorithm 2.5.65 is due to Dowling and Gallier [11].
Horn formulas were introduced in [25]. Hintikka sets were defined

in [23] under the name model sets. See Smullyan [36] for truth sets
and consistency properties.

Good sources for circuit complexity are the books [39,40] and the
survey article [4]. Example 2.5.38 originates in [31]. Exercises 132,
181, and 183 come from [39]. The result obtained in Theorem 2.11.32
is due to Shannon and Riordan [33,34].

Clones of binary functions were introduced and studied in [30].
The Craig Interpolation Theorem was proved in [9].

Chapter 3

Propositional Logic–Formal Systems

3.1 Introduction

This chapter concentrates on syntactical methods for proving seman-
tic statements like Γ |= ϕ or, equivalently, that Γ∪{(¬ϕ)} is unsatis-
fiable, where Γ is a set of formulas and ϕ is a formula of propositional
logic. As we shall see, these methods are related to a variety of for-
mal systems. The objects manipulated by these formal systems are
formulas or sets of formulas. If the formulas that appear in these
objects are subformulas or negated subformulas of the formulas of
Γ ∪ {ϕ}, then the syntactic method will be called analytical.

As we saw in Theorem 2.3.38, using signed formulas, we can
express alternatively Γ |= ϕ as the unsatisfiability of the set {Tψ |
ψ ∈ Γ}∪{Fϕ}. A syntactic method using this equivalence will manip-
ulate objects that consist of sets of signed formulas. In this case,
analyticity requires that the signed formulas of the objects be signed
subformulas of formulas in Γ ∪ {ϕ}.

Analytical methods are easier to mechanize, though they may
yield long proofs. Nonanalytical methods are closer to ordinary math-
ematical reasoning and leave room for some counterpart of “inge-
nuity” by allowing the use of formulas extraneous to the original
collection of formulas in order to provide shorter proofs.

Some of the syntactic methods we present deal with arbitrary
formulas; others are limited to formulas in conjunctive normal form.
Among the general syntactic methods, we discuss both nonanalytical
(Hilbert/Frege systems, tableaux with cut, sequent calculus with cut,

325

326 Logical Foundations of Computer Science — Volume 1

and natural deduction) and analytical (tableaux without cut and
sequent calculus without cut) ones.

3.2 A Hilbert/Frege-Style Formal System

The Hilbert1/Frege2-style formal systems are one of the earliest
attempts to formally carry out mathematical reasoning.

Let Γ be a set of formulas. We would like to give a formal system
whose theorems are the formulas that are logically implied by Γ. In
fact, we will give a single formal system HF such that for each set
of formulas Γ, the desired formal system will be HFΓ. (The reader
should review at this point Section 1.8 of Chapter 1, where general
formal systems are introduced.)

Definition 3.2.1. The formal system HF has PLFORM as set of
objects, {Rmp} as set of rules, where Rmp is the modus ponens3 rule

ϕ, (ϕ→ ψ)

ψ

for all formulas ϕ,ψ ∈ PLFORM, and A as axiom set, where A
consists of the following formulas:

(1) (α→ (β → α)),
(2) ((α→ (β → γ))→ ((α→ β)→ (α→ γ))),

1David Hilbert was born on January 23, 1862, in Königsberg, Germany (now
Kaliningrad, in Russia), and died in Göttingen, on February 14, 1943. He studied
at the University of Königsberg, where he got his Ph.D. in 1884 and taught at
the University of Königsberg between 1886 and 1895 and at the University of
Göttingen starting in 1895, where he remained for the rest of his life. Hilbert was
one of the leading mathematicians of all times and his influence extends to almost
every branch of mathematics.
2Friedrich Ludwig Gottlob Frege was born on November 8, 1848, in Wismar,
Germany, and died on July 26, 1925 in Bad Kleinen, Germany. He studied at
Jena and Göttingen and spent his entire career at the University of Jena where
he became a special professor in 1879 and a regular professor in 1886. He is
considered one of the founders of modern mathematical logic. Frege invented
quantifiers and his work clearly separated syntactical from semantical aspects of
logic.
3modus ponens is a Latin term that means “method of affirming”.

Propositional Logic–Formal Systems 327

(3) (α→ α),
(4) (α→ ((¬α)→ β)),
(5) (((¬α)→ α)→ α),
(6) ((α→ (¬α))→ (¬α)),
(7) (α→ (α ∨ β)),
(8) (β → (α ∨ β)),
(9) (α→ (β → (α ∧ β))),

(10) ((¬α)→ (α→ β)),
(11) (α→ (β → (α↔ β))),
(12) ((¬α)→ ((¬β)→ (α↔ β))),
(13) ((¬α)→ ((¬β)→ (¬(α ∨ β)))),
(14) ((¬α)→ (¬(α ∧ β))),
(15) ((¬β)→ (¬(α ∧ β)))
(16) (α→ ((¬β)→ (¬(α→ β)))),
(17) (α→ ((¬β)→ (¬(α↔ β)))),
(18) ((¬α)→ (β → (¬(α↔ β)))),

for all formulas α, β, γ.

Since Rmp allows us to deduce ψ from ϕ and (ϕ → ψ) for any
formula ϕ (including formulas ϕ that are neither subformulas nor
negated subformulas of ψ), it follows that HF is not analytical, in
the sense of Section 3.1.

We have chosen our axioms in order to make the proof of com-
pleteness as simple as possible without any concern about their
nonredundancy. Some of these axioms can be deduced from the oth-
ers and therefore they could be dispensed with.

Example 3.2.2. Formulas in Axiom Group 3 can be inferred from
Axiom Groups 1 and 2 as shown by the following proof:

(1) (α→ ((α→ α)→ α)) Axiom Group 1,
(2) ((α→ ((α→ α)→ α))→

((α→ (α→ α))→ (α→ α))) Axiom Group 2,
(3) ((α→ (α→ α))→ (α→ α)) (1), (2) and modus ponens,
(4) (α→ (α→ α)) Axiom Group 1,
(5) (α→ α) (3) and (4) and modus ponens.

This shows that we could have omitted Axiom Group 3 without
changing the theorems of HFΓ for any Γ. There are other redundant
axiom groups as well.

328 Logical Foundations of Computer Science — Volume 1

Theorem 3.2.3 (Soundness of HFΓ). Let Γ be a set of formulas
and let ϕ be a formula. Then, Γ �HF ϕ implies Γ |= ϕ.

Proof. The argument is by induction on the theorems of HFΓ.
For the basis step, let ϕ be an axiom of HFΓ. Then, either ϕ is an
axiom of HF or ϕ belongs to Γ. In the former case, the reader can
easily verify that ϕ is a tautology, so Γ |= ϕ. In the latter case, we
obviously have Γ |= ϕ.

The inductive step is an immediate consequence of the second
part of Theorem 2.3.17. �

The following theorem formalizes the standard mathematical
practice in proving that a formula (ϕ → ψ) is a logical consequence
of Γ. Namely, we add ϕ to our assumptions and we try to prove ψ
from Γ ∪ {ϕ}.

Theorem 3.2.4 (Deduction Theorem for HF). Let Γ be a set
of formulas and let ϕ,ψ be formulas. Then, if Γ ∪ {ϕ} �HF ψ, we
have Γ �HF (ϕ→ ψ).

Proof. We show, by induction on Thm(HFΓ∪{ϕ}), that if ψ
belongs to this set, then Γ �HF (ϕ → ψ). If ψ is an axiom of
HFΓ∪{ϕ}, then either ψ is an axiom of HFΓ or ψ = ϕ. In the former
case, we have Γ �HF ψ and, since Γ �HF (ψ → (ϕ → ψ)) by Axiom
Group 1, we get Γ �HF (ϕ → ψ) by modus ponens. In the latter
case, the conclusion follows immediately from Axiom Group 3.

For the inductive step, suppose that ψ is obtained by modus
ponens from θ and (θ → ψ) and that the result holds for θ and
(θ → ψ), that is, Γ �HF (ϕ → θ) and Γ �HF (ϕ → (θ →
ψ)). By Axiom Group 2, we have Γ �HF ((ϕ → (θ → ψ)) →
((ϕ → θ) → (ϕ → ψ))). Applying modus ponens twice, we get
Γ �HF (ϕ→ ψ). �

Corollary 3.2.5. Let Γ be a set of formulas and let ϕ,ψ be formulas.
Then, Γ ∪ {ϕ} �HF ψ if and only if Γ �HF (ϕ→ ψ).

Proof. In view of Theorem 3.2.4, we only need to show that Γ �HF
(ϕ→ ψ) implies Γ∪{ϕ} �HF ψ. Since Γ∪{ϕ} �HF ϕ and Γ∪{ϕ} �HF
(ϕ→ ψ), we have Γ ∪ {ϕ} �HF ψ by modus ponens. �

The Deduction Theorem states only that the existence of a proof
of ψ in HFΓ∪{ϕ} implies the existence of a proof of (ϕ → ψ)

Propositional Logic–Formal Systems 329

in HFΓ. However, the argument of the Deduction Theorem shows
more, namely, it provides an effective way of transforming a proof of
ψ in HFΓ∪{ϕ} into a proof of (ϕ→ ψ) in HFΓ.

Definition 3.2.6. A set Γ of formulas is

• consistent if there is no formula ϕ such that

Γ �HF ϕ and Γ �HF (¬ϕ),

• inconsistent if it is not consistent.

It is easy to see that every subset of a consistent set of formulas
is consistent; consequently, every superset of an inconsistent set of
formulas is inconsistent. Moreover, we prove the following theorem:

Theorem 3.2.7. Consistency is a property of finite character.

Proof. If Γ is a consistent set of formulas, then it is clear that each
of its finite subsets is consistent.

Conversely, suppose that Γ is inconsistent. Then, there is a for-
mula ϕ such that Γ �HF ϕ and Γ �HF (¬ϕ). Let (ϕ0, . . . , ϕn−1),
(ϕ′

0, . . . , ϕ
′
m−1) be proofs in HFΓ of ϕ and (¬ϕ), respectively. If

Γ0 = ({ϕi | 0 ≤ i ≤ n − 1} ∪ {ϕ′
i | 0 ≤ i ≤ m − 1}) ∩ Γ, then

(ϕ0, . . . , ϕn−1) and (ϕ′
0, . . . , ϕ

′
m−1) are also proofs in HFΓ0 , so Γ0 is

a finite, inconsistent subset of Γ. �

Theorem 3.2.8. If Γ is a satisfiable set of formulas, then Γ is con-
sistent.

Proof. Suppose that Γ is an inconsistent set of formulas. Then,
there is a formula ϕ such that Γ �HF ϕ and Γ �HF (¬ϕ). By the
Soundness Theorem, we have Γ |= ϕ and Γ |= (¬ϕ), which implies
that Γ is unsatisfiable. Indeed, suppose that v were a truth assign-
ment that satisfies Γ. Then, we would have v(ϕ) = v((¬ϕ)) = T,
which is impossible. �

Theorem 3.2.9. If Γ is a consistent set of formulas and Γ �HF ϕ,
then Γ ∪ {ϕ} is also consistent. Thus, if Γ ∪ {ϕ} is inconsistent and
Γ �HF ϕ, then Γ is inconsistent.

Proof. Since Γ �HF ϕ, by Corollary 1.8.6, the formal systemsHFΓ

and HFΓ∪{ϕ} are equivalent, which gives the result. �

330 Logical Foundations of Computer Science — Volume 1

Corollary 3.2.10. Let Γ be a maximally consistent set of formulas.
Then, Γ �HF ϕ implies ϕ ∈ Γ.

Proof. This follows immediately from Theorem 3.2.9. �

Theorem 3.2.11. If Γ is an inconsistent set of formulas, then for
every ψ ∈ PLFORM, Γ �HF ψ.

Proof. Since Γ is inconsistent, there is a formula ϕ such that Γ �HF
ϕ and Γ �HF (¬ϕ). For every formula ψ, by Axiom Group 4, Γ �HF
(ϕ→ ((¬ϕ)→ ψ)). Using modus ponens twice, we get Γ �HF ψ. �

The next statement describes a method of derivation in HF
known as reductio ad absurdum.

Theorem 3.2.12. Let Γ be a set of formulas and ϕ be a formula. If
Γ ∪ {(¬ϕ)} is inconsistent, then Γ �HF ϕ.

If Γ ∪ {ϕ} is inconsistent, then Γ �HF (¬ϕ).

Proof. Suppose that Γ ∪ {(¬ϕ)} is inconsistent. Then, by Theo-
rem 3.2.11, Γ ∪ {(¬ϕ)} �HF ϕ and so, by the Deduction Theorem,
Γ �HF ((¬ϕ)→ ϕ). By Axiom Group 5 and modus ponens, Γ �HF ϕ.

By Theorem 3.2.11, the inconsistency of Γ ∪ {ϕ} means that we
have Γ ∪ {ϕ} �HF (¬ϕ). By the Deduction Theorem, Γ �HF (ϕ →
(¬ϕ)). Since Γ �HF ((ϕ → (¬ϕ)) → (¬ϕ)) by Axiom Group 6, an
application of Rmp yields Γ �HFL (¬ϕ). �

We will often use the contrapositive of this theorem, namely, if
Γ � �HF ϕ, then Γ ∪ {(¬ϕ)} is consistent, and if Γ � �HF (¬ϕ), then
Γ ∪ {ϕ} is consistent.

Corollary 3.2.13. Let Γ be a consistent set of formulas. Then, for
each formula ϕ, at least one of Γ∪{ϕ} and Γ∪{(¬ϕ)} is consistent.
Therefore, if both Γ ∪ {ϕ} and Γ ∪ {(¬ϕ)} are inconsistent, then so
is Γ.

If Γ is maximally consistent and ϕ is a formula, then exactly one
of the formulas ϕ and (¬ϕ) belongs to Γ.

Proof. If Γ � �HF ϕ, then, by Theorem 3.2.12, Γ ∪ {(¬ϕ)} is con-
sistent. If Γ �HF ϕ, then, by Theorem 3.2.9, Γ ∪ {ϕ} is consistent.
The second part is immediate. �

Propositional Logic–Formal Systems 331

Next, we discuss a systematic effectivization of the previous
results by introducing the notion of certificate of inconsistency.

Definition 3.2.14. Let H be a formal system whose objects are
the formulas and let Γ be a set of formulas. An (H,Γ)-certificate
of inconsistency is a pair (q, q′) of proofs in HΓ such that for some
formula α, q is a proof of α and q′ is a proof of (¬α).

Effective versions of Theorems 3.2.11 and 3.2.12 and Corol-
lary 3.2.13 are given in the following theorem.

Theorem 3.2.15.

(1) There is an effective, syntactic construction that starts with a
formula ϕ and an (HF ,Γ)-certificate of inconsistency (q, q′) and
produces a proof in HFΓ for ϕ.

(2) There is an effective, syntactic construction that starts with
(q, q′), an (HF ,Γ ∪ {(¬ϕ)})-certificate of inconsistency, and
yields a proof of ϕ in HFΓ.

(3) There is an effective, syntactic construction that starts with
(HF ,Γ ∪ {ϕ})- and (HF ,Γ ∪ {(¬ϕ)})-certificates of inconsis-
tency and produces an (HF ,Γ)-certificate of inconsistency.

Proof. For Part (a), assume that q is a proof of α and q′ is a
proof of (¬α). Then, taking into account the existence of the axiom
(α→ ((¬α)→ ϕ)), we obtain the proof

qq′((α→ ((¬α)→ ϕ)), ((¬α)→ ϕ), ϕ)

for ϕ.
In order to prove Part (b), let us remark that by Part (a), we can

construct effectively a proof in HFΓ∪{(¬ϕ)} of ϕ. Using the observa-
tion that follows Corollary 3.2.5, we can construct effectively a proof
of ((¬ϕ)→ ϕ) inHFΓ. Then, by using the axiom (((¬ϕ)→ ϕ)→ ϕ),
we obtain a proof of ϕ in HFΓ.

For the last part, note that, by Part (b), we can effectively con-
struct a proof r of ϕ in HFΓ from the (HF ,Γ ∪ {(¬ϕ)})-certificate
of inconsistency. Then, if (q, q′) is an (HF ,Γ ∪ {ϕ})-certificate
of inconsistency, the pair (rq, rq′) is an (HF ,Γ)-certificate of
inconsistency. �

332 Logical Foundations of Computer Science — Volume 1

Amore explicit description of the construction outlined in Part (3)
of the previous theorem starts from (q0, q

′
0), a certificate of inconsis-

tency for Γ ∪ {ϕ} and (q1, q
′
1) and a certificate of inconsistency for

Γ ∪ {(¬ϕ)}. Let α and (¬α) be the formulas proved by q1 and q′1,
respectively. Then, we have the proof in HFΓ∪{(¬ϕ)}:

s = q1q
′
1((α→ ((¬α)→ ϕ)), ((¬α)→ ϕ), ϕ).

By the effectivized version of the Deduction Theorem, we can
obtain a proof s′ of ((¬ϕ) → ϕ) in HFΓ starting from s. Let r =
s′((((¬ϕ) → ϕ) → ϕ), ϕ). The desired Γ-certificate of inconsistency
is (rq0, rq

′
0).

Lemma 3.2.16. Let Γ be a set of formulas and let ϕ be a positive or
a negated positive formula which is not a literal, that is, ϕ = (αCβ)
or ϕ = (¬(αCβ)). Then, there is an effective, syntactic construction
that, starting from (HF ,Γ ∪ K)-certificates of inconsistency for all
constituents K of ϕ, produces (HF ,Γ′)-certificates of inconsistency
when Γ′ is Γ ∪ {ϕ,α, β}, Γ ∪ {ϕ, (¬α), β}, Γ ∪ {ϕ,α, (¬β)}, or Γ ∪
{ϕ, (¬α), (¬β)}.

Proof. Suppose that ϕ = (α ↔ β). By hypothesis, we have
(HF ,Γ ∪ {α, β})- and (HF ,Γ ∪ {(¬α), (¬β)})-certificates of incon-
sistency, which are at the same time (HF ,Γ ∪ {ϕ,α, β})- and
(HF ,Γ ∪ {ϕ, (¬α), (¬β)})-certificates of inconsistency, respectively.
Moreover, the pair (q, q′), where q = ((α↔ β)) and

q′ = (α, (¬β), (α→ ((¬β)→ (¬(α↔ β)))),

((¬β)→ (¬(α↔ β))), (¬(α ↔ β))),

is an (HF ,Γ ∪ {ϕ,α, (¬β)})-certificate of inconsistency because of
Axiom Group 17.

In a similar manner, using Axiom Group 18, we construct an
(HF ,Γ ∪ {ϕ, (¬α), β})-certificate of inconsistency.

Let now ϕ = (¬(α ∧ β)). By hypothesis, we have the pairs
(q0, q

′
0) and (q1, q

′
1) that are (HF ,Γ∪{(¬α)})- and (HF ,Γ∪{(¬β)})-

certificates of inconsistency, respectively. Note that (q0, q
′
0) is an

(HF ,Γ ∪ {ϕ, (¬α), β})- and, also, an (HF ,Γ ∪ {ϕ, (¬α), (¬β)})-
certificate of inconsistency and (q1, q

′
1) is both an (HF ,Γ ∪

{ϕ, (¬α), (¬β)})- and an (HF ,Γ ∪ {ϕ,α, (¬β)})-certificate of
inconsistency.

Propositional Logic–Formal Systems 333

The pair (r, r′) given by r = ((¬(α ∧ β))) and

r = (α, β, (α→ (β → (α ∧ β))), (β → (α ∧ β)), (α ∧ β))

is an (HF ,Γ ∪ {ϕ,α, β})-certificate of inconsistency due to Axiom
Group 9.

We leave to the reader consideration of the remaining cases. �

Theorem 3.2.17. There is an effective, syntactic construction that
starts with a set Γ of formulas, a formula ϕ, and (HF ,Γ ∪ K)-
certificates of inconsistency for all constituents K of ϕ and produces
an (HF ,Γ ∪ {ϕ})-certificate of inconsistency.

Proof. If ϕ is a positive formula or a negated positive formula,
apply Lemma 3.2.16 and Theorem 3.2.15, Part (3).

If ϕ = (¬(¬α)), then we have an (HF ,Γ ∪ {α})-certificate of
inconsistency, which is also an (HF ,Γ∪{ϕ,α})-certificate of inconsis-
tency. Also, note that (((¬α)), ((¬(¬α)))) is an (HF ,Γ∪{ϕ, (¬α)})-
certificate of inconsistency. Using Theorem 3.2.15, Part (3), we obtain
an (HF ,Γ ∪ {ϕ})-certificate of inconsistency. �

Theorem 3.2.18. If Γ is a maximally consistent set of formulas,
then Γ is a truth set.

Proof. Let Γ be a maximally consistent set of formulas. For every
formula ϕ, (¬ϕ) ∈ Γ if and only if ϕ �∈ Γ because of Corollary 3.2.13.
By Theorem 2.7.7, in the presence of the above condition, Γ is a truth
set if and only if for every formula ϕ that is either a positive formula,
but not a variable, or the negation of such a formula, if a constituent
of ϕ is a subset of Γ, then ϕ ∈ Γ. Let ϕ be such a formula and let K
be a constituent of ϕ that is included in Γ. For some ϕ0, . . . , ϕn−1,
we have K = {ϕ0, . . . , ϕn−1} and there is an axiom of HF equal to

(ϕ0 → (ϕ1 → · · · (ϕn−1 → ϕ) · · ·)),

where n is either 1 or 2. Then, by applying modus ponens n times,
we obtain Γ �HF ϕ, which, by Corollary 3.2.10, implies ϕ ∈ Γ. �

Theorem 3.2.19. If Γ is a consistent set of formulas, then Γ is
satisfiable.

334 Logical Foundations of Computer Science — Volume 1

Proof. By Theorem 3.2.7, consistency is a property of finite char-
acter. Therefore, by Theorem 1.3.3, there is a maximally consistent
set Γ′ such that Γ ⊆ Γ′. By Theorem 3.2.18, Γ′ is a truth set and,
hence, by Theorem 2.7.13, Γ′ is satisfiable, which implies the satisfi-
ability of Γ. �

Note that Theorem 3.2.17 shows that inconsistency of sets
of formulas is an inconsistency property (and, therefore, consis-
tency of sets of formulas is a consistency property). An alternative
proof of Theorem 3.2.19 is therefore an immediate consequence of
Theorem 2.7.21.

Corollary 3.2.20. A set of formulas Γ is consistent if and only if
it is satisfiable.

Proof. The statement follows from Theorems 3.2.8 and 3.2.19. �

Theorem 3.2.21 (Completeness of HFΓ). Let Γ be a set of for-
mulas and let ϕ be a formula. If Γ |= ϕ, then Γ �HF ϕ.

Proof. If Γ � �HF ϕ, then, by Theorem 3.2.12, Γ ∪ {(¬ϕ)} is con-
sistent, so, by Theorem 3.2.19, Γ∪{(¬ϕ)} is satisfiable. This implies
that Γ �|= ϕ, by Part 1 of Theorem 2.3.17. �

Corollary 3.2.22. Let Γ be a set of formulas and let ϕ be a formula.
Then, Γ |= ϕ if and only if Γ �HF ϕ.

Proof. This follows immediately from Theorems 3.2.3
and 3.2.21. �

Example 3.2.23. The set of formulas {(¬ϕ), (ψ → ϕ), ψ} is clearly
inconsistent. Therefore, by Theorem 3.2.12 (reductio ad absurdum),
we have {(¬ϕ), (ψ → ϕ)} �HF (¬ψ).

The next statement is a formalization of proof by cases.

Theorem 3.2.24. Let Γ be a set of formulas and let ϕ,ψ be two
formulas such that we have both Γ∪{ϕ} �HF ψ and Γ∪{(¬ϕ)} �HF
ψ. Then, Γ �HF ψ.

Proof. The result will follow easily if we prove �HF ((ϕ →
ψ) → (((¬ϕ) → ψ) → ψ)). To this end, we will show that
{(ϕ → ψ), ((¬ϕ) → ψ)} �HF ψ and then apply the Deduction

Propositional Logic–Formal Systems 335

Theorem twice. By reductio ad absurdum, it suffices to show that
the set {(ϕ → ψ), ((¬ϕ) → ψ), (¬ψ)} is inconsistent. By Exam-
ple 3.2.23, we have {(ϕ → ψ), ((¬ϕ) → ψ), (¬ψ)} �HF (¬ϕ) and
{(ϕ→ ψ), ((¬ϕ)→ ψ), (¬ψ)} �HF (¬(¬ϕ)). �

The argument of Theorem 3.2.24 implies that the proof that shows
Γ �HF ψ can be obtained effectively from proofs that show that
Γ ∪ {ϕ} �HF ψ and Γ ∪ {(¬ϕ)} �HF ψ.

Lemma 3.2.25. Let ϕ,ψ be two formulas. We have (ϕ ↔ ψ) �HF
(ϕ→ ψ) and (ϕ↔ ψ) �HF (ψ → ϕ).

Proof. Starting from the instance of the Axiom Group 17 (ϕ →
((¬ψ) → (¬(ϕ ↔ ψ)))), it follows that the set {(ϕ ↔ ψ), ϕ, (¬ψ)}
is inconsistent. Therefore, by reductio ad absurdum, we have {(ϕ ↔
ψ), ϕ} �HF ψ. An application of the Deduction Theorem shows that
{(ϕ↔ ψ)} �HF (ϕ→ ψ).

The existence of the second proof can be shown similarly. �

Lemma 3.2.26. Let ϕ,ψ be two formulas. We have {(ϕ→ ψ), (ψ →
ϕ)} �HF (ϕ↔ ψ).

Proof. Note that by modus ponens, we have {ϕ, (ϕ → ψ), (ψ →
ϕ)} �HF ψ. The formula (ϕ → (ψ → (ϕ ↔ ψ))) is an instance of
Axiom Group 11. By using modus ponens twice, we obtain {ϕ, (ϕ→
ψ), (ψ → ϕ)} �HF (ϕ↔ ψ).

By Example 3.2.23, we have {(¬ϕ), (ϕ → ψ), (ψ → ϕ)} �HF
(¬ψ). The formula ((¬ϕ) → ((¬ψ) → (ϕ ↔ ψ))) is an instance of
Axiom Group 12. Again, by a double application of modus ponens, we
have {(¬ϕ), (ϕ → ψ), (ψ → ϕ)} �HF (ϕ ↔ ψ). By Theorem 3.2.24,
we have finally {(ϕ→ ψ), (ψ → ϕ)} �HF (ϕ↔ ψ). �

Given the formulas ϕ and ψ, we can effectively find the proofs in
HF whose existence is asserted by Lemmas 3.2.25 and 3.2.26.

Theorem 3.2.27. Let ϕ0, ϕ1, ϕ2 be formulas. We have {(ϕ0 ↔
ϕ1), (ϕ1 ↔ ϕ2)} �HF (ϕ0 ↔ ϕ2).

Proof. Lemma 3.2.25 implies that (ϕ0 ↔ ϕ1) �HF (ϕ0 → ϕ1) and
(ϕ0 ↔ ϕ1) �HF (ϕ1 → ϕ0). Similarly, we have (ϕ1 ↔ ϕ2) �HF
(ϕ1 → ϕ2) and (ϕ1 ↔ ϕ2) �HF (ϕ2 → ϕ1). This allows us to write
{(ϕ0 ↔ ϕ1), (ϕ1 ↔ ϕ2)} �HF (ϕ0 → ϕ2) by applying the hypothet-
ical syllogism rule introduced in Supplement 2. Similarly, we have

336 Logical Foundations of Computer Science — Volume 1

{(ϕ0 ↔ ϕ1), (ϕ1 ↔ ϕ2)} �HF (ϕ2 → ϕ0). Finally, by Lemma 3.2.26,
we obtain {(ϕ0 ↔ ϕ1), (ϕ1 ↔ ϕ2)} �HF (ϕ0 ↔ ϕ2). �

The last theorem shows that starting from the formulas ϕ0, ϕ1,
and ϕ2, we can produce effectively a proof of (ϕ0 ↔ ϕ2) from proofs
of (ϕ0 ↔ ϕ1) and (ϕ1 ↔ ϕ2).

Corollary 3.2.28. Let n ≥ 2 and let ϕ0, . . . , ϕn−1 be n formulas.
There is a proof in HF that shows that {(ϕ0 ↔ ϕ1), . . . , (ϕn−2 ↔
ϕn−1)} �HF (ϕ0 ↔ ϕn−1).

Proof. The argument is by induction on n ≥ 2. The basis step,
n = 2, is immediate. Suppose the statement holds for n and let
ϕ0, . . . , ϕn be n + 1 formulas. By inductive hypothesis, there is a
proof in HF that shows that {(ϕ0 ↔ ϕ1), . . . , (ϕn−2 ↔ ϕn−1)} �HF
(ϕ0 ↔ ϕn−1). By Theorem 3.2.27, we have {(ϕ0 ↔ ϕn−1), (ϕn−1 ↔
ϕn)} �HF (ϕ0 ↔ ϕn), which yields the desired conclusion. �

The argument of Corollary 3.2.28 shows that the proof of (ϕ0 ↔
ϕn−1) from {(ϕ0 ↔ ϕ1), . . . , (ϕn−2 ↔ ϕn−1)} can be found effec-
tively.

Corollary 3.2.29. Let ϕ0, . . . , ϕn−1 be formulas, where n ≥ 2, and
let Γ be a set of formulas. Starting from proofs Γ �HF (ϕi ↔ ϕi+1)
for 0 ≤ i ≤ n − 2, one can produce effectively a proof for Γ �HF
(ϕ0 ↔ ϕn−1).

Proof. The corollary follows directly from Corollary 3.2.28. �

Definition 3.2.30. Let Γ be a set of formulas and let ϕ,ψ be
two formulas. We say that ϕ and ψ are Γ-provably equivalent if
Γ �HF (ϕ ↔ ψ). The formulas ϕ,ψ are provably equivalent if they
are ∅-provably equivalent.

We will prove now a syntactic version of the Replacement Theo-
rem (Theorem 2.6.12) without appealing to the Completeness The-
orem. This requires providing explicit proofs of several tautologies.
These proofs, of course, exist by the Completeness Theorem.

Lemma 3.2.31. The following tautologies have proofs in the formal
system HF that can be found effectively given the formulas θ0, θ1, θ

′
0

Propositional Logic–Formal Systems 337

and the binary connective symbol C:

((θ0 ↔ θ′0)→ ((θ0Cθ1)↔ (θ′0Cθ1))),
((θ0 ↔ θ′0)→ ((θ1Cθ0)↔ (θ1Cθ

′
0))).

In addition, for all θ0, θ
′
0, we can find effectively a proof for ((θ0 ↔

θ′0)→ ((¬θ0)↔ (¬θ′0))).

Proof. To find a proof for ((θ0 ↔ θ′0) → ((θ0 ∨ θ1) ↔ (θ′0 ∨ θ1))),
it suffices to find a proof for (θ0 ↔ θ′0) �HF ((θ0 ∨ θ1) ↔ (θ′0 ∨ θ1))
and then apply the Deduction Theorem. In turn, it suffices to find
proofs which show that

{(θ0 ↔ θ′0), (θ0 ∨ θ1)} �HF (θ′0 ∨ θ1), (3.1)

{(θ0 ↔ θ′0), (θ
′
0 ∨ θ1)} �HF (θ0 ∨ θ1), (3.2)

and then apply twice the Deduction Theorem and Lemma 3.2.26. For
the proof of (3.1), using proof by cases, we will show that

{(θ0 ↔ θ′0), (θ0 ∨ θ1), θ1} �HF (θ′0 ∨ θ1), (3.3)

{(θ0 ↔ θ′0), (θ0 ∨ θ1), (¬θ1)} �HF (θ′0 ∨ θ1). (3.4)

The proof for (3.3) follows directly from Axiom Group 8. For (3.4), we
note that {(¬θ1), (¬θ0), (θ0∨θ1)} is inconsistent by Axiom Group 13.
By reductio ad absurdum, we have {(θ0 ↔ θ′0), (¬θ1), (θ0 ∨ θ1)} �HF
θ0. By Lemma 3.2.25, we have {(θ0 ↔ θ′0), (¬θ1), (θ0 ∨ θ1)} �HF
(θ0 → θ′0). By modus ponens, we have {(θ0 ↔ θ′0), (¬θ1), (θ0 ∨
θ1)} �HF θ′0. Now, by Axiom Group 7, we obtain {(θ0 ↔
θ′0), (¬θ1), (θ0∨θ1)} �HF (θ′0∨θ1). The argument for the proof of (3.2)
is similar.

For a proof of ((θ0 ↔ θ′0)→ ((θ0 ∧ θ1)↔ (θ′0 ∧ θ1))), it suffices to
find a proof for (θ0 ↔ θ′0) �HF ((θ0∧θ1)↔ (θ′0∧θ1)) and then apply
the Deduction Theorem. In turn, it suffices to find proofs which show
that

{(θ0 ↔ θ′0), (θ0 ∧ θ1)} �HF (θ′0 ∧ θ1), (3.5)

{(θ0 ↔ θ′0), (θ
′
0 ∧ θ1)} �HF (θ0 ∧ θ1), (3.6)

and then apply twice the Deduction Theorem and Lemma 3.2.26. By
Axiom Group 14, the set {(θ0 ↔ θ′0), (θ0∧θ1), (¬θ0)} is inconsistent.

338 Logical Foundations of Computer Science — Volume 1

By reduction ad absurdum, we obtain {(θ0 ↔ θ′0), (θ0 ∧ θ1)} �HF θ0.
Similarly, we obtain {(θ0 ↔ θ′0), (θ0∧θ1)} �HF θ1. By Lemma 3.2.25,
we obtain {(θ0 ↔ θ′0), (θ0 ∧ θ1)} �HF (θ0 → θ′0) and by modus
ponens, we have {(θ0 ↔ θ′0), (θ0 ∧ θ1)} �HF θ′0. By Axiom Group 9,
we have {(θ0 ↔ θ′0), (θ0∧θ1)} �HF (θ′0∧θ1). A similar argument can
be used to obtain a proof of (3.6).

We leave to reader to the reader the remaining proofs, which are
easier. �

Theorem 3.2.32. Let ϕ be a formula. If α, β are provably equivalent
formulas and (α, i) is an occurrence of α in ϕ, then ϕ is provably
equivalent to ψ = replace (ϕ, (α, i), β).

Proof. First note that in the special case when ϕ coincides
with α, we have ψ = β and thus ϕ and ψ are clearly provably
equivalent.

The argument is by induction on the formula ϕ. If ϕ is a variable,
we are in the special case. Suppose that ϕ = (ϕ0Cϕ1), where C
is a binary connective symbol. If we are not in the special case,
the occurrence of α may be located either in ϕ0 or in ϕ1. Suppose
that the occurrence is located in ϕ0. (The argument is similar if the
occurrence is within ϕ1.) Let ϕ′

0 be the formula obtained from ϕ0

by replacing the occurrence of α by β. Then, ψ = (ϕ′
0Cϕ1). By the

inductive hypothesis, the formulas ϕ0, ϕ
′
0 are provably equivalent. By

Lemma 3.2.31, for every binary connective symbol C, there is a proof
of the formula

((ϕ0 ↔ ϕ′
0)→ ((ϕ0Cϕ1)↔ (ϕ′

0Cϕ1))).

By modus ponens, the formula ((ϕ0Cϕ1) ↔ (ϕ′
0Cϕ1)) is also prov-

able and so (ϕ↔ ψ) is provable.
We leave to the reader the case when ϕ = (¬ϕ0). �

The argument of Theorem 3.2.32 shows that starting from a for-
mula ϕ, two provably equivalent formulas α and β and a proof of
(α↔ β), and an occurrence of α in ϕ, we can effectively find a proof
of (ϕ↔ ψ), where ψ is the formula obtained from ϕ by replacing the
occurrence of α by β.

Propositional Logic–Formal Systems 339

3.3 Tableaux

Tableaux constitute a systematic method of searching for truth
assignments that satisfy a set of signed or unsigned formulas. They
make use of the fact that a truth assignment satisfies a formula if
and only if it satisfies one of its constituents and are built through
the following recursive process. If Ω = Ω′ ∪ {α} is a set of signed or
unsigned formulas, then Ω is satisfiable if and only if Ω′ ∪K is sat-
isfiable for some constituent K of α. We can now repeat the process
for each Ω′ ∪K by picking a formula α′ in the set. A tree is used to
keep track of the development of the algorithm. Each branch of the
tree represents a possible way of satisfying the set Ω.

We begin this section with tableaux for signed formulas. We will
use the sequence of constituents d(bϕ) of a signed formula bϕ intro-
duced in Section 2.7.

Observe that d(T(ϕ ∨ ϕ)), d(F(ϕ ∧ ϕ)), and d(F(ϕ↔ ϕ)) are all
sequences of length two whose entries are the same. This will help us
in presenting a uniform treatment of tableaux.

Recall that we refer to a labeled ordered tree as a lot. (For this
and related terminology, see Section 1.7.)

Definition 3.3.1. A signed tableau, or just a tableau for brevity, is
a lot whose labels are sets of signed formulas.

If T is a tableau and P is a path of T, then we say that a signed
formula bϕ occurs in P if bϕ ∈ T(r) for some r ∈ P.

A truth assignment satisfies a node q (a path P) if it satisfies every
signed formula in T(q) (every signed formula that occurs in P).

If P is a path of a tableau T, then T(P) is the set of signed formulas
that occur in P. (More precisely, the set of signed formulas that occur
in a path P ought to be denoted by

⋃
T(P); however, we prefer to use

this slight abuse of notation.)
When there is no risk of confusion, we may use in this section the

term “formula” instead of “signed formula.”

Definition 3.3.2. A node q of a tableau T is closed if T(q) is closed,
that is, there is an unsigned formula ϕ such that both Tϕ and Fϕ
belong to T(q). A branch B of T is closed if the set of formulas occur-
ring in B is closed. B is strongly closed if it is finite and q is closed,
where q is the endpoint of B.

340 Logical Foundations of Computer Science — Volume 1

A branch B is complete if the set of formulas occurring in B is a
Hintikka set.

Since tableaux are partial functions from Seq(N) to
P(SPLFORM), it makes sense to talk about one tableau being an
extension of another tableau. In other words, a tableau T′ is an exten-
sion of a tableau T if Dom(T) ⊆ Dom(T′) and for every q ∈ Dom(T),
we have T(q) = T′(q).

Let Δ be a set of signed formulas and let T be a tableau. Define
T′ as the tableau (T; T(λ) ∪ Δ), that is, the (T(λ) ∪ Δ)-join of T, as
introduced in Definition 1.7.17. We will denote T′ by T �Δ.

Definition 3.3.3. A tableau is closed (strongly closed) if every
branch is closed (strongly closed). A tableau is completed (strongly
completed) if every branch is either closed (strongly closed) or
complete.

Observe that if T is (strongly) closed, then so is T �Δ.

Definition 3.3.4. Let Δ be a set of signed formulas. A Δ-tableau is
a tableau T that satisfies the following conditions:

• The root of T is labeled by Δ, i.e., T(λ) = Δ.
• If q is an interior node of T, one of the following cases occurs:

(1) There is some set of signed formulas Δ′ and a signed formula bϕ
with d(bϕ) = (K0, . . . ,Kn−1) such that T(q) = Δ′∪{bϕ}, q has
n immediate descendants and T(qi) = Δ′∪Ki for 0 ≤ i ≤ n−1.

(2) The node q has one immediate descendant q0 and
T(q0) ⊆ T(q).

If the first part of the second item of Definition 3.3.4 is applied at
a node q, we say that regular expansion was used at q. If the second
part of the second item of Definition 3.3.4 was used, we say that
thinning was used at q.

Note that if regular expansion is used at a node q, bϕ may or
may not be a member of Δ′. If bϕ ∈ Δ′, then bϕ and Δ′ may not
be uniquely determined. For example, suppose that T(q) = {T(α ∧
β),Tα,F(¬β)} and T(q0) = {T(α∧β),Tα,Tβ,F(¬β)}. Then, Δ′ =
T(q) and we could have either bϕ = T(α ∧ β) or bϕ = F(¬β). If
bϕ �∈ Δ′, then bϕ is uniquely determined as the signed formula in
T(q) that does not belong to T(qi) for any of the direct descendants

Propositional Logic–Formal Systems 341

qi of q and Δ′ is also uniquely determined as T(q) − {bϕ}. Despite
the ambiguity, in the first case, we say that the formula expanded
at q is retained at q and in the second case, we say that the formula
is removed at q. The reader will observe that we cannot have both
expansion with retention and expansion with removal at the same
node. However, it is possible to have both regular expansion (either
with retention or with removal) and thinning at the same node.

If the second condition of Definition 3.3.4 is met by an interior
node q of an arbitrary tableau T, then we say that T is locally con-
sistent at q.

If regular expansion was used at the node q, we say that T is
locally conservative at q. If T is locally conservative at all its interior
nodes, then we say that T is conservative.

Definition 3.3.5. Let Δ be a set of signed formulas. A Δ-tableau
with retention is a Δ-tableau T such that at every interior node of T
where thinning is not used, the formula expanded is retained.

A Δ-tableau with removal is a Δ-tableau T such that at every
interior node of T where thinning is not used, the formula expanded
is removed.

Example 3.3.6. Consider the formula α = (ϕ→ (ψ → ϕ)) and the
set Δ = {Fα}. The Δ-tableau T given by

T(λ) = {F(ϕ→ (ψ → ϕ))},
T(0) = {F(ϕ→ (ψ → ϕ)),Tϕ,F(ψ → ϕ)},
T(00) = {F(ϕ→ (ψ → ϕ)),Tϕ,F(ψ → ϕ),Tψ,Fϕ}

is represented in Figure 3.1. Clearly, this is a strongly closed tableau
with retention.

Example 3.3.7. Let Δ = {T((p0∧(¬p1))∨((¬p0)∧p1))}. A strongly
completed Δ-tableau T with removal (represented in Figure 3.2) is
given by

T(λ) = {T((p0 ∧ (¬p1)) ∨ ((¬p0) ∧ p1))},
T(0) = {T(p0 ∧ (¬p1))},
T(1) = {T((¬p0) ∧ p1)},

342 Logical Foundations of Computer Science — Volume 1

F(ϕ → (ψ → ϕ))

F(ϕ → (ψ → ϕ)), Tϕ, F(ψ → ϕ)

F(ϕ → (ψ → ϕ)), Tϕ, F(ψ → ϕ),
Tψ, Fϕ

0

0

Fig. 3.1. Strongly closed tableau of Example 3.3.6.

T(00) = {Tp0,T(¬p1)},
T(000) = {Tp0,Fp1},
T(10) = {T(¬p0),Tp1},
T(100) = {Fp0,Tp1}.

Example 3.3.8. Let Δ = {T(p0 ∨ p1),F(p0 ∧ p1)}. A strongly com-
pleted Δ-tableau T is given by

T(λ) = {T(p0 ∨ p1),F(p0 ∧ p1)},
T(0) = {F(p0 ∧ p1),Tp0},
T(1) = {F(p0 ∧ p1),Tp1},
T(00) = {F(p0 ∧ p1),Tp0,Fp0},
T(01) = {F(p0 ∧ p1),Tp0,Fp1},
T(10) = {F(p0 ∧ p1),Tp1,Fp0},
T(11) = {F(p0 ∧ p1),Tp1,Fp1}.

Propositional Logic–Formal Systems 343

T((p0 ∧ (¬p1)) ∨ ((¬p0) ∧ p1))

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��

T(p0 ∧ (¬p1)) T((¬p0) ∧ p1)

Tp0, T(¬p1) T(¬p0), Tp1

Tp0, Fp1 Fp0, Tp1

10

00

0 0

Fig. 3.2. Strongly completed tableau for Example 3.3.7.

This tableau is represented in Figure 3.3. Note that T is neither with
retention nor with removal.

Note that every Δ-tableau is finitely branching. Therefore, by
König’s Lemma (see Theorem 1.7.7), every strongly closed Δ-tableau
T is finite because every branch of T is finite.

For finite, conservative Δ-tableaux with retention, the notions
“strongly completed” and “completed” coincide. In other words, if T
is a finite, conservative Δ-tableau with retention, then T is strongly
completed if and only if it is completed.

Lemma 3.3.9. Let Δ,Δ′ be two sets of signed formulas. If T is a
Δ-tableau, then T � Δ′ is a (Δ ∪ Δ′)-tableau. Moreover, if T is a
(strongly) closed Δ-tableau, then T�Δ′ is a (strongly) closed (Δ∪Δ′)-
tableau.

Proof. This straightforward argument is also left to the reader. �

344 Logical Foundations of Computer Science — Volume 1

T(p0 ∨ p1), F(p0 ∧ p1)

��������

��������

F(p0 ∧ p1), Tp0 F(p0 ∧ p1), Tp1

F(p0 ∧ p1),
Tp0, Fp0

F(p0 ∧ p1),
Tp0, Fp1

F(p0 ∧ p1),
Tp1, Fp0

F(p0 ∧ p1),
Tp1, Fp1

�
�

�
�

��

�
�
�
�
��

�
�

�
�

��

�
�
�
�
��

10

1010

Fig. 3.3. Strongly completed tableau for Example 3.3.8.

Theorem 3.3.10. Let Δ be a set of signed formulas. Suppose that T
is a Δ-tableau, Δ = Δ′ ∪ {bϕ}, d(bϕ) = (K0, . . . ,Kn−1), and T(i) =
Δ′ ∪Ki for 0 ≤ i ≤ n− 1.

For every i, 0 ≤ i ≤ n− 1, the following hold:

(1) T[i] is a (Δ′ ∪Ki)-tableau.
(2) If T is a closed tableau with retention at the root, then T[i] is a

closed (Δ ∪Ki)-tableau.
(3) If T is strongly closed, then so is T[i].
(4) If T is closed, then T[i] � {bϕ} is a closed (Δ ∪Ki)-tableau.

Proof. This straightforward argument is left to the reader. �

Theorem 3.3.11. Let Δ be a set of signed formulas and let bϕ be
such that d(bϕ) = (K0, . . . ,Kn−1). Suppose that Ti is a (Δ ∪ Ki)-
tableau for 0 ≤ i ≤ n − 1. Then, T = (T0, . . . , Tn−1;Δ ∪ {bϕ}) is
a (Δ ∪ {bϕ})-tableau. Further, if T0, . . . , Tn−1 are (strongly) closed,
then so is T.

Proof. The argument is left to the reader. �

Propositional Logic–Formal Systems 345

The following theorem shows the analyticity of tableaux for signed
formulas.

Theorem 3.3.12. For every node q of a Δ-tableau T, we have

T(q) ⊆ Bool× SUBF({ϕ | bϕ ∈ Δ for some b ∈ Bool}).

Proof. The argument is by induction on the level of q. If q is the
root, then it is clear that

T(q) = Δ ⊆ Bool× SUBF({ϕ | bϕ ∈ Δ for some b ∈ Bool}).

Now suppose that the result holds for all nodes on level i and that
r is on level i+1. Then, r = qj for some node q on level i. If we used
thinning at q, then j = 0 and T(r) ⊆ T(q) and the inclusion holds for
r by the inductive hypothesis. If regular expansion was used, then
T(r) = Δ′ ∪K, where Δ′ ⊆ T(q) and K is a constituent of a formula
bθ from T(q). Observe that K ⊆ Bool× SUBF(θ) and this allows us
to write

K ⊆ Bool × SUBF(θ)

⊆ Bool × SUBF(SUBF({ϕ | bϕ ∈ Δ for some b ∈ Bool}))
(by inductive hypothesis)

= Bool × SUBF({ϕ | bϕ ∈ Δ for some b ∈ Bool}).

Since, by inductive hypothesis,

T(q) ⊆ Bool× SUBF({ϕ | bϕ ∈ Δ for some b ∈ Bool}),

the desired conclusion follows immediately. �

Corollary 3.3.13. If Δ is a finite set of signed formulas and T is a
Δ-tableau, then T(q) is finite for every q ∈ Dom(T).

Proof. This follows immediately from Theorem 3.3.12. �

Corollary 3.3.14. The set of signed formulas that occur in a
branch B of a Δ-tableau T is a subset of Bool × SUBF({ϕ | bϕ ∈
Δ for some b ∈ Bool}).

Proof. This follows immediately from Theorem 3.3.12. �

346 Logical Foundations of Computer Science — Volume 1

Theorem 3.3.15. If Δ is a set of signed formulas and T is a
Δ-tableau, then for every truth assignment v, v satisfies Δ if and
only if v satisfies T(B) for some branch B of T.

Proof. Let v be a truth assignment which satisfies Δ = T(λ). We
construct a sequence λ = q0, q1, . . . of nodes of T such that for each
k ≥ 0, v satisfies T(qk), and either qk+1 is an immediate descendant
of qk or qk is a leaf and qk+1 = qk. Suppose that qk is defined and v
satisfies T(qk). If qk is a leaf, we let qk+1 = qk. Otherwise, we need to
consider two cases:

Case 1: Regular expansion is used at qk. Then, there is a signed
formula bϕ and a set of signed formulas Δ′ with T(qk) =
Δ′ ∪ {bϕ} and d(bϕ) = (K0, . . . ,Kn−1) such that qk has
qk0, . . . , qk(n − 1) as immediate descendants and T(qkj) =
Δ′ ∪ Kj for 0 ≤ j ≤ n − 1. Since v satisfies bϕ, by Theo-
rem 2.7.25, there is a constituent Kj that v satisfies. Let
qk+1 = qkj, where j is the least number satisfying the con-
dition of the previous sentence. Then, v satisfies T(qk+1).

Case 2: Thinning is used at qk. Then, let qk+1 = qk0. Since T(qk0) ⊆
T(qk), v satisfies T(qk+1).

The desired branch B is {q0, . . . , qk, . . .}.
Conversely, if v satisfies T(B) for some branch B of T then, since

Δ ⊆ T(B), it is immediate that v satisfies Δ. �

Clearly, if a branch B of a Δ-tableau T is closed, then T(B) is not
satisfiable.

Theorem 3.3.16. Let Δ be a set of signed formulas and let T be a
completedΔ-tableau. Then,Δ is satisfiable if and only if T is not closed.

Proof. Suppose first that Δ is satisfiable. Then, Theorem 3.3.15
implies that T has a branch that is satisfiable. Therefore, T is not
closed.

Conversely, if T is not closed, then, since it is completed, there
must be a complete branch B of T. Since T(B) is a Hintikka set, by
Corollary 2.7.29, T(B) is satisfiable and, by Theorem 3.3.15, Δ is
satisfiable. �

Theorem 3.3.17 (Soundness Theorem for Tableaux of
Propositional Logic). Let Δ be a set of signed formulas. If there
is a closed Δ-tableau, then Δ is unsatisfiable.

Propositional Logic–Formal Systems 347

Proof. This is an immediate consequence of Theorem 3.3.16. �

Combining Theorems 2.7.28 and 3.3.15, we see that with a com-
pleted Δ-tableau T, we can not only determine whether Δ is sat-
isfiable but we can actually identify those truth assignments that
satisfy Δ.

Theorem 3.3.18. Let Δ be a set of signed formulas and let T be a
completed Δ-tableau. Then, a truth assignment v satisfies Δ if and
only if there is a branch B of T such that T(B) is a Hintikka set and
v(p) = b for every bp ∈ T(B).

Proof. This follows immediately from Theorems 2.7.28
and 3.3.15. �

Lemma 3.3.19. Let P be a path of a conservative Δ-tableau T ending
in the node q. If bϕ ∈ T(P)− T(q), then there exists a constituent K
of bϕ such that K ⊆ T(P).

Proof. Let r ∈ P be the node closest to q that contains bϕ. Note
that r �= q and for every immediate descendant ri of r, there is a
constituent Ki of bϕ included in T(ri) because regular expansion was
used at r. One of these immediate descendants is in P. �

The following algorithm shows that we can always construct a
conservative completed Δ-tableau for a finite set of signed formulas Δ.

Algorithm 3.3.20.
Input: A finite set Δ of signed formulas.
Output: A finite conservative completed Δ-tableau.
Method: We construct a sequence T0, T1, . . . of Δ-tableaux such that
each Ti+1 is a leaf extension of Ti using the following steps:

(A) Let T0 be the one-node tableau with root labeled by Δ.
(B) Suppose that Ti has been defined. Then, if Ti is completed, the

algorithm stops with Ti as output. Otherwise, Ti has branches
that are neither closed nor complete. Select nondeterministically
such a branch B ending in the leaf q. Then, select nondeterminis-
tically a formula bqϕq ∈ Ti(q) and a subset Δq of T(q) such that
T(q) = Δq ∪ {bqϕq} and none of the constituents K0, . . . ,Kn−1 of
bqϕq is included in T(B). (By Lemma 3.3.19, bqϕq exists.) Define
Ti+1 by adding to Dom(Ti) the nodes q0, . . . , q(n − 1) and letting
Ti+1(qj) = Δq ∪Kj for 0 ≤ j ≤ n− 1.

348 Logical Foundations of Computer Science — Volume 1

Proof of Correctness: It is clear that every tree Ti is a Δ-tableau
and that if Ti+1 is defined, then it is a strict extension of Ti. Therefore,
|Ti| ≥ i+ 1.

If Ti is defined, qj ∈ Dom(Ti), P is the path leading to q, and P′
is the path leading to qj (that is, P′ = P∪ {qj}), then Ti(P) ⊂ Ti(P

′).
This implies that if q is at level k of Ti, then |Ti(P)| ≥ k, where P is
the path leading to q. Also, observe that if Ti is defined and P is a
closed path in Ti, then P is a branch of Ti.

Let M = |SUBF({ϕ | bϕ ∈ Δ for some b ∈ Bool})|. By Theo-
rem 3.3.12, no path of a Δ-tableau can contain more than 2M for-
mulas and therefore no path of a Δ-tableau Ti constructed as above
can have length greater than 2M .

If Ti is defined, then, by Exercise 90 of Chapter 1, it contains
no more than N nodes, where N = 22M+1 − 1, since for our set of
connectives, a node has no more than two immediate descendants.
Since every tableau Ti has at least i + 1 nodes, we have i ≤ N − 1.
Thus, the algorithm must halt necessarily producing a completed
Δ-tableau.

Example 3.3.21. One of the possible completed Δ-tableaux for the
set of signed formulas Δ = {T(p0 ∧ p1),F((p0 ∧ p1)∨ p2)} that could
result from applying Algorithm 3.3.20 is shown in Figure 3.4. Since
the tableau is closed, we conclude that the {T(p0 ∧ p1),F((p0 ∧ p1)∨
p2)} is unsatisfiable. Note, however, that this tableau is not strongly
closed. We will return to this point later.

The correctness of Algorithm 3.3.20, with its nondetermin-
ism, implies that in the construction of a conservative completed
Δ-tableau for a finite set of signed formulas Δ, any legal choice of
a branch and formula in the branch to expand at each step will
lead eventually to the desired tableau. Also, if the formula expanded
is retained at every step, we end up with a completed tableau with
retention; if the formula expanded is removed at every step, we obtain
a completed tableau with removal.

To recapitulate the development discussed so far in this sec-
tion, if we have a finite set of signed formulas Δ and we wish to
determine whether this set of formulas is satisfiable, we first produce
a completed Δ-tableau T (possibly using Algorithm 3.3.20) and then
inspect the branches. If all the branches of T are closed, then Δ is not
satisfiable. Otherwise, each complete branch of T (which is labeled

Propositional Logic–Formal Systems 349

Tp0, Tp1, F(p0 ∧ p1), Fp2

Tp0, Tp1, F((p0 ∧ p1) ∨ p2)

T(p0 ∧ p1), F((p0 ∧ p1) ∨ p2)

0

0

Fig. 3.4. Completed tableau for {T(p0 ∧ p1),F((p0 ∧ p1) ∨ p2)}.

by a Hintikka set) determines a partial truth assignment and a truth
assignment v satisfies Δ if and only if it extends one of these partial
truth assignments.

The following theorem is a special case of the Completeness The-
orem for Tableaux (Theorem 3.3.34).

Theorem 3.3.22. Let Δ be a finite set of signed formulas. If Δ is
unsatisfiable, then there exists a conservative finite closed Δ-tableau.

Proof. The theorem follows immediately from Theorem 3.3.16 and
the correctness of Algorithm 3.3.20. �

By the remark made after Algorithm 3.3.20, we could strengthen
Theorem 3.3.22 to obtain a closed tableau with retention or with
removal.

Corollary 3.3.23. Let Δ be a finite set of signed formulas. Then,
the following three statements are equivalent:

(1) Δ is unsatisfiable.
(2) There exists a closed Δ-tableau.
(3) There exists a conservative closed Δ-tableau.

Proof. The corollary combines Theorems 3.3.17 and 3.3.22. �

350 Logical Foundations of Computer Science — Volume 1

Example 3.3.24. The set of signed formulas Δ = {Fα}, where
α = (ϕ → (ψ → ϕ)), considered in Example 3.3.6 is unsatisfiable
because theΔ-tableau T given in that example is closed. Therefore, the
signed formula Fα is not satisfiable, which means that for every truth
assignment v, we have v(α) = T; in other words, α is a tautology.

Example 3.3.25. The set of signed formulas Δ = {T(p0∨p1),F(p0∧
p1)} considered in Example 3.3.8 is satisfiable since the completed
Δ-tableau given in that example has two branches that are labeled by
Hintikka sets. We conclude that the set of truth assignments that sat-
isfy Δ consists of those truth assignments v such that v(p0) = T and
v(p1) = F (corresponding to the Hintikka set T(λ)∪T(0)∪T(01)) and
of those truth assignments v′ such that v′(p0) = F and v′(p1) = T
(corresponding to the Hintikka set T(λ) ∪ T(1) ∪ T(10)).

Example 3.3.26. The existence of the closed tableau shown in Fig-
ure 3.4 shows that the set {T(p0 ∧ p1),F((p0 ∧ p1) ∨ p2)} is unsatis-
fiable, which gives the unsurprising logical implication {(p0 ∧ p1)} |=
((p0 ∧ p1) ∨ p2).

For the sake of Section 3.5, we present a variant of Algo-
rithm 3.3.20 that generates strongly completed tableaux.

Algorithm 3.3.27.
Input: A finite set Δ of signed formulas.
Output: A conservative finite strongly completed Δ-tableau.
Method: Apply the method of Algorithm 3.3.20 with “com-
pleted” replaced by “strongly completed” and “closed” replaced
by “strongly closed.” Note that if a branch B in any of the Δ-
tableaux Ti is neither strongly closed nor complete, the branch
cannot contain both Tr and Fr, for some variable r, because if it
did, then by Lemma 3.3.19, Tr and Fr would belong to the leaf of
B and thus B would be strongly closed.

Proof of Correctness: The proof is the same as the argument in
the correctness proof of Algorithm 3.3.20.

Propositional Logic–Formal Systems 351

Tp0,Tp1,F(p0 ∧ p1),Fp2

Tp0,Tp1,F((p0 ∧ p1) ∨ p2)

T(p0 ∧ p1),F((p0 ∧ p1) ∨ p2)

0

0

Tp0,Tp1,Fp0,Fp2 Tp0,Tp1,Fp1,Fp2

									

10

Fig. 3.5. A strongly completed Δ-tableau.

Again, Algorithm 3.3.27 can be used to produce conservative
strongly completed tableaux with retention or with removal, as
desired.

Example 3.3.28. Figure 3.5 shows one of the possible strongly
completed Δ-tableaux for the set of signed formulas Δ = {T(p0 ∧
p1),F((p0 ∧ p1) ∨ p2)} that can be obtained by applying Algo-
rithm 3.3.27. This application consists of retracing the steps followed
by Algorithm 3.3.20 to produce the tableau of Example 3.3.21 and
then going one step further to produce a strongly closed tableau.

Observe that a tableau that is both strongly completed and closed
is also strongly closed. This remark is used in the argument of the
following theorem.

352 Logical Foundations of Computer Science — Volume 1

Theorem 3.3.29. Let Δ be a finite set of signed formulas. If
Δ is unsatisfiable, then there exists a strongly closed conservative
Δ-tableau.

Proof. The theorem follows from Theorem 3.3.16 and the correct-
ness of Algorithm 3.3.27. �

Note that Theorem 3.3.29 can be strengthened by asserting the
existence of conservative strongly closed tableaux with retention or
with removal.

Corollary 3.3.30. Let Δ be a finite set of signed formulas. Then,
the following statements are equivalent:

(1) Δ is unsatisfiable.
(2) There exists a strongly closed Δ-tableau.
(3) There exists a conservative strongly closed Δ-tableau.

Proof. The corollary combines Theorems 3.3.17 and 3.3.29. �

Corollary 3.3.30 can be rephrased in terms of formal systems.

Definition 3.3.31. F tabl,cons is the formal system whose set of
objects is the collection of all finite sets of signed formulas, set of
axioms is the collection of all closed finite sets of signed formulas,
and single rule of inference is

Δ ∪K0, . . . ,Δ ∪Kn−1

Δ ∪ {bϕ} R ,

where Δ is a finite set of signed formulas, ϕ is not a statement vari-
able, and d(bϕ) = (K0, . . . ,Kn−1).

If we add the thinning rule

Δ
Δ′ Rthin

where Δ,Δ′ are finite sets of signed formulas such that Δ ⊆ Δ′, we
obtain the formal system F tabl.

Note that by Corollary 3.3.13, an F tabl-deduction (F tabl,cons-
deduction) tree for a finite set of signed formulas Δ is the same
thing as a finite (conservative) Δ-tableau and an F tabl-proof tree
(F tabl,cons-proof tree) for Δ is the same thing as a (conservative)

Propositional Logic–Formal Systems 353

strongly closed Δ-tableau. Thus, the set PT Ftabl (PT Ftabl,cons) is the
same as the set of all tableaux T such that T is a (conservative)
strongly closed T(λ)-tableau and T(λ) is finite.

Theorem 3.3.32 (Soundness and Completeness of the For-
mal Systems Ftabl and Ftabl,cons).The formal systems F tabl and
F tabl,cons are sound and complete with respect to the collection of all
finite unsatisfiable sets of signed formulas.

Proof. The result follows from Corollary 3.3.30 and from the
remark which precedes the theorem. �

By the remark following Theorem 3.3.29, the formal systems F tabl

and F tabl,cons remain complete (and, of course, sound) if in the defi-
nition of the rule R, we add one of the additional restrictions: bϕ ∈ Δ
or bϕ �∈ Δ.

We have seen that for a finite set Δ of signed formulas, we can con-
struct a finite conservative completed Δ-tableau. In the construction,
we have complete leeway in choosing the branch and unexpanded
signed formula in the branch to expand. We now give a construction
which accomplishes the same thing for arbitrary sets of signed for-
mulas (finite or not). In order for the construction to work, certain
restrictions have to be made on the choice of branch and signed for-
mula to expand. We refer to the process as a “construction” rather
than an “algorithm” because for infinite sets of signed formulas, it
may never halt.

Construction 3.3.33.
Input: A set Δ of signed formulas.
Output: A (finite or infinite) sequence T0, T1, . . . of finite Δ-
tableaux such that each Ti+1 is a leaf extension of Ti and T =⋃
{Ti | i ≥ 0} is a conservative completed Δ-tableau.

Method:

(A) Let T0 be the one-node Δ-tableau with root labeled by Δ.
(B) Suppose that Ti has been defined. Then, if Ti is completed,

the construction stops with Ti as the output. Otherwise, Ti
has branches that are neither closed nor complete. Select non-
deterministically among the shortest such branches a branch

354 Logical Foundations of Computer Science — Volume 1

B ending in the leaf q. Then, let bqϕq ∈ Ti(q) be the first
signed formula in the standard order such that no constituent
K0, . . . ,Kn−1 of bqϕq is in T(B). Pick a subset Δq of T(q) such
that T(q) = Δq ∪ {bqϕq}. (By Lemma 3.3.19, bqϕq exists and
actually is the first formula that occurs in B such that none of
its constituents occurs in B.) Define Ti+1 by adding to Dom(Ti)
the nodes q0, . . . , q(n−1) and defining Ti+1(qj) = Δq ∪Kj for
0 ≤ j ≤ n− 1.

Proof of Correctness: We begin by observing that for each i such
that Ti+1 is defined, there is a unique node q such that q is a leaf of
Ti but not of Ti+1. We will refer to q as the node expanded at stage
i + 1 of the construction. Further, if i < j and Tj+1 is defined, then
the node expanded at stage j+1 is different from the node expanded
at stage i+1. It follows that for each n, there are only finitely many
i such that the node expanded at stage i has length n.

We also observe that if q ∈ Dom(Ti), q is not a leaf of Ti, P is the
path leading to q, and bϕ is the first signed formula in Ti(P) such
that no constituent of bϕ is contained in Ti(P), then every immediate
descendant of q in Ti contains a constituent of bϕ.

Each Ti is a conservative Δ-tableau and therefore T is a conser-
vative Δ-tableau.

Suppose that T is not completed. Then, there is a branch B that
is neither closed not complete. Let bϕ be the first signed formula in
the standard order contained in T(B) which is not a signed variable
such that none of its constituents is in T(B). Let q ∈ B be such
that bϕ ∈ T(P) and for all b′ϕ′ ∈ T(B) that occur before bϕ in the
standard ordering and are not a signed variable, a constituent of b′ϕ′
is contained in T(P), where P is the path leading to q.

Suppose initially that B contains some immediate descendant qj
of q and let k be such that qj ∈ Dom(Tk). Then, Tk(P) = T(P), so
Tk(qj) contains a constituent of bϕ, which means that T(B) contains a
constituent of bϕ. We thus obtain a contradiction. If there is no such
immediate descendant, B is the path P leading to q. Choose k such
that q ∈ Dom(Tk) and, at stage k+1, no node r such that |r| ≤ |q| is
expanded. Then, q is a leaf of Tk, Tk(P) is not closed, bϕ ∈ Tk(P), and
none of the constituents of bϕ is contained in Tk(P). This makes q a
node eligible to be expanded at stage k+1, so the node expanded at

Propositional Logic–Formal Systems 355

stage k + 1 must have length no greater than |q|, thus contradicting
our choice of k. �

Again, in the previous construction, we have the leeway to pro-
duce a tableau with retention or with removal.

Theorem 3.3.34 (Completeness Theorem for Tableaux of
Propositional Logic). Let Δ be a set of signed formulas. If
Δ is unsatisfiable, then there exists a finite, conservative, closed
Δ-tableau.

Proof. If Δ is unsatisfiable, then Construction 3.3.33 produces a
conservative, completed Δ-tableau T which, by Theorem 3.3.16, is
closed. Thus, the single argument to be made is that T is finite.
Since T is finitely branching, by König’s Lemma, it suffices to show
that T has no infinite branch. Suppose that B is an infinite branch
of T and let Bi = B ∩ Dom(Ti) for i ≥ 0, where T0, T1, . . . is the
sequence of finite tableaux that we built in Construction 3.3.33. By
Theorem 1.7.28, B =

⋃
{Bi | i ≥ 0} and each Bi is a branch of Ti. Since

T is a closed tree, B is a closed branch and, hence, there must be an
i0 with Bi0 closed. It is easily seen that a closed branch of Ti remains
a (closed) branch of Ti+1 and, therefore, of Tj for all j ≥ i. Thus,
Bj = Bi0 for j ≥ i0 and B = Bi0 , contradicting the assumption that B is
infinite. �

Corollary 3.3.35. Let Δ be a set of signed formulas. Then, the
following conditions are equivalent:

(1) Δ is unsatisfiable.
(2) There exists a finite, closed Δ-tableau.
(3) There exists a closed Δ-tableau.
(4) There exists a finite, conservative, closed Δ-tableau.
(5) There exists a conservative, closed Δ-tableau.

Proof. This follows immediately from Theorems 3.3.17
and 3.3.34. �

Example 3.3.36. Consider the set of signed formulas

Δ = {Tp0} ∪ {T(pi → pi+1) | i ∈ N}.
Note that if i ≤ j, then T(pi → pi+1) precedes T(pj → pj+1) in
the standard order as the reader can easily verify. Using Construc-
tion 3.3.33, we construct the sequence of conservative Δ-tableaux

356 Logical Foundations of Computer Science — Volume 1

Tp0,T(p0 → p1),T(p1 → p2), . . .

Tp0,Tp1,T(p1 → p2), . . .

Tp0,Tp1,Tp2,T(p2 → p3), . . .Tp0,Tp1,Fp1,T(p2 → p3), . . .

Tp0,Fp0,T(p1 → p2), . . .

������������

������������

...
. . .

		

closed

closed

T0
T1

T2

0

10

1

Fig. 3.6. Tableau sequence.

T0, T1, T2, . . . (see Figure 3.6). Note that in the tableau Ti only the
node 1i is not closed and contains a formula that can be expanded,
namely, we have b1iϕ1i = T(pi → pi+1). The tree T contains an
infinite branch B = {1i | i ≥ 0} and T(B) is the Hintikka set
Δ ∪ {Tpi | i ≥ 0}. Therefore, Δ is satisfiable and there is only
one truth assignment v that satisfies Δ, given by v(pi) = T for
i ≥ 0.

Paralleling what we did for finite sets of signed formulas, we now
give a variant of Construction 3.3.33 that produces a strongly com-
pleted Δ-tableau where Δ is an arbitrary set of signed formulas.

Construction 3.3.37.
Input: A set Δ of signed formulas.
Output: A (finite or infinite) sequence T0, T1, . . . of finite Δ-
tableaux such that each Ti+1 is a leaf extension of Ti and T =⋃
{Ti | i ≥ 0} is a conservative strongly completed Δ-tableau.

Method:

(A) Let T0 be the one-node Δ-tableau with root labeled by Δ.
(B) Suppose that Ti has been defined. Then, if Ti is strongly com-

pleted, the construction stops with Ti as the output. Otherwise,
Ti has branches that are neither strongly closed nor complete.

Propositional Logic–Formal Systems 357

Select nondeterministically among the shortest such branches
a branch B ending in the leaf q. Then, let bqϕq ∈ Ti(B) be the
first signed formula in the standard order such that no con-
stituent K0, . . . ,Kn−1 of bqϕq is in the branch. (We can show
the existence of such a formula as follows. Since Ti(B) is not
a Hintikka set, either {Tp,Fp} ⊆ Ti(B) for some variable p
or such a formula exists in the branch. By Lemma 3.3.19,
in the first case, we would have {Tp,Fp} ⊆ Ti(q), which
would contradict the fact that B is not strongly closed.) By
Lemma 3.3.19, bqϕq ∈ Ti(q). Pick a subset Δq of T(q) such
that T(q) = Δq ∪ {bqϕq}. Define Ti+1 by adding to Dom(Ti)
the nodes q0, . . . , q(n−1) and defining Ti+1(qj) = Δq ∪Kj for
0 ≤ j ≤ n− 1.

Proof of Correctness: Note that the statements contained in
the first three paragraphs of the proof of correctness of Construc-
tion 3.3.33 remain valid for the current construction. Further, if Ti(q)
is defined, then, for some j ≤ i, q is a leaf of Tj. This can be shown
easily by induction on i. Also, if Ti(q) is defined, q is a leaf of Ti, and
Ti(q) contains both Tϕ and Fϕ for some formula ϕ, then for every
k ≥ i, q is a leaf of Tk and, therefore, q is a leaf of T. This can be
verified by induction on k.

Suppose that T is not strongly completed. Then, there is a branch
B that is neither strongly closed not complete. Observe that T(B)
cannot contain both Tp and Fp for any statement variable p. Indeed,
if r, r′ are two nodes of B such that Tp ∈ T(r) and Fp ∈ T(r′), then, by
Lemma 3.3.19, q, the longer of r and r′ is such that {Tp,Fp} ⊆ T(q).
By the previous remark, there is an h such that q is a leaf of Th
and consequently, q is a leaf of T. This implies that B is strongly
closed, which contradicts our assumption. Thus, T(B) satisfies the first
condition of the definition of a Hintikka set. The noncompleteness of
B implies the existence of a signed formula which is not a signed
variable such that none of its constituents is included in T(B). Let bϕ
be the first signed formula in the standard order with this property
contained in T(B). Take q ∈ B such that bϕ ∈ T(P), where P is the
path leading to q, such that for all b′ϕ′ ∈ T(B) that are not signed
variables and occur before bϕ in the standard ordering, a constituent
of b′ϕ′ is contained in T(P).

Suppose initially that B contains some immediate descendant qj
of q and let k be such that qj ∈ Dom(Tk). Then, Tk(P) = T(P), so

358 Logical Foundations of Computer Science — Volume 1

T(qj) contains a constituent of bϕ, which means that T(B) contains
a constituent of bϕ. We thus obtain a contradiction. If there is no
such immediate descendant, B is the path P leading to q. Choose k
such that q ∈ Dom(Tk) and, at stage k + 1, no node r such that
|r| ≤ |q| is expanded. Then, q is a leaf of Tk, P is not strongly closed,
bϕ ∈ Tk(P), and none of the constituents of bϕ is contained in Tk(P).
This makes q a node eligible to be expanded at stage k + 1, so the
node expanded at stage k + 1 must have length no greater than |q|,
thus contradicting our choice of k. �

We saw earlier that a strongly closed Δ-tableau is finite.

Theorem 3.3.38 (Strong Completeness Theorem for Tab-
leaux of Propositional Logic). Let Δ be a set of signed formulas.
If Δ is unsatisfiable, then there exists a conservative strongly closed
(hence, finite) Δ-tableau.

Proof. If Δ is unsatisfiable, then Construction 3.3.37 yields a con-
servative strongly completed Δ-tableau T which, by Theorem 3.3.16,
is closed. As observed earlier, a strongly completed closed Δ-tableau
is strongly closed. �

Generalizing a remark we made earlier, we note that Theo-
rem 3.3.38 can be strengthened by asserting the existence of strongly
closed tableaux with retention or with removal.

Corollary 3.3.39. Let Δ be a set of signed formulas. Then, the
following conditions are equivalent:

(1) Δ is unsatisfiable.
(2) There exists a finite, closed Δ-tableau.
(3) There exists a finite, conservative, closed Δ-tableau.
(4) There exists a closed Δ-tableau.
(5) There exists a conservative closed Δ-tableau.
(6) There exists a strongly closed Δ-tableau.
(7) There exists a conservative strongly closed Δ-tableau.

Proof. This follows from Corollary 3.3.35 and Theorem 3.3.38. �

Theorem 3.3.40. There is an effective, syntactic construction that
begins with a strongly closed Δ-tableau T and produces a strongly
closed Δ′-tableau T′, where Δ′ is a finite subset of Δ.

Propositional Logic–Formal Systems 359

Proof. We proceed recursively on the size of T. If T is a one node
tree, then Δ contains Tϕ,Fϕ for some formula ϕ, so T′ is the one-
node tableau with T′(λ) = {Tϕ,Fϕ} and Δ′ = {Tϕ,Fϕ}.

Let T(λ) = Δ̂ ∪ {bϕ}, where T(i) = Δ̂ ∪ Ki and d(bϕ) =
(K0, . . . ,Kn−1). Applying the process recursively to the tableaux T[i],

we obtain strongly closed Δ′
i-tableaux T′i, where Δ′

i ⊆ Δ̂ ∪ Ki, for

0 ≤ i ≤ n− 1. Define the finite sets of signed formulas Δ′′
i = Δ′

i ∩ Δ̂,
for 0 ≤ i ≤ n − 1. Starting from each of the tableaux T′i, we obtain
by thinning at the root, a strongly closed (Δ′′

0 ∪ · · · ∪ Δ′′
n−1 ∪ Ki)-

tableau T′′i . Finally, the construction returns the strongly closed tab-
leau (T′′0, . . . , T′′n−1;Δ

′′
0 ∪ · · · ∪Δ′′

n−1 ∪ {bϕ}), whose root is labeled by
the finite subset Δ′′

0 ∪ · · · ∪Δ′′
n−1 ∪ {bϕ} of Δ.

If thinning is applied at the root of T, we have T(0) = Δ0, where
Δ0 ⊆ Δ. We apply the process recursively to T[0] to obtain a strongly
closed Δ′

0-tableau T′, for some finite subset Δ′
0 of Δ0. Since Δ′

0 is a
finite subset of Δ, the construction returns T′. �

We can now reprove the Compactness Theorem (in a formu-
lation using signed formulas), independently of our argument in
Theorem 2.4.3.

Theorem 3.3.41 (Compactness Theorem for Signed Formu-
las of Propositional Logic). Let Δ be a set of signed formu-
las. Then Δ is satisfiable if and only if every finite subset of Δ is
satisfiable.

Proof. If Δ is satisfiable, then clearly every finite subset of Δ is
satisfiable.

Conversely, let Δ be unsatisfiable. By the Strong Completeness
Theorem for Tableaux, there is (finite) conservative strongly closed
Δ-tableau T. By Theorem 3.3.40, there is a strongly closed Δ′-tableau
for some finite subset Δ′ of Δ. The Soundness Theorem for Tableaux
implies that Δ′ is unsatisfiable. �

It is instructive to compare the argument of Theorem 3.3.41 with
Exercise 118 of Chapter 2 which uses explicitly the notion of consis-
tency property.

The proof of the Compactness Theorem, together with the proof
of Theorem 3.3.40, gives a recursive construction of a finite unsat-
isfiable subset Δ′ of an unsatisfiable set of signed formulas Δ. An
alternative, nonrecursive construction is discussed in Supplement 24.

360 Logical Foundations of Computer Science — Volume 1

Corollary 3.3.39 can be rephrased in terms of formal systems.

Definition 3.3.42. F tabl,∞,cons is the formal system whose set of
objects is the collection of all sets of signed formulas, set of axioms
is the collection of all closed sets of signed formulas, and single rule
of inference is

Δ ∪K0, . . . ,Δ ∪Kn−1

Δ ∪ {bϕ} R ,

where ϕ is not a statement variable and d(bϕ) = (K0, . . . ,Kn−1).
If we add the thinning rule

Δ
Δ′ Rthin

where Δ,Δ′ are sets of signed formulas such that Δ ⊆ Δ′, we obtain
the formal system F tabl,∞.

A general F tabl,∞-deduction tree (F tabl,∞,cons-deduction tree) for
Δ is the same thing as a Δ-tableau (conservative Δ-tableau) and an
F tabl,∞-proof tree (F tabl,∞,cons-proof tree) for Δ is the same thing as
a strongly closed Δ-tableau (conservative strongly closed Δ-tableau).
Thus, the set PT Ftabl,∞ (PT Ftabl,∞,cons) equals the set of all tableaux
T such that T is a strongly closed T(λ)-tableau (conservative strongly
closed T(λ)-tableau). We will denote the sets of proof trees PT Ftabl,∞
and PT Ftabl,∞,cons by SCT and SCTCONS, respectively.

Theorem 3.3.43 (Soundness and Completeness of Ftabl,∞).
The formal systems F tabl,∞ and F tabl,∞,cons are sound and complete
with respect to the collection of all unsatisfiable sets of signed formu-
las.

Proof. The statement of the result follows from Corollary 3.3.39
because a strongly closed Δ-tableau is the same thing as an F tabl,∞-
proof tree of Δ and a conservative strongly closed Δ-tableau is the
same thing as an F tabl,∞,cons-proof tree of Δ. �

By the remark preceding Corollary 3.3.39, the formal systems
F tabl,∞ and F tabl,∞,cons remain complete (and, of course, sound) if in
the definition of the rule R, we add one of the additional restrictions:
bϕ ∈ Δ or bϕ �∈ Δ.

Propositional Logic–Formal Systems 361

We now turn to tableaux for sets of unsigned formulas.

Definition 3.3.44. An unsigned tableau is a lot whose labels are
subsets of PLFORM.

The concepts introduced in Definition 3.3.1 through Defini-
tion 3.3.3 can be transferred to unsigned tableaux with obvious mod-
ifications. (Recall that a set of unsigned formulas Γ is closed if there
is ϕ ∈ PLFORM such that {ϕ, (¬ϕ)} ⊆ Γ.)

Definition 3.3.45. Let Γ be a set of formulas. A Γ-tableau is an
unsigned tableau T that satisfies the following conditions:

• The root of T is labeled by Γ, i.e., T(λ) = Γ.
• If q is an interior node of T, one of the following cases occurs:

(1) There is some set of formulas Γ′ and a formula ϕ with d(ϕ) =
(K0, . . . ,Kn−1) such that T(q) = Γ′ ∪ {ϕ}, q has n immediate
descendants and T(qi) = Γ′ ∪Ki for 0 ≤ i ≤ n− 1.

(2) The node q has one immediate descendant q0 and T(q0) ⊆ T(q).

The terminology for tableaux developed for signed formulas is
carried over to tableaux for unsigned formulas.

Example 3.3.46. Consider the set of formulas

Γ = {(p→ q), (¬q), (¬(¬p))}.

In Figure 3.7, we give a conservative strongly closed unsigned
Γ-tableau.

The notions of Γ-tableau with retention and with removal for a
set of unsigned formulas Γ parallel the corresponding notions for
Δ-tableau for a set of signed formulas Δ. Further, in Exercises 27–
37, we present results for unsigned tableaux similar to the ones dis-
cussed in this section for signed tableaux. Some of these results can
be obtained alternatively by applying the translation given in the
following algorithm. This translation is obtained using the function
u defined just before Exercise 96 of Section 2.12, namely, u(Tϕ) = ϕ

362 Logical Foundations of Computer Science — Volume 1

(¬p), (¬q), p q, (¬q), p

(p → q), (¬q), p

(p → q), (¬q), (¬(¬p))

�
�

�
�

�
�

Fig. 3.7. Strongly closed unsigned Γ-tableau.

and u(Fϕ) = (¬ϕ) for every ϕ ∈ PLFORM. It is not difficult to ver-
ify that if bϕ is not a signed variable and is not of the form T(¬ψ)
for some formula ψ, and d(bϕ) = (K0, . . . ,Kn−1), then

d(u(bϕ)) = (u(K0), . . . , u(Kn−1)).

Construction 3.3.47.
Input: A signed tableau T that is a strongly closed Δ-tableau for
some set Δ of signed formulas.
Output: A strongly closed unsigned u(Δ)-tableau.
Method: If T is a one-node tree, then output the one-node tree T′
with T′(λ) = u(T(λ)).
If T has more than one node, we need to consider two cases depend-
ing on whether thinning was used at the root.
If T(0) was obtained from T(λ) by thinning, apply the construction
recursively to T[0] to obtain a strongly closed u(T(0))-tableau T′.
Then, output (T′; u(T(λ)).
If thinning was not used at the root, select a signed formula bϕ and
a set of signed formulas Δ′ such that T(λ) = Δ′ ∪ {bϕ}, d(bϕ) =
(K0, . . . ,Kn−1), λ has n immediate descendents in T, and T(i) =
Δ′ ∪Ki for 0 ≤ i ≤ n− 1.

Propositional Logic–Formal Systems 363

If bϕ = T(¬ψ) for some ψ ∈ PLFORM, then apply the construc-
tion recursively to the subtree T[0] and output the unsigned tableau
resulting from this application.

If bϕ does not have the form mentioned above, apply the con-
struction recursively to the subtrees T[i], 0 ≤ i ≤ n− 1, to obtain the
n unsigned tableaux T′0, . . . , T

′
n−1 and output the unsigned tableau

(T′0, . . . , T
′
n−1; u(Δ)).

Proof of Correctness: By the third part of Theorem 3.3.10, recur-
sive calls of the construction are applied to the right kind of tableaux.
Also, by induction on the number of nodes of the input tableau, one
can easily verify that the construction always terminates.

We prove now by induction on the number of nodes of the input
tableau T that if T is a strongly closed Δ-tableau, then the output is a
strongly closed u(Δ)-tableau. The basis step is easy and is left to the
reader. For the inductive step, we distinguish two cases depending
on whether thinning was used at the root.

In the first case, when thinning was used at the root, by induc-
tive hypothesis, T′ is a strongly closed u(T(0))-tableau, and because
u(T(0)) ⊆ u(T(λ)), the output is a strongly closed u(T(λ))-tableau.

In the second case, when regular expansion is used, let bϕ,Δ′ be
as in the construction. We distinguish two subcases.

In the first subcase, bϕ = T(¬ψ). Then, T[0] is a strongly closed
(Δ′ ∪ {Fψ})-tableau, so, by inductive hypothesis, the output of the
construction applied to T[0] is a strongly closed (u(Δ′ ∪ {Fψ}))-
tableau. Since u(Δ′ ∪{Fψ}) = u(Δ′)∪{(¬ψ)} = u(Δ′ ∪{T(¬ψ)}) =
u(Δ), this output is actually a strongly closed u(Δ)-tableau, as
desired.

In the second subcase, bϕ does not have the form T(¬ψ). By the
inductive hypothesis, T′i is a strongly closed u(Δ′ ∪ Ki)-tableau for
0 ≤ i ≤ n − 1. Since u(Δ′ ∪ Ki) = u(Δ′) ∪ u(Ki) and d(u(bϕ)) =
(u(K0), . . . , u(Kn−1)), as noted previously, the output tableau is a
(u(Δ′) ∪ {u(bϕ)})-tableau. This is the desired tableau because

u(Δ) = u(Δ′ ∪ {bϕ}).

Example 3.3.48. Let Δ = {T(p→ q),T(¬q),F(¬p)}. Application
of the Construction 3.3.47 to the strongly closed Δ-tableau given in
Figure 3.8 yields the strongly closed Γ-tableau given in Figure 3.7.

364 Logical Foundations of Computer Science — Volume 1

Fp, Fq, Tp Tq, Fq, Tp

T(p → q), Fq, Tp

T(p → q), Fq, F(¬p)

�
�

�
�

�
�

T(p → q), T(¬q), F(¬p)

Fig. 3.8. Strongly closed Δ-tableau.

Supplement 26 contains the inverse translation construction from
unsigned tableaux to signed tableaux.

3.4 The Cut Rule for Tableaux

In this section, we introduce a nonanalytical version of tableaux. The
purpose of this extension of tableaux is to generate smaller closed
tableaux for unsatisfiable sets of signed formulas.

Definition 3.4.1. Let Δ be a set of signed formulas. A Δ-tableau
with cut is a tableau T that satisfies the following conditions:

(1) The root of T is labeled by Δ, i.e., T(λ) = Δ.
(2) If q is an interior node of T, then one of the following holds:

Propositional Logic–Formal Systems 365

(a) There is some signed formula bϕ with d(bϕ) =
(K0, . . . ,Kn−1) and a set of formulas Δ′ such that T(q) =
Δ′ ∪ {bϕ}, q has n immediate descendants, and T(qi) =
Δ′ ∪Ki for 0 ≤ i ≤ n− 1.

(b) The node q has one immediate descendant q0 and T(q0) ⊆
T(q).

(c) There is a formula ϕ and a set of signed formulas Δ′ such
that q has two immediate descendants, T(q) = Δ′, T(q0) =
Δ′ ∪ {Tϕ}, and T(q1) = Δ′ ∪ {Fϕ}.

If regular expansion or the cut rule was used at the node q, we
say that T is locally conservative at q. If T is locally conservative at
all its interior nodes, then we say that T is conservative.

Because of Part (2c), Definition 3.4.1 is even “more” nonuniquely
readable than Definition 3.3.4. Indeed, consider the Δ-tableau with
cut given in Figure 3.9, where Δ = {T(p0∨p0),Tp1,Fp0}. Note that
for q = λ, both Parts 2a and 2c of the definition of Δ-tableau with
cut hold.

Whenever Part (2c) of Definition 3.4.1 holds for a node q, we say
that the cut rule was applied at q. By the previous comment, the fact
that the cut rule was applied at q does not rule out that Part (2a)
also holds for q.

Note that Part (2c) makes tableaux with cut nonanalytical since
the formula ϕ may be unrelated to the set Δ.

An application showing the usefulness of the cut rule is given in
the following example.

Example 3.4.2. Consider the following statement:

If there is a strongly closed {Fϕ}-tableau T0 and a strongly
closed {F(ϕ → ψ)}-tableau T1, then there is a strongly closed
{Fψ}-tableau T.

A semantic argument for the existence of T can be made immediately.
Indeed, the existence of T0 and T1 implies that ϕ and (ϕ → ψ)
are tautologies. So, ψ is a tautology, which implies that {Fψ} is
unsatisfiable and thus there is a strongly closed {Fψ}-tableau T.
This argument, however, does not give us any way of constructing T

based on the syntactic structure of T0 and T1. However, we can give

366 Logical Foundations of Computer Science — Volume 1

T(p0 ∨ p1), Tp0, Tp1, Fp0 T(p0 ∨ p1), Tp1, Fp0

T(p0 ∨ p1), Tp1, Fp0

�
�

�
��

�
�

�
��

Fig. 3.9. Δ-tableau with cut.

Tϕ, T(ϕ → ψ), Fψ

Tϕ, Fϕ, Fψ Tϕ, Tψ, Fψ

�
�

�

Fig. 3.10. The tableau T′′1 .

a syntactic construction of a strongly closed {Fψ}-tableau with cut
T as follows:

(1) Define the tableau T′0 = T0 �{Fψ}. Then, T′0 is a strongly closed
{Fϕ,Fψ}-tableau.

(2) Define the tableau T′1 = T1 � {Tϕ,Fψ}. Then, T′1 is a strongly
closed {Tϕ,Fψ,F(ϕ→ ψ)}-tableau.

(3) Let T′′1 be the strongly closed {Tϕ,T(ϕ → ψ),Fψ}-tableau
shown in Figure 3.10.

(4) By applying the cut rule to T′1 and T′′1, we obtain the strongly
closed {Tϕ,Fψ}-tableau with cut T′′′1 = (T′′1, T′1; {Tϕ,Fψ}).

(5) Another application of the cut rule to T′′′1 and T′0 yields the
strongly closed {Fψ}-tableau with cut T = (T′′′1 , T

′
0; {Fψ}) as

shown in Figure 3.11.

Similarly, if we have a strongly closed (Δ ∪ {Fϕ})-tableau T0
and a strongly closed (Δ ∪ {F(ϕ → ψ)})-tableau T1, then we can
syntactically produce a strongly closed (Δ ∪ {Fψ})-tableau with
cut T.

Propositional Logic–Formal Systems 367

Fψ

Fψ, Tϕ Fψ, Fϕ

T(ϕ → ψ), Tϕ, Fψ F(ϕ → ψ), Tϕ, Fψ

					

Fϕ, Tϕ, Fψ Tψ, Tϕ, Fψ

�
�

�
�

�
�

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

T1

T0

Fϕ

F(ϕ → ψ)

Fig. 3.11. Strongly closed {Fψ}-tableau with cut (using strongly closed {Fϕ}-
and {F(ϕ→ ψ)}-tableaux).

Lemma 3.4.3. Let Δ,Δ′ be two sets of signed formulas. If T is a
Δ-tableau with cut, then the tableau T�Δ′ is a (Δ∪Δ′)-tableau with
cut.

Proof. This proof is left to the reader. �

Lemma 3.4.4. If T is a (conservative) Δ-tableau with cut such that
the root has n > 0 immediate descendants, then T[i] is a (conserva-
tive) T(i)-tableau with cut for 0 ≤ i ≤ n− 1.

Proof. The argument is a direct application of Definition 3.4.1. �

Theorem 3.4.5. Let Δ be a set of signed formulas and T be a
Δ-tableau with cut. If v is a truth assignment, then v satisfies Δ
if and only if it satisfies T(B) for some branch B of T.

Proof. The proof is similar to the one used in Theorem 3.3.16.
The only difference occurs when the cut rule is applied at the node
qk. In this case, qk has two immediate descendants qk0 and qk1,
T(qk0) = T(qk) ∪ {Tϕ} and T(qk1) = T(qk) ∪ {Fϕ} for some formula
ϕ. Since v satisfies T(qk), it satisfies exactly one of T(qk0), T(qk1) and
we let qk+1 be the immediate descendant of qk such that v satisfies
T(qk+1). �

368 Logical Foundations of Computer Science — Volume 1

Theorem 3.4.6. Let T be a completed Δ-tableau with cut. A truth
assignment v satisfies Δ if and only if there is a branch B of T such
that T(B) is a Hintikka set and v(p) = b for all bp ∈ T(B).

Proof. This follows immediately from Theorems 2.7.28
and 3.4.5. �

Corollary 3.4.7 (Soundness and Strong Completeness for
Tableaux with Cut). A set of signed formulas Δ is unsatisfiable
if and only if there exists a strongly closed Δ-tableau with cut.

Proof. The existence of a strongly closed Δ-tableau with cut for
an unsatisfiable set Δ follows from Theorem 3.3.38. Conversely, if
there is a strongly closed Δ-tableau with cut, then Theorem 3.4.6
implies that Δ is unsatisfiable. �

The following theorem corresponds to Theorem 3.3.40 for tab-
leaux without cut.

Theorem 3.4.8. There is an effective, syntactic construction that
begins with a strongly closed Δ-tableau T with cut and produces a
strongly closed Δ′-tableau T′ with cut, where Δ′ is a finite subset
of Δ.

Proof. The argument is similar to the one used in Theorem 3.3.40
with the exception of the case when the cut rule is used at the root
of T. If this is the case, then T(0) = Δ ∪ {Tϕ} and T(1) = Δ ∪ {Fϕ}
for some formula ϕ. By inductive hypothesis, we obtain the strongly
closed Δ′

0-tableau with cut T′0 and the strongly closed Δ′
1-tableau

with cut T′1, where Δ′
0 and Δ′

1 are finite subsets of Δ ∪ {Tϕ} and
Δ ∪ {Fϕ}, respectively. Let Δ′′

0 = Δ′
0 ∩ Δ and Δ′′

1 = Δ′
1 ∩ Δ. By

thinning, we construct the tableaux T′′0 = T′0� (Δ′′
0 ∪Δ′′

1 ∪{Tϕ}) and
T′′1 = T′1 � (Δ′′

0 ∪Δ′′
1 ∪{Fϕ}). By applying the cut rule, we return the

strongly closed tableau (T′′0 , T′′1 ;Δ′′
0 ∪Δ′′

1). �

Definition 3.4.9. The formal system F tabl,cons,cut is the formal sys-
tem obtained from F tabl,cons by adding the following “cut” rule:

Δ ∪ {Tϕ},Δ ∪ {Fϕ}
Δ

for all finite sets of signed formulas Δ and formulas ϕ.
If the thinning rule is added to F tabl,cons,cut, we obtain the formal

system F tabl,cut.

Propositional Logic–Formal Systems 369

The formal system F tabl,∞,cons,cut is obtained from F tabl,∞,cons by
adding the previous cut rule for arbitrary sets Δ, rather than for
finite sets. Finally, the formal system F tabl,∞,cut is obtained from
F tabl,∞,cons by adding the cut rule.

Theorem 3.4.10. (Soundness and Completeness of Ftabl,cut

and Ftabl,∞,cut).The formal system F tabl,cut (F tabl,∞,cut) is sound
and complete for the collection of finite unsatisfiable sets of signed
formulas (collection of unsatisfiable sets of signed formulas).

Proof. It is easy to see that the set of proof trees of F tabl,cut is the
set of all tableaux T such that T is a strongly closed T(λ)-tableau with
cut and T(λ) is finite. Therefore, F tabl,cut is sound and complete for
the collection of finite, unsatisfiable sets of signed formulas. Similarly,
the set of proof trees of F tabl,∞,cut is the set of all tableaux T such
that T is a strongly closed T(λ)-tableau with cut, so F tabl,∞,cut is
sound and complete for the collection of unsatisfiable sets of signed
formulas. �

Soundness and completeness continue to hold for the formal sys-
tems F tabl,cons,cut and F tabl,∞,cons,cut.

We shall denote by SCTCUT the set of tableaux which are strongly
closed Δ-tableaux with cut for some set Δ.

Because of the completeness of the formal systems F tabl and
F tabl,∞, the cut rule is superfluous in proving unsatisfiability of a
set of signed formulas. Its use however can reduce the size of such
proofs. Given a strongly closed Δ-tableau with cut T, we know that
there exists a strongly closed Δ-tableau T′, which does not use the
cut rule and, hence, is analytic. We could find the Δ-tableau T′ using
Construction 3.3.33 (or Algorithm 3.3.20 if Δ is finite), but this would
not use T. We will describe a syntactic process, called “cut elimina-
tion,” for generating the tableau T′ starting from T. This process
becomes an algorithm when the sets of formulas involved are finite.

We begin with a construction that computes a function cet (short
for “cut elimination for tableaux”) that, given strongly closed tab-
leaux T0, T1, two sets Δ0,Δ1 of signed formulas and a formula ϕ such
that T0 is a (Δ0 ∪ {Tϕ})-tableau and T1 is a (Δ1 ∪ {Fϕ})-tableau,
produces a strongly closed Δ0∪Δ1-tableau. Actually, this is a slightly
more general result than the one we need, but it has an easier proof.
When Δ0 and Δ1 are finite, the construction becomes effective and

370 Logical Foundations of Computer Science — Volume 1

can be regarded as being an algorithm for computing the function
cet defined in the following.

Construction 3.4.11.
Input: Two strongly closed tableaux T0, T1, two sets Δ0,Δ1 of
signed formulas and a formula ϕ such that T0 is a (Δ0 ∪ {Tϕ})-
tableau and T1 is a (Δ1 ∪ {Fϕ})-tableau.
Output:A strongly closed (Δ0∪Δ1)-tableau cet(T0, T1,Δ0,Δ1, ϕ).
Method: Proceed according to which of the following cases holds:

Case 1: Either Tϕ ∈ Δ0 or Fϕ ∈ Δ1.

Case 1.1: Tϕ ∈ Δ0. Then, return the tableau T0 �Δ1.
Case 1.2: Fϕ ∈ Δ1. Then, return the tableau T1 �Δ0.

Case 2: Either Δ0 ∪ {Tϕ} or Δ1 ∪ {Fϕ} is closed and neither
Tϕ ∈ Δ0 nor Fϕ ∈ Δ1.

Case 2.1: Δ0∪Δ1 is closed. Then, return the one-node
tableau labeled by Δ0 ∪Δ1.

Case 2.2: Δ0∪Δ1 is not closed, but Δ0∪{Tϕ} is closed.
Then, return T1 �Δ0.

Case 2.3: Δ0∪Δ1 is not closed, but Δ1∪{Fϕ} is closed.
Then, return T0 �Δ1.

Case 3: Neither Δ0 ∪ {Tϕ} nor Δ1 ∪ {Fϕ} is closed and neither
Tϕ ∈ Δ0 nor Fϕ ∈ Δ1. Then, both T0 and T1 have more
than one node.

Case 3.1: Thinning is used at the root of T0 or T1.

Case 3.1.1: Thinning is used at the root
of T0. Let Δ′

0 = T0(0). We
distinguish two subcases depend-
ing on whether Tϕ ∈ Δ′

0 or
not. If Tϕ �∈ Δ′

0, then return
(T0)[0] � (Δ0 ∪ Δ1). If Tϕ ∈ Δ′

0,
then let T′0 = cet((T0)[0], T1,Δ

′
0 −

{Tϕ},Δ1, ϕ) and return T′0� (Δ0∪
Δ1).

Case 3.1.2: Thinning is used at the root of T1.
Proceed as in Case 2.1.1 reversing
the roles of 0 and 1.

Case 3.2: Thinning was used neither at the root of
T0 nor at the root of T1. Then, there are

Propositional Logic–Formal Systems 371

Δ′
0,Δ

′
1, b0ψ0 ∈ Δ0 ∪ {Tϕ} and b1ψ1 ∈

Δ1 ∪ {Fϕ} such that Δ0 ∪ {Tϕ} = Δ′
0 ∪

{b0ψ0}, Δ1 ∪ {Fϕ} = Δ′
1 ∪ {b1ψ1}, d(b0ψ0) =

(K0, . . . ,Kn−1), d(b1ψ1) = (H0, . . . ,Hm−1),
T0(i) = Δ′

0 ∪ Ki for 0 ≤ i ≤ n − 1, and
T1(j) = Δ′

1 ∪ Hj for 0 ≤ j ≤ m − 1. (There
could be several such choices of b0ψ0, b1ψ1, any
of which would work. To be definite, we could
choose the first ones in the standard ordering
of the signed formulas.)

Case 3.2.1: b0ψ0 ∈ Δ0, so b0ψ0 �= Tϕ because Tϕ �∈ Δ0.
Then, let Vi = cet((T0)[i], T1, (Δ

′
0 − {Tϕ}) ∪

Ki,Δ1, ϕ) for 0 ≤ i ≤ n − 1 and return
(V0, . . . , Vn−1;Δ0 ∪Δ1).

Case 3.2.2: b1ψ1 ∈ Δ1 and b0ψ0 �∈ Δ0. Then, let Wj =
cet(T0, (T1)[j],Δ0,Δ

′
1 − {Fϕ} ∪ Hj, ϕ) for 0 ≤

j ≤ m− 1 and return (W0, . . . , Wm−1;Δ0 ∪Δ1).
Case 3.2.3: Neither b0ψ0 is in Δ0 nor b1ψ1 is in Δ1, so

b0ψ0 = Tϕ and b1ψ1 = Fϕ.

Case 3.2.3.1: ϕ = (¬α). Then, (T0)[0] is a strongly
closed Δ′

0 ∪ {Fα}-tableau and (T1)[0] is
a strongly closed Δ′

1 ∪ {Tα}-tableau.
Then, we are in one of the following four
subcases:

Case 3.2.3.1.1: T(¬α) �∈ Δ′
0 and F(¬α) �∈ Δ′

1, so
Δ′

0 = Δ0 and Δ′
1 = Δ1. Return

cet((T1)[0], (T0)[0],Δ
′
1,Δ

′
0, α).

Case 3.2.3.1.2: T(¬α) ∈ Δ′
0 and F(¬α) �∈ Δ′

1,
so Δ′

1 = Δ1. Let V0 = cet((T0)[0],
T1, (Δ

′
0 − {T(¬α)}) ∪ {Fα}, Δ1,

(¬α)). Return cet((T1)[0], V0, Δ′
1,

(Δ′
0 − {T(¬α)}) ∪Δ1, α).

Case 3.2.3.1.3: T(¬α) �∈ Δ′
0 and F(¬α) ∈

Δ′
1, so Δ′

0 = Δ0. Let W0 =
cet(T0, (T1)[0],Δ0, (Δ

′
1 − {F(¬α)}) ∪

{Tα}, (¬α)). Return cet(W0, (T0)[0],
(Δ′

1 − {F(¬α)}) ∪Δ0,Δ
′
0, α).

Case 3.2.3.1.4: T(¬α) ∈ Δ′
0 and F(¬α) ∈ Δ′

1. Let
V0 and W0 be as in the previous two
subcases and return cet(W0, V0,Δ0 ∪
(Δ′

1 − {F(¬α)}), (Δ′
0 − {T(¬α)}) ∪

Δ1, α).

372 Logical Foundations of Computer Science — Volume 1

Case 3.2.3.2: ϕ = (αCβ) for some binary connective
symbol C. For each b, b′ ∈ Bool, there
is a constituent Ki or a constituent Hj

contained in the set Gbb′ = {bα, b′β},
so define kbb′ to be the least i such that
Ki ⊆ Gbb′ if there exists such an i with
0 ≤ i ≤ n − 1. Otherwise, let kbb′ be
the least j, 0 ≤ j ≤ m − 1, such that
Hj ⊆ Gbb′ .

Case 3.2.3.2.1: T(αCβ) �∈ Δ′
0 and F(αCβ) �∈ Δ′

1, which
implies Δ0 = Δ′

0 and Δ1 = Δ′
1. Let Vi =

(T0)[i] �Δ1 and Wj = (T1)[j] �Δ0 for 0 ≤
i ≤ n − 1 and 0 ≤ j ≤ m − 1. Define
Tbb′ to be Vkbb′ �Gbb′ if there is an i such
that Ki ⊆ Gbb′ and to be Wkbb′ � Gbb′
otherwise. Let TT = cet(TTT, TTF,Δ0 ∪
Δ1∪{Tα},Δ0∪Δ1∪{Tα}, β) and TF =
cet(TFT, TFF,Δ0 ∪Δ1∪{Fα},Δ0 ∪Δ1∪
{Fα}, β). Return T′ = cet(TT, TF,Δ0 ∪
Δ1,Δ0 ∪Δ1, α).

Case 3.2.3.2.2: T(αCβ) ∈ Δ′
0 and F(αCβ) �∈ Δ′

1,
which implies Δ0 = Δ′

0 − {T(αCβ)}
and Δ1 = Δ′

1. For this case, we define
Vi = cet((T0)[i], T1, (Δ

′
0 − {T(ϕCβ)}) ∪

Ki,Δ1, (αCβ)) and we take Wj as in the
previous case. Return T′ obtained as in
the previous case.

Case 3.2.3.2.3: T(αCβ) �∈ Δ′
0 and F(αCβ) ∈ Δ′

1, which
implies Δ0 = Δ′

0 and Δ1 = Δ′
1 −

{F(αCβ)}. For this case, Vi is obtained
as in Case 3.2.3.2.1 and we define Wj =
cet(T0, (T1)[j],Δ0, (Δ1 − {F(αCβ)}) ∪
Hj, (αCβ)). Return T′ obtained as in
Case 3.2.3.2.1.

Case 3.2.3.2.4: T(αCβ) �∈ Δ′
0 and F(αCβ) �∈ Δ′

1,
which implies Δ0 = Δ′

0−{T(αCβ)} and
Δ1 = Δ′

1 − {F(αCβ)}. For this case, we
define Vi as in Case 3.2.3.2.2 and Wj as
in Case 3.2.3.2.3. Return T′ obtained as
in Case 3.2.3.2.1.

Propositional Logic–Formal Systems 373

Proof of Correctness: We show by course-of-values induction on
the length of ϕ that if the construction is applied to a strongly closed
(Δ0 ∪ {Tϕ})-tableau T0 and a strongly closed (Δ1 ∪ {Fϕ})-tableau
T1, then it halts and produces the desired strongly closed Δ0 ∪Δ1-
tableau.

Suppose that the result is true for formulas shorter than ϕ.
We now show the result for ϕ by course-of-values induction on
n = |T0| + |T1|. The “inner” inductive hypothesis means that for
all Δ′

0,Δ
′
1, T

′
0, T

′
1, if T

′
0 is a strongly closed (Δ′

0∪{Tϕ})-tableau, T′1 is
a strongly closed (Δ′

1 ∪ {Fϕ})-tableau, and |T′0|+ |T′1| < n, then the
construction halts and produces a strongly closed Δ′

0 ∪Δ′
1-tableau.

We examine each case in turn.
In Cases 1 and 2.1, there is nothing to prove. In Case 2.2, Fϕ ∈ Δ0

because Δ0 ∪ {Tϕ} is closed and Δ0 is not because Δ0 ∪Δ1 is not
closed, so T1 � Δ0 is a strongly closed (Δ0 ∪ Δ1 ∪ {Fϕ})-tableau,
that is, a strongly closed (Δ0 ∪ Δ1)-tableau. Case 2.3 is similar to
Case 2.2.

In the first subcase of Case 3.1.1, Δ′
0 ⊆ Δ0, so (T0)[0] � (Δ0 ∪Δ1)

is a strongly closed (Δ0 ∪Δ1)-tableau with thinning at the root. In
the second subcase of Case 3.1.1, since |(T0)[0]| + |T1| < |T0| + |T1|,
by the inductive hypothesis, T′0 = cet((T0)[0], T1,Δ

′
0 − {Tϕ},Δ1, ϕ),

is a strongly closed (Δ′
0 − {Tϕ}) ∪ Δ1-tableau. Consequently, T

′
0 �

(Δ0∪Δ1) is a strongly closed (Δ0∪Δ1)-tableau. Case 3.1.2 is treated
similarly.

In Case 3.2.1, since |(T0)[i]|+|T1| < |T0|+|T1|, by inductive hypoth-
esis, Vi is a strongly closed (Δ′

0 −{Tϕ})∪Ki ∪Δ1-tableau. Observe
that, under the assumptions of this case, we have Δ0 = (Δ′

0−{Tϕ})∪
{b0ψ0}. Therefore, Δ0∪Δ1 = (Δ′

0−{Tϕ})∪{b0ψ0}∪Δ1, and conse-
quently, (V0, . . . , Vn−1;Δ0∪Δ1) is a strongly closed (Δ0∪Δ1)-tableau.
Case 3.2.2 is entirely similar.

In Case 3.2.3.1.1, since |α| < |ϕ|, by the inductive hypothesis,
the returned tableau cet((T1)[0], (T0)[0],Δ

′
1,Δ

′
0, α) is strongly closed

(Δ0 ∪Δ1)-tableau.
In Case 3.2.3.1.2, by the inductive hypothesis, V0 is a strongly

closed (Δ0 ∪ Δ1 ∪ {Fα})-tableau because |(T0)[0]| + |T1| < |T0| +
|T1| and Δ′

0 − {Tϕ} = Δ0. A new application of the induc-
tive hypothesis allowed by the fact that |α| < |ϕ| implies that
cet((T1)[0], V0,Δ

′
1, (Δ

′
0−{T(¬α)})∪Δ1, α) is a strongly closed (Δ0∪

Δ1)-tableaux.

374 Logical Foundations of Computer Science — Volume 1

Case 3.2.3.1.3 is handled similar to Case 3.2.3.1.2. The last of this
sequence of cases, Case 3.2.3.1.4, can be dealt with by combining the
arguments used in the previous two cases.

In Case 3.2.3.2.1, note that Vi is a strongly closed (Δ0∪Δ1∪Ki)-
tableau and Wj is a strongly closed (Δ0 ∪Δ1 ∪Hj)-tableau because
Δ′

0 = Δ0 and Δ′
1 = Δ1. Therefore, Tbb′ is a strongly closed (Δ0∪Δ1∪

Gbb′)-tableau for every b, b′ ∈ Bool. Since |β| < |ϕ|, by the inductive
hypothesis, it follows that TT is a strongly closed (Δ0 ∪Δ1 ∪ {Tα})-
tableau and TF is a strongly closed (Δ0∪Δ1∪{Fα})-tableau. A new
application of the inductive hypothesis allowed by the fact that |α| <
|ϕ| shows that T′ is a strongly closed (Δ0 ∪Δ1)-tableau.

Observe that in Case 3.2.3.2.2, Vi is a strongly closed (Δ0 ∪Δ1 ∪
Ki)-tableau, which follows from the fact that |(T0)[i]|+ |T1| < |T0|+
|T1| and the inductive hypothesis. This case can now be completed
using the same argument as in Case 3.2.3.2.1.

Case 3.2.3.2.3 is treated like Case 3.2.3.2.2. Finally, Case 3.2.3.2.4,
is proven by combining the arguments used in the previous two
cases. �

In Case 3.2.3.2 of Construction 3.4.11, we sacrificed efficiency for
a uniform treatment of the binary connectives, which can be gener-
alized to arbitrary sets of connectives. Supplement 43 indicates how
we can take advantage of the nature of the constituents for specific
connectives to reduce the number of steps in the construction.

The following construction gives a syntactic way of transforming
strongly closed tableaux that use the cut rule into ones that do not.

Construction 3.4.12.
Input: A strongly closed Δ-tableau with cut T.
Output: A strongly closed Δ-tableau without cut CET(T).
Method: If T is a one-node strongly closed T(λ)-tableau with cut,
then CET(T) = T.
If T has more than one node and there is a signed formula bϕ such
that T(λ) = Δ′∪{bϕ}, d(bϕ) = (K0, . . . ,Kn−1), and T(i) = Δ′∪Ki

for 0 ≤ i ≤ n − 1, then choose bϕ to be the first such formula in
the standard order and let

CET(T) = (CET(T[0]), . . . ,CET(T[n−1]); T(λ)).

If neither of the two previous cases apply and the cut rule was not
applied at the root of T, then thinning was used at the root and

Propositional Logic–Formal Systems 375

we let

CET(T) = CET((T)[0]) �Δ.

If none of the previous cases apply, then the cut rule was applied at
the root of T and there is a formula ϕ such that T(0) = Δ ∪ {Tϕ}
and T(1) = Δ∪{Fϕ}. There could be several possible choices for ϕ.
We select the first formula ϕ in the standard order for which the
decomposition can be made. Now, we can define

CET(T) = cet(CET(T[0]),CET(T[1]),Δ,Δ, ϕ).

Proof of Correctness: One can show by induction on |T| that the
construction halts with proper output on T. We leave this straight-
forward argument to the reader. �

Note that if the sets of formulas involved in Constructions 3.4.11
and 3.4.12 are finite, then these constructions become effective and
yield algorithms.

Example 3.4.13. We saw in Example 3.4.2 how to construct a
strongly closed {Fψ}-tableau with cut T from a strongly closed {Fϕ}-
tableau T0 and a strongly closed {F(ϕ→ ψ)}-tableau T1. The previ-
ous construction allows us to obtain a strongly closed {Fψ}-tableau
without cut CET(T).

In the following, we recapitulate the notations used for the formal
systems introduced in this section:

Infinite Conservative Cut
sets tableaux rule Notation

No No No F tabl

No Yes No F tabl,cons

No No Yes F tabl,cut

No Yes Yes F tabl,cons,cut

Yes No No F tabl,∞

Yes Yes No F tabl,∞,cons

Yes No Yes F tabl,∞,cut

Yes Yes Yes F tabl,∞,cons,cut

376 Logical Foundations of Computer Science — Volume 1

3.5 Sequents

The notion of sequent and a formal system that deals with sequents
were introduced by German logician Gerhard Gentzen.4

Definition 3.5.1. A sequent is a pair κ = (Γ,Γ′) of sets of formulas.
We will denote the sequent (Γ,Γ′) by Γ⇒ Γ′.

Γ is the antecedent and Γ′ is the succeedent of the sequent Γ⇒ Γ′.
The sequent Γ⇒ Γ′ is finite if both Γ and Γ′ are finite.
We will denote the set of all sequents by SQT and the set of all

finite sequents by SQTfin.

Note that if Γ⇒ Γ′ is a sequent, either or both of Γ and Γ′ could
be empty. We denote the sequents ∅ ⇒ Γ′, Γ ⇒ ∅ and ∅ ⇒ ∅ by
⇒ Γ′, Γ⇒ and ⇒, respectively.

The finite sequent {ϕ0, . . . , ϕn−1} ⇒ {ψ0, . . . , ψm−1} will be writ-
ten as ϕ0, . . . , ϕn−1 ⇒ ψ0, . . . , ψm−1. More generally, we will fre-
quently use the simpler notation Γ, ϕ0, . . . , ϕn−1 ⇒ Γ′, ψ0, . . . , ψm−1

for a sequent Γ ∪ {ϕ0, . . . , ϕn−1} ⇒ Γ′ ∪ {ψ0, . . . , ψm−1}.

Definition 3.5.2. A truth assignment v satisfies a sequent Γ ⇒ Γ′
if there exists a formula ϕ ∈ Γ such that v(ϕ) = F or there exists a
formula ψ ∈ Γ′ such that v(ψ) = T. If v does not satisfy the sequent,
then it falsifies the sequent.

A sequent is valid if it is satisfied by every truth assignment.

Example 3.5.3. Any sequent Γ⇒ Γ′ such that Γ ∩ Γ′ �= ∅ is valid.

Theorem 3.5.4. Let Γ be a set of formulas and let ϕ be a formula.
Then, we have the following:

(1) Γ |= ϕ if and only if the sequent Γ ⇒ ϕ is valid. (In particular,
ϕ is a tautology if and only if ⇒ ϕ is valid.)

(2) Γ is satisfiable if and only if Γ⇒ is not valid.

4Gerhard Karl Erich Gentzen was born in Greifswald, Pomerania, on November
24, 1909, and died in tragic circumstances in Prague on August 4, 1945. He studied
at the Universities of Greifswald and Göttingen and worked as Hilbert’s assistant
at the latter university. Gentzen is known for his contributions to the study of
the consistency of a system of arithmetic and for his results in developing more
natural methods of proof.

Propositional Logic–Formal Systems 377

Proof. The argument for this simple theorem is left for the
reader. �

The mappings

sf : SQT −→ P(SPLFORM) and sqt : P(SPLFORM) −→ SQT

that we are about to introduce help us relate sequents to tableaux.

Definition 3.5.5. Let κ = Γ ⇒ Γ′ be a sequent. The set of signed
formulas sf(κ) is defined to be {Tϕ | ϕ ∈ Γ} ∪ {Fϕ | ϕ ∈ Γ′}.

Let Δ be a set of signed formulas. The sequent sqt(Δ) is given
by {ϕ | Tϕ ∈ Δ} ⇒ {ϕ | Fϕ ∈ Δ}.

It is easy to see that the mappings sf and sqt are both bijections
and are inverse to each other.

Let κ0 = Γ0 ⇒ Γ′
0, κ1 = Γ1 ⇒ Γ′

1 be two sequents. We denote by
κ0 ∪ κ1 the sequent Γ0 ∪ Γ1 ⇒ Γ′

0 ∪ Γ′
1. The reader can verify that

sqt(Δ0 ∪Δ1) = sqt(Δ0) ∪ sqt(Δ1),

sf(κ0 ∪ κ1) = sf(κ0) ∪ sf(κ1),

for Δ0,Δ1 ⊆ SPLFORM and κ0, κ1 ∈ SQT.

Theorem 3.5.6. Let κ be a sequent and v be a truth assignment.
Then, the following two conditions are equivalent:

(1) v satisfies κ.
(2) v does not satisfy the set of signed formulas sf(κ).

In addition, if κ = {ϕ0, . . . , ϕn−1} ⇒ {ψ0, . . . , ψm−1} and n,m ≥ 1,
then the above conditions are equivalent to the following:

(3) v satisfies the formula ((ϕ0 ∧ · · · ∧ ϕn−1)→ (ψ0 ∨ · · · ∨ ψm−1)).

Proof. The argument is straightforward and it is left to the
reader. �

Corollary 3.5.7. Let κ be a sequent. Then the following two condi-
tions are equivalent:

(1) The sequent κ is valid.
(2) The set of signed formulas sf(κ) is unsatisfiable.

378 Logical Foundations of Computer Science — Volume 1

In addition, if κ = {ϕ0, . . . , ϕn−1} ⇒ {ψ0, . . . , ψm−1} and n,m ≥ 1,
then the above conditions are equivalent to the following:

(3) The formula ((ϕ0∧· · ·∧ϕn−1)→ (ψ0∨· · ·∨ψm−1)) is a tautology.

Proof. This follows immediately from Theorem 3.5.6. �

Corollary 3.5.7 shows that it is possible to determine the validity
of sequents using tableaux. Actually, in this section, we will introduce
a formal system F seq,∞ whose theorems are the valid sequents. This
formal system is the counterpart of the formal system F tabl,∞ which
we introduced previously for tableaux. A proof tree in F seq,∞ for a
sequent κ will be another way of representing the construction of a
strongly closed tableau that shows that the set sf(κ) is unsatisfiable.
In fact, proof trees in F seq,∞ will be translations under sqt of proof
trees in F tabl,∞. We will also show that a “subsystem” F seq of the
formal system F seq,∞ whose axioms are finite sequents is sound and
complete with respect to the set of valid finite sequents.

Definition 3.5.8. Let κ be a sequent and let S be a set of sequents.
We say that κ is dominated by S if sf(κ) ⊆ sf(S). If S = {κ′},
then we say that κ is dominated by κ′ (or κ′ dominates κ) when κ is
dominated by S. In other words, Γ0 ⇒ Γ1 is dominated by Γ′

0 ⇒ Γ′
1

if Γ0 ⊆ Γ′
0 and Γ1 ⊆ Γ′

1.

Note that if κ is dominated by κ′ and κ is valid, then κ′ is also
valid.

Definition 3.5.9. For the conservative formal system

F seq,∞,cons = (SQT, A, I),

the set of axioms A consists of all sequents Γ⇒ Γ′ such that Γ∩Γ′ �=
∅, and the set of rules of inference I consists of the rules RC,l and
RC,r, given in Figure 3.12, where C ∈ {¬,∨,∧,→,↔}, Γ,Γ′ are sets
of formulas and ϕ,ψ are formulas.

The rules RC,l and RC,r are often called the C-left and the C-
right rule, respectively, for each connective C. A connective rule is
either a C-left or a C-right rule for some connective symbol C.

Propositional Logic–Formal Systems 379

Γ ⇒ Γ′, ϕ

Γ, (¬ϕ) ⇒ Γ′R¬,l

Γ, ϕ ⇒ Γ′ Γ, ψ ⇒ Γ′

Γ, (ϕ ∨ ψ) ⇒ Γ′ R∨,l

Γ, ϕ, ψ ⇒ Γ′

Γ, (ϕ ∧ ψ) ⇒ Γ′R∧,l

Γ ⇒ Γ′, ϕ Γ, ψ ⇒ Γ′

Γ, (ϕ → ψ) ⇒ Γ′ R→,l

Γ, ϕ, ψ ⇒ Γ′ Γ ⇒ Γ′, ϕ, ψ

Γ, (ϕ ψ) Γ′ R↔,l

Γ, ϕ ⇒ Γ′

Γ ⇒ Γ′, (¬ϕ)
R¬,r

Γ ⇒ Γ′, ϕ, ψ

Γ ⇒ Γ′, (ϕ ∨ ψ)
R∨,r

Γ ⇒ Γ′, ϕ Γ ⇒ Γ′, ψ

Γ ⇒ Γ′, (ϕ ∧ ψ)
R∧,r

Γ, ϕ ⇒ Γ′, ψ

Γ ⇒ Γ′, (ϕ → ψ)
R→,r

Γ, ϕ ⇒ Γ′, ψ Γ, ψ ⇒ Γ′, ϕ

Γ Γ′, (ϕ ψ)
R↔,r

.

Fig. 3.12. Rules of the formal system Fseq,∞,cons.

If add the rule Rthin given by

κ

κ′
Rthin,

where κ′ dominates κ, we obtain the formal system F seq,∞.
The formal system F seq,cons is the triple (SQTfin, A∩ SQTfin, Ifin)

where the definition of the rules in Ifin is obtained from the definition
of the rules in I by requiring the sequents involved to be finite.

Finally, the formal system F seq is obtained from F seq,cons by
adding the thinning rule restricted to finite sequents.

By Theorem 1.8.4, F seq,∞ is an extension of F seq and F seq,∞,cons

is an extension of F seq,cons. Also, for every instance of a rule of
F seq,∞,cons, the conclusion is a finite sequent if and only if all of
the hypotheses are finite sequents. Moreover, if the conclusion of a
rule of F seq,∞ is a finite sequent, then the premises of the rule are
also finite sequents.

380 Logical Foundations of Computer Science — Volume 1

The following results show the connection between various
sequent formal systems and tableaux and will be instrumental in
showing the soundness and completeness of these formal systems.

Theorem 3.5.10. For each set of signed formulas Δ and signed
formula bϕ, where ϕ �∈ SV and d(bϕ) = (K0, . . . ,Kn−1),

sqt(Δ ∪K0), . . . , sqt(Δ ∪Kn−1)

sqt(Δ ∪ {bϕ})

is an instance of a connective rule, and every such instance can be
obtained in this way.

For all sets of signed formulas Δ,Δ′ such that Δ ⊆ Δ′,

sqt(Δ)

sqt(Δ′)

is an instance of Rthin and every instance of this rule has this form.

Proof. The theorem follows by inspecting the definition of d(bϕ)
and the form of the rules. �

Corollary 3.5.11. For each instance

κ0, . . . , κn−1

κ

of a connective rule, there is a set of signed formulas Δ and a signed
formula bϕ (where ϕ is not a statement variable) such that d(bϕ) =
(K0, . . . ,Kn−1), sf(κ) = Δ∪ {bϕ}, and sf(κi) = Δ∪Ki for 0 ≤ i ≤
n− 1.

Further, for each instance

κ

κ′

of the thinning rule, there are sets of signed formulas Δ,Δ′, with
Δ ⊆ Δ′, such that κ = sqt(Δ) and κ′ = sqt(Δ′).

Proof. This is an immediate consequence of Theorem 3.5.10, tak-
ing into account the fact that sqt and sf are inverse bijections. �

Propositional Logic–Formal Systems 381

If

Γ0 ⇒ Γ′
0, . . . ,Γn−1 ⇒ Γ′

n−1

Γ⇒ Γ′

is an instance of a rule of F seq,∞, then Γi,Γ
′
i ⊆ SUBF(Γ ∪ Γ′), for

0 ≤ i ≤ n − 1. Thus, every formula that appears in a generalized
deduction tree T ∈ GDT Fseq,∞ for a sequent κ is a subformula of a
formula that occurs in κ. This shows the analyticity of the formal
systems F seq and F seq,∞.

Definition 3.5.12. Let

κ0, . . . , κn−1

κ

be an instance of a connective rule and let Δ and bϕ be as in Corol-
lary 3.5.11. Then we call ϕ a principal formula of the instance. If
bϕ ∈ Δ, we call the instance an instance with retention; otherwise,
we refer to this instance as an instance with removal.

It is not difficult to see that an instance of a connective rule cannot
be both an instance with retention and an instance with removal.
Further, in an instance with removal, there is only one principal
formula. The following example shows, however, that in an instance
with retention, there could be several principal formulas.

Example 3.5.13. Consider the instance

(p0 ∧ p1), (p0 ∧ p2), p0, p1, p2 ⇒
(p0 ∧ p1), (p0 ∧ p2), p1, p2 ⇒ R∧,l .

Observe that both formulas (p0 ∧ p1) and (p0 ∧ p2) can serve as
principal formulas of this instance.

Note that the instance

(p0 ∧ p1), p0, p1 ⇒ (¬p0)
(p0 ∧ p1), p1 ⇒ (¬p0)

can be regarded as an instance of R∧,l with principal formula (p0∧p1)
and as an instance of R¬,r with principal formula (¬p0).

382 Logical Foundations of Computer Science — Volume 1

The following theorem formalizes some of our previous remarks
on the connection between deduction trees of F seq,∞ and F tabl,∞.

Theorem 3.5.14. For T ∈ GDT Fseq,∞, define Φ(T) = sf ◦ T and
for T ∈ GDT F tabl,∞, define Ψ(T) = sqt ◦ T. Then, Φ : GDT Fseq,∞ →
GDT F tabl,∞ and Ψ : GDT F tabl,∞ −→ GDT Fseq,∞ are inverse bijections
and Φ(PT Fseq,∞) = PT F tabl,∞ and Ψ(PT F tabl,∞) = PT Fseq,∞.

Also, if T ∈ GDT Fseq,∞,cons (T ∈ PT Fseq,∞,cons), then Φ(T) ∈
GDT F tabl,∞,cons (Φ(T) ∈ PT F tabl,∞,cons) and if T ∈ GDT F tabl,∞,cons (T ∈
PT F tabl,∞,cons), then Ψ(T) ∈ GDT F tabl,∞,cons (Ψ(T) ∈ PT F tabl,∞,cons).

Proof. Corollary 3.5.11 implies that Φ maps GDT Fseq,∞ into
GDT Ftabl,∞ and Theorem 3.5.10 implies that Ψ maps GDT Ftabl,∞
into GDT Fseq,∞ . Since sf and sqt are inverse mappings, it follows
immediately that Φ and Ψ are inverse mappings. The next state-
ment follows from the fact that the mappings sf and sqt preserve
the axioms of the formal systems F seq,∞ and F tabl,∞; in other words,
if κ is an axiom of F seq,∞, then sf(κ) is an axiom of F tabl,∞, and if
Δ is an axiom of F tabl,∞, then sqt(Δ) is an axiom of F seq,∞. Finally,
the second part of the theorem follows from the first part by omitting
the usage of thinning rules. �

Theorem 3.5.15 (Soundness of Fseq,∞). Every theorem of
Fseq,∞ is a valid sequent.

Proof. Let κ be a theorem of F seq,∞ and let T be an F seq,∞-proof
tree for κ. Then, Φ(T) is an F tabl,∞-proof tree for sf(κ), so sf(κ) is
an unsatisfiable set of signed formulas by Theorem 3.3.43 which, by
Corollary 3.5.7, implies the validity of κ. �

Corollary 3.5.16 (Soundness of Fseq,F seq,cons,Fseq,∞,cons).
Every theorem of Fseq and F seq,cons is a valid finite sequent. Further,
every theorem of Fseq,∞,cons is a valid sequent.

Proof. This is immediate since every theorem of any of these for-
mal systems is a theorem of F seq,∞. �

Example 3.5.17. Let ϕ = (((¬α) → (¬β)) → (β → α)). We will
prove that ϕ is a tautology by showing that the sequent⇒ ϕ is valid.
Figure 3.13 gives a F seq-proof tree for ⇒ ϕ, so, by the Soundness
Theorem, ⇒ ϕ is valid.

Propositional Logic–Formal Systems 383

R→,r

R→,r

R→,l

R¬,r R¬,l

�
�

�
�

�

⇒ (((¬α) → (¬β)) → (β → α))

((¬α) → (¬β)) ⇒ (β → α)

((¬α) → (¬β)), β ⇒ α

β ⇒ α, (¬α) β, (¬β) ⇒ α

α, β ⇒ α β ⇒ α, β

Fig. 3.13. Proof of validity for ⇒ (((¬α) → (¬β)) → (β → α)).

Theorem 3.5.18 (Completeness of Fseq,∞,cons). Every valid
sequent is a theorem of Fseq,∞,cons.

Proof. Let κ be a valid sequent. Then, sf(κ) is unsatisfiable
and, by Theorem 3.3.43, there is an F tabl,∞,cons-proof tree T for
sf(κ). By Theorem 3.5.14, Ψ(T) is a F seq,∞,cons-proof tree for
sqt(sf(κ)) = κ. �

Corollary 3.5.19 (Completeness of Fseq,∞,F seq,cons,Fseq).
Every valid sequent is a theorem of Fseq,∞. Every valid finite sequent
is a theorem of F seq,cons and Fseq.

Proof. The completeness of F seq,∞ follows immediately from the
completeness of F seq,∞,cons because the latter formal system is
extended by the former.

By the completeness of F seq,∞,cons, for every valid finite sequent
κ, there is an F seq,∞,cons-proof tree T for κ. By the remark made after
the definition of F seq,∞, the nodes of this tree are finite sequents, so

384 Logical Foundations of Computer Science — Volume 1

T is an F seq,cons-proof tree for κ and therefore an F seq-proof tree for
the same. �

Theorem 3.5.20. There is an effective, syntactic construction that
starts with an Fseq,∞-proof tree T for a sequent κ and produces an
Fseq,∞-proof tree T′ for a finite sequent κ′ that is dominated by κ.

Proof. The argument involves the translation mappings Φ :
GDT Fseq,∞ → GDT Ftabl,∞ and Ψ : GDT Ftabl,∞ −→ GDT Fseq,∞ . By
Theorem 3.5.14, these functions map proof trees to proof trees. Let
T be a F seq,∞-proof tree for a sequent κ. Then, T0 = Φ(T) is an
F tabl,∞-proof tree for the set sf(κ) that is a strongly closed sf(κ)-
tableau. By Theorem 3.3.40, we effectively obtain a strongly closed
Δ′-tableau T′0, where Δ′ is a finite subset of Δ = sf(κ). Thus, there is
a finite sequent κ′ = sqt(Δ′) such that T′ = Ψ(T′0) is an F seq,∞-proof
tree for κ′. Since sf(κ) = Δ and sf(κ′) = Δ′, κ dominates κ′. �

Note that T′ is actually a F seq-proof tree, as we observed in a
previous remark.

Theorem 3.5.21 (Compactness Theorem for Sequents). For
every sequent κ, κ is valid if and only if it dominates a valid finite
sequent κ′.

Proof. If a sequent κ dominates a valid finite sequent κ′, then, by
the remark following the definition of domination, κ is valid.

Conversely, suppose that κ is a valid sequent. By the completeness
of F seq,∞, there is an F seq,∞-proof tree for κ. Theorem 3.5.20 implies
the existence of a F seq,∞-proof tree for a finite sequent κ′ dominated
by κ. By the soundness of F seq,∞, κ′ is valid. �

Definition 3.5.22. A general F seq,∞-deduction tree T is finished if
Φ(T) is a strongly completed tableau.

Definition 3.5.23. A sequent κ′ is a constituent of the sequent ϕ⇒
if κ′ = sqt(K) where K is a constituent of Tϕ; κ′ is a constituent of
the sequent ⇒ ϕ if κ′ = sqt(K) where K is a constituent of Fϕ.

A branch B of a general F seq,∞-deduction tree T is called finished
if

(1) for no statement variable p does T(B) dominate both p ⇒ and
⇒ p and

Propositional Logic–Formal Systems 385

(2) for every sequent κ of the form ϕ⇒ or⇒ ϕ, with ϕ not a literal,
if κ is dominated by T(B), then there is a constituent κ′ of κ that
is dominated by T(B).

Theorem 3.5.24. A general Fseq,∞-deduction tree T is finished if
and only if every branch of T is either finished or ends with a node
labeled by an axiom of Fseq,∞.

Proof. The theorem follows immediately from the observation that
a branch B of a general F seq,∞-deduction tree T is finished (in the
sense of Definition 3.5.23) if and only if sf(T(B)) is a Hintikka
set. �

Example 3.5.25. Consider the sequent (p0 ∨ p1)⇒ (p0 ∧ p1). Note
that sf((p0∨p1)⇒ (p0∧p1)) = {T(p0∨p1),F(p0∧p1)} and we have
shown in Example 3.3.25 that this set of signed formulas is satisfiable.
A finished F seq-deduction tree for the sequent (p0 ∨ p1) ⇒ (p0 ∧ p1)
is shown in Figure 3.14.

Theorem 3.5.26. There is a finished F seq,cons-deduction tree for
every finite sequent κ.

p0 ⇒ (p0 ∧ p1), p0 p0 ⇒ (p0 ∧ p1), p1 p1 ⇒ (p0 ∧ p1), p0 p1 ⇒ (p0 ∧ p1), p1

p0 ⇒ (p0 ∧ p1) p1 ⇒ (p0 ∧ p1)

(p0 ∨ p1) ⇒ (p0 ∧ p1)

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

R∨,l

R∧,r R∧,r

Fig. 3.14. Finished deduction tree for (p0 ∨ p1) ⇒ (p0 ∧ p1).

386 Logical Foundations of Computer Science — Volume 1

If κ is a sequent, there is a finished general Fseq,∞,cons-deduction
tree for κ.

Proof. Using Construction 3.3.37 (or Algorithm 3.3.27 for the
finite case), it is possible to construct a strongly completed (finite)
sf(κ)-tableau T. Then, by Theorem 3.5.14, when κ is a finite sequent,
sqt ◦ T is a finished F seq,cons-deduction tree for sqt(sf(κ)) = κ;
otherwise, sqt ◦ T is a finished general F seq,∞,cons-deduction tree
for κ. �

In the finite case, the proof of Theorem 3.5.26 in fact gives an
algorithm, albeit not the most direct one, for producing a finished
F seq-deduction tree for a given sequent κ. We can rephrase this algo-
rithm in terms of sequents.

Algorithm 3.5.27.
Input: A finite sequent κ.
Output: A finished F seq,cons-deduction tree for κ.
Method:We construct a sequence T0, T1, . . . of F seq,cons-deduction
trees for κ such that each Ti+1 is a leaf extension of Ti using the
following steps:

(A) Let T0 be the one-node tree with root labeled by κ.
(B) Suppose that Ti has been defined. Then, if Ti is finished,

the algorithm stops with Ti as the output. Otherwise, Ti has
branches that neither are finished nor end in an axiom. Select
nondeterministically such a branch B ending in the leaf q.
Then, select nondeterministically a sequent κq of one of the
forms ϕ⇒ or ⇒ ϕ with ϕ not a literal, such that κq is domi-
nated by T(q) but no constituent of κq is dominated by T(B).
(By an analog of Lemma 3.3.19, such a sequent exists.) Let

κ0, . . . , κn−1

T(q)

be an instance of a rule of F seq,cons with ϕ as principal for-
mula. (Since T(q) is not an axiom, there is only one rule of
which this can be an instance.) Define Ti+1 by adding to
Dom(Ti) the nodes q0, . . . , q(n−1) and defining Ti+1(qj) = κj
for 0 ≤ j ≤ n− 1.

Propositional Logic–Formal Systems 387

Proof of Correctness: It is easy to see that each Ti is an F seq,cons-
deduction tree for κ. Further, sf ◦ T0, . . . is a sequence of sf(κ)-
tableaux that can be obtained by applying Algorithm 3.3.27 to sf(κ).
Thus, the correctness of that algorithm implies the correctness of the
present algorithm. �

The above algorithm can produce a finished F seq,cons-deduction
tree with retention or with removal.

A similar rephrasing can be applied to Construction 3.3.37 to gen-
erate a direct construction of a finished general F seq,∞,cons-deduction
tree for an arbitrary sequent κ.

Construction 3.5.28.
Input: A sequent κ.
Output: A (finite or infinite) sequence T0, T1, . . . of F seq,∞,cons-
deduction trees for κ such that each Ti+1 is a leaf extension of Ti
and T =

⋃
{Ti | i ≥ 0} is a finished general F seq,∞,cons-deduction

tree for κ.
Method:

(A) Let T0 be the one-node tree with root labeled by κ.
(B) Suppose that Ti has been defined. Then, if Ti is finished, the

construction stops (so T = Ti). Otherwise, Ti has branches
that neither are finished nor end with an axiom. Select non-
deterministically among the shortest such branches a branch B

ending in the leaf q. Then, let ϕ be the first formula in the stan-
dard ordering of formulas such that for κq chosen from among
ϕ⇒ and ⇒ ϕ, κq is dominated by T(q) and no constituent of
κq is dominated by T(B). (By an analog of Lemma 3.3.19, such
a sequent exists and is unique because T(q) is not an axiom.)
Let

κ0, . . . , κn−1

T(q)

be an instance of a rule of F seq,∞,cons with ϕ as principal
formula. (Since T(q) is not an axiom, there is only one rule
of which this can be an instance.) Define Ti+1 by adding to
Dom(Ti) the nodes q0, . . . , q(n−1) and defining Ti+1(qj) = κj
for 0 ≤ j ≤ n− 1.

388 Logical Foundations of Computer Science — Volume 1

Proof of Correctness: It is clear that each Ti, if defined, is an
F seq,∞,cons-deduction tree for κ and that Ti+1, if defined, is a leaf
extension of Ti.

The sequence of trees sf ◦ T0, . . . is a sequence of sf(κ)-tableaux
that could have been obtained by applying Construction 3.3.37 to
sf(κ). By the correctness of that construction, T′ =

⋃
{sf◦Ti | i ≥ 0}

is a strongly completed sf(κ)-tableau. Therefore, since sf ◦ T = T′,
T is a finished general F seq,∞,cons-deduction tree for κ. �

As usual, we observe that the algorithm can be used to produce
a general F seq,∞,cons-deduction tree with retention or with removal.

As just shown, given a (finite) sequent κ, we can construct a
finished general F seq,∞,cons-deduction (finished F seq,cons-deduction)
tree T for κ. If T is a proof tree, then κ is valid. Otherwise, we can
determine the truth assignments that falsify κ.

Theorem 3.5.29. Let T be a finished general Fseq,∞-deduction tree
for a sequent κ. For each finished branch B of T, let vB be the partial
truth assignment defined by

vB(p) =

{
T if p⇒ is dominated by T(B)

F if ⇒ p is dominated by T(B).

Then, a truth assignment v falsifies κ if and only if v extends some
partial truth assignment vB, where B is a finished branch of T.

Proof. By Theorem 3.5.6, v falsifies κ if and only if it satisfies
sf(κ). Since sf◦T is a (strongly) completed sf(κ)-tableau, by Theo-
rem 3.3.18, this is equivalent to having v(p) = b for all bp ∈ sf(T(B))
for some finished branch B of T. In turn, this is equivalent to v extend-
ing one of the partial truth assignments vB. �

Example 3.5.30. In the deduction tree T shown in Figure 3.14, we
have the finished branches B1 = {λ, 0, 01} and B2 = {λ, 1, 10}, where

T(B1) = {(p0 ∨ p1)⇒ (p0 ∧ p1), p0 ⇒ (p0 ∧ p1), p1 ⇒ (p0 ∧ p1), p1},
T(B2) = {(p0 ∨ p1)⇒ (p0 ∧ p1), p1 ⇒ (p0 ∧ p1), p1 ⇒ (p0 ∧ p1), p0}.

The truth assignments associated with these two branches are

vB1
(p0) = T vB1

(p1) = F,

vB2
(p0) = F vB2

(p1) = T.

Propositional Logic–Formal Systems 389

A truth assignment falsifies the sequent (p0 ∨ p1)⇒ (p0 ∧ p1) if and
only if it extends one of the previous partial truth assignments.

We will now introduce a cut rule for sequents corresponding to
the cut rule for tableaux.

Definition 3.5.31. The formal systems F seq,cut and F seq,cons,cut

are obtained from F seq and F seq,cons, respectively, by adding the
following “cut” rule:

Γ, ϕ⇒ Γ′ Γ⇒ Γ′, ϕ
Γ⇒ Γ′ Rcut

for all finite sets of formulas Γ,Γ′ and formulas ϕ.
The formal systems F seq,∞,cut and F seq,∞,cons,cutare the formal

systems obtained from F seq,∞ and F seq,∞,cons by adding a cut rule
for arbitrary sequents similar to the one introduced above.

As with tableaux with cut, the formal systems introduced above
are not analytical since the formula ϕ that appears in an instance

Γ, ϕ⇒ Γ′ Γ⇒ Γ′, ϕ
Γ⇒ Γ′ Rcut

of the cut rule need not be a subformula of a formula in Γ or Γ′.
The parallelism between tableaux and deduction trees for

sequents is maintained between tableaux with cut and deduction
trees with cut for sequents.

Theorem 3.5.32. For T ∈ GDT Fseq,∞,cut, let Φcut(T) = sf ◦ T and
for T ∈ GDT F tabl,∞,cut, let Ψcut(T) = sqt ◦ T. The mappings

Φcut : GDT Fseq,∞,cut → GDT F tabl,∞,cut ,

Ψcut : GDT F tabl,∞,cut −→ GDT Fseq,∞,cut

are inverse bijections, and we have Φcut(PT Fseq,∞,cut) = PT F tabl,∞,cut

and Ψcut(PT F tabl,∞,cut) = PT Fseq,∞,cut.
Further, if T ∈ GDT Fseq,∞,cons,cut (T ∈ PT Fseq,∞,cons,cut), then Φ(T)

belongs to GDT F tabl,∞,cons,cut (Φ(T) belongs to PT F tabl,∞,cons,cut).
Similarly, if T ∈ GDT F tabl,∞,cons,cut (T ∈ PT F tabl,∞,cons,cut), then

Ψ(T) belongs to GDT F tabl,∞,cons,cut (Ψ(T) belongs to PT F tabl,∞,cons,cut).

390 Logical Foundations of Computer Science — Volume 1

Proof. The argument expands the argument for Theorem 3.5.14
by the following observation. If

κ0 κ1
κ

is an instance of the cut rule of F seq,∞,cut, then

sf(κ0) sf(κ1)

sf(κ)

is an instance of the cut rule of F tabl,∞,cut and, if

Δ ∪ {Tϕ} Δ ∪ {Fϕ}
Δ

is an instance of the cut rule for F tabl,∞,cut, then

sqt(Δ ∪ {Tϕ}) sqt(Δ ∪ {Fϕ})
sqt(Δ)

is an instance of the cut rule of F seq,∞,cut. �

Theorem 3.5.33 (Soundness of Fseq,∞,cut). Every theorem of
Fseq,∞,cut is a valid sequent.

Proof. The argument is similar to the argument of Theorem 3.5.15,
using Φcut in place of Φ and Theorem 3.4.10 in place of Theo-
rem 3.3.43. �

Corollary 3.5.34 (Soundness of Other Sequent Systems).
Each theorem of Fseq,cut and Fseq,cons,cut is a valid finite sequent.
Further, every theorem of Fseq,∞,cons,cut is a valid sequent.

Proof. This statement follows directly from Theorem 3.5.33
because the formal system F seq,∞,cut is an extension of all formal
systems mentioned in the corollary. �

Theorem 3.5.35 (Completeness of Other Sequent Systems).
Every valid sequent is a theorem of Fseq,∞,cons,cut and Fseq,∞,cut.
Every valid finite sequent is a theorem of Fseq,cons,cut and Fseq,cut.

Proof. The argument follows immediately by observing that each
of these formal systems extends existing complete formal systems by
adding the cut rule. �

Propositional Logic–Formal Systems 391

Theorem 3.5.36. There is an effective, syntactic construction that
starts with an Fseq,∞,cut-proof tree T for a sequent κ and produces an
Fseq,∞,cut-proof tree T′ for a finite sequent κ′ that is dominated by κ.

Proof. The argument for this theorem is similar to that for Theo-
rem 3.5.20, using translations between tableaux with cut and proof
trees with cut for sequents, and Theorem 3.4.8. �

Definition 3.5.37. We say that a general F seq,∞,cut-deduction tree
T is finished if Φcut(T) is a strongly completed tableau with cut.

The notion of finished branch of a general F seq,∞,cut-deduction
tree is defined in exactly the same way as the corresponding notion
for F seq,∞-deduction trees (see Definition 3.5.23.)

Theorem 3.5.38. A general Fseq,∞,cut-deduction tree T is finished
if and only if every branch of T is either finished or ends with a node
labeled by an axiom of Fseq,∞,cut.

Proof. The argument is similar to that of Theorem 3.5.24. �
Theorem 3.5.26 implies the existence of a finished F seq,cut-

deduction tree for every finite sequent κ and a finished general
F seq,∞,cut-deduction tree for every sequent κ.

Theorem 3.5.29 extends to finished general F seq,∞,cut-deduction
trees with cut as follows.

Theorem 3.5.39. Let T be a finished general Fseq,∞,cut-deduction
tree for a sequent κ. For each finished branch B of T, let vB be the
partial truth assignment defined by

vB(p) =

{
T if p⇒ is dominated by T(B)

F if ⇒ p is dominated by T(B).

Then, a truth assignment v falsifies κ if and only if v extends some
partial truth assignment vB, where B is a finished branch of T.

Proof. The argument is the same as the one for Theorem 3.5.29
except that Theorem 3.3.18 is replaced by Theorem 3.4.5. �

In the following theorem, we show how cut elimination for tab-
leaux translates into cut elimination for sequents. This gives a syn-
tactic transformation of a nonanalytical proof of validity of a sequent
into an analytical one.

392 Logical Foundations of Computer Science — Volume 1

Theorem 3.5.40 (Cut Elimination for Sequents). There is a
syntactic transformation CETS : PT Fseq,∞,cut −→ PT Fseq,∞ such that
CETS(T)(λ) and T(λ) are the same sequent.

Proof. Define CETS = Ψ ◦ CET ◦ Φcut. Since all three mappings
involved in this definition are syntactic transformations, then so is
CETS. Let T ∈ PT Fseq,∞,cut . Define T′ = Φcut(T), T′′ = CET(T′),
and T1 = Ψ(T′′). We have T′ ∈ PT Ftabl,∞,cut and T′(λ) = sf(T(λ)).
Next, T′′ ∈ PT Ftabl,∞ and T′′(λ) = T′(λ). Finally, T1 ∈ PT Fseq,∞ and
T1(λ) = sqt(T′′(λ)) = sqt(sf(T(λ))) = T(λ). �

The operation � that we are about to introduce is used in the
following two theorems. These, in turn, will be useful, in Section 3.7,
for linking sequent proofs to natural deduction trees, which we study
in Section 3.6.

Let T ∈ GDT Fseq,∞,cut and let κ be a sequent. Define T′ as the lot
(T; T(λ) ∪ {κ}). We will denote T′ by T� κ.

Theorem 3.5.41. If T ∈ GDT F tabl,∞,cut and Δ0 ⊆ SPLFORM, then

Ψcut(T �Δ0) = Ψcut(T)� sqt(Δ0).

Also, if T ∈ GDT Fseq,∞,cut and κ is a sequent, then

Φcut(T� κ) = Φcut(T) � sf(κ).

Proof. This is immediate from the definitions of Ψcut and Φcut. �

The following theorem can be easily proven directly; however, we
will give a proof making use of the operations of Theorem 3.5.41.

Theorem 3.5.42. If T ∈ GDT F ,DT F ,PT F and κ is a sequent
(finite sequent), then T � κ is in GDT F ,DT F ,PT F , for F ∈
{Fseq,∞,Fseq,∞,cut} (for F ∈ {Fseq,Fseq,cut}), respectively.

Proof. Let T ∈ GDT Fseq,∞,cut and let κ ∈ SQT. Since Ψcut,Φcut

and sqt, sf are pairs of inverse bijections, we can write

T� κ = Ψcut(Φcut(T))� sqt(sf(κ)).

By Theorem 3.5.41, we have

T� κ = Ψcut(Φcut(T) � sf(κ)).

Propositional Logic–Formal Systems 393

Since Φcut(T) ∈ GDT Ftabl,∞,cut (by Theorem 3.5.32), it follows that

Φcut(T) � sf(κ) ∈ GDT Ftabl,∞,cut ,

which enables us to conclude that T � κ ∈ GDT Fseq,∞,cut . We leave
the remaining cases to the reader. �

3.6 Natural Deduction

Natural Deduction was introduced by Gentzen as a formalism
that reflects “as accurately as possible the actual logical reasoning
involved in mathematical proofs” (see [16]).

Ironically, in view of the fact that natural deduction is meant to
model common mathematical reasoning faithfully, the introduction
and study of the system are rather cumbersome. On the other hand,
this could be anticipated since common mathematical reasoning is a
very powerful intellectual tool.

We begin by introducing a formal system whose set of axioms is
empty and, therefore, has no theorems. We will use deduction trees
of this system to formalize natural deduction processes.

Definition 3.6.1. Fnd is the formal system (PLFORM, ∅, I) whose
set of rules I is given in Figure 3.15, where ϕ,ψ, θ are arbitrary
formulas in PLFORM.

If T is an Fnd-deduction tree for ϕ, we will refer to the labels of
the leaves of T as the hypotheses of T and to ϕ as the conclusion
of T.

We will refer to the rules of the form RCI , RCIl, RCIr as
C-introduction rules; rules of the form RCE, RCEl, RCEr are called
C-elimination rules.

It is clear that the formal system Fnd is nonanalytical. For exam-
ple, in an instance

(ϕ ∨ ψ), θ, θ
θ

of the rule R∨E , ϕ and ψ do not have to be subformulas of θ.

Lemma 3.6.2. For each instance of a rule of Fnd, the set of premises
logically implies the conclusion.

394 Logical Foundations of Computer Science — Volume 1

∧-rules:
ϕ, ψ

(ϕ ∧ ψ)R∧I

(ϕ ∧ ψ)
ϕ R∧El

(ϕ ∧ ψ)
ψ R∧Er

∨-rules:
ϕ

(ϕ ∨ ψ)R∨Il

(ϕ ∨ ψ), θ, θ
θ R∨E

ψ

(ϕ ∨ ψ)R∨Ir

→-rules:
ψ

(ϕ → ψ)R→I

ϕ, (ϕ → ψ)
ψ R→E

↔-rules:
ψ,ϕ

(ϕ ↔ ψ)R↔I

ϕ, (ϕ ↔ ψ)
ψ R↔El

ψ, (ϕ ↔ ψ)
ϕ R↔Er

¬-rules:
ψ, (¬ψ)
(ϕ) R¬I

ψ, (¬ψ)
ϕ R¬E

.

Fig. 3.15. The set of rules of Fnd.

Proof. The argument is immediate by inspecting each rule. �

It follows from Lemma 3.6.2 that for any Fnd-deduction tree, the
hypotheses of the tree logically imply the conclusion of the tree. In
certain cases, however, we can show that some of the hypotheses
can be eliminated. For example, let T be an Fnd-deduction tree for ψ
whose set of hypotheses is Γ. Then, using the→-introduction rule, we
obtain the Fnd-deduction tree T′ = (T; (ϕ → ψ)) for (ϕ → ψ) whose
set of hypotheses is still Γ. As just noted, we have Γ |= (ϕ→ ψ), but,
in fact, we can make the stronger statement that Γ−{ϕ} |= (ϕ→ ψ).
Indeed, let v be a truth assignment that satisfies Γ−{ϕ}. If v(ϕ) = F,
then v((ϕ→ ψ)) = T; if v(ϕ) = T, then v satisfies Γ, so again v((ϕ→
ψ)) = T. This observation will be formalized by the syntactic device
of canceling or discharging hypotheses. The discharging of hypotheses
of a deduction tree amounts to marking the leaves of the tree labeled
with hypotheses that are no longer required for logical implication of

Propositional Logic–Formal Systems 395

the conclusion. In the case of the→-introduction rule, the discharging
of hypotheses is a formal equivalent of the most common technique
for proving an implication (ϕ→ ψ). Namely, if we can prove ψ using
ϕ and some other hypotheses, then we conclude that (ϕ→ ψ) follows
from the other hypotheses alone.

Example 3.6.3. Let T0, T1, T2 be Fnd-deduction trees with T0(λ) =
(ϕ ∨ ψ) and T1(λ) = T2(λ) = θ whose sets of hypotheses are Γ0,Γ1,
and Γ2, respectively. Using the ∨-elimination rule, we obtain the
Fnd-deduction tree T = (T0, T1, T2; θ). The set of hypotheses of T is
Γ0 ∪ Γ1 ∪ Γ2, so we obtain Γ0 ∪ Γ1 ∪ Γ2 |= θ. Note that a stronger
statement holds, namely,

Γ0 ∪ (Γ1 − {ϕ}) ∪ (Γ2 − {ψ}) |= θ.

Indeed, if v is a truth assignment that satisfies Γ0∪(Γ1−{ϕ})∪(Γ2−
{ψ}), then at least one of the equalities v(ϕ) = T or v(ψ) = T holds.
If v(ϕ) = T, then, since v satisfies Γ1−{ϕ}, it follows that it satisfies
Γ1 and, therefore, it satisfies θ. A similar argument is applicable if
v(ψ) = T, so in any case, v(θ) = T. This observation allows us to
discharge the leaves of T1 labeled by ϕ and the leaves of T2 labeled
by ψ.

Proof by cases of θ from some hypotheses Γ, in common mathe-
matical practice, amounts to proving θ from ϕ and other hypotheses
Γ1, proving θ from ψ and other hypotheses Γ2, and then proving
(ϕ∨ψ), where Γ consists of Γ1,Γ2 and the hypotheses used to prove
(ϕ ∨ ψ). This corresponds in broad lines to the discharging process
discussed above.

Example 3.6.4. The usual way to show the equivalence of ϕ and ψ
is to show ψ starting from ϕ and then show ϕ starting from ψ. We
can formalize this standard type of argument in Fnd as follows. Let
T′ be an Fnd-deduction tree for ψ with hypotheses Γ′ and let T′′ be
an Fnd-deduction tree for ϕ with hypotheses Γ′′. Then, by the ↔-
introduction rule, we obtain the Fnd-deduction tree T = (T′, T′′; (ϕ↔
ψ)). The existence of T shows that Γ′ ∪ Γ′′ |= (ϕ ↔ ψ), but, in fact,
we have (Γ′−{ϕ})∪ (Γ′′−{ψ}) |= (ϕ↔ ψ), as the reader can easily
verify. This means that we can discharge the hypothesis ϕ from Γ′

(if ϕ ∈ Γ′) and the hypothesis ψ from Γ′′ (if ψ ∈ Γ′′).

396 Logical Foundations of Computer Science — Volume 1

Example 3.6.5. A proof by contradiction of ϕ in mathematics con-
sists of assuming (¬ϕ) and proving both ψ and (¬ψ) for some for-
mula ψ. This allows us to conclude ϕ. Once again, following the
pattern of the previous examples, let T′, T′′ be Fnd-deduction trees
for ψ and (¬ψ) which have Γ′,Γ′′ as their sets of hypotheses, respec-
tively. Using the ¬-elimination rule, we obtain the Fnd-deduction tree
T = (T′, T′′;ϕ) which shows that Γ′ ∪ Γ′′ |= ϕ. Note however that the
stronger statement (Γ′ − {(¬ϕ)}) ∪ (Γ′′ − {(¬ϕ)}) |= ϕ holds. This
allows us to discharge (¬ϕ) from both Γ′ and Γ′′.

Similarly, the hypothesis ϕ can be discharged in any proof by
contradiction of (¬ϕ) that uses the ¬-introduction rule.

Definition 3.6.6. A marked Fnd-deduction tree is a pair (T,M),
where T is an Fnd-deduction tree and M ⊆ LEAVES(T). The leaves
that belong to the set M are said to be canceled.

The set of uncanceled hypotheses of a marked Fnd-deduction tree
(T,M) is the set

UNC(T,M) = {T(q) | q ∈ LEAVES(T)−M}.

The notation introduced after Theorem 1.7.18 is used in the fol-
lowing definition. Also, using Definition 1.7.10, if T = (T,M) is a
marked Fnd-deduction tree and ϕ is a formula, we denote by Lϕ(T)
the marked Fnd-deduction tree (T,M ∪ LEAVESϕ(T)).

Definition 3.6.7. The set NDT of natural deduction trees is the set
of marked Fnd-deduction trees given inductively by the following:

(1) If T is a one-node Fnd-deduction tree, then (T, ∅) ∈ NDT.
(2) (→-introduction) If T = (T,M) ∈ NDT, T(λ) = ψ, and ϕ is a

formula, then

(Lϕ(T); (ϕ→ ψ)) ∈ NDT.

(3) (∨-elimination) If Ti = (Ti,Mi) ∈ NDT for 0 ≤ i ≤ 2 and T0(λ) =
(ϕ ∨ ψ), T1(λ) = T2(λ) = θ, then

(T0, Lϕ(T1), Lψ(T2); θ)

belongs to NDT.

Propositional Logic–Formal Systems 397

(4) (↔-introduction) If T0 = (T0,M0) and T1 = (T1,M1) belong to
NDT, T0(λ) = ψ, and T1(λ) = ϕ, then

(Lϕ(T0), Lψ(T1); (ϕ↔ ψ))

belongs to NDT.
(5) (¬-introduction) If T0 = (T0,M0) and T1 = (T1,M1) belong to

NDT, T0(λ) = ψ, T1(λ) = (¬ψ) and ϕ ∈ PLFORM, then

(Lϕ(T0), Lϕ(T1); (¬ϕ)) ∈ NDT.

(6) (¬-elimination) If T0 = (T0,M0) and T1 = (T1,M1) belong NDT,
T0(λ) = ψ, T1(λ) = (¬ψ) and ϕ ∈ PLFORM, then

(L(¬ϕ)(T0), L(¬ϕ)(T1));ϕ) ∈ NDT.

(7) If
α

β
is an instance of one of the remaining rules that have one

hypothesis and T = (T,M) ∈ NDT with T(λ) = α, then (T ;β) ∈
NDT.

(8) If
α0, α1

β
is an instance of one of the remaining rules that

have two hypotheses, and T0 = (T0,M0) and T1 = (T1,M1)
belong to NDT with T0(λ) = α0, and T1(λ) = α1, then
(T0,T1;β) ∈ NDT.

Figure 3.16 illustrates the inductive parts of Definition 3.6.7.
Parts (a)–(e) show the application of the →-introduction,
∨-elimination, ↔-introduction, ¬-introduction, and ¬-elimination
rules, respectively. Parts (f) and (g) show the application of the
remaining parts that have one or two hypotheses, respectively.

Definition 3.6.8. Let Γ be a set of formulas and let ϕ be a formula.
We write Γ

•�ndϕ if there is a natural deduction tree (T,M) such that
T(λ) = ϕ and UNC(T,M) ⊆ Γ.

We included the ¬-introduction rule in order to have an introduc-
tion and an elimination rule for each of the five connectives; however,
as we show in Supplement 70, we can drop this rule without affecting
the relation

•�nd .
Natural deduction is not an analytical formalism since if Γ

•�ndϕ
is shown by the natural deduction tree (T,M), then formulas can

398 Logical Foundations of Computer Science — Volume 1

���
�
��

�
�

�
��
· · · \ϕ · · ·

ψ�(ϕ → ψ)

(a)

�
�
�
��

�
�

�
��
· · · \ϕ · · ·

θ �
�
�
��

�
�

�
��
· · · \ψ · · ·

θ�
�
�
��

�
�

�
��

· · ·

(ϕ ∨ ψ)� � �
(b)

���������������

�
�
�
��

�
�

�
��
· · · \ϕ · · ·

ψ �
�
�
��

�
�

�
��
· · · \ψ · · ·

ϕ� �

				�
(ϕ ↔ ψ)

(c)

�
�
�
��

�
�

�
��
· · · \ϕ · · ·

ψ �
�
�
��

�
�

�
��
· · · \ϕ · · ·

(¬ψ)� �

				�
(¬ϕ)

(d)

�
�
�
��

�
�

�
��

· · ·���
(¬ϕ) · · ·

ψ �
�
�
��

�
�

�
��

· · ·���
(¬ϕ) · · ·

(¬ψ)� �

				�
ϕ

(e)

���
�
��

�
�

�
��

α� β

(f)

�
�
�
��

�
�

�
��

α0 �
�
�
��

�
�

�
��

α1� �

				�
β

(g)

· · · · · · · · ·

θ

Fig. 3.16. Building natural deduction trees.

appear in T without being subformulas or negated subformulas of
formulas in Γ ∪ {ϕ}.

When drawing a natural deduction tree, we employ the following
graphical conventions:

• The name of the rule applied is put near each interior node.
• A canceled leaf is indicated by a bar.
• Whenever a node is generated using a rule that causes one or

more leaves to be canceled, we place a numerical mark inside that
node and also inside all the leaves that have been canceled by the
application of the rule.

Example 3.6.9. Figure 3.17 contains a natural deduction tree for
the formula (ϕ∨ (¬ϕ)). Since all the leaves of this tree are canceled,

we have ∅ •�nd (ϕ ∨ (¬ϕ)).

Propositional Logic–Formal Systems 399

(ϕ ∨ (¬ϕ)) 2

�
�

��

(ϕ ∨ (¬ϕ))

ϕ 1
�

��

(ϕ ∨ (¬ϕ))

(¬ϕ) 1
������
(¬(ϕ ∨ (¬ϕ))) 2

������
(¬(ϕ ∨ (¬ϕ))) 2

R∨Il

R∨Ir

R¬E

R¬E

Fig. 3.17. Natural deduction tree for (ϕ ∨ (¬ϕ)).

Example 3.6.10. In Figure 3.18, we give a natural deduction tree
for the formula ((ϕ ∨ (α ∧ β)) → ((ϕ ∨ α) ∧ (ϕ ∨ β))) which shows

that ∅ •�nd ((ϕ ∨ (α ∧ β))→ ((ϕ ∨ α) ∧ (ϕ ∨ β))).

Theorem 3.6.11 (Soundness Theorem for Natural Deduc-

tion). Let Γ be a set of formulas and let θ be a formula. If Γ
•�nd θ,

then Γ |= θ.

Proof. We must show that if (T,M) is a natural deduction tree
such that UNC(T,M) ⊆ Γ and T(λ) = θ, then Γ |= θ. We
proceed by induction on the definition of natural deduction trees
(Definition 3.6.7).

For the basis step, T is a one-node Fnd-deduction tree andM = ∅.
Since UNC(T, ∅) = {T(λ)}, the result is immediate.

Suppose that (T,M) is obtained from (T0,M0) using the →-
introduction rule (Case 2 of Definition 3.6.7). Then, there are some
formulas ϕ,ψ such that θ = T(λ) = (ϕ → ψ) and T0(λ) = ψ. We
have UNC(T0,M0) ⊆ Γ∪{ϕ} because UNC(T,M) = UNC(T0,M0)−
{ϕ} ⊆ Γ. By the inductive hypothesis, we have Γ ∪ {ϕ} |= ψ, so,
Γ |= (ϕ→ ψ) by the third part of Theorem 2.3.17.

400 Logical Foundations of Computer Science — Volume 1

������
(ϕ ∨ (α ∧ β)) 3 (ϕ ∨ α)

(ϕ ∨ α)

(ϕ ∨ α) 1

α

������
(α ∧ β) 1��ϕ 1

�
�

�
��

����

((ϕ ∨ α) ∧ (ϕ ∨ β))

������
(ϕ ∨ (α ∧ β)) 3 (ϕ ∨ β)

(ϕ ∨ β)

(ϕ ∨ β) 2

β

������
(α ∧ β) 2��ϕ 2

�
�

�
��

����

((ϕ ∨ (α ∧ β)) → ((ϕ ∨ α) ∧ (ϕ ∨ β))) 3

��������

R∨Il R∧El

R∨Ir

R∨E

R∧ErR∨Il

R∨Ir

R∨E

R∧I

R→I

Fig. 3.18. Natural deduction tree.

Assume now that (T,M) is obtained from (T0,M0), (T1,M1),
(T2,M2) using the ∨-elimination rule. Then, for some formulas ϕ,ψ,
we have T0(λ) = (ϕ ∨ ψ) and T1(λ) = T2(λ) = θ. Since

UNC(T,M) = UNC(T0,M0) ∪ (UNC(T1,M1)− {ϕ})
∪ (UNC(T2,M2)− {ψ}) ⊆ Γ,

Propositional Logic–Formal Systems 401

it follows that

UNC(T0,M0) ⊆ Γ,

UNC(T1,M1) ⊆ Γ ∪ {ϕ},
UNC(T2,M2) ⊆ Γ ∪ {ψ}.

By the inductive hypothesis, we have Γ |= (ϕ ∨ ψ),Γ ∪ {ϕ} |= θ,
and Γ ∪ {ψ} |= θ. This allows us to conclude that Γ |= θ. The
reader should observe the close similarity between this argument and
Example 3.6.3. Cases 4–6 of Definition 3.6.7 can be dealt with in a
manner similar to Examples 3.6.4 and 3.6.5.

The last two cases of Definition 3.6.7 are handled by a direct
argument using Lemma 3.6.2. �

Theorem 3.6.12 (Completeness Theorem for Natural
Deduction). Let Γ be a set of formulas and let θ be a formula.

If Γ |= θ, then Γ
•�nd θ.

Proof. If Γ |= θ, then, by the completeness of HFΓ (Theo-
rem 3.2.21), we have Γ �HF θ. Therefore, it suffices to prove by

induction on the theorems of HFΓ that if Γ �HF θ, then Γ
•�nd θ.

In Figures 3.19–3.25, we show that for every axiom θ of HF , ∅ •�nd θ
and, therefore, Γ

•�nd θ. If θ ∈ Γ, the existence of the one-node natural
deduction tree (T, ∅) such that T(λ) = θ shows that Γ

•�nd θ.
Suppose now that (T0,M0) and (T1,M1) are natural deduc-

tion trees for ϕ and (ϕ → ψ), respectively, with UNC(T0,M0),
UNC(T1,M1) ⊆ Γ. Then, by the eighth rule given in Definition 3.6.7,

(α → (β → α)) 1

(β → α)

α 1

R→I

R→I

Fig. 3.19. Natural deduction tree for (α→ (β → α)).

402 Logical Foundations of Computer Science — Volume 1

((α → (β → γ)) → ((α → β) → (α → γ))) 3

((α → β) → (α → γ)) 2

(α → γ) 1

γ

β (β → γ)

�
�

������

α 1

(α → β) 2

α 1
������
(α → (β → γ)) 3

�
�

�
��

�
��

R→I

R→I

R→I

R→E

R→E R→E

Fig. 3.20. Natural deduction tree for ((α → (β → γ)) → ((α → β) →
(α→ γ))).

(T,M) = ((T0,M0), (T1,M1);ψ) is a natural deduction tree for ψ such

that UNC(T,M) ⊆ Γ. Therefore, Γ
•�ndψ. �

Theorem 3.6.13. There is an effective, syntactic algorithm that,
starting from a proof in HFΓ of a formula ϕ, yields a natural deduc-
tion tree (T,M) such that T(λ) = ϕ and UNC(T,M) ⊆ Γ.

Proof. This was shown in the proof of the Completeness Theorem
for Natural Deduction. �

Natural deduction, as we have formulated it, combines a formal
system with an annotation of the proof trees of the system. As we
shall show, it is possible to present natural deduction purely as a

Propositional Logic–Formal Systems 403

��α 1

(α → α) 1

R→I

��α 2

(¬α) 1

β

((¬α) → β) 1

(α → ((¬α) → β)) 2

						

�
�

�
��

R¬E

R→I

R→I

(((¬α) → α) → α) 2 ((α → (¬α)) → (¬α)) 2

α 1 (¬α) 1

α ��(¬α) 1
��α 1

��α 1

(¬α)

������((¬α) → α) 2

������(α → (¬α)) 2
��(¬α) 1

�
��

�
��

					

					

�
�

�

�
�

�
��

(a) Natural deduction tree

for (α → α)

(b) Natural deduction tree

for ((α → ((¬α) → β))

(c) Natural deduction tree (d) Natural deduction tree

for (((¬α) → α) → α) for ((α → (¬α)) → (¬α))

R→E R→E

R¬E R¬I

R→I R→I

�
�
�

Fig. 3.21. Natural deduction trees for Axioms (3)–(6).

formal system (called ND); however, this alternative approach is less
successful in capturing the spirit of ordinary mathematical reasoning.

Definition 3.6.14. The set of objects of ND is P(PLFORM) ×
PLFORM; the set of axioms is A = {(Γ, ϕ) | ϕ ∈ Γ}.

404 Logical Foundations of Computer Science — Volume 1

��α 1

(α ∨ β)

(α → (α ∨ β)) 1

R∨Il

R→I

(c) Natural deduction tree

for (α (β (α β)))

��β 1

(α ∨ β)

(β → (α ∨ β)) 1

R∨Ir

R→I

(b) Natural deduction tree

for (β → (α ∨ β))

��α 2 ��β 1

(α ∧ β)

(β → (α ∧ β)) 1

(α → (β → (α ∧ β))) 2

�������
�����

(a) Natural deduction tree

for (α → (α ∨ β))

R∧I

R→I

R→I

��α 1
���(¬α) 2

β

������
R¬E

(α → β) 1

((¬α) → (α → β)) 2

(d) Natural deduction tree

((α) (α β))

R→I

R→I

Fig. 3.22. Natural deduction trees for Axioms (7)–(10).

Propositional Logic–Formal Systems 405

��α 1
�

��
(¬α)

3

β

��� ���
R¬E

��β 1
�

��
(¬β)

2

α

��� ���
R¬E

(α ↔ β) 1

((¬β) → (α ↔ β)) 2

((¬α) → ((¬β) → (α ↔ β))) 3

�������
�������

R→I

R→I

R↔I

(b) Natural deduction tree for

((¬α) → ((¬β) → (α ↔ β)))

��α 2��β 1

(α ↔ β)

����
				

(β → (α ↔ β)) 1

(α → (β → (α ↔ β)) 2

R↔I

R→I

R→I

(a) Natural deduction tree for

(α → (β → (α ↔ β)))

Fig. 3.23. Natural deduction trees for Axioms (11) and (12).

406 Logical Foundations of Computer Science — Volume 1

��β 1
���(¬β) 3

α
�����

(α ∨ β) 2 ��α 1

α 1
�

�
��

(¬α) 4

(¬(α ∨ β)) 2

((¬β) → (¬(α ∨ β))) 3

((¬α) → ((¬β) → (¬(α ∨ β))) 4

R¬E

R∨E

R¬I

R→I

R→I

(a) Natural deduction tree for

((¬α) → ((¬β) → (¬(α ∨ β)))

((¬α) → (¬(α ∧ β))) 2

(¬(α ∧ β)) 1

α

�����
(α ∧ β)

1

�
�

��
(¬α)

2

R∧El

R¬I

R→I

((¬β) → (¬(α ∧ β))) 2

(¬(α ∧ β)) 1

β

�����
(α ∧ β)

1

�
�

��
(¬β)

2

R∧Er

R¬I

R→I

�����
					

������

����
����

(b) Natural deduction trees for ((¬α) → (¬(α ∧ β)))

and ((¬β) → (¬(α ∧ β)))

���
���

�
�

����

Fig. 3.24. Natural deduction trees for Axioms (13)–(15).

Propositional Logic–Formal Systems 407

��α 3
����

(α → β)
1

β
�

��
(¬β)

2

�� ���

(¬(α → β)) 1

�� ���

((¬β) → (¬(α → β))) 2

R→I

R→I

R¬I

R→E

(α → ((¬β) → (¬(α → β)))) 3

(α → ((¬β) → (¬(α ↔ β)))) 3

((¬β) → (¬(α ↔ β))) 2

(¬(α ↔ β)) 1

β
�

��
(¬β) 2

�
��
α 3

�
�

��
(α ↔ β)

1

��

�� ���

R→I

R→I

R¬I

R↔El

((¬α) → (β → (¬(α ↔ β)))) 3

(β → (¬(α ↔ β))) 2

(¬(α ↔ β)) 1

α �
��

(¬α) 3

�
��
β 2

�
�

��
(α ↔ β)

1

��

�� ���

(b) Natural deduction trees for (α → ((¬β) → (¬(α ↔ β)))) and ((¬α) → (β → (¬(α ↔ β))))

(a) Natural deduction tree for

(α → ((¬β) → (¬(α → β))))

R→I

R→I

R¬I

R↔Er

Fig. 3.25. Natural deduction trees for Axioms (16)–(18).

408 Logical Foundations of Computer Science — Volume 1

The rules for introducing connective symbols are as follows:

(Γ0, ϕ), (Γ1, ψ)

(Γ0 ∪ Γ1, (ϕ ∧ ψ)) ∧- introduction

(Γ, ϕ)

(Γ, (ϕ ∨ ψ))
(Γ, ψ)

(Γ, (ϕ ∨ ψ)) ∨- introduction

(Γ ∪ {ϕ}, ψ)
(Γ, (ϕ → ψ))

→- introduction

(Γ0 ∪ {ϕ}, ψ), (Γ1 ∪ {ψ}, ϕ)
(Γ0 ∪ Γ1, (ϕ ↔ ψ))

↔- introduction

(Γ0 ∪ {ϕ}, ψ), (Γ1 ∪ {ϕ}, (¬ψ))
(Γ0 ∪ Γ1, (¬ϕ)) ¬- introduction

The rules for eliminating connective symbols are as follows:

(Γ, (ϕ ∧ ψ))
(Γ, ϕ)

(Γ, (ϕ ∧ ψ))
(Γ, ψ)

∧- elimination

(Γ0, (ϕ ∨ ψ)), (Γ1 ∪ {ϕ}, α), (Γ2 ∪ {ψ}, α)
(Γ0 ∪ Γ1 ∪ Γ2, α)

∨- elimination

(Γ0, ϕ), (Γ1, (ϕ→ ψ))

(Γ0 ∪ Γ1, ψ)
→- elimination

(Γ0, ϕ), (Γ1, (ϕ↔ ψ))

(Γ0 ∪ Γ1, ψ)

(Γ0, ψ), (Γ1, (ϕ↔ ψ))

(Γ0 ∪ Γ1, ϕ)
↔- elimination

(Γ0 ∪ {(¬ϕ)}, ψ), (Γ1 ∪ {(¬ϕ))}, (¬ψ)
(Γ0 ∪ Γ1, ϕ)

¬- elimination

Example 3.6.15. We prove that �ND (∅, ((ϕ ∨ (α ∧ β)) → ((ϕ ∨
α) ∧ (ϕ ∨ β)))) for all formulas ϕ,α, β ∈ PLFORM.

Consider the following proof, where θ = (ϕ ∨ (α ∧ β)):
(1) ({θ}, (ϕ ∨ (α ∧ β))) axiom
(2) ({θ, ϕ}, ϕ) axiom
(3) ({θ, (α ∧ β)}, (α ∧ β)) axiom
(4) ({θ, ϕ}, (ϕ ∨ α)) (2) and ∨ -introduction
(5) ({θ, ϕ}, (ϕ ∨ β)) (2) and ∨ -introduction
(6) ({θ, ϕ}, ((ϕ ∨ α) ∧ (ϕ ∨ β))) (4), (5) and ∧ -introduction
(7) ({θ, (α ∧ β)}, α) (3) and ∧ -elimination
(8) ({θ, (α ∧ β)}, β) (3) and ∧ -elimination
(9) ({θ, (α ∧ β)}, (ϕ ∨ α)) (7) and ∨ -introduction

(10) ({θ, (α ∧ β)}, (ϕ ∨ β)) (8) and ∨ -introduction
(11) ({θ, (α ∧ β)}, ((ϕ ∨ α) ∧ (ϕ ∨ β))) (9),(10) and ∧ -introduction

Propositional Logic–Formal Systems 409

At this point by applying the ∨-elimination rule to steps (1), (6),
and (11), we obtain

({(ϕ ∨ (α ∧ β))}, ((ϕ ∨ α) ∧ (ϕ ∨ β))).

Using the →-introduction rule, we have �ND (∅, ((ϕ ∨ (α ∧ β)) →
((ϕ ∨ α) ∧ (ϕ ∨ β)))).

Theorem 3.6.16. Let Γ be a set of formulas and let ϕ be a formula.
Then, Γ

•�ndϕ if and only if �ND (Γ, ϕ).

Proof. To prove that Γ
•�ndϕ implies �ND (Γ, ϕ), we use induction

on natural deduction trees to show that if (T,M) is a natural deduc-
tion tree such that UNC(T,M) ⊆ Γ and T(λ) = ϕ, then �ND (Γ, ϕ).
If (T, ∅) is a one-node natural deduction tree, we have ϕ ∈ Γ, so (Γ, ϕ)
is an axiom of ND. This establishes the basis step.

According to the definition of natural deduction trees, we need to
consider seven inductive steps. We discuss here the one corresponding
to ∨-elimination and leave the rest of them to the reader. Suppose
that (T0,M0), (T1,M1), (T2,M2) are natural deduction trees such
that

T0(λ) = (ϕ ∨ ψ), T1(λ) = T2(λ) = θ

and that (T,M) is

((T0,M0), (T1,M1 ∪ LEAVESϕ(T1)), (T2,M2 ∪ LEAVESψ(T2)); θ),

with UNC(T,M) ⊆ Γ. This implies

UNC(T0,M0) ⊆ Γ,

UNC(T1,M1) ⊆ Γ ∪ {ϕ},
UNC(T2,M2) ⊆ Γ ∪ {ψ}.

By inductive hypothesis, (Γ, (ϕ∨ψ)), (Γ∪{ϕ}, θ), and (Γ∪{ψ}, θ) are
theorems of ND. Applying the ∨-elimination rule of ND, we obtain
�ND (Γ, θ).

Conversely, we show by induction on the theorems of ND that
�ND (Γ, ϕ) implies Γ

•�ndϕ. For the basis step, let (Γ, ϕ) be an axiom
of ND. Since ϕ ∈ Γ, the existence of the one node natural deduction
tree (T, ∅) with T(λ) = ϕ implies Γ

•�ndϕ.

410 Logical Foundations of Computer Science — Volume 1

There is one inductive step for each of the rules of ND. We give
here the step for ∨-elimination; the remaining steps are left for the
reader. Suppose that (Γ, α) is obtained from (Γ0, (ϕ ∨ ψ)), (Γ1 ∪
{ϕ}, α), and (Γ2 ∪ {ψ}, α) by applying the ∨-elimination rule, which
means that Γ = Γ0 ∪ Γ1 ∪ Γ2. By the inductive hypothesis, we have
Γ0

•�nd (ϕ ∨ ψ), Γ1 ∪ {ϕ}
•�ndα, and Γ2 ∪ {ψ}

•�ndα. Consequently,
there are natural deduction trees (T0,M0), (T1,M1), (T2,M2) such
that T0(λ) = (ϕ ∨ ψ), T1(λ) = T2(λ) = α and

UNC(T0,M0) ⊆ Γ0 ⊆ Γ,

UNC(T1,M1) ⊆ Γ1 ∪ {ϕ} ⊆ Γ ∪ {ϕ},
UNC(T2,M2) ⊆ Γ2 ∪ {ψ} ⊆ Γ ∪ {ψ}.

By Definition 3.6.7, we obtain the natural deduction tree (T,M) given
by

((T0,M0), (T1,M1 ∪ LEAVESϕ(T1)), (T2,M2 ∪ LEAVESψ(T2));α).

Since UNC(T,M) ⊆ Γ, we have Γ
•�ndα. �

Corollary 3.6.17. Let Γ be a set of formulas and ϕ be a formula.
The following three statements are equivalent:

(1) Γ
•�ndϕ,

(2) �ND (Γ, ϕ),
(3) Γ |= ϕ.

Proof. The statement follows from Theorems 3.6.16, 3.6.11,
and 3.6.12. �

3.7 Translations between Formal Systems

The aim of this section is discuss syntactic transformations between
proofs in different formalisms of the fact that Γ |= ϕ. The formalisms
we have considered so far are

• a Hilbert–Frege system,
• tableaux with and without cut,

Propositional Logic–Formal Systems 411

• sequent systems with and without cut,
• natural deduction.

Some of these transformations have already been presented. Others
are introduced here.

3.7.1 From Unsigned Tableaux to Hilbert–Frege
Proofs

Theorem 3.7.1. There is an effective, syntactic construction that
starts with a strongly closed unsigned Γ-tableau T and yields an
(HF ,Γ)-certificate of inconsistency.

Proof. If T consists of one node, then there is a formula ϕ such
that {ϕ, (¬ϕ)} ⊆ Γ. Thus, ((ϕ), ((¬ϕ))) is the needed certificate of
inconsistency.

If T consists of more than one node, we have two cases. If thin-
ning was applied at the root and we have T(0) = Γ′, then T[0] is a
strongly closed tableau. Therefore, by applying the method recur-
sively, we obtain an (HF ,Γ′)-certificate of inconsistency, which is
also an (HF ,Γ)-certificate of inconsistency.

If regular expansion of the formula ϕ is used at the root of T, the
immediate descendents of the root are strongly closed tableaux. By
applying the construction to these tableaux, we obtain certificates of
inconsistency from them and then using Theorem 3.2.17, we assem-
ble these certificates of inconsistency into an (HF ,Γ)-certificate of
inconsistency. �

The main result of the subsection is given in the following.

Theorem 3.7.2. There is an effective, syntactic construction that
starts with a strongly closed Γ ∪ {(¬ϕ)}-tableau T and produces a
proof in HFΓ of ϕ, for every set of formulas Γ and formula ϕ such
that Γ |= ϕ.

Proof. By Theorem 3.7.1, we can construct an (HF , T(λ))-
certificate of inconsistency, where T(λ) = Γ ∪ {(¬ϕ)}. By applying
Part (2) of Theorem 3.2.15, we can construct effectively a proof of ϕ
in HF . �

412 Logical Foundations of Computer Science — Volume 1

3.7.2 From Natural Deduction Trees to Sequent
Proofs

Theorem 3.7.3. There is a syntactic algorithm that takes as input
a natural deduction tree T = (T,M) in NDT and produces as output
a Fseq,cut-proof tree of the sequent UNC(T)⇒ T(λ).

Proof. We give a recursive algorithm, based on the inductive def-
inition of natural deduction tree (cf. Definition 3.6.7). We proceed
according to the first case of this definition that is applicable to T .

If T = (T, ∅) consists of one node, then the one node tree whose
root is labeled by T(λ) ⇒ T(λ) is the desired proof tree in F seq,cut

because UNC(T) = {T(λ)}.
If T = (Lϕ(T0); (ϕ → ψ)), where T0 = (T0,M0) and T0(λ) = ψ,

we have UNC(T0)−{ϕ} = UNC(T). Let T′0 be the F seq,cut-proof tree
of UNC(T0) ⇒ ψ obtained by applying the algorithm recursively to
T0. By Theorem 3.5.42, T′1 = T′0 � (ϕ ⇒ ∅) is an F seq,cut-proof tree
of the sequent

(UNC(T0)− {ϕ}), ϕ⇒ ψ.

Applying rule R→,r of F seq,cut to T′1, we obtain the F seq,cut-proof tree
(T′1;UNC(T0)− {ϕ} ⇒ (ϕ→ ψ)) which is the desired output.

If T = (T0, Lϕ(T1), Lψ(T2); θ), where Ti = (Ti,Mi) ∈ NDT for
0 ≤ i ≤ 2 and T0(λ) = (ϕ∨ψ), T1(λ) = T2(λ) = θ, then observe that

UNC(T) = UNC(T0)∪ (UNC(T1)−{ϕ})∪ (UNC(T2)−{ψ}). (3.7)

By applying the algorithm recursively to T0,T1,T2, we obtain the
F seq,cut-proof trees T′0, T

′
1, T

′
2 of the sequents

UNC(T0)⇒ (ϕ ∨ ψ),
UNC(T1)⇒ θ,

UNC(T2)⇒ θ,

respectively. By Theorem 3.5.42, we obtain F seq,cut-proof trees

T′′0 = T′0 � (UNC(T1)− {ϕ}) ∪ (UNC(T2)− {ψ})⇒ θ,

T′′1 = T′1 � ((UNC(T2)− {ψ}) ∪ {ϕ} ⇒ ∅),
T′′2 = T′2 � ((UNC(T1)− {ϕ}) ∪ {ψ} ⇒ ∅)

Propositional Logic–Formal Systems 413

of the sequents

UNC(T0) ∪ (UNC(T1)− {ϕ}) ∪ (UNC(T2)− {ψ})⇒ θ, (ϕ ∨ ψ),
(UNC(T1)− {ϕ}) ∪ (UNC(T2)− {ψ}), ϕ⇒ θ,

(UNC(T1)− {ϕ}) ∪ (UNC(T2)− {ψ}), ψ ⇒ θ,

respectively.
Applying Rule R∨,l of F seq,cut, we obtain the F seq,cut-proof tree

T′3 = (T′′1, T
′′
2 ; (UNC(T1)− {ϕ}) ∪ (UNC(T2)− {ψ}), (ϕ ∨ ψ)⇒ θ).

Another application of Theorem 3.5.42 gives the F seq,cut-proof tree
T′′3 = T′3 � (UNC(T0)⇒ ∅) of the sequent

UNC(T0) ∪ (UNC(T1)− {ϕ}) ∪ (UNC(T2)− {ψ}), (ϕ ∨ ψ)⇒ θ.

Applying the cut rule to T′′3 and T′′0 yields the F seq,cut-proof tree

T′4 = (T′′3, T
′′
0 ;UNC(T0)∪ (UNC(T1)−{ϕ})∪ (UNC(T2)−{ψ})⇒ θ),

which, in view of Equation (3.7), is the desired output.
If T = (Lϕ(T0), Lψ(T1); (ϕ ↔ ψ)), where T0 = (T0,M0) and

T1 = (T1,M1) belong to NDT, T0(λ) = ψ, and T1(λ) = ϕ, then we
can recursively apply the algorithm to T0 and T1 to obtain F seq,cut-
proof trees T′0, T

′
1 of the sequents UNC(T0)⇒ ψ and UNC(T1)⇒ ϕ,

respectively. Using Theorem 3.5.42, we construct the F seq,cut-proof
trees

T′′0 = T′0 � ((UNC(T1)− {ψ}) ∪ {ϕ})⇒ ∅,
T′′1 = T′1 � ((UNC(T0)− {ϕ}) ∪ {ψ})⇒ ∅

of the sequents

(UNC(T0)− {ϕ}) ∪ (UNC(T1)− {ψ}), ϕ⇒ ψ,

(UNC(T0)− {ϕ}) ∪ (UNC(T1)− {ψ}), ψ ⇒ ϕ,

respectively. By applying Rule R↔,r, we obtain the F seq,cut-proof
tree

T′2 = (T′′0 , T
′′
1; (UNC(T0)− {ϕ}) ∪ (UNC(T1)− {ψ})⇒ (ϕ↔ ψ)),

which is the desired F seq,cut-proof tree because UNC(T) =
(UNC(T0)− {ϕ}) ∪ (UNC(T1)− {ψ}).

414 Logical Foundations of Computer Science — Volume 1

If T = (Lϕ(T0), Lϕ(T1); (¬ϕ)), where T0 = (T0,M0) and T1 =
(T1,M1) belong to NDT, T0(λ) = ψ, T1(λ) = (¬ψ), and ϕ is a for-
mula, then a recursive application of the algorithm yields F seq,cut-
proof trees T′0, T

′
1 of the sequents UNC(T0) ⇒ ψ and UNC(T1) ⇒

(¬ψ), respectively. Using again Theorem 3.5.42, we obtain the
F seq,cut-proof trees T′′0 = T′0 � (UNC(T1) ∪ {ϕ} ⇒ ∅) and T′′1 = T′1 �
(UNC(T0)∪{ϕ} ⇒ ∅) of (UNC(T0)−{ϕ})∪(UNC(T1)−{ϕ}), ϕ⇒ ψ
and (UNC(T0)−{ϕ})∪ (UNC(T1)−{ϕ}), ϕ⇒ (¬ψ). By Rule R∧,r,
we have the F seq,cut-proof tree

T′2 = (T′′0, T
′′
1 ; (UNC(T0)−{ϕ})∪ (UNC(T1)−{ϕ}), ϕ⇒ (ψ ∧ (¬ψ))).

By Supplement 54, Part (a), there is a F seq,cut-proof tree T′3 of (ψ ∧
(¬ψ))⇒. Using Theorem 3.5.42, we build the F seq,cut-proof tree

T′′3 = T′3 � (UNC(T0)− {ϕ}) ∪ (UNC(T1)− {ϕ}), ϕ⇒ ∅.

Therefore, by the cut rule, we obtain the F seq,cut-proof tree

T′4 = (T′′3 , T
′
2; (UNC(T0)− {ϕ}) ∪ (UNC(T1)− {ϕ}), ϕ⇒).

Finally, an application of R¬,r gives the F seq,cut-proof tree

T′5 = (T′4; (UNC(T0)− {ϕ}) ∪ (UNC(T1)− {ϕ})⇒ (¬ϕ)),

which is the needed output because

UNC(T) = (UNC(T0)− {ϕ}) ∪ (UNC(T1)− {ϕ}).

If T = (L(¬ϕ)(T0), L(¬ϕ)(T1));ϕ), where T0 = (T0,M0) and
T1 = (T1,M1) both belong to NDT, T0(λ) = ψ, T1(λ) = (¬ψ), and
ϕ ∈ PLFORM, then by applying the previous construction with ϕ
replaced by (¬ϕ), we obtain a F seq,cut-proof tree T′5 of

(UNC(T0)− {(¬ϕ)}) ∪ (UNC(T1)− {(¬ϕ)})⇒ (¬(¬ϕ))

and let T′′5 = T′5 � ∅ ⇒ ϕ. Supplement 54, Part (b), gives a F seq,cut-
proof tree T′6 of (¬(¬ϕ))⇒ ϕ. This yields the F seq,cut-proof tree

T′′6 = T′6 � (UNC(T0)− {(¬ϕ)}) ∪ (UNC(T1)− {(¬ϕ)})⇒ ∅

of the sequent

(UNC(T0)− {(¬ϕ)}) ∪ (UNC(T1)− {(¬ϕ)}) ∪ {(¬(¬ϕ))} ⇒ ϕ.

Propositional Logic–Formal Systems 415

Using the cut rule, we have the F seq,cut-proof tree

T′7 = (T′′6, T
′′
5 ; (UNC(T0)− {(¬ϕ)}) ∪ (UNC(T1)− {(¬ϕ)})⇒ ϕ),

which is the desired output.
When T = (T0;ϕ), where T0 = (T0,M0) ∈ NDT and T0(λ) =

(ϕ∧ψ), by recursive application of the algorithm to T0, we obtain an
F seq,cut-proof tree T′0 of UNC(T0)⇒ (ϕ ∧ ψ). Let T′1 be the F seq,cut-
proof tree of the sequent (ϕ ∧ ψ) ⇒ ϕ which exists by Part (c) of
Supplement 54. Next, we build the F seq,cut-proof trees T′′0 = T′0�(∅ ⇒
ϕ) and T′′1 = T′1 � (UNC(T0) ⇒ ∅) of the sequents UNC(T0) ⇒
(ϕ ∧ ψ), ϕ and UNC(T0), (ϕ ∧ ψ) ⇒ ϕ, respectively. Combining T′′0
and T′′1 using the cut rule gives T′2 = (T′′1 , T′′0;UNC(T0) ⇒ ϕ). The
companion case, when T = (T0;ψ), is left to the reader.

When T = (T0; (ϕ ∨ ψ)), where T0 = (T0,M0) ∈ NDT and
T0(λ) = ϕ, by recursive application of the algorithm to T0, we obtain
an F seq,cut-proof tree T′0 of UNC(T0)⇒ ϕ. This allows us to construct
T′1 = T′0�(∅ ⇒ ψ), a F seq,cut-proof tree of UNC(T0)⇒ ϕ,ψ. By appli-
cation of R∨,r, we obtain the F seq,cut-proof tree T′2 = (T′1;UNC(T0)⇒
(ϕ ∨ ψ)). Again, we leave to the reader the case when T0(λ) = ψ.

If T = (T0,T1; (ϕ ∧ ψ)), where T0 = (T0,M0),T1 = (T1,M1) ∈
NDT, and T0(λ) = ϕ, T1(λ) = ψ, recursive application of the
algorithm yields F seq,cut-proof trees T′0, T′1 of UNC(T0) ⇒ ϕ and
UNC(T1)⇒ ψ, respectively. Thus, we have the F seq,cut-proof trees

T′′0 = T′0 � (UNC(T1)⇒ ∅) and T′′1 = T′1 � (UNC(T0)⇒ ∅)

of the sequents

UNC(T0) ∪ UNC(T1)⇒ ϕ and UNC(T0) ∪ UNC(T1)⇒ ψ,

respectively. Finally, by applying R∧,r, we obtain the desired F seq,cut-
proof tree

T′2 = (T′′0 , T
′′
1;UNC(T0) ∪ UNC(T1)⇒ (ϕ ∧ ψ)).

If T = (T0,T1;ψ), where T0 = (T0,M0),T1 = (T1,M1) ∈ NDT
and T0(λ) = ϕ, T1(λ) = (ϕ → ψ), we obtain the F seq,cut-proof trees
T′0, T′1 of UNC(T0) ⇒ ϕ and UNC(T1) ⇒ (ϕ → ψ), respectively, by
recursive application of the algorithm to T0,T1. These trees allow
us to construct the F seq,cut-proof trees T′′0 = T′0 � (UNC(T1) ⇒ ψ)

416 Logical Foundations of Computer Science — Volume 1

and T′′1 = T′1 � (UNC(T0) ⇒ ψ) of UNC(T0) ∪ UNC(T1) ⇒ ϕ,ψ
and UNC(T0) ∪ UNC(T1) ⇒ (ϕ → ψ), ψ, respectively. Let T′2 be
the one-node F seq,cut-proof tree whose root is labeled by UNC(T0)∪
UNC(T1), ψ ⇒ ψ. By applying the rule R→,l of F seq,cut, we obtain
the F seq,cut-proof tree

T′3 = (T′2, T
′′
0;UNC(T0) ∪ UNC(T1), (ϕ→ ψ)⇒ ψ).

Finally, an application of the cut rule gives us the desired F seq,cut-
proof tree

T′4 = (T′3, T
′′
1;UNC(T0) ∪ UNC(T1)⇒ ψ).

Let now T = (T0,T1;ψ), where Ti = (Ti,Mi) for i = 0, 1, and
T0(λ) = ϕ, T1(λ) = (ϕ ↔ ψ). Through recursive application of the
algorithm, we obtain the F seq,cut-proof trees T′0 and T′1 of UNC(T0)⇒
ϕ and UNC(T1)⇒ (ϕ↔ ψ). Further, we have the F seq,cut-proof tree
T′′0 = T′0 � (UNC(T1) ⇒ ψ) of the sequent UNC(T0) ∪ UNC(T1) ⇒
ϕ,ψ. Starting from the one-node F seq,cut-proof tree T′2 of UNC(T0)∪
UNC(T1), ϕ, ψ ⇒ ψ, we construct the F seq,cut-proof tree

T′3 = (T′2, T
′′
0 ;UNC(T0) ∪ UNC(T1), (ϕ↔ ψ)⇒ ψ)

using the rule R↔,l. From T′1, we build the F seq,cut-proof tree T′′1 =
T′1� (UNC(T0)⇒ ψ) of UNC(T0)∪UNC(T1)⇒ (ϕ↔ ψ), ψ. Finally,
by applying the cut rule, we obtain the desired F seq,cut-proof tree

T′4 = (T′3, T
′′
1;UNC(T0) ∪ UNC(T1)⇒ ψ).

We leave to the reader the case when T = (T0,T1;ϕ) and
T0(λ) = ψ. �

Corollary 3.7.4. There is a syntactic construction that given a set
of formulas Γ and a natural deduction tree T = (T,M) in NDT such
that UNC(T) ⊆ Γ produces an Fseq,∞,cut-proof tree for Γ⇒ T(λ).

Proof. The F seq,∞,cut-proof tree for Γ ⇒ T(λ) can be obtained
from the F seq,cut-proof tree obtained from the algorithm outlined in
Theorem 3.7.3 by applying the thinning rule once. �

Note that the syntactic construction of Corollary 3.7.4 is effective
if Γ is a finite set.

Propositional Logic–Formal Systems 417

Tableaux
without cut

Tableaux
with cut

Sequents
with cut

Sequents
without cut

Natural
Deduction

Hilbert-Frege
Systems

Unsigned
Tableaux
without cut

Unsigned
Tableaux
with cut

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 3.26. General layout of transformations.

3.7.3 Closing the Circle

We now close the circle, that is, using results we have proven so
far, we show how to transform a formal proof that Γ |= ϕ in one
system into a formal proof in another one. The general layout of these
transformations is shown in Figure 3.26. The specific objects being
transformed as well as the results involved are shown in Figure 3.27.

Note that all transformations shown in Figure 3.27 become effec-
tive if the set of formulas Γ is finite.

3.8 Resolution

Resolution is a formalism that handles satisfiability of formulas in
conjunctive normal form. It uses a special representation of these
formulas as collections of sets of literals referred to as clauses (defined
in the following).

418 Logical Foundations of Computer Science — Volume 1

strongly closed
({Tψ | ψ ∈ Γ} ∪ {Fϕ})-tableau
without cut

Fseq,∞-proof tree
for Γ ⇒ ϕ

natural deduction
tree T = (T, M) with UNC(T) ⊆ Γ
and T(λ) = ϕ

HFΓ-proof
tree for ϕ

strongly closed
(Γ ∪ {(¬ϕ)})-tableau
without cut

strongly closed
(Γ ∪ {(¬ϕ)})-tableau
with cut

� �

�

�

�

�

�

strongly closed
({Tψ | ψ ∈ Γ} ∪ {Fϕ})-tableau
with cut

Fseq,∞,cut-proof tree
for Γ ⇒ ϕ

Construction 3.4.12

Theorem 3.5.40

Supplement 53

Theorem 3.6.13

Theorem 3.5.32

Corollary 3.7.4
Construction 3.3.47

Theorem 3.7.2

Theorem 3.5.14

⊆

⊆

�

�

�

�

�

�

Fig. 3.27. Objects being transformed.

Definition 3.8.1. A clause is a finite set of literals. The empty clause
will be called “box” and denoted by �.

Of course, � = ∅, but we use a different notation than ∅ in order
to avoid confusion with other uses of ∅, such as denoting the empty
set of clauses.

When we write clauses, we will systematically omit parentheses.

Example 3.8.2. The clause {p, (¬q), (¬r)} will be written as
{p,¬q,¬r}.

The following definition introduces several kinds of clauses we will
be using.

Definition 3.8.3. A clause is a

• tautologous clause if it contains both p and ¬p for some statement
variable p,

• Horn clause if it contains at most one positive literal,
• positive clause if it contains only positive literals,
• negative clause if it contains only negative literals,

Propositional Logic–Formal Systems 419

• non-positive clause if it contains at least one negative literal,
• unit clause if it consists of a single literal.

We use the letters C,D,E, with or without subscripts to denote
clauses and C,D, E to denote sets of clauses.

If C is a clause, let SV (C) be the set of all statement variables p
such that p or ¬p is a member of C. For a set of clauses C, we define
the sets SV (C) =

⋃
C∈C SV (C) and LIT(C) =

⋃
C. In other words,

LIT(C) is the set of literals which appear in some clause of C.

Definition 3.8.4. Let C be a clause and v be a truth assignment; v
satisfies C if v(
) = T for some literal
 ∈ C; if v does not satisfy C,
we say that v falsifies C.

Note that the notion of a truth assignment satisfying a set of
formulas introduced before Definition 2.3.4 is quite different from
the notion of a truth assignment satisfying a clause given above. We
rely on the context to differentiate between these concepts.

Definition 3.8.5. A truth assignment v satisfies a set of clauses C
if v satisfies every clause in C; otherwise, we say that v falsifies C.

A clause is satisfiable if there is a truth assignment that satisfies
the clause; likewise, a set of clauses is satisfiable if there is a truth
assignment that satisfies the set of clauses.

Note that every nonempty clause is satisfiable.
The following theorem gives the basic properties of satisfaction.

Theorem 3.8.6. Let C and D be sets of clauses:

(1) If C ⊆ D, then every truth assignment which satisfies D also
satisfies C.

(2) If C ⊆ D, then if D is satisfiable, C is satisfiable and if C is
unsatisfiable, D is unsatisfiable.

(3) � is an unsatisfiable clause and {�} is an unsatisfiable set of
clauses.

(4) ∅ is a satisfiable set of clauses.
(5) If C contains �, then C is unsatisfiable.
(6) If C is a tautologous clause, then every truth assignment satis-

fies C.

420 Logical Foundations of Computer Science — Volume 1

Proof. We leave most of this easy proof to the reader. Note, how-
ever, that � is unsatisfiable because in order to be satisfiable, a truth
assignment v and a literal
 in � should exist such that v(
) = T;
since � does not contain any literal, it follows that it cannot be
satisfiable. On the other hand, the empty set of clauses is satisfi-
able because, otherwise for every truth assignment v, a clause in ∅
should exist that is not satisfied by v. Since no such clause exists, ∅
is satisfiable. �

Definition 3.8.7. Let

ϕ =

n−1∧
i=0

(
i0 ∨ · · · ∨
imi−1),

where each
ij is a literal, be a formula in conjunctive normal form.
The clause set associated with ϕ is

Cϕ = {{
i0, . . . ,
imi−1} | 0 ≤ i ≤ n− 1}.

Let Γ be a set of formulas in conjunctive normal form. The set of
clauses CΓ is the set

⋃
ϕ∈Γ Cϕ.

For every set of clauses C that does not contain �, there is a
set of formulas Γ each of which is a disjunction of literals (hence in
degenerate conjunctive normal form) such that C = CΓ. Note that Γ is
not unique since the order of the literals is not determined uniquely.

If ϕ is in conjunctive normal form, then Cϕ is a set of Horn clauses
if and only if ϕ is a Horn formula. Further, if Γ is a finite set of
formulas in conjunctive normal form, then CΓ is a finite of clauses.

The following result allows us to translate satisfiability of formulas
in conjunctive normal form into satisfiability of sets of clauses.

Theorem 3.8.8. If ϕ is a formula in conjunctive normal form and
v is a truth assignment, then v satisfies ϕ if and only if v satisfies
Cϕ.

Proof. Note that if ϕ is as in Definition 3.8.7, then a truth assign-
ment v satisfies ϕ if and only if for every i, 0 ≤ i ≤ n− 1, there is a
j, 0 ≤ j ≤ mi − 1 such that v(
ij) = T. It is easy to see that this is
equivalent to v satisfying Cϕ. �

Propositional Logic–Formal Systems 421

Corollary 3.8.9. If Γ is a set of formulas in conjunctive normal
form, then Γ is satisfiable if and only if CΓ is satisfiable.

Proof. The proof is immediate and is left to the reader. �

Example 3.8.10. Consider the formula ψ = ((p∨(¬q))∧((¬p)∨q)).
Its corresponding set of clauses is

Cψ = {{p,¬q}, {¬p, q}}.

It is easy to see that both ψ and Cψ are satisfiable since the truth

assignment v ∈ TASV (ψ) given by v(p) = v(q) = T satisfies them

both.
Let ϕ = ((p∨ q)∧ ((¬p)∨ q)∧ (p∨ (¬q))∧ ((¬p)∨ (¬q))). Neither

ϕ nor Cϕ given by

Cϕ = {{p, q}, {¬p, q}, {p,¬q}, {¬p,¬q}}

are satisfiable. Indeed, suppose that u ∈ TASV (ϕ) satisfies Cϕ. Since
u must satisfy {p, q}, we must have u(p) = T or u(q) = T but
not both (because this would imply u falsifies {¬p,¬q}). Suppose
that u(p) = T and u(q) = F. This means that u falsifies {¬p, q}
so u falsifies Cϕ. A similar conclusion can be reached if we assume
that u(p) = F and u(q) = T. This proves that ϕ and Cϕ are not

satisfiable.

The Compactness Theorem for formulas can be transferred to a
compactness result for sets of clauses.

Theorem 3.8.11 (Compactness Theorem for Clauses). Let C
be an unsatisfiable set of clauses. Then, there exists a finite subset
C0 of C such that C0 is unsatisfiable.

Proof. If � ∈ C, then we take C0 = {�}. So, suppose that � �∈ C.
We observed that there exists a set of formulas Γ in conjunctive nor-
mal form such that C = CΓ. By Corollary 3.8.9, Γ is unsatisfiable and
by the Compactness Theorem for formulas, Γ contains a finite subset
Γ0 that is unsatisfiable. Again by Corollary 3.8.9, CΓ0 is unsatisfiable
and CΓ0 ⊆ CΓ = C. �

It is possible to reduce the fundamental problem we are concerned
with across different formalisms, namely, the logical implication of a

422 Logical Foundations of Computer Science — Volume 1

formula ϕ by a set of formulas Γ, to the satisfiability of a set of
clauses. Indeed, we saw Γ |= ϕ if and only if the set of formulas
Γ′ = Γ∪{(¬ϕ)} is unsatisfiable. If Γ′′ is obtained from Γ′ by replacing
each formula with an equivalent formula in conjunctive normal form,
then Γ′ is unsatisfiable if and only if Γ′′ is unsatisfiable. Finally, we
have shown that Γ′′ is unsatisfiable if and only if CΓ′′ is unsatisfiable.

Definition 3.8.12. Let C0, C1 and R be clauses. Then, we say that
R is obtained from C0 and C1 by resolving on the literal
 and we
write R = res�(C0, C1), if

(1)
 ∈ C0,
(2)
̄ ∈ C1,
(3) R = (C0 − {
}) ∪ (C1 − {
̄}).

R is called a resolvent of C0 and C1 if there is a literal
 such
that R = res�(C0, C1). The clauses C0, C1 are referred to as premises
of R.

For any clause R, there are infinitely many possible pairs of premises
for that clause. This can be seen by defining C0 = R ∪ {
} and
C1 = R ∪ {
̄}, for any literal
 which does not occur in R.

Theorem 3.8.13. Let C be a set of clauses and let R be a resolvent
of two clauses in C. Then, for every truth assignment v, v satisfies
C if and only if v satisfies C ∪ {R}.
Proof. By the first part of Theorem 3.8.6, if v satisfies C ∪ {R},
then v satisfies C.

Conversely, let v satisfy C and assume that R = (C0 − {
})
∪ (C1 − {
̄}), where C0, C1 ∈ C. Then, v satisfies C0 and C1. We
consider two cases.

If v(
) = T, then v(
̄) = F. Since v satisfies C1, it must make
some literal in C1, other than
̄, true, and this means that v satisfies
C1 − {
̄} and, therefore, it satisfies R.

If v(
) = F, then, since v satisfies C0, it must make some literal
in C0, other than
, true, and this means that v satisfies C0 − {
}
and, therefore, it satisfies R. �

Definition 3.8.14. Let C be a set of clauses. Then, we define

Res(C) = C ∪ {R | R is a resolvent of two clauses in C}.

Propositional Logic–Formal Systems 423

Resolution is analytical in the sense that every literal that occurs
in Res(C) occurs in member of C.

Theorem 3.8.15. Let C and D be sets of clauses and let v be a truth
assignment. Then,

(1) C ⊆ Res(C),
(2) if C ⊆ D, then Res(C) ⊆ Res(D),
(3) v satisfies Res(C) if and only if v satisfies C.

Proof. The first two parts of the theorem are immediate conse-
quences of Definition 3.8.14.

By Part 1 of Theorem 3.8.6 and Part 1 of this theorem, if v
satisfies Res(C), then v satisfies C. Conversely, if v satisfies C, then,
by Theorem 3.8.13, v satisfies every resolvent of two clauses in C, and
therefore, v satisfies Res(C). �

Let S be the set of all clauses. Then, Res : P(S) −→ P(S), so we
can consider its iterations Resn for n ∈ N, following the standard
definition:

Res0(C) = C,
Resn+1(C) = Res(Resn(C))

for every set of clauses C ∈ P(S).
Note that, as a consequence of the first two parts of Theo-

rem 3.8.15, we have the increasing chain of sets

C = Res0(C) ⊆ Res1(C) ⊆ · · · ⊆ Resn(C) ⊆ · · · . (3.8)

Definition 3.8.16. Let C be a set of clauses. Then, we define
Res∗(C), the resolution closure of C, by

Res∗(C) =
⋃
n≥0

Resn(C).

It is clear that every literal in Res∗(C) occurs in a member of C,
which is another manifestation of the analyticity of resolution.

Theorem 3.8.17. Let C and D be sets of clauses and let v be a truth
assignment. Then,

424 Logical Foundations of Computer Science — Volume 1

(1) C ⊆ Resn(C) for all n ∈ N and C ⊆ Res∗(C),
(2) for all n ∈ N, v satisfies Resn(C) if and only if v satisfies C,
(3) v satisfies Res∗(C) if and only if v satisfies C,
(4) C is satisfiable if and only if Res∗(C) is satisfiable,
(5) if C ⊆ D, then Resn(C) ⊆ Resn(D) for all n ∈ N and Res∗(C) ⊆

Res∗(D).

Proof. The first part of the theorem follows from Equation (3.8).
For the second part of the theorem, the argument is by induction

on n. The basis step, n = 0, is trivial. Suppose that for every truth
assignment v, v satisfies C if and only if v satisfies Resn(C). Using
the last part of Theorem 3.8.15, applied to Resn(C), we obtain the
desired conclusion.

The third part is an easy consequence of the second and the fourth
part follows immediately from the third. The fifth part is a simple
proof by induction, which uses Theorem 3.8.15, Part (2). �

Definition 3.8.18. Let C be a set of clauses. A resolution proof over
C is a finite sequence (C0, C1, . . . , Cn−1) of clauses such that n ≥ 1
and for each i, 0 ≤ i ≤ n − 1 either Ci ∈ C or else Ci �∈ C and there
are j, k < i such Ci is a resolvent of Cj and Ck. In the first case, i is
an input step of the proof; in the second case, i is a resolution step
and Cj and Ck are premises of the ith step.

A resolution proof of a clause C over C is a resolution proof over
C whose last entry is C.

Note that for a resolution step i, the premises need not be unique. If
there is no risk of confusion, we will also refer to Ci as the ith step
of the proof.

Theorem 3.8.19. Let C be a set of clauses. Then, Res∗(C) is the set
of clauses which have resolution proofs over C.

Proof. We first show that every clause in Res∗(C) has a resolution
proof over C by using induction to show that every clause in Resn(C)
has a resolution proof over C. The basis, n = 0, is trivial since every
clause in C has a proof of length 1. Suppose that every clause in
Resn(C) has a proof and let C ∈ Resn+1(C). If C ∈ Resn(C), we
are done by inductive hypothesis. Otherwise, C is a resolvent of two
clauses C ′ and C ′′ in Resn(C). By the inductive hypothesis, we have

Propositional Logic–Formal Systems 425

resolution proofs over C

(C ′
0, . . . , C

′
m−1) where C

′
m−1 = C ′,

(C ′′
0 , . . . , C

′′
k−1) where C

′′
k−1 = C ′′.

Then, (C ′
0, . . . , C

′
m−1, C

′′
0 , . . . , C

′′
k−1, C) is a resolution proof over C

for C.
Suppose that C has a resolution proof (C0, . . . , Cm−1) over C. We

prove by course-of-values induction that Ci ∈ Res∗(C) for every i,
0 ≤ i ≤ m−1. Suppose that the result is true for all j < i. If Ci is in C,
then by Part (1) of Theorem 3.8.17, Ci ∈ Res∗(C). Otherwise, Ci is a
resolvent of Cj, Ck for some j, k < i. By inductive hypothesis, Cj, Ck
are both in Res∗(C) and therefore, there are nj, nk ∈ N such that
Cj ∈ Resnj(C) and Ck ∈ Resnk(C). Let n′ = max{nj, nk}. By (3.8),

we have Cj , Ck ∈ Resn
′
(C) and therefore, C ∈ Resn

′+1(C) ⊆ Res∗(C),
which completes the induction. It follows that Cm−1 = C ∈ Res∗(C),
as desired. �

The previous theorem can be rephrased in terms of formal sys-
tems.

Definition 3.8.20. The formal system FRES is

(Pfin(LIT), ∅, {R}),

where the binary rule R consists of all pairs ((C,D), E) where E is
a resolvent of C and D.

Note that if C is a set of clauses, then a resolution proof over C
is the same thing as a proof in the formal system FRESC . Thus,
Theorem 3.8.19 amounts to saying that Thm(FRESC) = Res∗(C).
The introduction of a formal system allows us to make use of the
idea of proof tree.

Definition 3.8.21. Let C be a set of clauses. A resolution tree over
C is an FRESC-proof tree.

In other words, a resolution tree over C is a lot such that its leaves
are labeled with clauses from C and each interior node is labeled with
a clause that is a resolvent of the clauses which are labels of its two
immediate descendents. Theorem 1.8.23 and our previous discussion

426 Logical Foundations of Computer Science — Volume 1

allow us to conclude that a clause C is in Res∗(C) if and only if there
is a resolution tree over C such that C is the label of its root.

Example 3.8.22. In Example 3.8.10 we saw that the set of clauses

C = {{p, q}, {p,¬q}, {¬p, q}, {¬p,¬q}}

is not satisfiable.
We can reach the same conclusion by Part (4) of Theorem 3.8.17

and considering the resolution proof (C0, . . . , C6) given in the follow-
ing, where C6 = �.

Clause Clause content Derivation
C0 {p, q} In C
C1 {p,¬q} In C
C2 {¬p, q} In C
C3 {¬p,¬q} In C
C4 {p} Resq(C0, C1)
C5 {¬p} Resq(C2, C3)
C6 � Resp(C4, C5)

The resolution tree of this proof is given in Figure 3.28.

Theorem 3.8.23. Let C be a set of clauses:

(1) If Resn(C) = Resn+1(C) for some n ∈ N, then Res∗(C) =
Resn(C).

(2) If C is finite, then Resn(C) = Resn+1(C) for some n ∈N.

Proof. Suppose that Resn(C) = Resn+1(C). We show by induction
on k that Resn+k(C) ⊆ Resn(C). For k = 0, this is trivial. Suppose

Fig. 3.28. Resolution tree of resolution proof.

Propositional Logic–Formal Systems 427

that Resn+k(C) ⊆ Resn(C). Using the second part of Theorem 3.8.15,
it follows that Resn+k+1(C) ⊆ Resn+1(C) = Resn(C), by hypothesis.
This shows that

Res∗(C) =
⋃
i≥0

Resi(C) =
⋃
i≤n

Resi(C) = Resn(C).

Note that if C is finite, then
⋃
C, the set of literals that occur

in clauses of C, is finite because all clauses of C are finite. It is easy
to verify, by induction on n, that

⋃
Resn(C) ⊆

⋃
C for every n∈N.

Therefore, there are only finitely many distinct members in the col-
lection {Resn(C) | n ∈ N}. This implies that there is n such that
Resn(C) = Resn+1(C) since otherwise, we would have the increasing
sequence of sets

C = Res0(C) ⊂ Res1(C) ⊂ · · · ⊂ Resn(C) ⊂ · · ·

and this would contradict the finiteness of {Resn(C) | n ∈ N}. �

Definition 3.8.24. Let C be a set of clauses and let
 be a literal.
The set of clauses C� is defined by

C� = {C − {
̄} | C ∈ C and
 �∈ C}.

Note that neither
 nor
̄ belongs to any clause in C�.

Example 3.8.25. Let C = {{p, q, r}, {p̄, q̄, r}, {q, r̄}}. We have,

Cp = {{q̄, r}, {q, r̄}},
Cp̄ = {{q, r}, {q, r̄}}.

Note that both Cp and Cp̄ are satisfiable.

Theorem 3.8.26. Let C be a set of clauses and let
 be a literal.
Then, C is satisfiable if and only if at least one of C� and C �̄ is
satisfiable.

Proof. First, suppose that C is satisfiable, and let v be a truth
assignment that satisfies C. We consider two cases: v(
) = T and
v(
) = F. In the first case, we claim that v satisfies C�. Indeed, if
C ∈ C, then v satisfies C, and v(
̄) = F, so v satisfies C −{
̄}, which

428 Logical Foundations of Computer Science — Volume 1

shows that v satisfies C�. Similarly, it is easy to see that in the second
case, v satisfies C �̄.

Conversely, assume that at least one of the sets C� and C �̄ is sat-
isfiable. If C� is satisfiable, there exists a truth assignment v that
satisfies all clauses of C�. We need to prove that there exists a truth
assignment w that satisfies all clauses of C.

Since v satisfies all clauses of C�, for every clause in C that does
not contain
, there is a literal
′ contained by that clause such that
v(
′) = T and
′ �=
̄. Define a truth assignment w by

w =

{
[p→ T]v if
 = p,

[p→ F]v if
 = ¬p.

Clearly, w will satisfy all clauses of C that do not contain
 because
w coincides with v on all literals with the possible exception of
 and

̄. On the other hand, w satisfies all clauses that contain
 because
w(
) = T.

The case when C �̄ is satisfiable can be dealt with in a similar
manner. �

Lemma 3.8.27. Let C,D,R be clauses such that R = res�(C,D). If
E,F are clauses such that
 �∈ E and
̄ �∈ F , then

R ∪ E ∪ F = res�(C ∪ E,D ∪ F).

Proof. Note that
 ∈ C ∪ E and
̄ ∈ D ∪ F . By elementary set-
theoretical properties, we can write

res�(C ∪ E,D ∪ F) = ((C ∪ E)− {
}) ∪ ((D ∪ F)− {
̄})
= (C − {
}) ∪ (E − {
}) ∪ (D − {
̄}) ∪ (F − {
̄})
= ((C − {
}) ∪ E) ∪ ((D − {
̄}) ∪ F)
= (C − {
}) ∪ (D − {
̄}) ∪ E ∪ F
= R ∪ E ∪ F.

�
The following lemma says that if C is a set of clauses and
 is a

literal, then a resolution proof (C0, . . . , Cn−1) over C� can be “lifted”
to a resolution proof (C ′

0, . . . , C
′
n−1) over C such that for all i, 0 ≤

i ≤ n− 1, either C ′
i = Ci or C

′
i = Ci−{
}. The lemma is stated in a

technical form which allows it to be applied in Section 3.9.

Propositional Logic–Formal Systems 429

Lemma 3.8.28 (P-Lifting Lemma). Let C be a set of clauses and

 be a literal. Suppose that (C0, . . . , Cn−1) is a resolution proof over
C�. Let K be a subset of {0, . . . , n − 1} that contains all resolution
steps of this proof. Suppose that for each k ∈ K we have ik, jk < k and
a literal
k such that Ck = res�k(Cik , Cjk), then there is a resolution
proof (C ′

0, . . . , C
′
n−1) over C such that for every k such that 0 ≤ k ≤

n− 1, the following conditions are satisfied:

(1) the clause C ′
k is either Ck or Ck ∪ {
̄},

(2) if k �∈ K (so k is an input step of the proof (C0, . . . , Cn−1)), then
C ′
k ∈ C,

(3) if k ∈ K, then C ′
k = res�k(C

′
ik
, C ′

jk
).

Proof. The proof is by induction on n. For the basis step, n = 1,
we must have 0 �∈ K and C0 ∈ C�. There is a clause C ′

0 ∈ C such that
C0 = C ′

0 − {
̄}. Note that C ′
0 is either C0 or C0 ∪ {
̄}.

Let n > 1 and suppose that the result is true for proofs of length
n − 1. Consider now a resolution proof (C0, . . . , Cn−1) over C�. By
the inductive hypothesis, there is a resolution proof (C ′

0, . . . , C
′
n−2)

over C such that for every k, 0 ≤ k ≤ n− 2, the following conditions
are satisfied:

(1) C ′
k = Ck or C ′

k = Ck ∪ {
̄},
(2) if k �∈ K, then C ′

k ∈ C,
(3) if k ∈ K, then C ′

k = res�k(C
′
ik
, C ′

jk
).

We consider two cases for n− 1:

(1) n− 1 �∈ K,
(2) n− 1 ∈ K.

In the first case, there is a clause C ′
n−1 ∈ C such that Cn−1 =

C ′
n−1 − {
̄}. Note that C ′

n−1 is either Cn−1 or Cn−1 ∪ {
̄}.
In the second case, we must have
n−1 different from
 and
̄

because neither
 nor
̄ belongs to any clause of C� and, therefore, nei-
ther belongs to any clause of Res∗(C�). By the inductive hypothesis,
we have C ′

in−1
= Cin−1∪E and C ′

jn−1
= Cjn−1∪F , where E and F are

either ∅ or {
̄}. Let C ′
n−1 = Cn−1∪E∪F . Then, C ′

n−1 is either Cn−1

or Cn−1 ∪ {
̄} and, by Lemma 3.8.27, C ′
n−1 = res�n−1(C

′
in−1

, C ′
jn−1

).

In either case, (C ′
0, . . . , C

′
n−1) is the desired resolution proof

over C. �

430 Logical Foundations of Computer Science — Volume 1

Theorem 3.8.29 (Soundness of Resolution). Let C be a set of
clauses. If � ∈ Res∗(C), then C is unsatisfiable.

Proof. If � ∈ Res∗(C), then, by the fifth part of Theorem 3.8.6,
Res∗(C) is unsatisfiable so, by the fourth part of Theorem 3.8.17, C
is unsatisfiable. �

In terms of the formal system FRES , Theorem 3.8.29 means that
if � is a theorem of FRESC , then C is unsatisfiable.

Theorem 3.8.30 (Resolution Completeness for Finite Sets).
Let C be a finite set of clauses. If C is unsatisfiable, then � ∈ Res∗(C).

Proof. We prove the statement by showing by induction on n that
if |SV (C)| = n and C is unsatisfiable, then � ∈ Res∗(C). This suffices
to show the result, since if C is finite, then SV (C) is finite.

For the basis step, suppose that |SV (C)| = 0 and that C is unsat-
isfiable. Then, C = {�}. (The only other set of clauses without vari-
ables is ∅, but this set of clauses is satisfiable.) By the first part of
Theorem 3.8.17, we have, for this C, � ∈ C ⊆ Res∗(C).

For the inductive step, suppose that n ≥ 0 and that the result is
true for all sets of clauses C with |SV (C)| ≤ n. Suppose that C is an
unsatisfiable set of clauses with |SV (C)| = n+1. Let p be a member
of SV (C). Then, since neither p nor p̄ appears in any clause of Cp
and Cp̄, we have |SV (Cp)|, |SV (Cp̄)| ≤ n. Also, by Theorem 3.8.26, Cp
and Cp̄ are both unsatisfiable. Thus, by inductive hypothesis, � is in
both Res∗(Cp) and Res∗(Cp̄). By Theorem 3.8.19, we have resolution
proofs (C0, . . . , Cm−1) of � over Cp and (D0, . . . ,Dk−1) of � over Cp̄.
Applying Lemma 3.8.28, we get resolution proofs (C ′

0, . . . , C
′
m−1) and

(D′
0, . . . ,D

′
k−1) over C such that C ′

m−1 is either Cm−1 or Cm−1∪{p̄},
that is, since Cm−1 = �, C ′

m−1 is either � or {p̄}, and, similarly,D′
k−1

is either � or {p}. If either C ′
m−1 = � or D′

k−1 = �, then we have a
resolution proof over C of �. If, on the other hand, C ′

m−1 = {p̄} and
D′
k−1 = {p}, then (C ′

0, . . . , C
′
m−1,D

′
0, . . . ,D

′
k−1,�) is a resolution

proof of � over C. Thus, by Theorem 3.8.19, � ∈ Res∗(C). �

In terms of the formal system FRES , Theorem 3.8.30 means that
if C is unsatisfiable, then � is a theorem of FRESC .

Corollary 3.8.31. Let C be a finite set of clauses. Then, C is unsat-
isfiable if and only if � ∈ Res∗(C).

Propositional Logic–Formal Systems 431

Proof. This corollary follows from Theorems 3.8.29 and 3.8.30. �

Theorem 3.8.32 (Resolution Completeness for All Sets).
Let C be a set of clauses. If C is unsatisfiable, then � ∈ Res∗(C).

Proof. If C is unsatisfiable, by the Compactness Theorem for
Clauses (Theorem 3.8.11), there is a finite unsatisfiable subset C0
of C. By the Resolution Completeness Theorem for Finite Sets of
Clauses, � ∈ Res∗(C0) ⊆ Res∗(C). �

Corollary 3.8.33 (Resolution Soundness and Completeness).
Let C be a set of clauses. Then, C is unsatisfiable if and only if
� ∈ Res∗(C).

Proof. This statement follows from Theorems 3.8.32
and 3.8.29. �

If C is a finite set of clauses, we now have the following algorithm
to determine if C is satisfiable:

Algorithm 3.8.34.
Input: A finite set of clauses C.
Output: “Yes” if C is satisfiable and “No” otherwise.
Method: Calculate Res(C),Res2(C), . . . until a k is found with
Resk(C) = Resk+1(C). Then, return “Yes” if � �∈ Resk(C) and
return “No” otherwise.

Proof of Correctness: Since C is finite, by the second part of
Theorem 3.8.23, a k as in the algorithm will be found, and, by the
first part of this theorem, for this k, Resk(C) = Res∗(C). Thus, by
Corollary 3.8.33, the algorithm is correct. �

In the previous algorithm, if it is found that � ∈ Resk(C) for
some k, then there is no need to continue on with the calculation of
Res∗(C), since it is already clear that � ∈ Res∗(C). Thus, a slightly
more efficient version of the algorithm is given by the following:

Algorithm 3.8.35.
Input: A finite set of clauses C.
Output: “Yes” if C is satisfiable and “No” otherwise.
Method: Calculate Res(C),Res2(C), . . . until a k with either
Resk(C) = Resk+1(C) or � ∈ Resk(C) is obtained. Then, return
“Yes” if � �∈ Resk(C) and return “No” otherwise.

432 Logical Foundations of Computer Science — Volume 1

Proof of Correctness: The correctness follows immediately from
the above discussion. �

Example 3.8.36. We claim that the set of clauses

C = {{¬p0,¬p1, p2}, {p0, p2}, {p1, p2}, {¬p2}}

is unsatisfiable. In order to justify this claim, we will compute the
sets Resn(C) for n ∈N. Clearly, Res0(C) = C. The clauses of Res1(C)
are given in the following table:

Clause Clause content Derivation
C0 {¬p0,¬p1, p2} in C
C1 {p0, p2} in C
C2 {p1, p2} in C
C3 {¬p2} in C
C4 {¬p1, p2} resp0(C1, C0)
C5 {¬p0, p2} resp1(C2, C0)
C6 {¬p0,¬p1} resp2(C0, C3)
C7 {p0} resp2(C1, C3)
C8 {p1} resp2(C2, C3)

The set Res2(C) includes the clauses C0 to C8 as well as the clauses
included by the following table:

Clause Clause content Derivation
C9 {p2} Resp0(C1, C5)
C10 {¬p1} Resp2(C4, C3)
C11 {¬p0} Resp2(C5, C3)

Note that Res3(C) contains the empty clause, since
resp0(C7, C11) = �, so C is unsatisfiable.

If C is unsatisfiable, then this can be shown simply by exhibiting
a resolution proof of � over C, and such a proof can sometimes be
found by a trial and error process. It is sometimes much less work
to find such a resolution proof of � than it is to calculate all the
Resk(C)s until one containing � is found, since this latter calculation
usually involves many resolvents which play no role in the generation
of �. However, if it is not known in advance whether or not C is
satisfiable, any time spent looking for a resolution proof of � over C
can be wasted (unless the search is carried out so systematically that
it shows that no such resolution proof exists). A reasonable strategy

Propositional Logic–Formal Systems 433

Fig. 3.29. Resolution tree for proving {p, (p→ q)} |= q.

is to first try to find a resolution proof of � and if this does not seem
to be leading anywhere, to switch to the algorithm given above.

In view of previous discussion, we now have the following algo-
rithm to determine if a finite set of formulas Γ = {ϕ0, . . . , ϕn−1}
logically implies a formula ϕ.

Algorithm 3.8.37.
Input: A finite set of formulas Γ = {ϕ0, . . . , ϕn−1} and a for-
mula ϕ.
Output: “Yes” if Γ |= ϕ and “No” otherwise.
Method: Put ϕ0, . . . , ϕn−1, (¬ϕ) into conjunctive normal form to
obtain a set of formulas Γ′. Let CΓ′ be as in Definition 3.8.7. Use
Algorithm 3.8.34 to determine if CΓ′ is satisfiable. Then, return
“Yes” if CΓ′ is not satisfiable and “No” otherwise.

Proof of Correctness: The correctness of the algorithm follows
from previous discussion. �

Example 3.8.38. Let p, q be two statement variables. We will show
that {p, (p → q)} |= q using resolution. This amounts to prov-
ing that the set of formulas {p, (p → q), (¬q)} is unsatisfiable.
Putting these formulas into conjunctive normal form, we obtain
the set of formulas Γ′ = {p, ((¬p) ∨ q), (¬q)}. The set of clauses
CΓ′ = {{p}, {¬p, q}, {¬q}} is not satisfiable because we have the res-
olution tree shown in Figure 3.29.

434 Logical Foundations of Computer Science — Volume 1

Let now Γ = {ϕ0, . . . , ϕn, . . .} be an infinite set of formulas and
ϕ be a formula. By the Compactness Theorem for formulas, which
we proved both semantically and syntactically, Γ |= ϕ if and only if
there is an n such that {ϕ0, . . . , ϕn−1} |= ϕ. This gives the following
construction to determine if Γ |= ϕ.

Construction 3.8.39.
Input: An infinite set of formulas Γ = {ϕ0, . . . , ϕn−1, . . .} and a
formula ϕ.
Output: “Yes” if Γ |= ϕ.
Method: For n = 0, 1, . . ., use Algorithm 3.8.37 to determine
whether {ϕ0, . . . , ϕn−1} |= ϕ. If so, return “Yes”, if not, increment
n and repeat.

Proof of Correctness: The correctness of the construction fol-
lows from previous discussion. �

In calculating Res∗(C), one often encounters tautologous clauses.
We now show that these clauses can safely be ignored.

Theorem 3.8.40. Let C be a finite set of clauses. Then, C is unsat-
isfiable if and only if there is a resolution proof of � over C none of
whose entries are tautologous.

Proof. If there is a resolution proof of � over C none of whose
entries is tautologous, then by Theorem 3.8.19, � ∈ Res∗(C), so by
the Soundness Theorem (Theorem 3.8.29), C is unsatisfiable.

Conversely, we show by induction on n that if |SV (C)| = n and
C is unsatisfiable, then there is a resolution proof of � over C none
of whose entries is a tautologous. The proof exactly parallels the
corresponding part of the proof of Theorem 3.8.30. If |SV (C)| = 0
and C is unsatisfiable, then C = {�}, and the sequence (�) is the
desired proof.

Now suppose that n ≥ 0 and that the result is true for all C
with |SV (C)| ≤ n. Let C be an unsatisfiable set of clauses with
|SV (C)| = n + 1. Let p be an element of SV (C). Then, Cp and
Cp̄ are unsatisfiable, so, by inductive hypothesis, there are reso-
lution proofs (C0, . . . , Cm−1) of � over Cp and (D0, . . . ,Dk−1) of
� over Cp̄ such that none of the Cis and Dis are tautologous.

Propositional Logic–Formal Systems 435

Applying Lemma 3.8.28, we get resolution proofs C ′
0, . . . , C

′
m−1 and

D′
0, . . . ,D

′
k−1 over C such that for each i, 0 ≤ i ≤ m − 1, C ′

i is
either Ci or Ci∪{p̄}, and, for each i, 0 ≤ i ≤ k−1, D′

i is either Di or
Di∪{p}. Since clauses in Cp do not contain p̄ and clauses in Cp̄ do not
contain p, each C ′

i and D
′
i is also nontautologous. In the proof of The-

orem 3.8.30, we showed that either (C ′
0, . . . , C

′
m−1), (D

′
0, . . . ,D

′
k−1),

or (C ′
0, . . . , C

′
m−1,D

′
0, . . . ,D

′
k−1,�) is a resolution proof of � over C,

and in any of these cases, the proofs do not contain any tautologous
clauses. �

Definition 3.8.41. Let C be a set of clauses. Then, we define NT(C)
to be {C ∈ C | C is nontautologous} and

NTRes(C)
= C ∪ {R | R is a nontautologous resolvent of two clauses in C}.

Just as with Res, we can now define NTResn(C),NTRes∗(C) for
any set of clauses C.

Theorem 3.8.42. Let C be a set of clauses. Then,

(1) NTRes(C) ⊆ Res(C),
(2) NTResn(C) ⊆ Resn(C) for each n ∈ N, and NTRes∗(C) ⊆

Res∗(C),
(3) a clause C is in NTRes∗(C) if and only if there is a resolution

proof for C over C such that each entry in the proof is either in
C or is a nontautologous resolvent of previous entries.

Proof. The first part is immediate from the definition of NTRes.
We use induction to show that NTResn(C) ⊆ Resn(C) for

all n∈N. The basis is immediate. Supposing that NTResn(C) ⊆
Resn(C), we get, using the first part of this theorem and the second
part of Theorem 3.8.15,

NTResn+1(C) = NTRes(NTResn(C))
⊆ Res(NTResn(C))
⊆ Res(Resn(C))
= Resn+1(C).

436 Logical Foundations of Computer Science — Volume 1

This establishes the first claim in the second part of the theorem; the
second claim follows immediately.

The third part of the theorem is proven in the same way that
Theorem 3.8.19 is proven. �

Theorem 3.8.43. Let C be a finite set of clauses. Then, C is unsat-
isfiable if and only if � ∈ NTRes∗(NT(C)).

Proof. By the second part of the previous theorem,
NTRes∗(NT(C)) ⊆ Res∗(NT(C)). Since NT(C) ⊆ C, the last part
of Theorem 3.8.17 shows that Res∗(NT(C)) ⊆ Res∗(C). Thus, if
� ∈ NTRes∗(NT(C)), then � ∈ Res∗(C), so, by Theorem 3.8.29,
C is unsatisfiable.

Conversely, suppose that C is unsatisfiable. Then, by Theo-
rem 3.8.40, there is a resolution proof (C0, . . . , Cn−1) of � over C
such that no Ci is tautologous. Thus, each Ci is either in NT(C) or
else is a nontautologous resolvent of previous entries. It follows from
the third part of Theorem 3.8.42 that � ∈ NTRes∗(NT(C)). �

3.9 Variations of Resolution

In Section 3.8, we saw that we can restrict resolution to nontautol-
ogous clauses without affecting its completeness. In this section, we
examine other restrictions on resolution which preserve completeness.

Definition 3.9.1. Let C be a set of clauses. A positive resolution
proof (negative resolution proof) over C is a resolution proof over C
such that for every resolution step, there is a pair of premises such
that one of the premises is positive (negative).

Both positive resolution and negative resolution are complete as
shown by the following theorem.

Theorem 3.9.2. A finite set of clauses C is unsatisfiable if and only
if there exists a positive resolution (negative resolution) proof of �
over C.

Proof. Since every positive resolution (or negative resolution)
proof is a resolution proof, if � has a positive resolution proof (a
negative resolution proof) over C, it is clear by soundness that C

Propositional Logic–Formal Systems 437

is unsatisfiable. Therefore, it remains to prove only that if C is an
unsatisfiable finite set of clauses, then there is a positive resolution
proof of � over C and, of course, a negative resolution proof of �.
We make the case here for the positive resolution proof. The negative
resolution case is left to the reader.

The argument is by induction on n = |SV (C)|. If n = 0, then
C = {�} because C is unsatisfiable and the argument is complete.

Suppose that the statement holds for sets of clauses containing
fewer than n distinct variables and let C be a set of clauses that
contains n variables. Consider a positive literal
 such that either
 or

̄ is in

⋃
C. Both C� and C �̄ are unsatisfiable (by Theorem 3.8.26) and

contain fewer than n variables. By the inductive hypothesis, there are
positive resolution proofs (C0, . . . , Cm−1) over C� and (D0, . . . ,Dk−1)

over C �̄ of �.
Starting from the positive resolution proof of � over C �̄ = {C −

{
} | C ∈ C and
̄ �∈ C}, by Lemma 3.8.28, there exists a resolution
proof (D′

0, . . . ,D
′
k−1) over C such that for every i, 0 ≤ i ≤ k − 1,

D′
i is either Di or is Di ∪ {
}. Observe that the resolution proof

(D′
0, . . . ,D

′
k−1) is positive because the positive clauses involved in

the resolution steps of the proof (D0, . . . ,Dk−1) remain positive if
 is
added. If D′

k−1 = �, we have obtained the desired positive resolution
proof of � over C. Otherwise, D′

k−1 = {
}. Let (Ch0 , . . . , Chp−1) be
the subsequence of the sequence (C0, . . . , Cm−1) that contains the
clauses Ci that do not belong to C and are not resolvents of previous
clauses in the sequence (C0, . . . , Cm−1). For each i, 0 ≤ i ≤ p − 1,
there is a clause C ′

hi
∈ C such that C ′

hi
= Chi ∪ {
̄}. Observe that

Chi = res�({
}, C ′
hi
). Thus, we obtain the positive resolution proof

(D′
0, . . . ,D

′
k−1, C

′
h0 , . . . , C

′
hp−1

, C0, . . . , Cm−1)

of � over C�. �
The following corollary shows that Theorem 3.9.2 can be extended

to arbitrary sets of clauses (not necessarily finite).

Corollary 3.9.3. A set of clauses C is unsatisfiable if and only if
there exists a positive resolution (negative resolution) proof of �
over C.

Proof. Again, by soundness, the existence of a positive (negative)
resolution proof of � over C implies the unsatisfiability of C.

438 Logical Foundations of Computer Science — Volume 1

Conversely, if C is unsatisfiable, then by the Compactness Theo-
rem for Clauses (Theorem 3.8.11), there is a finite unsatisfiable subset
C′ of C and therefore by Theorem 3.9.2, there is a positive (negative)
resolution proof of � over C′ which is also a positive (negative) res-
olution proof of � over C. �

Example 3.9.4. Consider the following set of clauses:

C = {{p0, p1,¬p2}, {¬p0,¬p2}, {¬p1,¬p2}, {p2}}.

The sequence (C0, . . . , C6) given in the following is a negative reso-
lution proof of �:

Clause Clause content Derivation
C0 {p0, p1,¬p2} in C
C1 {¬p0,¬p2} in C
C2 {¬p1,¬p2} in C
C3 {p2} in C
C4 {p0,¬p2} resp1(C0, C2)
C5 {¬p2} resp0(C4, C1)
C6 � resp2(C3, C5)

According to Theorem 3.9.2, there exists a positive resolution proof
for �. This is given by the following table:

Clause Clause content Derivation
C0 {p0, p1,¬p2} in C
C1 {¬p0,¬p2} in C
C2 {¬p1,¬p2} in C
C3 {p2} in C
C4 {¬p1} resp2(C3, C2)
C5 {¬p0} resp2(C3, C1)
C6 {p0, p1} resp2(C3, C0)
C7 {p1} resp0(C6, C5)
C8 � resp1(C7, C4)

The reader can easily verify that a positive clause is involved at every
resolution step of the above proof.

Propositional Logic–Formal Systems 439

The soundness and completeness of positive (negative) resolution
can be restated in terms of formal systems. To this end, we need the
following definition.

Definition 3.9.5. The formal system FRESpos is

FRESpos = (Pfin(LIT), ∅, {Rpos}),

where the binary rule Rpos consists of all pairs ((C,D), E) where E
is a resolvent of C and D, and one of the clauses C,D is positive.

The formal system FRESneg is FRESneg = (Pfin(LIT), ∅,
{Rneg}), where the binary rule Rneg consists of all pairs ((C,D), E)
where E is a resolvent of C and D, and one of the clauses C,D is
negative.

Note that if C is a set of clauses, then a positive resolution proof
over C is the same thing as a proof in the formal system FRESposC
and a similar fact holds for negative resolution.

Theorem 3.9.2 can be rephrased in terms of formal systems by
saying that if C is a set of clauses, then C is unsatisfiable if and only
if � is a theorem of FRESposC (or a theorem of FRESnegC).

The introduction of a formal system allows us to make use of the
idea of proof tree.

Definition 3.9.6. Let C be a set of clauses. A positive (negative)
resolution tree over C is an FRESposC -proof tree (FRESnegC -proof
tree).

A positive (negative) resolution tree over C is a lot such that
its leaves are labeled with clauses from C and each interior node
is labeled with a clause that is a positive (negative) resolvent of
the clauses which are labels of its two immediate descendents. By
Theorem 1.8.23, we conclude that a clause C has a positive (negative)
resolution proof over a set of clauses C if and only if there is a positive
(negative) resolution tree over C such that C is the label of its root.

Example 3.9.7. In Figures 3.30 and 3.31, we give positive and neg-
ative resolution trees for � over the set of clauses C introduced in
Example 3.9.4.

Definition 3.9.8. Let C be a set of clauses called the set of input
clauses. A (C, k)-based linear resolution proof over C is a finite

440 Logical Foundations of Computer Science — Volume 1

�
�

�������������������

�������
�

��

�
�

��

{(¬p0)}

{(¬p1), (¬p2)}

{p1} {(¬p1)}

{p2} {p0, p1, (¬p2)} {p2} {(¬p0), (¬p2)}

{p0, p1}

{p2}

Fig. 3.30. Positive resolution tree for �.

{p2}

{(¬p0), (¬p2)}

{(¬p1), (¬p2)}{p0, p1, (¬p2)}

{p0, (¬p2)}

{(¬p2)}

�
�

��

�
�

�
�

�
�

��

Fig. 3.31. Negative resolution tree for �.

sequence of clauses (C0, C1, . . . , Cn−1) such that the following condi-
tions are satisfied:

(1) 0 ≤ k ≤ n− 1,
(2) Ck = C,
(3) for 0 ≤ j ≤ k, Cj ∈ C,
(4) for every h, such that k < h ≤ n − 1, Ch is a resolvent of Ch−1

and Cm for some m, m < h− 1.

For h with k < h ≤ n − 1, where Ch = res�(Ch−1, Cm), we shall
refer to Ch−1 as the center clause and to Cm as a side clause of that
step.

A C-based linear resolution proof of a clause D over C is a (C, k)-
based linear resolution proof over C for some k whose last entry is D.
A linear resolution proof of a clause D is a C-based linear resolution
proof of D, for some clause C.

Propositional Logic–Formal Systems 441

Example 3.9.9. Let C be the set of clauses considered in Exam-
ple 3.9.4. There exists a ({p2}, 3)-based linear resolution proof of �
over the same set of clauses C. This proof is given by the following
table:

Clause Clause content Derivation
C0 {p0, p1,¬p2} in C
C1 {¬p0,¬p2} in C
C2 {¬p1,¬p2} in C
C3 {p2} in C
C4 {¬p1} resp2(C3, C2)
C5 {p0,¬p2} resp1(C4, C0)
C6 {¬p2} resp0(C5, C1)
C7 � resp2(C6, C3)

The proof tree that corresponds to this proof is given in
Figure 3.32.

Lemma 3.9.10. Let (C0, . . . , Ck, . . . , Cn−1) be a (C, k)-based linear
resolution proof over C. If (D0, . . . ,Dl, . . . ,Dm−1) is a (D, l)-based
linear resolution proof of a clause E over a set of clauses D (where
E = Dm−1 and Cn−1 = Dl), then the sequence

(D0, . . . ,Dl−1, C0, . . . , Ck, Ck+1, . . . , Cn−1,Dl+1, . . . ,Dm−1)

Fig. 3.32. Resolution tree of the C4-based linear resolution proof.

442 Logical Foundations of Computer Science — Volume 1

is a (C, l+ k)-based linear resolution proof of E over C ∪D. Further,
if none of the clauses Dj , 0 ≤ j ≤ l − 1, equals D, then the above
sequence is a (C, l+k)-based linear resolution proof over C∪(D−{D}).

Proof. The argument consists of a direct verification of the sat-
isfaction of the requirements of Definition 3.9.8 and is left to the
reader. �

Definition 3.9.11. A set of clauses C is minimally unsatisfiable if it
is unsatisfiable and for every clause C ∈ C, C − {C} is a satisfiable
set of clauses.

Note that if D is a finite unsatisfiable set of clauses, then D
contains a subset of clauses which is minimally unsatisfiable. Also,
observe that no minimally unsatisfiable set of clauses contains a tau-
tologous clause.

Lemma 3.9.12. Let C be a finite set of clauses and let E be a clause
from C. If C is unsatisfiable and C−{E} is satisfiable, then there exists
an E-based linear resolution proof of � over C.

Proof. The argument is by course-of-values induction on the num-
ber n of variables that occur in C.

Suppose that the statement holds for sets of clauses with fewer
than n variables and let C be a set of clauses that contains n variables.
Observe that E cannot be a tautological clause. We consider three
cases: E = �, |E| = 1, and |E| > 1.

The first case is trivial.
Suppose that |E| = 1 and let E = {
}. Since C is unsatisfiable, so

is C� = {C − {
̄}|C ∈ C and
 �∈ C}, by Theorem 3.8.26. Let D be a
minimally unsatisfiable set of clauses contained in C�. Note that the
set C� contains fewer than n variables and so does D.

There is a clause D ∈ D such that D �∈ C. Indeed, if this were not
the case, then D would be a subset of C−{{
}} = C−{E} and, thus,
it would be satisfiable. For this clause D, we have D∪{
̄} ∈ C. Since
D is minimally unsatisfiable, D−{D} is satisfiable. By the inductive
hypothesis, there exists a linear (D, l)-based resolution proof � =
(D0, . . . ,Dl, . . . ,Dm−1) of � over D. Since D ⊆ C�, by Lemma 3.8.28,
there exists a resolution proof �′ = (D′

0, . . . ,D
′
l, . . . ,D

′
m−1) over C,

Propositional Logic–Formal Systems 443

where D′
i is either equal to Di or D

′
i = Di ∪ {
̄} for 0 ≤ i ≤ m− 1.

Since Dl is an input step of �, D′
l is an input step of �′ which implies

D′
l = Dl ∪ {
̄} because Dl = D �∈ C.
Next, we show that there is a sequence (D′′

0 , . . . ,D
′′
m−1) of clauses

such that

(1) (D′′
0 , . . . ,D

′′
l , E,Dl,D

′′
l+1, . . . ,D

′′
m−1) is an (E, l+1)-based linear

resolution proof over C,
(2) D′′

k = Dk or D′′
k = Dk ∪ {
̄} for 0 ≤ k ≤ m− 1.

Observe first that by the P-Lifting Lemma, each D′
j with 0 ≤ j ≤ l

is in C and is equal either to Dj or to Dj ∪ {
̄}. Thus, we can define
D′′
k = D′

k for 0 ≤ k ≤ l. Further, D′
l = Dl ∪ {
̄} = D ∪ {
̄} and

E = {
} ∈ C, so Dl = res�(E,D
′
l).

We show by induction on k with l + 1 ≤ k ≤ m− 1 that there is
a clause D′′

k such that D′′
k = Dk or D′′

k = Dk ∪ {
̄} and the sequence
(D′

0, . . . ,D
′
l, E,Dl,D

′′
l+1, . . . ,D

′′
k) is an (E, l+1)-based linear resolu-

tion proof.
For the basis step, k = l + 1, we have Dl+1 = res�l+1

(Dl,Di)

with 0 ≤ i ≤ l and
l+1 cannot be equal to either
 or
̄. Define
D′′
l+1 = res�l+1

(Dl,D
′
i). Note that this definition is correct because

res�l+1
(Dl,Di) is defined and Di ⊆ D′

i. Furthermore, we have D′
i =

Di ∪ Fi, where Fi = ∅ or Fi = {
̄}. By Lemma 3.8.27,

D′′
l+1 = res�l+1

(Dl,Di ∪ Fi)
= res�l+1

(Dl,Di) ∪ Fi
= Dl+1 ∪ Fi

because
l+1 �=
.
For the inductive step, suppose that for l+1 ≤ k < m−1, we have

the desired sequence of clauses D′′
l+1, . . . ,D

′′
k . Note that for some i,

0 ≤ i ≤ k, Dk+1 = res�k+1
(Dk,Di). Define D′′

k+1 = res�k+1
(D′′

k ,D
′′
i).

As before, this definition is correct because Dk ⊆ D′′
k and Di ⊆ D′′

i .
Further, we haveD′′

k = Dk∪Ek,D′′
i = Di∪Fi, where Ek, Fi ∈ {∅, {
̄}}

444 Logical Foundations of Computer Science — Volume 1

and
k+1 is distinct from
 and
̄. This allows us to write

D′′
k+1 = res�k+1

(Dk ∪Ek,Di ∪ Fi)
= res�k+1

(Dk,Di) ∪ Ek ∪ Fi
= Dl+1 ∪ Ek ∪ Fi

by Lemma 3.8.27.
We thus have a resolution proof for � or for {
̄}. In the first case,

we have found the desired resolution proof. In the second, an extra
step is necessary to obtain � by resolving E and D′′

m−1.
Suppose now that |E| > 1 and let
 be a literal from E. Note

that E does not contain
̄ because E is not tautologous. Therefore,
if E′ = E − {
}, then E′ belongs to the unsatisfiable set of clauses

C �̄ = {C − {
}|C ∈ C and
̄ �∈ C}.
Note also that E′ �∈ C because if E′ were in C, then E′ ∈ C − {E}

and a truth assignment satisfying C − {E} would also satisfy C since
E′ ⊆ E.

The set C �̄−{E′} is satisfiable. Indeed, let v be a truth assignment
that satisfies C−{E}. Note that v does not satisfy the clause E since
otherwise v would satisfy C. Therefore, v(
) = F because
 ∈ E. This

implies that v satisfies C �̄ − {E′}.
Let E be a minimally unsatisfiable subset of C �̄. Clearly, we have

E′ ∈ E because, otherwise we would have E ⊆ C �̄ − {E′} and this
would mean that E is satisfiable. By the inductive hypothesis, there
is an E′-based linear resolution proof of � over E . By applying
Lemma 3.8.28, we obtain the existence of an E-based linear resolu-
tion proof of {
} or � over C. In fact, we will have an E-based linear
resolution proof of {
} because
 ∈ E, and the P-Lifting Lemma
preserves the literals used in the resolutions.

Observe that (C − {E}) ∪ {{
}} is unsatisfiable and (C − {E})
is satisfiable. Indeed, as we saw before, for any truth assignment v
that satisfies C − {E} we have v(
) = F. From the first case (dealing
with clauses that contain one literal), we obtain the existence of an
{
}-based linear resolution proof of � over (C − {E})∪ {{
}}, where
we can assume without loss of generality that {
} occurs only once as
an input step. By Lemma 3.9.10 applied to these proofs, we obtain
the needed E-based resolution proof of �. �

Propositional Logic–Formal Systems 445

Theorem 3.9.13. A finite set of clauses C is unsatisfiable if and
only if there exists a linear resolution proof of � over C.

Proof. Let C be a finite unsatisfiable set of clauses. If D is a mini-
mally unsatisfiable subset of C, then D �= ∅. Let D be a clause in D.
By Lemma 3.9.12, there exists a D-based linear resolution proof of
� over D. Clearly, this is also a D-based linear resolution proof of �
over C.

The converse implication is obvious since every linear resolution
proof is a resolution proof. �

Corollary 3.9.14. A set of clauses C is unsatisfiable if and only if
there exists a linear resolution proof of � over C.

Proof. By soundness, the existence of a linear resolution proof of
� over C implies the unsatisfiability of C.

Conversely, if C is unsatisfiable, then by the Compactness Theo-
rem for Clauses (Theorem 3.8.11), there is a finite unsatisfiable subset
C′ of C and therefore by Theorem 3.9.13, there is a linear resolu-
tion proof of � over C′ which is also a linear resolution proof of �
over C. �

A further restriction can be placed on linear resolutions by
demanding that all side clauses should be input clauses.

Definition 3.9.15. A (C, k)-based input resolution proof over a
set of input clauses C is a (C, k)-based linear resolution proof
(C0, C1, . . . , Cn−1) such that the following additional condition is sat-
isfied: for every h such that k < h ≤ n− 1, Ch is a resolvent of Ch−1

and Cm for some m, m ≤ k.
A (C, k)-based input resolution proof of a clause D over C is a

(C, k)-based input resolution proof over C whose last entry is D.
An input resolution proof of a clause D over C is a (C, k)-

based input resolution proof over C whose last entry is D for some
C and k.

Note that in an input resolution proof, the side clause must be an
input clause. In the more general case of linear resolution, the side
clause could be any predecessor of the center clause.

Input resolution is not complete as shown by the following
example.

446 Logical Foundations of Computer Science — Volume 1

Example 3.9.16. Consider the input set

C = {{p0, p1}, {p0,¬p1}, {¬p0, p1}, {¬p0,¬p1}}.

A linear C3-based linear resolution proof of � is given in the following
table:

Clause Clause content Derivation
C0 {p0, p1} in C
C1 {p0,¬p1} in C
C2 {¬p0, p1} in C
C3 {¬p0,¬p1} in C
C4 {¬p0} resp1(C3, C2)
C5 {¬p1} resp0(C4, C1)
C6 {p0} resp1(C5, C0)
C7 � resp0(C6, C4)

It is clear that this is not an input resolution proof because in the
last step, we use no input clause.

If � is obtained as a resolvent of two clauses, these clauses must
contain one literal each. Since C contains no one-literal clauses, it
is clear that � cannot be obtained by an input resolution proof
over C.

The definition of Horn clause implies that � is a Horn clause
since the defining condition of such a clause is vacuously satisfied.
Moreover, � is both a positive and a negative clause.

Lemma 3.9.17. If a set C of Horn clauses is unsatisfiable, then C
must contain at least one positive unit clause or �, and one negative
clause.

Proof. If v is a truth assignment such that v(p) = T for every p ∈
SV (C), then v satisfies every clause that contains a positive literal.
On the other hand, if v1 is a truth assignment such that v1(p) = F for
every p ∈ SV (C), then v1 satisfies every clause that contains some
negative literal. Therefore, if C is unsatisfiable, it may not consist
exclusively of clauses that contain some positive literal and it may
not consist exclusively of clauses that contain some negative literal.
In other words, C must contain a negative clause and either a positive
unit clause or �. �

Propositional Logic–Formal Systems 447

Theorem 3.9.18. If C is a finite unsatisfiable set of Horn clauses
and C is a negative clause of C such that C − {C} is satisfiable, then
there exists a C-based input resolution proof of � over C.

Proof. By Lemma 3.9.12, there exists a (C, k)-based linear resolu-
tion proof over C of �, � = (C0, . . . , Ck, Ck+1, . . . , Cn−1). Note that
in this proof a negative clause can be resolved only against a clause
that contains a positive literal and the resulting clause is going to
be again a negative clause because C consists of Horn clauses. Since
Ck = C is a negative clause, all its successors in this sequence must
be negative clauses and the side clauses must all contain a positive
literal. Therefore, the side clauses must be input clauses and the
above resolution proof is an input resolution proof. �

Corollary 3.9.19. Let C be a set of Horn clauses. Then, C is unsat-
isfiable if and only if there is an input resolution proof of � over C.

Proof. Suppose that C is an unsatisfiable set of Horn clauses. By
the Compactness Theorem for Clauses (Theorem 3.8.11), there is a
finite unsatisfiable subset C′ of C. Let C′′ be a minimally unsatisfiable
subset of C′. By Lemma 3.9.17, C′′ contains a negative clause C. By
Theorem 3.9.18, there is a C-based input resolution proof of � over
C′′, thus over C.

As usual, the converse follows by soundness. �

Definition 3.9.20. Let C be a set of clauses and let v be a truth
assignment. A v-semantic resolution proof over C is a resolution proof
over C such that if i is a resolution step, then there are premises Cj, Ck
for step i such that v falsifies at least one of the clauses Cj , Ck.

Theorem 3.9.21. Let C be a finite unsatisfiable set of clauses. For
every truth assignment v, there exists a v-semantic resolution proof
over C of �.

Proof. The argument is by induction on n = |SV (C)|. If n = 0, we
have C = {�} and (�) is a v-semantic resolution proof of � that has
no resolution steps.

Suppose that the statement holds for finite unsatisfiable sets of
clauses with fewer than n ≥ 1 variables and let C be a finite unsat-
isfiable set of clauses with |SV (C)| = n. Let
 be a literal such that
either
 or
̄ occurs in C and v(
) = T. By Theorem 3.8.26, both

448 Logical Foundations of Computer Science — Volume 1

C� and C �̄ are unsatisfiable and |SV (C�)| = |SV (C �̄)| ≤ n − 1. By
the inductive hypothesis, there exist v-semantic resolution proofs of
� over both C� and C �̄, namely, (C0, . . . , Ck−1) and (D0, . . . ,Dl−1),
respectively, where Ck−1 = Dl−1 = �.

Starting from the v-semantic resolution proof (C0, . . . , Ck−1) of
� over C� = {C − {
} | C ∈ C and
 �∈ C}, there exists a resolution
proof (C ′

0, . . . , C
′
k−1) over C which satisfies the properties given by

Lemma 3.8.28, and a similar resolution proof (D′
0, . . . ,D

′
l−1) over C

can be constructed starting from (D0, . . . ,Dl−1). Since C
′
i is either

Ci or Ci ∪ {
̄} and v(
̄) = F, the lifted proof (C ′
0, . . . , C

′
k−1) is a v-

semantic proof. Note that C ′
k−1 is either � or {
̄}. In the first case,

we have the desired v-semantic proof of � over C, so we may assume
that C ′

k−1 = {
̄}.
Suppose that the input steps of the resolution proof

(D0, . . . ,Dl−1) over C �̄ are Dk0 , . . . ,Dkm−1 for some m ∈ N, m ≥ 1.
We claim that

(C ′
0, . . . , C

′
k−1 = {
},D′

k0 , . . . ,D
′
km−1

,D0, . . . ,Dl−1) (3.9)

is a v-semantic resolution proof of� over C. Note thatD′
k0
, . . . ,D′

km−1

are in C (and so are input steps) by the P-Lifting lemma because

Dk0 , . . . ,Dkm−1 are in C �̄. Each j with 0 ≤ j ≤ l− 1 falls into one of
the following three cases:
• If Dj ∈ C, then j is an input step.

• IfDj ∈ C �̄−C, then j is an input step in the proof (D0, . . . ,Dl−1)
and D′

j = Dj ∪ {
}. Thus, Dj = res�(D
′
j , {
̄}) and both D′

j and {
̄}
occur previously in the proof. Further, v falsifies {
̄}.
• If Dj is neither in C nor in C �̄, then j is a resolution step in

the proof (D0, . . . ,Dl−1) over C �̄ and hence is a resolution step in the
proof (3.9), and v falsifies one of the premises of this step. �

Corollary 3.9.22. Let C be a set of clauses and let v be a truth
assignment. There exists a v-semantic resolution proof over C of �
if and only if C is unsatisfiable.

Proof. By soundness, the existence of a v-semantic resolution proof
of � over C implies the unsatisfiability of C.

Conversely, if C is unsatisfiable, then by the Compactness Theo-
rem for Clauses (Theorem 3.8.11), there is a finite unsatisfiable subset

Propositional Logic–Formal Systems 449

C′ of C and therefore by Theorem 3.9.21, there is a v-semantic reso-
lution proof of � over C′ which is also a v-semantic resolution proof
of � over C. �

Definition 3.9.23. Let C be a set of clauses. D is a set-of-support
for C if D ⊆ C and C − D is satisfiable.

Let D be a set-of-support for C. A D-set-of-support resolution
proof over C is a resolution proof over C such that for every resolution
step there is a pair of premises at least one of which does not belong
to C − D.

Theorem 3.9.24. Let C be a set of clauses and D be a set-of-support
for C. Then, there exists a D-set-of-support resolution proof of � over
C if and only if C is unsatisfiable.

Proof. By soundness, the existence of a D-set-of-support resolu-
tion proof of � over C implies the unsatisfiability of C.

Suppose that C is unsatisfiable. Since D is a set-of-support for C,
C−D is satisfiable. Thus, there exists a truth assignment v such that
v satisfies all clauses from C −D. By Corollary 3.9.22, there exists a
v-semantic resolution proof of � over C. Note that in every resolution
step of this proof, there is a premise C that is falsified by v, that is
a clause not from C − D. Therefore, this proof is a D set-of-support
proof of � over C. �

We introduce now a generalization of positive resolution.

Definition 3.9.25. A positive clause C is a hyperresolvent of a
sequence of clauses C1, . . . , Cn,D, where n ≥ 1 and C1, . . . , Cn are
positive, if there is a sequence of clauses E0, . . . , En such that the
following conditions are satisfied:

(1) E0 = C and En = D,
(2) for 0 ≤ i ≤ n− 1, Ei is a resolvent of Ci+1 and Ei+1.

In a positive resolution tree, as we follow the path from a nonpos-
itive clause toward the root of the tree, we see the negative literals
disappearing one at a time until we reach a positive clause. The idea
of hyperresolution is to collapse this “annihilation” of negative liter-
als into a single step.

Definition 3.9.26. Let C be a set of clauses. A hyperresolution proof
over C is a finite sequence (C0, C1, . . . , Cn−1) of clauses such that

450 Logical Foundations of Computer Science — Volume 1

n ≥ 1 and for each step i, 0 ≤ i ≤ n− 1 either Ci ∈ C or else Ci �∈ C
and there is a sequence j0, . . . , jp−1 < i such Ci is a hyperresolvent
of Cj0 , . . . , Cjp−1 . In the first case, i is an input step of the proof; in
the second case, i is a hyperresolution step.

A hyperresolution proof of a clause C over C is a hyperresolution
proof over C whose last entry is C.

The next two statements will help us prove the soundness of
hyperresolution.

Lemma 3.9.27. If E is a hyperresolvent of (C1, . . . , Cn,D), then
there is a positive resolution proof of E over {C1, . . . , Cn,D}.

Proof. We use the notations of Definition 3.9.25 and prove by
induction on j with 0 ≤ j ≤ n that En−j has a positive resolution
proof over {C1, . . . , Cn,D}. For j = 0, this is immediate because
En = D. Suppose that 0 ≤ j < n and the result is true for j. Since
En−j−1 is a positive resolvent of Cn−j and En−j, a positive proof
for En−j−1 over {C1, . . . , Cn,D} is obtained by taking the positive
proof of En−j and appending Cn−j and En−j−1. Since E = E0, this
concludes the argument. �

Lemma 3.9.28. If there is a hyperresolution proof of a clause C
over a set of clauses C, then there is a positive resolution proof of C
over C.

Proof. We provide an argument by course-of-values induction on
the length of the hyperresolution proof. Suppose the statement holds
for proofs of length less than m and C has a hyperresolution proof
of length m. If C ∈ C, the conclusion is immediate. Otherwise, C
is a hyperresolvent of clauses (K1, . . . ,Kn,D) which have shorter
hyperresolution proofs over C. By Lemma 3.9.27, C has a positive
resolution proof over {K1, . . . ,Kn,D}. A positive resolution proof
of C over C can be obtained by prepending the positive resolution
proofs of K1, . . . ,Kn,D over C (which exist by inductive hypothesis)
to the positive proof of C over {K1, . . . ,Kn,D}. �

Theorem 3.9.29. Let C be a set of clauses. If there is a hyperreso-
lution proof of � over C, then C is unsatisfiable.

Propositional Logic–Formal Systems 451

Proof. If there is a hyperresolution proof of � over C, then there
is a (positive) resolution proof of � over C by Lemma 3.9.28, which
implies that C is unsatisfiable, by Theorem 3.8.29. �

Example 3.9.30. We give a hyperresolution proof which shows that
the set of clauses

C = {{p0, p1,¬p2}, {¬p0,¬p2}, {¬p1,¬p2}, {p2}}
is unsatisfiable. This proof was obtained by regrouping the steps of
the positive resolution proof of � given in Example 3.9.4.

Clause Clause content Source
C0 {p0, p1,¬p2} In C
C1 {¬p0,¬p2} In C
C2 {¬p1,¬p2} In C
C3 {p2} In C
C4 {p0, p1} Hyperresolvent of (C3, C0)
C5 {p1} Hyperresolvent of (C4, C3, C1)
C6 � Hyperresolvent of (C5, C3, C2)

The following lemma allows us to prove the completeness of hyper-
resolution.

Lemma 3.9.31. Let C be a set of clauses and C be a positive clause.
If there is positive resolution proof of C over C, then there is a hyper-
resolution proof of C over C.
Proof. We prove by course-of-values induction on the length of
the positive resolution proof. Suppose that a positive clause C has a
positive resolution proof of length n over C and the result holds for
all positive clauses that have shorter proofs. If C ∈ C, the conclusion
is immediate. Otherwise, C is obtained by positive resolution from a
predecessor positive clause C1 in the proof and a predecessor clause
E1. By inductive hypothesis, there is a hyperresolution proof �1 of
C1 over C. If E1 �∈ C, then E1 is obtained by positive resolution from a
predecessor positive clause C2 and a predecessor clause E2. Continu-
ing in this way, we obtain predecessor positive clauses C1, . . . , Cn with
hyperresolution proofs �1, . . . ,�n over C and a clause En ∈ C such
that C is obtained by hyperresolution from C1, . . . , Cn, En. Thus,
�1 · · ·�n · (En, C) is a hyperresolution proof of C over C. �

452 Logical Foundations of Computer Science — Volume 1

Theorem 3.9.32. Let C be a set of clauses. If C is unsatisfiable,
then there is a hyperresolution proof of � over C.

Proof. By the completeness of positive resolution established in
Corollary 3.9.3, there exists a positive proof of � over C. Therefore,
there is a hyperresolution proof of � over C by Lemma 3.9.31. �

Next, we introduce a formal system for hyperresolution. Because
the number of premises for hyperresolution is not fixed, the system
will have infinitely many rules.

Definition 3.9.33. The formal system FREShyper is

FREShyper = (Pfin(LIT), ∅, {Rnhyper | n ≥ 1}),

where the (n + 1)-ary rule Rnhyper consists of all pairs
((C1, . . . , Cn,D), E), where E is a hyperresolvent of C1, . . . , Cn
and D.

Note that if C is a set of clauses, then a hyperresolution proof over

C is the same thing as a proof in the formal system FREShyperC .
In terms of formal systems, Theorems 3.9.29 and 3.9.32 can be

rephrased by saying that if C is a set of clauses, then C is unsatisfiable
if and only if � is a theorem of FREShyperC .

As before, the introduction of a formal system allows us to make
use of the idea of proof tree.

Definition 3.9.34. Let C be a set of clauses. A hyperresolution tree

over C is an FREShyperC -proof tree.

A hyperresolution tree over C is a lot such that its leaves are
labeled with clauses from C and each interior node is labeled with
a clause that is a hyperresolvent of the clauses which are labels of
its immediate descendents. By Theorem 1.8.23, we conclude that a
clause C has a hyperresolution proof over a set of clauses C if and
only if there is a hyperresolution tree over C such that C is the label
of its root.

Example 3.9.35. Figure 3.33 gives the hyperresolution tree corre-
sponding to the hyperresolution proof of Example 3.9.30.

Propositional Logic–Formal Systems 453

�

�

�

�

�

�

�

����������

������

����

	
	

		

{p2}

{p2}

{p2} {¬p1,¬p2}

{¬p0, ¬p2}

{p0, p1,¬p2}

{p1}

{p0, p1}

Fig. 3.33. Hyperresolution tree.

3.10 Cutting Planes

We are going to translate clauses into linear inequalities. To this
end, we need to define formally the notion of linear inequality with
integer coefficients, referred to here, for brevity, as inequalities. Let
AVAR = {z0, . . . , zn, . . .} be an infinite set of symbols. We call the
members of AVAR arithmetic variables.

Definition 3.10.1. A formal sum is an infinite sequence a of inte-
gers such that Supp(a) = {i ∈ N | ai �= 0} is finite. The set Supp(a)
is called the support of a.

A formal sum a is denoted by
∑
aizi. An alternate notation

for a is ai0zi0 + · · · + aimzim , where i0 < i1 < · · · < im and
Supp(a) = {i0, . . . , im} �= ∅. The formal sum a with Supp(a) = ∅
will be denoted 0. We will refer to ai as the coefficient of zi in a.

Example 3.10.2. The formal sum (0,−1, 2, 0, 4,−6, 0, 0, . . .) is
denoted by (−1)z1 + 2z2 + 4z4 + (−6)z5 or, alternatively, by −z1 +
2z2 + 4z4 − 6z5.

Definition 3.10.3. A linear inequality with integer coefficients or,
simply, an inequality is a pair (a,A), where a is a formal sum and
A ∈ Z.

We denote the inequality (a,A) by a ≥ A. The set of all inequal-
ities will be denoted INEQ.

Example 3.10.4. If a = (0,−1, 2, 0, 4,−6, 0, 0, . . .), then the
inequality (a, 3) is written as −z1 + 2z2 + 4z4 − 6z5 ≥ 3.

454 Logical Foundations of Computer Science — Volume 1

Definition 3.10.5. A mapping ξ : AVAR −→ Z is called an arith-
metic assignment. An arithmetic assignment ξ satisfies an inequality
(a,A) if

∑
{aiξ(zi) | i ∈ Supp(a)} ≥ A.

Note that no arithmetic assignment satisfies the inequality 0 ≥ 1.

Example 3.10.6. The assignment ξ(zi) = i does not satisfy the
inequality of Example 3.10.4. On the other hand, the assignment
ξ′(zi) = i if i ≤ 2 and ξ′(zi) = 0, otherwise, satisfies that
inequality.

Definition 3.10.7. Let I be a set of inequalities and let I be an
inequality. I arithmetically implies I if every arithmetic assignment
that satisfies every inequality in I also satisfies I. We write I |≡ I if
I arithmetically implies I.

Example 3.10.8. It is clear that {z1 ≥ 5, z2 ≥ 7} |≡ z1 + z2 ≥ 12.
A less trivial example is {4z2 + 6z3 ≥ 7} |≡ 2z2 + 3z3 ≥ 4.

Definition 3.10.9. Let v be a truth assignment. The arithmetic
assignment representing v is ξv where ξv(zi) = 1 if v(pi) = T and
ξv(zi) = 0 otherwise.

For a clause C, we denote by n(C) the number of negative literals
in C. If C is a nontautologous clause and p is a variable, let SC(p)
be defined by

SC(p) =

⎧⎪⎨
⎪⎩

1 if p ∈ C
−1 if ¬p ∈ C
0 otherwise.

Note that SC(p) is well defined because C is nontautologous.

Definition 3.10.10. Let C be a nontautologous clause. The inequal-
ity IC determined by C is∑

SC(pi)zi ≥ 1− n(C).

Example 3.10.11. I�, the inequality determined by the empty
clause, is 0 ≥ 1.

Propositional Logic–Formal Systems 455

Example 3.10.12. Let C = {C0, C1, C2, C3} be the set of clauses
considered in Example 3.8.36, where C0 = {¬p0,¬p1, p2}, C1 =
{p0, p2}, C2 = {p1, p2}, and C3 = {¬p2}. The inequalities that are
determined by these four clause are as follows:

IC0 : −z0 −z1 +z2 ≥ −1,
IC1 : z0 +z2 ≥ 1,

IC2 : z1 +z2 ≥ 1,

IC3 : −z2 ≥ 0.

Theorem 3.10.13. Let C be a nontautologous clause. A truth
assignment v satisfies C if and only if ξv satisfies IC .

Proof. Observe that∑
{SC(pi)ξv(zi) | SC(pi) �= 0}

=
∑
{SC(p) | p ∈ SV (C) and v(p) = T}

= |{p ∈ C | v(p) = T}| − |{¬p ∈ C | v(p) = T}|
= |{p ∈ C | v(p) = T}|+ |{¬p ∈ C | v(p) = F}| − n(C).

It follows that ξv satisfies IC if and only if

|{p ∈ C | v(p) = T}|+ |{¬p ∈ C | v(p) = F}| ≥ 1

which holds if and only if v satisfies C. �

Definition 3.10.14. Let C be a set of clauses. The set of inequalities
IC determined by C is

{IC | C ∈ NT(C)}∪{zi ≥ 0 | pi ∈ SV (C)}∪{−zi ≥ −1 | pi ∈ SV (C)}.
(Recall that NT(C) is the set of all nontautologous clauses in C.)

Example 3.10.15. The set of inequalities for the set of clauses C
of Example 3.10.12 consists of the inequalities ICi for 0 ≤ i ≤ 3,
together with the inequalities:

z0 ≥ 0 z1 ≥ 0 z2 ≥ 0 z3 ≥ 0,

−z0 ≥ −1 −z1 ≥ −1 −z2 ≥ −1 −z3 ≥ −1.

456 Logical Foundations of Computer Science — Volume 1

Corollary 3.10.16. A truth assignment v satisfies a set of clauses
C if and only if ξv satisfies IC.
Proof. The corollary follows immediately from Theorem 3.10.13.

�
To make inferences about inequalities, we introduce a formal sys-

tem CP.
Definition 3.10.17. The formal system CP is (INEQ, ∅, I), where
I consists of the following rules:∑

aizi ≥ A,
∑
bizi ≥ B∑

(ai + bi)zi ≥ A+B
Addition Rule

∑
aizi ≥ A∑

(cai)zi ≥ cA
Multiplication Rule

for c ∈ N∑
(cai)zi ≥ A∑
aizi ≥ �A/c�

Division Rule

for c ∈ P and
∑
aizi �= 0.

Note that any application of the Multiplication Rule with c > 0
can be replaced by repeated applications of the Addition Rule.
Proofs, however, can be shorter if this rule is included in I.

The objects manipulated by formal systems used in logic are, in
general, strings of symbols. Although inequalities, as we have defined
them, are not strings of symbols and therefore do not have a logical
flavor, we can encode them as strings of symbols using the following
technique. We can regard the notations ai0zi0 + · · ·+aimzim ≥ A and
0 ≥ A as strings of symbols over the infinite set Z∪AVAR∪{+,−,≥
, 0} and then regard the objects of CP as being these strings rather
than the inequalities themselves. A further encoding step would
regard inequalities as being represented by strings over the alpha-
bet {0, 1, a, z,+,≥, 0}. Namely, we can replace ai by ask|ai| and zi
by zki, where s is the sign of ai and ki is the notation introduced in
Section 2.2.

Theorem 3.10.18. Let I be a set of inequalities and let I be an
inequality. If I �CP I, then I |≡ I.
Proof. We proceed by induction on the theorems of CPI . If I ∈ I,
then we have immediately I |≡ I.

Propositional Logic–Formal Systems 457

Suppose that I is the inequality
∑
aizi ≥ �A/c�, and that I was

obtained from the inequality I ′ which is
∑

(cai)zi ≥ A, where I |≡ I ′
and c ∈ P. Let ξ be an arithmetic assignment that satisfies I. Then,
ξ satisfies I ′, so

∑
caiξ(zi) ≥ A. This implies

∑
aiξ(zi) ≥ A/c which

gives
∑
aiξ(zi) ≥ �A/c� because

∑
aiξ(zi) is an integer. Therefore,

ξ satisfies I.
We leave to the reader the verification of the cases when I is

obtained using the Addition or Multiplication Rules. �

Example 3.10.19. Let I = {3z0 + 3z1 ≥ 5, 4z0 − z1 ≥ 10}. The
following proof shows that I |≡ z0 ≥ 3:

Line Inequality Justification
1 3z0 + 3z1 ≥ 5 In I
2 z0 + z1 ≥ 2 Division Rule applied to Line 1
3 4z0 − z1 ≥ 10 In I
4 5z0 ≥ 12 Addition Rule applied to Lines 2 and 3
5 z0 ≥ 3 Division Rule applied to Line 4

The proof tree of the inequality z0 ≥ 3 in the formal system CPI is
given in Figure 3.34.

Theorem 3.10.20 (Soundness of Cutting Planes). Let C be a
set of clauses. If IC �CP 0 ≥ 1, then C is unsatisfiable.

Fig. 3.34. Proof tree in the formal system CPI .

458 Logical Foundations of Computer Science — Volume 1

Proof. If IC �CP 0 ≥ 1, then, by Theorem 3.10.18, we have
IC |≡ 0 ≥ 1. Since there is no arithmetic assignment that satis-
fies 0 ≥ 1, there is no arithmetic assignment that satisfies IC. By
Theorem 3.10.13, C is unsatisfiable. �

Example 3.10.21. The set of clauses in Example 3.10.12 was shown
to be unsatisfiable in Example 3.8.36. Here we provide an alternate
proof of this fact, using the soundness of CP. In other words, we
show that we can derive 0 ≥ 1 from the set of inequalities IC (given
in Example 3.10.15) in the formal system CP. We have the following
proof:

Line Inequality Justification
1 −z0 − z1 + z2 ≥ −1 In IC
2 z0 + z2 ≥ 1 In IC
3 z1 + z2 ≥ 1 In IC
4 −z2 ≥ 0 In IC
5 −z1 + 2z2 ≥ 0 Addition Rule applied to Lines 1 and 2
6 3z2 ≥ 1 Addition Rule applied to Lines 3 and 5
7 2z2 ≥ 1 Addition Rule applied to Lines 4 and 6
8 z2 ≥ 1 Division Rule applied to Line 7
9 0 ≥ 1 Addition Rule applied to Lines 4 and 8

Lemma 3.10.22. Let C0 and C1 be nontautologous clauses. If R is
a nontautologous resolvent of C0 and C1, then I{C0} ∪ I{C1} �CP IR.

Proof. The hypotheses of the lemma imply that there is a unique
variable q such that q occurs in one of C0, C1 and ¬q occurs in the
other clause.

Adding the inequalities

IC0 :
∑
SC0(pi)zi ≥ 1− n(C0),

IC1 :
∑
SC1(pi)zi ≥ 1− n(C1),

we obtain the inequality

∑
aizi ≥ 2− n(C0)− n(C1), (3.10)

Propositional Logic–Formal Systems 459

where ai is given by

ai =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if pi = q

2 if pi ∈ C0 ∩ C1

−2 if ¬pi ∈ C0 ∩ C1

1 if pi ∈ C0 ⊕ C1 and pi �= q

−1 if ¬pi ∈ C0 ⊕ C1 and pi �= q

0 if pi �∈ SV ({C0, C1}).

We use here “⊕” for the symmetric difference operation on sets.
The reader can easily verify that the cases mentioned in the previ-
ous equation are exhaustive and mutually exclusive because of the
hypotheses of the lemma.

Note that C0 ⊕ C1 contains n(C0) + n(C1) − 2n(C0 ∩ C1) − 1
negative literals distinct from ¬q. Starting with Inequality (3.10) and
applying the Addition Rule repeatedly with the inequalities {zi ≥ 0 |
pi ∈ C0⊕C1 and pi �= q} and {−zi ≥ −1 | ¬pi ∈ C0⊕C1 and pi �= q},
we obtain∑

bizi ≥ 3− 2(n(C0) + n(C1)− n(C0 ∩ C1)), (3.11)

where

bi =

⎧⎪⎨
⎪⎩

2 if pi ∈ C0 ∪ C1 and pi �= q

−2 if ¬pi ∈ C0 ∪C1 and pi �= q

0 otherwise.

Note that for all i, bi = 2SR(pi).
Assume initially that

∑
bizi �= 0. The Division Rule can be

applied to Inequality (3.11) to divide by 2, and this gives

∑
SR(pi)zi ≥ 1− (n(C0) + n(C1)− n(C0 ∩ C1)− 1)

which concludes the argument for this case because n(R) = n(C0) +
n(C1)− n(C0 ∩C1)− 1.

If
∑
bizi = 0, then {{C0}, {C1}} = {{q}, {¬q}}, R = �, and IR is

0 ≥ 1. Since n(C0) + n(C1)− n(C0 ∩C1) = 1, IR is Inequality (3.11)
and no application of the Division Rule is required. �

460 Logical Foundations of Computer Science — Volume 1

Theorem 3.10.23 (Completeness of Cutting Planes). Let C
be a finite set of clauses. If C is unsatisfiable, then IC �CP 0 ≥ 1.

Proof. We prove by course-of-values induction on n that if
(C0, C1, . . . , Cn) is a resolution proof over C none of whose entries
are tautologous, then IC �CP ICn . If Cn ∈ C, then ICn ∈ IC , so
the conclusion is immediate. Suppose now that Cn is a resolvent
of Ci and Cj with 0 ≤ i, j < n. By inductive hypothesis, we have
IC �CP ICi and IC �CP ICj . Using Exercise 81, it follows that for
each inequality I ∈ I{Ci} ∪ I{Cj}, IC �CP I. By Lemma 3.10.22, we
have I{Ci} ∪ I{Cj} �CP ICn , so, by Corollary 1.8.8, IC �CP ICn .

If C is unsatisfiable, by Theorem 3.8.40, there is a resolution proof
over C of � each of whose entries is nontautologous. Therefore, by
the claim proven above, IC �CP I�, that is, IC �CP 0 ≥ 1. �

We noted earlier that any application of the Multiplication Rule
with c > 0 could be replaced by repeated applications of the Addition
Rule. In fact, in the proofs of Lemma 3.10.22 and Theorem 3.10.23,
we made no use of the Multiplication Rule (even with c = 0). There-
fore, Theorem 3.10.23 would still be true if we had omitted the Mul-
tiplication Rule from the definition of CP.

3.11 Exercises and Supplements

A Hilbert-Style Formal System

(1) Verify that every axiom of HF is a tautology.
(2) Show, without using the Completeness Theorem for HF , that

for all formulas ϕ,ψ, θ, we have

�HF ((ϕ→ ψ)→ ((ψ → θ)→ (ϕ→ θ))).

Conclude the hypothetical syllogism rule: if Γ �HF (ϕ→ ψ) and
Γ �HF (ψ → θ), then Γ �HF (ϕ → θ). Further, argue that
the HFΓ-proof of (ϕ→ θ) can be effectively obtained from the
HFΓ-proofs of (ϕ→ ψ) and (ψ → θ).
Solution. Observe that by using modus ponens twice, we have

{ϕ, (ϕ→ ψ), (ψ → θ)} �HF θ,

so, by the Deduction Theorem applied three times, we reach
the desired conclusion.

Propositional Logic–Formal Systems 461

(3) Show, without using the Completeness Theorem for HF , that
for all formulas α, β, we have the following:

(a) �HF (((¬α)→ (¬β))→ (β → α)),
(b) �HF ((¬(¬α))→ α),
(c) �HF (α→ (¬(¬α))),
(d) �HF ((α→ β)→ ((¬β)→ (¬α))).
Solution. For the first part, let Γ be {((¬α)→ (¬β)), β, (¬α)}.
By modus ponens, we have Γ �HF (¬β) and by Axiom Group 4,
we have Γ �HF (β → ((¬β) → α)). A double application
of modus ponens yields successively Γ �HF ((¬β) → α) and
Γ �HF α. By the Deduction Theorem, {((¬α)→ (¬β)), β} �HF
((¬α) → α). Using Axiom Group 5, we have {((¬α) →
(¬β)), β} �HF α, and then, applying the Deduction Theorem
twice gives the desired result.
To prove the second part, observe that {(¬(¬α)), (¬α)} is
obviously inconsistent, so by reductio ad absurdum, we have
{(¬(¬α))} �HF α; an application of the Deduction Theorem
yields the result.
We leave the third part to the reader, and we discuss next
Part (d). Since �HF ((¬(¬α)) → α), we have {(α →
β), (¬β), (¬(¬α))} �HF ((¬(¬α)) → α). We also have {(α →
β), (¬β), (¬(¬α))} �HF α, by modus ponens. Another applica-
tion of modus ponens gives {(α → β), (¬β), (¬(¬α))} �HF β.
Note that we also have

{(α→ β), (¬β), (¬(¬α))} �HF (¬β).
Since the formula ((β → ((¬β) → (¬α))) is an instance of the
Axiom Group 4, a double application of modus ponens implies
{(α → β), (¬β), (¬(¬α))} �HF (¬α). By the Deduction Theo-
rem, we have {(α → β), (¬β)} �HF ((¬(¬α)) → (¬α)). Using
the formula

(((¬(¬α))→ (¬α))→ (¬α)),
an instance of Axiom Group 5, we obtain {(α→ β), (¬β)} �HF
(¬α). A final double application of the Deduction Theorem gives
the desired formula.

(4) Use the Deduction Theorem to show that if Γ �HF (ϕ→ (α→
β)), then Γ �HF (ϕ→ ((¬β)→ (¬α))); show also that if Γ �HF
(α→ (β → γ)), then Γ �HF (β → (α→ γ)).

462 Logical Foundations of Computer Science — Volume 1

(5) Let HF ′ be the formal system (PLFORM, A′, {Rmp}), where
A′ consists of the following groups of axioms:

• (α→ (β → α)),
• ((α→ (β → γ))→ ((α→ β)→ (α→ γ))),
• (α→ α),
• (α→ ((¬α)→ β)),
• (((¬α)→ α)→ α),
• ((α→ (¬α))→ (¬α)),
• ((α ∨ β)→ ((¬α)→ β)),
• ((α ∧ β)→ α),
• ((α ∧ β)→ β),
• ((α↔ β)→ (α→ β)),
• ((α↔ β)→ ((¬α)→ (¬β))),
• ((¬(α ∨ β))→ (¬α)),
• ((¬(α ∨ β))→ (¬β)),
• ((¬(α ∧ β))→ (α→ (¬β))),
• ((¬(α→ β))→ α),
• ((¬(α→ β))→ (¬β)),
• ((¬(α↔ β))→ (α→ (¬β))),
• ((¬(α↔ β))→ ((¬α)→ β)),

for all formulas α, β, γ.

(a) Formulate and prove a version of the Soundness Theorem
for the formal system HF ′.

(b) Show that the Deduction Theorem holds with HF ′ in place
of HF .

(c) Show that if the definitions of consistency and inconsis-
tency are changed by replacing HF with HF ′, then the
results from Theorem 3.2.7 to Corollary 3.2.13 hold with
the obvious changes.

(d) Using one of the characterizations of truth sets in Theo-
rem 2.7.7, show that Theorem 3.2.18 remains valid for the
notion of maximal consistency obtained using HF ′.

(e) Prove that consistency of sets of formulas with respect to
HF ′ is a consistency property.

(f) Show that either of the two previous parts can be used to
show that a consistent set of formulas (with respect toHF ′)
is satisfiable.

(g) Prove the Completeness Theorem for HF ′
Γ.

Propositional Logic–Formal Systems 463

(6) Prove that the following statements

(a) the Soundness Theorem,
(b) if a set of formulas Γ is satisfiable, then Γ is consistent

can be directly derived from each other.
Solution. The proof of Theorem 3.2.8 shows that the second
statement follows from the Soundness Theorem. Conversely,
suppose that Γ �|= ϕ. Thus, Γ∪ {(¬ϕ)} is satisfiable by the first
part of Theorem 2.3.17. Assuming that satisfiability entails con-
sistency, Γ ∪ {(¬ϕ)} is consistent, which implies that Γ ��HF ϕ.
This establishes the contrapositive of the Soundness Theorem.

(7) Prove that the following statements

(a) the Completeness Theorem,
(b) if a set of formulas Γ is consistent, then Γ is satisfiable

can be directly derived from each other.
Solution. The proof of the Completeness Theorem shows that
this theorem follows from the second statement. Conversely,
suppose that Γ is not satisfiable. Thus, for any formula ϕ, we
have both Γ |= ϕ and Γ |= (¬ϕ). Assuming the Complete-
ness Theorem, we have both Γ �HF ϕ and Γ �HF (¬ϕ), which
implies that Γ is not consistent. Thus, we derived the contrapos-
itive of the second statement from the Completeness Theorem.

Tableaux

(8) Let s be a propositional substitution and let T be a Δ-tableau.
Prove that s ◦ T is an s(Δ)-tableau. Moreover, prove that if T is
(strongly) closed, then s ◦ T is (strongly) closed.
Hint. Use Exercise 81 of Chapter 2.

(9) Prove that if T is a Δ-tableau with retention and q, r are two
nodes of T such that q is a prefix of r, then T(q) ⊆ T(r).

Let T be a Δ-tableau and let bϕ be a signed formula. A node qi of T
is said to be bϕ-introducing if bϕ ∈ T(qi)− T(q).

(10) Let T be a Δ-tableau and let bϕ be a signed formula that is not
expanded at any node of T. Prove that the tableau T′, where

464 Logical Foundations of Computer Science — Volume 1

Dom(T′) = Dom(T) and

T′(q) =

{
T(q)− {bϕ} if q has no bϕ-introducing ancestor

T(q) otherwise

for q ∈ Dom(T′), is a (Δ − {bϕ})-tableau. (We will denote T′
by T−̇bϕ.) Also, show that if T is conservative, then T−̇bϕ is
conservative.
Solution. Clearly, T′(λ) = Δ − {bϕ}. We claim that T′ is a
(Δ − {bϕ})-tableau, that is, T′ is locally consistent at every
interior node q. Suppose that q is an interior node in Dom(T) =
Dom(T′). There are two possible cases: either we used thinning
at q or we expanded a formula bqϕq at q. In the first case,
q has one direct descendant q0 in T and T′ and T(q0) ⊆ T(q).
If q has no bϕ-introducing ancestor, then neither does q0, so
T′(q0) = T(q0) − {bϕ} ⊆ T(q0) − {bϕ} = T′(q). If q has a bϕ-
introducing ancestor, then T′(q0) = T(q0) ⊆ T(q) = T′(q). Thus,
in either of the above two subcases, we have thinning at q in T′.
If there is expansion at q in T, we have T(q) = Δq ∪ {bqϕq},
d(bqϕq) = (H0, . . . ,Hl−1), and T(qj) = Δq ∪ Hj, for 0 ≤ j ≤
l−1. We show that after the possible removal of bϕ, the resulting
tableau T′ is locally consistent at q.
There are two subcases to consider. If bϕ is not removed from
T(q) (because q has a bϕ-introducing node as an ancestor), then
bϕ is not removed from the children of q, so T′ is locally consis-
tent at q. Now, suppose that bϕ is removed from T(q). Since bϕ
is not expanded in any node of T, we have bqϕq �= bϕ. If i is such
that bϕ �∈ Hi, then qi is not bϕ-introducing, so we subtract bϕ
from T(qi), which implies that

T′(q) = T(q)− {bϕ} = (Δq ∪ {bqϕq})− {bϕ}
= (Δq − {bϕ}) ∪ {bqϕq},

T′(qi) = (Δq ∪Hi)− {bϕ} = (Δq − {bϕ}) ∪Hi,

since bϕ �= bqϕq. If bϕ ∈ Hi, then T′(qi) = Δq ∪ Hi =
(Δq − {bϕ}) ∪Hi. This shows that T

′ is locally consistent at q.
Furthermore, the previous argument shows that if T is conser-
vative, then so is T′. This completes the proof.

Propositional Logic–Formal Systems 465

(11) Let T be a (Δ∪{bp})-tableau, where p �∈ SV (Δ). Prove that the
tableau T′ defined by Dom(T′) = Dom(T) and T′(q) = T(q)−{bp}
for q ∈ Dom(T′) is a Δ-tableau that is (strongly) closed if T is
(strongly) closed.
Solution. Observe that in T, no formula containing p other
than bp occurs in any node. This can be shown easily by induc-
tion on the depth of the nodes of T. Therefore, no node of T has
a bp-introducing ancestor and so T′ = T−̇bp, which shows that
T′ is a Δ-tableau by Supplement 10. Since b̄p does not occur in
any node of T, if T is (strongly) closed, then so is T′.

(12) Let T be a Δ-tableau and define a tableau T′ with the same
domain as T by

T′(q) =
⋃
{T(r) | r ∈ PREF(q)}.

Prove the following:

(a) T′ is a Δ-tableau with retention and for each branch B of T,
B is closed in T if and only if it is closed in T′.

(b) The branch B is complete in T if and only if it is complete
in T′.

(c) T is closed (completed) if and only if T′ is.
(d) If T is strongly completed, then so is T′.
(e) If T is conservative, then so is T′.

(13) Let T be a finite closed Δ-tableau with retention. Prove that
there is a finite closed Δ-tableau with retention T′ such that no
formula is expanded twice in any branch of T′ and |T′| ≤ |T|.
Furthermore, if T is conservative, then so is T′.
Solution. The argument is by induction on n = |T|. The basis
step, n = 1, is trivial. Suppose that the statement holds for
tableaux with fewer than n nodes. If there is no branch on which
a formula is expanded more than once, then T′ = T. Otherwise,
let B be a branch of T where a formula bϕ is expanded at both
q and r with q a proper prefix of r. Suppose that d(bϕ) =
(K0, . . . ,Kp−1) and that qi is a prefix of r. Then, Ki ⊆ T(qi) ⊆
T(r), by Exercise 9, so T(ri) = T(r) ∪ Ki = T(r). Therefore,
the tableau T′′ = T[r → T[ri]] obtained by inserting the tableau
T[ri] at r is also a Δ-tableau with retention and fewer than n
nodes. Moreover, for every branch B′′ of T′′, there is branch B

of T such that T′′(B′′) = T(B) and this implies that since T is

466 Logical Foundations of Computer Science — Volume 1

a closed Δ-tableau, T′′ is also a closed Δ-tableau. Also, if T is
conservative, then so is T′′. By the inductive hypothesis, there
is a closed Δ-tableau T′ such that no formula is expanded more
than once in any of its branches and |T′| ≤ |T′′| < |T|. Further,
if T′′ is conservative, then so is T′.

(14) Let T be a finite Δ-tableau such that no formula is expanded
twice in any of its branches. Prove that there is a Δ-tableau with
removal T′ such that Dom(T′) = Dom(T) and for every branch
B of T′, we have T′(B) = T(B). Conclude that if T is a closed
Δ-tableau, then so is T′. Also, prove that if T is conservative,
then so is T′.
Solution. The argument is by induction on n = |T|. The basis
step, n = 1, is trivial. Suppose that the statement holds for
tableaux with fewer than n nodes.
Suppose that Δ = T(λ) = Δ′ ∪ {bϕ} and d(bϕ) =
(K0, . . . ,Kp−1), where bϕ is expanded at the root. For 0 ≤
i ≤ p − 1, the tableau T[i] is a (Δ′ ∪ Ki)-tableau in which
the formula bϕ is never expanded, due to the hypothesis we
made on T. Therefore, by Supplement 10, the tableau T[i]−̇bϕ
is a (Δ′ − {bϕ}) ∪Ki-tableau in which no formula is expanded
twice in any branch and is conservative if T is conservative.
By the inductive hypothesis, there is a (Δ′ − {bϕ}) ∪ Ki-
tableau with removal T′i such that Dom(T′i) = Dom(T[i]−̇bϕ)
and T′i(B) = (T[i]−̇bϕ)(B) for every branch B of T′i. The desired
tableau T′ is (T′0, . . . , T′p−1;Δ).
The case when thinning is used at the root of T is left to the
reader.

(15) Let T be a finite closed Δ-tableau. Prove that there is a finite
closed Δ-tableau with removal T̂ such that |T̂| ≤ |T|. Moreover,
in T̂, no formula is expanded twice in any branch and if T is
conservative, then so is T̂.
Solution. By Exercise 12, there is a Δ-tableau with retention
T′ such that Dom(T′) = Dom(T) and T′ is closed since T is
closed. By Supplement 13, there is Δ-tableau T′′ (with reten-
tion) such that no formula is expanded twice in a branch of
T′′, |T′′| ≤ |T′|, and T′′ is closed because T′ is closed. Then, by
Supplement 14, there is a Δ-tableau T̂ with removal such that

Propositional Logic–Formal Systems 467

Dom(T̂) = Dom(T′′); T̂ is closed since T′′ is closed, so T̂ is the
desired Δ-tableau.
As we saw previously, the conservative property is preserved by
our definition of T̂.

(16) Effectivize the statement of Supplement 15 by giving a con-
struction that transforms a finite closed Δ-tableau T into a finite
closed Δ-tableau T′ with removal such that |T′| ≤ |T|.

(17) Let T be a Δ-tableau and let Δ′ be a set of signed formulas.
Define the tableau T �Δ′ by Dom(T �Δ′) = Dom(T) and

(T �Δ′)(q) = T(q) ∪Δ′

for q ∈ Dom(T). Prove that T�Δ′ is a (Δ∪Δ′)-tableau. Further,
show that if T is (strongly) closed, then T � Δ′ is (strongly)
closed. Also, show that if T is conservative, then so it T �Δ′.

(18) Give a syntactic construction that starts with a finite tableau T

and produces a conservative T(λ)-tableau T′ such that |T′| ≤ |T|
and for every branch B of T, there is a branch B′ of T′ such that
T′(B′) = T(B). Conclude that if T is a (strongly) closed tableau,
then so is T′.
Solution. The construction builds the tableau T′ recursively
as follows. If T is a one-node tableau, then T′ = T. Suppose
that regular expansion is used at the root of T, where the root
has n children. In this case, we apply the construction recur-
sively to the tableaux T[0], . . . , T[n−1] which yields conservative
tableaux T′0, . . . , T

′
n−1, where |T′i| ≤ |Ti| for 0 ≤ i ≤ n − 1 and

the sets of the formulas of the branches are preserved. Then,
T′ = (T′0, . . . , T

′
n−1; T(λ)). If thinning was applied at the root

of T, then the root has one descendant tableau T[0] such that
T[0](λ) ⊆ T(λ). A recursive application of the construction to
T[0] generates a conservative tableau T′0 with preservation of
the sets of formulas of the branches. Then, T′ = T′0 � T(λ) (see
Exercise 17.)

(19) Let α be a formula and let T be a Δ-tableau. Prove that if α
does not occur positively (negatively) in Δ, then α does not
occur positively (negatively) in any node of T.
Hint. Use the result stated in Exercise 94 of Chapter 2.

(20) Let T be a (strongly) closed (Δ∪ {Tϕ})-tableau, where ϕ does
not occur negatively in Δ. Prove that for each constituent K of

468 Logical Foundations of Computer Science — Volume 1

Tϕ there is a (strongly) closed (Δ ∪K)-tableau with no more
nodes than T.
Also, prove that if T is a (strongly) closed (Δ ∪ {Fϕ})-tableau,
where ϕ does not occur positively in Δ, then for each con-
stituent K of Fϕ there is a (strongly) closed (Δ ∪K)-tableau
with no more nodes than T.
Solution. We prove only the first statement and leave the sim-
ilar proof of the second statement to the reader. The proof is
by induction on n = |T|, the number of nodes of T.
For the basis step, n = 1, the existence of a one-node closed
(Δ ∪ {Tϕ})-tableau implies that Δ ∪ {Tϕ} is closed. Since ϕ
does not occur negatively in Δ, Fϕ �∈ Δ, which implies that Δ
itself is closed. Thus, for any constituent K of Tϕ, Δ ∪ K is
closed and thus there is a one-node strongly closed (Δ ∪ K)-
tableau.
Suppose that the statement holds for tableaux with fewer than
n nodes. If regular expansion is used at the root of T, then let bθ
be the formula expanded there, where d(bθ) = (K0, . . . ,Kn−1).
Define T′ = T � {bθ}. Then, by Exercise 17, T′ is a (strongly)
closed (Δ∪{Tϕ})-tableau with retention at the root and |T′| =
|T|. By Theorem 3.3.10, for 0 ≤ i ≤ n − 1, T′[i] is a (strongly)

closed (Δ ∪ {Tϕ} ∪ Ki)-tableau with fewer than n nodes. We
consider two cases: bθ = Tϕ and bθ �= Tϕ.
In the first case, ifK = Ki0 , then T′[i0] is a (strongly) closed (Δ∪
K ∪ {Tϕ})-tableau. Note that ϕ does not occur negatively in
K because it does not occur in K at all. Thus, by the inductive
hypothesis, there is a (strongly) closed (Δ ∪K ∪K = Δ ∪K)-
tableau with no more nodes than T′[i0] and hence with no more

than n nodes.
In the second case, observe that, by Exercise 94 of Chapter 2, ϕ
does not occur negatively in any set Δ ∪Ki, for 0 ≤ i ≤ n− 1.
Therefore, applying the inductive hypothesis to the tableaux
T′[i], we obtain (strongly) closed (Δ∪Ki ∪K)-tableaux T′′i with

|T′′i | ≤ |T′[i]|. Consequently, the lot (T′′0 , . . . , T′′n−1;Δ ∪ K) is a

(strongly) closed (Δ ∪K)-tableau with no more than n nodes.
If thinning was used at the root of T, define T′ = T�(Δ∪{Tϕ}).
Then, T′ is a (strongly) closed (Δ ∪ {bϕ})-tableau, so T′[0] is a

(strongly) closed (Δ ∪ {bϕ})-tableau with n − 1 nodes. Note

Propositional Logic–Formal Systems 469

that the fact that T′[0] is closed if T is closed follows from the

fact that T′(0) = T′(λ). By the inductive hypothesis, there is
a (strongly) closed (Δ ∪ K)-tableau with no more than n − 1
nodes.

(21) Let Δ be a set of signed formulas and let T be a conservative
Δ-tableau. Prove that if q is a leaf of T and v is a truth assign-
ment that satisfies T(q), then v satisfies T(B), where B is the
branch that ends in q.

We remind the reader that according to Definition 1.8.16, the size
size(T) of a finite tableau T is the sum of the sizes of the labels of
its nodes, where the size of the label of a node is the sum of the sizes
of the (signed) formulas that occur in the node.

(22) Let Δ be a finite unsatisfiable set of signed formulas. Prove
that there is a strongly closed Δ-tableaux with no more than
22L+1 − 1 nodes and size no more than (22L+1 − 1)K, where
L =

∑
{|ϕ| | bϕ ∈ Δ for some b ∈ Bool} and K is

2
∑
{size(ψ) | ψ ∈

⋃
{SUBF(ϕ) | bϕ ∈ Δ for some b ∈ Bool}}.

Hint. Use the correctness proof of Algorithm 3.3.27 and Exer-
cise 8 of Chapter 2.

(23) (a) Let I (Is) be the collection of all sets of signed formulas Δ
such that there is a finite closed (strongly closed) Δ-tableau.
Show that I (Is) is an inconsistency property.

(b) Use the first part to show that if Δ is an unsatisfiable set
of signed formulas, then there is a finite closed (strongly
closed) Δ-tableau. (This gives a different proof of the Com-
pleteness (Strong Completeness) Theorem for Δ-tableaux.)

Hint. The proof of the first part uses Theorem 3.3.11. For the
second part, suppose that there is no finite closed Δ-tableau.
Then, by Part (a), Δ belongs to a consistency property, so it is
satisfiable.

(24) In Theorem 3.3.40, we gave an effective, recursive construc-
tion that produces a strongly closed Δ′-tableau starting from a
strongly closed Δ-tableau, where Δ′ is a finite subset of Δ. Give
an explicit, nonrecursive construction which, starting from a
finite, conservative, closed Δ-tableau T, produces a finite unsat-
isfiable subset of Δ.

470 Logical Foundations of Computer Science — Volume 1

Solution. For each interior node q of T, let bqϕq be a signed
formula with d(bqϕq) = (Kq

0 , . . . ,K
q
nq−1) and let Δq be a set

of signed formulas such that T(q) = Δq ∪ {bqϕq} and q has n
immediate descendants with T(qj) = Δq∪Kq

j for 0 ≤ j ≤ nq−1.
Since T is closed, for every branch B of T, there is a formula ϕB
such that both TϕB and FϕB occur in B.
Define a finite subset Δ0 of Δ by

Δ0 = Δ ∩
(
{bqϕq | q ∈ INTN(T)}

∪
⋃
{Kq

j | q ∈ INTN(T) and 0 ≤ j ≤ nq − 1}

∪
⋃
{{TϕB,FϕB} | B is a branch of T}

)
.

Consider the tableau T′, where Dom(T′) = Dom(T) and T′(q) =
T(q) − (Δ − Δ0). We show that T′ is a closed Δ0-tableau. We
have T′(λ) = Δ0 because Δ0 ⊆ Δ. For each interior node q of
T′, let Δ′

q = Δq − (Δ−Δ0). Because bqϕq �∈ Δ−Δ0 and Kq
j ∩

(Δ−Δ0) = ∅, for 0 ≤ j ≤ nq − 1, we have T′(q) = Δ′
q ∪ {bqϕq}

and T′(qj) = Δ′
q∪K

q
j , which shows that T′ is a Δ0-tableau. Also

notice that T′ is closed because {TϕB,FϕB} ⊆ T′(B) for every
branch B of T′. By Theorem 3.3.16, Δ0 is unsatisfiable.

(25) Reprove Exercise 116 of Chapter 2 using tableaux. In other
words, show that if Δ is a satisfiable set of signed formulas,
then Δ is contained in a Hintikka set Δ′ such that

Δ′ ⊆ Bool× SUBF({ϕ | bϕ ∈ Δ for some b ∈ Bool}).

Solution. By Construction 3.3.33, there is a completed
Δ-tableau T. Theorem 3.3.16 implies that T is not closed and
therefore it contains a complete branch B. Let Δ′ consist of the
signed formulas that occur in B. Then, Δ′ is a Hintikka set that
contains Δ and Theorem 3.3.12 implies that it has the desired
property.

(26) Give a construction whose input is a strongly closed unsigned Γ-
tableau T and whose output is a strongly closed s(Γ)-tableau T′.
Solution. Suppose initially that T is a one-node tree, which
means that T(λ) contains both ϕ and (¬ϕ) for some formula
ϕ. If ϕ is positive, return the one-node tableau T′ whose root

Propositional Logic–Formal Systems 471

is labeled by s(Γ). If ϕ is negative, say ϕ = (¬ψ), the output
is the two-node signed tableau T′ defined by T′(λ) = s(Γ) and
T′(0) = s(Γ) ∪ {Tψ}.
Consider now the case when T has more than one node. If we
used thinning at the root, that is, T(λ) = Γ and T(0) is a subset
Γ0 of Γ, apply the construction recursively to T[0] to produce a
strongly closed s(Γ0)-tableau T′0 and return (T′0; s(Γ)).
Suppose now that T(λ) = Γ0 ∪ {(¬(¬ϕ))} and T(0) = Γ0 ∪ {ϕ}.
Apply the construction to T[0] to obtain T′0, a signed (s(Γ0) ∪
{Tϕ})-tableau if ϕ is positive, or a signed (s(Γ0) ∪ {Fψ})-
tableau, if ϕ = (¬ψ). In the first case, return (T′0; s(Γ)); in the
second case, return ((T′0; s(Γ0) ∪ {T(¬ψ)}); s(Γ)).
Next, we treat one of the remaining cases, when we expand
a formula ϕ = (ψ ∧ α), that is, T(λ) = Γ0 ∪ {(ψ ∧ α)} and
T(0) = Γ0∪{ψ,α}. Apply the construction recursively to T[0] to
obtain an (s(Γ0)∪ s({ψ,α})-tableau T′0. There are four cases to
consider depending of whether the formulas ψ and α are negated
or not. We deal here only with the case when ψ is positive and
α = (¬θ). Applying a similar process as above, we return the
signed tableau

((T′0; s(Γ0) ∪ {Tψ,T(¬θ)}); s(Γ)).
The remaining cases are similar and are left to the reader.

(27) Show that for every node q of an unsigned Γ-tableau T, we have

T(q) ⊆ SUBF(Γ) ∪ {(¬ϕ) | ϕ ∈ PRSUBF(Γ)}.
(This is the analyticity of tableaux for unsigned formulas.)

(28) Let Γ be a set of formulas and let T be a Γ-tableau.

(a) Prove that for every truth assignment v, v satisfies Γ if
and only if there is a branch B of T such that v satisfies
B. Conclude that if there is a closed Γ-tableau, then Γ is
unsatisfiable. (This is the Soundness Theorem for Unsigned
Tableaux.)

(b) Prove that if T is completed, then Γ is satisfiable if and only
if T is not closed.

(29) Let Γ be a set of formulas and let T be a completed Γ-tableau.
Prove that a truth assignment v satisfies Γ if and only if there
is a branch B of T such that T(B) is a Hintikka set, v(p) = T if
p ∈ T(B), and v(p) = F if (¬p) ∈ T(B).

472 Logical Foundations of Computer Science — Volume 1

(30) (a) If P is a path in a conservative Γ-tableau T ending in the
node q and ϕ ∈ T(P)−T(q), show that there is a constituent
K of ϕ such that K ⊆ T(P).

(b) Use Part (a) to formulate an algorithm that takes as input
a finite set Γ of formulas and produces a finite completed
Γ-tableau and prove that the algorithm is correct.

(c) Show that for every finite unsatisfiable set of formulas Γ,
there exists a finite closed Γ-tableau.

(31) Formulate an algorithm that takes as input a finite set Γ of
formulas and produces a finite strongly completed Γ-tableau
and prove that the algorithm is correct. Conclude that if Γ is
unsatisfiable, there is a strongly closed (hence finite) Γ-tableau.
Hint. The algorithm is similar to Algorithm 3.3.27 and the
correctness proof uses the analyticity of tableaux for unsigned
formulas.

(32) Construct a formal system whose objects are the finite sets of
formulas such that its theorems are the finite unsatisfiable sets
of formulas.

(33) Formulate a construction that starts with a set Γ of formulas
(not necessarily finite) and yields a sequence T0, T1, . . . of Γ-
tableaux such that each Ti+1 is a leaf extension of Ti and

⋃
{Ti |

i ≥ 0} is a completed Γ-tableau. Using an argument similar to
that of Theorem 3.3.34, conclude that if Γ is unsatisfiable, there
is a finite, closed Γ-tableau.

(34) Use Exercise 33 to reprove Corollary 2.7.22. In other words,
show that if Γ is a satisfiable set of formulas, then there is a
Hintikka set Γ′ such that Γ ⊆ Γ′ and every formula in Γ′ is either
a subformula or the negation of a subformula of a formula of Γ.

(35) Formulate a construction that takes as input a set Γ of formulas
and produces a strongly completed Γ-tableau and prove that the
algorithm is correct. Conclude that if Γ is unsatisfiable, there
is a strongly closed (hence finite) Γ-tableau.

(36) Use Exercise 35 to obtain another proof of the Compactness
Theorem for unsigned formulas.

(37) Construct a formal system whose objects are the sets of formu-
las such that its theorems are the unsatisfiable sets of formulas.

(38) Formulate and prove results for sets of formulas analogous to
the ones discussed in Theorem 3.3.11 and Exercise 23 for sets
of signed formulas.

Propositional Logic–Formal Systems 473

(39) If Γ is a set of formulas in negation normal form, and T is a
Γ-tableau, prove that T(q) ⊆ NNF for every q ∈ Dom(T).

(40) Recall the following definitions of formulas from Example 2.2.8
and Exercises 11 and 12 of Chapter 2:

θi =

{
p0 if i = 0

(p2i−1 ∨ p2i) if i ≥ 1

ϕn =

n−1∧
i=0

θi for n ≥ 1

αi = (ϕi → p2i−1) for i ≥ 1

βi = (ϕi → p2i) for i ≥ 1

γi =

{
p0 if i = 0

(αi ∨ βi) for i ≥ 1.

Also, recall that in Exercise 34 of Chapter 2 we proved that the
set of signed formulas Δn = {Tγ0, . . .Tγn,Fp2n−1,Fp2n} for
n ≥ 1 is unsatisfiable, so there is a closed Δn-tableau.
Prove that for each n ≥ 1 any closed Δn-tableau has at least
2n+1 nodes. Conclude that the size of any closed Δn-tableau is
super-polynomial in the size of Δn.
Solution. The proof is by induction on n ≥ 1. Assume that T
is a closed Δn-tableau. By Supplements 18 and 15, we may
assume that T is a conservative tableau with removal. This
assumption will not increase the size of T. For the basis step,
n = 1, Δ1 = {Tp0,T((p0 → p1) ∨ (p0 → p2)),Fp1,Fp2} is
not closed and there is only one formula in Δ1 that can be
expanded. Expanding this formula, T((p0 → p1) ∨ (p0 → p2)),
does not yield a closed tableau, so further expansions are nec-
essary. Thus, any closed Δ1-tableau has at least four nodes.
Suppose now that the statement holds for Δn−1 for n > 1 and
consider a closed Δn-tableau T. Without loss of generality, we
assume that T is a tableau with removal (see Supplement 15.)
We shall prove that there exist two closed Δn−1-tableaux, T̂, Ť
such that |T̂| ≤ |T[0]| and |Ť| ≤ |T[1]|. The inductive hypotheses
will then allow us to write |T| = 1 + |T[0]|+ |T[1]| ≥ 1 + 2 · 2n ≥
2n+1.

474 Logical Foundations of Computer Science — Volume 1

Note that the formula expanded at the root of T is one of the
formulas Tγ1, . . . ,Tγn. We distinguish two cases, depending on
the formula which is expanded.
Case 1: The formula expanded at the root of T is Tγn. The
tableau T[0] is a Δ[0]-tableau and T[1] is a Δ[1]-tableau, where

Δ[0] = {Tγ0, . . . ,Tγn−1,Tαn,Fp2n−1,Fp2n},
Δ[1] = {Tγ0, . . . ,Tγn−1,Tβn,Fp2n−1,Fp2n},

respectively. We will give the proof of the existence of T̂ and
leave the entirely similar argument for Ť to the reader. Observe
that the formula γn does not occur negatively in Δn. Therefore,
by Exercise 19, Fγn does not occur in any node of T, which
implies that T[0] is a closed Δ[0]-tableau. Since αn does not occur
negatively in Δ[0], by Supplement 20, there is a closed Δ′

[0]-

tableau T̂′, where Δ′
[0] = {Tγ0, . . . ,Tγn−1,Fϕn,Fp2n−1,Fp2n}

and |T̂′| ≤ |T[0]|. Note that ϕn does not occur positively in Δ′
[0].

By another application of Supplement 20, there is a closed Δ′′
[0]-

tableau T̂′′, where

Δ′′
[0] = {Tγ0, . . . ,Tγn−1,F(p2n−3 ∨ p2n−2),Fp2n−1,Fp2n}

and |T̂′′| ≤ |T̂′|. Since neither p2n−1 nor p2n occur in

SV ({Tγ0, . . . ,Tγn−1,F(p2n−3 ∨ p2n−2)}),

by a double application of Supplement 11, there is a closed Δ′′′
[0]-

tableau T̂′′′, where Δ′′′
[0] = {Tγ0, . . . ,Tγn−1,F(p2n−3 ∨ p2n−2)}

and |T̂′′′| = |T̂′′|. Since the formula (p2n−3 ∨ p2n−2) does not
occur positively in Δ′′′

[0], a final application of Supplement 20

yields a closed Δn−1-tableau T̂ with |T̂| ≤ |T̂′′′| ≤ |T[0]|.
Case 2: The formula expanded at the root of T is γi for some i
with 1 ≤ i ≤ n−1. In this case, the tableau T[0] is a Δ[0]-tableau
and T[1] is a Δ[1]-tableau, where

Δ[0] = {Tγ0, . . . ,Tγi−1,Tαi,Tγi+1, . . . ,Tγn,Fp2n−1,Fp2n},
Δ[1] = {Tγ0, . . . ,Tγi−1,Tβi,Tγi+1, . . . ,Tγn,Fp2n−1,Fp2n},

respectively. As in the previous case, we prove the existence
of T̂ and leave the argument for Ť to the reader. Observe that

Propositional Logic–Formal Systems 475

the formula γi does not occur negatively in Δn. Therefore, by
Exercise 19, Fγi does not occur in any node of T, which implies
that T[0] is a closed Δ[0]-tableau. Since αi does not occur nega-
tively in Δ[0], by Supplement 20, there is a closed Δ′

[0]-tableau

T̂′, where

Δ′
[0] = {Tγ0, . . . ,Tγi−1,Tp2i−1,Tγi+1, . . . ,Tγn,Fp2n−1,Fp2n}

and we have |T̂′| ≤ |T[0]|.
Define the unary operation on PLFORM by ψ� =
R(ψ,ϕi+1, ϕi), where R was defined before Exercise 71 of
Chapter 2.
Let

Δ′′
[0] = (Δ′

[0])
�

= {Tγ0, . . . ,Tγi−1,Tp2i−1,

Tγ�i+1, . . . ,Tγ
�
n,Fp2n−1,Fp2n},

where

γ�k =

⎛
⎝
⎛
⎝ ∧

0≤j≤k−1,j =i
θj → p2k−1

⎞
⎠ ∨

⎛
⎝ ∧

0≤j≤k−1,j =i
θj → p2k

⎞
⎠
⎞
⎠

for i + 1 ≤ k ≤ n. We want to construct a closed Δ′′
[0]-tableau

T̂′′ such that |T̂′′| ≤ |T̂′|. To this end, we shall prove a stronger
statement, namely, that for each q ∈ Dom(T̂′), there is a (T̂′(q))�-
tableau T̂′′q such that for each branch B′′ of T̂′′q , there is a branch

B′ of T̂′[q] for which T̂′′q(B′′) = (T̂′[q](B
′))� and |T̂′′q | ≤ |T̂′[q]|. The

needed tableau T̂′′ would then be obtained by taking q = λ.
The argument for this stronger result is by induction on the
depth d of q in T̂′.
For d = 0, q is a leaf of T̂′ and we can take T̂′′q to be the one-

node tableau labeled (T̂′(q))�. Suppose now that the statement
is true for nodes of depth less than d = depth(T̂′)(q) > 0, that
T̂′(q) = Δq ∪ {bqϕq}, where bqϕq is the formula expanded at q
and that d(bqϕq) = (Kq

0 , . . . ,K
q
p−1). Then, q has p immediate

descendants in T̂′ and for 0 ≤ j ≤ p− 1, T̂′(qj) = Δq ∪Kq
j . We

need to consider now two cases.

476 Logical Foundations of Computer Science — Volume 1

Case 2a: ϕq �= ϕi+1. By Exercises 71 and 80 of Chapter 2,

we have d((bqϕq)
�) = ((Kq

0)
�, . . . , (Kq

p−1)
�). By the inductive

hypothesis, there are (Δ�
q∪(Kq

j)
�)-tableaux T̂′′qj for 0 ≤ j ≤ p−1

such that the set of formulas of each branch of these tableaux is
the -image of a branch of the corresponding tableau T̂′[qj] and
|T̂′′qj | ≤ |T̂′[qj]|. It is straightforward to verify that the tableau

T̂′′q = (T̂′′q0, . . . , T̂′′qp−1; (T̂
′(q))�) is the desired tableau.

Case 2b: ϕq = ϕi+1. Observe that although ϕi+1 occurs neg-
atively in the formulas γi+1, . . . , γn, it does not occur posi-
tively in Δ′

[0] and thus Tϕi+1 does not occur in any node of

T̂′, so bq = F. Consequently, T̂′(q) = Δq ∪ {Fϕi+1}, p = 2,

and T̂′(q0) = Δq ∪ {Fϕi} because ϕi+1 = ϕi ∧ θi. Since
(Fϕi+1)

� = Fϕi, we have

(T̂′(q))� = (Δq ∪ {Fϕi+1})� = (Δq ∪ {Fϕi})� = (T̂′(q0))�.

By the inductive hypothesis, there is a (T̂′q0)
�-tableau T̂′′q0 such

that the set of formulas in each branch of this tableau is the
-image of a branch of T̂′[q0] and |T̂′′q0| ≤ |T̂′[q0]|. The desired tab-

leau T̂′′q is T̂′′q0.
Note that the only appearance of p2i−1 in Δ′′

[0] is in Tp2i−1.

Therefore, by Supplement 11, there is a closed Δ′′′
[0]-tableau T̂′′′,

where

Δ′′′
[0] = {Tγ0, . . . ,Tγi−1,Tγ

�
i+1, . . . ,Tγ

�
n,Fp2n−1,Fp2n}

and |T̂′′′| = |T̂′′|.
Define the substitution s by

s(pj) =

{
pj if j ≤ 2i

pj−2 if j > 2i.

Since

s(θk) =

{
θk if k ≤ i
θk−1 if k > i,

Propositional Logic–Formal Systems 477

we have s(ϕk) = ϕk and s(γk) = γk, when k ≤ i. Also, for
k > i,

s(ϕ�k) = ϕk−1,

s(α�k) = αk−1,

s(β�k) = βk−1,

s(γ�k) = γk−1,

and this implies that s(Δ′′′
[0]) = Δn−1. Thus, by Supplement 8,

T̂ = s◦ T̂′′′ is a closed Δn−1-tableau with |T̂| = |T̂′′′| ≤ |T[0]|. This
completes the proof of the desired lower bound for the number
of nodes.
Observe that there is a constant c such that size(Δn) ≤
cn2 log n for sufficiently large n, by Exercise 12 of Chapter 2.
Therefore, for sufficiently large n, we have size(Δn) ≤ n3,
which in turn implies for every closed Δn-tableau Tn,

size(Tn) ≥ |Tn| ≥ 2n+1 ≥ 2
3
√
size(Δn),

a super-polynomial lower bound on the size of Tn.
(41) Let Δ0 = {Tθ,T((θ → ϕ) ∨ (θ → ψ)),Fϕ,Fψ} and let Δ1 =

{Tθ,T((θ → ϕ) ∨ (θ → ψ)),F(θ ∧ (ϕ ∨ ψ))}, where θ, ϕ, ψ ∈
PLFORM. Show that there is a closed Δ0-tableaux T0(θ, ϕ, ψ)
and a closed Δ1-tableau T1(θ, ϕ, ψ), such that T0(θ, ϕ, ψ) has
seven nodes, T1(θ, ϕ, ψ) has ten nodes, size(T0(θ, ϕ, ψ)) = 13 ·
size(θ)+10·size(ϕ)+10·size(ψ)+15, and size(T1(θ, ϕ, ψ)) =
24 · size(θ) + 15 · size(ϕ) + 15 · size(ψ) + 51.
Solution. The tableaux T0(θ, ϕ, ψ) and T1(θ, ϕ, ψ) are given in
Figures 3.35 and 3.36, respectively.

(42) Let ϕn, γn be the formulas introduced in Exercises 11 and 12 of
Chapter 2.

(a) Prove that for n ≥ 1, there is a closed Δ∗
n-tableau, where

Δ∗
n = {Tϕn,Tγn,Fϕn+1}, that has 10 nodes and size

Θ(n log n).
(b) Prove that for n ≥ 1, there is a closed Δ�

n-tableau, where
Δ�
n = {Tϕn,Tγn,Fp2n−1,Fp2n}, that has seven nodes and

whose size is Θ(n log n).

478 Logical Foundations of Computer Science — Volume 1

Tθ, Fθ, Fϕ, Fψ Tθ, Tϕ, Fϕ, Fψ Tθ, Fθ, Fϕ, Fψ Tθ, Tψ, Fϕ, Fψ

Tθ, T(θ → ϕ), Fϕ, Fψ Tθ, T(θ → ψ), Fϕ, Fψ

Tθ, T((θ → ϕ) ∨ (θ → ψ)), Fϕ, Fψ

���������

���������

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

Fig. 3.35. The tableau T0(θ, ϕ, ψ).

Solution. In the notation of Exercise 41, the desired closed
Δ∗
n-tableau is T1(ϕn, p2n−1, p2n), while the desired closed

Δ�
n-tableau is T0(ϕn, p2n−1, p2n). (The sizes of the formulas

involved are computed in Exercise 11 of Chapter 2.)

The Cut Rule for Tableaux

(43) Make Case 3.2.3.2 of the Construction 3.4.11 more efficient by
considering each binary connective C as a separate case.
Solution. Suppose C is ∨. In the analog of Case 3.2.3.2.1 of
Construction 3.4.11, we have (T0)[0], a strongly closed (Δ0 ∪
{Tα})-tableau, (T0)[1], a strongly closed (Δ0 ∪ {Tβ})-tableau,
and (T1)[0], a strongly closed (Δ1 ∪ {Fα,Fβ})-tableau. Using
the notation introduced in Construction 3.4.11, we notice that
we can define the tableau TT as (T0)[0]. Also, the strongly
closed (Δ0∪{Fα,Tβ})-tableau TFT can be obtained as (T0)[1]�
{Fα}; the strongly closed (Δ1 ∪ {Fα,Fβ})-tableau TFF can be
obtained as (T1)[0]. Now we can define the strongly closed (Δ0∪
Δ1 ∪ {Fα})-tableau TF as TF = cet(TFT, TFF,Δ0 ∪ {Fα},Δ1 ∪
{Fα}, β). Finally, we return cet(TT, TF,Δ0,Δ0 ∪Δ1, α). (Note
that in this case, cet was called recursively only twice instead of
three times.) The remaining cases for the ∨ connective as well
as the cases for the other connectives can be treated similarly.

(44) Let Δ be a set of signed formulas, T be a conservative Δ-tableau
with cut, and let q be a leaf of T. Prove that if a truth assignment

Propositional Logic–Formal Systems 479

Tθ, Fθ, Fϕ, Fψ Tθ, Tϕ, Fϕ, Fψ Tθ, Fθ, Fϕ, Fψ Tθ, Tψ, Fϕ, Fψ

Tθ, T(θ → ϕ), Fϕ, Fψ Tθ, T(θ → ψ), Fϕ, Fψ

Tθ, T((θ → ϕ) ∨ (θ → ψ)), Fϕ, Fψ

Tθ, T((θ → ϕ) ∨ (θ → ψ), F(ϕ ∨ ψ)

Tθ, T((θ → ϕ) ∨ (θ → ψ)), Fθ

Tθ, T((θ → ϕ) ∨ (θ → ψ)), F(θ ∧ (ϕ ∨ θ))

���������

���������

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

���������

Fig. 3.36. The tableau T1(θ, ϕ, ψ).

v satisfies T(q), then it satisfies T(B), where B is the branch that
ends in q.

It follows from Corollaries 2.7.26 and 3.3.35 that if there is a closed
(Δ ∪ {bϕ})-tableau T, then there is a closed (Δ ∪K)-tableau TK for
every constituent K of bϕ. However, without the cut rule, we have
no obvious way of obtaining TK from T. The next exercise shows that
the cut rule can be used to produce TK .

480 Logical Foundations of Computer Science — Volume 1

(45) Let K be a constituent of a signed formula bϕ.

(a) Prove that, using the cut rule, there is an effective way to
obtain a (strongly) closed (Δ∪K)-tableau with cut from a
(strongly) closed (Δ ∪ {bϕ})-tableau with cut.

(b) Show how to obtain a strongly closed (Δ∪K)-tableau (with-
out cut) from a strongly closed (Δ∪{bϕ})-tableau (without
cut), using cut elimination and Part (a).

Solution. For the first part, starting from the (strongly) closed
(Δ ∪ {bϕ})-tableau with cut T, we construct the (strongly)
closed (Δ ∪ K ∪ {bϕ})-tableau with cut T0 = T � K. Let
d(b̄ϕ) = (H0, . . . ,Hn−1). Define the (Δ ∪ K ∪ {b̄ϕ})-tableau
T1 by Dom(T1) = {λ, 0, . . . , n − 1}, T1(λ) = Δ ∪ K ∪ {b̄ϕ}
and T1(i) = Δ ∪ K ∪ Hi for 0 ≤ i ≤ n − 1. By Exercise 104
of Chapter 2, the tableau T1 is strongly closed. By applying
the cut rule, we get the desired tableau TK as (T0, T1;Δ ∪ K)
or as (T1, T0;Δ ∪ K) depending on whether b = T or b = F,
respectively.
For the second part, we start with a strongly closed (Δ∪{bϕ})-
tableau without cut and use the construction of the first part
to obtain a strongly closed (Δ ∪K)-tableau with cut T′. Then,
we apply cut elimination to T′ (which is effective).
We write f = O(g), where f, g : N −→ R if there is a positive
real number c and a natural number n0 such that n ≥ n0 implies
0 ≤ f(n) ≤ cg(n).

(46) For n ≥ 0, let Δ†
n = {Tγ0, . . . ,Tγn,Fϕn+1}, where the for-

mulas γn, ϕn are defined in Exercises 11 and 12 of Chapter 2.

Prove that for each n, there is a closed Δ†
n-tableau with cut T

Δ†
n

having 11 · n+ 1 nodes, such that size(T
Δ†
n
) = O(n3 log n)

Solution. We give a recursive construction of the tableaux T
Δ†
n
.

For n = 0, T
Δ†

0
is the one-node tree labeled by Δ†

0, which is

closed.
Suppose that we have constructed T

Δ†
n
with 11 · n + 1 nodes.

Consider the tableau

T′1 = T1(ϕn+1, p2n+1, p2n+2) � {Tγ0, . . . ,Tγn},
where T1(ϕn+1, p2n+1, p2n+2) uses the notation introduced in

Exercise 41. T′1 is a closed (Δ†
n+1 ∪ {Tϕn+1})-tableau which

Propositional Logic–Formal Systems 481

has 10 nodes and size O(n2 log n). Starting from T
Δ†
n
, we

construct T′
Δ†
n

= T
Δ†
n
� {Tγn+1,Fϕn+2} which is a closed

(Δ†
n+1 ∪ {Fϕn+1})-tableau with the same number of nodes as

T
Δ†
n
. Finally, applying the cut rule for tableaux to the tab-

leaux T′1 and T′
Δ†
n
, we obtain the closed Δ†

n+1-tableau T
Δ†
n+1

=

(T′1, T
′
Δ†
n
;Δ†

n+1) with 11(n + 1) + 1 nodes. It is easy to check

that size(T
Δ†
n+1

) ≤ size(T
Δ†
n
) + Θ(n2 log n), which gives the

desired limitation for the size.
In the next exercise, we illustrate the power of the cut rule by
proving the existence of closed Δn-tableaux with cut having
number of nodes linear in n and size polynomial in n, where
Δn was defined in Exercise 34 of Chapter 2. In other words, by
Exercise 12 of Chapter 2, we prove the existence of closed Δn-
tableaux with cut of size polynomial in the size of Δn. Contrast
this with the super-polynomial lower bound on the number of
nodes for tableaux without cut for the same family of sets that
we have shown in Supplement 40.

(47) Let Δn be as defined in Exercise 34 of Chapter 2. Prove that for
each n ≥ 1, there is a closed Δn-tableau with cut TΔn having
11 · n− 2 nodes, such that size(TΔn) = O(n3 log n).
Solution. Letn≥ 1. Starting fromthe tableauT0(ϕn, p2n−1, p2n)
introduced in Exercise 41 construct the closed (Δn ∪ {Tϕn})-
tableau

T = T0(ϕn, p2n−1, p2n) � {Tγ0, . . . ,Tγn−1}.

T has seven nodes and size O(n2 log n). Starting from the closed

Δ†
n−1-tableau with cut introduced in Exercise 46, we construct

the closed (Δn ∪ {Fϕn})-tableau with cut

T′ = T
Δ†
n−1
� {Tγn,Fp2n−1,Fp2n}

with 11 · n− 10 nodes and size O(n3 log n). A final application
of the cut rule gives the closed Δn-tableau with cut TΔn =
(T, T′;Δn) which has 11 · n− 2 nodes and size O(n3 log n).

482 Logical Foundations of Computer Science — Volume 1

Let Γ be a set of formulas. A Γ-tableau with cut is an unsigned
tableau T that satisfies the following conditions:

• The root of T is labeled by Γ, i.e., T(λ) = Γ.
• If q is an interior node of T, one of the following cases occurs:

(1) There is some set of formulas Γ′ and a formula ϕ with
d(ϕ) = (K0, . . . ,Kn−1) such that T(q) = Γ′ ∪ {ϕ}, q has
n immediate descendants and T(qi) = Γ′∪Ki for 0 ≤ i ≤
n− 1.

(2) The node q has one immediate descendant q0 and T(q0) ⊆
T(q).

(3) There is a formula ϕ and a set of formulas Γ′ such that
q has two immediate descendants, T(q) = Γ′, T(q0) =
Γ′ ∪ {ϕ}, and T(q1) = Γ′ ∪ {(¬ϕ)}.

(48) Let Γ be a set of formulas and let T be a Γ-tableau with cut.
Prove that if v is a truth assignment, then v satisfies Γ if and
only if it satisfies T(B) for some branch B of T.

(49) Let T be a completed Γ-tableau with cut, where Γ is a set of
unsigned formulas. Prove that a truth assignment v satisfies
Γ if and only if there is a branch B of T such that T(B) is a
Hintikka set and

v(p) =

{
T if p ∈ T(B),

F if (¬p) ∈ T(B).

(50) Prove that a set of formulas Γ is unsatisfiable if and only if
there exists a strongly closed Γ-tableau with cut.
Hint. The argument follows similar lines to the argument used
for signed tableaux.

(51) Give a construction that starts with a strongly closed Δ-
tableau with cut T and produces a strongly closed unsigned
u(Δ)-tableau with cut.
Solution. The construction proceeds along the lines of Con-
struction 3.3.47 for tableaux without cut. We need only to
consider the extra step when cut is used at the root, that
is, T(0) = Δ ∪ {Tϕ} and T(1) = Δ ∪ {Fϕ}. By applying
the construction recursively to the tableaux T[0] and T[1], we
obtain the unsigned u(Δ) ∪ {ϕ}-tableau T′0 and the unsigned
u(Δ)∪{(¬ϕ)}-tableau T′1. By applying the cut rule, we return
(T′0, T

′
1; u(Δ)).

Propositional Logic–Formal Systems 483

(52) Give a construction that starts with a strongly closed unsigned
Γ-tableau with cut T and produces a strongly closed signed
s(Γ)-tableau with cut.
Solution. The construction is similar to the construction dis-
cussed in Supplement 26. As in the previous supplement, we
need only to consider the extra step when cut is used at the
root. Suppose that T(0) = Γ∪{ϕ} and T(1) = Γ∪{(¬ϕ)}. We
apply the construction recursively to T[0] and T[1] to obtain
strongly closed tableaux with cut T′0 and T′1. We need to con-
sider two cases based on whether ϕ is a nonnegated or a
negated formula. In the first case, T′0 is an (s(Γ) ∪ {Tϕ})-
tableau and T1 is an (s(Γ) ∪ {Fϕ})-tableau; by applying the
cut rule, we return (T′0, T′1; s(Γ)). In the second case, ϕ = (¬ψ),
T′0 is an (s(Γ)∪{Fψ})-tableau, T′1 is an (s(Γ)∪{Fϕ})-tableau,
and we return ((T′0; s(Γ) ∪ {Tϕ}), T′1; s(Γ)).

(53) Give a construction that starts with a strongly closed unsigned
Γ-tableau with cut T and produces a strongly closed unsigned
Γ-tableau (without cut).
Solution. Begin by applying the construction contained in
Supplement 52 to T to obtained a signed s(Γ)-tableau T0 with
cut. Then, apply Construction 3.4.12 to T0 to obtain a strongly
closed s(Γ)-tableau T1 without cut. An application of Con-
struction 3.3.47 will yield a strongly closed unsigned u(s(Γ))-
tableau T2. Taking into account the fact that u(s(Γ)) = Γ as we
saw in Exercise 96 of Chapter 2, we have obtained the desired
tableau.

Sequent Systems

(54) Give proofs in F seq for the following sequents (where ϕ is an
arbitrary formula):

(a) (ϕ ∧ (¬ϕ))⇒ ∅,
(b) (¬(¬ϕ))⇒ ϕ,
(c) (ϕ ∧ ψ)⇒ ϕ.

Solution. The desired F seq-proofs are as follows:

(1) ϕ⇒ ϕ Axiom
(2) ϕ, (¬ϕ)⇒ (1) and R¬,l
(3) (ϕ ∧ (¬ϕ))⇒ (2) and R∧,l

484 Logical Foundations of Computer Science — Volume 1

(ϕ ∨ α0 ∨ · · · ∨ αn−1)

((¬(¬ϕ)) ∨ α0 ∨ · · · ∨ αn−1)
R¬

(ϕ ∨ α0 ∨ · · · ∨ αn−1)
(ψ ∨ α0 ∨ · · · ∨ αn−1)

((ϕ ∧ ψ) ∨ α0 ∨ · · · ∨ αn−1)
R∧,p

((¬ϕ) ∨ ψ ∨ α0 ∨ · · · ∨ αn−1)

((ϕ → ψ) ∨ α0 ∨ · · · ∨ αn−1)
R→,p

((¬ϕ) ∨ ψ ∨ α0 ∨ · · · ∨ αn−1)
(ϕ ∨ (¬ψ) ∨ α0 ∨ · · · ∨ αn−1)

((ϕ ↔ ψ) ∨ α0 ∨ · · · ∨ αn−1)
R↔,p

(α0 ∨ · · · ∨ αi ∨ αi+1 ∨ · · · ∨ αn−1)

(α0 ∨ · · · ∨ αi+1 ∨ αi ∨ · · · ∨ αn−1)
Rintch

(ϕ0 ∨ · · · ∨ ϕn−1)

(ϕ0 ϕn 1 ψ)
Rthin

((¬ϕ) ∨ α0 ∨ · · · ∨ αn−1)
((¬ψ) ∨ α0 ∨ · · · ∨ αn−1)

((¬(ϕ ∨ ψ)) ∨ α0 ∨ · · · ∨ αn−1)
R∨,n

((¬ϕ) ∨ (¬ψ) ∨ α0 ∨ · · · ∨ αn−1)

((¬(ϕ ∧ ψ)) ∨ α0 ∨ · · · ∨ αn−1)
R∧,n

(ϕ ∨ α0 ∨ · · · ∨ αn−1)
((¬ψ) ∨ α0 ∨ · · · ∨ αn−1)

((¬(ϕ → ψ)) ∨ α0 ∨ · · · ∨ αn−1)
R→,n

((¬ϕ) ∨ (¬ψ) ∨ α0 ∨ · · · ∨ αn−1)
(ϕ ∨ ψ ∨ α0 ∨ · · · ∨ αn−1)

((¬(ϕ ↔ ψ)) ∨ α0 ∨ · · · ∨ αn−1)
R↔,n

(ϕ0 ∨ · · · ∨ ϕn−1 ∨ ϕn−1)

(ϕ0 ∨ · · · ∨ ϕn−1)
Rcont

(ϕ ∨ α0 ∨ · · · ∨ αn−1)
((¬ϕ) ∨ α0 ∨ · · · ∨ αn−1)

(α0 αn 1)
R

mp′
.

Fig. 3.37. Rules of the formal system HG.

(1) ϕ⇒ ϕ Axiom
(2) ⇒ (¬ϕ), ϕ (1) and R¬,r
(3) (¬(¬ϕ))⇒ ϕ (2) and R¬,l

and

(1) ϕ,ψ ⇒ ϕ Axiom
(2) (ϕ ∧ ψ)⇒ ϕ (1) and R∧,l.

(55) Let κ0, κ1 be two sequents. Show that κ1 dominates κ0 if and
only if there is a sequent κ such that κ0 ∪ κ = κ1.
We introduce the formal system HG whose set of objects is
PLFORM, set of axioms is {(ϕ ∨ (¬ϕ)) | ϕ ∈ PLFORM}, and
set of rules is given in Figure 3.37:
In these rules, ϕ,ψ, α0, . . . , αn−1 represent arbitrary formulas,
in Rintch, we assume n ≥ 2 and 0 ≤ i < n − 1, and in
Rcont, Rthin, and Rmp′ , we assume n ≥ 1. The genesis of the

Propositional Logic–Formal Systems 485

rules of HG (except for the last four) is in the set of rules
of the formal system F seq; informally, we replaced sequents
of the form ϕ0, . . . , ϕn−1 ⇒ ψ0, . . . , ψm−1 with the formula
((¬ϕ0) ∨ · · · ∨ (¬ϕn−1) ∨ ψ0 ∨ · · · ∨ ψm−1). Note that there is
no rule R∨,p since such a rule would have the same formula as
both its hypothesis and conclusion. Similarly, a rule R¬,p would
be superfluous. The rules Rintch, Rthin, and Rcont are called
the interchange, thinning, and contraction rules, respectively.
They allow us to derive one formula which represents a sequent
from another formula representing the same sequent (see Sup-
plement 56 below.) Assuming that we can prove the formula
((¬α0) ∨ · · · ∨ (¬αn−1) ∨ ϕ), the rule Rmp′ (which is a variant
of the modus ponens rule Rmp) allows proving ϕ, starting from
formulas α0, . . . , αn−1.

(56) Show that the following structural rule

(ϕ0 ∨ · · · ∨ ϕn−1)
(ψ0 ∨ · · · ∨ ψm−1)

Rstruc
,

where {ϕ0, . . . , ϕn−1} ⊆ {ψ0, . . . , ψm−1}, is a derived rule of
HG.
Solution. The core of the argument consists in showing that if
(ϕ0, . . . , ϕn−1) �Fseq,PLFORM

(ψ0, . . . , ψm−1), then we also have

(ϕ0 ∨ · · · ∨ ϕn−1) �HG (ψ0 ∨ · · · ∨ ψm−1), where Fseq,M is the
formal system introduced in Example 1.8.11. This can be seen
by observing the correspondence between the rules Rintch, Rexp,
and Rcont of Fseq,PLFORM and the rules Rintch, Rthin, and Rcont

of HG (see Example 1.8.15.)
(57) Show that the rule

ϕ, ((¬ϕ) ∨ α0 ∨ · · · ∨ αn−1)

(α0 ∨ · · · ∨ αn−1)
Rmp′′

is a derived rule of the formal system HG.
Hint. Use Rthin and Rmp′ .
We define the mapping

δ : (SPLFORM− (Bool× SV)) −→ Seq(Seq(SPLFORM))

486 Logical Foundations of Computer Science — Volume 1

which is similar to the mapping d introduced in Definition 2.7.24
by the following table:

Signed Formula bα δ(bα)
T(¬ϕ) ((Fϕ))
F(¬ϕ) ((Tϕ))

T(ϕ ∧ ψ) ((Tϕ,Tψ))
F(ϕ ∧ ψ) ((Fϕ), (Fψ))
T(ϕ ∨ ψ) ((Tϕ), (Tψ))
F(ϕ ∨ ψ) ((Fϕ,Fψ))
T(ϕ→ ψ) ((Fϕ), (Tψ))
F(ϕ→ ψ) ((Tϕ,Fψ))
T(ϕ↔ ψ) ((Tϕ,Tψ), (Fϕ,Fψ))
F(ϕ↔ ψ) ((Tϕ,Fψ), (Fϕ,Tψ))

(58) Let bϕ ∈ SPLFORM− (Bool× SV), δ(bϕ) = (k0, . . . , km−1).
Prove that if L = {bjψj | 0 ≤ j ≤ m− 1}, where bjψj occurs in
kj for each j, 0 ≤ j ≤ m− 1 and L does not contain both Tγ
and Fγ for any formula γ, then there is a constituent H of bϕ
such that H = {bjψj | 0 ≤ j ≤ m− 1}.
Solution. The argument is identical to the one of Supple-
ment 105 of Chapter 2.

(59) Show that the first eight rules of the formal system HG have the
following form: for some formulas θ, α0, . . . , αn−1, the conclusion
of the rule is (θ ∨ α0 ∨ · · · ∨ αn−1), while the hypotheses are

(
∨

u(k0) ∨ α0 ∨ · · · ∨ αn−1)

...

(
∨

u(km−1) ∨ α0 ∨ · · · ∨ αn−1),

where δ(s(θ)) = (k0, . . . , km−1). (Here u, s are the functions
introduced on page 267.)
Conversely, if θ is not a literal and does not have the form
(α ∨ ψ), then

(
∨

u(k0) ∨ α0 ∨ · · · ∨ αn−1)

...

(
∨

u(km−1) ∨ α0 ∨ · · · ∨ αn−1)

(θ ∨ α0 · · · ∨ αn−1)

is an instance of one of the first eight rules of HG.

Propositional Logic–Formal Systems 487

(60) Show the soundness of HGΓ; in other words, show that for every
formula ϕ and set of formulas Γ, we have Γ �HG ϕ implies
Γ |= ϕ.
Solution. It is clear that the axioms of HG are tautologies.
Therefore, it suffices to show that every truth assignment that
satisfies the hypotheses of a rule of HG also satisfies its conclu-
sion. For the first eight rules, this can be shown using individual
arguments for each rule. We give here a uniform argument based
on Exercise 59. Let v satisfy

(
∨

u(k0) ∨ α0 ∨ · · · ∨ αn−1)

...

(
∨

u(km−1) ∨ α0 ∨ · · · ∨ αn−1),

where δ(s(θ)) = (k0, . . . , km−1). Denote by Ki the set of for-
mulas that appear in the sequence ki, for 0 ≤ i ≤ m − 1. If v
satisfies any of the formulas αi, then it clearly satisfies the con-
clusion. Otherwise, v must satisfy every disjunction

∨
u(ki) for

0 ≤ i ≤ m − 1, that is, for every i, 0 ≤ i ≤ m − 1, there
is a signed formula biψi ∈ Ki such that v satisfies u(biψi).
By Exercise 97 of Chapter 2, v satisfies biψi. This shows that
the set {biψi | 0 ≤ i ≤ m − 1} does not contain both Tα
and Fα for any α ∈ PLFORM. By Exercise 58 of Chapter 2,

{biψi | 0 ≤ i ≤ m − 1} is a constituent of s(θ) = s(θ) which
allows us to conclude that v satisfies s(θ), and thus, it satisfies θ.
We leave to the reader the argument for the last four rules.

(61) Consider the mapping Λ : SQT −→ P(PLFORM) defined by

Λ(κ) = u(sf(κ))

for every κ ∈ SQT. In other words, we have

Λ(Γ⇒ Γ′) = {(¬ϕ) | ϕ ∈ Γ} ∪ Γ′.

Show, by induction on the definition of proof trees, that for
every proof tree T ∈ PT Fseq,∞ , if T(λ) = κ, then there exist
α0, . . . , αn−1 ∈ Λ(κ) with n > 0 such that

�HG (α0 ∨ · · · ∨ αn−1)

by a proof that does not use the Rmp′ rule.

488 Logical Foundations of Computer Science — Volume 1

Solution. The case when T is a one-node proof tree is straight-
forward. Let T0, . . . , Tn−1 be F seq,∞-proof trees that satisfy the
condition and let ((T0(λ), . . . , Tn−1(λ)), κ) be an instance of a
rule of F seq,∞ for some sequent κ. We intend to show that the
proof tree T = (T0, . . . , Tn−1;κ) also satisfies the condition. If
thinning was not used at the root of T, by Theorem 3.5.10,
there is a signed formula bϕ and a set of signed formulas
Δ such that d(bϕ) = (K0, . . . ,Kn−1), Ti(λ) = sqt(Δ ∪ Ki)
for 0 ≤ i ≤ n − 1 and κ = sqt(Δ ∪ {bϕ}). Observe that
Λ(sqt(Δ ∪ Ki)) = u(Δ) ∪ u(Ki). Let δ(bϕ) = (k0, . . . , kn−1).
Applying the inductive hypothesis and the structural rule,
there are formulas α0, . . . , αm−1 ∈ u(Δ) such that for every
i, 0 ≤ i ≤ n− 1,

�HG (
∨

u(ki) ∨ α0 ∨ · · · ∨ αm−1).

Suppose initially that bϕ has neither of the forms F(α∨ β) and
F(¬α). For θ = u(bϕ), we have, by Exercises 96 of Chapter 2

and 59, δ(s(θ)) = (k0, . . . , km−1), so

�HG (u(bϕ) ∨ α0 ∨ · · · ∨ αm−1)

and the conclusion follows immediately, observing that
Λ(sqt(Δ ∪ {bϕ})) = u(Δ) ∪ u({bϕ}).
If bϕ = F(α ∨ β), then δ(bϕ) = ((Fα,Fβ)), so n = 1 and
k0 = (Fα,Fβ). Thus,

∨
u(k0) = α∨β = u(bϕ), so the inductive

hypothesis and the structural rule give the conclusion immedi-
ately, without applying any rules of HG.
If bϕ = F(¬α), then n = 1 and K0 = {Tα}. Thus,

Λ(T0(λ)) = Λ(sqt(Δ ∪K0)) = Λ(sqt(Δ ∪ {Tα}))
= u(Δ ∪ {Tα}) = u(Δ) ∪ {(¬α)}
= u(Δ ∪ {F(¬α)}) = Λ(sqt(Δ ∪ {F(¬α)}))
= Λ(κ),

so the inductive hypothesis implies the conclusion.
We leave the case when thinning was used at the root to the
reader.

Propositional Logic–Formal Systems 489

(62) Show that if ϕ is a tautology, then �HG ϕ by a proof that does
not use Rmp′ .
Solution. The sequent ⇒ ϕ is valid because ϕ is a tautology.
Therefore, by Theorem 3.5.18, there is an F seq,∞-proof tree T

for ⇒ ϕ. By Supplement 61, we have

�HG (ϕ ∨ · · · ∨ ϕ︸ ︷︷ ︸
n≥1

)

by a proof that does not use Rmp′ . If n > 1, by the structural
rule, we obtain �HG ϕ.

(63) Starting from the F seq,∞-proof tree in Example 3.5.17, use the
technique introduced in Supplement 61 to give a proof in HG of
the formula (((¬α)→ (¬β))→ (β → α)) without using Rmp′ .

(64) Show that for every formula ϕ and set of formulas Γ, if Γ |= ϕ,
then Γ �HG ϕ.
Solution. Since Γ |= ϕ, the sequent Γ⇒ ϕ is valid. Therefore,
by Theorem 3.5.18, there is an F seq,∞-proof tree T for Γ ⇒ ϕ.
Since Λ(Γ ⇒ ϕ) = {(¬α) | α ∈ Γ} ∪ {ϕ}, by Supplement 61,
and possibly an application of the structural rule, we have �HG
((¬α0) ∨ · · · ∨ (¬αn−1) ∨ ϕ) for some α0, . . . , αn−1 ∈ Γ. By n
applications of the derived rule Rmp′′ , we obtain Γ �HG ϕ.

(65) Let Γ be a set of formulas and let Γ-HG be the formal system
obtained from HG by replacing the rule Rmp′ by the rule RΓ-mp

given by

((¬ψ) ∨ α0 ∨ · · · ∨ αn−1)

α0 ∨ · · · ∨ αn−1
,

where ψ ∈ Γ. Prove that Γ |= ϕ if and only if �Γ-HG ϕ. Explain
why the formal system Γ-HG is analytic.

(66) Give a direct (i.e., not using tableaux), syntactic transformation
of a F seq,∞,cut-proof tree for a sequent κ into a F seq,∞-proof tree
for the same sequent.

Natural Deduction

(67) Let γ, δ, β be formulas.

(a) Show that (γ ∨ δ) •�nd (δ ∨ γ).
(b) Show that ((β ∨ γ) ∨ δ) •�nd ((β ∨ δ) ∨ γ).

490 Logical Foundations of Computer Science — Volume 1

((β ∨ δ) ∨ γ) 2

((β ∨ δ) ∨ γ) 1 ((β ∨ δ) ∨ γ)((β ∨ γ) ∨ δ)

((β ∨ δ) ∨ γ) ((β ∨ δ) ∨ γ)���(β ∨ γ) 2

(β ∨ δ)

��β 1

����������

												

��
γ

1

(β ∨ δ)

��δ 2

������

(b) The Natural Deduction Tree Tβ,γ,δ

�������

R∨E

R∨E

R∨Il

R∨Il

R∨Il R∨Ir R∨Ir

(δ ∨ γ) 1

(δ ∨ γ) (δ ∨ γ)(γ ∨ δ)

��
γ

1
��δ 1

�������

�������

(a) The Natural Deduction Tree Tγ,δ

R∨E

R∨Ir R∨Il

Fig. 3.38. The natural deduction trees Tγ,δ and Tβ,γ,δ.

Solution. The required natural deduction trees Tγ,δ and Tβ,γ,δ
are given in Figure 3.38.
A marked lot T ′ = (T,M ′) is at least as marked as a marked lot
T = (T,M) if M ⊆M ′.

(68) Let T = (T,M), T ′ = (T′,M ′) be two natural deduction trees.
Show that if r is a node of T such that T(r) = T′(λ), then one
can effectively find a marked lot T ′′ that is at least as marked
as T ′ such that T [r → T ′′] is a natural deduction tree.
Solution. If r = λ, then T [r → T ′′] = T ′′, so we can take T ′′ =
T ′. We now proceed by induction on the definition of natural

Propositional Logic–Formal Systems 491

deduction trees, specifically on T . The basis step is immediate
from the initial observation. We carry out the inductive step for
the case when T is obtained by the ∨-elimination rule, that is,

T = (T0, Lϕ(T1), Lψ(T2); θ),

where T0(λ) = (ϕ∨ψ), T1(λ) = T2(λ) = θ, and Ti = (Ti,Mi) for
0 ≤ i ≤ 2. The case r = λ is covered by the initial observation;
therefore, we assume that r = ir′, where i ∈ {0, 1, 2}. For i = 0,
T0(r

′) = T(0r′) = T′(λ), so, by the inductive hypothesis, there is
a marked lot T ′′ at least as marked as T ′ such that T0[r′ → T ′′]
is a natural deduction tree and T0[r′ → T ′′](λ) = (ϕ∨ψ). Using
Exercise 102 of Chapter 1, we can write

T [r → T ′′] = (T0[r′ → T ′′], Lϕ(T1), Lψ(T2); θ).

This proves that T [r → T ′′] is a natural deduction tree.
If r = 1r′, then there is a marked lot T ′′′ that is at least as
marked as T ′ such that T1[r′ → T ′′′] is a natural deduction
tree. Let T ′′ = Lϕ(T ′′′). Clearly, T ′′ is at least as marked as T ′′′
and, therefore, it is at least as marked as T ′. Using Exercises 102
and 101 of Chapter 1, we have

T [r → T ′′] = T [1r′ → Lϕ(T ′′′)]

= (T0, Lϕ(T1)[r′ → Lϕ(T ′′′)], Lψ(T2); θ)

= (T0, Lϕ(T1[r′ → T ′′′]), Lψ(T2); θ).

Again, this shows that T [r → T ′′] is a natural deduction tree.
The case when r = 2r′ is similar.
We leave to the reader the remaining inductive steps.
Let NDT′ be the subset of NDT obtained by removing Part 5
of Definition 3.6.7, that is, the ¬-introduction rule.

(69) Show that Supplement 68 remains valid when all the natural
deduction trees mentioned in the statement belong to NDT′.
Let Γ be a set of formulas and let ϕ be a formula. We write
Γ

•�nd′ ϕ if there is a natural deduction tree (T,M) ∈ NDT′ such
that T(λ) = ϕ and UNC(T,M) ⊆ Γ.

(70) Prove that for any set of formulas Γ and formula ϕ we have

Γ
•�ndϕ if and only if Γ

•�nd′ ϕ.

492 Logical Foundations of Computer Science — Volume 1

ϕ 1

�
�

��
(¬ϕ)

1
(¬(¬ϕ))

�
�

�

ϕ

�
�

��
(¬ϕ)

������
(¬(¬ϕ))

�
�

�

(a) (b)

R¬E

Fig. 3.39. Labeled ordered trees T , T̂ .

Solution. It is clear that Γ
•�nd′ ϕ implies Γ

•�ndϕ. To prove
the reverse implication, it suffices to show that for every nat-
ural deduction tree T = (T,M) ∈ NDT there is a natural
deduction tree T ′ = (T′,M ′) ∈ NDT′ such that T(λ) = T′(λ)
and UNC(T ′) ⊆ UNC(T). The argument is by induction
on the definition of NDT. The basis step is trivial. We dis-
cuss the only nontrivial inductive step, namely, where T =
(Lϕ(T0), Lϕ(T1); (¬ϕ)) is obtained by the negation introduction
rule and we can apply the inductive hypothesis to T0 = (T0,M0)
and T1 = (T1,M1) to obtain T ′

0 = (T′0,M ′
0) and T ′

1 = (T′1,M ′
1)

in NDT′, with T′i(λ) = Ti(λ) and UNC(T ′
i) ⊆ UNC(Ti) for

i = 0, 1. Let T be the three node marked lot in NDT′ shown
in Figure 3.39(a). Note that there is only one lot T̂ (shown
in Figure 3.39(b)) that is at least as marked as T but differ-
ent from it. Starting from T ′

0 ∈ NDT′ and using the result
of Exercise 69, we replace successively the leaves labeled ϕ by
either T or T̂ . The resulting sequence of marked lots consists
of elements of NDT′ whose roots have the same label as T ′

0 .
If T ′′

0 is the last member of the sequence, then UNC(T ′′
0) ⊆

(UNC(T ′
0) ∪ {(¬(¬ϕ))}) − {ϕ} ⊆ (UNC(T0) ∪ {(¬(¬ϕ))}) −

{ϕ}. A similar construction, which starts from T ′
1 yields a

member T ′′
1 of NDT′ whose root has the same label as T ′

1
and for which UNC(T ′′

1) ⊆ (UNC(T ′
1) ∪ {(¬(¬ϕ))}) − {ϕ} ⊆

(UNC(T1) ∪ {(¬(¬ϕ))}) − {ϕ}. Let

T ′ = (L(¬(¬ϕ))(T ′′
0), L(¬(¬ϕ))(T ′′

1); (¬ϕ)).

Since T ′ was obtained by R¬E, it is clear that T ′ ∈ NDT′.
Further, its root has the same label as the root of T and we

Propositional Logic–Formal Systems 493

(δ ∨ α)

δ

(T, M)

R∨Il

�
�

�
�

��

Fig. 3.40. The natural deduction tree Ω0((T,M), �γ, δ, α,m, 0).

have

UNC(T ′) = (UNC(T ′′
0)− {(¬(¬ϕ))}) ∪ (UNC(T ′′

1)− {(¬(¬ϕ))})
⊆ (UNC(T0)− {ϕ}) ∪ (UNC(T1)− {ϕ})
= UNC(T).

(71) Give a recursive definition of a partial function Ω0 from the set

NDT × Seq(PLFORM)× PLFORM× PLFORM×N×N

to NDT such that Ω0((T,M), �γ, δ, α,m, i) is defined if and
only if �γ = (γ0, . . . , γm−1), 0 ≤ i ≤ m, UNC(T,M) ⊆
{γ0, . . . , γm−1}, and T(λ) = δ, and, when defined,
Ω0((T,M), �γ, δ, α,m, i) = (T′,M ′), where UNC(T′,M ′) ⊆ {(γ0∨
α), . . . , (γi−1 ∨ α), γi, . . . , γm−1} and T′(λ) = (δ ∨ α).
Solution. For i = 0, let Ω0((T,M), �γ, δ, α,m, 0) be the natural
deduction tree obtained from (T,M) by applying the rule R∨Il
as shown in Figure 3.40. Suppose we have defined

(T′,M ′) = Ω0((T,M), �γ, δ, α,m, i),

where UNC(T′,M ′) ⊆ {(γ0 ∨ α), . . . , (γi−i ∨ α), γi, . . . , γm−1}
and T′(λ) = (δ∨α). Then, Ω0((T,M), �γ, δ, α,m, i+1) is obtained
from (T′,M ′) by applying the rule R∨E a shown in Figure 3.41.

494 Logical Foundations of Computer Science — Volume 1

(δ ∨ α) 1

(δ ∨ α) (δ ∨ α)(γi ∨ α)

����������

����������

R∨E

R∨Ir

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��

Ω0((T, M), �γ, δ, α, m, i)

��α 1

��
γi 1 ��

γi 1
· · · · · · · · ·

Fig. 3.41. The natural deduction tree Ω0((T,M), �γ, δ, α,m, i+ 1).

(72) Using the partial function Ω0 from Supplement 71, give a recur-
sive definition of a partial function Ω1 from the set

NDT× Seq(PLFORM)×PLFORM× Seq(PLFORM)×N×N

to NDT such that Ω1((T,M),�θ, δ, �α,m, n) is defined if and

only if we have �θ = (θ0, . . . , θm−1), �α = (α0, . . . , αn−1),
UNC(T,M) ⊆ {θ0, . . . , θm−1} and T(λ) = δ, (so that

{θ0, . . . , θm−1}
•�nd δ). If defined, Ω1((T,M),�θ, δ, �α,m, n) =

(T′,M ′), where

UNC(T′,M ′) ⊆
{(θ0 ∨ α0 ∨ · · · ∨ αn−1), . . . , (θm−1 ∨ α0 ∨ · · · ∨ αn−1)}

and T′(λ) = (δ ∨α0 ∨ · · · ∨αn−1) (which means that {(θ0 ∨α0 ∨
· · ·∨αn−1), . . . , (θm−1∨α0∨· · ·∨αn−1)}

•�nd (δ∨α0∨· · ·∨αn−1)).
See Figure 3.42.

Propositional Logic–Formal Systems 495

δ (δ ∨ α0 ∨ · · · ∨ αn−1)

θi�
(θi�

∨ α0 ∨ · · · ∨ αn−1)

�
�

�
�

�
�

�
�

�
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

··· ··· ···

Ω1

�

· · ·

Fig. 3.42. Schematic representation of the mapping Ω1.

Solution. Let Ω1((T,M),�θ, δ, �α,m, 0) = (T,M) and let

Ω1((T,M),�θ, δ, �α,m, n+ 1)

= Ω0(Ω1((T,M),�θ, δ, �α′,m, n), �θ′, δ′, αn,m,m),

where

�α′ = (α0, . . . , αn−1),

�θ′ = ((θ0 ∨ α0 ∨ · · · ∨ αn−1), . . . , (θm−1 ∨ α0 ∨ · · · ∨ αn−1)),

δ′ = (δ ∨ α0 ∨ · · · ∨ αn−1).

(73) Prove that

(Γ, ϕ)

(Γ′, ϕ)
,

where Γ,Γ′ are sets of formulas such that Γ ⊆ Γ′ and ϕ is a
formula is a derived rule of the formal system ND.

(74) The formal system ND′ has the same set of objects and set
of axioms as the formal system ND introduced in Defini-
tion 3.6.14. Its set of rules includes the following groups:

496 Logical Foundations of Computer Science — Volume 1

The rules for introducing connective symbols are as follows:

(Γ, ϕ), (Γ, ψ)

(Γ, (ϕ ∧ ψ)) ∧- introduction
(Γ, ϕ)

(Γ, (ϕ ∨ ψ))
(Γ, ψ)

(Γ, (ϕ ∨ ψ)) ∨- introduction
(Γ ∪ {ϕ}, ψ)
(Γ, (ϕ→ ψ))

→- introduction

(Γ ∪ {ϕ}, ψ), (Γ ∪ {ψ}, ϕ)
(Γ, (ϕ↔ ψ))

↔- introduction

(Γ ∪ {ϕ}, ψ), (Γ ∪ {ϕ}, (¬ψ))
(Γ, (¬ϕ)) ¬- introduction

The rules for eliminating connective symbols are as follows:

(Γ, (ϕ ∧ ψ))
(Γ, ϕ)

(Γ, (ϕ ∧ ψ))
(Γ, ψ)

∧- elimination

(Γ, (ϕ ∨ ψ)), (Γ ∪ {ϕ}, α), (Γ ∪ {ψ}, α)
(Γ, α)

∨- elimination

(Γ, ϕ), (Γ, (ϕ→ ψ))

(Γ, ψ)
→ - elimination

(Γ, ϕ), (Γ, (ϕ↔ ψ))

(Γ, ψ)

(Γ, ψ), (Γ, (ϕ↔ ψ))

(Γ, ϕ)
↔- elimination

(Γ ∪ {(¬ϕ)}, ψ), (Γ ∪ {(¬ϕ))}, (¬ψ)
(Γ, ϕ)

¬- elimination

(a) Prove that

(Γ, ϕ)

(Γ′, ϕ)
,

where Γ,Γ′ are sets of formulas such that Γ ⊆ Γ′ and ϕ is
a formula is a derived rule of the formal system ND′.

(b) Prove that the theorems of ND′ and ND are the same.

Translations between Formal Systems

(75) Show the following effective versions of Theorems 3.2.11
and 3.2.12, and Corollary 3.2.13, respectively, for the formal
system HF ′.

Propositional Logic–Formal Systems 497

(a) Suppose that the pair (q, q′) is an (HF ′,Γ)-certificate of
inconsistency. Show how one can construct a proof in HF ′

Γ

of ϕ for every formula ϕ.
(b) Show that if (q, q′) is an (HF ′,Γ ∪ {(¬ϕ)})-certificate of

inconsistency, then it is possible to construct effectively a
proof of ϕ in HF ′

Γ.
(c) Show that one can construct effectively an (HF ′,Γ)-

certificate of inconsistency starting from (HF ′,Γ ∪ {ϕ})-
and (HF ′,Γ ∪ {(¬ϕ)})-certificates of inconsistency.

(76) Show the following effectivized version of Part (e) of Exercise 5.
Let Γ be a set of formulas and let ϕ ∈ Γ. Show that if one is given
(HF ′,Γ ∪ K)-certificates of inconsistency for all constituents
K of ϕ, one can construct effectively an (HF ′,Γ)-certificate of
inconsistency.
Solution. There are nine cases, depending on the form of ϕ. We
will do four cases and leave the rest to the reader. First, suppose
that ϕ = (¬(¬α)) and we are given an (HF ′,Γ∪{α})-certificate
of inconsistency. Since ((¬(¬α)) ∈ Γ, ((¬α), ((¬(¬α)))) is an
(HF ′,Γ ∪ {(¬α)})-certificate of inconsistency, so by Part (c) of
Exercise 75 we can obtain an (HF ′,Γ)-certificate of inconsis-
tency.
Next, suppose that ϕ = (α∧ β) and that (q, q′) is an (HF ′,Γ ∪
{α, β})-certificate of inconsistency. Let r = ((α∧β), ((α∧β)→
α), ((α ∧ β) → β)). Then, (rq, rq′) is an (HF ′,Γ)-certificate of
inconsistency.
Let now ϕ = (¬(α ∧ β)) and suppose that we have (HF ′,Γ ∪
{(¬α)})- and (HF ′,Γ∪{(¬β)})-certificates of inconsistency. By
Part (b) of Exercise 75, we can construct effectively a proof r
in HF ′

Γ of α. The sequence r1 given by

(((¬(α ∧ β))→ (α→ (¬β))), (¬(α ∧ β)), (α→ (¬β))) r (¬β)

is a proof in HF ′
Γ of (¬β). Then, if (q, q′) is an (HF ′,Γ ∪

{(¬β)})-certificate of inconsistency, (r1q, r1q
′) is an (HF ′,Γ)-

certificate of inconsistency.
Finally, suppose that ϕ = (α ∨ β) and that we are given
(HF ′,Γ∪{α})- and (HF ′,Γ∪{β})-certificates of inconsistency.

498 Logical Foundations of Computer Science — Volume 1

Let r be the sequence:

(((α ∨ β)→ ((¬α)→ β)), (α ∨ β), ((¬α)→ β), (¬α), β).

If (q, q′) is an (HF ′,Γ ∪ {β})-certificate¡ of inconsistency, then
(rq, rq′) is an (HF ′,Γ∪{(¬α)})-certificate of inconsistency. By
Part (c) of Exercise 75, we can construct an (HF ′,Γ)-certificate
of inconsistency.

(77) Let Γ be a set of formulas and let ϕ be a formula such that
Γ |= ϕ. Then, Γ ∪ {(¬ϕ)} is unsatisfiable, so there is a strongly
closed Γ ∪ {(¬ϕ)}-tableau T. Show how to construct effectively
a proof in HF ′

Γ of ϕ using T.
Solution. Since T is strongly closed, we have (HF ′, T(q))-
certificates of inconsistency for each of its leaves q. If T is con-
servative, then using Supplement 76 repeatedly, we can con-
struct an (HF ′, T(λ))-certificate of inconsistency, where T(λ) =
Γ ∪ {(¬ϕ)}. By applying Part (b) of Supplement 75, we can
construct effectively a proof of ϕ in HF ′

Γ. The case when T is
not conservative is left to the reader.

(78) Show that there is an effective, syntactic algorithm that trans-
forms an HG-deduction tree T into a natural deduction tree
T̂ = (T̂, M̂) in a way such that for all Γ, if T is an HGΓ-proof
tree for ϕ, then UNC(T̂, M̂) ⊆ Γ and T̂(λ) = ϕ.
Solution. First, suppose that T is a one-node tree. If T(λ) =
(ϕ ∨ (¬ϕ)), for some formula ϕ, then we output the natural
deduction tree shown in Figure 3.17. Otherwise, we output
(T, ∅).
Now suppose that |T| > 1. How the algorithm proceeds depends
on which rule was used to produce the label of the root. We
consider a few representative cases. Suppose that the rule used
to produce the label of the root was R↔p. If the specific instance
of R↔p used at the root was

((¬ϕ) ∨ ψ ∨ α0 ∨ · · · ∨ αn−1)

(ϕ ∨ (¬ψ) ∨ α0 ∨ · · · ∨ αn−1)

((ϕ↔ ψ) ∨ α0 ∨ · · · ∨ αn−1)

let T0 = (T0,M0),T1 = (T1,M1) be the natural deduction trees
that are obtained by applying the algorithm recursively to the

Propositional Logic–Formal Systems 499

(ϕ ↔ ψ) 3

ψ 1 ϕ 2

ψ

��
ϕ 3 ��(¬ϕ)1

��
ϕ 2 ϕ

��ψ 3 ��(¬ψ)2

�
��

R↔I

R∨ER∨E

R¬E R¬E

((¬ϕ) ∨ ψ) ��ψ 1

�
�

��

�������

�
��

�
�

��

�
�

��
(ϕ ∨ (¬ψ))

Fig. 3.43. Natural deduction tree showing {((¬ϕ)∨ψ), (ϕ∨(¬ψ))} •�nd (ϕ↔ ψ).

subtrees T[0], T[1] of the HG-deduction tree T. Then, we have

T0(λ) = ((¬ϕ) ∨ ψ ∨ α0 ∨ · · · ∨ αn−1),

T1(λ) = (ϕ ∨ (¬ψ) ∨ α0 ∨ · · · ∨ αn−1),

and if T is an HGΓ-proof tree, then UNC(T0),UNC(T1) ⊆
Γ. Let T ′ be the natural deduction tree shown in Fig-
ure 3.43 and let T ′′ = Ω1(T ′, (((¬ϕ) ∨ ψ), (ϕ ∨ (¬ψ))), (ϕ ↔
ψ), (α0, . . . , αn−1), 2, n), where Ω1 is the mapping introduced
in Supplement 72. If T ′′ = (T′′,M ′′), then T′′(λ) = ((ϕ ↔
ψ) ∨ α0 ∨ · · · ∨ αn−1) and UNC(T ′′) ⊆ {((¬ϕ) ∨ ψ ∨ α0 ∨ · · · ∨
αn−1), (ϕ ∨ (¬ψ) ∨ α0 ∨ · · · ∨ αn−1)}. Let r be an unmarked
leaf of T ′′ such that T′′(r) = ((¬ϕ) ∨ ψ ∨ α0 ∨ · · · ∨ αn−1) or
T′′(r) = (ϕ ∨ (¬ψ) ∨ α0 ∨ · · · ∨ αn−1). By Supplement 68, we
can find a marked lot Tr that is either at least as marked as T0
or at least as marked as T1 such that T ′′[r → Tr] is a natural
deduction tree. By repeating this process for all the unmarked
leaves of T ′′, we obtain the desired natural deduction tree T̂ .
The arguments for the remaining first eight rules of HG are sim-
ilar to the one presented above. The main difference consists
of the natural deduction tree T ′. For example, the argument

500 Logical Foundations of Computer Science — Volume 1

(¬(ϕ ∧ ψ)) 3

((¬ϕ) ∨ (¬ψ)) (¬(ϕ ∧ ψ)) 1 (¬(ϕ ∧ ψ)) 2

��������

��������

R∨E

ϕ �
��

(¬ϕ)
3

ψ
�

��
(¬ψ)

3

�
�

�

�
�
�

�
�

�

�
�
�

�����
(ϕ ∧ ψ)

1

�����
(ϕ ∧ ψ)

2

R∧El R∧Er

R¬I R¬I

Fig. 3.44. Natural deduction tree showing {((¬ϕ) ∨ (¬ψ))} •�nd (¬(ϕ ∧ ψ)).

for R∧,n makes use of the natural deduction tree shown in Fig-
ure 3.44. We leave providing the necessary details to the reader.

Suppose now that the root of the tree T is produced by using
Rmp′ and let T0 = (T0,M0),T1 = (T1,M1) be the natural
deduction trees that are obtained by applying the algorithm
recursively to the subtrees T[0], T[1] of the HG-deduction tree
T. Then, we have T0(λ) = (ϕ ∨ α0 ∨ · · ·αn−1) and T1(λ) =
((¬ϕ) ∨ α0 ∨ · · · ∨ αn−1) and if T is an HGΓ-proof tree, then
UNC(T0),UNC(T1) ⊆ Γ. Let T ′ be the natural deduction tree
shown in Figure 3.45 and let

T′′ = Ω1(T
′, ((ϕ ∨ α0), ((¬ϕ) ∨ α0)), (α1, . . . , αn−1), 2, n − 1).

If T′′ = (T ′′,M ′′), then T′′(λ) = (α0 ∨ · · ·αn−1) and UNC(T′′) ⊆
{(ϕ ∨ α0 ∨ · · · ∨ αn−1), ((¬ϕ) ∨ α0 ∨ · · · ∨ αn−1)}.
Let r be an unmarked leaf of T ′′ such that T′′(r) = (ϕ∨α0∨· · ·∨
αn−1) or T

′′(r) = ((¬ϕ) ∨ α0 ∨ · · · ∨ αn−1). By Supplement 68,
we can find a marked lot Tr that is either at least as marked as

Propositional Logic–Formal Systems 501

α0 2

α0 1 ��
α0

2
(ϕ ∨ α0)

α0 ���α0
1

���ϕ
2

���(¬ϕ)
1

��������

������

�
�

�

R∨E

R∨E

R¬E�
�

((¬ϕ) ∨ α0)

Fig. 3.45. Natural deduction tree showing {(ϕ ∨ α0), ((¬ϕ) ∨ α0)} •�nd α0.

T0 or at least as marked as T1 such that T ′′[r → Tr] is a natural
deduction tree. By repeating this process for all the unmarked
leaves of T ′′, we obtain the desired natural deduction tree T̂ .
Suppose now that the instance

(α0 ∨ · · · ∨ αi ∨ αi+1 ∨ · · · ∨ αn−1)

(α0 ∨ · · · ∨ αi+1 ∨ αi ∨ · · · ∨ αn−1)

of Rintch was used to produce the label of the root, where i > 0.
Let T0 be the natural deduction tree that results from apply-
ing the algorithm to T[0] and let T ′ = T(α0∨···∨αi−1),αi,αi+1

,
where Tβ,γ,δ is the natural deduction tree introduced in Sup-

plement 67. The natural deduction tree T ′′ = (T′′,M ′′) is given
by

T ′′ = Ω1(T ′, ((α0 ∨ · · · ∨ αi ∨ αi+1)), (α0 ∨ · · · ∨ αi+1 ∨ αi),
(αi+2, . . . , αn−1), 1, n − i− 2).

Then, UNC(T ′′) ⊆ {(α0 ∨ · · · ∨ αi ∨ αi+1 ∨ · · · ∨ αn−1)} and
T′′(λ) = (α0 ∨ · · · ∨ αi+1 ∨ αi ∨ · · · ∨ αn−1). For each unmarked

502 Logical Foundations of Computer Science — Volume 1

leaf r of T ′′, there is a natural deduction tree Tr that is at
least as marked as T0 such that T ′′[r → Tr] is a natural deduc-

tion tree. The natural deduction tree T̂ is obtained by repeated
application of this process. We leave to the reader consideration
of the case when i = 0 which requires redefining T ′ as Tα0,α1 ,
where Tγ,δ was introduced in Supplement 67.

Suppose now that the instance

(α0 ∨ · · · ∨ αn−1 ∨ αn−1)

(α0 ∨ · · · ∨ αn−1)

of Rcont was used to produce the label of the root, where n > 1.
Let T0 be the natural deduction tree that results from applying
the algorithm to T[0] and let T ′ be the natural deduction tree

given in Figure 3.46(b). Then, we can define T̂ = T ′[0 → T0].
The case when n = 1 is similar, but uses the natural deduction
tree T ′ given in Figure 3.46(a). We leave to the reader the final
case when rule Rthin is used to produce the root.

(79) Use Supplements 64 and 78 to give an alternative proof of the
completeness of natural deduction (Theorem 3.6.12).

Resolution

(80) Give an example of an infinite set Γ of formulas in conjunctive
normal form such that CΓ is finite.

(81) If (C0, . . . , Cn) is a resolution proof over C, show that
LIT(Cn) ⊆ LIT(C).
Hint. Use course-of-values induction on n.

(82) Let C be an unsatisfiable set of clauses that does not contain �.
(a) Prove that there are two clauses C,D ∈ C and a literal

such that
 ∈ C and
̄ ∈ D.
(b) Prove that there exists no truth assignment v which falsifies

all clauses of C.
(83) If C,D are two clauses that can be resolved with respect to two

distinct literals
,
′, show that their resolvent with respect to
any literal is a tautologous clause.

(84) Let C be a set of clauses such that no clause in C contains the

literal
̄. Prove that C� ⊆ C �̄; furthermore, C is satisfiable if and
only if C� is satisfiable.

Propositional Logic–Formal Systems 503

(α0 ∨ · · · ∨ αn−2 ∨ αn−1) 1

((α0 ∨ · · · ∨ αn−2 ∨ αn−1) ∨ αn−1)

��������
(α0 ∨ · · · αn−2 ∨ αn−1)

1

(α0 ∨ · · · ∨ αn−2 ∨ αn−1)

���
αn−1

1

�
�

�
�

�
��

�
�

�
�

�
��

R∨E

R∨Ir

(b)

αn−1 1

�����
αn−1

1

�����
αn−1

1

(αn−1 ∨ αn−1)

��������

��������

R∨E

(a)

Fig. 3.46. Natural deduction trees showing (a) {(αn−1 ∨ αn−1)} •�nd αn−1 and

(b) {((α0 ∨ · · · ∨ αn−2 ∨ αn−1) ∨ αn−1)} •�nd (α0 ∨ · · · ∨ αn−2 ∨ αn−1).

Solution. If no clause of C contains
̄, we have

C� = {C − {
̄}|C ∈ C and
 �∈ C}
= {C ∈ C|
 �∈ C},

C �̄ = {C − {
}|C ∈ C}.

Therefore, we have C� ⊆ C �̄. Suppose that C is satisfiable. Since
C� ⊆ C it follows immediately that C� is satisfiable. The converse
follows from Theorem 3.8.26.

(85) Prove that if (C0, . . . , Cn−1) is a resolution proof over a set
of clauses C and
 is a literal such that
 �∈

⋃n−1
i=0 Ci, then

504 Logical Foundations of Computer Science — Volume 1

(C0 ∪ {
}, . . . , Cn−1 ∪ {
}) is also a resolution proof over
C� = {C ∪ {
} | C ∈ C}.

(86) If the unit clause {
} is among the clauses of the set of clauses
C, then prove that C is satisfiable if and only if C� is satisfiable.
Solution. If {
} ∈ C, then � ∈ C �̄, so C �̄ is unsatisfiable. There-
fore, if C is satisfiable, then C� must be satisfiable by Theo-
rem 3.8.26. The same theorem implies that if C� is satisfiable,
then so is C.

We now present an alternative proof of the completeness of resolution
(Theorem 3.8.32) based on the notion of semantic tree. This proof
is simpler than the one in the main text but does not lend itself to
generalizations.

For q ∈ {0, 1}∗, define vq : {p0, . . . , p|q|−1} −→ {T,F} by

vq(pi) =

{
T if q(i) = 1

F if q(i) = 0

for 0 ≤ i ≤ |q| − 1.
Define the semantic lot Tsem by Dom(Tsem) = {0, 1}∗ and

Tsem(q) = vq for q ∈ {0, 1}∗. If q is a prefix of r, then vq ⊆ vr,
so if B is a branch of Tsem, then define vB as

⋃
q∈B vq.

For a set of clauses C, a node q of Tsem is a failure node
for C if for some clause C ∈ C, vq(C) = F and we define
T∗C as the sublot of Tsem having as domain {q ∈ {0, 1}∗ |
no proper prefix of q is a failure node of C}.

(87) Verify that Dom(T∗C) is a tree domain.
(88) Prove that v is a truth assignment if and only if v = vB for some

branch B of the semantic propositional lot Tsem.
(89) Prove that a set of clauses C is satisfiable if and only if there is

a branch B of Tsem that does not contain a failure node for C.
(90) Let C be a set of clauses. Prove that every leaf of T∗C is a failure

node for C.
(91) Let C, C′ be two sets of clauses such that C ⊆ C′. Prove that T∗C′

is a sublot of T∗C .
(92) Let C be a set of clauses and q ∈ {0, 1}∗. Prove that either both

of q0 and q1 are in Dom(T∗C) or neither are. Conclude that every
interior node of T∗C has two immediate descendants.

Propositional Logic–Formal Systems 505

(93) Let C be a set of clauses and let q ∈ {0, 1}∗ with |q| = k be
a node which is not a failure node for C. Prove that if q0 is
a failure node for C, then C contains a clause C such that the
propositional variable pk ∈ C and vq(C − {pk}) = F. Similarly,
if q1 is a failure node for C, then C contains a clause C such
that (¬pk) ∈ C and vq(C − {(¬pk)}) = F.

(94) Let C be an unsatisfiable set of clauses. Prove that T∗C does not
contain an infinite branch. Conclude by König’s Lemma that
T∗C is finite.

In the following supplement, we reprove the completeness theorem
for propositional resolution using the semantic tree. This approach
will be useful in Chapter 5 in the study of a technique known as
paramodulation.

(95) Prove that if C is an unsatisfiable set of clauses, then � ∈
Res∗(C).
Solution. Note that by Exercise 94, T∗C is finite, so we can prove
the result by induction on |T∗C |.
For the basis step, |T∗C | = 1, we must have � ∈ C, so the result
is immediate.
For the inductive step, suppose that |T∗C | > 1 and the result
is true for all unsatisfiable set of clauses C′ with |T∗C′ | < |T∗C |.
Since |T∗C | > 1, there is node q of T∗C with depth(T∗C)(q) = 1, say
|q| = k. By Exercise 92, q has two children in T∗C which are both
failure nodes for C by Exercise 90. By Exercise 93, C contains
a clause C0 such that pk ∈ C0 and vq(C0 − {pk}) = F and a
clause C1 such that (¬pk) ∈ C1 and vq(C1 − {(¬pk)}) = F.
Then, R = (C0−{pk})∪ (C1−{(¬pk)}) is a resolvent of C0 and
C1 and vq(R) = F. Thus, q is a failure node of C ∪ {R}. Hence,
q0, q1 �∈ Dom(T∗C∪{R}), so by Exercise 91, |T∗C∪{R}| < |T∗C |. By
inductive hypothesis, we have � ∈ Res∗(C ∪ {R}) = Res∗(C).

Variations of Resolution

(96) Show that Corollary 3.9.3 is a consequence of Corollary 3.9.22.
(97) Prove that if D is a set-of-support for a finite unsatisfiable set

of clauses C and D ⊆ E ⊆ C, then E is also a set of support
for C.

506 Logical Foundations of Computer Science — Volume 1

Prove also that, if C is a finite set of clauses, then every set-of-
support D contains a minimal set-of-support D0.

Cutting Planes

(98) Let CP ′ be the formal system obtained from CP by removing
the multiplication rule. Prove that if A > 0 and

{z0 ≥ A} �CP ′
∑

aizi ≥ B,
then B > 0. Conclude that {z0 ≥ 1} � �CP ′ 0 ≥ 0, although
{z0 ≥ 1} �CP 0 ≥ 0.

(99) Give an example of two nontautologous clauses C0, C1 and a
nontautologous resolvent R of C0, C1 such that {IC0 , IC1} �|≡ IR.
Conclude from the soundness of CP that {IC0} ∪ {IC1} ��CP IR
and therefore, the statement obtained from Lemma 3.10.22 by
replacing I{Ci} with {ICi} for i = 0, 1 would be false.
Hint. One possibility is C0 = {p0,¬p1,¬p2} and C1 =
{¬p0,¬p1, p3}.

3.12 Bibliographical Comments

Tableaux were introduced by Beth [2] and applied by Raymond
Smullyan [36].

The sequent system was introduced by Gentzen in [15]. The natu-
ral deduction system was introduced in [16]. Both papers are included
in [38].

The cut rule and cut elimination were introduced by Gentzen
in [16].

Statman [37] showed that proofs without the cut rule may have to
be super-polynomially larger than proofs with this rule. Our proof,
contained in Supplements 40 and 47 is a reworking of the proof in
Buss [5] in terms of tableaux.

Propositional resolution was introduced by Davis and Putnam
in [10].

Cutting planes originate in operations research. Their use in refu-
tation propositional logic is based on the idea that unsatisfiable
propositional logic formulas in conjunctive normal form are recog-
nized by showing the non-existence of Boolean solutions to associated
families of linear inequalities. This approach was proposed in [24] and
further developed in [6, 7].

Bibliography

[1] Beth, E. W. (1953). Some consequences of the theorem of Lövenheim-
Skolem-Gödel-Malcev, Indag. Math. 15, pp. 66–71.

[2] Beth, E. W. (1955). Semantic entailment and formal derivabil-
ity, Mededelingen van de Koninklijke Nederlandse Akademie van
Wetenschappen, Afdeling Letterkunde 18, pp. 309–342.

[3] Blum, N. (1984). A Boolean function requiring 3n network size,
Theoretical Computer Science 28, pp. 337–345.

[4] Boppana, R. B. and Sipser, M. (1994). The complexity of finite func-
tions, in J. van Leeuwen (ed.), Handbook of Theoretical Computer
Science – Volume A: Algorithms and Complexity (Elsevier,
Amsterdam), pp. 759–804.

[5] Buss, S. (1988). Weak formal systems and connections to computa-
tional complexity, Lecture Notes for a Topics Course, University of
California, Berkeley.

[6] Buss, S. R. and Clote, P. (1996). Cutting planes, connectivity, and
threshold logic, Archive for Mathematical Logic 35, 1, pp. 33–62.

[7] Clote, P. (1995). Cutting plane and Frege proofs, Information and
Computation 121, 1, pp. 103–122.

[8] Cohn, P. M. (1981). Universal Algebra (D. Reidel, Dordrecht).
[9] Craig, W. (1957). Three uses of the Herbrand-Gentzen theorem in

relating model theory and proof theory, Journal of Symbolic Logic
22, pp. 269–285.

[10] Davis, M. and Putnam, H. (1960). A computing procedure for quan-
tification theory, Journal of the ACM 7, pp. 201–215.

[11] Dowling, W. F. and Gallier, J. H. (1984). Linear-time algorithms for
testing the satisfiability of propositional horn formulae, Journal of
Logic Programming 1, pp. 267–284.

507

508 Logical Foundations of Computer Science — Volume 1

[12] McCluskey, Jr. E. J. (1956). Minimization of Boolean functions, Bell
System Technical Journal 35, pp. 1417–1444.

[13] Fejer, P. A. and Simovici, D. A. (1991). Mathematical Founda-
tions of Computer Science. Volume I: Sets, Relations, and Induction
(Springer, New York).

[14] Frege, F. L. G. (1884). Die Grundlagen der Arithmetik: eine logisch
mathematische Untersuchung über den Begriff der Zahl (W. Koebner,
Breslau).

[15] Gentzen, G. (1932). Über die existenz unabhängiger axiomensys-
teme zu unedlichen satzsystemen, Mathematische Annalen 107,
pp. 329–350.

[16] Gentzen, G. (1935). Untersuchungen über das logische schliessen,
Mathematische Zeitschrift 39, pp. 176–210, 405–431.

[17] Gorn, S. (1965). Explicit definitions and linguistic dominoes, in
J. Hart and S. Takasu (eds.), Systems and Computer Science
(University of Toronto Press, Toronto), pp. 77–115.

[18] Gray, F. (1953). Pulse code communication, US Patent 2,632,058.
[19] Hilbert, D. (1923). Die logischen Grundlagen der Mathematik, Math-

ematische Annalen 88, pp. 151–165.
[20] Hilbert, D. (1934). Grundlagen der Mathematik, Vol. 1 (Springer,

Berlin).
[21] Hilbert, D. (1939). Grundlagen der Mathematik, Vol. 2 (Springer,

Berlin).
[22] Hilbert, D. and Ackermann, W. (1928). Grundzüge der theoretischen

Logik (Springer, Berlin).
[23] Hintikka, J. (1955). Form and content in quantification theory, Acta

Philosophica Fennica 8, pp. 7–55.
[24] Hooker, J. N. (1988). Generalized resolution and cutting planes,

Annals of Operations Research 12, pp. 217–239.
[25] Horn, A. (1951). On sentences which are true of direct unions of

algebras, Journal of Symbolic Logic 16, pp. 14–21.
[26] Karnaugh, M. (1953). The map method for synthesis of combinational

logic circuits, Communications and Electronics, pp. 593–599.
[27] Knuth, D. E. (1973). The Art of Computer Programming —

Fundamental Algorithms, Vol. 1 (Addison–Wesley, Reading, MA).
[28] Lupanov, O. B. (1958). A method of circuit synthesis, Izv. VUZ

Radiofiz. 1, pp. 120–140, (In Russian).
[29] de Bruijn, N. G. and Erdös, P. (1951). A colour problem for infinite

graphs and a problem in the theory of relations, Indag. Math. 54, pp.
371–373.

[30] Post, E. L. (1941). The Two-Valued Iterative Systems of Mathemati-
cal Logic, Annals of mathematics studies (Princeton University Press,
Princeton).

Bibliography 509

[31] Quine, W. V. O. (1952). The problem of simplifying truth functions,
American Mathematical Monthly 59, pp. 521–531.

[32] Quine, W. V. O. (1955). A way to simplify truth functions, American
Mathematical Monthly 62, pp. 627–631.

[33] Riordan, J. and Shannon, C. (1942). The number of two-terminal
series-parallel networks, Journal of Mathematics and Physics 21,
pp. 83–93.

[34] Shannon, C. (1949). The synthesis of two-terminal switching circuits,
Bell System Technical Journal 28, pp. 59–98.

[35] Smullyan, R. M. (1961). Theory of Formal Systems (Princeton
University Press, Princeton).

[36] Smullyan, R. M. (1995). First-Order Logic (Dover Publications,
New York).

[37] Statman, G. R. (1978). Bounds for proof-search and speed-up in the
predicate calculus, Annals of Mathematical Logic 15, pp. 225–287.

[38] Szabo, M. E. (1969). The collected papers of Gerhard Gentzen,
(North-Holland, Amsterdam).

[39] Vollmer, H. (1999). Introduction to Circuit Complexity – A Uniform
Approach (Springer, Berlin).

[40] Wegener, I. (1987). The Complexity of Boolean Functions (John
Wiley & Sons, Chichester).

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

List of Notations

Lθ(T) marked lot obtained from T by adding to the marked leaves
all leaves labeled with θ, 3
(T0, . . . , Tn−1; θ) lot obtained by joining the roots of T0, . . . , Tn−1 with
a new root labeled θ, 3
ā alternative notation for f¬(a), 4
Bool the set of truth values, 4
� empty clause, 4
C(t) the set of constant symbols that occur in the term t, 4
CS,V (t) the set of constant symbols of S that occur in the term t, 4
C,D, E sets of clauses, 4
FG formal system obtained from F by adding G to the axioms of
F , 4
FL principal filter generated by L, 4
F seq,cut the formal system obtained from F seq by adding the cut
rule, 5
F seq,∞,cut the formal system obtained from F seq,∞ by adding the cut
rule, 5
F seq,cons,cut the formal system obtained from F seq,cons by adding the
cut rule, 5
F seq,∞,cons,cut the formal system obtained from F seq,∞,cons by adding
the cut rule, 5
IC set of inequalities determined by the set of clauses C, 5
PREF(q) the set of all prefixes of the sequence q, 5
K℘ the circuit obtained from the circuit K by rearranging the inputs
according to ℘, 7
Kϕ,m the formula circuit corresponding to the formula ϕ, 19

511

512 Logical Foundations of Computer Science — Volume 1

Kv subcircuit of the circuit K determined by the vertex v, 19
T [r → T ′] marked lot obtained by inserting T ′ in T at r, 20
CIRCn

F (f) the set of all (F,m)-circuits with fan-out less or equal to
n that compute f , 20
CIRCF (f) the collection of all circuits that compute the function
f , 20
COMB∞

F combinational complexity with arbitrary fan-out, 20
COMBnF combinational complexity with fan-out n, 20
SCTCONS the set of conservative strongly closed T(λ)-tableaux T,
21
DELAYF delay complexity over a set F , 21
delay(K) delay of the circuit K, 21
δ(q, r) the distance between the sequences q and r, 21
Δ(q, r) the set of positions on which q and r differ, 21
Δ(T) disagreement set of the set of terms T , 22
depth(v) depth of the vertex v of a circuit, 24
depth(D) depth of the finite tree domain D, 26
depth(D)(r) the depth of the node r in the tree domain D, 28
DIS(T) disagreement position of a finite set of terms, 32
DIS(t, u) disagreement position of t and u, 33
DT F , 34
fi(G,�) the fan-in of K, 45
fmaj majority truth function, 45
Fnd axiom-free system for natural deduction, 46
ϕ ≡ ψ ϕ logically equivalent to ψ, 47
ϕ |= ψ ψ is a logical consequence of ϕ, 48
ϕ,ψ, θ, α, β, γ formulas of propositional logic, 50
fo(K) the fan-out of circuit K, 54
FREShyper hyperesolution formal system, 54
FRESneg negative resolution formal system, 55
FRESpos positive resolution formal system, 59
FRES resolution formal system, 59
s
x0···xn−1
r0···rn−1 finite substitution s on a set X such that s(xi) = ri for
0 ≤ i ≤ n− 1 and s(x) = (x) for x ∈ X − {x0, . . . , xn−1}, 59
FIL(M) the collection of all filters on a set M , 74
F tabl the tableau formal system of finite sets of propositional signed
formulas, 74
F tabl,cons the conservative tableau formal system of finite sets of
propositional signed formulas, 75

List of Notations 513

F tabl,cons,cut the tableau formal system with cut of sets of signed
propositional formulas, 95
F tabl,cut the formal system obtained from F tabl,cons,cut by adding the
thinning rule, 102
F tabl,∞ the tableau formal system of finite sets of propositional
signed formulas, 102
F tabl,∞,cons the tableau formal system of sets of propositional signed
formulas, 102
F tabl,∞,cons,cut the formal system obtained from F tabl,∞,cons by
adding the cut rule, 103
Γ |= ϕ logical implication of a formula by a set of formulas, 104

Γ
•�ndϕ ϕ is nd-derivable from Γ, 107

Γ
•�nd′ ϕ ϕ is nd′-derivable from Γ, 107

GDT F the set of general deduction trees in the formal system F ,
107
qv sequence over Bool ∪ {−} representing the partial truth assign-
ment v, 107
GTERMS the set of ground terms of signature S, 107
HF Hilbert/Frege-style system for propositional logic, 110
IMPL(ϕ) set of implicants of a formula ϕ, 110
�F θ θ is a theorem of F , 112
ISeq(D) the set of infinite sequences over D, 112
κ = (Γ,Γ′) sequent, 112
κ0 ∪ κ1 the union of the sequents κ0, κ1, 113
LIT(μ) the set of literals of a minterm μ, 120
MAXTRM(S) the set of maxterms over S, 123
MINTRM(S) the set of minterms over S, 129
|= ϕ denotes that ϕ is a tautology, 129
MINPTAb(ϕ) the set of all minimal elements of PTAb(ϕ), 129
μS minterm determined by S, 129
μT projection of the minterm μ on T , 129
nd(n) the number of nondegenerate n-ary truth functions, 129
NDT the set of natural deduction trees, 129
NT(C) nontautologous clauses of a set of clauses C, 129
NTRes(C) C augmented by the nontautologous resolvents of clauses
of C, 129
ν arity function of a signature, 134
νS maxterm determined by S, 136

514 Logical Foundations of Computer Science — Volume 1

OCCr(q) set of all occurrences of a sequence r in a sequence q, 147
ϕ complement of formula ϕ, 148
πni projection, 148
PLFORMF set of F -formulas of propositional logic, 159
PMAXTRM(S) the set of partial maxterms over S, 186
PMINTRM(S) the set of partial minterms over S, 186
POLTERMS(V) set of terms in Polish notation of signature S over
the set of variables V , 186
pref(q, i) the prefix of length i of the sequence q, 186
PROJ Set of all projections over Bool, 186
PT F the set of proof trees in the formal system F, 186
PTAb(ϕ) the set of partial truth assignments of ϕ whose extensions
to SV (ϕ) satisfy bϕ, 186
PTAS the set of partial truth assignments defined on a subset of S,
186
PTAϕ the set of partial truth assignments defined on a subset of
SV (ϕ), 187
PTA+

S the set of partial truth assignments defined on a nonempty
subset of S, 187
Res(C) C augmented by the set of resolvents of C, 187
Res∗(C) resolution closure of C, 193
SCT the set of strongly closed T(λ)-tableaux T, 193
SCTCUT the set of tableaux which are strongly closed Δ-tableaux
with cut for some set Δ, 194
Seq(D) the set of finite sequences over D, 194
Seqn(D) the set of sequences of length n over D, 194
Seq≤n(D) the set of sequences of length less than or equal to n over
D, 195
sf(κ) the set of signed formulas that corresponds to a sequent κ, 195
size(ϕ) size of the formula ϕ, 195
size(bϕ) size of the signed formula bϕ, 197
sqt(Δ) the sequent that corresponds to a set of signed formulas Δ,
197
SUBT(t) the set of subterms of a term t, 197
SUFF(q) the set of all suffixes of the sequence q, 198
suff(q, i) the suffix of length i of the sequence q, 198
SV (C) set of statement variables in clauses of C, 198
SV (ϕ) set of variables occurring in ϕ, 199
SV (C) set of statement variables in clause C, 199

List of Notations 515

TA the set of truth assignments, 209

τ fS truth table defined by the truth function f and the set S, 213
τϕ,S truth table of ϕ over S, 213
τϕ truth table of formula ϕ ∈ PLFORM, 214
TERMS(V) set of terms of signature S over the set of variables V ,
217
TF the set of truth functions having at least one argument, 224
TF∗ the set of truth functions, 227
TFn the set of truth functions of n arguments, 237
ΘK(v) the function computed by the circuit K at the vertex v, 237
D(bϕ) collection of constituents of the signed formula bϕ ∈
SPLFORMF , 237
d(bϕ) sequence of constituents of the signed formula bϕ ∈
SPLFORMF , 237
S signature, 238
T−̇bϕ tableau obtained from T by removing bϕ from nodes without
bϕ-introducing ancestors, 238
T(P) the set of signed formulas that occur in the path P of the tableau
T, 239̂̂
F the extended clone generated by the set F of truth functions, 243
VS,V (t) set of variables of V that occur in the term t, 244

�a
�b for ab00 ∧ · · ·∧ an−1

bn−1 , 244

F̂ the clone generated by the set F of truth functions, 245
A ≡m B m-equivalence of the sets A and B, 245
A ≤m B A is many-one reducible to B, 246
ab alternative notation for a↔ b, 249
C,D,E clauses, 258
cmF , m-ary constant function equal to F, 268
cmT , m-ary constant function equal to T, 302
Dn the set of sequences of length n over D, 303
D≤n the set of sequences of length less than or equal to n over D,
308
F (f) the set of all sequences (b0, . . . , bn−1) in Booln such that
f(b0, . . . , bn−1) = F, 308
f(g0, . . . , gm−1) composition of f, g0, . . . , gm−1, 308
f = Ω(g) f grows no slower than g, 308
f = Θ(g) f grows as fast as g, 309
f = O(g) f grows no faster than g, 310

516 Logical Foundations of Computer Science — Volume 1

fd the dual of the truth function f , 312
FS0 set of constant symbols of a signature, 313
FSn the set of n-ary function symbols of signature S, 313
f⊥ 0-ary truth function with f⊥() = F, 313
fK function computed by the single-output circuit K, 326
fτ the truth function f defined by a truth table τ , 339
f� 0-ary truth function with f�() = T, 340

f�b the n-ary minterm function generated by �b ∈ Booln, 352
fi,ω the trace of the truth function fi on the set DAi,ω, 352
G �F θ θ is a theorem of FG, 360
g℘ the ℘-conjugate of the truth function g, 360
g�b n-ary maxterm function generated by �b ∈ Booln, 360

g�b(x0, . . . , xn−1) n-ary maxterm function generated by �b ∈ Booln,
360
Kv(ϕ) set of signed formulas assigned to a partial truth assignment
and a formula, 368
Ln(ϕ) n-th implicant layer of formula ϕ, 368
LZ set of literal conjuncts that appear in every minterm of Z, 369
p.q, r statement variables, 369
r(v) rank of a partial truth assignment v, 376
S[r] quotient of the set of sequences S by the sequence r, 376
SS′ concatenation of the sets of sequences S, S′, 376
T (f) the set of all sequences (b0, . . . , bn−1) in Booln such that
f(b0, . . . , bn−1) = T, 377
U(Γ) the set of proper subformulas or negated proper subformulas
of formulas of Γ ⊆ PLFORM, 377
V (t) the set of variables that occur in the term t, 377
v�a,S partial truth assignment determined by the sequence �v and the
set S of statement variables, 389
ZT the set of projections on minterms in Z on T , 389
LIN set of non-0-ary linear truth functions, 389
LIN ∗ set of all linear truth functions, 389
LINn set of linear truth functions having n arguments, 392
MON set of non-0-ary monotonic truth functions, 393
MON ∗ set of all monotonic truth functions, 396
MON n set of monotonic truth functions having n arguments, 397
SD set of non-0-ary self-dual truth functions, 418
LIT(C) set of literals which appear in some clause of C, 419

List of Notations 517

SD∗ set of all self-dual truth functions, 419
SDn set of self-dual truth functions having n arguments, 419
SQT set of all sequents, 419
SQTfin set of all finite sequents, 419
νvmaxterm determined by the partial truth assignment v, 419
PRSUBF(Γ) the set of proper subformulas of formulas of Γ ⊆
PLFORM, 422
SUBF(Γ) the set of subformulas of formulas of Γ, 423
S′
 S signature S′ extended by signature S, 425
T � κ generalized deduction tree obtained from T by adding a new
root labelled by T(λ) ∪ {κ}, 435
T � Δ tableau obtained from T by adding a new root labelled by
T(λ) ∪Δ, 435
INTN(D) the set of interior nodes of the tree domain D, 439
ι(S,V) the identity (S, V)-substitution, 439
LEAVES(D) the set of leaves of the tree domain D, 452
μv minterm determined by the partial truth assignment v, 455
PRSUBF(ϕ) the set of proper subformulas of a formula ϕ, 464
SUBF(ϕ) the set of subformulas of a formula ϕ, 480
T[r → T′], 491

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

List of Results

Agreement Theorem for Propositional Logic, 118
Algorithm for Deciding the Satisfiability of Horn Formulas, 168
Compactness Theorem for Sequents, 384
Compactness Theorem for Signed Formulas of Propositional Logic,
359
Completeness of F seq,∞,F seq,cons,F seq, 383
Completeness Theorem for Natural Deduction, 401
Completeness Theorem for Tableaux of Propositional Logic, 355
Completeness Theorem of F seq,∞,cons,cut,F seq,∞,cut,F seq,cons,cut and
F seq,cut, 390
Completeness Theorem of F seq,∞,cons, 383
Completeness Theorem of HFΓ, 334
Cut Elimination Theorem for Sequents, 392
Deduction Theorem for HF , 328
Full Conjunctive Normal Form Theorem, 200
Full Disjunctive Normal Form Theorem, 200
König’s Lemma, 45
Occurrence Theorem for Terms, 28
Quine-McCluskey Algorithm for constructing IMPL(ϕ), 138
Quine-McCluskey Tabular Algorithm, 141
Soundness and Completeness of F tabl and F tabl,cons, 353
Soundness and Completeness of F tabl,∞, 360
Soundness and Strong Completeness Corollary for Tableaux with
Cut, 368
Soundness Theorem for Natural Deduction, 399
Soundness Theorem for Tableaux of Propositional Logic, 346

519

520 Logical Foundations of Computer Science — Volume 1

Soundness Theorem of F seq,F seq,cons,F seq,∞,cons, 382
Soundness Theorem of F seq,cut,F seq,cons,cut,F seq,∞,cons,cut, 390
Soundness Theorem of F seq,∞,cut, 390
Soundness Theorem of F seq,∞, 382
Soundness Theorem of HFΓ, 328
Soundness Theorem of Cutting Planes, 457
Strong Completeness Theorem for Tableaux of Propositional Logic,
358
Unification Algorithm, 37

Index

A

algebraic completeness of a set of
truth functions, 234

analytical syntactic proof method,
325

analyticity of constituents of formulas
of propositional logic, 175

ancestor of a node, 44

antecedent of a sequent, 376

arithmetic assignment, 454

arithmetic assignment representing a
truth assignment, 454

arithmetic implication of an
inequality by a set of inequalities,
454

arithmetic variable, 453

arity function of a signature, 20

assignment falsifying a clause, 419

assignment satisfying a clause, 419

assignment satisfying a set of clauses,
419

axioms of a formal system, 53

B

bϕ-introducing node of a tableau,
463

base for a topology, 280

binary truth function, 110

branch of a tree domain, 45

C

(C, k)-based input resolution proof,
445

℘-conjugate of a truth function, 214
κ-closed subsets of a set, 14
C-based linear resolution proof of a

clause, 440
C-elimination rules for natural

deduction, 393
C-introduction rules for natural

deduction, 393
C-left rule of the formal system

Fseq,∞, 378
C-right rule of the formal system

Fseq,∞, 378
cancelled leaves of an Fnd-deduction

tree, 396
carrier of a substitution, 6
center clause of a step in a linear

resolution proof, 440
certificate of inconsistency, 331
clause in propositional logic,

418
clause set associated with a formula

of propositional logic in CNF,
420

clone generated by the set F of truth
functions, 217

clone of truth functions, 214
closed branch of a tableau, 339

521

522 Logical Foundations of Computer Science — Volume 1

closed node of a tableau, 339
closed set of formulas, 118
closed set of signed formulas, 124
closed sets of a topological space, 73
closed tableau, 340
closure operator, 13
closure system, 13
closure system on a set, 13
cofinite subset of a set, 74
combinational complexity with

arbitrary fan-out, 244
combinational complexity with

fan-out n, 244
comparator circuit, 241
complement of a formula, 102
complete branch of a tableau, 340
complete set of connectives, 230
complete set of non-0-ary truth

functions, 217
complete set of truth functions, 225
completed tableau, 340
completeness of a formal system, 64
composition of truth functions, 187
composition of substitutions, 9
concatenation of finite sequences, 4
concatenation of two sets of

sequences, 4
conclusion of an Fnd-deduction tree,

393
conclusion of an instance of a rule of

inference, 53
conjugate of a truth function, 214
conjunct of a formula in conjunctive

normal form, 130
conjunction of a sequence of formulas,

109
conjunction of two formulas, 101
conjunctive normal form for a

formula, 167
conjunctive normal form of a truth

function, 200
conjuncts of a conjunction, 109
connective rule for sequents, 378
connective symbol, 100
connective symbols indexing a set of

truth functions, 227

consistency property, 181
consistency property of signed

formulas, 301
consistent set of formulas, 329

constant symbols of a signature, 20
constant-free circuit, 237
constituent, 176
constituent of a formula in

SPLFORMF , 317
constituent of a sequent, 384
constituent of a signed formula, 184

constituent of a signed formula from
SPLFORMF , 313

constituent sequence, 176
constituent sequence of a signed

formula, 184
constituent set, 176, 184
contraction rule in the formal system

Fseq,M , 57
contradiction of propositional logic,

112

cover of a formula, 139
cut rule, 365
cut rule for sequents, 389
cut rule for tableaux, 368

D

deduction tree in F , 59
degenerate composition, 223
delay complexity over a set F , 245
delay of a circuit, 237

depth of a node of a tree domain, 47
depth of a tree domain, 45
depth of a vertex, 237

derived rule, 64
descendant of a node, 44
disagreement position of a finite set

of terms, 33

disagreement position of two terms,
32

disagreement set, 34

disjunct of a formula in disjunctive
normal form, 130

disjunction of a sequence of formulas,
109

Index 523

disjunction of two formulas, 101
disjunctive normal form for a

formula, 132
disjunctive normal form of a truth

function, 200
disjuncts of a disjunction, 109
domination relation on a set of

minterms, 134
downward closed property of

collections of sets, 12
downward closed set of formulas, 177
dual of a truth function, 193

E

edges of a graph, 127
effective enumeration of a set, 16
effectively specified formal system, 65
entries of a finite sequence, 3
equivalent formal systems, 54
essential prime implicant of a

formula, 141
expanded signed formula removed at

a node of a tableau, 341
expanded signed formula retained at

a node of a tableau, 341
expansion rule in the formal system

Fseq,M , 57
extended clone, 223
extended clone generated by a set of

truth functions, 224
extension of a formal system, 54
extension of a signature, 22
extension of a tree domain, 51

F

(F,D)-computation, 235
(F,m)-circuit with � outputs, 236
F -circuit, 237
F -circuit complexity of a family of

truth functions, 264
F -closed subset of a set, 13
F -formulas of propositional logic, 227
F-deduction tree, 59
F-deduction tree of an object, 60
F-proof tree, 59

F-proof tree of an object, 60

F-downward closed set of formulas,
297

fB trace of the truth function f on
the set B, 206

F-upward closed set of formulas, 297

F -signature of propositional logic, 227

F -substitution, 229

family of truth functions, 264

fan-in of a (F,m)-circuit, 237

fan-out n, F -optimal circuit for a
truth function, 244

fan-out of an (F,m)-circuit, 237

filter, 74

finished Fseq-deduction tree, 384

finished Fseq,∞,cut-deduction tree,
391

finished branch of a general
Fseq,∞-deduction tree, 384

finite (S, S′, V)-unifier for a signature
reduct, 30

finite intersection property, 74

finite sequent, 376

finite substitution, 7

finite-to-one function, 8

finitely branching tree domain, 45

finitely satisfiable set of formulas, 126

first Lupanov decomposition of a
truth function, 207

formal sum, 453

formal system, 53

formula circuit, 237

formula complexity, 244

formula depending on a variable, 274

formula in 3-cnf, 284

formula in conjunctive normal form,
130

formula in disjunctive normal form,
130

formula occurring negatively in
another formula, 270

formula occurring positively
(negatively) in a set of formulas,
270

524 Logical Foundations of Computer Science — Volume 1

formula occurring positively
(negatively) in a set of signed
formulas, 270

formula occurring positively in
another formula, 270

formula of propositional logic, 101

formula that occurs positively
(negatively) in a signed formula,
270

function computed at a vertex of a
circuit, 238

function computed by a circuit,
238

function symbols of a signature,
20

G

gates of a circuit, 237

general F-deduction tree, 59

general deduction tree in F , 59

graph, 127

Gray ordering of MINTRM(S), 159

Gray sequence of order k, 158

H

Hintikka set of signed formulas, 185

Hintikka set of unsigned formulas of
propositional logic, 180

hitting set, 282

Horn clause, 418

Horn formula, 167

hyperresolution proof of a clause, 450

hyperresolution proof of a sequence of
clauses, 449

hyperresolution step of a
hyperresolution proof, 450

hyperresolution tree over a set of
clauses, 452

hyperresolvent, 449

hypotheses of an Fnd-deduction tree,
393

hypotheses of an instance of a rule of
inference, 53

hypothetical syllogism, 460

I

identity substitution, 26
immediate ancestor, 44
immediate descendant of a node, 44
immediate subformulas of a formula,

107
implicant of a formula, 134
inconsistency property, 181, 301
inconsistent set of formulas, 329
inequality, 453
inequality determined by a clause,

454
input clauses in a linear resolution

proof, 439
input resolution proof, 445
input resolution proof of a clause, 445
input step of a hyperresolution proof,

450
input step of a resolution proof, 424
inputs of a circuit, 237
instance of a rule of Fseq with

removal, 381
instance of rule of Fseq with

retention, 381
interchange rule in the formal system

Fseq,M , 57
interior node of a tree domain, 45
isomorphism of linearly ordered sets,

67

J

θ-join of trees, 48

K

k-colorable graph, 127
k-coloring of a graph, 127
Karnaugh map, 159

L

label of a node of a lot, 43
labeled ordered tree, 43
labeling function of a circuit, 236
leaf extension of a lot, 52
leaf extension of a tree domain, 51
leaf of a tree domain, 44

Index 525

length of a computation, 235
length of a path, 45
level of a node, 45

linear inequality with integer
coefficients, 453

linear order, 66

linear resolution proof, 439
linear resolution proof of a clause, 440

linear truth function, 195
linearly ordered set, 66
literal, 102

literal over a set of statement
variables, 102

logical completeness of a set of
connectives, 234

logical implication between signed
formulas, 124

logical implication of a formula by a
set of formulas, 113

logical implication of a formula by
another formula, 112

logically equivalent formulas, 112

lot, 43
semantic propositional, 504
sublot of a, 43

lot obtained by inserting a lot into
another lot, 50

lower bound on the F -circuit
complexity of a family of truth
functions, 264

Lupanov’s (k, s)-representation of a
truth function, 212

M

m-ary data set, 235
m-equivalence of sets, 19

Mϕ the set of minterms of ϕ, 133
many-one reducibility between sets,

19

marked Fnd-deduction tree, 396
marked r-subtree of a marked lot, 47
marked lot, 46

marked lot obtained by inserting T ′

in T at r, 95
marked tree domain, 44

maximal clone, 306
maximal set in a property, 12
maximally satisfiable set of formulas,

179
maximally satisfiable set of signed

formulas, 297
maxterm over a set of statement

variables, 129

minimal cover of a formula, 139
minimally unsatisfiable set of clauses,

442
minterms of a formula, 133
minority function, 196

minterm over a set of statement
variables, 129

modus ponens rule, 326
monotonic truth function, 197

most general (S, V)-unifier, 32
most general unifier for a reduct of a

signature and a finite set of terms,
32

N

n-ary conjunction, 199
n-ary disjunction, 199

n-ary function symbol of a signature,
20

n-ary maxterm function generated by
�b ∈ Booln, 198

n-ary minterm function generated by
�b ∈ Booln, 198

n-ary rule of inference, 53
n-th implicant layer of a formula, 136

n-th layer of the F-partial truth
assignments of a formula, 310

n-th layer of the T-partial truth
assignments of a formula, 310

natural deduction tree, 396

negation normal form, 281
negative clause, 418

negative formula in PLFORMF , 316
negative formula of propositional

logic, 102
negative literal, 102
negative resolution proof, 436

526 Logical Foundations of Computer Science — Volume 1

negative resolution tree over a set of
clauses, 439

nn-downward closed set of formulas,
177

nn-upward closed set of formulas, 177
node of a tree domain, 44
non-positive clause, 419
nondegenerate truth function, 302
np-downward closed set of formulas,

177
np-upward closed set of formulas, 177
null sequence, 4

O

objects of a formal system, 53
occurrence check, 35
occurrence of a sequence, 5
occurrence of a symbol, 5
occurrence which is a part of another

occurrence, 5
open sets of a topological space, 73
output sequence of a circuit, 236
output vertex, 237

P

Γ-provably equivalent formulas of
propositional logic, 336

(k, s)-partition of Booln induced by
an s partition of Boolk, 206

p-downward closed set of formulas,
177

p-upward closed set of formulas, 177
parity function, 195
partial maxterm over a set of

statement variables, 129
partial minterm over a set of

statement variables, 129
partial order, 66
partial truth assignment, 119
path leading to a node of a tree

domain, 45
path of a tree domain, 45
positive n-ary conjunction, 199
positive n-ary disjunction, 199
positive clause, 418

positive formula in PLFORMF , 316
positive formula of propositional

logic, 102
positive literal, 102
positive resolution proof, 436
positive resolution tree over a set of

clauses, 439
pre-closure operator, 72
predecessor, 67
prefix of a sequence, 5
premises of a propositional resolvent,

422
premises of an instance of a rule of

inference, 53
prime implicant of a formula, 136
principal filter generated by a subset,

75
principal formula of an instance of a

rule of Fseq, 381
projection, 186
projection of a minterm on a set of

variables, 148
proof in a formal system, 57
proof of an object, 57
proof tree in F , 59
proper filter, 74
proper prefix of a sequence, 5
proper subformula of a formula, 106
proper subterm of a term, 28
proper suffix of a sequence, 5
property of finite character of the

subsets of a set, 12
property that holds for almost all

truth functions, 257
propositional conservative tableau,

341
propositional conservative tableau

with cut, 365
propositional resolvent, 422
propositional substitution, 171
propositional tableau locally

conservative at a node, 341
propositional tableau locally

consistent at a node, 341
propositional tableau with cut locally

conservative at a node, 365

Index 527

provably equivalent formulas of
propositional logic, 336

punctuation symbols for terms, 20

Q

quotient of a set of sequences by a
sequence, 4

R

θ-region, 157
rank of a partial truth assignment,

310
rank of an implicant, 136
reduced product of a set of truth

assignments relative to a filter, 278
reduct of a signature, 22
reductio ad absurdum, 330
reduction function, 19
region, 157
regular expansion in a propositional

tableau, 340
replacement, 6
resolution closure of a set of clauses,

423
resolution proof of a clause, 424
resolution proof of a sequence of

clauses, 424
resolution step of a resolution proof,

424
resolution tree over a set of clauses,

425
root of a tree domain, 44
rules for eliminating connective

symbols in natural deduction, 408,
496

rules for introducing connective
symbols in ND, 408

rules of inference of a formal system,
53

S

s-partition of Boolk, 206
(S, V)-substitution, 26
satisfaction of a set of signed formulas

by a truth assignment, 124

satisfaction of a signed formula by a
truth assignment, 124

satisfiable clause, 419
satisfiable formula of propositional

logic, 112
satisfiable set of clauses, 419
satisfiable set of formulas, 113
satisfiable set of signed formulas, 124
saturated set of formulas of

propositional logic, 177
second Lupanov decomposition of a

truth function, 209
self-dual truth function, 194
semantic resolution proof over a set of

clauses, 447
semantically consistent set of

formulas, 294
semi-effectively specified formal

system, 97
sequence of functions computed by a

circuit, 238
sequent, 376
set

decidable, 17
effectively enumerable, 16
enumerable, 16
semidecidable, 17
universal, 17

set of clauses
failure node for, 504

set of inequalities determined by a set
of clauses, 455

set of inputs of a component of an
(F,D)-computation, 235

set reducible to another set, 19
set-of-support, 449
set-of-support resolution proof, 449
Sheffer function, 216
side clause of a step in +a linear

resolution proof, 440
signature, 20
signed formula, 123
signed formula occurring in a path of

a tableau, 339
signed subformula of a signed

formula, 124

528 Logical Foundations of Computer Science — Volume 1

signed tableau, 339

size of a circuit, 237

size of a deduction tree, 60

size of a formula, 103

size of a signed formula, 123

soundness of a formal system, 64

standard s-partition of Boolk,
206

standard conjunctive normal form for
a formula, 167

standard disjunctive normal form for
a formula, 133

standard order on SPLFORM, 123

standard ordering of the formulas of
propositional logic, 104

statement form, 101

statement variable, 100

strict linear order, 66

strict partial order, 66

strict total order, 66

strictly linearly ordered set, 66

strongly closed branch of a tableau,
339

strongly closed tableau, 340

strongly completed tableau, 340

structural rule of Fseq,M , 64

structural rule of HG, 485
subcircuit of a circuit determined by

a vertex, 239

subformula of a formula in
propositional logic, 106

subgraph of a graph, 127

subsequence, 5

subset closed under a set of
operations, 13

substitution, 6

substitution on a set, 6

subterm of a term, 28

subtree of a lot, 47

succeedent of a sequent, 376

suffix of a sequence, 5

support of a formal sum, 453

symbols of propositional logic,
100

symmetric truth function, 198

T

T-downward closed set of formulas,
297

T-upward closed set of formulas, 297

Δ-tableau, 340

Δ-tableau with cut, 364

Δ-tableau with removal, 341

Δ-tableau with retention, 341

Γ-tableau, 361

Γ-tableau with cut, 482

(S, V)-terms, 21

tableau, 339

target of an (F,D)-computation, 235

tautologous clause, 418

tautology of propositional logic, 112

theorems of a formal system, 53

thinning in propositional tableaux,
340

thinning rule in the formal system of
propositional tableaux, 352, 360

threshold function, 198

topological space, 73

topology generated by a base, 280

topology on a set, 73

total order, 66

trace of a truth function on a subset
of its domain, 206

tree domain, 43

tree semi-domain, 93

truth assignment, 110

truth assignment falsifying a sequent,
376

truth assignment falsifying a set of
clauses, 419

truth assignment over a set of
variables, 119

truth assignment satisfies a path of a
tableau, 339

truth assignment satisfying a formula
of propositional logic, 111

truth assignment satisfying a sequent,
376

truth assignment satisfying a set of
formulas of propositional logic, 111

Index 529

truth assignment that satisfies a node
of a tableau, 339

truth function, 110
truth function computable by
F -circuits, 249

truth function defined by a truth
table, 213

truth function depending essentially
on an argument, 302

truth set, 178
truth table defined by the truth

function f and the set S, 213
truth table of a formula, 120
truth table of a formula of

propositional logic over a set of
variables and an arbitrary set of
connectives, 230

truth table of a formula of
propositional logic over an
arbitrary set of connectives, 230

truth table of a formula over a set of
statement variables, 120

truth table over a set of statement
variables, 120

truth valuation, 111
truth valuation generated by a truth

assignment, 111
truth valuation on PLFORMF

generated by a truth assignment,
229

truth value, 110
truth value of a formula under a

partial truth assignment, 119

truth value of a formula under a
truth assignment, 111

two-valued measure, 75

U

U -lot, 43
(S, V)-unifier, 30
(S, S′, V)-unifier for a signature

reduct, 30
ultrafilter, 74
ultraproduct of a set of truth

assignments relative to an
ultrafilter, 278

unary truth function, 110
uncancelled hypotheses of a marked

Fnd-deduction tree, 396
unit clause, 419
unlimited fan-out F -optimal circuit

for a truth function, 245
unsatisfiable formula of propositional

logic, 112
unsatisfiable set of formulas, 113
unsigned tableau, 361
upper bound on the F -circuit

complexity of a family of truth
functions, 264

upward closed set of formulas, 177,
297

V

valid sequent, 376
vertices of a graph, 127

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

Vol 2: Predicate Logic

Logical Foundations
of Computer Science

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI • TOKYO

World Scientific

Peter A. Fejer & Dan A. Simovici
University of Massachusetts Boston, USA

Vol 2: Predicate Logic

Logical Foundations
of Computer Science

Published by

World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Control Number: 2024016854

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

LOGICAL FOUNDATIONS OF COMPUTER SCIENCE
(In 2 volumes)
Volume 1: Propositional Logic
Volume 2: Predicate Logic

Copyright © 2025 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy
is not required from the publisher.

ISBN 978-981-12-8936-1 (set_hardcover)
ISBN 978-981-12-8934-7 (set_ebook for institutions)
ISBN 978-981-12-8935-4 (set_ebook for individuals)
ISBN 978-981-12-8765-7 (vol. 1_hardcover)
ISBN 978-981-12-8766-4 (vol. 2_hardcover)

For any available supplementary material, please visit
https://www.worldscientific.com/worldscibooks/10.1142/13714#t=suppl

Desk Editors: Balasubramanian Shanmugam/Steven Patt

Typeset by Stallion Press
Email: enquiries@stallionpress.com

Printed in Singapore

https://www.worldscientific.com/worldscibooks/10.1142/13714#t=suppl

To our spouses
Elisabeth and Doina

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

Preface

In scientific reasoning, one starts with a collection of statements,
the premises, in order to justify another statement, via a process
of inference. Therefore, the study of logic is essential for students
of computer science, mathematics, and all who use mathematical
proofs.

Many of the fundamental computing concepts were created by
logicians. The most famous such concept is the idea of a general-
purpose computer, the Turing Machine. Computer programs are
written in symbolic languages, e.g., Python, Java, and Lisp, that
contain features of logical notations and symbolisms. Through such
connections, the study of logic helps in the design of programs. Logic
also has a role in the design of new programming languages, and it
is essential for work in artificial intelligence.

An introductory chapter presents a set of theoretical and algebraic
tools used throughout this book.

The syntactic and semantic concepts of propositional logic are
discussed in the second chapter: formulas, truth assignments, truth
tables, normal forms, clones of truth functions, and functional com-
pleteness. Some parts of logic are used by engineers in circuit design,
a topic discussed extensively in the same chapter.

The object of the third chapter is to introduce a variety of propo-
sitional formal methods: Hilbert/Frege formal systems, tableaux,
sequents, and natural deduction, and to examine transformation
methods between these formalisms. Additionally, we present several
variants of propositional resolution and the method of cutting planes.

vii

viii Logical Foundations of Computer Science — Volume 2

The second part of the work deals with predicate logic also known
as first-order logic. The development of this part parallels broadly
the presentation of propositional logic. The first chapter of this part
presents the syntax and semantics of predicate logic starting with the
first-order formulas and structures. Various syntactic aspects specific
to predicate logic are presented and then the focus shifts to semantics.
We discuss normal forms for formulas and present certain special sets
of formulas such as Hintikka sets and first-order theories. Also, the
reduction of first-order logic to propositional logic is examined. This
chapter concludes with a study of decidability in first-order logic.

In the following chapter, several important corresponding for-
malisms for first-order logic are examined: Hilbert/Frege formal sys-
tems, tableaux, sequents, and natural deduction. Resolution which
forms the basis for logic programming is discussed in various forms
and special attention is paid to the method of paramodulation for
languages with equality.

The last chapter includes the logical and mathematical analysis of
programs, which allows proof of program correctness and analysis of
the performance of programs. We discuss the use of logic for proving
a variety of assertions concerning the correctness of programs and
their performance.

The work contains more than 770 exercises and supplements that
can be used to deepen the understanding of the material. We give
detailed proofs and we do not shy away from technical difficulties.
It is hoped that the readers would enjoy this introduction to logic
and make good use of it in their own research.

Lexington and Brookline
Massachusetts

July 2023

About the Authors

Peter Fejer received his BA in Mathemat-
ics from Reed College and his SM and PhD
degrees in Mathematics from the University
of Chicago. He has held positions at Cornell
University in the Mathematics Department and
at the University of Massachusetts Boston in
the Computer Science Department. He was also
a Visiting Professor at Heidelberg University on
several occasions. At UMass Boston, he served
as Chair for 18 years and is now an Emeritus

Professor. Professor Fejer’s published research is in the area of Com-
putability Theory.

Dan Simovici obtained his PhD in Math-
ematics from the University of Bucharest,
Romania. His main research interests are in
machine learning, data mining, and multi-
valued logic. Dr. Simovici is a Computer Sci-
ence Professor and Graduate Program Director
at the University of Massachusetts in Boston,
was a Visiting Professor in France and Japan,
and serves as Editor-in-Chief of the Journal of
Multiple-Valued Logic and Soft Computing. He

is the author or co-author of more than 200 research publications and
of several books. Dr. Simovici directed so far 13 PhD dissertations.

ix

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

Contents

Preface vii

About the Authors ix

Volume 1. Propositional Logic 1

1. Preliminaries 3

1.1 Introduction . 3
1.2 Sequences, Occurrences, and Substitutions 3
1.3 Collections of Sets 12
1.4 Decidable and Semidecidable Sets 16
1.5 Signatures and Terms 20
1.6 Term Unification 30
1.7 Labeled Ordered Trees 43
1.8 Formal Systems . 53
1.9 Linear Orders . 66
1.10 Exercises and Supplements 69
1.11 Bibliographical Comments 98

2. Propositional Logic–Syntax and Semantics 99

2.1 Introduction . 99
2.2 Formulas . 100
2.3 Truth Assignments 110
2.4 The Compactness Theorem 125
2.5 Normal Forms for Formulas 128

xi

xii Logical Foundations of Computer Science — Volume 2

2.6 Substitutions and Formulas 171
2.7 Truth Sets and Hintikka Sets 175
2.8 Truth Functions . 185
2.9 Clones and Functional Completeness 214
2.10 Complete Sets of Connectives 227
2.11 Circuits and Truth Functions 235
2.12 Exercises and Supplements 267
2.13 Bibliographical Comments 324

3. Propositional Logic–Formal Systems 325

3.1 Introduction . 325
3.2 A Hilbert/Frege-Style Formal System 326
3.3 Tableaux . 339
3.4 The Cut Rule for Tableaux 364
3.5 Sequents . 376
3.6 Natural Deduction 393
3.7 Translations between Formal Systems 410

3.7.1 From Unsigned Tableaux to Hilbert–Frege
Proofs . 411

3.7.2 From Natural Deduction Trees to Sequent
Proofs . 412

3.7.3 Closing the Circle 417
3.8 Resolution . 417
3.9 Variations of Resolution 436
3.10 Cutting Planes . 453
3.11 Exercises and Supplements 460
3.12 Bibliographical Comments 506

Bibliography 507

List of Notations 511

List of Results 519

Index 521

Contents xiii

Preface vii

About the Authors ix

Volume 2. Predicate Logic 531

4. First-Order Logic–Syntax and Semantics 533

4.1 Introduction . 533
4.2 First-Order Languages 534
4.3 Terms and Formulas 538

4.3.1 Terms of First-Order Logic 538
4.3.2 Formulas of First-Order Logic 540
4.3.3 Occurrences in Formulas 548
4.3.4 Signed Formulas 560
4.3.5 Substitutions and Formulas 560
4.3.6 Substitutability of Terms 572

4.4 Structures . 580
4.5 Semantics of First-Order Logic 594

4.5.1 Assignments in Structures 594
4.5.2 Tarski’s Definition of Truth 597
4.5.3 Validity . 602
4.5.4 Specification of Congruences 618
4.5.5 The Morphism Theorem 621
4.5.6 Semantics of Signed Formulas 623

4.6 Semantics of Substitutions and Replacements . . . 625
4.6.1 The Substitution Theorem 626
4.6.2 The Replacement Theorem 634
4.6.3 Variants of Formulas 637

4.7 Definability in Structures 662
4.8 Propositional Forms and Tautologies 671
4.9 Normal Forms for Formulas 678
4.10 Reduction of First-Order Logic to Propositional

Logic . 692
4.11 Brand’s Modification Method 721
4.12 Hintikka Sets and Truth Sets 743

4.12.1 Constituents 743
4.12.2 Hintikka Sets of Unsigned Formulas 750
4.12.3 Truth Sets 761
4.12.4 Hintikka Sets of Signed Formulas 765

xiv Logical Foundations of Computer Science — Volume 2

4.13 Theories . 770
4.14 Decidability and Undecidability in First-Order

Logic . 778
4.15 Exercises and Supplements 786
4.16 Bibliographical Comments 855

5. First-Order Logic–Formal Systems 857

5.1 Introduction . 857
5.2 A Hilbert/Frege-Style Formal System 858

5.2.1 Completeness of HFL 869
5.2.2 Building Proofs in HFL 876

5.3 First-Order Tableaux 880
5.4 Cut Rule for First-Order Tableaux 914
5.5 First-Order Sequents 936
5.6 First-Order Natural Deduction 954
5.7 Transformations Between Formal Systems 976

5.7.1 From Unsigned Tableaux to Hilbert-Frege
Proofs . 976

5.7.2 From Natural Deduction Trees to
Sequent Proofs 981

5.7.3 Closing the Circle 987
5.8 First-Order Resolution 988
5.9 Variations of First-Order Resolution 1024
5.10 First-Order Resolution with Equality 1037

5.10.1 Equality Axioms and Resolution 1037
5.10.2 Brand’s Modification Method and

Resolution 1041
5.10.3 Paramodulation 1044
5.10.4 Semantic Trees for Languages with

Equality 1054
5.10.5 Completeness of Paramodulation 1083

5.11 Exercises and Supplements 1093
5.12 Bibliographical Comments 1148

6. Program Verification 1151

6.1 Introduction . 1151
6.2 The WHILEL Programming Language —

Syntax . 1153
6.3 The WHILEL Programming Language —

Semantics . 1161

Contents xv

6.4 Functions Computable by Programs 1171
6.5 Hoare Triples . 1185
6.6 Hoare Theories 1204
6.7 A Formal System for Hoare Triples 1224
6.8 Exercises and Supplements 1254
6.9 Bibliographical Comments 1278

Bibliography 1279

List of Notations 1283

List of Results 1291

Index 1293

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

Volume 2

Predicate Logic

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

Chapter 4

First-Order Logic–Syntax and
Semantics

4.1 Introduction

First-order logic builds on, and transcends the limitations of, proposi-
tional logic. Its capabilities are sufficient to handle the most common
arguments of mathematics and computer science, by offering tools
for reasoning about programs, representing knowledge, handling
constraints and queries in databases, etc.

In this chapter we study the syntax and semantics of first-order
logic. The simplest formulas, called atomic formulas, are built start-
ing from variables over individuals and first-order languages con-
ceived as sets of relation and function symbols. Then, the formulas of
first-order logic are built in order to express properties of individuals.
Their construction begins with atomic formulas and uses connective
symbols (familiar from the construction of propositional logic for-
mulas) together with quantifier symbols (over individuals). Special
consideration is given to the role played by the equality symbol.

A structure for a first-order language consists of a non-empty
set and interpretations of the function and relation symbols of the
language as functions and relations on that set. The semantics of for-
mulas of first-order logic is defined using structures and assignments
of individuals to variables. Given a first-order language, a structure
for the language, and an assignment in the structure, we assign a
truth value to each formula of the language.

533

534 Logical Foundations of Computer Science — Volume 2

The term “first-order” refers to the fact that quantification can
only be applied to individuals. In higher-order logic, quantification
may be applied to sets of individuals as in second-order logic, or to
collections of sets of individuals for third-order logic, etc.

We deal with two types of normal form for first-order logic for-
mulas: prenex normal form and Skolem normal form. Using Skolem
normal form and a special type of structure, called a Herbrand struc-
ture, we reduce first-order logic to propositional logic and thereby
provide a means for transferring results, such as the Compactness
Theorem, from propositional logic to first-order logic.

As in propositional logic, we define Hintikka sets, special sets of
formulas which by their nature show how they can be satisfied. These
will be useful in the next chapter for showing the completeness of
certain formal systems of first-order logic.

4.2 First-Order Languages

We begin by specifying the symbols of first-order logic. These are:

• A countably infinite set VAR = {x0, x1, . . .} whose elements are
called variables.

• Five connective symbols ¬,∨,∧,→,↔.
• The quantifier symbols ∀ and ∃.
• Three punctuation symbols denoted by the left parenthesis, right

parenthesis, and comma.
• For each n ∈ N, a countably infinite collection {Rnk | k ∈ N} of
n-ary relation symbols.

• For each n ∈ N, a countably infinite collection {fnk | k ∈ N} of
n-ary function symbols.

• The equality symbol =, which is R2
0.

We assume that all of the symbols specified above are distinct, but
otherwise do not care what mathematical objects these symbols are.
(We will return to this point later.)

When we refer to the “symbols” of first-order logic, we are using
standard terminology from logic. Since there are infinitely many such
symbols, this use of the term is different from that common in com-
puter science where symbols are elements of an alphabet which by
definition must be a finite set.

First-Order Logic–Syntax and Semantics 535

An object which is an n-ary relation symbol for some n is called
a relation symbol. If R is a relation symbol then the unique natural
number n such that R is an n-ary relation symbol is called the arity
of R. We define the phrases function symbol and arity of a function
symbol similarly. Relation symbols are sometimes called predicate
symbols. As usual, we use the words “unary” and “binary” in place
of 1-ary and 2-ary. 0-ary relation symbols are called propositional
constants and 0-ary function symbols are called individual constant
symbols or just constant symbols. In order to simplify notation, we
will denote the constant symbol f0i by ci.

The variables, connective symbols, quantifier symbols, punctua-
tion symbols, and the equality symbol are called logical symbols. The
other symbols of first-order logic are called extra-logical symbols. (The
difference between logical and extra-logical symbols is that logical
symbols have one fixed meaning while extra-logical symbols have a
meaning that can vary in different situations.) Extra-logical symbols
are often called non-logical symbols.

We will use the letters x, y, and z to denote arbitrary variables,
c to denote constant symbols, f, g and h to denote function symbols
which are not constant symbols, and R with various adornments to
denote relation symbols.

Definition 4.2.1. The signature of first-order logic is the pair
SFOL = (F, ν) where F = {fnk | n, k ∈ N} and ν(fnk) = n for every
n, k ∈ N.

Definition 4.2.2. A first-order language L is a set of relation and
function symbols such that L contains at least one relation symbol
and, for every n ∈ N, there are infinitely many n-ary function sym-
bols and infinitely many n-ary relation symbols that are not elements
of L.1 The elements of L that are function symbols are called the
function symbols of L. The set of all function symbols of L is denoted
by FL. The elements of L that are relation symbols are the relation
symbols of L. If L contains the symbol =, then we refer to L as a
language with equality.

1The restriction that a first-order language omits infinitely many n-ary function
symbols and infinitely many n-ary relation symbols for every n ∈ N is a technical
one, which can be safely ignored for the most part. Its role will become apparent
later.

536 Logical Foundations of Computer Science — Volume 2

If L,L′ are two first-order languages, then L′ is an extension of L
if L ⊆ L′. L′ is a finite extension of L if it is an extension of L and
L′ −L is a finite set.

Example 4.2.3. The set

Lar = {=, <, 0, s,+, ·},

is a first-order language, where < is a binary relation symbol, 0 is a
constant symbol, s is a unary function symbol, and +, · are binary
function symbols. We identify various subsets of this language that
will play a role in subsequent developments as:

Ls = {=, 0, s}
Ls,< = {=, <, 0, s}
Lpra = {=, <, 0, s,+}.

The languages Lar and Lpra are known as the language of arithmetic
and the language of Presburger2 arithmetic, respectively.

Definition 4.2.4. Let SFOL = (F, ν) be the signature of first-order
logic and let L be a first-order language. The signature of L is the
pair SL = (FL, νL), where FL = F ∩ L and νL = ν |̀FL.

Observe that for any first-order language L, we have SL � SFOL

(see Definition 1.5.6).
The union of two first-order languages is not, in general, a first-

order language. Indeed, let K be the set of constant symbols and
assume that K = K ′ ∪ K ′′, where K ′ and K ′′ are disjoint infinite
sets of constant symbols. K ′ ∪ {=} and K ′′ ∪ {=} are first-order
languages. However, their union K∪{=} is not (since K∪{=} omits
no constant symbol). Observe also that if L′ and L′′ are finite first-
order languages, then L′ ∪ L′′ is a first-order language.

2Mojżesz Presburger, a Polish logician, was born in Warsaw on December 27,
1904 and died in 1943, a victim of Nazi persecution. His main contribution is
contained in his master’s thesis entitled “Über die Vollständigkeit eines gewissen
Systems der Arithmetik ganzer Zahlen,” presented at the University of Warsaw,
which is regarded as one of the earliest contributions to model theory.

First-Order Logic–Syntax and Semantics 537

Definition 4.2.5. Let L be a first-order language. The extension by
constants of L is the first-order language Lc given by

Lc = L ∪ {ci0 , ci2 , ci4 , . . .},

where ci0 , ci1 , ci2 , . . . (with i0 < i1 < i2 < · · ·) is the list of all
constant symbols that do not belong to L.

If Γ is a set of Lc-formulas that contains only finitely many con-
stant symbols from Lc − L, then we say that Γ is a set with limited
constant symbols.

In the phrase “first-order language”, we use the term “language”
as it is commonly used in logic. This usage developed independently
of the use of the term “language” in computer science as a set of
words over an alphabet, but the two usages can be united if the “sym-
bols” of first-order logic are themselves identified as being words over
an alphabet. For instance, suppose that V is the alphabet containing
the following symbols: x, r, f, �, 0, 1 and for each n ∈ N let κn be the
usual binary representation for n (so κ0 = 0 and for n > 0, κn has no
leading zeros). We can then specify that the “symbols” of first-order
logic (which we have left undefined earlier) are in fact words over V
as given in the following table.

Symbol of first-order logic Definition
xn xκn
Rnk rκn � κk
fnk fκn � κk

Every other symbol of first-order logic is encoded as itself. We denote
the substitution that takes a symbol of first-order logic to its encoding
as a word over V by code. Note that if a, b are two distinct symbols of
first-order logic, then code(a) is not a suffix of code(b). Therefore, by
Supplement 13 of Chapter 1, if S is the set of symbols of first-order
logic, the mapping code : Seq(S) −→ V ∗ is injective.

With this definition of the symbols of first-order logic, a first-
order language is a language in the computer science sense, in fact, a
language over the alphabet V . For our purposes, there is no particular
advantage in making this definition except to eliminate an ambiguity
in terminology, but as we will discuss later, in other contexts such
an identification of the symbols of first-order logic is important.

538 Logical Foundations of Computer Science — Volume 2

4.3 Terms and Formulas

In this section, we present the syntax of the main objects dealt with
by first-order logic: terms and formulas. The intuition is that terms
represent individuals, while formulas make assertions about individ-
uals. Once we have defined terms and formulas, we will examine
certain syntactic properties of formulas, as well as their syntactic
behavior with respect to substitutions.

4.3.1 Terms of First-Order Logic

We now undertake a detailed study of the terms of the signature of
first-order logic and the signature of a first-order language.

Definition 4.3.1. Let L be a first-order language and let SL be its
signature. TERML, the set of terms of the first-order language L, is
the set TERMSL(VAR).

If V ⊆ VAR, then TERML(V) denotes the set TERMSL(V). We
refer to the members of TERML(V) as (L, V)-terms.

A set of variables V is called L-suitable if TERML(V) = ∅.

Note that if L contains a constant symbol, then every set of vari-
ables is L-suitable; if L does not contain any constant symbol, then
V is L-suitable if and only if V = ∅.

Example 4.3.2. Let Lar be the language of arithmetic as defined in
Example 4.2.3. Since variables and constant symbols of Lar are terms
of Lar, we have x0, x1, 0 ∈ TERMLar . Therefore, by Definition 4.3.1,
we obtain the terms t1 = s(0), t2 = s(s(0)) and t3 = s(x1). The
following are further terms of the language:

·(t1, t2) = ·(s(0), s(s(0)))
·(t1, x0) = ·(s(0), x0),
+(t2, t3) = +(s(s(0)), s(x1)).

We prefer to use the notation (t + t′) and (t · t′) instead of +(t, t′)
and ·(t, t′) or even t+ t′ and t · t′, when there is no risk of confusion.

For a term u = s(s(· · · (s(t)) · · ·)) of Lar, where t is a term of the
same language and s occurs n times, we will use the notation sn(t).

First-Order Logic–Syntax and Semantics 539

Note that the set TERMLs consists of strings of the form sn(u),
where u is either the constant symbol 0 or a variable.

Definition 4.3.3. Let L be a first-order language. The set of ground
terms of L, GTERML, is the set of ground terms of the signature SL.

Theorem 1.5.9 implies that GTERML consists of those terms of L
that do not contain any variables.

Note that the terms t1, t2, and f
2
1 (t1, t2) from Example 4.3.2 are

ground terms of L, while t3, f21 (t1, x0) and f21 (t2, t3) are not.

Example 4.3.4. The observation in Example 1.5.5 implies that if L
is a language without function symbols, then TERML = {x0, x1, . . .}.

It is easy to verify that if L1 ⊆ L2, then TERML1 ⊆ TERML2 .

Definition 4.3.5. A sequence of symbols t is a term of first-order
logic, or simply a term, if it belongs to the set TERMSFOL

(VAR). We
use TERM to denote the set of all terms.

Theorem 4.3.6. A sequence t is a term of first-order logic if and
only if there is a first-order language L such that t is a term of L.

Proof. Since for every first-order language L, SL � SFOL, it follows
by Theorem 1.5.7 that every term of a first-order language is a term
of first-order logic.

Conversely, we show that for every t ∈ TERM, there is a finite
first-order language L such that t ∈ TERML.

If t is a variable, then t ∈ TERM∅. If t is a constant symbol,
then t is a term of the first-order language {t}. Now suppose that
f is an n-ary function symbol with n > 0, t0, . . . , tn−1 are mem-
bers of TERMSFOL

(VAR), and t = f(t0, . . . , tn−1). If, as inductive
hypothesis, we assume that there are finite languages Li such that
ti ∈ TERMLi for 0 ≤ i ≤ n − 1, then ti ∈ TERML where L is the
finite language (

⋃
0≤i≤n−1Li) ∪ {f}. Therefore, t ∈ TERML. �

Definition 4.3.7. A sequence of symbols t is a ground term of first-
order logic or simply a ground term, if it is a ground term of SFOL.
The set of ground terms is denoted by GTERM.

540 Logical Foundations of Computer Science — Volume 2

Theorem 4.3.8. A sequence t is a ground term of first-order logic
if and only if there is a first-order language L such that t is a ground
term of L.

Proof. The argument is similar to that of Theorem 4.3.6 and it is
left to the reader. �

4.3.2 Formulas of First-Order Logic

In this subsection, we define inductively the formulas of a first-order
language and of first-order logic and we prove the unique readability
of these definitions. This unique readability is essential for justifying
the correctness of recursive definitions of functions whose domains
are various sets of first-order formulas.

Definition 4.3.9. Let L be a first-order language. We define
FORML, the set of formulas of L (or the set of L-formulas), as the set
of sequences of logical symbols, function symbols of L, and relation
symbols of L given by the following inductive definition:

(1) Every propositional constant of L is a formula of L.
(2) If R is a relation symbol of L of arity n > 0 and t0, . . . , tn−1 are

all terms of L, then R(t0, . . . , tn−1) is a formula of L.
(3) If ϕ is a formula of L, then so is (¬ϕ).
(4) If ϕ and ψ are both formulas of L, then so are (ϕ ∧ ψ), (ϕ ∨ ψ),

(ϕ→ ψ), and (ϕ↔ ψ).
(5) If x is a variable and ϕ is a formula of L, then (∀x)ϕ and (∃x)ϕ

are both formulas of L.

Elements of FORML which are put in by one of the first two rules
are called atomic formulas of L. We denote the set of all atomic
formulas of L by AFORML. If the relation symbol of an atomic
formula is =, then the atomic formula is called an L-equality. We
denote the set of all L-equalities as EQL.

If the relation symbol in an atomic formula is distinct from =, we
refer to the formula as a non-equality L-atomic formula. The set of
such formulas is denoted as AFORMNEL. Note that if L contains no
other relation symbol than =, then AFORMNEL = ∅.

First-Order Logic–Syntax and Semantics 541

Also, if V is a set of variables, AFORML(V) denotes the set of
atomic formulas of L such that all variables that occur in the formula
belong to V . We refer to such formulas as (L, V)-atomic formulas.
Similarly, we define EQL(V) and AFORMNEL(V).

The literals of L are the atomic formulas of L and their negations.
We denote the set of literals of L by LITL. The set of all literals LIT
is
⋃

L LITL. Also, if V is a set of variables, LITL(V) denotes the
set of literals of L such that all variables that occur in the literal
belong to V . Similarly, we denote by LIT(V) the set of all literals
constructed using variables of the set V .

The ground atomic formulas of L are the atomic formulas of L
that contain no variables. We denote the set of ground atomic for-
mulas of L by GAFORML.

The set of L-equalities that are ground atomic formulas is denoted
as GEQL and the set of non-equality ground L-atomic formulas is
denotes as GAFORMNEL.

The prime formulas of L are the atomic formulas of L and the
formulas introduced by the fifth rule of Definition 4.3.9.

If ϕ and ψ are two L-formulas, then (ϕ ∧ ψ) and (ϕ ∨ ψ) are the
conjunction and disjunction of ϕ and ψ, respectively.

The quantifier-free formulas of L are those formulas of L that do
not contain occurrences of quantifier symbols. It is easily seen that
an inductive definition of the set of quantifier-free formulas of L can
be obtained from Definition 4.3.9 by omitting the fifth rule.

A universal formula of L is an L-formula (∀y0) · · · (∀yn−1)ϕ, where
ϕ is quantifier-free, n ∈ N and y0, . . . , yn−1 are distinct variables.

If ψ is a universal formula, ψ = (∀y0) · · · (∀yn−1)ϕ, we denote
by ψ−∀ the quantifier-free formula ϕ. When Γ is a set of universal
formulas, the previous notation is extended by writing Γ−∀ for the
set {ψ−∀ | ψ ∈ Γ}.

An existential formula of L is an L-formula (∃y0) · · · (∃yn−1)ϕ,
where ϕ is quantifier-free, n ∈ N and y0, . . . , yn−1 are distinct vari-
ables.

Note that every quantifier-free formula of L is both a universal
and an existential formula of L.

An L-negative formula is a formula ϕ such that ϕ = (¬ψ) for
some formula ψ ∈ FORML. An L-formula is L-positive if it is not
negative.

542 Logical Foundations of Computer Science — Volume 2

Using terminology of Smullyan (see [31]), we will refer to formulas
of the forms (∀x)ϕ and (¬(∃x)ϕ) as γ-formulas and to formulas of
the forms (∃x)ϕ and (¬(∀x)ϕ) as δ-formulas.

The L-formula (∀y0) · · · (∀yn−1)ϕ is a generalization of the
L-formula ϕ, where y0, . . . , yn−1 are variables. Note that ϕ is a gen-
eralization of itself (obtained by taking n = 0).

The notion of “optimized negation” introduced in propositional
logic by Definition 2.2.5 can be adapted to first-order logic.

Definition 4.3.10. Let ϕ be a formula. Then ϕ, the complement of
ϕ, is defined by:

ϕ =

{
(¬ϕ) if ϕ is a positive formula,

ψ if ϕ = (¬ψ) is a negative formula.

Note that the complement of a literal is a literal.

Example 4.3.11. Let L = {R,P, c} be a first-order language,
where R is a unary relation symbol, P is a binary relation symbol,
and c is a constant symbol. The formula R(c) is a ground atomic
L-formula, R(x) is an atomic L-formula but not a ground atomic
formula, R(x), R(c) and (¬R(x)) are literals of L, (R(x) ∧R(c)) is a
quantifier-free L-formula, and (∀x)(R(x) ∧ R(c)) is a prime formula
of L.

All of the formulas mentioned so far in this example are univer-
sal L-formulas, and all but the last are also existential L-formulas.
Finally, the formula (∃x)(∃y)(P (x, y) ∧ R(x)) is an existential
L-formula.

Note that Rule 4 actually consists of four rules, which we denote
by 4∧, 4∨, 4→, 4↔. For example, 4∧ is the rule

4∧. If ϕ and ψ are both formulas of L, then so is (ϕ ∧ ψ).

More importantly, Rule 5 actually consists of an infinite set of rules,
two for each variable x, which we denote by 5(∀x) and 5(∃x):

5(∀x). If ϕ is a formula of L, then (∀x)ϕ is a formula of L.
5(∃x). If ϕ is a formula of L, then (∃x)ϕ is a formula of L.

First-Order Logic–Syntax and Semantics 543

We will use the letters ϕ,ψ, θ, α, β, γ, δ to stand for formulas.
If L is a first-order language with equality, the atomic formula =

(t0, t1) (or R2
0(t0, t1)) will be denoted by t0 = t1, or by (t0 = t1)

when this formula is part of a larger formula. We stress that this is
only a notational device; even when we write t0 = t1, the “official”
formula still remains = (t0, t1). We will also write t0 = t1 or (t0 = t1)
to denote the formula (¬(t0 = t1)). Similarly, when R is a binary
relation symbol, we may use the notation t0Rt1 instead of R(t0, t1).
For example, we may write t0 < t1 instead of < (t0, t1), when this
does not cause any confusion.

Example 4.3.12. The Lar-formula ((u = v) ∨ (u < v)) will be
alternatively written as u ≤ v.

Note that FORML is non-empty because L contains at least one
relation symbol. Indeed, if R is an n-ary relation symbol of L with
n > 0, then R(x0, . . . , xn−1) ∈ FORML; if R is a propositional con-
stant of L, then R ∈ FORML.

If, as discussed above, we identify symbols of logic as being words
over some basic alphabet W , then it is natural to think of terms
and formulas of a first-order language as being words over W rather
than as being sequences of symbols of first-order logic. For instance,
using the possible definition given earlier of the symbols of first-order
logic as words over W = {x, t, f, r, f, �, 0, 1}, the atomic formula
R1

1(x2) becomes the word r1 � 1(x10) over W . If this is done, then
the collection of all terms over a first-order language and the set of
all formulas over a first-order language are themselves languages (in
the computer science sense) over W .

Our remarks from Section 2.2 regarding how the size of a formula
is measured when considering an algorithm which applies to formulas
remain valid here. However, if we were to define formulas directly in
their encoded form, certain technical results, such as unique readabil-
ity of formulas, would be more difficult to show. For this reason, we
regard terms and formulas in the way we have defined them; namely,
as sequences of logical symbols. To emphasize this point, for us, if
R is a unary relation symbol and x is any variable, then R(x) is a
formula of length 4; whereas, if a formula is a word over an alphabet,
then the length of R(x) can be arbitrarily long depending on exactly

544 Logical Foundations of Computer Science — Volume 2

which relation symbol R is and which variable x is. As before, we
denote the size of the formula ϕ by size(ϕ).

Example 4.3.13. The formula ϕ = R1
0(x7) is encoded as r1 �

0(x111). Therefore, size(ϕ) = 10.

Definition 4.3.14. ϕ is first-order formula if there is a first-order
language L such that ϕ ∈ FORML. We denote the set of first-order
formulas by FORM.

Similarly, we say that ϕ is an atomic formula (a literal, a ground
atomic formula, a prime formula, a quantifier-free formula, nega-
tive formula) if there is a first-order language L such that ϕ is an
atomic formula (a literal, a ground atomic formula, a prime formula,
a quantifier-free formula, negative formula) of L.

If we order the symbols of W as previously listed, this gener-
ates a lexicographic order on W ∗. As we did for propositional logic,
we can define a well-ordering “�” on FORM as follows: ϕ � ψ if
|code(ϕ)| < |code(ψ)| or, if |code(ϕ)| = |code(ψ)|, then code(ϕ) pre-
cedes code(ψ) in the lexicographic order on W ∗. We will refer to �
as the standard ordering of the formulas of first-order logic. The sim-
ilarly obtained order on TERM will be referred to as the standard
ordering of terms. These orderings can be particularized to FORML
and TERML, respectively. If ϕ0, ϕ1, . . . is the standard ordering of
the L-formulas, we will single out the formulas (ϕ0 ∧ (¬ϕ0)) and
(ϕ0 ∨ (¬ϕ0)) as false

L and trueL.
As noted earlier, code is an injective function on the set of

sequences of symbols of first-order logic. Since both TERM and
FORM are subsets of this set, it follows that both are countably
infinite.

Theorem 4.3.15. FORM equals the set F given by the following
inductive definition:

(1) Every propositional constant is in F .
(2) If R is a relation symbol of arity n > 0 and t0, . . . , tn−1 are

terms, then R(t0, . . . , tn−1) is in F .
(3) If ϕ ∈ F, then (¬ϕ) is in F .
(4) If ϕ,ψ ∈ F, then (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ), and (ϕ ↔ ψ) are

in F .
(5) If x is a variable and ϕ ∈ F, then (∀x)ϕ and (∃x)ϕ are in F .

First-Order Logic–Syntax and Semantics 545

Proof. The proof is similar to the proof of Theorem 4.3.6, and it
is left to the reader. �

Definition 4.3.16. Let ϕ be a first-order formula. The first-order
language Lϕ consists of the function and relation symbols that occur
in ϕ.

Note that Lϕ is a finite set, so is a first-order language according
to Definition 4.2.2.

Theorem 4.3.17. If ϕ is a first-order formula, then ϕ is a Lϕ-
formula. Moreover, if ϕ is an L-formula, then Lϕ ⊆ L.

Proof. We leave it to the reader to show by induction on terms
that if t is a term that occurs in ϕ, then t is Lϕ-term. An induction on
formulas ψ now shows that every subformula ψ of ϕ is an Lϕ-formula.
Therefore, in particular, ϕ is an Lϕ-formula.

The second part is obvious and is left to the reader. �

Our definition of formulas of a first-order language satisfies the
unique readability condition. In order to show this, we need to show
the analogue of Lemma 1.5.11 for formulas.

Lemma 4.3.18. No proper prefix of a formula is a formula.
Furthermore, no suffix of a formula is a proper prefix of a formula.

Proof. We extend the function K introduced in Definition 1.5.10
to the set of all symbols of first-order logic as follows:

symbol s ∨,∧,→,↔ ¬ ∀,∃ n-ary relation symbol R
K(s) −1 0 −1 1− n

As before, we extend K to the set of all sequences of symbols of
first-order logic by letting

K((s0, . . . , sn−1)) = Σn−1
i=0K(si).

We now prove that for every formula ϕ, K(ϕ) = 1. If ϕ is a
propositional constant, we have K(ϕ) = 1 because a propositional
constant is a 0-ary relation symbol. Now let R be an n-ary relation

546 Logical Foundations of Computer Science — Volume 2

symbol with n ≥ 1 and let t0, . . . , tn−1 be n terms. As we proved in
Lemma 1.5.11, K(ti) = 1 for 0 ≤ i ≤ n− 1. Thus

K(R(t0, . . . , tn−1)) = (1− n) + (−1) + 1 + · · · + 1︸ ︷︷ ︸
n

+1 = 1.

Suppose that ϕ and ψ are formulas such that K(ϕ) = K(ψ) = 1.
Observe that we have

K ((¬ϕ)) = −1 + 0 + 1 + 1 = 1

K ((ϕ ∨ ψ)) = −1 + 1− 1 + 1 + 1 = 1

K ((ϕ ∧ ψ)) = −1 + 1− 1 + 1 + 1 = 1

K ((ϕ→ ψ)) = −1 + 1− 1 + 1 + 1 = 1

K ((ϕ↔ ψ)) = −1 + 1− 1 + 1 + 1 = 1

K ((∀x)ϕ) = −1− 1 + 1 + 1 + 1 = 1

K ((∃x)ϕ) = −1− 1 + 1 + 1 + 1 = 1

Next, we prove that if ϕ is a formula, then for every proper prefix
u of ϕ, K(u) < 1. This implies that a proper prefix of formula cannot
be a formula.

Note that if ϕ is a propositional constant, then ϕ has no proper
prefixes. We leave for the reader the argument for the prefixes of
the formula R(t0, . . . , tn−1), which works like the similar argument
of Lemma 1.5.11, where R is an n-ary relation symbol, n ≥ 1, and
t0, . . . , tn−1 are terms.

Now suppose that ϕ and ψ are formulas and that K(u),K(v) < 1,
for every proper prefix u of ϕ and v of ψ. Let C be a binary connective
symbol, Q be a quantifier symbol and x be a variable. The following
tables present the cases which may arise for prefixes of formulas which
we can build starting from ϕ and ψ.

Proper prefixes of (¬ϕ)
Proper prefix w K(w)
(−1
(¬ −1 + 0 = −1
(¬u −1 + 0 +K(u) < 0
(¬ϕ −1 + 0 + 1 = 0

First-Order Logic–Syntax and Semantics 547

Proper prefixes of (ϕCψ)
Proper prefix w K(w)
(−1
(u −1 +K(u) < 0
(ϕ −1 + 1 = 0
(ϕC −1 + 1− 1 = −1
(ϕCv −1 + 1− 1 +K(v) < 0
(ϕCψ −1 + 1− 1 + 1 = 0

Proper prefixes of (Qx)ϕ
Proper prefix w K(w)
(−1
(Q −1− 1 = −2
(Qx −1− 1 + 1 = −1
(Qx) −1− 1 + 1 + 1 = 0
(Qx)u −1− 1 + 1 + 1 +K(u) < 1

For the second part of the lemma, let v be a suffix of a formula ϕ,
say ϕ = uv. If v = λ, then, clearly, v cannot be a proper prefix of a
formula. Suppose that v = λ. Then, u = ϕ, so K(u) < 1, by the first
part of the argument when u = λ, or by definition when u = λ. Since
K(v) = K(ϕ) −K(u) = 1 −K(u) > 0, it follows that K(v) ≥ 1, so
v cannot be a proper prefix of a formula. �

Theorem 4.3.19. For every first-order language L, the definition
of formulas of L (Definition 4.3.9) meets the unique readability
condition.

Proof. Note that a formula must begin with either (, if it is put in
by the last three rules, or a relation symbol, if it is put in by first or
second rule.

If α is put in by one of the first two rules, then the rule by which
it is put in is uniquely determined by the first symbol of α.

Suppose now that α is put in by the third rule. Then the second
symbol of α is ¬. Therefore, α cannot be put in by Rule 4, because no
formula can start with ¬, and cannot be put in by Rule 5, because the
second symbol of a formula put in by Rule 5 is a quantifier symbol.
Moreover, if α = (¬ϕ) = (¬ϕ′), then ϕ = ϕ′.

If α is put in by Rule 4C , where C is one of the binary connectives,
then α cannot be put in by any of the other parts of Rule 4. Indeed,

548 Logical Foundations of Computer Science — Volume 2

if α = (ϕCψ) = (ϕ′C ′ψ′), then, since ϕ cannot be a proper prefix of
ϕ′ and vice-versa, we obtain ϕ = ϕ′, C = C ′ and ψ = ψ′. Also, α
cannot be put in by any of the rules 5(Qx) because no formula starts
with a quantifier symbol. Note also that the preceding argument also
shows that the hypotheses ϕ and ψ used to construct α are unique.

Finally, assume that α is put in by Rule 5(Qx) where Q is a quan-
tifier symbol. If α = (Qx)ϕ = (Q′x′)ϕ′, then Q = Q′, x = x′ and
ϕ = ϕ′. This shows both that the rule used is uniquely determined
and that the hypothesis ϕ is unique. �

Note that if ϕ is an atomic formula of the form R(t0, . . . , tn−1),
then R and t0, . . . , tn−1 are uniquely determined. Indeed, if
R(t0, . . . , tn−1) = R′(t′0, . . . , t′m−1), then R = R′ since they are both
the first symbol of the formula. Therefore, n = m. Suppose that for
some i, 0 ≤ i ≤ n− 1 we have ti = t′i. Let i0 be the least i with this
property. Of course, for j < i0, we have tj = t′j and this gives

ti0 , . . . , tn−1) = t′i0 , . . . , t
′
n−1).

Since ti0 cannot be a proper prefix of t′i0 nor vice-versa, ti0 = t′i0 ,
which contradicts the definition of i0. Therefore, ti = t′i for each i,
0 ≤ i ≤ n− 1.

If (ϕ0, . . . , ϕn−1) is a nonempty, finite sequence of formulas, we
introduce the notations (ϕ0 ∨ · · · ∨ ϕn−1),

∨
0≤i≤n−1 ϕi, (ϕ0 ∧ · · · ∧

ϕn−1), and
∧

0≤i≤n−1 ϕi, in the same way as we did for propositional
logic. The formula denoted by (ϕ0 ∨ · · · ∨ ϕn−1), and

∨
0≤i≤n−1 ϕi is

called the disjunction of the sequence of formulas (ϕ0, . . . , ϕn−1); the
formula denoted by (ϕ0 ∧ · · · ∧ ϕn−1), and

∧
0≤i≤n−1 ϕi is called the

conjunction of the sequence of formulas (ϕ0, . . . , ϕn−1).
If Γ is a nonempty set of formulas, and (ϕ0, . . . , ϕn−1) is the list

of the formulas of Γ in standard order, we write
∨

Γ and
∧

Γ for the
formulas

∨
0≤i≤n−1 ϕi and

∧
0≤i≤n−1 ϕi, respectively.

4.3.3 Occurrences in Formulas

This subsection contains various technical results about occurrences
of variables and formulas in other formulas. We define syntactic con-
cepts (such as free and bound occurrences of variables) in a manner as
close to the intuition as possible and then produce equivalent recur-
sive characterizations of the same concepts. While we could have

First-Order Logic–Syntax and Semantics 549

taken these recursive characterizations as definitions and thereby
reduced some of the tedium associated with this material, we feel
that the nonrecursive definitions are more natural.

Let ϕ be a formula of first-order logic and let s be a symbol of
first-order logic. According to Definition 1.2.3, an occurrence of s in
ϕ is a pair (s, p) where 0 ≤ p ≤ |ϕ| − 1 and ϕ(p) = s, and the set of
all occurrences of s in ϕ is denoted by OCCs(ϕ).

The set of constant symbols that occur in a formula ϕ is denoted
by C(ϕ).

If ϕ and ψ are formulas, again, by Definition 1.2.3, an occurrence
of ψ in ϕ is a pair (ψ, p) such that 0 ≤ p ≤ |ϕ|−|ψ| and ψ() = ϕ(p+)
for 0 ≤ ≤ |ψ| − 1. If there is an occurrence of ψ in ϕ, then we refer
to ψ as a subformula of ϕ.

Example 4.3.20. Consider the first-order formula

ϕ = (R(c, f(x, c)) ∨ (∀x)R′(g(x), y)).

We assume that c is a constant symbol, x, y are variables, R,R′ are
binary relation symbols, f is a binary and g is a unary function
symbol. The reader can easily verify that |ϕ| = 27. Note that we
have three occurrences of x in ϕ, namely, (x, 7), (x, 15) and (x, 21).

Also, there is one occurrence of the formula α = R′(g(x), y) in ϕ,
namely (α, 17) and one occurrence, (∀, 14) of the quantifier symbol ∀.

Definition 4.3.21. Let ϕ be a first-order formula. Its norm ‖ ϕ ‖ is

|OCC∀(ϕ)|+ |OCC∃(ϕ)|+ 2

⎛
⎝ ∑
C∈{∨,∧,→,↔}

|OCCC(ϕ)|

⎞
⎠+ |OCC¬(ϕ)|.

In other words, ‖ϕ‖ is the total number of occurrences of quanti-
fier symbols and negation symbols in ϕ plus twice the number of
occurrences of binary connective symbols in ϕ.

Example 4.3.22. The norm of the formula (∀y)(∀z)((∃x)(R(x) ∧
P (y)) ∧ (¬Q(y, z))) is 8.

550 Logical Foundations of Computer Science — Volume 2

Theorem 4.3.23 (Occurrence Theorem for First-Order
Logic). Let ϕ, ψ, α be formulas.

If ϕ is an atomic formula and α = ϕ, then α does not occur in ϕ.
If α = (¬ϕ), then every occurrence of α in (¬ϕ) is part of ϕ.

(More exactly, each occurrence of α in (¬ϕ) is part of the occurrence
(ϕ, 2).)

Let C be a binary connective symbol. If α = (ϕCψ), then every
occurrence of α in (ϕCψ) is either part of ϕ or part of ψ. (More
exactly, each occurrence of α in (ϕCψ) is either a part of (ϕ, 1) or a
part of (ψ, |ϕ|+ 2).)

If α = (Qx)ϕ, where Q is a quantifier symbol and x is a variable,
then every occurrence of α in (Qx)ϕ is part of ϕ. (Specifically, each
occurrence of α in (Qx)ϕ is a part of the occurrence (ϕ, 4).)

Proof. If ϕ is a propositional constant and α = ϕ, it is immediate
that α does not occur in ϕ. Suppose now that n > 0 and ϕ is the
atomic formula R(t0, . . . , tn−1). Since every formula contains at least
one relation symbol and terms do not contain relation symbols, if α
occurs in ϕ, it must start with R and so by Lemma 4.3.18, α = ϕ.

Let (α, j) be an occurrence of α in (ϕCψ). We have j = 0 because
α = (ϕCψ) and no formula can be a proper prefix of another for-
mula. Since no formula starts with a connective symbol or a close
parenthesis, the occurrence of α in (ϕCψ) must begin either within
ϕ or ψ, i.e., 1 ≤ j ≤ |ϕ| or |ϕ|+2 ≤ j ≤ |ϕ|+|ψ|+1. If the occurrence
extends beyond the end of ϕ, in the first case, or the end of ψ, in the
second case, this would imply that a suffix of a formula is a proper
prefix of another formula, thus contradicting Lemma 4.3.18.

The other two cases are left to the reader. �

Theorem 4.3.24. Let ϕ,ψ, α be formulas. If (ψ, i) is an occurrence
of ψ in ϕ, then replace (ϕ, (ψ, i), α) is a formula.

Proof. The argument is by induction on the definition of
formulas. For the basis step, let ϕ be an atomic formula. By the
Occurrence Theorem for First-Order Logic, ψ = ϕ, so i = 0 and
replace (ϕ, (ψ, 0), α) = α, which is a formula.

The arguments for the inductive steps depend on the structure of
ϕ. We discuss here the case when ϕ = (Qx)ϕ1, whereQ is a quantifier

First-Order Logic–Syntax and Semantics 551

symbol and x is a variable. The remaining cases are similar to the
cases considered in Theorem 2.2.15 for propositional logic and are
left to the reader.

If ψ = ϕ, then i = 0 and the result is immediate. Otherwise, by
the Occurrence Theorem, (ψ, i) is part of the occurrence (ϕ1, 4). We
have

replace (ϕ, (ψ, i), α) = (Qx)replace (ϕ1, (ψ, i− 4), α).

By the inductive hypothesis replace (ϕ1, (ψ, i − 4), α) is a formula,
so replace (ϕ, (ψ, i), α) is a formula. �

Let S be a set of symbols. For k ∈ Z define a bijection Tk :
S × Z −→ S × Z by Tk(s, p) = (s, p + k). It is easy to see that
T−1
k = T−k for every k ∈ Z.

Lemma 4.3.25. Let ϕ,ψ be formulas, C be a binary connective
symbol, x be a variable, and Q be a quantifier symbol. Then, for
every variable or quantifier symbol s, we have

OCCs((¬ϕ)) = T2(OCCs(ϕ))

OCCs((ϕCψ)) = T1(OCCs(ϕ)) ∪ T2+|ϕ|(OCCs(ψ))

OCCs((Qx)ϕ) = T4(OCCs(ϕ))

(if s ∈ {x,Q})
OCCx((Qx)ϕ) = {(x, 2)} ∪ T4(OCCx(ϕ))
OCCQ((Qx)ϕ) = {(Q, 1)} ∪ T4(OCCQ(ϕ)).

Proof. We prove only the second equality of the lemma. Let s be a
variable or quantifier symbol and let (s, i) ∈ OCCs((ϕCψ)). We must
have either 1 ≤ i ≤ |ϕ| or |ϕ|+2 ≤ i ≤ |ϕ|+ |ψ|+1. In the first case,
s = ϕ(i−1), so (s, i−1) ∈ OCCs(ϕ), which gives (s, i) ∈ T1(OCCs(ϕ)).
In the second, s = ψ(i− 2− |ϕ|), so (s, i− 2− |ϕ|) ∈ OCCs(ψ), which
implies (s, i) ∈ T2+|ϕ|(OCCs(ψ)).

Conversely, let (s, j) ∈ T1(OCCs(ϕ)). We have (s, j − 1) ∈ OCCs(ϕ)
and 1 ≤ j ≤ |ϕ|. This gives s = ϕ(j − 1), so (s, j) ∈ OCCs((ϕCψ)). If
(s, j) ∈ T2+|ϕ|(OCCs(ψ)), then a similar argument shows that (s, j) ∈
OCCs((ϕCψ)). �

552 Logical Foundations of Computer Science — Volume 2

The next syntactic result will allow us to attach to each occurrence
of a quantifier symbol in a formula ϕ a subformula of ϕ called the
scope of the quantifier symbol occurrence.

Theorem 4.3.26. Let ϕ be a formula of first-order logic. If Q is
a quantifier symbol and (Q, i) ∈ OCCQ(ϕ), then there is a unique
formula α such that (α, i+ 3) is an occurrence of α in ϕ.

Proof. Let P (ϕ) be the property that for each occurrence of a
quantifier symbol (Q, i) in ϕ there is an α with the desired properties.
We shall prove by structural induction on formulas that P (ϕ) is true
for every formula ϕ ∈ FORM. There is nothing to show for atomic
formulas because they don’t contain quantifier symbols.

Suppose that P (ϕ) is true and let θ = (¬ϕ). If (Q, i) is an occur-
rence of the quantifier symbol Q in θ, then 2 ≤ i ≤ |ϕ| + 1. There-
fore, (Q, i′) = (Q, i− 2) is an occurrence of Q in ϕ. By the inductive
hypothesis, there is an α such that (α, i′+3) = (α, i+1) is an occur-
rence of α in ϕ. Since (ϕ, 2) ∈ OCCϕ(θ), we have (α, i+ 3) ∈ OCCα(θ)
by Theorem 1.2.6.

Assume now that P (ϕ) and P (ψ) are true and consider θ =
(ϕCψ), where C is one of the binary connective symbols. Let (Q, i)
be an occurrence of a quantifier symbol Q in α. We consider two
cases depending on whether the occurrence is part of ϕ or part of ψ,
that is, whether 1 ≤ i ≤ |ϕ| or |ϕ|+ 2 ≤ i ≤ |ϕ|+ |ψ|+ 1.

Case 1. Let i′ = i− 1. Then (Q, i′) is an occurrence of Q in ϕ. By
the inductive hypothesis, there is a formula α such that (α, i′ +3) =
(α, i+ 2) ∈ OCCα(ϕ). Then, (α, i+ 3) ∈ OCCα(θ).

Case 2. Let i′ = i− |ϕ| − 2. Then (Q, i′) is an occurrence of Q in
ψ. Again, by the inductive hypothesis, there is a formula α such that
(α, i′+3) = (α, i−|ϕ|+1) ∈ OCCα(ψ). Then, (α, i−|ϕ|+1+2+ |ϕ|) =
(α, i+ 3) ∈ OCCϕ(θ).

Finally, assume that P (ϕ) is true and that θ = (Q̂x)ϕ for some

quantifier symbol Q̂ and variable x. Let (Q, i) be an occurrence of a
quantifier symbol in θ. We can have i = 1 or 4 ≤ i ≤ |ϕ|+ 3. In the

first case, Q = Q̂ and α = ϕ satisfies the conditions. In the second,
(Q, i′) is an occurrence of Q in ϕ, where i′ = i− 4. By the inductive
hypothesis, there is a formula α such that (α, i′ + 3) = (α, i − 1) ∈
OCCα(ϕ). So, (α, i+ 3) ∈ OCCα(θ).

First-Order Logic–Syntax and Semantics 553

The uniqueness of α follows immediately from the fact that
no formula can be a proper prefix of another formula (see
Lemma 4.3.18). �

Definition 4.3.27. Let (Q, i) be an occurrence of a quantifier
symbol Q in a formula ϕ and let (α, i + 3) be the occurrence of
a subformula α whose existence and uniqueness are guaranteed by
Theorem 4.3.26.

The scope of the occurrence (Q, i) in ϕ is the occurrence (α, i+3)
of α in ϕ, denoted by scopeϕ((Q, i)).

If ϕ(i + 1) = x, then we say that (Q, i) is an occurrence of the
quantifier symbol Q using the variable x.

If y is a variable and (y, j) is part of the scope of (Q, i), then we
say that (y, j) is in the scope of (Q, i).

Example 4.3.28. For the occurrence (∀, 14) of the quantifier symbol
∀ in the first-order formula

ϕ = (R(c, f(x, c)) ∨ (∀x)R′(g(x), y))

considered in Example 4.3.20, the scope is (α, 17), where α is the
formula R′(g(x), y); (y, 24) is in the scope of (∀, 14).

An occurrence of a variable x in a formula is bound if it imme-
diately follows an occurrence of a quantifier symbol or it is located
in the scope of an occurrence of a quantifier symbol using x. This is
formalized in the following definition.

Definition 4.3.29. An occurrence (x, j) of a variable x in a formula
ϕ is bound if there exists an occurrence of a quantifier symbol (Q, i) ∈
OCCQ(ϕ) such that one of the following cases holds:

(1) j = i+ 1, or
(2) ϕ(i+ 1) = x and (x, j) is in the scope of (Q, i).

An occurrence of a variable in a formula is free if it is not bound.
The set of all bound occurrences of variables in a formula ϕ is

denoted by BO(ϕ); the set of all free occurrences of variables in ϕ is
denoted by FO(ϕ). Also, the set of all bound occurrences of a variable
x in ϕ is denoted by BOx(ϕ), while the set of free occurrences of x in
ϕ is denoted by FOx(ϕ).

Bound occurrences of variables which are next to quantifier occur-
rences (the first case above) are said to be active. Bound occurrences

554 Logical Foundations of Computer Science — Volume 2

that are not active are called passive. We denote by ABO(ϕ) and
PBO(ϕ), respectively, the sets of active and passive bound occurrences
in ϕ.

Clearly, BO(ϕ) ∩ FO(ϕ) = ∅.

Definition 4.3.30. Let ϕ be a formula. The set of bound variables
of ϕ is the set BV(ϕ) that consists of those variables x such that
(x, j) ∈ BO(ϕ) for some j ∈ N.

The set of free variables of ϕ is the set FV(ϕ) that consists of all
those variables x such that (x, j) ∈ FO(ϕ) for some j ∈ N.

If L is a first-order language, we denote by FORML(V) the set
of L-formulas ϕ such that FV(ϕ) ⊆ V . The formulas in FORML(V)
will be referred to as (L, V)-formulas.

As usual, if Γ is a set of formulas, we denote by FV(Γ) the set⋃
{FV(ϕ) | ϕ ∈ Γ}, and similarly for BV(Γ).
Note that a variable may occur both as a free and as a bound

variable in a formula, that is, we may have FV(ϕ) ∩ BV(ϕ) = ∅.
The set of all variables that occur in a formula ϕ is denoted by

V(ϕ). Clearly, V(ϕ) = BV(ϕ) ∪ FV(ϕ).

Example 4.3.31. Let ϕ be the formula (∀y)((∀x)R(x, y) ∧ R′(x)).
Since the scope of the occurrence (∀, 6) is (R(x, y), 9), the occur-
rences (x, 7) and (x, 11) are bound; (x, 7) is an active bound occur-
rence, while (x, 11) is a passive bound occurrence of x. Since there
are no other occurrences of quantifier symbols using x, the occur-
rence (x, 18) is free. The occurrence (y, 2) is active bound because
it follows immediately the occurrence (∀, 1) and (y, 13) is passive
bound because it is located in the scope of the occurrence (∀, 1).
Thus BV(ϕ) = {x, y} and FV(ϕ) = {x}.

Example 4.3.32. Consider the formula

ψ = ((∃x)R(x, y) ∨ (∀x)((∀x)R′(x, y, y) ∧R(x, y))).

There are three occurrences of quantifier symbols in ψ, namely, (∃, 2),
(∀, 13), and (∀, 18). The scopes of these quantifier symbols are

(R(x, y), 5), (((∀x)R′(x, y, y) ∧R(x, y)), 16), (R′(x, y, y), 21),

respectively. For reasons shown in the following table, all occurrences
of x are bound.

First-Order Logic–Syntax and Semantics 555

(x, 3) follows (∃, 2) active

(x, 7)
located in the scope of
(∃, 2) passive

(x, 14) follows (∀, 13) active
(x, 19) follows (∀, 18) active

(x, 23)
located in the scopes of
(∀, 13) and (∀, 18) passive

(x, 32)
located in the scope of
(∀, 13) passive

The passive occurrence (x, 23) in the formula ψ of Example 4.3.32
is in the scope of two quantifier occurrences, (∀, 13) and (∀, 18). How-
ever, intuitively, this occurrence is linked to quantifier occurrence
(∀, 18). Next, we formalize this intuition.

Definition 4.3.33. Let ϕ be a formula. The function bindingϕ :
PBO(ϕ)→ ABO(ϕ) is defined by bindingϕ((x, j)) = (x, i), where

i = max{k | (x, k) ∈ ABO(ϕ) and (x, j) is in the scope of (Q, k − 1)}.

If bindingϕ((x, j)) = (x, i), we say that (x, j) is a passive bound

occurrence of x associated to (x, i).

Example 4.3.34. For the formula ψ of Example 4.3.32, we have

bindingψ((x, 7)) = (x, 3), bindingψ((x, 23)) = (x, 19),

bindingψ((x, 32)) = (x, 14).

Definition 4.3.35. A sentence or a closed formula is a formula ϕ
such that FV(ϕ) = ∅. For a first-order language L, the set of sentences
that are L-formulas is denoted by SENTL.

The set of all sentences is denoted by SENT.

Example 4.3.36. The formula ϕ = (∀y)((∀x)R(x, y) ∧ R′(x))
considered in Example 4.3.31 is not a sentence because x is a free
variable. On the other hand, formula α = (∃x)ϕ is a sentence.

556 Logical Foundations of Computer Science — Volume 2

Theorem 4.3.37. If ϕ is an atomic formula, then

FO(ϕ) =
⋃
x∈VAR OCCx(ϕ), BO(ϕ) = ∅,

FV(ϕ) = {x ∈ VAR | OCCx(ϕ) = ∅}, BV(ϕ) = ∅.

Further, if ϕ is a propositional constant, then FV(ϕ) = ∅. Also, if
ϕ = R(t0, . . . , tn−1), then FV(ϕ) =

⋃
{V(ti) | 0 ≤ i ≤ n− 1}.

Proof. We leave this simple argument to the reader. �

Theorem 4.3.38. Let ϕ = (¬ψ), where ψ is a formula. If (Q, i)
is an occurrence of a quantifier symbol Q in ϕ, then the scope of
(Q, i) in ϕ is (α, i+3), where (α, i+1) is the scope of the occurrence
(Q, i− 2) in ψ. Furthermore,

FO(ϕ) = T2(FO(ψ)), BO(ϕ) = T2(BO(ψ)),

FV(ϕ) = FV(ψ), BV(ϕ) = BV(ψ).

Proof. We leave this argument for the reader. �

Theorem 4.3.39. Let ϕ = (αCβ), where α and β are formulas and
C is a binary connective symbol. Let (Q, i) be an occurrence of a
quantifier symbol in ϕ. If (Q, i) ∈ T1(OCCQ(α)), then the scope of
(Q, i) in ϕ is (γ, i+3), where (γ, i+2) is the scope of the occurrence
(Q, i − 1) in α. If (Q, i) ∈ T2+|α|(OCCQ(β)), then the scope of (Q, i)
in ϕ is (γ, i+ 3) where (γ, i+ 1− |α|) is the scope of the occurrence
(Q, i− 2− |α|) in β. Furthermore,

FO(ϕ) = T1(FO(α)) ∪ T2+|α|(FO(β)),

BO(ϕ) = T1(BO(α)) ∪ T2+|α|(BO(β)),

FV(ϕ) = FV(α) ∪ FV(β),
BV(ϕ) = BV(α) ∪ BV(β).

Proof. We give this elementary but tedious proof in order to
illustrate the technique needed to prove Theorems 4.3.37–4.3.40.

If Q is a quantifier symbol and (Q, i) ∈ T1(OCCQ(α)), then
(Q, i− 1) ∈ OCCQ(α) and therefore there is a subformula γ of α
such that (γ, i+ 2) is the scope of (Q, i − 1) in α. Clearly, (γ, i + 3)
is an occurrence of γ in ϕ and, by Definition 4.3.27, (γ, i + 3) is

First-Order Logic–Syntax and Semantics 557

the scope of the occurrence (Q, i). A similar argument works when
(Q, i) ∈ T2+|α|(OCCQ(β)).

We prove the second of the last four equalities of the lemma; the
rest are immediate consequences of this equality.

Let (x, i) ∈ T1(BO(α)). We have (x, i − 1) ∈ BO(α). There is an
occurrence of a quantifier symbol (Q̃, j) in α such that i− 1 = j + 1
(that is, i = j+2) or (x, i−1) is in the scope of the occurrence (Q̃, j)
using x in α. Because we have the occurrence (Q̃, j) in α, we have
the occurrence (Q̃, j + 1) of Q̃ in ϕ. If i = j + 2, then it is clear that
(x, i) ∈ BO(ϕ). Suppose now that (x, i−1) is in the scope (γ, j+3) of
(Q̃, j) in α. Since (γ, j + 4) is an occurrence of γ in ϕ it follows that
(x, i− 2− |α|) is located in the scope of the occurrence (Q̃, j + 1) in
ϕ, so (x, i) ∈ BO(ϕ).

If (x, i) ∈ T2+|α|(BO(β)), then (x, i− 2− |α|) ∈ BO(β). There is an
occurrence (Q′, k) of a quantifier symbol Q′ in β such that i−2−|α| =
k+1 (that is, i = k+3+ |α|) or (x, i−2−|α|) is located in the scope
(γ, k+3) of (Q′, k) in β. Note that (Q′, k+ 2+ |α|) is an occurrence
of Q′ in ϕ. Therefore, in the first case, (x, i) is the occurrence of x
that follows immediately the occurrence (Q′, k+2+ |α|) in ϕ. In the
second case, (γ, k + 5 + |α|) is an occurrence of γ in ϕ and (x, i) is
located in this occurrence of γ. We conclude that

T1(BO(α)) ∪ T2+|α|(BO(β)) ⊆ BO(ϕ).

Conversely, let (x, i) ∈ BO(ϕ). There exists an occurrence (Q,h)
of a quantifier symbol Q using x in ϕ such that i = h + 1 or
(x, i) is located in the scope of (Q,h) in ϕ. By the second equal-
ity of Lemma 4.3.25 we have (Q,h) ∈ T1(OCCQ(α)) or (Q,h) ∈
T2+|α|(OCCQ(β)), which gives (Q,h−1) ∈ OCCQ(α) or (Q,h−2−|α|) ∈
OCCQ(β), respectively. Four cases need to be considered:

(1) i = h+ 1 and (Q,h − 1) ∈ OCCQ(α);
(2) (x, i) is located in the scope (γ, h+3) of the occurrence of (Q,h)

in ϕ and (Q,h− 1) ∈ OCCQ(α);
(3) i = h+ 1 and (Q,h − 2− |α|) ∈ OCCQ(β), and
(4) (x, i) is located in the scope of (Q,h) in ϕ and (Q,h− 2− |α|) ∈

OCCQ(β).

In the first case (x, i−1) ∈ OCCx(α) and this occurrence of x is the one
which follows immediately the occurrence (Q,h− 1) in α. Therefore,
(x, i − 1) ∈ BO(α), so (x, i) ∈ T1(BO(α)).

558 Logical Foundations of Computer Science — Volume 2

In the second case the scope of the occurrence (Q,h − 1) in α is
(γ, h + 2) and (x, i − 1) is located in this scope. Again, this implies
(x, i) ∈ T1(BO(α)).

Both the third and the fourth cases imply (x, i) ∈ T2+|α|(BO(β))
as the reader can verify following a similar argument. Therefore,

BO(ϕ) ⊆ T1(BO(α)) ∪ T2+|α|(BO(β))

and this concludes the proof of the second of the last group of
equalities. �

Theorem 4.3.40. Let ϕ = (Q′x)ψ, where Q′ is a quantifier symbol,
x is a variable and ψ is a formula. If (Q, i) is an occurrence of a
quantifier symbol Q in ϕ, then the scope of (Q, i) in ϕ is (α, i + 3),
where (α, i− 1) is the scope of the occurrence (Q, i− 4) in ψ, unless
(Q, i) = (Q′, 1), in which case the scope is (ψ, 4). Furthermore,

FO(ϕ) = T4(FO(ψ)− {(x, j)|(x, j) ∈ FO(ψ)}),
BO(ϕ) = T4(BO(ψ)) ∪ {(x, 2)} ∪ T4({(x, j)|(x, j) ∈ FO(ψ)}),
FV(ϕ) = FV(ψ)− {x},
BV(ϕ) = BV(ψ) ∪ {x}.

Proof. The argument is left to the reader. �

Theorem 4.3.41. Let α, β be two formulas such that FV(α) =
FV(β). Then, if (α, i) is an occurrence of α in ϕ, then
FV(replace (ϕ, (α, i), β)) = FV(ϕ).

Proof. The argument is by induction on ϕ and is left to the reader.
�

Definition 4.3.42. Let ϕ be a first-order formula whose set of free
variables is {xi0 , . . . , xin−1} where i0 < · · · < in−1.

The universal closure of ϕ is the generalization ϕ∀ of ϕ given by:

(∀xi0) · · · (∀xin−1)ϕ.

If Γ is a set of first-order formulas, we use the notation Γ∀ for the
set {ϕ∀ | ϕ ∈ Γ} and we refer to this set as the universal closure of Γ.

The existential closure of ϕ is the formula ϕ∃ given by:

(∃xi0) · · · (∃xin−1)ϕ.

First-Order Logic–Syntax and Semantics 559

If Γ is a set of first-order formulas, we use the notation Γ∃ for the
set {ϕ∃ | ϕ ∈ Γ} and we refer to this set as the existential closure
of Γ.

Note that if ϕ is a closed formula, then ϕ∀ = ϕ∃ = ϕ. Repeated
application of Theorem 4.3.40, shows that both the universal closure
and the existential closure of a formula are closed formulas.

Theorem 4.3.43. We have ((Γ∀)−∀)∀ = Γ∀ if Γ is a set of
quantifier-free formulas.

Proof. We leave to the reader the proof of this simple result. �
Next, we develop a classification of occurrences of atomic formulas

in first-order formulas that do not contain the ↔ connective symbol.
This classification is needed in Chapter 5. Using induction on ϕ, we
define positive and negative occurrences of atomic formulas in ϕ.

Definition 4.3.44. Let ϕ be a formula that does not contain the
connective symbol ↔, and let ζ = (α, i) be an occurrence of an
atomic formula α in ϕ.

(1) If ϕ is atomic, then α = ϕ and i = 0 and we say that ζ is a
positive occurrence in ϕ.

(2) If ϕ = (¬ψ), then ζ ′ = (ϕ, i − 2) is an occurrence of α in ψ and
we say that ζ is a positive (negative) occurrence in ϕ if ζ ′ is a
negative (positive) occurrence in ψ.

(3) If ϕ = (ψ0Cψ1), where C ∈ {∨,∧,→}, then either ζ is part of
(ψ0, 1) and ζ

′ = (ϕ, i − 1) is an occurrence in ψ0, or ζ is part of
(ψ1, |ψ0| + 2) and ζ ′ = (α, i − |ψ0| − 2) is an occurrence in ψ1.
Two cases may occur.

(a) If C ∈ {∨,∧}, ζ has the same sign (positive or negative) as
ζ ′ in the corresponding subformula of ϕ.

(b) If C is →, ζ has the same sign as ζ ′ if ζ ′ is an occurrence in
ψ1 and the opposite sign if ζ ′ is an occurrence in ψ0.

(4) If ϕ = (Qx)ψ and ζ ′ = (α, i − 4) is an occurrence in ψ, then ζ
has the same sign in ϕ as ζ ′ has in ψ.

Example 4.3.45. Let ϕ = (∀x)(¬(P (a, b) → R(x))). Note that
(P (a, b), 7) is a positive occurrence in ϕ, while (R(x), 14) is a negative
occurrence in the same formula.

560 Logical Foundations of Computer Science — Volume 2

4.3.4 Signed Formulas

As we did for propositional logic, we introduce first-order signed for-
mulas and for similar reasons: to facilitate the presentation of certain
formal systems of first-order logic.

Definition 4.3.46. A signed formula is a pair (b, ϕ) ∈ Bool ×
FORM. A signed formula (b, ϕ) will be denoted by bϕ.

The size size(bϕ) of the signed formula bϕ is size(ϕ).
The norm of bϕ is ‖ϕ‖ and will be denoted by ‖bϕ‖.
The set of signed formulas Bool × FORM will be denoted by

SFORM; similarly, the set Bool × FORML(V) will be denoted by
SFORML(V), when L is a first-order language and V is a set of
variables. The standard order of signed formulas is

Tϕ0,Fϕ0,Tϕ1,Fϕ1, . . . ,

where ϕ0, ϕ1, . . . is the standard order on FORM.
Signed formulas of the forms T(∀x)ϕ and F(∃x)ϕ will be called

γ-signed formulas. Signed formulas of the forms T(∃x)ϕ and F(∀x)ϕ
will be referred to as δ-formulas.

If bϕ is a signed formula, then FV(bϕ) is the set FV(ϕ). As usual,
if Δ is a set of signed formulas, then FV(Δ) =

⋃
{FV(bϕ) | bϕ ∈ Δ}.

Similarly, BV(bϕ) = BV(ϕ) and V(bϕ) = V(ϕ). These notations are
extended to sets of signed formulas by defining BV(Δ) =

⋃
{BV(bϕ) |

bϕ ∈ Δ} and V(Δ) =
⋃
{V(bϕ) | bϕ ∈ Δ}.

Example 4.3.47. Following the above convention, we denote the
signed formula (T, (∃x0)R1

3(x0)) by T(∃x0)R1
3(x0).

Definition 4.3.48. A set Δ of signed formulas is closed if there is a
formula ϕ such that both Tϕ and Fϕ belong to Δ.

Note that the term “closed” is overloaded because we already used
this term in Definition 4.3.35 in reference to formulas that contain
no free variables. The context will make it clear which meaning is
applicable.

4.3.5 Substitutions and Formulas

In this subsection, we examine the effects of several types of substitu-
tions on formulas; namely, replacing one relation symbol by another

First-Order Logic–Syntax and Semantics 561

relation symbol with the same arity, replacing free occurrences of
variables with terms, and replacing constant symbols with terms.
The application of substitutions is extended to signed formulas by
defining s(bϕ) as bs(ϕ) for any substitution s and signed formula bϕ.

Theorem 4.3.49. Let ϕ be a formula and let R,R′ be relation sym-
bols of the same arity. Then, the sequence sRR′(ϕ) obtained by substi-
tuting R′ for R in ϕ is a formula.

Proof. The argument is by induction on formulas. For the basis
step, let us first observe that sRR′(t) = t for every term t. Let P be
an m-ary relation symbol with m > 0 and t0, . . . , tm−1 be terms. For
the atomic formula ϕ = P (t0, . . . , tm−1), we have

sRR′(ϕ) =

{
ϕ if P = R

R′(t0, . . . , tn−1) if P = R,

which shows that sRR′(ϕ) is a formula. If P is a propositional constant,

and ϕ = P , then sRR′(ϕ) is either P or R′ depending whether P = R
or not. In either case, sRR′(ϕ) is a formula.

We leave to the reader the inductive steps. �

For the remainder of this section, we refer to (SFOL,VAR)-
substitutions simply as substitutions; further, if L is a first-order
language, (SL,VAR)-substitutions are referred to as L-substitutions.

Definition 4.3.50. Let ϕ be a formula and let {(y0, i0), . . . ,
(y�−1, i�−1)} be the set FO(ϕ) of all free occurrences of variables in
ϕ, where i0 < · · · < i�−1, so that

ϕ = u0y0u1y1 . . . y�−1u�,

where

u0 = ϕ(0) . . . ϕ(i0 − 1)

u1 = ϕ(i0 + 1) . . . ϕ(i1 − 1)

...

u�−1 = ϕ(i�−2 + 1) . . . ϕ(i�−1 − 1)

u� = ϕ(i�−1 + 1) . . . ϕ(|ϕ| − 1)

562 Logical Foundations of Computer Science — Volume 2

Let s be a substitution. The result of applying s to the free occur-
rences of variables in ϕ is the sequence

FVSubst(s, ϕ) = u0s(y0)u1s(y1) · · · s(y�−1)u�.

For a signed formula bϕ, we write FVSubst(s, bϕ) = bFVSubst
(s, ϕ).

If y0, . . . , yn−1 are distinct variables and t0, . . . , tn−1 are terms, we
denote FVSubst(s

y0···yn−1

t0···tn−1
, ϕ) by (ϕ)y0,...,yn−1:=t0,...,tn−1 . In particular,

for n = 1, we use the notation (ϕ)x:=t.
We have adopted the notation (ϕ)x:=t instead of ϕ(x := t) in

order to avoid ambiguous expressions such as (∀x)ϕ(x := t) created
by the fact, mentioned in Exercise 10(b), that a proper suffix of a
formula can be a formula. Further, the formula

(· · · (((ϕ)y0:=t0)y1:=t1) · · ·)yn−1:=tn−1

will be denoted by (ϕ)y0:=t0,...,yn−1:=tn−1 for n ≥ 1 (where the yis need
not be distinct).

Theorem 4.3.51. Let s, s′ be substitutions and ϕ be a formula such
that s(x) = s′(x) for every x ∈ FV(ϕ). Then, FVSubst(s, ϕ) =
FVSubst(s′, ϕ).

Proof. This statement follows immediately from Definition 4.3.50.
�

Lemma 4.3.52. Let s be a substitution. If ϕ is an atomic formula,
then s(ϕ) is an atomic formula. Further, if ϕ is an atomic L-formula
and s is an L-substitution, then s(ϕ) is an atomic L-formula.

Proof. If ϕ is a propositional constant, then s(ϕ) = ϕ. If ϕ is
the atomic formula R(u0, . . . , um−1), where R is an m-ary relation
symbol, then

s(ϕ) = R(s(u0), . . . , s(um−1))

and this is an atomic formula because of Theorem 1.5.20. The second
part follows immediately from the same theorem. �

First-Order Logic–Syntax and Semantics 563

If f is a function, then [a → b]f is the function obtained from f
by removing the pair, if any, whose first component is a and adding
the pair (a, b).

Lemma 4.3.53. Let ϕ and ψ be formulas, s be a substitution, C be
a binary connective symbol and Q be a quantifier symbol. Then,

FVSubst(s, ϕ) = s(ϕ),

if ϕ is atomic. Also,

FVSubst(s, (¬ϕ)) = (¬FVSubst(s, ϕ))
FVSubst(s, (ϕCψ)) = (FVSubst(s, ϕ) C FVSubst(s, ψ))

FVSubst(s, (Qy)ϕ) = (Qy)FVSubst([y → y]s, ϕ).

Proof. This follows immediately from Theorems 4.3.37–4.3.40.
(Note that in the last case, we apply the substitution [y → y]s instead
of s, because this guarantees that the free occurrences of y in ϕ will
be unaffected by the substitution.) �

The next lemma contains a special case of Lemma 4.3.53.

Lemma 4.3.54. Let ϕ and ψ be formulas, y0, . . . , yn−1 be distinct
variables, t0, . . . , tn−1 be terms, C be a binary connective and Q be a
quantifier symbol. Then,

(ϕ)y0,...,yn−1:=t0,...,tn−1 = s
y0···yn−1
t0···tn−1

(ϕ),

if ϕ is atomic. Also,

((¬ϕ))y0,...,yn−1:=t0,...,tn−1 = (¬(ϕ)y0,...,yn−1:=t0,...,tn−1),

((ϕCψ))y0,...,yn−1:=t0,...,tn−1

= ((ϕ)y0,...,yn−1:=t0,...,tn−1C(ψ)y0,...,yn−1:=t0,...,tn−1)

and

((Qy)ϕ)y0,...,yn−1:=t0,...,tn−1

=

{
(Qy)(ϕ)y0,...,yn−1:=t0,...,tn−1 if y �∈ {y0, . . . , yn−1}
(Qy)(ϕ)y0,...,yi−1,yi+1,...,yn−1:=t0,...,ti−1,ti+1,...,tn−1 if y = yi.

564 Logical Foundations of Computer Science — Volume 2

Proof. The statement follows immediately from Lemma 4.3.53 by
taking s = s

y0···yn−1

t0···tn−1
. �

Theorem 4.3.55. Let ϕ be a formula and s be a substitution. The
sequence FVSubst(s, ϕ) is a formula. Moreover, if ϕ is an L-formula
and s is an L-substitution, then FVSubst(s, ϕ) is an L-formula.

Proof. The theorem follows immediately from Lemmas 4.3.52
and 4.3.53 by structural induction on ϕ. �

Corollary 4.3.56. Let ϕ be a formula, y0, . . . , yn−1 be distinct vari-
ables and t0, . . . , tn−1 be terms. Then, (ϕ)y0,...,yn−1:=t0,...,tn−1 is a for-
mula. In addition, (ϕ)y0,...,yn−1:=t0,...,tn−1 is an L-formula when ϕ is
an L-formula and t0, . . . , tn−1 ∈ TERML.

Proof. This follows immediately from Theorem 4.3.55. �

A notion which will be useful in Section 4.10 is introduced below.

Definition 4.3.57. Let ψ = (∀y0) · · · (∀yn−1)ϕ be a universal for-
mula with ϕ quantifier-free.

A formula of the form θ = (ϕ)y0,...,yn−1:=t0,...,tn−1 is an instance of
ψ, where t0, . . . , tn−1 are terms. If t0, . . . , tn−1 ∈ TERML, then θ is
called an L-instance of ψ, where L is a first-order language. More
specifically, if t0, . . . , tn−1 are (L, V)-terms, where V ⊆ VAR, then
we refer to θ as an (L, V)-instance of ψ.

If Γ is a set of universal formulas, we denote by INSTL,V (Γ) the set
of all (L, V)-instances of the formulas of Γ. When V = ∅, we denote
INSTL,∅(Γ) by GINSTL(Γ) and we refer to its members as ground
instances of Γ. When V = VAR, we denote the set INSTL,VAR(Γ)
simply by INSTL,(Γ).

Definition 4.3.58. Let L be a first-order language and ϕ be a quan-
tifier free L-formula. An L-instantiation via an L-substitution s of ϕ
is a formula ϕ′ of the form s(ϕ).

Note that an L-instantiation of a quantifier-free L-formula is the
same thing as an L-instance of ϕ∀, the universal closure of ϕ.

Theorem 4.3.59. Let L be a first-order language, ϕ be a quantifier-
free L-formula and let s, s′ be two L-substitutions. If s(ϕ) = s′(ϕ),
then we have s(x) = s′(x) for all x ∈ VAR(ϕ).

First-Order Logic–Syntax and Semantics 565

Proof. Let ϕ = q0xi0q1xi1 · · · qn−1xin−1qn, where xi0 , . . . , xin−1 are
variables and the sequences q0, . . . , qn−1 contain no variables. Then,

s(ϕ) = q0s(xi0)q1s(xi1) · · · qn−1s(xin−1)qn

s′(ϕ) = q0s
′(xi0)q1s

′(xi1) · · · qn−1s
′(xin−1)qn.

Since one term cannot be a proper prefix of another term, we have
s(xi0) = s′(xi0). Then, for the same reason, s(xi1) = s′(xi1), etc. �

The above theorem shows that if ϕ′ is an instantiation of ϕ, then
the substitution s such that ϕ′ = s(ϕ) is uniquely determined on the
variables that occur in ϕ.

Definition 4.3.60. Let L be a first-order language, ϕ be a
quantifier-free L-formula and ϕ′ be an L-instantiation of ϕ via the
L-substitution s. An occurrence of an term (t′, i′) in ϕ′ is visible in
ϕ if there is an occurrence of a term (t, i) in ϕ such that if we write
ϕ = q0tq1 with |q| = i and ϕ′ = q′0t

′q′1 with |q′0| = i′, we have

s(q0) = q′0, s(t) = t′, and s(q1) = q′1.

Observe that in the previous definition s(t) = t′ and s(q1) = q′1 follow
from s(q0) = q′0 because no term can be a proper prefix of another
term.

Example 4.3.61. Let f be a unary function symbol, R be a unary
relation symbol, and a be a constant symbol. The occurrence (f(a), 2)
in the formula ϕ′ = R(f(a)) is visible in ϕ = R(x). Note that the
occurrence (a, 4) in ϕ′ is not visible in ϕ.

Theorem 4.3.62. Let L be a first-order language, ϕ be a quantifier-
free L-formula and let ϕ′ be an instantiation of ϕ via s0 ∗ s1, where
s0 and s1 are L-substitutions, that is ϕ′ = s0∗s1(ϕ). If an occurrence
of a term (t′, i′) in ϕ′ is visible in ϕ, then this occurrence is visible
in s1(ϕ).

Proof. Note that ϕ′ = s0 ∗ s1(ϕ) = s0(s1(ϕ)), so ϕ
′ is an instanti-

ation of s1(ϕ). If an occurrence (t′, i′) in ϕ′ is visible in ϕ, then there
is an occurrence of a term (t, i) in ϕ such that if we write ϕ = q0tq1
with |q0| = i and ϕ′ = q′0t

′q′1 with |q′0| = i′, we have s0 ∗ s1(q0) = q′0,

566 Logical Foundations of Computer Science — Volume 2

s0 ∗ s1(t) = t′, and s0 ∗ s1(q1) = q′1. Since s1(ϕ) = s1(q1)s1(t)s1(q1),
the pair (s1(t), |s1(q0)|) is an occurrence of a term s1(t) is s1(ϕ) and
we have s0(s1(q0)) = s0 ∗ s1(q0) = q′0, so (t′, i′) is visible in s1(ϕ). �

Lemma 4.3.63. Let L be a first-order language, ϕ be a quantifier-
free L-formula and ϕ′ be an L-instantiation of ϕ via an
L-substitution s. Then, an occurrence (t′, i′) of a term in ϕ′ is visible
in ϕ if and only if there is a prefix q0 of ϕ such that |s(q0)| = i′.

Proof. If (t′, i′) is visible in ϕ, then the desired q0 exists by defini-
tion.

Conversely, suppose that q0 is a prefix of ϕ and |s(q0)| = i′. Since
s(q0) is not the entire formula ϕ′ = s(ϕ), q0 must be a proper prefix
of ϕ. If the symbol following q0 in ϕ is “(”, “)”, “,”, a relation symbol
or a connective symbol, then t′ would start with this symbol, which
is impossible, so the symbol following q0 in ϕ must be a variable or
a function symbol, which means that there is a term immediately
following q0 in ϕ, say ϕ = q0tq1. If we write ϕ

′ = q′0t
′q′1 with |q′0| = i′,

then |s(q0)| = i′ implies s(q0) = q′0 which, as noted previously, implies
that (t′, i′) is visible in ϕ. �

Theorem 4.3.64. Let L be a first-order language, ϕ be a quantifier-
free L-formula, s be an L-substitution, and let (t′, i′) be an occurrence
of a term in the formula ϕ′ = s(ϕ). If we write ϕ as

q0y0q1y1 · · · qn−1yn−1qn,

where n ≥ 0, y0, . . . , yn−1 are variables (not necessarily distinct),
q0, . . . , qn do not contain variables, and s(yj) = uj for 0 ≤ j ≤
n−1 (so ϕ′ = q0u0q1u1 · · · qn−1un−1qn), then the occurrence (t′, i′) is
visible in ϕ if and only if either (t′, i′) starts in one of the qj sequences
or is the occurrence (uj , ij) corresponding to one of the yjs.

Proof. Suppose that (t′, i′) does not start in one of the qjs and
is not one of the (uj , ij)s. Then, (t

′, i′) starts in one of the (uj , ij)s.
If t′ starts with the first symbol of uj, then since no term can be
a proper prefix of another term, we have (t′, i′) = (uj , ij), contra-
dicting the assumption, so (t′, i′) starts properly inside uj . But then,
|s(q0y0q1 · · · qj)| < i′ and |s(q0y0q1 · · · qjyj)| > i′, so there is not pre-
fix q of ϕ with |s(q)| = i′. By Lemma 4.3.63, (t′, i′) is not visible
in ϕ.

First-Order Logic–Syntax and Semantics 567

Conversely, suppose that (t′, i′) starts in qj, say q̂ is the prefix of
qj preceeding the start of t′. Then, |s(q0y0 · · · qj−1yj−1q̂)| = i′, and
by the same lemma, (t′, i′) is visible in ϕ.

If (t′, i′) = (uj , ij), then |s(q0y0 · · · qj)| = i′ and again by the same
lemma, (t′, i′) is visible in ϕ. �

Next, we present a result involving substituting one relation sym-
bol for another.

Theorem 4.3.65. Let R and R′ be n-ary relation symbols, s be a
substitution and ϕ be a formula. Then,

sRR′(FVSubst(s, ϕ)) = FVSubst(s, sRR′(ϕ)).

Proof. We shall prove by induction on the formula ϕ that the
equality of the theorem holds for every substitution s. For the basis
step, assume that ϕ is atomic. Then, we have:

sRR′(FVSubst(s, ϕ))

= sRR′(s(ϕ))

(by the first equality of Lemma 4.3.53)

= sRR′ ∗ s(ϕ)
= s ∗ sRR′(ϕ)

(by Theorem 1.2.23)

= s(sRR′(ϕ))

= FVSubst(s, sRR′(ϕ))

(by Lemma 4.3.53, since sRR′(ϕ) is atomic).

We discuss only one of the inductive steps, namely, when ϕ =
(Qy)ψ and the result holds for ψ. In this case, we obtain

sRR′(FVSubst(s, ϕ))

= sRR′(FVSubst(s, (Qy)ψ))

= sRR′((Qy)FVSubst([y → y]s, ψ))

(by the last equality of Lemma 4.3.53)

568 Logical Foundations of Computer Science — Volume 2

= (Qy)sRR′(FVSubst([y → y]s, ψ))

= (Qy)FVSubst([y → y]s, sRR′(ψ))

(by inductive hypothesis)

= FVSubst(s, (Qy)sRR′(ψ))

(by the last equality of Lemma 4.3.53)

= FVSubst(s, sRR′((Qy)ψ))

= FVSubst(s, sRR′(ϕ)).
�

Corollary 4.3.66. If ϕ is a formula, y0, . . . , yn−1 are distinct vari-
ables, and t0, . . . , tn−1 are terms, then

sRR′((ϕ)y0,...,yn−1:=t0,...,tn−1)

= (sRR′(ϕ))y0,...,yn−1:=t0,...,tn−1 .

Proof. The corollary follows immediately from Theorem 4.3.65 by
taking s = s

y0···yn−1

t0···tn−1
. �

The formulation of the next corollary requires the following obser-
vation. If Γ is a set of universal formulas and R,R′ are relation sym-
bols of the same arity, then sRR′(Γ) is also a set of universal formulas.

Corollary 4.3.67. Let L be a first-order language, R be an n-ary
relation symbol in L and R′ be an n-ary relation symbol such that
R′ ∈ L. Define L′ = (L − {R}) ∪ {R′}. If Γ is a set of universal
L-formulas and FV(Γ) ⊆ V, then

sRR′(INSTL,V (Γ)) = INSTL′,V (s
R
R′(Γ)).

Proof. The statement follows from Corollary 4.3.66. �

Now we investigate replacing constant symbols in terms and for-
mulas with terms.

Theorem 4.3.68. Let ϕ be a formula, u, t be terms and a be a con-
stant symbol. Then, sat (u) is a term and sat (ϕ) is a formula.

Proof. The argument is by induction on terms and formulas,
respectively, and is left to the reader. �

First-Order Logic–Syntax and Semantics 569

Theorem 4.3.69. Let ϕ be a formula, u, t be terms and a be a con-
stant symbol. We have:

V(u) ⊆ V(sat (u)) ⊆ V(u) ∪ V(t)
FV(ϕ) ⊆ FV(sat (ϕ)) ⊆ FV(ϕ) ∪ V(t).

Proof. The argument for the first statement is by induction on the
term u; the argument for the second statement is by induction on ϕ.
Both are left for the reader. �

Definition 4.3.70. Let s be a substitution, a be a constant symbol
and let t be a term. The substitution a

ts is given by a
ts(x) = sat (s(x))

for every variable x.

Lemma 4.3.71. Let t be a term, a be a constant symbol and let y be
a variable. We have a

t([y → y]s) = [y → y]ats for all substitutions s.

Proof. We demonstrate the equality of the two substitutions by
verifying that they are equal on every variable. Suppose initially that
z is a variable such that z = y. We have

a
t([y → y]s)(z) = sat ([y → y]s(z))

= sat (s(z))

= a
ts(z) = [y → y]ats(z).

If z = y, then

a
t([y → y]s)(y) = sat ([y → y]s(y))

= sat (y) = y = [y → y]ats(y). �

Lemma 4.3.72. Let a be a constant symbol and let u, t be terms.
For every substitution s, if ats(t) = t, then

sat (s(u)) =
a
ts(s

a
t (u)).

Proof. The argument is by induction on the term u. If u is a vari-
able, say u = x, then both sides of the desired equality are sat (s(x)).
If u is a constant symbol c = a, then sat (s(u)) =

a
ts(s

a
t (u)) = c. The

final basis step, when u = a, yields sat (s(u)) = t and a
ts(s

a
t (u)) =

a
ts(t),

which implies the equality of the theorem due to the assumption
made on t and a

ts.
We leave the inductive step to the reader. �

570 Logical Foundations of Computer Science — Volume 2

The condition a
ts(t) = t of Lemma 4.3.72 can be satisfied, for

example, if s(x) = x for every x ∈ V(t), or if s(x) = a and t = x.

Theorem 4.3.73. Let a be a constant symbol, t be a term and ϕ
be a formula. For every substitution s, if s(x) = x for all variables
x ∈ V(t), then sat (FVSubst(s, ϕ)) = FVSubst(ats, s

a
t (ϕ)).

Proof. The argument is by induction on ϕ. For the basis step, let ϕ
be the atomic formula R(u0, . . . , un−1) and s be a substitution such
that s(x) = x for all x ∈ V(t). We have:

sat (FVSubst(s,R(u0, . . . , un−1)))

= sat (R(s(u0), . . . , s(un−1)))

(by Lemma 4.3.53)

= R(sat (s(u0)), . . . , s
a
t (s(un−1)))

= R(ats(s
a
t (u0)), . . . ,

a
ts(s

a
t (un−1)))

(by Lemma 4.3.71)

= a
ts(R(s

a
t (u0), . . . , s

a
t (un−1)))

= a
ts(s

a
t (R(u0, . . . , un−1)))

= FVSubst(ats, s
a
t (ϕ)).

We discuss the only nontrivial inductive step, when ϕ = (Qy)ψ
and the result is true for ψ. In this case we can write

sat (FVSubst(s, ϕ)) = sat (FVSubst(s, (Qy)ψ))

= sat ((Qy)FVSubst([y → y]s, ψ))

(by Lemma 4.3.53)

= (Qy)sat (FVSubst([y → y]s, ψ))

= (Qy)FVSubst(at([y → y]s), sat (ψ))

(by inductive hypothesis)

= (Qy)FVSubst([y → y]ats, s
a
t (ψ))

(by Lemma 4.3.71)

First-Order Logic–Syntax and Semantics 571

= FVSubst(ats, (Qy)s
a
t (ψ))

(by Lemma 4.3.53)

= FVSubst(ats, s
a
t ((Qy)ψ))

= FVSubst(ats, s
a
t (ϕ)).

�

The counterpart of the equality of Theorem 4.3.73 for signed for-
mulas is

sat (FVSubst(s, bϕ)) = FVSubst(ats, s
a
t (bϕ)).

Corollary 4.3.74. Let a be a constant symbol, t, u0, . . . , un−1 be
terms, ϕ be a formula and let y0, . . . , yn−1 be variables that do not
occur in t. Then, if u′i = sat (ui) for 0 ≤ i ≤ n− 1, we have

sat ((ϕ)y0,...,yn−1:=u0,...,un−1) = (sat (ϕ))y0,...,yn−1:=u′0,...,u
′
n−1

.

Proof. This statement follows by applying Theorem 4.3.73 to the
substitution s = s

y0···yn−1
u0···un−1 and observing that ats = s

y0···yn−1

u′0···u′n−1
. �

For the special case n = 1 the equality of Corollary 4.3.74
becomes:

sat ((ϕ)x:=u) = (sat (ϕ))x:=u′ , (4.1)

where x is a variable that does not occur in t and u′ = sat (u). When,
in addition, a does not occur in u, this becomes

sat ((ϕ)x:=u) = (sat (ϕ))x:=u. (4.2)

Further, taking u = a in Equality (4.1), we obtain

sat ((ϕ)x:=a) = (ϕ)x:=t (4.3)

assuming that x does not occur in t and a does not occur in ϕ.
Observe that Equality (4.3) holds even without assuming that x does
not occur in t due to the definition of substitution of free variables.
(Exercise 25 asks for an inductive proof of this statement.)

572 Logical Foundations of Computer Science — Volume 2

4.3.6 Substitutability of Terms

When we substitute a term for the free occurrences of a variable in a
formula we would like the new formula to make the same statement
about the term as the old formula made about the variable. Unless
we take certain precautions involving the term, this need not be the
case, as the next example shows.

Example 4.3.75. Let ϕ = (∃y)R(x, y) be a formula. The variable x
occurs free in ϕ and, intuitively, ϕ makes an assertion about x. The
formulas (ϕ)x:=z = (∃y)R(z, y) and (ϕ)x:=c = (∃y)R(c, y) say the
same thing about the variable z and the constant symbol c, respec-
tively, as ϕ says about x. However, the formula (ϕ)x:=y = (∃y)R(y, y)
has no free variables and makes an assertion only about R.

As the previous example shows, arbitrary substitutions can create
new, unintended bound occurrences of variables. We need to examine
conditions that allow “safe” substitutions of terms in a formula in
order to avoid such occurrences.

Definition 4.3.76. A term t is substitutable for a free occurrence
(x, i) of a variable x in formula ϕ if t contains no variable y such
that the occurrence (x, i) lies within the scope of an occurrence of a
quantifier symbol (Q, j) using y.

A term t is substitutable for a variable x in a formula ϕ if it is
substitutable for every free occurrence of x in ϕ.

A substitution s is admissible for a formula ϕ if for every variable
x, the term s(x) is substitutable for x in ϕ.

We can give now a recursive characterization of the substitutabil-
ity of terms.

Theorem 4.3.77. Let t be a term, x be a variable and α, β be for-
mulas.

(1) If α is an atomic formula, then t is substitutable for x in α.
(2) The term t is substitutable for x in (¬α) if and only if t is sub-

stitutable for x in α.
(3) For every binary connective symbol C, t is substitutable for x in

(αCβ) if and only if t is substitutable for x in both α and β.
(4) For every quantifier symbol Q and variable y, t is substitutable

for x in (Qy)α if and only if either

First-Order Logic–Syntax and Semantics 573

(a) x does not occur free in (Qy)α or,
(b) t is substitutable for x in α, and y does not occur in t.

Proof. The first part is immediate since atomic formulas have no
quantifier symbols.

For the second part, suppose that t is not substitutable for x
in α. Then, there is a free occurrence (x, i) in α which is in the
scope of an occurrence (Q, j) in α of a quantifier symbol using a
variable y which occurs in t. By Theorem 4.3.38, (Q, j + 2) is an
occurrence of the quantifier symbol Q using y in (¬α) and (x, i+ 2)
is a free occurrence of x in (¬α) which lies in the scope of (Q, j +2).
Therefore, t is not substitutable for x in (¬α).

Conversely, suppose that t is not substitutable for x in (¬α). This
means that there is a free occurrence (x, i) in (¬α) which is located
in the scope of an occurrence (Q, j) of a quantifier symbol using a
variable y which appears in t. Again, by Theorem 4.3.38, (Q, j−2) is
an occurrence of the quantifier symbol Q using y in α and (x, i − 2)
is a free occurrence of x in α which falls in the scope of (Q, j − 2).
This shows that t is not substitutable for x in α.

The proof of the third part of the theorem proceeds in a similar
manner to that of the previous part, using Theorem 4.3.39.

Finally, we consider the fourth part of the theorem. Suppose that
t is not substitutable for x in (Qy)α. Then, there is a free occurrence
(x, i) of x in (Qy)α (which shows that condition (a) is violated) and

an occurrence of a quantifier symbol (Q̂, j) using a variable z located

in t such that (x, i) lies in the scope of (Q̂, j). We must show that
condition (b) is violated, i.e., that either t is not substitutable for x
in α or y occurs in t. We consider two cases: j > 3 and j = 1. In
the first case, by Theorem 4.3.40, (x, i − 4) is a free occurrence of x

in α and (Q̂, j − 4) is an occurrence of the quantifier symbol Q̂ on
z whose scope in α includes the occurrence (x, i− 4). Therefore, t is
not substitutable for x in α. In the second case, z = y, so y occurs
in t.

Conversely, suppose that both conditions (a) and (b) fail, that
is, there is a free occurrence (x, i) of x in (Qy)α and either t is not
substitutable for x in α or y occurs in t. Note that i > 3, so if y occurs
in t, we have immediately that t is not substitutable for x in (Qy)α.
If, on the other hand, t is not substitutable for x in α, then there
must be a free occurrence (x, i′) of x in α and a quantifier symbol

574 Logical Foundations of Computer Science — Volume 2

occurrence (Q̃, j) in α using a variable z such that z occurs in t and
(x, i′) is in the scope of (Q̃, j) in α. Observe that x = y (because
x occurs free in (Qy)α). Therefore, by Theorem 4.3.40, (x, i′ + 4)
is a free occurrence of x in (Qy)α, (Q̃, j + 4) is an occurrence of a
quantifier symbol using z in (Qy)α whose scope contains (x, i′ + 4)
so t is not substitutable for x in (Qy)α. �

In Exercise 20, we present another, more intuitive, equivalent con-
dition for substitutability of terms. The proof of this exercise makes
repeated use of Theorem 4.3.77.

The following corollaries will be useful in Section 4.6.3.

Corollary 4.3.78. Let θ be a formula and let x, y be variables. If
y ∈ FV(θ) and y is substitutable for x in θ, then x is substitutable for
y in (θ)x:=y.

Proof. The proof is by induction on the formula θ. The basis step,
when θ is atomic, is immediate. We discuss only one of the inductive
steps, namely, when θ = (Qz)β and the statement holds for β. We
need to consider two cases.

Case 1: x ∈ FV(θ). Then, (θ)x:=y = θ and, since y ∈ FV(θ), we
can conclude that x is substitutable for y in (θ)x:=y = θ.

Case 2: x ∈ FV(θ). Note that this implies that x = z. We consider
two subcases.

Case 2.1: y ∈ FV((θ)x:=y). Then, it is immediate that
x is substitutable for y in (θ)x:=y.

Case 2.2: y ∈ FV((θ)x:=y). Since (θ)x:=y = (Qz)
(β)x:=y, this implies that y = z, so, since
y does not occur free in θ, it does not occur
free in β. Moreover, since y is substitutable
for x in θ and x occurs free in θ, it fol-
lows that y is substitutable for x in β. By
the inductive hypothesis, we obtain the sub-
stitutability of x for y in (β)x:=y and since
z = x, we get the substitutability of x for y
in (Qz)(β)x:=y = (θ)x:=y.

�

First-Order Logic–Syntax and Semantics 575

Corollary 4.3.79. Let ϕ be a formula, t and u be terms, x be a
variable, and c be a constant symbol. If t and u are substitutable for
x in ϕ and x ∈ V(u), then scu(t) is substitutable for x in scu(ϕ).

Proof. The argument is by induction on formulas ϕ. The basis
step, when ϕ is atomic, clearly holds. For the inductive step, we
consider only the case when ϕ = (Qy)ψ and the result is true for ψ.
We distinguish two cases, taking into account the characterization of
substitutable terms provided by Theorem 4.3.77.

Case 1: x does not occur free in ϕ. Since FV(scu(ϕ)) ⊆ FV(ϕ) ∪ V(u)
(Theorem 4.3.69), x ∈ FV(scu(ϕ)) because x ∈ V(u). There-
fore, scu(t) is substitutable for x in scu(ϕ).

Case 2: x occurs free in ϕ. Then, t and u are substitutable for x in ψ
and y does not occur in t or u. By the inductive hypothesis,
scu(t) is substitutable for x in scu(ψ). Thus, s

c
u(t) is substi-

tutable for x in scu(ϕ), because scu(ϕ) = (Qy)scu(ψ) and y
does not occur in scu(t) (since y does not occur in either t
or u). �

Corollary 4.3.80. Let ϕ be a formula, t be a term, x, y be distinct
variables such that y does not occur in ϕ, and c be a constant symbol.
If t is substitutable for x in ϕ, then scy(t) is substitutable for x in
scy(ϕ).

Proof. This statement follows from Corollary 4.3.79 by taking u =
y since a variable which does not occur in a formula is substitutable
for any variable in that formula. �

Corollary 4.3.81. Let s be a substitution and ϕ,ψ be formulas.

(1) s is admissible for ϕ if ϕ is atomic;
(2) s is admissible for (¬ϕ) if and only if s is admissible for ϕ;
(3) s is admissible for (ϕCψ), where C is a binary connective symbol,

if and only if s is admissible for both ϕ and ψ;
(4) s is admissible for (Qx)ϕ if and only if [x → x]s is admissible

for ϕ and for every variable z that occurs free in (Qx)ϕ, x does
not occur in s(z).

Proof. The arguments for the first three parts follow immediately
from the corresponding parts of Theorem 4.3.77 and the definition
of admissibility of substitutions.

576 Logical Foundations of Computer Science — Volume 2

From the definition of admissibility of substitutions and the fourth
part of Theorem 4.3.77, it follows that a substitution s is admissible
for a formula (Qx)ϕ if and only if for every variable y either y does
not occur free in (Qx)ϕ or s(y) is substitutable for y in ϕ and x does
not occur in s(y).

We shall prove initially that this implies the condition contained
in the fourth part of the Corollary. Let s′ = [x → x]s. We have
s′(x) = x, so s′(x) is substitutable for x in ϕ. If z does not occur
free in ϕ, then s′(z) is substitutable for z in ϕ. If z = x and z ∈
FV(ϕ), then, by hypothesis, s′(z) = s(z) is substitutable for z in ϕ.
Hence, s′ is admissible for ϕ. If z ∈ FV((Qx)ϕ), then the hypothesis
immediately implies that x does not occur in s(z).

Conversely, suppose that the fourth condition of the corollary
holds and let z ∈ FV((Qx)ϕ). Clearly, z = x, so, s′(z) = s(z). By the
admissibility of s′ for ϕ, it follows that s(z) is substitutable for z in
ϕ and, by hypothesis, x does not occur in s(z). �

Theorem 4.3.82. Let s be a substitution that is admissible for the
formula ϕ. We have

FV(FVSubst(s, ϕ)) =
⋃
{V(s(y)) | y ∈ FV(ϕ)}.

Proof. We will show by induction on ϕ that the result holds for
every substitution s. For the basis step, suppose that ϕ is an atomic
formula. If ϕ is a propositional constant, then the result is immediate.
Suppose, therefore, that ϕ = R(t0, . . . , tn−1), where R is an n-ary
relation symbol with n ≥ 1. Then, we can write

FV(FVSubst(s, ϕ))

= FV(s(ϕ))

(by the first part of Lemma 4.3.53)

= FV(R(s(t0), . . . , s(tn−1)))

=
⋃
{V(s(ti)) | 0 ≤ i ≤ n− 1}

(by Theorem 4.3.37)

=
⋃
{
⋃
{V(s(x)) | x ∈ V(ti)} | 0 ≤ i ≤ n− 1}

(by Theorem 1.5.23)

First-Order Logic–Syntax and Semantics 577

=
⋃
{V(s(x)) | x ∈

⋃
{V(ti) | 0 ≤ i ≤ n− 1}}

=
⋃
{V(s(x)) | x ∈ FV(ϕ)}

(by Theorem 4.3.37).

Among the several inductive steps, we consider only the one when
ϕ = (Qx)ψ and the result is assumed for ψ. We have

FV(FVSubst(s, (Qx)ψ))

= FV((Qx)FVSubst([x→ x]s, ψ))

(by Lemma 4.3.53)

= FV(FVSubst([x→ x]s, ψ))− {x}
(by Theorem 4.3.40).

The admissibility of s for ϕ implies the admissibility of [x→ x]s for
ψ, by the last part of Corollary 4.3.81. This allows us to apply the
inductive hypothesis, so we have

FV(FVSubst([x→ x]s, ψ))− {x}

=
⋃
{V([x→ x]s(y)) | y ∈ FV(ψ)} − {x}.

Note that

V([x→ x]s(y))− {x} =
{∅ if y = x

V(s(y))− {x} if y = x.

If y = x and y ∈ FV(ψ), then y ∈ FV(ϕ), so by the last part of
Corollary 4.3.81, x ∈ V(s(y)). Therefore,

FV(FVSubst([x→ x]s, ψ))− {x}

=
⋃
{V(s(y)) | y ∈ FV(ψ)− {x}}

=
⋃
{V(s(y)) | y ∈ FV(ϕ)}. �

Theorem 4.3.83. Let ϕ be a formula, t0, . . . , tn−1 be terms and
Y = {y0, . . . , yn−1} be a set of n distinct variables such that ti is
substitutable for yi in ϕ for 0 ≤ i ≤ n− 1. We have:

FV((ϕ)y0,...,yn−1:=t0,...,tn−1) = (FV(ϕ)− Y) ∪
⋃
{V(tj) | yj ∈ FV(ϕ)}.

578 Logical Foundations of Computer Science — Volume 2

Proof. This follows immediately from Theorem 4.3.82 by taking
s = s

y0···yn−1

t0···tn−1
. �

Corollary 4.3.84. Let ϕ be a formula, x be a variable and t be a
term that is substitutable for x in ϕ. Then,

FV(ϕ)− {x} ⊆ FV((ϕ)x:=t) ⊆ (FV(ϕ)− {x}) ∪ V(t).
Proof. This follows from Theorem 4.3.83 by taking n = 1. �

Note that by Exercises 32 and 35 the inclusions of Corollary 4.3.84
hold even if the term t is not substitutable for x in ϕ.

Corollary 4.3.85. If ψ is the universal (L, V)-formula (∀y0) · · ·
(∀yn−1)ϕ, where ϕ is quantifier-free, then, every (L, V)-instance of
ψ is an (L, V)-formula.

Proof. If θ = (ϕ)y0,...,yn−1:=t0,...,tn−1 is an (L, V)-instance of ψ, since
FV(ϕ) ⊆ V ∪ {y0, . . . , yn−1}, we have FV(θ) ⊆ V by Theorem 4.3.83.
This concludes the argument. �

In the following theorem, we use again the notation s′ ∗ s to denote
the composition of substitutions s′ and s as introduced on page 8.

Theorem 4.3.86. Let s, s′ be substitutions and ϕ be a formula such
that s is admissible for ϕ. Then,

FVSubst(s′ ∗ s, ϕ) = FVSubst(s′,FVSubst(s, ϕ)).

Proof. The argument is by induction on the formula ϕ. If ϕ is
atomic, then we have:

FVSubst(s′,FVSubst(s, ϕ)) = FVSubst(s′, s(ϕ))

(by Lemma 4.3.53)

= s′(s(ϕ))

(by Lemmas 4.3.52 and 4.3.53)

= (s′ ∗ s)(ϕ)
(by Theorem 1.2.19)

= FVSubst(s′ ∗ s, ϕ)
(by Lemma 4.3.53).

We leave to the reader the simple cases when ϕ = (¬α) and
ϕ = (αCβ), and consider only the case when ϕ = (Qy)ψ. Recall that

First-Order Logic–Syntax and Semantics 579

by Corollary 4.3.81 the admissibility of s for ϕ means that [y → y]s
is admissible for ψ and for all z ∈ FV(ϕ), we have y ∈ V(s(z)). Now
we can write:

FVSubst(s′,FVSubst(s, (Qy)ψ))

= FVSubst(s′, (Qy)FVSubst([y → y]s, ψ))

(by Lemma 4.3.53)

= (Qy)FVSubst([y → y]s′,FVSubst([y → y]s, ψ))

(by Lemma 4.3.53)

= (Qy)FVSubst(([y → y]s′) ∗ ([y → y]s), ψ)

(by inductive hypothesis, since [y → y]s is admissible for ψ).

We claim that for every z ∈ FV(ψ) we have

([y → y]s′) ∗ ([y → y]s)(z) = [y → y](s′ ∗ s)(z).

If z = y, then both sides of the above equality are equal to y. If
z = y, then z ∈ FV(ϕ), so y ∈ V(s(z)). This allows us to write

([y → y]s′) ∗ ([y → y]s)(z) = [y → y]s′([y → y]s(z))

= [y → y]s′(s(z))

(because y = z)

= s′(s(z))

(because y ∈ V(s(z)))

= s′ ∗ s(z)
= ([y → y](s′ ∗ s))(z).

By Theorem 4.3.51, we have

(Qy)FVSubst(([y → y]s′) ∗ ([y → y]s), ψ)

= (Qy)FVSubst([y → y](s′ ∗ s), ψ)
= FVSubst(s′ ∗ s, (Qy)ψ).

�

Corollary 4.3.87. Let ϕ be a formula and x, y be variables such that
y is substitutable for x in ϕ and y ∈ FV(ϕ). Then, ((ϕ)x:=y)y:=x = ϕ.

580 Logical Foundations of Computer Science — Volume 2

Proof. The statement clearly holds when y = x. Therefore, we
assume that y = x.

The substitutability of y for x in ϕ means that sxy
is an admissible substitution for ϕ. Since ((ϕ)x:=y)y:=x is
FVSubst(syx,FVSubst(sxy , ϕ)), we have:

FVSubst(syx,FVSubst(s
x
y , ϕ))

= FVSubst(syx ∗ sxy , ϕ)
(by Theorem 4.3.86, since sxy is admissible for ϕ)

= FVSubst(s
x

syx(y)

y

x
, ϕ)

(by Theorem 1.2.21)

= FVSubst(syx, ϕ)

= ϕ

(because y ∈ FV(ϕ)).
�

4.4 Structures

In order to define the semantics of formulas of first-order logic, we
need to introduce structures. They play a role similar to the one
played by truth assignments in propositional logic.

Definition 4.4.1. Let L be a first-order language. An L-structure is
a pair A = (A,I) where A is a nonempty set (called the domain or
universe of the structure) and I is a function with domain L (called
the interpretation function of the structure) such that

(1) for each function symbol f ∈ L, I(f) is an n-ary function on A
(i.e., I(f) : An −→ A) where n is the arity of f ;

(2) for each relation symbol R ∈ L, I(R) is an n-ary relation on A
(i.e., I(R) ⊆ An) where n is the arity of R;

(3) if =∈ L, then I(=) is the equality relation on A (i.e., I(=) =
{(a, a) | a ∈ A}).

If A = (A,I) is a structure for a first-order language L, then
we write |A| for A, and for each function and relation symbol s

First-Order Logic–Syntax and Semantics 581

of L we write sA for I(s). If |A| is finite, countably infinite, count-
able, or infinite, We will say that A is finite, countably infinite, count-
able, infinite, respectively.

If we identify 0-ary functions on a set with elements of the set
in the usual way, then the meaning given to an individual constant
symbol of a language by the interpretation function of a structure
for the language is just an element of the domain of the structure.
Similarly, for any set A there are only two 0-ary relations on A,
namely ∅ and {λ}, and if we identify these with F and T respectively,
then we can consider the value given to a propositional constant by
the interpretation function of a structure to be a truth value.

We will use the letters A,B, C to stand for structures.

Example 4.4.2. Let L = {R} be a first-order language that consists
of one binary relation symbol R. If (A, ρ) is a partially ordered set,
then there is an associated L-structure A = (A,I), where I(R) = ρ.

To consider structures that correspond to partially ordered sets
with greatest and least element, it is natural to use a larger language
L′ = {c, d,R}, where c and d are constant symbols and R is a binary
relational symbol. A partially ordered set (A, ρ) with least element 0
and greatest element 1 corresponds to an L′-structure (A,I ′), where
I ′(R) = ρ, I ′(c) = 0, and I ′(d) = 1.

Example 4.4.3. The language L = {R,=}, where R is a binary
relation symbol, is the natural setting for making statements about
directed graphs. If G = (V,E) is a directed graph, let AG = (V,I),
where I(R) = E. Then, A is an L-structure if and only if there is a
directed graph G with A = AG.

Example 4.4.4. Consider the language of arithmetic, Lar, intro-
duced in Example 4.2.3. Let Aar = (N,I) be the L-structure defined
by:

• I(0) = 0;
• I(s) : N −→ N is given by I(s)(n) = n+ 1 for n ∈ N.
• I(+)(m,n) = m+ n, I(·)(m,n) = mn;
• I(=),I(<) ⊆ N2 are the relations defined by I(=) = {(n, n)|n ∈

N}, I(<) = {(m,n)|m,n ∈ N,m < n}.

Note that the symbols 0,+, < have a double meaning in the defini-
tions given above. For example, when we write I(+)(m,n), + is a

582 Logical Foundations of Computer Science — Volume 2

binary function symbol in Lar, while when we write m + n, + rep-
resents the addition operation on natural numbers. We shall refer
to the structure Aar as the standard model of arithmetic, or sim-
ply, arithmetic. This structure is useful for expressing properties of
natural numbers.

The names used for the symbols of Lar suggest their intended
usage for arithmetic. However, very different Lar-structures exist.
Indeed, let M be a set and let B = (P(M),J) be the Lar-structure,
where P(M) is the set of subsets of M and J is the interpretation
defined by:

• J (0) = ∅;
• J (s) : P(M) −→ P(M) is given by J (s)(K) = M − K for K ∈
P(M);

• for K,H ∈ P(M), we have

J (+)(K,H) = K ∪H,J (·)(K,H) = K ∩H;

• J (=) and J (<) are the relations given by

J (=) = {(K,K)|K ∈ P(M)},
J (<) = {(K,H)|K,H ∈ P(M) and K ⊆ H}.

Example 4.4.5. Let L be the first-order language that contains two
binary function symbols lcm and gcd. We can define A as the L-
structure whose universe is P with the interpretation I defined by

I(lcm)(n,m) = the least common multiple of n,m,

I(gcd)(n,m) = the greatest common divisor of n,m.

Example 4.4.6. Let L = {=, R2
1}. We can define an L-structure

A whose universe is a collection of sets C by considering the inter-
pretation I, where I(=) = {(K,K)|K is a member of C} and I(R2

1)
consists of those pairs of sets (K,H) of C, where K is an element
of H.

First-Order Logic–Syntax and Semantics 583

Definition 4.4.7. Let L be a first-order language and let
(A0,A1, . . .) be an infinite sequence of L-structures, all with the
same universe A, such that for every symbol s ∈ L there is a number
ns ∈ N such that for all n ≥ ns we have sAn = sAns . The limit of the
above sequence of structures is the L-structure B, denoted limnAn,
given by |B| = A and sB = sAns , for every s ∈ L.

Example 4.4.8. Let L = {c0, c1, . . . ,=} be a first-order language
and let An be defined by |An| = N and cAnk = min{n, k}. The limit
of the sequence (A0,A1, . . .) is the L-structure B defined by |B| = N
and cBk = k, for k ∈ N.

Definition 4.4.9. Let A be an L-structure and let R,R′ be two n-
ary relation symbols such that R ∈ L and R′ ∈ L. Further, assume
that if R′ is =, then RA = {(a, a) | a ∈ |A|}. The L′-structure A′,
where L′ = (L−{R})∪{R′}, given by |A′| = |A|, sA′

= sA for every

s ∈ L′ − {R′} and R′A′
= RA will be denoted by AR→R′ .

Example 4.4.10. Let L,A be as in Example 4.4.6. The structure
B = A=→R2

2
is an {R2

2, R
2
1}-structure with the same domain as A and

is defined by (R2
2)

B = {(K,K)|K is a member of C} and (R2
1)

B =
(R2

1)
A.

Definition 4.4.11. A first-order language L is algebraic if it has =
as its unique relation symbol.

If L is an algebraic language, then L-structures are called
L-algebras.

Let A = (A,I), B = (B,J) be two L-structures and let h : A −→
B be a mapping. If a = (a0, . . . , an−1) is an n-tuple of elements in A,
then we denote the tuple (h(a0), . . . , h(an−1)) by h◦a. This notation
is justified by the fact that a is a mapping a : {0, . . . , n − 1} −→ A.
Furthermore, if R ⊆ An is an n-ary relation on A we shall denote
the set {h ◦ a|a ∈ R} by h ◦R.

Definition 4.4.12. Let A = (A,I), B = (B,J) be two L-
structures.

584 Logical Foundations of Computer Science — Volume 2

A morphism (sometimes called a homomorphism) from A to B is
a mapping h : A −→ B such that

(1) for each n-ary function symbol f ∈ L,

h(fA(a0, . . . , an−1)) = fB(h(a0), . . . , h(an−1))

for all a0, . . . , an−1 ∈ A;
(2) for each n-ary relation symbol R ∈ L different from =,

we have a = (a0, . . . , an−1) ∈ RA if and only if h ◦ a =
(h(a0), . . . , h(an−1)) ∈ RB.3

A morphism from A to itself is called an endomorphism of A.

If we take n = 0 in the previous definition, it follows that for
every constant symbol c ∈ L, h(cA) = cB and for every propositional
constant R ∈ L, RA = T if and only if RB = T.

Theorem 4.4.13. Let A,B, C be L-structures. If h : |A| −→ |B| and
h′ : |B| −→ |C| are morphisms, then h′ ◦ h is a morphism from A
to C.

Proof. The argument is a straightforward application of the defi-
nition of morphism and is left to the reader. �

Definition 4.4.14. LetA = (A,I), B = (B,J) be two L-structures.
A monomorphism, also known as an embedding, from A to B is

an injective morphism h : A −→ B.
An epimorphism fromA to B is a surjective morphism h : A−→ B.
An isomorphism from A to B is a bijective morphism h : A −→ B.
An automorphism of A is an isomorphism h : A −→ A.

Theorem 4.4.15. Let A,B be two L-structures. If h : |A| −→ |B| is
an isomorphism, then h−1 : |B| −→ |A| is also an isomorphism.

Proof. The argument is a straightforward application of the defi-
nition of isomorphism and is left to the reader. �

3Some authors use a weaker condition in defining morphism; namely, they only
require that a ∈ RA implies h ◦ a ∈ RB.

First-Order Logic–Syntax and Semantics 585

Example 4.4.16. Let L = {f20 ,=, R2
1} and let A = (Z,I), B =

(N,J) be the L-structures defined by

I(f20)(m,n) = mn for m,n ∈ Z

J (f20)(m,n) = mn for m,n ∈ N

and

I(R2
1) = {(m,n) | m,n ∈ Z and m divides n}

J (R2
1) = {(m,n) | m,n ∈ N and m divides n}.

The mapping h : Z −→ N given by h(n) = |n| is a morphism because
|mn| = |m||n| and m divides n if and only if |m| divides |n|. Note
that h is an epimorphism but not a monomorphism.

Example 4.4.17. Consider the language L = {f20 ,=, R2
1} and let

A = (P,I) be the L-structure defined by:

• P is the set of positive natural numbers;
• I(f20)(m,n) = gcd(m,n) for m,n ∈ P;
• I(=),I(R2

1) ⊆ P2 are the relations defined by

I(=) = {(n, n)|n ∈ P},
I(R2

1) = {(m,n)|m,n ∈ P,m divides n}.
Let B = (P(P),J) be the L-structure defined below.

• J (f20)(P,Q) = P ∩Q for P,Q ∈ P(P);
• J (=),I(R2

1) ⊆ P2 are the relations defined by

J (=) = {(P,P)|P ∈ P(P)},
J (R2

1) = {(P,Q)|P,Q ∈ P(P), P ⊆ Q}.
The mapping h : P −→ P(P) given by h(n) = DV(n) where DV(n)
is the set of divisors of n for n ∈ P is an embedding of A into B.
Example 4.4.18. Let S be the subset of ISeq(N) that consists of
those sequences that contain only finitely many nonzero members
and let q = (q0, q1, . . .) and r = (r0, r1, . . .) be two sequences in S.
Define the sequences max(q, r) and min(q, r) as

max(q, r) = (max(q0, r0),max(q1, r1), . . .)

min(q, r) = (min(q0, r0),min(q1, r1), . . .)

Further, define q � r if qi ≤ ri for i ∈ N.

586 Logical Foundations of Computer Science — Volume 2

Consider the language L = {f20 , f21 ,=, R2
1} and let A = (P,I) be

the L-structure defined by:

• I(f2i) : P2 −→ P, for i = 0, 1 are given by

I(f20)(m,n) = gcd(m,n),

I(f21)(m,n) = lcm(m,n),

for m,n ∈ P;
• I(=),I(R2

1) ⊆ P2 are the relations defined by

I(=) = {(n, n)|n ∈ P},
I(R2

1) = {(m,n)|m,n ∈ P,m divides n}.

Define another L-structure B = (S,J) by
• J (f2i) : S2 −→ S, for i = 0, 1 are given by

J (f20)(q, r) = min(q, r)

J (f21)(q, r) = max(q, r)

• J (=),J (R2
1) ⊆ S2 are the relations defined by

J (=) = {(q, q) | q ∈ S}
J (R2

1) = {(q, r) | q � r}

The mapping h : P −→ S given by

h(1) = (0, 0, . . .) and h(n) = (m0, . . . ,mk−1, 0, 0, . . .)

if n > 1 and n = pm0
0 · · · p

mk−1

k−1 , where p0, p1, . . . is the sequence of
prime numbers in increasing order and pk−1 is the largest prime that
divides n, is an isomorphism.

Example 4.4.19. Let L be {R2
1}. Define the L-structure N =

(N,I), where I(R2
1) = {(m,n) | m,n ∈ N,m < n}. Suppose that

h : N −→ N is an automorphism. We claim that h(n) = n for all
n ∈ N; in other words, the structure N has a unique automorphism,
the identity mapping. A structure whose only automorphism is the
identity mapping is called rigid.

We prove by induction on n that h(n) = n. For the basis step, let
p be such that h(p) = 0; p exists because h is onto. If p = 0, we have

First-Order Logic–Syntax and Semantics 587

0 < p, so h(0) < h(p) = 0, which is impossible. Thus, h(0) = 0. Now
suppose that h(n) = n and let q be such that h(q) = n + 1. Since
h(n) < h(q), it follows that n < q. Suppose q = n+1. Then, we must
have n+ 1 < q which implies n = h(n) < h(n+ 1) < h(q) = n+ 1, a
contradiction. Therefore, q = n+ 1, so h(n+ 1) = n+ 1.

By contrast, the L-structure Z = (Z,J), where J (R2
1) =

{(m,n) | m,n ∈ Z,m < n} is not rigid because for each k ∈ Z,
the mapping hk : Z −→ Z given by hk(p) = p + k for every p ∈ Z
is an automorphism, as the reader can easily verify. Moreover, every
automorphism of Z has this form. Indeed, let h be an automorphism
of Z. We claim that

h(n+ 1) = h(n) + 1 and h(n − 1) = h(n)− 1 (4.4)

for n ∈ Z. We will prove only the first equality. Fix n ∈ Z. Since h
is onto, there is p ∈ Z such that h(p) = h(n) + 1. Then, h(n) < h(p)
implies n < p. If p were different from n + 1, we would have n <
n + 1 < p and this would give h(n) < h(n + 1) < h(p) = h(n) + 1.
This contradiction shows that h(n + 1) = h(n) + 1.

The equalities (4.4) imply that h(n) = n+ h(0) for n ∈ Z, which
shows that h has the desired form.

Example 4.4.20. Let L = {f20 ,=} be a first-order language and let
V be an alphabet. Define the L-structure AV = (V ∗,I), where I(f20)
is the concatenation operation on V ∗. If V and U are two alphabets,
a morphism from AV to AU is a mapping h : V ∗ −→ U∗ such that
h(xy) = h(x)h(y) for all words x, y ∈ V ∗. An endomorphism of AV
is a mapping h : V ∗ −→ V ∗ with the above property. For instance, if
V = {a, b, c} and h(x) is obtained from the word x by erasing every
symbol different from a, then h is an endomorphism of AV .

Definition 4.4.21. Let L be a first-order language. A substructure
of an L-structure A = (A,I) is an L-structure B = (B,J), such that

(1) B ⊆ A;
(2) for each n-ary function symbol f ∈ L, fB = fA |̀Bn;
(3) for each n-ary relation symbol R ∈ L, RB = RA ∩Bn.

588 Logical Foundations of Computer Science — Volume 2

Note that according to Definition 4.4.21, a structure A is always
a substructure of itself. In this capacity, it is referred to as the trivial
substructure of A. Any other substructure is called nontrivial.

Theorem 4.4.22. Let A = (A,I),B = (B,J) be two L-structures.
Then, B is a substructure of A if and only if ιB = {(b, b) | b ∈ B} is
a morphism from B to A.

Proof. Suppose that ιB is a morphism from B to A. Then, ιB :
B −→ A, so B ⊆ A. Since ιB is a morphism, for each n-ary function
symbol f ∈ L and b0, . . . , bn−1 ∈ B, we have:

fB(b0, . . . , bn−1) = ιB(f
B(b0, . . . , bn−1)

fA(ιB(b0), . . . , ιB(bn−1))

fA(b0, . . . , bn−1),

so fB = fA |̀Bn. For the same reason, for every n-ary relation symbol
R ∈ L and b0, . . . , bn−1 ∈ B, we have (b0, . . . , bn−1) ∈ RB if and only
if (ιB(b0), . . . , ιB(bn−1)) ∈ RA if and only if (b0, . . . , bn−1) ∈ RA. This
shows that RB = RA ∩Bn. So, B is a substructure of A.

The similar argument for the reverse implication is left to the
reader. �

Not every subset of the domain of a structure is the domain of
a substructure. The following theorem characterizes domains of sub-
structures.

Theorem 4.4.23. Let A = (A,I) be an L-structure and let B be a
subset of A. Then, there is a substructure B = (B,J) of A if and
only if B = ∅ and B is {fA | f ∈ FL}-closed. Further, for such a set
B, the interpretation function J is uniquely determined.

Proof. The necessity of the conditions involving B follows imme-
diately from the definition of substructure. Conversely, suppose that
B = ∅ and B is {fA | f ∈ FL}-closed. We obtain a substructure
B = (B,J) by defining J (f) = fA |̀Bn for every n-ary function
symbol f of L and J (R) = RA ∩Bn for every n-ary relation symbol
R of L. Note that this definition of J is correct because B is fA-
closed for every function symbol f of L. Suppose that B′ = (B,J ′)
is another substructure of A that has domain B. By the definition
of substructure, J ′(f) = fA |̀Bn = J (f) for every n-ary function

First-Order Logic–Syntax and Semantics 589

symbol f of L and, for the same reason, J ′(R) = RA ∩Bn = J (R)
for every n-ary relation symbol R of L. Therefore, J ′ = J . �

Example 4.4.24. For the structure introduced in Example 4.4.5
whose universe is P, the set E of positive even natural numbers
defines a substructure of A because the greatest common divisor
and the least common multiple of two even numbers are again even.

Example 4.4.25. The structureAar defined in Example 4.4.4 has no
nontrivial substructures because any set of natural numbers that con-
tains 0 and is closed under the successor function coincides with N.

Theorem 4.4.26. Let A,B be two L-structures and let h : |A| −→
|B| be a morphism. Then, h(|A|) is the domain of a substructure of B.

Proof. Since |A| is nonempty, it is clear that h(|A|) is nonempty.
Let f be an n-ary function symbol of L and let b0, . . . , bn−1 ∈ h(|A|).
There are a0, . . . , an−1 ∈ |A| such that bi = h(ai) for 0 ≤ i ≤ n − 1.
If b = fB(b0, . . . , bn−1), then we can write

b = fB(h(a0), . . . , h(an−1)) = h(fA(a0, . . . , an−1)) ∈ h(|A|),

so the result follows by Theorem 4.4.23. �

If h is a morphism from A to B, by Theorems 4.4.23 and 4.4.26,
there is a unique substructure of B with domain h(|A|). We will
denote this substructure by h(A).

Corollary 4.4.27. Let L be a first-order language. An L-structure
C is a substructure of an L-structure B if and only if there is an
L-structure A and a morphism h from A to B such that C = h(A).

Proof. If C is substructure of B, then, by Theorem 4.4.22, the
mapping ι|C| is a morphism from C to B and we have ι|C|(C) = C.

The converse follows immediately from Theorem 4.4.26. �

Definition 4.4.28. Let A be an L-structure. An equivalence rela-
tion ρ on |A| is a congruence of A if we have:

590 Logical Foundations of Computer Science — Volume 2

• The following fA-compatibility condition holds for each n-ary func-
tion symbol f ∈ L: for all n-tuples a = (a0, . . . , an−1), and
b = (b0, . . . , bn−1) ∈ |A|n, if aiρbi for 0 ≤ i ≤ n − 1, then
fA(a)ρfA(b).

• The following RA-compatibility condition holds for each n-ary rela-
tion symbol R ∈ L − {=}: for all n-tuples a = (a0, . . . , an−1),
b = (b0, . . . , bn−1) ∈ |A|n, if aiρbi for 0 ≤ i ≤ n − 1, then a ∈ RA
if and only if b ∈ RA.

It is clear that in every structure A, the equality relation ι|A| on
|A| and the relation |A|×|A| are congruences of A. Next, we consider
some less trivial examples.

Example 4.4.29. Let A be the structure with domain Z introduced
in Example 4.4.16. The relation ρ = {(m,n) ∈ Z×Z | m = n or m =
−n} is a congruence of A. Indeed, as the reader can easily verify, if
a0 = ±b0 and a1 = ±b1, then a0a1 = ±b0b1, and a0 divides a1 if and
only if b0 divides b1.

Definition 4.4.30. Let ρ be a congruence of an L-structure A. The
quotient of A by ρ is the structure A/ρ whose universe is |A|/ρ and
whose interpretation function is given by

• for every n-ary function symbol f in L and a0, . . . , an−1 ∈ |A|, we
have

fA/ρ([a0]ρ, . . . , [an−1]ρ) = [fA(a0, . . . , an−1)]ρ

• for every n-ary relation symbol R in L− {=}, we have

RA/ρ = {([a0]ρ, . . . , [an−1]ρ) | (a0, . . . , an−1) ∈ RA}

• if =∈ L, then =A/ρ= {([a]ρ, [a]ρ) | a ∈ |A|}.

The functions fA/ρ introduced above are well-defined because ρ is a
congruence.

Example 4.4.31. The quotient structure A/ρ, where A and ρ were
considered in Example 4.4.29, has universe |A/ρ| = {{n,−n} | n∈ Z}

First-Order Logic–Syntax and Semantics 591

and its interpretation function is given by

(f20)
A/ρ({n,−n}, {m,−m}) = {nm,−nm}

(R2
1)

A/ρ = {({n,−n}, {m,−m}) | n divides m}

=A/ρ = {({n,−n}, {n,−n}) | n ∈ Z}.

Theorem 4.4.32. Let A be an L-structure and let R be a binary

relation symbol in L such that RA is a congruence of A. Then, RA/RA

is the equality relation on |A/RA| = |A|/RA.

Proof. The argument is immediate and is left to the reader. �

Definition 4.4.33. Let A be an L-structure and let ρ be a congru-
ence of A. The canonical morphism of ρ is the mapping hρ : |A| −→
|A/ρ| given by hρ(a) = [a]ρ for every a ∈ |A|.
We leave to the reader the verification that hρ is indeed a morphism.

If f : A −→ B, then we define the kernel of f , denoted by ker(f),
as the equivalence relation {(a, a′) ∈ A×A | f(a) = f(a′)}.
Theorem 4.4.34. Let A be an L-structure. A binary relation ρ on
|A| is a congruence of A if and only if there is an L-structure B and
a morphism h from A to B such that ρ = ker(h).

Proof. Suppose first that ρ is a congruence of A and let hρ be the
canonical morphism from A to A/ρ. Observe that

ker(hρ) = {(a, b) ∈ |A| × |A| | hρ(a) = hρ(b)}
= {(a, b) ∈ |A| × |A| | [a]ρ = [b]ρ}
= ρ.

Conversely, suppose that h is a morphism from A to B and ρ =
ker(h). It is clear that ρ is an equivalence relation. Assume that
(ai, bi) ∈ ker(h), that is, h(ai) = h(bi) for 0 ≤ i ≤ n− 1. Let f be an
n-ary symbol of L. We have:

h(fA(a0, . . . , an−1)) = fB(h(a0), . . . , h(an−1))

= fB(h(b0), . . . , h(bn−1))

= h(fA(b0, . . . , bn−1)),

so (fA(a0, . . . , an−1), f
A(b0, . . . , bn−1)) ∈ ker(h).

592 Logical Foundations of Computer Science — Volume 2

If R is an n-ary relation symbol in L − {=}, the following state-
ments are equivalent.

(a0, . . . , an−1) ∈ RA;
(h(a0), . . . , h(an−1)) ∈ RB;
(h(b0), . . . , h(bn−1)) ∈ RB;
(b0, . . . , bn−1) ∈ RA.

Thus, ρ = ker(h) is a congruence. �

Theorem 4.4.35. If A,B are L-structures and h is a morphism
from A to B, then the mapping k : |A|/ker(h) −→ h(|A|) given
by k([a]ker(h)) = h(a) is an isomorphism between the structures
A/ker(h) and h(A).

Proof. It is easy to check that k is well-defined and is a bijection.
Thus, it remains only to show that k is a morphism. To simplify
notation, we write [a] instead of [a]ker(h).

Let f be an n-ary function symbol of L and let a0, . . . , an−1 be n
elements of A. We have

k(fA/ker(h)([a0], . . . , [an−1])) = k([fA(a0, . . . , an−1)])

= h(fA(a0, . . . , an−1))

= fB(h(a0), . . . , h(an−1))

= fh(A)(h(a0), . . . , h(an−1))

= fh(A)(k([a0]), . . . , k([an−1])).

If R is an n-ary relation symbol of L, then we have

([a0], . . . , [an−1]) ∈ RA/ker(h)

if and only if (a0, . . . , an−1) ∈ RA

if and only if (h(a0), . . . , h(an−1)) ∈ RB

if and only if (h(a0), . . . , h(an−1)) ∈ Rh(A)

if and only if (k([a0]), . . . , k([an−1])) ∈ Rh(A)

for all a0, . . . , an−1 ∈ |A|, which shows that k is a morphism. �

First-Order Logic–Syntax and Semantics 593

The notions we are about to introduce are useful when we deal
with more than one first-order language.

Definition 4.4.36. Let L,L′ be two first-order languages such that
L ⊆ L′, A be an L-structure, and B be an L′-structure. A is the
reduct of B to L and B is an expansion of A to L′ if |A| = |B| and
for all s ∈ L, sA = sB.

The next theorem justifies the use of the word “the” in the defi-
nition of “the reduct of a structure to a first-order language.”

Theorem 4.4.37. Let L,L′ be two first-order languages such that
L ⊆ L′. Given an L-structure A, there is at least one L′-structure
B such that B is an expansion of A to L′. Conversely, given an L′-
structure B, there is a unique L-structure A such that A is the reduct
of B to L.

Proof. The argument is immediate and it is left to the reader. �

We will denote the reduct of a structure B to a first-order language
L by REDL(B).

Theorem 4.4.38. Let L,L′,L′′ be first-order languages such that
L ⊆ L′ ⊆ L′′. If A,A′,A′′ are an L-structure, an L′-structure, and an
L′′-structure, respectively, then A′ = REDL′(A′′) and A = REDL(A′)
implies A = REDL(A′′).

Proof. The argument is immediate and it is left to the reader. �

Example 4.4.39. The chain of inclusions Ls ⊆ Ls,< ⊆ Lpra ⊆ Lar
of the first-order languages defined in Example 4.2.3 allows us to
consider the following reducts of the standard model of arithmetic
Aar (introduced in Example 4.4.4):

As = REDLs(Aar)
As,< = REDLs,<(Aar)
Apra = REDLpra(Aar).

594 Logical Foundations of Computer Science — Volume 2

4.5 Semantics of First-Order Logic

In this section, we use structures to define a semantics for formulas.
The meaning of a formula is a certain Boolean-valued function whose
arguments are structures and assignments; the latter are devices for
assigning elements of structures to the free variables of the formula.
After giving the semantics of first-order formulas, we introduce the
concept of validity which is for first-order logic what tautology is
for propositional logic. At the end of the section, we examine the
possibility of using first-order formulas for defining certain subsets of
structures.

4.5.1 Assignments in Structures

Definition 4.5.1. Let L be a first-order language and let A be an
L-structure. An assignment over A is a function from VAR to |A|.

We will denote the set VAR −→ |A| of all assignments in a given
structure A by ASSIGNA. The letters σ, ρ, τ will stand for assign-
ments. Observe that for every structure A, the set ASSIGNA is not
empty, since |A| = ∅.

Definition 4.5.2. Let L be a first-order language, A be an L-
structure, and σ be an assignment over A. We define a function
σA : TERML −→ |A|, which is an extension of σ, by the following
recursive definition:

(1) For every constant symbol c of L

σA(c) = cA.

(2) For all variables x,

σA(x) = σ(x).

(3) For all n-ary function symbols f of L of positive arity and L-
terms t0, . . . , tn−1,

σA(f(t0, . . . , tn−1)) = fA(σA(t0), . . . , σA(tn−1)).

First-Order Logic–Syntax and Semantics 595

The value σA(t) is the value of the term t in |A| when the assign-
ment σ is used to evaluate the variables.

Theorem 4.5.3. Let L be a first-order language, A be an L-
structure, t be an L-term, and let σ, τ be two assignments over A
such that σ(x) = τ(x) for every variable x that occurs in t. Then, we
have σA(t) = τA(t).

Proof. The argument is by structural induction on the term t. If
t is a variable x, then σ(x) = τ(x) and

σA(x) = σ(x) = τ(x) = τA(x).

If t is a constant symbol, the desired conclusion follows immediately
from Definition 4.5.2.

Suppose that t = f(t0, . . . , tn−1), where f is an n-ary function
symbol with n > 0 and that

σA(t0) = τA(t0), . . . , σA(tn−1) = τA(tn−1).

This allows us to write

σA(t) = σA(f(t0, . . . , tn−1))

= fA(σA(t0), . . . , σA(tn−1))

= fA(τA(t0), . . . , τA(tn−1))

= τA(f(t0, . . . , tn−1)) = τA(t).
�

Corollary 4.5.4. Let L be a first-order language, A be an L-
structure, t be a ground L-term. For every σ, τ ∈ ASSIGNA, we
have σA(t) = τA(t).

Proof. Since t is a ground term, V(t) = ∅, so σ and τ agree on
all the variables of t. The statement now follows immediately from
Theorem 4.5.3. �

If t is a ground L-term and A = (A,I) is an L-structure, then we
denote by tA the common value of σA(t) for σ ∈ ASSIGNA. Observe

596 Logical Foundations of Computer Science — Volume 2

that if t is a constant symbol c, then the notation cA just introduced
is consistent with the notation already in use for I(c).

Theorem 4.5.5. Let A be an L-structure, t0, . . . , tn−1 be ground
terms of L, and let f be an n-ary function symbol in L with n ≥ 1.
Then,

(f(t0, . . . , tn−1))
A = fA(tA0 , . . . , t

A
n−1).

Proof. Let σ ∈ ASSIGNA. We have:

(f(t0, . . . , tn−1))
A = σA(f(t0, . . . , tn−1))

= fA(σA(t0), . . . , σA(tn−1))

= fA(tA0 , . . . , t
A
n−1).

�

Theorem 4.5.6. Let L be a first-order language and let A,B be two
L-structures. If h : |A| −→ |B| is a morphism, σ ∈ ASSIGNA, and
t ∈ TERML, then h(σA(t)) = (h ◦ σ)B(t).

Proof. The argument is by induction on the term t and is left to
the reader. �

Definition 4.5.7. Let L be a first-order language, t, u be L-terms
and A be an L-structure. The terms t and u are A-equivalent, written
t ≡A u, if σA(t) = σA(u) for all σ ∈ ASSIGNA.

Theorem 4.5.8. Let L be a first-order language, t, t′, u′ be L-terms,
and let A be an L-structure. If t′ ≡A u′ and u is obtained from t by
replacing an occurrence of t′ by u′, then t ≡A u.

Proof. If t′ = t, then u = u′ and the result is immediate. The proof
is by induction on t.

If t is a constant symbol, then we are in the initial case.
Suppose now that t = f(t0, . . . , tn−1) and the result holds for

t0, . . . , tn−1. If we are not in the initial case, then by Theorem 1.5.27,
the occurrence of t′ in t is part of a ti for some i with 0 ≤ i ≤
n − 1. Thus, we have u = f(t0, . . . , ti−1, ui, ti+1, . . . , tn−1), where
ui is obtained from ti by replacing an occurrence of t′ by u′. By the

First-Order Logic–Syntax and Semantics 597

inductive hypothesis, ti ≡A ui. Thus, for any σ ∈ ASSIGNA, we have

σA(t) = fA(σA(t0), . . . , σA(tn−1))

= fA(σA(t0), . . . , σA(ti−1), σ
A(ui), σA(ti+1), . . . , σ

A(tn−1))

= σA(f(t0, . . . , ti−1, ui, ti+1, . . . , tn−1))

= σA(u).

Thus, t ≡A u. �

4.5.2 Tarski’s Definition of Truth

The “definition of truth”, due to Tarski4, was an important milestone
in the development of logic. By present day standards, it seems to be
a formalization of an intuitively clear idea; at the time, however, it
clarified the distinction between the syntactic and semantic aspects
of first-order logic.

It is easy to verify that if a1 = a2, then

[a2 → b2][a1 → b1]f = [a1 → b1][a2 → b2]f.

When f is the empty function, we write [a → b] instead of
[a→ b]f . This notation will be used in Chapter 6.

Definition 4.5.9. Let L be a first-order language and let A be an
L-structure. We define a function SA : FORML −→ (ASSIGNA −→
Bool) by the following recursive definition, where σ is an arbitrary
assignment over A.

(1) For every propositional constant R of L,

SA(R)(σ) = RA.

4Alfred Tarski was born on January 14, 1902 in Warsaw, Poland and died on
October 26, 1983 in Berkeley, California. Tarski received his doctorate in math-
ematics from the University of Warsaw in 1924 and was named docent at the
same university in 1926. In 1939 he immigrated in the United States. Tarski was
appointed a lecturer in mathematics at the University of California at Berkeley in
1942 and taught there as a professor of mathematics after 1946. His contributions
are in logic, set theory, and algebra.

598 Logical Foundations of Computer Science — Volume 2

(2) For each relation symbol R of L of positive arity and all L-terms
t0, . . . , tn−1 (where n is the arity of R),

SA(R(t0, . . . , tn−1))(σ)

=

{
T if (σA(t0), . . . , σA(tn−1)) ∈ RA

F otherwise.

(3) For all formulas ϕ of L,

SA((¬ϕ))(σ) = f¬(SA(ϕ)(σ)).

(4) For all formulas ϕ,ψ of L and binary connective symbols C,

SA((ϕCψ))(σ) = fC(SA(ϕ)(σ),SA(ψ)(σ)).

(5) For every formula ϕ of A and variable x,

SA((∀x)ϕ)(σ) =
{
T if SA(ϕ)([x→ a]σ) = T for every a ∈ |A|
F otherwise.

(6) For every formula ϕ of A and variable x,

SA((∃x)ϕ)(σ) =
{
T if SA(ϕ)([x→ a]σ) = T for some a ∈ |A|
F otherwise.

If SA(ϕ)(σ) = T, then we say that the pair (A,σ) satisfies ϕ and
write (A, σ) |= ϕ. If (A, σ) does not satisfy ϕ, we write (A, σ) |= ϕ.

Let Γ be a set of L-formulas, A be an L-structure, and σ be
an assignment over A. We say that (A, σ) satisfies Γ and write
(A, σ) |= Γ if (A, σ) |= ϕ for every ϕ ∈ Γ. If (A, σ) does not satisfy
Γ, we write (A, σ) |= Γ.

Using the notation introduced at the end of Definition 4.5.9, we
can restate that definition as follows for every first-order language L,
L-structure A and assignment σ over A:
(1) For every propositional constant R of L, (A, σ) |= R if and only

if RA = T.
(2) For each relation symbol R of L of positive arity and all L-terms

t0, . . . , tn−1 (where n is the arity of R), (A, σ) |= R(t0, . . . , tn−1)
if and only if (σA(t0), . . . , σA(tn−1)) ∈ RA.

First-Order Logic–Syntax and Semantics 599

(3) For all formulas ϕ of L, (A, σ) |= (¬ϕ) if and only if (A, σ) |= ϕ.
(4) For all formulas ϕ,ψ of L, we have:

(a) (A, σ) |= (ϕ ∨ ψ) if and only if (A, σ) |= ϕ or (A, σ) |= ψ.
(b) (A, σ) |= (ϕ ∧ ψ) if and only if (A, σ) |= ϕ and (A, σ) |= ψ.
(c) (A, σ) |= (ϕ→ ψ) if and only if (A, σ) |= ϕ or (A, σ) |= ψ.
(d) (A, σ) |= (ϕ ↔ ψ) if and only if either (A, σ) |= ϕ and

(A, σ) |= ψ or (A, σ) |= ϕ and (A, σ) |= ψ.

(5) For every formula ϕ of A and variable x, (A, σ) |= (∀x)ϕ if and
only if (A, [x→ a]σ) |= ϕ for every a ∈ |A|.

(6) For every formula ϕ of A and variable x, (A, σ) |= (∃x)ϕ if and
only if (A, [x→ a]σ) |= ϕ for some a ∈ |A|.

Theorem 4.5.10. Let L be a first-order language, (ϕ0, . . . , ϕn−1) be
a nonempty sequence of L-formulas, A be an L-structure and σ be an
assignment in ASSIGNA. We have (A, σ) |=

∨
0≤i≤n−1 ϕi if and only

(A, σ) |= ϕi for some i, 0 ≤ i ≤ n− 1. Also, (A, σ) |=
∧

0≤i≤n−1 ϕi if
and only (A, σ) |= ϕi for every i, 0 ≤ i ≤ n− 1.

Proof. The argument is by induction on n, and is left to the reader.
�

Example 4.5.11. Let Lar be the first-order language introduced in
Example 4.2.3 and let ϕ = (∃x0)(f21 (x0, x0) = x1), where f

2
1 denotes

formally multiplication instead of ·. Note that FV(ϕ) = {x1}. Let A
be the Lar-structure (N,I) introduced in Example 4.4.4 and let σ ∈
ASSIGNA. We give this time only the full details of the computation
of SA(ϕ)(σ). In this computation, the atomic formula (f21 (x0, x0) =
x1) is denoted by ψ. We have:

SA(ϕ)(σ)

=

{
T if SA(ψ)([x0 → n]σ) = T for some n ∈N

F otherwise

=

⎧⎪⎨
⎪⎩
T if (([x0 → n]σ)A(f21 (x0, x0)), ([x0 → n]σ)A(x1)) ∈=A

for some n ∈ N

F otherwise

=

⎧⎪⎨
⎪⎩
T if ([x0 → n]σ)A(f21 (x0, x0)) = ([x0 → n]σ)A(x1)

for some n ∈ N

F otherwise

600 Logical Foundations of Computer Science — Volume 2

Applying Definition 4.5.2, we have

([x0 → n]σ)A(f21 (x0, x0))

= (f21)
A(([x0 → n]σ)A(x0), ([x0 → n]σ)A(x0))

= (f21)
A(([x0 → n]σ)(x0), ([x0 → n]σ)(x0))

= n · n.

The same definition yields

([x0 → n]σ)A(x1) = ([x0 → n]σ)(x1) = σ(x1).

This allows us to conclude that

SA(ϕ)(σ) =

{
T if n · n = σ(x1) for some n ∈ N

F otherwise.

In other words, (A, σ) |= ϕ if and only if σ(x1) is a perfect square.
For the structure B = (P(M),J) considered in the same example,

a similar analysis shows that

SB(ϕ)(σ) =
{
T if K ∩K = σ(x1) for some K ∈ P(M)

F otherwise.

Since σ(x1) = σ(x1) ∩ σ(x1) for σ ∈ ASSIGNB, we conclude that
(B, σ) |= ϕ for every σ ∈ ASSIGNB.

Note that in the previous example, the value of SA(ϕ)(σ) depends
only on the value of σ(x1), that is, on the value of σ on the unique
free variable of ϕ. This is formalized in the next theorem.

Theorem 4.5.12 (Agreement Theorem for First-Order
Logic). Let L be a first-order language, A be an L-structure, ϕ be
a formula, and let σ, τ be two assignments such that σ |̀ FV(ϕ) =
τ |̀ FV(ϕ). Then, SA(ϕ)(σ) = SA(ϕ)(τ).

Proof. The proof is by induction on the formula ϕ. If ϕ is a proposi-
tional constant, then the truth value of both SA(ϕ)(σ) and SA(ϕ)(τ)
does not depend on the assignments σ and τ , respectively, and we
have trivially SA(ϕ)(σ) = SA(ϕ)(τ).

Suppose that ϕ is R(t0, . . . , tn−1), where R is a relation symbol
of L of positive arity (say of arity n) and t0, . . . , tn−1 are all terms

First-Order Logic–Syntax and Semantics 601

of L. Since FV(R(t0, . . . , tn−1)) consists of all variables that occur in
t0, . . . , tn−1, σ and τ coincide on all variables that occur in every
term ti for 0 ≤ i ≤ n−1. Theorem 4.5.3 implies that σA(ti) = τA(ti)
for 0 ≤ i ≤ n− 1. Therefore,

SA(R(t0, . . . , tn−1))(σ) =

{
T if (σA(t0), . . . , σA(tn−1)) ∈ RA

F otherwise

=

{
T if (τA(t0), . . . , τA(tn−1)) ∈ RA

F otherwise

= SA(R(t0, . . . , tn−1))(τ)

Let ϕ be the formula (¬ψ) and assume that σ |̀ FV(ϕ) = τ |̀ FV(ϕ).
Since FV(ψ) = FV(ϕ) we have σ |̀ FV(ψ) = τ |̀ FV(ψ), so SA(ψ)(σ) =
SA(ψ)(τ). This allows us to write

SA(ϕ)(σ) = f¬(SA(ψ)(σ))

= f¬(SA(ψ)(τ)) (by the inductive hypothesis)

= SA(ϕ)(τ).

The cases when ϕ has one of the forms (ψ ∧ψ′), (ψ ∨ ψ′), (ψ → ψ′),
and (ψ ↔ ψ′) are similar to the previous case and, therefore, are left
to the reader.

Assume now that ϕ is (∀x)ψ and that σ |̀ FV(ϕ) = τ |̀ FV(ϕ). Sup-
pose that SA(ϕ)(σ) = SA((∀x)ψ)(σ) = T. Then SA(ψ)([x→ a]σ) =
T for every a ∈ |A|. The assignments σ and τ coincide on all free
variables of ϕ, that is, on all free variables of ψ with the possible
exception of x. This implies that [x→ a]σ |̀ FV(ψ) = [x→ a]τ |̀ FV(ψ)
and, by the inductive hypothesis, we have

SA(ψ)([x→ a]σ) = SA(ψ)([x→ a]τ) = T

for every a ∈ A. Thus, we have SA(ϕ)(τ) = T. By symmetry,
SA(ϕ)(τ) = T implies SA(ϕ)(σ) = T, so SA(ϕ)(σ) = SA(ϕ)(τ).
The case when ϕ is (∃x)ψ has a similar treatment and it is left to
the reader. �

Corollary 4.5.13. Let L be a first-order language and let A be an
L-structure.

602 Logical Foundations of Computer Science — Volume 2

If ϕ ∈ SENTL, then either SA(ϕ)(σ) = T for every σ ∈ ASSIGNA
or SA(ϕ)(σ) = F for every σ ∈ ASSIGNA; in other words, either
(A, σ) |= ϕ for every σ ∈ ASSIGNA or (A, σ) |= ϕ for every σ ∈
ASSIGNA.

Proof. This is an immediate consequence of Theorem 4.5.12. �

Let ϕ be an L-sentence and let A be an L-structure. By Corol-
lary 4.5.13, the value of SA(ϕ)(σ) is independent of the assignment
σ. Therefore, we are justified in denoting this truth value by ϕA.

4.5.3 Validity

Definition 4.5.14. Let L be a first-order language, A be an L-
structure and ϕ be a formula of L. If (A, σ) |= ϕ for every assignment
σ over A, then we say that ϕ is valid in A, or that A is a model of
ϕ, and write A |= ϕ.

An L-structure A is a model of Γ if A is a model of every formula
in Γ. This is denoted by A |= Γ.

If ϕ is an L-formula which is valid in all L-structures, then we
call ϕ logically valid and write |= ϕ.

Example 4.5.15. Example 4.5.11 shows that (B, σ) |= ϕ for every
σ ∈ ASSIGNB, so B |= ϕ, that is, ϕ is valid in B. However, ϕ is not
logically valid because it is not valid in A. Indeed, if σ ∈ ASSIGNA
is such that σ(x1) is not a perfect square, then (A, σ) |= ϕ.

If ϕ is an L-sentence and A is an L-structure, then, by Corol-
lary 4.5.13, either A |= ϕ or A |= (¬ϕ). It is easy to see that if ϕ
is not a sentence, then we could have an L-structure A such that
neither A |= ϕ nor A |= (¬ϕ). Indeed, we saw an illustration of this
remark in Example 4.5.11.

Theorem 4.5.16. Let ϕ,ψ be in SENTL, t0, . . . , tn−1 be ground
terms of L, R be an n-ary relation symbol in L with n > 0, and
A be an L-structure. Then,

(1) A |= R(t0, . . . , tn−1) if and only if (tA0 , . . . , tAn−1) ∈ RA;
(2) (¬ϕ)A = f¬(ϕA);
(3) (ϕCψ)A = fC(ϕ

A, ψA) for every binary connective symbol C.

First-Order Logic–Syntax and Semantics 603

Proof. We show only the third part of the theorem. Let σ ∈
ASSIGNA be a fixed but arbitrary assignment. By applying
Definition 4.5.9, we have

(ϕCψ)A = SA((ϕCψ))(σ)

= fC(SA(ϕ)(σ),SA(ψ)(σ))

= fC(ϕ
A, ψA).

�

We can restate explicitly the last two parts of Theorem 4.5.16 as
follows:

(1) A |= (¬ϕ) if and only if A |= ϕ;
(2) A |= (ϕ ∨ ψ) if and only if A |= ϕ or A |= ψ;
(3) A |= (ϕ ∧ ψ) if and only if A |= ϕ and A |= ψ;
(4) A |= (ϕ→ ψ) if and only if A |= (¬ϕ) or A |= ψ;
(5) A |= (ϕ ↔ ψ) if and only if either A |= ϕ and A |= ψ or
A |= (¬ϕ) and A |= (¬ψ).

Example 4.5.17. We will show that the formulas

α = ((∃x)(ϕ ∨ ψ)↔ ((∃x)ϕ ∨ (∃x)ψ))
β = ((∀x)(ϕ ∧ ψ)↔ ((∀x)ϕ ∧ (∀x)ψ))

are logically valid for all formulas ϕ,ψ and all variables x.
For the first part, let A be a structure and let σ ∈ ASSIGNA. To

show that (A, σ) |= α, we need to prove that (A, σ) |= (∃x)(ϕ∨ψ) if
and only if (A, σ) |= ((∃x)ϕ ∨ (∃x)ψ).

Suppose that (A, σ) |= (∃x)(ϕ ∨ ψ). This implies that (A, [x →
a]σ) |= (ϕ ∨ ψ) for some a ∈ |A|. Therefore, we have (A, [x →
a]σ) |= ϕ or (A, [x → a]σ) |= ψ, which amounts to (A, σ) |= (∃x)ϕ
or (A, σ) |= (∃x)ψ. Therefore, (A, σ) |= ((∃x)ϕ ∨ (∃x)ψ).

Conversely, suppose that (A, σ) |= ((∃x)ϕ ∨ (∃x)ψ). This means
that we have either (A, σ) |= (∃x)ϕ or (A, σ) |= (∃x)ψ. In the first
case, there is a ∈ |A| such that (A, [x → a]σ) |= ϕ and this implies
that (A, [x→ a]σ) |= (ϕ ∨ ψ). Therefore, (A, σ) |= (∃x)(ϕ ∨ ψ). The
second case is entirely similar.

For the second part, suppose that (A, σ) |= (∀x)(ϕ ∧ ψ). This
means that for every a ∈ |A|, (A, [x → a]σ) |= (ϕ ∧ ψ), which is
equivalent to saying that (A, [x→ a]σ) |= ϕ and (A, [x→ a]σ) |= ψ.

604 Logical Foundations of Computer Science — Volume 2

This shows that (A, σ) |= (∀x)ϕ and (A, σ) |= (∀x)ψ, so (A, σ) |=
((∀x)ϕ ∧ (∀x)ψ)).

Conversely, suppose that (A, σ) |= ((∀x)ϕ ∧ (∀x)ψ)). Then,
(A, σ) |= (∀x)ϕ and (A, σ) |= (∀x)ψ, so for all a, b ∈ |A|, we have
(A, [x → a]σ) |= ϕ and (A, [x → b]σ) |= ψ. Choosing a = b,
we have that (A, [x → a]σ) |= (ϕ ∧ ψ) for every a ∈ |A|, so
(A, σ) |= (∀x)(ϕ ∧ ψ).

Example 4.5.18. let L be a first-order language that contains the
binary relation symbol R and the unary function symbols f and g.
We claim that the formula ((∀x0)(∀x1)R(x0, x1)→ R(f(x0), g(x1)))
is logically valid. Let (A, σ) be such that σ ∈ ASSIGNA. We
need to show that if (A, σ) |= (∀x0)(∀x1)R(x0, x1), then (A, σ) |=
R(f(x0), g(x1)). This follows from the following chain of statements,
where each statement implies its successor.

(1) (A, σ) |= (∀x0)(∀x1)R(x0, x1);
(2) (A, [x0 → a0]σ) |= (∀x1)R(x0, x1), for all a0 ∈ |A|;
(3) (A, [x1 → a1][x0 → a0]σ) |= R(x0, x1), for all a0, a1 ∈ |A|;
(4) (([x1 → a1][x0 → a0]σ)

A(x0), ([x1 → a1][x0 → a0]σ)
A(x1)) ∈

RA, for all a0, a1 ∈ |A|;
(5) (a0, a1) ∈ RA, for all a0, a1 ∈ |A|;
(6) (fA(σA(x0)), gA(σA(x1))) ∈ RA;
(7) (A, σ) |= R(f(x0), g(x1)).

Similarly, the formula ((∀x0)(∀x1)R(x0, x1)→ R(f(x1), g(x0))) is
logically valid.

Example 4.5.19. Let ϕ be a formula of a first-order language
L. We claim that the formula ψ = ((∀x)ϕ → (∃x)ϕ) is logically
valid for every variable x. Indeed, let A be an L-structure and let
σ ∈ ASSIGNA. To show that (A, σ) |= ψ, it suffices to show that if
(A, σ) |= (∀x)ϕ, then (A, σ) |= (∃x)ϕ. (A, σ) |= (∀x)ϕ means that
for all a ∈ |A|, (A, [x → a]σ) |= ϕ. By the definition of structure,
|A| = ∅, so there is a0 ∈ |A| such that (A, [x → a0]σ) |= ϕ, which
shows that (A, σ) |= (∃x)ϕ.

Example 4.5.20. Let L = {f,=}, where f is a binary function sym-
bol. Clearly, L is an algebraic language and an L-algebra is commonly

First-Order Logic–Syntax and Semantics 605

called a groupoid. The formula

ϕ = (∀x)(∀y)(((∀z)(f(x, z) = z) ∧ (∀w)(f(w, y) = w))→ (x = y)),

where x, y, z are distinct variables, expresses the fact that in a
groupoid every left identity is equal to every right identity.

We prove that ϕ is logically valid. To this end, consider the follow-
ing sequence of equivalent statements which involve an L-structure
A and an assignment σ ∈ ASSIGNA:

(1) (A, σ) |= ϕ;
(2) (A, [x→ a]σ) |= (∀y)(((∀z)(f(x, z) = z)∧ (∀w)(f(w, y) = w))→

(x = y)) for all a ∈ |A|;
(3) (A, [y → b][x → a]σ) |= (((∀z)(f(x, z) = z) ∧ (∀w)(f(w, y) =

w))→ (x = y)) for all a, b ∈ |A|;
(4) if (A, [y → b][x → a]σ) |= ((∀z)(f(x, z) = z) ∧ (∀w)(f(w, y) =

w)), then (A, [y → b][x→ a]σ) |= (x = y), for all a, b ∈ |A|;
(5) if (A, [y → b][x→ a]σ) |= (∀z)(f(x, z) = z) and (A, [y → b][x→

a]σ) |= (∀w)(f(w, y) = w), then a = b, for all a, b ∈ |A|;
(6) if (A, [z → c][y → b][x→ a]σ) |= (f(x, z) = z) for all c ∈ |A| and

(A, [w → d][y → b][x → a]σ) |= (f(w, y) = w) for all d ∈ |A|,
then a = b, for all a, b ∈ |A|;

(7) if fA(a, c) = c) for all c ∈ |A| and fA(d, b) = d for all d ∈ |A|,
then a = b, for all a, b ∈ |A|.

Assume that fA(a, c) = c) for all c ∈ |A| and fA(d, b) = d for all
d ∈ |A|. Choosing c = b in the first equality and d = a in the second,
we obtain fA(a, b) = b and fA(a, b) = a, respectively, so a = b.

Example 4.5.21. Let L = {P}, where P is a unary relation symbol.
We prove the validity of the formula ϕ = (∃x)(P (x)→ (∀x)P (x)).

Consider the following sequence of equivalent statements which
involve an L-structure A and an assignment σ ∈ ASSIGNA:

(1) (A, σ) |= ϕ;
(2) for some a ∈ |A|, (A, [x→ a]σ) |= (P (x)→ (∀x)P (x));
(3) for some a ∈ |A|, either (A, [x → a]σ) |= P (x) or (A, [x →

a]σ) |= (∀x)P (x);
(4) for some a ∈ |A|, either (a) ∈ PA or for all b ∈ |A|, (A, [x →

b][x→ a]σ) |= P (x);

606 Logical Foundations of Computer Science — Volume 2

(5) for some a ∈ |A|, either (a) ∈ PA or for all b ∈ |A|, (b) ∈ PA,

which obviously holds.

Example 4.5.22. Let L be a first-order language that contains
a binary relation symbol R. We show that the formula ϕ =
((∃x)(∀y)R(x, y)→ (∀y)(∃x)R(x, y)) is logically valid, where x and y
are distinct variables. Observe that we have the following four equiv-
alent statements involving an L-structure A and σ ∈ ASSIGNA:

(1) (A, σ) |= (∃x)(∀y)R(x, y);
(2) for some a ∈ |A|, (A, [x→ a]σ) |= (∀y)R(x, y);
(3) for some a ∈ |A|, for all b ∈ |A|, (A, [y → b][x→ a]σ) |= R(x, y);
(4) for some a ∈ |A|, for all b ∈ |A|, (a, b) ∈ RA.

The last statement implies that for all b ∈ |A|, for some a ∈ |A|,
(a, b) ∈ RA. This, in turn, is equivalent to saying that (A, σ) |=
(∀y)(∃x)R(x, y), as can be shown following an argument similar to
the first part. Thus, we have shown that (A, σ) |= ϕ.

Example 4.5.23. We show that the L-formula ((∀x)(ϕ → ψ) →
((∀x)ϕ → (∀x)ψ)) is logically valid for all L-formulas ϕ,ψ. To this
end, we need to prove that if (A, σ) |= (∀x)(ϕ → ψ), then (A, σ) |=
((∀x)ϕ → (∀x)ψ). The hypothesis means that for all a ∈ |A|, if
(A, [x→ a]σ) |= ϕ, then (A, [x→ a]σ) |= ψ. It follows from this that
if (A, [x → a]σ) |= ϕ for every a ∈ |A|, then (A, [x → a]σ) |= ψ for
every a ∈ |A|. Thus, if (A, σ) |= (∀x)ϕ, then (A, σ) |= (∀x)ψ and
this, in turn, implies that (A, σ) |= ((∀x)ϕ→ (∀x)ψ).

A first-order formula ϕ is an L-formula for more than one first-
order language L. This raises the possibility that ϕ could be log-
ically valid with respect to a language L0 but not logically valid
with respect to another language L1 (where ϕ is both an L0- and
an L1-formula) since the notion of logical validity introduced in Def-
inition 4.5.14 apparently depends on the first-order language L. We
will show that this is not the case.

Theorem 4.5.24. Let L,L′ be two first-order languages such that
L ⊆ L′. Suppose that B is an L′-structure and that A is REDL(B), the
reduct of B to L. Then, for every ϕ ∈ FORML and σ ∈ ASSIGNA =
ASSIGNB, we have (A, σ) |= ϕ if and only if (B, σ) |= ϕ.

First-Order Logic–Syntax and Semantics 607

Proof. The reader can show by induction on the terms t of L
that σA(t) = σB(t) for every σ ∈ ASSIGNA. Then, an argument
by induction on formulas ϕ (also left to the reader) shows that
SA(ϕ)(σ) = SB(ϕ)(σ) for every σ ∈ ASSIGNA. �

Corollary 4.5.25. Let L,L′ be two first-order languages such that
L ⊆ L′. If B is an L′-structure and A is REDL(B), then for every
L-sentence ϕ, we have A |= ϕ if and only if B |= ϕ.

Proof. The statement follows immediately from Theorem 4.5.24.
�

Corollary 4.5.26. Let L be a first-order language, A and A′ be
two L-structures with |A| = |A′|, ϕ be an L-formula and σ be an
assignment over A. If sA = sA′

for all s ∈ Lϕ, then (A, σ) |= ϕ if
and only if (A′, σ) |= ϕ.

Proof. Let B = REDLϕ(A). We also have B = REDLϕ(A′) by
hypothesis. Therefore, Theorem 4.5.24 implies that (A, σ) |= ϕ if
and only if (B, σ) |= ϕ if and only if (A′, σ) |= ϕ. �

Theorem 4.5.27. Let L,L′ be two first-order languages such that
L ⊆ L′. If ϕ ∈ FORML, then ϕ is logically valid as an L-formula if
and only if ϕ is logically valid as an L′-formula.

Proof. Suppose that ϕ is not logically valid as an L′ formula. Then,
there is an L′-structure B and an assignment σ ∈ ASSIGNB such that
(B, σ) |= ϕ. If A = REDL(B), then, by Theorem 4.5.24, (A, σ) |= ϕ,
which implies that ϕ is not logically valid as an L-formula.

Conversely, suppose that ϕ is not logically valid as an L-formula.
Then, there is an L-structure A and an assignment σ ∈ ASSIGNA
such that (A, σ) |= ϕ. If B is an extension of A to L′, the same
theorem implies that (B, σ) |= ϕ, so ϕ is not logically valid as an
L′-formula. �

Corollary 4.5.28. Let L,L′ be two first-order languages and let ϕ
be a formula in FORML ∩ FORML′. Then, ϕ is logically valid as an
L-formula if and only if ϕ is logically valid as an L′-formula.

Proof. Observe that by a double application of Theorem 4.5.27,
the following statements are equivalent.

608 Logical Foundations of Computer Science — Volume 2

• ϕ is logically valid as an L-formula.
• ϕ is logically valid as an L ∩ L′-formula.
• ϕ is logically valid as an L′-formula.

�

Definition 4.5.29. Let L be a first-order language, let ϕ and ψ be
two L-formulas and let Γ be a set of L-formulas.

• ϕ is satisfiable in A, where A is an L-structure, if there is σ ∈
ASSIGNA such that (A, σ) |= ϕ. ϕ is satisfiable if it is satisfiable
in some L-structure; otherwise, we say that ϕ is unsatisfiable.

• ϕ A-implies ψ (written ϕ |=A ψ) where A is an L-structure, if
every assignment σ over A which satisfies ϕ, also satisfies ψ.

• ϕ logically implies ψ (written ϕ |= ψ) if for every L-structure A
and assignment σ over A which satisfy ϕ, A and σ also satisfy ψ.

• ϕ is A-equivalent to ψ (written ϕ ≡A ψ), where A is an L-
structure, if for every σ ∈ ASSIGNA, we have (A, σ) |= ϕ if and
only if (A, σ) |= ψ.

• ϕ is logically equivalent to ψ (written ϕ ≡ ψ) if for every L-
structure A, ϕ is A-equivalent to ψ; in other words, for every
L-structure A and assignment σ ∈ ASSIGNA, we have (A, σ) |= ϕ
if and only if (A, σ) |= ψ.

• ϕ and ψ are equisatisfiable if either they are both satisfiable or
neither of them is satisfiable.

• Γ is satisfiable in A, where A is an L-structure, if there is σ ∈
ASSIGNA such that (A, σ) satisfies Γ; Γ is satisfiable if it is satis-
fiable in some L-structure; Γ is unsatisfiable if it is not satisfiable;
Γ is finitely satisfiable if every finite subset of Γ is satisfiable.

• Γ logically implies ψ (written Γ |= ψ) if every L-structure A and
assignment σ over A which satisfy Γ also satisfy ψ.

The symbol “|=” now has two meanings: when written as (A, σ) |=
ϕ, it means that ϕ is satisfied by (A, σ); in Γ |= ψ or in ϕ |= ψ, it
means that Γ or ϕ, respectively, logically implies ψ. The context will
differentiate clearly between these meanings.

Example 4.5.30. Let L be a first-order language that contains a
binary relation symbol R and let t0, t1 be two L-terms. If w is a

First-Order Logic–Syntax and Semantics 609

variable that does not occur in either t0 or t1, we have

R(t0, t1) ≡A (∀w)(R(t0, w)↔ R(t1, w))

for every L-structure A where RA is an equivalence relation on |A|.
Indeed, we have (A, σ) |= R(t0, t1) if and only if (σA(t0), σA(t1)) ∈

RA. By elementary properties of equivalence relations, this amounts
to saying that we have

for all a ∈ |A|, (σA(t0), a) ∈ RA if and only if (σA(t1), a) ∈ RA.
(4.5)

Note that for all a ∈ |A|, σ and [w → a]σ agree on all variables that
occur in t0 and t1 because w occurs in neither t0 nor t1. Thus, (4.5)
is equivalent to

for all a ∈ |A|, (([w → a]σ)A(t0), a) ∈ RA

if and only if (([w → a]σ)A(t1), a) ∈ RA. (4.6)

Finally, (4.6) is equivalent to (A, σ) |= (∀w)(R(t0, w)↔ R(t1, w)).

An alternative definition of logical implication which is frequently
used is given next.

Definition 4.5.31. Let L be a first-order language, ϕ be an L-
formula, and let Γ be a set of L-formulas. We write Γ≈| ϕ if every
L-structure that is a model of Γ is also a model of ϕ. We refer to the
relation ≈| as the weak logical implication.

In Supplements 59 to 62, we discuss properties of weak logical
implication and its relation to logical implication.

Using the notations and terminology introduced in Defini-
tions 4.5.14 and 4.5.29, we can expand Corollary 4.5.13 as follows.

Corollary 4.5.32. Let L be a first-order language and let A be an
L-structure. If ϕ ∈ SENTL, then ϕ is satisfiable in A if and only if
A |= ϕ. Further, if Γ ⊆ SENTL, then Γ is satisfiable in A if and only
if A is a model of Γ and thus, Γ is satisfiable if and only if Γ has a
model.

Proof. The first part is a restatement of Corollary 4.5.13. The
second part follows immediately from the first. �

610 Logical Foundations of Computer Science — Volume 2

Like the notion of logical validity, the notions introduced in Def-
inition 4.5.29, do not depend on the particular first-order language
considered. This is stated in the following results.

Theorem 4.5.33. Let L,L′ be two first-order languages such that
L ⊆ L′. Let ϕ,ψ ∈ FORML and let Γ be a set of L-formulas.

(1) ϕ is satisfiable as an L-formula if and only if ϕ is satisfiable as
an L′-formula.

(2) ϕ logically implies ψ as L-formulas if and only if ϕ logically
implies ψ as L′-formulas.

(3) ϕ is logically equivalent to ψ as L-formulas if and only if they
are logically equivalent as L′-formulas.

(4) Γ is satisfiable as a set of L-formulas if and only if it is satisfiable
as a set of L′-formulas.

(5) Γ logically implies ψ as a set of L-formulas and an L-formula,
respectively, if and only if this implication holds between them
considered as a set of L′-formulas and an L′-formula respectively.

Proof. The proofs of all parts of this theorem are similar to the
proof of Theorem 4.5.27. �

Corollary 4.5.34. Let L,L′ be two first-order languages, ϕ, ψ be two
formulas in FORML ∩ FORML′ and let Γ ⊆ FORML ∩ FORML′ .

(1) ϕ is satisfiable as an L-formula if and only if ϕ is satisfiable as
an L′-formula.

(2) ϕ logically implies ψ as L-formulas if and only if ϕ logically
implies ψ as L′-formulas.

(3) ϕ is logically equivalent to ψ as L-formulas if and only if they
are logically equivalent as L′-formulas.

(4) Γ is satisfiable as a set of L-formulas if and only if it is satisfiable
as a set of L′-formulas.

(5) Γ logically implies ψ as a set of L-formulas and an L-formula,
respectively, if and only if this implication holds between them
considered as a set of L′-formulas and an L′-formula respectively.

Proof. These statements follow from Theorem 4.5.33 in the same
manner as Corollary 4.5.28 follows from Theorem 4.5.27. �

First-Order Logic–Syntax and Semantics 611

Example 4.5.35. Let L be a first-order language with equality.
Recall that if x, y are variables, x = y stands for the formula
(¬(x = y)). Consider the formula

ϕ = ((x = y ∧ y = z) ∧ x = z),

where x, y, z are distinct variables. Then, for every L-structure A, ϕ
is satisfiable in A if and only if |A| ≥ 3.

Suppose that |A| ≥ 3. Then, there is σ ∈ ASSIGNA such that
the elements σ(x), σ(y), σ(z) are all distinct. It is immediate that
(A, σ) |= ϕ. Conversely, suppose that ϕ is satisfiable in A, say
(A, σ) |= ϕ. Then, it is clear that σ(x), σ(y), σ(z) are all distinct
and this implies |A| ≥ 3.

Example 4.5.36. The formula ϕ considered in the previous exam-
ple is not valid in any L-structure A because for an assignment
σ ∈ ASSIGNA such that σ(x) = σ(y) = σ(z) we have (A, σ) |= ϕ.
Thus, ϕ is an example of a formula that is satisfiable, but is not valid
in any structure.

Theorem 4.5.37. Let ϕ be a formula. We have (∀x)ϕ |= ϕ for every
variable x. If x ∈ FV(ϕ), then ϕ |= (∀x)ϕ.

Proof. Suppose that ϕ is an L-formula, A is an L-structure and
σ ∈ ASSIGNA. If (A, σ) |= (∀x)ϕ, this means that for every a ∈ |A|,
we have (A, [x → a]σ) |= ϕ. In particular, (A, [x → σ(x)]σ) |= ϕ, so
(A, σ) |= ϕ, which gives the desired logical implication.

Suppose now that x ∈ FV(ϕ) and that (A, σ) |= ϕ. Note that for
every a ∈ |A|, σ(z) = [x → a]σ(z) for every z ∈ FV(ϕ), so, by the
Agreement Theorem, (A, [x→ a]σ) |= ϕ. Thus, (A, σ) |= (∀x)ϕ. �

Corollary 4.5.38. For every formula ϕ, ϕ∀ |= ϕ.

Proof. This follows by repeated application of Theorem 4.5.37. �

Example 4.5.39. We show that the condition x ∈ FV(ϕ) is essential
for the second part of the theorem. Indeed, let ϕ be the formula x = c
where x is a variable and c is a constant symbol and let A be an
{=, c}-structure such that |A| = {a, b} and cA = a. If σ ∈ ASSIGNA
is such that σ(x) = a, then (A, σ) |= ϕ, but (A, σ) |= (∀x)ϕ.

Theorem 4.5.40. Let ϕ be a formula and x be a variable. We have
ϕ |= (∃x)ϕ. If x ∈ FV(ϕ), then (∃x)ϕ |= ϕ.

612 Logical Foundations of Computer Science — Volume 2

Proof. Suppose that ϕ is an L-formula, A is an L-structure and
σ ∈ ASSIGNA. If (A, σ) |= ϕ, this means that (A, [x→ σ(x)]σ) |= ϕ,
so (A, σ) |= (∃x)ϕ, which gives the desired logical implication.

We leave to the reader the argument for the last part of the
theorem. �

Corollary 4.5.41. For every formula ϕ, ϕ |= ϕ∃.

Proof. This follows by repeated application of Theorem 4.5.40. �

Example 4.5.42. The condition x ∈ FV(ϕ) is essential for the sec-
ond part of the theorem. Indeed, let ϕ be the formula x = c where
x is a variable and c is a constant symbol and let A be an {=, c}-
structure such that |A| = {a, b} and cA = a. If σ ∈ ASSIGNA is such
that σ(x) = b, then (A, σ) |= (∃x)ϕ, but (A, σ) |= ϕ.

Corollary 4.5.43. Let ϕ be a formula and x be a variable such that
x ∈ FV(ϕ). Then, ϕ ≡ (Qx)ϕ, for Q ∈ {∀,∃}.

Proof. The result follows immediately from Theorems 4.5.37
and 4.5.40. �

Example 4.5.44. Let ϕ,ψ be formulas and x be a variable such
that x ∈ FV(ϕ). We will show that the formulas (ϕ → (∃x)ψ) and
(∃x)(ϕ→ ψ) are logically equivalent.

Suppose that ϕ,ψ are L-formulas, that A is an L-structure and
that σ ∈ ASSIGNA. If (A, σ) |= (ϕ→ (∃x)ψ) two cases may occur.

Case 1: (A, σ) |= ϕ. Then, (A, σ) |= (ϕ → ψ), that is, (A, [x →
σ(x)]σ) |= (ϕ → ψ), which means that (A, σ) |=
(∃x)(ϕ→ ψ).

Case 2: (A, σ) |= (∃x)ψ. Then, there is a ∈ |A| such that (A, [x→
a]σ) |= ψ, which implies (A, [x→ a]σ) |= (ϕ→ ψ). This in
turn gives (A, σ) |= (∃x)(ϕ→ ψ).

Conversely, suppose that (A, σ) |= (∃x)(ϕ → ψ), so there is a ∈ |A|
such that (A, [x→ a]σ) |= (ϕ→ ψ). Again, we need to consider two
cases.

Case 1: (A, [x → a]σ) |= ϕ. Since x ∈ FV(ϕ), the assignments σ
and [x→ a]σ agree on all free variables of ϕ. Therefore, by
the Agreement Theorem, we have (A, σ) |= ϕ, so (A, σ) |=
(ϕ→ (∃x)ψ).

First-Order Logic–Syntax and Semantics 613

Case 2: (A, [x→ a]σ) |= ψ. This means that (A, σ) |= (∃x)ψ, which
implies (A, σ) |= (ϕ→ (∃x)ψ).

Theorem 4.5.45. Let ϕ,ψ and θ be formulas. Then,

(1) (a) ϕ |= ϕ;
(b) if ϕ |= ψ and ψ |= θ, then ϕ |= θ;

(2) (a) ϕ ≡ ϕ;
(b) if ϕ ≡ ψ, then ψ ≡ ϕ;
(c) if ϕ ≡ ψ and ψ ≡ θ, then ϕ ≡ θ;

(3) ϕ ≡ ψ if and only if ϕ |= ψ and ψ |= ϕ.

Proof. The arguments for all the parts are straightforward and are
left to the reader. �

Corollary 4.5.46. Let ϕ be a formula and let x be a variable. If x ∈
FV(ϕ), then the formulas ϕ, (∃x)ϕ and (∀x)ϕ are logically equivalent.

Proof. The corollary is a direct consequence of
Theorems 4.5.37, 4.5.40 and 4.5.45. �

Lemma 4.5.47. Let L be a first-order language. If ϕ0, ϕ1, ψ0, ψ1

are L-formulas and A is an L-structure such that ϕ0 |=A ϕ1 and
ψ0 |=A ψ1, and x is a variable, then

(¬ϕ1) |=A (¬ϕ0)

(ϕ0 ∨ ψ0) |=A (ϕ1 ∨ ψ1)

(ϕ0 ∧ ψ0) |=A (ϕ1 ∧ ψ1)

(ϕ1 → ψ0) |=A (ϕ0 → ψ1)

(∀x)ϕ0 |=A (∀x)ϕ1

(∃x)ϕ0 |=A (∃x)ϕ1

Proof. We give the argument only for the last part of the theorem.
Suppose that σ is an assignment, σ ∈ ASSIGNA such that (A, σ) |=
(∃x)ϕ0. Then, there is a ∈ |A| such that (A, [x → a]σ) |= ϕ0. Since
ϕ0 |= ϕ1, the previous statement implies the existence of an a ∈ |A|
such that (A, [x → a]σ) |= ϕ1. This amounts to (A, σ) |= (∃x)ϕ1, so
(∃x)ϕ0 |=A (∃x)ϕ1. �

614 Logical Foundations of Computer Science — Volume 2

Theorem 4.5.48. If ϕ0, ϕ1, ψ0, ψ1 are formulas such that ϕ0 |= ϕ1

and ψ0 |= ψ1, and x is a variable, then

(¬ϕ1) |= (¬ϕ0)

(ϕ0 ∨ ψ0) |= (ϕ1 ∨ ψ1)

(ϕ0 ∧ ψ0) |= (ϕ1 ∧ ψ1)

(ϕ1 → ψ0) |= (ϕ0 → ψ1)

(∀x)ϕ0 |= (∀x)ϕ1

(∃x)ϕ0 |= (∃x)ϕ1

Proof. The statement follows immediately from Lemma 4.5.47. �

Lemma 4.5.49. Let L be a first-order language and A be an L-
structure. If ϕ0, ϕ1, ψ0, ψ1 are L-formulas such that ϕ0 ≡A ϕ1 and
ψ0 ≡A ψ1, and x is a variable, then

(¬ϕ0) ≡A (¬ϕ1),

(ϕ0 ∨ ψ0) ≡A (ϕ1 ∨ ψ1),

(ϕ0 ∧ ψ0) ≡A (ϕ1 ∧ ψ1),

(ϕ0 → ψ0) ≡A (ϕ1 → ψ1),

(ϕ0 ↔ ψ0) ≡A (ϕ1 ↔ ψ1),

(∀x)ϕ0 ≡A (∀x)ϕ1,

(∃x)ϕ0 ≡A (∃x)ϕ1.

Proof. All statements, except for the fifth, are direct consequences
of Lemma 4.5.47. We leave the fifth statement, involving ↔, to the
reader. �

Theorem 4.5.50. If ϕ,ϕ′, ψ, ψ′ are formulas such that ϕ ≡ ϕ′ and
ψ ≡ ψ′, and x is a variable, then

(¬ϕ) ≡ (¬ϕ′),

(ϕ ∨ ψ) ≡ (ϕ′ ∨ ψ′),

(ϕ ∧ ψ) ≡ (ϕ′ ∧ ψ′),

(ϕ→ ψ) ≡ (ϕ′ → ψ′),

First-Order Logic–Syntax and Semantics 615

(ϕ↔ ψ) ≡ (ϕ′ ↔ ψ′),

(∀x)ϕ ≡ (∀x)ϕ′,

(∃x)ϕ ≡ (∃x)ϕ′.

Proof. The statement follows immediately from Lemma 4.5.49. �

Theorem 4.5.51. Let ϕ,ψ and θ be formulas and let Γ,Γ′ be sets
of formulas. Then,

(1) ∅ |= ϕ if and only if |= ϕ;
(2) {ϕ} |= ψ if and only if ϕ |= ψ;
(3) If Γ′ is satisfiable and Γ ⊆ Γ′, then Γ is satisfiable;
(4) {ϕ} is satisfiable if and only if ϕ is satisfiable;
(5) if Γ |= ϕ and Γ ⊆ Γ′, then Γ′ |= ϕ.

Proof. We leave the simple arguments of the theorem to the
reader. �

Theorem 4.5.52. Let ϕ and ψ be formulas and let Γ be a set of
formulas. Then,

(1) Γ |= ϕ if and only if Γ ∪ {¬ϕ} is unsatisfiable;
(2) if Γ |= ϕ and Γ |= (ϕ→ ψ), then Γ |= ψ;
(3) Γ ∪ {ϕ} |= ψ if and only if Γ |= (ϕ→ ψ).

Proof. The argument is left to the reader. �

Theorem 4.5.53. Let Γ be a set of formulas. The following state-
ments are equivalent:

(1) Γ is unsatisfiable;
(2) Γ |= ϕ for every formula ϕ;
(3) Γ |= ϕ for every contradiction ϕ;
(4) Γ |= ϕ for some contradiction ϕ.

Proof. The argument is similar to the one used in Theorem 2.3.18
and it is left to the reader. �

Theorem 4.5.54. Let Γ = {ϕ0, . . . , ϕn−1} be a nonempty, finite set
of formulas. Then, Γ is unsatisfiable if and only if ((¬ϕ0) ∨ · · · ∨
(¬ϕn−1)) is logically valid.

616 Logical Foundations of Computer Science — Volume 2

Proof. The argument is straightforward and is left to the reader.
�

Theorem 4.5.55. Let ϕ,ψ be two formulas. Then, we have:

(1) ϕ is satisfiable if and only if (¬ϕ) is not logically valid.
(2) ϕ is logically valid if and only if (¬ϕ) is unsatisfiable.
(3) ϕ |= ψ if and only if (ϕ→ ψ) is logically valid.
(4) ϕ ≡ ψ if and only if (ϕ↔ ψ) is logically valid.

Proof. We will prove the third part of the theorem and leave the
other three for the reader.

Let ϕ,ψ be two L-formulas. Suppose that ϕ |= ψ and let A be
an L-structure and σ be an assignment in ASSIGNA. There are two
cases to consider. If (A, σ) |= ϕ, then clearly (A, σ) |= (ϕ → ψ).
Otherwise, that is, if (A, σ) |= ϕ, then (A, σ) |= ψ, which implies
again that (A, σ) |= (ϕ→ ψ). Therefore, (ϕ→ ψ) is logically valid.

Conversely, suppose that (ϕ → ψ) is logically valid and let A be
an L-structure and σ ∈ ASSIGNA such that (A, σ) |= ϕ. The logical
validity of (ϕ → ψ) implies that (A, σ) |= (ϕ → ψ) from which it
follows that (A, σ) |= ψ. This shows that ϕ |= ψ. �

Corollary 4.5.56. Let ϕ,ψ be two formulas and x be a variable.
Then, we have

(∃x)(ϕ ∨ ψ) ≡ ((∃x)ϕ ∨ (∃x)ψ),
(∀x)(ϕ ∧ ψ) ≡ ((∀x)ϕ ∧ (∀x)ψ).

Proof. These logical equivalences follow from the fourth part of
Theorem 4.5.55 and Example 4.5.17. �

Theorem 4.5.57. Let ϕ be a formula and x be a variable. Then, we
have:

(∃x)ϕ ≡ (¬(∀x)(¬ϕ))
(∀x)ϕ ≡ (¬(∃x)(¬ϕ))

Proof. Let ϕ be an L-formula, A be an L-structure and σ ∈
ASSIGNA. We have the following obviously equivalent statements:

• (A, σ) |= (¬(∀x)(¬ϕ));
• (A, σ) |= (∀x)(¬ϕ);
• there is a ∈ |A| such that (A, [x→ a]σ) |= (¬ϕ);

First-Order Logic–Syntax and Semantics 617

• there is a ∈ |A| such that (A, [x→ a]σ) |= ϕ;
• (A, σ) |= (∃x)ϕ.

Thus, the first logical equivalence is shown. The second logical equiv-
alence has a similar argument and is left to the reader. �

Theorem 4.5.58. Let L be a first-order language, ϕ be an L-
formula, and A be an L-structure. Then, the following hold.

(1) For every variable x, A |= ϕ if and only if A |= (∀x)ϕ.
(2) A |= ϕ if and only if A |= ϕ∀; thus, |= ϕ if and only if |= ϕ∀.
(3) For every variable x, ϕ is satisfiable in A if and only if (∃x)ϕ is

satisfiable in A.
(4) ϕ is satisfiable in A if and only if ϕ∃ is satisfiable in A; thus, ϕ

is satisfiable if and only if ϕ∃ is satisfiable.

Proof. We showed in Theorem 4.5.37 that (∀x)ϕ |= ϕ. Therefore,
if A |= (∀x)ϕ, then A |= ϕ. Conversely, suppose that A |= ϕ. This
means that for every assignment σ ∈ ASSIGNA, (A, σ) |= ϕ, so for
every σ and every a ∈ |A|, (A, [x → a]σ) |= ϕ. This implies that
(A, σ) |= (∀x)ϕ. This concludes the argument for Part (1). Part (2)
is obtained by repeated application of Part (1).

In Theorem 4.5.40, we proved that ϕ |= (∃x)ϕ. Therefore, if
(A, σ) |= ϕ, it is clear that (A, σ) |= (∃x)ϕ. Conversely, suppose that
(A, σ) |= (∃x)ϕ. Then, there is a ∈ |A| such that (A, [x→ a]σ) |= ϕ.
This shows that ϕ is satisfiable in A. This establishes Part (3).
Finally, Part (4) follows by repeated application of Part (3). �

Corollary 4.5.59. Let L be a first-order language, ϕ be an L-
formula, and ψ be a generalization of ϕ. Then, ϕ is logically valid
if and only if ψ is logically valid.

Proof. This follows immediately from the first part of Theo-
rem 4.5.58. �

Corollary 4.5.60. Let L be a first-order language, Γ be a set of L-
formulas and A be an L-structure. Then, A is a model of Γ if and
only if A is a model of Γ∀; thus, Γ has a model if and only if Γ∀ has
a model.

Proof. This follows immediately from Theorem 4.5.58. �

618 Logical Foundations of Computer Science — Volume 2

Another way of obtaining Corollary 4.5.59 is by showing the fol-
lowing statement that has independent interest.

Theorem 4.5.61. Let L be a first-order language and Γ be a set of
L-formulas that contain no free occurrence of a variable x. Then, for
all L-formulas ϕ, Γ |= ϕ if and only if Γ |= (∀x)ϕ.

Proof. By Theorem 4.5.37, it is clear that if Γ |= (∀x)ϕ, then
Γ |= ϕ. To prove the reverse direction, suppose that Γ |= ϕ. To
show that Γ |= (∀x)ϕ, suppose that (A, σ) |= Γ. Then, by the Agree-
ment Theorem, since x does not occur free in Γ, for all a ∈ |A|,
(A, [x → a]σ) |= Γ, so (A, [x → a]σ) |= ϕ, which implies that
(A, σ) |= (∀x)ϕ.

�

4.5.4 Specification of Congruences

In this subsection, we give a collection of closed formulas involving
a binary relation symbol R such that the interpretation of R is a
congruence in every model of these formulas.

Definition 4.5.62. Let L be a first-order language and let R be
a binary relation symbol in L. Let MEq R,L be the set of formulas
consisting of:

• R(x0, x0) (reflexivity);
• (R(x0, x1)→ R(x1, x0)) (symmetry);
• ((R(x0, x1) ∧R(x1, x2))→ R(x0, x2)) (transitivity);
• for every n-ary function symbol f ∈ L with n > 0,

((R(x0, xn) ∧ · · · ∧R(xn−1, x2n−1))

→ R(f(x0, . . . , xn−1), f(xn, . . . , x2n−1)))

(function compatibility);

• for every n-ary relation symbol P ∈ L with P ∈ {R,=} and n > 0,

((R(x0, xn) ∧ · · · ∧R(xn−1, x2n−1))

→ (P (x0, . . . , xn−1)↔ P (xn, . . . , x2n−1)))

(relation compatibility).

First-Order Logic–Syntax and Semantics 619

The set EqR,L of (R,L)-congruence axioms consists of the univer-
sal closures of the formulas in MEq R,L. The names of the axioms are
indicated near their corresponding matrices.

Observe that if L is finite, the set MEq R,L is finite.

Theorem 4.5.63. Let A be an L-structure and let R be a binary
relation symbol in L. Then, A |= EqR,L if and only if RA is a con-
gruence of A.

Proof. The validity of the formulas in EqR,L in A implies that

RA is an equivalence on |A|, RA is fA-compatible for every n-ary
function symbol f ∈ L that is not a constant symbol, and RA is
PA-compatible for every n-ary relation symbol P ∈ L − {R,=}
that is not a propositional constant. The cA-compatibility of RA
for each constant symbol c ∈ L follows from the fact that RA is
reflexive. The PA-compatibility of RA for each propositional con-
stant P ∈ L is immediate. Thus, assuming that R is not =, we
need to prove that RA is compatible with itself. Suppose that
(a0, b0), (a1, b1) ∈ RA. If (a0, a1) ∈ RA, then, since (b0, a0) ∈ RA
by symmetry, we obtain (b0, b1) ∈ RA by applying transitivity twice
to the pairs (b0, a0), (a0, a1), (a1, b1) ∈ RA. Similarly, (b0, b1) ∈ RA
implies (a0, a1) ∈ RA.

If RA is a congruence, it is immediate that A |= EqR,L. �

In Section 5.8, we will need an equivalent form of the matrices of
the congruence axioms, which we introduce next.

Definition 4.5.64. Let L be a first-order language and let R be a

binary relation symbol in L. The set of formulas MEq†R,L is the set
of formulas consisting of:

• R(x0, x0);
• ((¬R(x0, x1)) ∨R(x1, x0));
• ((¬R(x0, x1)) ∨ (¬R(x1, x2)) ∨R(x0, x2));
• for every n-ary function symbol f ∈ L with n > 0,

((¬R(x0, xn)) ∨ · · · ∨ (¬R(xn−1, x2n−1))

∨R(f(x0, . . . , xn−1), f(xn, . . . , x2n−1)));

620 Logical Foundations of Computer Science — Volume 2

• for every n-ary relation symbol P ∈ L with P ∈ {R,=} and n > 0,

((¬R(x0, xn)) ∨ · · · ∨ (¬R(xn−1, x2n−1))

∨(¬P (x0, . . . , xn−1)) ∨ P (xn, . . . , x2n−1)),

and

((¬R(x0, xn)) ∨ · · · ∨ (¬R(xn−1, x2n−1))

∨(¬P (xn, . . . , x2n−1)) ∨ P (x0, . . . , xn−1)).

Theorem 4.5.65. Let L be a first-order language and R be a binary
relation symbol of L. If A is an L-structure, then the following state-
ments are equivalent.

(1) A |= EqR,L;
(2) A |= MEq R,L;
(3) A |= MEq†R,L.

Proof. We leave this simple proof to the reader. �

The set of (=,L)-congruence axioms is called the set of L-equality
axioms. Specifically, the L-equality axioms are the universal closures
of the following L-formulas:

• x0 = x0;
• (x0 = x1 → x1 = x0);
• ((x0 = x1 ∧ x1 = x2)→ x0 = x2);
• for every n-ary function symbol f ∈ L with n > 0,

((x0 = xn ∧ · · · ∧ xn−1 = x2n−1)

→ f(x0, . . . , xn−1) = f(xn, . . . , x2n−1));

• for every n-ary relation symbol P ∈ L with P ∈ {=} and n > 0,

((x0 = xn ∧ · · · ∧ xn−1 = x2n−1)

→ (P (x0, . . . , xn−1)↔ P (xn, . . . , x2n−1))).

First-Order Logic–Syntax and Semantics 621

Corollary 4.5.66. Every L-equality axiom is logically valid.

Proof. Let A be an L-structure. Since =A is the equality relation
on |A|, which is a congruence, it follows by Theorem 4.5.63 that
A |= Eq=,L. �

We conclude this subsection with a technical result that will be
needed later.

Theorem 4.5.67. Let L be a first-order language, R be a binary
relation symbol in L, and let L′ = (L − {R}) ∪ {R′}, where R′ is a
binary relation symbol such that R′ ∈ L. Then,

sRR′(EqR,L) = EqR′,L′ .

Proof. This straightforward argument is left to the reader. �

4.5.5 The Morphism Theorem

Theorem 4.5.68 (The Morphism Theorem). Let L be a first-
order language, A,B be two L-structures and h : |A| −→ |B| be a
morphism.

(1) If ϕ is a quantifier-free L-formula that has no occurrence of =,
then, for every σ ∈ ASSIGNA, we have (A, σ) |= ϕ if and only if
(B, h ◦ σ) |= ϕ.

(2) If h is also an epimorphism, then Part (1) holds for all L-
formulas ϕ not containing =. Moreover, for each such ϕ, A |= ϕ
if and only if B |= ϕ.

(3) If h is an embedding, then Part (1) holds for all quantifier-free
L-formulas ϕ.

(4) If h is an isomorphism, then Part (1) holds for all L-formulas
ϕ. Further, we have A |= ϕ if and only if B |= ϕ.

Proof. We show Part (1) by induction on ϕ. If ϕ is a proposi-
tional constant R, then (A, σ) |= R if and only if RA = T which is
equivalent to RB = T. This in turn is equivalent to (B, h ◦ σ) |= R.

Suppose now that ϕ = R(t0, . . . , tn−1) with n > 0 and R distinct
from =. Then,

(A, σ) |= ϕ if and only if (σA(t0), . . . , σA(tn−1)) ∈ RA

if and only if (h(σA(t0)), . . . , h(σA(tn−1))) ∈ RB

(since h is a morphism)

622 Logical Foundations of Computer Science — Volume 2

if and only if ((h ◦ σ)B(t0), . . . , (h ◦ σ)B(tn−1)) ∈ RB

(by Theorem 4.5.6)

if and only if (B, h ◦ σ) |= ϕ.

Suppose that the statement holds for the formula ϕ0 and let ϕ =
(¬ϕ0). We have

(A, σ) |= ϕ if and only if (A, σ) |= ϕ0

if and only if (B, h ◦ σ) |= ϕ0

if and only if (B, h ◦ σ) |= ϕ.

We leave to the reader the remaining inductive steps when ϕ =
(ϕ0Cϕ1) and the result holds for ϕ0, ϕ1.

The proof of the first assertion of Part (2) is the same as the proof
of Part (1) with the following additional inductive step. Assume that
the result holds for ϕ0 and let ϕ = (Qx)ϕ0 where Q is a quantifier
symbol. We discuss only the case when Q = ∀. We have

(A, σ) |= (∀x)ϕ0

if and only if (A, [x→ a]σ) |= ϕ0 for all a ∈ |A|
if and only if (B, h ◦ [x→ a]σ) |= ϕ0 for all a ∈ |A|

(by inductive hypothesis)

if and only if (B, [x→ h(a)](h ◦ σ)) |= ϕ0 for all a ∈ |A|
if and only if (B, [x→ b](h ◦ σ)) |= ϕ0 for all b ∈ |B|

(since h is an epimorphism)

if and only if (B, h ◦ σ) |= (∀x)ϕ0.

We used above the easily verifiable fact that h ◦ [x → a]σ = [x →
h(a)](h ◦ σ) for every a ∈ |A|.

For the second assertion of Part (2), let τ ∈ ASSIGNB. Using the
Axiom of Choice, for every x ∈ VAR, we can select ax ∈ |A| such
that h(ax) = τ(x), since h is a surjection. Thus, if σ is the assignment
over A defined by σ(x) = ax for x ∈ VAR, then τ = h ◦ σ. Suppose
that A |= ϕ. Let τ ∈ ASSIGNB. By the previous argument, there
is σ ∈ ASSIGNA such that τ = h ◦ σ. Since (A, σ) |= ϕ, we have

First-Order Logic–Syntax and Semantics 623

(B, τ) |= ϕ, so B |= ϕ. The converse implication follows immediately
from the first assertion.

To prove Part (3), we need to add to the argument of Part (1)
the basis step when ϕ is t0 = t1. We have

(A, σ) |= ϕ if and only if σA(t0) = σA(t1)

if and only if h(σA(t0)) = h(σA(t1))

(since h is injective)

if and only if (h ◦ σ)B(t0) = (h ◦ σ)B(t1)
(by Theorem 4.5.6)

if and only if (B, h ◦ σ) |= ϕ.

The argument for the last part follows from the combination of
the arguments of the previous parts. �

4.5.6 Semantics of Signed Formulas

The definition of the semantics of signed formulas proceeds along sim-
ilar lines as the corresponding development for propositional signed
formulas.

Definition 4.5.69. Let bϕ be a signed L-formula, A be an L-
structure, and σ ∈ ASSIGNA. We say that (A, σ) satisfies and write
(A, σ) |= bϕ, if SA(ϕ)(σ) = b, where SA is the function introduced
in Definition 4.5.9. In other words, (A, σ) |= Tϕ if (A, σ) |= ϕ and
(A, σ) |= Fϕ if (A, σ) |= ϕ.

Let Δ be a set of signed L-formulas. The pair (A, σ) satisfies Δ
if (A, σ) |= bϕ for every bϕ ∈ Δ. In this case, we write (A, σ) |= Δ.

A set Δ of signed formulas is satisfiable if (A, σ) |= Δ for some
L-structure A and assignment σ.

The set Δ logically implies a signed formula bϕ (written Δ |= bϕ)
if for every pair (A, σ), whereA is an L-structure and σ ∈ ASSIGNA,
(A, σ) |= bϕ whenever (A, σ) |= Δ.

Theorem 4.5.70. Let L,L′ be two first-order languages such that
L ⊆ L′. Suppose that B is an L′-structure and that A is REDL(B),
the reduct of B to L. Then, for every bϕ ∈ SFORML and

624 Logical Foundations of Computer Science — Volume 2

σ ∈ ASSIGNA = ASSIGNB, we have (A, σ) |= bϕ if and only if
(B, σ)|= bϕ.

Proof. This statement follows immediately from Theorem 4.5.24.
�

If Δ is both a set of signed L-formulas and a set of signed L′-
formulas for two first-order languages L,L′, then Δ is satisfiable as
a set of signed L-formulas if and only if it is satisfiable as a set
of signed L′-formulas. The argument for this is similar to the one
of Corollary 4.5.34 and makes use of Theorem 4.5.70. Since logical
implication can be characterized in terms of satisfiability, it follows
that logical implication is also language-independent.

As in the propositional case, a closed set of signed formulas is
unsatisfiable. Also, a set may be unsatisfiable without being closed.

Theorem 4.5.71. Let L be first-order language, Γ be a set of L-
formulas and let ϕ be an L-formula. Then, Γ |= ϕ if and only if the
set of signed formulas {Tψ | ψ ∈ Γ} ∪ {Fϕ} is unsatisfiable.

Proof. We leave this simple proof to the reader. �

Theorem 4.5.72. Let L be a first-order language, Δ be a set of
signed L-formulas, and let bϕ be a signed L-formula. Then, Δ∪{bϕ}
is unsatisfiable if and only if Δ |= bϕ.

Proof. The argument is left to the reader. �

The next result explains the similarity between the two types of
signed γ-formulas and the two types of signed δ-formulas.

Theorem 4.5.73. Let L be a first-order language, A be an L-
structure and σ ∈ ASSIGNA.

If b(Qx)ϕ is a γ-formula of L, then (A, σ) |= b(Qx)ϕ if and only
if (A, [x→ a]σ) |= bϕ for every a ∈ |A|.

If b(Qx)ϕ is a δ-formula of L, then (A, σ) |= b(Qx)ϕ if and only
if (A, [x→ a]σ) |= bϕ for some a ∈ |A|.

Proof. The statement follows immediately from the definition of
satisfaction of signed formulas. �

First-Order Logic–Syntax and Semantics 625

4.6 Semantics of Substitutions and Replacements

In this section, we will show some technical results involving the
semantics of replacements and of several types of substitutions. The
types of substitutions considered may involve relation symbols, or
variables and terms.

We begin with a result concerning substituting one relation sym-
bol for another.

Theorem 4.6.1. Let A be an L-structure and let R,R′ be two n-
ary relation symbols such that R ∈ L and R′ ∈ L. Further, assume
that if R′ is =, then RA = {(a, a) | a ∈ |A|}. If σ ∈ ASSIGNA, then
(A, σ) |= ϕ if and only if (AR→R′ , σ) |= sRR′(ϕ) for every L-formula ϕ.

Proof. The reader can easily prove that σA(t) = σAR→R′ (t) for
every L-term t. We use this fact in the main argument which is by
induction on L-formulas. For the basis step, let ϕ be the atomic
formula. If ϕ is a propositional constant, ϕ = P , we distinguish two
cases depending on whether or not P = R. In the former case, we
have:

(AR→R′ , σ) |= sRR′(ϕ) if and only if (R′)AR→R′ = T

if and only if RA = T

if and only if (A, σ) |= ϕ.

In the latter case, that is, when P = R, we have:

(AR→R′ , σ) |= sRR′(ϕ) if and only if PAR→R′ = T

if and only if PA = T

if and only if (A, σ) |= ϕ.

Suppose now that ϕ = P (t0, . . . , tm−1). Again, we distinguish two
cases depending on whether or not P = R. If P = R, then m = n
and we have the following equivalent statements:

(AR→R′ , σ) |= sRR′(ϕ)

(σAR→R′ (t0), . . . , σ
AR→R′ (tn−1)) ∈ (R′)AR→R′

(σA(t0), . . . , σA(tn−1)) ∈ RA

(A, σ) |= ϕ.

626 Logical Foundations of Computer Science — Volume 2

If P = R, then we have the following equivalent statements:

(AR→R′ , σ) |= sRR′(ϕ)

(σAR→R′ (t0), . . . , σ
AR→R′ (tm−1)) ∈ PAR→R′

(σA(t0), . . . , σA(tm−1)) ∈ PA

(A, σ) |= ϕ.

We leave the inductive steps to the reader. �

4.6.1 The Substitution Theorem

Now we concentrate on L-substitutions as defined in Section 4.3.
The main point of this subsection is to show that the satisfaction of
a formula obtained by a substitution from a formula ϕ relative to a
structure and an assignment amounts to the satisfaction of ϕ relative
to the same structure and a modified assignment.

Lemma 4.6.2. Let L be a first-order language. If A is an L-structure
and s is an L-substitution, then σA ◦ s = (σA ◦ s)A, for every σ ∈
ASSIGNA.

Proof. We need to prove that σA ◦ s(t) = (σA ◦ s)A(t) for every
t ∈ TERML and every σ ∈ ASSIGNA. We proceed by induction on
the term t. If t = x, then both sides of the equality of the lemma are
σA(s(x)). When t is a constant symbol c, then both sides equal cA.
This concludes the basis steps.

Now, assume that t = f(t0, . . . , tn−1) for n > 0 and that

σA ◦ s(ti) = (σA ◦ s)A(ti)

for 0 ≤ i ≤ n− 1. We have

σA ◦ s(t) = σA(f(s(t0), . . . , s(tn−1)))

= fA(σA(s(t0)), . . . , σA(s(tn−1))

= fA((σA ◦ s)A(t0), . . . , (σA ◦ s)A(tn−1))

= (σA ◦ s)A(f(t0, . . . , tn−1)).
�

First-Order Logic–Syntax and Semantics 627

Lemma 4.6.3. Let L be a first-order language, y0, . . . , yn−1 be dis-
tinct variables, and t, t0, . . . , tn−1 be terms. If A is an L-structure,
then

σA(sy0···yn−1
t0···tn−1

(t)) = σ′A(t)

where σ′ = [y0 → σA(t0)] · · · [yn−1 → σA(tn−1)]σ for every assign-
ment σ ∈ ASSIGNA.

Proof. The proof consists of applying Lemma 4.6.2 with s =
s
y0···yn−1

t0···tn−1
observing that

σA ◦ sy0···yn−1

t0···tn−1
= [y0 → σA(t0)] · · · [yn−1 → σA(tn−1)]σ.

�

The next theorem shows that in order to evaluate the truth value
of a formula obtained by applying a substitution to the free variables
of another formula ϕ, we can evaluate the truth value of the original
formula ϕ using an assignment modified by the substitution.

Theorem 4.6.4 (The Substitution Theorem). If L is a first-
order language, A is an L-structure, ϕ is an L-formula, and s is a
substitution admissible for ϕ, then

SA(FVSubst(s, ϕ))(σ) = SA(ϕ)(σA ◦ s),

for every σ ∈ ASSIGNA.

Proof. The argument is by induction on the formula ϕ. If ϕ is a
propositional constant, then FVSubst(s, ϕ) = ϕ and σ and σA ◦ s
agree on FV(ϕ) = ∅. Therefore, by Theorem 4.5.12, we obtain the
desired equality.

Suppose now that ϕ is R(t0, . . . , tn−1), where R is an n-ary rela-
tion symbol and t0, . . . , tn−1 are terms. We have

FVSubst(s, ϕ) = R(s(t0), . . . , s(tn−1))

and

SA(FVSubst(s, ϕ))(σ)

=

{
T if (σA(s(t0)), . . . , σA(s(tn−1))) ∈ RA,
F otherwise.

628 Logical Foundations of Computer Science — Volume 2

By Lemma 4.6.2, we have

σA(s(ti)) = (σA ◦ s)A(ti)

for 0 ≤ i ≤ n− 1, hence

SA(FVSubst(s, ϕ))(σ)

=

{
T if ((σA ◦ s)A(t0), . . . , (σA ◦ s)A(tn−1)) ∈ RA

F otherwise

= SA(ϕ)((σA ◦ s)).

Assume now that ϕ = (αCβ), where C is a binary connective
symbol, and that the result holds for α and β. Suppose that s is
admissible for ϕ. By Corollary 4.3.81, s is also admissible for both α
and β, so by inductive hypothesis,

SA(FVSubst(s, α))(σ) = SA(α)(σA ◦ s),
SA(FVSubst(s, β))(σ) = SA(β)(σA ◦ s).

We have FVSubst(s, ϕ) = (FVSubst(s, α) C FVSubst(s, β)), by
Lemma 4.3.53 and

SA(FVSubst(s, ϕ))(σ)
= SA(FVSubst(s, α) C FVSubst(s, β))(σ)

= fC(SA(FVSubst(s, α))(σ),SA(FVSubst(s, β))(σ))

(by the inductive hypothesis)

= fC(SA(α)(σA ◦ s),SA(β)(σA ◦ s))
= SA(αCβ)(σA ◦ s)
= SA(ϕ)(σA ◦ s).

We leave to the reader the case when ϕ = (¬α).
Assume now that ϕ = (Qx)α, where Q is a quantifier and that

the result holds for α. Suppose that s is admissible for ϕ. Then, by
Corollary 4.3.81,

(1) [x→ x]s is admissible for α, and

First-Order Logic–Syntax and Semantics 629

(2) for every variable y that occurs free in (Qx)α, x does not occur
in s(y).

We need to show first that the assignments [x→ a]σA ◦ ([x → x]s)
and [x → a](σA ◦ s) agree on FV(α) for every a ∈ |A|. It is clear
that both of these assignments map x to a. Assume that y = x and
y ∈ FV(α). Then, y ∈ FV(ϕ), so x does not occur in s(y). Thus, we
have

[x→ a]σA ◦ ([x→ x]s)(y)

= [x→ a]σA(s(y)) (because y = x)

= σA(s(y)) (by Theorem 4.5.3)

= ([x→ a](σA ◦ s))(y) (because y = x)

so the assignments agree on y.
By inductive hypothesis, since [x → x]s is admissible for α, we

have

SA(FVSubst([x→ x]s, α))([x→ a]σ)

= SA(α)(([x→ a]σ)A ◦ ([x→ x]s)),

for all a ∈ |A|, which allows us to write, when Q = ∀,

SA(FVSubst(s, (∀x)α))(σ)
= SA((∀x)FVSubst([x→ x]s, α))(σ)

=

⎧⎪⎨
⎪⎩
T if SA(FVSubst([x→ x]s, α))([x→ a]σ) = T

for every a ∈ |A|
F otherwise.

=

{
T if SA(α)([x→ a]σA ◦ ([x→ x]s)) = T for every a ∈ |A|
F otherwise.

=

{
T if SA(α)([x→ a](σA ◦ s)) = T for every a ∈ |A|
F otherwise.

= SA((∀x)α)(σA ◦ s).

We leave to the reader the case when Q is the existential quantifier.
�

630 Logical Foundations of Computer Science — Volume 2

Corollary 4.6.5. If L is a first-order language, A is an L-structure,
ϕ is an L-formula, and s is a substitution admissible for ϕ, then
(A, σ) |= FVSubst(s, ϕ) if and only if (A, σA ◦ s) |= ϕ.

Proof. This corollary follows immediately from Definition 4.5.9
and Theorem 4.6.4. �

Corollary 4.6.6 (The Substitution Corollary). If L is a first-
order language, A is an L-structure, ϕ is an L-formula, y0, . . . , yn−1

are distinct variables and t0, . . . , tn−1 are L-terms such that ti is
substitutable for yi in ϕ, then we have (A, σ) |= (ϕ)y0,...,yn−1:=t0,...,tn−1

if and only if (A, [y0 → σA(t0)] · · · [yn−1 → σA(tn−1)]σ) |= ϕ.

Proof. Taking s = s
y0···yn−1

t0···tn−1
in Corollary 4.6.5 gives the result. �

The following generalization of parts of Theorems 4.5.37
and 4.5.40 is an application of the Substitution Corollary.

Theorem 4.6.7. If ϕ is a formula, y0, . . . , yn−1 are distinct variables
and t0, . . . , tn−1 are terms such that ti is substitutable for yi in ϕ, then
we have

(∀y0) · · · (∀yn−1)ϕ |= (ϕ)y0,...,yn−1:=t0,...,tn−1

and

(ϕ)y0,...,yn−1:=t0,...,tn−1 |= (∃y0) · · · (∃yn−1)ϕ.

Proof. Let L be a first-order language such that ϕ is an L-
formula and t0, . . . , tn−1 are L-terms. Assume that (A, σ) |=
(∀y0) · · · (∀yn−1)ϕ, where A is an L-structure and σ ∈ ASSIGNA.
Since

(A, [yn−1 → an−1] · · · [y0 → a0]σ) |= ϕ

for all a0, . . . , an−1 ∈ |A|, we have

(A, [y0 → a0] · · · [yn−1 → an−1]σ) |= ϕ

for all a0, . . . , an−1 ∈ |A| because the variables y0, . . . , yn−1 are pair-
wise distinct. Choosing ai = σA(ti) for 0 ≤ i ≤ n − 1, we obtain
(A, [y0 → σA(t0)] · · · [yn−1 → σA(tn−1)]σ) |= ϕ which implies, by the
Substitution Corollary, (A, σ) |= (ϕ)y0,...,yn−1:=t0,...,tn−1 . We leave to
the reader the argument for the second part of the theorem. �

First-Order Logic–Syntax and Semantics 631

If in the above theorem we take ti = yi, for 0 ≤ i ≤ n − 1,
then it is easy to see that each ti is substitutable for yi in ϕ
and (ϕ)y0,...,yn−1:=t0,...,tn−1 = ϕ. This gives the logical implications
(∀y0) · · · (∀yn−1)ϕ |= ϕ and ϕ |= (∃y0) · · · (∃yn−1)ϕ. (The cases when
n = 1 were previously discussed in Theorems 4.5.37 and 4.5.40.)

Example 4.6.8. We will show that the substitutability of ti for
yi in ϕ is essential in Theorem 4.6.7. Indeed, let ϕ = (∃y)R(y0, y)
and let t0 = y, where y = y0. Observe that t0 is not substitutable
for y0 in ϕ. If A is the {R}-structure given by |A| = N and RA =
{(m,n) | m < n}, then A |= (∀y0)(∃y)R(y0, y) (because for every
natural number m, there is a natural number n larger than m), but
A |= (∃y)R(y, y). Thus (∀y0)ϕ |= (ϕ)y0:=t0 .

Theorem 4.6.9. If θ is an instance of a universal formula ψ, then
ψ |= θ.

Proof. This statement follows immediately from Definition 4.3.57
and Theorem 4.6.7. �

Corollary 4.6.10. Let L be a first-order language. Then, every
instance of a formula in Eq=,L is logically valid.

Proof. This statement follows from Theorem 4.6.9 and from the
fact that all formulas in Eq=,L are logically valid (see Corol-
lary 4.5.66). �

As another illustration of the use of the Substitution Corollary, we
prove the following result on renaming bound variables in formulas.

Theorem 4.6.11. Let ϕ be a formula, and x, y be variables such that
y does not occur free in ϕ and y is substitutable for x in ϕ. Then,

(∀x)ϕ ≡ (∀y)(ϕ)x:=y and FV((∀x)ϕ) = FV((∀y)(ϕ)x:=y)
(∃x)ϕ ≡ (∃y)(ϕ)x:=y and FV((∃x)ϕ) = FV((∃y)(ϕ)x:=y).

Proof. Let ϕ be an L-formula, A be an L-structure, and let
σ ∈ ASSIGNA, where L is a first-order language. The following state-
ments are equivalent:

(1) (A, σ) |= (∀y)(ϕ)x:=y;
(2) for all a ∈ |A|, (A, [y → a]σ) |= (ϕ)x:=y;

632 Logical Foundations of Computer Science — Volume 2

(3) for all a ∈ |A|, (A, [x→ ([y → a]σ)A(y)][y → a]σ) |= ϕ;
(4) for all a ∈ |A|, (A, [x→ a][y → a]σ) |= ϕ;
(5) for all a ∈ |A|, (A, [x→ a]σ) |= ϕ;
(6) (A, σ) |= (∀x)ϕ.
The equivalences of Parts (1) and (2), (3) and (4), and (5) and (6) fol-
low immediately from the definitions. The equivalence of (2) and (3)
follows from the Substitution Corollary since y is substitutable for
x in ϕ. Finally, the equivalence of (4) and (5) follows from the fact
that the assignments [x→ a][y → a]σ and [x→ a]σ agree on the free
variables of ϕ.

By Corollary 4.3.84, we have the inclusions

FV(ϕ)− {x} ⊆ FV((ϕ)x:=y) ⊆ (FV(ϕ)− {x}) ∪ {y}.

Subtracting {y} from the three sets involved in the previous inclu-
sions and using the fact that y does not occur free in ϕ, we
have FV(ϕ) − {x} = FV((ϕ)x:=y) − {y}, that is FV((∀x)ϕ) =
FV((∀y)(ϕ)x:=y).

The argument for the second part is virtually the same as the
argument for the first part. �

Note that if y does not occur in ϕ, then y and ϕ meet the condi-
tions of Theorem 4.6.11.

Yet one more application of the Substitution Corollary is the fol-
lowing result.

Theorem 4.6.12. Let Γ be a set of formulas and let c be a constant
symbol that does not occur in any formula of Γ or in ϕ.

(1) If Γ ∪ {(∃x)ϕ} is satisfiable, then Γ ∪ {(ϕ)x:=c} is satisfiable.
(2) If Γ∪{(¬(∀x)ϕ)} is satisfiable, then Γ∪{((¬ϕ))x:=c} is satisfiable.

Proof. To prove the first part, let L be a first-order language such
that Γ ∪ {(∃x)ϕ} ⊆ FORML and c ∈ L and let A be an L-structure
such that (A, σ) |= Γ ∪ {(∃x)ϕ} for some σ ∈ ASSIGNA. Since
(A, σ) |= (∃x)ϕ, we have (A, [x → a0]σ) |= ϕ for some a0 ∈ |A|.
Define the language L′ = L ∪ {c} and the expansion A′ of A to L′
by cA′

= a0.
By Theorem 4.5.24, we have (A′, σ) |= Γ. Thus, we need to show

only that (A′, σ) |= (ϕ)x:=c. Since (A, [x → a0]σ) |= ϕ, we have
(A′, [x→ a0]σ) |= ϕ, again by Theorem 4.5.24. Therefore, (A′, [x→

First-Order Logic–Syntax and Semantics 633

σA′
(c)]σ) |= ϕ, which implies (A′, σ) |= (ϕ)x:=c, by the Substitution

Corollary, in view of the fact that c is substitutable for x in ϕ.
For the second part, observe that Γ ∪ {(∃x)(¬ϕ)} is satisfiable

because (¬(∀x)ϕ) ≡ (∃x)(¬ϕ). Thus, by applying the first part, we
have that Γ ∪ {((¬ϕ))x:=c} is satisfiable. �

Theorem 4.6.13. Suppose that Δ is a set of signed formulas,
b(Qx)ϕ is a δ-formula, and c is a constant symbol that does not occur
in any formula of Δ∪{b(Qx)ϕ}. If Δ∪{b(Qx)ϕ} is satisfiable, then
Δ ∪ {b(ϕ)x:=c} is satisfiable.

Proof. The argument follows along the same lines as the one for
Theorem 4.6.12, but using Theorem 4.5.70 instead of Theorem 4.5.24.

�

The next statement shows that we can reduce the problem of
logical implication Γ |= ϕ for arbitrary Γ and ϕ to the problem of
logical implication Γ′ |= ϕ′, where Γ′ is a set of closed formulas and
ϕ′ is a closed formula, obtained from Γ and ϕ effectively, by suitably
extending the first-order language involved. This theorem plays an
important role in presenting resolution in first-order logic.

Theorem 4.6.14. Let L be a first-order language, Γ be a set of L-
formulas, and ϕ be an L-formula. Let s be the Lc-substitution defined
by s(xi) = di, where Lc − L = {d0, d1, . . .} and the constant symbols
di are listed in the standard order.

Then, FVSubst(s,Γ) is a set of closed Lc-formulas and
FVSubst(s, ϕ) is a closed Lc-formula, and

Γ |= ϕ if and only if FVSubst(s,Γ) |= FVSubst(s, ϕ).

Proof. Since s replaces variables by constant symbols, it is clear
that s is admissible for any formula and by Theorem 4.3.82,
FVSubst(s,Γ) is a set of closed Lc-formulas and FVSubst(s, ϕ) is
a closed Lc-formula.

Assume that Γ |= ϕ, A is an Lc-structure, σ ∈ ASSIGNA, and
(A, σ) |= FVSubst(s,Γ). By Corollary 4.6.5, the admissibility of s
makes (A, σ) |= FVSubst(s,Γ) equivalent to (A, σA ◦ s) |= Γ, so,
by the assumption that Γ |= ϕ, we have (A, σA ◦ s) |= ϕ. Another
application of Corollary 4.6.5 implies that (A, σ) |= FVSubst(s, ϕ).

634 Logical Foundations of Computer Science — Volume 2

Conversely, suppose that FVSubst(s,Γ) |= FVSubst(s, ϕ) and let
A be an L-structure and σ ∈ ASSIGNA be such that (A, σ) |= Γ. We
must show that (A, σ) |= ϕ.

Define A′ to be the expansion of A to Lc given by dA′
i = σ(xi) for

i ∈ N. Note that σA′ ◦ s(xi) = σA′
(s(xi)) = σA′

(di) = dA′
i = σ(xi)

for i ∈ N, so σA′ ◦ s = σ. We have the following four equivalent
statements:

• (A′, σ) |= FVSubst(s,Γ);
• (A′, σA′ ◦ s) |= Γ;
• (A, σA′ ◦ s) |= Γ;
• (A, σ) |= Γ.

The equivalence of the first and second statements follows from the
admissibility of s and Corollary 4.6.5. The second statement is equiv-
alent to the third by Theorem 4.5.24, while the equivalence of the last
two statements follows from the equality shown above. Since (A, σ) |=
Γ, we have (A′, σ) |= FVSubst(s,Γ), so (A′, σ) |= FVSubst(s, ϕ).
The admissibility of σ implies that (A′, σA′ ◦s) |= ϕ. Theorem 4.5.24
implies (A, σA′ ◦ s) |= ϕ, which gives (A, σ) |= ϕ. Therefore, Γ |= ϕ.

�

4.6.2 The Replacement Theorem

Let L be a first-order language and A be an L-structure. Replacing
a subformula of a formula ϕ with an A-equivalent formula does not
change the meaning of ϕ in A. This is formally stated in the next
lemma.

Lemma 4.6.15 (Replacement Lemma for First-Order Logic).
Let ϕ be a formula and A be an L-structure. If α, β are A-
equivalent formulas and (α, i) is an occurrence of α in ϕ, then
replace (ϕ, (α, i), β) ≡A ϕ.

Proof. Note that by Theorem 4.3.24, replace (ϕ, (α, i), β) is a for-
mula. If ϕ = α, then i = 0 and replace (ϕ, (α, i), β) = β, so the result
follows immediately.

The argument is by induction on ϕ. If ϕ is an atomic formula,
then ϕ = α by Theorem 4.3.23 and we are done by the previous
remark.

First-Order Logic–Syntax and Semantics 635

We consider here only the case when ϕ = (Qx)ϕ1. The remaining
cases are left to the reader. Suppose that the statement holds for the
formula ϕ1. If ϕ = α, the conclusion is immediate. If ϕ = α, we have
shown in the proof of Theorem 4.3.24 that

replace (ϕ, (α, i), β) = (Qx)replace (ϕ1, (α, i− 4), β).

The formulas ϕ1 and replace (ϕ1, (α, i − 4), β) are A-equivalent by
the inductive hypothesis. Therefore, by Lema 4.5.49, we have

ϕ = (Qx)ϕ1 ≡A (Qx)replace (ϕ1, (α, i− 4), β)

= replace (ϕ, (α, i), β).
�

Theorem 4.6.16 (Replacement Theorem for First-Order
Logic). Let ϕ be a formula. If α, β are logically equivalent formulas
and (α, i) is an occurrence of α in ϕ, then replace (ϕ, (α, i), β) is
logically equivalent to the formula ϕ.

Proof. The statement follows immediately from Lemma 4.6.15. �

Theorem 4.6.17. Let L be a first-order language, t, u be L-terms
and ϕ be an L-formula. If t ≡A u and ψ is obtained from ϕ by
replacing an occurrence of t by u, then ϕ ≡A ψ.

Proof. The argument is by induction on the formula ϕ.
In the basis step, ϕ = R(t0, . . . , tn−1). Then, for some i, 0 ≤ i ≤

n−1, ψ = R(t0, . . . , ti−1, ui, ti+1, . . . , tn−1), where ui is obtained from
ti by replacing an occurrence of t by u. By Theorem 4.5.8, ti ≡A ui.
Thus, for all σ ∈ ASSIGNA we have

(A, σ) |= ϕ

if and only if (σA(t0), . . . , σA(tn−1)) ∈ RA

if and only if (σA(t0), . . . , σA(ti−1), σ
A(ui),

σA(ti+1), . . . , σ
A(tn−1)) ∈ RA

if and only if (A, σ) |= R(t0, . . . , ti−1, ui, ti+1, . . . , tn−1)

if and only if(A, σ) |= ψ,

so ϕ ≡A ψ.

636 Logical Foundations of Computer Science — Volume 2

We discuss only one inductive step and leave the remaining steps
for the reader.

Suppose that ϕ = (¬ϕ′) and the result holds for ϕ′. Then, ψ
has the form (¬ψ′), where ψ′ is obtained from ϕ′ by replacing an
occurrence of t by u. By inductive hypothesis, ϕ′ ≡A ψ′, so by
Lemma 4.6.15, we have ϕ ≡A ψ. �

Theorem 4.6.18. Let ϕ be a formula, and y0, . . . , yn−1, z0, . . . , zn−1

be variables such that z0, . . . , zn−1 are distinct variables that do not
occur in (Q0y0) · · · (Qn−1yn−1)ϕ where Q0, . . . , Qn−1 are quantifier
symbols. Then,

(Q0y0)· · ·(Qn−1yn−1)ϕ≡(Q0z0) · · · (Qn−1zn−1)(ϕ)yn−1:=zn−1,...,y0:=z0 .

Moreover, the two equivalent formulas given above have the same sets
of free variables.

Proof. The proof is by induction on n ≥ 1. The basis step is
implied by Theorem 4.6.11. For the inductive step, suppose that the
statement holds for n ≥ 1 and let ψ = (Q0y0) · · · (Qnyn)ϕ. By the
inductive hypothesis, we have

(Q1y1) · · · (Qnyn)ϕ ≡ (Q1z1) · · · (Qnzn)(ϕ)yn:=zn,...,y1:=z1
FV((Q1y1) · · · (Qnyn)ϕ) = FV((Q1z1) · · · (Qnzn)(ϕ)yn:=zn,...,y1:=z1).

Using the Replacement Theorem, Theorem 4.6.11, and the last equal-
ity of Lemma 4.3.54 for n = 1, successively, we obtain

ψ ≡ (Q0y0)(Q1z1) · · · (Qnzn)(ϕ)yn:=zn,...,y1:=z1
≡ (Q0z0)((Q1z1) · · · (Qnzn)(ϕ)yn:=zn,...,y1:=z1)y0:=z0
= (Q0z0) · · · (Qnzn)(ϕ)yn:=zn,...,y0:=z0 .

Further, we have:

FV(ψ) = FV((Q0y0) · · · (Qnyn)ϕ)
(definition of ψ)

= FV((Q1y1) · · · (Qnyn)ϕ)− {y0}
(Theorem 4.3.40)

First-Order Logic–Syntax and Semantics 637

= FV((Q1z1) · · · (Qnzn)(ϕ)yn:=zn,...,y1:=z1)− {y0}
(Inductive Hypothesis)

= FV((Q0y0)(Q1z1) · · · (Qnzn)(ϕ)yn:=zn,...,y1:=z1)
(Theorem 4.3.40)

= FV((Q0z0)((Q1z1) · · · (Qnzn)(ϕ)yn:=zn,...,y1:=z1)y0:=z0)
(Theorem 4.6.11)

= FV((Q0z0) · · · (Qnzn)(ϕ)yn:=zn,...,y0:=z0)
(Lemma 4.3.54).

�

4.6.3 Variants of Formulas

The notion of a variant of a formula is useful in facilitating the appli-
cation of substitutions. The technical difficulties of this section will
pay off whenever the normal application of substitutions would be
impossible.

Definition 4.6.19. Let ϕ,ψ be two formulas.
We say that ψ is an immediate variant of ϕ if ψ = ϕ or ψ is

obtained from ϕ by replacing an occurrence of a subformula (Qx)α
of ϕ by a formula (Qy)(α)x:=y, where y does not occur free in α and
y is substitutable for x in α.

The formula ψ is a variant of ϕ if there is a sequence (θ0, . . . , θn−1)
of formulas with n ≥ 1 such that ϕ = θ0, ψ = θn−1 and θi is an
immediate variant of θi−1 for 1 ≤ i ≤ n− 1.

Note that by taking n = 1 in the above definition, it follows that
every formula is a variant of itself. Furthermore, if θ is a variant of
ψ which is variant of ϕ, then, in turn, θ is a variant of ϕ (transitivity
of variants).

If bϕ is a signed formula, then bϕ′ is an (immediate) variant of bϕ
if ϕ′ is an (immediate) variant of ϕ.

Given two formulas ϕ and ψ that are immediate variants, we can
decide effectively whether or not ϕ is equal to ψ, and if they are not

638 Logical Foundations of Computer Science — Volume 2

equal, we can find effectively the occurrence of (Qx)α in ϕ that is
replaced by (Qy)(α)x:=y.

Lemma 4.6.20. Let ϕ,ϕ′ be formulas. Then:

(1) If ψ is an immediate variant of ϕ, then (¬ψ) is an immediate
variant of (¬ϕ).

(2) If ψ and ψ′ are f of ϕ and ϕ′, respectively, then (ψCϕ′) and
(ϕCψ′) are immediate variants of (ϕCϕ′).

(3) If ψ is an immediate variant of ϕ, then (Qx)ψ is an immediate
variant of (Qx)ϕ.

Proof. These statements follow from the local character of the
definition of immediate variant. �

Theorem 4.6.21. Let ϕ,ϕ′ be two formulas. Then:

(1) If ψ is a variant of ϕ, then (¬ψ) is a variant of (¬ϕ).
(2) If ψ and ψ′ are variants of ϕ and ϕ′, respectively, then (ψCψ′)

is a variant of (ϕCϕ′).
(3) If ψ is a variant of ϕ, then (Qx)ψ is a variant of (Qx)ϕ.

Proof. We prove only the second part. The first and third parts
are similar, but easier. Suppose that θ0, . . . , θn−1 is a sequence of
immediate variants such that ϕ = θ0 and θn−1 = ψ and θ′0, . . . , θ

′
m−1

is a sequence of immediate variants such that ϕ′ = θ′0 and θ
′
m−1 = ψ′.

Then, by Lemma 4.6.20, the following sequence of immediate variants

(θ0Cθ
′
0), (θ1Cθ

′
0), . . . , (θn−1Cθ

′
0)

(θn−1Cθ
′
1), . . . , (θn−1Cθ

′
m−1)

shows that (ψCψ′) = (θn−1Cθ
′
m−1) is a variant of (ϕCϕ′) = (θ0Cθ

′
0).
�

Theorem 4.6.22. If ψ is a variant of ϕ, then FV(ϕ) = FV(ψ).

Proof. It is clear that we need to show this statement only for
immediate variants. Suppose that ψ is an immediate variant of ϕ
obtained by replacing an occurrence of (Qx)α by (Qy)(α)x:=y, where
y does not occur free in α and y is substitutable for x in α. By Theo-
rem 4.6.11, FV((Qy)(α)x:=y) = FV((Qx)α), hence by Theorem 4.3.41,
FV(ϕ) = FV(ψ). �

First-Order Logic–Syntax and Semantics 639

Theorem 4.6.23. Every variant of formula is logically equivalent to
the formula.

Proof. The statement follows from Theorems 4.6.11 and 4.6.16.�

Example 4.6.24. Consider the formulas:

ϕ = (∀x)(R(x)→ (∃y)S(x, y))
ϕ′ = (∀x)(R(x)→ (∃y′)S(x, y′))
ϕ′′ = (∀x′)(R(x′)→ (∃y′)S(x′, y′)).

Note that ϕ′ is an immediate variant of ϕ and ϕ′′ is an immediate
variant of ϕ′, which means that ϕ′′ is a variant of ϕ.

Example 4.6.25. Let ϕ = (∀x)((∀x)R(x) ∧ Q(x)) and ψ =
(∀y)((∀x)R(x) ∧ Q(y)). Clearly, ψ is an immediate variant of ϕ. In
the other direction, since x does not occur free in ((∀x)R(x)∧Q(y))
and x is substitutable for y in the same formula, it follows that ϕ is
also an immediate variant of ψ.

Our next goal is to show that the property of being a variant is
symmetric, that is, if ψ is a variant of ϕ, then ϕ is a variant of ψ.

Theorem 4.6.26. Let ϕ,ψ be two formulas. If ψ is an immediate
variant of ϕ, then ϕ is an immediate variant of ψ.

Proof. Suppose that ψ is obtained from ϕ by replacing an occur-
rence of a subformula (Qx)α with (Qy)(α)x:=y, where y does not
occur free in α and y is substitutable for x in α. The statement is
trivially true when y = x. Therefore, we assume y = x. By Corol-
lary 4.3.84, x ∈ FV((α)x:=y). By Corollary 4.3.78, x is substitutable
for y in (α)x:=y. Since ((α)x:=y)y:=x = α by Corollary 4.3.87, it fol-
lows that ϕ is an immediate variant of ψ because we can replace
the occurrence of (Qy)(α)x:=y in ψ with (Qx)α and thus revert back
to ϕ. �

Corollary 4.6.27. Let ϕ,ψ be formulas. If ψ is a variant of ϕ, then
ϕ is a variant of ψ.

Proof. This statement follows immediately from Theorem 4.6.26.
�

640 Logical Foundations of Computer Science — Volume 2

An alternative characterization of variants can be obtained by
introducing a function that formalizes the renaming of variables
which occurs in a variant.

Definition 4.6.28. A renaming function for a formula ϕ, or just
a renaming for ϕ if there is no risk of confusion, is a mapping v :
ABO(ϕ)→ VAR that satisfies the following conditions:

(1) if (x, i) ∈ FO(ϕ), (y, j) ∈ ABO(ϕ) and (x, i) is in the scope of the
quantifier occurrence (Q, j − 1), then v((y, j)) = x;

(2) if (x, i) ∈ PBO(ϕ), bindingϕ((x, i)) = (x, j), (y, k) ∈ ABO(ϕ) with
j < k < i, and (x, i) occurs in the scope of the quantifier occur-
rence (Q, k − 1), then v((x, j)) = v((y, k)).

These conditions are illustrated in Figure 4.1.

(a)

Q y x

j − 1 j i

Scope of (Q, j − 1)

· · · · · ·

v((y, j)) = x

(x, i) ∈ FO(ϕ)

(y, j) ∈ ABO(ϕ)

Q0 x · · · Q y · · · x

j k i

binding

Scope of (Q, k − 1)

v((x, j)) = v((y, k))

(x, i) ∈ PBO(ϕ)

(x, j) ∈ ABO(ϕ)

(y, k) ∈ ABO(ϕ)

(b)

Fig. 4.1. Definition of renaming function for a formula.

First-Order Logic–Syntax and Semantics 641

The formula obtained from ϕ by applying the renaming v is ϕv

obtained by replacing each active bound occurrence (x, i) and its
associated passive bound occurrences of x by v((x, i)).

We use the notation V[ϕ, i0 → y0, . . . , ik−1 → yk−1] for a renam-
ing v for a formula ϕ such that the following conditions are satisfied:

(1) i0, . . . , ik−1 are pairwise distinct numbers such that 0 ≤ il ≤
|ϕ| − 1 for 0 ≤ l ≤ k − 1;

(2) (xj , ij) ∈ ABO(ϕ), for 0 ≤ j < k;
(3) v((xj , ij)) = yj, for 0 ≤ j < k;
(4) if (x, h) ∈ ABO(ϕ) and h ∈ {i0, . . . , ik−1}, then v((x, h)) = x.

We refer to a renaming of the form V[ϕ, i→ y] as a unit renam-
ing.

Note that every renaming v for a formula ϕ can be written as
v = V[ϕ, i0 → y0, . . . , ik−1 → yk−1]. Moreover, we can assume that
i0 < · · · < ik−1.

Given formulas ϕ,ψ such that ψ = ϕv, for some renaming v, we
can effectively find v as follows. For each active bound occurrence
(y, j) in ABO(ϕ) examine the corresponding active bound occurrence
(y′, j) in ψ. Then, v((y, j)) = y′.

Example 4.6.29. Let ϕ = (∀x)(∀y)R(x, y). The set of active bound
occurrences in ϕ is ABO(ϕ) = {(x, 2), (y, 6)}. Since the occurrence
(x, 10) is situated in the scope of (∀, 5), it follows that v((x, 2) must
be distinct from v((y, 6)), for any renaming function v for ϕ. Since ϕ
contains no free occurrences of variables, it follows that any function
v : ABO(ϕ) −→ VAR that meets the above requirement is renaming
function for ϕ. For instance, we can define v by v((x, 2)) = y and
v((y, 6)) = x. The resulting formula ϕv is (∀y)(∀x)R(y, x). Clearly,
we can write v = V[ϕ, 2→ y, 6→ x].

Example 4.6.30. Let ψ = (∀x)(R(x, y) ∧ (∀z)P (z, x)). The set of
active bound occurrences of ψ is {(x, 2), (z, 14)}. Since (y, 10) is a free
occurrence that falls in the scope of (∀, 1), we must have v((x, 2)) =
y for any renaming function v for ψ. By the second condition of
Definition 4.6.28, we must also have v((x, 2)) = v((z, 14)) and these
are the only restrictions that a renaming function for ψ must obey.
Thus, the mapping v = V[ϕ, 2 → w, 14 → y] is a renaming and we
have ψv = (∀w)(R(w, y) ∧ (∀y)P (y,w)).

642 Logical Foundations of Computer Science — Volume 2

We leave to the reader to prove the following statements involving
a formula ϕ and a renaming function v for ϕ:

(RN0) ϕv is a formula;
(RN1) |ϕv| = |ϕ|;
(RN2) if (s, i) ∈ OCC(ϕ) and s ∈ VAR, then (s, i) ∈ OCC(ϕv);
(RN3) if (x, i) ∈ OCC(ϕ) and x ∈ VAR, then there is y ∈ VAR such

that (y, i) ∈ OCC(ϕv);
(RN4) if Q is a quantifier symbol and (Q, i) ∈ OCC(ϕ),

scopeϕ((Q, i)) = (α, i+3), and scopeϕv((Q, i)) = (α′, i+3),

then |α| = |α′|;
(RN5) if (x, i) ∈ ABO(ϕ), y = v((x, i)), then (y, i) ∈ ABO(ϕv).

Theorem 4.6.31. Let ϕ be a formula and v be a renaming for ϕ.
The following statements hold:

(1) If (x, i) ∈ FO(ϕ), then (x, i) ∈ FO(ϕv).
(2) If (x, i) ∈ PBO(ϕ), bindingϕ((x, i)) = (x, j) and v((x, j)) = w,

then (w, i) ∈ PBO(ϕv) and bindingϕv((w, i)) = (w, j).

Proof. For the first part, note that (x, i) is an occurrence in ϕv.
Suppose that (x, i) were bound in ϕv. Then, (x, i) would occur in the
scope of a quantifier occurrence (Q,h) followed by an active bound
occurrence (x, h+1) in ϕv. By the preliminary observations, (Q,h) is
also an occurrence in ϕ and the scopes of (Q,h) in ϕ and ϕv have the
same lengths. Suppose that (Q,h) is followed by (y, h+1) in ϕ, where
v((y, h+1)) = x. Since the free occurrence (x, i) occurs in the scope
of (Q,h) in ϕ, it follows by the first condition of Definition 4.6.28
that v((y, h+1)) = x. This contradiction shows that (x, i) ∈ FO(ϕv).

For the second part, the preservation of the length of the scope
of a quantifier in renaming implies that (w, i) ∈ PBO(ϕv).

Suppose bindingϕv((w, i)) = (w, k), where j < k < i. This means
that there is an active bound occurrence (y, k) ∈ ABO(ϕ) such that
v((y, k)) = w. However, this contradicts the second condition of Def-
inition 4.6.28, so bindingϕv((w, i)) = (w, j). �

Lemma 4.6.32. A formula ψ is an immediate variant of a formula
ϕ if and only if ψ = ϕv, where v is a unit renaming for ϕ.

Proof. Observe that if (Q, r) is a quantifier occurrence in ϕ, x is the
variable following this quantifier occurrence, and scopeϕ((Q, r)) =
(α, r + 3), then we have bindingϕ((x, q)) = (x, r + 1) if and only if
(x, q − r − 3) ∈ FO(α).

First-Order Logic–Syntax and Semantics 643

Suppose that ψ is an immediate variant of ϕ obtained by replacing
the occurrence of the subformula ((Qx)α, i−1) by (Qy)(α)x:=y, where
the variable y does not occur free in α, and y is substitutable for x in
α. Let v = V[ϕ, i+1→ y]. We need to prove that v is a unit renaming
and ϕv = ψ. In other words, we need to verify that v satisfies both
conditions of Definition 4.6.28.

Let (z, k) ∈ FO(ϕ), (w, j) ∈ ABO(ϕ), where (z, k) is in the scope of
(Q′, j − 1). We need to show that v((w, j)) = z.

If j = i+ 1, then v((w, j)) = w and we have z = w because (z, k)
is a free occurrence in ϕ located in the scope of (Q′, j − 1).

If j = i + 1, then (z, k) is part of the occurrence (α, i + 3) and,
since z occurs free in α, we have z = y = v((w, j)), because y does
not occur free in α. Thus, the first condition of Definition 4.6.28 is
satisfied.

To verify the second condition, suppose that we have (z, k) ∈
PBO(ϕ), bindingϕ((z, k)) = (z, j), (w, p) ∈ ABO(ϕ), where j < p < k,

and (z, k) is in the scope of (Q′, p − 1) (see Figure 4.2). We need to
prove that v((z, j)) = v((w, p)).

We need to consider three cases:

(1) If j = i+1 and p = i+1, then v((z, j)) = z and v((w, p)) = w. We
have z = w because bindingϕ((z, k)) = (z, j), which is distinct
from (w, p).

(2) If j = i + 1 we have z = x, v((z, j)) = y, and v((w, p)) = w.
Also, (x, k − i− 3) ∈ FO(α) and the same occurrence belongs to

Q z · · · Q w · · · z

j p k

binding

Scope of (Q , p − 1)

v((z, j)) = v((w, p))

(z, k) ∈ PBO(ϕ)

(z, j) ∈ ABO(ϕ)

(w, p) ∈ ABO(ϕ)

Fig. 4.2. Verification of second condition of definition 4.6.28.

644 Logical Foundations of Computer Science — Volume 2

the scope of (Q′, p− i− 3) in α. Since y is substitutable for x in
α, we have y = w.

(3) Let now p = i + 1, so x = w, v((z, j)) = z and v((w, p)) = y.
Since (z, k − i − 3) ∈ FO(α) and y does not occur free in α, it
follows that z = y.

Thus, we may conclude that v is indeed a unit renaming. Our initial
observation immediately implies that ψ = ϕv.

Suppose that ψ = ϕv, where v is a unit renaming, v = V[ϕ, i +
1→ y]. We claim that ψ is an immediate variant of ϕ. The definition
of a unit renaming implies that we have an occurrence (Q, i) in ϕ,
where Q is a quantifier symbol. Let (α, i + 3) be the scope of this
quantifier occurrence. Then, ϕv is obtained from ϕ by replacing the
occurrence ((Qx)α), i − 1) by (Qy)(α)x:=y. If y = x, then ψ = ϕ,
so we can assume that y = x. In order for ϕv to be an immediate
variant of ϕ, we need to prove that y does not occur free in α and y
is substitutable for x in α.

Suppose that y occurs free in α, that is, (y, p) ∈ FO(α). The
corresponding occurrence (y, p + i + 3) in ϕ may be free in ϕ or
bound in this formula.

If (y, p + i + 3) ∈ FO(ϕ), this would violate the first condition of
Definition 4.6.28. If, on the other hand, (y, p + i + 3) ∈ PBO(ϕ) and
bindingϕ((y, p + i+ 3)) = (y, q), then q < i+ 1, which would violate
the second condition of the same definition. Thus, y does not occur
free in α.

Suppose that y were not substitutable for x in α, which means
that an occurrence (x, p) ∈ FO(α) is in the scope of a quantifier
symbol occurrence (Q1, r) ∈ OCCQ1(α) and (y, r+1) ∈ ABO(α). Since
(x, p + i + 3) ∈ PBO(α) and bindingα((x, p + i + 3)) = i + 1 and
(x, p + i + 3) ∈ scopeϕ((Q1, r + i + 3)), this contradicts the second
condition of Definition 4.6.28. Thus, y is substitutable for x in α. �

Theorem 4.6.33. Let v be a renaming for the formula ϕ and let w be
a renaming for the formula ϕv. The mapping w∗v : ABO(ϕ) −→ VAR
given by

w ∗ v((x, p)) = w((v(x, p), p))

for every (x, p) ∈ ABO(ϕ) is a renaming for ϕ and (ϕv)w = ϕw∗v.

First-Order Logic–Syntax and Semantics 645

Proof. The definition of w ∗ v is correct because (v(x, p), p) ∈
ABO(ϕv) for every (x, p) ∈ ABO(ϕ) as we stated in (RN5). We leave
to the reader to verify that w ∗ v satisfies the conditions of Defini-
tion 4.6.28 and the straightforward verification of the last formula.

�

It is easy to see that if w = V[ϕ, i0 → y0, . . . , ik−1 → yk−1], then

V[ϕw, j0 → z0, . . . , jl−1 → zl−1]

= V[ϕ, j0 → z0, . . . , jl−1 → zl−1, ih0 → yh0 , . . . , ihr−1 → yhr−1],

(4.7)

where {ih0 , . . . , ihr−1} = {i0, . . . , ik−1} − {j0, . . . , jl−1}.
The next theorem gives us an algorithm for decomposing a renam-

ing into a composition of unit renamings.

Theorem 4.6.34. Let v be a renaming for a formula ϕ, v =
V[ϕ, i0 → y0, . . . , ik−1 → yk−1], where {i0, . . . , ik−1} consists all
indices of active bound occurrences in ϕ. Then, there is a sequence
of formulas (α0, . . . , α2k) such that α0 = ϕ and α2k = ϕv, and a
sequence of mappings (v1, . . . , v2k) such that vi is a unit renaming
for αi−1, and αi = αvi

i−1, for 1 ≤ i ≤ 2k.

Proof. Without loss of generality, we assume that i0 < · · · < ik−1

and (xl, il) ∈ OCC(ϕ) for 0 ≤ l ≤ k − 1. Let z0, . . . , zk−1 be k
variables that occur neither in ϕ nor in the set {y0, . . . , yk−1}. We
define recursively the formulas α0, . . . , αk as follows: α0 = ϕ. Sup-
pose that we have defined αr for 0 ≤ r ≤ k − 1. Then, it easy
to see that vr+1 = V[αr, ir → zr] is a renaming for αr because of
the definition of the variable zr and we can define αr+1 = α

vr+1
r .

By Equality (4.7), the formula αk can be written as αk = ϕw, where
w = V[ϕ, i0 → z0, . . . , ik−1 → zk−1]. The second part of the sequence
α0, . . . , α2k is also defined recursively. Suppose that αq is defined,
where k ≤ q ≤ 2k − 1. We claim that vq+1 = V[αq, iq−k → yq−k]
is a renaming for αq. After justifying this claim, we will define

αq+1 = α
vq+1
q . Since αq is obtained from ϕ through a sequence of

renamings, a free occurrence (s, i) of a variable in αq corresponds to
a free occurrence (s, i) of the same variable in ϕ. Suppose that (s, i) is
in the scope of the quantifier occurrence (Q′, iq−k − 1) in both ϕ and
αq. Since v is a renaming for ϕ, yq−k = v((xq−k, iq−k)) = s, which

646 Logical Foundations of Computer Science — Volume 2

Q

Q

Q

Q

xp

yp

xq−k

zq−k

xp

yp

· · ·

· · ·

· · ·

· · ·

ϕ

αq

αq

(a)

(b)

· · · · · ·Q zq−k Q zp zq−k

(c)

Fig. 4.3. Renamings affecting αq .

shows that vq+1 satisfies the first condition of Definition 4.3.33. To
prove the satisfaction of the second condition of the definition, we
need to consider two cases shown in Figure 4.3(b) and (c) respec-
tively. If αq contains the occurrences shown in Figure 4.3(b), the
original formula ϕ contains the occurrences shown in Figure 4.3(a).
Because v is a renaming for ϕ, we know that yq−k = yp. If the situ-
ation shown in Figure 4.3(c) occurs, then yq−k = zp because of the
definition of the variables z0, . . . , zk−1. Thus, vq+1 satisfies the sec-
ond condition of Definition 4.3.33. This allows us to conclude that
α2k = ϕu, where u = v2k ∗ · · · ∗ vk+1 ∗ w. This last composition is v,
by Equality (4.7). �

Theorem 4.6.35. A formula ψ is variant of a formula ϕ if and only
if there is a renaming function v for ϕ such that ψ = ϕv.

Proof. Suppose that ψ is a variant of ϕ. Then, there exists a
sequence of formulas ϕ0, . . . , ϕn−1 such that ϕ = ϕ0, ϕn−1 = ψ
and each formula ϕi is an immediate variant of the formula ϕi−1 for
1 ≤ i ≤ n − 1. By Lemma 4.6.32, we have renamings v1, . . . , vn−1

such that ϕi = ϕvi
i−1, for 1 ≤ i ≤ n − 1, which allows us to write

ψ = ϕv, where v = (vn−1 ∗ (· · · ∗ (v2 ∗ v1))).
Conversely, suppose that ψ = ϕv, where v is a renaming for ϕ. By

Theorem 4.6.34, there is a sequence of formulas ϕ0,ϕn−1 and a
sequence of unit renamings v1, . . . , vn−1 such that vi is a unit renam-
ing for ϕi−1 and ϕi = ϕvi

i−1, for 1 ≤ i ≤ n−1, ϕ = ϕ0, and ϕn−1 = ψ.
Applying again Lemma 4.6.32, each formula ϕi is an immediate vari-
ant of ϕi−1, which allows to conclude that ψ is a variant of ϕ. �

First-Order Logic–Syntax and Semantics 647

Theorem 4.6.36. Given two formulas ϕ,ψ such that ψ is a variant
of ϕ, we can find effectively a sequence of formulas (θ0, . . . , θn−1)
such that ϕ = θ0, ψ = θn−1, and θi+1 is an immediate variant of θi,
for 0 ≤ i ≤ n− 2.

Proof. By Theorem 4.6.35, there is a renaming v for ϕ such that
ψ = ϕv and we have observed that this renaming can be effectively
determined. By examining the proof of Theorem 4.6.34, we see that
we can find effectively a sequence of formulas (θ0, . . . , θn−1) that
satisfies the conditions of the theorem. �

Example 4.6.37. Let

ϕ = (∀x0)(∀x1)R(x0, x1) and ψ = (∀x1)(∀x0)R(x1, x0).

Note that ψ = ϕv, where v = V[ϕ, 2→ x1, 6→ x0] is a renaming for
ϕ. Also observe that v′ : ABO(ϕ)→ VAR given by v′((x0, 2)) = x1 and
v′((x1, 6)) = x1 is not a renaming for ϕ because it violates the second
condition of Definition 4.3.33. To decompose v into a composition of
unit renamings, we could use two new variables z0, z1 and consider
the following sequence of formulas and renamings:

ϕ0 = ϕ

v1 = V[ϕ0, 2→ z0] ϕ1 = ϕv1
0 = (∀z0)(∀x1)R(z0, x1)

v2 = V[ϕ1, 6→ z1] ϕ2 = ϕv2
1 = (∀z0)(∀z1)R(z0, z1)

v3 = V[ϕ2, 2→ x1] ϕ3 = ϕv3
2 = (∀x1)(∀z1)R(x1, z1)

v4 = V[ϕ3, 6→ x0] ϕ4 = ϕv4
3 = (∀x1)(∀x0)R(x1, x0) = ψ.

This illustrates the constructive proof of Theorem 4.6.34.

Theorem 4.6.38. Let V be an infinite set of variables and suppose
that ψ is a variant of ϕ such that BV(ϕ) ∪ BV(ψ) ⊆ V . Then, there
is a sequence of immediate variants ϕ0, . . . , ϕn−1 such that ϕ = ϕ0,
ϕn−1 = ψ and BV(ϕi) ⊆ V, for 0 ≤ i ≤ n− 1.

Proof. This statement can be derived from the proof of Theo-
rem 4.6.34, where we did not restrict the choice of the intermediate
variables zi. Since V is an infinite set, and ϕ,ψ contain a finite set
of variables, it follows we can select the variables zi from among the
variables of the set V . �

648 Logical Foundations of Computer Science — Volume 2

Corollary 4.6.39. Let ϕ,ψ be two formulas that are variants and
let z be a variable that does not occur in either ϕ or ψ. There is
a sequence of immediate variants, ϕ0, . . . , ϕn−1 such that ϕ = ϕ0,
ϕn−1 = ψ and z does not occur in any of the formulas ϕi for 0 ≤ i ≤
n− 1.

Proof. Let V = VAR − {z}. It is clear that BV(ϕ) ∪ BV(ψ) ⊆ V
and V is an infinite set, so, by Theorem 4.6.38, there is a sequence
of immediate variants ϕ0, . . . , ϕn−1 such that ϕ = ϕ0, ϕn−1 = ψ and
BV(ϕi) ⊆ V , which implies that z ∈ BV(ϕi) for 0 ≤ i ≤ n−1. By Theo-
rem 4.6.22, FV(ϕi) = FV(ϕ) = FV(ψ), for 0 ≤ i ≤ n−1, so z ∈ FV(ϕi),
which allows us to conclude that z ∈ V(ϕi), for 0 ≤ i ≤ n − 1.

�
The following technical result is needed in Section 5.2.

Theorem 4.6.40. Let ϕ,ψ be two formulas and let t be a term such
that V(t) ∩ (BV(ϕ) ∪ BV(ψ)) = ∅. If ψ is an immediate variant of ϕ,
then sct(ψ) is an immediate variant of sct(ϕ).

Proof. Suppose that ψ is obtained from ϕ by replacing an occur-
rence of a subformula (Qx)α by (Qy)(α)x:=y, where y does not occur
free in α and y is substitutable for x in α. By obvious properties of
textual substitutions, sct(ψ) is obtained from sct(ϕ) by replacing an
occurrence of (Qx)sct(α) by (Qy)sct((α)x:=y). Observe that x and y
do not occur in t because x occurs bound in ϕ and y occurs bound
in ψ. By Equality (4.2) on page 571, we have (Qy)sct((α)x:=y) =
(Qy)(sct(α))x:=y.

Note that, by Theorem 4.3.69, y ∈ FV(sct(α)) because y does not
occur in t and does not occur free in α. In addition, y is substitutable
for x in sct(α) by Corollary 4.3.79, since t is substitutable for x in α
(because no variable of t occurs bound in α) and x ∈ V(t). Thus,
sct(ψ) is an immediate variant of sct(ϕ). �

Corollary 4.6.41. Let ϕ,ψ be two formulas and let t be a term such
that V(t) ∩ (BV(ϕ) ∪ BV(ψ)) = ∅. If ψ is a variant of ϕ, then sct(ψ) is
a variant of sct(ϕ).

Proof. By Theorem 4.6.38, there exists a sequence of immediate
variants ϕ0, . . . , ϕn−1 such that ϕ = ϕ0, ψ = ϕn−1 and no variable of
t occurs bound in any of the formulas ϕi. By Theorem 4.6.40, each
formula sct(ϕi+1) is an immediate variant of sct(ϕi), for 0 ≤ i ≤ n− 2,
which gives the desired result. �

First-Order Logic–Syntax and Semantics 649

If t is a term, which is not substitutable for a variable x in a for-
mula ϕ, then we can produce a variant of ϕ in which t is substitutable
for x. We will first illustrate this with an example and then prove a
general theorem.

Example 4.6.42. Let ϕ = (∃y)(∀z)R(x, y, z) and let t = f(y, z),
where x, y, z are distinct variables, R is relation symbol and f is
a function symbol. It is clear that t is not substitutable for x in ϕ.
However, by applying Theorem 4.6.18, we can rename y, z as the new
variables y′, z′, and thus obtain the variant ϕ′ = (∃y′)(∀z′)R(x, y′, z′)
of ϕ in which t is substitutable for x.

Let ψ = ((∀y)P (x, y) ∧ (∀z)Q(x, z)), where P and Q are binary
relation symbols. Again, it is clear that t is not substitutable for x in
ψ. However, t is substitutable for x in the variant α = ((∀y′)P (x, y′)∧
(∀z′)Q(x, z′)) of ψ.

Next, we show how to systematically produce a variant of a for-
mula ϕ such that a term t is substitutable for a variable x in the
variant.

Definition 4.6.43. The function variant : FORM × VAR ×
TERM −→ FORM is given by the following recursive definition.

• variant(ϕ, x, t) is ϕ if ϕ is atomic;
• variant(ϕ, x, t) is (¬variant(ψ, x, t)) if ϕ = (¬ψ);
• variant(ϕ, x, t) is (variant(α, x, t) C variant(β, x, t)) if ϕ = (αCβ)

for C a binary connective symbol;
• variant(ϕ, x, t) is ϕ if ϕ = (Qy)ψ and x ∈ FV(ϕ) for Q a quantifier

symbol;
• variant(ϕ, x, t) is (Qy)variant(ψ, x, t) if ϕ = (Qy)ψ, x ∈ FV(ϕ), and
y does not occur in t;

• variant(ϕ, x, t) is (Qz)(variant(ψ, x, t))y:=z if ϕ = (Qy)ψ, x ∈
FV(ϕ), y occurs in t and z is the first variable not occurring in
variant(ψ, x, t) or in t.

It is easy to verify by induction on ϕ that variant(ϕ, x, t) is indeed
a variant of ϕ and that if t is substitutable for x in ϕ, then
variant(ϕ, x, t) = ϕ.

650 Logical Foundations of Computer Science — Volume 2

The following lemma helps in the proof of Theorem 4.6.47.

Example 4.6.44. Let ϕ,ψ, x, and t be as in Example 4.6.42. Then,
the formula variant(ϕ, x, t) is the formula ϕ′ of that example, where
z′, y′ are the first two variables that are different from x, y, z. How-
ever, variant(ψ, x, t) = ((∀y′)R(x, y′) ∧ (∀y′)Q(x, y′)), where y′ is the
first variable different from the variables x, y, z.

We denote the formula (variant(ϕ, x, t))x:=t by 〈ϕ〉x:=t. Observe
that if t is substitutable for x in ϕ, then since variant(ϕ, x, t) = ϕ,
〈ϕ〉x:=t = (ϕ)x:=t.

Example 4.6.45. Again, if ϕ,ψ, x, and t are as in Example 4.6.42,
we have

〈ϕ〉x:=t = (∃y′)(∀z′)R(f(y, z), y′, z′)
〈ψ〉x:=t = ((∀y′)P (f(y, z), y′) ∧ (∀y′)Q(f(y, z), y′)).

Contrast these formulas with

(ϕ)x:=t = (∃y)(∀z)R(f(y, z), y, z)
(ψ)x:=t = ((∀y)P (f(y, z), y) ∧ (∀z)Q(f(y, z), z)).

Lemma 4.6.46. Let ϕ be a formula, t be a term, and let x, y, z be
variables such that x = z. If t is substitutable for x in ϕ, then t is
substitutable for x in (ϕ)y:=z.

Proof. The argument is by induction on ϕ. We leave to the reader
the basis step, when ϕ is atomic. Also, we leave to the reader the
inductive steps that correspond to ϕ = (¬ψ) and ϕ = (αCβ). Sup-
pose now that the statement holds for ψ and let ϕ = (Qw)ψ, where Q
is a quantifier symbol and w is a variable. If y = w, then (ϕ)y:=z = ϕ,
and the result is immediate. If y = w, then (ϕ)y:=z = (Qw)(ψ)y:=z.
Since t is substitutable for x in ϕ, one of the following two cases
occurs:

(1) x does not occur free in ϕ. In this case, if x = w, then x does not
occur free in (ϕ)y:=z, so t is substitutable for x in this formula. If
x = w, then x does not occur free in ψ, so, by Exercise 32 and the
fact that z = x, it follows that x does not occur free in (ψ)y:=z.

First-Order Logic–Syntax and Semantics 651

Therefore, x does not occur free in (Qw)(ψ)y:=z = (ϕ)y:=z, which
implies the substitutability of t for x in this formula.

(2) t is substitutable for x in ψ and w does not occur in t. Now,
by inductive hypothesis, t is substitutable for x in (ψ)y:=z which
gives t substitutable for x in (Qw)(ψ)y:=z = (ϕ)y:=z.

�

Theorem 4.6.47. Let ϕ be a formula, t be a term, and let x be
a variable. Then, variant(ϕ, x, t) ≡ ϕ, t is substitutable for x in
variant(ϕ, x, t), and FV(variant(ϕ, x, t)) = FV(ϕ).

Proof. We have already observed that variant(ϕ, x, t) is a variant
of ϕ, and hence is logically equivalent to ϕ and has the same set of
free variables by Theorem 4.6.22.

To prove the second part of the theorem, we proceed by induc-
tion on ϕ. We discuss only the inductive step when ϕ = (Qy)ψ,
x ∈ FV(ϕ) and y occurs in t. (The basis step and the remain-
ing inductive steps are straightforward.) We assume, by inductive
hypothesis, that t is substitutable for x in variant(ψ, x, t). Note that
x ∈ FV(ϕ), which implies x ∈ FV(ψ), which in turn implies x ∈
FV(variant(ψ, x, t)), by inductive hypothesis. Since variant(ϕ, x, t) =
(Qz)(variant(ψ, x, t))y:=z , where z is the first variable that does not
occur in variant(ψ, x, t) or in t, it follows that z = x. Thus, by induc-
tive hypothesis and Lemma 4.6.46, it follows that t is substitutable
for x in (variant(ψ, x, t))y:=z . Since z does not occur in t, t is substi-
tutable for x in ((Qz)variant(ψ, x, t))y:=z = variant(ϕ, x, t). �

Corollary 4.6.48. Let ϕ be a formula, t be a term, and let x be a
variable. Then, FV(〈ϕ〉x:=t) ⊆ (FV(ϕ)− {x}) ∪ V(t).

Proof. We have the following:

FV(〈ϕ〉x:=t) = FV((variant(ϕ, x, t))x:=t)

(by definition of 〈ϕ〉x:=t)

652 Logical Foundations of Computer Science — Volume 2

⊆ (FV(variant(ϕ, x, t))− {x}) ∪ V(t)
(by Corollary 4.3.84)

= (FV(ϕ)− {x}) ∪ V(t)
(by Theorem 4.6.47)

�

Next, we present a version of the Substitution Corollary for
n = 1, where we drop the requirement of substitutability for the term
involved.

Corollary 4.6.49. Let L be a first-order language, ϕ be an L-
formula, t be an L-term and x be a variable. If A is an L-structure
and σ ∈ ASSIGNA, then (A, σ) |= 〈ϕ〉x:=t if and only if (A, [x →
σA(t)]σ) |= ϕ.

Proof. We have the following equivalent statements:

(A, σ) |= 〈ϕ〉x:=t
(A, σ) |= (variant(ϕ, x, t))x:=t

(by definition of 〈ϕ〉x:=t)
(A, [x→ σA(t)]σ) |= variant(ϕ, x, t)

(by the Substitution Corollary and

Theorem 4.6.47)

(A, [x→ σA(t)]σ) |= ϕ

(by Theorem 4.6.47).
�

Theorem 4.6.50. Let ϕ,ψ be two first-order formulas, x be a
variable, and t be a term. Then, we have 〈(¬ϕ)〉x:=t = (¬〈ϕ〉x:=t)
and 〈(ϕCψ)〉x:=t = (〈ϕ〉x:=tC〈ψ〉x:=t) for every binary connective
symbol C.

Proof. The first part of the theorem follows from the following
equalities:

〈(¬ϕ)〉x:=t = (variant((¬ϕ), x, t))x:=t
(by the definition of 〈α〉x:=t)

First-Order Logic–Syntax and Semantics 653

= ((¬variant(ϕ, x, t)))x:=t
(by Definition 4.6.43)

= (¬(variant(ϕ, x, t))x:=t)
(by Lemma 4.3.53)

= (¬〈ϕ〉x:=t)
(by the definition of 〈α〉x:=t).

We leave the second part of the theorem to the reader. �

The following result extends the case n = 1 of Theorem 4.6.7
because it drops the requirement of substitutability.

Theorem 4.6.51. If ϕ is a formula, x is a variable and t is a term,
then (∀x)ϕ |= 〈ϕ〉x:=t and 〈ϕ〉x:=t |= (∃x)ϕ.

Proof. Let L be a first-order language such that ϕ is an L-formula
and t is an L-term. If (A, σ) |= (∀x)ϕ for some L-structure A and σ ∈
ASSIGNA, then (A, [x → a]σ) |= ϕ for every a ∈ |A|. In particular,
(A, [x→ σA(t)]σ) |= ϕ, so, by Corollary 4.6.49, (A, σ) |= 〈ϕ〉x:=t.

For the second part, suppose that (A, σ) |= 〈ϕ〉x:=t. By Corol-
lary 4.6.49, we have (A, [x → σA(t)]) |= ϕ. This, in turn, gives
(A, σ) |= (∃x)ϕ, which concludes our argument. �

An immediate consequence of Theorem 4.6.12 is given next.

Theorem 4.6.52. Let Γ be a set of formulas and let c be a constant
symbol that does not occur in any formula of Γ.

(1) If Γ ∪ {(∃x)ϕ} is satisfiable, then Γ ∪ {〈ϕ〉x:=c} is satisfiable.
(2) If Γ∪{(¬(∀x)ϕ)} is satisfiable, then Γ∪{〈(¬ϕ)〉x:=c} is satisfiable.

Proof. The statements follow immediately from Theorem 4.6.12
and the fact that 〈ψ〉x:=c = (ψ)x:=c, for every formula ψ. �

Theorem 4.6.53. Suppose that Δ is a set of signed formulas,
b(Qx)ϕ is a δ-formula, and c is a constant symbol that does not occur
in any formula of Δ∪{b(Qx)ϕ}. If Δ∪{b(Qx)ϕ} is satisfiable, then
Δ ∪ {b〈ϕ〉x:=c} is satisfiable.

Proof. The statement follows immediately from Theorem 4.6.13
and the fact that 〈ϕ〉x:=c = (ϕ)x:=c. �

654 Logical Foundations of Computer Science — Volume 2

Theorem 4.6.54. Let ϕ be a formula, x, y be distinct variables, t
be a term and c be a constant symbol. Then, if y does not occur in
variant(ϕ, x, t) or in ϕ, we have:

scy(variant(ϕ, x, t)) = variant(scy(ϕ), x, s
c
y(t)).

Proof. We proceed by induction on the formula ϕ. If ϕ is
atomic, then scy(ϕ) is also an atomic formula and therefore
scy(variant(ϕ, x, t)) = scy(ϕ) = variant(scy(ϕ), x, s

c
y(t)).

Suppose the statement holds for the formula ψ and ϕ = (¬ψ).
Then, we can write

scy(variant(ϕ, x, t)) = scy(variant((¬ψ), x, t))
= (¬scy(variant(ψ, x, t)))

(by Definition 4.6.43)

= (¬variant(scy(ψ), x, scy(t)))
(by inductive hypothesis, because

y does not occur in variant(ψ, x, t) or in ψ)

= variant(scy((¬ψ)), x, scy(t))
(by Definition 4.6.43)

= variant(scy(ϕ), x, s
c
y(t)).

The case when ϕ = (ψ0Cψ1), where C is a binary connective
symbol, and ψ0, ψ1 are two formulas for which the statement holds,
is similar to the one above and is omitted.

Suppose now that ϕ = (Qz)ψ, where Q is a quantifier symbol and
ψ is a formula for which the statement holds. We need to consider
three subcases:

(1) x ∈ FV(ϕ);
(2) x ∈ FV(ϕ) and z does not occur in t;
(3) x ∈ FV(ϕ) and z occurs in t.

First-Order Logic–Syntax and Semantics 655

In the first case, x ∈ FV((Qz)scy(ψ)). This is because, by Theo-
rem 4.3.69, FV((Qz)scy(ψ)) ⊆ FV(ϕ) ∪ {y}. Then,

variant(scy(ϕ), x, s
c
y(t)) = variant((Qz)scy(ψ), x, s

c
y(t))

= (Qz)scy(ψ)

= scy((Qz)ψ)

= scy(ϕ)

= scy(variant(ϕ, x, t)).

In the second case, we have:

scy(variant(ϕ, x, t)) = scy((Qz)variant(ψ, x, t))

= (Qz)scy(variant(ψ, x, t))

= (Qz)variant(scy(ψ), x, s
c
y(t))

(by inductive hypothesis)

= variant((Qz)scy(ψ), x, s
c
y(t))

(because y = z)

= variant(scy((Qz)ψ), x, s
c
y(t))

= variant(scy(ϕ), x, s
c
y(t)).

In the third case, let w be the first variable that does not occur in
variant(ψ, x, t) or in t, so variant(ϕ, x, t) = (Qw)(variant(ψ, x, t))z:=w.
Since y does not occur in either ϕ or in variant(ϕ, x, t), it follows that
y = w, y = z and y does not occur in variant(ψ, x, t) or in ψ. Thus,
we can write

scy(variant(ϕ, x, t)) = scy((Qw)(variant(ψ, x, t))z:=w)

= (Qw)scy((variant(ψ, x, t))z:=w)

= (Qw)(scy(variant(ψ, x, t)))z:=w

(by Corollary 4.3.74 because z = y)

= (Qw)(variant(scy(ψ), x, s
c
y(t)))z:=w

(by inductive hypothesis).

656 Logical Foundations of Computer Science — Volume 2

On the other hand, we have

variant(scy(ϕ), x, s
c
y(t)) = variant(scy((Qz)ψ), x, s

c
y(t))

= variant((Qz)scy(ψ), x, s
c
y(t))

= (Qw′)(variant(scy(ψ), x, s
c
y(t)))z:=w′ ,

where w′ is the first variable in the standard sequence of variables
that does not occur in

variant(scy(ψ), x, s
c
y(t)) = scy(variant(ψ, x, t))

or in t. Note that we are again in the third case because x occurs
free in (Qz)scy(ψ) and z occurs in scy(t).

The argument will be completed if we show that w′ = w.
The variables which precede w in the standard list occur in either
variant(ψ, x, t) (and hence in scy(variant(ψ, x, t))) or in t. Since w = y,
w does not occur in scy(variant(ψ, x, t)) or in t. Thus, w

′ = w. �

Corollary 4.6.55. Let x, y be variables, t be a term, c be a constant
symbol, and ϕ be a formula. If y = x and y does not occur in ϕ or
variant(ϕ, x, t), then

scy(〈ϕ〉x:=t) = 〈scy(ϕ)〉x:=scy(t)
.

Proof. We have

scy(〈ϕ〉x:=t) = scy((variant(ϕ, x, t))x:=t)

= (scy(variant(ϕ, x, t)))x:=scy(t)

(by (4.1) since y = x)

= (variant(scy(ϕ), x, s
c
y(t)))x:=scy(t)

(by Theorem 4.6.54 since y = x and y does

not occur in ϕ or variant(ϕ, x, t))

= 〈scy(ϕ)〉x:=scy(t)
.

�
Our next goal is to provide variants of formulas where bound

variables are restricted to a specified set of variables.

Definition 4.6.56. Let θ be a formula and V be an infinite set of
variables. The formula VARIANT(θ, V) is given by:

First-Order Logic–Syntax and Semantics 657

• if ϕ is atomic, then VARIANT(ϕ, V) = ϕ;
• VARIANT((¬ϕ), V) = (¬VARIANT(ϕ, V));
• for every binary connective symbol C,

VARIANT((ϕCψ), V) = (VARIANT(ϕ, V) C VARIANT(ψ, V));

• for each quantifier symbol Q and variable x,

VARIANT((Qx)ϕ, V)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(Qx)VARIANT(ϕ, V) if x ∈ V
(Qw)(VARIANT(ϕ, V))x:=w if x ∈ V where w is the

first variable in V that does

not occur in VARIANT(ϕ, V).

For a signed formula bϕ, we define VARIANT(bϕ, V) =
bVARIANT(ϕ, V). If Γ and Δ are sets of unsigned and signed for-
mulas, respectively, the previous notations are further extended by

VARIANT(Γ, V) =
⋃
{VARIANT(ϕ, V) | ϕ ∈ Γ}

VARIANT(Δ, V) =
⋃
{VARIANT(bϕ, V) | bϕ ∈ Δ}.

Theorem 4.6.57. Let V be an infinite set of variables and let ϕ be
a first-order formula. The formula VARIANT(ϕ, V) is a variant of ϕ.

Proof. The proof is by induction on the formula ϕ. If ϕ is atomic,
the statement obviously holds. Suppose that ϕ = (¬ψ) and the state-
ment holds for the formula ψ. Then, by Theorem 4.6.21, the state-
ment holds for the formula ϕ. The same argument works for the case
when ϕ = (ψ0Cψ1).

Let now ϕ = (Qx)ψ, where the statement holds for the formula
ψ. By Theorem 4.6.21, (Qx)VARIANT(ψ, V) is a variant of ϕ. If x ∈
V , then VARIANT(ϕ, V) = (Qx)VARIANT(ψ, V), so we are done. If
x ∈ V , then VARIANT(ϕ, V) = (Qw)(VARIANT(ψ, V))x:=w, which,
because w does not occur in VARIANT(ψ, V), is an immediate variant
of (Qx)VARIANT(ψ, V) and thus a variant of ϕ. �

658 Logical Foundations of Computer Science — Volume 2

Theorem 4.6.58. Let V be an infinite set of variables and let ϕ be
a first-order formula. If t is a term that is substitutable for a variable
z in ϕ and no variable of t or ϕ occurs in V, then

VARIANT((ϕ)z:=t, V) = (VARIANT(ϕ, V))z:=t. (4.8)

Proof. The argument is by induction on the formula ϕ. The basis
step when ϕ is atomic is immediate. We discuss here only the induc-
tive step when ϕ = (Qx)ψ, where the statement holds for the formula
ψ. There are two main cases.

Case 1: z does not occur free in ϕ. Then, z does not occur
free in VARIANT(ϕ, V), because by Theorem 4.6.57,
VARIANT(ϕ, V) is a variant of ϕ and variants have the
same free variables, so the equality follows immediately.

Case 2: z occurs free in ϕ. Then, z = x, z occurs free in ψ, t is
substitutable for z in ψ, and x does not occur in t.

Since x occurs in ϕ, x ∈ V and therefore the left hand side of
Equality 4.8, can be written as follows:

VARIANT((ϕ)z:=t, V) = VARIANT(((Qx)ψ)z:=t, V)

= VARIANT((Qx)(ψ)z:=t, V)

(because z = x)

= (Qw)(VARIANT((ψ)z:=t, V))x:=w,

where w is the first variable of V that does

not occur in VARIANT((ψ)z:=t, V)

= (Qw)((VARIANT(ψ, V))z:=t)x:=w

(by inductive hypothesis applied to ψ)

= (Qw)(VARIANT(ψ, V))z,x:=t,w.

Note that the final equality above is justified by Theorem 4.3.86
since x does not occur in t, no variable of V occurs in t and all
bound variables of VARIANT(ψ, V) are in V , so t is substitutable for
z in VARIANT(ψ, V).

First-Order Logic–Syntax and Semantics 659

The right hand side of the same equality can be transformed as
shown next:

(VARIANT(ϕ, V))z:=t = (VARIANT((Qx)ψ, V))z:=t

= ((Qw′)(VARIANT(ψ, V))x:=w′)z:=t,

where w′ is the first variable of V that

does not occur in VARIANT(ψ, V);

since z occurs in ϕ, it follows that z ∈ V ;

also, no variable of t is in V , so w′ = w;

= ((Qw)(VARIANT(ψ, V))x:=w)z:=t

= (Qw)(VARIANT(ψ, V))x,z:=w,t

by Theorem 4.3.86 since w = z,

which concludes the argument. �

Lemma 4.6.59. Let ϕ,ϕ′ be two immediate variants and let V be
an infinite set of variables such that no variable of V occurs in either
ϕ or ϕ′. Then VARIANT(ϕ, V) = VARIANT(ϕ′, V).

Proof. The proof is by induction on ϕ. The basis step, when ϕ is an
atomic formula, is immediate. Among the inductive steps, we discuss
only the case when ϕ = (Qx)ψ, where Q is a quantifier symbol and
the statement holds for ψ.

Since x ∈ V , we have

VARIANT(ϕ, V) = (Qw)(VARIANT(ψ, V))x:=w,

where w is the first variable of V that does not occur in
VARIANT(ψ, V). We distinguish two subcases:

Case 1: ϕ′ = (Qx)ψ′, where ψ′ is an immediate variant of ψ. By
inductive hypothesis, VARIANT(ψ, V) = VARIANT(ψ′, V),
so

VARIANT(ϕ, V) = (Qw)(VARIANT(ψ′, V))x:=w,

where w is the first variable of V that

does not occur in VARIANT(ψ′, V)

660 Logical Foundations of Computer Science — Volume 2

= VARIANT((Qx)ψ′, V)

= VARIANT(ϕ′, V).

Case 2: ϕ′ = (Qz)(ψ)x:=z, where z is substitutable for x in ψ and z
does not occur free in ψ. We may assume that x = z since
if x = z, then ϕ′ = ϕ and the result is immediate. Observe
that z ∈ V . We have

VARIANT(ϕ′, V) = (Qw′)(VARIANT((ψ)x:=z, V))z:=w′,

where w′ is the first variable of V that does not occur in

VARIANT((ψ)x:=z, V) = (VARIANT(ψ, V))x:=z;

the last equality follows from Theorem 4.6.58. Since neither
x nor z occurs in V , w′ is the first variable in V that does
not occur in VARIANT(ψ, V) and therefore, w′ = w. Thus,

VARIANT(ϕ′, V) = (Qw)((VARIANT(ψ, V))x:=z)z:=w

= (Qw)(VARIANT(ψ, V))x,z:=w,w

(by Theorem 4.3.86 because z

is substitutable

for x in VARIANT(ψ, V))

= (Qw)(VARIANT(ψ, V))x:=w

(since z is not free in ψ and

therefore in VARIANT(ψ, V))

= VARIANT(ϕ, V).
�

Theorem 4.6.60. Let ϕ,ϕ′ be two variants and let V be an infinite
set of variables such that VAR−V is also infinite and no variable of
V occurs in either ϕ or ϕ′. Then VARIANT(ϕ, V) = VARIANT(ϕ′, V).

Proof. By Theorem 4.6.38 applied to the set VAR − V , there is
a sequence of immediate variants ϕ0, . . . , ϕn−1 such that ϕ = ϕ0,
ϕn−1 = ϕ′ and no variable of ϕi occurs in V . The result follows by
repeated application of Lemma 4.6.59. �

First-Order Logic–Syntax and Semantics 661

The following theorem is a technical result that will be useful in
Section 5.3.

Theorem 4.6.61. Let ϕ,ϕ′ be two formulas such that ϕ′ is a vari-
ant of ϕ and let t be a term. Let V be a set of variables such that
both V and its complement are infinite, and no variable in ϕ,ϕ′ or
t occurs in V . Suppose that t is substitutable for x in ϕ′ and that w
is the first variable in V that does not occur in VARIANT(ϕ, V). If
ϕ′′ = (VARIANT(ϕ, V))x:=w, then t is substitutable for w in ϕ′′ and
(ϕ′′)w:=t = (VARIANT(ϕ′, V))x:=t.

Proof. Since BV(ϕ′′) ⊆ V , it is clear that t is substitutable for w
in ϕ′′ and if x = w, we have:

(ϕ′′)w:=t = ((VARIANT(ϕ, V))x:=w)w:=t

= (VARIANT(ϕ, V))x,w:=t,t

(by Theorem 4.3.86 because w is

substitutable for x in VARIANT(ϕ, V))

= (VARIANT(ϕ, V))x:=t

(because w does not occur in VARIANT(ϕ, V))

= (VARIANT(ϕ′, V))x:=t

(by Theorem 4.6.60).

Note that if x = w, we can omit from the above chain the second
step and get the same result. �

Lemma 4.6.62. Let Δ0 be a set of signed formulas and let U be an
infinite set of variables such that its complement is also infinite and
V(Δ0) ∩ U = ∅. Then, no two distinct formulas in VARIANT(Δ0, U)
are variants of each other.

Proof. Let ϕ,ψ be two formulas in VARIANT(Δ0, U) such that
ψ is a variant of ϕ. Then, for some formulas ϕ′, ψ′ ∈ Δ0, ϕ =
VARIANT(ϕ′, U) and ψ = VARIANT(ψ′, U). Thus, by symmetry and
transitivity of variants, ψ′ is a variant of ϕ′ and, since V(Δ0)∩U = ∅,
we have ϕ = ψ, by Theorem 4.6.60. �

Lemma 4.6.63. Let Δ′
0 be a set of signed formulas such that no two

distinct formulas in Δ′
0 are variants of each other, Δ0 be a set of

662 Logical Foundations of Computer Science — Volume 2

signed formulas and let f : Δ′
0 −→ Δ0 be a function such that every

formula b′ϕ′ ∈ Δ′
0 is a variant of f(b′ϕ′). Then, f is an injection.

Proof. Suppose that f(b′0ϕ
′
0) = f(b′1ϕ

′
1), where b

′
0ϕ

′
0, b

′
1ϕ

′
1 ∈ Δ′

0.
By symmetry and transitivity of variants, b′0ϕ

′
0 and b

′
1ϕ

′
1 are variants

of each other and therefore must be equal. �

Theorem 4.6.64. Let Δ′
0 and Δ0 be sets of signed formulas such

that every formula in Δ′
0 is a variant of a formula in Δ0 and

V(Δ′
0) ∩ U = ∅, where U is an infinite set of variables such that

its complement is also infinite. Then, there is an injection f :
VARIANT(Δ′

0, U) −→ Δ0 such that for all b′′ϕ′′ ∈ VARIANT(Δ′
0, U),

f(b′′ϕ′′) is a variant of b′′ϕ′′.

Proof. Let b′′ϕ′′ be an arbitrary signed formula in VARIANT(Δ′
0,

U), say b′′ϕ′′ = VARIANT(b′ϕ′, U), where b′ϕ′ is the first signed for-
mula in Δ′

0 which satisfies this condition. Next, let bϕ be the first for-
mula in Δ0 such that b′ϕ′ is a variant of bϕ and define f(b′′ϕ′′) = bϕ.
By transitivity of variants, b′′ϕ′′ is a variant of bϕ. By Lemma 4.6.62,
no two distinct formulas in VARIANT(Δ′

0, U) are variants of each
other, so by Lemma 4.6.63, f is an injection. �

4.7 Definability in Structures

The purpose of this section is to investigate the possibility of defining
relations over domains of structures by using first-order formulas.

Let A be an L-structure, ϕ be an L-formula, y0, . . . , yn−1 be n
distinct variables such that FV(ϕ) ⊆ {y0, . . . , yn−1}, and a0, . . . , an−1

be n elements of |A|. We write (A, [y0 → a0, . . . , yn−1 → an−1]) |= ϕ
if (A, σ) |= ϕ for some σ ∈ ASSIGNA such that σ(yi) = ai for
0 ≤ i ≤ n−1. By the Agreement Theorem, (A, [y0 → a0, . . . , yn−1 →
an−1]) |= ϕ is equivalent to saying that (A, σ) |= ϕ for every σ ∈
ASSIGNA such that σ(yi) = ai for 0 ≤ i ≤ n−1. For the special case
n = 0, ϕ is a closed formula and (A, [y0 → a0, . . . , yn−1 → an−1]) |= ϕ
if and only if A |= ϕ.

Definition 4.7.1. Let A be an L-structure, and ϕ be an L-formula
such that FV(ϕ) ⊆ {y0, . . . , yn−1}, where y0, . . . , yn−1 are n distinct

First-Order Logic–Syntax and Semantics 663

variables. An n-ary relation ρ ⊆ |A|n is definable by ϕ and the
sequence (y0, . . . , yn−1) if

ρ = {(a0, . . . , an−1) | (A, [y0 → a0, . . . , yn−1 → an−1]) |= ϕ}.
An n-ary relation on |A| is first-order definable in A if it is defin-
able by some first-order formula and some sequence of variables of
length n.

A function f : |A|n −→ |A| is definable by a formula ψ and by the
sequence (y0, . . . , yn−1, yn) if the n+ 1-ary relation

graph(f) = {(a0, . . . , an−1, an) ∈ |A|n+1 | an = f(a0, . . . , an−1)}
is definable in A by ψ and (y0, . . . , yn−1, yn).

Thus, a 0-ary function f : |A|0 −→ |A| is definable in A if and
only if there is a formula ψ with one free variable y0 such that

f(λ) = {a0 ∈ |A| | (A, [y0 → a0]) |= ψ}.
Example 4.7.2. Let L = {+, ·,=} be a first-order language which
is a subset of Lar. Parentheses will be omitted when this can cause
no confusion. Consider the L-structure A which is the reduct of Aar
to L.

The set {0} is definable in A by the formula x = x+ x (and the
sequence of variables (x)) because 0 is the only natural number n
such that n = n+ n.

Similarly, the set {1} is definable in A by the formula ((x =
x · x) ∧ (¬(x = x+ x))).

The set E of even natural numbers is definable inA by the formula
(∃y)(x = y + y).

The relation ≤ on N is definable in A by the formula (∃z)(x+z =
y) and the sequence (x, y). The same formula with the sequence (y, x)
defines the relation ≥.

Let B be the L-structure with |B| = Z and the standard inter-
pretations of + and ·. It is known from number theory that every
nonnegative integer can be expressed as the sum of four squares.
Therefore, the subset N of Z is definable in B by the formula

(∃y0)(∃y1)(∃y2)(∃y3)(x = y0 · y0 + y1 · y1 + y2 · y2 + y3 · y3).
The function f(n) = 2n for n ∈ Z is definable in the L-structure

B by the formula (x+ x = y) and the sequence (x, y).

664 Logical Foundations of Computer Science — Volume 2

Example 4.7.3. In Example 4.4.3, we introduced the first-order lan-
guage L = {R,=} in order to associate L-structures with directed
graphs. We examine here a few definable sets of vertices in these
structures.

Let G be a directed graph. The set of vertices of G of out-degree
1 is definable in the structure AG by the formula

ϕout = ((∃y)R(x, y) ∧ (∀y)(∀z)((R(x, y) ∧R(x, z))→ y = z)).

Note that the formula ϕout is the same for every directed graph G.
Similarly, the set of vertices of in-degree 1 of any directed graph

G is definable in the corresponding structure AG by the formula

ϕin = ((∃y)R(y, x) ∧ (∀y)(∀z)((R(y, x) ∧R(z, x))→ y = z)).

We refer to a vertex s of a directed graph as a source if its in-
degree is 0 and for every vertex v = s of G, there is an edge (s, v)
in the graph. It is clear that a directed graph contains at most one
source. The formula

((¬(∃y)R(y, x)) ∧ (∀z)((z = x)→ R(x, z)))

defines the source of a graph G, if one exists, in the structure AG.
The set of pairs of vertices joined by a path of length 2 in G is

definable in AG by the formula

(∃z)(R(x, z) ∧R(z, y))

and the sequence (x, y). For each k ≥ 3, a similar formula and
sequence can be used to define the set of pairs of vertices joined
by a path of length k.

Next, we introduce several notations which allow us to show the
definability of relations important in number theory.

For m,n, p ∈ N, we write m ≡ n (mod p) if p divides m−n. Also,
we write m = n mod p if m ≡ n (mod p) and n < p, in other words
if n is the remainder of the division of m by p. We will also use the
equivalence ≡p on N given by

≡p= {(m,n) ∈ N2 | m ≡ n (mod p)}

First-Order Logic–Syntax and Semantics 665

for p ∈N. Note that ≡0 is the identity relation on N, ≡1 is N
2, there

are no m,n with m = n mod 0, and m = n mod 1 if and only if
n = 0.

Example 4.7.4. Let μ be the ternary relation on N given by

μ = {(m,n, p) ∈ N3 | m ≡ n (mod p)}.

The relation μ is definable in Aar by the formula ϕμ = (∃x0)(((x0 ·
x3 + x2) = x1) ∨ ((x0 · x3 + x1) = x2)) and the sequence (x1, x2, x3).

If δ is the related ternary relation on N defined by

δ = {(m,n, p) ∈ N3 | m = n mod p},

then δ is definable by the formula ϕx,y,z,δ = (∃ẋ)((x = ẋ·z+y)∧(y <
z)) and the sequence (x, y, z) in the same structure Aar.

The next lemma contains a result known as the Chinese Remain-
der Theorem5.

Lemma 4.7.5 (Chinese Remainder Theorem). Let n0, . . . , nk−1

be k natural numbers that are pairwise relatively prime, a0, . . . , ak−1

be k natural numbers such that 0 ≤ ai < ni for 0 ≤ i ≤ k − 1, and
let n = n0 · · ·nk−1, where k ≥ 1. There is a unique q ∈ N such that
0 ≤ q < n and q = ai mod ni for 0 ≤ i ≤ k − 1.

Proof. Let Nn0,...,nk−1
be the set

{0, . . . , n0 − 1} × · · · × {0, . . . , nk−1 − 1}.

Define the function

F : {p ∈ N | 0 ≤ p < n} −→ Nn0,...,nk−1
,

by F (p) = (p0, . . . , pk−1) if pi = p mod ni.
We claim that F is injective, that is, F (p) = F (p′) implies p = p′.

Indeed, note that F (p) = F (p′) implies that p′ ≡ p (mod ni), so

5The earliest version of this result occurs in the Chinese mathematical works Sun
Tzu Suan Ching written in the late 3rd century by Sun Zi. Little is known about
the life of Sun Zi, also known as Master Su; it is believed that he was a Buddhist
scholar.

666 Logical Foundations of Computer Science — Volume 2

ni divides p − p′ for 0 ≤ i ≤ k − 1. Since n0, . . . , nk−1 are pair-
wise relatively prime it follows that n divides p − p′. However, since
|p − p′| < n, this is possible only if p = p′.

Note that |Nn0,...,nk−1
| = n. Since the domain of F contains n

values and F is injective, if follows that F is a bijection. Thus, for
every (a0, . . . , ak−1) ∈ Nn0,...,nk−1

, there exists a unique q, 0 ≤ q < n,
such that F (q) = (a0, . . . , ak−1), that is, q = ai mod ni for 0 ≤ i ≤
k − 1. �

Another useful fact is contained in the next lemma.

Lemma 4.7.6. Let n ∈N be a natural number. The n+ 1 numbers
of the form n! · (m+ 1) + 1, where 0 ≤ m ≤ n are pairwise relatively
prime.

Proof. Let p = n! · (j + 1) + 1 and q = n! · (k + 1) + 1 be two
distinct numbers, where 0 ≤ j, k ≤ n and let d be a prime common
divisor of p and q. It is clear that d cannot divide n!, so it cannot be
a divisor for any non-zero natural number less than or equal to n.
On another hand, d must divide the difference p−q, so d must divide
n!(j − k). Since d does not divide n!, it must divide |j − k| which is
a positive number not larger than n. This contradiction shows that
p, q are relatively prime. �

Theorem 4.7.7. Let B ⊆ N4 be the relation such that (c, d, i, r) ∈ B
if and only if c = r mod ((i + 1)d + 1). Then, for every sequence
(a0, . . . , ak−1) ∈ Seq(N) there are c, d ∈ N such that (c, d, i, ai) ∈ B
for 0 ≤ i ≤ k − 1.

Proof. The theorem is trivial if k = 0 because any numbers
c, d satisfy the conclusion, so assume that k ≥ 1. Let =
max{k, a0, . . . , ak−1}. Define d = !. By Lemma 4.7.6, the numbers
nm = ! · (m+1)+1 = d(m+1)+1 are pairwise relatively prime for
0 ≤ m ≤ . Note that am ≤ < nm for 0 ≤ m ≤ k.

By the Chinese Remainder Theorem (Lemma 4.7.5), there exists
a natural number c such that c = ai mod ni for 0 ≤ i ≤ k − 1, that
is, c = ai mod ((i+1)d+1) for 0 ≤ i ≤ k− 1. Thus, (c, d, i, ai) ∈ B
for 0 ≤ i ≤ k − 1. �

First-Order Logic–Syntax and Semantics 667

The relation B of Theorem 4.7.7 will be referred to as the Gödel
relation.6 The purpose of the Gödel relation is to encode sequences
of natural number as pairs of natural numbers (c, d). Indeed, the
relation B has a functional character in that for every c, d, i, there is
a unique r such that (c, d, i, r) ∈ B. We will denote this r by b(c, d, i).
Thus, we obtain the Gödel function b : N3 −→ N.

We can regard a pair (c, d) as encoding the infinite sequence
(a0, a1, . . .), where for each i, ai is the unique number with
(c, d, i, ai) ∈ B. Theorem 4.7.7 asserts that for every finite sequence of
natural numbers, there is a pair (c, d) such that the infinite sequence
encoded by this pair begins with the finite sequence.

Example 4.7.8. The Gödel relation B is definable in Aar by the
formula

ϕx1,x2,v,w,B = (ϕx,y,z,δ)x,y,z:=x1,w,(v+1)·x2+1

and the sequence of variables (x1, x2, v, w), where ϕx,y,z,δ was defined
in Example 4.7.4.

This also shows that the Gödel function b is definable in Aar
by the above formula ϕx1,x2,v,w,B and the sequence of variables
(x1, x2, v, w).

Example 4.7.9. We prove now that the exponential function exp :
N2 −→ N is definable in Aar by showing that its graph graph(exp) =
{(m,n, p) ∈ N3 | p = mn} is definable in this structure. The formula
that defines graph(exp) states that there is a sequence of length
n + 1 of the form (1,m,m2, . . . ,mn) such that the last entry of the

6Kurt Friedrich Gödel was born on April 28, 1906 in Brno, currently in the Czech
Republic. He died on January 14, 1978 in Princeton, New Jersey. Gödel studied at
the University of Vienna, receiving his doctorate in 1930 and presented his Habil-
itationsschrift in 1932. He taught at the University of Vienna until 1940 and then,
for the rest of his life, at the Institute for Advanced Study in Princeton. Gödel is
considered to have been the greatest logician of the twentieth century and made
fundamental contributions to the development of logic such as the completeness
theorem of first-order logic, the incompleteness theorem, and consistency results
in set theory.

668 Logical Foundations of Computer Science — Volume 2

sequence equals p. It is not difficult to see that this formula is

(∃y0)(∃y1)((ϕx1,x2,v,w,B)x1,x2,v,w:=y0,y1,0,s(0)
∧(∀y2)(∃y3)(∃y4)((y2 < y)→ ((ϕx1,x2,v,w,B)x1,x2,v,w:=y0,y1,y2,y3
∧(ϕx1,x2,v,w,B)x1,x2,v,w:=y0,y1,s(y2),y4 ∧ (y4 = y3 · x))
∧(ϕx1,x2,v,w,B)x1,x2,v,w:=y0,y1,y,z)

where ϕx1,x2,v,w,B is the formula from Example 4.7.8. The set
graph(exp) is defined by the above formula and the sequence (x, y, z).

Next, we investigate closure properties of definable relations which
are important for describing the retrieval capabilities of relational
database systems.

Theorem 4.7.10. For every L-structure A, the set |A|n is definable
for every n ∈ N.

Proof. Let ϕ be any logically valid, closed L-formula. Then, |A|n
is definable by ϕ and the sequence (x0, . . . , xn−1). �

Lemma 4.7.11. Let ρ be an n-ary relation definable in an L-
structure A by the formula ϕ and the sequence (y0, . . . , yn−1).
If y′0, . . . , y

′
n−1 are n distinct variables that do not occur bound

in ϕ, then ρ is also definable in A by the formula ϕ′ =
(ϕ)y0,...,yn−1:=y′0,...,y

′
n−1

and the sequence (y′0, . . . , y′n−1).

Proof. Note that y′0, . . . , y′n−1 are substitutable for y0, . . . , yn−1,
respectively, in ϕ because y′0, . . . , y′n−1 do not occur bound in ϕ.
Therefore, by Theorem 4.3.83, we have

FV(ϕ′) ⊆ (FV(ϕ)− {y0, . . . , yn−1}) ∪ {y′0, . . . , y′n−1} = {y′0, . . . , y′n−1}.

Let a0, . . . , an−1 be n elements of |A| and σ′ ∈ ASSIGNA be
such that σ′(y′i) = ai for 0 ≤ i ≤ n − 1. Define σ = [y0 →
σ′A(y′0)] · · · [yn−1 → σ′A(y′n−1)]σ

′. Then, σ(yi) = ai for 0 ≤ i ≤ n−1.
The following statements are equivalent.

(1) (A, [y′0 → a0, . . . , y
′
n−1 → an−1]) |= ϕ′;

(2) (A, σ′) |= ϕ′;
(3) (A, [y0 → σ′A(y′0)] · · · [yn−1 → σ′A(y′n−1)]σ

′) |= ϕ;

First-Order Logic–Syntax and Semantics 669

(4) (A, σ) |= ϕ;
(5) (A, [y0 → a0, . . . , yn−1 → an−1]) |= ϕ;
(6) (a0, . . . , an−1) ∈ ρ.

(The equivalence of the second and third statements follows from
the Substitution Corollary.) Thus, ρ is definable in A by ϕ′ and the
sequence (y′0, . . . , y

′
n−1). �

Theorem 4.7.12. Let ρ0, ρ1 be n-ary relations definable in the L-
structure A. The relations ρ0 ∪ ρ1, ρ0 ∩ ρ1 and ρ0 − ρ1 are definable
in A.

Proof. Suppose that ρ0 is definable in A by ϕ0 and (y0, . . . , yn−1)
and ρ1 is definable in A by ϕ1 and (z0, . . . , zn−1). Let y

′
0, . . . , y

′
n−1

be n distinct variables that do not occur in either ϕ0 or ϕ1. Let

ϕ′
0 = (ϕ0)y0,...,yn−1:=y′0,...,y

′
n−1

ϕ′
1 = (ϕ1)z0,...,zn−1:=y′0,...,y

′
n−1

.

By Lemma 4.7.11, ρ0 is definable in A by ϕ′
0 and (y′0, . . . , y

′
n−1) and

ρ1 is definable in A by ϕ′
1 and the same sequence of variables.

Thus, ρ0 ∪ ρ1 is definable in A by (ϕ′
0 ∨ ϕ′

1), ρ0 ∩ ρ1 is definable
by (ϕ′

0 ∧ ϕ′
1), and ρ0 − ρ1 is definable by (ϕ′

0 ∧ (¬ϕ′
1)), all with the

sequence (y′0, . . . , y′n−1). �

Corollary 4.7.13. If ρ is an n-ary relation definable in the structure
A, then its complement |A|n − ρ is also definable in A.

Proof. This follows immediately from Theorems 4.7.10 and 4.7.12.
�

Definition 4.7.14. Let ρ ⊆ A0×· · ·×An−1 be an n-ary relation and
let (i0, . . . , ik−1) be a sequence of distinct elements of {0, . . . , n− 1}.
Suppose that {0, . . . , n − 1} − {i0, . . . , ik−1} = {j0, . . . , jl−1}, where
j0 < · · · < jl−1. The projection of ρ on (i0, . . . , ik−1) is the relation

ρ[i0, . . . , ik−1]

= {(ai0 , . . . , aik−1
) | for some aj0 , . . . , ajl−1

, (a0, . . . , an−1) ∈ ρ}.

670 Logical Foundations of Computer Science — Volume 2

Theorem 4.7.15. If ρ is an n-ary relation definable in the structure
A, then any projection ρ[i0, . . . , ik−1] of ρ is also definable in A.

Proof. Suppose that ρ is definable in A by the formula ϕ
and the sequence (y0, . . . , yn−1). Let j0, . . . , jl−1 be as in Defini-
tion 4.7.14. Then, ρ[i0, . . . , ik−1] is definable in A by the formula
(∃yj0) · · · (∃yjl−1

)ϕ and the sequence (yi0 , . . . , yik−1
). �

Definition 4.7.16. Let ρ ⊆ A0 × · · · × An−1 be an n-ary relation
and let ρ′ ⊆ A′

0 × · · · ×A′
m−1 be an m-ary relation. The product of ρ

and ρ′ is the relation

ρ×ρ′ = {(a0, . . . , an−1, a
′
0, . . . , a

′
m−1) | (a0, . . . , an−1) ∈ ρ

and (a′0, . . . , a
′
m−1) ∈ ρ′}.

Theorem 4.7.17. If ρ and ρ′ are definable relations in A of arities
n and m, respectively, then ρ×ρ′ is definable in A.

Proof. Let ρ be definable inA by ϕ and the sequence (y0, . . . , yn−1)
and ρ′ be definable by ϕ′ and the sequence (y′0, . . . , y

′
m−1). By

Lemma 4.7.11, we may assume without loss of generality that the
sets {y0, . . . , yn−1} and {y′0, . . . , y′m−1} are disjoint. Then, the for-
mula (ϕ ∧ ϕ′) and the sequence (y0, . . . , yn−1, y

′
0, . . . , y

′
m−1) define

ρ×ρ′. �

Definition 4.7.18. Let ρ ⊆ A0 × · · · × An−1 be an n-ary relation,
i = (i0, . . . , ik−1) be a sequence of distinct elements of {0, . . . , n−1},
and ρ′ ⊆ Ai0 × · · · ×Aik−1

. The (ρ′, i)-selection of ρ is the relation

selρ′,i(ρ) = {(a0, . . . , an−1) ∈ ρ | (ai0 , . . . , aik−1
) ∈ ρ′}.

Theorem 4.7.19. Suppose that ρ is an n-ary relation definable in
a structure A, ρ′ is a k-ary relation definable in A with k ≤ n, and
i is a sequence (i0, . . . , ik−1) of k distinct elements of {0, . . . , n− 1}.
Then, the (ρ′, i)-selection of ρ is definable in A.

Proof. Let ρ be definable in A by ϕ and (y0, . . . , yn−1) and let
ρ′ be definable in the same structure by ϕ′ and (y′0, . . . , y′k−1). By

First-Order Logic–Syntax and Semantics 671

applying Lemma 4.7.11, we may assume that none of y0, . . . , yn−1

appears bound in ϕ′. By a second application of the lemma, we may
assume that y′j = yij for 0 ≤ j ≤ k − 1. Then, it is easy to see that

selρ′,i(ρ) is definable in A by the formula ϕ ∧ ϕ′ and the sequence
(y0, . . . , yn−1). �

In Section 4.10, we show some limitations on the ability of first-
order logic to define relations that are of practical value in Computer
Science (see Theorem 4.10.47).

4.8 Propositional Forms and Tautologies

We now discuss a technique for transforming formulas of proposi-
tional logic into first-order logic formulas.

Definition 4.8.1. An inter-substitution is a substitution that maps
the set of statement variables SV into FORM.

In the usual way, an inter-substitution s can be extended to
PLFORM; we will denote this extension by s and, as usual for sub-
stitutions, we will drop the bar whenever there is no risk of confu-
sion. It is easy to prove by induction on formulas in PLFORM that
if the range of an inter-substitution s is included in FORML, then
s(ϕ) ∈ FORML for every ϕ ∈ PLFORM.

For the remainder of this section, we will refer to inter-
substitutions simply as substitutions, when there is no risk of confu-
sion. If a substitution has its values in F , where F is a class of formu-
las, then we will refer to it as an F-substitution. In particular, if F is
the class of prime formulas (atomic formulas), we will use the terms
prime substitution (atomic substitution). Also, when F = FORML,
we will use the term L-inter-substitution or just L-substitution when
the context is unambiguous.

Theorem 4.8.2. Let z be a propositional substitution and let s be
an inter-substitution. Then,

s z = sz.

672 Logical Foundations of Computer Science — Volume 2

Proof. We need to verify that

s z(α) = sz(α),

for all α ∈ PLFORM. The argument is by induction on α and is left
to the reader. �

Definition 4.8.3. Let Γ be a set of formulas, Γ ⊆ FORM. A set
of formulas Γ0 of propositional logic is a propositional form for Γ if
there is a substitution s such that s(Γ0) = Γ.

Γ0 is a fundamental propositional form for Γ if s(Γ0) = Γ where s
is a prime, injective substitution.

A formula α ∈ PLFORM is a propositional form for a formula ϕ ∈
FORM and ϕ is a substitution instance of α if {α} is a propositional
form for the set {ϕ}. If {α} is a fundamental propositional form for
{ϕ}, then we refer to α as a fundamental propositional form for ϕ.

A tautology of first-order logic is a formula that is a substitution
instance of a tautology of propositional logic.

Theorem 4.8.4. Let ϕ be a formula and let R,R′ be relation symbols
of the same arity such that R′ does not occur in ϕ. Then, ϕ is a
tautology if and only if sRR′(ϕ) is a tautology.

Proof. Note that by Theorem 4.3.49, sRR′(ϕ) is a formula. Suppose
that ϕ is a tautology. Then, there is a tautology of propositional
logic α and an inter-substitution s such that ϕ = s(α). Again, by
Theorem 4.3.49, sRR′(s(p)) is a formula for every p ∈ SV , so we may
define an inter-substitution s′ by s′(p) = sRR′(s(p)) for every p ∈
SV . An argument by induction on formulas of propositional logic
shows that s′(β) = sRR′(s(β)) for every β ∈ PLFORM. In particular,
s′(α) = sRR′(s(α)) = sRR′(ϕ), so sRR′(ϕ) is a tautology. The inverse
implication follows from what we have just shown and the fact that
sR

′
R (sRR′(ϕ)) = ϕ as established in Theorem 1.2.16. �

When we say that an inter-substitution s is injective in Defini-
tion 4.8.3, we mean injectivity of s as a function on SV . In general,
the extension of an injective inter-substitution to PLFORM need not
be injective. However, we have the following result.

Theorem 4.8.5. If s is a prime, injective substitution, then its
extension to PLFORM is also an injective function.

First-Order Logic–Syntax and Semantics 673

Proof. Let s be a prime, injective substitution. We prove by induc-
tion on α that s(α) = s(β) implies α = β. For the basis step, suppose
that α is a statement variable p. Then, s(β) = s(p) is a prime formula
and this implies that β is a statement variable q. Thus, α = β due
to the injectivity of s on SV .

Let now α = (α0Cα1), where C is a binary connective symbol.
We have s(β) = (s(α0)Cs(α1)). Note that β cannot be a statement
variable because s(β) is not prime. Thus, β = (β0Cβ1) and s(αi) =
s(βi) for i = 0, 1. By inductive hypothesis, α0 = β0 and α1 = β1, so
α = β.

A similar argument works when α = (¬α0). �

Example 4.8.6. Let P,R be two unary relation symbols and let
a be a constant symbol. It is easy to see that each of the formu-
las p0, (p0 → p1), (p0 → (p1 → p2)) and (p0 → (p1 → p0)) are
propositional forms for the formula ϕ = (P (a) → (R(a) → P (a))).
Of these, only the last is a fundamental propositional form for ϕ
because we can write ϕ = s((p0 → (p1 → p0))), where s, given by
s(p0) = P (a), s(p1) = R(a), and s(pi) = R(xi) for i ≥ 2, is a prime,
injective substitution and no such substitution exists for the other
propositional forms.

Theorem 4.8.7. Let Γ be a set of formulas. There is a fundamental
propositional form Γ0 for Γ.

Proof. Let ψ0, ψ1, . . . be an enumeration of all prime formulas
of first-order logic. Define the substitution s(pi) = ψi, for i ∈ N.
Clearly, s is a prime, injective substitution.

We claim that for every formula ϕ of first-order logic, there is a
formula α of propositional logic such that s(α) = ϕ. The argument
is by induction on ϕ and is left to the reader. Thus, for every ϕ ∈ Γ,
there is a formula αϕ ∈ PLFORM such that s(αϕ) = ϕ. This allows
us to define the set Γ0 as {αϕ | ϕ ∈ Γ}. It is clear that Γ0 is a
fundamental propositional form for Γ. �

Lemma 4.8.8. If s, s′ are two inter-substitutions and α is a formula
in PLFORM such that s(α) = s′(α), then s(p) = s′(p) for every
p ∈ SV (α).

674 Logical Foundations of Computer Science — Volume 2

Proof. Suppose that there is some variable q ∈ SV (α) such that
s(q) = s′(q) and let (p, i) be the first occurrence of such a vari-
able in α. Then, we can write α = ε0pε1, where |ε0| = i and
s(ε0) = s′(ε0) = ε for some sequence ε, because s(a) = s′(a) when
a ∈ {(,),¬,∨,∧,→, ↔}. Thus, s(α) = εs(p)s(ε1) and s′(α) =
εs′(p)s′(ε1). Since s(α) = s′(α), this means that s(p) is a proper
prefix of s′(p) or vice-versa. By Lemma 4.3.18, this is impossible. �

Theorem 4.8.9. Let ϕ be a formula. If α is a propositional form
for ϕ and β is a fundamental propositional form for ϕ, then there is
a propositional substitution z such that z(α) = β.

Proof. The argument is by induction on α. For the basis step, let
α be a statement variable p. Then, the conclusion is immediate since
any propositional substitution z such that z(p) = β will suffice.

Suppose now that the statement holds for α0 and α1 and that
α = (α0Cα1), where C is a binary connective symbol. Assume fur-
ther that ϕ = s(α) = s′(β), where s′ is a prime, injective substi-
tution and s is a substitution. Since s′(β) = s(α) = (s(α0)Cs(α1))
and s′ is a prime substitution, it follows that β = (β0Cβ1) for some
β0, β1 ∈ PLFORM. Indeed, β cannot be a statement variable because
of the primeness of s′ and we can exclude the cases β = (¬γ) and
β = (γ0C

′γ1) with C ′ = C because of unique readability. Therefore,
ϕ = s′(β) = (s′(β0)Cs′(β1)) = (s(α0)Cs(α1)) which implies that
s(α0) = s′(β0) = ϕ0 and s(α1) = s′(β1) = ϕ1 for some formulas
ϕ0, ϕ1, again, by unique readability. This means that βi is a funda-
mental propositional form for ϕi, and αi is a propositional form for
ϕi for i = 0, 1. By the inductive hypothesis, there are propositional
substitutions z0, z1 such that zi(αi) = βi for i = 0, 1. It follows from
this that

s(αi) = s′(βi) = s′zi(αi) = s′zi(αi)

for i = 0, 1, by Theorem 4.8.2. By Lemma 4.8.8, we have s′zi(p) =
s(p) for all p ∈ SV (αi) for i = 0, 1, which implies s′z0(p) = s′z1(p)
for every p ∈ SV (α0) ∩ SV (α1). Theorem 4.8.5 which asserts the
injectivity of s′ implies z0(p) = z1(p) for every p ∈ SV (α0)∩SV (α1).
This shows the existence of a propositional substitution z such that
z(p) = z0(p) for every p ∈ SV (α0) and z(p) = z1(p) for every p ∈
SV (α1). Thus, z(α0) = β0 and z(α1) = β1, so z(α) = β, as desired.

We leave to the reader the simpler case when α = (¬γ). �

First-Order Logic–Syntax and Semantics 675

Corollary 4.8.10. If β is a fundamental propositional form for the
formula ϕ, then ϕ is a tautology (of first-order logic) if and only if β
is a tautology (of propositional logic).

Proof. If β is a tautology of propositional logic, it is obvious that
ϕ is a tautology of first-order logic.

Conversely, let ϕ be a tautology of first-order logic. Then, there
is a propositional form α for ϕ such that α is a tautology. By Theo-
rem 4.8.9, there is a propositional substitution z such that β = z(α).
By Corollary 2.6.8, β is a tautology. �

Corollary 4.8.10 allows us to give an effective procedure for deter-
mining whether a given formula ϕ is a tautology of first-order logic.
First, using for example the algorithm implicit in the proof of Theo-
rem 4.8.7, we find a fundamental propositional form α for ϕ. Then,
using one of the methods discussed in Chapter 2, we determine
whether α is a tautology of propositional logic.

Lemma 4.8.11. Let L be a first-order language, s be an L-
substitution, A be an L-structure and σ be an assignment in
ASSIGNA. Define a truth assignment v by:

v(p) =

{
T if (A, σ) |= s(p)

F otherwise.

Then, for every formula ϕ ∈ PLFORM, we have v(ϕ) = T if and
only if (A, σ) |= s(ϕ).

Proof. The argument is by induction on ϕ and is left to the reader.
�

Theorem 4.8.12. Let Γ be a set of L-formulas, where L is a first-
order language and let Γ0 be a propositional form for Γ. If Γ is
satisfiable, then Γ0 is satisfiable.

Proof. Suppose that Γ = s(Γ0), where s is an inter-substitution.
We may assume that s is an L-substitution by redefining s on the
variables that do not occur in the formulas of Γ0, if necessary. Since
Γ is satisfiable, there is an L-structure A and σ ∈ ASSIGNA such
that (A, σ) |= ϕ for every ϕ ∈ Γ. Define v as in Lemma 4.8.11. Then,
by the same Lemma, v satisfies Γ0. �

676 Logical Foundations of Computer Science — Volume 2

The converse of Theorem 4.8.12 is not true in general as we show
in the next example. Nevertheless, as we shall see in Section 4.10, it
holds for sets of quantifier-free formulas without equality and their
fundamental propositional forms.

Example 4.8.13. Let Γ0 = {p, (¬q)}, where p, q are distinct state-
ment variables. Then, Γ0 is a propositional form for both Γ =
{R(x), (¬R(x))} and Γ′ = {(∀x)R(x), (¬R(y))}. Note that Γ0 is sat-
isfiable, but neither Γ nor Γ′ is. In the case of Γ, Γ0 is not a fundamen-
tal propositional form, while in the case of Γ′, Γ0 is a fundamental
propositional form, but the formulas of Γ′ contain quantifiers.

Theorem 4.8.14. Every tautology of first-order logic is logically
valid.

Proof. Let α be a tautology of propositional logic that is a propo-
sitional form for ϕ. Then, (¬α) is a propositional form for (¬ϕ) and,
since (¬α) is unsatisfiable, (¬ϕ) is unsatisfiable by Theorem 4.8.12.
Thus, ϕ is logically valid. �

The converse of Theorem 4.8.14 is not true in general, as shown
below in Example 4.8.15; however, it holds for quantifier-free formu-
las without equality. This will be shown in Section 4.10.

Example 4.8.15. Let ψ = ((∀x)ϕ→ (∃x)ϕ), where ϕ is an arbitrary
formula. We saw in Example 4.5.19 that ψ is logically valid. It is
easy to see that ψ has only two types of propositional forms: p and
(p → q), where p = q and p, q ∈ SV . Since neither of these forms is
a tautology, ψ is not a tautology.

Corollary 4.8.16. If ϕ,ψ are two logically equivalent formulas of
propositional logic and s is an inter-substitution, then s(ϕ) and s(ψ)
are logically equivalent first-order formulas.

Proof. Since ϕ ≡ ψ, the formula (ϕ ↔ ψ) is a tautology by The-
orem 2.3.20, Part (4). Therefore, by Theorem 4.8.14, s(ϕ ↔ ψ) =
(s(ϕ)↔ s(ψ)) is logically valid. So, by Theorem 4.5.55, Part (4), we
have s(ϕ) ≡ s(ψ). �

First-Order Logic–Syntax and Semantics 677

Theorem 4.8.17. Let ϕ,ψ and θ be formulas. Then, we have:

(ϕ ∧ ϕ) ≡ ϕ (idempotency of ∧)
(ϕ ∨ ϕ) ≡ ϕ (idempotency of ∨)
(ϕ ∧ ψ) ≡ (ψ ∧ ϕ) (commutativity of ∧)
(ϕ ∨ ψ) ≡ (ψ ∨ ϕ) (commutativity of ∨)

(ϕ ∧ (ψ ∧ θ)) ≡ ((ϕ ∧ ψ) ∧ θ) (associativity of ∧)
(ϕ ∨ (ψ ∨ θ)) ≡ ((ϕ ∨ ψ) ∨ θ) (associativity of ∨)

(¬(¬ϕ)) ≡ ϕ (double negation)

(ϕ ∧ (ϕ ∨ ψ)) ≡ ϕ (absorption laws)

(ϕ ∨ (ϕ ∧ ψ)) ≡ ϕ
(ϕ ∧ (ψ ∨ θ)) ≡ ((ϕ ∧ ψ) ∨ (ϕ ∧ θ)) (distributivity laws)

(ϕ ∨ (ψ ∧ θ)) ≡ ((ϕ ∨ ψ) ∧ (ϕ ∨ θ))
(¬(ϕ ∨ ψ)) ≡ ((¬ϕ) ∧ (¬ψ)) (DeMorgan’s laws)

(¬(ϕ ∧ ψ)) ≡ ((¬ϕ) ∨ (¬ψ))
(ϕ→ ψ) ≡ ((¬ϕ) ∨ ψ)
(ϕ↔ ψ) ≡ ((ϕ→ ψ) ∧ (ψ → ϕ))

Proof. Let ϕ,ψ, θ be three formulas and let s be the inter-
substitution defined by s(p0) = ϕ, s(p1) = ψ, s(p2) = θ and
s(pi) = pi for i > 2. Applying this substitution to the pairs of equiv-
alent formulas from Theorem 2.3.30 and taking into account Corol-
lary 4.8.16, we obtain immediately the equivalent formulas mentioned
in this theorem. �

Corollary 4.8.18. Let ϕ be a formula and x be a variable. Then,
we have:

(¬(∃x)ϕ) ≡ (∀x)(¬ϕ)
(¬(∀x)ϕ) ≡ (∃x)(¬ϕ)

Proof. Applying Part (2) of Theorem 4.5.57 to the formula (¬ϕ),
we obtain

(∀x)(¬ϕ) ≡ (¬(∃x)(¬(¬ϕ))).
Taking into account the double negation equivalence of Theo-
rem 4.8.17 and the Replacement Theorem, we obtain the desired
result.

The second part of the corollary has a similar proof. �

678 Logical Foundations of Computer Science — Volume 2

4.9 Normal Forms for Formulas

As in Section 2.5, we present normal forms for formulas of first-order
logic.

We begin with a normal form for quantifier-free formulas.

Definition 4.9.1. A quantifier-free formula ϕ is in disjunctive nor-
mal form if it is a disjunction of conjunctions of literals. Each con-
junction is called a disjunct of the formula.

A quantifier-free formula ϕ is in conjunctive normal form if it is
a conjunction of disjunctions of literals. Each disjunction is called a
conjunct of the formula.

A conjunctive normal form formula ϕ is a Horn formula if each
conjunct contains at most one positive literal.

A formula ϕ is clausal if it is a disjunction of literals.

If ϕ = (0 ∨ · · · n−1) is a clausal formula, then ϕ is in both con-
junctive normal form and disjunctive normal form because ϕ can be
regarded as a single conjunct of literals and also as a disjunction of
one-literal conjuncts.

Theorem 4.9.2. Let L be a first-order language. For every
quantifier-free L-formula ϕ, there is a logically equivalent L-formula
in disjunctive normal form (conjunctive normal form) with the same
set of variables as ϕ.

Proof. Let ϕ be a quantifier-free L-formula and let α be a fun-
damental propositional form for ϕ such that s(α) = ϕ where s is a
prime, injective L-substitution. Because ϕ is quantifier-free, we may
assume that s is atomic. Let α′ be a disjunctive normal form (con-
junctive normal form) for α. By Corollary 2.5.12, we may assume that
SV (α′) = SV (α). By Corollary 4.8.16, the L-formulas ϕ = s(α) and
s(α′) are logically equivalent, so s(α′) is a disjunctive (conjunctive)
normal form for ϕ. Since α′ and α have the same set of statement
variables, s(α′) has the same set of variables as s(α) = ϕ. �

Note that the L-substitution s and the formula α can be effectively
found from ϕ and the normal form α′ can be effectively constructed
as we observed previously. Therefore, the proof of Theorem 4.9.2

First-Order Logic–Syntax and Semantics 679

gives an effective procedure for obtaining a disjunctive (conjunctive)
normal form of a first-order quantifier-free formula.

Example 4.9.3. Let L = {P,Q,R} be a first-order language, where
P,Q are binary relation symbols and R is a ternary relation symbol
and let ϕ be the quantifier-free formula

((P (x, y)→ Q(y, z)) ∧R(x, y, z)).

The formula α = ((p4 → p0) ∧ p6) is a fundamental propositional
form for ϕ with an atomic substitution s such that s(p0) = Q(y, z),
s(p4) = P (x, y), and s(p6) = R(x, y, z). As noted in Example 2.5.13,
the truth-table given in Example 2.5.11 is the truth-table of α, so
by Example 2.5.16, the formula α′ = (((¬p4) ∧ p6) ∨ (p0 ∧ p4 ∧ p6))
is a disjunctive normal form for α. Therefore, the first-order formula
s(α′) given by

(((¬P (x, y)) ∧R(x, y, z)) ∨ (Q(y, z) ∧ P (x, y) ∧R(x, y, z)))

is a disjunctive normal form for ϕ.

Definition 4.9.4. A formula ϕ is in prenex normal form if

ϕ = (Q0y0) · · · (Qn−1yn−1)ψ,

where n ≥ 0, Q0, . . . , Qn−1 are quantifier symbols, y0, . . . , yn−1 are
distinct variables, and ψ is a quantifier-free formula.

We will refer to the formula ψ as the matrix of ϕ.

Observe that if a variable yi does not occur in the matrix ψ of ϕ
then, if we drop (Qiyi), the resulting formula is still in prenex normal
form and is logically equivalent to ϕ because of Corollary 4.5.43 and
the Replacement Theorem (Theorem 4.6.16).

Example 4.9.5. The formula ϕ = (∀x)(∀z)(∃y)(R(x, y) ∧ R(y, z))
is in prenex normal form and has (R(x, y) ∧R(y, z)) as matrix.

Intuitively, a formula (∀y0)ψ is no easier to understand than a for-
mula (∀y0) · · · (∀ym−1)ψ. However, it is apparent that the formulas
α = (∀y0)(∃y1)ψ and β = (∃y0)(∀y1)ψ have a higher complexity. This
complexity is introduced by the alternation of the quantifiers. Infor-
mally, a prenex formula is in Πn-form if it begins with an occurrence

680 Logical Foundations of Computer Science — Volume 2

of the universal quantifier symbol and contains n− 1 alternations of
quantifier symbols. For example, α is in Π2-form. Similarly, a prenex
formula is in Σn-form if it begins with an occurrence of the existen-
tial quantifier symbol and contains n − 1 alternations of quantifier
symbols. The formula β above is in Σ2-form.

We formalize this intuition by introducing the classes Πn and Σn
by a simultaneous inductive definition.

Definition 4.9.6. The classes Πn and Σn of formulas are defined
recursively as follows for n ∈ N:

• The classes Π0 and Σ0 both consist of the quantifier-free formulas.
• For n ≥ 0, Πn+1 consists of all formulas of the form

(∀y0) · · · (∀ym−1)ϕ

where ϕ ∈ Σn, m ≥ 1, and y0, . . . , ym−1 are distinct variables that
do not belong to BV(ϕ).

• For n ≥ 0, Σn+1 consists of all formulas of the form

(∃y0) · · · (∃ym−1)ϕ

where ϕ ∈ Πn, m ≥ 1, and y0, . . . , ym−1 are distinct variables that
do not belong to BV(ϕ).

We say that a formula is in Πn-form (Σn-form) if it belongs to the
class Πn (Σn, respectively).

It is clear that every formula in Πn or Σn is in prenex normal form.
Conversely (see Exercise 114), one can prove that every formula in
prenex normal form belongs to a class Πn or Σn. It is clear that
Π0 ∪Π1 is the set of universal formulas; similarly, Σ0 ∪Σ1 is the set
of existential formulas.

Our goal is to show that for every formula ϕ, there is a logically
equivalent formula in prenex normal form. To this end we need to
consider several types of pairs of logically equivalent formulas. Some
of the results shown below have been already discussed.

Lemma 4.9.7. Let ϕ,ψ be formulas and let x, y be variables. Then,
we have the following logical equivalences:

(1) (¬(∀x)ϕ) ≡ (∃x)(¬ϕ) and (¬(∃x)ϕ) ≡ (∀x)(¬ϕ);

First-Order Logic–Syntax and Semantics 681

(2) ((∃x)ϕ∨ψ) ≡ (∃x)(ϕ∨ψ) and ((∀x)ϕ∨ψ) ≡ (∀x)(ϕ∨ψ), where
x ∈ FV(ψ);

(3) (ϕ∨ (∃x)ψ) ≡ (∃x)(ϕ∨ψ) and (ϕ∨ (∀x)ψ) ≡ (∀x)(ϕ∨ψ), where
x ∈ FV(ϕ);

(4) ((∃x)ϕ∧ψ) ≡ (∃x)(ϕ∧ψ) and ((∀x)ϕ∧ψ) ≡ (∀x)(ϕ∧ψ), where
x ∈ FV(ψ);

(5) (ϕ∧ (∃x)ψ) ≡ (∃x)(ϕ∧ψ) and (ϕ∧ (∀x)ψ) ≡ (∀x)(ϕ∧ψ), where
x ∈ FV(ϕ);

(6) ((∃x)ϕ → ψ) ≡ (∀x)(ϕ → ψ) and ((∀x)ϕ → ψ) ≡ (∃x)(ϕ → ψ),
where x ∈ FV(ψ);

(7) (ϕ → (∃x)ψ) ≡ (∃x)(ϕ → ψ) and (ϕ → (∀x)ψ) ≡ (∀x)(ϕ → ψ),
where x ∈ FV(ϕ).

Also, in each of the above logical equivalences, the formulas involved
have the same free variables and the same extra-logical symbols.

Proof. Part (1) was shown in Corollary 4.8.18. We proceed now
with the argument for Part (2).

Suppose that ϕ,ψ are L-formulas. If (A, σ) |= ((∃x)ϕ∨ψ), where
A is an L-structure and σ ∈ ASSIGNA, the following two cases may
occur:

Case 1: (A, σ) |= (∃x)ϕ. Then, there is a ∈ |A| such that (A, [x→
a]σ) |= ϕ which implies (A, [x→ a]σ) |= (ϕ∨ψ). Therefore,
(A, σ) |= (∃x)(ϕ ∨ ψ).

Case 2: (A, σ) |= ψ. Then, (A, σ) |= (ϕ ∨ ψ). By Theorem 4.5.40,
we obtain (A, σ) |= (∃x)(ϕ ∨ ψ).
Conversely, assume that (A, σ) |= (∃x)(ϕ∨ψ). Then, there
is a ∈ |A| such that (A, [x → a]σ) |= (ϕ ∨ ψ). Again, we
distinguish two cases.

Case 1: (A, [x→ a]σ) |= ϕ. Then, (A, σ) |= (∃x)ϕ and this implies
(A, σ) |= ((∃x)ϕ ∨ ψ).

Case 2: (A, [x→ a]σ) |= ψ. Since x ∈ FV(ψ), σ and [x→ a]σ agree
on all free variables of ψ. By the Agreement Theorem, we
have (A, σ) |= ψ, which gives (A, σ) |= ((∃x)ϕ ∨ ψ).

The proof of the second logical equivalence of Part (2) is similar and
is left to the reader.

682 Logical Foundations of Computer Science — Volume 2

For the first equivalence of Part (3), observe that

(ϕ ∨ (∃x)ψ) ≡ ((∃x)ψ ∨ ϕ) (commutativity of ∨)
≡ (∃x)(ψ ∨ ϕ) (Part (2))
≡ (∃x)(ϕ ∨ ψ) (commutativity of ∨

and Replacement Theorem)

The second equivalence of this part is shown similarly.
The first logical equivalence of Part (4) is a consequence of the

following logical equivalences.

((∃x)ϕ ∧ ψ) ≡ (¬((¬(∃x)ϕ) ∨ (¬ψ))) (DeMorgan’s Law)

≡ (¬((∀x)(¬ϕ) ∨ (¬ψ))) (Part (1) and
Replacement Theorem)

≡ (¬(∀x)((¬ϕ) ∨ (¬ψ))) (Part (2) and
Replacement Theorem)

≡ (∃x)(¬((¬ϕ) ∨ (¬ψ))) (Part (1))
≡ (∃x)(ϕ ∧ ψ) (DeMorgan’s Law and

Replacement Theorem)

The remaining logical equivalences of Parts (4) and (5) are left to
the reader.

Parts (6) and (7) can be proven in a way similar to the one used
for Parts (4) and (5), using the next to last logical equivalence of The-
orem 4.8.17 in place of DeMorgan’s Laws. (We gave an independent
proof of the first logical equivalence of Part (7) in Example 4.5.44.)

We leave to the reader the verification that the formulas involved
in each of the previous logical equivalences have the same set of free
variables. �

The notation introduced next allows us to write certain parts of
the previous lemma in a more concise way. Let Q be a quantifier
symbol. Then, Q is given by

Q =

{∀ if Q = ∃
∃ if Q = ∀.

First-Order Logic–Syntax and Semantics 683

Now, both equivalences of Part (1) become (¬(Qx)ϕ) ≡ (Qx)(¬ϕ).
Also, Part (6) becomes ((Qx)ϕ→ ψ) ≡ (Qx)(ϕ→ ψ) if x ∈ FV(ψ).

Definition 4.9.8. Let ϕ be a formula. A prenex normal form for ϕ
is a formula ψ in prenex normal form such that Lϕ = Lψ, FV(ϕ) =
FV(ψ) and ϕ ≡ ψ.

We now show that every formula has a prenex normal form.

Theorem 4.9.9. There is a prenex normal form for every formula.

Proof. The argument is by induction on formulas. The basis is
immediate since an atomic formula is already in prenex normal form.

Let ψ = (Q0y0) · · · (Qn−1yn−1)θ, where θ is a quantifier-free for-
mula, be a formula in prenex normal form that is logically equivalent
to ϕ with FV(ψ) = FV(ϕ), and Lψ = Lϕ. Then,

(¬ϕ) ≡ (¬ψ) ≡ (Q0y0) · · · (Qn−1yn−1)(¬θ)

by repeated application of the Replacement Theorem and of Part (1)
of Lemma 4.9.7. It is clear that the last formula is in prenex normal
form, has the same set of free variables and the same set of extra-
logical symbols as (¬ϕ).

We consider now the case of the formula (ϕ0Cϕ1) where C is a
binary connective symbol. By the inductive hypothesis, we assume
the existence of formulas

ψ0 = (Q0,0y0) · · · (Q0,n−1yn−1)θ0

ψ1 = (Q1,0z0) · · · (Q1,m−1zm−1)θ1,

in prenex normal form such that ψi ≡ ϕi for i = 0, 1, where θ0, θ1
are quantifier-free formulas. Also, by the same hypothesis, FV(ψ0) =
FV(ϕ0), FV(ψ1) = FV(ϕ1), Lψ0 = Lϕ0 , and Lψ1 = Lϕ1 .

Let y′0, . . . , y
′
n−1, z

′
0, . . . , z

′
m−1 be n+m distinct variables that do

not occur in ψ0 or ψ1. By Theorem 4.6.18, we have the logical equiv-
alences ψ0 ≡ ψ′

0 and ψ1 ≡ ψ′
1, where

ψ′
0 = (Q0,0y

′
0) · · · (Q0,n−1y

′
n−1)θ

′
0

ψ′
1 = (Q1,0z

′
0) · · · (Q1,m−1z

′
m−1)θ

′
1,

684 Logical Foundations of Computer Science — Volume 2

and θ′0, θ
′
1 are the quantifier-free formulas:

θ′0 = (θ0)yn−1:=y′n−1,...,y0:=y
′
0

θ′1 = (θ1)zm−1:=z′m−1,...,z0:=z
′
0
.

Also, by Theorem 4.6.18, we have FV(ψ′
0) = FV(ψ0) and FV(ψ′

1) =
FV(ψ1), so FV((ψ′

0Cψ
′
1)) = FV((ϕ0Cϕ1)).

If C ∈ {∨,∧}, then, by Parts (2)–(5) of Lemma 4.9.7 we have the
following logical equivalences:

(ϕ0Cϕ1) ≡ (ψ0Cψ1) ≡ (ψ′
0Cψ

′
1)

≡ (Q0,0y
′
0) · · · (Q0,n−1y

′
n−1)(Q1,0z

′
0) · · · (Q1,m−1z

′
m−1)(θ

′
0Cθ

′
1).

Clearly, the last formula is in prenex normal form and, by
Lemma 4.9.7, it has the same free variables and extra-logical symbols
as (ϕ0Cϕ1).

For C =→, we have:

(ϕ0 → ϕ1) ≡ (ψ0 → ψ1) ≡ (ψ′
0 → ψ′

1)

≡ (Q0,0y
′
0) · · · (Q0,n−1y

′
n−1)(Q1,0z

′
0) · · · (Q1,m−1z

′
m−1)(θ

′
0 → θ′1).

When C =↔, we have, by Theorem 4.8.17,

(ϕ0 ↔ ϕ1) ≡ ((ϕ0 → ϕ1) ∧ (ϕ1 → ϕ0))

≡ ((ψ0 → ψ1) ∧ (ψ1 → ψ0)).

Using the method discussed earlier in the proof, we construct prenex
normal form formulas α0, α1 for (ψ0 → ψ1) and (ψ1 → ψ0), respec-
tively such that FV(α0) = FV((ψ0 → ψ1)) and FV(α1) = FV((ψ1 →
ψ0)). Thus, (ϕ0 ↔ ϕ1) ≡ (α0 ∧ α1) and FV((ϕ0 ↔ ϕ1)) = FV((α0 ∧
α1)). Finally, again using the method discussed earlier, we obtain a
prenex normal form for (α0 ∧ α1) which is a prenex normal form for
(ϕ0 ↔ ϕ1) and has the same free variables and extra-logical symbols
as this formula.

Suppose that ψ is a prenex normal form for ϕ. If α = (Qx)ϕ
where Q is a quantifier symbol and x is a variable, we distinguish
two cases. If x ∈ FV(ϕ), then x ∈ FV(ψ) so the formula β = (Qx)ψ
is in prenex normal form, β ≡ α, FV(β) = FV(α), and Lβ = Lα. If
x ∈ FV(ϕ), then, by Corollary 4.5.43, α ≡ ϕ ≡ ψ, FV(α) = FV(ψ) and
Lα = Lψ, so ψ is the desired prenex normal form formula. �

First-Order Logic–Syntax and Semantics 685

The argument of Theorem 4.9.9 contains an implicit algorithm for
converting a formula into a logically equivalent one in prenex normal
form.

For the sake of simplicity of presentation, we did not use the most
efficient renaming of bound variables in the proof of Theorem 4.9.9.
As the examples below will show, it is possible to obtain a prenex
normal form for a formula with less renaming of variables.

Example 4.9.10. Let ϕ = (((∃y)R(x, y)∧P (y, z)) → (∃u)R(x, u)).
If we apply the algorithm implicitly contained in the proof of

Theorem 4.9.9 to (∃y)R(x, y), P (y, z), and ψ1 = (∃u)R(x, u), the
same formulas are returned.

Consider now the formula ϕ0 = ((∃y)R(x, y)∧P (y, z)). Following
the algorithm, we rename y to a new variable y′ to obtain the equiv-
alent formula ((∃y′)R(x, y′) ∧ P (y, z)). Now the quantifier symbol
can be moved to the front, thereby yielding the equivalent formula
ψ0 = (∃y′)(R(x, y′) ∧ P (y, z)) in prenex normal form.

Applying the algorithm to ϕ requires us to deal with the formulas

ψ0 = (∃y′)(R(x, y′) ∧ P (y, z))
ψ1 = (∃u)R(x, u).

Let y′′, u′ be two new variables. The algorithm applied to ϕ yields
the equivalent formula (∀y′′)(∃u′)((R(x, y′′) ∧ P (y, z))→ R(x, u′)).

Observe that the renaming of y′ and u was not really necessary. A
direct application of Lemma 4.9.7 gives another prenex normal form
for ϕ: (∀y′)(∃u)((R(x, y′) ∧ P (y, z))→ R(x, u)).

We could have applied a different sequence of transformations
yielding (∃u)(∀y′)((R(x, y′) ∧ P (y, z)) → R(x, u)) as an alternate
prenex normal form for ϕ.

As demonstrated in the previous example, the algorithm con-
tained in the proof of Theorem 4.9.9 is only one possible way to
obtain a prenex normal form for a given formula. In general, the
operations of Lemma 4.9.7, together with renaming of bound vari-
ables, can be used in many ways to produce different prenex normal
form formulas logically equivalent to a given formula.

Example 4.9.11. Let ϕ = ((∃x)R(x)↔ (∃x)P (x)). Since

ϕ ≡ (((∃x)R(x)→ (∃x)P (x)) ∧ ((∃x)P (x)→ (∃x)R(x))),

686 Logical Foundations of Computer Science — Volume 2

we need to find a prenex normal form for the latter formula. By
renaming bound variables and applying the appropriate transforma-
tions given in Lemma 4.9.7, we get the following sequence of logically
equivalent formulas:

(((∃x)R(x)→ (∃x)P (x)) ∧ ((∃x)P (x)→ (∃x)R(x)))
(((∃x)R(x)→ (∃y)P (y)) ∧ ((∃z)P (z)→ (∃w)R(w)))
((∀x)(∃y)(R(x)→ P (y)) ∧ (∀z)(∃w)(P (z) → R(w)))

(∀x)(∃y)(∀z)(∃w)((R(x) → P (y)) ∧ (P (z)→ R(w)))

The last formula is in Π4-form. A different sequence of transforma-
tions would produce the following logically equivalent formula in Π2-
form:

(∀x)(∀z)(∃y)(∃w)((R(x)→ P (y)) ∧ (P (z)→ R(w)));

it is equally possible to generate the logically equivalent formula

(∃y)(∃w)(∀x)(∀z)((R(x)→ P (y)) ∧ (P (z)→ R(w))),

which is in Σ2-form.

The following two theorems will be used to obtain another impor-
tant normal form for first-order formulas called the Skolem7 nor-
mal form. The first theorem is essentially a special case of the second.
Nevertheless, we consider it separately, mainly due to a notational
issue.

Theorem 4.9.12. Let L be a first-order language. Suppose that ϕ is
an L-formula, x is a variable and c is a constant symbol not in L. If A
is an L-structure, σ ∈ ASSIGNA, and (A, σ) |= ψ where ψ = (∃x)ϕ,
then there is an expansion B of A to L′ = L∪{c} such that (B, σ) |= θ,
where θ = (ϕ)x:=c is an L′-formula and FV(θ) = FV(ψ).

Conversely, θ |= ψ, hence if θ is satisfiable in an L′-structure B,
then ψ is also satisfiable in B.

7Albert Thoralf Skolem was born in Sandsvaer, Norway on May 23, 1887 and
died on March 23, 1963 in Oslo. Skolem studied at the University of Oslo and
in Göttingen (between 1915–1916). He received his doctorate in Oslo and taught
at the University of Oslo until 1950. His main fields of research were logic and
the foundations of mathematics; he also worked on algebra, number theory, set
theory, algebraic topology, and Dirichlet series.

First-Order Logic–Syntax and Semantics 687

Proof. Suppose that (A, σ) |= (∃x)ϕ for some σ ∈ ASSIGNA.
Thus, there exists a ∈ |A| such that (A, [x→ a]σ) |= ϕ. Consider the
expansion B of A to L′ given by cB = a. By Theorem 4.5.24, we have
(B, [x → a]σ) |= ϕ, which amounts to (B, [x → σB(c)]σ) |= ϕ. Since
c is substitutable for x in ϕ, by Corollary 4.6.6, we have (B, σ) |=
(ϕ)x:=c. By Theorem 4.3.83, FV(θ) = FV(ϕ)− {x} = FV(ψ).

Conversely, θ |= ψ by Theorem 4.6.7. �

Theorem 4.9.13. Let L be a first-order language, y0, . . . , yn−1 be n
distinct variables, n ≥ 1, and let ϕ be an L-formula. Suppose that x
is a variable and f is an n-ary function symbol not in L such that
f(y0, . . . , yn−1) is substitutable for x in ϕ. If A is an L-structure,
σ ∈ ASSIGNA, and (A, σ) |= ψ, where ψ = (∀y0) · · · (∀yn−1)(∃x)ϕ,
then there is an expansion B of A to L′ = L∪{f} such that (B, σ) |=
θ, where

θ = (∀y0) · · · (∀yn−1)(ϕ)x:=f(y0,...,yn−1)

is an L′-formula with FV(θ) = FV(ψ).
Conversely, θ |= ψ, hence if θ is satisfiable in an L′-structure B,

then ψ is also satisfiable in B.

Proof. Suppose that σ ∈ ASSIGNA and that (A, σ) |= ψ. Then,
for all a0, . . . , an−1 ∈ |A|,

(A, [yn−1 → an−1] · · · [y0 → a0]σ) |= (∃x)ϕ,

that is, for all a0, . . . , an−1 ∈ |A| there is b ∈ |A| such that

(A, [x→ b][yn−1 → an−1] · · · [y0 → a0]σ) |= ϕ.

Therefore, we can define a function F : |A|n −→ |A| such that for all
a0, . . . , an−1 ∈ |A|,

(A, [x→ F (a0, . . . , an−1)][yn−1 → an−1] · · · [y0 → a0]σ) |= ϕ.

(We have used the Axiom of Choice when we assert the existence of
the function F .)

Define the expansion B of A to L′ by fB = F . We claim that
(B, σ) |= θ, that is, for all a0, . . . , an−1 ∈ |A|,

(B, σa0,...,an−1) |= (ϕ)x:=f(y0,...,yn−1),

688 Logical Foundations of Computer Science — Volume 2

where σa0,...,an−1 = [yn−1 → an−1] · · · [y0 → a0]σ. From the Sub-
stitution Corollary, we obtain the equivalent statement: for all
a0, . . . , an−1 ∈ |A|,

(B, [x→ σBa0,...,an−1
(f(y0, . . . , yn−1))]σa0,...,an−1) |= ϕ.

Since the variables y0, . . . , yn−1 are pairwise distinct, we have

σBa0,...,an−1
(f(y0, . . . , yn−1)) = F (a0, . . . , an−1)

which gives a further equivalent statement

(B, [x→ F (a0, . . . , an−1)]σa0,...,an−1) |= ϕ,

for all a0, . . . , an−1 ∈ |A|. By Theorem 4.5.24, the last statement is
equivalent to

(A, [x→ F (a0, . . . , an−1)]σa0,...,an−1) |= ϕ,

for all a0, . . . , an−1 ∈ |A|, which is what we established earlier.
Note that FV(ψ) = FV(ϕ)−{y0, . . . , yn−1, x}. By Corollary 4.3.84,

FV(ϕ)− {x} ⊆ FV((ϕ)x:=f(y0,...,yn−1))

⊆ (FV(ϕ)− {x}) ∪ {y0, . . . , yn−1}

so FV(θ) = (FV(ϕ)− {x})− {y0, . . . , yn−1} = FV(ψ).
To prove the last part of the theorem, note that

(ϕ)x:=f(y0,...,yn−1) |= (∃x)ϕ by Theorem 4.6.7. Therefore, by Theo-
rem 4.5.48,

θ = (∀y0) · · · (∀yn−1)(ϕ)x:=f(y0,...,yn−1) |= (∀y0) · · · (∀yn−1)(∃x)ϕ = ψ.

�

The process described in the next algorithm is called
Skolemization.

First-Order Logic–Syntax and Semantics 689

Algorithm 4.9.14 (Skolemization Algorithm).
Input: A first-order language L and an L-formula ϕ.
Output: A universal formula ψ such that

• FV(ψ) = FV(ϕ),
• (Lψ − Lϕ) ∩ L = ∅, and
• ϕ,ψ are equisatisfiable. In fact:

— ψ |= ϕ, and
— if A is an L-structure and (A, σ) |= ϕ, then (B, σ) |= ψ, for

some expansion B of A to L ∪ Lψ.
Method:

(A) Let α be an L-formula that is a prenex normal form for ϕ.
(α could be obtained by the algorithm implicit in the proof of
Theorem 4.9.9.) We may assume that all quantified variables
in α occur in the matrix.

(B) If α is universal, halt and return α. Else, α =
(∀y0) · · · (∀yn−1)(∃x)β for some n ≥ 0. Let f be a n-ary
function symbol not in L (for instance, one could let f be
fni where i is minimal such that fni ∈ L) and let t = f
if n = 0 and t = f(y0, . . . , yn−1) when n > 0. Define

γ = (∀y0) · · · (∀yn−1)(β)x:=t and L̂ = L ∪ {f}. Repeat Step

(B) with α replaced by γ and L replaced by L̂.

Proof of Correctness: Note that in each execution of Step (B)
except the last, the formula γ yielded by this step is in prenex normal
form. Also, in each execution of Step (B) beyond the first, the number
of occurrences of existential quantifiers in the formula α is one less
than in the previous execution. Thus, the algorithm will halt.

Suppose that the algorithm halts at the mth execution of
Step (B). Let αi be the value of α and let Li be the current first-
order language at the beginning of the ith execution of Step (B).
It is easy to show by induction on i, 1 ≤ i ≤ m, using Theo-
rems 4.4.38, 4.9.12 and 4.9.13, that Li = L∪Lαi , αi is an Li-formula
with FV(αi) = FV(α) = FV(ϕ), αi |= ϕ, and, if A is an L-structure
such that (A, σ) |= ϕ, then there is an expansion Bi of A to Li
such that (Bi, σ) |= αi. Since αm is returned by the algorithm, the
correctness follows immediately. �

690 Logical Foundations of Computer Science — Volume 2

Definition 4.9.15. A Skolem normal form of a formula ϕ is any
formula obtained by an application of Algorithm 4.9.14 to a first-
order language L and to ϕ, where ϕ is an L-formula.

Example 4.9.16. Let ϕ = ((∃x)(∀y)R(x, y) ∧ (¬(∀y)(∃x)R(x, y)))
be an L-formula, where L = {R} and x = y. Using the techniques
discussed earlier, we obtain a prenex normal form for ϕ given by

α = (∃x)(∃z)(∀y)(∀w)(R(x, y) ∧ (¬R(w, z))).
Applying Step (B) twice, we get the following sequence of values for
L and α where c and d are constant symbols.

L α
{R} (∃x)(∃z)(∀y)(∀w)(R(x, y) ∧ (¬R(w, z)))
{R, c} (∃z)(∀y)(∀w)(R(c, y) ∧ (¬R(w, z)))
{R, c, d} (∀y)(∀w)(R(c, y) ∧ (¬R(w, d))).

The matrix of the last formula is (R(c, y) ∧ (¬R(w, d))).

Example 4.9.17. Let L be the first-order language {P,R} and let
ϕ be the L-formula ((∃x)R(x) ↔ (∃x)P (x)). From Example 4.9.11,
we have the prenex normal form α = (∀x)(∃y)(∀z)(∃w)((R(x) →
P (y)) ∧ (P (z) → R(w))). Applying Step (B) repeatedly, we get the
following sequence of values for L and α where f is a unary and g is
a binary function symbol.

L α
{R,P} (∀x)(∃y)(∀z)(∃w)((R(x)→ P (y)) ∧ (P (z)→ R(w)))
{R,P, f} (∀x)(∀z)(∃w)((R(x)→ P (f(x))) ∧ (P (z)→ R(w)))
{R,P, f, g} (∀x)(∀z)((R(x)→ P (f(x))) ∧ (P (z)→ R(g(x, z))))

Definition 4.9.18. Let L be a first-order language, and let Γ be a
set of L-formulas. A set of formulas Γ′ is called a Skolemization of Γ
if Γ′ = {ϕ′ | ϕ ∈ Γ} where each ϕ′ is a Skolem normal form for ϕ and
the following additional condition is satisfied: (Lϕ′ − Lϕ) ∩ (Lψ′ −
Lψ) = ∅ for all ϕ,ψ ∈ Γ such that ϕ = ψ.

Theorem 4.9.19. Let L be a first-order language and let Γ be a
set of L-formulas. Then, there is a first-order language L′ such that
L ⊆ L′, L′ − L consists solely of function symbols, and a set of L′-
formulas Γ′ such that Γ′ is a Skolemization of Γ.

First-Order Logic–Syntax and Semantics 691

Proof. Since L is a first-order language, for every n ∈ N, there
is an infinite set of n-ary function symbols Fn such that L ∪ Fn is
a first-order language and L ∩ Fn = ∅. In other words, there is an
infinite set of n-ary function symbols Fn outside the language L such
that there are infinitely many n-ary function symbols outside L∪Fn.

Suppose that Γ = {ϕ0, ϕ1, . . .} (where Γ could be finite or infi-
nite). We define a sequence of first-order languages L0,L1, . . . such
that Li is a finite extension of L for i ≥ 0, and a sequence of formulas
ϕ′
0, ϕ

′
1, . . . as follows.

Let L0 = L. Suppose we have constructed Li, a finite extension
of L and that there is a ϕi (in other words, Γ contains at least i+ 1
formulas). Since ϕi is an L-formula, it is an Li-formula. Let ϕ′

i be
the formula obtained through the application of Algorithm 4.9.14 to
Li and ϕi, where the new function symbols needed for Lϕ′

i
− Li are

taken from the set
⋃
{Fn | n ∈ N}, and let Li+1 = L ∪ Lϕ′

i
. Observe

that these function symbols always exist because each of the sets Fn
is infinite, Li is a finite extension of L, and Li+1 −Li is finite.

Define L′ = L0 ∪ L1 ∪ · · · and Γ′ = {ϕ′
0, ϕ

′
1, . . .}. The set L′

is a language since L′ ⊆ L ∪
⋃
{Fn | n ∈ N}. Suppose that ϕj is

defined and 0 ≤ i < j. Since Lϕ′
i
− Lϕi ⊆ Li+1 ⊆ Lj, it follows that

(Lϕ′
i
− Lϕi) ∩ (Lϕ′

j
− Lϕj). Thus, Γ′ is a Skolemization of Γ. �

Theorem 4.9.20. Let L ⊆ L′ be first-order languages, Γ be a set of
L-formulas and Γ′ = {ϕ′ | ϕ ∈ Γ} be a set of L′-formulas that is a
Skolemization of Γ. If A is an L-structure such that (A, σ) satisfies Γ,
then there is an expansion B of A to L′ such that (B, σ) satisfies Γ′.

Conversely, if B is an L′-structure such that (B, σ) satisfies Γ′,
then (B, σ) satisfies Γ.

Proof. If (A, σ) satisfies Γ, we have (A, σ) |= ϕ for every ϕ ∈ Γ.
By the correctness of Algorithm 4.9.14, for each ϕ ∈ Γ, there is an
expansion Bϕ′ of A to L ∪ Lϕ′ such that (Bϕ′ , σ) |= ϕ′. Define the
expansion B′ of A to L ∪

⋃
{Lϕ′ | ϕ ∈ Γ} by

sB
′
=

{
sA if s ∈ L
sBϕ′ if s ∈ Lϕ′ − L.

Since (Lϕ′ − Lϕ) ∩ (Lψ′ − Lψ) = ∅ for all ϕ,ψ ∈ Γ with ϕ = ψ,
the structure B′ is well-defined. Observe that B′ is an expansion of
every structure Bϕ′ and, therefore, (B′, σ) |= ϕ′, for ϕ ∈ Γ. Since

692 Logical Foundations of Computer Science — Volume 2

L ∪
⋃
{Lϕ′ | ϕ ∈ Γ} ⊆ L′, we may take B to be any expansion of B′

to L′.
The converse statement follows from the fact that ϕ′ logically

implies ϕ for each ϕ ∈ Γ. �

Corollary 4.9.21. Let L,L′ be first-order languages and Γ be a set
of L-formulas. If Γ′ is a set of L′-formulas that is Skolemization of
Γ, then Γ is satisfiable if and only if Γ′ is.

Proof. This follows immediately from Theorem 4.9.20. �

4.10 Reduction of First-Order Logic to Propositional

Logic

Definition 4.10.1. Let L be a first-order language. The Herbrand8

extension of L is the first-order language H(L) defined by

H(L) =
{L if L contains at least one constant symbol

L ∪ {f00 } otherwise.

In other words, if L contains constant symbols, then H(L) coincides
with L; otherwise, we add the constant symbol f00 to L in order to
obtain H(L). Also, note that H(L) is a first-order language because,
if there are infinitely many constant symbols which are not elements
of L, then so is the case for H(L).

Example 4.10.2. For the first-order language Lar of Example 4.2.3
we have H(Lar) = Lar because Lar contains the individual constant
symbol 0.

Definition 4.10.3. Let L be a first-order language and V be an
L-suitable set of variables. A V -Herbrand structure for L is an

8Jacques Herbrand was born in Paris on February 12, 1908. He was one of the
most prominent logicians of the 20th century. Herbrand studied at l’École Nor-
male Supérieure in Paris between 1925 and 1928, where he also completed his
dissertation in 1930. His contributions in logic impact heavily the current applica-
tions of logic to computer science. Herbrand died in a mountain-climbing accident
at La Bérarde (Isère, France) on July 27, 1931.

First-Order Logic–Syntax and Semantics 693

L-structure A such that |A| = TERML(V), cA = c for all constant
symbols c ∈ L, and fA(t0, . . . , tn−1) = f(t0, . . . , tn−1) for every n-ary
function symbol f ∈ L with n > 0.

If V = ∅, we refer to a V -Herbrand structure for L simply as a
Herbrand structure for L.

If Γ is a set of L-formulas and A is V -Herbrand structure that
is a model of Γ, then we refer to A as an (L, V)-Herbrand model of
Γ. If A is an (L, ∅)-Herbrand model for Γ then we say that A is an
L-Herbrand model of Γ.

Since the interpretation of the relation symbols of L is left open
in Definition 4.10.3, in general, there is no unique V -Herbrand
structure of L. We denote by HERBRANDL,V the set of all V -
Herbrand structures for L. Further, we will write HERBRANDL for
HERBRANDL,∅.

Example 4.10.4. Let L be the first-order language {0, s, R}, where
0 is a constant symbol, s is a unary function symbol and R is a
binary relation symbol. The universe of an L-Herbrand structure A
is |A| = {sn(0) | n ≥ 0}, where s0(0) = 0 and sn+1(0) = s(sn(0))
for n ≥ 0. The symbols 0 and s are interpreted as 0A = 0 and
sA(sn(0)) = sn+1(0), for n ∈ N. RA can be any binary relation on
|A|. For instance, we can define

RA = {(sn(0), sm(0)) | n < m},

or

RA = {(sn(0), snp(0)) | n, p ∈N}.

If L′ = {s,R}, then the set of L′-ground terms is empty. However,
if V = {x}, then the set of (L′, V)-terms is {sn(x) | n ∈ N}. In any
(L′, V)-Herbrand structure A′, we have sA′

(sn(x)) = sn+1(x) for
n ∈ N. Specific Herbrand structures could be obtained by defining

RA′
= {(sn(x), sm(x) | n < m},

or

RA′
= {(sn(x), snp(x)) | n, p ∈ N}.

694 Logical Foundations of Computer Science — Volume 2

It is sometimes convenient to relate V -Herbrand structures for a
first-order language L to sets of non-equality (L, V)-atomic formu-
las. This is done using the bijections AFL,V and STRL,V introduced
below.

Definition 4.10.5. Let L be a first-order language, V be an L-
suitable set of variables. For an (L, V)-Herbrand structure A, the set
of non-equality (L, V)-atomic formulas defined by A is

AFL,V (A) = {R(t0, . . . , tn−1) | (t0, . . . , tn−1) ∈ RA

where t0, . . . , tn−1 ∈ TERML(V) and

R is an n-ary relation symbol in L − {=} and n > 0}
∪{R | RA = T and R is a propositional constant of L}.

If S is a set of non-equality (L, V)-atomic formulas, the (L, V)-
Herbrand structure defined by S is

STRL,V (S) = A, where A is the (L, V)-Herbrand structure such that

RA is {(t0, . . . , tn−1) | R(t0, . . . , tn−1) ∈ S} for
every n-ary relation symbol R in L − {=} with n > 0

and RA = T if and only if R ∈ S
for every propositional constant R of L.

If L contains a constant symbol andA is an L-Herbrand structure,
we define GAFL(A) = AFL,∅(A); we refer to GAFL(A) as the set of
ground non-equality L-atomic formulas determined by A.

If S ⊆ GAFORMNEL, the L-Herbrand structure STRL(S) is
defined to be STRL,∅(S).

Theorem 4.10.6. Let L be a first-order language and V be an L-
suitable set of variables. The mappings

AFL,V : HERBRANDL,V −→ P(AFORMNEL(V)),

STRL,V : P(AFORMNEL(V)) −→ HERBRANDL,V

introduced in Definition 4.10.5 are inverse bijections.

First-Order Logic–Syntax and Semantics 695

Proof. The argument (left to the reader) consists of verifying
the equalities STRL,V (AFL,V (A)) = A and AFL,V (STRL,V (S)) =
S for every (L, V)-Herbrand structure A and every subset S of
AFORMNEL(V). �

Note that if L is an algebraic language, then the functions AFL,V
and STRL,V are bijections between one-element sets.

Corollary 4.10.7. Let L be a first-order language that contains at
least one constant symbol. Then, the functions

GAFL : HERBRANDL −→ P(GAFORMNEL),

STRL : P(GAFORMNEL) −→ HERBRANDL
introduced in Definition 4.10.5 are inverse bijections.

Proof. The argument consists of taking V = ∅ in Theorem 4.10.6.
�

If L is an algebraic language, then the functions GAFL and STRL
are bijections between one-element sets.

Theorem 4.10.8. Let A be a V -Herbrand structure for a first-order
language L and let σ ∈ ASSIGNA. If σ(x) = x for all x ∈ V , then
for all t ∈ TERML(V), we have σA(t) = t.

Proof. The argument is a straightforward induction on terms. �

Corollary 4.10.9. Let A be a Herbrand structure for a first-order
language L. For every ground term t of L, we have tA = t.

Proof. This statement is a direct consequence of Theorem 4.10.8.
�

Corollary 4.10.10. Let A be a V -Herbrand structure for a first-
order language L, ρ be a congruence of A, and let B = A/ρ. If σ ∈
ASSIGNB is such that σ(x) = [x]ρ for all x ∈ V , then σB(t) = [t]ρ
for all t ∈ TERML(V).

Proof. Define τ ∈ ASSIGNA by letting τ(x) be x for x ∈ V , and
τ(x) be the first term in σ(x), otherwise. Then, σ = hρ ◦ τ , where
hρ is the canonical morphism of Definition 4.4.33. By Theorem 4.5.6,
σB(t) = hρ(τ

A(t)) = [τA(t)]ρ for all t ∈ TERML. For every term t ∈
TERML(V), we have τA(t) = t, by Theorem 4.10.8, since τ(x) = x
for all x ∈ V . Thus, σB(t) = [t]ρ, for t ∈ TERML(V). �

696 Logical Foundations of Computer Science — Volume 2

Lemma 4.10.11. Let S ⊆ AFORML−{=}(V) and let A =
STRL,V (S), where L is a first-order language that is not an algebraic
language, and V is an L-suitable set of variables. If σ ∈ ASSIGNA
is such that σ(x) = x for all x ∈ V and ϕ is an atomic formula,
ϕ ∈ AFORML−{=}(V), then (A, σ) |= ϕ if and only if ϕ ∈ S.

Proof. Suppose initially that ϕ = R(t0, . . . , tn−1) where R is an
n-ary relation symbol with n > 0 different from =. We have the
following equivalent statements.

(A, σ) |= ϕ if and only if (σA(t0), . . . , σA(tn−1)) ∈ RA

if and only if (t0, . . . , tn−1) ∈ RA

(by Theorem 4.10.8)

if and only if R(t0, . . . , tn−1) ∈ S
(by the definition of STR)

if and only if ϕ ∈ S.

We leave to the reader the case when R is a propositional constant.
�

The next theorem shows that without quantifier symbols or equal-
ity, first-order logic is essentially propositional logic where statement
variables are replaced by atomic formulas. We will exploit this con-
nection to transfer results from propositional logic to first-order logic.

Theorem 4.10.12. Let L be a first-order language without equality,
Γ be a set of quantifier-free L-formulas, and Γ0 be a fundamental
propositional form for Γ. Then, Γ is satisfiable if and only if Γ0 is
satisfiable.

Proof. One half of the statement was already shown in Theo-
rem 4.8.12. Suppose now that Γ0 is satisfiable and let v be a truth
assignment that satisfies Γ0. Since Γ0 is a fundamental propositional
form for Γ, there is an injective, prime inter-substitution s such that
Γ = s(Γ0). Note that if p ∈ SV (Γ0), then s(p) is an atomic L-
formula because s(p) is a prime subformula of a formula in Γ and
Γ consists of quantifier-free L-formulas. Consider the set of atomic
formulas S = {s(p) | p ∈ SV (Γ0) and v(p) = T}, the structure

First-Order Logic–Syntax and Semantics 697

A = STRL,VAR(S), and the assignment σ defined by σ(x) = x for
every x ∈ VAR.

We claim that if α ∈ PLFORM and SV (α) ⊆ SV (Γ0), then
(A, σ) |= s(α) if and only if v(α) = T.

The argument is by induction on α. For the basis step, assume
that α is a statement variable p. By Lemma 4.10.11, we have (A, σ) |=
s(p) if and only if s(p) ∈ S. In view of the definition of S and the
injectivity of s, this is equivalent to v(p) = T.

We discuss one of the inductive steps, namely when α = (¬β),
where the statement holds for β, and leave the other steps to the
reader. The following statements are easily seen to be equivalent.

(A, σ) |= s(α)

(A, σ) |= (¬s(β))
(A, σ) |= s(β)

v(β) = F

v(α) = T.

The result now follows from the claim. Indeed, let ϕ ∈ Γ. We have
ϕ = s(α) where α ∈ Γ0. Since v satisfies Γ0, v(α) = T, so, by the
claim, (A, σ) |= s(α) = ϕ. �

Theorem 4.10.13. A quantifier-free formula that does not con-
tain = is logically valid if and only if it is a tautology.

Proof. We have already seen in Theorem 4.8.14 that every tautol-
ogy is logically valid. Conversely, suppose that ϕ is a quantifier-free
logically valid formula and let α be a fundamental propositional form
for ϕ. It is easy to see that (¬α) is a fundamental propositional form
for (¬ϕ). By the second part of Theorem 4.5.55, {(¬ϕ)} is unsatisfi-
able. Therefore, by Theorem 4.10.12, {(¬α)} is unsatisfiable, so α is
a tautology, which implies that ϕ is a tautology. �

The next example shows that Theorems 4.10.12 and 4.10.13 do
not hold if equality is allowed.

Example 4.10.14. The formula ((x = y)∧(¬(y = x))) is not satisfi-
able even though it has ϕ = (p∧(¬q)) as a fundamental propositional
form and ϕ is satisfiable.

698 Logical Foundations of Computer Science — Volume 2

Similarly, the formula ((x = y) → (y = x)) is logically valid, but
is not a tautology since it has (p→ q) as a fundamental propositional
form and the latter formula is not a tautology.

We now use the connection between propositional logic and first-
order logic to prove a limited, preliminary version of the Compactness
Theorem of first-order logic.

Theorem 4.10.15 (Compactness Theorem for Quantifier-
Free Formulas without Equality). Let L be a first-order language
without equality and let Γ be a set of quantifier-free L-formulas. If Γ
is finitely satisfiable, then Γ is satisfiable.

Proof. Let Γ0 be a fundamental propositional form for Γ and
assume that Γ = s(Γ0), where s is an injective, prime substitution.
We claim that Γ0 is finitely satisfiable. Indeed, if Γ′

0 is a finite sub-
set of Γ0, then Γ′

0 is a fundamental propositional form for the finite
subset s(Γ′

0) of Γ, which implies that Γ′
0 is satisfiable due to the

satisfiability of s(Γ′
0) and to Theorem 4.10.12. By the Compactness

Theorem of Propositional Logic, Theorem 2.4.3, Γ0 is satisfiable, so
Γ is satisfiable, again by Theorem 4.10.12. �

Next, we discuss results that help us to reduce the logic of uni-
versal first-order formulas to the logic of quantifier-free first-order
formulas, which in turn, as we have seen, is reducible to proposi-
tional logic, when the formula does not contain equality. The full
reduction of first-order logic without equality to propositional logic
is completed by the Skolemization process.

Theorem 4.10.16. Let L be a first-order language, V be an L-
suitable set of variables, A be an L-structure and σ ∈ ASSIGNA.
Define a V-Herbrand structure HV (A, σ) for L by

RHV (A,σ)={(t0, . . . , tn−1) ∈ TERML(V)n | (A, σ) |= R(t0, . . . , tn−1)}

for each n-ary relation symbol R of L − {=} with n > 0, and
RHV (A,σ) = RA for every propositional constant R of L. Then,
h : |HV (A, σ)| −→ |A| given by h(t) = σA(t) is a morphism.

First-Order Logic–Syntax and Semantics 699

Proof. The first condition in the definition of morphism is shown
as follows.

h(fHV (A,σ)(t0, . . . , tn−1)) = h(f(t0, . . . , tn−1))

= σA(f(t0, . . . , tn−1))

= fA(σA(t0), . . . , σA(tn−1))

= fA(h(t0), . . . , h(tn−1)),

when f is an n-ary function symbol with n > 0. We leave to the
reader the case when f is a constant symbol.

The second condition is a consequence of the following sequence
of equivalent statements.

(t0, . . . , tn−1) ∈ RHV (A,σ)

if and only if (A, σ) |= R(t0, . . . , tn−1)

if and only if (σA(t0), . . . , σA(tn−1)) ∈ RA

if and only if (h(t0), . . . , h(tn−1)) ∈ RA,

when R ∈ L− {=} is an n-ary relation symbol with n > 0. The case
of propositional constants is left to the reader. �

Corollary 4.10.17. Let L be a first-order language that contains
at least one constant symbol and let A be an L-structure. Define a
Herbrand structure H(A) for L by

RH(A) = {(t0, . . . , tn−1) ∈ GTERMn
L | A |= R(t0, . . . , tn−1)}

for each n-ary relation symbol R of L−{=} with n > 0 and RH(A) =
RA for every propositional constant R of L. Then, the mapping h :
|H(A)| −→ |A| given by h(t) = tA is a morphism.

Proof. This is an immediate consequence of Theorem 4.10.16. �

Example 4.10.18. Let L be the first-order language from Exam-
ple 4.10.4 and let A be the L-structure with |A| = N, 0A = 0,
sA(n) = n+ 1 and RA = {(n,m) | n < m}. (Note that in the equal-
ity 0A = 0, the 0 on the left is a constant symbol whereas the 0
on the right is the number zero.) The Herbrand structure H(A) is

700 Logical Foundations of Computer Science — Volume 2

the first Herbrand structure considered in Example 4.10.4 and the
morphism h of Corollary 4.10.17 is given by h(sn(0)) = n, for n ∈ N.
It is clear that h is an isomorphism.

Consider now the extension L1 of L given by L1 = {0, s, f,R},
where f is a binary function symbol and the L1-structure A1 which
is the expansion of A defined by fA1(n,m) = n + m. In this case,
the morphism h : H(A1) −→ A1 is an epimorphism, but it is not an
isomorphism because, for example, h(0) = h(f(0, 0)) and the terms
0 and f(0, 0) are distinct.

Theorem 4.10.19. Let L be a first-order language without equality,
Γ be a set of universal L-formulas and V be an L-suitable set of
variables such that FV(Γ) ⊆ V . Then, the following statements are
equivalent.

(1) Γ is satisfiable.
(2) Γ is satisfiable in a V -Herbrand structure for L.
(3) INSTL,V (Γ) is satisfiable.
(4) INSTL,V (Γ) is satisfiable in a V -Herbrand structure for L.

Proof. It is clear that (2) implies (1) and (4) implies (3). From
Theorem 4.6.9 we infer that (1) implies (3) and (2) implies (4). Thus,
it only remains to show that (3) implies (2). These implications are
shown in the following diagram.

(2) (4)

(1) (3)

Suppose that A is an L-structure, σ ∈ ASSIGNA and (A, σ) |=
θ for every θ ∈ INSTL,V (Γ). Let B be the V -Herbrand structure
HV (A, σ) and let h : |B| → |A| be the morphism of Theorem 4.10.16.
Define τ ∈ ASSIGNB by τ(x) = x if x ∈ V and τ(x) = t0 for x ∈ V ,
where t0 is an arbitrary term in TERML(V). (Note that t0 exists
because when V = ∅, L contains at least one constant symbol.) By
Theorem 4.10.8, τB(t) = t for all t ∈ TERML(V). By the Morphism
Theorem, we have (B, τ) |= ψ if and only if (A, h ◦ τ) |= ψ, for
every quantifier-free formula ψ of L. If, in addition, FV(ψ) ⊆ V , then
h ◦ τ agrees with σ on all variables in FV(ψ) because h ◦ τ(x) =
h(x) = σA(x) = σ(x), for x ∈ V . Thus, by the Agreement Theorem,

First-Order Logic–Syntax and Semantics 701

(A, h ◦ τ) |= ψ if and only if (A, σ) |= ψ, so (B, τ) |= ψ if and only if
(A, σ) |= ψ.

Let ϕ = (∀y0) · · · (∀yn−1)ψ, with ψ quantifier-free, be a formula
in Γ and let t0, . . . , tn−1 be n terms in TERML(V). We have the
following equivalent statements.

(B, [yn−1 → tn−1] · · · [y0 → t0]τ) |= ψ

if and only if (B, [y0 → t0] · · · [yn−1 → tn−1]τ) |= ψ

(since the yj’s are distinct variables)

if and only if (B, [y0 → τB(t0)] · · · [yn−1 → τB(tn−1)]τ) |= ψ

(by previous discussion)

if and only if (B, τ) |= (ψ)y0,...,yn−1:=t0,...,tn−1

(by the Substitution Corollary, as ψ is quantifier-free)

if and only if (A, σ) |= (ψ)y0,...,yn−1:=t0,...,tn−1

(by previous discussion)

Since (ψ)y0,...,yn−1:=t0,...,tn−1 ∈ INSTL,V (Γ), the last of the equivalent
statements is true, so

(B, [yn−1 → tn−1] · · · [y0 → t0]τ) |= ψ

for all t0, . . . , tn−1 ∈ TERML(V). Thus, (B, τ) |= ϕ, which shows
that Γ is satisfiable on a V -Herbrand structure for L. �

A special case of Theorem 4.10.19 can be obtained by taking
V= ∅.

Corollary 4.10.20. Let L be a first-order language without equality
that contains at least one constant symbol and Γ be a set of closed
universal L-formulas. Then, the following statements are equivalent.

(1) Γ has a model.
(2) Γ has an L-Herbrand model.
(3) GINSTL(Γ) has a model.
(4) GINSTL(Γ) has an L-Herbrand model.

Proof. This follows immediately from Theorem 4.10.19 by taking
V = ∅. �

702 Logical Foundations of Computer Science — Volume 2

Theorem 4.10.21 (Compactness Theorem of First-Order
Logic without Equality). Let L be a first-order language with-
out equality and let Γ be a set of L-formulas. Then, Γ is finitely
satisfiable if and only if Γ is satisfiable.

Proof. It is clear that if Γ is satisfiable, then it is finitely satisfiable.
Conversely, suppose that Γ is finitely satisfiable. By Theo-

rem 4.9.19, there is a first-order language L′ and a set Γ′ of L′-
formulas such that Γ′ is a Skolemization of Γ. If Γ′

0 is a finite subset
of Γ′, then there is a finite subset Γ0 of Γ such that Γ′

0 is a Skolem-
ization of Γ0. Since Γ is finitely satisfiable, Γ0 is satisfiable, so Γ′

0 is
satisfiable by Corollary 4.9.21. Thus, Γ′ is finitely-satisfiable.

Next, we claim that INSTL′,VAR(Γ
′) is finitely satisfiable. Indeed,

if Γ′′
0 is a finite subset of INSTL′,VAR(Γ

′), then there is a finite subset
Γ′
0 of Γ′ such that Γ′′

0 ⊆ INSTL′,VAR(Γ
′
0). By the finite satisfiabil-

ity of Γ′, Γ′
0 is satisfiable, so INSTL′,VAR(Γ

′
0) is satisfiable by Theo-

rem 4.10.19. Therefore, Γ′′
0 is satisfiable.

By Theorem 4.10.15 (the Compactness Theorem for Quantifier-
Free Formulas without Equality), INSTL′,VAR(Γ

′) is satisfiable. Thus,
Γ′ is satisfiable by Theorem 4.10.19, Finally, by Corollary 4.9.21, Γ
is satisfiable. �

Theorem 4.10.22. Let L be a first-order language without equality
and Γ be a set of L-formulas. Assume further that L′ is also a first-
order language without equality and Γ′, a set of L′-formulas, is a
Skolemization of Γ, and let V = FV(Γ) = FV(Γ′). Finally, assume
that V is L′-suitable.

Then, Γ is unsatisfiable if and only if there is a nonempty, finite
subset {θ0, . . . , θn−1} of INSTL′,V (Γ

′) such that the formula ((¬θ0)∨
· · · ∨ (¬θn−1)) is a tautology.

Proof. The following statements are equivalent.

(1) Γ is unsatisfiable;
(2) Γ′ is unsatisfiable;
(3) INSTL′,V (Γ

′) is unsatisfiable;
(4) there is a nonempty, finite subset {θ0, . . . , θn−1} of INSTL′,V (Γ

′)
that is unsatisfiable;

(5) there is a nonempty, finite subset {θ0, . . . , θn−1} of INSTL′,V (Γ
′)

such that ((¬θ0) ∨ · · · ∨ (¬θn−1)) is logically valid;

First-Order Logic–Syntax and Semantics 703

(6) there is a nonempty, finite subset {θ0, . . . , θn−1} of INSTL′,V (Γ
′)

such that ((¬θ0) ∨ · · · ∨ (¬θn−1)) is a tautology.

The equivalence of (1) and (2) follows from Corollary 4.9.21. By
Theorem 4.10.19, (2) is equivalent to (3) and by Theorem 4.10.15,
(3) is equivalent to (4). The equivalence of (4) and (5) follows from
Theorem 4.5.54. Finally, since INSTL′,V (Γ

′) consists of quantifier-free
formulas without equality, we obtain the equivalence of (5) and (6)
by Theorem 4.10.13. �

Corollary 4.10.23. Let L be a first-order language without equal-
ity and Γ ⊆ SENTL. Assume further that L′ is also a first-order
language without equality and Γ′ ⊆ SENTL′ is a Skolemization
of Γ. Finally, assume that L′ contains at least one constant sym-
bol. Then, Γ is unsatisfiable if and only if there is a nonempty,
finite subset {θ0, . . . , θn−1} of GINSTL′(Γ′) such that the formula
((¬θ0) ∨ · · · ∨ (¬θn−1)) is a tautology.

Proof. This statement follows from Theorem 4.10.22 by taking
V = ∅. �

Corollary 4.10.24. Let L be a first-order language without equality,
Γ be a set of L-formulas and ϕ be an L-formula. Assume further that
L′ is also a first-order language without equality and Γ′, a set of L′-
formulas, is a Skolemization of Γ ∪ {(¬ϕ)}, and let V = FV(Γ ∪
{(¬ϕ)}) = FV(Γ′). Finally, assume that V is L′-suitable. Then, Γ |=
ϕ if and only if there is a nonempty, finite subset {θ0, . . . , θn−1} of
INSTL′,V (Γ

′) such that ((¬θ0) ∨ · · · ∨ (¬θn−1)) is a tautology.

Proof. The corollary follows from Theorem 4.10.22 and the fact
that Γ |= ϕ is equivalent to the unsatisfiability of Γ ∪ {(¬ϕ)}. �

Corollary 4.10.25. Let L be a first-order language without equality,
Γ ⊆ SENTL and ϕ be a closed L-formula. Assume further that L′
is also a first-order language without equality and Γ′ ⊆ SENTL′ is a
Skolemization of Γ∪{(¬ϕ)}. Finally, assume that L′ contains at least
one constant symbol. Then, Γ |= ϕ if and only if there is a nonempty,
finite subset {θ0, . . . , θn−1} of GINSTL′(Γ′) such that ((¬θ0) ∨ · · · ∨
(¬θn−1)) is a tautology.

Proof. The result follows from Corollary 4.10.24 by taking V = ∅.
�

704 Logical Foundations of Computer Science — Volume 2

Corollary 4.10.26. Let L be a first-order language without equality
and let ϕ be an L-formula. Assume further that L′ is also a first-order
language without equality and ϕ′, an L′-formula, is a Skolemization
of (¬ϕ), and let V = FV(¬ϕ) = FV(ϕ′). Finally, assume that V is
L′-suitable.

Then, |= ϕ if and only if there is a nonempty, finite subset
{θ0, . . . , θn−1} of INSTL′,V ({ϕ′}) such that ((¬θ0)∨ · · · ∨ (¬θn−1)) is
a tautology.

Proof. This statement follows from Corollary 4.10.24 by taking
Γ = ∅. �

Corollary 4.10.27 (Herbrand’s Theorem). Let L be a first-order
language without equality and let ϕ be a closed L-formula. Assume
further that L′ is also a first-order language without equality and ϕ′,
a closed L′-formula, is a Skolemization of (¬ϕ). Finally, assume that
L′ contains at least one constant symbol.

Then, |= ϕ if and only if there is a nonempty, finite subset
{θ0, . . . , θn−1} of GINSTL′({ϕ′}) such that ((¬θ0) ∨ · · · ∨ (¬θn−1))
is a tautology.

Proof. This statement follows from Corollary 4.10.26 by taking
V = ∅. �

We use Corollary 4.10.27 to give a construction that allows us to
show that a closed formula not containing equality is logically valid.

Procedure 4.10.28.
Input: A closed formula ϕ not containing equality.
Output: “Yes,” if ϕ is logically valid. (No output is produced if ϕ
is not logically valid.)
Method:

(A) Using Algorithm 4.9.14, find a Skolemization ϕ′ of (¬ϕ).
(B) Let L = H(Lϕ′) be the Herbrand extension of the language
Lϕ′ and let θ0, θ1, . . . be an effective enumeration without rep-
etitions of GINSTL({ϕ′}). (For instance, we could enumerate
the formulas of GINSTL({ϕ′}) in the standard ordering.) Test
successively the formulas of the form ((¬θ0) ∨ · · · ∨ (¬θn−1))
for n = 1, 2, . . . to determine if they are tautologies. Output
“Yes” the first time a tautology is encountered.

First-Order Logic–Syntax and Semantics 705

Proof. We showed on page 675 how we can determine effectively
if a formula is a tautology, so the method given above is effective.
The correctness of the construction follows from Corollary 4.10.27
and the observation that if a disjunction is a tautology and more
disjuncts are added, then the resulting formula is also a tautology.

�

If the input ϕ of the above procedure is not logically valid, the
procedure does not return “Yes.” This can happen in two ways: if the
set GINSTL({ϕ′}) is finite, then the procedure halts after testing all
formulas of the form ((¬θ0) ∨ · · · ∨ (¬θn−1)) and we know in a finite
amount of time that ϕ is not logically valid; otherwise, that is, if
GINSTL({ϕ′}) is infinite, the procedure never halts. The latter case
usually holds because GINSTL({ϕ′}) is infinite whenever L contains
a nonconstant function symbol. We have thus shown that the set
of logically valid formulas is semidecidable. The semidecidability of
the set of logically valid formulas is the best result we can prove
since it can be shown that this set is not decidable; in fact, there are
first-order languages L such that the set of logically valid L-formulas
is undecidable. (See, for example, Theorem 4.14.12.) However, there
are also some simple languages L for which the set of logically valid
L-formulas is decidable.

Procedures similar to Procedure 4.10.28 can be formulated using
Corollary 4.10.26 for formulas that are not necessarily closed, and
Corollaries 4.10.24 and 4.10.25 when Γ is a finite set of formulas
(closed or arbitrary, respectively).

We will now give some illustrations of applications of these pro-
cedures.

Example 4.10.29. Let ϕ = ((∀x)R(x) → (∃x)R(x)). To apply
Procedure 4.10.28 to ϕ, we need to put (¬ϕ) into Skolem normal
form which necessitates putting (¬ϕ) in prenex normal form. This is
accomplished by the following sequence of prenex transformations.

(¬((∀x)R(x)→ (∃x)R(x)))
(¬((∀x)R(x)→ (∃y)R(y)))
(¬(∃x)(R(x)→ (∃y)R(y)))
(¬(∃x)(∃y)(R(x)→ R(y)))

(∀x)(∀y)(¬(R(x)→ R(y)))

706 Logical Foundations of Computer Science — Volume 2

The last formula in this sequence is easily seen to be logically equiv-
alent to ϕ′ = (∀x)(∀y)(R(x) ∧ (¬R(y))), which is in Skolem normal
form. Since ϕ′ contains no constant symbols, the language L defined
in Step (B) of the procedure is {c,R}, where c is a constant symbol.
The only ground instance of ϕ′ is θ0 = (R(c)∧ (¬R(c))). Since (¬θ0)
is a tautology, the procedure returns “Yes” when applied to ϕ.

Example 4.10.30. Let ϕ = (∃x)(P (x)→ (∀x)P (x)). To apply Pro-
cedure 4.10.28, we put (¬ϕ) into prenex normal form by the following
sequence of prenex transformations.

(¬(∃x)(P (x)→ (∀x)P (x)))
(∀x)(¬(P (x)→ (∀x)P (x)))
(∀x)(¬(P (x)→ (∀y)P (y)))
(∀x)(¬(∀y)(P (x)→ P (y)))

(∀x)(∃y)(¬(P (x)→ P (y)))

The last formula is logically equivalent to (∀x)(∃y)(P (x)∧ (¬P (y))).
Introducing a unary function symbol f , we obtain the Skolem normal
form ϕ′ = (∀x)(P (x) ∧ (¬P (f(x)))). Since ϕ′ contains no constant
symbols, the language L defined in Step (B) of the procedure is
{c, f, P}, where c is a constant symbol. Thus, the set GINSTL({ϕ′})
is {θi | i ≥ 0}, where θi = (P (f i(c)) ∧ (¬P (f i+1(c)))). (Here we use
the notation f i(c) defined inductively by f0(c) = c and f i+1(c) =
f(f i(c)).) The formula (¬θ0) is not a tautology; however, ((¬θ0) ∨
(¬θ1)) is a tautology, as the reader can easily verify.

Example 4.10.31. We consider now a case when the set of ground
instances of the formula involved is slightly different in that it
involves two constant symbols. Let ϕ = ((∃x)(∀y)R(x, y) →
(∀y)(∃x)R(x, y)). A prenex normal form of (¬ϕ) is obtained through
the following steps.

(¬((∃x)(∀y)R(x, y)→ (∀y)(∃x)R(x, y)))
(¬((∃x)(∀y)R(x, y)→ (∀z)(∃w)R(w, z)))
(¬(∀x)(∀z)((∀y)R(x, y)→ (∃w)R(w, z)))
(¬(∀x)(∀z)(∃y)(∃w)(R(x, y)→ R(w, z)))

(∃x)(∃z)(∀y)(∀w)(R(x, y) ∧ (¬R(w, z)))
We introduce constant symbols c, d to produce the following Skolem
normal form: ϕ′ = (∀y)(∀w)(R(c, y)∧ (¬R(w, d))). The set of ground

First-Order Logic–Syntax and Semantics 707

instances of {ϕ′} consists of the formulas

θ0 = (R(c, c) ∧ (¬R(c, d)))
θ1 = (R(c, c) ∧ (¬R(d, d)))
θ2 = (R(c, d) ∧ (¬R(c, d)))
θ3 = (R(c, d) ∧ (¬R(d, d))).

Note that the formula ((¬θ0)∨ (¬θ1)∨ (¬θ2)) is a tautology because
(¬θ2) is a tautology, so the procedure returns “Yes.”

Example 4.10.32. In this example, we formalize a proof that shows
that every binary relation on a nonempty set that is symmetric,
transitive and total is also reflexive. In other words, we show that
Γ |= (∀x)R(x, x), where

Γ = {(∀x)(∃y)R(x, y), (∀x)(∀y)(R(x, y) → R(y, x)),

(∀x)(∀y)(∀z)((R(x, y) ∧R(y, z))→ R(x, z))}.

We will use a procedure similar to Procedure 4.10.28 but based on
Corollary 4.10.25.

A Skolemization of the set Γ∪ {(¬ϕ)}, where ϕ = (∀x)R(x, x), is

Γ′ = {(∀x)R(x, f(x)), (∀x)(∀y)(R(x, y) → R(y, x)),

(∀x)(∀y)(∀z)((R(x, y) ∧R(y, z))→ R(x, z)), (¬R(c, c))},

where f is a unary function symbol and c is a constant symbol.
The language L is {c, f,R}. The procedure would list effectively all
the ground instances of GINSTL(Γ′) as {θ0, θ1, . . .} in the pursuit
of a tautology ((¬θ0) ∨ · · · ∨ (¬θn−1)). Rather than go through this
unrewarding exercise, we observe that

ψ0 = R(c, f(c)),

ψ1 = (R(c, f(c))→ R(f(c), c))),

ψ2 = ((R(c, f(c)) ∧R(f(c), c))→ R(c, c)),

ψ3 = (¬R(c, c))

are ground instances of Γ′ such that ((¬ψ0)∨ (¬ψ1)∨ (¬ψ2)∨ (¬ψ3))
is a tautology which means that ((¬θ0)∨· · ·∨(¬θn−1)) is a tautology
for sufficiently large n.

708 Logical Foundations of Computer Science — Volume 2

Example 4.10.33. Now, we examine the application of Proce-
dure 4.10.28 to a formula that is not logically valid, namely, ϕ =
(∃x)(∀y)R(x, y). A Skolemization of (¬ϕ) is ϕ′ = (∀x)(¬R(x, f(x))),
where f is a unary function symbol. We have L = {c, f,R}, so the
set GINSTL({ϕ′}) consists of the formulas θi = (¬R(f i(c), f i+1(c)))
for i ≥ 0, where f i(c) is the notation introduced in Example 4.10.30.
It is easy to see that for n ≥ 1, a fundamental form for ((¬θ0)∨ · · · ∨
(¬θn−1)) is ((¬(¬p0)) ∨ · · · ∨ (¬(¬pn−1))), which is not a tautology.
This implies that ((¬θ0)∨ · · · ∨ (¬θn−1)) is never a tautology, so ϕ is
not logically valid. The procedure itself will never return an answer
because it will continue to search for a tautology.

Theorem 4.10.34 (The Löwenheim9-Skolem Theorem for
First-Order Logic without Equality). Let L be a first-order lan-
guage without equality and let Γ be a set of L-formulas. Then, Γ is
satisfiable if and only if Γ is satisfiable in a countable structure.10

Proof. Suppose that Γ is satisfiable and let Γ′ be a set of L′-
formulas that is a Skolemization of Γ. By Corollary 4.9.21, Γ′ is satis-
fiable. Since Γ′ is a set of universal formulas, by Theorem 4.10.19, Γ′
is satisfiable in an FV(Γ′)-Herbrand structure A; A has a countable
universe. By Theorem 4.9.20, Γ is satisfiable in A.

The reverse implication is immediate. �

Now that we have reduced first-order logic without equality to
propositional logic, we can complete the reduction of all of first-
order logic by reducing first-order logic with equality to first-order
logic without equality. This will enable us to prove results for full
first-order logic (with or without equality) that parallel the ones we

9Leopold Löwenheim was born on June 26, 1878 in Krefeld, Germany and died on
May 5, 1957 in Berlin. Löwenheim studied between 1896 and 1900 at Humboldt-
Universität and at the Technische Hochschule in Charlottenburg. His main con-
tributions are in the study of algebraic aspects of logic. Löwenheim was forced to
retire from his secondary school teaching position in 1934 but survived the war
and resumed his teaching in 1946.

10Recall that for us, all first-order languages are countable sets. If this were not the
case, this theorem would not be true (see Supplement 126). However, a similar
result holds for languages which are not required to be countable.

First-Order Logic–Syntax and Semantics 709

obtained previously for first-order logic without equality. The follow-
ing result is the key step in this reduction.

Theorem 4.10.35. Let L be a first-order language that includes =,
R be a binary relation symbol such that R ∈ L, L′ be the first-order
language (L − {=}) ∪ {R}, and Γ be a set of L-formulas. Then, Γ
is satisfiable if and only if the set of L′-formulas s=R(Γ) ∪ EqR,L′ is
satisfiable.

Proof. Suppose that A is an L-structure and σ ∈ ASSIGNA are
such that (A, σ) satisfies Γ, that is, (A, σ) |= ϕ for every ϕ ∈ Γ. By
Theorem 4.6.1, (A=→R, σ) |= s=R(ϕ) for every ϕ ∈ Γ.

Observe that RA=→R ==A, so RA=→R is a congruence of A=→R.
Therefore, by Theorem 4.5.63, (A=→R, σ) |= EqR,L′ . We infer that
(A=→R, σ) satisfies s

=
R(Γ) ∪ EqR,L′ .

Conversely, suppose that A′ is an L′-structure and σ ∈ ASSIGNA′

are such that (A′, σ) |= s=R(Γ)∪EqR,L′ . Since EqR,L′ is a set of closed
formulas, we have A′ |= EqR,L′ , which, by Theorem 4.5.63, implies

that RA′
is a congruence of A′. Thus, we may consider the quo-

tient structure A′/RA′
and the canonical epimorphism hRA′ . By the

Morphism Theorem, since none of the formulas in s=R(Γ) contains =,

we have (A′/RA′
, hRA′ ◦ σ) |= s=R(Γ). Further, by Theorem 4.4.32,

RA′/RA′
is the equality relation on |A′|/RA′

, so it makes sense to
consider the L-structure (A′/RA′

)R→=. By Theorem 4.6.1, we have

((A′/RA′
)R→=, hRA′ ◦ σ) |= sR=(s

=
R(Γ)).

Finally, by Theorem 1.2.16, sR=(s
=
R(Γ)) = Γ, so Γ is satisfiable. �

The following result records some details of the proof of Theo-
rem 4.10.35.

Theorem 4.10.36. Let L be a first-order language that includes =,
R be a binary relation symbol such that R ∈ L, L′ be the first-order
language (L − {=}) ∪ {R}, and Γ be a set of L-formulas. If Γ is
satisfiable in an L-structure A, then s=R(Γ) ∪ EqR,L′ is satisfiable in
a L′-structure whose universe is |A|. Conversely, if s=R(Γ) ∪ EqR,L′
is satisfiable in an L′-structure A′, then Γ is satisfiable in a quotient
structure of some L-structure A that has the same universe as A′.

710 Logical Foundations of Computer Science — Volume 2

Proof. The argument is essentially part of the proof of Theo-
rem 4.10.35. More precisely, for the second part of the theorem, sup-
pose that the set s=R(Γ) ∪ EqR,L′ is satisfiable in an L′-structure A′.
Then, by the proof of Theorem 4.10.35 we have that Γ is satisfiable
in (A′/RA′

)R→=. Define an L-structure A by |A| = |A′|, fA = fA′

for every function symbol f ∈ L, PA = PA′
for every relation symbol

P ∈ L − {=}, and =A is the equality relation on |A|. It is easy to
verify that RA′

is a congruence of A and that A/RA′
is the same

structure as (A′/RA′
)R→=. �

Corollary 4.10.37. Let L be a first-order language that includes =,
R be a binary relation symbol such that R ∈ L, L′ be the first-order
language (L − {=}) ∪ {R}, and Γ be a set of L-formulas. Then, Γ
has a model if and only if the set of L′-formulas s=R(Γ) ∪ EqR,L′ has
a model.

Proof. We prove that the following statements are equivalent:

(1) Γ has a model;
(2) Γ∀ has a model;
(3) Γ∀ is satisfiable;
(4) s=R(Γ

∀) ∪ EqR,L′ is satisfiable;

(5) s=R(Γ)
∀ ∪ EqR,L′ is satisfiable;

(6) s=R(Γ)
∀ ∪ EqR,L′ has a model;

(7) s=R(Γ) ∪ EqR,L′ has a model.

(1) is equivalent to (2) by Corollary 4.5.60. (2) is equivalent to (3)
by Corollary 4.5.32. (3) is equivalent to (4) by Theorem 4.10.35. (4) is
equivalent to (5) by Supplement 63. Next, (5) is equivalent to (6) by
Corollary 4.5.32. Finally, (6) is equivalent to (7) by Corollary 4.5.60.�

The following examples show that parts of Theorem 4.10.19 cease
to be valid for logic with equality.

Example 4.10.38. We show that the implication (1) −→ (2) of
Theorem 4.10.19 can fail when the language L contains the equality
symbol, even if the formulas involved are closed. Let L = {a, b,=},
where a and b are distinct constant symbols and let Γ = {a = b}.
It is clear that Γ has a model; however, Γ has no Herbrand model,
for in a Herbrand structure a and b are interpreted as themselves.

First-Order Logic–Syntax and Semantics 711

Since, in this case, GINSTL(Γ) = Γ, this example also shows that
the implication (3) −→ (4) can also fail.

Example 4.10.39. To prove that (4) −→ (2) can fail when the
language L contains the equality symbol, consider the language
L= {a,=}, the set of variables V = {x} and the set of formulas
Γ = {(∀x)(x = a), x = x}. Observe that INSTL,V (Γ) = {x = a, a =
a, x = x} is satisfiable in any V -Herbrand structure for L (indeed, in
any L-structure). On the other hand, Γ itself cannot be satisfied in
any V -Herbrand structure A for L since |A| contains two elements
and Γ contains the formula (∀x)(x = a).

Our next results show that some parts of Theorem 4.10.19 remain
valid for logic with equality.

Theorem 4.10.40. Let L be a first-order language with equality,
Γ be a set of universal L-formulas and V be an L-suitable set of
variables such that FV(Γ) ⊆ V . Consider the following statements.

(1) Γ is satisfiable.
(2) Γ is satisfiable in a V -Herbrand structure for L.
(3) INSTL,V (Γ) is satisfiable.
(4) INSTL,V (Γ) is satisfiable in a V -Herbrand structure for L.

Then, we have the following implications:

(2 4)

(1

) (

) (3)

Proof. The implications (1) −→ (3), (2) −→ (1), (2) −→ (4) and
(4) −→ (3) can be shown as in Theorem 4.10.19 since the arguments
do not conflict with the existence of equality in L. Therefore, we need
to prove only the implication (3)→ (1).

Suppose that INSTL,V (Γ) is satisfiable. Then, by Theo-
rem 4.10.35, the set s=R(INSTL,V (Γ)) ∪ EqR,L′ is satisfiable,
where R is a binary relation symbol that does not occur
in L and L′ = (L − {=}) ∪ {R}. By Theorem 4.6.9, this
implies that the set s=R(INSTL,V (Γ)) ∪ INSTL′,V (EqR,L′) is satis-
fiable. By Corollary 4.3.67, this set of formulas is the same as

712 Logical Foundations of Computer Science — Volume 2

INSTL′,V (s
=
R(Γ)) ∪ INSTL′,V (EqR,L′), and this set in turn equals

INSTL′,V (s
=
R(Γ)∪EqR,L′). By Theorem 4.10.19, we obtain the satis-

fiability of s=R(Γ) ∪ EqR,L′ . Using again Theorem 4.10.35, but in the
other direction, we obtain the satisfiability of Γ. �

Examples 4.10.38 and 4.10.39 show that no implications can be
added to the previous theorem. Note that in Example 4.10.39, V = ∅.
If V = ∅, the following stronger result holds.

Theorem 4.10.41. Let L be a first-order language with equality that
contains at least one constant symbol and Γ be a set of closed uni-
versal L-formulas. Consider the following statements.

(1) Γ has a model.
(2) Γ has an L-Herbrand model.
(3) GINSTL(Γ) has a model.
(4) GINSTL(Γ) has an L-Herbrand model.

Then, we have the following implications:

(2 4)

(1

) (

) (3)

Proof. All implications except (4) −→ (2) were shown in The-
orem 4.10.40. To prove the remaining implication, suppose that
GINSTL(Γ) has an L-Herbrand model A. Let ϕ = (∀y0) · · · (∀yn−1)ψ
be a formula in Γ, where ψ is a quantifier-free formula, and let
σ ∈ ASSIGNA. The following statements are equivalent:

(1) (A, σ) |= ϕ;
(2) for all ground terms t0, . . . , tn−1 ∈ |A| = GTERML, (A, [yn−1 →

tn−1] · · · [y0 → t0]σ) |= ψ;
(3) for all ground terms t0, . . . , tn−1 ∈ |A| = GTERML, (A, [y0 →

t0] · · · [yn−1 → tn−1]σ) |= ψ;
(4) for all ground terms t0, . . . , tn−1 ∈ |A| = GTERML, (A, [y0 →

σA(t0)] · · · [yn−1 → σA(tn−1)]σ) |= ψ;
(5) for all ground terms t0, . . . , tn−1 ∈ |A| = GTERML,

(A, σ) |= (ψ)y0,...,yn−1:=t0,...,tn−1 .

First-Order Logic–Syntax and Semantics 713

The equivalence of (2) and (3) follows from the fact that the vari-
ables y0, . . . , yn−1 are distinct. The equivalence between (3) and
(4) is a consequence of Theorem 4.10.8. Finally, the equivalence of
(4) and (5) is an application of Corollary 4.6.6. Since the formula
(ψ)y0,...,yn−1:=t0,...,tn−1 is a ground instance of ϕ, it follows that the
fifth statement holds, hence, so does the first. Thus, A is a model
of Γ. �

Using Theorem 4.10.35, we can extend the Compactness Theorem
to all first-order languages (with or without equality).

Theorem 4.10.42 (Compactness Theorem of First-Order
Logic). Let L be a first-order language and let Γ be a set of L-
formulas. Then, Γ is satisfiable if and only if it is finitely satisfiable.

Proof. If L does not contain =, the statement was already shown
in Theorem 4.10.21. Suppose now that L contains = and that R is a
binary relation symbol not in L. Let L′ = (L− {=}) ∪ {R}. Clearly,
if Γ is satisfiable, then it is finitely satisfiable. Conversely, suppose
that Γ is finitely satisfiable. Then, by Theorem 4.10.35, the set of
L′-formulas s=R(Γ0)∪EqR,L′ is satisfiable for every finite subset Γ0 of
Γ. It follows that every finite subset of s=R(Γ) ∪ EqR,L′ is satisfiable.
By Theorem 4.10.21, s=R(Γ) ∪ EqR,L′ is satisfiable and this implies
that Γ is satisfiable by Theorem 4.10.35. �

We discuss now two other versions of the Compactness Theorem,
both of which follow from the one above.

Theorem 4.10.43. Let L be a first-order language and let Γ be a set
of L-formulas. Then, Γ has a model if and only if every finite subset
of Γ has a model.

Proof. The result is shown by the following sequence of equivalent
statements.

(1) Γ has a model;
(2) Γ∀ has a model;
(3) Γ∀ is satisfiable;
(4) Γ∀ is finitely satisfiable;
(5) every finite subset of Γ∀ has a model;
(6) every finite subset of Γ has a model.

714 Logical Foundations of Computer Science — Volume 2

The equivalences of (1) and (2) and of (5) and (6) follow from Corol-
lary 4.5.60. The equivalences of (2) and (3) and of (4) and (5) are con-
sequences of Corollary 4.5.32. Finally, the equivalence of (3) and (4)
follows from the Compactness Theorem 4.10.42. �

The other variant of the Compactness Theorem is given below.

Theorem 4.10.44. Let L be a first-order language, Γ be a set of
L-formulas and ϕ be an L-formula. Then, Γ |= ϕ if and only if there
is a finite subset Γ0 of Γ such that Γ0 |= ϕ.

Proof. The argument parallels the argument for the first part of
Theorem 2.4.1 using the relevant parts of Theorems 4.5.51 and 4.5.52
and the Compactness Theorem of First-Order Logic. �

The next result is a typical application of the Compactness The-
orem.

Theorem 4.10.45. Let Γ be a set of L-formulas, where L is a
first-order language. If Γ is satisfiable in arbitrarily large finite L-
structures, then Γ is satisfiable in an infinite L-structure.

Proof. Let L′ = L ∪ {=} and, for k ≥ 1, let ϕk be a closed L′-
formula such that an L′-structure A is a model of ϕk if and only if
|A| ≥ k. Let Γ′ = Γ ∪ {ϕk | k ≥ 1}. We claim that Γ′ is finitely
satisfiable. Let Γ0 be a finite subset of Γ′ and let k0 = max{k | ϕk ∈
Γ0}. By hypothesis, there is an L-structure A with |A| ≥ k0 and
σ ∈ ASSIGNA such that (A, σ) |= Γ. If A′ is the unique expansion of
A to L′, by Theorem 4.5.24, (A′, σ) |= Γ. Since |A′| ≥ k0, we also have
(A′, σ) |= ϕk for all k with 1 ≤ k ≤ k0. Thus, (A′, σ) |= Γ0, which
shows that Γ′ is finitely satisfiable. By the Compactness Theorem,
Γ′ is satisfiable in some L′-structure B′. Note that B′ is an infinite
structure since B′ is a model of every formula ϕk for k ≥ 1. By
Theorem 4.5.24, Γ is satisfiable in B, the reduct of B′ to L. Since
|B′| = |B|, B is an infinite structure. �

Corollary 4.10.46. Let Γ be a set of closed L-formulas, where L is
a first-order language. If Γ has arbitrarily large finite models, then Γ
has an infinite model.

Proof. This follows immediately from Theorem 4.10.45. �

First-Order Logic–Syntax and Semantics 715

We can now use Corollary 4.10.46 to derive a result that is impor-
tant in database theory.

A directed graph is said to be strongly connected if for every pair
of vertices (u, v), there is a path from u to v. As we saw in Exam-
ple 4.7.3, the language L = {R,=} can be used to express properties
of directed graphs. In the next theorem, we will make use of the for-
mulas ϕout, ϕin introduced in this example. Also, we will make use
of the notation AG introduced in Example 4.4.3.

Theorem 4.10.47. Let L = {R,=}. There is no closed L-formula
ϕ such that for all directed graphs G, AG |= ϕ if and only if G is
strongly connected.

Proof. Suppose such a formula ϕ exists. Define ψ = (ϕout∧ϕin∧ϕ).
For n ≥ 2, let Gn be a cycle of length n (see Figure 4.4).

Since every vertex in Gn has both out-degree and in-degree 1
and every vertex is reachable from every other vertex, it follows that
AGn |= ψ. By Corollary 4.10.46, there is an infinite L-structure A
such that A |= ψ. Let G = (V,E) be the infinite graph such that
AG = A. Let v0 be an arbitrary but fixed vertex of G. Because every
vertex has out-degree 1, for every n ∈ N, there is a unique path of
length n starting at v0. Let vn be the vertex at the end of this path.
It is clear that for each n, vn+1 is the unique vertex in V such that
(vn, vn+1) ∈ E. The strong connectedness of G implies that V =
{vn | n ∈ N}. Since every vertex has in-degree 1, there is a vertex
vj such that (vj , v0) ∈ E. We claim that V = {v0, . . . , vj}. To justify
this claim, we prove by induction on k that vj+k ∈ {v0, . . . , vj} for all
k ∈ N. The basis step, k = 0, is obvious. Suppose vj+k ∈ {v0, . . . , vj},
that is vj+k = v� for some with 0 ≤ ≤ j. If < j, then we have

v0

vn 1

v1 v2

v3

v4

Fig. 4.4. Cycle of length n.

716 Logical Foundations of Computer Science — Volume 2

the edges (v�, v�+1) and (v�, vj+k+1). Since the out-degree of v� is
1, we have vj+k+1 = v�+1 ∈ {v0, . . . , vj}. If = j, we have the
edges (v�, v0) and (v�, vj+k+1), which implies that vj+k+1 = v0 ∈
{v0, . . . , vj}. Thus, G is a finite graph, which is a contradiction. �

Corollary 4.10.48. Let L = {R,=}. There is no L-formula θ such
that for all directed graphs G = (V,E), the relation that consists of
all pairs (u, v) ∈ V 2 such that there is a path of length at least 1 from
u to v is definable in AG by θ and (x, y).

Proof. Suppose that such a formula θ exists. Define the formula
ϕ = (∀x)(∀y)(x = y → θ). Note that AG |= ϕ if and only if G is
strongly connected. This is impossible by Theorem 4.10.47. �

Note that if G = (V,E) is a directed graph, then there is a path
from u to v of positive length if and only if (u, v) belongs to the
transitive closure E∗ of the relation E. Since the edge relation can
be an arbitrary relation on V , we can paraphrase Corollary 4.10.48
by saying that the transitive closure of a relation is not definable in
first-order logic.

We now begin a development that leads to a counterpart of Her-
brand’s Theorem for first-order logic with equality.

Theorem 4.10.49. Let L be a first-order language with equality and
Γ be a set of L-formulas. Assume further that L′ is also a first-order
language with equality and Γ′, a set of L′-formulas, is a Skolemization
of Γ, and let V = FV(Γ) = FV(Γ′). Finally, assume that V is L′-
suitable.

Then, Γ is unsatisfiable if and only if there is a nonempty, finite
subset {θ0, . . . , θn−1} of INSTL′,V (Γ

′ ∪Eq=,L′) such that the formula
((¬θ0) ∨ · · · ∨ (¬θn−1)) is a tautology.

Proof. The following statements are equivalent.

(1) Γ is unsatisfiable;
(2) Γ′ is unsatisfiable;
(3) s=R(Γ

′) ∪ EqR,L′′ is unsatisfiable, where R is a binary relation
symbol not in L′ and L′′ = (L′ − {=}) ∪ {R};

(4) INSTL′′,V (s
=
R(Γ

′) ∪ EqR,L′′) is unsatisfiable;
(5) the set INSTL′′,V (s

=
R(Γ

′)∪EqR,L′′) has a nonempty, finite subset

{θ′′0, . . . , θ′′n−1} that is unsatisfiable;

First-Order Logic–Syntax and Semantics 717

(6) the set INSTL′′,V (s
=
R(Γ

′)∪EqR,L′′) has a nonempty, finite subset

{θ′′0, . . . , θ′′n−1} such that ((¬θ′′0)∨· · ·∨(¬θ′′n−1)) is logically valid;
(7) the set INSTL′′,V (s

=
R(Γ

′)∪EqR,L′′) has a nonempty, finite subset

{θ′′0, . . . , θ′′n−1} such that ((¬θ′′0) ∨ · · · ∨ (¬θ′′n−1)) is a tautology;
(8) the set INSTL′′,V (s

=
R(Γ

′) ∪ s=R(Eq=,L′)) contains a nonempty,

finite subset {θ′′0, . . . , θ′′n−1} such that ((¬θ′′0)∨ · · · ∨ (¬θ′′n−1)) is
a tautology;

(9) the set INSTL′′,V (s
=
R(Γ

′∪Eq=,L′)) has a nonempty, finite subset

{θ′′0, . . . , θ′′n−1} such that ((¬θ′′0) ∨ · · · ∨ (¬θ′′n−1)) is a tautology;
(10) the set s=R(INSTL′,V (Γ

′∪Eq=,L′)) has a nonempty, finite subset

{θ′′0, . . . , θ′′n−1}

such that ((¬θ′′0) ∨ · · · ∨ (¬θ′′n−1)) is a tautology;
(11) there is a nonempty, finite subset {θ0, . . . , θn−1} of

INSTL′,V (Γ
′ ∪ Eq=,L′) such that

((¬s=R(θ0)) ∨ · · · ∨ (¬s=R(θn−1)))

is a tautology;
(12) there is a nonempty, finite subset {θ0, . . . , θn−1} of

INSTL′,V (Γ
′ ∪ Eq=,L′) such that s=R(((¬θ0) ∨ · · · ∨ (¬θn−1))) is

a tautology;
(13) there is a nonempty, finite subset {θ0, . . . , θn−1}

of INSTL′,V (Γ
′ ∪ Eq=,L′) such that ((¬θ0) ∨ · · · ∨ (¬θn−1)) is

a tautology.

The equivalence of (1) and (2) follows from Corollary 4.9.21.
By Theorem 4.10.35, (2) is equivalent to (3). By Theorem 4.10.19,
observing that s=R(Γ

′) is a set of universal L′′-formulas with the same
set of free variables as Γ′, (3) is equivalent to (4) and by Theo-
rem 4.10.15, (4) is equivalent to (5). The equivalence of (5) and (6)
follows from Theorem 4.5.54. Further, since INSTL′′,V (s

=
R(Γ

′) ∪
EqR,L′′) consists of quantifier-free formulas without equality, we
obtain the equivalence of (6) and (7) by Theorem 4.10.13. The equiv-
alence of (7) and (8) follows from Theorem 4.5.67, while the equiv-
alence between (8) and (9) is immediate. Corollary 4.3.67 allows
us to conclude the equivalence of (9) and (10). The equivalences
between (10) and (11), and (11) and (12) are immediate. Finally, the
equivalence between (12) and (13) follows from Theorem 4.8.4. �

718 Logical Foundations of Computer Science — Volume 2

Corollary 4.10.50. Let L be a first-order language with equality and
Γ ⊆ SENTL. Assume further that Γ′ ⊆ SENTL′ is a Skolemization
of Γ. Finally, assume that L′ contains at least one constant symbol.
Then, Γ is unsatisfiable if and only if there is a nonempty, finite
subset {θ0, . . . , θn−1} of GINSTL′(Γ′ ∪Eq=,L′) such that the formula
((¬θ0) ∨ · · · ∨ (¬θn−1)) is a tautology.

Proof. This statement follows from Theorem 4.10.49 by taking
V = ∅. �

Corollary 4.10.51. Let L be a first-order language with equality,
Γ be a set of L-formulas and ϕ be an L-formula. Assume further
that L′ is a first-order language and Γ′, a set of L′-formulas, is a
Skolemization of Γ ∪ {(¬ϕ)}, and let V = FV(Γ ∪ {(¬ϕ)}) = FV(Γ′).
Finally, assume that V is L′-suitable. We have Γ |= ϕ if and only
if there is a nonempty, finite subset {θ0, . . . , θn−1} of INSTL′,V (Γ

′ ∪
Eq=,L′) such that ((¬θ0) ∨ · · · ∨ (¬θn−1)) is a tautology.

Proof. The corollary follows from Theorem 4.10.49 and the fact
that Γ |= ϕ is equivalent to the unsatisfiability of Γ ∪ {(¬ϕ)}. �

Corollary 4.10.52. Let L be a first-order language with equality,
Γ ⊆ SENTL and ϕ be a closed L-formula. Assume further that L′
is a first-order language and Γ′ ⊆ SENTL′ is a Skolemization of
Γ ∪ {(¬ϕ)}. Finally, assume that L′ contains at least one constant
symbol. We have Γ |= ϕ if and only if there is a nonempty, finite
subset {θ0, . . . , θn−1} of GINSTL′(Γ′ ∪ Eq=,L′) such that ((¬θ0) ∨
· · · ∨ (¬θn−1)) is a tautology.

Proof. The result follows from Corollary 4.10.51 by taking V = ∅.
�

Corollary 4.10.53. Let L be a first-order language with equality and
let ϕ be an L-formula. Assume further that L′ is also a first-order lan-
guage and ϕ′, an L′-formula, is a Skolemization of (¬ϕ), and let V =
FV(¬ϕ) = FV(ϕ′). Finally, assume that V is L′-suitable. We have
|= ϕ if and only if there is a nonempty, finite subset {θ0, . . . , θn−1}
of INSTL′,V ({ϕ′} ∪ Eq=,L′) such that ((¬θ0) ∨ · · · ∨ (¬θn−1)) is a
tautology.

Proof. This statement follows from Corollary 4.10.51 by taking
Γ = ∅. �

First-Order Logic–Syntax and Semantics 719

Corollary 4.10.54 (Herbrand’s Theorem for First-Order
Logic with Equality). Let L be a first-order language with equal-
ity and let ϕ be a closed L-formula. Assume further that L′ is also
a first-order language and ϕ′, a closed L′-formula, is a Skolemiza-
tion of (¬ϕ). Finally, assume that L′ contains at least one con-
stant symbol. We have |= ϕ if and only if there is a nonempty,
finite subset {θ0, . . . , θn−1} of GINSTL′({ϕ′} ∪ Eq=,L′) such that
((¬θ0) ∨ · · · ∨ (¬θn−1)) is a tautology.

Proof. This statement follows from Corollary 4.10.53 by taking
V = ∅. �

We use Corollary 4.10.54 to give a procedure that allows us to
show that a formula containing equality is logically valid. This pro-
cedure is similar to Procedure 4.10.28 used for formulas without
equality.

Procedure 4.10.55.
Input: A closed formula ϕ containing equality.
Output: “Yes,” if ϕ is logically valid. (No output is produced if ϕ
is not logically valid.)
Method:

(A) Using Algorithm 4.9.14, find a Skolemization ϕ′ of (¬ϕ).
(B) Let L = H(Lϕ′) be the Herbrand extension of the language
Lϕ′ and let θ0, θ1, . . . be an effective enumeration without rep-
etitions of GINSTL({ϕ′} ∪ Eq=,L). (For instance, we could
enumerate the formulas of GINSTL({ϕ′}∪Eq=,L) in the stan-
dard ordering.) Test successively the formulas of the form
((¬θ0)∨ · · · ∨ (¬θn−1)) for n = 1, 2, . . . to determine if they are
tautologies. Output “Yes” the first time a tautology is encoun-
tered.

Proof. The argument is entirely similar to the one for Proce-
dure 4.10.28, except that here we make use of Corollary 4.10.54. �

Example 4.10.56. Consider the formula ϕ given by

(∀x)(∀y)(((∀z)(f(x, z) = z) ∧ (∀w)(f(w, y) = w))→ (x = y)),

where f is a binary function symbol. The formula ψ given by

(∃x)(∃y)(∀z)(∀w)((f(x, z) = z) ∧ (f(w, y) = w) ∧ (x = y))

720 Logical Foundations of Computer Science — Volume 2

is logically equivalent to (¬ϕ). A Skolemization of (¬ϕ) is thus the
following formula ϕ′:

(∀z)(∀w)((f(e, z) = z) ∧ (f(w, e′) = w) ∧ (e = e′)),

where e, e′ are two constant symbols. Let θ0 be the ground instance

((f(e, e′) = e′) ∧ (f(e, e′) = e) ∧ (e = e′))

of ϕ′ and let θ1, θ2 be the following two ground instances of formulas
in Eq=,Lϕ′ :

((f(e, e′) = e)→ (e = f(e, e′)))
(((e = f(e, e′)) ∧ (f(e, e′) = e′))→ (e = e′)).

We leave to the reader the verification that ((¬θ0) ∨ (¬θ1) ∨ (¬θ2))
is a tautology and hence, ϕ is logically valid.

The Löwenheim-Skolem Theorem can also be extended to arbi-
trary first-order languages using Theorem 4.10.36.

Theorem 4.10.57 (The Löwenheim-Skolem Theorem). Let L
be a first-order language and let Γ be a set of L-formulas. Then, Γ
is satisfiable if and only if Γ is satisfiable in a countable structure.11

Proof. If L does not contain =, the statement was already shown
in Theorem 4.10.34. Suppose now that L contains = and that R
is a binary relation symbol not in L. Let L′ = (L − {=}) ∪ {R}.
Suppose that Γ is satisfiable. Then, by Theorem 4.10.35, the set of
L′-formulas s=R(Γ)∪EqR,L′ is also satisfiable, so it is satisfiable in an
L′-structure A′ that has a countable universe, by Theorem 4.10.34.
Therefore, by Theorem 4.10.36, the set Γ is satisfiable in a quotient
C of an L-structure B that has the same universe as A′. Since |B| is
countable and the canonical morphism from B to C is a surjection
between |B| and |C|, it follows (from a result in Section 5.3 of [14])
that |C| is countable. �

Another variant of the Löwenheim-Skolem Theorem is given next.

Theorem 4.10.58. Let L be a first-order language and let Γ be a set
of L-formulas. Then, Γ has a model if and only if Γ has a countable
model.

11See footnote 10.

First-Order Logic–Syntax and Semantics 721

Proof. The following statements are equivalent.

(1) Γ has a model;
(2) Γ∀ has a model;
(3) Γ∀ is satisfiable;
(4) Γ∀ is satisfiable in a countable structure;
(5) Γ∀ has a countable model;
(6) Γ has a countable model.

The equivalences of (1) and (2) and of (5) and (6) follow from Corol-
lary 4.5.60. The equivalences of (2) and (3) and of (4) and (5) are con-
sequences of Corollary 4.5.32. Finally, the equivalence of (3) and (4)
follows from Theorem 4.10.57. �

4.11 Brand’s Modification Method

Corollary 4.10.37 provides one way to handle the special status of the
equality symbol, namely, treating this symbol as a regular relation
symbol and adding the congruence axioms for that symbol. In this
section, we discuss another approach, due to Daniel Brand [6], that
modifies quantifier-free formulas with equality in such a way that the
original formula has a model with equality given special treatment
if and only if the modified formula has a model where equality is
considered as an arbitrary relation symbol. Thus, no special axioms
are needed with the modified formula. In view of the results of the
previous section, this modification for quantifier-free formulas suffices
for the treatment of the equality symbol.

Definition 4.11.1. Let R be a binary relation symbol. A formula
ϕ is R-flat if every atomic subformula of ϕ has one of the following
forms:

(1) P (v0, . . . , vn−1), where P is an n-ary relation symbol with n ≥ 1
such that P = R and v0, . . . , vn−1 are variables;

(2) P , where P is a propositional constant;
(3) R(t0, t1), where each of t0, t1 is a variable, a constant symbol,

or a term of the form f(v0, . . . , vm−1) where v0, . . . , vm−1 are
variables.

A set Γ of formulas is R-flat if each member of Γ is an R-flat
formula.

722 Logical Foundations of Computer Science — Volume 2

P P R

· · ·
v0 vn−1

t0 t1
t0, t1 can be variables,
constant symbols or have the
form f(v0 vn 1)

P = R

Fig. 4.5. Atomic subformulas of an R-flat formula.

The atomic subformulas of an R-flat formula are shown in
Figure 4.5.

Example 4.11.2. Let R be a binary relation symbol and P be a
unary relation symbol. The set of formulas

Γ = {R(a, b), (P (x) ∨ (¬R(x, a))), ((¬P (y)) ∨ (¬R(y, b)))}

is an R-flat set of formulas.

Theorem 4.11.3. Let L be a first-order language, R be a binary
relation symbol in L and let Γ be a set of R-flat quantifier-free L-
formulas. Then, the following three statements are equivalent:

(1) Γ has a model A where A is an L-structure and RA is the equality
relation on |A|;

(2) Γ has a model B where B is an L-structure and RB is a congru-
ence on |B|;

(3) Γ has a model C where C is an L-structure and RC is an equiva-
lence relation on |C|.

Proof. The implications (1) −→ (2) and (2) −→ (3) are immedi-
ate. Thus, we need to prove only (3) −→ (1).

Suppose that Γ has a model C = (C,J) whereRC is an equivalence
relation. Define the L-structure A = (|C|/RC ,I) as follows. By the
axiom of choice, there exists a choice function g for the collection of
equivalence classes {[c]RC | c ∈ C}. In other words, g(E) is a fixed

First-Order Logic–Syntax and Semantics 723

representative of the equivalence class E of RC . The interpretation
of the structure A is given by:

(1) if f is an n-ary function symbol in L, then

fA(E0, . . . , En−1) = [fC(g(E0), . . . , g(En−1))]RC ,

for E0, . . . , En−1 ∈ |A|;
(2) if P is an n-ary relation symbol in L, then

PA = {(E0, . . . , En−1) | (g(E0), . . . , g(En−1)) ∈ P C}.

If =∈ L, then for =A we have:

=A = {(E0, E1) | (g(E0), g(E1)) ∈=C}
= {(E0, E1) | g(E0) = g(E1)}
= {(E0, E1) | E0 = E1},

so =A is indeed the equality relation on |A|.
Note that if c is a constant symbol in L, cA = [cC]RC and if P is

a propositional constant in L, PA = P C .
We show now that RA is the equality relation on |A|. We have:

RA = {(E0, E1) | (g(E0), g(E1)) ∈ RC}
= {(E0, E1) | E0 = E1}.

We will show now that A is a model of Γ. For σ ∈ ASSIGNA
we define σ̃ ∈ ASSIGNC by σ̃(x) = g(σ(x)). We shall prove that for
every quantifier-free R-flat formula ϕ and σ ∈ ASSIGNA, we have
(A, σ) |= ϕ if and only if (C, σ̃) |= ϕ. This would imply the desired
conclusion because Γ consists of quantifier-free R-flat formulas and
C is a model of Γ.

We prove the claim by induction on ϕ.
For the basis step, suppose that ϕ is an atomic formula. We need

to consider two subcases. If ϕ has the form ϕ = P (v0, . . . , vn−1) with
n ≥ 1, or ϕ = P , where P = R, the following are equivalent:

(1) (A, σ) |= ϕ;
(2) (σA(v0), . . . , σA(vn−1)) ∈ PA;
(3) (σ(v0), . . . , σ(vn−1)) ∈ PA;
(4) (g(σ(v0)), . . . , g(σ(vn−1))) ∈ P C ;

724 Logical Foundations of Computer Science — Volume 2

(5) (σ̃(v0), . . . , σ̃(vn−1)) ∈ P C ;
(6) (σ̃C(v0), . . . , σ̃C(vn−1)) ∈ P C ;
(7) (C, σ̃) |= ϕ.

For the remaining basis step, when ϕ = R(t0, t1), we need to prove
first that if the term t has one of the forms v, c, or f(v0, . . . , vn−1),
where v, v0, . . . , vn−1 are variables and c is a constant symbol,
then we have (g(σA(t)), σ̃C(t)) ∈ RC. In the case of variables, we
have g(σA(v)) = g(σ(v)) = σ̃(v) = σ̃C(v), so since RC is reflex-
ive, (g(σA(v)), σ̃C(v)) ∈ RC . If c is a constant symbol of L, then
g(σA(c)) = g([cC]RC) ≡RC cC = σ̃C(c).

For terms f(v0, . . . , vn−1), we can write

g(σA(f(v0, . . . , vn−1))) = g(fA(σA(v0), . . . , σA(vn−1)))

= g(fA(σ(v0), . . . , σ(vn−1)))

= g([fC(g(σ(v0)), . . . , g(σ(vn−1)))]RC)

= g([fC(σ̃(v0), . . . , σ̃(vn−1))]RC)

≡ RCfC(σ̃(v0), . . . , σ̃(vn−1))

= σ̃C(f(v0, . . . , vn−1)).

Thus, the following statements involving the formula ϕ =
R(t0, t1), where t0, t1 each have one of the forms v, c, or
f(v0, . . . , vn−1), are equivalent.

(1) (A, σ) |= ϕ;
(2) (σA(t0), σA(t1)) ∈ RA;
(3) (g(σA(t0)), g(σA(t1))) ∈ RC ;
(4) (σ̃C(t0), σ̃C(t1)) ∈ RC, (because g(σA(ti)) ≡RC σ̃C(ti)));
(5) (C, σ̃) |= R(t0, t1);
(6) (C, σ̃) |= ϕ.

The arguments for the inductive steps are immediate. �

Example 4.11.4. The set of R-flat formulas Γ given in Exam-
ple 4.11.2,

Γ = {R(a, b), (P (x) ∨ (¬R(x, a))), ((¬P (y)) ∨ (¬R(y, b)))}

has no model A in which RA is a congruence. Indeed, suppose that
A is a model of Γ where RA is a congruence. Then, (aA, bA) ∈ RA.

First-Order Logic–Syntax and Semantics 725

By reflexivity, (aA, aA) ∈ RA. Since A is a model of (P (x) ∨
(¬R(x, a))), it follows that aA ∈ PA. Similarly, we have bA ∈ PA,
which contradicts the assumption that RA is a congruence.

By Theorem 4.11.3, it follows that Γ has no model A where RA is
an equivalence relation. It is instructive to provide a direct argument
for this fact without using the theorem. Indeed, suppose that A is
a model of Γ where RA is an equivalence relation. By reflexivity, we
have (aA, aA) ∈ RA. As above, this implies that aA ∈ PA. Since
(aA, bA) ∈ RA, it follows that aA ∈ PA, because A |= ((¬P (y)) ∨
(¬R(y, b))). This shows that A cannot exist.

However, it is possible to show that Γ has a model.

Lemma 4.11.5. Let L be a first-order language and let R be a binary
relation symbol in L. Define the function F : TERML ∪ FORML →
N by

(1) F (x) = 0 for every variable x;
(2) F (c) = 0 for every constant symbol c in L and F (P) = 0 for

every propositional constant P in L;
(3) F (f(t0, . . . , tn−1)) =

(∑n−1
i=0 F (ti)

)
+ |{i | ti is not a variable}|

when f is an n-ary function symbol with n > 0;

(4) F (P (t0, . . . , tn−1)) =
(∑n−1

i=0 F (ti)
)
+ |{i | ti is not a variable}|

when P is an n-ary relation symbol of L − {R} with n > 0;
(5) F (R(t0, t1)) = F (t0) + F (t1);
(6) F (ϕ) =

∑
{nαF (α) | α is an atomic formula that occurs in ϕ},

for a nonatomic L-formula ϕ, where nα is the number of occur-
rences of α in ϕ.

F is extended to sets of L-formulas Γ by F (Γ) =
∑
{F (ϕ) | ϕ ∈ Γ}.

Note that this sum could be infinite if Γ is infinite.
For all sets of L-formulas Γ, we have F (Γ) ≥ 0 and F (Γ) = 0 if

and only if Γ is an R-flat set of formulas.

Proof. It is clear that F (t) ≥ 0 for every L-term t and F (ϕ) ≥ 0
for every L-formula ϕ, as can be easily verified by induction on terms
and formulas, respectively. This implies that F (Γ) ≥ 0 for every set
of L-formulas Γ.

To prove the second assertion, we note that for all L-terms t,
F (t) = 0 if and only if t has one of the forms x, where x is a variable, c,

726 Logical Foundations of Computer Science — Volume 2

where c is a constant symbol, or f(x0, . . . , xn−1), where f is an n-ary
function symbol, n > 0, and x0, . . . , xn−1 are variables.

Suppose that Γ is a set of R-flat L-formulas. To show that
F (Γ) = 0, it suffices to show that F (ϕ) = 0 for every R-flat
L-formula. By Part 6 of the definition of F , it is enough to prove
that F (ψ) = 0 for every R-flat atomic formula. The following three
cases need to be considered:

(1) if ψ = P where P is a propositional constant, then F (ψ) = 0 by
Part 2 of the definition of F ;

(2) if ψ = P (x0, . . . , xn−1), where P is an n-ary relation symbol of
L − {R}, n > 0, and x0, . . . , xn−1 are variables, then F (ψ) = 0
by Part 4 of the definition of F ;

(3) if ψ = R(t0, t1), where t0, t1 are variables, constant symbols, or
have the form f(x0, . . . , xn−1), then F (ψ) = F (t0) + F (t1) = 0,
as we established before.

Suppose now that Γ is not an R-flat set of formulas. Then, there
is a non-R-flat formula ϕ in Γ and it suffices to show that F (ϕ) > 0.
Since ϕ is not R-flat, there is an atomic subformula α of one of the
forms P (t0, . . . , tn−1), where P = R and at least one of the terms
ti is not a variable, or R(t0, t1), where at least one of t0, t1 has the
form f(u0, . . . , up−1) such that at least one of the terms uj is not
a variable. If α = P (t0, . . . , tn−1), then by Part 4 of the definition
of F , F (α) > 0, which implies F (ϕ) > 0. If α = R(t0, t1), we have
F (α) = F (t0) + F (t1) > 0, which again implies F (ϕ) > 0. �

Next, we will give an algorithm which starts with a finite set of
quantifier-free L-formulas Γ and produces a set of R-flat quantifier-
free L-formulas Γ′ such that Γ has a model A such that RA is a
congruence if and only if Γ′ has a model A such that RA is a congru-
ence. In fact, if A is an L-structure such that RA is a congruence,
then A |= Γ if and only if A |= Γ′. To prove the correctness of this
algorithm, we need the following preliminary results.

Lemma 4.11.6. Let L be a first-order language, ϕ be a quantifier-
free L-formula and let (α, j) be an occurrence of the formula α
in ϕ. Suppose that A is an L-structure, σ ∈ ASSIGNA, ϕ′ =
replace (ϕ, (α, j), β), where β is an L-formula and (A, σ) |= α if
and only if (A, σ) |= β. Then, (A, σ) |= ϕ if and only if (A, σ) |= ϕ′.

First-Order Logic–Syntax and Semantics 727

Proof. We begin by observing that in the special case when α = ϕ,
we have ϕ′ = β and the result is immediate.

The argument is by induction on ϕ. The basis step, when ϕ is
atomic, falls under the previous special case. We consider only one
of the inductive steps, namely, when ϕ = (¬ψ) and the result holds
for ψ. If α = ϕ, we are in the special case. Otherwise, (α, j − 2) is
the occurrence in ψ that corresponds to the occurrence (α, j) in ϕ.
The lemma follows from the equivalence of the following statements:

(1) (A, σ) |= replace (ϕ, (α, j), β) = (¬replace (ψ, (α, j − 2), β)));
(2) (A, σ) |= replace (ψ, (α, j − 2), β);
(3) (A, σ) |= ψ;
(4) (A, σ) |= (¬ψ) = ϕ. �

Lemma 4.11.7. Let L be a first-order language and let R be a binary
relation symbol in L. Suppose (α, j) is an occurrence of an atomic
formula α = P (t0, . . . , ti, . . . , tn−1) in a quantifier-free L-formula ϕ,
P is not the equality symbol, w is a variable that does not occur in
ϕ, and

ϕ′ = (replace (ϕ, (α, j), P (t0, . . . , ti−1, w, ti+1, . . . , tn−1))

∨(¬R(w, ti))).
If A is an L-structure such that RA is a congruence, then A |= ϕ if
and only if A |= ϕ′.

Proof. Let A be an L-structure such that RA is a congruence.
We begin by proving that if A |= ϕ, then A |= ϕ′. Suppose that
σ ∈ ASSIGNA. We have (A, σ) |= ϕ. If (A, σ) |= R(w, ti), then it is
clear that (A, σ) |= ϕ′. Otherwise, (A, σ) |= R(w, ti), which implies
(σA(w), σA(ti)) ∈ RA. Since RA is a congruence and P is not the
equality symbol, it follows that (σA(t0), . . . , σA(ti), . . . , σA(tn−1)) ∈
PA if and only if

(σA(t0), . . . , σA(w), . . . , σA(tn−1)) ∈ PA.

Thus, (A, σ) |= P (t0, . . . , tn−1) if and only if

(A, σ) |= P (t0, . . . , w, . . . , tn−1).

By Lemma 4.11.6, we have (A, σ) |= ϕ if and only if (A, σ) |= ϕ′,
which allows us to conclude that (A, σ) |= ϕ′. Since for every σ one
of the above cases holds, it follow that A |= ϕ′.

728 Logical Foundations of Computer Science — Volume 2

Conversely, suppose that A |= ϕ′ and σ ∈ ASSIGNA. Define
σ′ = [w → σA(ti)]σ. Since (A, σ′) |= ϕ′, we have either (A, σ′) |=
R(w, ti) or (A, σ′) |= replace (ϕ, (α, j), P (t0, . . . , w, . . . , tn−1)). Note
that (σ′)A(ti) = σA(ti), because w does not occur in ti. Furthermore,
by the definition of σ′, we have (σ′)A(ti) = σA(ti) = σ′(w). Since RA
is a congruence, it follows that (σ′(w), (σ′)A(ti)) ∈ RA which means
that (A, σ′) |= R(w, ti), so we must have

(A, σ′) |= replace (ϕ, (α, j), P (t0, . . . , w, . . . , tn−1)).

Since (σ′)A(ti) = σ′(w), we have (A, σ′) |= α if and only if
(A, σ′) |= P (t0, . . . , w, . . . , tn−1). Therefore, by Lemma 4.11.6, we
have (A, σ′) |= ϕ if and only if

(A, σ′) |= replace (ϕ, (α, j), P (t0, . . . , w, . . . , tn−1)),

which allows us to write (A, σ′) |= ϕ. Since w does not occur in ϕ, it
follows that (A, σ) |= ϕ. Since σ was arbitrary, we have shown that
A |= ϕ. �

Lemma 4.11.8. Let L be a first-order language and R be a binary
relation symbol in L.

Suppose (α, j) is an occurrence of an atomic formula α = R(t0, t1)
in a quantifier-free L-formula ϕ and one of the following cases holds:

(1) t0 = f(u0, . . . , uk, . . . , um−1), uk is not a variable, w is a variable
that does not occur in ϕ, and

ϕ′ = (replace (ϕ, (α, j), R(f(u0, . . . , uk−1, w, uk+1, . . . , um−1),

t1)) ∨ (¬R(w, uk))).

(2) t1 = f(u0, . . . , uk, . . . , um−1), uk is not a variable, w is a variable
that does not occur in ϕ, and

ϕ′ = (replace (ϕ, (α, j), R)(t0, f(u0, . . . , uk−1, w, uk+1, . . . ,

um−1))) ∨ (¬R(w, uk))).

If A is an L-structure such that RA is a congruence, then A |= ϕ
if and only if A |= ϕ′.

First-Order Logic–Syntax and Semantics 729

Proof. Without loss of generality, we discuss only the first case
because the treatment of the second case is entirely similar.

Let A be an L-structure such that RA is a congruence. We
begin by proving that if A |= ϕ, then A |= ϕ′. Suppose that
σ ∈ ASSIGNA. We have (A, σ) |= ϕ. If (A, σ) |= R(w, uk), then
it is clear that (A, σ) |= ϕ′. Otherwise, (A, σ) |= R(w, uk), which
implies (σA(w), σA(uk)) ∈ RA. Since RA is a congruence, it follows
that

σA(f(u0, . . . , um−1)) = fA(σA(u0), . . . , σA(um−1))

= fA(σA(u0), . . . , σA(w), . . . , σA(um−1))

= σA(f(u0, . . . , w, . . . , um−1)).

The following statements are readily seen to be equivalent:

(1) (A, σ) |= α;
(2) (σA(f(u0, . . . , um−1)), σ

A(t1)) ∈ RA;
(3) (σA(f(u0, . . . , w, . . . , um−1)), σ

A(t1)) ∈ RA;
(4) (A, σ) |= R(f(u0, . . . , w, . . . , um−1), t1).

By Lemma 4.11.6, we have (A, σ) |= ϕ if and only if (A, σ) |= ϕ′,
which allows us to conclude that (A, σ) |= ϕ′. Since for every σ one
of the above cases holds, it follow that A |= ϕ′.

Conversely, suppose that A |= ϕ′ and σ ∈ ASSIGNA. Define σ′ =
[w → σA(uk)]σ. Since (A, σ′) |= ϕ′, we have either (A, σ′) |= R(w, uk)
or (A, σ′) |= replace (ϕ, (α, j), R(f(u0, . . . , w, . . . , um−1), t1)). Note
that (σ′)A(uk) = σA(uk), because w does not occur in uk. Further-
more, by the definition of σ′, we have (σ′)A(uk) = σA(uk) = σ′(w).
Since RA is a congruence, it follows that (σ′(w), (σ′)A(uk)) ∈ RA
which means that (A, σ′) |= R(w, uk), so we must have

(A, σ′) |= replace (ϕ, (α, j), R(f(u0, . . . , w, . . . , um−1), t1)).

Since (σ′)A(uk) = σ′(w), we have (A, σ′) |= α if and only if
(A, σ′) |= R(f(u0, . . . , w, . . . , um−1), t1). Thus, by Lemma 4.11.6, we
have (A, σ′) |= ϕ if and only if

(A, σ′) |= replace (ϕ, (α, j), R(f(u0, . . . , w, . . . , um−1), t1)),

which allows us to write (A, σ′) |= ϕ. Since w does not occur in ϕ, it
follows that (A, σ) |= ϕ. Since σ was arbitrary, we have shown that
A |= ϕ. �

730 Logical Foundations of Computer Science — Volume 2

Algorithm 4.11.9.
Input: A binary relation symbol R belonging to a first-order lan-
guage L and a finite set of quantifier-free L-formulas Γ.
Output: A finite set of quantifier-free R-flat L-formulas Γ′ such
that if = is not in L or R is = then for every L-structure A with
RA a congruence, we have A |= Γ if and only if A |= Γ′.
Method: If Γ is R-flat, then output Γ. If Γ is not R-flat, then there
is a formula ϕ ∈ Γ and an occurrence (α, j) of an atomic formula
α in ϕ such that α is not an R-flat formula. Then, two cases may
occur.

Case 1: α = P (t0, . . . , tn−1), where P = R and there is an i such
that the term ti is not a variable. In this case, let w be a
variable that does not occur in Γ and let

ϕ′ = (replace (ϕ, (α, j), P (t0, . . . , ti−1, w, ti+1, . . . , tn−1))

∨(¬R(w, ti))).

Define Γ̂ = (Γ−{ϕ})∪ϕ′. Apply the algorithm recursively

to Γ̂ to obtain the output Γ′.
Case 2: α = R(t0, t1) and there are i ∈ {0, 1} and k, 0 ≤ k ≤ m−1

such that the term ti is f(u0, . . . , um−1) and uk not a
variable. Without loss of generality, we may assume that
i = 0. Let w be a variable that does not occur in Γ and
let

ϕ′ = (replace (ϕ, (α, j), ,)R(f(u0, . . . , uk−1, w, uk+1, . . . ,

um−1), t1)) ∨ (¬R(w, uk)))

Define Γ̂ = (Γ−{ϕ})∪ϕ′. Apply the algorithm recursively

to Γ̂ to obtain the output Γ′.

Proof of Correctness: It is clear that if the algorithm terminates,
it returns an R-flat set of formulas. The remaining argument consists
of two parts. In the first part, we prove that the algorithm terminates,
while in the second part we will show that if = is not in L or R is =,
then for every L-structure A with RA a congruence, we have A |= Γ
if and only if A |= Γ′.

First-Order Logic–Syntax and Semantics 731

We claim that in both cases of the method, F (ϕ′) < F (ϕ). In the
first case, we have:

F (ϕ′) = F (ϕ)− F (P (t0, . . . , tn−1))

+F (P (t0, . . . , ti−1, w, ti+1, . . . , tn−1)) + F (R(w, ti))

= F (ϕ)− F (ti)− 1 + F (ti) < F (ϕ).

In the second case, we have:

F (ϕ′) = F (ϕ)− F (R(t0, t1))
+F (R(f(u0, . . . , uk−1, w, uk+1, . . . , um−1), t1))

+F (R(w, uk)) = F (ϕ)− F (uk)− 1 + F (uk) < F (ϕ),

which shows that F (ϕ′) < F (ϕ). This implies immediately that

F (Γ̂) < F (Γ).
It is easy to verify now by induction on F (Γ) that the algorithm

terminates when run on the finite set of quantifier-free formulas Γ,
using Lemma 4.11.5 for the basis step (F (Γ) = 0).

Now, we show that if = is not in L or R is =, then for every
L-structure A with RA a congruence, we have A |= Γ if and only if
A |= Γ′. First we argue that if Γ is not R-flat, then for such an L-
structure A, A |= Γ if and only if A |= Γ̂. Since Γ̂ = (Γ−{ϕ})∪{ϕ′},
this is equivalent to proving that A |= ϕ if and only if A |= ϕ′. This
conclusion follows from Lemmas 4.11.7 and 4.11.8 because in Case
1 of the construction, due to our assumptions, P is not =. Now we
prove by induction on F (Γ) that for any finite set of quantifier-free
L-formulas Γ and L-structure A such that RA is a congruence, we
have the desired equivalence. In the basis step, F (Γ) = 0, Γ is an R-
flat set of formulas, so Γ′ = Γ and the result is immediate. Suppose
F (Γ) > 0 and that the result holds for finite sets of quantifier-free

L-formulas Γ1 with F (Γ1) < F (Γ). Then, since F (Γ̂) < F (Γ), if A is

defined as above, we have A |= Γ̂ if and only if A |= Γ′. Combined
with our previous considerations, we obtain the desired result. �

It is not difficult to see when Algorithm 4.11.9 is applied to a finite
set of clausal formulas, the result is also a finite set of clausal formu-
las. If the original set of formulas Γ does not contain the connective

732 Logical Foundations of Computer Science — Volume 2

symbol ↔, then the same is true about the set of formulas produced
by the algorithm.

We refer to any set of quantifier-free formulas produced by the
algorithm starting from Γ and R as an R-flattening of Γ.

Theorem 4.11.10. Let L be a first-order language, R be a binary
relation symbol in L, Γ be a finite set of quantifier-free L-formulas
and let Γ〈R〉 be an R-flattening of Γ, where either R is =, or = does
not belong to L. Then, Γ has a model A where A is an L-structure
and RA is a congruence if and only if Γ〈R〉 has a model B where B
is an L-structure and RB is an equivalence relation.

Proof. This statement follows from Theorem 4.11.3 and from the
correctness proof of Algorithm 4.11.9. �

Example 4.11.11. Let Γ0 = {R(a, b), P (a), (¬P (b))}. Then, the set
of formulas Γ introduced in Example 4.11.2 is an R-flattening of Γ0.
We showed in Example 4.11.4 that Γ has no model A with RA an
equivalence relation, which by Theorem 4.11.10 means that Γ0 has
no model A with RA a congruence, a conclusion which follows as well
by inspection of this set of formulas.

Theorem 4.11.12. Let L be a first-order language, R,R′ be binary
relation symbols, where R ∈ L and R′ ∈ L, and let Γ be a finite
set of quantifier-free L formulas. For every R-flattening Γ〈R〉 of Γ,
sRR′(Γ〈R〉) is an R′-flattening of sRR′(Γ).

Further, denoting sRR′(Γ〈R〉) by (sRR′(Γ))〈R
′〉, we have

sR
′

R ((sRR′(Γ))〈R
′〉) = Γ〈R〉.

Proof. The set Γ〈R〉 was obtained by the application of Algo-
rithm 4.11.9 to Γ. Since R′ ∈ L, in applying the algorithm to sRR′(Γ),
we can follow exactly the same steps with R replaced by R′, thus
yielding sRR′(Γ〈R〉) as an R′-flattening of sRR′(Γ). The last part of the
theorem follows directly from Theorem 1.2.16. �

We have just shown how to transform sets of quantifier-free for-
mulas in such a way that the original set of formulas has a model
in which a binary relation symbol R is interpreted as a congruence
if and only if the transformed set of formulas has a corresponding
model in which R is interpreted as an equivalence relation. The next

First-Order Logic–Syntax and Semantics 733

step is to transform a set of formulas in such a way that the original
set of formulas has a model in which a binary relation symbol R is
interpreted as an equivalence relation if and only if the transformed
set of formulas has a model.

We are about to introduce notations used in the next two lemmas.
Let R be a binary relation symbol in a first-order language L and
let ϕ be an L-formula. We say that a formula obtained from ϕ by
replacing each occurrence of a subformula of the form R(t0, t1) by
(∀w)(R(t0, w)↔ R(t1, w)), where w is a variable that does not occur
in t0, t1 is an e-expansion of ϕ by R. More formally, we have the
following definition.

Definition 4.11.13. Let (R(t00, t
0
1), k0), . . . , (R(t

p−1
0 , tp−1

1), kp−1) be
the occurrences of formulas of the form R(t0, t1) in the formula ϕ,
where k0 < · · · < kp−1 and let w0, . . . , wp−1 be p distinct variables
such that wi does not occur in ϕ. Note that these occurrences do not
overlap. Define αi = (∀wi)(R(ti0, wi) ↔ R(ti1, wi)) for 0 ≤ i ≤ p − 1.
Then, the formula

replace (ϕ, ((R(t00, t
0
1), k0), . . . , (R(t

p−1
0 , tp−1

1), kp−1)), (α0, . . . , αp−1))

is said to be obtained by e-expansion of ϕ by R. When w0, . . . , wp−1

are the first p variables in the standard order that do not occur in ϕ,
we denote that e-expansion by R by EEXPR(ϕ).

Because of Exercise 10 of Chapter 1, a formula obtained by e-
expansion of ϕ by R can be obtained from ϕ by a sequence of replace-
ments of single occurrences of formulasR(ti0, t

i
1) by (∀wi)(R(ti0, wi)↔

R(ti1, wi)).

Definition 4.11.14. Let ϕ be a formula that does not contain ↔. If
we only replace the positive occurrences of subformulas of the form
R(t0, t1), we say that the resulting formula is a positive e-expansion
by R.

If we replace only the negative occurrences of subformulas of the
form R(t0, t1), then we say that the resulting formula is a negative
e-expansion by R.

When the choice of the variables wi is made in the same way as
in Definition 4.11.13, we denote the positive (negative) e-expansion
by PEEXPR(ϕ) (NEEXPR(ϕ)), respectively.

734 Logical Foundations of Computer Science — Volume 2

If Γ is a set of L-formulas that do not contain ↔, then an
e-expansion (positive e-expansion, negative e-expansion) of Γ by R is
a set of the form Γ̃ = {ϕ̃ | ϕ ∈ Γ}, where each ϕ̃ is an e-expansion
(positive e-expansion, negative e-expansion) of ϕ by R.

The e-expansion (positive e-expansion, negative e-expansion) of
Γ by R using the previously prescribed choice of variables is denoted
by EEXPR(Γ) (PEEXPR(Γ), NEEXPR(Γ)), respectively.

Lemma 4.11.15. Let L be a first-order language, Γ be a set of L-
formulas and Γ̃ = {ϕ̃ | ϕ ∈ Γ} be an e-expansion of Γ by R. If A is
a model of Γ where RA is an equivalence relation, then A is a model
of Γ̃.

If the formulas in Γ do not contain ↔, Γ̃ is a positive (nega-
tive) e-expansion of Γ by R, and A is a model of Γ where RA is an
equivalence relation, then A is a model of Γ̃.

Proof. Let ϕ ∈ Γ, so A |= ϕ. As we observed above, there exists a
sequence of formulas ϕ = ϕ0, . . . , ϕp−1 = ϕ̃ such that each formula
ϕi+1 is obtained from ϕi by replacing a subformula of the form αi =
R(ti0, t

i
1) by βi = (∀wi)(R(ti0, wi) ↔ R(ti1, wi)), for 0 ≤ i ≤ p − 1.

As shown in Example 4.5.30, since RA is an equivalence relation,
αi ≡A βi. By Lemma 4.6.15, we have ϕi ≡A ϕi+1. Since ≡A is an
equivalence relation, it follows that ϕ ≡A ϕ̃. Since A |= ϕ, we have
A |= ϕ̃, so A |= Γ̃.

The argument for the second part of the lemma follows the pattern
established in the first part. �

Lemma 4.11.16. Let L be a first-order language, Γ be a set of L-
formulas and Γ̃ = {ϕ̃ | ϕ ∈ Γ} be an e-expansion of Γ by R. If B̃
is a model of Γ̃, then the structure B is a model of Γ, where the
interpretation of B is the same as the interpretation of B̃ with the
exception of RB, which is an equivalence relation defined as

RB = {(a0, a1) | for all b ∈ |B̃| (a0, b) ∈ RB̃ if and only if

× (a1, b) ∈ RB̃}.

Proof. It is immediate to verify that RB is an equivalence relation.
Note that when R is =, the definition of RB amounts to the equality
relation on |B|.

First-Order Logic–Syntax and Semantics 735

We will show that for every L-formula ϕ and every e-expansion
ϕ̃ of ϕ by R, we have (B̃, σ) |= ϕ̃ if and only if (B, σ) |= ϕ, for every
σ ∈ ASSIGNB̃ = ASSIGNB. The argument is by induction on the
formula ϕ.

If ϕ is an atomic formula that does not contain R, then ϕ̃ = ϕ and
the desired conclusion follows immediately from Corollary 4.5.26. If
ϕ = R(t0, t1), then ϕ̃ = (∀w)(R(t0, w) ↔ R(t1, w)), where w is a
variable that occurs in neither t0 nor t1. The following statements
are equivalent, for any assignment σ:

(1) (B, σ) |= ϕ;
(2) (σB(t0), σB(t1)) ∈ RB;
(3) for all b ∈ |B|, (σB(t0), b) ∈ RB̃ if and only if (σB(t1), b) ∈ RB̃;
(4) for all b ∈ |B̃|, (([w → b]σ)B̃(t0), ([w → b]σ)B̃(w)) ∈ RB̃ if and

only if (([w → b]σ)B̃(t1), ([w → b]σ)B̃(w)) ∈ RB̃;
(5) for all b ∈ |B̃|, (B̃, [w → b]σ) |= (R(t0, w)↔ R(t1, w));
(6) (B̃, σ) |= (∀w)(R(t0, w)↔ R(t1, w)) = ϕ̃.

We discuss only the inductive step when ϕ = (∀x)ψ, where
we assume that the inductive hypothesis holds for ψ. If ϕ̃ is an
e-expansion of ϕ by R, then ϕ̃ = (∀x)ψ̃, where ψ̃ is an e-expansion
of ψ by R. Then, the following statements are equivalent for any
assignment σ.

(1) (B, σ) |= ϕ;
(2) for all b ∈ |B|, (B, [x→ b]σ) |= ψ;
(3) for all b ∈ |B̃|, (B̃, [x→ b]σ) |= ψ̃;
(4) (B̃, σ) |= ϕ̃.

Now, since B̃ |= Γ̃, we have (B̃, σ) |= ϕ̃ for every ϕ ∈ Γ. By the
previous argument, (B, σ) |= ϕ for every ϕ ∈ Γ, so B |= Γ. �

Theorem 4.11.17. Let L be a first-order language containing a
binary relation symbol R, Γ be a set of L-formulas, and let Γ̃ be
an e-expansion of Γ by R. Then, Γ has a model A with RA an equiv-
alence relation if and only if Γ̃ has a model.

Proof. The result follows immediately from Lemmas 4.11.15
and 4.11.16. �

736 Logical Foundations of Computer Science — Volume 2

Example 4.11.18. As we saw in Example 4.11.4, the set of formulas
Γ given in Example 4.11.2,

Γ = {R(a, b), (P (x) ∨ (¬R(x, a))), ((¬P (y)) ∨ (¬R(y, b)))}

has no model A in which RA is an equivalence relation. By Theo-
rem 4.11.17, the e-expansion

Γ̃ = {(∀w0)(R(a,w0)↔ R(b, w0)),

(P (x) ∨ (¬(∀w0)(R(x,w0)↔ R(a,w0)))),

((¬P (y)) ∨ (¬(∀w0)(R(y,w0)↔ R(b, w0))))}

has no model. We give a direct proof of this fact. SupposeA |= Γ̃. Let-
ting σ ∈ ASSIGNA be such that σ(x) = aA, the fact that (A, σ) satis-
fies the second formula in the previous list Γ̃ implies that aA ∈ PA. If
σ′ ∈ ASSIGNA is such that σ′(y) = aA, the fact that (A, σ′) satisfies
the first formula in the list means that for all c ∈ |A|, (aA, c) ∈ RA
if and only if (bA, c) ∈ RA. Since (A, σ′) satisfies the third formula,
we have aA ∈ PA, which is a contradiction.

Corollary 4.11.19. Let L be a first-order language containing a
binary relation symbol R such that either = ∈ L or R is =, and let Γ
be a finite set of quantifier-free L-formulas. Then, Γ has a model A
with RA a congruence if and only if Γ̃〈R〉 has a model, where Γ〈R〉 is
an R-flattening of Γ and Γ̃〈R〉 is an e-expansion of Γ〈R〉 by R.

Proof. This statement is a consequence of Theorem 4.11.10 and
Theorem 4.11.17. �

Theorem 4.11.20. Let L be a first-order language containing a
binary relation symbol R and let R′ be a binary relation symbol that
is not in L. If Γ is a set of L-formulas and Γ̃ is an e-expansion of Γ
by R, then sRR′(Γ̃) is an e-expansion of sRR′(Γ) by R′.

Denoting sRR′(Γ̃) by ˜sRR′(Γ), we have

sR
′

R (˜sRR′(Γ)) = Γ̃.

Proof. This statement follows from the definition of e-expansion.
�

First-Order Logic–Syntax and Semantics 737

The next statement summarizes the modification method.

Theorem 4.11.21. Let L be a first-order language with equality and
let R be a binary relation symbol, R ∈ L. If Γ is a finite set of

quantifier-free L- formulas, Γ〈=〉 is an =-flattening of Γ, and Γ̃〈=〉
is an e-expansion of Γ〈=〉 by =, then Γ has a model if and only if

s=R(Γ̃
〈=〉) has a model.

Proof. By Theorem 4.11.20, s=R(Γ̃
〈=〉) is an e-expansion by R of

s=R(Γ
〈=〉), which we denote by ˜s=R(Γ

〈=〉), and by Theorem 4.11.12,

s=R(Γ
〈=〉) is an R-flattening of s=R(Γ), which we denote by (s=R(Γ))

〈R〉.
This gives

s=R(Γ̃
〈=〉) = ˜(s=R(Γ))

〈R〉. (4.9)

Since Γ is a finite set of quantifier-free L-formulas, s=R(Γ) is a finite set
of quantifier-free ((L−{=})∪ {R})-formulas. We have the following
sequence of equivalent statements:

(1) Γ has a model;
(2) s=R(Γ) ∪ EqR,L has a model;

(3) s=R(Γ) has a model A such that RA a congruence;

(4) ˜(s=R(Γ))
〈R〉 has a model;

(5) s=R(Γ̃
〈=〉) has a model.

(1) is equivalent to (2) by Corollary 4.10.37. The equivalence of (2)
and (3) follows from Theorem 4.5.63. Next, the equivalence of (3)
and (4) is a consequence of Corollary 4.11.19. Finally, the equivalence
between (4) and (5) follows from Equality 4.9. �

To paraphrase the previous theorem, the existence of a model for
a set of quantifier-free formulas Γ where = is treated as equality is

equivalent to the existence of a model for Γ̃〈=〉 in which = is treated
as a regular relation symbol.

Lemma 4.11.22. Let L be a first-order language, Γ be a set of L-
formulas that do not contain ↔ and Γ̃ = {ϕ̃ | ϕ ∈ Γ} be a positive

e-expansion of Γ by R. If B̃ is a model of Γ̃ with RB̃ a reflexive
relation, then the structure B is a model of Γ, where the interpretation

738 Logical Foundations of Computer Science — Volume 2

of B is the same as the interpretation of B̃ with the exception of RB,
which is an equivalence relation defined as

RB = {(a0, a1) | for all b ∈ |B̃|, (a0, b) ∈ RB̃ if and only if

× (a1, b) ∈ RB̃}.

Proof. It is immediate to verify that RB is an equivalence relation
and if R is =, then RB is the equality relation on |B|.

Next, we show by induction on the formula ϕ (which does not
contain the connective symbol ↔) a stronger result than the state-
ment of the lemma, namely, that the following statements hold for
all σ ∈ ASSIGNB̃ = ASSIGNB:

(1) if ϕ̃ is a positive e-expansion of ϕ by R, then (B̃, σ) |= ϕ̃ implies
(B, σ) |= ϕ;

(2) if ϕ̃ is a negative e-expansion of ϕ by R, then (B, σ) |= ϕ implies
(B̃, σ) |= ϕ̃.

For the basis step, let ϕ be an atomic formula. If ϕ does not contain
R, then both a positive e-expansion by R and a negative e-expansion
by R of ϕ coincide with ϕ. By Corollary 4.5.26, the conclusion follows
immediately. Suppose now that ϕ = R(t0, t1). A positive e-expansion
by R is in this case an e-expansion by R, and the result follows from
the argument of Lemma 4.11.16. A negative e-expansion by R of ϕ

coincides again with ϕ. Observe that RB ⊆ RB̃. Indeed, if (a0, a1) ∈
RB, then choosing b = a1 in the definition of RB, we have (a0, a1) ∈
RB̃ because (a1, a1) ∈ RB̃ due to the reflexivity of RB̃. If (B, σ) |=
ϕ, then (σB(t0), σB(t1)) ∈ RB, which implies (σB̃(t0), σB̃(t1)) ∈ RB̃

because σB(ti) = σB̃(ti), for i ∈ {0, 1}, and RB ⊆ RB̃. Finally, this
implies (B̃, σ) |= ϕ = ϕ̃.

For the first inductive step, suppose that ϕ = (¬ψ) and the result
holds for ψ. If ϕ̃ is a positive e-expansion of ϕ by R, then ϕ̃ = (¬ψ̃),
where ψ̃ is a negative e-expansion of ψ by R. Then, in the following
list of statements, each statement implies the next:

(1) (B̃, σ) |= ϕ̃;
(2) (B̃, σ) |= ψ̃;
(3) (B, σ) |= ψ;
(4) (B, σ) |= (¬ψ) = ϕ.

First-Order Logic–Syntax and Semantics 739

Note that the implication (2) ⇒ (3) follows by the inductive
hypothesis.

If ϕ̃ is a negative e-expansion of ϕ by R, then ϕ̃ = (¬ψ̃), where
ψ̃ is a positive e-expansion of ψ by R. Then, in the following list of
statements, each statement implies the next:

(1) (B, σ) |= ϕ;
(2) (B, σ) |= ψ;
(3) (B̃, σ) |= ψ̃;
(4) (B̃, σ) |= (¬ψ̃) = ϕ̃.

Again, the implication (2)⇒ (3) follows by the inductive hypothesis.
For the next inductive step, suppose that ϕ = (ψ0 → ψ1) and the

hypothesis holds for ψ0 and ψ1. If ϕ̃ is a positive e-expansion of ϕ
by R, then ϕ̃ = (ψ̃0 → ψ̃1), where ϕ̃0 is a negative e-expansion of
ψ0 by R and ψ̃1 is a positive e-expansion of ψ1 by R. Suppose that
(B̃, σ) |= ϕ̃. Two cases may occur.

(1) (B̃, σ) |= ψ̃0. By inductive hypothesis, (B, σ) |= ψ0, which implies
(B, σ) |= ϕ.

(2) (B̃, σ) |= ψ̃1. Again, by inductive hypothesis, (B, σ) |= ψ1, which
implies (B, σ) |= ϕ.

If ϕ̃ is a negative e-expansion of ϕ by R, then ϕ̃ = (ψ̃0 → ψ̃1),
where ϕ̃0 is a positive e-expansion of ψ0 by R and ψ̃1 is a nega-
tive e-expansion of ψ1 by R and the argument is similar to the one
considered above.

We leave to the reader the inductive steps when ϕ = (ψ0 ∨ψ1) or
ϕ = (ψ0 ∧ ψ1).

Assume now that ϕ = (∃x)ψ and the inductive hypothesis holds
for ψ. If ϕ̃ is a positive e-expansion of ϕ by R, then, ϕ̃ = (∃x)ψ̃, where
ψ̃ is a positive e-expansion of ψ by R. Suppose that (B̃, σ) |= ϕ̃. Then,
for some b ∈ |B̃| = |B|, we have (B̃, [x → b]σ) |= ψ̃. By inductive
hypothesis, (B, [x→ b]σ) |= ψ, so (B, σ) |= (∃x)ψ = ϕ.

If ϕ̃ is a negative e-expansion of ϕ by R, then, ϕ̃ = (∃x)ψ̃, where ψ̃
is a negative e-expansion of ψ by R and the argument follows similar
lines as above.

We leave to the reader the argument for the inductive step when
ϕ = (∀x)ψ.

The statement of the lemma follows immediately since it is the
“positive” half of the result shown above. �

740 Logical Foundations of Computer Science — Volume 2

Theorem 4.11.23. Let L be a first-order language containing a
binary relation symbol R, Γ be a set of L-formulas such that no for-
mula in Γ contains ↔, and let Γ̃ be a positive e-expansion of Γ by R.
Then, Γ has a model A with RA an equivalence relation if and only
if Γ̃ has model B with RB a reflexive relation.

Proof. This statement follows from Lemmas 4.11.15 and 4.11.22.
�

Example 4.11.24. Again, as we saw in Example 4.11.4, the set of
formulas Γ given in Example 4.11.2,

Γ = {R(a, b), (P (x) ∨ (¬R(x, a))), ((¬P (y)) ∨ (¬R(y, b)))}

has no model A in which RA is an equivalence relation. By Theo-
rem 4.11.23, the positive e-expansion

Γ̃ = {(∀w0)(R(a,w0)↔ R(b, w0)), (P (x) ∨ (¬R(x, a))),
((¬P (y)) ∨ (¬R(y, b)))}

has no model with RA a reflexive relation. We give a direct proof
of this fact. Suppose A |= Γ̃. Letting σ ∈ ASSIGNA be such that
σ(x) = aA, the fact that (A, σ) satisfies the second formula in the
previous list Γ̃ and the fact that RA is reflexive implies that aA ∈ PA.

If σ′ ∈ ASSIGNA is such that σ′(y) = aA, the fact that (A, σ′)
satisfies the first formula in the list means that for all c ∈ |A|,
(aA, c) ∈ RA if and only if (bA, c) ∈ RA. Taking c = bA and using the
fact that RA is reflexive, we have (aA, bA) ∈ RA. Since (A, σ′) sat-
isfies the third formula, we have aA ∈ PA, which is a contradiction.

Corollary 4.11.25. Let L be a first-order language containing a
binary relation symbol R such that either = ∈ L or R is =, and let
Γ be a finite set of quantifier-free L-formulas such that no formula
in Γ contains ↔. Then, Γ has a model A with RA a congruence if

and only if Γ̃〈R〉 has a model B̃ such that RB̃ is a reflexive relation,

where Γ〈R〉 is an R-flattening of Γ and Γ̃〈R〉 is a positive e-expansion
of Γ〈R〉 by R.

Proof. This statement is a consequence of Theorem 4.11.10 and
Theorem 4.11.23. �

First-Order Logic–Syntax and Semantics 741

Observe that in Corollary 4.11.25, if Γ is a set of formulas in

clausal form, then so is Γ〈R〉. However, Γ̃〈R〉 is not, in general, in
clausal form, and this causes difficulties for proofs that apply only to
formulas in clausal form.

Starting from PEEXPR(ϕ) where ϕ is an L-formula in clausal
form, we construct a finite set of formulas CFR(ϕ) in clausal form
such that for any L-structure A, we have A |= PEEXPR(ϕ) if and
only if A |= CFR(ϕ).

We refer the reader to Definition 2.5.1 where we introduced the
notation ϕb for a formula ϕ and binary digit b. This notation, which
is about to be used in the next algorithm, is extended to formulas of
first-order logic.

Algorithm 4.11.26.
Input: A first-order language L, a binary relation symbol R ∈ L,
and a clausal L-formula ϕ.
Output: A set of clausal L-formulas CFR(ϕ) such that A |=
PEEXPR(ϕ) if and only if A |= CFR(ϕ), for all L-structures A.
Method: Let ϕ = (0 ∨ · · · ∨ n−1).
Partition the set {0, . . . , n − 1} into two blocks I = {i0, . . . , ip−1}
and J = {j0, . . . , jq−1}, where i0 < · · · < ip−1 and j0 < · · · < jq−1,
such that the set {i | i ∈ I} contains all literals of the form R(t0, t1)
that occur in ϕ. For 0 ≤ r ≤ p − 1, let ir = R(tr0, t

r
1) and let

w0, . . . , wp−1 be the first p variables that do not occur in ϕ.
Using notations introduced prior to Supplement 23 of Chapter 2, let
M = 2p, and (s0, . . . , sM−1) be the sequence of elements of {0, 1}p,
for p ∈ N.
Return CFR(ϕ) given by:

CFR(ϕ) = {(R(t00, w0)
si(0) ∨R(t01, w0)

(1−si(0)) (4.10)

∨R(t10, w1)
si(1) ∨R(t11, w1)

(1−si(1)) ∨ · · ·

∨R(tp−1
0 , wp−1)

si(p−1) ∨R(tp−1
1 , wp−1)

(1−si(p−1))

∨j0 ∨ · · · ∨ jq−1) | 0 ≤ i ≤M − 1}.

Proof of Correctness: By Exercise 43, PEEXPR(ϕ) is logically
equivalent to the formula ϕ′ = (ψ0 ∨ · · · ∨ ψp−1 ∨ j0 ∨ · · · ∨ jq−1),
where ψi is the result of a positive e-expansion by R, ψi =
(∀wi)(R(ti0, wi)↔ R(ti1, wi)).

742 Logical Foundations of Computer Science — Volume 2

By Exercise 118, ϕ′ is logically equivalent to

(∀w0) · · · (∀wp−1)(γ0 ∨ · · · ∨ γp−1 ∨ j0 ∨ · · · ∨ jq−1),

where γi = (R(ti0, wi) ↔ R(ti1, wi)) for 0 ≤ i ≤ p − 1. By The-
orem 4.5.58, we have A |= PEEXPR(ϕ) if and only if A |= δ =
(γ0∨· · ·∨γp−1∨j0∨· · ·∨jq−1). Let γ

b
i = (R(ti0, wi)

b∨R(ti1, wi)(1−b))
for 0 ≤ i ≤ p − 1 and b ∈ {0, 1}. By Theorems 4.8.17 and 4.6.16,
δ ≡ ((γ00 ∧ γ10) ∨ (γ01 ∧ γ11) ∨ · · · ∨ (γ0p−1 ∧ γ1p−1) ∨ j0 ∨ · · · ∨ jq−1).

By Supplement 106, δ is logically equivalent to δ′ =
∧M−1
i=0 (γ

si(0)
0 ∨

· · · ∨ γsi(p−1)
p−1 ∨ j0 ∨ · · · ∨ jq−1). Thus, A |= PEEXPR(ϕ) is equiva-

lent to A |= δ′ and this in turn is equivalent to A |= CFR(ϕ), by
Supplement 105. �

We refer to the set CFR(ϕ) obtained as above as the
R-clausification of ϕ. This notation is extended by defining CFR(Γ)
for a set of clausal formulas Γ as

⋃
{CFR(ϕ) | ϕ ∈ Γ}.

Example 4.11.27. The set of formulas

Γ = {R(a, b), (P (x) ∨ (¬R(x, a))), ((¬P (y)) ∨ (¬R(y, b)))}

introduced in Example 4.11.2 is in clausal form and the set CFR(Γ)
is given by

Γ = {((¬R(a,w0)) ∨R(b, w0)), (R(a,w0) ∨ (¬R(b, w0))),

(P (x) ∨ (¬R(x, a))), ((¬P (y)) ∨ (¬R(y, b)))}.

Theorem 4.11.28. Let L be a first-order language that contains a
binary relation R and let Γ be a set of clausal L-formulas. Then, Γ
has a model A with RA an equivalence relation if and only if CFR(Γ)
has a model B with RB a reflexive relation.

Proof. This follows immediately from Theorem 4.11.23 and the
correctness of Algorithm 4.11.26. �

Corollary 4.11.29. Let L be a first-order language, R be a binary
relation symbol of L such that = ∈ L or R is = and let Γ be a finite
set of clausal L-formulas. If Γ〈R〉 is an R-flattening of Γ and Γ′ =
CFR(Γ

〈R〉), then Γ has a model A with RA a congruence if and only
if Γ′ has a model B with RB a reflexive relation.

First-Order Logic–Syntax and Semantics 743

Proof. We noted previously that an R-flattening of a set of clausal
formulas is a set of clausal formulas, so Γ′ exists. The statement
follows from Theorems 4.11.10 and 4.11.28. �

Theorem 4.11.30. Let L be a first-order language that contains a
binary relation symbol R and let R′ be a binary relation symbol not
in L. For any clausal L-formula ϕ we have

sRR′(CFR(ϕ)) = CFR′(sRR′(ϕ)).

Proof. Since R′ does not occur in ϕ, the positive R′-literals in
sRR′(ϕ) correspond to the positive R-literals in ϕ. Also, the sRR′ does
not affect the variables that occur in a formula, so the first p variables
not occurring in ϕ are the same as the first p variables not occurring
in sRR′(ϕ). The result follows from Formula (4.10). �

4.12 Hintikka Sets and Truth Sets

As we did in the corresponding section of Chapter 2, we introduce
the notion of constituent of a first-order formula and use this notion
to introduce Hintikka sets and truth sets. Constituents will again be
obtained by analyzing formulas, and in some limited sense will rep-
resent ways of satisfying formulas. Although we cannot preserve the
property that there is one constituent for each distinct way of satis-
fying a formula, we will see that there is a broad class of structures
(including Herbrand structures) such that a formula is satisfied in
these structures if and only if one of its constituents is satisfied in
the structure.

Hintikka sets in the setting of first-order logic are still sets that
are not just satisfiable, but show explicitly how to define a satisfying
structure and assignment. We will show that every satisfiable set of
L-formulas is contained in a Hintikka set for a suitable extension of
the language L.

4.12.1 Constituents

Definition 4.12.1. Let L be a first-order language and V be an L-
suitable set of variables. Further, let t0, t1, . . . be the enumeration of

744 Logical Foundations of Computer Science — Volume 2

TERML(V) in the standard order. The function

dL,V : FORML − LITL −→ Seq(P(FORML)) ∪ ISeq(P(FORML))

is given by the following table:

Formula α dL,V (α)
(¬(¬ϕ)) ({ϕ})
(ϕ ∧ ψ) ({ϕ,ψ})

(¬(ϕ ∧ ψ)) ({(¬ϕ)}, {(¬ψ)})
(ϕ ∨ ψ) ({ϕ}, {ψ})

(¬(ϕ ∨ ψ)) ({(¬ϕ), (¬ψ)})
(ϕ→ ψ) ({(¬ϕ)}, {ψ})

(¬(ϕ→ ψ)) ({ϕ, (¬ψ)})
(ϕ↔ ψ) ({ϕ,ψ}, {(¬ϕ), (¬ψ)})

(¬(ϕ↔ ψ)) ({ϕ, (¬ψ)}, {(¬ϕ), ψ})
(∀x)ϕ ({〈ϕ〉x:=t | t ∈ TERML(V)})

(¬(∀x)ϕ) ({〈(¬ϕ)〉x:=t0}, {〈(¬ϕ)〉x:=t1}, . . .)
(∃x)ϕ ({〈ϕ〉x:=t0}, {〈ϕ〉x:=t1}, . . .)

(¬(∃x)ϕ) ({〈(¬ϕ)〉x:=t | t ∈ TERML(V)})

The (L, V)-constituent sequence of ϕ is the sequence dL,V (ϕ). The
(L, V)-constituent set of ϕ is the set DL,V (ϕ) that consists of all sets
of formulas that occur in dL,V (ϕ). Every such set of formulas is called
an (L, V)-constituent of ϕ.

If V = ∅, we denote dL,V (ϕ) and DL,V (ϕ) by dL(ϕ) and DL(ϕ),
respectively. Also, we refer to (L, V)-constituents as L-constituents.

To circumscribe the set of formulas that may appear by repeatedly
applying the operation of taking a constituent, we need to introduce
several functions.

The function U : P(FORM) −→ P(FORM), similar to the
function U introduced for propositional logic in Theorem 2.2.14, is
given by

U(Γ) = PRSUBF(Γ) ∪ {(¬ψ) | ψ ∈ PRSUBF(Γ)},

First-Order Logic–Syntax and Semantics 745

where PRSUBF(Γ) is the set of proper subformulas of the formulas
in Γ.

Definition 4.12.2. Let L be a first-order language and V be an
L-suitable set of variables. The function

WL,V : P(FORML(V)) −→ P(FORML(V))

is given by

WL,V (Γ) = {(ϕ′)x:=t | ϕ ∈ Γ ∪ U(Γ),

ϕ′ is a variant of ϕ, x ∈ VAR, t ∈ TERML(V),

and t is substitutable for x in ϕ′}.

The (L, V)-analytical universe is the set W ∗
L,V (Γ) =

⋃
n∈NW n

L,V (Γ),
where W n

L,V is the nth iteration:

W n
L,V (Γ) =WL,V (· · ·WL,V︸ ︷︷ ︸

n

(Γ) · · ·)

for Γ ⊆ FORML(V).

It is easy to see that WL,V (W ∗
L,V (Γ)) ⊆W ∗

L,V (Γ).

Example 4.12.3. Let L = {c,R, P}, where c is a constant symbol,
R is a unary relation symbol and P is a binary relation symbol.
Consider the formula ϕ = (∀x)(R(x) ∨ (∀y)P (x, y)). Suppose that
V = ∅.

We have:

U({ϕ}) = {(R(x) ∨ (∀y)P (x, y)), R(x), (∀y)P (x, y), P (x, y),

(¬(R(x) ∨ (∀y)P (x, y))), (¬R(x)), (¬(∀y)P (x, y)), (¬P (x, y))}.

746 Logical Foundations of Computer Science — Volume 2

Clearly, W 0
L,V ({ϕ}) = {ϕ}. Further, note that the formulas

(R(x) ∨ (∀y)P (x, y)), R(x), (∀y)P (x, y), P (x, y),
(¬(R(x) ∨ (∀y)P (x, y))), (¬R(x)), (¬(∀y)P (x, y)), (¬P (x, y))
(R(c) ∨ (∀y)P (c, y)), R(c), (∀y)P (c, y), P (c, y), P (x, c)
(¬(R(c) ∨ (∀y)P (c, y))), (¬R(c)), (¬(∀y)P (c, y)),

(¬P (c, y)), (¬P (x, c))
(R(c) ∨ (∀z)P (c, z)), R(c), (∀z)P (c, z), P (c, y), P (x, c)

(¬(R(c) ∨ (∀z)P (c, z))), (¬(∀z)P (c, z))
belong to W 1

L,V ({ϕ}) for any variable z. Formulas such as P (c, c)

belong to W 2
L,V ({ϕ}).

It is easy to verify that if ψ belongs to a constituent of a formula
ϕ, then ‖ ψ ‖<‖ ϕ ‖. (We remind the reader that ‖ θ ‖, the norm
of θ, was introduced in Definition 4.3.21.) Further, if K is an (L, V)-
constituent of ϕ, then, by Corollary 4.3.84, K ⊆ WL,V ({ϕ}), which
is called the analyticity of the constituents of first-order formulas.

Theorem 4.12.4. Let L be a first-order language, and let V be an
L-suitable set of variables. If ψ ∈ K ∈ DL,V (ϕ), where ϕ ∈ FORML−
LITL, then FV(ψ) ⊆ FV(ϕ) ∪ V .

Proof. The proof can be done by inspecting the definition of the
constituents of ϕ and applying Corollary 4.6.48. �

Corollary 4.12.5. Any member of an (L, V)-constituent of a for-
mula in FORML(V) is itself in FORML(V).

Proof. The statement follows from the previous theorem. �

Corollary 4.12.6. Let L be a first-order language that contains a
constant symbol. If ϕ is a closed L-formula that is not a literal, then
every formula in an L-constituent of ϕ is closed.

Proof. The statement follows immediately from Theorem 4.12.4.�
As the next example shows, the analogue of Theorem 2.7.2 does

not hold for first-order logic.

Example 4.12.7. Let L = {a,R} be a first-order language, where a
is a constant symbol and R is a unary relation symbol. The formula

First-Order Logic–Syntax and Semantics 747

ϕ = (∃x)R(x) has a unique (L, ∅)-constituent, namely, K = {R(a)}.
Define an L-structure A by |A| = {0, 1}, RA = {0} and aA = 1.
Then, for any assignment σ over A, we have (A, σ) |= ϕ but (A, σ) |=
K, so it is possible for a structure and assignment to satisfy a formula
without satisfying any of its constituents.

Let now B be the L-structure identical to A except that aB = 0
and let ψ = (∀x)R(x). The (L, ∅)-constituent of ψ is K = {R(a)}.
Note that for any assignment σ over B, (B, σ) |= K but (B, σ) |= ϕ.
So, it is possible for a structure and assignment to satisfy a con-
stituent of a formula without satisfying the formula.

The next two theorems show that Theorem 2.7.2 remains true
in a limited sense. Specifically, in Theorem 4.12.11, we restrict to
structures whose elements can be “named” by appropriate terms,
while in Theorem 4.12.15, we examine what is left of Theorem 2.7.2
for arbitrary structures.

Definition 4.12.8. Let L be a first-order language and let V be an
L-suitable set of variables. A pair (A, σ), where A is an L-structure
and σ ∈ ASSIGNA, is said to be V -named if for every a ∈ |A|, there
is a t ∈ TERML(V) such that σA(t) = a.

If L contains at least one constant symbol, an L-structure B is
said to be named if for every b ∈ |B|, there is a t ∈ GTERML such
that tB = b.

Note that the following three statements are equivalent, when L
contains at least one constant symbol:

(1) A is named;
(2) (A, σ) is ∅-named for every σ ∈ ASSIGNA;
(3) (A, σ) is ∅-named for some σ ∈ ASSIGNA.

Example 4.12.9. Let L and A be as in Example 4.4.4. Then, A is
named. Indeed, we can prove by induction on n ∈ N that there is
a ground term t with tA = n. We have 0A = 0 and, assuming that
tA = n, we have (s(t))A = sA(tA) = sA(n) = n+ 1.

Example 4.12.10. Let V be an L-suitable set of variables, where
L is a first-order language. If A is a V -Herbrand structure for L and
σ ∈ ASSIGNA is such that σ(x) = x for all x ∈ V , then (A, σ) is a
V -named pair, by Theorem 4.10.8.

748 Logical Foundations of Computer Science — Volume 2

If ρ is a congruence onA and σ′ ∈ ASSIGNA/ρ is such that σ′(x) =
[x]ρ, for all x ∈ V , then (A/ρ, σ′) is V -named by Corollary 4.10.10.

Theorem 4.12.11. Let L be a first-order language and V be an L-
suitable set of variables. If A is an L-structure, σ ∈ ASSIGNA, and
(A, σ) is V -named, then for all L-formulas α that are not literals,
we have (A, σ) |= α if and only if (A, σ) |= K for some (L, V)-
constituent K of α.

Proof. There are several cases depending on the form of α. We
discuss here only some of the cases that are dissimilar to the ones
encountered in propositional logic.

Suppose that α = (∀x)ϕ. Then, the following statements are
equivalent:

(1) (A, σ) |= (∀x)ϕ;
(2) for every a ∈ |A|, (A, [x→ a]σ) |= ϕ;
(3) for every t ∈ TERML(V), (A, [x→ σA(t)]σ) |= ϕ;
(4) for every t ∈ TERML(V), (A, [x→ σA(t)]σ) |= variant(ϕ, x, t);
(5) for every t ∈ TERML(V), (A, σ) |= (variant(ϕ, x, t))x:=t;
(6) for every t ∈ TERML(V), (A, σ) |= 〈ϕ〉x:=t.

The equivalences of (1) and (2), and of (5) and (6) are obvious. State-
ment (2) is equivalent to (3) since (A, σ) is V -named. The equivalence
of (3) and (4) follows from Theorem 4.6.47. Finally, (4) is equiv-
alent to (5) by the Substitution Corollary (Corollary 4.6.6). Thus,
we may conclude that (A, σ) |= α if and only if (A, σ) |= K, where
K = {〈ϕ〉x:=t | t ∈ TERML(V)} is the (L, V)-constituent of α.

Now suppose that α = (¬(∃x)ϕ). Then, (A, σ) |= α if and only if
(A, σ) |= (∀x)(¬ϕ) (by Lemma 4.9.7), which, by the previous argu-
ment, is equivalent to (A, σ) |= {〈(¬ϕ)〉x:=t | t ∈ TERML(V)}. Since
{〈(¬ϕ)〉x:=t | t ∈ TERML(V)} is the unique constituent of α, the
statement holds in this case as well. �

Corollary 4.12.12. Let L be a first-order language that contains at
least one constant symbol. If A is a named L-structure, then for all
closed L-formulas α that are not literals, A |= α if and only if A |= K
for some L-constituent K of α.

First-Order Logic–Syntax and Semantics 749

Proof. This statement follows from Theorem 4.12.11 by taking
V = ∅ and using the fact that, by Corollary 4.12.6, all formulas in
K are closed. �

Corollary 4.12.13. Let V be an L-suitable set of variables, where
L is a first-order language. Also, let A be a V -Herbrand structure
for L. If σ ∈ ASSIGNA is such that σ(x) = x for all x ∈ V , then
for all L-formulas α that are not literals, (A, σ) |= α if and only if
(A, σ) |= K for some (L, V)-constituent K of α.

If L contains a constant symbol and A0 is a Herbrand structure
for L, then, for every closed L-formula α which is not a literal, we
have A0 |= α if and only if A0 |= K for some L-constituent K of α.

Proof. Observe that the pair (A, σ) is V -named, by Exam-
ple 4.12.10. Therefore, the first part of the corollary follows from
Theorem 4.12.11. The second part follows from Corollary 4.12.12
and the fact that A0 is a named structure. �

Corollary 4.12.14. Let V be an L-suitable set of variables, where
L is a first-order language. Also, let A be a V -Herbrand structure
for L, ρ be a congruence of A and B = A/ρ. If σ ∈ ASSIGNB is
such that σ(x) = [x] for all x ∈ V , then for all L-formulas α that are
not literals, (B, σ) |= α if and only if (B, σ) |= K for some (L, V)-
constituent K of α.

If L contains a constant symbol, A0 is a Herbrand structure for L,
ρ is a congruence of A0, and B0 = A0/ρ, then for all closed formulas
α that are not literals, we have B0 |= α if and only if B0 |= K for
some constituent K of α.

Proof. By Example 4.12.10, the pair (B, σ) is V -named. So, the
first part of the Corollary follows from Theorem 4.12.11. The second
part is a consequence of Corollary 4.12.12 and the fact that B0 is a
named structure. �

Theorem 4.12.15. Let L be a first-order language, V be an L-
suitable set of variables, and ϕ be an L-formula. Suppose that A
is an L-structure and σ ∈ ASSIGNA.

(1) If ϕ is neither a γ-formula, a δ-formula or a literal, then
(A, σ) |= ϕ if and only if (A, σ) |= K for some (L, V)-constituent
K of ϕ.

750 Logical Foundations of Computer Science — Volume 2

(2) If ϕ is a γ-formula, then (A, σ) |= ϕ implies (A, σ) |= K for the
(L, V)-constituent K of ϕ.

(3) If ϕ is a δ-formula, then (A, σ) |= K for some (L, V)-constituent
K of ϕ implies (A, σ) |= ϕ.

Proof. The argument for the first part is immediate.
For the second part, assume first that ϕ = (∀x)ψ. By Theo-

rem 4.6.51, we have ϕ |= 〈ψ〉x:=t for every term t, so (A, σ) |= ϕ
implies (A, σ) |= {〈ψ〉x:=t | t ∈ TERML(V)}. Since {〈ψ〉x:=t | t ∈
TERML(V)} is the constituent of ϕ, this is the desired conclusion.
If ϕ = (¬(∃x)ψ), then, since ϕ ≡ (∀x)(¬ψ), by the argument just
made, (A, σ) |= ϕ implies (A, σ) |= {〈(¬ψ)〉x:=t | t ∈ TERML(V)}.
Thus, we reach again the desired conclusion.

For the third part, assume first that ϕ = (∃x)ψ. By Theo-
rem 4.6.51, we have 〈ψ〉x:=t |= ϕ for every term t. Since each
constituent K of ϕ has the form {〈ψ〉x:=t}, (A, σ) |= K implies
(A, σ) |= ϕ. Finally, suppose that ϕ = (¬(∀x)ψ). Since ϕ ≡
(∃x)(¬ψ), by applying the previous argument, (A, σ) |= {〈(¬ψ)〉x:=t
with t ∈ TERML(V) implies (A, σ) |= ϕ. �

4.12.2 Hintikka Sets of Unsigned Formulas

Definition 4.12.16. Let L be a first-order language, V be an L-
suitable set of variables, and Γ be a set of L-formulas such that
FV(Γ) ⊆ V .

If L does not contain the equality symbol, then Γ is an (L, V)-
Hintikka set if the following conditions are satisfied:

(1) for every atomic L-formula ϕ, at most one of the literals ϕ, (¬ϕ)
is in Γ;

(2) if ϕ ∈ Γ and ϕ is not a literal, then there is an (L, V)-constituent
K of ϕ such that K ⊆ Γ.

If L does contain the equality symbol, then Γ is an (L, V)-Hintikka
set if Γ satisfies the previous two conditions and INSTL,V (Eq=,L)⊆ Γ.

We refer to an (L, ∅)-Hintikka set as an L-Hintikka set.

First-Order Logic–Syntax and Semantics 751

Note that an L-Hintikka set consists of closed formulas.

Theorem 4.12.17. Let L be a first-order language without equality,
V be an L-suitable set of variables, and Γ be an (L, V)-Hintikka set.
Then, Γ is satisfiable. In fact, there is a V -Herbrand structure A
for L and σ ∈ ASSIGNA such that σ(x) = x for all x ∈ V and
(A, σ) |= Γ.

Proof. Let A = STRL,V (S) be the V -Herbrand structure for L
determined by S = Γ∩AFORML (as introduced in Definition 4.10.5)
and let σ ∈ ASSIGNA be an assignment such that σ(x) = x for every
x ∈ V .

We prove by course-of-values induction on ‖ ϕ ‖ that if ϕ ∈ Γ,
then (A, σ) |= ϕ. Suppose that ϕ ∈ Γ and that the result holds for
all ψ with ‖ ψ ‖<‖ ϕ ‖. If ϕ is atomic, then ϕ ∈ S, so, (A, σ) |= ϕ
by Lemma 4.10.11. If ϕ = (¬ψ), where ψ is atomic, then ψ ∈ Γ, by
the definition of Hintikka set, so ψ ∈ S. Consequently, (A, σ) |= ψ,
by the same lemma, which allows us to conclude that (ϕ, σ) |= ϕ.

Now suppose that ϕ is not a literal. Then, by the definition of
Hintikka set, there is an (L, V)-constituent K of ϕ such that K ⊆ Γ.
Since the norm of each formula in K is less than the norm of ϕ,
we have (A, σ) |= K, by inductive hypothesis. Thus, by Corol-
lary 4.12.13, (A, σ) |= ϕ. �

In preparation for extending Theorem 4.12.17 to languages with
equality, we need the following technical result.

Lemma 4.12.18. If Γ is an (L, V)-Hintikka set for some first-order
language L and some set of variables V and Γ contains a formula
(¬(ϕ0∧ϕ1∧ · · · ∧ϕn−1)), then Γ contains at least one formula (¬ϕi)
with 0 ≤ i ≤ n− 1.

Proof. The argument is by induction on n and is left to the reader.
�

Lemma 4.12.19. Let L be a first-order language with equality and
let V be an L-suitable set of variables.

Suppose that Γ is an (L, V)-Hintikka set and S = Γ ∩
AFORML−{=}(V). Define the relation ρ on TERML(V) by tρs if
and only if t = s ∈ Γ. Then, ρ is a congruence of the Herbrand
structure A = STRL,V (S).

752 Logical Foundations of Computer Science — Volume 2

Proof. Since Γ is an (L, V)-Hintikka set, Γ contains INSTL,V
(Eq=,L). We prove first that ρ is an equivalence relation on
TERML(V). The reflexivity of ρ follows from the fact that t = t ∈ Γ
for every t ∈ TERML(V) because t = t is an instance of the formula
(∀x0)(x0 = x0) from Eq=,L.

To show the symmetry of ρ, suppose that tρs, that is, t = s ∈ Γ.
Since Γ contains the formula (t = s) → (s = t) (as an instance of
the formula (∀x0)(∀x1)((x0 = x1) → (x1 = x0))), it follows that Γ
contains at least one of the formulas (¬(t = s)) and (s = t), because
Γ is a (L, V)-Hintikka set. Note that Γ may not contain both t = s
and (¬(t = s)), so it contains s = t and hence sρt.

To prove the transitivity of ρ, suppose that tρs and sρu, that is
both t = s and s = u belong to Γ. Note that Γ contains the instance
(((t = s) ∧ (s = u)) → (t = u)) of a formula in Eq=,L. Since Γ is
an (L, V)-Hintikka set, Γ must contain at least one of the formulas
(¬((t = s) ∧ (s = u))) and t = u, so it must contain at least one of
the formulas (¬(t = s)), (¬(s = u)), and talk t = u. The presence in
Γ of the formulas t = s and s = u implies that Γ contains t = u, so
tρu.

We have shown that ρ is an equivalence on TERML(V). Let us
show now that it is compatible with the operations and relations ofA.
Suppose that t0ρs0, . . . , tn−1ρsn−1, where n > 0, that is ti = si ∈ Γ
for 0 ≤ i ≤ n−1. Note that Γ cannot contain (¬(t0 = s0∧· · ·∧tn−1 =
sn−1)), since otherwise, by Lemma 4.12.18, it would have to contain
at least one of the formulas (¬(ti = si)) for 0 ≤ i ≤ n− 1.

Let f be an n-ary relation symbol of L. We must show that

fA(t0, . . . , tn−1)ρf
A(s0, . . . , sn−1),

that is f(t0, . . . , tn−1)ρf(s0, . . . , sn−1). By the definition of Hintikka
set, Γ contains the instance

(((t0 = s0)∧· · ·∧(tn−1 = sn−1))→ f(t0, . . . , tn−1) = f(s0, . . . , sn−1))

of a formula in Eq=,L. Therefore, Γ contains at least one of (¬(t0 =
s0 ∧ · · · ∧ tn−1 = sn−1)) and f(t0, . . . , tn−1) = f(s0, . . . , sn−1).
Since we have already ruled out the former case, we have
f(t0, . . . , tn−1)ρf(s0, . . . , sn−1), as desired.

If R is an n-ary relation symbol of L − {=}, we show that
(t0, . . . , tn−1) ∈ RA if and only if (s0, . . . , sn−1) ∈ RA, that is,

First-Order Logic–Syntax and Semantics 753

R(t0, . . . , tn−1) ∈ Γ if and only if R(s0, . . . , sn−1) ∈ Γ. An argument
similar to the one of the previous paragraph shows that we must have
in Γ the formula (R(t0, . . . , tn−1) ↔ R(s0, . . . , sn−1)). Since Γ is an
(L, V)-Hintikka set, at least one of the sets

{R(t0, . . . , tn−1), R(s0, . . . , sn−1)},
{(¬R(t0, . . . , tn−1)), (¬R(s0, . . . , sn−1))}

is included in Γ. Suppose that R(t0, . . . , tn−1) ∈ Γ. In this case, Γ
cannot contain the second set, so it must contain the first set, which
implies that R(s0, . . . , sn−1) ∈ Γ. The reverse implication is similar.

�
The counterpart of Theorem 4.12.17 for languages with equality

is given next.

Theorem 4.12.20. Let L be a first-order language with equality, V
be an L-suitable set of variables, and Γ be an (L, V)-Hintikka set.
Then, Γ is satisfiable. In fact, there is a V -Herbrand structure A for
L, a congruence ρ of A and σ ∈ ASSIGNA/ρ such that σ(x) = [x]ρ
for all x ∈ V and (A/ρ, σ) |= Γ.

Proof. Define the set S as Γ ∩ AFORML−{=} and let A be the
Herbrand structure STRL,V (S). Consider the structure B = A/ρ,
where ρ is the congruence of A defined in Lemma 4.12.19. Let σ ∈
ASSIGNB be any assignment such that σ(x) = [x]ρ for every x ∈ V .
We claim that (B, σ) |= ϕ for every ϕ ∈ Γ.

As in the proof of Theorem 4.12.17, the argument is by course-of-
values induction on ‖ϕ‖. If we show the claim for the literals in Γ, the
remaining argument is similar to the one used in Theorem 4.12.17,
but uses Theorem 4.12.11 in place of Corollary 4.12.13. There are
three cases to consider, depending on whether ϕ does not contain =,
is t = s, or is t = s.

(1) Suppose that ϕ is a literal that does not contain =. Define
σ′ ∈ ASSIGNA by σ′(x) = x if x ∈ V and σ′(x) = t,
where t is the first term in [σ(x)]ρ, otherwise. Note that σ =
hρ ◦ σ′. We have (A, σ′) |= ϕ by the same argument as the one
used in Theorem 4.12.17. By the Morphism Theorem, we have,
(A/ρ, hρ ◦ σ′) |= ϕ, so (B, σ) |= ϕ.

(2) Let now ϕ be t = s. Since t = s ∈ Γ, we have tρs, so [t]ρ = [s]ρ.
Thus, by Corollary 4.10.10, σB(t) = σB(s), so (B, σ) |= t = s.

754 Logical Foundations of Computer Science — Volume 2

(3) Finally, suppose that ϕ = t = s. Since Γ is an (L, V)-Hintikka
set, t = s ∈ Γ, so [t]ρ = [s]ρ. By the same argument, this means
that σB(t) = σB(s), so (B, σ) |= t = s.

�

Corollary 4.12.21. Let L be a first-order language and V be an
L-suitable set of variables. If Γ is an (L, V)-Hintikka set, then Γ is
satisfiable.

Proof. This statement follows from Theorems 4.12.17 and 4.12.20.�

As in the propositional case, we introduce the idea of a consistency
property. The first-order logic counterpart of the propositional notion
is not completely parallel to it.

Definition 4.12.22. Let L be a first-order language and let V be
an L-suitable set of variables.

An (L, V)-consistency property is a collection C of sets of
L-formulas whose free variables are included in V such that

• No set with property C contains both an atomic formula and its
negation.

• If Γ has property C, ϕ ∈ Γ−LITL, and ϕ is not a γ-formula, then
Γ ∪K has property C for some constituent K of ϕ.

• If Γ has property C and (∀x)ψ ∈ Γ, then Γ∪{〈ψ〉x:=t} has property
C for every t ∈ TERML(V).

• If Γ has property C and (¬(∃x)ψ) ∈ Γ, then Γ ∪ {〈(¬ψ)〉x:=t} has
property C for every t ∈ TERML(V).

• If L contains = and Γ has property C, then Γ ∪ {α} has property
C, for every α ∈ INSTL,V (Eq=,L).

An (L, V)-inconsistency property is a collection I of sets of for-
mulas in FORML(V) such that P(FORML(V)) − I is an (L, V)-
consistency property.

Observe that a collection I of sets of formulas in FORML(V) is an
(L, V)-inconsistency property if the following conditions are satisfied
for every Γ ⊆ FORML(V):

• If Γ includes {ϕ, (¬ϕ)} for some atomic formula ϕ, then Γ ∈ I.
• If ϕ ∈ Γ− LITL is such that ϕ is not a γ-formula and Γ ∪K ∈ I

for every constituent K of ϕ, then Γ ∈ I.

First-Order Logic–Syntax and Semantics 755

• If (∀x)ψ ∈ Γ and Γ∪{〈ψ〉x:=t} ∈ I for some t ∈ TERML(V), then
Γ ∈ I.

• If (¬(∃x)ψ) ∈ Γ and Γ∪{〈(¬ψ)〉x:=t} ∈ I for some t ∈ TERML(V),
then Γ ∈ I.

• If L contains = and Γ ∪ {α} ∈ I for some α ∈ INSTL,V (Eq=,L),
then Γ ∈ I.

Theorem 4.12.23. Let L be a first-order language and let V be an
L-suitable set of variables. If C is an (L, V)-consistency property,
then every member of C is a satisfiable set of formulas. In fact, if Γ
is a member of C, there is an (L, V)-Hintikka set Γ′ such that Γ ⊆ Γ′.
Further, we have

Γ′ ⊆
{
W ∗

L,V (Γ) if = ∈ L
W ∗

L,V (Γ ∪ INSTL,V (Eq=,L)) if =∈ L

(a property referred to as the analyticity of the construction of Γ′).

Proof. Let ϕ0, ϕ1, . . . be the enumeration of FORML(V) in the
standard order and let t0, t1, . . . be the enumeration of TERML(V)
in the standard order of terms. Fix a pairing function f : N2 −→ N,
that is, f is a fixed bijection from N2 to N. We can list FORML(V)×
TERML(V) by placing the pair (ϕi, tj) in the (k + 1)-st place, for
k = f(i, j).

Let C be an (L, V)-consistency property and let Γ have property C.
First, suppose that L does not contain equality. We shall con-

struct an (L, V)-Hintikka set Γ′ such that Γ ⊆ Γ′ ⊆ W ∗
L,V (Γ). By

Theorem 4.12.17, we can then conclude that Γ is satisfiable. We build
recursively a sequence of sets Γ0,Γ1, . . ., each with property C and
each included in W ∗

L,V (Γ). Then, we set Γ′ =
⋃
{Γn | n ∈ N}.

We define Γ0 = Γ. Then, Γ0 ⊆ W ∗
L,V (Γ). Suppose that Γn is

defined, Γn ∈ C, and Γn ⊆W ∗
L,V (Γ). Then, there are two cases:

• If Γn is an (L, V)-Hintikka set, Γn+1 = Γn.
• If Γn is not an (L, V)-Hintikka set, then, since no set with property
C may contain both an atomic formula and its negation, there
must be a formula ϕ ∈ Γn such that none of its constituents is
included in Γn. Let (ϕ, t) be the first pair in the enumeration of
FORML(V)×TERML(V) such that one of the following conditions
holds:

756 Logical Foundations of Computer Science — Volume 2

(a) ϕ ∈ Γn, ϕ is not a γ-formula and none of ϕ’s constituents is
contained in Γn;

(b) ϕ ∈ Γn, ϕ = (∀x)ψ and 〈ψ〉x:=t ∈ Γn;
(c) ϕ ∈ Γn, ϕ = (¬(∃x)ψ) and 〈(¬ψ)〉x:=t ∈ Γn.

In the first case, let K be the first constituent of ϕ in the sequence
dL,V (ϕ) such that Γn∪K is in C. (Such a K exists by the definition
of consistency property.) Define Γn+1 = Γn ∪K. In the second, let
Γn+1 = Γn ∪ {〈ψ〉x:=t}. In the third case, we define Γn+1 = Γn ∪
{〈(¬ψ)〉x:=t}. In the latter two cases, Γn+1 has property C, again
by definition of consistency property. In all cases, Γn+1 ⊆W ∗

L,V (Γ)
because of the analyticity of the constituents.

We claim that Γ′ is an (L, V)-Hintikka set. Note that Γ′ cannot con-
tain both an atomic formula and its negation. Suppose that Γ′ is not
an (L, V)-Hintikka set. Then, there is a formula ϕ ∈ Γ′ which is not
a literal such that none of its constituents is contained in Γ′. This
means that there is a pair (ϕ, t) ∈ FORML(V) × TERML(V) such
that ϕ ∈ Γ′ and one of the following cases holds:

(1) ϕ is not a literal, is not a γ-formula, and none of its constituents
is contained in Γ′;

(2) ϕ = (∀x)ψ and 〈ψ〉x:=t ∈ Γ′;
(3) ϕ = (¬(∃x)ψ) and 〈(¬ψ)〉x:=t ∈ Γ′.

Let (ϕ, t) be the first such pair in the above listing of FORML(V)×
TERML(V). Take n sufficiently large such that ϕ ∈ Γn, and for every
pair (ϕ′, t′) that precedes (ϕ, t) in the ordering, with ϕ′ ∈ Γ′−LITL,
one of the following holds:

(1) ϕ′ is not a γ-formula and some constituent of ϕ′ is included in
Γn;

(2) ϕ′ = (∀x′)ψ′ and 〈ψ′〉x′:=t′ ∈ Γn;
(3) ϕ′ = (¬(∃x′)ψ′) and 〈(¬ψ′)〉x′:=t′ ∈ Γn.

Such an n exists because for all predecessors (ϕ′, t′) of (ϕ, t) such that
ϕ′ ∈ Γ′−LITL, if ϕ is not a γ-formula, then there is a constituent of ϕ′
included in Γ′ and each such constituent is finite. By the construction
of the sequence Γ0,Γ1, . . ., the set Γn+1 satisfies one of the following
conditions:

First-Order Logic–Syntax and Semantics 757

(1) if ϕ is not a γ-formula, then some constituent of ϕ is included in
Γn+1;

(2) if ϕ = (∀x)ψ, then 〈ψ〉x:=t ∈ Γn+1;
(3) if ϕ = (¬(∃x)ψ), then 〈(¬ψ)〉x:=t ∈ Γn+1.

This contradicts the choice of (ϕ, t), since Γn+1 ⊆ Γ′.
Assume now that L contains =. We define Γ0 = Γ. Suppose that

Γn is defined and is in C. Then, there are two cases:

• If Γn is an (L, V)-Hintikka set, Γn+1 = Γn.
• If Γn is not an (L, V)-Hintikka set, then, since no set with property
C may contain both an atomic formula and its negation, there must
be a formula ϕ such that either ϕ ∈ Γn and none of its constituents
is included in Γn, or ϕ ∈ INSTL,V (Eq=,L) and ϕ ∈ Γn. Let (ϕ, t)
be the first pair in the enumeration of FORML(V)× TERML(V)
such that one of the following conditions holds:

(a) ϕ ∈ Γn, ϕ is not a γ-formula and none of ϕ’s constituents is
contained in Γn;

(b) ϕ ∈ Γn, ϕ = (∀x)ψ and 〈ψ〉x:=t ∈ Γn;
(c) ϕ ∈ Γn, ϕ = (¬(∃x)ψ) and 〈(¬ψ)〉x:=t ∈ Γn;
(d) ϕ ∈ INSTL,V (Eq=,L) and ϕ ∈ Γn.

In the first three cases, we proceed as before. In the fourth case,
let Γn+1 = Γn ∪ {ϕ}.

We leave it to the reader to prove that Γ′ is a (L, V)-Hintikka set
and that Γ′ ⊆W ∗

L,V (Γ ∪ INSTL,V (Eq=,L)). �

In contrast to Example 2.7.19, satisfiability is not, in general, a
first-order consistency property.

Example 4.12.24. Let L be any first-order language that contains
relation symbols that are not propositional constants, V be an L-
suitable set of variables and C be the collection of all satisfiable sets
Γ such that Γ ⊆ FORML(V). We will show that C is not an (L, V)-
consistency property. Let R ∈ L be an n-ary relation symbol with
n > 0 and let Γ = {(∃x)(¬R(x, t0, . . . , t0)} ∪ {R(t, t0, . . . , t0) | t ∈
TERML(V)}, where t0 is an arbitrary, fixed term in TERML(V).

We prove first that Γ is satisfiable. To this end, consider the L-
structure A with |A| = {0, 1}, fA(a0, . . . , am−1) = 0 for each m-ary
function symbol f ∈ L, RA = {(a0, . . . , an−1) | a0 = · · · = an−1}
and PA defined arbitrarily for every relation symbol P = R of L.

758 Logical Foundations of Computer Science — Volume 2

Note that, by this definition, if R is =, then RA is the equality
relation on |A|, as it must be. If σ(y) = 0 for every variable y, we
have σA(t) = 0 for every L-term t, and hence Γ is satisfiable because
(A, σ) |= Γ.

If satisfiability were a consistency property, Γ ∪ K would be
satisfiable, for some (L, V)-constituent K of the formula ϕ =
(∃x)(¬R(x, t0, . . . , t0)). Since each such constituent has the form
{(¬R(t, t0, . . . , t0))} for some term t ∈ TERML(V), each such Γ∪K
is unsatisfiable.

In spite of the negative result of Example 4.12.24, there is still
a sense in which satisfiability is a consistency property, as the next
theorem shows.

Theorem 4.12.25. Let L be a first-order language, V be a set
of variables and C be the collection of all satisfiable subsets Γ of
FORMLc(V) with limited constant symbols. Then, C is an (Lc, V)-
consistency property.

Proof. Suppose Γ ∈ C, (A, σ) |= Γ for some Lc-structure A and
σ ∈ ASSIGNA, and ϕ ∈ Γ − LITLc. If ϕ is neither a γ-formula nor
a δ-formula, then by Theorem 4.12.15, (A, σ) |= Γ ∪ K for some
(Lc, V)-constituent K of ϕ. Since K is finite, it is clear that Γ ∪K
also belongs to C.

If ϕ is a γ-formula, then, by the same argument, Γ ∪K is satis-
fiable, where K is the (Lc, V)-constituent of ϕ. If ϕ = (∀x)ψ, this
clearly implies that Γ ∪ {〈ψ〉x:=t} is also satisfiable for every term
t ∈ TERMLc(V). Since {〈ψ〉x:=t} contains only finitely many con-
stant symbols, it follows that Γ ∪ {〈ψ〉x:=t} ∈ C. The argument is
similar for ϕ = (¬(∃x)ψ).

If ϕ is the δ-formula (∃x)ψ, then let c ∈ Lc be a constant sym-
bol that does not occur in Γ. (Such a c exists because Γ ∈ C.)
By Theorem 4.6.52, Γ ∪ {〈ψ〉x:=c} is satisfiable and belongs to C
because 〈ψ〉x:=c contains only one constant symbol not in Γ. If
ϕ = (¬(∀x)ψ), we have ϕ ≡ ϕ′, where ϕ′ = (∃x)(¬ψ). Thus, Γ∪{ϕ′}
is satisfiable and, by applying again Theorem 4.6.52, we have that
Γ ∪ {ϕ′, 〈(¬ψ)〉x:=c} is satisfiable, where c is a constant symbol in
Lc that does not occur in Γ. This implies that Γ ∪ {〈(¬ψ)〉x:=c} is
satisfiable and belongs to C.

First-Order Logic–Syntax and Semantics 759

Finally, suppose that L contains =, Γ ∈ C and α ∈
INSTLc,V (Eq=,L). Since α is logically valid and contains only finitely
many constant symbols, it is clear that Γ ∪ {α} ∈ C. �

Corollary 4.12.26. Let L be a first-order language and V be a set
of variables. A set Γ of (L, V)-formulas is satisfiable if and only if
Γ ⊆ Γ′ for some (Lc, V)-Hintikka set Γ′.

Proof. Suppose that Γ is satisfiable. By Theorem 4.12.25,
Γ belongs to an (Lc, V)-consistency property. Therefore, by Theo-
rem 4.12.23, there is an (Lc, V)-Hintikka set Γ′ such that Γ ⊆ Γ′.

Conversely, if Γ ⊆ Γ′, where Γ′ is an (Lc, V)-Hintikka set, then Γ
is satisfiable because Γ′ is satisfiable (by Corollary 4.12.21). �

The next Corollary is a sharpening of Supplements 125 and 131
in that the extra symbols contained by the language L′ mentioned
in the supplement are restricted to constant symbols.

Corollary 4.12.27. Let L be a first-order language, V be a set of
variables and Γ be a set of (L, V)-formulas. Then, if = ∈ L, Γ is
satisfiable if and only if Γ is satisfiable in a V -Herbrand structure
for Lc and, if =∈ L, Γ is satisfiable if and only if Γ is satisfiable in
a quotient of V -Herbrand structure for Lc.

Proof. The result follows from Corollary 4.12.26 and Theo-
rems 4.12.17 and 4.12.20. �

Example 4.12.28. As an application of consistency properties, we
give another proof of the Compactness Theorem of First-Order Logic.
Let L be a first-order language. The idea of the proof is to show
that the collection C that consists of those sets Γ ⊆ FORMLc such
that Γ is a finitely satisfiable set with limited constant symbols is
an (Lc,VAR)-consistency property. Since every member of a con-
sistency property is satisfiable, and every finitely satisfiable set of
L-formulas belongs to C, this would imply the nontrivial part of the
Compactness Theorem. It is technically more convenient to show
that I = P(FORMLc) − C is an (Lc,VAR)-inconsistency property.
Note that if Γ ⊆ FORMLc , then Γ ∈ I if and only if Γ is not finitely
satisfiable or infinitely many constant symbols from Lc − L occur
in Γ.

Let Γ ⊆ FORMLc . If infinitely many constant symbols from Lc−L
occur in Γ, then Γ ∈ I. Therefore, for the remainder of this example,

760 Logical Foundations of Computer Science — Volume 2

we assume that only finitely many constant symbols in Lc−L occur
in Γ, that is, Γ is a set with limited constant symbols.

It is clear that if {ϕ, (¬ϕ)} ⊆ Γ for some atomic formula ϕ, then
Γ ∈ I.

Let now ϕ ∈ Γ − LITLc be neither a γ-formula nor a δ-formula
and be such that Γ ∪ K ∈ I for every constituent K of ϕ. Note
that since each constituent K is finite, only finitely many con-
stant symbols from Lc − L occur in Γ ∪ K. Thus, Γ ∪ K must
not be finitely satisfiable. Using an argument virtually identical to
the one used in Example 2.7.23, the reader can easily show that Γ
is not finitely satisfiable and hence Γ ∈ I. (Note that this argu-
ment does not work for δ-formulas since they have infinitely many
constituents.)

Assume now that ϕ ∈ Γ is a δ-formula and Γ ∪ K ∈ I, that is,
Γ∪K is not finitely satisfiable, for each constituent K of ϕ. Suppose
that ϕ = (∃x)ψ. Our assumption means that for every t ∈ TERMLc ,
Γ ∪ {〈ψ〉x:=t} is not finitely satisfiable. Let c be a constant sym-
bol in Lc − L that does not occur in Γ. Since Γ ∪ {〈ψ〉x:=c} is not
finitely satisfiable, there is some finite subset Γ0 of Γ∪{〈ψ〉x:=c} that
is not satisfiable. Define Γ′

0 = Γ0 ∩ Γ. The set Γ′
0 ∪ {ϕ} is a finite

subset of Γ, and we claim that it is unsatisfiable. Suppose this set
were satisfiable. Then, since c does not occur in the set, by Theo-
rem 4.6.52, Γ′

0∪{〈ψ〉x:=c} is satisfiable, which implies the satisfiabil-
ity of Γ0. If ϕ = (¬(∀x)ψ), the argument is similar and is left to the
reader.

Next we consider the γ-formula case. Suppose that ϕ = (∀x)ψ ∈ Γ
and that Γ ∪ {〈ψ〉x:=t} ∈ I, that is this set is not finitely satisfiable
for some t ∈ TERMLc. Thus, there is a finite subset Γ0 of this set
that is unsatisfiable. Define Γ′

0 = Γ0 ∩ Γ. Then, Γ′
0 ∪ {ϕ} is a finite

subset of Γ and we claim that it is unsatisfiable. Indeed, if Γ′
0 ∪ {ϕ}

were satisfiable, this would imply that Γ′
0 ∪ {〈ψ〉x:=t} is satisfiable,

by Theorem 4.6.51, which in turn would imply that Γ0 is satisfiable.
When ϕ = (¬(∃x)ψ), the proof is similar, and takes into account that
(¬(∃x)ψ) ≡ (∀x)(¬ψ) which in turn gives (¬(∃x)ψ) |= 〈(¬ψ)〉x:=t.

Finally, suppose that L contains = and that Γ∪ {α} ∈ I, that is,
Γ ∪ {α} is not finitely satisfiable, where α ∈ INSTLc,VAR(Eq=,Lc).
Let Γ0 ⊆ Γ ∪ {α} be a finite unsatisfiable set and let Γ′

0 = Γ0 ∩ Γ.
Then Γ′

0 is a finite subset of Γ and is not satisfiable. Indeed, if Γ′
0

were satisfiable, since α is logically valid by Corollary 4.6.10, this

First-Order Logic–Syntax and Semantics 761

would imply that Γ′
0∪{α} is satisfiable and this would in turn imply

that Γ0 is satisfiable.

4.12.3 Truth Sets

The concept of truth set in first-order logic lacks some of the sat-
isfying properties which its propositional counterpart enjoys. Nev-
ertheless, it is worth considering it because of its relationship with
Hintikka sets.

Theorem 4.12.29. Let L be a first-order language and let V be an
L-suitable set of variables. Suppose that Γ ⊆ FORML(V) is a set of
formulas such that for every ϕ ∈ FORML(V), (¬ϕ) ∈ Γ if and only
if ϕ ∈ Γ.

For every formula ϕ = (αCβ) in FORML(V), where C is a binary
connective symbol, the following pairs of statements are equivalent:

• Cpd: ϕ ∈ Γ implies K ⊆ Γ for some K ∈ DL,V (ϕ);
• Cnpu: H ⊆ Γ for some H ∈ DL,V ((¬ϕ)) implies (¬ϕ) ∈ Γ;

and

• Cpu: K ⊆ Γ for some K ∈ DL,V (ϕ) implies ϕ ∈ Γ;
• Cnpd: (¬ϕ) ∈ Γ implies H ⊆ Γ for some H ∈ DL,V ((¬ϕ)).

Further, if ϕ = (Qx)ψ, where Q is a quantifier symbol, then the
following pairs of statements are equivalent:

• Qpd: ϕ ∈ Γ implies K ⊆ Γ for some K ∈ DL,V (ϕ);
• Qnpu: H ⊆ Γ for some H ∈ DL,V ((¬ϕ)) implies (¬ϕ) ∈ Γ;

and

• Qpu: K ⊆ Γ for some K ∈ DL,V (ϕ) implies ϕ ∈ Γ;
• Qnpd: (¬ϕ) ∈ Γ implies H ⊆ Γ for some H ∈ DL,V ((¬ϕ)).

Proof. We discuss only the equivalence of ∀pd and ∀npu. Suppose
that ∀pd holds for ϕ = (∀x)ψ. Assume that for some H ∈ DL,V ((¬ϕ)),
we have H ⊆ Γ but (¬ϕ) ∈ Γ. Then, we have 〈(¬ψ)〉x:=t0 =
(¬〈ψ〉x:=t0) ∈ Γ, for some t0 ∈ TERML(V) and ϕ ∈ Γ. Because
of ∀pd, we have {〈ψ〉x:=t | t ∈ TERMLV } ⊆ Γ, so we have both
(¬〈ψ〉x:=t0) and 〈ψ〉x:=t0 in Γ, which is a contradiction.

762 Logical Foundations of Computer Science — Volume 2

Conversely, suppose that ∀npu holds and that ϕ ∈ Γ. If the single
(L, V)-constituent K of ϕ is not included in Γ, then there is t0 ∈
TERML(V) such that 〈ψ〉x:=t0 ∈ Γ. Since 〈ψ〉x:=t0 ∈ FORML(V), by
Theorem 4.12.4, we have (¬〈ψ〉x:=t0) = 〈(¬ψ)〉x:=t0 ∈ Γ, so, by ∀npu,
(¬ϕ) ∈ Γ, which is a contradiction. �

Definition 4.12.30. Let L be a first-order language and let V be
an L-suitable set of variables. A set of formulas Γ ⊆ FORML(V) is
an (L, V)-truth set if the following conditions are satisfied:

(1) for every formula ϕ ∈ FORML(V), (¬ϕ) ∈ Γ if and only if ϕ ∈ Γ;
(2) for every positive formula ϕ ∈ FORML(V) that is not atomic,

we have ϕ ∈ Γ if and only if at least one of its (L, V)-constituents
is included in Γ;

(3) if L contains the equality symbol, then INSTL,V (Eq=,L) ⊆ Γ.

We will refer to an (L, ∅)-truth set as an L-truth set.

Corollary 4.12.31. Every (L, V)-truth set is an (L, V)-Hintikka
set.

Proof. The argument is similar to that of Theorem 2.7.15, using
Theorem 4.12.29. �

Using Theorem 4.12.29, we can give a useful alternative charac-
terization of truth set.

Theorem 4.12.32. Let L be a first-order language and let V be an
L-suitable set of variables. A set of formulas Γ ⊆ FORML(V) is an
(L, V)-truth set if and only if the following conditions are satisfied:

(1) for every formula ϕ ∈ FORML(V), (¬ϕ) ∈ Γ if and only if
ϕ ∈ Γ;

(2) for every positive or negated positive formula ϕ that is not a
literal, K ⊆ Γ for some K ∈ DL,V (ϕ) implies ϕ ∈ Γ;

(3) if L contains the equality symbol, then INSTL,V (Eq=,L) ⊆ Γ.

Proof. This follows immediately from Theorem 4.12.29. �

Definition 4.12.33. Let L be a first-order language and let V be a
set of variables. A set Γ of formulas is (L, V)-maximally satisfiable
if Γ ⊆ FORML(V), Γ is satisfiable, and there is no satisfiable set Γ′

such that Γ ⊂ Γ′ ⊆ FORML(V).

First-Order Logic–Syntax and Semantics 763

One can easily show, using the same argument as in Theo-
rem 2.7.12, that a satisfiable subset Γ of FORML(V) is (L, V)-
maximally satisfiable if and only if exactly one of the formulas ϕ and
(¬ϕ) belongs to Γ for every formula ϕ ∈ FORML(V). This observa-
tion is useful in the next theorem.

Theorem 4.12.34. Let L be a first-order language and let V be a
set of variables. A set Γ is (L, V)-maximally satisfiable if and only
if there is an L-structure A and σ ∈ ASSIGNA such that Γ = {ϕ ∈
FORML(V) | (A, σ) |= ϕ}.

Proof. Suppose that Γ is (L, V)-maximally satisfiable. Since Γ is
satisfiable there is an L-structure A and σ ∈ ASSIGNA such that
Γ ⊆ {ϕ ∈ FORML(V) | (A, σ) |= ϕ}. If this inclusion were strict,
then Γ would not be (L, V)-maximally satisfiable.

Conversely, suppose that Γ = {ϕ ∈ FORML(V) | (A, σ) |= ϕ} for
some L-structure A and σ ∈ ASSIGNA. Obviously, Γ is satisfiable
and for every ϕ ∈ FORML(V), exactly one of ϕ and (¬ϕ) is in Γ.
Thus, Γ is maximally satisfiable. �

Theorem 4.12.35. Let L be a first-order language and let V be an
L-suitable set of variables. A set Γ ⊆ FORML(V) is an (L, V)-truth
set if and only if there is an L-structure A and σ ∈ ASSIGNA such
that (A, σ) is V -named and

Γ = {ϕ ∈ FORML(V) | (A, σ) |= ϕ}.

Proof. Let Γ be an (L, V)-truth set and, therefore, an (L, V)-
Hintikka set by Corollary 4.12.31. Suppose, initially, that L does
not contain =. Theorem 4.12.17 shows that there is a V -Herbrand
structureA for L and σ ∈ ASSIGNA such that σ(x) = x for all x ∈ V
and (A, σ) |= Γ. Conversely, if (A, σ) |= ϕ ∈ FORML(V), then we
must have ϕ ∈ Γ, since, otherwise, (¬ϕ) ∈ Γ and then (A, σ) |= (¬ϕ),
and this is a contradiction. By Example 4.12.10, (A, σ) is V -named,
and this gives the desired conclusion.

The argument for the case when =∈ L follows along the same line
using Theorem 4.12.20 and Example 4.12.10.

Now suppose that Γ = {ϕ ∈ FORML(V) | (A, σ) |= ϕ}, where
(A, σ) is V -named. It is clear (¬ϕ) ∈ Γ if and only if ϕ ∈ Γ, for
all ϕ ∈ FORML(V). The second condition of the definition of truth

764 Logical Foundations of Computer Science — Volume 2

set follows from Theorem 4.12.11. The third condition is immediate
since every formula in INSTL,V (Eq=,L) is logically valid. �

Corollary 4.12.36. Every (L, V)-truth set is an (L, V)-maximally
satisfiable set.

Proof. This follows immediately from Theorems 4.12.34
and 4.12.35. �

The next example shows that, contrary to propositional logic, the
converse of Corollary 4.12.36 does not hold.

Example 4.12.37. Let L be any first-order language that contains
relation symbols that are not propositional constants and V be an
L-suitable set of variables. Let R ∈ L be an n-ary relation symbol
with n > 0 and let Γ = {(∃x)(¬R(x, t0, . . . , t0)} ∪ {R(t, t0, . . . , t0) |
t ∈ TERML(V)}, where t0 is an arbitrary, fixed term in TERML(V).
In Example 4.12.24, we saw that Γ is a satisfiable set. Let (A, σ) |= Γ.
Then Γ is included in the (L, V)-maximally satisfiable set Γ′ = {ϕ ∈
FORML(V) | (A, σ) |= ϕ}. If Γ′ were an (L, V)-truth set, then it
would have to contain (¬R(t, t0, . . . , t0)) for some t ∈ TERML(V)
and this would prevent it from being satisfiable. In fact, we have
shown the stronger result that Γ′ is not even a Hintikka set even
though it is maximally satisfiable.

Theorem 4.12.38. Let L be a first-order language and V be an L-
suitable set of variables. Then, every (L, V)-Hintikka set is contained
in an (L, V)-truth set.

Proof. Let Γ be an (L, V)-Hintikka set. Suppose first that = ∈ L.
By Theorem 4.12.17, (A, σ) |= Γ, where A is a V -Herbrand structure
for L and σ(x) = x for all x ∈ V . Since, by Example 4.12.10, (A, σ)
is a V -named pair, the set {ϕ ∈ FORML(V) | (A, σ) |= ϕ}, which
contains Γ, is a truth set, by Theorem 4.12.35.

The case when =∈ L is handled similarly, using Theorem 4.12.20.
�

In propositional logic, every satisfiable set is contained in a maxi-
mally satisfiable set and, therefore, in a truth set. In first-order logic,
there are maximally satisfiable sets that are not truth sets, so the

First-Order Logic–Syntax and Semantics 765

situation is more complicated. Nevertheless, we have the following
result.

Theorem 4.12.39. Let L be a first-order language and V be a set
of variables. For every satisfiable set of formulas Γ ⊆ FORML(V),
there is an (Lc, V)-truth set Γ′ with Γ ⊆ Γ′.

Proof. We saw in Theorem 4.12.25, that every satisfiable set of
formulas Γ ⊆ FORML(V) is a member of an (Lc, V)-consistency
property. Since V is Lc-suitable (even if V is not L-suitable), by
Theorem 4.12.23, Γ is included in an (Lc, V)-Hintikka set Γ′. Finally,
by Theorem 4.12.38, Γ′ is contained in an (Lc, V)-truth set. �

4.12.4 Hintikka Sets of Signed Formulas

Definition 4.12.40. Let L be a first-order language and V be an
L-suitable set of variables. Further, let t0, t1, . . . be the enumeration
of TERML(V) in the standard order. The mapping

dL,V : (SFORML − (Bool×AFORML))

−→ Seq(P(SFORML)) ∪ ISeq(P(SFORML))

is given by the following table:

Signed Formula bα dL,V (bα)
T(¬ϕ) ({Fϕ})
F(¬ϕ) ({Tϕ})

T(ϕ ∧ ψ) ({Tϕ,Tψ})
F(ϕ ∧ ψ) ({Fϕ}, {Fψ})
T(ϕ ∨ ψ) ({Tϕ}, {Tψ})
F(ϕ ∨ ψ) ({Fϕ,Fψ})
T(ϕ→ ψ) ({Fϕ}, {Tψ})
F(ϕ→ ψ) ({Tϕ,Fψ})
T(ϕ↔ ψ) ({Tϕ,Tψ}, {Fϕ,Fψ})
F(ϕ↔ ψ) ({Tϕ,Fψ}, {Fϕ,Tψ})
T(∀x)ϕ ({T〈ϕ〉x:=t | t ∈ TERML(V)})
F(∀x)ϕ ({F〈ϕ〉x:=t0}, {F〈ϕ〉x:=t1}, . . .)
T(∃x)ϕ ({T〈ϕ〉x:=t0}, {T〈ϕ〉x:=t1}, . . .)
F(∃x)ϕ ({F〈ϕ〉x:=t | t ∈ TERML(V)})

766 Logical Foundations of Computer Science — Volume 2

Let bϕ be a signed formula such that ϕ is not a variable. The (L, V)-
constituent sequence of bϕ is the sequence dL,V (bϕ). The (L, V)-
constituent set of bϕ is the set DL,V (bϕ) that consists of all sets of
formulas that occur in dL,V (bϕ). Every such set of formulas is called
an (L, V)-constituent of bϕ.

Note that if b′ψ belongs to an (L, V)-constituent of a signed for-
mula bϕ, then ψ = 〈θ〉x:=t, where θ is an immediate subformula of
ϕ. Therefore, we have ‖ b′ψ ‖<‖ bϕ ‖.

Theorem 4.12.41. Let L be a first-order language, and let V be
an L-suitable set of variables. If b′ψ ∈ K ∈ DL,V (bϕ), where ϕ ∈
FORML − LITL, then FV(b′ψ) ⊆ FV(bϕ) ∪ V .

Proof. The proof can be done by inspecting the definition of the
constituents of bϕ and applying Corollary 4.6.48. �

Corollary 4.12.42. Any member of an (L, V)-constituent of a
signed formula in SFORML(V) is itself in SFORML(V).

Proof. The statement follows from the previous theorem. �

Corollary 4.12.43. Let L be a first-order language that contains
a constant symbol. If bϕ is a closed signed L-formula that is not a
literal, then every signed formula in an L-constituent of bϕ is closed.

Proof. The statement follows immediately from Corollary 4.12.42
by taking V = ∅. �

The analogue of Theorem 4.12.11 for signed formulas is given
next.

Theorem 4.12.44. Let L be a first-order language and V be an L-
suitable set of variables. If A is an L-structure, σ ∈ ASSIGNA, and
(A, σ) is V -named, then for all signed L-formulas bα such that α is
not atomic, we have (A, σ) |= bα if and only if (A, σ) |= K for some
(L, V)-constituent K of bα.

Proof. The proof is similar to that of Theorem 4.12.11 and is left
to the reader. �

Corollary 4.12.45. Let L be a first-order language that contains at
least one constant symbol. If A is a named L-structure, then for all

First-Order Logic–Syntax and Semantics 767

signed L-formulas bα where α is closed and is not atomic, A |= bα
if and only if A |= K for some L-constituent K of bα.

Proof. Again, the proof is similar to the proof of Corollary 4.12.12.
�

Corollary 4.12.46. Let V be an L-suitable set of variables, where
L is a first-order language. Also, let A be a V -Herbrand structure for
L. If σ ∈ ASSIGNA is such that σ(x) = x for all x ∈ V , then for all
signed L-formulas bα such that α is not atomic, (A, σ) |= bα if and
only if (A, σ) |= K for some (L, V)-constituent K of bα.

If L contains a constant symbol and A0 is a Herbrand structure
for L, then, for every signed L-formula bα such that α is closed and
not atomic, we have A0 |= bα if and only if A0 |= K for some L-
constituent K of bα.

Proof. The proof is similar to the proof of Corollary 4.12.13 �

Corollary 4.12.47. Let V be an L-suitable set of variables, where
L is a first-order language. Also, let A be a V -Herbrand structure for
L, ρ be a congruence of A and B = A/ρ. If σ ∈ ASSIGNB is such
that σ(x) = [x] for all x ∈ V , then for all signed L-formulas bα such
that α is not atomic, (B, σ) |= bα if and only if (B, σ) |= K for some
(L, V)-constituent K of bα.

If L contains a constant symbol, A0 is a Herbrand structure for L,
ρ is a congruence of A0, and B0 = A0/ρ, then for all signed formulas
bα such that α is closed and not atomic, we have B0 |= bα if and only
if B0 |= K for some constituent K of bα.

Proof. The proof is similar to that of Corollary 4.12.14. �

Theorem 4.12.48. Let L be a first-order language, V be an L-
suitable set of variables, and bϕ be a signed L-formula. Suppose that
A is an L-structure and σ ∈ ASSIGNA.

(1) If bϕ is neither a γ-signed formula nor a δ-signed formula,
then (A, σ) |= bϕ if and only if (A, σ) |= K for some (L, V)-
constituent K of bϕ.

(2) If ϕ is a γ-signed formula, then (A, σ) |= bϕ implies (A, σ) |= K
for the (L, V)-constituent K of bϕ.

(3) If bϕ is a δ-signed formula and K is an (L, V)-constituent of bϕ,
then (A, σ) |= K implies (A, σ) |= bϕ.

768 Logical Foundations of Computer Science — Volume 2

Proof. This result can be obtained from Theorem 4.12.15 and
Definition 4.5.69. We discuss here only one case. Suppose that bϕ
is the δ-signed formula F(∀x)ψ and (A, σ) |= F〈ψ〉x:=t for some
L-structure A and σ ∈ ASSIGNA. Then, (A, σ) |= (¬〈ψ〉x:=t).
By Theorem 4.6.50, we have (A, σ) |= 〈(¬ψ)〉x:=t, which implies
(A, σ) |= (¬(∀x)ψ), by the third part of Theorem 4.12.15. Again,
by Definition 4.5.69, we have (A, σ) |= F(∀x)ψ. �

Definition 4.12.49. Let L be a first-order language, V be an L-
suitable set of variables, and Δ be a set of signed L-formulas such
that FV(Δ) ⊆ V .

If L does not contain the equality symbol, then Δ is an (L, V)-
Hintikka set if FV(Δ) ⊆ V and the following conditions are satisfied:

(1) for every atomic L-formula ϕ, at most one of the signed formulas
Tϕ,Fϕ is in Δ;

(2) if bϕ ∈ Δ and ϕ is not atomic, then there is a constituent K of
bϕ such that K ⊆ Δ.

If L does contain the equality symbol, then Δ is an (L, V)-
Hintikka set if Δ satisfies the previous two conditions and Tϕ ∈ Δ
for every ϕ ∈ INSTL,V (Eq=,L).

We refer to an (L, ∅)-Hintikka set of signed formulas as an L-
Hintikka set of signed formulas.

Note that an L-Hintikka set of signed formulas consists of signed
closed formulas.

Theorem 4.12.50. Let L be a first-order language without equality,
V be an L-suitable set of variables, and Δ be an (L, V)-Hintikka set.
Then, Δ is satisfiable. In fact, there is a V -Herbrand structure A
for L and σ ∈ ASSIGNA such that σ(x) = x for all x ∈ V and
(A, σ) |= Δ.

Proof. Let A = STRL,V (S) be the V -Herbrand structure for L
determined by S = {ϕ ∈ AFORML | Tϕ ∈ Δ} (as introduced in
Theorem 4.10.6) and let σ ∈ ASSIGNA be an assignment such that
σ(x) = x for every x ∈ V .

We prove by course-of-values induction on ‖ bϕ ‖ that if bϕ ∈ Δ,
then (A, σ) |= bϕ. Suppose that bϕ ∈ Δ and that the result holds for
all b′ψ with ‖ b′ψ ‖<‖ bϕ ‖. First, suppose that ϕ is atomic. If b = T,

First-Order Logic–Syntax and Semantics 769

then ϕ ∈ S, so, (A, σ) |= ϕ by Lemma 4.10.11, that is, (A, σ) |= bϕ.
If b = F, then Tϕ ∈ Δ, by the definition of Hintikka set, so ϕ ∈ S.
Consequently, (A, σ) |= ϕ, by the same lemma, which allows us to
conclude that (ϕ, σ) |= Fϕ = bϕ.

Now suppose that ϕ is not atomic. Then, by the definition of Hin-
tikka set, there is a constituent K of bϕ such that K ⊆ Δ. Since the
norm of each signed formula inK is less than the norm of bϕ, we have
(A, σ) |= K, by inductive hypothesis. Thus, by Corollary 4.12.46,
(A, σ) |= bϕ. �

In preparation for extending Theorem 4.12.50 to languages with
equality, we need the following technical result.

Lemma 4.12.51. If Δ is an (L, V)-Hintikka set of signed formulas
for some first-order language L and some L-suitable set of variables
V and Δ contains a formula F(ϕ0∧ϕ1∧· · ·∧ϕn−1), then Δ contains
at least one formula Fϕi with 0 ≤ i ≤ n− 1.

Proof. The argument is by induction on n and is left to the
reader. �

Lemma 4.12.52. Let L be a first-order language with equality and
let V be an L-suitable set of variables. Suppose that Δ is an (L, V)-
Hintikka set and S = {ϕ ∈ AFORML−{=}(V) | Tϕ ∈ Δ}. Define the
relation ρ on TERML(V) by tρs if and only if T(t = s) ∈ Δ. Then,
ρ is a congruence of the Herbrand structure A = STRL,V (S).

Proof. The proof is similar to the one given for Lemma 4.12.19
and it is left to the reader. �

The counterpart of Theorem 4.12.50 for languages with equality
is given next.

Theorem 4.12.53. Let L be a first-order language with equality, V
be an L-suitable set of variables, and Δ be an (L, V)-Hintikka set of
signed formulas. Then, Δ is satisfiable. In fact, there is a V -Herbrand
structure A for L, a congruence ρ of A and σ ∈ ASSIGNA/ρ such
that σ(x) = [x]ρ for all x ∈ V and (A/ρ, σ) |= Δ.

Proof. The proof is along the lines of the proof of Theorem 4.12.20
and is left to the reader. �

770 Logical Foundations of Computer Science — Volume 2

4.13 Theories

In this section, we examine the connection between classes of L-
structures and classes of L-sentences. We will use Σ with or without
subscripts or superscripts to denote sets of sentences.

Definition 4.13.1. Let L be a first-order language. An L-theory is a
set of L-sentences Σ such that for every L-sentence ϕ, Σ |= ϕ implies
ϕ ∈ Σ.

In other words, an L-theory is a set of L-sentences closed under
logical implication.

Example 4.13.2. The set SENTL of all L-sentences is clearly an
L-theory.

Σ0 = {ϕ ∈ SENTL | |= ϕ} is an L-theory that is a subset of any
other L-theory. To prove that Σ0 is a theory, let ϕ0 be an L-sentence
such that Σ0 |= ϕ0. Since Σ0 consists of valid L-sentences, we have
A |= Σ0 and so A |= ϕ0 for every L-structure A, hence ϕ0 is a valid
L-sentence and therefore is in Σ0.

Let Σ be an arbitrary L-theory. If ϕ0 ∈ Σ0, then it is a logically
valid sentence. Therefore, Σ |= ϕ0, which implies ϕ0 ∈ Σ. This allows
us to conclude that Σ0 ⊆ Σ.

In the next theorem, we will use the notion of closure system from
Section 1.3.

Theorem 4.13.3. Let L be a first-order language. The collection of
all L-theories is a closure system on SENTL.

Proof. Note that the union of all L-theories is the L-theory of
all L-sentences discussed in Example 4.13.2. Let D be a nonempty
collection of L-theories and let Σ =

⋂
D. If Σ |= ϕ, then for every

Σ′ ∈ D, we have Σ′ |= ϕ by the fifth part of Theorem 4.5.51 which
implies ϕ ∈ Σ′. Thus, ϕ ∈

⋂
D = Σ. �

It follows from Theorem 4.13.3 that for every Σ ⊆ SENTL there
is a smallest L-theory that contains Σ which can be obtained as the

First-Order Logic–Syntax and Semantics 771

intersection of all L-theories containing Σ. The next theorem gives
an explicit characterization of this smallest theory.

Theorem 4.13.4. Let Σ be a set of L-sentences, where L is a first-
order language. Then, Σ′ = {ϕ ∈ SENTL | Σ |= ϕ} is the smallest
L-theory that contains Σ.

Proof. To verify that Σ′ is an L-theory, let ψ be an L-sentence
such that Σ′ |= ψ. If A |= Σ, then, by the definition of Σ′, we have
A |= Σ′ which implies A |= ψ, so ψ ∈ Σ′.

Let Σ1 be an L-theory such that Σ ⊆ Σ1 and let ϕ be a sentence
in Σ′. Since Σ ⊆ Σ1 it is clear that Σ1 |= ϕ, hence ϕ ∈ Σ1 because
Σ1 is a theory. Thus, Σ′ ⊆ Σ1 for any L-theory Σ1 that contains Σ.

�

We will denote the set Σ′ introduced in Theorem 4.13.4 by CnL(Σ)
and we will refer to this set as the L-theory generated by Σ.

Corollary 4.13.5. Let L be a first-order language. If Σ,Σ′ are sets
of L-sentences, we have:

(1) if Σ ⊆ Σ′, then CnL(Σ) ⊆ CnL(Σ′);
(2) CnL(CnL(Σ)) = CnL(Σ).

Proof. The corollary follows from Theorem 4.13.4 by observing
that ThL is the closure operator associated with the closure system
of L-theories (see Lemma 1.3.10). �

Theorem 4.13.6. Let L be a first-order language and let A be a
collection of L-structures. The set of L-sentences Σ = {ϕ ∈ SENTL |
A |= ϕ for all A ∈ A} is an L-theory.

Proof. Let ψ be an L-sentence such that Σ |= ψ. If A ∈ A, then
A |= Σ, so A |= ψ which implies ψ ∈ Σ. �

Definition 4.13.7. Let L be a first-order language and let A be a
collection of L-structures. The set of L-sentences Σ introduced in
Theorem 4.13.6 is called the theory of A and is denoted ThL(A).

If A = {A}, we denote ThL(A) by ThL(A) and we refer to it as
the theory of A.

Example 4.13.8. Let Lpra = {0, s,+, <,=} be the first-order lan-
guage introduced in Example 4.2.3. The Lpra-structure Apra, was

772 Logical Foundations of Computer Science — Volume 2

introduced as a reduct of the standard model of arithmetic Aar and
is given by |Apra| = N, 0Apra = 0, sApra is the successor function on
N given by sApra(n) = n+1, +Apra is the addition function onN, and
<Apra= {(x, y) ∈ N2 | x is less than y}. The theory ThLpra(Apra) is
known as Presburger arithmetic.

Example 4.13.9. The theory ThLar(Aar), where Aar is the struc-
ture introduced in Example 4.4.4, is known as the theory of arith-
metic and we will denote it by Thar. The term “theory of arithmetic”
introduced in this example, justifies the term “standard model of
arithmetic” introduced much earlier.

Recall that sn(0) is the Aar-term s(s(· · · s(︸ ︷︷ ︸
n

0) · · ·)) for n ∈ N.

The following formulas constitute useful examples of members of the
theory of arithmetic.

(∀x)(¬(x < 0)) (4.11)

(∀x)(∀y)(x < y ∨ x = y ∨ y < x) (4.12)

(∀x)((x < sn+1(0))→ (x = 0 ∨ x = s(0) ∨ · · ·
· · · ∨ x = sn(0))) for n ∈ N (4.13)

sn(0) = sm(0) for n,m ∈ N, n = m (4.14)

sn(0) < sm(0) for n,m ∈ N, n < m (4.15)

sn(0) + sm(0) = sn+m(0) for n,m ∈ N (4.16)

sn(0) · sm(0) = snm(0) for n,m ∈ N (4.17)

Definition 4.13.10. A nonstandard model of arithmetic is a model
of the theory of arithmetic that is not isomorphic to the standard
model Aar.

We will now show the existence of countable nonstandard models
of arithmetic. This is an application of the Compactness Theorem.

Theorem 4.13.11. There is a countable nonstandard model of
arithmetic.

First-Order Logic–Syntax and Semantics 773

Proof. Let L = Lar ∪ {c} be the first-order language obtained by
adding the constant symbol c to Lar and let Σ be Thar ∪ {sn(0) =
c | n ∈ N}. It is easy to prove by induction on n that (sn(0))Aar = n
for n ∈ N.

Let Σ0 be a finite subset of Σ and let m be the largest n such that
sn(0) = c belongs to Σ0. (If there is no such n, we definem to be −1.)
Let B be the expansion of Aar to L obtained by defining cB = m+1.
Clearly, B is a model of Σ0, so every finite subset of Σ0 has a model.
By the Compactness Theorem (Theorem 4.10.43), there is a model
B0 of Σ. By Theorem 4.10.58, we can assume that B0 is countable.
Let B1 be the reduct of B0 to Lar, which is also countable. Then, by
Corollary 4.5.25, B1 is a model of arithmetic. We will show that B1
is not isomorphic to Aar.

Suppose that h : N −→ |B1| were an isomorphism. We will prove
by induction on n that h(n) = (sn(0))B1 . For n = 0, we have h(0) =
h(0Aar) = 0B1 , by definition of morphism. Suppose that the equality
holds for n. Then,

h(n+ 1) = h(sAar (n))

= sB1(h(n))

= sB1((sn(0))B1)

(by inductive hypothesis)

= (sn+1(0))B1

(by Theorem 4.5.5).

Since cB0 = (sn(0))B0 = (sn(0))B1 = h(n), it follows that h cannot
be an onto mapping, so h is not an isomorphism. �

Theorem 4.13.12. Let B be a model of arithmetic and let A =
{(sn(0))B | n ∈ N}. Then, A is the domain of a substructure A of B
that is isomorphic to Aar. Moreover, for every b ∈ |B|− |A|, we have
a <B b for every a ∈ |A|.

Proof. Define a function h : N −→ |B| by h(n) = (sn(0))B, for
n ∈ N. We show that h is a monomorphism between Aar and B.

774 Logical Foundations of Computer Science — Volume 2

We have h(0Aar) = h(0) = 0B by the definition of h. Note that for
n ∈ N

h(sAar(n)) = h(n + 1)

= (sn+1(0))B

(by definition of h)

= sB((sn(0))B)

= sB(h(n)).

Since B is a model of the formulas (4.15)–(4.17), it follows that h is
a morphism. Injectivity of h follows from the fact that B is a model
of formula (4.14). By Theorem 4.4.26, A = Ran(h) is the domain of
a unique substructure A of B. Since h is a bijection between N and
A, it follows that A is isomorphic to Aar.

Let b be in |B|−|A| and let a ∈ |A|. Suppose initially that a = 0B.
Since B is a model of formulas (4.11) and (4.12) and b ∈ |A|, it follows
that a <B b. If a = 0B, then a = (sn+1(0))B for some n ∈ N. Note
that we can have a <B b, a = b, or b <B a, because B is a model of
formula (4.12). If a were equal to b, this would imply b ∈ |A|, which
is not the case. If b <B a = (sn+1(0))B, the fact that B is a model
of formula (4.13) would imply b = (sj(0))B for some j ≤ n and this
would mean that b ∈ |A|. Thus, a <B b. �

Definition 4.13.13. Let B be a model of arithmetic. The standard
part of B is the substructure A introduced in Theorem 4.13.12. Any
element of |A| is called a standard element, while every member of
|B| − |A| will be referred to as a nonstandard element of B.

Definition 4.13.14. Let L be a first-order language and let Σ ⊆
SENTL. The set of L-structures that are models of Σ will be denoted
by ModL(Σ).

A class of L-structures is called an L-first-order property if it
equals ModL(Σ) for some set of L-sentences Σ.

Theorem 4.13.15. Let L be a first-order language, Σ,Σ′ be sets of
L-sentences and A,A′ be collections of L-structures. Then the fol-
lowing hold:

(1) If Σ ⊆ Σ′, then ModL(Σ′) ⊆ ModL(Σ).
(2) If A ⊆ A′, then ThL(A′) ⊆ ThL(A).

First-Order Logic–Syntax and Semantics 775

(3) Σ ⊆ ThL(ModL(Σ)).
(4) A ⊆ ModL(ThL(A)).

Proof. The first two parts of the theorem are immediate conse-
quences of the definitions of ThL and ModL. To prove the third part,
let ϕ ∈ Σ. If A |= Σ, then clearly A |= ϕ, so ϕ ∈ ThL(ModL(Σ)).
The fourth part is equally simple and is left to the reader. �

Theorem 4.13.16. Let L be a first-order language and let Σ be a
set of L-sentences. We have CnL(Σ) = ThL(ModL(Σ)).

Proof. Since ThL(ModL(Σ)) is an L-theory which contains Σ, we
have CnL(Σ) ⊆ ThL(ModL(Σ)) by Theorem 4.13.4. Conversely, let
ϕ be a formula in ThL(ModL(Σ)). This means that for every L-
structure A such that A |= Σ we have A |= ϕ which implies Σ |= ϕ.
Thus, ϕ ∈ CnL(Σ). �

Corollary 4.13.17. Let L be a first-order language, A be an L-
structure and Σ be a set of L-sentences. If A |= Σ, then CnL(Σ) ⊆
ThL(A).

Proof. Since A |= Σ, we have {A} ⊆ ModL(Σ), so ThL(ModL

(Σ)) ⊆ ThL(A) by the second part of Theorem 4.13.15. Applying
Theorem 4.13.16, we obtain the desired inclusion. �

Definition 4.13.18. Let L be a first-order language and let Σ be a
set of L-sentences. Σ is L-complete if for every L-sentence ϕ we have
either Σ |= ϕ or Σ |= (¬ϕ).

Σ is L-semantically consistent if there is no L-sentence ϕ such
that we have both Σ |= ϕ and Σ |= (¬ϕ).

If Σ is an L-theory, we can replace in the above definition Σ |= ϕ and
Σ |= (¬ϕ) by ϕ ∈ Σ and (¬ϕ) ∈ Σ. Therefore, Σ is an L-complete and
L-semantically consistent L-theory if and only if for every L-sentence
ϕ, exactly one of ϕ and (¬ϕ) belongs to Σ.

Theorem 4.13.19. Let Σ be a set of L-sentences. Σ is L-
semantically consistent if and only if Σ has a model.

Proof. Suppose that Σ is L-semantically consistent and let ϕ be
an L-sentence. Then, either Σ |= ϕ or Σ |= (¬ϕ), so there is a formula
ψ such that Σ |= ψ. This implies that Σ is satisfiable and therefore
Σ has a model since it consists of L-sentences.

776 Logical Foundations of Computer Science — Volume 2

Conversely, suppose that Σ has a model A and is not L-
semantically consistent. Then, Σ |= ϕ and Σ |= (¬ϕ) for some L-
sentence ϕ. This implies both A |= ϕ and A |= (¬ϕ), which is a
contradiction. �

Example 4.13.20. If A is an L-structure, then ThL(A) is an L-
complete, L-semantically consistent theory. We will actually prove in
Theorem 4.13.27 that only theories of the form ThL(A) are complete
and semantically consistent.

Theorem 4.13.21. Let L be a decidable first-order language and Σ
be a semidecidable, L-complete theory. Then, Σ is decidable.

Proof. If Σ were not L-semantically consistent, then there would
be no model for Σ by Theorem 4.13.19, so Σ = SENTL, which implies
the decidability of Σ. Thus, we can assume that Σ is L-semantically
consistent. Given an L-sentence ϕ, we begin by running in parallel
the semideciding algorithm for Σ on ϕ and (¬ϕ). Exactly one of these
computations must stop and output 1, due to the L-completeness and
L-semantic consistency of Σ. If the first computation to halt is the
one we ran on ϕ, then ϕ ∈ Σ; otherwise, ϕ ∈ Σ. �

Corollary 4.13.22. If L is a decidable language and Σ is an L-
complete theory that is undecidable, then Σ is not semidecidable.

Proof. This follows immediately from Theorem 4.13.21. �

Theorem 4.13.23. Let L be a first-order language, let Σ be an L-
complete theory, and let Σ′ be an L-semantically consistent theory.
If Σ ⊆ Σ′, then Σ = Σ′.

Proof. Under the hypotheses of the theorem, suppose that ϕ ∈
Σ′−Σ. Then, (¬ϕ) ∈ Σ because Σ is L-complete and thus (¬ϕ) ∈ Σ′,
which contradicts the L-semantical consistency of Σ′. �

Theorem 4.13.24. Let L be a first-order language and let A be a
collection of L-structures. The theory ThL(A) is L-complete if and
only if for every A,B ∈ A, we have ThL(A) = ThL(B).

Proof. Suppose that for every A,B ∈ A, we have ThL(A) =
ThL(B). If A is empty, then ThL(A) = SENTL so it is L-complete.
If A is not empty, then ThL(A) =

⋂
{ThL(A) | A ∈ A} = ThL(B)

for every B ∈ A. By Example 4.13.20, ThL(A) is complete.

First-Order Logic–Syntax and Semantics 777

Conversely, suppose that ThL(A) is complete and B ∈ A. Then
ThL(A) ⊆ ThL(B), which, by Theorem 4.13.23, implies ThL(A) =
ThL(B). Therefore, for any two L-structures A,B ∈ A, we have
ThL(A) = ThL(B). �

The previous theorem suggests the following definition.

Definition 4.13.25. Let L be a first-order language and let A,B be
two L-structures. We say that A is elementarily equivalent to B and
we write A ≡ B if ThL(A) = ThL(B).

Theorem 4.13.26. Let L be a first-order language and let Σ be an
L-theory. Σ is L-complete if and only if for all models A,B of Σ,
A ≡ B.

Proof. Since Σ is an L-theory, we have Σ = CnL(Σ). Theo-
rem 4.13.16 implies Σ = ThL(ModL(Σ)) . The statement now follows
immediately from Theorem 4.13.24. �

Theorem 4.13.27. Let L be a first-order language and let Σ be an
L-theory. Then, Σ is L-complete and L-semantically consistent if and
only if Σ = ThL(A) for some L-structure A.

Proof. By Example 4.13.20 it is clear that the equality Σ =
ThL(A) is sufficient for completeness and semantical consistency.
Conversely, let Σ be L-complete and L-semantically consistent. By
Theorem 4.13.19, there is an L-structure A that is a model of Σ, so
Σ ⊆ ThL(A). Since Σ is L-complete and ThL(A) is L-semantically
consistent, by Theorem 4.13.23, we have Σ = ThL(A). �

Theorem 4.13.28. Let A be an L-structure and ϕ be an L-formula.
The following statements are equivalent:

(1) A |= ϕ;
(2) ThL(A) |= ϕ;
(3) ThL(A)≈| ϕ.

Proof. The equivalence of the last two statements follows directly
from Supplement 60, which leaves us with the proof of the equiv-
alence of the first two statements. Suppose that A |= ϕ. Then, by
Theorem 4.5.58, we have A |= ϕ∀, which implies ϕ∀ ∈ ThL(A), hence
ThL(A) |= ϕ∀. By Corollary 4.5.38, we have ThL(A) |= ϕ.

778 Logical Foundations of Computer Science — Volume 2

Using the equivalence of the last two statements, it suffices to
show that the third statement implies the first. If ThL(A)≈| ϕ, then
every model of ThL(A) is a model of ϕ; in particular, A |= ϕ. �

4.14 Decidability and Undecidability in First-Order
Logic

We begin this section by showing the decidability of theories of finite
structures over finite languages. We remind the reader that this
amounts to showing that for every finite structure A, there is an
effective way of deciding whether a sentence ϕ belongs to the theory
of the structure, that is, A |= ϕ.

Before we present this argument, it is convenient to introduce the
notion of partial assignment.

Definition 4.14.1. Let A be an L-structure, where L is a first-
order language. A partial assignment over A is a partial function
σ : VAR� |A|.

For a partial assignment σ over A, define σA : TERML(Dom(σ))
−→ |A| by σA(t) = τA(t), where τ is an arbitrary extension of σ to
VAR. By Theorem 4.5.3, σA is well-defined.

Recall that FORML(V) = {ϕ ∈ FORML | FV(ϕ) ⊆ V }, where
V ⊆ VAR.

It follows from this definition, as the reader can easily verify, that
the following equalities hold:

σA(c) = cA (4.18)

σA(x) = σ(x) (4.19)

σA(f(t0, . . . , tn−1)) = fA(σA(t0), . . . , σA(tn−1)), (4.20)

for every constant symbol c in L, variable x ∈ Dom(σ), t0, . . . , tn−1 ∈
TERML(Dom(σ)) and n-ary function symbol f in L with n > 0.

For a partial assignment σ and ϕ ∈ FORML(Dom(σ)), we write
(A, σ) |= ϕ if (A, τ) |= ϕ, where τ is an arbitrary extension of σ to
VAR. By the Agreement Theorem for First-Order Logic, the defini-
tion of (A, σ) |= ϕ is sound.

First-Order Logic–Syntax and Semantics 779

The recursive definition of the meaning of the notation (A, σ) |= ϕ
presented on page 598 can be transferred ad literam to partial assign-
ments. In every case, we assume that the set of free variables of
the formulas is included in the domains of the appropriate par-
tial assignments. Note that if (Qx)ϕ ∈ FORML(Dom(σ)), then
ϕ ∈ FORML(Dom([x→ a]σ)) for every a ∈ |A|.

Lemma 4.14.2. Let A be a finite L-structure, where L is a finite
first-order language. There is an algorithm that, given a partial
assignment σ over A and a term t ∈ TERML(Dom(σ)), computes
the element σA(t) of |A|.

Proof. Since A is a finite structure, for any n-ary function symbol
f ∈ L, the function fA can be specified in tabular form through
an array with n + 1 columns and mn rows, where m is the number
of elements of |A|. Equalities 4.18–4.20 allow us to compute σA(t)
starting from the values of σ and consulting the necessary tables for
the function symbols. �

Theorem 4.14.3. If A is a finite L-structure, where L is a finite
first-order language, then ThL(A) is decidable.

Proof. We will prove a stronger statement, namely that there is
an algorithm that starting from an L-formula ϕ and a partial assign-
ment σ such that FV(ϕ) ⊆ Dom(σ) decides whether (A, σ) |= ϕ. The
algorithm is by recursion on the formula ϕ.

Suppose that ϕ is a propositional constant R. In this case the
decision is immediate because (A, σ) |= R if and only if RA = T.

Suppose now that ϕ = R(t0, . . . , tn−1), where n ≥ 1. Apply-
ing the algorithm outlined in Lemma 4.14.2 allows us to compute
the elements σA(ti) for 0 ≤ i ≤ n − 1. Then, we have (A, σ) |=
R(t0, . . . , tn−1) if and only if the n-tuple (σA(t0), . . . , σA(tn−1))
occurs in the list of n-tuples that specifies the relation RA.

Suppose now that ϕ = (∀x)ψ, where the algorithm is defined for
ψ. Recall that (A, σ) |= ϕ if and only if (A, [x→ a]σ) |= ψ for every
a ∈ |A|. Since |A| is finite, we have reduced the decision on whether
(A, σ) |= ϕ to |A| applications of the decision algorithm for ψ using
the assignments [x→ a]σ for a ∈ |A|.

We leave the remaining recursive steps to the reader. �

780 Logical Foundations of Computer Science — Volume 2

The next problem is the basis for proving a number of undecid-
ability results in Computer Science.

Definition 4.14.4. An instance of the Post Correspondence Problem
(abbreviated PCP) is a triple � = (V, (q0, . . . , qn−1), (r0, . . . , rn−1)),
where V is an alphabet and (q0, . . . , qn−1), (r0, . . . , rn−1) are non-
empty sequences of equal length n which consist of nonempty words
over V . A solution is a nonempty sequence (i0, . . . , ik−1) such that

(1) 0 ≤ ij ≤ n− 1 for 0 ≤ j ≤ k − 1;
(2) qi0 · · · qik−1

= ri0 · · · rik−1
.

Another way to describe the existence of a solution of an instance
of PCP is through the notion introduced next.

Definition 4.14.5. Let � = (V, (q0, . . . , qn−1), (r0, . . . , rn−1)) be an
instance of the PCP. A construction sequence for � is an even-length
sequence of words over V , (s0, t0, . . . , sk, tk) for k ≥ 0, such that for
every j with 0 ≤ j ≤ k one of the following two cases occurs:

(1) sj = tj = λ;
(2) j > 0 and there is ij−1 ∈ {0, . . . , n− 1} for which sj = sj−1qij−1

and tj = tj−1rij−1 .

Theorem 4.14.6. Let � = (V, (q0, . . . , qn−1), (r0, . . . , rn−1)) be an
instance of the PCP. There is a solution for � if and only if there is
a construction sequence (s0, t0, . . . , sk, tk) for the instance such that
for some i, 0 ≤ i ≤ k, si = ti = λ.

Proof. We leave the argument to the reader. �

Example 4.14.7. Let V = {a, b, c} and let

� = (V, (bba, bc, bba, bba), (bb, abcb, b, ba))

be an instance of PCP. The sequence (0, 1, 2, 1, 3) is a solution of �
because

q0q1q2q1q3 = bbabcbbabcbba = r0r1r2r1r3.

First-Order Logic–Syntax and Semantics 781

Example 4.14.8. Let V = {a, b} and let

� = (V, (abb, bba, bbab), (ba, abb, aab)).

Note that if an instance of the PCP has a solution, then there must
be a pair of words qi, ri that begin with the same symbol. Since this
is not the case here, � has no solution.

A fundamental result of Computability Theory states that it is
undecidable whether an arbitrary instance of the Post Correspon-
dence Problem has a solution. In this section, we examine conse-
quences of the undecidability of the Post Correspondence Problem
for first-order logic.

A stronger form of the undecidability of the PCP is presented in
the next definition and theorem.

Definition 4.14.9. Let V be an alphabet. A V -instance of the PCP
is an instance of PCP whose first component is V .

Theorem 4.14.10. Let V be an alphabet with at least two symbols. It
is undecidable whether or not a V -instance of the PCP has a solution.

Proof. Let � = (U, (q0, . . . , qn−1), (r0, . . . , rn−1)) be an arbitrary
instance of the PCP, where U = {a0, . . . , am−1}. Let a, b be two fixed
symbols of the alphabet V . Choose l to be the least number with
m ≤ 2l. For 0 ≤ i ≤ m − 1, let βi0 · · · βil−1 be the binary equivalent
of i padded with 0s to the left. Define a mapping f : U −→ V ∗ by
f(ai) = c0 · · · cl−1, where

ck =

{
a if βik = 0

b if βik = 1.

We extend f to f : U∗ −→ V ∗ in the obvious way. Starting from �,
and using this extension, we can construct an instance �V :

(V, (f(q0), . . . , f(qn−1)), (f(r0), . . . , f(rn−1))).

Note that the fact that |V | ≥ 2, allows us to encode all the symbols
of the alphabet U as words of equal length over the alphabet V and
this makes the mapping f : U∗ −→ V ∗ an injection. Thus, it is clear
that a sequence is a solution for � if and only if it is a solution for
�V . It follows that a decision procedure for instances of the form
(V, q, r) would yield a decision procedure for arbitrary instances of
the PCP, which we know does not exist. �

782 Logical Foundations of Computer Science — Volume 2

Let V be an alphabet. Define the first-order language LV as LV =
{R, c} ∪ {fa | a ∈ V }, where R is a binary relation symbol, c is a
constant symbol, and fa is a unary function symbol for every a ∈ V .
If t ∈ TERMLV and u = ai0 · · · aik−1

∈ V ∗, then we denote by fu(t)
the LV -term faik−1

(· · · (fai0 (t) · · ·).

Lemma 4.14.11. Let V = {a0, . . . , an−1} be an alphabet. For every
instance � = (V, q, r) of the PCP one can effectively construct an
LV -sentence ϕ� such that � has a solution if and only if |= ϕ�.

Proof. Let � = (V, (q0, . . . , qn−1), (r0, . . . , rn−1)) be an instance of
the PCP. Define the LV -sentence ϕ� as ϕ� = ((α�∧β�)→ γ), where

α� =
n−1∧
i=0

R(fqi(c), fri(c)),

β� = (∀x)(∀y)(R(x, y)→
n−1∧
i=0

R(fqi(x), fri(y))),

γ = (∃z)R(z, z).
It is clear that the construction of ϕ� starting from the PCP instance
� is effective.

Suppose that |= ϕ�. Define the LV -structure AV = (V ∗,I), where
cAV = λ, fAVa : V ∗ −→ V ∗ is the function given by fAVa (w) = wa
for w ∈ V ∗ and

RAV = {(u,w) ∈ V ∗ × V ∗ | u = qi0 · · · qi�−1
and w = ri0 · · · ri�−1

for

some nonempty sequence (i0, . . . , i�−1) ∈ Seq({0, . . . , n− 1})}.

Note that AV |= α� and AV |= β�. Since AV |= ϕ� it follows that
AV |= γ. Thus, there exists a word u ∈ V ∗ such that

u = qi0 · · · qi�−1
= ri0 · · · ri�−1

which means that (i0, . . . , i�−1) is a solution for �.
Conversely, suppose that � has a solution (i0, . . . , i�−1) and let A

be an LV -structure such that A |= (α� ∧ β�). Define the mapping
h : V ∗ −→ |A| by

h(λ) = cA

h(w) = (fw(c))
A

for w ∈ V ∗ and w = λ.

First-Order Logic–Syntax and Semantics 783

Since A |= α� we have (h(qi), h(ri)) ∈ RA for 0 ≤ i ≤
n − 1. Further, since A |= β�, (h(u), h(w)) ∈ RA implies
(h(uqi), h(wri)) ∈ RA. Therefore, it is easy to prove, by induction
on , that (h(qi0 · · · qi�−1

), h(ri0 · · · ri�−1
)) ∈ RA. Since (i0, . . . , i�−1)

is a solution for � we have

qi0 · · · qi�−1
= ri0 · · · ri�−1

which implies A |= γ. Thus, A |= ϕ�, so ϕ� is logically valid. �
The next theorem establishes that for certain first-order

languages, it is undecidable whether sentences of the language are
logically valid.

Theorem 4.14.12. For every alphabet V that contains at least two
symbols, it is undecidable whether an LV -sentence is logically valid.

Proof. This statement follows from Theorem 4.14.10 and
Lemma 4.14.11. �

Corollary 4.14.13. If a first-order language L contains at least one
binary relation symbol, at least one constant symbol and at least two
unary function symbols, then it is undecidable whether an L-sentence
is logically valid.

Proof. A first-order language L that satisfies the conditions of the
corollary contains a first-order language LV for a two element alpha-
bet V . Since validity for LV -sentences is undecidable, it follows that
validity for L-sentences is undecidable. �

Corollary 4.14.14. It is undecidable whether an arbitrary sentence
of first-order logic is logically valid.

Proof. This follows immediately from Corollary 4.14.13. �
We prove next, using the undecidability of PCP that the theory of

arithmetic, i.e., ThLar(Aar) is undecidable. The reader should note
the contrast between this result and the decidability of Presburger
arithmetic given in Exercise 185.

Theorem 4.14.15. There is an effective procedure that for every
instance � of the PCP over the alphabet V = {d, e} produces a
sentence ϕ�,solv of Lar such that � has a solution if and only if

ϕ�,solv ∈ ThLar(Aar).

784 Logical Foundations of Computer Science — Volume 2

Proof. We define recursively an injective mapping φ : V ∗ −→ N
by

φ(λ) = 1

φ(qd) = 2φ(q)

φ(qe) = 2φ(q) + 1

for every q ∈ V ∗.
We begin with several Lar-formulas that play a technical role in

our construction.
The formula ϕz,null is z = s(0). Note that ϕz,null with z defines

the set {1} = {φ(λ)}.
To define another type of formula, let d, e : TERMLar −→

TERMLar be two functions given by

d(t) = t+ t,

e(t) = (t+ t) + s(0).

Note that if t ∈ TERMLar , q ∈ V ∗ and σ ∈ ASSIGNAar
are such that σAar(t) = φ(q), then σAar (d(t)) = φ(qd) and
σAar(e(t)) = φ(qe). It follows from this that if σAar(t) = φ(r), then
σAar(qn−1(· · · q0(t) · · ·) = φ(rq), where q = q0 · · · qn−1. For q ∈ V ∗,
the formula ϕz0,z1,q,conc is given by

((z1 = 0) ∧ (z0 = qn−1(qn−2(· · · q0(z1) · · ·)))).

We leave to the reader to verify that the formula ϕz0,z1,q,conc with
the variables z0 and z1 defines the set {(φ(r0), φ(r1)) | r0 = r1q},
that is, that (Aar, [z0 → n0][z1 → n1]) |= ϕz0,z1,q,conc if and only if
(n0, n1) ∈ {(φ(r0), φ(r1)) | r0 = r1q}.

We encode finite sequences of natural numbers using triplets of
the form (c, d, i), where (c, d, i) encodes the sequence (a0, . . . , ai−1)
such that

(c, d, j, aj) ∈ B for 0 ≤ j ≤ i− 1.

Here, B is the Gödel relation introduced in Theorem 4.7.7 and
is defined in Aar by the formula ϕx1,x2,v,w,B introduced in Exam-
ple 4.7.8.

First-Order Logic–Syntax and Semantics 785

The formula ϕx′,y′,z′,y0,y1,x,y,z,pref is intended to express that the
even length sequence of words whose code is (x′, y′, z′) concatenated
with the pair of words whose codes are y0, y1 is a prefix of the
sequence coded by (x, y, z) and it is given by:

(
(∃w′)(z′ = w′ + w′)∧(
(s(z′) < z) ∧ (∀r)(∀j)

(
((j < z′) ∧ (ϕx1,x2,v,w,B)x1,x2,v,w:=x′,y′,j,r)→

(ϕx1,x2,v,w,B)x1,x2,v,w:=x,y,j,r
)
∧ (ϕx1,x2,v,w,B)x1,x2,v,w:=x,y,z′,y0

∧(ϕx1,x2,v,w,B)x1,x2,v,w:=x,y,s(z′),y1
))

.

To express the fact that the pair (y′, y′′) represents the codes of
words that appear on the last two places of the sequence whose code
is (x̂, ŷ, ẑ), we introduce the formula ϕy′,y′′,x̂,ŷ,ẑ,last-entry given by

(
(∃ŵ)(ẑ = ŵ + ŵ)∧

(∀ż)
(
(s(s(ż)) = ẑ)→

(
(ϕx1,x2,v,w,B)x1,x2,v,w:=x̂,ŷ,ż,y′

∧(ϕx1,x2,v,w,B)x1,x2,v,w:=x̂,ŷ,s(ż),y′′
)))

.

Let � = ({d, e}, q, r) be an instance of the PCP, where q =
(q0, . . . , qn−1) and r = (r0, . . . , rn−1). The next three formulas we
are about to introduce depend on the instance �.

Let ϕ�
u,v,s,t,one-step be given by:

∨
0≤i≤n−1

((ϕz0,z1,qi,conc)z0,z1:=u,s ∧ (ϕz0,z1,ri,conc)z0,z1:=v,t).

This formula, together with the sequence of variables (u, v, s, t)
defines the set {(φ(q′), φ(r′), φ(q′′), φ(r′′)) ∈ N4 | q′′, r′′ ∈
{d, e}∗ and q′ = q′′qi, r′ = r′′ri for some i, 0 ≤ i ≤ n− 1}.

786 Logical Foundations of Computer Science — Volume 2

The formula ϕ�
x,y,z,const holds when x, y, z encode a construction

sequence for � and is given by:(
(∃w)(z = w + w)∧

(∀y0)(∀y1)(∀x′)(∀y′)(∀z′)
(
ϕx′,y′,z′,y0,y1,x,y,z,pref →(

(ϕz,null)z:=y0 ∧ (ϕz,null)z:=y1
)

∨(∃y′′0)(∃y′′1)
(
(ϕy′,y′′,x̂,ŷ,ẑ,last-entry)y′,y′′,x̂,ŷ,ẑ:=y′′0 ,y′′1 ,x′,y′,z′

∧(ϕ�
u,v,s,t,one-step)u,v,s,t:=y0,y1,y′′0 ,y′′1

)))
.

Finally, the formula ϕ�
solv is given by:

(∃x)(∃y)(∃z)(∃y0)(ϕ�
x,y,z,const

∧(ϕy′,y′′,x̂,ŷ,ẑ,last-entry)y′,y′′,x̂,ŷ,ẑ:=y0,y0,x,y,z ∧ (¬(ϕz,null)z:=y0))

This last formula states that � is solvable. Indeed, by
Theorem 4.14.6, it follows that Aar |= ϕ�

solv if and only if the instance
� has a solution. Since the construction of the formula ϕ�

solv is effec-
tive starting from the instance �, the statement of the theorem
follows. �

Corollary 4.14.16. The theory of arithmetic is undecidable.

Proof. This follows immediately from Theorems 4.14.10
and 4.14.15. �

A further strengthening of the previous corollary is given next.

Corollary 4.14.17. The theory of arithmetic is not semidecidable.

Proof. The statement follows from Theorem 4.13.21 and
Corollary 4.14.16. �

4.15 Exercises and Supplements

First-Order Languages

(1) Prove that there exist two symbols a and b of first-order logic
such that code(a) is a proper prefix of code(b).

First-Order Logic–Syntax and Semantics 787

(2) Prove that if n and k are different from 0, we have:

|code(xn)| = 1 + �log2(n+ 1)�
|code(Rnk)| = 2 + �log2(n+ 1)�+ �log2(k + 1)�
|code(fnk)| = 2 + �log2(n+ 1)�+ �log2(k + 1)�.

Terms and Formulas

(3) Let L be a first-order language and V be a set of variables.
Prove that TERML(V) is finite if and only if the following three
conditions all hold:

(a) V is finite;
(b) const(L) is finite;
(c) either L contains no function symbols that are not constant

symbols or V ∪ const(L) = ∅,
where const(L) is the set of constant symbols of L.

(4) Show that:

(a) No term contains a relation symbol.
(b) Every formula contains a relation symbol.

(5) Show that no formula begins with a connective symbol, a quan-
tifier symbol, a right parenthesis or a variable.

(6) Let L be a finite first-order language. Prove that there is a for-
mula ϕ ∈ FORML that contains every symbol in L if and only
if one of the following holds:

(a) L contains no function symbols, or
(b) L contains a relation symbol of positive arity.

(7) Prove that no proper prefix of a term can be a suffix of a formula.
Solution: Let K be function introduced in Definition 1.5.10 and
extended in Lemma 4.3.18. In the argument of the Lemma, we
proved that K(v) > 0 for every nonnull suffix v of a formula.
On the other hand, if z is a proper prefix of a term, we have
K(z) < 1, as we saw in Lemma 1.5.11. This gives the desired
conclusion.

(8) Let t be a term. Then prove the following statements.

(a) If t occurs in an atomic formula R(t0, . . . , tn−1), then every
occurrence of t is a part of a term ti.

788 Logical Foundations of Computer Science — Volume 2

(b) If t occurs in a formula (¬ϕ), then every occurrence of t is a
part of ϕ.

(c) If t occurs in a formula (ϕCψ), where C is a binary connec-
tive symbol, then every occurrence of t is a part of ϕ or a
part of ψ.

(d) If t occurs in a formula (Qx)ϕ, then every occurrence (t, i)
is either (x, 2) or is a part of ϕ.

Hint. Use Part (a) of Exercise 53 of Chapter 1 for the first case
and Supplement 7 for the remaining cases.

Let Ω be a set of signed or unsigned formulas. The size(Ω) of Ω is
the sum of the sizes of the members of Ω.

(9) Let L = {=, L, c1, d, s}, where L is a unary relation symbol, c1
is a constant symbol, d is a unary function symbol and s is a
binary function symbol and let x, y, z be variables. For n ∈ N,
define Δn as the set of signed L-sentences that consists of the
following formulas:

Tϕ = T(∀x)(∀y)(∀z)(s(x, s(y, z)) = s(s(x, y), z))

Tψ = T(∀x)(d(x) = s(x, x))

Tα = TL(c1)

Tβ = T(∀x)(L(x)→ L(s(x, c1)))

Fθn = FL(d(· · · d(︸ ︷︷ ︸
2n

c1) · · ·)).

Prove that size(Δn) = Θ(2n).
(10) Show that it is possible for a proper suffix of a formula to be a

formula.
(11) Let L be a first-order language and V be a set of variables.

Prove that the set AFORML(V) is finite if and only if the
following conditions are satisfied:

(a) there are finitely many 0-ary relation symbols in L;
(b) if there is a relation symbol of arity greater than 0 in L,

then there are finitely many (L, V)-terms;
(c) if there are infinitely many relation symbols of arity greater

than 0 in L, then there are no (L, V)-terms.

First-Order Logic–Syntax and Semantics 789

(12) Prove the following sharpening of the Occurrence Theorem, for
a formula α:

(a) If ϕ is an atomic formula, then

OCCα(ϕ) =

{∅ if α = ϕ

{(α, 0)} otherwise.

(b) If ϕ is a formula, then

OCCα((¬ϕ)) =
{
T2(OCCα(ϕ)) if α = (¬ϕ)
{(α, 0)} otherwise.

(c) If ϕ and ψ are formulas and C is a connective symbol, then

OCCα((ϕCψ))

=

{
T1(OCCα(ϕ)) ∪ T|ϕ|+2(OCCα(ψ)) if α = (ϕCψ)

{(α, 0)} otherwise.

(d) If ϕ is a formula, Q is a quantifier and x is a variable, then

OCCα((Qx)ϕ) =

{
T4(OCCα(ϕ)) if α = (Qx)ϕ
{(α, 0)} otherwise.

(13) Show that if L1 ⊆ L2, then FORML1 ⊆ FORML2 .
(14) Prove that the inductive definition of FORM introduced in

Theorem 4.3.15 satisfies the unique readability condition.
(15) Let ϕ be a formula. Define the mapping ξ : BO(ϕ) −→ OCC∃(ϕ)∪

OCC∀(ϕ) by

ξ((x, i)) =

⎧⎪⎪⎨
⎪⎪⎩
(Q, j) where bindingϕ((x, i)) = j + 1 if

(x, i) ∈ PBO(ϕ) and (Q, j) ∈ OCCQ(ϕ),

(Q, i− 1) if (x, i) ∈ ABO(ϕ) and (Q, i− 1) ∈ OCCQ(ϕ).

Compute the function ξ for the formulas ϕ and ψ considered
in Examples 4.3.31 and 4.3.32, respectively.

(16) If ξ is the function defined in Exercise 15, prove that:

(a) if ξ((x, i)) = (Q, j), then j < i;
(b) if ξ((x, i)) = (Q, j) and (x,) is an occurrence of x such

that j < < i, then (x,) ∈ BO(ϕ) and if ξ((x,)) = (Q′, k),
then we have k ≥ j.

790 Logical Foundations of Computer Science — Volume 2

(17) Let ϕ,ψ be two formulas, C be a binary connective symbol, Q
be a quantifier symbol and x be a variable. Prove that

(a) ‖ ϕ ‖= 0 if and only if ϕ is atomic;
(b) ‖ (¬ϕ) ‖=‖ ϕ ‖ +1;
(c) ‖ (ϕCψ) ‖=‖ ϕ ‖ + ‖ ψ ‖ +2;
(d) ‖ (Qx)ϕ ‖=‖ ϕ ‖ +1.

(18) (a) Show that (ϕ)x:=x = ϕ for any formula ϕ and variable x.
(b) Show that if x ∈ FV(ϕ), then (ϕ)x:=t = ϕ for every term t.
(c) Give an example of a formula ϕ, variables x and y and terms

t0 and t1 such that

((ϕ)x:=t0)y:=t1 = ((ϕ)y:=t1)x:=t0 .

(19) Let ϕ be a formula, x and y be variables and t be a term.

(a) Show that if x ∈ FV(ϕ) or t contains no variables, then t is
substitutable for x in ϕ.

(b) Prove that if y ∈ BV(ϕ), then y is substitutable for x in ϕ.
(c) Prove that x is substitutable for x in ϕ.

(20) Let ϕ be a formula, x, y be variables and t, u be terms. Prove
that:

(a) If x = y, then

|OCCy(u)| ≤ |OCCy(sxt (u))|

and equality holds if and only if either x does not occur in
u or y does not occur in t.
Hint: Use induction on u.

(b) If x = y, then

|FOy(ϕ)| ≤ |FOy((ϕ)x:=t)|.

Hint: Use induction on ϕ; for the basis, use Part (a).
(c) If x = y and t is substitutable for x in ϕ, then

|FOy(ϕ)| = |FOy((ϕ)x:=t)|

if and only if x does not occur free in ϕ or y does not occur
in t.
Hint: Use induction on ϕ, the previous parts of this exer-
cise, and Theorem 4.3.77.

First-Order Logic–Syntax and Semantics 791

(d) |BO(ϕ)| ≤ |BO((ϕ)x:=t)|.
Hint: Use induction on ϕ and Part (b).

(e) The term t is substitutable for x in ϕ if and only if

|BO(ϕ)| = |BO((ϕ)x:=t)|.

Hint: Use induction on ϕ, Parts (b), (c), (d) and Theorem
4.3.77.

(21) Let V be a subset of VAR and s : V −→ VAR be an injective
function. Prove that the extension s̄ of s to LIT(V) is injective.
Hint. Use Supplement 15 of Chapter 1.

(22) Let ϕ be a formula and let s, s′ be substitutions such that
s(x) = s′(x) for all x ∈ FV(ϕ). Show that s is admissible for ϕ
if and only if s′ is admissible for ϕ.

(23) Let ϕ be a formula and let s, s′ be substitutions such that s is
admissible for ϕ and s′ is admissible for FVSubst(s, ϕ). Prove
that s′ ∗ s is admissible for ϕ.
Solution: The argument is by induction on ϕ. The basis step,
when ϕ is atomic, is immediate. For the inductive step, we
discuss only the case when ϕ = (Qy)ψ, where we assume that
the statement holds for ψ.
Since s is admissible for ϕ, [y → y]s is admissible for ψ; also,
if z ∈ FV(ϕ), then y ∈ V(s(z)).
The admissibility of s′ for FVSubst(s, ϕ) means that [y →
y]s′ is admissible for FVSubst([y → y]s, ψ) and that w ∈
FV(FVSubst(s, ϕ)) implies y ∈ V(s′(w)).
By applying the inductive hypothesis for ψ to the substitu-
tions [y → y]s and [y → y]s′, it follows that the substitution
([y → y]s′) ∗ ([y → y]s) is admissible for ψ. By the argu-
ment given in the proof of Theorem 4.3.86, the substitutions
([y → y]s′) ∗ ([y → y]s) and [y → y](s′ ∗ s) agree on the free
variables of ψ, so by Exercise 22, the substitution [y → y](s′∗s)
is admissible for ψ.
It remains to show that if x ∈ FV(ϕ), then y ∈ V(s′ ∗
s(x)) =

⋃
w∈V(s(x)) V(s

′(w)). The last equality follows from The-

orem 1.5.23. In other words, we have to show that if x ∈ FV(ϕ)
and w ∈ V(s(x)), then y ∈ V(s′(w)). Since w ∈ V (s(x)), it fol-
lows from Theorem 4.3.82 and the admissibility of s for ϕ, that
w ∈ FV(FVSubst(s, ϕ)) and thus y ∈ V(s′(w)) by the admissi-
bility of s′ for FVSubst(s, ϕ).

792 Logical Foundations of Computer Science — Volume 2

(24) Give an example of a formula ϕ, a term t, a variable x and a
subformula ψ of ϕ such that t is substitutable for x in ϕ, but
it is not substitutable for x in ψ.

(25) Let a be a constant symbol that does not occur in the term u
or the formula ϕ.

(a) Prove by induction on u that sat (s
x
a(u)) = sxt (u).

(b) Prove by induction on ϕ that sat ((ϕ)x:=a) = (ϕ)x:=t.

(26) Let s be a substitution, s = s
y0···yn−1

t0···tn−1
, where y0, . . . , yn−1 are

distinct variables and t0, . . . , tn−1 are terms. Prove that if t is
a term, then the set {u ∈ TERM | s(u) = t} is finite.
Solution: The proof is by induction on the term t. If t = x,
where x is a variable, and s(u) = t, then u ∈ {x, y0, . . . , yn−1}.
If t is a constant symbol c and s(u) = t, then u = c.
Thus, in either case, the set {u ∈ TERM | s(u) = t} is
finite, which concludes the basis steps. If t = f(v0, . . . , vm−1),
where the statement holds for v0, . . . , vn−1 and s(u) = t, then
u = f(w0, . . . , wm−1), where s(wi) = vi, for 0 ≤ i ≤ m− 1. By
the inductive hypothesis, there are only finitely many terms wi
which are mapped into vi by s, so there are only finitely many
choices for u.

(27) Let s be a substitution, s = s
y0···yn−1

t0···tn−1
, where y0, . . . , yn−1 are

distinct variables and t0, . . . , tn−1 are terms. Prove that if ϕ is
a formula, then the set {ψ ∈ FORM | FVSubst(s, ψ) = ϕ} is
finite.
Solution: By induction on ϕ, we prove that the statement
holds for every substitution s that has the prescribed form.
Suppose initially that ϕ is a propositional constant R. Then, if
FVSubst(s, ψ) = ϕ, we have ψ = R. If ϕ = R(t0, . . . , tn−1),
and FVSubst(s, ψ) = ϕ, then ψ is necessarily of the form
R(w0, . . . , wn−1), where s(wi) = ti, for 0 ≤ i ≤ n − 1. By
Supplement 26, there are finitely many wi such that s(wi) = ti
and therefore there are finitely many atomic formulas ψ such
that FVSubst(s, ψ) = ϕ. Thus, we proved the basis steps.
Among the inductive steps, we discuss only the case when
ϕ = (Qx)ϕ0. If FVSubst(s, ψ) = ϕ, then ψ is of the form
ψ = (Qx)ψ0, where FVSubst([x → x]s, ψ0) = ϕ0. Clearly,
[x → x]s is a substitution of the specified form, so by induc-
tive hypothesis, there are only finitely many formulas ψ0 such

First-Order Logic–Syntax and Semantics 793

that FVSubst([x→ x]s, ψ0) = ϕ0. Therefore, there are finitely
many formulas ψ with FVSubst(s, ψ) = ϕ.

(28) Show that the condition that Γ is quantifier-free is necessary
in Theorem 4.3.43.

(29) Let s be a substitution and let ϕ be a formula. Prove that

FV(FVSubst(s, ϕ)) ⊆
⋃
{V(s(y)) | y ∈ FV(ϕ)}.

Solution: This supplement complements Theorem 4.3.82
where instead of the above inclusion, we obtained an equality
when s is admissible for ϕ. We will show by induction on ϕ that
the result holds for every substitution s. The basis step follows
from the theorem mentioned above, because every substitution
is admissible for an atomic formula.
Among the several inductive steps, we consider only the one
when ϕ = (Qx)ψ and the result is assumed for ψ. We have

FV(FVSubst(s, (Qx)ψ))

= FV((Qx)FVSubst([x→ x]s, ψ))

(by Lemma 4.3.53)

= FV(FVSubst([x→ x]s, ψ))− {x}
(by Theorem 4.3.40)

⊆
⋃
{V([x→ x]s(y) | y ∈ FV(ψ))} − {x}

(by inductive hypothesis)

⊆
⋃
{V(s(y)) | y ∈ FV(ψ)− {x}} ∪ {x}) − {x}

⊆
⋃
{V(s(y)) | y ∈ FV((Qx)ψ)}

=
⋃
{V(s(y)) | y ∈ FV(ϕ)}.

(30) Give an example of a formula ϕ and a substitution s such that

FV(FVSubst(s, ϕ)) ⊂
⋃
{V(s(y)) | y ∈ FV(ϕ)}.

(31) Give an example of a formula ϕ and a substitution s
such that s is not admissible for ϕ and yet the equality
FV(FVSubst(s, ϕ)) =

⋃
{V(s(y)) | y ∈ FV(ϕ)} holds.

794 Logical Foundations of Computer Science — Volume 2

(32) Show that the second inclusion of Corollary 4.3.84 holds even
if t is not substitutable for x in ϕ.
Hint. Apply Supplement 29 with s = sxt .

(33) Let s be a substitution. Prove that for every term t

{x ∈ V(t) | x ∈ V(s(x))} ⊆ V(s(t)).

Hint. Use induction on terms.
(34) Prove that for any formula ϕ and substitution s, we have

{x ∈ FV(ϕ) | x ∈ V(s(x))} ⊆ FV(FVSubst(s, ϕ)).

Hint. Use induction on ϕ and Exercise 33 for the basis.
(35) Let ϕ be a formula, x be a variable, and t be a term. Prove

that

FV(ϕ)− {x} ⊆ FV((ϕ)x:=t).

Hint. Apply Exercise 34 with s = sxt .
(36) Prove the following generalization of Lemma 4.6.46: let ϕ be a

formula, x, z be variables and let u, t be terms. Prove that if
x ∈ V(u) and t is substitutable for x in ϕ, then t is substitutable
for x in (ϕ)z:=u.
Solution: The proof is by induction on the formula ϕ. The
basis step, when ϕ is an atomic formula, is immediate. For the
inductive steps, we discuss only the case when ϕ = (Qw)ψ.
Recall that t is substitutable for x in (Qw)ψ if and only if either
x does not occur free in (Qw)ψ or t is substitutable for x in ψ
and w does not occur in t. In the first case, x does not occur free
in ((Qw)ψ)z:=u by Exercise 32, so t is clearly substitutable for
x in this formula. In the second case, by inductive hypothesis,
t is substitutable for x in (ψ)z:=u. If z = w, the conclusion
follows immediately because ((Qw)ψ)z:=u = (Qw)ψ. If z = w,
then ((Qw)ψ)z:=u = (Qw)(ψ)z:=u and the conclusion follows
because w does not occur in t and t is substitutable for x in
(ψ)z:=u.

(37) Let α be a formula, x, y, z be variables and let c be a constant
symbol. Prove that if y is substitutable for x in α, then y is
substitutable for x in (α)z:=c.
Solution: The proof follows immediately from Supplement 36.

First-Order Logic–Syntax and Semantics 795

(38) Let t be a term that is substitutable for a variable x in
a formula ϕ. If x does not occur in the terms u0, . . . , un−1

(where n ≥ 0), prove that t is substitutable for x in
(ϕ)y0:=u0,...,yn−1:=un−1 .
Hint. Use induction on n and Supplement 36.

Structures

(39) Let L be a first-order language with equality and let h be a mor-
phism between the L-structures A = (A,I) and B = (B,J).
Prove that if for each n-ary relation symbol R ∈ L, a =
(a0, . . . , an−1) ∈ RA if and only if h◦a = (h(a0), . . . , h(an−1)) ∈
RB, then h is an embedding.
Hint. Apply the above condition to the relation symbol =.

(40) Let A,B be two L-structures and let h be a morphism from
A to B. Prove that there are two L-structures C and D, an
epimorphism hepi from A to C, an isomorphism hiso from C
to D, and an embedding hemb from D to B such that h =
hemb ◦ hiso ◦ hepi.
Hint. Take C = A/ker(h) and D = h(A).

Semantics of First-Order Logic

(41) Let A be an L-structure, B be a substructure of A and let
σ ∈ ASSIGNB ⊆ ASSIGNA.

(a) Show that for every term t ∈ TERML, σA(t) = σB(t).
(b) Prove that if ψ is a quantifier-free L-formula, then (B, σ) |=

ψ if and only if (A, σ) |= ψ.
Hint. The argument for Part (a) is by induction on terms.
Part (b) can be shown by induction on quantifier-free formulas
and one should use Part (a) for basis step.

(42) Let L be a first-order language, Γ be a set of L-formulas and A
be an L-structure. Prove that if Γ is satisfiable in A, then Γ∃ is
satisfiable in A. Give an example of a Γ and A such that Γ∃ is
satisfiable in A but Γ is not.

(43) Let (ϕ0, . . . , ϕn−1) and (ψ0, . . . , ψm−1) be two nonempty
sequences of first-order formulas such that {ϕ0, . . . , ϕn−1} =
{ψ0, . . . , ψm−1}. Prove the following logical equivalences.

796 Logical Foundations of Computer Science — Volume 2

n−1∨
i=0

ϕi ≡
m−1∨
j=0

ψj

n−1∧
i=0

ϕi ≡
m−1∧
j=0

ψj .

As a consequence, prove that by permuting the members of
a disjunction or a conjunction, we obtain logically equivalent
formulas.

(44) Give an example of two logically equivalent formulas ϕ and ψ
that have distinct sets of free variables. In fact, show that for
every L-formula ϕ where L contains a relation symbol with
arity at least 1, there is logically equivalent L-formula with a
different set of free variables than ϕ.

(45) Show that the following formulas are logically valid for all for-
mulas ϕ,ψ and variables x:

(a) (((∀x)ϕ ∨ (∀x)ψ)→ (∀x)(ϕ ∨ ψ));
(b) ((∃x)(ϕ ∧ ψ)→ ((∃x)ϕ ∧ (∃x)ψ)).

(46) Prove that for all formulas ϕ0, . . . , ϕn−1 with n > 0, and all
variables x, we have

(∃x)
n−1∨
i=0

ϕi ≡
n−1∨
i=0

(∃x)ϕi,

(∀x)
n−1∧
i=0

ϕi ≡
n−1∧
i=0

(∀x)ϕi.

(47) Show for each of the following formulas that there is a choice
for ϕ,ψ and x such that the formula is not logically valid.

(a) (((∀x)ϕ ∨ (∀x)ψ)↔ (∀x)(ϕ ∨ ψ));
(b) ((∃x)(ϕ ∧ ψ)↔ ((∃x)ϕ ∧ (∃x)ψ)).

Let t0, . . . , tn−1 ∈ TERMLpra. The term (· · · (t0 + t1) + · · · + tn−1)
will be denoted by t0 + · · · + tn−1. We also introduce the notation
mt for m ∈ N and t ∈ TERMLpra defined inductively by 0t = 0 and
(m+ 1)t = mt+ t.

First-Order Logic–Syntax and Semantics 797

(48) Prove that for all σ ∈ ASSIGNApra and t0, . . . , tn−1 ∈
TERMLpra, we have

σApra(t0 + · · ·+ tn−1) = σApra(t0) + · · ·+ σApra(tn−1).

(49) Let t and u be L-terms such that (u, i) is an occurrence in t
and let z be a variable that does not occur in t. If A is an
L-structure and σ ∈ ASSIGNA, then prove that

σA(t) = ([z → a]σ)A(t′),

where t′ = replace (t, (u, i), z) and a = σA(u).
Hint. Note that by Theorem 1.5.30, t′ is an L-term. Use induc-
tion on t.

(50) Let L be a first-order language, A be an L-structure, σ ∈
ASSIGNA and let u, t0, t1 be three L-terms such that σA(t0) =
σA(t1). If ζ is an occurrence of t0 in u, then, prove that

σA(replace (u, ζ, t1)) = σA(u).

Solution: First consider the special case when t0 = u. Then,

σA(replace (u, ζ, t1)) = σA(t1) = σA(t0) = σA(u).

We now prove the result by induction on u. The basis steps,
when u is either a variable or a constant symbol, are covered
by the special case. Now suppose that u = f(u0, . . . , un−1).
If we are not in the special case, by the Occurrence Theorem
(Theorem 1.5.27), there is a term uj and an occurrence ζ ′ =
(t0, k

′) in uj that corresponds to the occurrence ζ = (t0, k) of
t0 in u. We have

σA(replace (u, ζ, t1))

= fA(σA(u0), . . . , σA(replace (uj , ζ ′, t1)), . . . , σA(un−1))

= fA(σA(u0), . . . , σA(uj), . . . , σA(un−1))

(by inductive hypothesis)

= σA(f(u0, . . . , un−1)) = σA(u).

Let L be a first-order language and let A be an L-structure.
L-terms t, u are A-equivalent (denoted by t ≡A u) if for every

σ ∈ ASSIGNA, σA(t) = σA(u).

798 Logical Foundations of Computer Science — Volume 2

(51) Let L be a first-order language and suppose that =∈ L. Prove
that if t and u are L-terms, then t ≡A u if and only if A |=
(t = u).

(52) Let L be a first-order language and let A be an L-structure.

(a) Prove that ≡A is an equivalence relation on FORML.
(b) Prove that ϕ ≡A ψ if and only if A |= (ϕ↔ ψ).

(53) Let L be a first-order language with equality. Prove that for
every k ≥ 1, there exist three closed L-formulas ϕk, ψk, θk such
that for every L-structure A, A is a model of these formulas if
and only if |A| ≤ k, |A| ≥ k, and |A| = k, respectively.
Solution: We can take ϕk to be

(∃x0) · · · (∃xk−1)(∀xk)(x0 = xk ∨ x1 = xk ∨ · · · ∨ xk−1 = xk),

for k ≥ 1.
If k = 1, we can take ψk = (∃x0)(x0 = x0). If k > 1, then we
can define ψk as

(∃x0) · · · (∃xk−1)(x0 = x1 ∧ · · · ∧ x0 = xk−1

∧x1 = x2 ∧ · · · ∧ xk−2 = xk−1).

Finally, we can take θk = (ϕk ∧ ψk).
(54) Let L be a first-order language, ϕ be an L-formula and A be

an L-structure with |A| = 1. Show that if ϕ is satisfiable in A,
then ϕ is valid in A.

(55) Let L be a first-order language that contains a unary relation
symbol R and let ϕ be the L-formula (R(x) ∧ (¬(∀y)R(y))),
where x and y are variables. Prove that ϕ is satisfiable but ϕ is
not valid in any L-structure.

(56) Let L be a first-order language with equality. Give an example
of an L-formula that is satisfiable in every L-structure but is
not valid in any L-structure A such that |A| > 1.

(57) Let L be a first-order language without equality. If Γ is a satis-
fiable set of L-formulas, prove that Γ is satisfiable in an infinite
structure.

First-Order Logic–Syntax and Semantics 799

Solution: Suppose that (A, σ) |= Γ. Define an L-structure B
by |B| = |A| ×N and

RB = {((a0, i0), . . . , (an−1, in−1)) | (a0, . . . , an−1) ∈ RA}

and

fB((a0, i0), . . . , (an−1, in−1)) = (fA(a0, . . . , an−1), 0)

for every n-ary relation symbol R ∈ L and every n-ary function
symbol f ∈ L. Since |A| = ∅, we have |B| infinite. Observe
that the mapping h : |B| −→ |A| given by h((a, i)) = a for
every (a, i) ∈ |B| is an epimorphism. Define τ ∈ ASSIGNB
by τ(x) = (σ(x), 0). By the Morphism Theorem, for every L-
formula ϕ, (B, τ) |= ϕ if and only if (A, h◦τ) |= ϕ. Since h◦τ = σ
and (A, σ) |= Γ, it follows that (B, τ) |= Γ.

(58) Let L be a first-order language without equality and Γ be a
set of L-formulas. Prove that if Γ has a model, then Γ has an
infinite model.

(59) Let L be a first-order language, Γ be a set of L-formulas, and ϕ
be an L-formula. Show that if Γ |= ϕ, then Γ≈| ϕ, where “≈| ”
is the weak logical implication introduced in Definition 4.5.31.
Show that if L is a language with at least one relation symbol
with arity at least 1, then there is a set of L-formulas Γ and an
L-formula ϕ such that Γ≈| ϕ but Γ |= ϕ.
Solution: We discuss only the counterexample required by the
second part of the supplement. Suppose that R is an n-ary
relation symbol of L with n ≥ 1. Let Γ = {R(x, . . . , x)} and
ϕ = R(y, . . . , y), where x and y are distinct variables. Clearly,
Γ≈| ϕ.
On the other hand, let A be an L-structure with A = {a0, a1}
and RA = {(a0, . . . , a0)}. If σ(x) = a0 and σ(y) = a1, then we
have (A, σ) |= Γ, but (A, σ) |= ϕ, so Γ |= ϕ.

(60) Let L be a first-order language, Γ be a set of L-sentences, and
ϕ be an L-formula. Prove that Γ≈| ϕ if and only if Γ |= ϕ.
Solution: In view of Supplement 59, we need to show only
that Γ≈| ϕ implies Γ |= ϕ. Suppose that (A, σ) |= Γ. By
Corollary 4.5.32, we have A |= Γ, so A |= ϕ, which implies
(A, σ) |= ϕ.

800 Logical Foundations of Computer Science — Volume 2

(61) Let L be a first-order language, Γ be a set of L-formulas, and
ϕ be an L-formula. Prove that Γ≈| ϕ if and only if Γ∀ |= ϕ.
Solution: Since Γ∀ is a set of sentences, we have Γ∀ |= ϕ if and
only if Γ∀≈| ϕ, by Supplement 60. By Corollary 4.5.60, Γ and
Γ∀ have the same models, which implies that Γ∀≈| ϕ if and only
if Γ≈| ϕ. By combining these two observations, we obtain the
desired result.

(62) Prove that the analogue of the third part of Theorem 4.5.52
obtained by replacing |= with ≈| is false. In other words, show
that the statement “Γ ∪ {ϕ}≈| ψ if and only if Γ≈| (ϕ→ ψ)” is
false. However, show that the implication “if Γ≈| (ϕ→ ψ), then
Γ ∪ {ϕ}≈| ψ” is true.
Solution: Let Γ = ∅, ϕ = R(x) and ψ = R(y), where R is
a unary relation symbol and x, y are two distinct variables. It
is clear that R(x)≈| R(y) and it is equally clear that (R(x) →
R(y)) is not logically valid, which proves the first point of the
statement. We leave to the reader the proof of the second part.

(63) Let P,R be two relation symbols of the same arity and let ϕ be
a formula. Prove that:

(a) FV(sPR(ϕ)) = FV(ϕ);

(b) sPR(ϕ
∀) = sPR(ϕ)

∀
.

Further, prove that if Γ is a set of formulas, then sPR(Γ
∀) =

sPR(Γ)
∀
.

Solution: The first part can be shown by induction on ϕ and
is left to the reader. For the second part, suppose that FV(ϕ) =
{y0, . . . , yn−1}, where the variables are listed in the standard
order. We have

sPR(ϕ
∀) = sPR((∀y0) · · · (∀yn−1)ϕ)

= (∀y0) · · · (∀yn−1)s
P
R(ϕ)

(because sPR is a textual substitution not involving

any of the quantified variables)

= sPR(ϕ)
∀
.

The last part of the supplement is an immediate consequence
of the second part.

First-Order Logic–Syntax and Semantics 801

(64) Show that the first part of the Morphism Theorem may fail if ϕ
contains = or quantifiers. Similarly, show that the second part
may fail if ϕ contains = and the third part may fail if ϕ contains
quantifiers.

(65) Let A,B be two L-structures and let h : |A| −→ |B| be a func-
tion such that for all σ ∈ ASSIGNA and atomic L-formulas ϕ
not containing =, (A, σ) |= ϕ if and only if (B, h◦σ) |= ϕ. Show
that h satisfies the second condition of the definition of mor-
phism (Definition 4.4.12). Similarly, prove that if L contains =
and the above condition is satisfied for all atomic formulas, then
h is a monomorphism.

(66) Prove that the set of signed formulas Δn introduced in Exer-
cise 9 is unsatisfiable.
Solution: Since Δn consists of signed sentences, we must show
that Δn has no model. Suppose that A were a model for Δn.
Define inductively the terms ti for i ≥ 1 by t1 = c1 and ti+1 =
s(ti, c1). Since A |= {Tα,Tβ}, it follows immediately that tAi ∈
LA for all i ≥ 1.
Next, we show that s(tp, tq)

A = tAp+q for p, q ≥ 1. The argument
is by induction on q. The basis step is immediate from the
definition of tp+1. Suppose that s(tp, tq)

A = tAp+q. Since A |=
Tϕ, we have the equality s(u, s(v,w))A = s(s(u, v), w)A for all
ground terms u, v, w. Therefore,

s(tp, tq+1)
A = s(tp, s(tq, c1))

A

(by definition of tq+1)

= s(s(tp, tq), c1)
A

(as shown above)

= s(tp+q, c1)
A

(by inductive hypothesis)

= tAp+q+1.

We prove now that d(· · · d︸ ︷︷ ︸
k

(c1) · · ·)A = tA
2k

by induction

on k ≥ 0. The basis step, k = 0, is immediate. For the inductive
step, since A |= Tψ, we have d(t)A = s(t, t)A, for every ground

802 Logical Foundations of Computer Science — Volume 2

term t. Suppose that d(· · · d︸ ︷︷ ︸
k

(c1) · · ·)A = tA
2k
. Then we can write

d(· · · d︸ ︷︷ ︸
k+1

(c1) · · ·)A = s(d(· · · d︸ ︷︷ ︸
k

(c1) · · ·), d(· · · d︸ ︷︷ ︸
k

(c1) · · ·))A

(since A |= Tψ)

= s(t2k , t2k)
A

(by inductive hypothesis)

= tA2k+1

(as shown previously).

Since tAi ∈ LA for i ≥ 1, we have tA
22n
∈ LA for n ≥ 0.

From the equality d(· · · d︸ ︷︷ ︸
2n

(c1) · · ·)A = tA
22n

, it follows that

d(· · · d︸ ︷︷ ︸
2n

(c1) · · ·)A ∈ LA, which contradicts the fact that A |=

Fθn. Therefore, Δn is unsatisfiable.
(67) Let L = {=, L, c1, d, s} be the first-order language intro-

duced in Exercise 9 and let γ be the L-formula (L(y) ∧
(∀x)(L(x) → L(s(x, y)))). Prove that the set of formulas
{Tϕ,Tψ,T(γ)y:=a,F(γ)y:=d(a)} is unsatisfiable, where Tϕ,Tψ
are the formulas introduced in Exercise 9.
Solution: Suppose that A |= {Tϕ,Tψ,T(γ)y:=a}. We will
show that A |= T(γ)y:=d(a), thereby showing that the set of
formulas in the statement of the exercise is unsatisfiable. We
begin by observing that since A |= {Tϕ,Tψ}, we have,

sA(a0, sA(a1, a2)) = sA(sA(a0, a1), a2) (4.21)

dA(a0) = sA(a0, a0) (4.22)

for all a0, a1, a2 ∈ |A|. Since A |= T(γ)y:=a, we have

(i) aA ∈ LA, and
(ii) for all b ∈ LA, we have sA(b, aA) ∈ LA.
We must prove that dA(aA) ∈ LA and that sA(c, dA(aA)) ∈ LA
for all c ∈ LA. Choosing b = aA in (ii), we have sA(aA, aA) ∈
LA, which implies that dA(aA) ∈ LA by Equation (4.22). If

First-Order Logic–Syntax and Semantics 803

c ∈ LA, we have sA(c, aA) ∈ LA, by (ii). A second appli-
cation of (ii) gives sA(sA(c, aA), aA) ∈ LA, which implies
sA(c, sA(aA, aA)) ∈ LA by Equation (4.21). Finally, by Equa-
tion (4.22), sA(c, dA(aA)) ∈ LA.

(68) Let α be an (L, V)-instance of an L-equality axiom ϕ, a be a
constant symbol in L and t be an (L, V)-term. Prove that sat (α)
is also an (L, V)-instance of ϕ.
Hint. Use Theorems 4.3.68 and 4.3.69.

Semantics of Substitutions and Replacements

(69) Prove that if ϕ is an L-formula and R,R′ are two relation
symbols of the same arity, then sRR′(ϕ) is an L′-formula, where
L′ = (L − {R}) ∪ {R′}.

(70) Let Γ be a set of formulas and let y be a variable that does not
occur free in any formula of Γ and is substitutable for x in ϕ.
Prove that:

(a) if (∃x)ϕ ∈ Γ and Γ is satisfiable, then Γ ∪ {(ϕ)x:=y} is
satisfiable;

(b) if (¬(∀x)ϕ) ∈ Γ and Γ is satisfiable, then Γ ∪ {((¬ϕ))x:=y}
is satisfiable.

(71) Let Γ be a set of formulas and let y be a variable such that
y ∈ FV(Γ). Prove that:

(a) If (∃x)ϕ ∈ Γ and Γ is satisfiable, then Γ ∪ {〈ϕ〉x:=y} is
satisfiable.

(b) If (¬(∀x)ϕ) ∈ Γ and Γ is satisfiable, then Γ ∪ {〈(¬ϕ)〉x:=y}
is satisfiable.

(72) Using Exercise 38, prove the following result which generalizes
both Theorem 4.6.11 and 4.6.18:
Let ϕ be a formula and let y0, . . . , yn−1, z0, . . . , zn−1 be variables
(n ≥ 0) such that

(a) z0, . . . , zn−1 are distinct:
(b) z0, . . . , zn−1 do not occur free in ϕ;
(c) for 0 ≤ i ≤ n− 1, zi is substitutable for yi in ϕ;
(d) for 0 ≤ i ≤ n− 1, yi ∈ {zi+1, . . . , zn−1}.

804 Logical Foundations of Computer Science — Volume 2

Then,

(Q0y0) · · · (Qn−1yn−1)ϕ

≡ (Q0z0) · · · (Qn−1zn−1)(ϕ)yn−1:=zn−1,...,y0:=z0

and these formulas have the same free variables.
Solution: The proof is by induction on n. The basis step
(n = 0) is immediate. For the inductive step, suppose that the
statement holds for n ≥ 0. Suppose that

(a) z0, . . . , zn are distinct:
(b) z0, . . . , zn do not occur free in ϕ;
(c) for 0 ≤ i ≤ n, zi is substitutable for yi in ϕ;
(d) for 0 ≤ i ≤ n, yi ∈ {zi+1, . . . , zn}.

By inductive hypothesis, we have

(Q1y1) · · · (Qnyn)ϕ
≡ (Q1z1) · · · (Qnzn)(ϕ)yn:=zn,...,y1:=z1

and the two formulas in the previous equivalence have the same
set of free variables. Therefore, we have

(Q0y0)(Q1y1) · · · (Qnyn)ϕ
≡ (Q0y0)(Q1z1) · · · (Qnzn)(ϕ)yn:=zn,...,y1:=z1

by Theorem 4.6.16. Since

FV((Q1y1) · · · (Qnyn)ϕ)
= FV((Q1z1) · · · (Qnzn)(ϕ)yn:=zn,...,y1:=z1)

and z0 does not occur free in ϕ, it follows that z0 does not
occur free in (Q1z1) · · · (Qnzn)(ϕ)yn:=zn,...,y1:=z1 . Since z0 is sub-
stitutable for y0 in ϕ and z0 ∈ {z1, . . . , zn}, it follows by
Exercise 38 that z0 is substitutable for y0 in (ϕ)yn:=zn,...,y1:=z1 .

First-Order Logic–Syntax and Semantics 805

By Theorem 4.6.11, we have

(Q0y0)(Q1z1) · · · (Qnzn)(ϕ)yn:=zn,...,y1:=z1
≡ (Q0z0)〈(Q1z1) · · · (Qnzn)(ϕ)yn:=zn,...,y1:=z1〉y0:=z0
≡ (Q0z0)(Q1z1) · · · (Qnzn)(ϕ)yn:=zn,...,y0:=z0

(since y0 ∈ {z1, . . . , zn}),

so

(Q0y0) · · · (Qnyn)ϕ
≡ (Q0z0) · · · (Qnzn)(ϕ)yn:=zn,...,y0:=z0 .

Also,

FV((Q0z0) · · · (Qnzn)(ϕ)yn:=zn,...,y0:=z0)
= FV((Q0y0)(Q1z1) · · · (Qnzn)(ϕ)yn:=zn,...,y1:=z1)

(by Theorem 4.6.11)

= FV((Q1z1) · · · (Qnzn)(ϕ)yn:=zn,...,y1:=z1)− {y0}
= FV((Q1y1) · · · (Qnyn)ϕ)− {y0}

(by inductive hypothesis)

= FV((Q0y0) · · · (Qnyn)ϕ).

(73) Give an example of a formula ϕ, a variable x and a term t such
that (ϕ)x:=t |= (∃x)ϕ. (Note that by Theorem 4.6.7, t cannot
be substitutable for x in ϕ.)

(74) Give an example of a set Δ of signed formulas, a δ-formula
b(Qx)ϕ, and a constant symbol c such that the implication of
Theorem 4.6.53 fails. Note that c must appear in Δ∪{b(Qx)ϕ}.
Hint. Choose Δ = ∅ and b(Qx)ϕ = T(∃x)(P (c) ∧ (¬P (x))).

(75) Let L be a first-order language, A be an L-structure, and let
u0, u1 ∈ TERML.

(a) If t ∈ TERML and t′ = replace (t, (u0, i), u1), where (u0, i)
is an occurrence of u0 in t, show that t′ is a term in TERML.

(b) If u0 ≡A u1, then prove that t ≡A t′.

Hint. The arguments are by induction on the term t and make
use of the Occurrence Theorem for Terms (Theorem 1.5.27).

806 Logical Foundations of Computer Science — Volume 2

(76) Let L be a first-order language, A be an L-structure, and let
u0, u1 ∈ TERML.

(a) If ϕ ∈ FORML and ψ = replace (ϕ, (u0, i), u1), where
(u0, i) is an occurrence of u0 in ϕ that is not an occur-
rence of a variable immediately following a quantifier sym-
bol, then prove that ψ ∈ FORML.

(b) If u0 ≡A u1, then show that ϕ ≡A ψ.

(77) Let t ∈ TERMLpra and assume that the variables that occur in

t in standard order are y0, . . . , yk−1. Prove that t ≡Apra sj(0) +
n0y0+· · ·+nk−1yk−1 for some j, n0, . . . , nk−1 ∈ N and that there
is an effective way to determine the numbers j, n0, . . . , nk−1

from t.
Hint. Use induction on terms.

(78) Let α be an L-formula and let s, s′ be L-substitutions, where
L is a first-order language. Prove that if s(x) = s′(x) for every
x ∈ FV(α), then s is admissible for α if and only if s′ is admissible
for α.

(79) Let α be an L-formula and let s be an L-substitution, where
L is a first-order language. Prove that if x, y are two variables
such that y does not occur in α and [x→ x]s is admissible for
α, then [y → y]s is admissible for (α)x:=y.
Solution: The argument is by induction on α. We discuss only
the inductive step when α = (Qz)β. Since [x→ x]s is admissible
for α, by the fourth part of Corollary 4.3.81, it follows that
[z → z][x → x]s is admissible for β and if w ∈ FV(α) (that is,
if w ∈ FV(β)−{z}), then z does not occur in ([x→ x]s)(w). In
addition, since y does not occur in α, we have y = z and y does
not occur in β.
If z = x, then (α)x:=y = α. Since neither x nor y occurs free
in α, the substitutions [x → x]s and [y → y]s agree on all
free variables of α, which gives the desired conclusion, due to
Exercise 78. Therefore, we can assume z = x, which implies
(α)x:=y = (∀z)(β)x:=y. To prove the admissibility of [y → y]s
for (α)x:=y, we need to show

(A) [z → z][y → y]s is admissible for (β)x:=y, and
(B) if w′ ∈ FV((∀z)(β)x:=y), then z does not occur in ([y →

y]s)(w′).

First-Order Logic–Syntax and Semantics 807

To show (A), note that [x→ x][z → z]s = [z → z][x→ x]s and
therefore [x→ x][z → z]s is admissible for β. By the inductive
hypothesis, [y → y][z → z]s is admissible for (β)x:=y because y
does not occur in β. Reversing the fixed variables y and z, we
obtain (A).
To show (B), let w′ be a free variable of (∀z)(β)x:=y. It is clear
that w′ ∈ (FV(β)−{x, z})∪{y}. If w′ = y, then ([y → y]s)(w′) =
s(w′) = ([x→ x]s)(w′) and therefore z does not occur in ([y →
y]s)(w′) because of the admissibility of [x→ x]s for α. If w′ = y,
then ([y → y]s)(w′) = y and the conclusion follows immediately
because z = y.

(80) Let ϕ and ψ be two formulas which are immediate variants.
Prove that if x is a variable and t is a term such that t is sub-
stitutable for x in both ϕ and ψ, then (ψ)x:=t is an immediate
variant of (ϕ)x:=t.
Solution: The proof is by induction on ϕ. For the basis step ϕ
is atomic, so ϕ = ψ, hence (ϕ)x:=t = (ψ)x:=t.
For the inductive step we consider several cases depending on
the structure of ϕ.
Suppose that ϕ = (ϕ0Cϕ1), where C is a binary connec-
tive symbol, and the result holds for ϕ0, ϕ1. Then, either
ψ = (ψ0Cϕ1) where ψ0 is an immediate variant of ϕ0, or
ψ = (ϕ0Cψ1), where ψ1 is an immediate variant of ϕ1. In
the first subcase, since t is substitutable for x in both ϕ and
ψ, t is substitutable for x in ϕ0 and ψ0, so, by the inductive
hypothesis, (ϕ0)x:=t is an immediate variant of (ψ0)x:=t and
therefore (ϕ)x:=t = ((ϕ0)x:=tC(ϕ1)x:=t) is an immediate variant
of ((ψ0)x:=tC(ϕ1)x:=t) = (ψ)x:=t. The other subcase is similar.
The case when ϕ = (¬ϕ0) is similar.
Suppose now that ϕ = (Qy)ϕ0 and the result holds for ϕ0. If
x does not occur free in ϕ, then it does not occur free in ψ
(since variants have the same free variables) and (ϕ)x:=t = ϕ is
an immediate variant of ψ = (ψ)x:=t, so we can assume that x
occurs free in ϕ and therefore in ψ. Now we need to consider
the following two subcases which depend on the place where
the renaming was applied.
In the first subcase, ψ = (Qy)ψ0 where ψ0 is an immediate vari-
ant of ϕ0. Since x occurs free in ϕ and ψ and t is substitutable
for x in ϕ,ψ, we have x = y and t is substitutable for x in

808 Logical Foundations of Computer Science — Volume 2

ϕ0, ψ0. By the inductive hypothesis, (ϕ0)x:=t is an immediate
variant of (ψ0)x:=t. Since x = y, (ϕ)x:=t = (Qy)(ϕ0)x:=t is an
immediate variant of (Qy)(ψ0)x:=t = (ψ)x:=t.
In the second subcase, ψ = (Qz)(ϕ0)y:=z where z does not occur
free in ϕ0 and z is substitutable for y in this formula. Since x
occurs free in ϕ,ψ, x is different from y and z and since t is
substitutable for x in ϕ,ψ, y and z do not occur in t and t is
substitutable for x in ϕ0 and (ϕ0)y:=z. We have:

(ϕ)x:=t = (Qy)(ϕ0)x:=t and (ψ)x:=t = (Qz)((ϕ0)y:=z)x:=t.

Further, we can write

((ϕ0)y:=z)x:=t

= FVSubst(sxt ,FVSubst(s
y
z , ϕ0))

= FVSubst(sxt ∗ syz , ϕ0)

(by Theorem 4.3.86 since syz is admissible for ϕ0)

= FVSubst(s
x

t

y

z
, ϕ0)

(by Theorem 1.2.21 since z = x)

= FVSubst(syz ∗ sxt , ϕ0)

(by Theorem 1.2.21 because y does not occur in t)

= FVSubst(syz ,FVSubst(s
x
t , ϕ0))

(by Theorem 4.3.86 since sxt is admissible for ϕ0)

= ((ϕ0)x:=t)y:=t.

Therefore, (ψ)x:=t = (Qz)((ϕ0)x:=t)y:=z. Since z does not occur
free in ϕ0 and does not occur in t, z does not occur free
in (ϕ0)x:=t because FV((ϕ0)x:=t) ⊆ FV(ϕ0) ∪ V(t) by Corol-
lary 4.3.84. Since z is substitutable for y in ϕ0 and t does not
contain the variable y, z is substitutable for y in (ϕ0)x:=t by
Supplement 36. Thus (ψ)x:=t = (Qz)((ϕ0)x:=t)y:=z is an imme-
diate variant of (ϕ)x:=t = (Qy)(ϕ0)x:=t.

(81) Let ϕ = (Qx)α and ψ = (Qy)(α)x:=y be two formulas, where y
is a variable that does not occur free in α and y is substitutable

First-Order Logic–Syntax and Semantics 809

for x in α. Prove that if z is a variable and c is a constant
symbol, then (ψ)z:=c is an immediate variant of (ϕ)z:=c.
Solution: This result follows directly from Supplement 80.

(82) Prove the following generalization of Theorem 4.6.36. Given two
formulas ϕ,ψ such that ψ is a variant of ϕ, and a variable x and
term t such that t is substitutable for x in both ϕ and ψ, we
can find effectively a sequence of formulas (θ0, . . . , θn−1) such
that ϕ = θ0, ψ = θn−1, θi+1 is an immediate variant of θi, for
0 ≤ i ≤ n− 2 and t is substitutable for x in each θi.
Solution: By Theorem 4.6.35, there is a renaming v of ϕ
such that ψ = ϕv and we can determine v effectively. Let
v = V[ϕ, i0 → y0, . . . , ik−1 → yk−1], where {i0, . . . , ik−1} con-
tains all indices of active bound occurrences in ϕ. We now use
the proof of Theorem 4.6.34 to define a sequence of formulas
α0, . . . , α2k with α0 = ϕ, α2k = ψ, and a sequence of map-
pings v1, . . . , v2k such that vi is a unit renaming for αi−1 and
αi = αvi

i−1, for 1 ≤ i ≤ 2k with the additional requirement that
the variables z0, . . . , zk−1 do not occur in t, where z0, . . . , zk−1

are the variables introduced in the proof of Theorem 4.6.34.
Each αi+1 is an immediate variant of αi and the construction
is effective.
We must show that t is substitutable for x in each αi. Fix and
suppose that (x, j) is a free occurrence of x in α� which is in the
scope of another occurrence (Q, r) in α�. Then, (x, j) is a free
occurrence in both ϕ and ψ and is in the scope of (Q, r) in both
these formulas. Let (w, r + 1) be the active bound occurrence
following (Q, r) in α�. We consider the following cases:

Case 1: r = is and ≤ s. Then, (w, r + 1) occurs in ϕ. Since t
is substitutable for x in ϕ and (x, j) is in the scope of (Q, r) in
ϕ, w does not occur in t.

Case 2: r = is and s < < k+ s+1. Then, w = zs which does
not occur in t.

Case 3: r = is and k + s+ 1 ≤ . Then, w = ys. Since (x, j) is
in the scope of (Q, r) and (ys, r + 1) occurs in ψ, w = ys does
not occur in t.

Thus, t is substitutable for x in all the formulas αi.

810 Logical Foundations of Computer Science — Volume 2

(83) Let ϕ and ψ be two formulas which are variants. Prove that if
x is a variable and t is a term such that t is substitutable for x
in both ϕ and ψ, then (ψ)x:=t is a variant of (ϕ)x:=t.
Solution: This result follows by combining Supplements 82
and 80.

(84) Let ϕ and ψ be two formulas which are variants. Prove that
if z is a variable and c is a constant symbol, then (ψ)z:=c is a
variant of (ϕ)z:=c.
Solution: Note that this is a special case of Supplement 83.

The following series of supplements extends the function variant such
that the new function would yield variants of formulas for which a
given substitution is admissible.

(85) Let S be the set of (SFOL,VAR)-substitutions. Define the func-
tion variant : FORM × S −→ FORM as

(a) variant(ϕ, s) is ϕ if ϕ is atomic;
(b) variant(ϕ, s) is (¬variant(ψ, s)) if ϕ = (¬ψ);
(c) variant(ϕ, s) is (variant(α, s) C variant(β, s)) if ϕ = (αCβ)

for C a binary connective symbol;
(d) variant(ϕ, s) is (Qy)variant(ψ, [y → y]s) if ϕ = (Qy)ψ, and

there is no w ∈ FV(ϕ) such that y occurs in s(w);
(e) variant(ϕ, s) is (Qz)(variant(ψ, [y → y]s))y:=z if ϕ = (Qy)ψ,

there is a w ∈ FV(ϕ) such that y occurs in s(w), and z is
the first variable not occurring in variant(ψ, [y → y]s) or in
a term s(w) with w ∈ FV(ϕ).

(a) Prove that variant(ϕ, s) is a variant of ϕ in the sense of
Definition 4.6.19.

(b) Prove that the substitution s is admissible for variant(ϕ, s).
(c) Show that if s is admissible for ϕ, then variant(ϕ, s) = ϕ.

Solution: Part (a) is a straightforward consequence of the def-
inition of variant.
The proof for Part (b) is by induction on the formula ϕ. We
discuss here the more difficult inductive step when ϕ = (Qy)ψ
and the result is assumed to hold for ψ.
Suppose initially that there is no w ∈ FV(ϕ) such that y
occurs in s(w). In this case, variant(ϕ, s) = (Qy)variant(ψ, [y →
y]s) and by the inductive hypothesis, [y → y]s is admissible

First-Order Logic–Syntax and Semantics 811

for variant(ψ, [y → y]s), which implies admissibility of s for
variant(ϕ, s).
Consider now the case when there is w ∈ FV(ϕ) such that
y occurs in s(w). Now, variant(ϕ, s) is (Qz)(variant(ψ, [y →
y]s))y:=z and we have the admissibility of [y → y]s for
variant(ψ, [y → y]s) by inductive hypothesis. By Supplement 79,
[z → z]s is admissible for (variant(ψ, [y → y]s))y:=z. Thus,
it remains to show that if w ∈ FV(variant(ϕ, s)), then z does
not occur in s(w). So, let w ∈ FV(variant(ϕ, s)). This implies
w ∈ FV((variant(ψ, [y → y]s))y:=z) − {z}. By Corollary 4.3.84,
w ∈ FV(variant(ψ, [y → y]s)) − {y, z}, which implies w ∈
FV(ψ)− {y, z} by Theorem 4.6.22 and the first part of the cur-
rent supplement. Thus, w ∈ FV(ϕ), so z does not occur in s(w)
by choice of z.
The last part can be shown by induction on ϕ.

(86) Let ϕ be a formula, x be a variable, and t be a term. Prove that

variant(ϕ, sxt) = variant(ϕ, x, t),

where variant(ϕ, x, t) is as given in Definition 4.6.43.
Solution: The proof is by induction on ϕ. We consider the only
nontrivial step, namely when ϕ = (Qy)ψ and the statement is
true for ψ.

Case 1: y = x. Then, x does not occur free in ϕ, so
variant(ϕ, x, t) = ϕ. Also, if y = x occurs in sxt (w) for some
variable w, then we must have w = x, but x ∈ FV(ϕ), so, noting
that the identity substitution ι is admissible for any formula,
we have

variant(ϕ, sxt) = variant((Qy)ψ, sxt)

= (Qy)variant(ψ, [y → y]sxt)

= (Qy)variant(ψ, ι)

(since y = x)

= (Qy)ψ

(by admissibility of ι and Part (c)

812 Logical Foundations of Computer Science — Volume 2

of Supplement 85)

= ϕ

= variant(ϕ, x, t).

Case 2: y = x and x ∈ FV(ϕ). Then, variant(ϕ, x, t) = ϕ and
x ∈ FV(ψ). Also, if y occurs in sxt (w) for some variable w, then
we must have w ∈ {x, y}, so w ∈ FV(ϕ). Thus, we have

variant(ϕ, sxt) = variant((Qy)ψ, sxt)

= (Qy)variant(ψ, [y → y]sxt)

= (Qy)variant(ψ, sxt)

(since y = x)

= (Qy)ψ

= ϕ

= variant(ϕ, x, t),

where in the fourth equality we have used Part (c) of Supple-
ment 85 and the fact that sxt is admissible for ψ since x ∈ FV(ψ).

Case 3: x ∈ FV(ϕ) and y does not occur in t. Then x = y and
variant(ϕ, x, t) = (Qy)variant(ψ, x, t). If y occurs in sxt (w), then
w = y (since y does not occur in t) and y ∈ FV(ϕ). Thus, we
have

variant(ϕ, sxt) = variant((Qy)ψ, sxt)

= (Qy)variant(ψ, [y → y]sxt)

= (Qy)variant(ψ, sxt)

(since y = x)

= (Qy)variant(ψ, x, t)

(by inductive hypoothesis)

= variant(ϕ, x, t).

Case 4: x ∈ FV(ϕ) and y occurs in t. Then, x = y and also

variant(ϕ, x, t) = (Qz)(variant(ψ, x, t))y:=z ,

First-Order Logic–Syntax and Semantics 813

where z is the first variable that does not occur in variant(ψ, x, t)
or in t.
On the other hand, since x ∈ FV(ϕ) and y occurs in t = sxt (x),
we have

variant(ϕ, sxt) = variant((Qy)ψ, sxt)

= (Qz′)(variant(ψ, [y → y]sxt))y:=z′

= (Qz′)(variant(ψ, sxt))y:=z′

(since y = x)

= (Qz′)(variant(ψ, x, t))y:=z′

(by inductive hypothesis),

where z′ is the first variable that does not occur in
variant(ψ, [y → y]sxt) = variant(ψ, x, t) or in a term sxt (w) with
w ∈ FV(ϕ).
It suffices to show that z′ = z. If z′′ precedes z in the stan-
dard ordering, then by definition of z, either z′′ occurs in
variant(ψ, x, t) or z′′ occurs in t = sxt (x) with x ∈ FV(ϕ), so
z′′ cannot equal z′ and hence z′ cannot precede z in the stan-
dard ordering. To show that z′ = z, it thus suffices to show that
z satisfies the defining condition of z′. We have that z does not
appear in variant(ψ, x, t) by definition of z. Suppose that w ∈
FV(ϕ). If w = x, then z does not occur in sxt (w) = t by definition
of z. If w = x, then, since w ∈ FV(ψ) = FV(variant(ψ, x, t)), w
occurs in variant(ψ, x, t), so by definition of z, z = w = sxt (w).
Thus, z′ = z, as desired.

(87) Let ϕ be a formula and let s be a substitution. Define the for-
mula 〈ϕ〉s as FVSubst(s, variant(ϕ, s)).
Prove that if A is an L-structure and s is an L-substitution,
then (A, σ) |= 〈ϕ〉s if and only if (A, σA ◦ s) |= ϕ.
Solution: Note that the following statements are equivalent:

(A, σ) |= 〈ϕ〉s
(A, σ) |= FVSubst(s, variant(ϕ, s))

by definition of 〈ϕ〉s

814 Logical Foundations of Computer Science — Volume 2

(A, σA ◦ s) |= variant(ϕ, s)

by Corollary 4.6.5 since s is admissible

for variant(ϕ, s)

(A, σA ◦ s) |= ϕ

since variant(ϕ, s) ≡ ϕ

(88) Let ϕ,ψ be two first-order formulas, and let s be a substitution.
Prove that 〈(¬ϕ)〉s = (¬〈ϕ〉s) and 〈(ϕCψ)〉s = (〈ϕ〉sC〈ψ〉s).
Hint. The argument parallels the argument of Theorem 4.6.50.

Define 〈ϕ〉y0,...,yn−1:=t0,...,tn−1 to be 〈ϕ〉sy0···yn−1
t0···tn−1

, where y0, . . . , yn−1 are

distinct variables.

(89) If n = 1, then the notation just defined becomes 〈ϕ〉y0:=t0 ,
a notation that we have already defined just after Exam-
ple 4.6.44. Use Supplement 86 to show that these two definitions
of the notation agree with each other.

(90) Let A be an L-structure, σ ∈ ASSIGNA, ϕ be an L-formula, and
let y0, . . . , yn−1 be distinct variables. Prove that if t0, . . . , tn−1

are L-terms, then

(A, σ) |= 〈ϕ〉y0,...,yn−1:=t0,...,tn−1

if and only if

(A, [y0 → σA(t0)] · · · [yn−1 → σA(tn−1)]σ) |= ϕ.

Hint. This follows directly from Supplement 87.
(91) Prove the following two logical implications, which generalize

Theorem 4.6.51:

(∀y0) · · · (∀yn−1)ϕ |= 〈ϕ〉y0,...,yn−1:=t0,...,tn−1

and

〈ϕ〉y0,...,yn−1:=t0,...,tn−1 |= (∃y0) · · · (∃yn−1)ϕ.

Solution: Let L be a first-order language such that ϕ
is an L-formula and t0, . . . , tn−1 are L-terms. If (A, σ) |=
(∀y0) · · · (∀yn−1)ϕ for some L-structure A and σ ∈ ASSIGNA,

First-Order Logic–Syntax and Semantics 815

then (A, [yn−1 → an−1] · · · [y0 → a0]σ) |= ϕ for every
a0, . . . , an−1 ∈ |A|. In particular,

(A, [yn−1 → σA(tn−1)] · · · [y0 → σA(t0)]σ) |= ϕ,

which is equivalent to

(A, σ) |= 〈ϕ〉y0,...,yn−1:=t0,...,tn−1 ,

by Exercise 90, since the modifications to the assignment σ
can be done in any order due to the fact that the variables
y0, . . . , yn−1 are distinct.
We leave the second part to the reader.

(92) Let L be a first-order language, ϕ be an L-formula, t be an
L-term, x be a variable and ϕ′ be a variant of ϕ such that t is
substitutable for x in ϕ′. Prove that if A is an L-structure and
σ ∈ ASSIGNA, then (A, σ) |= (ϕ′)x:=t if and only if (A, [x →
σA(t)]σ) |= ϕ.
Solution: We have the following equivalent statements:

(A, σ) |= (ϕ′)x:=t
(A, [x→ σA(t)]σ) |= ϕ′

(by the Substitution Corollary)

(A, [x→ σA(t)]σ) |= ϕ

(because two variants are logically equivalent).

(93) Prove that if ϕ is a formula, x is a variable, t is a term and ϕ′
is a variant of ϕ such that t is substitutable for x in ϕ′, then
(∀x)ϕ |= (ϕ′)x:=t and (ϕ′)x:=t |= (∃x)ϕ.
Solution: Let L be a first-order language such that ϕ is an
L-formula and t is an L-term. If (A, σ) |= (∀x)ϕ for some L-
structure A and σ ∈ ASSIGNA, then (A, [x → a]σ) |= ϕ for
every a ∈ |A|. In particular, (A, [x → σA(t)]σ) |= ϕ, so, by
Supplement 92, (A, σ) |= (ϕ′)x:=t.
For the second part, suppose that (A, σ) |= (ϕ′)x:=t. By Sup-
plement 92, we have (A, [x→ σA(t)]) |= ϕ. This, in turn, gives
(A, σ) |= (∃x)ϕ, which concludes our argument.

816 Logical Foundations of Computer Science — Volume 2

Definability in Structures

(94) Let L be a first-order language and A be an L-structure. Prove
that both 0-ary relations on |A| are definable in A.

(95) Prove that if A is a structure such that |A| is uncountable, then
there is a ∈ |A| such that {a} is not definable.

(96) Let A = (A,I) be an L-structure. Prove that if the n-ary rela-
tion ρ ⊆ |A|n is definable in A, then for every automorphism h
of A and (a0, . . . , an−1) ∈ An, (a0, . . . , an−1) ∈ ρ if and only if
(h(a0), . . . , h(an−1)) ∈ ρ.
Solution: Suppose that ρ is definable in A by the formula
ϕ and the sequence of variables (y0, . . . , yn−1). The following
statements are easily seen to be equivalent for every n-tuple
(a0, . . . , an−1) ∈ An and automorphism h:

(i) (a0, . . . , an−1) ∈ ρ;
(ii) (A, σ) |= ϕ for every σ ∈ ASSIGNA such that σ(yi) = ai for

0 ≤ i ≤ n− 1;
(iii) (A, h ◦ σ) |= ϕ for every σ ∈ ASSIGNA such that σ(yi) = ai

for 0 ≤ i ≤ n− 1;
(iv) (A, σ′) |= ϕ for every σ′ ∈ ASSIGNA such that σ′(yi) =

h(ai) for 0 ≤ i ≤ n− 1;
(v) (h(a0), . . . , h(an−1)) ∈ ρ.

The equivalence between (ii) and (iii) follows from the Mor-
phism Theorem; the remaining equivalences follow directly from
the relevant definitions.

(97) Let L = {R2
1} be a first-order language that consists of a binary

relation symbol. Define the L-structure R = (R,I), where
I(R2

1) = {(x, y) ∈ R2 | x < y}. Prove that the set N is not
definable in R.
Hint. Consider the automorphism h : R −→ R of R defined
by h(x) = x3 for x ∈ R and observe that there exists x ∈ R
such that h(x) ∈ N but x ∈N.

(98) Let ρ ⊆ A2 be a binary relation definable in an L-structure A,
where L is a first-order language. Prove that the sets Dom(ρ) =
{a ∈ A | (a, b) ∈ ρ for some b ∈ A} and Ran(ρ) = {b ∈ A |
(a, b) ∈ ρ for some a ∈ A} are definable in A.

(99) Let L = {f20 ,=} be a first-order language and let A = (N,I),
where I(f20)(m,n) = mn for m,n ∈ N.

First-Order Logic–Syntax and Semantics 817

(a) Prove that for i = 0, 1, the constant mappings hi : N −→
N given by hi(n) = i for n ∈ N are endomorphisms of A.

(b) Prove that if h is a endomorphism of A different from h1,
then h(0) = 0; also, if h is different from h0, then h(1) = 1.

(c) Let PR = {p0, . . . , pn, . . .} be the set of primes, where
p0 < p1 < · · · < pn < · · · and let f : PR −→ N be a
function. Prove that the mapping hf : N −→ N given by

hf (n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if n = 0,∏k−1
i=0 (f(pi))

ai if n > 0 and n =
∏k−1
i=0 p

ai
i is

an expression of n as a product
of primes

is well-defined. Further, show that hf is an endomorphism
of A and that the set of endomorphisms of A consists of
h0, h1 and the functions hf where f : PR −→ N.

(d) Let h : N −→ N be an automorphism of A. Prove that if
m ≥ 2, then h(m) ≥ 2.

(e) Prove that if h : N −→ N is an automorphism of A, then
p is a prime number if and only if h(p) is a prime number.

(f) Prove that the set of automorphisms of A is the set of
mappings of the form hf , where f is a bijection of the set
PR.

(g) Prove that the binary relation σ = {(m,n) ∈ N2 | m < n}
is not definable in A.

(h) Prove that the ternary relation

ρ = {(m,n, p) | m,n, p ∈ N and m+ n = p}

is not definable in A.
(100) Let L be a first-order language, A be an L-structure, and

let ρ be a relation definable in A by the formula ϕρ and the
variables (y0, . . . , yn−1). Define L′ as the first-order language
L ∪ {R}, where R is a new n-ary relation symbol and let A′
be the L′-structure that is the extension of A with RA′

= ρ.
Prove that there is an effectively computable function F :
FORM −→ FORM such that for all ϕ ∈ FORML′ we have
F (ϕ) ∈ FORML and, if σ ∈ ASSIGNA, then (A′, σ) |= ϕ if
and only if (A, σ) |= F (ϕ).

818 Logical Foundations of Computer Science — Volume 2

Solution: The function F is defined recursively. For atomic
formulas, F is defined as follows. If P is an m-ary relation
symbol distinct from R, then if m > 0,

F (P (t0, . . . , tm−1)) = P (t0, . . . , tm−1)

for all t0, . . . , tm−1 ∈ TERM, and if m = 0, F (P) = P .
If n > 0, define F (R(t0, . . . , tn−1)) = 〈ϕρ〉y0,...,yn−1:=t0,...,tn−1

for all t0, . . . , tm−1 ∈ TERM and if n = 0, we define

F (R) = 〈ϕρ〉y0,...,yn−1:=t0,...,tn−1 .

Note that when n = 0, the last expression reduces to ϕρ.
The recursive step is given by the following formulas:

F ((¬ϕ)) = (¬F (ϕ))
F ((ϕCψ)) = (F (ϕ)CF (ψ))

F ((Qx)ϕ) = (Qx)F (ϕ)

for all formulas ϕ,ψ, where C is a binary connective symbol
and Q is a quantifier symbol.
We discuss here only the difficult basis substep, when P = R.
The following statements are equivalent:

(A, σ) |= 〈ϕρ〉y0,...,yn−1:=t0,...,tn−1

(A, σA ◦ sy0···yn−1

t0···tn−1
) |= ϕρ

(by Supplement 87)

(A, [y0 → σA(t0)] · · · [yn−1 → σA(tn−1)]σ) |= ϕρ

(A, [y0 → σA(t0) · · · yn−1 → σA(tn−1)]) |= ϕρ
(because FV(ϕρ) ⊆ {y0, . . . , yn−1})

(σA(t0), . . . , σA(tn−1)) ∈ ρ
(σA′

(t0), . . . , σ
A′
(tn−1)) ∈ RA′

(because σA(ti) = σA′
(ti))

(A′, σ) |= R(t0, . . . , tn−1) when n > 0 and (A′, σ) |= R

when n = 0.

(101) Let L be a first-order language, A be an L-structure and let
g : |A|n −→ |A| be a function definable in A by the formula

First-Order Logic–Syntax and Semantics 819

ϕg and the sequence of variables (y0, . . . , yn). Define L′ as
the first-order language L ∪ {fg}, where fg is a new n-ary
function symbol and let A′ be the L′-structure that is the
extension of A with fA′

g = g. Prove that there is an effectively
computable function F : FORM −→ FORM such that for all
ϕ ∈ FORML′ we have F (ϕ) ∈ FORML and, if σ ∈ ASSIGNA,
then (A′, σ) |= ϕ if and only if (A, σ) |= F (ϕ).
Solution: We begin by defining F for atomic formulas using
recursion on the number of occurrences of fg in the atomic
formula ϕ. If fg does not occur in ϕ, then F (ϕ) = ϕ.
Suppose now fg occurs in ϕ, say ϕ = R(t0, . . . , tm−1) and that
the rightmost occurrence of the function symbol fg is located
in the term tk, and let (fg(u0, . . . , un−1), i) be the occurrence
of the term beginning with this rightmost occurrence of fg in
the term tk. Note that fg does not occur in any of the terms
u0, . . . , un−1.
Let z be a variable that does not occur in R(t0, . . . , tm−1).
Observe that the atomic formula

θ = R(t0, . . . , tk−1, replace (tk, (fg(u0, . . . , un−1), i), z),

tk+1, . . . , tm−1)

contains one fewer occurrence of fg than R(t0, . . . , tm−1).
Thus, we can complete the recursive definition of F for atomic
formulas by:

F (R(t0, . . . , tm−1)) = (∃z)(〈ϕg〉y0,...,yn:=u0,...,un−1,z ∧ F (θ)).

Before defining F for the full set of formulas, we want to show
that F (ϕ) is A′-equivalent to ϕ for any L′-atomic formula ϕ.
For the basis step, when ϕ contains no occurrences of fg, this
fact is obvious. Suppose that the statement holds for formulas
containing fewer than l occurrences of fg, where l > 0, and let
R(t0, . . . , tm−1) be an L′-formula that contains l occurrences
of fg. Let tk and u0, . . . , un−1 be as in the definition of F .

Suppose (A′, σ) |= R(t0, . . . , tm−1), i.e., (σA′
(t0), . . . ,

σA′
(tm−1)) ∈ RA′

and let a = g(σA′
(u0), . . . , σ

A′
(un−1)) =

σA′
(fg(u0, . . . , un−1)). Since g is defined by ϕg and y0, . . . , yn

820 Logical Foundations of Computer Science — Volume 2

in A′, the definition of a implies

(A′, [y0 → σA′
(u0)] · · · [yn−1 → σA′

(un−1)][yn → a]) |= ϕg

which can be written as

(A′, [y0 → σ′A
′
(u0)] · · · [yn−1 → σ′A

′
(un−1)]

[yn → σ′A
′
(z)]σ′) |= ϕg,

where σ′ = [z → a]σ, due to the fact that z does not occur in
any of the terms u0, . . . , un−1. This is equivalent to

(A′, σ′) |= 〈ϕg〉y0,...,yn:=u0,...,un−1,z,

due to Exercise 90. If j = k, then σA′
(tj) = σ′A

′
(tj) because

z does not occur in tj. Also, by Exercise 49,

σA′
(tk) = σ′A

′
(replace (tk, (fg(u0, . . . , un−1), i), z)).

It follows that

(A′, σ′) |= R(t0, . . . , tk−1, replace (tk, (fg(u0, . . . , un−1), i), z),

tk+1, . . . , tm−1) = θ.

By the inductive hypothesis, we have (A′, σ′) |= F (θ), so
(A′, σ′) |= (〈ϕg〉y0,...,yn:=u0,...,un−1,z ∧ F (θ)), which implies

(A′, σ) |= F (R(t0, . . . , tm−1)).

Suppose now that (A′, σ) |= F (R(t0, . . . , tm−1)). By the def-
inition of F , there is an a ∈ |A′| such that (A′, σ′) |=
(〈ϕg〉y0,...,yn:=u0,...,un−1,z ∧ F (θ)), where σ′ = [z → a]σ and

θ = R(t0, . . . , tk−1, replace (tk, (fg(u0, . . . , un−1), i), z),

tk+1, . . . , tm−1).

By the inductive hypothesis, (A′, σ′) |= F (θ) implies that
(A′, σ′) |= θ, which means that

(σ′A′
(t0), . . . , σ

′A′
(tk−1), σ

′A′
(replace (tk, (fg(u0, . . . , un−1), i), z)),

σ′A′
(tk+1), . . . , σ

′A′
(tm−1)) ∈ RA′

.

First-Order Logic–Syntax and Semantics 821

Since z does not occur in any ti, we obtain

(σA′
(t0), . . . , σ

A′
(tk−1), σ

′A′
(replace (tk, (fg(u0, . . . , un−1), i), z)),

σA′
(tk+1), . . . , σ

A′
(tm−1)) ∈ RA′

. (4.23)

From (A′, σ′) |= 〈ϕg〉y0,...,yn:=u0,...,un−1,z, it follows by Exer-
cise 90 that

(A′, [y0 → σ′A
′
(u0)] · · · [yn−1

→ σ′A
′
(un−1)][yn → σ′A

′
(z)]σ′) |= ϕg.

Since z does not occur in any of the terms u0, . . . , un−1, we
have

(A′, [y0 → σA′
(u0)] · · · [yn−1 → σA′

(un−1)][yn → a]) |= ϕg,

so a = g(σA′
(u0), . . . , σ

A′
(un−1)) = σA′

(fg(u0, . . . , un−1)).
Since, by Exercise 49, we have

σA′
(tk) = σ′A

′
(replace (tk, (fg(u0, . . . , un−1), i), z)),

it follows from (4.23) that (σA′
(t0), . . . , σ

A′
(tm−1)) ∈ RA′

which allows us to conclude that (A′, σ) |= R(t0, . . . , tm−1).
For the nonatomic case, we define recursively F by

F ((¬ϕ)) = (¬F (ϕ))
F ((ϕCψ)) = (F (ϕ)CF (ψ))

F ((Qx)ϕ) = (Qx)F (ϕ),

for any binary connective symbol C and quantifier symbol Q.
We leave the argument for these cases to the reader.

Propositional Forms and Tautologies

(102) Give an example of an injective inter-substitution s such that
the extension of s to PLFORM is not an injective function.

(103) Prove that if s is an injective prime inter-substitution and
Γ ⊆ PLFORM, then s(Γ) is a closed set of first-order formulas
if and only if Γ is closed.

822 Logical Foundations of Computer Science — Volume 2

(104) Let s be an inter-substitution and let ϕ0, . . . , ϕn−1 be propo-
sitional formulas. Prove that

s(ϕ0 ∨ · · · ∨ ϕn−1) = (s(ϕ0) ∨ · · · ∨ s(ϕn−1))

s(ϕ0 ∧ · · · ∧ ϕn−1) = (s(ϕ0) ∧ · · · ∧ s(ϕn−1).

(105) Let n,m0, . . . ,mn−1 be n+1 positive natural numbers and let
{ϕij | 0 ≤ i ≤ n− 1, 0 ≤ j ≤ mi − 1} be a family of first-order
formulas. Prove that∨
0≤i≤n−1

∨
0≤j≤mi−1

ϕij

≡ (ϕ00 ∨ · · · ∨ ϕ0 m0−1 ∨ · · · ∨ ϕn−1 0 ∨ · · · ∨ ϕn−1 mn−1−1)∧
0≤i≤n−1

∧
0≤j≤mi−1

ϕij

≡ (ϕ00 ∧ · · · ∧ ϕ0 m0−1 ∧ · · · ∧ ϕn−1 0 ∧ · · · ∧ ϕn−1 mn−1−1).

Hint. Use Exercise 22 of Chapter 2.
(106) Let n be a positive natural number, m0, . . . ,mn−1 be n posi-

tive natural numbers, m = (m0, . . . ,mn−1), andM = m0 · · · · ·
mn−1. We use here the notations introduced before Supple-
ment 23 of Chapter 2. For 0 ≤ i ≤ n − 1, let ϕi 0, . . . , ϕi mi−1

be mi first-order formulas. Prove that

n−1∨
i=0

mi−1∧
j=0

ϕij ≡
M−1∧
k=0

n−1∨
i=0

ϕi sk(i),

n−1∧
i=0

mi−1∨
j=0

ϕij ≡
M−1∨
k=0

n−1∧
i=0

ϕi sk(i).

Hint. Use Supplement 23 of Chapter 2.

Inter-substitutions can be applied to signed formulas in a natural
way; namely, if s is an inter-substitution and bϕ is a signed formula
of propositional logic, we define s(bϕ) as bs(ϕ).

(107) Formulate and prove a statement similar to the one in Exer-
cise 103 for signed formulas.

First-Order Logic–Syntax and Semantics 823

(108) Give an example of a first-order language L, an injective,
atomic, L-substitution and a polynomial ℘ such that for every
formula ϕ ∈ PLFORM, size(s(ϕ)) ≤ ℘(size(ϕ)).
Hint. Choose L = {R0

n | n ∈N} and s(pn) = R0
n for n ∈ N.

(109) Give examples of logically valid, quantifier-free formulas that
are not tautologies.
Hint. Consider, for example, the formula ((x = y)→ (y = x)).

(110) Let L be a first-order language, s be an L-substitution such
that s(p) is a sentence for each variable p, and A be an L-
structure. Define a truth assignment v by:

v(p) =

{
T if A |= s(p)

F otherwise.

Prove that, for every formula ϕ ∈ PLFORM, we have v(ϕ) =
T if and only if A |= s(ϕ).
Hint. Use Lemma 4.8.11.

Normal Forms for Formulas

(111) Construct prenex normal forms for the formulas listed below
using the method given in Theorem 4.9.9.

(a) (((∀x1)R1
1(x1)→ (∃x2)R2

1(x1, x2))→ (¬(∃x3)R1
2(x3)));

(b) ((∃x1)(∀x2)R2
1(x1, x2)→ (∀x1)(∃x2)R2

1(x1, x2)).

(112) Construct Skolem normal forms for the formulas given in Exer-
cise 111 using the method given in Algorithm 4.9.14.

(113) Construct a Skolem normal form for the formula

(∃x0)(∀x1)(∀x2)(∃x3)R(x0, x1, x2, x3).

(114) (a) Prove that every formula in prenex normal form belongs
to one of the Πn or Σn classes.

(b) Prove that every formula in prenex normal form that is
not quantifier-free belongs to exactly one of the classes
Πn or Σn.

Hint. For Part (a), use induction on the number of occurrences
of quantifier symbols in the formula in prenex normal form.
For Part (b), define precisely the concept of “alternation of
quantifier symbol” and show that a formula in Πn or Σn has
n− 1 alternations of quantifier symbols, for n ≥ 1.

824 Logical Foundations of Computer Science — Volume 2

(115) Let ϕ be a formula that does not contain the ↔ connective
symbol, and let ψ be a prenex normal form for ϕ obtained by
applying the method of Theorem 4.9.9. Prove that the number
of occurrences of each connective symbol is the same in the
formulas ϕ and ψ. Further, prove that the two formulas have
the same number of occurrences of quantifier symbols.

(116) Let ϕ be a formula in Σn or Πn. Prove that for each k ≥ 1,
there is a formula ψ in Σn+k and a formula θ in Πn+k such
that ψ and θ are prenex normal forms ϕ.
Hint. Use Corollary 4.5.43 and Theorem 4.6.16.

(117) Let ϕ,ψ be two formulas which both belong to Σn or to Πn
for n ≥ 0. Prove that there are prenex normal forms of the
formula (ϕ→ ψ) that belong to Σn+1 and Πn+1, respectively.

(118) Let w be a variable that does not occur free in the formulas

α0, . . . , αi−1, αi+1, . . . , αn−1,

where 0 ≤ i ≤ n− 1 and n ≥ 1. Prove that the formulas

(α0C · · ·C(Qw)αiC · · ·Cαn−1)

and (Qw)(α0C · · ·Cαn−1) are logically equivalent, where Q is
a quantifier symbol and C ∈ {∨,∧}.
Hint. The argument is by induction on the number n− i− 1
of formulas that follow αi and uses Lemma 4.9.7.

Reduction of First-Order Logic to Propositional Logic

(119) Let L,L1, L2 be first-order languages.

(a) Prove that for every constant symbols a, b we have
Ha(Hb(L)) = Hb(L).

(b) If L1 ∪ L2 is first-order language, show that we can have

Ha(L1 ∪ L2) = Ha(L1) ∪Ha(L2).

Under which conditions do we have an equality?
(c) Prove that

Ha(L1 ∩ L2) = Ha(L1) ∩Ha(L2).

if and only if one of the following cases occur

(i) L1, L2 have no constant symbols;

First-Order Logic–Syntax and Semantics 825

(ii) L1 and L2 have some common constant symbols;
(iii) one of L1, L2 contains a and the other has no constant

symbols.

(120) If S is a subset of GAFORML and R is an n-ary relation
symbol of L with n > 0, show that STR(S) |= R(t0, . . . , tn−1)
if and only if R(t0, . . . , tn−1) ∈ S, where t0, . . . , tn−1 are L-
ground terms.

(121) Let A be a Herbrand structure for a first-order language L and
let t be a term in TERML. Prove that for every σ ∈ ASSIGNA,
we have the equality σA(t) = s

y0···yn−1

σ(y0)···σ(yn−1)
(t), where

y0, . . . , yn−1 are distinct variables and V(t) ⊆ {y0, . . . , yn−1}.
(122) Let L be a first-order language that contains at least one con-

stant symbol and let A be a Herbrand structure for L. Prove
that A has no substructures different from A itself.

(123) Let L be a first-order language, V be a nonempty set of vari-
ables, and A be a V -Herbrand structure for L. Prove that the
set of ground terms is the domain of a proper substructure
of A.

(124) Give an example of a first-order language L without equality
and a set of closed (but not universal) L-formulas Γ such that
Γ has a model, but Γ does not have any L-Herbrand model.
Solution: Let L = {a,R}, where a is a constant symbol and
R is a unary relation symbol. Γ = {(R(a) ∧ (∃x)(¬R(x)))}
has the desired property. Indeed, Γ obviously has a model;
however, the domain of any L-Herbrand structure has only
one element (namely, a) and no such structure can be a model
of Γ.

(125) Let L be a first-order language without equality, V be a
set of variables, and Γ be a satisfiable set of not necessarily
quantifier-free L-formulas with FV(Γ) ⊆ V . Prove that there
is a first-order language L′ such that L ⊆ L′, L′ − L contains
only function symbols, and Γ is satisfiable in a V -Herbrand
structure for L′.
Solution: By Theorem 4.9.19, there is first-order language
L′ and a set of L′-formulas Γ′ such that L ⊆ L′ and Γ′ is a
Skolemization of Γ. Corollary 4.9.21 implies that Γ′ is satis-
fiable. Since FV(Γ′) = FV(Γ) ⊆ V , by Theorem 4.10.19, Γ′ is

826 Logical Foundations of Computer Science — Volume 2

satisfiable in a V -Herbrand structure A for L′. Therefore, by
Theorem 4.9.20, Γ is satisfiable in A.

(126) Show that Theorem 4.10.34 fails if one allows first-order lan-
guages to be uncountable.
Solution: Let L consist of a binary relation symbol E and
uncountably many constant symbols {cr | r ∈ R} (where R
is the set of real numbers). Consider the set Γ of L-formulas
given by

Γ = {(∀x)E(x, x), (∀x)(∀y)(E(x, y) → E(y, x)),

(∀x)(∀y)(∀z)((E(x, y) ∧E(y, z)) → E(x, z))}
∪{(¬E(c, d)) | c, d are distinct constant symbols in L}

Consider the L-structureR such that |R| = R, ER = {(r, r′) ∈
R×R | r = r′} and cRr = r for r ∈ R. Since equality onR is an
equivalence relation, Γ is satisfiable in R. On the other hand, if
Γ is satisfiable in an L-structureA, then there is an equivalence
relation on |A| with an uncountable set of equivalence classes,
one for each constant symbol cr. Therefore, if B is any L-
structure with a countable universe, Γ is not satisfiable in B.

(127) Let Γ be a set of L-formulas. Prove that if Γ has arbitrarily
large finite models, then Γ has an infinite model.

(128) Let L be a first-order language and let Γ be a set of univer-
sal L-formulas with FV(Γ) ⊆ V , where V is an L-suitable set
of variables. Show that if INSTL,V (Γ) is satisfiable in an L-
structure A, then Γ is satisfiable in a substructure B of A that
is isomorphic to a quotient of a V -Herbrand structure for L.
Solution: Let σ ∈ ASSIGNA be such that (A, σ) |=
INSTL,V (Γ), h : |HV (A, σ)| −→ |A| be the morphism of Theo-
rem 4.10.16, and let B be the range of h, that is, B = {σA(t) |
t ∈ TERML(V)}. Let B be the substructure of A with domain
B. By Theorem 4.4.35, B is isomorphic to a quotient of the
V -Herbrand structure HV (A, σ) for L. If Γ is satisfiable in B,
then the result follows. Let τ be an assignment over B such
that τ(x) = σ(x) for every x ∈ V .
Let ϕ = (∀y0) · · · (∀yn−1)ψ, where ψ is quantifier-free, be a
formula in Γ. The following statements are equivalent:

(a) (B, τ) |= ϕ;

First-Order Logic–Syntax and Semantics 827

(b) for every t0, . . . , tn−1 ∈ TERML(V),

(B, [y0 → σA(t0)] · · · [yn−1 → σA(tn−1)]τ) |= ψ;

(c) for every t0, . . . , tn−1 ∈ TERML(V),

(A, [y0 → σA(t0)] · · · [yn−1 → σA(tn−1)]τ) |= ψ;

(d) for every t0, . . . , tn−1 ∈ TERML(V),

(A, [y0 → σA(t0)] · · · [yn−1 → σA(tn−1)]σ) |= ψ;

(e) (A, σ) |= (ψ)y0,...,yn−1:=t0,...,tn−1 .

The equivalence of (b) and (c) follows from the second
part of Exercise 41. The equivalence of (c) and (d) follows
from the Agreement Theorem since the assignments involved
agree on all variables that occur in ψ. Finally, the equiva-
lence between (d) and (e) follows from Corollary 4.6.6. Since
(A, σ) |= INSTL,V (Γ), the last statement holds, so the first
statement is true.

(129) Show that Supplement 128 can be used to provide alternative
arguments for the following implications:

(a) (3) −→ (1) of Theorem 4.10.40;
(b) (4) −→ (2) of Theorem 4.10.41.

Hint. Use Exercise 122 for the second part.
(130) Let L be a first-order language, Γ be a set of universal L-

formulas and V be an L-suitable set of variables such that
FV(Γ) ⊆ V . Prove that the following statements are equivalent.

(a) Γ is satisfiable.
(b) Γ is satisfiable in a quotient of a V -Herbrand structure

for L.
(c) INSTL,V (Γ) is satisfiable.
(d) INSTL,V (Γ) is satisfiable in a quotient of a V -Herbrand

structure for L.
Solution: The plan of our argument is shown in the diagram
below.

(b d)

(a

) (

) (c)

828 Logical Foundations of Computer Science — Volume 2

Theorems 4.10.19 and 4.10.40 imply the equivalence of (a)
and (c). It is clear that (b) implies (a) and (d) implies (c).
The fact that (c) implies (b) follows from Supplement 128.
Finally, (c) implies (d) follows from the same supple-
ment by replacing Γ with INSTL,V (Γ) and observing that
INSTL,V (INSTL,V (Γ)) = INSTL,V (Γ).

(131) Let L be a first-order language, V be a set of variables, and Γ
be a satisfiable set of not necessarily quantifier-free L-formulas
with FV(Γ) ⊆ V . Prove that there is a first-order language L′
such that L ⊆ L′, L′ − L consists of function symbols, and Γ
is satisfiable in a quotient of a V -Herbrand structure for L′.
Solution: By Theorem 4.9.19, there is first-order language
L′ and a set of L′-formulas Γ′ such that L ⊆ L′ and Γ′ is a
Skolemization of Γ. Corollary 4.9.21 implies that Γ′ is satis-
fiable. Since FV(Γ′) = FV(Γ) ⊆ V , by Supplement 130, Γ′ is
satisfiable in a quotient B of a V -Herbrand structure A for L′.
Therefore, by Theorem 4.9.20, Γ is satisfiable in B.

Brand’s Modification Method

(132) Let R be a binary relation symbol and P be a unary relation
symbol and let ϕ be the R-flat formula (∃x)(∃y)(R(x, y) ∧
P (x) ∧ (¬P (y))). Prove that ϕ has a model B with RB an
equivalence, but fails to have a model A with RA a congruence.
(Note that this exercise shows that the assumption in Theo-
rem 4.11.3 that the set Γ consists of quantifier-free formulas is
essential.)

(133) Give a direct argument that the set Γ introduced in Exam-
ple 4.11.2 has no model A where RA is an equivalence relation.
Also, prove that Γ has a model.

(134) Give a proof of Theorem 4.11.12 using induction on the number
of steps in the application of Algorithm 4.11.9 to Γ.

(135) Let Γ = {R(a, b), (¬R(f(a), f(b)))}, where R is a binary rela-
tion symbol, f is a unary function symbol, and a, b are constant
symbols.

(a) Give a direct argument that Γ has no model A where RA
is a congruence.

First-Order Logic–Syntax and Semantics 829

(b) Compute an R-flattening Γ〈R〉 of Γ using Algorithm 4.11.9.

By Theorem 4.11.10, Γ〈R〉 has no model A with RA an
equivalence relation. Give a direct proof of this fact.

(c) Let Γ̃〈R〉 be an e-expansion of Γ〈R〉 by R. According to

Theorem 4.11.17, Γ̃〈R〉 has no model. Give a direct proof
of this fact.

(d) Let Γ′ be a positive e-expansion of Γ〈R〉 by R. According
to Theorem 4.11.23, Γ′ has no model A with RA a reflexive
relation. Give a direct proof of this fact.

Hintikka Sets and Truth Sets

(136) Let L = {c, s, f, g,=} be a first-order language, where c is a
constant symbol, s is a unary function symbol, and f, g are
binary function symbols, and let V = {x0}. Consider the L-
structure A, with |A| = N[X], where N[X] is the set of all
polynomials in X whose coefficients are natural numbers, cA =
0, sA(p) = p + 1, fA(p, q) = p + q, and gA(p, q) = qp. Prove
that if σ ∈ ASSIGNA is such that σ(x0) = X, then the pair
(A, σ) is V -named.

(137) Let L = {¬,∨,∧}, where ¬ is a unary function symbol and
∨,∧ are binary function symbols, A be the L-structure with
|A| = Booln −→ Bool, for some n > 0, where

¬A(f)(b0, . . . , bn−1) = ¬(f(b0, . . . , bn−1))

∨A(f, g)(b0, . . . , bn−1) = f(b0, . . . , bn−1) ∨ g(b0, . . . , bn−1)

∧A(f, g)(b0, . . . , bn−1) = f(b0, . . . , bn−1) ∧ g(b0, . . . , bn−1)

for b0, . . . , bn−1 ∈ Bool, and let V = {x0, . . . , xn−1}. Prove
that (A, σ) is a V -named pair, where σ(xi) = πni , for 0 ≤ i ≤
n− 1.

(138) Let A be an L-structure such that |A| is uncountable. Prove
that there is no set V of variables and assignment σ such that
(A, σ) is V -named.
Hint. Recall that for us first-order languages and sets of vari-
ables are countable sets.

(139) (a) Prove that for every formula ϕ, ϕ is logically valid if and
only if ϕ belongs to every (Lϕc, FV(ϕ))-truth set.

830 Logical Foundations of Computer Science — Volume 2

(b) Let ϕ = ((∃x)R(x)→ R(a)). Verify that ϕ is not logically
valid and that ϕ belongs to every Lϕ-truth set.

(c) Let L be a first-order language, Γ′ = Γ ∪ {ϕ} ⊆ FORML,
and V = FV(Γ′). Prove that Γ |= ϕ if and only if ϕ belongs
to every (Lc, V)-truth set that contains Γ.

(d) Reformulate the notion of logical equivalence using the
notion of truth set.

(140) Use Theorems 4.12.35 and 4.12.11 to give a semantic proof of
Corollary 4.12.31.

(141) Prove that Exercises 74 and 76 of Chapter 2 remain valid if we
replace “Hintikka set” with “(L, V)-Hintikka set,” where L is
a first-order language and V is an L-suitable set of variables.

(142) Let L be a first-order language, V be an L-suitable set of
variables, and let ϕ be a positive formula that is not atomic.
Prove that ifK is an (L, V)-constituent of ϕ andH is a (L, V)-
constituent of the formula (¬ϕ), then there is a formula γ such
that ‖ γ ‖<‖ ϕ ‖ and K ∪H contains both γ and (¬γ).

(143) Show that the second part of Corollary 4.12.13 can fail if α is
not a closed formula.

(144) Let L be a first-order language and V be an L-suitable set of
variables. Prove that:

(a) If A,B are L-structures, σ ∈ ASSIGNA is such that (A, σ)
is V -named, and k : |A| −→ |B| is an epimorphism, then
(B, τ) is V -named, where τ = k ◦ σ. Conclude that if k
is an isomorphism, then (A, σ) is V -named if and only if
(B, τ) is V -named.

(b) If A,B are L-structures, k : |A| −→ |B| is an epimorphism,
and A is named, then B is named. Conclude that if k is an
isomorphism, then A is named if and only if B is named.

The next supplement will show that V -named pairs can be identi-
fied up to isomorphism with the particular type of V -named pair
identified in Example 4.12.10.

(145) Let L be a first-order language and V be an L-suitable set of
variables.
Show that a pair (A, σ), where A is an L-structure and σ is an
assignment, σ ∈ ASSIGNA, is V -named if and only if there is

First-Order Logic–Syntax and Semantics 831

a V -Herbrand structure B for L, a congruence ρ on B, and a
τ ∈ ASSIGNB/ρ with τ(x) = [x]ρ for all x ∈ V such that there
is an isomorphism k : |A| −→ |B/ρ| with τ = k ◦ σ.
Solution: Suppose that (A, σ) is a V -named structure. Then,
if B = HV (A, σ), as introduced in Theorem 4.10.16, the
morphism h : |B| −→ |A|, given by h(t) = σA(t) for
t ∈ TERML(V) is an epimorphism. Consequently, by Theo-

rem 4.4.35, the mapping ĥ : |B/ρ| −→ |A|, given by ĥ([t]) =
σA(t) is an isomorphism, where ρ = ker(h). Thus, the map-

ping k = ĥ−1 (where k(a) = [t]ρ for t ∈ TERML(V) such that
σA(t) = a) is an isomorphism. Further, by taking τ = k ◦ σ,
we have τ(x) = k(σ(x)) = k(σA(x)) = [x]ρ for all x ∈ V .
The converse follows from Exercise 144, Part (a).

(146) Let L be a first-order language that contains at least one con-
stant symbol. Show that an L-structure A is named if and only
if A is isomorphic to a quotient of a Herbrand structure for L.

(147) Let L be a first-order language and V be an L-suitable set of
variables. Prove that DL,V (ϕ) is finite for all ϕ ∈ FORML(V)
if and only if all of the relation symbols of L are propositional
constants or TERML(V) is finite.

(148) Let L be a first-order language whose relation symbols are
all propositional constants. Prove that if V is an L-suitable
set of variables, then the collection of all satisfiable subsets of
FORML(V) is an (L, V)-consistency property.

(149) Let L be a first-order language that contains at least one
relation symbol R that is not a propositional constant and
infinitely many constant symbols; let V be a set of variables.
In contrast with Supplement 77 of Chapter 2, give an example
of a (L, V)-consistency property C such that C′, the smallest
property of finite character of the subsets of FORML(V) that
contains C is not an (L, V)-consistency property.
Solution: Let C = {Γ ⊆ FORML(V) | Γ is satisfiable and Γ
contains only finitely many constant symbols }. Following an
argument similar to the one in Theorem 4.12.25, one can prove
that C is an (L, V)-consistency property. Let

Γ = {(∃x)(¬R(x, t0, . . . , t0)} ∪ {R(t, t0, . . . , t0) | t
∈ TERML(V)},

832 Logical Foundations of Computer Science — Volume 2

where t0 is an arbitrary, fixed term in TERML(V). We proved
in Example 4.12.24 that Γ is satisfiable and, therefore, every
finite subset of Γ belongs to C, which in turn implies that
Γ ∈ C′. If C′ were a consistency property, this would imply that
Γ∪K ∈ C′, where K is a constituent of (∃x)(¬R(x, t0, . . . , t0)),
so Γ ∪ K is satisfiable. This generates a contradiction, as we
saw in Theorem 4.12.25.

(150) Let C be a (L, V)-consistency property, where L is a first-order
language and V is an L-suitable set of variables. Prove that
every maximal element of C is an (L, V)-Hintikka set.

(151) Formulate and prove an analogue of Exercise 83 of Chapter 2
for first-order logic.

(152) Let L be a first-order language and let s be an L-substitution.
(L-substitutions were defined at the beginning of Section 4.8.)
Prove that for every signed propositional formula bϕ such
that ϕ is not a variable, and set of variables V , we have
dL,V (s(bϕ)) = s(d(bϕ)).

(153) Let L be a first-order language, V be a set of variables and
let α, β ∈ FORML(V). For a a constant symbol in L and t ∈
TERML(V), prove that if ϕ = (αCβ) for some binary connec-
tive symbol C or ϕ = (¬α), then sat (dL,V (bϕ)) = dL,V (sat (bϕ))
for b ∈ Bool.

(154) Let L be a first-order language and V be a set of variables.
Prove that if Γ is a satisfiable set of (L, V)-formulas, then there
is an (Lc, V)-Hintikka set Γ′ such that

Γ ⊆ Γ′ ⊆
{
W ∗

Lc,V (Γ) if = ∈ L
W ∗

Lc,V (Γ ∪ INSTLc,V (Eq=,L)) if =∈ L

Let L be a first-order language and V be an L-suitable set of vari-
ables.

A set of formulas Γ ⊆ FORML(V) is p-downward (L, V)-closed
if for every positive formula ϕ ∈ Γ that is not a literal at least one
(L, V)-constituent of ϕ is included in Γ. The notions np-downward
closed, nn-downward closed, p-upward closed, np-upward closed, nn-
upward closed, downward closed, and upward closed from proposi-
tional logic are similarly adopted to first-order logic.

A set of formulas Γ ⊆ FORML(V) is (L, V)-saturated if the fol-
lowing conditions are satisfied:

First-Order Logic–Syntax and Semantics 833

• for every (L, V)-formula ϕ, we have ϕ ∈ Γ if and only if (¬ϕ) ∈ Γ;
• Γ is both upward and downward closed;
• if =∈ L, then INSTL,V (Eq=,L) ⊆ Γ.

(155) Show that Theorems 2.7.5 and 2.7.7, Exercises and Supple-
ments 84 to 86 and Exercises 88 and 90 of Chapter 2 can be
suitably modified to hold for first-order logic.
For example, Theorem 2.7.5 can be restated as follows:
Let L be a first-order language, V be an L-suitable set of vari-
ables, and let Γ ⊆ FORML(V) be a set of formulas such that
for every formula ϕ ∈ FORML(V), exactly one of ϕ and (¬ϕ)
belongs to Γ. Prove that

(a) Γ is upward (L, V)-closed if and only if it is p-upward and
np-upward (L, V)-closed.

(b) Γ is downward (L, V)-closed if and only if it is p-downward
and np-downward (L, V)-closed.

Exercise 86 of Chapter 2 can be restated as follows.
Let L be a first-order language and V be an L-suitable set of
variables. Show, with examples, that a set of (L, V) formulas
Γ such that ∈ Γ if and only if ∈ Γ for all (L, V)-literals ,
can satisfy any five of the following six conditions and fail to
be a truth set:

(a) Γ is p-upward (L, V)-closed.
(b) Γ is np-upward (L, V)-closed.
(c) Γ is nn-upward (L, V)-closed.
(d) Γ is p-downward (L, V)-closed.
(e) Γ is np-downward (L, V)-closed.
(f) Γ is nn-downward (L, V)-closed.

(156) Let L be a first-order language without equality, V be an L-
suitable set of variables, and Γ ⊆ FORML(V) be a set of for-
mulas. Prove that if ∈ Γ if and only if ∈ Γ for every literal
and Γ is upward (L, V)-closed, then Γ contains an (L, V)-truth
set.

(157) Let L be a first-order language and V be an L-suitable set of
variables. Prove that Γ is an (L, V)-Hintikka set if and only
if Γ is a downward (L, V)-closed subset of an (L, V)-truth set
and Γ includes INSTL,V (Eq=,L), when =∈ L.

834 Logical Foundations of Computer Science — Volume 2

(158) Show that analogues of Exercise 91 and Supplement 92 of
Chapter 2 hold for first-order logic.

(159) Let Γ be a set of L-formulas, A be an L-structure and σ be
an assignment in ASSIGNA, where L is a first-order language.
Prove that the set of signed formulas {SA(ϕ)(σ)ϕ | ϕ ∈ Γ} is
satisfiable.

Define u : SFORM −→ FORM and s : FORM −→ SFORM by:

u(bϕ) =

{
ϕ if b = T

(¬ϕ) if b = F
(4.24)

for every bϕ ∈ SFORM, and

s(ϕ) =

{
Tϕ if ϕ is positive

Fψ if ϕ = (¬ψ).
(4.25)

for every ϕ ∈ FORM.
Define a function Ξ : P(SFORM) −→ P(FORM) by Ξ(Δ) = {ϕ |

Tϕ ∈ Δ} ∪ {(¬ϕ) | Fϕ ∈ Δ} and a function Υ : P(FORM) −→
P(SFORM) by Υ(Γ) = {Tϕ | ϕ ∈ Γ} ∪ {Fϕ | (¬ϕ) ∈ Γ}.

Observe that Ξ(Δ) is the extension of the function u, defined
above, to sets of signed formulas.

(160) (a) Prove that Exercises 96, 97, 99(a,b), 100 and Supple-
ment 98(a-f) of Chapter 2 can be suitably reformulated
for first-order logic.

(b) Derive Theorem 4.12.50 from Theorem 4.12.17 and Theo-
rem 4.12.53 from Theorem 4.12.20 using the modified ver-
sion of Supplement 98 of Chapter 2.

(c) Derive Theorem 4.12.17 from Theorem 4.12.50 and Theo-
rem 4.12.20 from Theorem 4.12.53 using the modified ver-
sion of Exercise 99 of Chapter 2.

(161) Let ϕ,ϕ′ be two first-order formulas. Prove that ϕ is a variant
of ϕ′ if and only if s(ϕ) is a variant of s(ϕ′).

(162) Let ϕ,ϕ′ be two first-order formulas and b ∈ Bool. Prove that
bϕ is a variant of bϕ′ if and only if u(bϕ) is a variant of u(bϕ′).

Let L be a first-order language and V be a set of variables.
A set of signed (L, V)-formulas Δ is (L, V)-maximally satisfiable

if it is satisfiable and there is no satisfiable set Δ′ ⊆ SFORML(V)
such that Δ ⊂ Δ′.

First-Order Logic–Syntax and Semantics 835

Assume in addition now that V is L-suitable. A set of signed
(L, V)-formulas Δ is T-downward (L, V)-closed if for every signed
formula Tϕ ∈ Δ−(Bool×AFORML), there is an (L, V)-constituent
K of Tϕ such that K ⊆ Δ. The similar notions of F-downward
(L, V)-closed, downward (L, V)-closed, T-upward (L, V)-closed, F-
upward (L, V)-closed, and upward (L, V)-closed are adapted from
their propositional counterparts.

A set of signed (L, V)-formulas Δ is (L, V)-saturated if the fol-
lowing conditions are satisfied:

• for every (L, V)-formula ϕ, we have Tϕ ∈ Δ if and only if Fϕ ∈ Δ;
• Δ is both (L, V)-upward and (L, V)-downward closed;
• if =∈ L, then Tϕ ∈ Δ for every ϕ ∈ INSTL,V (Eq=,L).

(163) State and prove a characterization of (L, V)-maximally satis-
fiable sets of signed formulas similar to the one contained in
Exercise 101 of Chapter 2.

(164) Let L be a first-order language and V be a set of variables.
Prove that a set of signed formulas Δ is (L, V)-maximally sat-
isfiable if and only if there is an L-structure A and an assign-
ment σ ∈ ASSIGNA such that Δ = {bϕ ∈ SFORML(V) |
(A, σ) |= bϕ}.

(165) Let L be a first-order language and let V be an L-suitable set
of variables. Prove that a set Δ ⊆ SFORML(V) is an (L, V)-
saturated set if and only if there is an L-structure A and σ ∈
ASSIGNA such that (A, σ) is V -named and

Δ = {bϕ ∈ SFORML(V) | (A, σ) |= bϕ}.

Hint. The argument is similar to the one used in Theo-
rem 4.12.35.

(166) Formulate and prove first-order analogues of Exercises and
Supplements 104 to 113 of Chapter 2. For example, the first-
order analogue of Exercise 104 reads as follows.
Let L be a first-order language, V be an L-suitable set of vari-
ables, and ϕ be an (L, V)-formula that is not atomic. Suppose
that K is an (L, V)-constituent of the signed formula Tϕ and
H is an (L, V)-constituent of the signed formula Fϕ. Prove
that K ∪H is closed.

836 Logical Foundations of Computer Science — Volume 2

The notion of consistency property can be formulated for signed for-
mulas. Namely, let L be a first-order language and V be an L-suitable
set of variables. An (L, V)-consistency property is a collection C of
sets of signed (L, V)-formulas such that

• No set with property C contains both Tϕ and Fϕ for any atomic
formula ϕ.

• If Δ has property C, bϕ ∈ Δ and bϕ is neither a signed atomic
formula nor a γ-formula, then Δ ∪ K has property C for some
(L, V)-constituent K of bϕ.

• If Δ has property C and bϕ = b(Qx)ψ is a γ-formula, then Δ ∪
{b〈ψ〉x:=t} has property C for every t ∈ TERML(V).

• If =∈ L, Δ has property C, and α ∈ INSTL,V (Eq=,L), then Δ∪{α}
has property C.

A collection of sets of signed (L, V)-formulas I is an (L, V)-
inconsistency property if P(SFORML(V)) − I is an (L, V)-
consistency property.

Note that a collection of sets of signed (L, V)-formulas I is an
(L, V)-inconsistency property if and only if the following conditions
are satisfied:

• Every set of signed (L, V)-formulas including {Tϕ,Fϕ} for some
atomic formula ϕ belongs to I.

• If Δ is a set of signed (L, V)-formulas, bϕ ∈ Δ is neither a signed
atomic formula nor a γ-formula, and for every (L, V)-constituent
K of ϕ, Δ ∪K ∈ I, then Δ ∈ I.

• If Δ is a set of signed (L, V)-formulas, bϕ = b(Qx)ψ is a γ-formula
in Δ, and Δ∪ {b〈ψ〉x:=t} ∈ I for some term t ∈ TERML(V), then
Δ ∈ I.

• If L contains = and Δ∪{Tα} ∈ I, for some α ∈ INSTL,V (Eq=,L),
then Δ ∈ I.

(167) Let L be a first-order language, V be a set of variables and C
be the collection of all satisfiable subsets Δ of SFORMLc(V)
such that Δ is a set with limited constant symbols. Prove that
C is a (Lc, V)-consistency property.

(168) Let L be a first-order language, V be an L-suitable set of vari-
ables, C be an (L, V)-consistency property of signed formulas,
Δ be a member of C and Γ be {ϕ | bϕ ∈ Δ for some b ∈ Bool}.

First-Order Logic–Syntax and Semantics 837

Prove that Δ is satisfiable. In fact, show that there is an (L, V)-
Hintikka set Δ′ such that Δ ⊆ Δ′ and

Γ′ ⊆
{
W ∗

L,V (Γ) if = ∈ L
W ∗

L,V (Γ ∪ INSTL,V (Eq=,L)) if =∈ L,

where Γ′ = {ϕ | bϕ ∈ Δ′ for some b ∈ Bool} (a property
referred to as the analyticity of the construction of Δ′).

(169) Let L be a first-order language and V be a set of variables.
Show that every satisfiable set of signed (L, V)-formulas is con-
tained in an (Lc, V)-Hintikka set of signed formulas. Discuss
the analyticity of this process.

(170) Formulate and prove the Compactness Theorem for Signed
Formulas by translating the corresponding result for unsigned
formulas as was required in Exercise 117 of Chapter 2, using
the mapping u introduced before Exercise 160.

(171) Prove the Compactness Theorem for Signed Formulas along
the lines of the argument presented in Example 4.12.28, using
the notion of consistency property for sets of signed formulas.

Theories

(172) Let L be a first-order language and let A be an L-first-order
property. Prove that for any L-structures A,B, if A ∈ A and
A ≡ B, then B ∈ A.

(173) Give an example of a first-order language L and a class of L-
structures A such that A ∈ A and A ≡ B imply B ∈ A, but A
is not an L-first-order property.
Solution: Let L = {=} and A be the class of all finite L-
structures. Suppose that A ∈ A and let k be the number of
elements in the universe of A. If θk is the formula introduced
in Supplement 53, then θk ∈ ThL(A). If B ≡ A, then θk ∈
ThL(B), so B is also a finite L-structure.
Corollary 4.10.46 shows that A is not an L-first-order property.

Decidability and Undecidability in First-Order Logic
An L-theory Σ admits elimination of quantifiers if for every L-

formula ϕ there is a quantifier-free L-formula ψ such that Σ |= (ϕ↔
ψ) and FV(ψ) ⊆ FV(ϕ). (Note that if ϕ is an L-sentence, then ψ is an
L-sentence.)

838 Logical Foundations of Computer Science — Volume 2

We say that Σ admits an effective elimination of quantifiers if
there is an algorithm that allows us to obtain ψ from ϕ.

(174) Show that if L-theory admits an effective elimination of quan-
tifiers and there is an algorithm which, given a quantifier-free
L-sentence, decides the membership of the sentence in the the-
ory, then the theory is decidable, that is, there is an algorithm
that starting with an arbitrary L-sentence decides its mem-
bership in the theory.

(175) Let L be a first-order language and Σ be a complete and
semantically consistent L-theory. Prove that if there exists an
algorithm which, given a ground atomic L-formula θ, deter-
mines whether or not θ ∈ Σ, then there is an algorithm that for
every quantifier-free L-sentence ϕ, determines whether ϕ ∈ Σ.
Solution: Given ϕ, a quantifier-free L-sentence, we can deter-
mine effectively a fundamental propositional form α for ϕ and
an injective, atomic substitution s with s(α) = ϕ, using the
argument that is implicit in the proof of Theorem 4.8.7. Let v
be the truth assignment given by

v(p) =

{
T if s(p) ∈ Σ

F otherwise.

By hypothesis, v can be effectively computed because there is
an algorithm which allows to determine whether s(p) ∈ Σ.
We claim that ϕ ∈ Σ if and only if v(α) = T, which would give
the desired algorithm. To justify this claim, note that by Theo-
rem 4.13.27, there is an L-structure A such that Σ = ThL(A).
Fix σ ∈ ASSIGNA. We have (A, σ) |= s(p) if and only if
A |= s(p) if and only if s(p) ∈ ThL(A) = Σ for every proposi-
tional variable p because s(p) is a ground atomic formula. By
Lemma 4.8.11, we have v(ϕ) = T if and only if (A, σ) |= ϕ
which is equivalent to A |= ϕ which, in turn, is equivalent to
ϕ ∈ ThL(A) = Σ.

(176) Prove that an L-theory Σ admits elimination of quantifiers
if and only if for every L-formula ϕ of the form (∃x)(α0 ∧
· · · ∧ αn−1), where α0, . . . , αn−1 are literals and n ≥ 1, there
is a quantifier-free L-formula ψ such that Σ |= (ϕ ↔ ψ) and
FV(ψ) ⊆ FV(ϕ).

First-Order Logic–Syntax and Semantics 839

Solution: We will discuss only the nontrivial implication con-
tained in the statement.
By the second part of Theorem 4.5.57, any L-formula can be
transformed into an equivalent L-formula that does not con-
tain universal quantifier symbols and has the same set of free
variables. Thus, without loss of generality, we may assume that
our formulas do not contain ∀.
We first show that if ϕ = (∃x)θ with θ quantifier-free, then
there is a quantifier-free L-formula ψ such that Σ |= (ϕ ↔
ψ) and FV(ψ) ⊆ FV(ϕ). By Theorem 4.9.2, which asserts
the existence of the disjunctive normal form, we can write
θ ≡
∨n−1
i=0

∧mi−1
j=0 βij, where each βij is a literal and FV(θ) =

FV(
∨n−1
i=0

∧mi−1
j=0 βij). By Exercise 46, we have ϕ = (∃x)θ ≡∨n−1

i=0 (∃x)
∧mi−1
j=0 βij and these formulas have the same set

of free variables. By the hypothesis of the supplement, for
each formula (∃x)

∧mi−1
j=0 βij, there is an equivalent quantifier-

free formula γi such that FV(γi) ⊆ FV
(
(∃x)
∧mi−1
j=0 βij

)
. This

allows to conclude that the quantifier-free formula
∨n−1
i=0 γi is

logically equivalent to ϕ and FV
(∨n−1

i=0 γi

)
⊆ FV(ϕ).

To prove the implication of the statement, we proceed by
induction on ϕ. The basis step, when ϕ is atomic, is imme-
diate. The only inductive step of interest is when ϕ = (∃x)ψ
and by inductive hypothesis, ψ is equivalent to a quantifier-free
L-formula θ. Then, ϕ ≡ (∃x)θ and by the previous argument,
ϕ is equivalent to a quantifier-free L-formula with no more free
variables than ϕ.

(177) By examining the proof of Supplement 176, show that Σ is an
L-theory that admits an effective elimination of quantifiers if
and only if there is an algorithm that given an L-formula ϕ of
the form (∃x)(α0 ∧ · · · ∧αn−1), where α0, . . . , αn−1 are literals
and n ≥ 1 produces a quantifier-free L-formula ψ such that
Σ |= (ϕ↔ ψ) and FV(ψ) ⊆ FV(ϕ).

(178) Prove that ThLs(As), the theory of the Ls-structure
As of Example 4.4.39 admits an effective elimination of
quantifiers.
Solution: By Supplement 176, we can restrict our attention
to formulas of the form (∃x)(α0 ∧ · · · ∧ αn−1), where each αi

840 Logical Foundations of Computer Science — Volume 2

is a literal. Note that the Ls-atomic formulas have the form
sp(u) = sq(u′), where p, q ∈ N and u, u′ ∈ {0} ∪VAR.
Let ϕ = (∃x)(α0∧· · ·∧αn−1). If αi has the form sp(x) = sq(x),
then

αi ≡As

{
0 = 0 if p = q

0 = 0 otherwise.

Similarly, if αi has the form sp(x) = sq(x), then

αi ≡As

{
0 = 0 if p = q

0 = 0 otherwise.

By Lemma 4.6.15, we may assume that none of the literals αi
has one of these forms.
If x does not occur in any of the literals α0, . . . , αn−1, then
ϕ ≡ ψ, where ψ = (α0∧· · ·∧αn−1) is a quantifier-free formula.
Therefore, we may assume that x occurs in at least one of the
literals αi and, when it occurs in a literal, it does not appear
in both terms of the literal. By Exercise 43, we may assume
that x occurs only in the first m literals, where m ≥ 1. Then,

ϕ ≡As αm ∧ · · · ∧ αn−1 ∧ (∃x)(α0 ∧ · · · ∧ αm−1)

by Part 3 of Lemma 4.9.7. Thus, we can limit our discussion to
formulas of the form (∃x)(α0∧· · ·∧αn−1), where each of the lit-
erals αi contains x in one term but not both. More specifically,
we can assume that our formula ϕ has the form

(∃x)(sp0(x) = sq0(u0) ∧ · · · ∧ spl−1(x) = sql−1(ul−1)

∧spl(x) = sql(ul) ∧ · · · ∧ spn−1(x) = sqn−1(un−1)),

where u0, . . . , un−1 ∈ {0} ∪ (VAR − {x}). When l = 0, this
formula states that for any assignment σ ∈ ASSIGNAs , there
is a number a with a + pi = σAs(sqi(ui)) for 0 ≤ i ≤ n − 1.
Since this is always true, in this case, ϕ ≡As 0 = 0.
When l > 0, we proceed as follows. Suppose that (As, σ) |= ϕ.
Then q0 + σAs(u0) = p0 + σAs(x) ≥ p0. This implies that
q0 + σAs(u0) ∈ {0, . . . , p0 − 1}, which, in turn, yields

(As, σ) |= (sq0(u0) = 0 ∧ sq0(u0) = s(0) ∧ · · · ∧ sq0(u0)
= sp0−1(0)).

First-Order Logic–Syntax and Semantics 841

Further, since pr + σAs(x) = qr + σAs(ur) for 1 ≤ r ≤ l − 1,
we have σAs(spr+q0(u0)) = pr + q0 + σAs(u0) = pr + p0 +
σAs(x) = p0 + qr + σAs(ur) = σAs(sp0+qr(ur)). Similarly, we
have σAs(spr+q0(u0)) = σAs(sp0+qr(ur)) for l ≤ r ≤ n − 1. It
follows that (As, σ) |= ψ, where ψ is the quantifier-free formula

(sq0(u0) = 0 ∧ sq0(u0) = s(0) ∧ · · · ∧ sq0(u0) = sp0−1(0)

∧sp1+q0(u0) = sp0+q1(u1) ∧ · · · ∧ spl−1+q0(u0) = sp0+ql−1(ul−1)

∧spl+q0(u0) = sp0+ql(ul) ∧· · ·∧ spn−1+q0(u0) =sp0+qn−1(un−1)).

Conversely, suppose that (As, σ) |= ψ. Clearly this implies
(As, σ) |= (sq0(u0) = 0 ∧ sq0(u0) = s(0) ∧ · · · ∧ sq0(u0) =
sp0−1(0)) which gives q0 + σAs(u0) ≥ p0. Thus, the number
a = q0+σ

As(u0)−p0 is nonnegative. We leave it to the reader
to verify that (As, [x → a]σ) |= (α0 ∧ · · · ∧ αn−1) and hence
(As, σ) |= ϕ. Also left to the reader is the verification that
FV(ψ) ⊆ FV(ϕ) and that the process of obtaining ψ from ϕ is
effective.

(179) Formulate an algorithm that determines for each ground Ls-
atomic formula the membership of the formula in ThLs(As).
Conclude that ThLs(As) is a decidable theory.
Hint. For the conclusion of the exercise, use Supplements 178,
175, and 174.

(180) Prove that ThLs,<(As,<), the theory of the Ls,<-structure As,<
of Example 4.4.39 admits an effective elimination of quanti-
fiers.
Solution: As in Supplement 178, we limit the discussion to
formulas of the form (∃x)(α0 ∧ · · · ∧ αn−1), where each αi is
a literal. In this case however, the Ls,<-atomic formulas have
the form sp(u) = sq(u′) or sp(u) < sq(u′), where p, q ∈ N and
u, u′ ∈ {0} ∪ VAR. We may assume without loss of generality
that for none of the pairs of terms u, u′ do we have u = u′ = x.
Indeed, literals of the form sp(x) = sq(x) or sp(x) = sq(x) can
be replaced as in Supplement 178 by ground atomic formulas.
Further, literals of the form sp(x) < sq(x) can be replaced by
0 = 0 if p < q and by 0 = 0, otherwise. Literals of the form
(¬(sp(x) < sq(x))) can be treated in a similar manner. By an
argument similar to the one of Supplement 178, we can assume

842 Logical Foundations of Computer Science — Volume 2

that each of the literals αi contains x in one term but not in
both.
A literal of the form t0 = t1 can be replaced by the formula
(t0 < t1) ∨ (t1 < t0). After each such replacement, using the
distributivity of conjunction over disjunction and first part of
Corollary 4.5.56, we can reduce the quantifier elimination for
(∃x)(α0 ∧ · · · ∧ (t0 = t1)∧ · · · ∧αn−1) to quantifier elimination
for the formulas (∃x)(α0 ∧ · · · ∧ (t0 < t1) ∧ · · · ∧ αn−1) and
(∃x)(α0 ∧ · · · ∧ (t1 < t0) ∧ · · · ∧ αn−1). Similarly, a literal of
the form (¬(t0 < t1)) can be replaced by (t0 = t1) ∨ (t1 < t0).
Thus, we can assume that all literals αi are atomic formulas
that contain x in one term but not the other. Specifically, we
can assume that our formula ϕ has the form (∃x)θ, where θ is
the formula

(sp0(x) = sq0(u0) ∧ · · · ∧ spl−1(x) = sql−1(ul−1)

∧spl(x) < sql(ul) ∧ · · · ∧ spm−1(x) < sqm−1(um−1))

∧spm(um) < sqm(x) ∧ · · · ∧ spn−1(un−1) < sqn−1(x)),

where u0, . . . , un−1 ∈ {0} ∪ (VAR− {x}).
If l > 0, we can proceed along similar lines to the argument
of Supplement 178. If l = m = 0, then ϕ ≡As,< 0 = 0 because
(As,<, σ) |= ϕ if and only if there is a ∈ N such that pr +
σAs(ur) < qr + a for all r, 0 ≤ r ≤ n− 1. If l = 0 and m = n,
then ϕ can be replaced by ((sp0(0) < sq0(u0))∧· · ·∧(spn−1(0) <
sqn−1(un−1))). Finally, suppose that l = 0 and 0 < m < n. In
this case, (As,<, σ) |= ϕ if and only if the inequalities

pi + σAs,<(x) < qi + σAs,<(ui)

pj + σAs,<(uj) < qj + σAs,<(x)

for 0 ≤ i ≤ m−1 and m ≤ j ≤ n−1. These inequalities imply

1 + pi + pj + σAs,<(uj) < qi + qj + σAs,<(ui) (4.26)

pi < qi + σAs,<(ui) (4.27)

for 0 ≤ i ≤ m− 1 and m ≤ j ≤ n− 1. This last set of inequal-
ities amounts to (As,<, σ) |= ψ, where ψ is the quantifier-free

First-Order Logic–Syntax and Semantics 843

formula

m−1∧
i=0

n−1∧
j=m

(spi+pj+1(uj) < sqi+qj(ui)) ∧
m−1∧
i=0

(spi(0) < sqi(ui)).

Conversely, suppose that (As,<, σ) |= ψ. The inequali-
ties (4.26) imply

1 + max
j
{σAs,<(uj) + pj − qj} < min

i
{σAs,<(ui) + qi − pi}.

In addition, the inequalities (4.27) imply that mini{σAs,<(ui)+
qi−pi} > 0. Thus, the number a = mini{σAs,<(ui)+qi−pi}−1
is a natural number and we leave it to the reader to verify that
(As,<, [x→ a]σ) |= θ, so (As,<, σ) |= ϕ.

(181) Formulate an algorithm that determines for each ground
Ls,<-atomic formula the membership of the formula in

ThLs,<(As,<). Conclude that ThLs,<(As,<) is a decidable the-
ory.

(182) Let L ⊆ L′ be two first-order languages and let A′ be

an L′-structure. Prove that if ThL
′
(A′) is decidable, then

ThL(REDL(A′)) is also decidable.

Let Lapra be the language Apra ∪ {∼2,∼3, . . .}, where ∼i is a binary
relation symbol. We refer to Lapra as the augmented language of
Presburger arithmetic. In the sequel, we will use the Lapra-structure
Aapra which is the extension of Apra where ∼Aapra

i is congruence
modulo i on N for i ≥ 2.

(183) Let t ∈ TERMLapra and assume that the variables that
occur in t in standard order are y0, . . . , yk−1. Prove that
t ≡Aapra sj(0)+n0y0+· · ·+nk−1yk−1 for some j, n0, . . . , nk−1 ∈
N and there is an effective way to determine the numbers
j, n0, . . . , nk−1 starting from t.
Hint. This exercise follows immediately from Exercise 77.

(184) Prove that ThLapra(Aapra) admits an effective elimination of
quantifiers.
Solution: The atomic formulas of Lapra have one of the forms
t = u, t < u, or t ∼i u, for some i ≥ 2. By Supplement 176,
we can limit the discussion to Lapra-formulas of the form ϕ =
(∃x)(α0∧· · ·∧αn−1), where α0, . . . , αn−1 are literals and n ≥ 1.

844 Logical Foundations of Computer Science — Volume 2

Our first step will be to eliminate negated literals. For literals
of the form t0 = t1 and (¬(t0 < t1)), we use the technique
shown in the argument of Supplement 180. Negated literals of
the form (¬(t0 ∼i t1)) are replaced by

t0 ∼i (t1 + s(0))∨ t0 ∼i (t1 + s2(0))∨ · · · ∨ t0 ∼i (t1 + si−1(0)).

Thus, by the above discussion and Exercise 183, we may
assume that each αj is an atomic formula having one of the
following forms:

t+ qx = u+mx

t+ qx ∼i u+mx

t+mx < u+ qx

t+ qx < u+mx,

where q ≥ m and t, u are terms that do not contain x. (We may
have to add “dummy” terms 0x to obtain these standardized
forms.) These formulas are Aapra-equivalent to:

t+ (q −m)x = u

t+ (q −m)x ∼i u
t < u+ (q −m)x

t+ (q −m)x < u,

respectively. When q = m, the corresponding formulas can be
“pulled out”, which leaves us with formulas αj of the forms:

tj + pjx = uj

tj + pjx ∼ij uj
tj < uj + pjx

tj + pjx < uj,

where each pj is positive. Let P = lcm{p0, . . . , pn−1} and let
rj = P/pj. Multiplying each formula by rj , we can assume

First-Order Logic–Syntax and Semantics 845

that the formulas αj have one of the following forms:

t′j + Px = u′j
t′j + Px ∼rjij u′j
t′j < u′j + Px

t′j + Px < u′j .

Let z be a variable that does not occur in ϕ. In view of the
previous assumption involving the formulas αj , the formula ϕ
is equivalent to the formula

(∃z)(z ∼P 0 ∧ α0 ∧ · · · ∧ αn−1),

where each αj has one of the following forms:

t′j + z = u′j
t′j + z ∼rjij u′j
t′j < u′j + z

t′j + z < u′j,

where neither t′j nor u′j contain z. If one of the formulas αj
is of the first form, we may assume that j = 0. In this case,
the quantifier-free formula ψ that is Aapra-equivalent to ϕ is
(α′

1∧· · ·α′
n−1∧ ((t′0 < u′0)∨ (t′0 = u′0))∧ (u′0 ∼P t′0)), where the

formulas α′
j are determined according to the following table:

αj α′
j

t′j + z = u′j t′j + u′0 = u′j + t′0
t′j + z ∼rjij u′j t′j + u′0 ∼rjij u′j + t′0
t′j < u′j + z t′j + t′0 < u′j + u′0
t′j + z < u′j t′j + u′0 < u′j + t′0,

for 1 ≤ j ≤ n−1. Thus, we can limit ourselves to formulas that
do not contain the equality symbol. In other words, we need
to show that the quantifier can be eliminated from a formula

846 Logical Foundations of Computer Science — Volume 2

ϕ = (∃x)θ, where θ is the formula:

(t0 + x ∼i0 u0 ∧ · · · ∧ tl−1 + x ∼il−1
ul−1

∧tl + x < ul ∧ · · · ∧ tm−1 + x < um−1

∧tm < um + x ∧ · · · ∧ tn−1 < un−1 + x).

Note that by our construction, we have l > 0 and none of
the terms ti, ui contain x. Since |Aapra| = N, we can add the
conjunct tn < un + x, where tn = 0 and un = s(0), which
simply states that x is nonnegative. Let θ′ be the formula
obtained from θ by this addition. We denote the formula (∃x)θ′
by ϕ′. Let be the least common multiple of the numbers
i0, . . . , il−1 and let ψ be the formula

∨
m≤j≤n

∨
0<q≤�

(∧
m≤k≤n(tk + uj < uk + tj + sq(0))∧∧

l≤k<m(tk + tj + sq(0) < uk + uj)∧∧
0≤k<l(tk + tj + sq(0) ∼ik uj + uk)

)
.

To prove that ThLapra(Aapra) admits elimination of quanti-
fiers, it suffices to show that (Aapra, σ) |= ϕ′ if and only if
(Aapra, σ) |= ψ, for every σ ∈ ASSIGNAapra.
Suppose that (Aapra, σ) |= ϕ′. This implies that there is a
number a ∈ N such that

a ≡i0 σAapra(u0)− σAapra(t0)
...

a ≡il−1
σAapra(ul−1)− σAapra(tl−1)

a < σAapra(ul)− σAapra(tl)
...

a < σAapra(um−1)− σAapra(tm−1)
a > σAapra(tm)− σAapra(um)
...

a > σAapra(tn)− σAapra(un) = −1

Let a0 be the least such a. We claim that there is a j
such that m ≤ j ≤ n and σAapra(tj) − σAapra(uj) < a0 ≤

First-Order Logic–Syntax and Semantics 847

σAapra(tj)−σAapra(uj)+ . Suppose this is not the case. Then,
a > σAapra(tj)−σAapra(uj)+ for every j. Let a′ = a0−. Note
that we still have a′ ≡ip σAapra(up)−σAapra(tp) for 0 ≤ p ≤ l−1
because is a multiple of ip and the upper and lower bounds
also hold for a′. This contradicts the minimality of a0, so a0
belongs to some interval

(σAapra(tj)− σAapra(uj), σAapra(tj)− σAapra(uj) +].

This allows us to write a0 = σAapra(tj) − σAapra(uj) + q for
some q, where 0 < q ≤ . For this j and q, the inequal-
ity a0 > σAapra(tk) − σAapra(uk) translates into σAapra(tk) +
σAapra(uj) < σAapra(uk) + σAapra(tj) + q, which shows that
(Aapra, σ) |= tk + uj < uk + tj + sq(0). Similarly, we can prove
that (Aapra, σ) satisfies the remaining conjuncts of ψ.
Suppose now that (Aapra, σ) |= ψ. Then, there are j and q
with m ≤ j ≤ n and 0 < q ≤ such that

σAapra(tm) + σAapra(uj) < σAapra(um) + σAapra(tj) + q

...

σAapra(tn) + σAapra(uj) < σAapra(un) + σAapra(tj) + q

σAapra(tl) + σAapra(tj) + q < σAapra(ul) + σAapra(uj)
...

σAapra(tm−1) + σAapra(tj) + q < σAapra(um−1) + σAapra(uj)
σAapra(t0) + σAapra(tj) + q ≡i0 σAapra(uj) + σAapra(u0)
...

σAapra(tl−1) + σAapra(tj) + q ≡il−1
σAapra(uj) + σAapra(ul−1)

Let a = σAapra(tj) − σAapra(uj) + q. Since σAapra(tn) +
σAapra(uj) < σAapra(un) + σAapra(tj) + q and tn = 0 and
un = s(0), we have a ≥ 0. We claim that (Aapra, [x →
a]σ) |= θ′ and therefore, (Aapra, σ) |= ϕ′. We need to prove
that (Aapra, [x→ a]σ) |= β for every conjunct β of θ′.
We argue here the case of the conjuncts of the form tk +
x ∼ik uk and leave the remaining cases for the reader. Since
σAapra(tk)+σAapra(tj)+q ≡ik σAapra(uj)+σAapra(uk), we have

848 Logical Foundations of Computer Science — Volume 2

σAapra(tk) + a ≡ik σAapra(uk), which amounts to (Aapra, [x→
a]σ) |= tk + x ∼ik uk.
Also left to the reader is the verification that no new free
variables were introduced when the formula ψ was defined and
that the process of constructing the formula ψ is effective.

(185) Give an algorithm that determines for each ground
Lapra-atomic formula the membership of the formula in

ThLapra(Aapra). Conclude that ThLapra(Aapra) is a decidable

theory and thus ThLpra(Apra) is a decidable theory.
Hint. Use Exercises 182 and 181.

(186) Let L be a first-order language that is decidable, in other
words, for which there is an algorithm which allows us to decide
whether a symbol belongs to the language. Let A = (A,I) be
a finite L-structure such that I is an effectively computable
function. Prove that ThL(A) is a decidable theory.
Hint. Adapt the proof of Theorem 4.14.3.

(187) Show that the instances

� = ({a, b}, (aba, bbab), (ab, baa))
�′ = ({a, b}, (ab, aab), (bb, bab), (a, aa))

of the PCP have no solution.
(188) Find a solution of the instance

� = ({a, b}, (a, aaa), (abaaa, ab), (ab, b))

of the PCP.
(189) Show that it is undecidable whether an arbitrary formula of

first-order logic is satisfiable.

Next, we present an abstract technique for reducing the PCP to the
decision problem for the theory of certain structures.

Let V = {d, e} be an alphabet, EV be the set of even length
sequences of words over V , and let A be an L-structure, where L is
a first-order language.

A PCP-reduction scheme S for A consists of

• an injection φS : V ∗ −→ |A|;
• a function ΦS : EV −→ |A|;
• an L-formula ϕS

z,null with FV(ϕS
z,null) = {z};

First-Order Logic–Syntax and Semantics 849

• for each q ∈ V ∗, an L-formula, ϕS
z0,z1,q,conc with FV(ϕS

z0,z1,q,conc) =
{z0, z1};

• an L-formula ϕS
x′,y0,y1,x,pref with FV(ϕS

x′,y0,y1,x,pref) = {x
′, y0, y1, x};

• and an L-formula ϕS
y′,y′′,x̂,last-entry with

FV(ϕS
y′,y′′,x̂,last-entry) = {y′, y′′, x̂}.

The formulas ϕS
z0,z1,q,conc define a binary relation �S on |A|, given

by a �S b if there is q ∈ V ∗ − {λ} such that (A, [z0 → b][z1 → a]) |=
ϕS
z0,z1,q,conc.
For a V -instance of the PCP � = (V, (q0, . . . , qn−1), (r0, . . . , rn−1))

we define the formula ϕS,�
u,v,s,t,one-step as∨

0≤i≤n−1

((ϕS
z0,z1,qi,conc)z0,z1:=u,s ∧ (ϕS

z0,z1,ri,conc)z0,z1:=v,t).

Suppose that u, v, s, t correspond under φ to words u′, v′, s′, t′ over
V , then ϕS,�

u,v,s,t,one-step is meant to express that the pair (u′, v′) is
obtained from (s′, t′) by adding one of the pairs of the instance as in
u′ = s′qi and v′ = t′ri.

Intuitively, the formula ϕS,�
x,const holds when x encodes a construc-

tion sequence for � and is given by:

(∀y0)(∀y1)(∀x′)(ϕS
x′,y0,y1,x,pref → ((ϕS

z,null)z:=y0 ∧ (ϕS
z,null)z:=y1)

∨(∃y′)(∃y′′)((ϕS
y′,y′′,x̂,last-entry)x̂:=x′∧(ϕ

S,�
u,v,s,t,one-step)u,v,s,t:=y0,y1,y′,y′′))

Finally, the formula ϕS,�
solv is given by:

(∃x)(∃y)(ϕS,�
x,const ∧ (ϕS

y′,y′′,x̂,last-entry)y′,y′′,x̂:=y,y,x ∧ (¬(ϕS
z,null)z:=y))

This last formula expresses the fact that � is solvable.
For a PCP-reduction scheme S to A, we introduce the axioms

listed below which may or may not hold for S:
(NULL) For every a ∈ |A|, (A, [z → a]) |= ϕS

z,null if and only if

a = φS(λ).
(CONC) For every a ∈ |A| and for every q, r ∈ {d, e}∗, we have
a = φS(rq) if and only if

(A, [z0 → a][z1 → φS(r)]) |= ϕS
z0,z1,q,conc.

850 Logical Foundations of Computer Science — Volume 2

(INIT-OF) For every a, b0, b1 ∈ |A| and q̂ ∈ EV , we have (A, [x′ →
a][y0 → b0][y1 → b1][x → ΦS(q̂)]) |= ϕS

x′,y0,y1,x,pref if and only

if a = ΦS(r̂), b0 = φS(q0) and b1 = φS(q1) for some r̂ ∈ EV ,
q0, q1 ∈ V ∗ such that r̂(q0, q1) is a prefix of q̂.

(LE) If a = φS(q0), b = φS(q1), where q0, q1 are the last entries of
the sequence q̂ in EV , then

(A, [y′ → a][y′′ → b][x̂→ ΦS(q̂)]) |= ϕS
y′,y′′,x̂,last-entry.

(WF) There is no infinite sequence of elements a0, a1, a2, . . . of |A|
such that · · · �S a2 �S a1 �S a0 (Well-foundedness axiom).

(LI) We have:

A |= (∀y′)(∀y′′)(∀x̂)(ϕS
y′,y′′,x̂,last-entry →

(∃x′)(ϕS
x′,y0,y1,x,pref)y0,y1,x:=y′,y′′,x̂).

(ILI) We have:

A |= (∀x′)(∀y0)(∀y1)(∀x)(∀y2)(∀y3)
((ϕS

x′,y0,y1,x,pref ∧ (ϕS
y′,y′′,x̂,last-entry)y′,y′′,x̂:=y2,y3,x′)→

(∃x′′)(ϕS
x′,y0,y1,x,pref)x′,y0,y1:=x′′,y2,y3)

(190) Let L be a first-order language that consists of a constant
symbol c, two unary function symbols fd, fe, a ternary func-
tion symbol g, the equality symbol =, and the binary relation
symbol ≤. Let A be the L-Herbrand structure, where ≤A is
the subterm relation on GTERML = |A|.
We define a PCP-reduction scheme S toA. Let φS : {d, e}∗ −→
GTERML be given by φS(s0 · · · sn−1) = fsn−1(· · · (fs0(c)) · · ·)
for every s0 · · · sn−1 ∈ {d, e}∗. The function ΦS : E{d,e} −→
GTERML is defined recursively by ΦS(λ) = c and

ΦS(u0, v0, . . . , ui−1, vi−1, ui, vi)

= g(ΦS(u0, v0, . . . , ui−1, vi−1), φ(ui), φ(vi)),

First-Order Logic–Syntax and Semantics 851

for every (u0, v0, . . . , ui, vi) ∈ E{d,e}. Consider the definitions
of L-formulas shown below:

Formula Definition

ϕS
z,null z = c

ϕS
z0,z1,q,conc z0 = fqn−1(· · · (fq0(z1)) · · ·)
ϕS
x′,y0,y1,x,pref g(x′, y0, y1) ≤ x
ϕS
y′,y′′,x̂,last-entry (∃x̌)(g(x̌, y′, y′′) = x̂)

for q = q0 · · · qn−1. Prove that:

(a) φS is injective;
(b) the axioms listed above are all satisfied by S.

(191) Let A be an L-structure and S be a PCP-reduction scheme
for A and let � = ({d, e}, (s0, . . . , sn−1), (t0, . . . , tn−1)) be
an instance of the PCP. Prove that if S satisfies the axioms
(NULL), (CONC), (INIT-OF) and (LE), then, for any
construction sequence for �, q̂, a = ΦS(q̂) implies (A, [x →
a]) |= ϕS,�

x,const.
Solution: Suppose that

(A, [x′ → b][y0 → c][y1 → c′][x→ a]) |= ϕS
x′,y0,y1,x,pref.

By the axiom (INIT-OF), there are r̂ ∈ EV and q0, q1 ∈ V ∗
such that r̂(q0, q1) is a prefix of q̂ and b = ΦS(r̂), c = φS(q0)
and c′ = φS(q1).Thus, we have either q0 = q1 = λ or there
are r̃ ∈ EV and q′0, q

′
1 ∈ V ∗ such that r̂ = r̃(q′0, q

′
1) and q0 =

q′0sj, q1 = q′1tj for some j. The latter case means that (q0, q1)
is obtained in one step from (q′0, q

′
1).

In the first case, by the axiom (NULL), we have (A, [z →
c]) |= ϕS

z,null and (A, [z → c′]) |= ϕS
z,null. In the second case, by

axiom (LE), we have

(A, [y′ → φS(q′0)][y
′′ → φS(q′1)][x̂→ b]) |= ϕS

y′,y′′,x̂,last-entry

and, by axiom (CONC)

(A, [z0 → φS(q0)][z1 → φS(q′0)]) |= ϕS
z0,z1,sj,conc

(A, [z0 → φS(q1)][z1 → φS(q′1)]) |= ϕS
z0,z1,tj ,conc,

852 Logical Foundations of Computer Science — Volume 2

which yields

(A, [u→ φS(q0)][v → φS(q1)][s→ φS(q′0)][t→ φS(q′1)]) |=
ϕS,�
u,v,s,t,one-step,

which proves the desired implication.
(192) Let � = ({d, e}, (s0, . . . , sn−1), (t0, . . . , tn−1)) be an instance of

the PCP. Prove that if S is a PCP-reduction to A that satisfies
the axioms (NULL), (CONC), (INIT-OF) and (LE), then

the existence of a solution for � implies A |= ϕS,�
solv.

Solution: Suppose that q̂ = (· · · , q, q) is a construction
sequence for �, where q = λ. Let a = ΦS(q̂) and b = φS(q).
Then, by Supplement 191, we have (A, [x → a]) |= ϕS,�

x,const.
Further, by axiom (LE), we have (A, [y′ → b][y′′ → b][x̂ →
a]) |= ϕS

y′,y′′,x̂,last-entry. Finally, by axiom (NULL), we have

(A, [z → b]) |= (¬ϕS
z,null). All these imply A |= ϕS,�

solv.

(193) Let A be an L-structure, S be a PCP-reduction scheme to
A and let � = ({d, e}, (s0, . . . , sn−1), (t0, . . . , tn−1)) be an
instance of the PCP. Prove that if A satisfies the axioms
(WF), (NULL), (ILI), and (CONC), then, if a, b, b0, b1 ∈
|A|, (A, [x → a]) |= ϕS,�

x,const and (A, [x′ → b][y0 → b0][y1 →
b1][x → a]) |= ϕS

x′,y0,y1,x,pref then there are s, s′ ∈ V ∗ such

that φS(s) = b0 and φS(s′) = b1 and there is a construction
sequence for � whose last members are s and s′.
Solution: Recall that we introduced the relation �S on |A|
with the help of the formulas ϕS

z0,z1,q,conc. This relation is

extended to |A|2 by writing (c0, c1) �S (b0, b1) if and only
if c0 �S b0 and c1 �S b1. Note that (|A|2,�S) is well-
founded by Axiom (WF). We will prove the statement by
well-founded induction on (b0, b1). Suppose that the statement
is true for all pairs (c0, c1) such that (c0, c1) �S (b0, b1) and

that (A, [x → a]) |= ϕS,�
x,const and (A, [x′ → b][y0 → b0][y1 →

b1][x→ a]) |= ϕS
x′,y0,y1,x,pref.

By hypothesis on a, b0, b1, b, we have either (A, [y0 → b0]) |=
ϕS
z,null and (A, [y1 → b1]) |= ϕS

z,null or there are c′, c′′ ∈ |A|
such that (A, [y′ → c′][y′′ → c′′][x′ → b]) |= ϕS

y′,y′′,x̂,last-entry

and (A, [u → b0][v → b1][s → c′][t → c′′]) |= ϕS,�
u,v,s,t,one-step.

First-Order Logic–Syntax and Semantics 853

In the first case, b0 = φS(λ) and b1 = φS(λ), by the (NULL)
axiom, which yields the desired conclusion.
In the second case, there is i such that (A, [z0 → b0][z1 →
c′]) |= ϕS

z0,z1,si,conc and (A, [z0 → b1][z1 → c′′]) |= ϕS
z0,z1,ti,conc.

The definition of the relation �S implies that c′ �S b0 and
c′′ �S b1. By the axiom (ILI), there is b̂ ∈ |A| such that

(A, [x′ → b̂][y0 → c′][y1 → c′′][x → a]) |= ϕS
x′,y0,y1,pref. Thus,

by the inductive hypothesis, there are s′, s′′ ∈ V ∗ such that
c′ = φS(s′) and c′′ = φS(s′′), where there is a construction
sequence for � whose last members are s′, s′′. Thus, there is
a construction sequence for � ending in s′si, s′′ti, and by the
(CONC) axiom we have b0 = φS(s′si) and b1 = φS(s′′ti), as
desired.

(194) Let A be an L-structure, S be a PCP-reduction scheme for A,
and

� = ({d, e}, (s0, . . . , sn−1), (t0, . . . , tn−1))

be an instance of the PCP. Prove that if S satisfies the axioms
(WF), (NULL), (ILI), (CONC), and (LI), and A |= ϕS,�

solv,
then � has a solution.
Solution: The hypothesis implies the existence of a, b ∈ |A|
such that (A, [x → a]) |= ϕS,�

x,const, (A, [y′ → b][y′′ → b][x̂ →
a]) |= ϕS

y′,y′′,x̂,last-entry, and (A, [z → b]) |= (¬ϕS
z,null). By the

(LI) axiom, there is b̂ ∈ |A| such that (A, [x′ → b̂][y0 →
b][y1 → b][x0 → a]) |= ϕS

x′,y0,y1,x,pref. By Supplement 193, there

are s, s′ ∈ V ∗ such that b = φS(s) = φS(s′) and there is a
construction sequence for � whose last members are s and s′.
The injectivity of φS implies s = s′. Further, notice that by
the (NULL) axiom, b cannot be the image of the null word,
so s = λ. Thus, � has a solution.

(195) Let A be an L-structure and S be a PCP-reduction scheme
for A that satisfies the axioms (NULL),(CONC), (INIT-
OF), (LE), (WF), (LI) and (ILI). Prove that A has an
undecidable theory.
Hint. If the theory of A were decidable, it would be possible to
decide whether an arbitrary instance of the PCP with alphabet
V = {d, e} has a solution.

854 Logical Foundations of Computer Science — Volume 2

(196) Prove that the theory of the structure A introduced in Exer-
cise 190 is undecidable.

(197) Let A be an L-structure. Generalize the results that lead to
Supplement 195, by considering an alphabet V with |V | ≥ 2
and encodings of the form φ : V ∗ −→ |A|k and Φ : EV −→ |A|l,
where k, l ∈ N. Reprove the undecidability of arithmetic using
this generalized form of Supplement 195.
Hint. For the second part of this exercise, modify the proof of
Theorem 4.14.15.

(198) Let V be an alphabet with |V | = 1. Prove it is decidable if an
arbitrary V -instance of the PCP has a solution.

(199) Let V = {1, 2, . . . , n} be an alphabet, where n ≥ 2, and let
V ∗ be the set of words over V . The function lV : V ∗ −→ N
defined as lV (w) = |V ||w|, where |w| is the length of the word
w, gives the number of words of length |w|. Define the function
kV : V ∗ −→ N as kV (λ) = 0 and kV (ua) = kV (u)n + a. Prove
that the function kV is injective and for every u, v ∈ V ∗ we
have:

lV (uv) = lV (u) · lV (v)
kV (uv) = kV (u) · lV (v) + kV (v).

(200) Let V = {1, 2, . . . , n} be an alphabet, where n ≥ 2, and let V ∗
be the set of words of V .

(a) Define the mapping MV : V ∗ × V ∗ −→ R3×3 by

MV (u, v) =

⎛
⎜⎝
lV (u) lV (v)− lV (u) 0

0 lV (v) 0

kV (u) kV (v)− kV (u) 1

⎞
⎟⎠

for every u, v ∈ V ∗. Prove that

MV (u, v) ·MV (u
′, v′) =MV (uu

′, vv′)

for every u, v, u′, v′ ∈ V ∗.
(b) Using the undecidability of the PCP prove that it is

undecidable whether for a finite set of 3 × 3-matrices
M = {M0, . . . ,Mm−1} over R and a pair of numbers
(i, j) ∈ {1, 2, 3}2 there is a product M = Mi0 · · ·Mip−1

First-Order Logic–Syntax and Semantics 855

of these matrices such that the (i, j)-component of the
matrix M equals 0. (For a fixed (i, j), this is called the
(i, j)-mortality problem of M.)

4.16 Bibliographical Comments

Tarski’s “definition of truth” was introduced in [32]. A translation
appears in [35].

Skolem’s original paper [29] where Skolem normal form was intro-
duced is included in the collection [1] in translation from the original
German. In the same paper, Skolem improves the proof of what is
known today as the Löwenheim-Skolem Theorem as given in [23].

Herbrand’s Theorem appeared in [19].
Procedure 4.10.28 is due to Gilmore [18].
Nonstandard models of arithmetic were introduced in [30].
Corollary 4.14.14 is due to Church (see [7]).
The method of elimination of quantifiers was conceived by Tarski

published in [33,34].
The decidability of Presburger arithmetic was obtained in [25].

See also [13].
The set Δn of Supplements 9 and 66 was introduced by Boolos

in [5] and will be used in Chapter 5.
Our treatment of the undecidability of the theory of arithmetic

follows [36].

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

Chapter 5

First-Order Logic–Formal Systems

5.1 Introduction

This chapter plays the same role for first-order logic that Chap-
ter 3 played for propositional logic. We present a variety of syntactic
methods that generalize corresponding methods of propositional logic
which allow us to construct formal proofs to show that Γ |= ϕ or,
equivalently, that Γ∪{(¬ϕ)} is unsatisfiable, where Γ is a set of first-
order formulas and ϕ is a first-order formula. Each of these methods
can be expressed as a formal system which manipulates first-order
formulas or sets of such formulas. If every formula that appears in
a syntactic proof that Γ |= ϕ belongs to the analytic universe of
Γ ∪ {ϕ} as defined in Definition 4.12.2, then the formal system is
called analytical.

As in the case of propositional logic, analytical methods are easier
to automate, though they may yield long proofs while nonanalytical
methods are closer to ordinary mathematical reasoning.

We discuss both general syntactic methods which can deal with
arbitrary formulas as well as a specialized syntactic method that
applies to formulas in clausal form. Both nonanalytical methods
(Hilbert/Frege systems, tableaux with cut, sequent calculus with cut,
and natural deduction) and analytical methods (tableaux without
cut, and sequent calculus without cut) are presented.

857

858 Logical Foundations of Computer Science — Volume 2

5.2 A Hilbert/Frege-Style Formal System

The formal system we introduce in this section is an amplification
of the Hilbert-Frege system for propositional logic introduced in Sec-
tion 3.2. The new system has one rule of inference: the familiar modus
ponens rule. The collection of axioms is much richer compared to the
propositional logic case, in order to deal with the more complex for-
mulas of first-order logic.

Definition 5.2.1. Let L be a first-order language. The formal
system HFL consists of:

• FORML as set of objects.
• { RL

mp} as set of rules, where RL
mp is the modus ponens rule for L

ϕ, (ϕ→ ψ)

ψ

for all formulas ϕ,ψ ∈ FORML.
• A as axiom set, where A consists of all generalizations of the fol-

lowing formulas:

(1) (α→ (β → α))
(2) ((α→ (β → γ))→ ((α→ β)→ (α→ γ)))
(3) (α→ α)
(4) (α→ ((¬α)→ β))
(5) (((¬α)→ α)→ α)
(6) ((α→ (¬α))→ (¬α))
(7) (α→ (α ∨ β))
(8) (β → (α ∨ β))
(9) (α→ (β → (α ∧ β)))

(10) ((¬α)→ (α→ β))
(11) (α→ (β → (α↔ β)))
(12) ((¬α)→ ((¬β)→ (α↔ β)))
(13) ((¬α)→ ((¬β)→ (¬(α ∨ β))))
(14) ((¬α)→ (¬(α ∧ β)))
(15) ((¬β)→ (¬(α ∧ β)))
(16) (α→ ((¬β)→ (¬(α→ β))))
(17) (α→ ((¬β)→ (¬(α↔ β))))
(18) ((¬α)→ (β → (¬(α↔ β))))
(19) ((∀x)α→ 〈α〉x:=t)

First-Order Logic–Formal Systems 859

(20) (〈α〉x:=t → (∃x)α)
(21) ((∀x)(α→ β)→ ((∀x)α→ (∀x)β))
(22) (α→ (∀x)α), where x �∈ FV(α)
(23) ((∀x)(¬α)→ (¬(∃x)α))

for all L-formulas α, β, γ, variables x, and L-terms t.
In addition, if =∈ L, A also contains all generalizations of the

L-instances of the L-equality axioms:

(24) t = t
(25) ((t0 = t1)→ (t1 = t0))
(26) (((t0 = t1) ∧ (t1 = t2))→ (t0 = t2))
(27) for every n-ary function symbol f ∈ L with n > 0,

(((t0 = tn) ∧ · · · ∧ (tn−1 = t2n−1))

→ (f(t0, . . . , tn−1) = f(tn, . . . , t2n−1)))

(28) for every n-ary relation symbol R ∈ L with R �== and n > 0,

(((t0 = tn) ∧ · · · ∧ (tn−1 = t2n−1))

→ (R(t0, . . . , tn−1)↔ R(tn, . . . , t2n−1)))

where all ti mentioned in axioms 24 to 28 are L-terms.

For 1 ≤ i ≤ 28, we refer to the formulas that occur under the
rubric i of the previous definition as the ith formula group of HFL.
The set of generalizations of these formulas will be referred to as the
ith axiom group of HFL.

We begin our discussion of HFL by observing that the formulas
of the groups 1-18 are all first-order tautologies in the sense of Def-
inition 4.8.3. For instance, any axiom of group 1 is a substitution
instance of the propositional tautology (p0 → (p1 → p0)), which is
itself an axiom of the group 1 of the Hilbert/Frege-style system HF
of propositional logic. Therefore, these formulas are logically valid by
Theorem 4.8.14.

Theorem 5.2.2 (Soundness of HFL
Γ). Let L be a first-order lan-

guage, Γ be a set of L-formulas and let ϕ be an L-formula. Then,
Γ �HFL ϕ implies Γ |= ϕ.

Proof. The argument is by induction on the theorems of HFL
Γ .

For the basis step, let ϕ be an axiom of HFL
Γ . Then, either ϕ is an

860 Logical Foundations of Computer Science — Volume 2

axiom ofHFL or ϕ belongs to Γ. In the latter case, we obviously have
Γ |= ϕ. In the former case, ϕ is a generalization of a member ϕ′ of one
of the formula groups. By Corollary 4.5.59, it suffices to show the log-
ical validity of ϕ′. We consider several subcases. We observed already
that all the formulas in the first eighteen formula groups are logically
valid. The logical validity of the formulas in formula groups 19 and 20
follows from Theorems 4.6.51 and 4.5.55. The same property for for-
mulas in formula group 21 was established in Example 4.5.23. Next,
for formulas in formula group 22, the logical validity follows from
Theorems 4.5.37 and 4.5.55. The logical validity of the formulas in
formula group 23 is a consequence of Corollary 4.8.18. Finally, for
formulas in formula groups 24 to 28, the logical validity is shown by
Corollary 4.6.10.

The inductive step for the modus ponens rule is an immediate
consequence of the second part of Theorem 4.5.52. �

Our major goal in this section is to prove the completeness of
HFL

Γ . A preliminary, very limited, version of this result is given in
the next theorem.

Theorem 5.2.3. Let L be a first-order language. Then, for every
L-formula ϕ that is a tautology of first-order logic, we have �HFL ϕ.

Proof. We begin by observing that if s is an L-substitution (that is,
an inter-substitution that maps statement variables into L-formulas)
and θ is an axiom of HF , then s(θ) is an axiom of HFL. Also, if
β follows by modus ponens from α and (α → β) in HF , then s(β)
follows by the same rule from s(α) and s((α → β)) = (s(α) →
s(β)) in HFL. Therefore, if (θ0, . . . , θn−1) is a proof in HF , then
(s(θ0), . . . , s(θn−1)) is a proof in HFL.

Let ψ be a propositional tautology that is a propositional form
for ϕ and s be an L-substitution such that s(ψ) = ϕ. By the com-
pleteness of HF , there is a proof (θ0, . . . , θn−1) of ψ in HF which
transforms into a proof (s(θ0), . . . , s(θn−1)) in HFL of ϕ. �

Definition 5.2.4. Let L be a first-order language and let n ∈ N.
The n-ary tautological consequence rule for L, TCL

n , is given by

ϕ0, . . . , ϕn−1

ψ

First-Order Logic–Formal Systems 861

for all L-formulas ϕ0, . . . , ϕn−1, ψ such that

(ϕ0 → (ϕ1 → · · · (ϕn−2 → (ϕn−1 → ψ)) · · ·))

is a tautology.

Note that the rule TCL
0 says that any tautology can be deduced

without any premises.

Theorem 5.2.5. For every first-order language L and n ∈ N, the
n-ary tautological consequence rule for L is a derived rule of the
formal system HFL.

Proof. Let ϕ0, . . . , ϕn−1, ψ be L-formulas such that

(ϕ0 → (ϕ1 → · · · (ϕn−2 → (ϕn−1 → ψ)) · · ·))

is a tautology. By Theorem 5.2.3, this formula is a theorem of HFL.
We need to show that {ϕ0, . . . , ϕn−1} �HFL ψ. This follows by n
applications of modus ponens. �

If we apply any of the derived rules TCL
n , we will say that we

applied tautological consequence (TCL).
The next statement is an effectivized form of Theorem 5.2.5.

Corollary 5.2.6. Let L be a first-order language and α be a tautology
of propositional logic of the form (α0 → (α1 → · · · (αn−2 → (αn−1 →
αn)) · · ·)). There is an effective construction of an HFL

Γ-proof of
ψ = s(αn) which starts with the restriction of an L-substitution s to
the propositional variables that occur in α and with HFL

Γ-proofs of
the formulas ϕi = s(αi) for 0 ≤ i ≤ n− 1.

Proof. Let (θ0, . . . , θp−1) be a fixed HF-proof of α. Then,

(s(θ0), . . . , s(θp−1))

is an HFL
Γ-proof of s(α) = ϕ0 → (ϕ1 → · · · (ϕn−2 → (ϕn−1 →

ψ)) · · ·)). Using the HFL
Γ-proofs of the formulas ϕ0, . . . , ϕn−1, and

applying modus ponens n times, we obtain effectively a proof of ψ.
�

Definition 5.2.7. Let L be a first-order language. Two L-formulas
ϕ,ψ are provably equivalent in HFL (or provably equivalent for short)
if �HFL (ϕ↔ ψ).

862 Logical Foundations of Computer Science — Volume 2

Note that to demonstrate that two L-formulas ϕ,ψ are prov-
ably equivalent, it suffices to show that �HFL (ϕ → ψ) and �HFL
(ψ → ϕ), by Tautological Consequence.

Example 5.2.8. Using tautological consequence, we can prove that
�HFL ((∀x0)(∀x1)R(x0, x1)→ R(f(x0), g(x1))), where R is a binary
relation symbol and f, g are two unary function symbols in the first-
order language L.

By Axiom Group 19, we have

�HFL ((∀x0)(∀x1)R(x0, x1)→ (∀x1)R(f(x0), x1)).

By the same axiom group, we obtain

�HFL ((∀x1)R(f(x0), x1)→ R(f(x0), g(x1))).

Finally, by applying tautological consequence to the previous two
formulas, we obtain the desired formula.

We now show that �HFL ((∀x0)(∀x1)R(x0, x1) → R(f(x1),
g(x0))). Although the formula involved is similar to the previous
one, there are certain technical complications. By the same Axiom
Group 19, we have

�HFL ((∀x0)(∀x1)R(x0, x1)→ (∀x2)R(f(x1), x2)),

because x2 is the first variable not occurring in R(x0, x1) or in f(x1),
so (∀x2)R(x0, x2) = variant((∀x1)R(x0, x1), x0, f(x1)), by the last
part of Definition 4.6.43. By the same axiom group, we obtain

�HFL ((∀x2)R(f(x1), x2)→ R(f(x1), g(x0))).

To conclude we apply tautological consequence to the previous two
formulas.

Example 5.2.9. Using a similar approach as in Example 5.2.8, we
can show that �HFL ((∀x)ϕ → (∃x)ϕ), for every L-formula ϕ and
variable x. Namely, we can write

(1) �HFL ((∀x)ϕ→ ϕ) Axiom Group 19
(2) �HFL (ϕ→ (∃x)ϕ) Axiom Group 20
(3) �HFL ((∀x)ϕ→ (∃x)ϕ) (1), (2), and tautological consequence

First-Order Logic–Formal Systems 863

Theorem 5.2.10 (Generalization Theorem). Let L be a first-
order language, Γ be a set of L-formulas, ϕ be an L-formula, and x
be a variable such that x �∈ FV(Γ). If Γ �HFL ϕ, then Γ �HFL (∀x)ϕ.

Proof. The argument is by induction on the theorems of HFL
Γ .

There are two basis steps. If ϕ is an axiom obtained as a generaliza-
tion of a formula ψ of one of the formula groups of HFL, then (∀x)ϕ
is also a generalization of ψ and therefore is also an axiom. If ϕ ∈ Γ,
then x �∈ FV(ϕ), so Γ �HFL (ϕ → (∀x)ϕ) by axiom group 22. Since
Γ �HFL ϕ, by modus ponens we obtain Γ �HFL (∀x)ϕ.

In the inductive step, suppose that ϕ is obtained by modus
ponens from ψ and (ψ → ϕ) and that Γ �HFL (∀x)ψ and Γ �HFL
(∀x)(ψ→ ϕ). By axiom group 21, we have Γ �HFL ((∀x)(ψ → ϕ)→
((∀x)ψ → (∀x)ϕ)). A double application of modus ponens yields
Γ �HFL (∀x)ϕ. �

Observe that the argument of the Generalization Theorem pro-
vides an effective construction of an HFL

Γ-proof of (∀x)ϕ starting
from an HFL

Γ-proof of ϕ, whenever x �∈ FV(Γ).

Example 5.2.11. Consider the formula

ϕ = (∀x)(∀y)(((∀z)(f(x, z) = z) ∧ (∀w)(f(w, y) = w))→ (x = y))

discussed in Example 4.5.20.
We show that �HFL ϕ by the following sequence of steps:
(1) ((∀z)(f(x, z) = z)→ (f(x, y) = y))

(Axiom Group 19)
(2) ((∀w)(f(w, y) = w)→ (f(x, y) = x))

(Axiom Group 19)
(3) ((f(x, y) = x)→ (x = f(x, y)))

(by Axiom Group 25)
(4) (((x = f(x, y)) ∧ (f(x, y) = y))→ (x = y))

(by Axiom Group 26)
(5) (((∀z)(f(x, z) = z) ∧ (∀w)(f(w, y) = w))→ (x = y))

(by Tautological Consequence and (1)–(4))
(6) (∀x)(∀y)(((∀z)(f(x, z) = z) ∧ (∀w)(f(w, y) = w))→ (x = y))

(by a double application of the Generalization Theorem).

864 Logical Foundations of Computer Science — Volume 2

The analogue of the propositional deduction theorem for HF is
given next.

Theorem 5.2.12 (Deduction Theorem for HFL). Let L be
a first-order language, Γ be a set of L-formulas and let ϕ,ψ be
L-formulas. Then, if Γ ∪ {ϕ} �HFL ψ, we have Γ �HFL (ϕ→ ψ).

Proof. The argument follows the lines of the inductive argument
of Theorem 3.2.4. �

Corollary 5.2.13. Let L be a first-order language, Γ be a set of
L-formulas and let ϕ,ψ be L-formulas. Then, Γ∪{ϕ} �HFL ψ if and
only if Γ �HFL (ϕ→ ψ).

Proof. The statement follows from Theorem 5.2.12 exactly the
same way as Corollary 3.2.5 was obtained from Theorem 3.2.4. �

As in propositional logic, the construction of the proof of (ϕ→ ψ)
in HFL

Γ starting from the proof of ψ in HFL
Γ∪{ϕ} is effective. The

converse direction is clearly effective since given a proof Γ �HFL
(ϕ→ ψ), we can obtain effectively a proof Γ∪{ϕ} �HFL ψ by adding
the formulas ϕ and ψ to end of the proof.

Example 5.2.14. By Example 5.2.8 and the converse of the
Deduction Theorem, we have both {(∀x0)(∀x1)R(x0, x1)} �HFL
R(f(x0), g(x1)) and {(∀x0)(∀x1)R(x0, x1)} �HFL R(f(x1), g(x0)),
where R is a binary relation symbol and f, g are two unary func-
tion symbols in the first-order language L.

Similar observations apply to Examples 5.2.9 and 5.2.11.

Example 5.2.15. Let L be a first-order language, Γ be a set of
L-formulas, and ϕ,ψ be two L-formulas. The following statements
hold:

(1) If Γ ∪ {ϕ} �HFL ψ, then Γ ∪ {(¬ψ)} �HFL (¬ϕ).
(2) If Γ ∪ {(¬ϕ)} �HFL ψ, then Γ ∪ {(¬ψ)} �HFL ϕ.
(3) If Γ ∪ {ϕ} �HFL (¬ψ), then Γ ∪ {ψ} �HFL (¬ϕ).
(4) If Γ ∪ {(¬ϕ)} �HFL (¬ψ), then Γ ∪ {ψ} �HFL ϕ.

These statements will be referred to generically as proofs by contra-
position or simply contrapositions.

First-Order Logic–Formal Systems 865

For the first statement, the Deduction Theorem yields Γ �HFL
(ϕ→ ψ). By Tautological Consequence, Γ �HFL ((¬ψ)→ (¬ϕ)). An
application of Corollary 5.2.13 gives the desired conclusion.

We leave to the reader the arguments for the remaining
statements.

Observe that the construction of the proofs specified by the con-
trapositions is effective due to the effectiveness of proofs by Tauto-
logical Consequence and of proofs made by Corollary 5.2.13.

Lemma 5.2.16. Let L be a first-order language, Γ be a set of
L-formulas and let ϕ,ψ be two L-formulas such that Γ∪{ϕ} �HFL ψ.
If x is a variable that does not occur free in Γ ∪ {ψ}, then Γ ∪
{(∃x)ϕ} �HFL ψ.

Proof. Since Γ ∪ {ϕ} �HFL ψ, by contraposition, we have Γ ∪
{(¬ψ)} �HFL (¬ϕ). Since x does not occur free in Γ ∪ {(¬ψ)}, by
the Generalization Theorem, we obtain Γ ∪ {(¬ψ)} �HFL (∀x)(¬ϕ).
By Axiom Group 23, we have Γ ∪ {(¬ψ)} �HFL (¬(∃x)ϕ). Another
application of contraposition yields Γ ∪ {(∃x)ϕ} �HFL ψ. �

The proof showing that Γ ∪ {(∃x)ϕ} �HFL ψ can be obtained
effectively from the proof showing that Γ ∪ {ϕ} �HFL ψ because
all the necessary steps outlined in the proof of Lemma 5.2.16 have
already been shown to be effective.

Theorem 5.2.17. Let L be a first-order language, ϕ be an L-formula
and x, y be variables such that y is substitutable for x in ϕ and y �∈
FV(ϕ). Then, {(∀y)(ϕ)x:=y} �HFL (∀x)ϕ and {(∃y)(ϕ)x:=y} �HFL
(∃x)ϕ.

Proof. For the first part of the theorem, we begin by observing that
by Corollary 4.3.78, x is substitutable for y in (ϕ)x:=y. Therefore, the
formula ((∀y)(ϕ)x:=y → ((ϕ)x:=y)y:=x) belongs to Axiom Group 19.
By Corollary 4.3.87, ((ϕ)x:=y)y:=x) = ϕ, so �HFL ((∀y)(ϕ)x:=y → ϕ).
Consequently, by Corollary 5.2.13, (∀y)(ϕ)x:=y �HFL ϕ. Since x does
not occur free in (∀y)(ϕ)x:=y, by the Generalization Theorem, we
have (∀y)(ϕ)x:=y �HFL (∀x)ϕ.

For the second part of the theorem, since y is substitutable for
x in ϕ, we have by Axiom Group 20, �HFL ((ϕ)x:=y → (∃x)ϕ), so
by Corollary 5.2.13, (ϕ)x:=y �HFL (∃x)ϕ. Since y does not occur

866 Logical Foundations of Computer Science — Volume 2

free in ϕ, and therefore doesn’t occur free in (∃x)ϕ, it follows by
Lemma 5.2.16 that (∃y)(ϕ)x:=y �HFL→ (∃x)ϕ. �

Note that by previous effectiveness results, the proofs showing
that

{(∀y)(ϕ)x:=y} �HFL (∀x)ϕ and {(∃y)(ϕ)x:=y} �HFL (∃x)ϕ

can be found effectively given the L-formula ϕ and the variables
x and y satisfying the conditions of Theorem 5.2.17.

Corollary 5.2.18. Let L be a first-order language, ϕ be an
L-formula and x, y be variables such that y is substitutable for x
in ϕ and y �∈ FV(ϕ). Then, the formulas (∀y)(ϕ)x:=y and (∀x)ϕ are
provably equivalent as are the formulas (∃y)(ϕ)x:=y and (∃x)ϕ.

Proof. The statements are clearly true if x = y. Therefore, suppose
that x �= y.

For the first part, note that �HFL ((∀y)(ϕ)x:=y → (∀x)ϕ) by
Theorem 5.2.17 and Corollary 5.2.13. By Corollary 4.3.84, x �∈
FV((ϕ)x:=y). By Corollary 4.3.78, x is substitutable for y in (ϕ)x:=y.
Thus, by reversing the roles of x and y and replacing ϕ with
(ϕ)x:=y, we obtain by Theorem 5.2.17 and Corollary 5.2.13 that
�HFL ((∀x)((ϕ)x:=y)y:=x → (∀y)(ϕ)x:=y). By Corollary 4.3.87,
((ϕ)x:=y)y:=x = ϕ, which gives the desired result.

For the second part, Theorem 5.2.17 and Corollary 5.2.13 imply
that �HFL ((∃y)(ϕ)x:=y → (∃x)ϕ). By exchanging the roles of
x and y, we obtain as in the previous case, �HFL ((∃x)ϕ →
(∃y)(ϕ)x:=y). �

Using the effectiveness of the results used in the corollary, one can
find effectively proofs for ((∀y)(ϕ)x:=y ↔ (∀x)ϕ) and ((∃y)(ϕ)x:=y ↔
(∃x)ϕ) whenever ϕ, x and y satisfy the conditions of Corollary 5.2.18.

Lemma 5.2.19. Let θ be an instance of one of the formula groups 19
or 20, c be a constant symbol and let y be a variable that does not
occur in θ. Then, scy(θ) is an instance of the same formula group.

Proof. Suppose that θ is the formula

θ = ((∀x)ϕ→ 〈ϕ〉x:=t) = ((∀x)ϕ→ (variant(ϕ, x, t))x:=t).

First-Order Logic–Formal Systems 867

Since y does not occur in θ, it follows that y �= x and, further, y does
not occur in either ϕ or variant(ϕ, x, t). Thus,

scy(θ) = ((∀x)scy(ϕ)→ scy(〈ϕ〉x:=t))
= ((∀x)scy(ϕ)→ 〈scy(ϕ)〉x:=scy(t)

)

(by Corollary 4.6.55).

The last formula is clearly in formula group 19.
The argument for the formula group 20 is similar and is left to

the reader. �

Theorem 5.2.20. Let Γ be a set of L-formulas, (θ0, . . . , θn−1) be
a proof in HFL

Γ, c be a constant symbol of L that does not occur
in Γ, and y be a variable that does not occur in any formula θi for
0 ≤ i ≤ n − 1. Then, the sequence (scy(θ0), . . . , s

c
y(θn−1)) is also a

proof in HFL
Γ.

Proof. Fix i with 0 ≤ i ≤ n − 1. We need to consider three main
cases.

Case 1: θi is an axiom of HFL which results from generalizing
a formula θ′i of formula group j for some j between 1
and 28. Then, scy(θi) is a generalization of scy(θ

′
i), so it

suffices to show that scy(θ
′
i) belongs to the same formula

group as θ′i. This is obvious when j belongs to the set
{1, . . . , 18, 21, 23, . . . , 28}.
Suppose j ∈ {19, 20}. Then by Lemma 5.2.19, scy(θ

′
i) is in

the same formula group as θ′i.
Now suppose that θ′i belongs to formula group 22, that is
θ′i = (α → (∀x)α), where x �∈ FV(α). We have scy(θ

′
i) =

(scy(α) → (∀x)scy(α)). Since x �= y, by Theorem 4.3.69, x �∈
FV(scy(α)), which shows that scy(θ

′
i) also belongs to formula

group 22.
Case 2: θi is in Γ. Then, since c does not occur in any formula of

Γ, scy(θi) = θi, which concludes this case.
Case 3: θi is obtained from θj and θk, where 0 ≤ j, k < i by the

modus ponens rule. In this case, scy(θi) is obtained by the
same rule from scy(θj) and scy(θk). �

868 Logical Foundations of Computer Science — Volume 2

Theorem 5.2.21. Let L be a first-order language, Γ be a set of
L-formulas, and ϕ be an L-formula. If Γ �HFLc ϕ, then Γ �HFL ϕ.

Proof. Let (θ0, . . . , θn−1) be proof in HFLc of ϕ. If this proof is
not in HFL, let c0, . . . , ck−1 be the constant symbols in Lc −L that
appear in the proof. Let y0 be a variable that does not appear in
the proof. By Theorem 5.2.20, the sequence (sc0y0(θ0), . . . , s

c0
y0(θn−1))

is also a proof in HFLc
Γ of ϕ containing one fewer constant symbol

in Lc − L. Repeating this process, we obtain a proof of ϕ in HFL
Γ .
�

The previous theorem provides an effective construction that
transforms a proof in HFLc

Γ into proof in HFL
Γ .

Theorem 5.2.22. Let L be a first-order language, Γ be a set of
L-formulas, ϕ be an L-formula, and c be a constant symbol in L that
does not occur in Γ ∪ {ϕ}. If Γ �HFL (ϕ)x:=c, then Γ �HFL (∀x)ϕ.

Proof. Let (θ0, . . . , θn−1) be a proof of (ϕ)x:=c in HFL
Γ and let Γ0

be the finite subset of Γ consisting of those formulas of Γ that occur in
this proof. Let y be a variable that does not occur in the proof and is
different from x. By Theorem 5.2.20, we have Γ0 �HFL scy((ϕ)x:=c).
By Equality (4.1), scy((ϕ)x:=c) = (scy(ϕ))x:=scy(c)

. Since c does not

occur in ϕ, we have scy(ϕ) = ϕ; also, it is clear that scy(c) = y and this
yields scy((ϕ)x:=c) = (ϕ)x:=y. Thus, Γ0 �HFL (ϕ)x:=y. By the Gener-
alization Theorem, we have Γ0 �HFL (∀y)(ϕ)x:=y because y does not
occur in Γ0. Since y does not occur in ϕ, by Theorem 5.2.17, we
have (∀y)(ϕ)x:=y �HFL (∀x)ϕ. Thus, Γ0 �HFL (∀x)ϕ, which implies
Γ �HFL (∀x)ϕ. �

In view of the effectiveness of previous results mentioned in the
argument of Theorem 5.2.22, this theorem provides an effective con-
struction of an HFL

Γ-proof of (∀x)ϕ given an HFL
Γ-proof of (ϕ)x:=c

under the syntactic condition mentioned in the statement.

Theorem 5.2.23. Let L be a first-order language, Γ be a set of
L-formulas, and let ϕ, θ be two L-formulas. If c is a constant symbol
of L that does not occur in Γ, ϕ, θ, and Γ ∪ {(ϕ)x:=c} �HFL θ, then
Γ ∪ {(∃x)ϕ} �HFL θ.

Proof. Suppose that Γ ∪ {(ϕ)x:=c} �HFL θ. By Part (1) of Exam-
ple 5.2.15, we have Γ ∪ {(¬θ)} �HFL (¬(ϕ)x:=c) = ((¬ϕ))x:=c. Since

First-Order Logic–Formal Systems 869

the constant symbol c does not occur in Γ, θ or ϕ, by Theorem 5.2.22,
we have Γ ∪ {(¬θ)} �HFL (∀x)(¬ϕ). Next, by Axiom Group 23, we
obtain

Γ ∪ {(¬θ)} �HFL ((∀x)(¬ϕ)→ (¬(∃x)ϕ)),

which, by modus ponens, yields Γ∪{(¬θ)} �HFL (¬(∃x)ϕ). Part (4)
of Example 5.2.15 implies Γ ∪ {(∃x)ϕ} �HFL θ. �

The construction of the proof Γ ∪ {(∃x)ϕ} �HFL θ is effective
since it is based on previous effective results.

5.2.1 Completeness of HFL

Definition 5.2.24. Let L be a first-order language. A set Γ of
L-formulas is

• L-consistent if there is no L-formula ϕ such that

Γ �HFL ϕ and Γ �HFL (¬ϕ);

• L-inconsistent if it is not L-consistent.

As in propositional logic, every subset of an L-consistent set
of formulas is L-consistent; consequently, every superset of an
L-inconsistent set of formulas is L-inconsistent.

Also, the fact that consistency in first-order logic is a property
of finite character is a consequence of the finiteness of proofs in the
formal system.

Theorem 5.2.25. L-consistency is a property of finite character,
for every first-order language L.

Proof. The argument is similar to the proof of Theorem 3.2.7. �

Theorem 5.2.26. Let L be a first-order language. If Γ is a satisfiable
set of L-formulas, then Γ is L-consistent.

Proof. The argument is entirely similar to the argument of Theo-
rem 3.2.8. �

870 Logical Foundations of Computer Science — Volume 2

Theorem 5.2.27. If Γ is an L-consistent set of L-formulas and
Γ �HFL ϕ, then Γ ∪ {ϕ} is also L-consistent. Thus, if Γ ∪ {ϕ} is
L-inconsistent and Γ �HFL ϕ, then Γ is L-inconsistent.

Proof. The proof is identical to the proof of Theorem 3.2.9. �

Corollary 5.2.28. Let Γ be a maximally L-consistent set of formu-
las. If Γ �HFL ϕ, then ϕ ∈ Γ.

Proof. This follows immediately from Theorem 5.2.27. �

Theorem 5.2.29. If Γ is an L-inconsistent set of formulas, then for
every L-formula ψ, Γ �HFL ψ.

Proof. The statement can be shown using the argument of
Theorem 3.2.11. �

Starting from proofs that show Γ �HFL ϕ and Γ �HFL (¬ϕ), we
can construct effectively the proof that shows Γ �HFL ψ, using the
steps outlined in the proof of Theorem 3.2.11. (We will revisit this
effective construction in Section 5.7.1.)

Theorem 5.2.30. Let Γ be a set of L-formulas and let ϕ be an
L-formula such that Γ � �HFL ϕ. Then, Γ ∪ {(¬ϕ)} is L-consistent.

Proof. Again, the argument is identical to argument of Theo-
rem 3.2.12. �

Corollary 5.2.31. Let Γ be an L-consistent set of L-formulas. Then,
for each L-formula ϕ, at least one of Γ ∪ {ϕ} and Γ ∪ {(¬ϕ)} is
L-consistent. Therefore, if both Γ ∪ {ϕ} and Γ ∪ {(¬ϕ)} are L-
inconsistent, then so is Γ.

If Γ is maximally L-consistent and ϕ is an L-formula, then exactly
one of the formulas ϕ and (¬ϕ) belongs to Γ.

Proof. See the proof of Corollary 3.2.13. �

The next statement describes a method of derivation in HFL

known as reductio ad absurdum.

Theorem 5.2.32. Let Γ be a set of L-formulas and let ϕ be an
L-formula such that Γ ∪ {ϕ} is L-inconsistent. Then, Γ �HFL (¬ϕ).

If Γ ∪ {(¬ϕ)} is L-inconsistent, then Γ �HFL ϕ.

First-Order Logic–Formal Systems 871

Proof. By Theorem 5.2.29, the inconsistency of Γ∪{ϕ}means that
we have Γ ∪ {ϕ} �HFL (¬ϕ). By the Deduction Theorem, Γ �HFL
(ϕ → (¬ϕ)). Observe, that ((ϕ → (¬ϕ)) → (¬ϕ)) is tautology of
first-order logic by Example 2.6.9, so, by Theorem 5.2.3, Γ �HFL
((ϕ→ (¬ϕ))→ (¬ϕ)). By Rmp, we obtain Γ �HFL (¬ϕ).

For the second part of the theorem, note that the inconsistency of
Γ∪{(¬ϕ)} implies the existence of the proof showing Γ �HFL (¬(¬ϕ))
by the first part of the theorem. By Tautological Consequence, we
obtain the desired proof for the second part. �

The proof of Theorem 5.2.32 shows that given proofs that show
Γ∪{ϕ} �HFL ψ and Γ∪{ϕ} �HFL (¬ψ), we can obtain effectively a
proof for Γ �HFL (¬ϕ). A similar effectivization holds for the second
part of the theorem.

Example 5.2.33. We illustrate the application of several prov-
ing techniques in showing that �HFL ((¬(∀x)ϕ) → (∃x)(¬ϕ)),
for every L-formula ϕ and variable x. By Axiom Group 20, we
have {(¬(∃x)(¬ϕ)), (¬ϕ)} �HFL (∃x)(¬ϕ). We also have obviously
{(¬(∃x)(¬ϕ)), (¬ϕ)} �HFL (¬(∃x)(¬ϕ)), which shows that the set
{(¬(∃x)(¬ϕ)), (¬ϕ)} is inconsistent. By reductio ad absurdum (The-
orem 5.2.32), we have {(¬(∃x)(¬ϕ))} �HFL ϕ. Since x is not a free
variable in the formula (¬(∃x)(¬ϕ)), by the Generalization Theo-
rem, we obtain, (¬(∃x)(¬ϕ)) �HFL (∀x)ϕ. An application of the
Deduction Theorem yields �HFL ((¬(∃x)(¬ϕ))→ (∀x)ϕ). By a new
application of tautological consequence, we get �HFL ((¬(∀x)ϕ) →
(∃x)(¬ϕ)).

By a similar argument, using the inconsistency of the set
{(¬(∃x)ϕ), ϕ}, we can show that �HFL ((¬(∃x)ϕ)→ (∀x)(¬ϕ)).

Since all steps involved in this example are effective, it follows
that we can effectively find proofs that show that �HFL ((¬(∀x)ϕ)→
(∃x)(¬ϕ)), and �HFL ((¬(∃x)ϕ) → (∀x)(¬ϕ)), given an L-formula
ϕ and a variable x.

If we were to follow our presentation of completeness of HF in
propositional logic further, the next result would be that every maxi-
mally L-consistent set is an (L,VAR)-truth set. However, the proof of
the propositional analogue of this statement (Theorem 3.2.18) does
not adapt to first-order logic because γ-formulas have infinite con-
stituents. Therefore, we need to introduce a special property of sets

872 Logical Foundations of Computer Science — Volume 2

of formulas that together with maximal consistency allows the proof
of Theorem 3.2.18 to go through in first-order logic.

Definition 5.2.34. Let L be a first-order language. A set of
L-formulas Γ is an L-Henkin set1 if, for every L-formula ϕ and vari-
able x, there are constant symbols c, d in L such that (〈ϕ〉x:=c →
(∀x)ϕ) and ((∃x)ϕ→ 〈ϕ〉x:=d) both belong to Γ.

Theorem 5.2.35. A maximally L-consistent set of L-formulas Γ
that is an L-Henkin set is an (L,VAR)-truth set for every first-order
language L.

Proof. The maximal L-consistency of Γ implies that for every
L-formula ϕ, (¬ϕ) ∈ Γ if and only if ϕ �∈ Γ by Corollary 5.2.31.

If L contains the equality symbol and α ∈ INSTL,VAR(Eq=,L),
then α is an axiom of HFL and therefore Γ �HFL α, which implies
α in Γ, by Corollary 5.2.28. Thus, by Theorem 4.12.32, in order to
prove that Γ is a truth set, it remains to show that for every positive
or negated positive formula ϕ that is not a literal, if a constituent K
of ϕ is included in Γ, then ϕ ∈ Γ.

Let ϕ be a positive or negated positive formula that is not a literal
and let K be an (L,VAR)-constituent of ϕ such that K ⊆ Γ. If ϕ
is not a γ-formula, then ϕ ∈ Γ by an argument similar to the one
used in Theorem 3.2.18. (Note that if ϕ is the δ-formula (¬(∀x)ψ),
then the formula ((¬〈ψ〉x:=t) → (¬(∀x)ψ)) follows by Tautological
Consequence from the axiom instance ((∀x)ψ → 〈ψ〉x:=t).)

Suppose that ϕ is the γ-formula (∀x)ψ and therefore, K =
{〈ψ〉x:=t | t ∈ TERML} ⊆ Γ. Since Γ is an L-Henkin set, there is
a constant symbol c such that (〈ψ〉x:=c → ϕ) ∈ Γ. Since 〈ψ〉x:=c ∈
K ⊆ Γ, we have Γ �HFL 〈ψ〉x:=c and this, by modus ponens, gives
Γ �HFL ϕ. Thus, ϕ ∈ Γ, by Corollary 5.2.28.

Finally, let ϕ be the γ-formula (¬(∃x)ψ). We have K =
{〈(¬ψ)〉x:=t | t ∈ TERML} = {(¬〈ψ〉x:=t) | t ∈ TERML}, because of

1Leon Albert Henkin was born in Brooklyn in 1921, got his Ph.D. in mathe-
matics from Princeton University in 1947, and died in 2006. He was a Professor
at the University of California-Berkeley. Henkin is known for his contributions
in algebraic logic and mathematics education and for what is known today as
the standard proof of completeness for Hilbert/Frege systems of first-order logic,
which he developed in his doctoral dissertation.

First-Order Logic–Formal Systems 873

Theorem 4.6.50. Also, we have K ⊆ Γ. Since Γ is an L-Henkin set,
there is a constant symbol d ∈ L such that ((∃x)ψ → 〈ψ〉x:=d) ∈ Γ.
By tautological consequence, Γ �HFL ((¬〈ψ〉x:=d) → (¬(∃x)ψ)).
Theorem 4.6.50 implies that Γ �HFL (〈(¬ψ)〉x:=d → (¬(∃x)ψ)).
Since 〈(¬ψ)〉x:=d ∈ K ⊆ Γ, an application of modus ponens yields
Γ �HFL (¬(∃x)ψ) = ϕ, which implies ϕ ∈ Γ by Corollary 5.2.28. �

To conclude the completeness argument for first-order logic in a
manner similar to that of propositional logic, we need to show that
every L-consistent set Γ of L-formulas is included in a maximally
L′-consistent set of formulas Γ′ that is an L′-Henkin set of formulas,
where L′ is a suitable extension of L. Since the satisfiability of such a
set Γ′ is implied by Theorem 5.2.35, this would imply the satisfiability
of Γ and therefore the completeness result. The difficulty in proving
this result resides in the fact that the Henkin property is not a prop-
erty of finite character. We must show that we can enlarge Γ to be
inclusive enough to become a Henkin set without losing consistency.

The steps needed to establish this result are:

• If Γ is an L-consistent set of L-formulas, then Γ is an Lc-consistent
set of Lc-formulas (Theorem 5.2.36).

• If Γ is an L-consistent set of L-formulas and there are infinitely
many constant symbols in L that do not appear in Γ, then there
is an L-consistent, L-Henkin set of L-formulas that contains Γ
(Theorem 5.2.37).

• Every L-consistent set of L-formulas is contained in a maximally
L-consistent set of L-formulas (Theorem 5.2.38).

Once these results are established, we show that every
L-consistent set Γ of L-formulas is contained in a maximally
Lc-consistent set of Lc-formulas that is an Lc-Henkin set as follows.
By Theorem 5.2.36, Γ is an Lc-consistent set of Lc-formulas. There-
fore, by Theorem 5.2.37, there is an Lc-consistent, Lc-Henkin set of
formulas Γ1 that includes Γ. In turn, by Theorem 5.2.38, there is a
maximally Lc-consistent set of Lc-formulas Γ2 such that Γ1 ⊆ Γ2.
Because Γ2 contains an Lc-Henkin set, it is itself such a set.

Theorem 5.2.36. If Γ is an L-consistent set of L-formulas, then Γ
is an Lc-consistent set of Lc-formulas.

874 Logical Foundations of Computer Science — Volume 2

Proof. We prove the contrapositive of the statement. Suppose that
Γ is inconsistent as a set of Lc-formulas. Let ϕ be an arbitrary
L-formula, which is obviously also an Lc-formula. By Theorem 5.2.29,
we have both Γ �HFLc ϕ and Γ �HFLc (¬ϕ). By Theorem 5.2.21, we
have Γ �HFL ϕ and Γ �HFL (¬ϕ), so Γ is inconsistent as a set of
L-formulas. �

Theorem 5.2.37. If Γ is an L-consistent set of L-formulas and
there are infinitely many constant symbols in L that do not appear in
Γ, then there is an L-consistent, L-Henkin set of L-formulas Γ′ that
contains Γ.

Proof. Suppose that {(ϕ0, y0, Q0), (ϕ1, y1, Q1), . . .} is a list of all
triples of the form (ϕ, y,Q) such that ϕ is an L-formula, y is a variable
and Q is a quantifier symbol.

Define the sequence Γ0,Γ1, . . . of sets of L-formulas as follows:

Γ0 = Γ

Γn+1 =

{
Γn ∪ {(〈ϕn〉yn:=en → (∀yn)ϕn)} if Qn = ∀
Γn ∪ {((∃yn)ϕn → 〈ϕn〉yn:=en)} if Qn = ∃,

where en is the first constant symbol in the standard order that does
not occur in Γn or in ϕn. Note that en exists because Γn−Γ is finite
and by hypothesis there are infinitely many constant symbols of L
that do not occur in Γ.

We prove by induction on n that each set Γn is L-consistent.
The basis step is immediate by hypothesis. Suppose that Γn is
L-consistent but Γn+1 is L-inconsistent. We consider the following
two cases depending on Qn.

Case 1: Qn = ∀. The inconsistency of Γn+1 implies that Γn �HFL
(¬(〈ϕn〉yn:=en → (∀yn)ϕn)), by Theorem 5.2.32. Since the
formulas

((¬(α→ β))→ α) and ((¬(α→ β))→ (¬β))
are easily seen to be tautologies, applying twice the
rule TCL

1 , we have Γn �HFL 〈ϕn〉yn:=en and Γn �HFL
(¬(∀yn)ϕn). Since en is substitutable for yn in ϕn, we actu-
ally have Γn �HFL (ϕn)yn:=en . By choice of en and Theo-
rem 5.2.22, we have Γn �HFL (∀yn)ϕn, which contradicts
the consistency of Γn.

First-Order Logic–Formal Systems 875

Case 2: Qn = ∃. Again, the inconsistency of Γn+1 implies that
Γn �HFL (¬((∃yn)ϕn → 〈ϕn〉yn:=en)). A double appli-
cation of TCL

1 gives Γn �HFL (∃yn)ϕn and Γn �HFL
(¬(ϕn)yn:=en). Clearly, (¬(ϕn)yn:=en) equals the formula
((¬ϕn))yn:=en , so Γn �HFL ((¬ϕn))yn:=en . By choice of en
and Theorem 5.2.22, we have Γn �HFL (∀yn)(¬ϕn). By
modus ponens and axiom group 23, we arrive at Γn �HFL
(¬(∃yn)ϕn), which contradicts the consistency of Γn.

Since L-consistency is a property of finite character, it follows from
Lemma 1.3.2 that the set Γ′ =

⋃
n∈N Γn is L-consistent. It is clear

that Γ ⊆ Γ′ and Γ′ is an L-Henkin set by construction. �
The last piece of the puzzle is discussed next.

Theorem 5.2.38. Every L-consistent set of L-formulas is contained
in a maximally L-consistent set of L-formulas.

Proof. The statement follows from Theorem 1.3.3 since
L-consistency is a property of finite character. �

Theorem 5.2.39. Let L be a first-order language. If Γ is an
L-consistent set of L-formulas, then Γ is satisfiable.

Proof. By Theorem 5.2.36, Γ is an Lc-consistent set of Lc-formulas.
Since Γ is a set of L-formulas, there are infinitely many con-
stant symbols in Lc that do not appear in Γ. Therefore, by The-
orem 5.2.37, there is an Lc-consistent, Lc-Henkin set of formulas
Γ1 that includes Γ. By Theorem 5.2.38, there is a maximally Lc-
consistent set of Lc-formulas Γ2 such that Γ1 ⊆ Γ2. Γ2 is an Lc-
Henkin set because it contains an Lc-Henkin set. Consequently, by
Theorem 5.2.35, Γ2 is an (Lc,VAR)-truth set. By Corollary 4.12.36,
Γ2 is satisfiable, which implies that Γ is satisfiable because Γ ⊆ Γ2.�

Corollary 5.2.40. Let L be a first-order language. A set of L-
formulas Γ is L-consistent if and only if it is satisfiable.

Proof. This statement follows from Theorems 5.2.26 and 5.2.39.
�

Theorem 5.2.41 (Completeness of HFL
Γ). Let L be a first-order

language, Γ be a set of L-formulas and let ϕ be an L-formula. If
Γ |= ϕ, then Γ �HFL ϕ.

876 Logical Foundations of Computer Science — Volume 2

Proof. If Γ � �HFL ϕ, then, by Theorem 5.2.30, Γ ∪ {(¬ϕ)} is
L-consistent, so, by Theorem 5.2.39, Γ ∪ {(¬ϕ)} is satisfiable. This
implies that Γ �|= ϕ, by Part 1 of Theorem 4.5.52. �

Corollary 5.2.42. Let L be a first-order language, Γ be a set of
L-formulas and let ϕ be an L-formula. Then, Γ |= ϕ if and only if
Γ �HFL ϕ.

Proof. This follows immediately from Theorems 5.2.2 and 5.2.41.
�

5.2.2 Building Proofs in HFL

Theorem 5.2.43. Let L be a first-order language and ϕ,ψ be
L-formulas. We have

(ϕ↔ ψ) �HFL (ϕ→ ψ),
(ϕ↔ ψ) �HFL (ψ → ϕ),
{(ϕ→ ψ), (ψ → ϕ)} �HF (ϕ↔ ψ).

Furthermore, these proofs can be found effectively, given ϕ and ψ.

Proof. The argument is identical to the proofs of the same results
in the propositional case given in Lemmas 3.2.25 and 3.2.26. �

Corollary 5.2.44. Let L be a first-order language and let
ϕ0, . . . , ϕn−1 be L-formulas, where n ≥ 2, and let Γ be a set of
L-formulas. Starting from proofs Γ �HFL (ϕi ↔ ϕi+1) for 0 ≤ i ≤
n− 2, one can produce effectively a proof for Γ �HFL (ϕ0 ↔ ϕn−1).

Proof. This statement follows from Theorem 5.2.43 and the first-
order analogues of Theorem 3.2.27 and Corollary 3.2.28. �

Theorem 5.2.45. Let L be a first-order language, Γ be a set of
L-formulas such that the variable x does not occur free in Γ and let
ϕ,ψ be two L-formulas, such that Γ �HFL (ϕ → ψ). Then, we have
Γ �HFL ((∀x)ϕ→ (∀x)ψ) and Γ �HFL ((∃x)ϕ→ (∃x)ψ).

Proof. For the first part of the theorem, we start from the fact
that Γ ∪ {(∀x)ϕ} �HFL ((∀x)ϕ → ϕ), by Axiom Group 19. Fur-
ther, since Γ ∪ {(∀x)ϕ} �HFL (∀x)ϕ, by modus ponens, we have
Γ ∪ {(∀x)ϕ} �HFL ϕ. By hypothesis, Γ ∪ {(∀x)ϕ} �HFL (ϕ → ψ),

First-Order Logic–Formal Systems 877

which yields Γ ∪ {(∀x)ϕ} �HFL ψ by modus ponens. Since x does
not occur free in Γ ∪ {(∀x)ϕ}, by the Generalization Theorem, we
have Γ ∪ {(∀x)ϕ} �HFL (∀x)ψ. A final application of the Deduction
Theorem produces Γ �HFL ((∀x)ϕ→ (∀x)ψ).

For the second part, the starting point was obtained in Exam-
ple 5.2.33: Γ �HFL ((¬(∃x)ψ) → (∀x)(¬ψ)). From the hypothesis,
by Tautological Consequence, we have Γ �HFL ((¬ψ) → (¬ϕ)). By
the first part of the theorem, Γ �HFL ((∀x)(¬ψ) → (∀x)(¬ϕ)). By
Axiom Group 23, we have Γ �HFL ((∀x)(¬ϕ)→ (¬(∃x)ϕ)). By Tau-
tological Consequence, we obtain, Γ �HFL ((¬(∃x)ϕ) → (¬(∃x)ϕ)).
A last application of Tautological Consequence produces Γ �HFL
((∃x)ϕ→ (∃x)ψ). �

All steps involved in the proof of Theorem 5.2.45 being effective,
it follows that we can construct effectively proofs showing Γ �HFL
((∀x)ϕ → (∀x)ψ) and Γ �HFL ((∃x)ϕ → (∃x)ψ), given a proof
showing that Γ �HFL (ϕ→ ψ).

Example 5.2.46. We show that �HFL (∃x)(P (x)→ (∀x)P (x)). The
sequence of steps of the argument is given below.

(1) ((¬(∀x)P (x)) ∨ (∀x)P (x))
(tautology)

(2) ((∀x)P (x)→ (P (x)→ (∀x)P (x)))
(Axiom Group 1)

(3) ((P (x)→ (∀x)P (x))→ (∃x)(P (x)→ (∀x)P (x)))
(Axiom Group 20)

(4) ((∀x)P (x)→ (∃x)(P (x)→ (∀x)P (x)))
(tautological consequence of (2) and (3))

(5) ((¬(∀x)P (x))→ (∃x)(¬P (x)))
(by Example 5.2.33)

(6) ((¬P (x))→ (P (x)→ (∀x)P (x)))
(Axiom Group 10)

(7) ((∃x)(¬P (x))→ (∃x)(P (x)→ (∀x)P (x)))
(by Theorem 5.2.45 with Γ = ∅ and (6))

(8) ((¬(∀x)P (x))→ (∃x)(P (x)→ (∀x)P (x)))
(tautological consequence of (5) and (7))

(9) (∃x)(P (x)→ (∀x)P (x))
(tautological consequence of (1), (4) and (8)).

878 Logical Foundations of Computer Science — Volume 2

Example 5.2.47. Let R be a binary relation symbol in a first-
order language L. We prove that �HFL ((∃x)(∀y)R(x, y) →
(∀y)(∃x)R(x, y)) using the following sequence:

(1) �HFL ((∀y)R(x, y)→ R(x, y))
(Axiom Group 19)

(2) �HFL ((∃x)(∀y)R(x, y)→ (∃x)R(x, y))
(by Theorem 5.2.45 with Γ = ∅ and (1))

(3) (∃x)(∀y)R(x, y) �HFL (∃x)R(x, y)
(by Corollary 5.2.13 and (2))

(4) (∃x)(∀y)R(x, y) �HFL (∀y)(∃x)R(x, y)
(by the Generalization Theorem, since y does not
occur free in (∃x)(∀y)R(x, y) and (3))

(5) �HFL ((∃x)(∀y)R(x, y)→ (∀y)(∃x)R(x, y))
(by the Deduction Theorem and (4)).

The next theorem is the syntactic equivalent of the Replacement
Theorem (Theorem 4.6.16).

Lemma 5.2.48. Let L be a first-order language. The following tau-
tologies have proofs in the formal system HFL that can be found
effectively given the L-formulas θ0, θ1, θ

′
0 and the binary connective

symbol C:

((θ0 ↔ θ′0)→ ((θ0Cθ1)↔ (θ′0Cθ1)))
((θ0 ↔ θ′0)→ ((θ1Cθ0)↔ (θ1Cθ

′
0)))

In addition, for all θ0, θ
′
0, we can find effectively a proof for ((θ0 ↔

θ′0)→ ((¬θ0)↔ (¬θ′0))).

Proof. The argument parallels the one of Lemma 3.2.31. �

Theorem 5.2.49. Let L be a first-order language. If the L-formulas
α, β are provably equivalent in HFL and ψ is a obtained from the
L-formula ϕ by replacing an occurrence of α by β, then ϕ and ψ are
provably equivalent in HFL.

Proof. First note that in the special case when α coincides with
ϕ, we have ψ = β and thus ϕ and ψ are clearly provably equivalent.

The argument is by induction on the formula ϕ and proceeds along
the same lines as the argument of Theorem 3.2.32 except for the case

First-Order Logic–Formal Systems 879

when ϕ = (Qx)ϕ0, whereQ is a quantifier symbol. If we are not in the
special case, the occurrence of the formula α is located within ϕ0. Let
ϕ′
0 be the formula obtained from ϕ0 by replacing the occurrence of α

by β. Then, ψ = (Qx)ϕ′
0. By the inductive hypothesis, the formulas

ϕ0 and ϕ′
0 are provably equivalent and therefore, by Theorem 5.2.43,

the formulas (ϕ0 → ϕ′
0) and (ϕ′

0 → ϕ0) are theorems of HFL. Apply-
ing Theorem 5.2.45, it follows that both ((Qx)ϕ0 → (Qx)ϕ′

0) and
((Qx)ϕ′

0 → (Qx)ϕ0) are also theorems. Again by Theorem 5.2.43,
we obtain the theorem ((Qx)ϕ0 ↔ (Qx)ϕ′

0) and this is (ϕ↔ ψ). �
The argument of Theorem 5.2.49 shows that starting from an

L-formula ϕ, two provably equivalent L-formulas α and β and a
proof of (α ↔ β), and an occurrence of α in ϕ, we can effectively
find a proof of (ϕ↔ ψ), where ψ is the formula obtained from ϕ by
replacing the occurrence of α by β. This holds because we have seen
that the proofs provided by the theorems used in the argument can
be found effectively.

Lemma 5.2.50. Let L be a first-order language and let ϕ,ψ be two
L-formulas such that ψ is an immediate variant of ϕ. Then, ϕ and
ψ are provably equivalent in HFL.

Proof. If ϕ = ψ, then by Axiom Group 3 and Theorem 5.2.43, we
can prove (ϕ↔ ϕ).

Suppose that ψ is obtained from ϕ by replacing an occurrence of
(Qx)β by (Qy)(β)x:=y, where y �∈ FV(β) and y is substitutable for x
in β. Then, by Corollary 5.2.18, the formulas (Qx)β and (Qy)(β)x:=y
are provably equivalent. Therefore, by Theorem 5.2.49, the formulas
ϕ and ψ are provably equivalent. �

Given two immediate variants ϕ and ψ, the argument of
Lemma 5.2.50 shows that we can effectively find a proof of the for-
mula (ϕ↔ ψ).

Theorem 5.2.51. Let L be a first-order language. Given two
L-formulas ϕ,ψ such that ψ is a variant of ϕ, we can effectively
find a proof in HFL of the formula (ϕ↔ ψ).

Proof. By Theorem 4.6.36, we can effectively find a sequence of
formulas (θ0, . . . , θn−1) such that ϕ = θ0, ψ = θn−1, and θi+1 is an
immediate variant of θi, for 0 ≤ i ≤ n− 2. By Lemma 5.2.50, we can
find effectively proofs for the formulas (θi ↔ θi+1), for 0 ≤ i ≤ n−2.

880 Logical Foundations of Computer Science — Volume 2

By Corollary 5.2.44, starting from these proofs, we can obtain effec-
tively a proof of (ϕ↔ ψ). �

Theorem 5.2.52. Let L be a first-order language. The rule RL
var

given by

ϕ

ϕ′ ,

where ϕ,ϕ′ are L-formulas such that ϕ′ is a variant of ϕ, is a derived
rule of HFL called the variant rule for L. Furthermore, we can effec-
tively eliminate each application of this rule in the augmented formal
system obtained by adding this rule.

Proof. Let ϕ′ be a variant of ϕ. By Theorem 5.2.51, we can find
effectively a proof of (ϕ ↔ ϕ′) and therefore by Theorem 5.2.43 a
proof of ϕ �HFL (ϕ → ϕ′). By Modus Ponens, we obtain a proof of
ϕ �HFL ϕ′. �

5.3 First-Order Tableaux

In propositional logic, tableaux are used to determine the satisfia-
bility of sets of formulas by attempting to construct Hintikka sets
that contain these sets of formulas. The existence of such Hintikka
sets for satisfiable sets of formulas is assured by Corollary 2.7.22 (for
sets of unsigned formulas) and Exercise 116 of Chapter 2 (for sets
of signed formulas). Once a Hintikka set that contains the original
set of formulas is found, Theorem 2.7.16 or Theorem 2.7.28 can be
used to determine a satisfying truth assignment. If no Hintikka set
is found through a systematic search, then we can conclude that the
original set of formulas is unsatisfiable.

In first-order logic, a tableau for a set of (L, V)-formulas Ω is
essentially a technique to attempt to construct (Lc, V)-Hintikka sets
that contain Ω. Here, the existence of such Hintikka sets, if Ω is
satisfiable, is guaranteed by Corollary 4.12.26 or Exercise 169 of
Chapter 2, depending on whether we deal with unsigned or signed
formulas, respectively. If L does not contain = and such an (Lc, V)-
Hintikka set is obtained, then, by Theorem 4.12.17 (for unsigned
formulas) or by Theorem 4.12.50 (for signed formulas), one can
determine a pair (A, σ), where A is a V -Herbrand structure for

First-Order Logic–Formal Systems 881

Lc and σ ∈ ASSIGNA, such that (A, σ) satisfies Ω. When =∈ L,
Theorems 4.12.20 and 4.12.53 show how to obtain a satisfying pair
(B, σ), where B is now a quotient of a Herbrand structure.

This section begins with tableaux for signed first-order formulas.
We will use the sequence of constituents dL,V (bϕ) of a signed (L, V)-
formula bϕ introduced in Section 4.12.

Definition 5.3.1. Let L be a first-order language and V be a set
of variables. A signed (L, V)-tableau, or just an (L, V)-tableau for
brevity, is a lot whose labels are sets of signed (L, V)-formulas.

If P is a path of an (L, V)-tableau T, then T(P) is the set of signed
formulas that occur in P.

Definition 5.3.2. Let L be a first-order language and V be an
L-suitable set of variables. A node q of an (L, V)-tableau T is closed
if T(q) is closed, that is, there is a formula ϕ such that both Tϕ and
Fϕ belong to T(q). A branch B of T is closed if the set of formulas
occurring in B is closed. B is strongly closed if it is finite and q is
closed, where q is the endpoint of B.

A branch B is complete if the set of formulas occurring in B is an
(L, V)-Hintikka set.

An (L, V)-tableau T′ is an extension of an (L, V)-tableau T if
Dom(T) ⊆ Dom(T′) and for every q ∈ Dom(T), we have T(q) = T′(q).

Let Δ be a set of signed (L, V)-formulas and let T be an
(L, V)-tableau. A notation analogous to the one used in proposi-
tional logic defines the (L, V)-tableau T′ as the tableau (T; T(λ)∪Δ),
that is, the (T(λ) ∪Δ)-join of T, as introduced in Definition 1.7.17.
As before, we will denote T′ by T �Δ.

Definition 5.3.3. An (L, V)-tableau is closed (strongly closed) if
every branch is closed (strongly closed). An (L, V)-tableau is com-
pleted (strongly completed) if every branch is either closed (strongly
closed) or complete.

Note that if T is a (strongly) closed (L, V)-tableau and Δ is a set
of signed (L, V)-formulas, then T �Δ is also (strongly) closed.

882 Logical Foundations of Computer Science — Volume 2

Recall that we introduced the notion of finite-to-one function in
Definition 1.2.18 on page 8. We will use this concept in the following
definition.

Definition 5.3.4. Let L be a first-order language, V be an
L-suitable set of variables and Δ be a set of signed (L, V)-formulas.
A (Δ,L, V)-tableau is an (L, V)-tableau T that satisfies the following
conditions:

• The root of T is labeled by Δ, i.e., T(λ) = Δ.
• If q is an interior node of T, then one of the following cases occurs:

(1) there is some set of signed formulas Δ′ and signed formula bϕ
with ϕ not atomic and T(q) = Δ′ ∪ {bϕ} such that either

(a) bϕ is neither a γ- nor a δ-formula,

dL,V (bϕ) = (K0, . . . ,Kn−1),

q has n immediate descendants, and T(qi) = Δ′ ∪ Ki for
0 ≤ i ≤ n− 1, or

(b) bϕ is a γ-formula b(Qx)ψ, q has one immediate descen-
dant, and T(q0) = Δ′ ∪ {bϕ, b(ψ′)x:=t} for some term
t ∈ TERML(V) and variant ψ′ of ψ such that t is sub-
stitutable for x in ψ′, or

(c) bϕ is a δ-formula b(Qx)ψ, q has one immediate descendant,
and T(q0) = Δ′ ∪ {b(ψ)x:=c} for some constant symbol
c ∈ L that does not occur in any signed formula in T(q),
if x occurs free in ψ. Otherwise, that is, if x �∈ FV(ψ),
T(q0) = Δ′ ∪ {bψ}.

(2) q has one immediate descendant, q0, and there is a function
f : T(q0) −→ T(q) which is finite-to-one (that is, for every
signed formula bψ ∈ T(q), the set f−1(bψ) is finite) such that
each signed formula bϕ ∈ T(q0) is a variant of the formula
f(bϕ) from T(q).

(3) =∈ L, q has one immediate descendant, and T(q0) = T(q) ∪
{Tα} for some α ∈ INSTL,V (Eq=,L).

If the first case holds at an interior node q, then we say that regular
expansion was used at q. More particularly, if Case 1(a) holds, we say
that propositional expansion was used at q; if Cases 1(b) or 1(c) hold,
then we have γ-expansion and δ-expansion, respectively. In Case 1(c),

First-Order Logic–Formal Systems 883

if x occurs free in the formula ψ, then the constant symbol c is called
an eigenconstant of T. Note that given a tableau, the eigenconstants
used in δ-expansions are uniquely determined. When x �∈ FV(ψ), we
say that degenerate δ-expansion occurred at q.

If the second case holds, we say that variantizing was used at q.
Finally, if the third case holds, that is, we add a signed instance of

an equality axiom to T(q) to obtain T(q0), then we say that equality
expansion was used at q.

A special case of variantizing occurs when T(q0) ⊆ T(q). We will
say that T(q0) was obtained from T(q) by thinning.

We refer to a (Δ,L, ∅)-tableau as a (Δ,L)-tableau.
If any of the previous three conditions is met by an interior node

q of an arbitrary (L, V)-tableau T, then we say that T is locally con-
sistent at q.

A (Δ,L, V)-tableau T is locally conservative at an interior node
q if either regular expansion or equality expansion is used at q. T is
called a conservative tableau if it is locally conservative at each of its
interior nodes.

Theorem 5.3.5. Let L be a first-order language and let V be an
L-suitable set of variables. If Δ is a set of signed (L, V)-formulas,
then every formula that occurs in a node of a (Δ,L, V)-tableau is an
(L, V)-formula.

Proof. This statement follows from Corollary 4.12.42, Theo-
rem 4.6.22 and Corollary 4.3.85. �

The previous theorem shows that every (Δ,L, V)-tableau is an
(L, V)-tableau.

From now on, whenever we consider a (Δ,L, V)-tableau, we
assume that V is L-suitable.

Part 1b of Definition 5.3.4 leaves us the option of choosing ψ′ to be
variant(ψ, x, t), which would be sufficient for completeness. However,
we use this more flexible rule in order to simplify transformations
between several formal systems. Also, variantizing is not necessary
for proving completeness. However, it provides technical help in the
same circumstances.

In a (Δ,L, V)-tableau, it is possible that regular expansion, thin-
ning, and equality expansion could be used at the same node. An

884 Logical Foundations of Computer Science — Volume 2

example would be if α ∈ INSTL,V (Eq=,L), {F(¬α),Tα} ⊆ T(q), q
has one immediate descendant q0 in T, and T(q0) = T(q).

In the case of regular expansion, as in propositional logic, bϕ may
or may not be a member of Δ′ and, if bϕ ∈ Δ′, then bϕ and Δ′ may
not be uniquely determined. If bϕ �∈ Δ′ and bϕ is not a γ-formula,
then bϕ is uniquely determined as the signed formula in T(q) that
does not belong to T(qi) for any of the immediate descendants qi of
q and Δ′ is also uniquely determined as T(q)− {bϕ}. When we have
regular expansion and either bϕ is a γ-formula or bϕ ∈ Δ′, we say
that the formula expanded at q is retained; otherwise, we say that
the formula is removed at q. The reader will observe that in the case
of regular expansion, we cannot have both expansion with retention
and expansion with removal at the same node.

Definition 5.3.6. Let L be a first-order language, V be an
L-suitable set of variables, and Δ be a set of signed (L, V)-formulas.

A (Δ,L, V)-tableau with retention is a (Δ,L, V)-tableau T such
that at every interior node of T where neither variantizing nor equal-
ity expansion was used, the formula expanded is retained.

A (Δ,L, V)-tableau with removal is a (Δ,L, V)-tableau T such
that at every interior node of T where none of equality expansion,
variantizing, or γ-expansion were used, the formula expanded is
removed.

Note that every (Δ,L, V)-tableau is finitely branching. Therefore,
every strongly closed (Δ,L, V)-tableau T is finite by König’s Lemma
(see Theorem 1.7.7) because every branch of T is finite.

Example 5.3.7. Let L be a first-order language, V be an L-suitable
set of variables, ϕ be an L-formula and t be a term in TERML(V).
Figure 5.1 contains a strongly closed (Δ,L, V)-tableau, where Δ =
{F((∀x)ϕ→ (∃x)ϕ)}. In this figure, t is an arbitrary (L, V)-term.

Example 5.3.8. Figure 5.2 shows a strongly closed (Δ,L)-tableau,
where L = {P, c, d}, P is a unary relation symbol, c, d are two con-
stant symbols, and Δ = {F(∃x)(P (x) → (∀x)P (x))}. Note that the
γ-formula F(∃x)(P (x) → (∀x)P (x)) is expanded twice, at λ using
the term d, and at 000 using the term c. If we were allowed to expand
the δ-formula F(∀x)P (x) at 00 using d, the tableau would have been

First-Order Logic–Formal Systems 885

F((∀x)ϕ → (∃x)ϕ)

T(∀x)ϕ, F(∃x)ϕ

T(∀x)ϕ, F ϕ x:=t, F(∃x)ϕ

T(∀x)ϕ, T ϕ x:=t,F ϕ x:=t,F(∃x)ϕ

0

0

0

Fig. 5.1. A ({F((∀x)ϕ→ (∃x)ϕ)},L, V)-tableau.

closed at 000. However, we had to use a new constant symbol c, which
necessitated the second expansion of the γ-formula.

Example 5.3.9. Let L = {f, g,R}, where f, g are unary function
symbols and R is a binary relation symbol. In Figure 5.3, we have a
strongly closed (Δ,L, {x0, x1})-tableau, where

Δ = {F((∀x0)(∀x1)R(x0, x1)→ R(f(x0), g(x1)))}.

Observe that to get the strongly closed tableau, we need to use
non-ground terms in the two γ-expansions.

Similarly, in Figure 5.4, we construct a strongly closed
(Δ′,L, {x0, x1})-tableau, where

Δ′ = {F((∀x0)(∀x1)R(x0, x1)→ R(f(x1), g(x0)))}.

Observe the use of the variant in expanding the node 00.

886 Logical Foundations of Computer Science — Volume 2

F(∃x)(P (x) → (∀x)P (x))

F(∃x)(P (x) → (∀x)P (x))

F(P (d) → (∀x)P (x))

F(∃x)(P (x) → (∀x)P (x))

TP (d), F(∀x)P (x)

F(∃x)(P (x) → (∀x)P (x))

TP (d), FP (c)

F(∃x)(P (x) → (∀x)P (x))

TP (d), F(P (c) → (∀x)P (x)), FP (c)

F(∃x)(P (x) → (∀x)P (x))

TP (d), TP (c), F(∀x)P (x), FP (c)

0

0

0

0

0

Fig. 5.2. A ({F(∃x)(P (x) → (∀x)P (x))},L)-tableau.

Example 5.3.10. Let L = {f,=}, where f is a binary function
symbol and let ϕ be the formula

ϕ = (∀x)(∀y)(((∀z)(f(x, z) = z) ∧ (∀w)(f(w, y) = w))→ (x = y))

considered in Example 5.2.11.
Figures 5.5 and 5.6 contain a strongly closed ({Fϕ},L ∪ {c, d})-

tableau, where c, d are constant symbols.

First-Order Logic–Formal Systems 887

T(∀x0)(∀x1)R(x0, x1), FR(f(x0), g(x1)),

F((∀x0)(∀x1)R(x0, x1) → R(f(x0), g(x1)))

T(∀x0)(∀x1)R(x0, x1), T(∀x1)R(f(x0), x1),
FR(f(x0), g(x1)),

T(∀x0)(∀x1)R(x0, x1), T(∀x1)R(f(x0), x1),
TR(f(x0), g(x1)), FR(f(x0), g(x1))

0

0

0

Fig. 5.3. A strongly closed (Δ,L, {x0, x1})-tableau.

F((∀x0)(∀x1)R(x0, x1) → R(f(x1), g(x0)))

T(∀x0)(∀x1)R(x0, x1), FR(f(x1), g(x0))

T(∀x0)(∀x1)R(x0, x1), T(∀x2)R(f(x1), x2),
FR(f(x1), g(x0))

T(∀x0)(∀x1)R(x0, x1), T(∀x2)R(f(x1), x2)

TR(f(x1), g(x0)), FR(f(x1), g(x0))

0

0

0

Fig. 5.4. A strongly closed (Δ′,L, {x0, x1})-tableau.

888 Logical Foundations of Computer Science — Volume 2

F(∀x)(∀y)(((∀z)(f(x, z) = z) ∧ (∀w)(f(w, y) = w)) → (x = y))

F(∀y)(((∀z)(f(c, z) = z) ∧ (∀w)(f(w, y) = w)) → (c = y))

F(((∀z)(f(c, z) = z) ∧ (∀w)(f(w, d) = w)) → (c = d))

T((∀z)(f(c, z) = z) ∧ (∀w)(f(w, d) = w)), F(c = d)

T(∀z)(f(c, z) = z), T(∀w)(f(w, d) = w), F(c = d)

Continued in Figure 5.6

T(∀z)(f(c, z) = z), T(∀w)(f(w, d) = w), F(c = d)

T(f(c, d) = d)

T(∀z)(f(c, z) = z), T(∀w)(f(w, d) = w), F(c = d)

T(f(c, d) = d), T(f(c, d) = c)

0

0

0

0

0

0

0

Fig. 5.5. A strongly closed ({Fϕ},L ∪ {c, d})-tableau.

Theorem 5.3.11. Let Δ be a set of signed L-formulas. Suppose that
T is a (Δ,L, V)-tableau whose root has n immediate descendants.

For every i, 0 ≤ i ≤ n− 1, the following hold:

(1) T[i] is a (T(i),L, V)-tableau;
(2) if T is strongly closed, then so is T[i].

First-Order Logic–Formal Systems 889

Continued from Figure 5.5

T(∀z)(f(c, z) = z), T(∀w)(f(w, d) == w), F(c = d),
T(f(c, d) = d), T(f(c, d) = c), T((f(c, d) = c) → (c = f(c, d)))

T(∀z)(f(c, z) = z), T(∀w)(f(w, d) = w), F(c = d),
T(f(c, d) = d), T(f(c, d) = c), F(f(c, d) = c)

T(∀z)(f(c, z) = z), T(∀w)(f(w, d) = w), F(c = d),
T(f(c, d) = d), T(f(c, d) = c), T(c = f(c, d))

T(∀z)(f(c, z) = z), T(∀w)(f(w, d) = w), F(c = d)

T(f(c, d) = d), T(f(c, d) = c), T(c = f(c, d)),
T(((c = f(c, d)) ∧ (f(c, d) = d)) → (c = d))

T(∀z)(f(c, z) = z), T(∀w)(f(w, d) = w), F(c = d)

T(f(c, d) = d), T(f(c, d) = c), T(c = f(c, d)),
F((c ========= f(c, d)) ∧ (f(c, d) = d))

T(∀z)(f(c, z) = z), T(∀w)(f(w, d) == w), F(c = d)

T(f(c, d) = d), T(f(c, d) == c), T(c = f(c, d)),
T(c = d)

T(∀z)(f(c, z) = z), T(∀w)(f(w, d) == w), F(c = d)

T(f(c, d) = d), T(f(c, d) = c), T(c = f(c, d)),
F(c = f(c, d))

T(∀z)(f(c, z) = z), T(∀w)(f(w, d) = w), F(c = d)

T(f(c, d) = d), T(f(c, d) = c), T(c = f(c, d)),
F(f(c, d) = d)

0

0 1

10

0 1

Fig. 5.6. A strongly closed ({Fϕ},L ∪ {c, d})-tableau.

890 Logical Foundations of Computer Science — Volume 2

Proof. This straightforward argument is left to the reader. �

Theorem 5.3.12. If T is a (Δ,L, V)-tableau of depth 1 such that
the root has n immediate descendants and Ti is a strongly closed
(T(i),L, V)-tableau for 0 ≤ i ≤ n − 1, then (T0, . . . , Tn−1;Δ) is a
strongly closed (Δ,L, V)-tableau.

Proof. This statement follows directly from the definition of tab-
leau and it is left to the reader. �

The following theorem gives the analyticity of first-order tableaux.

Theorem 5.3.13. Let L be a first-order language, V be an L-suitable
set of variables and Δ be a set of signed (L, V)-formulas. For every
node q of a (Δ,L, V)-tableau T, we have

T(q) ⊆
{
Bool×W ∗

L,V (Γ) if = �∈ L
Bool×W ∗

L,V (Γ ∪ INSTL,V (Eq=,L)) if =∈ L

where Γ = {ϕ | bϕ ∈ Δ for some b ∈ Bool}.

Proof. We discuss in this proof only the case when = �∈ L. The case
of languages with equality is similar and is left to the reader.

The argument is by induction on the level of q. If q is the root
then it is clear that

T(q) = Δ ⊆ Bool× Γ ⊆ Bool×W ∗
L,V (Γ).

Now suppose that the result holds for all nodes on level i and that
r is on level i + 1. Then, r = qj for some node q on level i and for
every member b0α of T(r)− T(q) we have one of the following cases:

Case 1: b0α is an element of an (L, V)-constituent K of a formula bθ
from T(q). By inductive hypothesis, bθ ∈ Bool×W ∗

L,V (Γ).
The analyticity of constituents and the definition of the
analytical universe imply b0α ∈ Bool×WL,V (W ∗

L,V (Γ)) ⊆
Bool×W ∗

L,V (Γ).
Case 2: b0α has the form b(ϕ′)x:=t where bθ = b(Qx)ϕ is a γ formula

in T(q), t ∈ TERML(V) and ϕ′ is a variant of ϕ such that
t is substitutable for x in ϕ′. By the inductive hypothesis,
bθ ∈ Bool ×W ∗

L,V (Γ). By the definition of the analytical

universe, b0α ∈ Bool×WL,V (W ∗
L,V (Γ)) ⊆ Bool×W ∗

L,V (Γ).

First-Order Logic–Formal Systems 891

Case 3: b0α is a variant of a formula b0θ in T(q). Using the induc-
tive hypothesis and the definition of the analytic universe,
we obtain bθ ∈ Bool ×W ∗

L,V (Γ). The analyticity of con-
stituents and the definition of the analytical universe imply
b0α ∈ Bool×WL,V (W ∗

L,V (Γ)) ⊆ Bool×W ∗
L,V (Γ). �

Theorem 5.3.14. Let L be a first-order language, V be an L-suitable
set of variables, Δ be a set of signed (L, V)-formulas and T be a
(Δ,L, V)-tableau. If q is an interior node of T whose immediate
descendants are q 0, . . . q n− 1, then:

(1) If T is conservative at q and (A, σ) |= T(qi), then (A, σ) |= T(q),
for every L-structure A, σ ∈ ASSIGNA, and 0 ≤ i ≤ n− 1.

(2) If T(q) is satisfiable, then T(qi) is satisfiable for some i with 0 ≤
i ≤ n− 1.

Proof. To prove the first part of the theorem, we have to consider
two cases.

• If either γ-expansion or equality expansion is used at q in T, then
we have T(q) ⊆ T(qi), so the result is immediate.

• Otherwise, the conclusion follows immediately from the first and
third parts of Theorem 4.12.48.

For the second part of the theorem, the argument depends on the
nature of the expansion at q.

• If equality expansion was used at q, then T(q0) differs from T(q) at
most by the addition of a logically valid formula (an instance of an
equality axiom), so the satisfiability of T(q) implies the satisfiability
of T(q0).

• If a δ-formula is expanded at q, then the conclusion follows from
Theorem 4.6.53.

• Suppose that a γ-formula of say the form T(∀x)ϕ is expanded at
q and the formula (ϕ′)x:=t is added, where ϕ′ is a variant of ϕ
and t is substitutable for x in ϕ′. If (A, σ) satisfy T(q), we have
(A, σ) |= (∀x)ϕ, so (A, [x → σA(t)]σ) |= ϕ, which is equivalent
to (A, [x → σA(t)]σ) |= ϕ′ because ϕ′ is a variant of ϕ. Since t is
substitutable for x in ϕ′, this is equivalent to (A, σ) |= (ϕ′)x:=t, so
(A, σ) |= T(qi).

892 Logical Foundations of Computer Science — Volume 2

• If variantizing is used at q, then every formula in T(qi) is a variant
of a formula in T(q) and the statement follows immediately.

• In the remaining propositional case, the statement follows from
the first part of Theorem 4.12.48.

�

Corollary 5.3.15. Let T be a (Δ,L, V)-tableau, where L is a first-
order language, V is an L-suitable set of variables, and Δ is a set of
signed (L, V)-formulas.

(1) If T is a conservative tableau and T(q) is satisfiable, then T(P)
is satisfiable, where P is the path of T leading to q. In fact, if
(A, σ) |= T(q), then (A, σ) |= T(P), for every L-structure A and
σ ∈ ASSIGNA.

(2) If Δ is satisfiable, then there is a branch B of T such that for
every node q of B, T(q) is satisfiable.

Proof. The parts of the corollary follow immediately from the cor-
responding parts of Theorem 5.3.14. �

Corollary 5.3.16. Let T be a conservative (Δ,L, V)-tableau, where
L is a first-order language, V is an L-suitable set of variables, and
Δ is a set of signed (L, V)-formulas. If Δ is satisfiable, then there is
a branch B of T such that for every node q of B, T(Pq) is satisfiable,
where Pq is the path leading to q.

Proof. This statement follows from the two parts of Corol-
lary 5.3.15, combined. �

Example 5.3.17. Let L = {P,Q, c, d} be a first-order language
with P,Q unary relation symbols and c, d constant symbols. Con-
sider the set of signed closed formulas Δ = {T(∀x)(P (x) ∨
Q(d)),T(∃x)(¬P (x))}. In Figure 5.7, we show a conservative
(Δ,L)-tableau T that is not completed.

Define the structure A by |A| = N, PA = {n ∈ N |
n is a perfect square}, QA = {n ∈ N | n is even}, cA = 5, and
dA = 4. Then, it is easy to verify that A |= T(010) and therefore, by
Corollary 5.3.15, A is a model of all the sets T(q), where q is a node
on the path that leads to 010. Note that this is true even though we
are “recycling” the constant symbol c; namely, c is used first in the

First-Order Logic–Formal Systems 893

T(∀x)(P (x) ∨ Q(d)), T(∃x)(¬P (x))

T(∀x)(P (x) ∨ Q(d)), T(∃x)(¬P (x)),
T(P (c) ∨ Q(d))

T(∀x)(P (x) ∨ Q(d)), T(∃x)(¬P (x)),
TP (c)

T(∀x)(P (x) ∨ Q(d)), T(∃x)(¬P (x)),
TQ(d)

T(∀x)(P (x) ∨ Q(d)), TQ(d),
T(¬P (c))

0

10

0

Fig. 5.7. A (Δ,L)-tableau that “recycles” a constant symbol.

expansion of T(λ) to produce the formula T(P (c) ∨Q(d)) and then,
again, in the expansion of T(01) to produce the formula T(¬P (c)).

Theorem 5.3.18. Let L be a first-order language, V be an L-suitable
set of variables, Δ be a set of signed (L, V)-formulas and T be a
completed (Δ,L, V)-tableau. The following statements hold:

(1) If T is conservative, then Δ is satisfiable if and only if T is not
closed.

(2) If T is strongly completed, then Δ is satisfiable if and only if T is
not closed.

Proof. Suppose first that T is conservative. If Δ is satisfiable,
then, Corollary 5.3.16 implies that T has a branch B such that for
every node q of B, T(Pq) is satisfiable, where Pq is the path lead-
ing to q. If T were closed, then B would be closed, and we could
find a node q of B such that T(Pq) is closed by going far enough on
the branch. Thus, T(Pq) would be unsatisfiable. Therefore, T is not
closed.

Conversely, if T is not closed, then, since it is completed, there
must be a complete branch B of T. Since T(B) is an (L, V)-Hintikka

894 Logical Foundations of Computer Science — Volume 2

set, by Theorems 4.12.50 and 4.12.53, T(B) is satisfiable, so Δ is
satisfiable.

Now, suppose that T is strongly completed, that is, each branch is
either strongly closed or complete. If Δ is satisfiable, by the second
part of Corollary 5.3.15, there is a branch B of T such that for every
node q of B, T(q) is satisfiable. It follows that B is not strongly closed
and therefore it is complete, which implies that T is not closed.

The converse implication can be justified in a manner similar to
the first part of the argument. �

Theorem 5.3.19 (Soundness Theorem for Tableaux of First-
Order Logic). Let L be a first-order language, V be an L-suitable
set of variables, and let Δ be a set of signed (L, V)-formulas. The
following statements hold:

(1) If there is a conservative, closed (Δ,L, V)-tableau, then Δ is
unsatisfiable.

(2) If there is a strongly closed (Δ,L, V)-tableau, then Δ is unsatis-
fiable.

Proof. This is an immediate consequence of Theorem 5.3.18. �
If T is a conservative, completed (Δ,L, V)-tableau or a strongly

completed (Δ,L, V)-tableau, then either T is closed, which means
that Δ is unsatisfiable, or T has a complete branch B which means
that T(B) is a Hintikka set. In the latter case, we have an explicit
way of constructing a pair (A, σ) that satisfies Δ, as shown in The-
orems 4.12.50 and 4.12.53.

Example 5.3.20. The existence of the strongly closed ({Fϕ},L ∪
{c, d})-tableau in Example 5.3.10 shows, by the Soundness Theorem,
that the formula Fϕ is not satisfiable and hence that ϕ is logically
valid. From an algebraic point of view, this means that in a groupoid,
every left identity is equal to every right identity.

Similarly, the existence of the strongly closed tableaux in Exam-
ples 5.3.7 and 5.3.8 shows the logical validity of the formulas
((∀x)ϕ→ (∃x)ϕ) and (∃x)(P (x)→ (∀x)P (x)), respectively.

Example 5.3.21. Let L be a first-order language that contains the
constant symbols a and c and the unary relation symbols R and Q.
Let Δ be the set of signed L-formulas {T(∃x)R(x),F((∃x)R(x) ∨
Q(a))}.

First-Order Logic–Formal Systems 895

T(∃x)R(x), F((∃x)R(x) ∨ Q(a))

TR(c), F((∃x)R(x) ∨ Q(a))

TR(c), F(∃x)R(x), FQ(a)

0

0

Fig. 5.8. Conservative and closed (Δ,L)-tableau.

The tableau T in Figure 5.8 is a conservative and closed (because
T(∃x)R(x) ∈ T(λ) and F(∃x)R(x) ∈ T(00)) but not strongly closed
(Δ,L)-tableau. By the Soundness Theorem, Δ is not satisfiable.

Example 5.3.22. Suppose L is a first-order language that contains
the unary relation symbol R and the constant symbol c. Let Δ be
the set of signed L-formulas {T(∃x)R(x),T(∃x)(¬R(x)))}. This set
is clearly satisfiable.

However, the (Δ,L)-tableau shown in Figure 5.9 is closed. As
implied by the Soundness Theorem, this tableau is not strongly
closed.

If we have a set of signed (L, V)-formulas Δ, we may not be
able to construct a completed (Δ,L, V)-tableau because expanding
δ-formulas requires the use of “new” constant symbols, which may
not exist in the language L. This difficulty may be overcome by
constructing a completed (Δ,Lc, V)-tableau. This construction will
help us establish a completeness theorem for first-order tableaux.

A useful technical observation is contained in the following lemma.

Lemma 5.3.23. Let P be a path of a conservative (Δ,L, V)-tableau
ending in the node q.

896 Logical Foundations of Computer Science — Volume 2

FR(c)

T(¬R(c))

T(∃x)(¬R(x))

TR(c), T(∃x)(¬R(x))

T(∃x)R(x), T(∃x)(¬R(x))

0

0

0

0

Fig. 5.9. (Δ,L)-tableau that is closed but not strongly closed.

(1) If bϕ is a γ-formula such that bϕ ∈ T(P), then bϕ ∈ T(q).
(2) If bϕ ∈ T(P) − T(q), then there is an (L, V)-constituent K of bϕ

such that K ⊆ T(P).

Proof. We leave this argument to the reader. �

Let b0ϕ0, b1ϕ1, . . . be the enumeration of SFORML(V) in the stan-
dard order and let t0, t1, . . . be the enumeration of TERML(V) in the
standard order of terms. Fix a pairing function f : N2 −→ N, that
is, f is a fixed bijection from N2 to N. We can list SFORML(V) ×
TERML(V) by placing the pair (biϕi, tj) in the (k + 1)-st place, for
k = f(i, j). We will refer to this enumeration as the standard ordering
of SFORML(V)× TERML(V).

The following definition will be useful in Construction 5.3.25.

Definition 5.3.24. Let T be an (Δ,L, V)-tableau and let P be a
path of T. The set of pairs that require attention in T on P is the set
of all pairs (bϕ, t) in SFORML(V)× TERML(V) that satisfy one of
the following conditions:

First-Order Logic–Formal Systems 897

(1) bϕ ∈ T(P), ϕ is not atomic, bϕ is not a γ-formula and none of
the constituents of bϕ is contained in T(P).

(2) bϕ ∈ T(P), bϕ = b(Qx)ψ is a γ-formula and b〈ψ〉x:=t �∈ T(P).
(3) =∈ L, b = T, ϕ ∈ INSTL,V (Eq=,L) and bϕ �∈ T(P).

If P is the path leading to the node q, we will refer to the set of
pairs that require attention in T on P as the set of pairs that require
attention in T at q.

Construction 5.3.25.
Input: A first-order language L, a set of variables V and a set Δ
of signed (L, V)-formulas.
Output: A sequence T0, T1, . . . of finite conservative (Δ,Lc, V)-
tableaux such that each Ti+1 is a leaf extension of Ti and T =⋃
{Ti | i ≥ 0} is a conservative, completed (Δ,Lc, V)-tableau.

Method:

(A) Let T0 be the one-node (Δ,Lc, V)-tableau with root labeled
by Δ.

(B) Suppose that Ti has been defined. Then, if Ti is completed, the
construction stops with Ti. Otherwise, Ti has branches that
are neither closed nor complete. Select nondeterministically
among the shortest such branches a branch B ending in the
leaf q.
Choose (bqϕq, tq) ∈ Ti(B) × TERMLc(V) to be the first pair
(bϕ, t) in the standard order of SFORMLc(V)× TERMLc(V)
that requires attention in Ti at q. By Lemma 5.3.23, if Case 1
or 2 of Definition 5.3.24 applies, then bqϕq ∈ Ti(q).
The conservative tableau Ti+1 is defined as follows:

• If Case 1 of Definition 5.3.24 holds, bqϕq is not a δ-formula,
and (K0, . . . ,Kn−1) is the (Lc, V)-constituent sequence of
bqϕq, then define Ti+1 by adding to Dom(Ti) the nodes
q0, . . . , qn−1 and letting Ti+1(qj) = Δq ∪ Kj , where Δq is
chosen such that Ti(q) = Δq ∪ {bqϕq}.

• If Case 1 of Definition 5.3.24 holds and bqϕq = bq(Qx)ψq
is a δ-formula, then there is a constant symbol c ∈ Lc that
does not occur in Ti(q). This is the case because there are
infinitely many constant symbols in Lc that do not belong
to Ti(λ) = Δ and at each expansion of a node of Ti we add
a finite set of signed formulas and, therefore, a finite set of

898 Logical Foundations of Computer Science — Volume 2

new constant symbols. Define Ti+1 by adding q0 to Dom(Ti)
and letting Ti+1(q0) = Δq ∪{bq(ψq)x:=c}, where Δq is cho-
sen such that Ti(q) = Δq∪{bqϕq} and c is the first constant
symbol in Lc that does not occur in Ti(q).

• If Case 2 of Definition 5.3.24 occurs, define Ti+1 by adding
q0 to Dom(Ti) and letting Ti+1(q0) = Ti(q)∪{bq〈ψq〉x:=tq}.

• If Case 3 of Definition 5.3.24 occurs, define Ti+1 be adding
q0 to Dom(Ti) and letting Ti+1(q0) = Ti(q) ∪ {bqϕq}.

Proof of Correctness: We begin by observing that for each i such
that Ti+1 is defined, there is a unique node q such that q is a leaf of
Ti but not of Ti+1. We will refer to q as the node expanded at stage
i + 1 of the construction. Further, if i < j and Tj+1 is defined, then
the node expanded at stage j+1 is different from the node expanded
at stage i+1. It follows that for each n, there are only finitely many
i such that the node expanded at stage i has length n.

We also observe that if q ∈ Dom(Ti), q is not a leaf of Ti, P is the
path leading to q and (bqϕq, tq) is the first pair in SFORMLc(V) ×
TERMLc(V) that requires attention in Ti at q, then for every imme-
diate descendant qj of q, the pair (bqϕq, tq) does not require attention
in Ti at qj.

Suppose that T is not completed. Then, there is a branch B

that is neither closed not complete. Let (bϕ, t) be the first pair in
SFORMLc(V) × TERMLc(V) that requires attention in T on B. Let
q ∈ B be such that (i) bϕ ∈ T(P), if bϕ ∈ T(B), and (ii) none of the
pairs (b′ϕ′, t′) that precede (bϕ, t) require attention in T at q, where
P is the path leading to q.

Since T is the union of the sequence of conservative tableaux
T0, T1, . . ., it is clear that T itself is a conservative tableau.

Suppose initially that B contains some immediate descendant qj
of q and let k be such that qj ∈ Dom(Tk). Then, Tk(P) = T(P), so
(bϕ, t) is the first pair that requires attention in Tk at q. Thus, (bϕ, t)
does not require attention in Tk at qj, which means that (bϕ, t) does
not require attention in T on B. We thus obtain a contradiction.

If there is no such immediate descendant, B is the path leading to
q. Choose k such that q ∈ Dom(Tk) and, at stage k + 1, no node r
such that |r| ≤ |q| is expanded. Then, q is a leaf of Tk, Tk(P) is not
closed, bϕ ∈ Tk(P) if bϕ ∈ T(B), and the pair (bϕ, t) requires attention
in Tk at q. This makes q a node eligible to be expanded at stage k+1,

First-Order Logic–Formal Systems 899

so the node expanded at stage k+1 must have length no greater than
|q|, thus contradicting our choice of k. �

Theorem 5.3.26 (Completeness Theorem for Tableaux of
First-Order Logic). Let L be a first-order language, V be an
L-suitable set of variables and Δ be a set of signed (L, V)-formulas. If
Δ is unsatisfiable, then there exists a finite, conservative, and closed
(Δ,Lc, V)-tableau.

Proof. The proof is identical to that of Theorem 3.3.34. �

Corollary 5.3.27. Let Δ be a set of signed (L, V)-formulas. Then,
the following conditions are equivalent.

(1) Δ is unsatisfiable.
(2) There exists a finite, conservative, and closed (Δ,Lc, V)-tableau.
(3) There exists a conservative, closed (Δ,Lc, V)-tableau.

Proof. This follows immediately from Theorems 5.3.19 and 5.3.26.
�

The next construction yields a more stringent form of completed
tableau that will be useful in studying other formal systems.

Construction 5.3.28.
Input: A first-order language L, a set of variables V and a set Δ
of signed (L, V)-formulas.

Output: A sequence T0, T1, . . . of finite (Δ,Lc, V)-tableaux such
that each Ti+1 is a leaf extension of Ti and T =

⋃
{Ti | i ≥ 0} is a

conservative, strongly completed (Δ,Lc, V)-tableau.

Method:

(A) Let T0 be the one-node (Δ,Lc, V)-tableau with root labeled
by Δ.

(B) Suppose that Ti has been defined. Then, if Ti is strongly
completed, the construction stops with Ti. Otherwise, Ti
has branches that are neither strongly closed nor complete.
Select nondeterministically among the shortest such branches
a branch B ending in the leaf q.
Choose (bqϕq, tq) ∈ Ti(B) × TERMLc(V) to be the first pair
(bϕ, t) in the standard order of SFORMLc(V)× TERMLc(V)
that requires attention in Ti at q. (We can show the existence
of such a pair as follows. Since Ti(B) is not a Hintikka set,

900 Logical Foundations of Computer Science — Volume 2

either {Tψ,Fψ} ⊆ Ti(B) for some atomic formula ψ or such
a pair exists. By Lemma 5.3.23, in the first case, we would
have {Tψ,Fψ} ⊆ Ti(q), which would contradict the fact that
B is not strongly closed.) By Lemma 5.3.23, if Case 1 or 2 of
Definition 5.3.24 applies, bqϕq ∈ Ti(q).
The conservative tableau Ti+1 is defined in exactly the same
way as in Construction 5.3.25.

Proof of Correctness: Note that the statements contained in the
first two paragraphs of the proof of correctness of Construction 5.3.25
remain valid for the current construction. Also, one can show by
induction on i that if Ti(q) is defined, then, for some j ≤ i, q is a
leaf of Tj . In addition, if Ti(q) is defined, q is a leaf of Ti, and Ti(q)
contains both Tϕ and Fϕ for some formula ϕ, then for every k ≥ i,
q is a leaf of Tk and, therefore, q is a leaf of T. This can be verified
by induction on k.

The tableau T is conservative as a union of a sequence of con-
servative tableaux. Suppose that T is not strongly completed. Then,
there is a branch B that is neither strongly closed not complete.
Observe that T(B) cannot contain both Tψ and Fψ for any atomic
formula ψ. Indeed, if r, r′ are two nodes of B such that Tψ ∈ T(r)
and Fψ ∈ T(r′), then, by Lemma 5.3.23, q, the longer of r and r′,
is such that {Tψ,Fψ} ⊆ T(q). By the previous remark, there is an
h such that q is a leaf of Th and consequently, q is a leaf of T. This
implies that B is strongly closed, which contradicts our assumption.
Thus, T(B) satisfies the first condition of the definition of a Hin-
tikka set. The noncompleteness of B implies the existence of a pair in
SFORMLc(V) × TERMLc(V) that requires attention in T on B. Let
(bϕ, t) be the first such pair and let q ∈ B be such that (i) bϕ ∈ T(P),
if bϕ ∈ T(B), and (ii) none of the pairs (b′ϕ′, t′) that precede (bϕ, t)
require attention in T at q, where P is the path leading to q.

Suppose initially that B contains some immediate descendant qj
of q and let k be such that qj ∈ Dom(Tk). Then, Tk(P) = T(P), so
(bϕ, t) is the first pair that requires attention in Tk at q. Thus, (bϕ, t)
does not require attention in Tk at qj, which means that (bϕ, t) does
not require attention in T on B. We thus obtain a contradiction.

If there is no such immediate descendant, B is the path leading
to q. Choose k such that q ∈ Dom(Tk) and, at stage k + 1, no node
r such that |r| ≤ |q| is expanded. Then, q is a leaf of Tk, P is not

First-Order Logic–Formal Systems 901

strongly closed, bϕ ∈ Tk(P) if bϕ ∈ T(B), and the pair (bϕ, t) requires
attention in Tk at q. This makes q a node eligible to be expanded at
stage k + 1, so the node expanded at stage k + 1 must have length
no greater than |q|, thus contradicting our choice of k. �

We saw earlier that a strongly closed (Δ,L, V)-tableau is finite.

Theorem 5.3.29 (Strong Completeness Theorem for Tab-
leaux of First-Order Logic). Let Δ be a set of signed
(L, V)-formulas. If Δ is unsatisfiable, then there exists a conserva-
tive, strongly closed (hence, finite) (Δ,Lc, V)-tableau.

Proof. If Δ is unsatisfiable, then Construction 5.3.28 yields a
conservative strongly completed (Δ,Lc, V)-tableau T which, by
Theorem 5.3.18, is closed. Since a strongly completed closed
(Δ,Lc, V)-tableau is strongly closed, we are done. �

Generalizing a remark we made earlier, we note that Theo-
rem 5.3.29 can be strengthened by asserting the existence of strongly
closed tableaux with retention or with removal.

Corollary 5.3.30. Let Δ be a set of signed (L, V)-formulas. Then,
the following conditions are equivalent.

(1) Δ is unsatisfiable.
(2) There exists a finite, conservative, and closed (Δ,Lc, V)-tableau.
(3) There exists a conservative, closed (Δ,Lc, V)-tableau.
(4) There exists a conservative, strongly closed (Δ,Lc, V)-tableau.
(5) There exists a strongly closed (Δ,Lc, V)-tableau.

Proof. This follows from Corollary 5.3.27, Theorem 5.3.29, and
Theorem 5.3.18. �

Example 5.3.31. Let L = {R, c} be a first-order language, where
R is a unary relation symbol and c is a constant symbol and let

Δ = {F((∃x)(∀y)R(x, y)→ (∀y)(∃x)R(x, y))}.

Figure 5.10 contains a conservative, strongly closed (Δ,Lc)-tableau,
where d is a constant symbol in Lc − L.

902 Logical Foundations of Computer Science — Volume 2

F((∃x)(∀y)R(x, y) → (∀y)(∃x)R(x, y))

T(∃x)(∀y)R(x, y), F(∀y)(∃x)R(x, y)

T(∀y)R(c, y), F(∀y)(∃x)R(x, y)

T(∀y)R(c, y), F(∃x)R(x, d)

T(∀y)R(c, y), F(∃x)R(x, d),
TR(c, d)

T(∀y)R(c, y), F(∃x)R(x, d),
TR(c, d), FR(c, d)

0

0

0

0

0

Fig. 5.10. A strongly closed (Δ,Lc)-tableau.

As in the propositional case, we can use tableaux to give an alter-
native proof of the Compactness Theorem (in a formulation using
signed formulas).

Theorem 5.3.32. There is an effective, syntactic construction that
begins with a strongly closed (Δ,L, V)-tableau T, where L is a first-
order language and V is an L-suitable set of variables and produces
a strongly closed (Δ0,L, V)-tableau T0, where Δ0 is a finite subset
of Δ.

Proof. We proceed recursively on the definition of T. If T is a one
node tree, then Δ contains Tϕ,Fϕ for some formula ϕ, so T0 is the
one node tableau with T0(λ) = {Tϕ,Fϕ} and Δ0 = {Tϕ,Fϕ}.

First-Order Logic–Formal Systems 903

When T has more than one node, several cases occur depending on
the type of expansion used at the root of T. If propositional expansion
is used, then the argument is virtually identical to the one used in
Theorem 3.3.40.

We consider now the remaining cases.

(1) If γ-expansion is used at the root of T, let the formula expanded
at the root be b(Qx)ψ. The root has one immediate descendant,
and T(0) = Δ ∪ {b(ψ′)x:=t} for some term t ∈ TERML(V) and
variant ψ′ of ψ such that t is substitutable for x in ψ. By the
inductive hypothesis, we construct a finite subset Δ′

0 of T(0)
and a strongly closed (Δ′

0,L, V)-tableau T′. If Δ′
0 ⊆ Δ, the

construction returns T′; otherwise, let Δ0 be the finite subset
(Δ′

0 ∩Δ)∪ {b(Qx)ψ} of Δ. By applying thinning, we obtain the
tableau T′′ = (T′;Δ0 ∪ {b(ψ′)x:=t}). Finally, let T0 = (T′′;Δ0).
Note that this a strongly closed Δ0-tableau in which we have
applied γ-expansion at the root.

(2) If nondegenerate δ-expansion is used at the root, let b(Qx)ψ be
the formula expanded at the root. Then, for some set of signed
formulas Δ′, we have Δ = Δ′ ∪ {b(Qx)ψ}, the root has one
immediate descendant, and T(0) = Δ′ ∪ {b(ψ)x:=c} for some
constant symbol c that does not occur in any signed formula
in Δ. By inductive hypothesis, there is a finite subset Δ′

0 of
Δ′ ∪ {b(ψ)x:=c} and a strongly closed (Δ′

0,L, V)-tableau T′. If
Δ′

0 ⊆ Δ′, we return the tableau T′. Otherwise, consider the
finite subset Δ0 = (Δ′

0 ∩ Δ′) ∪ {b(Qx)ψ} of Δ. Now return
T0 = (T′;Δ0). Since Δ

′
0 = (Δ′

0∩Δ′)∪{b(ψ)x:=c}, T0 is a strongly
closed (Δ0,L, V)-tableau that uses δ-expansion at the root.
If degenerate δ-expansion was used at the root, the argument is
similar, except that ψ is used in place of (ψ)x:=c.

(3) If variantization was used at the root of T, then we have T(0) = Δ′
and there is a finite-to-one function f : Δ′ −→ Δ such that for
all bα ∈ Δ′, f(bα) is a variant of bα. By inductive hypothesis, we
obtain a finite subset Δ′

0 of Δ′ and a strongly closed (Δ′
0,L, V)-

tableau T′. The construction returns T0 = (T′; f(Δ′
0)), which is

a strongly closed tableau obtained by applying variantization at
the root.

(4) If =∈ L and equality expansion is used at the root of T, then the
root has one immediate descendant, and T(0) = Δ ∪ {Tα} for

904 Logical Foundations of Computer Science — Volume 2

some α ∈ INSTL,V (Eq=,L). By the inductive hypothesis, there is
a finite subset Δ′

0 of Δ∪{Tα} and a strongly closed (Δ′
0,L, V)-

tableau T′. If Δ′
0 ⊆ Δ, we return T′. Otherwise, let Δ0 be the

finite subset Δ′
0 − {Tα} of Δ. The construction returns T0 =

(T′;Δ0), which uses equality expansion at the root.
�

Theorem 5.3.33 (Compactness Theorem for Signed Formu-
las of First-Order Logic). Let Δ be a set of signed L-formulas.
Then Δ is satisfiable if and only if every finite subset of Δ is satis-
fiable.

Proof. If Δ is satisfiable, then clearly every finite subset of Δ is
satisfiable.

Conversely, let Δ be unsatisfiable and let V = FV(Δ). There is
a conservative, (finite) strongly closed (Δ,Lc, V)-tableau T by the
Strong Completeness Theorem for Tableaux. By Theorem 5.3.32,
there is a strongly closed (Δ0,Lc, V)-tableau, where Δ0 is a finite
subset of Δ. By the Soundness Theorem, Δ0 is unsatisfiable. �

Corollary 5.3.34. Let T be a conservative (Δ,L, V)-tableau, where
L is a first-order language, V is an L-suitable set of variables, and
Δ is a set of signed (L, V)-formulas. If Δ is satisfiable, then there is
a branch B of T such that T(B) is satisfiable.

Proof. This follows from Corollary 5.3.16 and the Compactness
Theorem. �

As we did in propositional logic, we will restate some of the results
obtained in this section in terms of formal systems.

Definition 5.3.35. Let L be a first-order language and V be

an L-suitable set of variables. F tabl,cons
L,V is the formal system

whose set of objects is the collection of all sets of signed (L, V)-
formulas, set of axioms is the collection of all closed sets of such
formulas, and set of rules of inference consists of:

• The Propositional Rule:

Δ ∪K0, . . . ,Δ ∪Kn−1

Δ ∪ {bϕ} Rprop

First-Order Logic–Formal Systems 905

where bϕ is neither a γ- nor a δ-formula, ϕ is not atomic
and the sequence of (L, V)-constituents of bϕ is dL,V (bϕ) =
(K0, . . . ,Kn−1).

• The γ-Rule:

Δ ∪ {b(Qx)ψ} ∪ {b(ψ′)x:=t}
Δ ∪ {b(Qx)ψ} Rγ

where b(Qx)ψ is a γ-formula,t ∈ TERML(V) and ψ′ is a variant
of ψ such that t is substitutable for x in ψ′.

• The δ-Rule:

Δ ∪ {b(ψ)x:=c}
Δ ∪ {b(Qx)ψ} Rδ

where b(Qx)ψ is a δ-formula and c is a constant symbol of L that
does not occur in Δ ∪ {b(Qx)ψ} and x ∈ FV(ψ).

• The Degenerate δ-Rule:

Δ ∪ {bψ}
Δ ∪ {b(Qx)ψ} Rdδ

where b(Qx)ψ is a δ-formula and x �∈ FV(ψ).
• If =∈ L, we include the Equality Rule:

Δ ∪ {Tα}
Δ R=

where α ∈ INSTL,V (Eq=,L).

If we add the variant rule

Δ′

Δ Rvrt

where Δ,Δ′ are sets of signed (L, V)-formulas for which there is a
finite-to-one function f : Δ′ → Δ such that each formula bϕ of Δ′ is
a variant of the formula f(bϕ) of Δ, we denote the expanded formal
system by F tabl

L,V .
We will denote the formal systems F tabl,cons

L,∅ and F tabl
L,∅ by F tabl,cons

L
and F tabl

L , respectively.

Denote by SCTCONS(L, V) the set of all (L, V)-tableaux T such
that T is a conservative, strongly closed (T(λ),L, V)-tableau. General

F tabl,cons
L,V -deduction trees for Δ and conservative (Δ,L, V)-tableaux

are the same, as are F tabl,cons
L,V -proof trees for Δ and conservative,

906 Logical Foundations of Computer Science — Volume 2

strongly closed (Δ,L, V)-tableaux. Thus, the set PT Ftabl,cons
L,V

equals

the set SCTCONS(L, V).
If SCT(L, V) is the set of all strongly closed (L, V)-tableaux T such

that T is a strongly closed (T(λ),L, V)-tableau, similar observations
about the identity between proof trees and deduction trees in the
formal system F tabl

L,V apply.

Theorem 5.3.36 (Soundness of Ftabl
L,V). Let L be a first-order lan-

guage and V be an L-suitable set of variables. For every theorem Δ
of F tabl

L,V , Δ is an unsatisfiable set of (L, V)-formulas.

Proof. If Δ is a theorem of F tabl
L,V , there is an F tabl

L,V -proof tree T for

Δ which is a strongly closed (Δ,L, V)-tableau. By Theorem 5.3.19,
Δ is unsatisfiable. �

Corollary 5.3.37. Let L be a first-order language and V be an

L-suitable set of variables. For every theorem Δ of F tabl,cons
L,V , Δ is

an unsatisfiable set of (L, V)-formulas.

Proof. The soundness of F tabl
L,V clearly implies the soundness of

F tabl,cons
L,V . �

Theorem 5.3.38 (Partial Completeness of Ftabl,cons
Lc,V). Let L

be a first-order language and V be a set of variables. If Δ is an
unsatisfiable set of signed (L, V)-formulas, then Δ is a theorem of

F tabl,cons
Lc,V .

Proof. Since Δ is unsatisfiable, by Theorem 5.3.29 there is a con-

servative, strongly closed (Δ,Lc, V)-tableau which is an F tabl,cons
Lc,V -

proof tree for Δ. �

Corollary 5.3.39. Let L be a first-order language and V be a set of
variables. If Δ is an unsatisfiable set of signed (L, V)-formulas, then
Δ is a theorem of F tabl

Lc,V .

Proof. The partial completeness of F tabl,cons
L,V implies immediately

the partial completeness of F tabl
L,V . �

Corollary 5.3.40. Let L be a first-order language, V be a set of vari-
ables and Δ be a set of signed (L, V)-formulas. Then, the following
three statements are equivalent.

First-Order Logic–Formal Systems 907

(1) Δ is unsatisfiable;

(2) Δ is a theorem of F tabl,cons
Lc,V ;

(3) Δ is a theorem of F tabl
Lc,V .

Proof. This follows immediately from Theorems 5.3.36 (applied to

Lc) and 5.3.38 and the fact that F tabl
Lc,V is an extension of F tabl,cons

Lc,V .
�

The term “partial completeness” is used in Theorem 5.3.38 rather
than “completeness” because we do not show that the collection of
unsatisfiable sets of signed (L, V)-formulas is the same as the col-

lection of theorems of F tabl,cons
L,V . The next example shows that it is

possible to have an unsatisfiable set of signed (L, V)-formulas that

is not a theorem of F tabl,cons
L,V . However, as Exercise 12 shows, it is

possible to obtain a completeness result if the language L contains
an infinite set of constant symbols and we limit attention to finite
sets of signed L-formulas.

Example 5.3.41. Let L = {R, c}, where R is unary relation symbol
and c is a constant symbol. The set of signed L-formulas

Δ = {T(∀y)R(c, y),F(∀y)(∃x)R(x, y)}

is unsatisfiable because T is a (conservative) strongly closed
(Δ,Lc)-tableau, where T is the tableau shown in Figure 5.11.

TR(c, d),FR(c, d)

T(∀y)R(c, y),FR(c, d)

T(∀y)R(c, y),F(∃x)R(x, d)

T(∀y)R(c, y),F(∀y)(∃x)R(x, y)

0

0

0

Fig. 5.11. Conservative strongly closed tableau.

908 Logical Foundations of Computer Science — Volume 2

We claim that there is no strongly closed (Δ,L)-tableau. Let T′
be a (Δ,L)-tableau and let q ∈ Dom(T′). Define the sets of signed
formulas

Δ0 = {Tϕ0 | ϕ0 is a variant of (∀y)R(c, y)},
Δ1 = {Fϕ1 | ϕ1 is a variant of (∀y)(∃x)R(x, y)},
Δ2 = {Tϕ2 | ϕ2 is a variant of (∃x)R(x, c)}.

We will prove that one of the following two alternatives holds:

T(q) ⊆ Δ0 ∪Δ1 ∪ {TR(c, c)}, (5.1)

T(q) ⊆ Δ1 ∪Δ2 ∪ {FR(c, c)}. (5.2)

The proof is by induction on |q|. The statement holds in the basis
when q = λ. Suppose that |q| > 0 and the statement holds for its
predecessor q′.

We first consider the case where q′ satisfies the inclusion (5.1). If a
formula T(∀y′)R(c, y′) is expanded in q′, then T(q) satisfies the same
inclusion, because c is the unique ground term of L. If a formula
F(∀y′)(∃x′)R(x′, y′) is expanded (which is possible only if T(q′) ⊆
Δ1), then T(q) ⊆ Δ1 ∪Δ2, which means that T(q) satisfies inclusion
(5.2). If variantizing takes place at q′, then the same inclusion holds
for q.

Three subcases may occur when q′ satisfies the inclusion (5.2). If
variantizing was used to produce T(q), then the same inclusion holds
for q. If a formula F(∀y′)(∃x′)R(x′, y′) was expanded, the expansion
may produce only F(∃x′)R(x′, c), which implies that T(q) satisfies
the same inclusion. The last case, when a formula F(∃x′)R(x′, c) is
expanded yields FR(c, c) and the same conclusion follows.

Thus, TR(c, c),FR(c, c) cannot coexist in any node of T, which
prevents T from being strongly closed.

It is clear that the formal systems F tabl,cons
L,V and F tabl

L,V remain
sound if in the definition of any of the first three rules, we add one
of the additional restrictions bϕ ∈ Δ or bϕ �∈ Δ, corresponding to
tableaux with retention and tableaux with removal, respectively. By
the remark preceding Corollary 5.3.30, the partial completeness of

F tabl,cons
Lc,V and F tabl

Lc,V is preserved if we make the same modifications
to the rules.

First-Order Logic–Formal Systems 909

Tableaux for sets of unsigned formulas can be developed in a man-
ner parallel to the one used for tableaux for sets of signed formulas.

Definition 5.3.42. Let L be a first-order language and V be a set
of variables. An unsigned (L, V)-tableau, is a lot whose labels are sets
of unsigned (L, V)-formulas.

The concepts introduced in Definitions 5.3.1 through 5.3.3 can
be readily transferred to unsigned (L, V)-tableaux. The definition of
unsigned (Γ,L, V)-tableau is slightly more complicated and we give
it here.

Definition 5.3.43. Let L be a first-order language, V be an
L-suitable set of variables and Γ be a set of unsigned (L, V)-formulas.
A (Γ,L, V)-tableau is an unsigned (L, V)-tableau T that satisfies the
following conditions:

• The root of T is labeled by Γ, i.e., T(λ) = Γ.
• If q is an interior node of T, then one of the following cases occurs:

(1) there is some set of unsigned formulas Γ′ and formula ϕ with
ϕ not a literal and T(q) = Γ′ ∪ {ϕ} such that either

(a) ϕ is neither a γ- nor a δ-formula, the sequence of
(L, V)-constituents of ϕ is dL,V (ϕ) = (K0, . . . ,Kn−1), q
has n immediate descendants, and T(qi) = Γ′ ∪ Ki for
0 ≤ i ≤ n− 1, or

(b) ϕ is a γ-formula (∀x)ψ, ϕ ∈ Γ′, q has one immediate
descendant, and T(q0) = Γ′ ∪ {(ψ′)x:=t} for some term
t ∈ TERML(V) and variant ψ′ of ψ such that t is substi-
tutable for x in ψ′, or

(c) ϕ is a γ-formula (¬(∃x)ψ), ϕ ∈ Γ′, q has one immediate
descendant, and T(q0) = Γ′ ∪ {((¬ψ′))x:=t} for some term
t ∈ TERML(V) and variant ψ′ of ψ such that t is substi-
tutable for x in ψ′, or

(d) ϕ is a δ-formula (∃x)ψ, q has one immediate descendant,
and T(q0) = Γ′∪{(ψ)x:=c} for some constant symbol c ∈ L
that does not occur in any formula in T(q), if x ∈ FV(ψ).
Otherwise, that is, if x �∈ FV(ψ), T(q0) = Γ′ ∪ {ψ}.

(e) ϕ is a δ-formula (¬(∀x)ψ), q has one immediate descen-
dant, and T(q0) = Γ′ ∪ {((¬ψ))x:=c} for some constant

910 Logical Foundations of Computer Science — Volume 2

symbol c ∈ L that does not occur in any formula in T(q),
if x ∈ FV(ψ). Otherwise, T(q0) = Γ′ ∪ {(¬ψ)}.

(2) q has one immediate descendant, q0, and there is a finite-to-
one function f : T(q0) −→ T(q) such that every formula ϕ in
T(q0) is a variant of the formula f(ϕ) in T(q).

(3) =∈ L, q has one immediate descendant, and T(q0) = T(q)∪{α}
for some α ∈ INSTL,V (Eq=,L).

If the first case holds at an interior node q, then we say that regular
expansion was used at q. If the second case holds, then we say that
variantizing was used at q. When in the second case T(q0) ⊆ T(q),
then we say that thinning was used. Finally, if the third case holds,
then we say that equality expansion was used at q.

The notions of (Γ,L, V)-tableau with retention and with removal
parallel the corresponding notions for (Δ,L, V)-tableau. Similarly,
the notion of (locally) conservative unsigned tableau can be intro-
duced here by analogy with the corresponding notions that apply to
signed tableaux. Further, in Exercises 18 to 25, we present results
for unsigned tableaux similar to the ones discussed in this section
for signed tableaux. Some of these results can be obtained alterna-
tively by applying the translation given below in Algorithm 5.3.46.
This translation is obtained using the function u defined after Exer-
cise 159 in Section 4.15; namely, u(Tϕ) = ϕ and u(Fϕ) = (¬ϕ) for
every ϕ ∈ FORM.

The following result helps to prove the correctness of the transla-
tion algorithm.

Theorem 5.3.44. Let L be a first-order language, Γ be a set of
L-formulas, and V be an L-suitable set of variables. If T is an
unsigned (Γ,L, V)-tableau of depth 1 such that the root has n imme-
diate descendants and Ti is a strongly closed (T(i),L, V)-tableau for
0 ≤ i ≤ n − 1, then (T0, . . . , Tn−1; Γ) is a strongly closed unsigned
(Γ,L, V)-tableau.

Proof. This statement follows directly from Definition 5.3.43 and
it is left to the reader. �

First-Order Logic–Formal Systems 911

The following lemma explains how the translation of signed tab-
leaux into unsigned tableaux takes place locally.

Lemma 5.3.45. Let T be a signed (Δ,L, V)-tableau of depth 1 such
that the root has n immediate descendants. Suppose that the expan-
sion at the root of T does not involve regular expansion of a for-
mula T(¬ψ). If T′ is the lot defined by Dom(T′) = Dom(T) and
T′(q) = u(T(q)), for q ∈ Dom(T′), then T′ is an unsigned (u(Δ),L, V)-
tableau. Moreover, the same type of expansion is used at the root of
T′ as at the root of T.

Proof. We leave this verification to the reader. �

Algorithm 5.3.46.
Input: A signed tableau T that is a strongly closed (Δ,L, V)-
tableau for some set Δ of signed formulas.
Output: A strongly closed unsigned (u(Δ),L, V)-tableau.
Method: If T is a one-node tree, then output the one-node tree T′
with T′(λ) = u(T(λ)).
If T has more than one node, we consider two cases.
If there is a signed formula T(¬ϕ) and a set of signed formulas
Δ′ such that T(λ) = Δ′ ∪ {T(¬ϕ)}, λ has 1 immediate descendent
in T, and T(0) = Δ′ ∪ {Fϕ}, then apply the algorithm recursively
to the subtree T[0] and output the unsigned tableau resulting from
this application.
Otherwise, suppose that the root has n immediate descendants.
Apply the algorithm recursively to each of the subtrees T[i], 0 ≤ i ≤
n − 1 to obtain the n unsigned tableaux T′0, . . . , T′n−1 and output
the unsigned tableau T′ = (T′0, . . . , T′n−1; u(Δ)).

Proof of Correctness: By Theorem 5.3.11, recursive calls of the
algorithm are applied to the right kind of tableaux. Also, by induction
on the number of nodes of the input tableau, one can easily verify
that the algorithm always terminates.

We prove now by induction on the number of nodes of the input
tableau T that if T is a strongly closed (Δ,L, V)-tableau, then the
output is a strongly closed (u(Δ),L, V)-tableau. The basis step is
easy and is left to the reader. For the inductive step, we distinguish
two cases as in the method.

Suppose initially that the first case occurs. Let T(¬ϕ),Δ′ be as
in the algorithm. Then, T[0] is a (Δ′ ∪ {Fϕ},L, V)-tableau, so, by

912 Logical Foundations of Computer Science — Volume 2

inductive hypothesis, the output of the algorithm applied to T[0] is a
strongly closed (u(Δ′ ∪ {Fϕ}),L, V)-tableau. Since u(Δ′ ∪ {Fϕ}) =
u(Δ′)∪ {(¬ϕ)} = u(Δ′ ∪ {T(¬ϕ)}) = u(Δ), this output is actually a
strongly closed (u(Δ),L, V)-tableau, as desired.

In the second case, suppose that the root of T has n imme-
diate descendants. By Lemma 5.3.45, the lot S with Dom(S) =
{λ, 0, . . . , n − 1} given by S(q) = u(T(q)) for q ∈ Dom(S) is a
depth one unsigned (u(Δ),L, V)-tableau. By inductive hypothesis,
T′i is a strongly closed unsigned (u(T(i)),L, V)-tableau, so, by Theo-
rem 5.3.44, T′ is a strongly closed, unsigned (u(Δ),L, V)-tableau. �

Note that if T is a conservative signed tableau, then Algo-
rithm 5.3.46 produces a conservative unsigned tableau.

The following technical result is useful for transformations
between formal systems and uses the notation VARIANT(Δ, U) intro-
duced in Definition 4.6.56.

Theorem 5.3.47. Let T be a (Δ,L, V)-tableau and let U be a set of
variables such that both U and its complement are infinite and for all
q ∈ Dom(T), U ∩V(T(q)) = ∅. Define T′ such that Dom(T′) = Dom(T)
and T′(q) = VARIANT(T(q), U) for every q ∈ Dom(T′). Then, the
tableau T′ is a (VARIANT(Δ, U),L, V)-tableau.

Proof. Since the set of free variables of VARIANT(Δ′, U) is the
same as the set of free variables of Δ′, for any set of signed formulas
Δ′, FV(T(q)) ⊆ V , for every node q of T′.

Let q be an interior node of T. The argument for local consis-
tency for T′ at q depends on the part of Definition 5.3.4 that was
applied at q in T. We omit the cases when propositional expan-
sion and equality expansion were used at q. Suppose that T(q0)
was obtained by variantization from T(q). Observe that in this case,
VARIANT(T(q0), U) ⊆ VARIANT(T(q), U) because each formula bψ
in T(q0) is variant of a formula bϕ from T(q) and, by Theorem 4.6.60
VARIANT(bψ,U) = VARIANT(bϕ,U). Thus, T′(q0) was obtained
from T′(q) by thinning.

Suppose now that δ-expansion was applied at q, so T(q) = Δ0 ∪
{b(Qx)ψ} and T(q0) = Δ0∪{b(ψ)x:=c}, where c is a constant symbol
that does not occur in T(q). (If x ∈ FV(ψ), then the constant symbol
c is in L. Otherwise, c can be any constant symbol that does not
occur in T(q).) Since two variants have the same constant symbols,

First-Order Logic–Formal Systems 913

c does not occur in T′(q) either. Then, because x �∈ U ,

T′(q) = VARIANT(Δ0, U) ∪ {b(Qw)(VARIANT(ψ,U))x:=w},

where w is the first variable in U that does not occur in
VARIANT(ψ,U). One the other hand,

T′(q0) = VARIANT(Δ0, U) ∪ {bVARIANT((ψ)x:=c, U)}
= VARIANT(Δ0, U) ∪ {b(VARIANT(ψ,U))x:=c}

(by Theorem 4.6.58)

= VARIANT(Δ0, U) ∪ {b((VARIANT(ψ,U))x:=w)w:=c}.

The final step in the previous sequence of equalities uses the fact that

b((VARIANT(ψ,U))x:=w)w:=c

= b(VARIANT(ψ,U))x,w:=c,c

(by Theorem 4.3.86 because w

is substitutable for x in VARIANT(ψ,U))

= b(VARIANT(ψ,U))x:=c

(because w does not occur free in VARIANT(ψ,U))

If γ expansion is used at q, then

T(q) = Δ0 ∪ {b(Qx)ψ}
T(q0) = Δ0 ∪ {b(Qx)ψ, b(ψ′)x:=t},

where ψ′ is a variant of ψ such that t is substitutable for x in ψ′. In
the tableau T′, we have

T′(q) = VARIANT(Δ0, U) ∪ {b(Qw)(VARIANT(ψ,U))x:=w}
T′(q0) = VARIANT(Δ0, U)

∪{b(Qw)(VARIANT(ψ,U))x:=w, bVARIANT((ψ
′)x:=t, U)},

where w is the first variable in U that does not occur in
VARIANT(ψ,U).

914 Logical Foundations of Computer Science — Volume 2

If x occurs free in ψ′, then, by Theorem 4.6.58, we have

bVARIANT((ψ′)x:=t, U) = b(VARIANT(ψ′, U))x:=t.

The result then follows from Theorem 4.6.61.
If x does not occur free in ψ′, then

T(q0) = Δ0 ∪ {b(Qx)ψ, bψ′}
T′(q) = VARIANT(Δ0, U) ∪ {b(Qw)VARIANT(ψ,U)}
T′(q0) = VARIANT(Δ0, U)

∪{b(Qw)VARIANT(ψ,U), bVARIANT(ψ′, U)},
which shows that γ-expansion is applied in T′ at q. �

We use VARIANT(T, U) to denote the tableau T′ constructed in
Theorem 5.3.47.

5.4 Cut Rule for First-Order Tableaux

Definition 5.4.1. Let L be a first-order language, V be an
L-suitable set of variables and Δ be a set of signed (L, V)-formulas.
A (Δ,L, V)-tableau with cut is an (L, V)-tableau T that satisfies the
following conditions:

• The root of T is labeled by Δ, i.e., T(λ) = Δ.
• If q is an interior node of T, then one of the following cases occurs:

(1) regular expansion is used at q, or
(2) variantizing is used at q, or
(3) =∈ L and equality expansion is used at q, or
(4) q has two immediate descendants and there is an

(L, V)-formula ϕ such that T(q0) = T(q) ∪ {Tϕ} and T(q1) =
T(q) ∪ {Fϕ}.

If the last case holds at an interior node q, then we say that the
cut rule was used at q.

Theorem 5.4.2. Let L be a first-order language, V be an L-suitable
set of variables, Δ be a set of signed (L, V)-formulas and T be a
completed (Δ,L, V)-tableau with cut. The following statements hold:

(1) If T is conservative, then Δ is satisfiable if and only if T is not
closed.

First-Order Logic–Formal Systems 915

(2) If T is strongly completed, then Δ is satisfiable if and only if T is
not closed.

Proof. The argument is similar to that of Theorem 5.3.18 using
analogues of Corollaries 5.3.15 and 5.3.16 for signed tableaux with
cut. We leave the proof of these analogues for the reader. �

Corollary 5.4.3 (Soundness and Partial Strong Complete-
ness for First-Order Tableaux with Cut). A set of signed
(L, V)-formulas Δ is unsatisfiable if and only if there exists a strongly
closed (Δ,Lc, V)-tableau with cut.

Proof. If Δ is unsatisfiable, then, by Theorem 5.3.29, there is a
strongly closed (Δ,Lc, V)-tableau, which is also a strongly closed
(Δ,Lc, V)-tableau with cut.

Conversely, if there is a strongly closed (Δ,Lc, V)-tableau with
cut, then, by Theorem 5.4.2, Δ is unsatisfiable. �

Theorem 5.4.4. There is an effective, syntactic construction that
begins with a a strongly closed (Δ,L, V)-tableau T with cut, where L
is a first-order language and V is an L-suitable set of variables and
produces a strongly closed (Δ0,L, V)-tableau with cut T0, where Δ0

is a finite subset of Δ.

Proof. The proof follows the same lines as the proof of Theo-
rem 5.3.32, except for the case when cut is used at the root, which
is handled as in Theorem 3.4.8. �

Following the pattern for propositional logic tableaux, we intro-
duce a formal system whose proof trees are first-order tableaux with
cut.

Definition 5.4.5. The formal system F tabl,cut
L,V is the formal system

obtained from F tabl
L,V by adding the following “cut” rule:

Δ ∪ {Tϕ},Δ ∪ {Fϕ}
Δ

for every set of signed (L, V)-formulas Δ and formula ϕ.

If we add the above cut rule to the formal system F tabl,cons
L,V , we

obtain the formal system F tabl,cons,cut
L,V .

916 Logical Foundations of Computer Science — Volume 2

General F tabl,cut
L,V -deduction trees (F tabl,cons,cut

L,V -deduction trees)

for Δ and (conservative) (Δ,L, V)-tableaux with cut are the

same. Similarly, F tabl,cut
L,V -proof trees (F tabl,cons,cut

L,V -proof trees) for

Δ coincide with strongly closed (conservative) (Δ,L, V)-tableaux
with cut. Thus, the set PT F tabl,cut

L,V
(PT Ftabl,cons,cut

L,V
) equals the set

SCTCUT(L, V) (SCTCONSCUT(L, V)) of all (L, V)-tableaux T that
are strongly closed (conservative) (T(λ),L, V)-tableaux with cut.

Theorem 5.4.6 (Soundness of F tabl,cut
L,V). Let L be a first-order

language and V be an L-suitable set of variables. If Δ is a theo-

rem of the formal system F tabl,cut
L,V , then Δ is an unsatisfiable set of

(L, V)-formulas.

Proof. If Δ is a theorem of F tabl,cut
L,V , there is an F tabl,cut

L,V -proof

tree T for Δ which is a strongly closed (Δ,L, V)-tableau with cut.
By Theorem 5.4.2, Δ is unsatisfiable. �

Theorem 5.4.7 (Partial Completeness of Ftabl,cons,cut
Lc,V). Let L

be a first-order language and V be a set of variables. If Δ is an
unsatisfiable set of signed (L, V)-formulas, then Δ is a theorem of

F tabl,cons,cut
Lc,V .

Proof. Since F tabl,cons,cut
Lc,V is obviously an extension of F tabl,cons

Lc,V ,

the partial completeness of the latter (Theorem 5.3.38) implies the
partial completeness of the former. �

As in propositional logic, the cut rule is superfluous since what-
ever set of signed formulas can be shown unsatisfiable using a closed
tableau with cut can also be shown to be unsatisfiable by a closed
tableau without cut. Nevertheless, as we show in Supplements 28
and 38, proofs that use the cut rule can be much shorter than proofs
without the cut rule. The same point is made for propositional logic
by Supplements 40 and 47 of Chapter 3.

We intend to present a cut-elimination construction similar to the
corresponding propositional result. We now prove some preliminary
technical results needed for the cut-elimination construction.

Theorem 5.4.8. Let T be a (Δ,L, V)-tableau, a be a constant symbol
of L and t be an (L, V)-term. Suppose that the constant symbol a is

First-Order Logic–Formal Systems 917

not an eigenconstant of T, the term t contains no eigenconstant of T
and no variable that occurs in t occurs bound anywhere in T.

Define the lot T′ by Dom(T′) = Dom(T) and T′(q) = sat (T(q)) for
all q ∈ Dom(T). Then, T′ is an (sat (Δ),L, V)-tableau that uses at each
node the same type of expansion as T does. Further, if T is (strongly)
closed, then so is T′. (We will denote T′ by sat (T).)

Proof. Clearly, T′(λ) = sat (Δ). We need to prove that the tableau
T′ is locally consistent at every interior node q. Five cases must be
considered depending on the type of expansion used at q in T.

Case 1: If propositional expansion is used on a formula bϕ at q in T,
then, by Exercise 153 of Chapter 4, propositional expansion is used
on the formula sat (bϕ) at q in T′.

Case 2: If regular expansion is used on a γ-formula bϕ = b(Qx)ψ at
q in T, say

T(q) = Δ ∪ {b(Qx)ψ}
T(q0) = Δ ∪ {b(Qx)ψ, b(ψ′)x:=u},

for an (L, V)-term u and a variant ψ′ of ψ such that u is substitutable
for x in ψ′, then

T′(q) = sat (Δ) ∪ {sat (b(Qx)ψ)}
= sat (Δ) ∪ {b(Qx)sat (ψ)}

T′(q0) = sat (Δ) ∪ {sat (b(Qx)ψ), sat (b(ψ′)x:=u)}
= sat (Δ) ∪ {b(Qx)sat (ψ), bsat ((ψ′)x:=u)}
= sat (Δ) ∪ {b(Qx)sat (ψ), b(sat (ψ′))x:=u′},

where u′ = sat (u). The last equality follows from Equality (4.1) on
page 496 since x occurs bound in T and therefore does not occur in t.
By Corollary 4.6.41, the formula sat (ψ

′) is a variant of sat (ψ) because
no variable of t occurs bound in either ψ or ψ′. By Corollary 4.3.79,
the term u′ is substitutable for x in sat (ψ

′) Thus, since u′ is an
(L, V)-term, we have γ-expansion of the formula b(Qx)sat (ψ) at the
node q of T′.

918 Logical Foundations of Computer Science — Volume 2

Case 3: If nondegenerate regular expansion is used on a δ-formula
bϕ = b(Qx)ψ at q in T, say

T(q) = Δ ∪ {b(Qx)ψ}
T(q0) = Δ ∪ {b(ψ)x:=c},

where c does not occur in T(q), then

T′(q) = sat (Δ) ∪ {sat (b(Qx)ψ)},
= sat (Δ) ∪ {b(Qx)sat (ψ)},

T′(q0) = sat (Δ) ∪ {sat (b(ψ)x:=c)},
= sat (Δ) ∪ {bsat ((ψ)x:=c)},
= sat (Δ) ∪ {b(sat (ψ))x:=c},

by Equality (4.1) because c = sat (c), due to the fact that a is different
from any constant symbol used in a nondegenerate δ-expansion in T.
Note that the constant symbol c occurs neither in T(q) (because we
have a δ-expansion at q in T) nor in t (since t contains no constant
symbol used in a nondegenerate δ-expansion in T). Thus, we have a
δ-expansion at q in T′.

If degenerate regular expansion is used on a δ-formula bϕ =
b(Qx)ψ at q in T, say

T(q) = Δ ∪ {b(Qx)ψ}
T(q0) = Δ ∪ {bψ},

where x �∈ FV(ψ), then

T′(q) = sat (Δ) ∪ {b(Qx)sat (ψ),
T′(q0) = sat (Δ) ∪ {bsat (ψ)}.

Since x occurs bound in T, by hypothesis, x �∈ V(t), so by Theo-
rem 4.3.69, x �∈ FV(sat (ψ)) and therefore degenerate δ-expansion is
used at q in T′.

Case 4: Suppose that variantization is applied at T(q), that is, there
is a finite-to-one function f : T(q0) −→ T(q) such that each formula
f(bϕ) is a variant of the formula bϕ. Let bψ be a formula in T′(q0).

First-Order Logic–Formal Systems 919

Choose the formula bϕ ∈ T(q0) as the first formula in the standard
order of signed formulas such that sat (bϕ) = bψ and define g(bψ) =
sat (f(bϕ)). Observe that no variable of t occurs bound in either bϕ or
in f(bϕ) because we assume that no variable of t occurs bound in T.
Therefore, by Corollary 4.6.41, the formula sat (f(bϕ)) is a variant of
sat (bϕ), which means that g(bψ) is a variant of bψ. By Theorem 1.2.17,
sat is a finite-to-one function and so is f , which implies that g is a
finite-to-one function. Thus, variantization is applied at q in T′.
Case 5: If there is equality expansion at q in T, then, by Exercise 68,
we have the same type of expansion at q in T′.

It is clear that if T is (strongly) closed, then so is T′. �

Theorem 5.4.9. Let T be a (Δ,L, V)-tableau. Suppose that q is a
node of T where we have a nondegenerate δ-expansion using a con-
stant symbol a and this constant symbol is not used for nondegenerate
δ-expansions in any other node of T[q]. Further, assume that a′ is a
constant symbol that does not occur in T[q]. Let T

q
a,a′ be the tableau

given by Dom(Tqa,a′) = Dom(T) and

T
q
a,a′(r) =

{
T(r) if q is not a proper prefix of r

saa′(T(r)) otherwise.

Then, Tqa,a′ is a (Δ,L, V)-tableau that uses the same type of expansion
at every node as T and the same formula is expanded at q in both
tableaux. Further, if T is strongly closed, then so is Tqa,a′ .

Proof. We need to show the local consistency of T
q
a,a′ at every

interior node r. If q is not a prefix of r, the local consistency of Tqa,a′
at r follows immediately from the local consistency of T at the same
node. We need to consider two more cases.

If r = q, then T(q) = Δ ∪ {b(Qx)ϕ}, q has only one immediate
descendent q0, and T(q0) = Δ∪{b(ϕ)x:=a}, since we have δ-expansion
at q. The definition of δ-expansion implies that a occurs neither in
Δ nor in ϕ. Then, Tqa,a′(q) = T(q) and

T
q
a,a′(q0) = saa′(T(q0))

= saa′(Δ ∪ {b(ϕ)x:=a)}
= Δ ∪ saa′(b(ϕ)x:=a)

920 Logical Foundations of Computer Science — Volume 2

(because a does not occur in Δ)

= Δ ∪ b(saa′(ϕ))x:=sa
a′(a)

(by Equality (4.1) of Chapter 4)

= Δ ∪ b(ϕ)x:=a′
(because a does not occur in ϕ).

Thus, we have δ-expansion at q in T
q
a,a′ because a

′ does not occur in
T(q) = T

q
a,a′(q).

Finally, suppose that q is a proper prefix of r. Then, since nei-
ther a nor a′ is used in a nondegenerate δ-expansion in T[q0], by
Theorem 5.4.8, saa′(T[q0]) is an (saa′(T(q0)),L, V)-tableau. This implies
local consistency of Tqa,a′ at r, so T

q
a,a′ is a (Δ,L)-tableau.

The fact that the strong closure of T is preserved in T
q
a,a′ is

immediate. �

The previous theorem is used in the construction of a strongly
closed (Δ,Lc, V)-tableau that avoids the members of a finite set of
constant symbols in its δ-expansions.

Construction 5.4.10.
Input: A first-order language L that contains infinitely many
constant symbols, a set of variables V , a finite set Δ of signed
(L, V)-formulas, a strongly closed (Δ,L, V)-tableau T and a finite
set S of L-constant symbols.
Output: A strongly closed (Δ,L, V)-tableau denoted by
AVOIDL,S(T) such that:

• no constant symbol in S is used as an eigenconstant in
AVOIDL,S(T);
• no constant symbol is used as an eigenconstant at two distinct
nodes of AVOIDL,S(T);
• Dom(AVOIDL,S(T)) = Dom(T);
• the new tableau uses at each node the same type of expansion
as T does;
• if T uses regular expansion with removal or retention at the root,
then the same formula is expanded in the same manner at root
of AVOIDL,S(T).

First-Order Logic–Formal Systems 921

Method: If no eigenconstant of T is in S and no eigenconstant of
T is used twice, then we define AVOIDL,S(T) = T. Otherwise, let q
be a node of minimal depth in T where a constant symbol a is used
as an eigenconstant in a δ-expansion and either a ∈ S or a is used
elsewhere as an eigenconstant. Let a′ be the first constant symbol
in L that does not occur in either S or T. Replace T by T

q
a,a′ , where

T
q
a,a′ was introduced in the statement of Theorem 5.4.9, and repeat

the process.

Proof of Correctness: First note that the constant symbol a′
exists since S is finite and only finitely many constant symbols occur
in T because a strongly closed tableau is finite and every set of the
form T(q) is finite.

The proof of correctness is by induction on n, the number of
nodes where a constant symbol of S is used as an eigenconstant in
a δ-expansion in T or the eigenconstant used at the node is used as
an eigenconstant elsewhere. For n = 0, the correctness is obvious.
Suppose the construction is correct for tableaux that contain n or
fewer undesirable nodes and let T be a tableau with n+1 such nodes.
By Theorem 5.4.9, the tableau T

q
a,a′ , obtained as above, is a strongly

closed (Δ,L, V)-tableau which contains fewer than n+1 “bad” nodes.
By the inductive hypothesis applied to this tableau, the construction
is correct for T. �

Construction 5.4.10 becomes effective, that is becomes an algo-
rithm, if the language L is decidable.

As we did in the propositional case, we construct a function cetL,V
that eliminates a single use of the cut rule. Recall that when we use
the term “tableau”, we mean tableau without the cut rule.

Construction 5.4.11.
Input: A first-order language L that contains infinitely many con-
stant symbols, two finite sets Δ0,Δ1 of signed (L, V)-formulas,
two strongly closed (L, V)-tableaux T0, T1, and an (L, V)-formula
ϕ such that T0 is a (Δ0 ∪ {Tϕ},L, V)-tableau and T1 is a (Δ1 ∪
{Fϕ},L, V)-tableau.

922 Logical Foundations of Computer Science — Volume 2

Output: A strongly closed (Δ0 ∪Δ1,L, V)-tableau denoted by

cetL,V (T0, T1,Δ0,Δ1, ϕ).

Method: Proceed according to which of the following cases holds:

Case 1: Either Tϕ ∈ Δ0 or Fϕ ∈ Δ1.
The subcases of this case are identical to the subcases of
Case 1 of Construction 3.4.11.

Case 2: Either Δ0 ∪ {Tϕ} or Δ1 ∪ {Fϕ} is closed and neither
Tϕ ∈ Δ0 nor Fϕ ∈ Δ1.
The treatment of the subcases of this case is identical to
the one of Case 2 of Construction 3.4.11.

Case 3: Neither Δ0 ∪ {Tϕ} nor Δ1 ∪ {Fϕ} is closed and neither
Tϕ ∈ Δ0 nor Fϕ ∈ Δ1. Then, both T0 and T1 have more
than one node.
Case 3.1: Equality expansion by Tα is used at the

root of at least one of T0 or T1. We have
either T0(0) = Δ0 ∪ {Tϕ,Tα} or T1(0) =
Δ1 ∪ {Fϕ,Tα}. In the first subcase, define
V = cetL,V ((T0)[0], T1,Δ0 ∪ {Tα},Δ1, ϕ) and
return (V;Δ0∪Δ1). The other case is treated
similarly.

Case 3.2: Variantization is used at the root of at least
one of T0 or T1. If variantization is used
at the root of T0, the root of this tree has
one child and there is a finite-to-one func-
tion f : T0(0) −→ T0(λ) such that every
formula in f−1(bψ) is a variant of bψ, for
every bψ ∈ T(λ). Now we distinguish two sub-
cases depending on whether or not f−1(Tϕ)
is empty. (If variantization occurs at the root
of T1, the corresponding cases are similar to
the cases outlined below.)

Case 3.2.1: f−1(Tϕ) = ∅. Then return
((T0)[0];Δ0 ∪Δ1).

First-Order Logic–Formal Systems 923

Case 3.2.2: f−1(Tϕ) �= ∅. The finiteness of Δ0 and
Δ1 means that the set of variables that
occur in either T0 or T1 is finite. Therefore
the complement of this set of variables is
infinite. Let U be the odd numbered vari-
ables of this complement. It is clear that
both U and VAR − U are infinite sets.
Let T′0 = VARIANT((T0)[0], U) and T′1 =
VARIANT(T1, U). Compute

T′ = cetL,V (T′
0, T

′
1,VARIANT(f

−1(Δ0), U),

VARIANT(Δ1, U),VARIANT(ϕ,U))

and return (T′;Δ0 ∪Δ1).

Case 3.3: Neither equality expansion nor variantization
is used at the roots of T0 and T1. Then,
there are Δ′

0,Δ
′
1, b0ψ0 ∈ Δ0 ∪ {Tϕ}, b1ψ1 ∈

Δ1 ∪ {Fϕ}, and sequences of sets of (L, V)-
formulas (K0, . . . ,Kn−1) and (H0, . . . ,Hm−1)
such that Δ0 ∪ {Tϕ} = Δ′

0 ∪ {b0ψ0}, Δ1 ∪
{Fϕ} = Δ′

1 ∪ {b1ψ1}, T0(i) = Δ′
0 ∪ Ki for

0 ≤ i ≤ n − 1, and T1(j) = Δ′
1 ∪ Hj for

0 ≤ j ≤ m − 1, where the roots of T0, T1
have n and m immediate descendants. Note
that if we have propositional expansion at the
root of T0, then (K0, . . . ,Kn−1) is dL(b0ψ0).
If b0ψ0 is a γ- or δ-formula, then n = 1 and
K0 = {b0(ψ′

0)x:=t} or K0 = {b0(ψ0)x:=c},
respectively, where t is an (L, V)-term, ψ′

0 is
variant of ψ0 such that t is substitutable for x
in ψ′

0, and c is a constant symbol which does
not occur in T0(λ). Similar comments apply
to T1. (There could be several such choices of
b0ψ0, b1ψ1, any of which would work. To be
definite, we choose the first ones in the stan-
dard ordering of the signed formulas.)

924 Logical Foundations of Computer Science — Volume 2

Case 3.3.1: b0ψ0 ∈ Δ0 (so b0ψ0 �= Tϕ because
Tϕ �∈ Δ0) and δ-expansion is not used
at the root of T0. Then, let Vi =
cetL,V ((T0)[i], T1, (Δ′

0−{Tϕ})∪Ki,Δ1, ϕ)
for 0 ≤ i ≤ n − 1 and return
(V0, . . . , Vn−1;Δ0 ∪Δ1).

Case 3.3.2: b0ψ0 ∈ Δ0 (so b0ψ0 �= Tϕ because Tϕ �∈
Δ0) and δ-expansion is used at the root
of T0. Then, let S be the finite set of L-
constant symbols that occur in Δ0 ∪ Δ1.
Define V = AVOIDL,S(T0). Since the same
formula is expanded at the root of V as at
the root of T0 and in the same manner, the
root of V has one immediate descendant,
V(0) = Δ′

0 ∪ b0(θ0)x:=c, where b0ψ0 is the
δ-formula b0(Qx)θ0 and c �∈ S. (Note that
in the degenerate case, c exists because
L contains infinitely many constant sym-
bols.) Let V′ = cetL,V ((V)[0], T1, (Δ′

0 −
{Tϕ}) ∪ {b0(θ0)x:=c},Δ1, ϕ). Finally,
return (V′;Δ0 ∪Δ1).

Case 3.3.3: Neither Case 3.3.1 nor Case 3.3.2 holds,
b1ψ1 ∈ Δ1 and δ-expansion is not used at
the root of T1. The construction proceeds
as in Case 3.3.1.

Case 3.3.4: Neither Case 3.3.1 nor Case 3.3.2 holds,
b1ψ1 ∈ Δ1 and δ-expansion is used at the
root of T1. The construction proceeds as in
Case 3.3.2.

Case 3.3.5: Neither b0ψ0 ∈ Δ0 nor b1ψ1 ∈ Δ1, so
b0ψ0 = Tϕ and b1ψ1 = Fϕ.

Case 3.3.5.1: ϕ is either (¬α) or (αCβ), where C
is a binary connective symbol. Then,
proceed as in Case 3.2.3 of Construc-
tion 3.4.11.

First-Order Logic–Formal Systems 925

Case 3.3.5.2: ϕ = (∀x)α. We have Δ′
0 − {T(∀x)α} =

Δ0. The roots of both T0 and T1
have one descendant each and we have
(T0)(0) = Δ′

0 ∪ {T(∀x)α,T(α′)x:=t} =
Δ0 ∪ {T(∀x)α,T(α′)x:=t}, where t is
an (L, V)-term and α′ is a variant
of α such that t is substitutable for
x in α′. Let S0 be the set of con-
stant symbols that occur in T0 or in t.
Define W = AVOIDL,S0(T1), which is a
strongly closed (Δ1 ∪ {F(∀x)α},L, V)-
tableau such that the formula F(∀x)α
is expanded at the root. Thus, there is
a set of formulas Δ′′

1 such that W(λ) =
Δ′′

1 ∪ {F(∀x)α} and W(0) = Δ′′
1 ∪

{F(α)x:=c}, where c is an L-constant
symbol that does not appear in W(λ),
T0 or t and is not used as an eigencon-
stant in W[0]. (Note that in the degen-
erate case, c exists because L contains
infinitely many constant symbols.)

Case 3.3.5.2.1: F∀x)α ∈ Δ′′
1. In this case, Δ′′

1 = Δ1

∪ {F(∀x)α}. Then, define U = cetL,V
((T0)[0], W,Δ0 ∪ {T(α′)x:=t},Δ1, (∀x)α);
also define Y = cetL,V (T0, (W)[0],Δ0,Δ1∪
{F(α)x:=c}, (∀x)α). Let V ′ be the set
of odd numbered variables that do not
occur in U, Y or t and are different from
x. Define the set of constant symbols
S′ that consists of c and the constant
symbols that occur in t, and define the
tableaux

926 Logical Foundations of Computer Science — Volume 2

U′ = VARIANT(U, V ′)

Y′ = AVOIDL,S′(VARIANT(Y, V ′))

Y′′ = sct(Y
′).

Compute

Z = cetL,V (U′, Y′′,

VARIANT(Δ0 ∪Δ1, V
′),

VARIANT(Δ0 ∪Δ1, V
′),

(VARIANT(α, V ′))x:=t).

Return (Z;Δ0 ∪Δ1).

Case 3.3.5.2.2: F(∀x)α �∈ Δ′′
1. In this case, Δ′′

1 = Δ1

and so W(0) = Δ1∪{F(α)x:=c}. Then,
define U = cetL,V ((T0)[0], W,Δ0 ∪
{T(α′)x:=t},Δ1, (∀x)α); also define
Y = W[0]. Let V

′ be the set of odd num-
bered variables that do not occur in
U, Y or t. Define now the tableaux

U′ = VARIANT(U, V ′)

Y′ = VARIANT(Y, V ′)

Y′′ = sct(Y
′).

Compute

Z = cetL,V (U′, Y′′,

VARIANT(Δ0 ∪Δ1, V
′),

VARIANT(Δ1, V
′),

(VARIANT(α, V ′))x:=t).

Return (Z;Δ0 ∪Δ1).

First-Order Logic–Formal Systems 927

Case 3.3.5.3: ϕ = (∃x)α. We have Δ′
1 − {F(∃x)α} =

Δ1. The roots of both T0 and T1
have one descendant each and we have
(T1)(0) = Δ′

1 ∪ {F(∃x)α,F(α′)x:=t} =
Δ1 ∪ {F(∃x)α,F(α′)x:=t}, where t is
an (L, V)-term and α′ is a variant
of α such that t is substitutable for
x in α′. Let S1 be the set of con-
stant symbols that occur in T1 or in t.
Define W = AVOIDL,S1(T0), which is a
strongly closed (Δ0 ∪ {T(∃x)α},L, V)-
tableau such that the formula T(∃x)α
is expanded at the root. Thus, there is
a set of formulas Δ′′

0 such that W(λ) =
Δ′′

0 ∪ {T(∃x)α} and W(0) = Δ′′
0 ∪

{T(α)x:=c}, where c is an L-constant
symbol that does not appear in W(λ),
T1 or t and is not used as an eigencon-
stant in W[0]. (Note that in the degen-
erate case, c exists because L contains
infinitely many constant symbols.)

Case 3.3.5.3.1: T(∃x)α ∈ Δ′′
0. In this case, Δ′′

0 = Δ0

∪ {T(∃x)α}. Then, define U = cetL,V
(W, (T1)[0],Δ0,Δ1 ∪ {F(α′)x:=t}, (∃x)
α); also define Y = cetL,V ((W)[0],
T1,Δ0 ∪ {T(α)x:=c},Δ1, (∃x)α). Let
V ′ be the set of odd numbered vari-
ables that do not occur in Y, U or t and
are different from x. Define the set of
constant symbols S′ that consists of c
and the constant symbols that occur
in t, and define the tableaux

U′ = VARIANT(U, V ′)

Y′ = AVOIDL,S′(VARIANT(Y, V ′))

Y′′ = sct(Y
′).

928 Logical Foundations of Computer Science — Volume 2

Compute

Z = cetL,V (Y′′, U′,

VARIANT(Δ0 ∪Δ1, V
′),

VARIANT(Δ0 ∪Δ1, V
′),

(VARIANT(α, V ′))x:=t).

Return (Z;Δ0 ∪Δ1).
Case 3.3.5.3.2: T(∃x)α �∈ Δ′′

0. In this case, Δ′′
0 = Δ0

and so W(0) = Δ0∪{T(α)x:=c}. Then,
define U = cetL,V (W, (T1)[0],Δ0,Δ1 ∪
{F(α′)x:=t}, (∃x)α); also define Y =
W[0] Let V

′ be the set of odd numbered
variables that do not occur in Y, U or
t and are distinct from x. Define now
the tableaux

U′ = VARIANT(U, V ′)

Y′ = VARIANT(Y, V ′)

Y′′ = sct(Y
′).

Compute

Z = cetL,V (Y′′, U′,

VARIANT(Δ0, V
′),

VARIANT(Δ0 ∪Δ1, V
′),

(VARIANT(α, V ′))x:=t).

Return (Z;Δ0 ∪Δ1).

Proof of Correctness: Fix the first-order language L assumed to
contain an infinite number of constant symbols and an L-suitable set
of variables V . We show by course-of-values induction on the norm
of ϕ that if the algorithm is applied to a finite strongly closed (Δ0 ∪
{Tϕ},L, V)-tableau T0 and a finite strongly closed (Δ1∪{Fϕ},L, V)-
tableau T1, then it halts and produces the desired finite strongly
closed (Δ0 ∪Δ1,L, V)-tableau.

First-Order Logic–Formal Systems 929

Suppose that the result is true for formulas with smaller norm
than ϕ. We now show the result for ϕ by course-of-values induction
on n = |T0| + |T1|. The “inner” inductive hypothesis means that for
all Δ′

0,Δ
′
1, T

′
0, T

′
1, if T

′
0 is a finite, strongly closed (Δ′

0 ∪ {Tϕ},L, V)-
tableau, T′1 is a finite, strongly closed (Δ′

1 ∪ {Fϕ},L, V)-tableau,
and |T′0| + |T′1| < n, then the algorithm halts and produces a finite,
strongly closed (Δ′

0 ∪Δ′
1,L, V)-tableau.

If Case 1 or 2 occurs, the correctness of the construction is shown
exactly as in the corresponding case for Construction 3.4.11. For the
first subcase of Case 3.1, |(T0)[0]| + |T1| < |T0| + |T1|. By inductive
hypothesis, since (T0)[0] is a strongly closed (Δ0 ∪ {Tϕ,Tα},L, V)-
tableau and T1 is strongly closed (Δ1 ∪ {Fϕ},L, V)-tableau, V is
a strongly closed (Δ0 ∪ Δ1 ∪ {Tα},L, V)-tableau, so the tableau
returned is a strongly closed (Δ0 ∪ Δ1,L, V) tableau with equality
expansion used at the root. The second subcase of Case 3.1 can be
treated similarly.

The correctness of the construction in Case 3.2.1 is obvious. In
Case 3.2.2, by Theorem 5.3.47, T′0 is a (VARIANT(T0(0), U),L, V)-
tableau and T′1 is a (VARIANT(Δ1, U) ∪ {FVARIANT(ϕ,U)},L, V)-
tableau. Observe that by the definition of variantization, all formulas
of f−1(Tϕ) are variants of Tϕ and, therefore, by Theorem 4.6.60,

VARIANT(f−1(Tϕ), U) = {TVARIANT(ϕ,U)}.

Thus, T′0 is a (VARIANT(f−1(Δ0), U) ∪ {TVARIANT(ϕ,U)},L, V)-
tableau. T′ is a (VARIANT(f−1(Δ0), U) ∪ VARIANT(Δ1, U),L, V)-
tableau by the inductive hypothesis, because |(T0)[0]|+ |T1| < |T0|+
|T1|. By Theorem 4.6.64, the tableau returned is a (Δ0 ∪Δ1,L, V)-
tableau where variantization was applied at the root.

The argument for Case 3.3.1 is identical to the one used for
Case 3.2.1 for Construction 3.4.11 from propositional logic. The same
is true for Case 3.3.3 relative to Case 3.2.2 of the same construction.

Observe that in Case 3.3.2, we have the equality Δ0 = (Δ′
0 −

{Tϕ})∪{b0ψ0}. Since |(V)[0]|+|T1| < |T0|+|T1|, by inductive hypoth-
esis, V′ is a ((Δ′

0 − {Tϕ}) ∪ {b0(θ0)x:=c} ∪Δ1,L, V)-tableau. By the
equality mentioned above, since c does not occur in Δ0∪Δ1, it follows
that the tableau returned by this case, (V′;Δ0 ∪Δ1), is constructed
by applying δ-expansion at the root.

Case 3.3.4 is similar to Case 3.3.2.

930 Logical Foundations of Computer Science — Volume 2

Now we give the proof of correctness for the subcases of Case 3.3.5.
In Case 3.3.5.1, the argument is identical to the one used in Case 3.2.3
of Construction 3.4.11.

In Case 3.3.5.2, recall that W is a strongly closed (Δ1 ∪
{F(∀x)α},L, V)-tableau such that the formula F(∀x)α is expanded
at the root and we can write W(λ) = Δ′′

1 ∪ {F(∀x)α} and W(0) =
Δ′′

1 ∪ {F(α)x:=c}, where c is an L-constant symbol that does not
appear in W(λ), T0 or t.

In Case 3.3.5.2.1, we have |(T0)[0]| + |W| < |T0| + |T1|, so, by
inductive hypothesis, U is a strongly closed (Δ0 ∪ {T(α′)x:=t} ∪
Δ1,L, V)-tableau. Similarly, Y is a strongly closed (Δ0 ∪ Δ1 ∪
{F(α)x:=c},L, V)-tableau.

The newly generated tableau U′ is a strongly
closed (VARIANT(Δ0 ∪ Δ1, V

′) ∪ {VARIANT(T(α′)x:=t, V ′)},L, V)-
tableau by Theorem 5.3.47, and therefore, a (VARIANT(
,Δ0 ∪ Δ1)V

′ ∪ {T(VARIANT(α′, V ′))x:=t},L, V)-tableau, by Theo-
rem 4.6.58. Finally, applying Theorem 4.6.60, U′ is a strongly closed
(VARIANT(Δ0 ∪Δ1, V

′) ∪ {T(VARIANT(α, V ′))x:=t},L, V)-tableau.
Y′ is a (VARIANT(Δ0∪Δ1, V

′)∪{VARIANT(F(α)x:=c, V ′)},L, V)-
tableau which is strongly closed and does not use either c or any
constant symbol of t as an eigenconstant, by Theorem 5.3.47 and the
correctness of Construction 5.4.10. Further, Y′ is a

(VARIANT(Δ0 ∪Δ1, V
′) ∪ {F(VARIANT(α, V ′))x:=c},L, V)-tableau

by Theorem 4.6.58. Y′′ is an

(sct(VARIANT(Δ0 ∪Δ1, V
′)) ∪ sct({F(VARIANT(α, V ′))x:=c}),L, V)

-tableau

by Theorem 5.4.8 and is strongly closed. Since the constant symbol
c does not occur in VARIANT(α, V ′), we have

sct({F(VARIANT(α, V ′))x:=c}) = F(VARIANT(α, V ′))x:=t,

so Y′′ is an (sct(VARIANT(Δ0 ∪Δ1, V
′)) ∪ {F(VARIANT(α, V ′))x:=t},

L, V)-tableau by Exercise 25 of Chapter 4. Observe that the con-
stant symbol c does not occur in Δ0 because of the definition of
W and it does not in Δ1 because it is used as an eigenconstant at

First-Order Logic–Formal Systems 931

the root of W. Therefore, Y′′ is actually a (VARIANT(Δ0 ∪Δ1, V
′) ∪

{F(VARIANT(α, V ′))x:=t},L, V)-tableau. Since the norm of a for-
mula is invariant under taking variants and applying substitutions,
and ‖ α ‖<‖ ϕ ‖, by the inductive hypothesis, Z is a strongly closed
(VARIANT(Δ0 ∪Δ1, V

′),L, V)-tableau. By Theorem 4.6.64, the tab-
leau returned is a (Δ0 ∪Δ1,L, V)-tableau where variantization was
applied at the root.

To prove the correctness in Case 3.3.5.2.2, we start by observ-
ing that U is a strongly closed (Δ0 ∪ {T(α′)x:=t} ∪ Δ1,L, V)-
tableau, so U′ is a strongly closed (VARIANT(Δ0 ∪ Δ1, V

′) ∪
{VARIANT(T(α′)x:=t, V ′)},L, V)-tableau. So, as in the previous case,
U′ is a (VARIANT(Δ0 ∪ Δ1, V

′) ∪ {T(VARIANT(α, V ′))x:=t},L, V)-
tableau.

The definition of Y implies that it is a (Δ1 ∪ {F(α)x:=c},L, V)-
tableau which is strongly closed. It is easy to see that Y′ is a strongly
closed (VARIANT(Δ1, V

′)∪{VARIANT(F(α)x:=c, V ′)},L, V)-tableau
and does not use either c or any constant symbol of t as an eigencon-
stant, by Theorem 5.3.47 and the correctness of Construction 5.4.10.
Further, Y′ is a (VARIANT(Δ1, V

′)∪{F(VARIANT(α, V ′))x:=c},L, V)-
tableau by Theorem 4.6.58.

By an argument similar to the one used in the previous case, Y′′
is a (VARIANT(Δ1, V

′) ∪ {F(VARIANT(α, V ′))x:=t},L, V)-tableau.
By the inductive hypothesis, since ‖ α ‖<‖ ϕ ‖, Z is a strongly

closed (VARIANT(Δ0 ∪ Δ1, V
′),L, V)-tableau. By Theorem 4.6.64,

the tableau returned is a (Δ0∪Δ1,L, V)-tableau where variantization
was applied at the root.

We omit the proof of correctness for Cases 3.3.5.3.1 and 3.3.5.3.2,
which are similar to the Cases 3.3.5.2.1 and 3.3.5.2.2, where the roles
of the left and right subtableaux are reversed. �

Construction 5.4.11 becomes effective, that is becomes an
algorithm, if the language L is decidable.

This construction eliminates a single application of the cut rule
“at the root” and serves as the recursive core of the next construc-
tion which allows us to build syntactically a cut-free strongly closed
tableau starting from a strongly closed (Δ,L, V)-tableau with cut,
where L is a first-order language that contains infinitely many con-
stant symbols.

932 Logical Foundations of Computer Science — Volume 2

Construction 5.4.12.
Input: A first-order language L with infinitely many constant sym-
bols, a finite set Δ of signed (L, V)-formulas, and a strongly closed
(Δ,L, V)-tableau with cut T.
Output: A strongly closed (Δ,L, V)-tableau (without cut)
CETL,V (T).
Method: If T is a one-node strongly closed (Δ,L, V)-tableau with
cut, then CETL,V (T) = T.
It T has more than one node, the root of T has n immediate descen-
dants and the cut rule was not used at the root of T, let

CETL,V (T) = (CETL,V (T[0]), . . . ,CETL,V (T[n−1]);Δ).

If neither of the two previous cases hold, then the cut rule was
applied at the root of T and there is a formula ϕ such that T(0) =
Δ ∪ {Tϕ}, and T(1) = Δ ∪ {Fϕ}. There could be several possible
choices for ϕ. We select the first formula ϕ in the standard order
for which the decomposition can be made. Now, we can define

CETL,V (T) = cetL,V (CETL,V (T[0]),CETL,V (T[1]),Δ,Δ, ϕ).

Proof of Correctness: As in the propositional case, one can show
by induction on |T| that the algorithm halts with proper output on T.
We leave this straightforward argument to the reader. �

We extend Construction 5.4.12 to (Δ,L, V)-tableaux with cut,
where Δ is an arbitrary set of signed formulas.

Construction 5.4.13.
Input: A first-order language L with infinitely many constant
symbols, a set Δ of signed (L, V)-formulas, and a strongly closed
(Δ,L, V)-tableau with cut T.
Output: A strongly closed (Δ,L, V)-tableau (without cut)
CETL,V (T).
Method: Apply the method contained in the proof of Theo-
rem 5.4.4 to obtain effectively a strongly closed (Δ0,L, V)-tableau
with cut T0, where Δ0 is a finite subset of Δ. Then, apply Construc-
tion 5.4.12 to T0 to obtain a strongly closed cut-free (Δ0,L, V)-
tableau T′0. Finally, CETL,V (T) = (T′0;Δ).

First-Order Logic–Formal Systems 933

Proof of Correctness: The correctness follows immediately by
observing that (T′0;Δ) is a strongly closed (Δ,L, V)-tableau obtained
by applying thinning at the root. �

Example 5.4.14. Let Δ be a set of signed (L, V)-formulas, where
L is a first-order language with infinitely many constant symbols.
Suppose that U is a strongly closed (Δ ∪ {F(∀x)ϕ},L, V)-tableau
and V is a strongly closed (Δ∪{T〈ϕ〉x:=t},L, V)-tableau, where t is a
(L, V)-term. The unsatisfiability of Δ∪{F(∀x)ϕ} and Δ∪{T〈ϕ〉x:=t}
means that Δ |= T(∀x)ϕ and Δ |= F〈ϕ〉x:=t, which in turn implies
that Δ is unsatisfiable, which insures the existence of a strongly
closed (Δ,L, V)-tableau. We will show below that cut elimination
provides us with a syntactic way of constructing such a tableau.

Define the strongly closed (Δ∪{T(∀x)ϕ,T〈ϕ〉x:=t},L, V)-tableau
W = V � {T(∀x)ϕ}, which uses thinning at the root. Next, let W′ =
(W;Δ∪ {T(∀x)ϕ}), which is a strongly closed (Δ∪ {T(∀x)ϕ},L, V)-
tableau using γ-expansion at the root. We obtain the desired tableau
as CETL,V (W′′), where W′′ = (W′, U;Δ) is obtained by applying the cut
rule at the root.

Recall that FVSubst(sxt , ϕ) is another notation for (ϕ)x:=t when
ϕ is a formula, x is a variable and t is term. If Δ is a set of signed
formulas, denote by (Δ)x:=t the set of signed formulas {b(θ)x:=t |
bθ ∈ Δ}. Similarly, if Γ is a set of formulas, we define (Γ)x:=t as the
set {(θ)x:=t | θ ∈ Γ}.

Theorem 5.4.15. Let T be a (Δ,L, V)-tableau with cut, where L is a
first-order language, V be an L-suitable set of variables, x be a vari-
able and c be a constant symbol of L that is not an eigenconstant of T.
Define a tableau T′ by Dom(T′) = Dom(T) and T′(q) = (T(q))x:=c,
for q ∈ Dom(T). Then, T′ is a (Δ′,L, V)-tableau with cut, where
Δ′ = (Δ)x:=c.

Proof. The reader can easily verify that T′(q) is a set of signed
(L, V)-formulas and that T′(λ) = Δ′. It remains to show that for each
interior node q ∈ Dom(T) = Dom(T′), the same type of expansion is
used in both tableaux. If propositional expansion or the cut rule is
used at q in T, then it is clear that the same device is used at q in T′.

Suppose T(q0) = T(q) ∪ {Tα}, for some formula α ∈
INSTL,V (Eq=,L). This means that there is an L-equality axiom
(∀y0) · · · (∀yn−1)β, where β is a quantifier-free formula, and there

934 Logical Foundations of Computer Science — Volume 2

are (L, V)-terms t0, . . . , tn−1 such that α = (β)y0,...,yn−1:=t0,...,tn−1 . It
follows that

T′(q0) = T′(q)∪{T(α)x:=c} = T′(q)∪{T((β)y0,...,yn−1:=t0,...,tn−1)x:=c}.

Since α was obtained by applying the admissible substitution
s
y0···yn−1

t0···tn−1
to a quantifier-free formula, by Theorem 4.3.86, (α)x:=c =

(sxc ∗ s
y0···yn−1
t0···tn−1

)(α). We need now to consider two cases depending on

whether x ∈ {y0, . . . , yn−1}. Suppose x belongs to this set. Then,
by Theorem 1.2.21, sxc ∗ s

y0···yn−1

t0···tn−1
= s

y0···yn−1

t′0···t′n−1
, where t′i = sxc (ti),

for 0 ≤ i ≤ n − 1. Since the terms t′i are (L, V)-terms, equal-
ity expansion was also used at q in T′. If x �∈ {y0, . . . , yn−1}, then
sxc ∗ s

y0···yn−1

t0···tn−1
= s

x y0···yn−1

c t′0···t′n−1
. Since x does not occur in β, we have

s
x y0···yn−1

c t′0···t′n−1
(β) = s

y0···yn−1

t′0···t′n−1
(β), which shows that in this case, we also

have equality expansion at q in T′.
Suppose that we use variantization at q in T. This means that

there is a finite-to-one function f : T(q0) −→ T(q) such that for every
signed formula bϕ ∈ T(q0), f(bϕ) is a variant of bϕ. The function
f ′ : T′(q0) −→ T′(q) is defined by f ′(b′ψ′) = (f(b′ϕ))x:=c, where ϕ
is the first formula in the standard order such that ψ′ = (ϕ)x:=c.
Taking into account the observation which precedes the theorem, we
have

(f ′)−1(b′θ′) ⊆ sxc (f
−1((sxc)

−1(b′θ′)))

for each b′θ′ ∈ T′(q). By Supplement 27 of Chapter 4, the set
(sxc)

−1(b′θ′) is finite. Since f is finite-to-one, the above inclusion
means that f ′ is finite-to-one. By Supplement 84 of Chapter 4, every
formula b′ψ′ in T′(q0) is a variant of f ′(b′ψ′), so variantization was
used at q in T′.

Assume now that nondegenerate δ-expansion is used at q in T,
that is, T(q) = Δ0 ∪ {b(Qy)ψ} and T(q0) = Δ0 ∪ {b(ψ)y:=d}. We
can write T′(q) = (Δ0)x:=c ∪ {b((Qy)ψ)x:=c} and T′(q0) = (Δ0)x:=c ∪
{b((ψ)y:=d)x:=c}. Observe that when x �= y, by a double application
of Theorem 4.3.86, we have T′(q0) = (Δ0)x:=c ∪ {b((ψ)x:=c)y:=d}.

We need to distinguish two cases depending on whether x = y.
In the first case, let x �= y. It follows that we have δ-expansion
at q in T′ because d �= c and d does not occur in T(q) implies
that d does not occur in T′(q). In the second case, x = y, we have

First-Order Logic–Formal Systems 935

T′(q) = (Δ0)x:=c∪{b(Qy)ψ} and T′(q0) = (Δ0)x:=c∪{b(ψ)y:=d} which
shows that δ-expansion is used at q in T′.

Consider now the case when degenerate δ-expansion is used at q
in T, that is T(q) = Δ0∪{b(Qy)ψ} and T(q0) = Δ0∪{bψ} and y does
not occur free in ψ. Now we have, T′(q) = (Δ0)x:=c ∪ {b((Qy)ψ)x:=c}
and T′(q0) = (Δ0)x:=c ∪ {b(ψ)x:=c}. Again, we need to consider two
cases depending on whether x = y. Suppose that x �= y. This implies
that T′(q) = (Δ0)x:=c∪{(Qy)(ψ)x:=c}. Since y does not occur free in
(ψ)x:=c, degenerate δ-expansion is used at q in T′. If x = y, then x
does not occur free in ψ and we have

T′(q) = (Δ0)x:=c ∪ {b(Qy)ψ},
T′(q0) = (Δ0)x:=c ∪ {bψ},

which shows that we have degenerate δ-expansion at q in T′.
Suppose now that γ-expansion is used at q in T, that is, T(q) =

Δ0 ∪ {b(Qy)ψ} and T(q0) = Δ0 ∪ {b(Qy)ψ, b(ψ′)y:=t}, where ψ′ is a
variant of ψ such that the (L, V)-term t is substitutable for y in ψ′.
Then, T′(q) = (Δ0)x:=c ∪ {b((Qy)ψ)x:=c} and

T′(q0) = (Δ0)x:=c ∪ {b((Qy)ψ)x:=c, b((ψ′)y:=t)x:=c}.
Assume that x = y. Then,

T′(q) = (Δ0)x:=c ∪ {b(Qy)ψ}
T′(q0) = (Δ0)x:=c ∪ {b(Qy)ψ, b(ψ′)y:=syc (t)},

by Theorem 1.2.21 and Theorem 4.3.86. Thus, we have γ-expansion
at q in T′ because substitutability of the term t for y in ψ′ implies
the substitutability of syc(t) for y in ψ′.

Consider now the case when x �= y. Now, we have:

T′(q) = (Δ0)x:=c ∪ {b(Qy)(ψ)x:=c}
T′(q0) = (Δ0)x:=c ∪ {b(Qy)(ψ)x:=c, b(ψ′)y,x:=sxc (t),c

= (Δ0)x:=c ∪ {b(Qy)(ψ)x:=c, b((ψ′)x:=c)y:=sxc (t)
,

by a double application of Theorem 1.2.21 and Theorem 4.3.86, tak-
ing into account the substitutability of t for y and of c for x in
ψ′. By Supplement 84 of Chapter 4, the formula (ψ′)x:=c is a vari-
ant of (ψ)x:=c. Further the term (t)x:=c is substitutable for y in the
formula (ψ′)x:=c by Supplement 36 of Chapter 4. This implies that
γ-expansion is used at q in T′, which concludes the argument. �

936 Logical Foundations of Computer Science — Volume 2

5.5 First-Order Sequents

First-order sequents are linked to tableaux of first-order logic in a
manner similar to the linkage between propositional sequents and
propositional tableaux. Therefore, this section parallels the corre-
sponding section of Chapter 3 closely.

Definition 5.5.1. Let L be a first-order language and let V be a
set of variables. An (L, V)-sequent is a pair κ = (Γ,Γ′) of sets of
(L, V)-formulas. We will denote the (L, V)-sequent (Γ,Γ′) by Γ⇒ Γ′.
If L and V are clear from the context, we will use the term “sequent”
in place of “(L, V)”-sequent.

Γ is the antecedent and Γ′ is the succedent of the sequent Γ⇒ Γ′.
The sequent Γ⇒ Γ′ is finite if both Γ and Γ′ are finite.
We will denote the set of all (L, V)-sequents by SQTL,V and the

set of all finite (L, V)-sequents by SQTfinL,V .
An (L, ∅)-sequent will be referred to as a sentential L-sequent.
Γ ⇒ Γ′ is an L-sequent if it is an (L, V)-sequent for some set of

variables V . The set of all L-sequents will be denoted by SQTL.

The notational conventions given after Definition 3.5.1 will also
be used in the current section.

Definition 5.5.2. Let A be an L-structure and let σ ∈ ASSIGNA.
The pair, (A, σ) satisfies an L-sequent Γ⇒ Γ′ if there exists a formula
ϕ ∈ Γ such that (A, σ) �|= ϕ or there exists a formula ψ ∈ Γ′ such that
(A, σ) |= ψ. If (A, σ) does not satisfy the sequent, then it falsifies
the sequent.

An L-sequent is valid if it is satisfied by every pair (A, σ).

Example 5.5.3. Any sequent Γ⇒ Γ′ such that Γ ∩ Γ′ �= ∅ is valid.

Theorem 5.5.4. Let L be a first-order language, Γ be a set of
L-formulas and let ϕ be an L-formula. Then,

(1) Γ |= ϕ if and only if the sequent Γ ⇒ ϕ is valid. (In particular,
ϕ is logically valid if and only if ⇒ ϕ is valid.)

(2) Γ is satisfiable if and only if Γ⇒ is not valid.

Proof. The argument for this simple theorem is left for the reader.
�

First-Order Logic–Formal Systems 937

The transformation between sequents and tableaux requires that
we introduce the mutually inverse bijections

sfL,V : SQTL,V −→ P(SFORML(V)) and
sqtL,V : P(SFORML(V)) −→ SQTL,V ,

where L is a first-order language and V is a set of variables.

Definition 5.5.5. Let κ = Γ⇒ Γ′ be an (L, V)-sequent. The set of
signed (L, V)-formulas sfL,V (κ) is defined to be {Tϕ | ϕ ∈ Γ}∪{Fϕ |
ϕ ∈ Γ′}.

Let Δ be a set of signed (L, V)-formulas. The (L, V)-sequent
sqtL,V (Δ) is given by {ϕ | Tϕ ∈ Δ} ⇒ {ϕ | Fϕ ∈ Δ}.

Let κ0 = Γ0 ⇒ Γ′
0, κ1 = Γ1 ⇒ Γ′

1 be two (L, V)-sequents. We
denote by κ0 ∪ κ1 the (L, V)-sequent Γ0 ∪ Γ1 ⇒ Γ′

0 ∪ Γ′
1. The reader

can verify that

sqtL,V (Δ0 ∪Δ1) = sqtL,V (Δ0) ∪ sqtL,V (Δ1)

sfL,V (κ0 ∪ κ1) = sfL,V (κ0) ∪ sfL,V (κ1)

for Δ0,Δ1 ⊆ SFORML(V) and κ0, κ1 ∈ SQTL,V .
Let Γ ⇒ Γ′ be a sequent, x be a variable and t be a term. The

sequent (Γ)x:=t ⇒ (Γ′)x:=t will be denoted by (Γ ⇒ Γ′)x:=t. The
reader can easily verify that

(sqtL,V (Δ))x:=t = sqtL,V ((Δ)x:=t) (5.3)

for any (L, V)-term t, variable x and set of signed (L, V)-formulas Δ.

Theorem 5.5.6. Let L be a first-order language, V be a set of
variables, κ be an (L, V)-sequent, A be an L-structure, and let
σ ∈ ASSIGNA. Then, the following two conditions are equivalent:

(1) (A, σ) satisfies κ.
(2) (A, σ) does not satisfy the set of signed formulas sfL,V (κ).

In addition, if κ = {ϕ0, . . . , ϕn−1} ⇒ {ψ0, . . . , ψm−1}, and n,m ≥ 1,
then the above conditions are equivalent to:

(3) (A, σ) |= ((ϕ0 ∧ · · · ∧ ϕn−1)→ (ψ0 ∨ · · · ∨ ψm−1)).

938 Logical Foundations of Computer Science — Volume 2

Proof. The argument is straightforward and it is left to the reader.
�

Corollary 5.5.7. Let L be a first-order language, V be a set of vari-
ables, κ be an (L, V)-sequent. Then the following two conditions are
equivalent:

(1) The sequent κ is valid.
(2) The set of signed formulas sfL,V (κ) is unsatisfiable.

In addition, if κ = {ϕ0, . . . , ϕn−1} ⇒ {ψ0, . . . , ψm−1}, and n,m ≥ 1,
then the above conditions are equivalent to:

(3) The formula ((ϕ0 ∧ · · · ∧ ϕn−1)→ (ψ0 ∨ · · · ∨ ψm−1)) is logically
valid.

Proof. This follows immediately from Theorem 5.5.6. �

Corollary 5.5.7 shows that it is possible to determine the validity
of sequents using tableaux. Actually, in this section we will introduce
a formal system F seq

L,V whose theorems are the valid (L, V)-sequents.

This formal system is the counterpart of the formal system F tabl
L,V

which we introduced previously for tableaux. A proof tree in F seq
L,V

for an (L, V)-sequent κ will be another way of representing the con-
struction of a strongly closed tableau that shows that the set sfL,V (κ)
is unsatisfiable. In fact, proof trees in F seq

L,V will be translations under

sqtL,V of proof trees in F tabl
L,V .

Definition 5.5.8. Let L be a first-order language and V be
an L-suitable set of variables. The formal system F seq,cons

L,V =

(SQTL,V , A, I) is given by:

• The set of axioms A consists of all (L, V)-sequents Γ ⇒ Γ′ such
that Γ ∩ Γ′ �= ∅.

• The set of rules of inference I consists of the rules Rs,l and Rs,r,
where s ∈ {¬,∨,∧,→,↔,∀,∃}, given in Figure 5.12.

If =∈ L, we add the rule:

Γ, α⇒ Γ′

Γ⇒ Γ′ R=,l ,

First-Order Logic–Formal Systems 939

Γ ⇒ Γ , ϕ

Γ, (¬ϕ) ⇒ Γ
R¬,l

Γ, ϕ ⇒ Γ Γ, ψ ⇒ Γ

Γ, (ϕ ∨ ψ) ⇒ Γ
R∨,l

Γ, ϕ, ψ ⇒ Γ

Γ, (ϕ ∧ ψ) ⇒ Γ
R∧,l

Γ ⇒ Γ , ϕ Γ, ψ ⇒ Γ

Γ, (ϕ → ψ) ⇒ Γ
R→,l

Γ, ϕ, ψ ⇒ Γ Γ ⇒ Γ , ϕ, ψ

Γ, (ϕ ↔ ψ) ⇒ Γ
R↔,l

Γ, (∀x)ϕ, (ϕ)x:=t ⇒ Γ

Γ, (∀x)ϕ ⇒ Γ
R∀,l

Γ, (ϕ)x:=c ⇒ Γ

Γ, (∃x)ϕ ⇒ Γ
R∃,l)

Γ, ϕ ⇒ Γ

Γ, (∃x)ϕ ⇒ Γ
R∃,l

Γ, ϕ ⇒ Γ

Γ ⇒ Γ , (¬ϕ)
R¬,r

Γ ⇒ Γ , ϕ, ψ

Γ ⇒ Γ , (ϕ ∨ ψ)
R∨,r

Γ ⇒ Γ , ϕ Γ ⇒ Γ , ψ

Γ ⇒ Γ , (ϕ ∧ ψ)
R∧,r

Γ, ϕ ⇒ Γ , ψ

Γ ⇒ Γ , (ϕ → ψ)
R→,r

Γ, ϕ ⇒ Γ , ψ Γ, ψ ⇒ Γ , ϕ

Γ ⇒ Γ , (ϕ ↔ ψ)
R↔,r

Γ ⇒ Γ , (ϕ)x:=c

Γ ⇒ Γ , (∀x)ϕ
R∀,r)

Γ ⇒ Γ , ϕ

Γ ⇒ Γ , (∀x)ϕ
R∀,r

Γ ⇒ Γ , (∃x)ϕ, (ϕ)x:=t

Γ ⇒ Γ , (∃x)ϕ
R∃,r

for all sets of (L, V)-formulas Γ, Γ , (L, V)-formulas ϕ, ψ, (L, V)-
terms t and constant symbols c of L such that c does not occur
in Γ ∪ Γ ∪ {ϕ}. In rules R∀,i and R∃,r ϕ is any variant of ϕ

such that t is substitutable for x in ϕ . In the nondegenerate cases
of rules R∃,l and R∀,r, we assume x ∈ FV(ϕ). Note that in both
these cases, the constant symbol c that replaces the variable x is
uniquely determined and it is referred to as an eigenconstant. In
the degenerate cases of these rules, we require x FV(ϕ).

Fig. 5.12. Rules of inference for sequents.

940 Logical Foundations of Computer Science — Volume 2

for all sets of (L, V)-formulas Γ,Γ′ and for every α ∈ INSTL,V
(Eq=,L).

As in propositional logic, the rules Rs,l and Rs,r are often called
the s-left and the s-right rule, respectively, for each symbol s. The
rule R=,l is the equality rule; all other rules are referred to as
non-equality rules.

The variant rule is

Γ0 ⇒ Γ′
0

Γ1 ⇒ Γ′
1

Rvrs ,

where Γ0,Γ
′
0,Γ1,Γ

′
1 are sets of (L, V)-formulas, for which there are

two finite-to-one functions f : Γ0 −→ Γ1 and f ′ : Γ′
0 −→ Γ′

1 such
that each formula ψ0 ∈ Γ0 is a variant of f(ψ0) and each formula
ψ′
0 ∈ Γ′

0 is a variant of f ′(ψ′
0). If we add this rule, we obtain the

formal system F seq
L,V .

In the special case when both f and f ′ are identity functions, we
refer to the instance of the variant rule as an instance of thinning.
Clearly, in this case, we have Γ0 ⊆ Γ1 and Γ′

0 ⊆ Γ′
1.

Observe that, for every instance of a rule of F seq,cons
L,V , the conclu-

sion is a finite sequent if and only if all of the hypotheses are finite
sequents. For the formal system F seq

L,V , the finiteness of the conclusion
of a rule entails the finiteness of the premises.

Example 5.5.9. Let T0, . . . , Tn−1 be F seq
L,V -proof trees for the

sequents Γ ⇒ ϕ0, . . . ,Γ ⇒ ϕn−1, respectively, where n ≥ 1. Start-
ing from these proof trees, we can construct effectively, a proof tree
for the sequent Γ ⇒ (ϕ0 ∧ · · · ∧ ϕn−1), using the following recur-
sive process. We are given a proof tree for Γ ⇒ ϕ0. Assume that
0 ≤ i ≤ n− 2 and we have a proof tree T′i for Γ⇒ (ϕ0 ∧ · · · ∧ϕi). By
applying the R∧,r rule we obtain the proof tree T′i+1 = (T′i, Ti+1; Γ⇒
(ϕ0 ∧ · · · ∧ ϕi+1)). The desired proof tree is T′n−1.

Example 5.5.10. Let ϕ,ψ be two (L, V)-formulas. Since ϕ ⇒ ψ,ϕ
and ϕ,ψ ⇒ ψ are axioms and

ϕ⇒ ψ,ϕ ϕ,ψ ⇒ ψ

ϕ, (ϕ→ ψ)⇒ ψ

is an instance of the rule R→,l of the formal system F seq,cons
L,V , it

follows that ϕ, (ϕ→ ψ)⇒ ψ is a theorem of F seq,cons
L,V and a proof tree

First-Order Logic–Formal Systems 941

can be found effectively given ϕ and ψ. This is clearly the counterpart
of modus ponens in the realm of sequents.

Example 5.5.11. Let ϕ,ψ be two (L, V)-formulas. Starting from
the axioms ϕ,ψ ⇒ ψ and ϕ ⇒ ϕ,ψ, by using the rule R↔,l, we
obtain the sequent ϕ, (ϕ↔ ψ)⇒ ψ. An application of the rule R∧,l
yields the sequent (ϕ∧ (ϕ↔ ψ))⇒ ψ. Thus, (ϕ∧ (ϕ↔ ψ))⇒ ψ is a
theorem of F seq,cons

L,V and a proof tree can be constructed effectively

starting from ϕ and ψ.

Example 5.5.12. Let x, y be two variables, L be a first-order lan-
guage and let α be an L-formula such that y is substitutable for x in
α and y does not occur free in α.

To produce a proof of the sequent (∀x)α ⇒ (∀y)(α)x:=y in
F seq,cons
Lc,VAR , we need to show first that if c is a constant symbol of Lc−L,

(α)x:=c = ((α)x:=y)y:=c. We may assume that x is different from y
since otherwise the proof is immediate. The equality we need follows
from Theorem 4.3.86, Theorem 1.2.21, and from the facts that y is
substitutable for x in α and y does not occur free in α. Furthermore,
the previous equality can now be written as 〈α〉x:=c = 〈(α)x:=y〉y:=c,
which yields the following proof in F seq,cons

Lc,VAR :

(1) (∀x)α, 〈α〉x:=c ⇒ 〈α〉x:=c
(Axiom of F seq,cons

Lc,VAR)

(2) (∀x)α⇒ 〈(α)x:=y〉y:=c
(By R∀,l and the equality proved above)

(3) (∀x)α⇒ (∀y)(α)x:=y
(By R∀,r).

Note that the passage from Step (2) to Step (3) is valid regardless
of whether we have the nondegenerate or degenerate application of
the rule R∀,r.

Similarly, a proof in F seq,cons
Lc,VAR of the sequent (∃y)(α)x:=y ⇒ (∃x)α

can be produced as:
(1) 〈α〉x:=c ⇒ (∃x)α, 〈α〉x:=c

(Axiom of F seq,cons
Lc,VAR)

(2) 〈(α)x:=y〉y:=c ⇒ (∃x)α
(By R∃,r and the equality proved above)

(3) (∃y)(α)x:=y ⇒ (∃x)α
(By R∃,l).

942 Logical Foundations of Computer Science — Volume 2

The soundness and completeness of the formal systems F seq,cons
L,V

and F seq
L,V are shown using (L, V)-tableaux. To this end, we need the

next theorem, which explains the form of the rules of the sequent
formal systems.

Theorem 5.5.13. Let L be a first-order language, V be an L-suitable
set of variables and Δ be a set of signed L-formulas.

(1) If bϕ is a signed L-formula that is neither a γ- nor a
δ-formula, and the sequence of (L, V)-constituents dL,V (bϕ) is
(K0, . . . ,Kn−1), then

sqtL,V (Δ ∪K0), . . . , sqtL,V (Δ ∪Kn−1)

sqtL,V (Δ ∪ {bϕ})

is an instance of a rule of F seq,cons
L,V .

(2) If bϕ = b(Qx)ψ is a γ-formula, t ∈ TERML(V), and ψ′ is a
variant of ψ such that t is substitutable for x in ψ′, then

sqtL,V (Δ ∪ {bϕ} ∪ {b(ψ′)x:=t})
sqtL,V (Δ ∪ {bϕ})

is an instance of a rule of F seq,cons
L,V .

(3) If bϕ = b(Qx)ψ is a δ-formula, x ∈ FV(ψ), and c is a constant
symbol of L that does not occur in Δ ∪ {bϕ}, then

sqtL,V (Δ ∪ {b(ψ)x:=c})
sqtL,V (Δ ∪ {bϕ})

is an instance of a rule of F seq,cons
L,V . If x �∈ FV(ψ), then

sqtL,V (Δ ∪ {bψ})
sqtL,V (Δ ∪ {bϕ})

is an instance of a rule of F seq,cons
L,V .

(4) If α ∈ INSTL,V (Eq=,L), then

sqtL,V (Δ ∪ {Tα})
sqtL,V (Δ)

is an instance of a rule of F seq,cons
L,V .

First-Order Logic–Formal Systems 943

(5) If Δ0,Δ1 are two sets of signed (L, V)-formulas and f : Δ0 −→
Δ1 is a finite-to-one function such that for all bϕ ∈ Δ0, f(bϕ) is
a variant of bϕ, then

sqtL,V (Δ0)

sqtL,V (Δ1)

is an instance of a rule of F seq
L,V .

Furthermore, every instance of every rule of F seq,cons
L,V can be

obtained in one of the first four ways and every instance of every
rule of F seq

L,V can be obtained in one of the five ways given above.

Proof. The theorem follows by inspecting the definition of
dL,V (bϕ) and the form of the rules of F seq

L,V . �

Rules of the first form are called propositional rules due to their
similarity to the rules for sequents introduced in propositional logic.
Rules of the second and third forms are called γ-rules and δ-rules,
respectively.

Corollary 5.5.14. For each instance

κ0, . . . , κn−1

κ

of a rule R of F seq
L,V one of the following three cases holds:

(1) R is neither the equality rule nor the variant rule, there is set of
signed (L, V)-formulas Δ and a signed (L, V)-formula bϕ (where
ϕ is not an atomic formula) such that sfL,V (κ) = Δ∪ {bϕ} and
one of the following situations occurs:

(a) bϕ is neither a γ- nor a δ-formula, the sequence
of (L, V)-constituents dL,V (bϕ) is (K0, . . . ,Kn−1), and
sfL,V (κi) = Δ ∪Ki for 0 ≤ i ≤ n− 1.

(b) n = 1, bϕ = b(Qx)ψ is a γ-formula, and there are a t ∈
TERML(V) and a variant ψ′ of ψ such that t is substitutable
for x in ψ′ and sfL,V (κ0) = Δ ∪ {bϕ, b〈ψ〉x:=t}.

(c) n = 1, bϕ = b(Qx)ψ is a δ-formula, and either x ∈ FV(ψ)
and there is a constant symbol c of L that does not occur in
Δ∪{bϕ} such that sfL,V (κ0) = Δ∪{b(ψ)x:=c}, or x �∈ FV(ψ)
and sfL,V (κ0) = Δ ∪ {bψ}.

944 Logical Foundations of Computer Science — Volume 2

(2) R is the equality rule, n = 1, there is ϕ ∈ INSTL,V (Eq=,L) such
that sfL,V (κ0) = Δ ∪ {Tϕ} and sfL,V (κ) = Δ.

(3) R is the variant rule, n = 1, and there is a finite-to-one function
f : sfL,V (κ0) −→ sfL,V (κ) such that if f(b0ϕ0) = bϕ, then bϕ is
a variant of b0ϕ0.

Proof. The statement follows immediately from Theorem 5.5.13,
taking into account the fact that sqtL,V and sfL,V are inverse bijec-
tions. �

If

Γ0 ⇒ Γ′
0, . . . ,Γn−1 ⇒ Γ′

n−1

Γ⇒ Γ′

is an instance of a rule of F seq
L,V , then every member of Γi,Γ

′
i belongs

to the analytical universeW ∗
L,V (Γ∪Γ′) or is an instance of an equality

axiom, for 0 ≤ i ≤ n − 1. This shows the analyticity of the formal
system F seq

L,V .

Definition 5.5.15. Let

κ0, . . . , κn−1

κ

be an instance of a rule of F seq
L,V that is neither the equality rule

nor the variant rule and let Δ and bϕ be as in the first case of
Corollary 5.5.14. Then we call ϕ a principal formula of the instance.
If bϕ is a γ-formula or bϕ ∈ Δ, we call the instance an instance with
retention; otherwise, we refer to this instance as an instance with
removal.

As in the case of propositional logic, it is not difficult to see that an
instance of a rule of F seq

L,V cannot be both an instance with retention
and an instance with removal. Further, in an instance with removal,
there is only one principal formula.

The connection between deduction trees of F seq
L,V and F tabl

L,V is pre-
sented in the next theorem.

Theorem 5.5.16. Let L be a first-order language and V be an
L-suitable set of variables. For T ∈ GDT F seq

L,V
, let ΦL,V (T) = sfL,V ◦T

and for T ∈ GDT Ftabl
L,V

, let ΨL,V (T) = sqtL,V ◦ T. Then, ΦL,V :

First-Order Logic–Formal Systems 945

GDT F seq
L,V
→ GDT Ftabl

L,V
and ΨL,V : GDT Ftabl

L,V
−→ GDT F seq

L,V
are

inverse bijections. Further, we have ΦL,V (PT F seq
L,V

) = PT Ftabl
L,V

and

ΨL,V (PT Ftabl
L,V

) = PT F seq
L,V

.

Proof. Corollary 5.5.14 implies that ΦL,V maps GDT F seq
L,V

into

GDT Ftabl
L,V

and Theorem 5.5.13 implies that ΨL,V maps GDT Ftabl
L,V

into

GDT F seq
L,V

. Since sfL,V and sqtL,V are inverse mappings, it follows

immediately that ΦL,V and ΨL,V are inverse mappings. The second
part of the theorem follows from the fact that the mappings sfL,V
and sqtL,V preserve the axioms of the formal systems F seq

L,V and F tabl
L,V ;

in other words, if κ is an axiom of F seq
L,V , then sfL,V (κ) is an axiom

of F tabl
L,V , and if Δ is an axiom of F tabl

L,V , then sqtL,V (Δ) is an axiom

of F seq
L,V . �

Theorem 5.5.17. Let L be a first-order language and V be an
L-suitable set of variables. For T ∈ GDT F seq,cons

L,V
, let ΦL,V (T) =

sfL,V ◦ T and for T ∈ GDT Ftabl,cons
L,V

, let ΨL,V (T) = sqtL,V ◦ T. Then,
ΦL,V : GDT F seq,cons

L,V
→ GDT Ftabl,cons

L,V
and ΨL,V : GDT Ftabl,cons

L,V
−→

GDT F seq,cons
L,V

are inverse bijections. We also have

ΦL,V (PT F seq,cons
L,V

)=PTFtabl,cons
L,V

and ΨL,V (PT Ftabl,cons
L,V

)=PTF seq,cons
L,V

.

Proof. The argument is virtually identical to that of Theo-
rem 5.5.16. �

Theorem 5.5.18 (Soundness of F seq
L,V). Let L be a first-order lan-

guage and V be a set of variables. Every theorem of the formal system
F seq
L,V is a valid (L, V)-sequent.

Proof. Let κ be a theorem of F seq
L,V and let T be an F seq

L,V -proof tree
for κ. Then, ΦL,V (T) is an F tabl

L,V -proof tree for sfL,V (κ), so sfL,V (κ)
is an unsatisfiable set of signed formulas by Theorem 5.3.36 which,
by Corollary 5.5.7, implies the validity of κ. �

Corollary 5.5.19. Let L be a first-order language and let V be
an L-suitable set of variables. Every theorem of the formal system
F seq,cons
L,V is a valid (L, V)-sequent.

946 Logical Foundations of Computer Science — Volume 2

Proof. The statement follows immediately from Theorem 5.5.18.
�

Theorem 5.5.20 (Partial Completeness of F seq,cons
Lc,V). Let L be

a first-order language and let V be an L-suitable set of variables.
Every valid (L, V)-sequent is a theorem of F seq,cons

Lc,V .

Proof. Let κ be a valid (L, V)-sequent. Then, by Corollary 5.5.7
sfL,V (κ) is unsatisfiable and, by Corollary 5.3.40, there is an

F tabl,cons
Lc,V -proof tree T for sfL,V (κ). By Theorem 5.5.17, ΨLc,V (T) is a
F seq,cons
Lc,V -proof tree for sqtLc,V (sfL,V (κ)) = sqtLc,V (sfLc,V (κ)) = κ.

�

Corollary 5.5.21. Let L be a first-order language and let V be a set
of variables. Every valid (L, V)-sequent is a theorem of F seq

Lc,V .

Proof. This statement follows immediately from Theorem 5.5.20.
�

Corollary 5.5.22. Let L be a first-order language, V be a set of
variables and κ be an (L, V)-sequent. Then, the following three state-
ments are equivalent.

(1) κ is valid;
(2) κ is a theorem of F seq,cons

Lc,V ;

(3) κ is a theorem of F seq
Lc,V .

Proof. This follows immediately from Theorems 5.5.20 (applied to
Lc) and 5.5.18 and the fact that F seq

Lc,V is an extension of F seq,cons
Lc,V .

�

Definition 5.5.23. Let L be a first-order language and V be an
L-suitable set of variables. An (L, V)-sequent κ is dominated by a set
of (L, V)-sequents S if sfL,V (κ) ⊆ sfL,V (S). If S = {κ′}, then we
say that κ is dominated by κ′ when κ is dominated by S. In other
words, Γ0 ⇒ Γ1 is dominated by Γ′

0 ⇒ Γ′
1 if Γ0 ⊆ Γ′

0 and Γ1 ⊆ Γ′
1.

Theorem 5.5.24. Let L be a first-order language and let V be an L-
suitable set of variables. There is an effective, syntactic construction
that starts with an F seq

L,V -proof tree T for a sequent κ and produces an

F seq
L,V -proof tree T′ for a finite sequent κ′ that is dominated by κ.

First-Order Logic–Formal Systems 947

Proof. The argument involves the translation mappings

ΦL,V : GDT F seq
L,V
→ GDT Ftabl

L,V
and ΨL,V : GDT Ftabl

L,V
−→ GDT F seq

,V
.

We saw in Theorem 5.5.16 that these functions map proof trees to
proof trees. Let T be an F seq

L,V -proof tree for a sequent κ. Then, T0 =

ΦL,V (T) is an F tabl
L,V -proof tree for the set Δ = sfL,V (κ), that is a

strongly closed (Δ,L, V)-tableau. By Theorem 5.3.32, we effectively
obtain a strongly closed (Δ′,L, V)-tableau T′0, where Δ′ is a finite
subset of Δ. Thus, there is a finite sequent κ′ = sqtL,V (Δ

′) such

that T′ = ΨL,V (T′0) is an F
seq
L,V -proof tree for κ′. Since sfL,V (κ) = Δ

and sfL,V (κ′) = Δ′, κ dominates κ′. �

Theorem 5.5.25 (Compactness Theorem for Sequents). Let
L be a first-order language and V be an L-suitable set of variables.
For every (L, V)-sequent κ, κ is valid if and only if it dominates a
valid finite (L, V)-sequent κ′.

Proof. It is clear that if κ dominates a valid (finite) sequent κ′,
then κ is valid.

Suppose that κ is a valid sequent. By the Completeness Theo-
rem, there is an F seq

L,V -proof tree for κ. By Theorem 5.5.24, there is

an F seq
L,V -proof tree for a finite sequent κ′ dominated by κ. By the

Soundness Theorem, κ′ is valid. �

Definition 5.5.26. A general F seq
L,V -deduction tree T is finished if

ΦL,V (T) is a strongly completed tableau.

Definition 5.5.27. An (L, V)-sequent κ′ is an (L, V)-constituent of
the (L, V)-sequent ϕ⇒ if κ′ = sqtL,V (K) where K is a constituent
of Tϕ; κ′ is a constituent of the sequent ⇒ ϕ if κ′ = sqtL,V (K)
where K is a constituent of Fϕ.

A branch B of a general F seq
L,V -deduction tree T is called finished if

(1) there is no atomic formula ϕ such that T(B) dominates both ϕ⇒
and ⇒ ϕ;

(2) for every sequent κ of the form ϕ⇒ or ⇒ ϕ, with ϕ not atomic,
if κ is dominated by T(B), then there is an (L, V)-constituent κ′
of κ that is dominated by T(B);

948 Logical Foundations of Computer Science — Volume 2

(3) if = is in L and ϕ ∈ INSTL,V (Eq=,L), then T(B) dominates
ϕ⇒.

Theorem 5.5.28. Let L be a first-order language and let V be an L-
suitable set of variables. A general F seq

L,V -deduction tree T is finished
if and only if every branch of T is either finished or ends with a node
labeled by an axiom of F seq

L,V .

Proof. The theorem follows immediately from the observation that
a branch B of a general F seq

L,V -deduction tree T is finished (in the sense

of Definition 5.5.27) if and only if sfL,V (T(B)) is a Hintikka set. �

Theorem 5.5.29. Let L be a first-order language and let V be a
set of variables. If κ is an (L, V)-sequent, there is a finished general
F seq,cons
Lc,V -deduction tree for κ.

Proof. Using Construction 5.3.25, it is possible to construct a con-
servative, strongly completed (sfL,V (κ),Lc, V)-tableau T which is

general deduction tree of F tabl,cons
Lc,V . Then, sqtLc,V ◦ T is a finished

general F seq,cons
Lc,V -deduction tree for κ. �

The proof of Theorem 5.5.29 in fact gives an indirect construction
of a finished general F seq,cons

Lc,V -deduction tree for a given sequent κ.
We can formulate this construction in terms of sequents.

Definition 5.5.30. Let L be a first-order language and let V be an
L-suitable set of variables. Let T be a general F seq

L,V -deduction tree
and let P be a path of T. The set of pairs that require attention in T

on P is the set of all pairs (bϕ, t) in SFORML(V)×TERML(V) that
satisfy one of the following conditions for κ = sqtL,V ({bϕ}):
(1) κ is dominated by T(P), ϕ is not atomic, bϕ is not a γ-formula

and none of the constituents of κ is dominated by T(P).
(2) κ is dominated by T(P), bϕ = b(Qx)ψ is a γ-formula and the

sequent sqtL,V ({b〈ψ〉x:=t}) is not dominated by T(P).
(3) =∈ L, b = T, ϕ ∈ INSTL,V (Eq=,L) and κ is not dominated by

T(P).

If P is the path leading to the node q, we will refer to the set of
pairs that require attention in T on P as the set of pairs that require
attention in T at q.

First-Order Logic–Formal Systems 949

Construction 5.5.31.
Input: A first-order language L, a set of variables V and an
(L, V)-sequent κ.
Output: A sequence T0, T1, . . . of F seq,cons

Lc,V -deduction trees for κ

such that each Ti+1 is a leaf extension of Ti and T =
⋃
{Ti | i ≥ 0}

is a finished general F seq,cons
Lc,V -deduction tree for κ.

Method:

(A) Let T0 be the one-node tree with root labeled by κ.
(B) Suppose that Ti has been defined. Then, if Ti is finished, the

construction stops with Ti. Otherwise, Ti has branches that nei-
ther are finished nor end with an axiom. Select nondetermin-
istically among the shortest such branches a branch B ending
in the leaf q.
Choose (bqϕq, tq) ∈ Ti(B) × TERMLc(V) to be the first pair
(bϕ, t) in the standard order of SFORMLc(V) × TERMLc(V)
that requires attention in Ti at q. (By an analog of
Lemma 5.3.23, if Case 1 or 2 of Definition 5.5.30 applies, then
bqϕq ∈ Ti(q).) The tableau Ti+1 is defined as follows:

– If Case 1 of Definition 5.5.30 holds, bqϕq is not
a δ-formula, and (K0, . . . ,Kn−1) is the (Lc, V)-
constituent sequence of bqϕq, then define Ti+1 by
adding to Dom(Ti) the nodes q0, . . . , qn−1 and let-
ting Ti+1(qj) = sqtLc,V (Δq∪Kj), where Δq is chosen
such that Ti(q) = sqtLc,V (Δq ∪ {bqϕq}).

– If Case 1 of Definition 5.5.30 holds and bqϕq =
bq(Qx)ψq is a δ-formula, then there is a constant
symbol c ∈ Lc that does not occur in Ti(q). This is
the case because there are infinitely many constant
symbols in Lc that do not occur in Ti(λ) = κ and at
each expansion of a node of Ti we expand the corre-
sponding sequent by adding a finite set of formulas to
each side and, therefore, a finite set of new constant
symbols. Define Ti+1 by adding q0 to Dom(Ti) and
letting Ti+1(q0) = sqtLc,V (Δq ∪ {〈ψq〉x:=c}), where
Δq is chosen such that sfLc,V (Ti(q)) = Δq ∪ {bqϕq}
and c is the first constant symbol in Lc that does
not occur in Ti(q). (Note that if x �∈ FV(ψq), then
Ti+1(q0) = sqtLc,V (Δq ∪ {bqψq}).)

950 Logical Foundations of Computer Science — Volume 2

– If Case 2 of Definition 5.5.30 occurs, define Ti+1 by
adding q0 to Dom(Ti) and letting Ti+1(q0) = Ti(q) ∪
sqtLc,V ({bq〈ψq〉x:=tq}).

– If Case 3 of Definition 5.5.30 occurs, define Ti+1 be
adding q0 to Dom(Ti) and letting Ti+1(q0) = Ti(q) ∪
sqtLc,V ({bqϕq}).

Proof of Correctness: It is clear that each Ti, if defined, is a
F seq,cons
Lc,V -deduction tree for κ and that Ti+1, if defined, is a leaf exten-

sion of Ti.
The sequence of trees sfLc,V ◦ T0, . . . consists of conservative,

sfLc,V (κ)-tableaux that could have been obtained by applying Con-
struction 5.3.28 to sfLc,V (κ). By the correctness of that construction,
T′ =

⋃
{sfLc,V ◦ Ti | i ≥ 0} is a conservative, strongly completed

sfLc,V (κ)-tableau. Therefore, since sfLc,v ◦ T = T′, T is a finished
general F seq,cons

Lc,V -deduction tree for κ. �

By analogy with Definition 5.3.6, we introduce F seq
L,V -deduction

trees with retention and removal. Namely, such a deduction tree is
said to be with retention if at every interior node where neither
the equality rule nor variantization is used, the principal formula
is retained; a deduction tree is said to be with removal if at every
interior node where neither the equality rule nor the γ-rule nor vari-
antization was used, the principal formula is removed.

As usual, we observe that the algorithm can be used to pro-
duce a general F seq,cons

Lc,V -deduction tree with retention or with
removal.

As just shown, given an (L, V)-sequent κ, we can construct a
finished general F seq,cons

Lc,V -deduction tree T for κ. If T is a proof tree,
then κ is valid. Otherwise, T contains a finished branch B, that is, a
branch for which sfLc,V (T(B)) is an (Lc, V)-Hintikka set. Using the
proof Theorem 4.12.17 or 4.12.20, we can determine a pair (A, σ)
that satisfies sfLc,V (T(B)) and therefore falsifies κ.

The cut rule for (L, V)-sequents that we are about to introduce
corresponds to the cut rule for (L, V)-tableaux.

Definition 5.5.32. Let L be a first-order language and let V be
an L-suitable set of variables. F seq,cut

L,V is the formal system obtained

First-Order Logic–Formal Systems 951

from F seq
L,V by adding the following “cut” rule:

Γ, ϕ⇒ Γ′ Γ⇒ Γ′, ϕ
Γ⇒ Γ′ Rcut

for all sets of formulas Γ,Γ′ and (L, V)-formulas ϕ.

As with all formal systems with cut, the formal system F seq,cut
L,V is

not analytical. Cut elimination for sequents, which converts a non-
analytical proof into an analytical one, is obtained by translating cut
elimination for tableaux.

Theorem 5.5.33. Let L be a first-order language and let V be an
L-suitable set of variables. For every T ∈ GDT F seq,cut

L,V
, let Φcut

L,V (T) =

sfL,V ◦ T and for T ∈ GDT F tabl,cut
L,V

, let Ψcut
L,V (T) = sqtL,V ◦ T.

The mappings

Φcut
L,V : GDT F seq,cut

L,V
→ GDT F tabl,cut

L,V
and

Ψcut
L,V : GDT F tabl,cut

L,V
−→ GDT F seq,cut

L,V

are inverse bijections. Further, we have Φcut
L,V (PT F seq,cut

L,V
) =

PT F tabl,cut
L,V

and Ψcut
L,V (PT F tabl,cut

L,V
) = PT F seq,cut

L,V
.

Proof. The argument is essentially the same as the argument for
Theorem 3.5.32. �

Example 5.5.34. As in Example 5.5.9, if T0, . . . , Tn−1 are F seq,cut
L,V -

proof trees for the sequents Γ ⇒ ϕ0, . . . ,Γ ⇒ ϕn−1, respectively,

where n ≥ 1, it is possible to construct effectively an F seq,cut
L,V -proof

tree for the sequent Γ⇒ (ϕ0 ∧ · · · ∧ ϕn−1).

Theorem 5.5.35 (Soundness of F seq,cut
L,V). Let L be a first-order

language and let V be an L-suitable set of variables. Every theorem
of F seq,cut

L,V is a valid sequent.

Proof. The argument is similar to the argument of Theorem 5.5.18,
using ΦcutL,V in place of ΦL,V and Theorem 5.4.6 in place of Theo-
rem 5.3.36. �

952 Logical Foundations of Computer Science — Volume 2

Theorem 5.5.36 (Partial Completeness of F seq,cut
L,V). Let L be a

first-order language and let V be an L-suitable set of variables. Every
valid (L, V)-sequent is a theorem of F seq,cut

Lc,V .

Proof. The argument follows immediately from the partial com-
pleteness of F seq

Lc,V . �

Theorem 5.5.37. Let L be a first-order language and let V be an L-
suitable set of variables. There is an effective, syntactic construction
that starts with a F seq,cut

L,V -proof tree T for a sequent κ and produces

a F seq,cut
L,V -proof tree T′ for a finite sequent κ′ that is dominated by κ.

Proof. The argument for this theorem is similar to that for Theo-
rem 5.5.24, using translations between tableaux with cut and proof
trees with cut for sequents and Theorem 5.4.4. �

Definition 5.5.38. Let L be a first-order language and let V be
an L-suitable set of variables. A general F seq,cut

L,V -deduction tree T is

finished if ΦcutL,V (T) is a strongly completed tableau with cut.

The notion of finished branch of a general F seq,cut
L,V -deduction tree

is defined in exactly the same was as the corresponding notion for
F seq
L,V -deduction trees (see Definition 5.5.27).

Theorem 5.5.39. Let L be a first-order language and let V be an L-
suitable set of variables. A general F seq,cut

L,V -deduction tree T is finished
if and only if every branch of T is either finished or ends with a node
labeled by an axiom of F seq,cut

L,V .

Proof. The argument is similar to that of Theorem 5.5.28. �

The existence of a finished general F seq,cut
L,V -deduction tree for

every sequent κ follows from Theorem 5.5.29.
We are now ready to discuss cut elimination for sequents.

Theorem 5.5.40 (Cut Elimination for First-OrderSequents).
Let L be a first-order language with infinitely many constant symbols
and V be an L-suitable set of variables. There is a syntactic trans-
formation CETSL,V whose domain is PT F seq,cut

L,V
and whose range is

PT F seq
L,V

such that the sequents CETSL,V (T)(λ) and T(λ) are the same.

First-Order Logic–Formal Systems 953

Proof. Define CETSL,V = ΨL,V ◦ CETL,V ◦ Φcut
L,V . Since all three

mappings involved in this definition are syntactic transformations,
then so is CETSL,V . Let T ∈ PT F seq,cut

L,V
. Define T′ = Φcut

L,V (T),
T′′ = CETL,V (T′) and T1 = ΨL,V (T′′). We have T′ ∈ PT F tabl,cut

L,V
and T′(λ) = sfL,V (T(λ)). Next, T′′ ∈ PT Ftabl

L,V
and T′′(λ) = T′(λ).

(See Construction 5.4.13.) Finally, T1 ∈ PT F seq
L,V

and T1(λ) =

sqtL,V (T′′(λ)) = sqtL,V (sfL,V (T(λ))) = T(λ). �

Theorem 5.5.41. Let L be a first-order language and let V be an L-
suitable set of variables. There is an effective, syntactic construction
that, given F seq,cut

L,V -proofs for Γ ⇒ ϕ and ϕ ⇒ Γ′, where Γ,Γ′ are
sets of (L, V)-formulas and ϕ is an (L, V)-formula, produces a proof
of the sequent Γ⇒ Γ′ in F seq,cut

L,V .

Proof. Let r0, r
′
0 be proofs of Γ ⇒ ϕ and ϕ ⇒ Γ′, respectively.

Define the proofs r1 = r0(Γ ⇒ Γ′, ϕ) and r′1 = r′0(Γ, ϕ ⇒ Γ′)
obtained from r0 and r′0, respectively, by applying thinning. Then,

the sequence r1r
′
1(Γ ⇒ Γ′) is an F seq,cut

L,V -proof where we apply the
cut rule at the last step. �

Theorem 5.5.42. Let L be a first-order language, V be an L-suitable
set of variables, T be an F seq,cut

L,V -deduction tree, x be a variable and c
be a constant symbol of L that is not an eigenconstant of T. Define a
tree T′ by Dom(T′) = Dom(T) and T′(q) = (T(q))x:=c, for q ∈ Dom(T).
Then, T′ is an F seq,cut

L,V -deduction tree.

Proof. This result follows immediately from Theorems 5.5.33
and 5.4.15 and Equation (5.3) on page 937. �

Corollary 5.5.43. Let L be a first-order language, V be an
L-suitable set of variables, T be an F seq,cut

L,V -proof tree, x be a variable
and c be a constant symbol of L that is not an eigenconstant of T.
Define a tree T′ by Dom(T′) = Dom(T) and T′(q) = (T(q))x:=c, for
q ∈ Dom(T). Then, T′ is an F seq,cut

L,V -proof tree.

Proof. This follows immediately from Theorem 5.5.42. �

954 Logical Foundations of Computer Science — Volume 2

5.6 First-Order Natural Deduction

We will extend the natural deduction introduced in propositional
logic to include quantified first-order formulas.

The structure of the system FL
fond is informed by the construc-

tion of the formal system Fnd introduced in propositional logic. The
objects of the new system are L-formulas. If L does not contain
equality, then there are no axioms in FL

fond. Otherwise, FL
fond has the

axioms t = t for all L-terms t.

Definition 5.6.1. Let L be a first-order language. FL
fond is the formal

system (FORML, A, I), where

A =

{
∅ if = �∈ L
{t = t | t ∈ TERML} otherwise.

The set of rules I when = �∈ L is given in Figure 5.13, for all
L-formulas ϕ,ψ, θ, L-constant symbols c, and L-terms t.

If =∈ L, we supplement I with the rules contained in Figure 5.14.
In this figure, the tis are L-terms, f is a function symbol of L of
positive arity and P is a relation symbol of positive arity in the same
language.

If T is an FL
fond-deduction tree for ϕ, we will refer to the labels of

the leaves of T as the hypotheses of T and to ϕ as the conclusion of T.

As in propositional logic, rules indexed by I and E are referred
to as introduction rules and elimination rules, respectively.

This system is not be sound because, unlike the propositional
case, there is a rule (R∀,I) such that the premise of the rule does not
necessarily logically imply the conclusion of the rule. For example,
for the instance

R(x)

(∀x)R(x)
of this rule, the premise clearly does not logically imply the
conclusion. However, by imposing appropriate cancellation rules, we
will be able to overcome this difficulty.

Definition 5.6.2. A marked FL
fond-deduction tree is a pair (T,M)

where T is an FL
fond-deduction tree andM ⊆ LEAVES(T). The leaves

that belong to the set M are said to be cancelled.

First-Order Logic–Formal Systems 955

∧-rules:
ϕ, ψ

(ϕ ∧ ψ)R∧I

(ϕ ∧ ψ)
ϕ R∧El

(ϕ ∧ ψ)
ψ R∧Er

∨-rules:
ϕ

(ϕ ∨ ψ)R∨Il

(ϕ ∨ ψ), θ, θ
θ R∨E

ψ

(ϕ ∨ ψ)R∨Ir

→-rules:
ψ

(ϕ → ψ)R→I

ϕ, (ϕ → ψ)
ψ R→E

↔-rules:
ψ,ϕ

(ϕ ↔ ψ)R↔I

ϕ, (ϕ ↔ ψ)
ψ R↔El

ψ, (ϕ ↔ ψ)
ϕ R↔Er

¬-rules:
ψ, (¬ψ)
(¬ϕ) R¬I

ψ, (¬ψ)
ϕ R¬E

∀-rules:
ϕ

(∀x)ϕR∀I

(∀x)ϕ
ϕ x:=t

R∀E

∃-rules:
ϕ x:=t

(x)ϕ R∃I

(∃x)ϕ, ψ

ψ R∃E

Fig. 5.13. The set of rules of FL
fond.

The set of uncancelled hypotheses of a marked FL
fond-deduction

tree (T,M) is the set

UNC(T,M) = {T(q) | q ∈ LEAVES(T)−M}.

In the next definition, we denote the one-node lot whose root
is labelled o as To and the one-node marked lot (To, ∅) by To. As in
propositional logic, we denote by Lϕ(T) the marked FL

fond-deduction

956 Logical Foundations of Computer Science — Volume 2

Symmetry rule:
t0 = t1
t1 = t0R

Transitivity rule:
t0 = t1, t1 = t2

t0 = t2 R

f -rule:
t0 = tn, . . . , tn−1 = t2n−1

f(t0, . . . , tn−1) == f(tn, . . . , t2n−1)Rf

P -rule:
t0 = tn, . . . , tn−1 = t2n−1, P (t0, . . . , tn−1)

P (tn t2n 1) RP

Fig. 5.14. The additional equality rules of FL
fond.

tree obtained from T by cancelling the uncancelled leaves labelled
by ϕ.

Definition 5.6.3. The set FONDTL of natural deduction trees of
the first-order language L is the set of marked FL

fond-deduction trees
given inductively by the following:

(1) If T is a one-node FL
fond-deduction tree, then (T, ∅) ∈ FONDTL.

(2) (→-introduction) If T = (T,M) ∈ FONDTL, T(λ) = ψ, and ϕ
is an L-formula, then

(Lϕ(T); (ϕ→ ψ)) ∈ FONDTL.

(3) (∨-elimination) If Ti = (Ti,Mi) ∈ FONDTL for 0 ≤ i ≤ 2 and
T0(λ) = (ϕ ∨ ψ), T1(λ) = T2(λ) = θ, then

(T0, Lϕ(T1), Lψ(T2); θ)

belongs to FONDTL.
(4) (↔-introduction) If T0 = (T0,M0) and T1 = (T1,M1) belong to

FONDTL, T0(λ) = ψ, and T1(λ) = ϕ, then

(Lϕ(T0), Lψ(T1); (ϕ↔ ψ))

belongs to FONDTL.
(5) (¬-introduction) If T0,T1 ∈ FONDTL, where T0 = (T0,M0),
T1 = (T1,M1), T0(λ) = ψ, T1(λ) = (¬ψ) and ϕ is an L-formula,
then

(Lϕ(T0), Lϕ(T1); (¬ϕ)) ∈ FONDTL.

First-Order Logic–Formal Systems 957

(6) (¬-elimination) If T0 = (T0,M0) and T1 = (T1,M1) belong
FONDTL, T0(λ) = ψ, T1(λ) = (¬ψ) and ϕ is an L-formula,
then

(L(¬ϕ)(T0), L(¬ϕ)(T1));ϕ) ∈ FONDTL.

(7) (∀-introduction) If T = (T,M) ∈ FONDTL, T(λ) = ϕ, where x
does not occur free in UNC(T), then (T ; (∀x)ϕ) ∈ FONDTL.

(8) (∃-elimination) If T0 = (T0,M0),T1 = (T1,M1) ∈ FONDTL,
T0(λ) = (∃x)ϕ, T1(λ) = ψ and x �∈ FV(ψ)∪FV(UNC(T1)−{ϕ}),
then we have (T0, Lϕ(T1);ψ) ∈ FONDTL.

(9) If αβ is an instance of one of the remaining rules that have one

hypothesis (except rules involving the equality symbol) and T =
(T,M) ∈ FONDTL with T(λ) = α, then (T ;β) ∈ FONDTL.

(10) If
α0, α1

β
is an instance of one of the remaining rules that have

two hypotheses (except rules involving the equality symbol),
and T0 = (T0,M0) and T1 = (T1,M1) belong to FONDTL with
T0(λ) = α0, and T1(λ) = α1 then (T0,T1;β) ∈ FONDTL.

In addition, if L contains the equality symbol, we extend the defini-
tion of natural deduction trees by adding the following parts:

(11) For every L-term t, the marked lot (Tt=t, {λ}) ∈ FONDTL.
(12) (=-symmetry) For all L-terms t0, t1, if T = (T,M) ∈ FONDTL

with T(λ) = t0 = t1, then (T ; t1 = t0) ∈ FONDTL.
(13) (=-transitivity) For all L-terms t0, t1, t2 and natural deduction

trees T0 = (T0,M0),T1 = (T1,M1), with T0(λ) = t0 = t1 and
T1(λ) = t1 = t2, we have (T0,T1; t0 = t2) ∈ FONDTL.

(14) (f -congruency) If t0, . . . , t2n−1 are L-terms, f is an n-ary func-
tion symbol of L with n > 0, and Ti = (Ti,Mi) in FONDTL is
such that Ti(λ) = ti = ti+n for 0 ≤ i ≤ n− 1, then

(T0, . . . ,Tn−1; f(t0, . . . , tn−1) = f(tn, . . . , t2n−1)) ∈ FONDTL.

(15) (R-congruency) If t0, . . . , t2n−1 are L-terms, R is an n-ary rela-
tion symbol of L with n > 0, Ti = (Ti,Mi) in FONDTL
is such that Ti(λ) = ti = ti+n for 0 ≤ i ≤ n − 1, and

958 Logical Foundations of Computer Science — Volume 2

· · · \ϕ · · ·

· · · \ϕ · · · · · · \ψ · · · · · · \ϕ · · · · · · \ϕ · · ·

· · · · · · \ϕ · · · · · · \ψ · · ·

ψ

ψ ϕ ψ

θ

ψ

ϕ

θ

(¬ψ)

θ(ϕ → ψ)

(ϕ ↔ ψ)

(ϕ ∨ ψ)

(a)

(c)

(b)

(d)

(¬ψ)

(¬ϕ)

(e)

· · · (¬ϕ) · · ·· · · (¬ϕ) · · ·

Fig. 5.15. Application of Connective Rules in Natural Deduction

for Tn = (Tn,Mn), we have Tn(λ) = R(t0, . . . , tn−1), then
(T0, . . . ,Tn;R(tn, . . . , t2n−1)) belongs to FONDTL.

Figure 5.15 illustrates the inductive parts of Definition 5.6.3
that involve →-introduction, ∨-elimination, ↔-introduction, ¬-
introduction, and ¬-elimination rules. In Figure 5.16(a)-(d) we show
the constructions involving quantifiers, while in Figure 5.16(e)-(f) we
show the application of the remaining inductive parts that have one
or two hypotheses, respectively. Finally, Figure 5.17 illustrates the
parts of Definition 5.6.3 that involve the equality symbol.

The ∀-introduction part of Definition 5.6.3 is justified by The-
orem 4.5.61. The ∃-elimination part is explained by the following
theorem.

Theorem 5.6.4. Let L be a first-order language, Γ0,Γ1 be two sets
of L-formulas and ϕ,ψ be formulas such that x �∈ FV(ψ)∪FV(Γ1−{ϕ})
for a variable x. If Γ0 |= (∃x)ϕ and Γ1 |= ψ, then Γ0∪(Γ1−{ϕ}) |= ψ.

First-Order Logic–Formal Systems 959

· · · · · ·

· · · · · · ·

· ·

· ·

· · · · · · · ϕ · · ·

ϕ

α

β β

α0 α1

(∀x)ϕ

(∀x)ϕ

ϕ x:=t

ϕ x:=t

(∃x)ϕ

(∃x)ϕ

(a)

(c)

(e)

(b)

(d)

(f)

no free occurrence of x

in the uncancelled leaves

ψ

ψ

T0 T1

x FV(UNC(T1) − {ϕ})

x FV(ψ)

Fig. 5.16. Application of Quantifier Rules in Natural Deduction (a)–(d) and of
the Remaining Inductive Parts That Have One or Two Hypotheses (e)–(f)

Proof. Suppose that (A, σ) |= Γ0 ∪ (Γ1 − {ϕ}). Then, (A, σ) |=
(∃x)ϕ, so, for some a ∈ |A|, (A, [x → a]σ) |= ϕ. Since x does not
occur free in Γ1−{ϕ}, we have (A, [x→ a]σ) |= Γ1−{ϕ}, so (A, [x→
a]σ) |= Γ1. Therefore, (A, [x→ a]σ) |= ψ. Since x does not occur free
in ψ, we have (A, σ) |= ψ. �

Definition 5.6.5. Let L be a first-order language, Γ be a set of
L-formulas and let ϕ be an L-formula. We write Γ

•�fondL ϕ if there
is a first-order natural deduction tree T = (T,M) of L such that
T(λ) = ϕ and UNC(T,M) ⊆ Γ.

If UNC(T,M) = ∅ we refer to T as a natural deduction tree for ϕ.

As was the case with propositional logic, first-order natural deduc-
tion is not an analytical formalism. Drawings of first-order natural
deduction trees make use of the same graphical conventions as the
corresponding drawings of propositional logic.

960 Logical Foundations of Computer Science — Volume 2

t = t
t0 = t1

t1 = t0

(a) (b)

t0 = tn tn−1 = t2n−1· · ·

f(t0, . . . , tn−1) = f(tn, . . . , t2n−1)

(d)

t0 = tn tn−1 = t2n−1· · ·

R(tn, . . . , t2n−1)

(e)

R(t0, . . . , tn−1)

t0 = t1 t1 = t2

t0 = t2

(c)

T

T0

T0 TnTn−1

T1 T0 Tn−1

Fig. 5.17. Natural Deduction Trees with Equality

Example 5.6.6. The trees shown in Figures 3.17 and 3.18 remain
first-order natural deduction trees for the formulas (ϕ ∨ (¬ϕ)) and
((ϕ ∨ (α ∧ β))→ ((ϕ ∨ α) ∧ (ϕ ∨ β))), respectively, where ϕ,α, β are

L-formulas. Thus, we have ∅ •�fondL (ϕ∨ (¬ϕ)) and ∅ •�fondL ((ϕ∨ (α∧
β))→ ((ϕ ∨ α) ∧ (ϕ ∨ β))).
Example 5.6.7. Let L be a first-order language and let ϕ be an
L-formula. A natural deduction tree for the L-formula ((∃x)(∀y)ϕ→
(∀y)(∃x)ϕ) is given in Figure 5.18.

Since all the leaves of this tree are cancelled, we have

∅ •�fondL ((∃x)(∀y)ϕ→ (∀y)(∃x)ϕ).

First-Order Logic–Formal Systems 961

(∃x)(∀y)ϕ → (∀y)(∃x)ϕ 2

(∀y)(∃x)ϕ 1

(∃x)(∀y)ϕ2 (∀y)(∃x)ϕ

(∃x)ϕ

ϕ

(∀y)ϕ 1

R→I

R∃E

R∀E

R∃I

R∀I

Fig. 5.18. Natural Deduction Tree for ((∃x)(∀y)ϕ→ (∀y)(∃x)ϕ)

Example 5.6.8. Let L be a first-order language and let R be a unary
relation symbol in L. Figure 5.19 contains a natural deduction tree
for the L-formula (∃x)(R(x) → (∀x)R(x)). In this figure, T0 is the
natural deduction tree of Figure 3.17 with ϕ = (∃x)(¬R(x)). Since all
the leaves of the full tree are cancelled, we have ∅ •�fondL (∃x)(R(x)→
(∀x)R(x)).

Example 5.6.9. The existence of the natural deduction tree shown
in Figure 5.20 proves that ∅ •�fondL ((∀x)ϕ → (∃x)ϕ)), for every L-
formula ϕ and variable x.

Example 5.6.10. Let L be a first-order language that includes a
binary relation symbol R, and two unary function symbols f and g,
and let θ0 and θ1 be the formulas defined as

θ0 = ((∀x0)(∀x1)R(x0, x1)→ R(f(x0), g(x1))) and

θ1 = ((∀x0)(∀x1)R(x0, x1)→ R(f(x1), g(x0))).

The natural deduction tree in Figure 5.21(a) proves that ∅ •�fondL θ0.
Figure 5.21(b) shows the related natural deduction tree which proves

that ∅ •�fondL θ1.

962 Logical Foundations of Computer Science — Volume 2

(∃x)(¬R(x)) ∨ (¬(∃x)(¬R(x))) (∃x)(R(x) → (∀x)R(x))

(∃x)(R(x) → (∀x)R(x)) 4

(∃x)(R(x) → (∀x)R(x)) 2T0

(R(x) → (∀x)R(x))

(∀x)R(x)

R(x) 3

(∃x)(¬R(x))

(¬R(x))
3

(¬(∃x)(¬R(x)))
4

(∃x)(¬R(x)) 4

(∃x)(R(x) → (∀x)R(x))

(R(x) → (∀x)R(x)) 1

(∀x)R(x)

(¬R(x))
2

(R(x)
1

R∨E

R∃I

R→I

R∀I

R¬E

R∃I

R∃E

R∃I

R→I

R¬E

Fig. 5.19. A Natural Deduction Tree for (∃x)(R(x) → (∀x)R(x))

((∀x)ϕ → (∃x)ϕ) 1

(∃x)ϕ

ϕ

(∀x)ϕ
1

R∀E

R∃I

R→I

Fig. 5.20. Natural Deduction Tree for ((∀x)ϕ→ (∃x)ϕ)

First-Order Logic–Formal Systems 963

((∀x0)(∀x1)R(x0, x1) → R(f(x1), g(x0))) 1

R(f(x1), g(x0))

(∀x1)R(f(x1), x2)

(∀x0)(∀x1)R(x0, x1)
1

R∀E

R∀E

R→I

((∀x0)(∀x1)R(x0, x1) → R(f(x0), g(x1))) 1

R(f(x0), g(x1))

(∀x1)R(f(x0), x1)

(∀x0)(∀x1)R(x0, x1)
1

R∀E

R∀E

R→I

(a)

(b)

Fig. 5.21. Natural Deduction Trees for Formulas θ0 and θ1

Example 5.6.11. Let f be a binary function symbol of a first-order
language L. Figure 5.22 contains a natural deduction tree for the
L-formula

θ = (∀x)(∀y)(((∀z)(f(x, z) = z) ∧ (∀w)(f(w, y) = w))→ (x = y)).

Since all the leaves of the full tree are cancelled, we have ∅ •�fondL θ.

Theorem 5.6.12 (Soundness of First-Order Natural Deduc-
tion). Let L be a first-order language, Γ be a set of L-formulas and

let θ be an L-formula. If Γ
•�fondL θ, then Γ |= θ.

964 Logical Foundations of Computer Science — Volume 2

(∀x)(∀y)(((∀z)(f(x, z) = z) ∧ (∀w)(f(w, y) = y)) → (x = y))

(∀y)(((∀z)(f(x, z) = z) ∧ (∀w)(f(w, y) = y)) → (x = y))

((∀z)(f(x, z) = z) ∧ (∀w)(f(w, y) = y)) → (x = y)) 1

x = y

x = f(x, y)

f(x, y) == x f(x, y) = y

(∀w)(f(w, y) = w) (∀z)(f(x, z) = z)

(∀z)(f(x, z) = z) ∧ (∀w)(f(w, y) = w)
1

(∀z)(f(x, z) = z) ∧ (∀w)(f(w, y) = w)
1

R∧Er R∧El

R∀E R∀E

Rsym

Rtrans

R→I

R∀I

R∀I

Fig. 5.22. A Natural Deduction Tree for Formula θ of Example 5.6.11

Proof. We must show that if (T,M) is a natural deduction tree
of L such that UNC(T,M) ⊆ Γ and T(λ) = θ, then Γ |= θ. We
proceed by induction on the definition of natural deduction trees
(Definition 5.6.3).

For the first basis step, T is a one-node FL
fond-deduction tree and

M = ∅. Since UNC(T, ∅) = {T(λ)} and the result is immediate.
If =∈ L, the remaining basis step is immediate by Corollary 4.6.10.

Most of the inductive steps are formally identical to the inductive
steps used in the proof of Theorem 3.6.11. We discuss here only the
inductive steps related to quantifiers and equality.

Suppose that (T,M) is obtained from (T0,M0) using the ∀-
introduction rule (Case 7 of Definition 5.6.3). Then, there is an

First-Order Logic–Formal Systems 965

L-formula ϕ and a variable x such that θ = T(λ) = (∀x)ϕ,
T0(λ) = ϕ and x does not occur free in UNC(T0,M0). We have
UNC(T0,M0) ⊆ Γ because UNC(T0,M0) = UNC(T,M) ⊆ Γ. By
the inductive hypothesis, we have UNC(T,M) = UNC(T0,M0) |= ϕ,
so, UNC(T,M) |= (∀x)ϕ by Theorem 4.5.61. Since, UNC(T,M) ⊆ Γ,
we have Γ |= (∀x)ϕ.

Next, suppose that (T,M) is obtained from (T0,M0), (T1,M1)
using the ∃-elimination rule (Case 8 of Definition 5.6.3).
Then, there are L-formulas ϕ,ψ and a variable x such that
T0(λ) = (∃x)ϕ, θ = T(λ) = T1(λ) = ψ, and x does
not occur free in UNC(T1,M1) − {ϕ} or in ψ. We have
UNC(T,M) = UNC(T0,M0) ∪ (UNC(T1,M1) − {ϕ}) ⊆ Γ.
By the inductive hypothesis, we have UNC(T0,M0) |= (∃x)ϕ and
UNC(T1,M1) |= ψ so, UNC(T,M) = UNC(T0,M0)∪(UNC(T1,M1)−
{ϕ}) |= ψ by Theorem 5.6.4, which implies Γ |= ψ.

The remaining two cases involving quantifiers are immediate by
observing that, by Theorem 4.6.51, (∀x)ϕ |= 〈ϕ〉x:=t and 〈ϕ〉x:=t |=
(∃x)ϕ.

If =∈ L, we have four types of additional inductive steps cor-
responding to the trees of Figure 5.17 (b)–(e). We discuss here
only the case of the tree in Part (d). Suppose that f is an n-ary
function symbol of L, where n > 0, and (T,M) is obtained from
(T0,M0), (T1,M1), . . . , (Tn−1,Mn−1) by an application of the rule Rf .
Then, there are L-terms t0, . . . , t2n−1 such that Ti(λ) = ti = tn+i for
0 ≤ i ≤ n− 1 and

T = (T0, . . . , Tn−1; f(t0, . . . , tn−1) = f(tn, . . . , t2n−1)).

We have UNC(T,M) =
⋃n−1
i=0 UNC(Ti,Mi). Thus,

UNC(Ti,Mi) ⊆ UNC(T,M) ⊆ Γ,

which, by inductive hypotheses, implies that Γ |= ti = tn+i for 0 ≤
i ≤ n−1. It follows from Corollary 4.6.10 that Γ |= f(t0, . . . , tn−1) =
f(tn, . . . , t2n−1). �

Lemma 5.6.13. Let L be a first-order language, Γ be a set of L-
formulas and ϕ be an L-formula.

If Γ
•�fondL ϕ and x �∈ FV(Γ), then Γ

•�fondL (∀x)ϕ.

Proof. The conclusion follows from an application of Part 7 of
Definition 5.6.3. �

966 Logical Foundations of Computer Science — Volume 2

Theorem 5.6.14 (Completeness for First-Order Natural
Deduction). Let L be a first-order language, Γ be a set of

L-formulas and let θ be an L-formula. If Γ |= θ, then Γ
•�fondL θ.

Proof. If Γ |= θ, then, by the completeness of HFL
Γ (Theo-

rem 5.2.41), we have Γ �HFL θ. Therefore, it suffices to prove by

induction on the theorems of HFL
Γ that if Γ �HFL θ, then Γ

•�fondL θ.
Figures 3.19–3.25 still show that that for every formula γ of formula
groups 1 to 18 of HFL, ∅ •�fondL γ. Figures 5.23 to 5.27 show that the
same holds for formulas in groups 19 to 23.

If =∈ L, then Figures 5.28 to 5.30 show that if γ is in formula
groups 24 to 26, then ∅ •�fondL γ.

To deal with formula group 27, let f be an n-ary function symbol
of L with n > 0 and let t0, . . . , t2n−1 ∈ TERML. Define the formulas
θk,n = (t0 = tn ∧ · · · ∧ tk = tn+k), for 0 ≤ k ≤ n − 1. The natural
deduction tree in Figure 5.31 shows that

∅ •�fondL ((t0 = tn ∧ · · · ∧ tn−1 = t2n−1)→ f(t0, . . . , tn−1)

= f(tn, . . . , t2n−1)).

For formula group 28, consider an n-ary relation symbol R of L.
Figure 5.34 contains a natural deduction tree which proves that

∅ •�fondL ((t0 = tn ∧ · · · ∧ tn−1 = t2n−1)

→ (R(t0, . . . , tn−1)↔ R(tn, . . . , t2n−1)))

In building this tree, we use the natural deduction trees T′ and
T′′ shown in Figures 5.32 and 5.33, where T′(λ) = R(tn, . . . , t2n−1)
and T′′(λ) = R(t0, . . . , tn−1). When we insert T′, T′′ into the natu-
ral deduction tree of Figure 5.34, the leaves of these trees are all
cancelled.

At this point, we have shown that for every formula γ in the for-
mula groups 1 to 28, we have ∅ •�fondL γ. It follows from Lemma 5.6.13
that for every formula θ in the corresponding axiom groups (obtained

by generalizing the previous formulas), we have ∅ •�fondL θ. Thus

Γ
•�fondL θ for all axioms θ of HFL.
If θ ∈ Γ, the existence of the one-node natural deduction tree

(T, ∅) such that T(λ) = θ shows that Γ
•�nd θ.

First-Order Logic–Formal Systems 967

((x)α α x:=t) 1

α x:=t

(∀x)α
1

R→I

R∀E

Fig. 5.23. Natural Deduction Tree for ((∀x)α→ 〈α〉x:=t)

(α x:=t → (∃x)α) 1

(∃x)α

α x:=t 1

R→I

R∃I

Fig. 5.24. Natural Deduction Tree for (〈α〉x:=t → (∃x)α)

((∀x)(α → β) → ((∀x)α → (∀x)β)) 2

((∀x)α → (∀x)β) 1

(∀x)β

β

α (α → β)

(∀x)α 1 (∀x)(α → β) 2

R→I

R→I

R∀I

R→E

R∀ER∀E

Fig. 5.25. Natural Deduction Tree for ((∀x)(α→ β) → ((∀x)α→ (∀x)β))

968 Logical Foundations of Computer Science — Volume 2

(α → (∀x)α) 1

(∀x)α

α 1

R→I

R∀I

Fig. 5.26. Natural Deduction Tree for (α→ (∀x)α) where x �∈ FV(α)

((∀x)(¬α) → (¬(∃x)α)) 4

(¬(∃x)α) 3

(∀x)(¬α) 4 (¬(∀x)(¬α)) 2

(¬(∀x)(¬α)) 1

(¬α)

(∀x)(¬α) 1α 2(∃x)α 3

R→I

R¬I

R∃E

R¬I

R∀ER∀E

Fig. 5.27. Natural Deduction Tree for ((∀x)(¬α) → (¬(∃x)α))

t = t

Fig. 5.28. Natural Deduction Tree for t = t

(t0 = t1 → t1 = t0) 1

t1 = t0

t0 = t1 1

R→I

Rsym

Fig. 5.29. Natural Deduction Tree for (t0 = t1 → t1 = t0)

First-Order Logic–Formal Systems 969

((t0 = t1 ∧ t1 = t2) → (t0 = t2)) 1

t0 = t2

t0 = t1 t1 = t2

(t0 = t1 ∧ t1 = t2)1 (t0 = t1 ∧ t1 = t2)1

R→I

Rtrans

R∧ErR∧El

Fig. 5.30. Natural Deduction Tree for ((t0 = t1 ∧ t1 = t2) → (t0 = t2))

(θn−1,n → (f(t0, . . . , tn−1) == f(tn, . . . , f2n−1)) 1

f(t0, . . . , tn−1) == f(tn, . . . , t2n−1)

t0 = tn

tn−1 = t2n−1

θn−1,n 1θn−1,n 1θn−1,n 1

θn−2,n θn−2,n

θn−3,n · · ·
tn−2 = t2n−2

...

R→I

Rf

R∧ErR∧El

R∧El

R∧El

R∧El

R∧Er

θk,n = (t0 = tn ∧ · · · ∧ tk = tn+k) for 0 ≤ k ≤ n − 1

Fig. 5.31. Natural Deduction Tree for Formula Group 27

970 Logical Foundations of Computer Science — Volume 2

t0 = tn

tn−2 = t2n−2

tn−1 = t2n−1

θn−1,nθn−1,nθn−1,n

θn−2,n θn−2,n

θn−3,n

...

R∧ErR∧El

R∧El

R∧El

R∧El

R∧Er

Tree T

· · ·

R(t0, . . . , tn−1)

R(tn, . . . , t2n−1)

RR

Fig. 5.32. Natural Deduction Tree T′ Used in Proof of Theorem 5.6.14

t0 = tn

tn−2 = t2n−2

tn−1 = t2n−1

θn−1,nθn−1,nθn−1,n

θn−2,n θn−2,n

θn−3,n

...

R∧ErR∧El

R∧El

R∧El

R∧El

R∧Er

Tree T

· · ·

R(tn, . . . , t2n−1)

R(t0, . . . , tn−1)

RR

tn = t0

t2n−2 = tn−2

t2n−1 = tn−1

Rsym

Rsym

Rsym

Fig. 5.33. Natural Deduction Tree T′′ Used in Proof of Theorem 5.6.14

First-Order Logic–Formal Systems 971

(θn−1,n → (R(t0, . . . , tn−1) ↔ R(tn, . . . , t2n−1))) 2

(R(t0, . . . , tn−1) ↔ R(tn, . . . , t2n−1)) 1

R(t0, . . . , tn−1)R(tn, . . . , t2n−1)

θn−1,n 2 θn−1,n 2 θn−1,n 2 θn−1,n 2

R(t0, . . . , tn−1) 1 R(tn, . . . , t2n−1) 1

T T

· · · · · ·

R↔I

R→,I

Fig. 5.34. Natural Deduction Tree for Formulas in Group 27

Suppose now that (T0,M0) and (T1,M1) are natural deduction
trees for the L-formulas ϕ and (ϕ→ ψ), respectively, with

UNC(T0,M0),UNC(T1,M1) ⊆ Γ.

Then, by Rule 10 of Definition 5.6.3, (T,M) = ((T0,M0), (T1,M1);ψ)
is a natural deduction tree for ψ such that UNC(T,M) ⊆ Γ. There-

fore, Γ
•�fondL ψ. �

Theorem 5.6.15. There is an effective, syntactic algorithm that,
starting from a proof in HFL

Γ of an L-formula ϕ, yields a natural
deduction tree (T,M) such that T(λ) = ϕ and UNC(T,M) ⊆ Γ.

Proof. This was shown in the proof of the Completeness Theorem
for First-Order Natural Deduction. �

In presenting first-order natural deduction, we followed a path
parallel to the path followed in presenting propositional natural
deduction, that is, we combined a formal system with an annota-
tion of the proof trees of the system. This parallel is continued by
presenting first-order natural deduction purely as a formal system
(called FONDL).

972 Logical Foundations of Computer Science — Volume 2

Definition 5.6.16. The set of objects of the formal system FONDL

is P(FORML)× FORML; the set of axioms is

A =

{
{(Γ, ϕ) | ϕ ∈ Γ} if = �∈ L
{(Γ, ϕ) | ϕ ∈ Γ} ∪ {(Γ, t = t) | t ∈ TERML} otherwise.

The rules for introducing connective symbols remain the same as
the rules for propositional logic natural deduction and they are:

(Γ0, ϕ), (Γ1, ψ)

(Γ0 ∪ Γ1, (ϕ ∧ ψ))
∧- introduction

(Γ, ϕ)

(Γ, (ϕ ∨ ψ))
(Γ, ψ)

(Γ, (ϕ ∨ ψ)) ∨- introduction
(Γ ∪ {ϕ}, ψ)
(Γ, (ϕ→ ψ))

→ - introduction

(Γ0 ∪ {ϕ}, ψ), (Γ1 ∪ {ψ}, ϕ)
(Γ0 ∪ Γ1, (ϕ↔ ψ))

↔ - introduction

(Γ0 ∪ {ϕ}, ψ), (Γ1 ∪ {ϕ}, (¬ψ))
(Γ0 ∪ Γ1, (¬ϕ))

¬- introduction

The rules for eliminating connective symbols in FONDL are:

(Γ, (ϕ ∧ ψ))
(Γ, ϕ)

(Γ, (ϕ ∧ ψ))
(Γ, ψ)

∧-elimination

(Γ0, (ϕ ∨ ψ)), (Γ1 ∪ {ϕ}, α), (Γ2 ∪ {ψ}, α)
(Γ0 ∪ Γ1 ∪ Γ2, α)

∨-elimination

(Γ0, ϕ), (Γ1, (ϕ→ ψ))

(Γ0 ∪ Γ1, ψ)
→-elimination

(Γ0, ϕ), (Γ1, (ϕ↔ ψ))

(Γ0 ∪ Γ1, ψ)

(Γ0, ψ), (Γ1, (ϕ↔ ψ))

(Γ0 ∪ Γ1, ϕ)
↔-elimination

(Γ0 ∪ {(¬ϕ)}, ψ), (Γ1 ∪ {(¬ϕ))}, (¬ψ))
(Γ0 ∪ Γ1, ϕ)

¬-elimination

The rules for introducing quantifier symbols in FONDL are:

(Γ, ϕ)

(Γ, (∀x)ϕ) x �∈ FV(Γ) ∀-introduction
(Γ, 〈ϕ〉x:=t)
(Γ, (∃x)ϕ) ∃-introduction

First-Order Logic–Formal Systems 973

The rules for eliminating quantifier symbols in FONDL are:

(Γ, (∀x)ϕ)
(Γ, 〈ϕ〉x:=t)

∀-elimination

(Γ0, (∃x)ϕ), (Γ1 ∪ {ϕ}, ψ)
(Γ0 ∪ Γ1, ψ)

x �∈ FV(Γ1 ∪ {ψ}) ∃-elimination

The expansion rule is:

(Γ, ϕ)

(Γ′, ϕ)
for all sets of L-formulas Γ,Γ′ such that Γ ⊆ Γ′ and L-formulas ϕ.
(Note that there is no counterpart of the expansion rule in the propo-
sitional formal system ND because this is a derived rule in that
system, as stated in Exercise 73 of Chapter 3.)

In addition, if =∈ L, then we include in FONDL the following
equality rules:

(Γ, t0 = t1)

(Γ, t1 = t0)

Symmetry of
equality

(Γ0, t0 = t1), (Γ1, t1 = t2)

(Γ0 ∪ Γ1, t0 = t2)

Transitivity
of equality

(Γ0, t0 = tn), . . . , (Γn−1, tn−1 = t2n−1)

(
⋃n−1
i=0 Γi, f(t0, . . . , tn−1) = f(tn, . . . , t2n−1))

f -congru-
ence rule

(Γ0, t0 = tn), . . . , (Γn−1, tn−1 = t2n−1), (Γn, R(t0, . . . , tn−1))

(
⋃n
i=0 Γi, R(tn, . . . , t2n−1)

R-congru-
ence rule

for every function symbol f of positive arity and every relation sym-
bol R of positive arity.

Example 5.6.17. We prove that �FONDL (∅, ((∃x)(∀y)ϕ →
(∀y)(∃x)ϕ)) for all L-formulas ϕ, where L is a first-order language.

Consider the following proof:

(1) ({(∀y)ϕ}, (∀y)ϕ) axiom
(2) ({(∀y)ϕ}, ϕ) (1) and ∀-elimination
(3) ({(∀y)ϕ}, (∃x)ϕ) (2) and ∃-introduction
(4) ({(∀y)ϕ}, (∀y)(∃x)ϕ) (3) and ∀-introduction
(5) ({(∃x)(∀y)ϕ}, (∃x)(∀y)ϕ) axiom
(6) ({(∃x)(∀y)ϕ}, (∀y)(∃x)ϕ) (5), (4), and ∃-elimination
(7) (∅, ((∃x)(∀y)ϕ→ (∀y)(∃x)ϕ)) (6) and →-introduction

974 Logical Foundations of Computer Science — Volume 2

Theorem 5.6.18. Let L be a first-order language, Γ be a set of L-
formulas and let ϕ be an L-formula. Then, Γ

•�fondL ϕ if and only if
�FONDL (Γ, ϕ).

Proof. The argument expands the proof of the corresponding
propositional result (Theorem 3.6.16). We show first that Γ

•�fondL ϕ
implies �FONDL (Γ, ϕ). To this end, we use induction on natu-
ral deduction trees of L, to prove that if T = (T,M) is a natural
deduction tree of L such that UNC(T,M) ⊆ Γ and T(λ) = ϕ, then
�FONDL (Γ, ϕ). If T is a one-node natural deduction tree, we have
either ϕ ∈ Γ or ϕ is t = t, for some L-term t. In either case, (Γ, ϕ) is
an axiom of FONDL. This establishes the basis step.

According to the definition of natural deduction trees, we need
to consider several inductive steps. The arguments for the rules of
the form C-elimination or C-introduction, where C is a connective
symbol remain the same. We discuss here the inductive steps for the
∀-introduction and ∃-elimination rules.

Suppose that T0 = (T0,M0) is a natural deduction tree such that
T0(λ) = ψ, x �∈ FV(UNC(T0)) and that T = (T,M) is (T0; (∀x)ψ),
with UNC(T) ⊆ Γ.

By inductive hypothesis, (UNC(T0), ψ) is a theorem of
FONDL. We obtain �FONDL (UNC(T0), (∀x)ψ), by applying

the ∀-introduction rule of FONDL, because x �∈ FV(T0). Since
UNC(T0) = UNC(T), an application of the expansion rule gives
�FONDL (Γ, (∀x)ψ).

Now let T0 = (T0,M0),T1 = (T1,M1) be natural deduction
trees such that T0(λ) = (∃x)θ, T1(λ) = ψ and x �∈ FV({ψ} ∪
(UNC(T1)−{θ})). These trees yield the natural deduction tree T =
(T0, Lθ(T1);ψ). Suppose that UNC(T) = UNC(T0) ∪ (UNC(T1) −
{θ}) ⊆ Γ. By the inductive hypothesis (and possibly the expansion
rule), we have �FONDL (UNC(T0), (∃x)θ) and �FONDL ((UNC(T1)−
{θ}) ∪ {θ}, ψ). Applying the ∃-elimination rule, we obtain �FONDL
(UNC(T0) ∪ (UNC(T1) − {θ}), ψ) = (UNC(T), ψ), because x �∈
FV({ψ} ∪ (UNC(T1) − {θ})). An application of the expansion rule
yields �FONDL (Γ, ψ).

If =∈ L, we need to deal with additional inductive cases.
We discuss here only the case that involves n-ary function
symbols. Suppose that t0, . . . , t2n−1 are L-terms, f is an n-
ary function symbol of L with n > 0, and Ti = (Ti,Mi)

First-Order Logic–Formal Systems 975

is such that Ti(λ) = ti = ti+n for 0 ≤ i ≤ n − 1.
Let T = (T0, . . . ,Tn−1; f(t0, . . . , tn−1) = f(tn, . . . , t2n−1)) and sup-
pose that UNC(T) =

⋃n−1
i=0 UNC(Ti) ⊆ Γ. By inductive hypothesis,

we have �FONDL (Γ, ti = ti+n), for 0 ≤ i ≤ n − 1, which implies
�FONDL (Γ, f(t0, . . . , tn−1) = f(tn, . . . , t2n−1)) by the f -congruence
rule.

Conversely, we show by induction on the theorems of FONDL

that �FONDL (Γ, ϕ) implies Γ
•�fondL ϕ. For the basis step, let (Γ, ϕ)

be an axiom of FONDL. If ϕ ∈ Γ, the existence of the one node
natural deduction tree (T, ∅) with T(λ) = ϕ implies Γ

•�fondL ϕ. If ϕ
is t = t, then the existence of the one node natural deduction tree
(T, {λ}) with T(λ) = ϕ implies Γ

•�fondL ϕ.
There is one inductive step for each of the rules of FONDL. The

steps for C-introduction and C-elimination where C is a connective
symbol are the same as the corresponding propositional steps in the
proof of Theorem 3.6.16.

We discuss here only ∀-introduction, ∃-elimination, and
expansion.

Suppose that (Γ, (∀x)ϕ) is obtained from (Γ, ϕ) using the
∀-introduction rule. This means that x �∈ FV(Γ). By the

inductive hypothesis, Γ
•�fondL ϕ. Consequently, there is a first-

order natural deduction tree T0 = (T0,M0) such that
T0(λ) = ϕ and UNC(T0) ⊆ Γ. Thus, x �∈ FV(UNC(T0)),
which allows us to obtain the first-order natural deduction
tree T = (T0; (∀x)ϕ) with UNC(T) = UNC(T0) ⊆ Γ.

Thus, Γ
•�fondL (∀x)ϕ.

For the ∃-elimination case, suppose that (Γ0 ∪ Γ1, ψ) is obtained
from (Γ0, (∃x)ϕ) and (Γ1 ∪ {ϕ}, ψ) by the application of the ∃-
elimination rule, which means that x �∈ FV(Γ1 ∪ {ψ}). The induc-

tive hypothesis implies that Γ0
•�fondL (∃x)ϕ and Γ1

•�fondL ψ. Thus,
there are natural deduction trees T0 = (T0,M0) and T1 = (T1,M1)
with T0(λ) = (∃x)ϕ and T1(λ) = ψ such that UNC(T0) ⊆ Γ0 and
UNC(T1) ⊆ Γ1 ∪ {ϕ}. The previous condition imposed on x means
that x �∈ FV(ψ)∪FV(UNC(T1)−{ϕ}), which allows us to form the first-
order natural deduction tree T = (T0, Lϕ(T1);ψ). For T , we have

UNC(T) = UNC(T0)∪(UNC(T1)−{ϕ}) ⊆ Γ0∪Γ1, so Γ0∪Γ1
•�fondL ψ.

For the expansion rule, suppose that (Γ′, ϕ) is obtained from
(Γ, ϕ) by the application of the expansion rule, which means that

Γ ⊆ Γ′. By inductive hypothesis, Γ
•�fondL ϕ, so there is a natural

976 Logical Foundations of Computer Science — Volume 2

deduction tree T = (T,M) such that UNC(T) ⊆ Γ and T(λ) = ϕ.

Since Γ ⊆ Γ′, the same tree shows that Γ′ •�fondL ϕ. �

Corollary 5.6.19. Let L be a first-order language, Γ be a set of
L-formulas and ϕ be an L-formula. The following three statements
are equivalent:

(1) Γ
•�fondL ϕ;

(2) �FONDL (Γ, ϕ);
(3) Γ |= ϕ.

Proof. The statement follows from Theorems 5.6.12, 5.6.14
and 5.6.18. �

5.7 Transformations Between Formal Systems

In this section, we do for first-order logic what Section 3.7 did for
propositional logic, that is, discuss syntactic transformations between
proofs in different formalisms of the fact that Γ |= ϕ. The formalisms
we have considered so far are:

• a Hilbert-Frege system;
• tableaux with and without cut;
• sequent systems with and without cut;
• natural deduction.

Some of these transformations have already been presented. Others
will be introduced here.

5.7.1 From Unsigned Tableaux to Hilbert-Frege
Proofs

Definition 5.7.1. Let L be a first-order language, H be a formal
system whose objects are the L-formulas and Γ be a set of L-formulas.
An (H,Γ)-certificate of inconsistency is a pair (q, q′) of proofs in HΓ

such that for some L-formula α, q is a proof of α and q′ is a proof of
(¬α).

Effective versions of Theorems 5.2.29 and 5.2.30, and Corol-
lary 5.2.31 are given in the following theorem.

First-Order Logic–Formal Systems 977

Theorem 5.7.2.

(1) There is an effective, syntactic construction that starts with an
L-formula ϕ and an (HFL,Γ)-certificate of inconsistency (q, q′)
and produces a proof in HFL

Γ for ϕ.
(2) There is an effective, syntactic construction that starts with

(q, q′), an (HFL,Γ ∪ {(¬ϕ)})-certificate of inconsistency, and
yields a proof of ϕ in HFL

Γ .
(3) There is an effective, syntactic construction that starts with

(q, q′), an (HFL,Γ∪{ϕ})-certificate of inconsistency and (r, r′),
an (HFL,Γ ∪ {(¬ϕ)})-certificate of inconsistency and yields
(s, s′) an (HFL,Γ)-certificate of inconsistency.

Proof. The argument follows the same lines as the proof of Theo-
rem 3.2.15. �

Lemma 5.7.3. Let L be a first-order language, Γ be a set of
L-formulas and let ϕ be an L-formula that is either (αCβ) or
(¬(αCβ)). Then, there is an effective, syntactic construction that,
starting from (HFL,Γ ∪K)-certificates of inconsistency for all con-
stituents K of ϕ, produces (HFL,Γ′)-certificates of inconsistency
when Γ′ is Γ ∪ {ϕ,α, β}, Γ ∪ {ϕ, (¬α), β}, Γ ∪ {ϕ,α, (¬β)}, Γ ∪
{ϕ, (¬α), (¬β)}.

Proof. The proof is similar to the argument of Lemma 3.2.16. �

Theorem 5.7.4. Let L be a first-order language. There is an effec-
tive, syntactic construction that starts with a set Γ of L-formulas, an
L-formula ϕ of one of the forms (αCβ), (¬(αCβ)), or (¬(¬α)), and
(HFL,Γ ∪K)-certificates of inconsistency for all constituents K of
ϕ, and produces an (HF ,Γ ∪ {ϕ})-certificate of inconsistency.

Proof. If ϕ is a positive formula or a negated positive formula,
apply Lemma 5.7.3 and Theorem 5.7.2, Part (3).

If ϕ = (¬(¬α)), then we have an (HF ,Γ ∪ {α})-certificate of
inconsistency, which is also an (HF ,Γ ∪ {ϕ,α})-certificate of incon-
sistency. Also, note that ((¬α), (¬(¬α))) is an (HF ,Γ ∪ {ϕ, (¬α)})-
certificate of inconsistency. Using Theorem 5.7.2, Part (3), we obtain
an (HF ,Γ ∪ {ϕ})-certificate of inconsistency. �

Theorem 5.7.5. Let L be a first-order language. There is an effec-
tive, syntactic construction that starts with a set Γ of L-formulas,

978 Logical Foundations of Computer Science — Volume 2

a γ-formula ϕ = (∀x)ψ (ϕ = (¬(∃x)ψ)) in FORML and an
(HFL,Γ ∪ {ϕ, β})-certificate of inconsistency, where β = (ψ′)x:=t
(β = ((¬ψ′))x:=t) with ψ′ a variant of ψ such that t is substitutable
for x in ψ′ and produces an (HFL,Γ ∪ {ϕ})-certificate of inconsis-
tency.

Proof. Let (q0, q1) be an (HFL,Γ ∪ {ϕ, β})-certificate of inconsis-
tency. The formulas variant(ψ, x, t) and ψ′ are both variants of ψ,
so they are variants of each other. Since t is substitutable for x in
both of these formulas, by Supplement 83 of Chapter 4, 〈ψ〉x:=t =
(variant(ψ, x, t))x:=t and (ψ′)x:=t are variants. By Theorem 5.2.51,
we can effectively find an HFL proof (〈ψ〉x:=t ↔ (ψ′)x:=t). Fur-
ther, by Theorem 5.2.43, we can effectively find HFL proofs r0 of
(〈ψ〉x:=t → (ψ′)x:=t) and r1 of ((ψ′)x:=t → 〈ψ〉x:=t).

First suppose that ϕ = (∀x)ψ and β = (ψ′)x:=t. Then, (q′0, q′1) is
an (HFL,Γ ∪ {ϕ})-certificate of inconsistency, where

q′i = (((∀x)ψ → 〈ψ〉x:=t), (∀x)ψ, 〈ψ〉x:=t)r0qi.

Now suppose that ϕ = (¬(∃x)ψ) and β = ((¬ψ′))x:=t = (¬(ψ′)x:=t).
Let r be a propositional proof in HF of the formula ((p → q) →
((¬q)→ (¬p))). We remind the reader that one such proof was pro-
vided in Part (d) of Supplement 3 of Chapter 3. Let r′ be the proof
in HFL obtained by replacing p with 〈ψ′〉x:=t and q with (∃x)ψ and
let r′′ be the HFL proof obtained by replacing p with (ψ′)x:=t and q
with 〈ψ〉x:=t. Then the sequence r′′′ given by

r′((〈ψ〉x:=t → (∃x)ψ),
((¬(∃x)ψ) → (¬〈ψ〉x:=t)))r1·
r′′(((¬〈ψ〉x:=t)→ (¬(ψ′)x:=t)))

is an HFL-proof. This allows us to obtain an (HFL,
Γ ∪ {ϕ})-certificate of inconsistency as (q′0, q′1), where q′i =
r′′′((¬(∃x)ψ), (¬〈ψ〉x:=t))qi, for i ∈ {0, 1}. �

Theorem 5.7.6. Let L be a first-order language. There is an effec-
tive, syntactic construction that starts with a set Γ of L-formulas,

First-Order Logic–Formal Systems 979

a δ-formula ϕ in FORML and an (HFL,Γ∪{β})-certificate of incon-
sistency, where

β =

{
〈ψ〉x:=c if ϕ = (∃x)ψ
〈(¬ψ)〉x:=c if ϕ = (¬(∀x)ψ),

and c ∈ L is a constant symbol that does not occur in either Γ or ϕ,
and produces an (HF ,Γ ∪ {ϕ})-certificate of inconsistency.

Proof. Starting from an (HFL,Γ∪{β})-certificate of inconsistency
(q0, q1), by the first part of Theorem 5.7.2, we can construct effec-
tively an (HFL,Γ∪{β})-certificate of inconsistency (r0, r1) such that
there is a formula α that does not contain c, r0 is a proof of α, and
r1 is a proof of (¬α).

In the first case, we have ϕ = (∃x)ψ and β = 〈ψ〉x:=c. Applying
Theorem 5.2.23 with Γ replaced by Γ ∪ {(∃x)ψ} to the certificate
of inconsistency (r0, r1), we obtain effectively the (HFL,Γ ∪ {ϕ})-
certificate of inconsistency (r′0, r′1), where the formula proved by r′i
is the same as the formula proved by ri for i ∈ {0, 1}.

In the second case, we have ϕ = (¬(∀x)ψ) and β = 〈(¬ψ)〉x:=c.
Again, by Theorem 5.2.23, we obtain effectively the (HFL,Γ ∪
{(¬(∀x)ψ), (∃x)(¬ψ)})-certificate of inconsistency (r′0, r

′
1). In Exam-

ple 5.2.33, we saw that one can find effectively a proof r for
((¬(∀x)ψ) → (∃x)(¬ψ)). Let r′ be the sequence r((¬(∀x)ψ)). Then,
the pair (r′r′0, r

′r′1) is the desired (HFL,Γ∪{ϕ})-certificate of incon-
sistency. �

Theorem 5.7.7. Let L be a first-order language that contains the
equality symbol. There is an effective, syntactic construction that
starts with an (HFL,Γ ∪ {α})-certificate of inconsistency, where Γ
is a set of L-formulas and α ∈ INSTL,VAR(Eq=,L) and produces an

(HFL,Γ)-certificate of inconsistency.

Proof. Since α is an axiom of HFL, when L contains the equality
symbol, the statement follows immediately because the same pair of
proofs that serves as an (HFL,Γ ∪ {α})-certificate of inconsistency
will serve as an (HFL,Γ)-certificate of inconsistency. �

Lemma 5.7.8. Let L be a first-order language, Γ,Γ′ be two sets of
L-formulas and f be a function f : Γ −→ Γ′ such that for all ϕ ∈ Γ,

980 Logical Foundations of Computer Science — Volume 2

f(ϕ) is a variant of ϕ. There is an effective, syntactic construction
that starts with an HFL

Γ proof of ψ and produces an HFL
Γ′ proof of

the same formula.

Proof. We first argue that for every formula ϕ ∈ Γ, we can con-
struct effectively a proof for Γ′ �HFL ϕ. Indeed, since f(ϕ) is a
variant of ϕ, starting from f(ϕ) and ϕ, we can construct effectively
a proof for (f(ϕ) ↔ ϕ) by Theorem 5.2.51, and hence, by The-
orem 5.2.43, a proof of (f(ϕ) → ϕ). Since f(ϕ) ∈ Γ′, by Modus
Ponens, we obtain effectively a proof of Γ′ �HFL ϕ.

Now, suppose that the sequence (ψ0, . . . , ψi, . . . , ψn−1) is a proof

in HFL
Γ of ψ = ψn−1. For each formula ψi that is a member of Γ,

we replace ψi by its proof in HFL
Γ′ as given by the first part of the

argument. This results in a proof of ψ in HFL
Γ′ . �

Theorem 5.7.9. Let L be a first-order language. There is an
effective, syntactic construction that starts with two sets Γ,Γ′ of
L-formulas, a function f : Γ −→ Γ′ such that for all ϕ ∈ Γ, f(ϕ)
is a variant of ϕ and an (HFL,Γ)-certificate of inconsistency, and
produces an (HF ,Γ′)-certificate of inconsistency.

Proof. This statement follows immediately from Lemma 5.7.8. �

Using the previous results, we can show that the collection of sets
of Lc-formulas CL that consists of those sets of formulas that are Lc-
consistent and contain a finite number of constant symbols in Lc−L is
an (Lc,VAR)-consistency property. Recall that in Theorem 4.12.23,
we have shown that for every first-order language L and L-suitable
set of variables V , every member of an (L, V)-consistency property
is a satisfiable set of formulas. Thus, we will be able to obtain an
alternative proof of the completeness of HFL.

Theorem 5.7.10. Let L be a first-order language. The collection CL
defined above is an (Lc,VAR)-consistency property.

Proof. We claim that CL satisfies the conditions of Defini-
tion 4.12.22. We deal here only with the second condition. The
remaining conditions have relatively simpler arguments and are left
to the reader.

Let Γ ∈ CL and let ϕ ∈ Γ−LITLc , where ϕ is not a γ-formula. The
case when ϕ is a propositional formula follows from Theorem 5.7.4

First-Order Logic–Formal Systems 981

plus the fact that if Γ contains finitely many constant symbols in
Lc−L, the same applies to Γ∪K for any constituent K of ϕ. Suppose
therefore that ϕ is a δ-formula. There are two subcases to consider
depending on whether ϕ has the form (∃x)ψ or (¬(∀x)ψ).

In the first subcase, let c be an Lc-constant symbol that does
not occur in Γ. The existence of c is assured by the fact that Γ
contains finitely many constant symbols in Lc−L. By Theorem 5.7.6,
Γ∪{〈ψ〉x:=c} is Lc-consistent and clearly contains only finitely many
constant symbols in Lc − L. The second subcase is similar and can
be shown using the same theorem. �

The previous developments provide an alternative argument for
Theorem 5.2.39, which is a key ingredient in proving the complete-
ness of HFL. Let Γ be an L-consistent set. Then, by Theorem 5.2.36,
Γ is Lc-consistent set and thus it belongs to CL. Since CL is a consis-
tency property and every member of such a collection is satisfiable
by Theorem 4.12.23, it follows that Γ is satisfiable.

The main result of the subsection is given next.

Theorem 5.7.11. For a first-order language L, there is an effec-
tive, syntactic construction that starts with a strongly closed (Γ ∪
{(¬ϕ)},L,VAR)-tableau T and produces a proof in HFL

Γ of ϕ, where
Γ is a set of L-formulas and ϕ is an L-formula.

Proof. Since T is strongly closed, we have (HFL, T(q))-certificates
of inconsistency for each of its leaves q. Using Theorems 5.7.4 to 5.7.9
repeatedly, we can construct an (HFL, T(λ))-certificate of inconsis-
tency, where T(λ) = Γ ∪ {(¬ϕ)}. By applying Part (2) of Theo-
rem 5.7.2, we can construct effectively a proof of ϕ in HFL. �

5.7.2 From Natural Deduction Trees to
Sequent Proofs

Theorem 5.7.12. Let L be a first-order language with infinitely
many constant symbols. There is a syntactic algorithm that takes
as input a first-order natural deduction tree T = (T,M) in
FONDTL and produces as output an F seq,cut

L,VAR -proof tree of the sequent

UNC(T)⇒ T(λ).

982 Logical Foundations of Computer Science — Volume 2

Proof. We give a recursive algorithm, based on the inductive def-
inition of natural deduction tree (cf. Definition 5.6.3). We proceed
according to the first case of this definition that is applicable to T .

For the basis step, when T consists of one node, we have either
T = (T, ∅) or T = (Tt=t, {λ}). The first case can be dealt with exactly
in the same manner as in the proof of Theorem 3.7.3. For the second
case, observe that t = t ⇒ t = t is an axiom of F seq,cut

L,VAR , so we can

derive ∅ ⇒ t = t by rule R=,l.
If T is obtained by an application at the root of a propositional

introduction or elimination rule, the argument proceeds along the
same lines as the corresponding propositional argument.

If T = (T,M) is obtained by an application of the ∀-introduction
rule at the root, then we have T = (T0; (∀x)ϕ), where T0 is a first-
order natural deduction tree in FONDTL, whose root is labelled with
ϕ and x does not occur free in UNC(T0) = UNC(T). By induc-
tive hypothesis, we have an F seq,cut

L,VAR -proof tree T′ of the sequent

UNC(T0) ⇒ ϕ. Define the tree T′′ by Dom(T′′) = Dom(T′) and
T′′(q) = (T′(q))x:=c, where c is a constant symbol of L that is not
an eigenconstant of T′ and does not occur in UNC(T0) or in ϕ. The
existence of c follows from the fact that L contains an infinite supply
of constant symbols and from the finiteness of T′. By Corollary 5.5.43,
T′′ is a F seq,cut

L,VAR -proof tree of the sequent (UNC(T0))x:=c ⇒ (ϕ)x:=c,

which is actually UNC(T0) ⇒ (ϕ)x:=c because x does not occur
free in UNC(T0) = UNC(T). Thus, applying the rule R∀,r at

the root of T′′, we obtain the desired F seq,cut
L,VAR -proof of the sequent

UNC(T)⇒ (∀x)ϕ.
Suppose now that T = (T,M) is obtained by an application of

the ∀-elimination rule at the root. This means that T = (T0; 〈ϕ〉x:=t),
for some L-term t, where T0 is a first-order natural deduction
tree in FONDTL, whose root is labelled with (∀x)ϕ. By induc-
tive hypothesis, we have an F seq,cut

L,VAR -proof tree T′ of the sequent

UNC(T0) ⇒ (∀x)ϕ. Consider now the F seq,cut
L,VAR -proof tree T1 shown

in Figure 5.35(a), obtained by applying the rule R∀,l to the axiom
(∀x)ϕ, 〈ϕ〉x:=t ⇒ 〈ϕ〉x:=t. By Theorem 5.5.41, we obtain from T′ and
T1 an F seq,cut

L,VAR -proof tree for the sequent UNC(T0) ⇒ 〈ϕ〉x:=t which
equals UNC(T)⇒ 〈ϕ〉x:=t.

Suppose now that T = (T,M) is obtained by an application of
the ∃-introduction rule at the root. This means that T = (T0; (∃x)ϕ),

First-Order Logic–Formal Systems 983

(∀x)ϕ, ϕ x:=t ϕ x:=t

(∀x)ϕ ϕ x:=t

ϕ x:=t ⇒ (∃x)ϕ, ϕ x:=t

ϕ x:=t ⇒ (∃x)ϕ

R∀,l R∃,r

(a) (b)

Fig. 5.35. F seq,cut
L,VAR -proof Trees

where T0 is a first-order natural deduction tree in FONDTL, whose
root is labelled with 〈ϕ〉x:=t, for some L-term t. By inductive hypoth-
esis, we have an F seq,cut

L,VAR -proof tree T′ of the sequent UNC(T0) ⇒
〈ϕ〉x:=t. Consider now the F seq,cut

L,VAR -proof tree T1 shown in Fig-

ure 5.35(b), obtained by applying the rule R∃,r to the axiom
〈ϕ〉x:=t ⇒ (∃x)ϕ, 〈ϕ〉x:=t. By Theorem 5.5.41, we obtain from T′ and
T1 an F seq,cut

L,VAR -proof tree for the sequent UNC(T0) ⇒ (∃x)ϕ which

equals UNC(T)⇒ (∃x)ϕ.
Now, assume that T = (T,M) results from an application of the

∃-elimination rule at the root. We can write T = (T0, Lϕ(T1);ψ),
where T0 is a first-order natural deduction tree in FONDTL, whose
root is labelled with (∃x)ϕ, T1 is the same kind of tree whose
root is labelled ψ and x �∈ FV({ψ} ∪ (UNC(T1) − {ϕ})). By the
inductive hypothesis, we have F seq,cut

L,VAR -proof trees T′ of the sequent

UNC(T0) ⇒ (∃x)ϕ and T′′ of the sequent UNC(T1) ⇒ ψ. By thin-
ning, we obtain the F seq,cut

L,VAR -proof tree T′′1 = (T′′;UNC(T1), ϕ ⇒ ψ).

Note that the root of this tree is labelled by (UNC(T1)−{ϕ}), ϕ⇒ ψ.
Suppose that x ∈ FV(ϕ). Then, by applying Corollary 5.5.43, we can
construct the F seq,cut

L,VAR -proof tree T′′2 with the same domain as T′′1 and

T′′2(q) = (T′′1(q))x:=c, where c is a constant symbol of L that is not an
eigenconstant in T′′1. Since x �∈ FV({ψ}∪ (UNC(T1)−{ϕ})), it follows
that the root of T′′2 is labelled by (UNC(T1)−{ϕ}), (ϕ)x:=c ⇒ ψ. By

a nondegenerate application of the rule R∃,l, we obtain the F seq,cut
L,VAR -

proof tree T′′3 = (T′′2; (UNC(T1) − {ϕ}), (∃x)ϕ ⇒ ψ). If x does not
occur free in ϕ, we define T′′3 = (T′′1; (UNC(T1) − {ϕ}), (∃x)ϕ ⇒ ψ),
using a degenerate application of R∃,l. An application of the thin-
ning rule at the root of T′′3 yields T′′4 = (T′′3 ;UNC(T0) ∪ (UNC(T1) −
{ϕ}), (∃x)ϕ ⇒ ψ). By applying thinning to T′, we obtain T′1 =
(T′;UNC(T0)∪(UNC(T1)−{ϕ})⇒ ψ, (∃x)ϕ). Finally, an application

984 Logical Foundations of Computer Science — Volume 2

of the cut rule produces the F seq,cut
L,VAR -proof tree (T′′4 , T′1;UNC(T0) ∪

(UNC(T1)− {ϕ})⇒ ψ), which is the desired proof tree.
Now, we treat the cases that arise when = is in L. Let T = (T,M)

result from an application of =-symmetry at the root. We have T =
(T0; t1 = t0), where T0 is a first-order natural deduction tree whose
root is labelled with the formula t0 = t1. By inductive hypothesis,
we have a proof tree T′ for the sequent UNC(T0) ⇒ t0 = t1. By
Example 5.5.10, we can find a proof tree for the sequent t0 = t1, (t0 =
t1 → t1 = t0)⇒ t1 = t0. By the rule R=,l we obtain a proof tree for
the sequent t0 = t1 ⇒ t1 = t0. Finally, by Theorem 5.5.41, we obtain
a proof tree for UNC(T0)⇒ t1 = t0, which is UNC(T)⇒ t1 = t0.

If T involves an application of =-transitivity at the root, we
can write T = (T0,T1; t0 = t2), where T0,T1 are first-order natu-
ral deduction trees whose roots are labelled by t0 = t1 and t1 = t2,
respectively. By the inductive hypothesis, we have the proof trees
T′0, T′1 whose roots are labelled by the sequents UNC(T0) ⇒ t0 =
t1 and UNC(T1) ⇒ t1 = t2, respectively. By applying thinning,
the proof trees T′0, T

′
1 yield the proof trees T′′0, T

′′
1 for the sequents

UNC(T0),UNC(T1) ⇒ t0 = t1 and UNC(T0),UNC(T1) ⇒ t1 = t2,
respectively. By an application of the rule R∧,r, we get the proof
tree T′′′ for the sequent UNC(T0),UNC(T1) ⇒ (t0 = t1 ∧ t1 = t2).
Example 5.5.10 produces a proof tree T(iv) for the sequent

(t0 = t1 ∧ t1 = t2), ((t0 = t1 ∧ t1 = t2)→ t0 = t2)⇒ t0 = t2.

An application of R=,l generates the proof tree T(v) for the sequent
(t0 = t1 ∧ t1 = t2) ⇒ t0 = t2. By combining the proof trees
T′′′ with T(v) using Theorem 5.5.41, we obtain a proof tree for
UNC(T0),UNC(T1)⇒ t0 = t2.

Suppose now that we apply f -congruency at the root of T , where
f is an n-ary function symbol with n > 0. Then,

T = (T0, . . . ,Tn−1; f(t0, . . . , tn−1) = f(tn, . . . , t2n−1)),

where the root of Ti is labelled with ti = ti+n for 0 ≤ i ≤ n − 1.
By the inductive hypothesis, we can construct F seq,cut

L,V -proof trees

T′i for the sequents UNC(Ti) ⇒ ti = ti+n, where 0 ≤ i ≤
n − 1. By applying thinning, we obtain the proof trees T′′i for
UNC(T0), . . . ,UNC(Tn−1) ⇒ ti = ti+n, for 0 ≤ i ≤ n − 1. By the
argument presented in Example 5.5.34, we obtain a F seq,cut

L,V -proof

First-Order Logic–Formal Systems 985

tree T′′′ for UNC(T0), . . . ,UNC(Tn−1)⇒ (t0 = tn∧· · ·∧tn−1 = t2n−1).
By applying “modus ponens” for sequents (discussed in Exam-
ple 5.5.10), we have a proof tree T(iv) for the sequent

(t0 = tn ∧ · · · ∧ tn−1 = t2n−1),

((t0 = tn ∧ · · · ∧ tn−1 = t2n−1)→ f(t0, . . . , tn−1) = f(tn, . . . , t2n−1))

⇒ f(t0, . . . , tn−1) = f(tn, . . . , t2n−1).

By the rule R=,l, we can derive from T(iv) the proof tree T(v) for

(t0 = tn ∧ · · · ∧ tn−1 = t2n−1)⇒ f(t0, . . . , tn−1) = f(tn, . . . , t2n−1).

Finally, by Theorem 5.5.41, we obtain a proof tree for the sequent

UNC(T0), . . . ,UNC(Tn−1)⇒ f(t0, . . . , tn−1) = f(tn, . . . , t2n−1).

Let T be obtained by applying P -congruency at the root,
where P is an n-ary relation symbol with n > 0. We have T =
(T0, . . . ,Tn;P (tn, . . . , t2n−1)), where the root of Ti is labelled by
ti = tn+i, for 0 ≤ i ≤ n − 1 and the root of Tn is labelled
by P (t0, . . . , tn−1). By the inductive hypothesis, we can construct
F seq,cut
L,V -proof trees T0, . . . , Tn for the sequents UNC(T0) ⇒ t0 =

tn, . . . ,UNC(Tn−1)⇒ tn−1 = t2n−1 and UNC(Tn)⇒ P (t0, . . . , tn−1),
respectively.

By applying thinning, we obtain proof trees T′0, . . . , T′n for the
sequents

UNC(T0), . . . , UNC(Tn)⇒ t0 = tn

...

UNC(T0), . . . , UNC(Tn)⇒ tn−1 = t2n−1

UNC(T0), . . . , UNC(Tn)⇒ P (t0, . . . , tn−1),

respectively. By applying the argument from Example 5.5.34, we can
construct a proof tree T′′ starting from T′0, . . . , T′n−1 for the sequent

UNC(T0), . . . , UNC(Tn)⇒ (t0 = tn ∧ · · · ∧ tn−1 = t2n−1).

986 Logical Foundations of Computer Science — Volume 2

By using “modus ponens” for sequents, we construct a proof tree T′′′
for the sequent

(t0 = tn ∧ · · · ∧ tn−1 = t2n−1),

((t0 = tn ∧ · · · ∧ tn−1 = t2n−1)→ (P (t0, . . . , tn−1)

↔ P (tn, . . . , t2n−1)))

⇒ (P (t0, . . . , tn−1)↔ P (tn, . . . , t2n−1)).

Starting from T′′′ and applying R=,l, we obtain the proof tree T(iv)

for the sequent

(t0 = tn∧· · ·∧ tn−1 = t2n−1)⇒ (P (t0, . . . , tn−1)↔ P (tn, . . . , t2n−1)).

By applying Theorem 5.5.41 to T′′ and T(iv), we obtain a proof tree
T(v) for the sequent

UNC(T0), . . . ,UNC(Tn)⇒ (P (t0, . . . , tn−1)↔ P (tn, . . . , t2n−1)).

By applying the argument from Example 5.5.34 to T′n and T(v), we
obtain a proof tree T(vi) for the sequent

UNC(T0), . . . ,UNC(Tn)
⇒ (P (t0, . . . , tn−1) ∧ (P (t0, . . . , tn−1)↔ P (tn, . . . , t2n−1))).

A proof tree T(vii) for the sequent

(P (t0, . . . , tn−1) ∧ (P (t0, . . . , tn−1)

↔ P (tn, . . . , t2n−1))⇒ P (tn, . . . , t2n−1)

is obtained using Example 5.5.11. Finally, we apply Theorem 5.5.41
to the proof trees T(vi) and T(vii) to obtain a proof tree for the sequent
UNC(T0), . . . ,UNC(Tn)⇒ (P (tn, . . . , t2n−1). �

Corollary 5.7.13. Let L be a first-order language with infinitely
many constant symbols and let Γ be a set of L-formulas. There is a
syntactic algorithm that takes as input a first-order natural deduction
tree T = (T,M) in FONDTL with UNC(T) ⊆ Γ and produces as
output an F seq,cut

L,VAR -proof tree of the sequent Γ⇒ T(λ).

Proof. Applying Theorem 5.7.12, we can transform effectively the
natural deduction tree T = (T,M) into an F seq,cut

L,V -proof tree for the

First-Order Logic–Formal Systems 987

Tableaux

without cut

Tableaux

with cut

Sequents

with cut

Sequents

without cut

Natural

Deduction

Hilbert–Frege

Systems

Unsigned

Tableau

without cut

Unsigned

Tableau

with cut

Fig. 5.36. General Layout of Transformations

sequent UNC(T) ⇒ T(λ). An application of thinning yields a proof
tree for Γ⇒ T(λ). �

5.7.3 Closing the Circle

We now close the circle; that is, using results we have proven so far,
we show how to transform a formal proof that Γ |= ϕ in one system
into a formal in another one. The general layout of these transforma-
tions is similar to the one used in propositional logic and is shown
in Figure 5.36. However, in first-order logic, we need to consider the
language and the set of free variables used in the formal proofs. If
Γ and ϕ are respectively a set of L-formulas and an L-formula, the
language which allows us to perform these transformations is Lc.
Whenever the set of free variables is relevant, we use the set of all
variables VAR.

988 Logical Foundations of Computer Science — Volume 2

strongly closed

(Δ, Lc, VAR))-tableau

without cut

Fseq
Lc,VAR

-proof tree

for Γ ⇒ ϕ

natural deduction

tree T = (T, M) of Lc

with UNC(T) ⊆ Γ

and T(λ) = ϕ
HFLc

Γ -proof

tree for ϕ

HFL
Γ -proof

tree for ϕ

strongly closed

(Γ ∪ {(¬ϕ)}, Lc, VAR)-tableau

without cut

strongly closed

(Γ ∪ {(¬ϕ)}, Lc, VAR)-tableau

with cut

strongly closed

(Δ, Lc, VAR)-tableau

with cut

Fseq,cut
Lc,VAR

-proof tree

for Γ ⇒ ϕ

Construction 5.4.13

Theorem 5.5.40

Theorem 5.6.15

Theorem 5.5.33

Corollary 5.7.13Algorithm 5.3.46

Theorem 5.7.11

Theorem 5.2.21

Theorem 5.5.16

Supplement 43

Fig. 5.37. Objects Being Transformed

The specific objects being transformed as well as the results
involved are shown in Figure 5.37, where Δ is the set of signed for-
mulas Δ = {Tψ | ψ ∈ Γ} ∪ {Fϕ}.

5.8 First-Order Resolution

We introduce now the first-order analog of the notion of clause from
propositional logic.

Definition 5.8.1. Let L be a first-order language. An L-clause is
a finite set of literals of L. If C is an L-clause for some first-order
language L, then C is a clause.

We denote by CLAUSESL the set of all L-clauses.
A set of clauses C is admissible if there is a first-order language L

such that C ⊆ CLAUSESL.
If a clause C consists of ground literals, then we say that C is a

ground clause.

First-Order Logic–Formal Systems 989

As in propositional logic, the empty clause will be called “box”
and denoted by �.

We use the letters C,D,E, with or without subscripts, to denote
clauses and C,D, E to denote sets of clauses.

If C is a clause, let V(C) be the set of all variables that occur in
the formulas of C. For a set of clauses C, we define the sets V(C) =⋃
C∈C V(C) and LIT(C) =

⋃
C. In other words, LIT(C) is the set of

literals which appear in some clause of C.
For first-order logic, we maintain the same notational differenti-

ation between the empty clause denoted by � and the empty set of
clauses denoted by ∅.

When we write clauses, we will systematically omit outer paren-
theses for a negative literal.

The next definition introduces several kinds of clauses we will be
using.

Definition 5.8.2. A clause is a

• tautologous clause if it contains both a literal and its complement;
• Horn clause if it contains at most one positive literal;
• positive clause if it contains only positive literals;
• negative clause if it contains only negative literals;
• unit clause if it consists of a single literal.

Definition 5.8.3. Let C be a set of clauses of first-order logic. A
set of clauses C0 of propositional logic is a propositional form for C if
there is an inter-substitution s such that s(C0) = C.

Using the usual extension of functions to sets and collections of
sets, s(C0) is the set of clauses {s(C) | C ∈ C0}. Note that s(C) is
already defined because C is a set of propositional formulas.

Example 5.8.4. Let C = {{R(x), R(y)}, {(¬R(x)), R(z)}}. Observe
that all of the following sets of propositional clauses are propositional
forms for C:

C0 = {{p0, p1}, {(¬p0), p2}}
C1 = {{p0, p1, p2}, {p3, p4}}
C2 = {{p0, p1}, {(¬p3), p4}}

990 Logical Foundations of Computer Science — Volume 2

For example, for C1, an adequate inter-substitution is any inter-
substitution s such that s(p0) = s(p1) = R(x), s(p2) = R(y),
s(p3) = (¬R(x)) and s(p4) = R(z). Clearly, this is not an injec-
tive substitution. Observe that C0 is, in a certain sense, the “best”
propositional form for C because it uses the smallest number of propo-
sitional variables each of which is mapped to a positive literal.

Definition 5.8.5. Let C be a set of clauses of first-order logic. If s
a prime injective inter-substitution and C0 is a set of propositional
clauses such that s(C0) = C, then we say that C0 is a fundamental
propositional form for C.

Recall that a prime inter-substitution maps propositional vari-
ables into atomic or quantified formulas. In the case of clauses, this
amounts to mapping propositional variables just to atomic formulas.

Example 5.8.6. For the set of clauses C considered in Exam-
ple 5.8.4, the inter-substitution s defined by s(p0) = R(x), s(p1) =
R(y), s(p2) = R(z) and s(pk) = R(xk0+k), for k ≥ 3, where
{x, y, z} ⊆ {x0, . . . , xk0−1} is an injective, prime inter-substitution
with s(C0) = C. Thus, C0 is a fundamental propositional form for C.

Theorem 5.8.7. Let C be a set of clauses of first-order logic. There
is a fundamental propositional form C0 for C.
Proof. The argument is similar to the one of Theorem 4.8.7 and
it is left to the reader. �

Definition 5.8.8. Let C be an L-clause, A be an L-structure and
σ be an assignment over A; (A, σ) satisfies C if (A, σ) |= � for some
literal � ∈ C. This will be denoted by (A, σ) |= C.

The pair (A, σ) satisfies a set of L-clauses C if (A, σ) satisfies
every clause in C. This will be denoted by (A, σ) |= C.

An L-clause is satisfiable if there is an L-structure A and an
assignment σ over A such that (A, σ) |= C; likewise, a set of L-
clauses is satisfiable if there is such a pair (A, σ) that satisfies the set
of clauses.

An L-structure A is a model for an L-clause C if (A, σ) |= C for
all σ ∈ ASSIGNA. This is denoted by A |= C.

An L-structure A is a model for a set of L-clauses C if A |= C for
all C ∈ C. This is denoted by A |= C.

First-Order Logic–Formal Systems 991

As in propositional logic, note that the notion of satisfaction of a
set of formulas introduced in Definition 4.5.9 is quite different from
the notion of satisfying a clause given above. We rely on the context
to differentiate between these concepts.

Note that every nonempty clause is satisfiable.
We shall prove later that satisfiability and having a model are

independent of the language used.
The following theorem gives the basic properties of clause satis-

faction.

Theorem 5.8.9. Let L be a first-order language, C and D be sets of
L-clauses, and let A be an L-structure and σ ∈ ASSIGNA.

(1) If C ⊆ D, then (A, σ) satisfies D implies that (A, σ) satisfies C.
(2) If C ⊆ D, then if D is satisfiable, C is satisfiable and if C is

unsatisfiable, D is unsatisfiable.
(3) � is an unsatisfiable clause and {�} is an unsatisfiable set of

clauses.
(4) ∅ is a satisfiable set of clauses.
(5) If C contains �, then C is unsatisfiable.
(6) If C is a tautologous clause, then (A, σ) satisfies C.

Proof. The argument is similar to that of Theorem 3.8.6. �

The next result deals with the existence of models for sets of
clauses.

Theorem 5.8.10. Let L be a first-order language and C and D be
sets of L-clauses.

(1) If C ⊆ D and D has a model, then C has the same model.
(2) � is a clause that has no model and {�} is a set of clauses that

has no model.
(3) ∅ is a set of clauses that has a model.
(4) If C contains �, then C has no model.

Proof. The proof is straightforward and is left to the reader. �

Definition 5.8.11. Let C = {�0, . . . , �n−1} be a nonempty clause,
where the literals are listed in the standard order of formulas.

992 Logical Foundations of Computer Science — Volume 2

The disjunctive normal form formula ϕC that represents C is

ϕC = (�0 ∨ · · · ∨ �n−1).

If C is a set of clauses such that � �∈ C, then the set of formulas ΓC
is the set {ϕC | C ∈ C}.

Let

ϕ =
n−1∧
i=0

(�i0 ∨ · · · ∨ �imi−1)

where each �ij is a literal, be a formula in conjunctive normal form.
The clause set associated with ϕ is

Cϕ = {{�i0, . . . , �imi−1} | 0 ≤ i ≤ n− 1}.

If Γ is a set of L-formulas in conjunctive normal form, then the
set of clauses CΓ is

⋃
{Cϕ | ϕ ∈ Γ}.

Note that if C is a set of L-clauses such that � �∈ C, then ΓC is
a set of L-formulas and if ϕ is an L-formula in conjunctive normal
form, then Cϕ is a set of L-clauses.

We leave to the reader to verify that

CΓC = C (5.4)

for any set of clauses C such that � �∈ C.
Note also that if ϕ is in conjunctive normal form, then Cϕ is a set

of Horn clauses if and only if ϕ is a Horn formula.
The following result allows us to translate satisfiability of formulas

and the existence of models for formulas in conjunctive normal form
into the corresponding properties of sets of clauses.

Theorem 5.8.12. Let L be a first-order language, A be an
L-structure and σ ∈ ASSIGNA.

If ϕ is an L-formula in conjunctive normal form, then (A, σ) |= ϕ
if and only if (A, σ) |= Cϕ. Further, A |= ϕ if and only if A |= Cϕ.

If C is a set of L-clauses such that � �∈ C , then (A, σ) |= C if and
only if (A, σ) |= ΓC. Also, A |= C if and only if A |= ΓC.

Proof. The argument is straightforward. �

First-Order Logic–Formal Systems 993

Corollary 5.8.13. If Γ is a set of L-formulas in conjunctive normal
form, then Γ is satisfiable (has a model) if and only if CΓ is satisfiable
(has a model) as a set of L-clauses.

If C is a set of L-clauses that does not contain �, then C is satisfi-
able (has a model) as a set of L-clauses if and only if ΓC is satisfiable
(has a model).

Proof. The proof is immediate and is left to the reader. �

Corollary 5.8.14. If C is a set of ground L-clauses, then C has a
model if and only if C is satisfiable.

Proof. If� �∈ C, this follows from Corollary 5.8.13 and the fact that
a set of closed formulas has a model if and only if it is satisfiable. If
� ∈ C, then C is not satisfiable and has no model. �

The next corollary establishes the independence of satisfiability
(existence of a model) for sets of clauses relative to the first-order
language in which satisfiability (having a model) is considered.

Corollary 5.8.15. Let L and L′ be two first-order languages such
that C is both a set of L-clauses and a set of L′-clauses. Then, C is
satisfiable (has a model) as a set of L-clauses if and only if C is
satisfiable (has a model) as a set of L′-clauses.

Proof. If � �∈ C, the statement follows from Corollary 5.8.13. If
� ∈ C, then C is not satisfiable and has no model both as a set of
L-clauses and as a set of L′-clauses. �

In first-order logic, we have the same central issue as in propo-
sitional logic, namely, determining whether a set of L-formulas Γ
logically implies an L-formula ϕ. We will show that this problem is
equivalent to the nonexistence of a model for a set of clauses.

We discuss first the case when Γ is a set of sentences and ϕ is a
sentence. As we saw, by the first part of Theorem 4.5.52, we have
Γ |= ϕ if and only if the set Γ ∪ {(¬ϕ)} is unsatisfiable. Let Γ′ be
a Skolemization of the set Γ ∪ {(¬ϕ)}, that is, a set of universal
L′-formulas, where L′ is the extension of L produced by the Skolem-
ization process. Then, by Corollary 4.9.21, Γ∪{(¬ϕ)} is unsatisfiable
if and only if Γ′ is unsatisfiable. As we observed in the description of
the Skolemization algorithm, the set of free variables of a Skolemized
formula is the same as the set of free variables of the initial formula.

994 Logical Foundations of Computer Science — Volume 2

Thus, the formulas in Γ′ are L′-sentences and, therefore, by Corol-
lary 4.5.32, the set Γ′ is unsatisfiable if and only if it has no model.
Let Γ′′ be the set of matrices of formulas in Γ′. The set Γ′′ consists
of quantifier-free formulas. By repeated application of the first part
of Theorem 4.5.58, the set Γ′ has no model if and only if Γ′′ has
no model. Let Γ′′′ be obtained from Γ′′ by replacing each formula
in Γ′′ by an equivalent formula in conjunctive normal form, using
the method of Theorem 4.9.2. Again, Γ′′ has no model if and only if
Γ′′′ has no model. Finally, as follows from Corollary 5.8.13, Γ′′′ has
no model if and only if the collection of clauses CΓ′′′ has no model.
Thus, we have shown that Γ |= ϕ is equivalent to the nonexistence
of a model for the set of clauses CΓ′′′ .

Let now Γ and ϕ be a set of L-formulas and an L-formula which
are not necessarily sentences. By Theorem 4.6.14, there is a substitu-
tion s that replaces all variables by constant symbols such that Γ |= ϕ
if and only if FVSubst(s,Γ) |= FVSubst(s, ϕ). Since FVSubst(s,Γ)
is a set of Lc-sentences and FVSubst(s, ϕ) is an Lc-sentence, we have
reduced this case to the previous one.

The next examples illustrate the transformation of the logical
implication problem into the nonexistence of a model for a set of
clauses, which we outlined above.

Example 5.8.16. Let ϕ = ((∀x)P (x) → (∃x)P (x)). To prove the
logical validity of ϕ, observe that this amounts to ∅ |= ϕ, which is
equivalent to {(¬ϕ)} being unsatisfiable. The formula (¬ϕ) is logi-
cally equivalent to the formula (¬(∃x)(∃y)(P (x) → P (y))), which is
logically equivalent to the formula (∀x)(∀y)(¬(P (x)→ P (y))), which
is in prenex normal form and also in Skolem normal form. Thus, ϕ is
logically valid if and only if the matrix ψ = (¬(P (x)→ P (y))) has no
model. A conjunctive normal form of ψ is (P (x) ∧ (¬P (y))), which
produces the set of clauses {{P (x)}, {(¬P (y))}}, so ϕ is logically
valid if and only if this set of clauses has no model.

Example 5.8.17. Let

ϕ = (∀x0)(∀x1)(((∀x2)(f(x0, x2) = x2)

∧(∀x3)(f(x3, x1) = x3))→ (x0 = x1)),

This formula asserts that if x0 is a left unit of a binary operation on
a set and x1 is a right unit of the same operation, then x0 and x1

First-Order Logic–Formal Systems 995

are the same. The formula (¬ϕ) is logically equivalent to the prenex
normal form

(∃x0)(∃x1)(∀x2)(∀x3)(¬(((f(x0, x2) = x2)

∧(f(x3, x1) = x3))→ (x0 = x1))),

as the reader can easily verify. The Skolemization of this formula
requires the introduction of two constant symbols c0, c1 and produces
the formula

(∀x2)(∀x3)(¬(((f(c0, x2) = x2) ∧ (f(x3, c1) = x3))→ (c0 = c1))),

whose matrix (¬(((f(c0, x2) = x2) ∧ (f(x3, c1) = x3)) → (c0 = c1)))
is equivalent to the conjunctive normal form ((f(c0, x2) = x2) ∧
(f(x3, c1) = x3) ∧ (¬(c0 = c1))). Thus, ϕ is logically valid if and
only if the set of clauses

C = {{(f(c0, x2) = x2)}, {(f(x3, c1) = x3)}, {(¬(c0 = c1))}}

has no model.

Example 5.8.18. The logical validity of the formula ϕ =
(∃x)(P (x) → (∀x)P (x)) is equivalent to the unsatisfiability of
(¬ϕ). A prenex normal form of (¬ϕ) is (∀x)(∃y)(¬(P (x) → P (y))).
A Skolemization of this formula is (∀x)(¬(P (x) → P (f(x)))) whose
matrix has the conjunctive normal form (P (x) ∧ (¬P (f(x)))). Note
that this formula was obtained by introducing a unary function sym-
bol f . The logical validity of ϕ is equivalent to the nonexistence of a
model for the set of clauses {{P (x)}, {(¬P (f(x)))}}.

Example 5.8.19. To construct a set of clauses corresponding
to the formula ϕ = ((∃x)(∀y)R(x, y) → (∀y)(∃x)R(x, y)), we
begin by constructing a prenex normal form of the formula (¬ϕ).
After straightforward transformations, this prenex normal form is
(∃x)(∃y)(∀z)(∀w)(¬(R(x, z) → R(w, y))). A Skolem normal form of
this formula is (∀z)(∀w)(¬(R(c0, z) → R(w, c1))), where c0, c1 are
two constant symbols. A conjunctive normal form of the matrix of
this formula is (R(c0, z)∧(¬R(w, c1))), which yields the set of clauses
{{R(c0, z)}, {(¬R(w, c1))}}.

996 Logical Foundations of Computer Science — Volume 2

Example 5.8.20. In this example, we consider two formulas

ϕ = ((∀x0)(∀x1)R(x0, x1)→ R(f(x0), g(x1)))

ψ = ((∀x0)(∀x1)R(x0, x1)→ R(f(x1), g(x0))),

where R is a binary relation symbol and f, g are unary function
symbols. By previous discussion, ϕ is logically valid if and only if the
formula ((∀x0)(∀x1)R(x0, x1) → R(f(d0), g(d1))) is logically valid,
where we substituted d0 and d1 for the free occurrences of x0 and
x1, respectively. Thus, ϕ is logically valid if and only if the sentence
(¬((∀x0)(∀x1)R(x0, x1)→ R(f(d0), g(d1)))) is unsatisfiable, which is
equivalent to the unsatisfiability of the formula

θ = (∀x0)(∀x1)(¬(R(x0, x1)→ R(f(d0), g(d1)))),

which is in Skolem normal form. Since θ is a sentence, the
logical validity of ϕ is equivalent to the nonexistence of a
model for θ. A conjunctive normal form of the matrix of θ is
((¬R(x0, x1)) ∧ R(f(d0), g(d1))). The corresponding set of clauses
is {{(¬R(x0, x1))}, {R(f(d0), g(d1))}}.

The set of clauses for ψ is identical if we substitute d0 for x1 and
d1 for x0.

Definition 5.8.21. Let C be a set of L-clauses, where L is a first-
order language. A renaming for C is an injective substitution s :
V(C)→ VAR.

If C = {C}, then we say that s is a renaming for C.

In Definition 5.8.21, we identified variables with sequences of vari-
ables of length one. The renaming is extended as usual to sets of
clauses and we denote by s(C) the collection {s(C) | C ∈ C}. The set
s(C) will be referred to as a renaming of C.

Theorem 5.8.22. Let C, C′, C′′ be sets of L-clauses, where L is a
first-order language. If C′ is a renaming of C, then C is a renaming
of C′. Further, if C′′ is a renaming of C′ and C′ is a renaming of C,
then C′′ is a renaming of C.

Proof. Let s : V(C) −→ VAR be a renaming such
that C′ = s(C). Observe that the range of s is V(C′).
The injectivity of s allows us to define the renaming s′ :

First-Order Logic–Formal Systems 997

V(C′) −→ VAR as s′(z) = x whenever s(x) = z.
If � is a literal in a clause C of C, we have s′(s(�)) = s′ ∗ s(�) = �,
which shows that s′(C′) = C.

Suppose s01 : V(C) −→ VAR is a renaming such that C′ = s01(C)
and s12 : V(C′) −→ VAR is a renaming such that C′′ = s12(C′). Since
Ran(s01) = V(C′), we can define s02 : V(C)→ VAR by s02 = s12 ◦ s01.
Observe that for all x ∈ V(C), s02(x) = s12 ∗ s01(x). By Theo-
rem 1.2.19, we have s02(C) = s12 ∗ s01(C) = s12(s01(C)) = s12(C′) =
C′′. �

Theorem 5.8.23. Let L be a first-order language, s be an L-
substitution, C be a set of L-clauses and A be an L-structure. If
A |= C, then A |= s̄(C).

Proof. Suppose that A is a model of C and σ ∈ ASSIGNA. Under
this assumption, we have (A, σA ◦s) |= C. Therefore, for every clause
C ∈ C, there is � ∈ C such that (A, σA ◦ s) |= �. By Corollary 4.6.5,
we have (A, σ) |= FVSubst(s, �). Since � contains no bound variables,
we have FVSubst(s, �) = s̄(�). Consequently, (A, σ) |= s̄(C) for every
C ∈ C, so (A, σ) |= s̄(C). �

Corollary 5.8.24. Let C, C′ be sets of L-clauses, where L is a first-
order language, such that C′ is a renaming of C. Then, an L-structure
A is a model of C if and only if A is a model of C′.

Proof. Let s be a renaming of C such that C′ = s̄(C) and let s0 be
an extension of s to VAR. Suppose that A is a model of C. Then, by
Theorem 5.8.23, A |= s̄0(C) = C′.

The converse follows from the first part of this argument and from
Theorem 5.8.22. �

Definition 5.8.25. Let Γ be a finite set of atomic formulas. A unifier
of Γ is an (SFOL,VAR)-substitution s such that s̄(ϕ) = s̄(ψ) for all ϕ,
ψ ∈ Γ.

A most general unifier (mgu) for a finite set of atomic formulas Γ
is a unifier s′ for Γ such that any unifier s′0 for Γ can be written as
s′0 = s1 ∗ s′ for some (SFOL,VAR)-substitution s1.

Example 5.8.26. Let

Γ = {R(x1, x2), R(f(x3, x4), g(x4, x5)), R(f(a, x4), x6)},

998 Logical Foundations of Computer Science — Volume 2

where R is a binary relation symbol, f, g are binary function symbols
and a is a constant symbol of L. Then, any substitution s with

s(x1) = f(a, x7) s(x2) = g(x7, x8)

s(x3) = a s(x4) = x7

s(x5) = x8 s(x6) = g(x7, x8)

unifies Γ to the formula R(f(a, x7), g(x7, x8)).

We are going to introduce an extension of the signature of first-
order logic because in this section we need to treat atomic formulas
as terms belonging to this signature.

Definition 5.8.27. The extended signature of first-order logic is the
extension SextFOL = (F ∪R, νext) of the signature SFOL = (F, ν), where
F = {fnk | n, k ∈ N}, R = {Rnk | n, k ∈ N}, νext(f) = ν(f) for every
f in F and νext(Rnk) = n for every n, k ∈ N.

Let L be a first-order language. The extended signature of L is
the reduct SextL of SextFOL to L.

It follows that every atomic formula is an (SextFOL,VAR)-term and
every L-atomic formula is an (SextL ,VAR)-term.

Theorem 5.8.28. Let Γ be a finite set of atomic formulas. A sub-
stitution s : VAR −→ TERM is a unifier of Γ in the sense of Def-
inition 5.8.25 if and only if it is an (Sext

FOL
, SFOL,VAR)-unifier in the

sense of Definition 1.6.1.

Proof. The statement follows immediately from the definitions
mentioned above. �

Corollary 5.8.29. Let Γ be a finite set of atomic formulas. A sub-
stitution s : VAR −→ TERM is an mgu of Γ in the sense of Defini-
tion 5.8.25 if and only if it is an (Sext

FOL
, SFOL,VAR)-mgu in the sense

of Definition 1.6.5.

Proof. This follows directly from Theorem 5.8.28. �

Definition 5.8.30. Let L be a first-order language and Γ be a finite
set of atomic L-formulas. An (SL,VAR)-substitution s such that
s̄(ϕ) = s̄(ψ) for all ϕ,ψ ∈ Γ, is called an L-unifier of Γ.

An L-most general unifier (L-mgu) is an L-unifier s′ such that for
any L-unifier s′0 can be factored as s′0 = s1 ∗ s′ for some (SL,VAR)-
substitution s1.

First-Order Logic–Formal Systems 999

Theorem 5.8.31. Let L be a first-order language and let Γ be a
finite set of atomic L-formulas. A substitution s : VAR −→ TERML
is an L-unifier of Γ in the sense of Definition 5.8.30 if and only if it
is an (SextL , SL,VAR)-unifier in the sense of Definition 1.6.1.

Proof. The statement is immediate. �

Corollary 5.8.32. Let L be a first-order language and let Γ be a
finite set of atomic L-formulas. A substitution s : VAR −→ TERML
is an L-mgu of Γ in the sense of Definition 5.8.30 if and only if it is
an (SextL , SL,VAR)-mgu in the sense of Definition 1.6.5.

Proof. This follows directly from Theorem 5.8.31. �
By Corollary 5.8.32, if Γ is a finite set of L-atomic formulas, the

application of Algorithm 1.6.18 with S = SextL , V = VAR, S′ = SL
and T = Γ, will determine if Γ is L-unifiable and will produce an
L-mgu if Γ is L-unifiable.
Theorem 5.8.33. Let Γ be a finite set of atomic formulas. The fol-
lowing three statements are equivalent:

(1) Γ is L-unifiable for all languages L such that Γ ⊆ AFORML;
(2) Γ is L-unifiable for some language L such that Γ ⊆ AFORML;
(3) Γ is unifiable.

Proof. The implication (1) ⇒ (2) is immediate because the set Γ
is finite and hence there is a first-order language L such that Γ ⊆
AFORML. Also, (2) ⇒ (3) is immediate because an L-substitution
is a substitution.

To prove the implication (3) ⇒ (1), let L be a first-order
language such that Γ ⊆ AFORML. We observed that unifi-
ability of a set Γ implies (SextFOL, SFOL,VAR)-unifiability, which
is equivalent to (rSextFOL,Γ,min

, SFOL � rSextFOL,Γ,min
, V(Γ))-unifiabilty,

by Lemma 1.6.23. In turn, this unifiability is equivalent to
(rSextL ,Γ,min, SL � rSextL ,Γ,min, V(Γ))-unifiability, since Γ is a set of L-
formulas. By Lemma 1.6.23, this is equivalent to (SextL , SL,VAR)-
unifiability, i.e., L-unifiability. �

Theorem 5.8.34. Let L be a first-order language, Γ be a finite set of
L-atomic formulas and s be an (SFOL,VAR)-substitution. Then, s is a
most general unifier of Γ if and only if s is a most general L-unifier
of Γ.

1000 Logical Foundations of Computer Science — Volume 2

Proof. This result follows from Supplement 79 of Chapter 1 by
taking S = SextFOL, S

′ = SFOL, S0 = SextL , S′
0 = SL and V = VAR and

applying Corollaries 5.8.32 and 5.8.29. �

Corollary 5.8.35. Let L,L′ be two first-order languages and let Γ be
a finite set of atomic formulas that is both a set of L-atomic formulas
and a set of L′-atomic formulas. Then a substitution s is a most
general L-unifier of Γ if and only if s is a most general L′-unifier
of Γ.

Proof. This statement follows from a double application of Theo-
rem 5.8.34. �

Note that the above corollary shows that the set of most general
unifiers of a finite set of L-atomic formulas Γ does not depend on the
first-order language L.

Definition 5.8.36. Let L be a first-order language and let C0, C1

be two L-clauses. A standardization of (C0, C1) is a pair (s0, s1) such
that s0 is a renaming of C0, s1 is a renaming of C1 and V(s̄0(C0)) ∩
V(s̄1(C1)) = ∅.

An L-clause R is an L-resolvent of two L-clauses C0, C1, if there
is a standardization (s0, s1) of (C0, C1), a nonempty set of positive
literals L ⊆ s̄0(C0), a nonempty set of negative literals K ⊆ s̄1(C1)
and an L-unifier s of L ∪K such that

R = s̄ ((s̄0(C0)− L) ∪ (s̄1(C1)−K)) .

The clauses C0, C1 are referred to as premises of R.

• If s is a most general L-unifier of L ∪K, then we say that R is a
most general L-resolvent of C0 and C1 or mgu L-resolvent of C0

and C1.
• If both s0 and s1 are the identity mappings on their respective

domains, then we refer to R as a simple L-resolvent.
• If s0 is a renaming of C0 and s1 is a renaming of C1, but (s0, s1)

is not necessarily a standardization of (C0, C1), then we refer to R
as a weak L-resolvent of C0 and C1.

• If |L| = |K| = 1, then we refer to R as a binary L-resolvent.

First-Order Logic–Formal Systems 1001

• If s(s0(C0) − L) ∩ s(L) = ∅ and s(s1(C1) −K) ∩ s(K) = ∅, then
we say that R is a full L-resolvent.

Let L,L′ be two first-order languages and let C0, C1 be both L-
and L′-clauses. Then, by Corollary 5.8.35, a clause R is a most general
L-resolvent of C0 and C1 if and only if it is a most general L′-resolvent
of C0 and C1 and hence is both an L- and an L′-clause. In view of
this, we may refer to R as a most general resolvent of C0 and C1.

Example 5.8.37. Let L = {P, a, b} be a first-order language where
P is a binary relation symbol and a, b are constant symbols. The
L-clauses C0, C1 are given by

C0 = {P (x, b), P (x, y), P (a, b)} and C1 = {(¬P (w, v)), (¬P (a, b))},

where x, y, w, v are distinct variables.
The clause R = {P (a, b)} is a simple mgu resolvent of C0 and C1,

obtained by taking the substitutions s0, s1 as the identity mappings,
the sets L and K to be {P (x, y), P (a, b)}, C1, respectively, and s to

be s
x

a

y

b

w

a

v

b
. Note however that this argument does not show that R is a

full resolvent of C0 and C1 because s(s0(C0)−L)∩ s(L) = {P (a, b)}.
If we replace L with C0, then we obtain � as a simple, full mgu

resolvent of C0 and C1.

Observe that if C0 and C1 are ground L-clauses and R is an
L-resolvent of C0, C1, then there is a positive literal � such that L =
{�}, K = {�̄} and R = (C0−{�})∪(C1−{�̄}). In this case, we denote
R by res�(C0, C1). Further, R is in fact a full most general resolvent
of C0 and C1.

Lemma 5.8.38. Let L be a first-order language. If R is a weak
L-resolvent of the L-clauses C0, C1, then R is an L-resolvent of these
clauses. Moreover, if R is a weak binary L-resolvent of C0, C1, the
R is a binary L-resolvent of C0, C1.

Proof. By definition of weak resolvent, there exist two renaming
s0, s1 of C0, C1 respectively, a set of positive literals L ⊆ s0(C0), a set

1002 Logical Foundations of Computer Science — Volume 2

of negative literals K ⊆ s1(C1) and an L-unifier s of L∪K such that

R = s(s0(C0)− L) ∪ s(s1(C1)−K).

Let s2 : V(s1(C1)) −→ VAR be a renaming of s1(C1) such that
Ran(s2) ∩ V(s0(C0)) = ∅.

We claim that s12 = (s2∗s1) |̀ V(C1) is a renaming of C1. The range
of s12 is clearly a set of variables and the injectivity is also immediate
from the injectivity of s1 and s2. Furthermore, the pair (s0, s12) is
a standardization of (C0, C1). Indeed, since Ran(s12) ⊆ Ran(s2), we
have Ran(s12) ∩ Ran(s0) = ∅.

We have L ⊆ s0(C0) and s2(K) ⊆ s2(s1(C1)) = s2 ∗ s1(C1) =
s12(C1), where s2(K) is a set of negative literals. Next, we prove

that L ∪ s2(K) is unifiable. Define the substitution z2 as

z2(x) =

{
y if s2(y) = x

x if x �∈ Ran(s2).

The substitution z2 is well-defined because s2 is injective.
We shall prove that the L-substitution s ∗ z2 is a unifier

of L ∪ s2(K). We have s ∗ z2(L) = s(z2(L)) = s(L) because
z2 leaves unchanged the variables of L. On the other hand,
s ∗ z2(s2(K)) = s ∗ z2(s2(K)) = s(z2(s2(K))) = s(z2 ∗ s2(K)).
Observe that z2 ∗ s2(K) = K because for each variable x ∈ V(K), we

have z2 ∗ s2(x) = x. Thus, we have s ∗ z2(s2(K)) = s(K). Since s is

a unifier of L ∪K, s ∗ z2 is a unifier of L ∪ s2(K). This allows us to
conclude that

R′ = s ∗ z2(s0(C0)− L)) ∪ s ∗ z2(s12(C1)− s2(K))

= s(z2(s0(C0)− L)) ∪ s(z2(s2(s1(C1))− s2(K))),

is an L-resolvent of C0 and C1, where in the last equality we used
the fact that s12(C1) = s2(s1(C1)). Observe that if R is a binary
resolvent (i.e., |L| = |K| = 1), then R′ is also a binary resolvent.
We continue to transform R′ as follows.

R′ = s(s0(C0)− L) ∪ s(z2(s2(s1(C1))− s2(K)))

(because z2 leaves unchanged the variables of s0(C0))

= s(s0(C0)− L) ∪ s(z′2(s2(s1(C1))− s2(K))),

First-Order Logic–Formal Systems 1003

where z′2 is the restriction of z2 to the range of s2. Note that z′2
is injective and hence, by Exercise 21 of Chapter 4, z′2 is injective.
Because of this property, we can further write

R′ = s(s0(C0)− L) ∪ s(z′2(s2(s1(C1)))− z′2(s2(K)))

(because of the injectivity of z′2)

= s(s0(C0)− L) ∪ s(z′2 ∗ s2(s1(C1))− z′2 ∗ s2(K))

= s(s0(C0)− L) ∪ s(s1(C1)−K).

The last equality is justified by the fact that z′2∗s2 fixes every variable
in s1(C1). Now we can conclude that R = R′. �

The following theorem shows that in forming mgu resolvents of
clauses we may consider only finite mgus.

Theorem 5.8.39. If R is an mgu resolvent of two clauses C0 and
C1 then there is a standardization (s0, s1) of (C0, C1), a nonempty
set of positive literals L ⊆ s̄0(C0), a nonempty set of negative lit-
erals K ⊆ s̄1(C1) and a finite most general unifier s of L ∪ K
such that

R = s̄ ((s̄0(C0)− L) ∪ (s̄1(C1)−K)) .

Proof. The definition of mgu resolvent implies the existence of all
the objects mentioned in the body of the theorem, except that the
mgu s need not be finite. However, choosing V0 = V(C0) ∪ V(C1) in
Supplement 83 of Chapter 1, we obtain a finite mgu s′ of L∪K that
agrees with s on V0, which we can use in place of s to obtain the
same R. �

Note that in the case of an arbitrary unifier s of L ∪ K, the
existence of a finite unifier s′ that produces the same resolvent is
easily obtained as s′(x) = s(x) if x ∈ V(C0) ∪ V(C1) and s′(x) = x,
otherwise.

1004 Logical Foundations of Computer Science — Volume 2

Theorem 5.8.40. Let L be a first-order language and let C0, C1 be
two L-clauses. If R is an L-resolvent of C0 and C1 and A is an
L-structure, then A |= C0 and A |= C1 implies A |= R.

Proof. Let s0, s1, L,K, s be as in the definition of resolvent, so

R = s̄ ((s̄0(C0)− L) ∪ (s̄1(C1)−K)) .

Since A |= C0 and A |= C1, by Corollary 5.8.24, A |= s̄0(C0) and
A |= s̄1(C1). Then, by Theorem 5.8.23, we have A |= s̄(s̄0(C0)) and
A |= s̄(s̄1(C1)). Observe that since s is a unifier of L ∪K, there is a
positive literal � such that s̄(L ∪K) = {�}.

Let σ ∈ ASSIGNA. We must show that (A, σ) |= R. We consider
two cases.

Case 1: (A, σ) |= s̄(s̄0(C0) − L). By the definition of R, we obtain
(A, σ) |= R.

Case 2: (A, σ) �|= s̄(s̄0(C0) − L). Since (A, σ) |= s̄(s̄0(C0)), it fol-
lows that (A, σ) |= s̄(L) = {�}. Therefore, (A, σ) �|=
{�̄} = s̄(K). Since (A, σ) |= s̄(s̄1(C1)), it follows that
(A, σ) |= s̄(s̄1(C1)−K), which implies that (A, σ) |= R. �

Corollary 5.8.41. Let L be a first-order language, C be a set of
L-clauses and let R be an L-resolvent of two clauses in C. Then, for
every L-structure A, A |= C if and only if A |= C ∪ {R}.

Proof. By Theorem 5.8.10, if A |= C ∪ {R}, then A |= C. Con-
versely, suppose A |= C and R is an L-resolvent of C0 and C1 in C.
Then, A |= C0 and A |= C1, so by Theorem 5.8.40, A |= R, so
A |= C ∪ {R}. �

Note that Theorem 5.8.40 holds even if the pair (s0, s1) consists
of any two substitutions (not necessarily a standardization).

Definition 5.8.42. Let C be a set of L-clauses, where L is a first-
order language. Then we define

ResL(C) = C ∪ {R | R is an L-resolvent of two clauses in C}

and

Resmgu
L (C) = C ∪ {R | R is a most general resolvent of two clauses in C}.

First-Order Logic–Formal Systems 1005

The counterparts of ResL and ResmguL which make use only of full
resolvents will be denoted by fResL and fResmguL , respectively.

Observe that if C is an admissible set of L-clauses and L′-clauses,
then ResmguL (C) = ResmguL′ (C) and fResmguL (C) = fResmguL′ (C). This
allows us to use the simpler notations Resmgu(C) and fResmgu(C).

First-order resolution is analytical in the sense that for every set
of L-clauses C, we have ResL(C) ⊆

⋃
{W ∗

L,VAR(C) | C ∈ C}.

Theorem 5.8.43. Let C and D be a sets of L-clauses and let A be
an L-structure. Then, if R is Res, Resmgu, fRes, or fResmgu we have:

(1) C ⊆ RL(C);
(2) if C ⊆ D, then RL(C) ⊆ RL(D); and
(3) A |= RL(C) if and only if A |= C.

Proof. The first two parts of the theorem are immediate conse-
quences of the Definition 5.8.42.

By Part 1 of Theorem 5.8.10 and Part 1 of the current theorem,
if A |= RL(C), then A |= C. Conversely, if A |= C, then, by Theo-
rem 5.8.40, A |= R for every L-resolvent R of two clauses in C, and
therefore, A |= RL(C). �

Let L be a first-order language, R be Res, Resmgu, fRes, or
fResmgu, and let SL be the set of all L-clauses. Then,RL : P(SL) −→
P(SL), so we can consider its iterations RnL for n ∈ N, following the
standard definition:

R0
L(C) = C,

Rn+1
L (C) = RL(RnL(C))

for every set of clauses C ∈ P(SL).
Note that, as a consequence of Part (1) of Theorem 5.8.43, we

have the increasing chain of sets

C = R0
L(C) ⊆ R1

L(C) ⊆ · · · ⊆ RnL(C) ⊆ · · · . (5.5)

Definition 5.8.44. Let C be a set of L-clauses and let R be Res,
Resmgu, fRes, or fResmgu. Define R∗

L(C) as by

R∗
L(C) =

⋃
n≥0

RnL(C).

1006 Logical Foundations of Computer Science — Volume 2

As before, if C is a set of L-clauses and L′-clauses and R is either
Resmgu or fResmgu, then R∗

L(C) = R∗
L′(C). This allows us to use the

simpler notations (Resmgu)∗(C) and (fResmgu)∗(C).

Theorem 5.8.45. Let C and D be sets of L-clauses and let A be an
L-structure. If R is Res, Resmgu, fRes, or fResmgu, then

(1) C ⊆ RnL(C) for all n ∈N and C ⊆ R∗
L(C);

(2) for all n ∈ N, A |= RnL(C) if and only if A |= C;
(3) A |= R∗

L(C) if and only if A |= C;
(4) C has a model if and only if R∗

L(C) has a model; and
(5) if C ⊆ D, then RnL(C) ⊆ RnL(D) for all n ∈ N and R∗

L(C) ⊆
R∗

L(D).

Proof. The first part of the theorem follows from Equation (5.5).
For the second part of the theorem, the argument is by induction

on n. The basis step, n = 0, is trivial. Suppose that for every L-
structure A, A |= C if and only if A |= RnL(C). Using the last part of
Theorem 5.8.43, applied to RnL(C), we obtain the desired conclusion.

The third part is an easy consequence of the second and the fourth
part follows immediately from the third. The fifth part is a simple
proof by induction, which uses Theorem 5.8.43, Part (2). �

Definition 5.8.46. Let C be a set of L-clauses. An L-resolution proof
over C is a finite sequence (C0, C1, . . . , Cn−1) of L-clauses such that
n ≥ 1 and for each i, 0 ≤ i ≤ n − 1 either Ci ∈ C or else Ci �∈ C
and there are j, k < i such Ci is an L-resolvent of Cj and Ck. In the
first case, Ci is an input step of the proof; in the second case, Ci is a
resolution step.

An L-resolution proof of a clause C over C is an L-resolution proof
over C whose last entry is C.

If at each resolution step, Ci is a full resolvent, or a most gen-
eral resolvent or a full most general resolvent, then the sequence
(C0, C1, . . . , Cn−1) is a full L-resolution proof, or a most general res-
olution proof or still a full most general resolution proof, respectively.

Theorem 5.8.47. Let C be a set of L-clauses. Then,

• Res∗L(C) is the set of clauses which have L-resolution proofs
over C;

First-Order Logic–Formal Systems 1007

• fRes∗L(C) is the set of clauses which have full L-resolution proofs
over C;

• (Resmgu)∗(C) is the set of clauses which have most general resolu-
tion proofs over C;

• (fResmgu)∗(C) is the set of clauses which have most general full
resolution proofs over C.

Proof. The argument is similar to the proof of the corresponding
propositional logic counterpart, Theorem 3.8.19. �

Next, we present two lemmas which help us prove (in Theo-
rem 5.8.50) that we can transform an L-resolution proof into an
L′-resolution proof, where L′ is obtained from L by replacing a rela-
tion symbol P with a symbol with the same arity.

Lemma 5.8.48. Let L be a first-order language and let P and R
be two relation symbols of equal arity such that P ∈ L and R �∈ L.
Define the first-order language L′ = (L− {P}) ∪ {R}. Let Γ be a set
of L-atomic formulas. If s is an (SL,VAR)-substitution, then s is an
L-unifier of Γ if and only if s is an L′-unifier of sPR(Γ). Furthermore,
s is a most general unifier of Γ if and only if s is a most general
unifier of sPR(Γ).

Proof. We begin by observing that SL = SL′ because the sets of
function symbols of L and L′ coincide. Also note that since R �∈ L,

sRP (s
P
R(Γ)) = Γ. (5.6)

Suppose that s is an L-unifier of Γ, that is, |s(Γ)| ≤ 1. Then,
by Theorem 1.2.23, we have |s(sPR(Γ))| = |sPR(s(Γ))| ≤ 1, so s is an
L′-unifier of sPR(Γ).

The reverse implication can be obtained by replacing Γ with sPR(Γ)
and exchanging the roles of P and R and of L and L′, taking into
account Equality (5.6). This concludes the proof of the first part of
the lemma.

To prove the second part, suppose that s is a most general
L-unifier of Γ. By the first part of the lemma, s is an L′-unifier of
sPR(Γ). Let z be an L′-unifier of sPR(Γ). Again, by the first part of the
lemma, z is an L-unifier of Γ and therefore, we have the factorization
z = z1∗s, where z1 is an L-substitution and hence an L′-substitution.

1008 Logical Foundations of Computer Science — Volume 2

This shows that s is a most general L′-unifier of sPR(Γ). The converse
implication can be shown by using the same argument as for the first
part of the theorem. �

Lemma 5.8.49. Let L be a first-order language and let P and R
be two relation symbols of equal arity such that P ∈ L and R �∈ L.
Define the first-order language L′ = (L − {P}) ∪ {R}. Let C0, C1 be
two L-clauses and C be an L-resolvent (most general resolvent, full
L-resolvent, full most general resolvent) of C0 and C1. Then, s

P
R(C)

is the same type of L′-resolvent of sPR(C0) and sPR(C1).

Proof. Since C is an L-resolvent of C0, C1, there is a standard-
ization (s0, s1) of (C0, C1), a nonempty set of positive literals L ⊆
s̄0(C0), a nonempty set of negative literals K ⊆ s̄1(C1) and an L-
unifier s of L ∪K such that

C = s̄ ((s̄0(C0)− L) ∪ (s̄1(C1)−K)) .

Since sPR(C0), s
P
R(C1) have the same variables as C0, C1, respectively,

(s0, s1) is a standardization of (sPR(C0), s
P
R(C1)). Also, s

P
R(L) is a sub-

set of positive literals of sPR(C0) and sPR(K) is a subset of negative
literals of sPR(C1).

By Lemma 5.8.48, s is an L′-unifier of sPR(L)∪sPR(K) = sPR(L∪K).
By definition of resolvent, the clause

C ′ = s̄((s̄0(s
P
R(C0))− sPR(L)) ∪ (s̄1(s

P
R(C1))− sPR(K)))

is a resolvent of sPR(C0) and sPR(C1). We show now that C ′ = sPR(C).
Note firstly that sPR restricted to L-literals is an injection ranging
over L′-literals because R is not in L. Now, we have

sPR(C) = sPR(s̄ ((s̄0(C0)− L) ∪ (s̄1(C1)−K)))

= s̄(sPR ((s̄0(C0)− L) ∪ (s̄1(C1)−K)))

(by Theorem 1.2.23)

= s̄(sPR(s̄0(C0)− L) ∪ sPR(s̄1(C1)−K))

= s̄((sPR(s̄0(C0))− sPR(L)) ∪ (sPR(s̄1(C1))− sPR(K)))

(because of the injectivity of sPR)

= C ′.

This completes the argument for the first claim of the lemma.

First-Order Logic–Formal Systems 1009

Combining Lemma 5.8.48 with the argument used for the first
part of the current lemma, gives us the second part of the lemma.
We leave to the reader the proof of the last two parts. �

Theorem 5.8.50. Let C be a set of L-clauses and let P and R be two
relation symbols of equal arity such that P ∈ L and R �∈ L. Define
the first-order language L′ = (L−{P})∪{R}. If (C0, . . . , Cn−1) is an
L-resolution (most general L-resolution, full L-resolution, full most
general L-resolution) proof of C over C, then (sPR(C0), . . . , s

P
R(Cn−1))

is the same type of proof of sPR(C) over sPR(C) with L replaced by L′.

Proof. Let i be a number such that 0 ≤ i ≤ n− 1. If Ci ∈ C, then
sPR(Ci) ∈ sPR(C). Otherwise, there are j, k < i such that Ci is an L-
resolvent of Cj and Ck. By Lemma 5.8.49, sPR(Ci) is an L′-resolvent
of sPR(Cj) and sPR(Ck). Thus, the sequence (sPR(C0), . . . , s

P
R(Cn−1)) is

an L′-resolution proof.
By the second part of Lemma 5.8.49, if (C0, . . . , Cn−1) is a most

general L-resolution proof, then (sPR(C0), . . . , s
P
R(Cn−1)) is a most

general L′-resolution proof.
We leave the arguments for the remaining parts to the reader. �

Corollary 5.8.51. Let C be a set of L-clauses, C be an L-clause, and
let P and R be two relation symbols of equal arity such that P ∈ L
and R �∈ L. Define the first-order language L′ = (L − {P}) ∪ {R}.
If R is either Res, Resmgu, fRes or fResmgu, we have C ∈ R∗

L(C) if
and only if sPR(C) ∈ R∗

L′(sPR(C)).

Proof. This is a direct consequence of Theorem 5.8.50. �

The notion of L-resolution proof can be viewed in the framework
of the formal system introduced next.

Definition 5.8.52. Let L be a first-order language. The formal sys-
tem FRESL is

FRESL = (Pfin(LITL), ∅, {R}),

where the set of objects Pfin(LITL) consists of finite sets of literals of
L (L-clauses) and the rule R consists of all pairs ((C,D), E) where
E is an L-resolvent of C and D.

1010 Logical Foundations of Computer Science — Volume 2

If rule R is replaced by rule Rf consisting of all pairs ((C,D), E)
where E is a full L-resolvent of C andD, we obtain the formal system
FFRESL.

Let Rmgu be the rule that consists of the pairs ((C,D), E) such
that E is a most general resolvent of C and D. If the rule R is
replaced in FRESL by the rule Rmgu, we obtain the formal system
FRESLmgu.

The formal system FFRESLmgu is obtained by replacing the rule

Rmgu with Rfmgu using full most general resolvents.

Note that if C is a set of L-clauses, then an L-resolution proof
over C is the same thing as a proof in the formal system FRESLC ,
so Theorem 5.8.47 implies that Thm(FRESLC) = Res∗L(C). Similarly,
Thm((FRESLmgu)C) = (ResmguL)∗(C). The introduction of a formal
system allows us to make use of the idea of proof tree.

Definition 5.8.53. Let C be a set of L-clauses. An L-resolution tree
over C is an FRESLC -proof tree.

In other words, an L-resolution tree over C is a lot such that
its leaves are labeled with clauses from C and each interior node
is labeled with a clause that is an L-resolvent of the clauses which
are labels of its two immediate descendents. Theorem 1.8.23 and our
previous discussion allow us to conclude that a clause C is in Res∗L(C)
if and only if there is an L-resolution tree over C such that C is the
label of its root.

Theorem 5.8.54 (Soundness of First-Order Resolution). Let
C be a set of L-clauses, where L is a first-order language. If � ∈
Res∗L(C), then C has no model.

Proof. By the third part of Theorem 5.8.45, any model of C would
be a model of Res∗L(C). Since � ∈ Res∗L(C), it follows that there is
no model for Res∗L(C), and, therefore, there is no model for C. �

Note that the soundness theorem holds even if we use arbi-
trary substitutions rather than standardizations in computing “resol-
vents.”

In terms of the formal system FRESLC , Theorem 5.8.54 amounts
to saying that if � is a theorem of FRESLC , then C has no model.

First-Order Logic–Formal Systems 1011

Corollary 5.8.55 (Soundness of MGU-Resolution). Let C be a
set of L-clauses, where L is a first-order language. If � belongs to
(Resmgu)∗(C), then C has no model.

Proof. The corollary follows from Theorem 5.8.54. �

Example 5.8.56. In Example 5.8.18, we showed that the logical
validity of the formula ϕ = (∃x)(P (x) → (∀x)P (x)) is equiva-
lent to the nonexistence of a model for the set of clauses C =
{{P (x)}, {(¬P (f(x)))}}. We now show that � ∈ Res∗L(C), which, by
the Soundness Theorem, will establish the nonexistence of a model
for C. Let C0 = {P (x)} and C1 = {(¬P (f(x)))} and let s0(x) = y
and s1(x) = x. Thus, s̄0(C0) = {P (y)} and s̄1(C1) = {(¬P (f(x)))}.
Let L = s̄0(C0) and K = s̄1(C1), where we are using the notations
of Definition 5.8.36. The unifier s of L ∪ K is defined by s(x) = x,
s(y) = f(x) and s(z) = z for z �∈ {x, y}. The resolvent R is �, which
shows that � ∈ Res∗L(C).

Observe that the renamings s0 and s1 make possible the resolution
process, since otherwise, P (x) and P (f(x)) would not be directly
unifiable.

Our previous examples (Examples 5.8.16, 5.8.19 and 5.8.20) also
involve sets of clauses that can be resolved to � in one step and
therefore have no model.

Lemma 5.8.57. Let s be an L-inter-substitution, where L is a first-
order language, A be an L-structure and σ be an assignment in
ASSIGNA. Define a truth assignment v by:

v(p) =

{
T if (A, σ) |= s(p)
F otherwise.

Then, for every clause C of propositional logic such that s(C) is a
first-order logic clause, v satisfies C if and only if (A, σ) |= s(C).

Proof. The result follows immediately from Lemma 4.8.11. �

Theorem 5.8.58. Let C be a set of L-clauses, where L is a first-
order language and let C0 be a propositional form for C. If C is sat-
isfiable, then C0 is satisfiable.

Proof. Suppose that C = s(C0), where s is an inter-substitution.
We may assume that s is an L-substitution by redefining s on the

1012 Logical Foundations of Computer Science — Volume 2

variables that do not occur in the clauses of C0, if necessary. Since C
is satisfiable, there is an L-structure A and σ ∈ ASSIGNA such that
(A, σ) |= C for every C ∈ C. Define v as in Lemma 5.8.57. Then, by
the same Lemma, v satisfies C0. �

Theorem 5.8.59. Let L be a first-order language without equality,
C be a set of L-clauses, and C0 be a fundamental propositional form
for C. Then, C is satisfiable if and only if C0 is satisfiable.

Proof. One half of the statement was already shown in Theo-
rem 5.8.58. Suppose now that C0 is satisfiable and let v be a truth
assignment that satisfies C0. Since C0 is a fundamental propositional
form for C, there is an injective, prime inter-substitution s such that
C = s(C0). Note that if p ∈ SV (C0), then s(p) is an atomic L-formula
because s(p) occurs in a clause of C. Consider the set of atomic
formulas S = {s(p) | p ∈ SV (C0) and v(p) = T}, the structure
A = STRL,VAR(S), and the assignment σ defined by σ(x) = x for
every x ∈ VAR.

We now show that (C, σ) |= C. To this end, let C ∈ C and let
D ∈ C0 be such that s(D) = C. Since v satisfies C0, it follows that
v satisfies D, say v(�) = T for some literal � ∈ D. If � = p, we have
v(p) = T, so s(p) ∈ S. By Lemma 4.10.11, (A, σ) |= s(p) ∈ s(D) = C
and therefore (A, σ) |= C. If � = (¬p), we have v(p) = F, so by the
injectivity of s, s(p) �∈ S, hence, by the same lemma, (A, σ) �|= s(p),
so (A, σ) |= s((¬p)), which again implies that (A, σ) |= C. Since C
was an arbitrary clause of C, (A, σ) |= C. �

The following preliminary result is needed in the completeness
proof for ground clauses.

Lemma 5.8.60. Let L be a first-order language, C0, C1 be two propo-
sitional logic clauses and R = res�(C0, C1) be a resolvent of C0 and
C1. If s is an injective, atomic L-inter-substitution, then R′ = s(R) is
an L-resolvent of the first-order clauses C ′

0 = s(C0) and C
′
1 = s(C1).

Proof. By the definition of propositional resolvent, we can assume
that � is a positive literal such that � ∈ C0, �̄ ∈ C1, and

First-Order Logic–Formal Systems 1013

R = (C0 − {�}) ∪ (C1 − {�̄}). We have

R′ = s(R) = s(C0 − {�}) ∪ s(C1 − {�̄})
= (s(C0)− s({�})) ∪ (s(C1)− s({�̄}))

(because s is injective and atomic)

= (C ′
0 − {s(�)})) ∪ (C ′

1 − {s(�)}),

taking into account Theorem 4.8.5. The clause R′ is a weak
L-resolvent of the clauses C ′

0 and C ′
1 because, using the notation

of Definition 5.8.36, we can take L = {s(�)}, K = {s(�)} and
s0, s1 and s to be the identity mappings on their respective domains.
Lemma 5.8.38 implies that R′ is an L-resolvent of C ′

0 and C ′
1. �

Lemma 5.8.61 (First Lifting Lemma). Let L be a first-order
language and let s be an injective, atomic L-inter-substitution.

If (C0, . . . , Cn−1) is a propositional resolution proof over a set of
propositional clauses C, then (s(C0), . . . , s(Cn−1)) is an L-resolution
proof over s(C). Further, i is an input step of the proof (C0, . . . , Cn−1)
if and only if it is an input step of the proof (s(C0), . . . , s(Cn−1)), for
0 ≤ i ≤ n− 1.

Proof. Let 0 ≤ i ≤ n− 1. If Ci ∈ C, then s(Ci) ∈ s(C). Otherwise,
Ci �∈ C, so by Theorem 4.8.5, s(Ci) �∈ s(C), and there are j, k < i such
that Ci = res�(Cj , Ck) which implies that s(Ci) is an L-resolvent of
s(Cj) and s(Ck) by Lemma 5.8.60. �

The next statement allows “lifting” a resolution proof involv-
ing fundamental propositional forms of clauses to a resolution proof
involving these clauses.

Theorem 5.8.62. Let L be a first-order language, C be a set of
L-clauses, C0 be a fundamental propositional form for C and let s
be a prime, injective inter-substitution with s(C0) = C. Then, for all
propositional clauses C ∈ Res∗(C0), we have s(C) ∈ Res∗L(C).

Proof. Note that we can assume that s is an atomic L-inter-
substitution by redefining it on the variables that do not occur
in C0. Let (C0, . . . , Cn−1) be a resolution proof of C over C0.
By Lemma 5.8.61, (s(C0), . . . , s(Cn−1)) is an L-resolution proof of

1014 Logical Foundations of Computer Science — Volume 2

s(Cn−1) = s(C) over s(C0) = C. The current statement follows imme-
diately from Theorem 5.8.47 and the corresponding theorem from
propositional logic. �

We prove now a restricted form of completeness of resolution
which is limited to ground clauses and equality-free first-order lan-
guages.

Theorem 5.8.63 (Completeness of Resolution for Ground
Clauses and Languages without Equality). Let L be a first-
order language without equality and let C be a set of ground L-clauses.
If C has no model, then � ∈ Res∗L(C).

Proof. By Theorem 5.8.7, there is a fundamental propositional
form C0 for C. Since C consists of ground clauses and has no model,
it follows from Corollary 5.8.14 that C is unsatisfiable. This in
turn implies that C0 is unsatisfiable, by Theorem 5.8.59. By the
completeness of propositional resolution (Theorem 3.8.32), we have
� ∈ Res∗(C0). By Theorem 5.8.62, � ∈ Res∗L(C). �

To reduce model existence for arbitrary sets of L-clauses to model
existence for sets of ground L-clauses, we need to introduce the notion
of ground instance of a set of clauses as a special case of the notion
of instance of a set of clauses.

Definition 5.8.64. If V is a set of variables and C is a clause with
V(C) = {y0, . . . , yn−1} with y0, . . . , yn−1 in the standard order of
variables, then an (L, V)-instance of C is a clause of the form

{(�)y0,...,yn−1:=t0,...,tn−1 | � ∈ C},

where t0, . . . , tn−1 are (L, V)-terms. If V = ∅, then we refer to an
(L, V)-instance of C as a ground instance of C.

The set of (L, V)-instances of a clause is denoted by INSTL,V (C),
while the set of ground instances of C is denoted by GINSTL(C).
These notations are extended to sets of clauses C by

INSTL,V (C) =
⋃
C∈C

INSTL,V (C),

GINSTL(C) =
⋃
C∈C

GINSTL(C).

First-Order Logic–Formal Systems 1015

Let C be a set of L-clauses that does not contain �. Recall that ΓC
is a set of formulas each of which is a disjunction of literals. Starting
from this set of formulas, we construct the set of ground instances of
the universal closure Γ∀

C . The set GINSTL(Γ∀
C) consists of disjunctions

of ground literals. The next statement relates the set of clauses which
correspond to GINSTL(Γ∀

C) to the set of ground instances of C.

Theorem 5.8.65. Let L be a first-order language. If C is a set of
L-clauses that does not contain �, we have

CGINSTL(Γ∀
C)

= GINSTL(C).

If � ∈ C, then we have

CGINSTL(Γ∀
C−{�})

∪ {�} = GINSTL(C)

Proof. Suppose initially that � �∈ C. Let C ∈ CGINSTL(Γ∀
C)
. There

is a formula ϕ ∈ GINSTL(Γ∀
C) such that C ∈ Cϕ. In turn, this

implies the existence of a formula ψ ∈ ΓC such that V(ψ) =
{y0, . . . , yn−1} (where the variables appear in standard order) and
ϕ = (ψ)y0,...,yn−1:=t0,...,tn−1 , with t0, . . . , tn−1 ∈ GTERML. Since
ψ ∈ ΓC , we have ψ = (�0 ∨ · · · ∨ �m−1), where {�0, . . . , �m−1} ∈ C.
Since ϕ = ((�0 ∨ · · · ∨ �m−1))y0,...,yn−1:=t0,...,tn−1 , it follows that

C ∈ Cϕ = {{(�0)y0,...,yn−1:=t0,...,tn−1 , . . . , (�m−1)y0,...,yn−1:=t0,...,tn−1}}.

Therefore, C ∈ GINSTL(C).
The converse can be proven similarly.
If � ∈ C, we have

GINSTL(C) = GINSTL(C − {�}) ∪ {�}.

Now, the first part of the theorem implies the second part. �

The following easy set-theoretical observation is relevant for the
next lemma. Let A,B be two sets, f : A −→ B be a function, and
let U be a subset of B. We leave to the reader to verify that

f(A− f−1(U)) = f(A)− U. (5.7)

Next, we present another lifting result which allows us to transfer
the resolvent of ground instances of two clauses to a resolvent of these
clauses.

1016 Logical Foundations of Computer Science — Volume 2

Lemma 5.8.66 (Second Disjoint Lifting Lemma). Let C0, C1

be two ground L-clauses such that R = res�(C0, C1), where L is a
first-order language. Suppose that C ′

0, C
′
1 are two L-clauses whose

sets of variables are disjoint and s0, s1 are L-substitutions such that
s0(C

′
0) = C0 and s1(C

′
1) = C1. Then, there is a simple, full most

general resolvent R′ of C ′
0 and C ′

1 and an L-substitution s such that
s(R′) = R.

Proof. By definition, � ∈ C0 and �̄ ∈ C1 and R = (C0−{�})∪(C1−
{�̄}). Define the nonempty sets L = s−1

0 (�)∩C ′
0 and K = s−1

1 (�̄)∩C ′
1.

Since C ′
0 and C

′
1 have no variables in common, it is possible to extend

s0 and s1 to a common L-substitution s′ defined on V(C ′
0) ∪ V(C ′

1).
We have s′(L) = s0(L) = {�} and s′(K) = s1(K) = {�}, so L ∪ K
is unifiable. Let sm be a most general unifier of L ∪K and let R′ =
sm ((C ′

0 − L) ∪ (C ′
1 −K)). Observe that R′ is a simple, most general

resolvent of C ′
0 and C ′

1 (see Figure 5.38).
Moreover, we claim that R′ is a full resolvent of C ′

0 and C
′
1. Indeed,

if �′ ∈ L and �′′ ∈ C ′
0 − L, then s0(�

′) = � and s0(�
′′) �= �, so

s0(L) ∩ s0(C0 − L) = ∅. Since s′ agrees with s0 on V(C0), we have
s′(L) ∩ s′(C0 − L) = ∅. Since sm is a most general unifier and s′ is
an L-unifier of L ∪ K, it is possible to factor s′ as s′ = s ∗ sm, for
some L-substitution s. Then, sm(L) ∩ sm(C0 − L) = ∅. Similarly,
sm(K) ∩ sm(C1 −K) = ∅, which means that R′ is a full resolvent of
C ′
0 and C ′

1.
We claim that s(R′) = R. Indeed, we have

s(R′) = s
(
sm
(
(C ′

0 − L) ∪ (C ′
1 −K)

))
= s′

(
(C ′

0 − L) ∪ (C ′
1 −K)

)

R

C1C0

R

C1C0

s0 s1

s

Fig. 5.38. Clauses, resolvents and substitutions in Lemma (5.8.66).

First-Order Logic–Formal Systems 1017

= s′(C ′
0 − L) ∪ s′(C ′

1 −K)

= (s′(C ′
0)− s′(L)) ∪ (s′(C ′

1)− s′(K))

(by Equality (5.7))

= (C0 − {�}) ∪ (C1 − {�̄}) = R.
�

Lemma 5.8.67 (Second Lifting Lemma). Let C0, C1 be two
ground L-clauses such that R = res�(C0, C1), where L is a first-
order language. Suppose that C ′

0, C
′
1 are two L-clauses, and s′0, s′1

are L-substitutions such that s′0(C ′
0) = C0 and s′1(C ′

1) = C1. Then,
there is a full, most general resolvent R′ of C ′

0 and C ′
1 and an L-

substitution s such that s(R′) = R.

Proof. The sets of variables of C ′
0 and C ′

1 may not be disjoint.
However, there are renamings s′′0 and s′′1 of the clauses C ′

0 and C ′
1,

respectively, such that C ′′
0 = s′′0(C ′

0) and C ′′
1 = s′′1(C ′

1) have disjoint
sets of variables (see Figure 5.39).

By Theorem 5.8.22, there are L-substitutions s0, s1 such that
s0(C

′′
0) = C ′

0 and s1(C
′′
1) = C ′

1. Note that s′0 ∗ s0(C ′′
0) = C0 and

s′1 ∗ s1(C ′′
1) = C1, so by Lemma 5.8.66, there is a simple full most

general resolvent R′ of C ′′
0 and C ′′

1 and an L-substitution s such
that s(R′) = R. Because (s′′0 , s

′′
1) is a standardization of (C ′

0, C
′
1), the

clause R′ is a full most general resolvent of C ′
0 and C ′

1. �

Theorem 5.8.68. Let L be a first-order language, C be a set of
L-clauses, and = (C0, . . . , Cn−1) be a resolution proof over
GINSTL(C). Let K ⊆ {0, . . . , n − 1} be such that K includes all
resolution steps of and for each k ∈ K, let Ck be a resolvent of

R

C1C0

R

C1 C1C0C0

s

s0 s1

s0 s1

s0 s1

Fig. 5.39. Clauses, resolvents and substitutions in Theorem 5.8.68.

1018 Logical Foundations of Computer Science — Volume 2

Cik and Cjk with ik, jk < k. Then, there is a full most general reso-
lution proof ′ = (C ′

0, . . . , C
′
n−1) over C and L-substitutions s′i such

that s′i(C
′
i) = Ci for 0 ≤ i ≤ n − 1. Further, if k ∈ K then C ′

k is a
full mgu resolvent of C ′

ik
and C ′

jk
and if k ∈ {0, . . . , n− 1}−K, then

C ′
k ∈ C.

Proof. We construct the proof (C ′
0, . . . , C

′
n−1) recursively. Suppose

that 0 ≤ k ≤ n− 1 and we have constructed C ′
0, . . . , C

′
k−1. If k �∈ K,

then k is an input step of , so a C-clause C ′
k and an L-substitution

s′k with s′k(C
′
k) = Ck exist by definition of ground instance. If k ∈ K

then we have C-clauses C ′
ik

and C ′
jk

and L-substitutions s′ik and s′jk
with s′ik(C

′
ik
) = Cik and s′jk(C

′
jk
) = Cjk . By Lemma 5.8.67, there is

a clause C ′
k and a substitution s′k such that s′k(C

′
k) = Ck and C ′

k is a
full most general resolvent of C ′

ik
and C ′

jk
. �

Corollary 5.8.69. Let L be a first-order language and C be a
set of L-clauses such that � ∈ Res∗(GINSTL(C)). Then, � ∈
(fResmgu)∗(C).

Proof. This is an immediate consequence of Theorem 5.8.68. �

Theorem 5.8.70 (Resolution Completeness for Languages
without Equality). Let L be a first-order language without equal-
ity and let C be a set of L-clauses. If C has no model, then � ∈
(fResmgu)∗(C).

Proof. If � ∈ C, the conclusion is immediate. Therefore, suppose
that � �∈ C. Recall that we introduced the Herbrand extension H(L)
of L in Definition 4.10.1. Denote this extension by L′.

Since C has no model, by Corollary 5.8.13, the set ΓC has no model.
Therefore, ΓC∀ has no model by Corollary 4.5.60. This, in turn,
implies that GINSTL′((ΓC)∀) has no model, by Corollary 4.10.20.
Thus, the set of clauses CGINSTL′((ΓC)∀)

has no model as established

in Corollary 5.8.13. An application of Theorem 5.8.65 allows us to
conclude that GINSTL′(C) has no model. Consequently, by Theo-
rem 5.8.63, � ∈ Res∗L′(GINSTL′(C)). Finally, by Corollary 5.8.69,
� ∈ (fResmgu)∗(C). �

In each of the statements ranging from Lemma 5.8.66 to Theo-
rem 5.8.70, we could have used idempotent most general unifiers as

First-Order Logic–Formal Systems 1019

provided by the Unification Algorithm (Algorithm 1.6.18). The adjec-
tive “idempotent” will be applied to any resolvent obtained using an
idempotent unifier.

The next corollary combines soundness and completeness for lan-
guages without equality.

Corollary 5.8.71. Let L be a first-order language without equality
and let C be a set of L-clauses. The following five statements are
equivalent:

(1) C has no model;
(2) � ∈ (fResmgu)∗(C);
(3) � ∈ (Resmgu)∗(C);
(4) � ∈ fRes∗L(C);
(5) � ∈ Res∗L(C).

Proof. (1) implies (2) follows from the Completeness Theorem
(Theorem 5.8.70). The implications (2) implies (3), (2) implies (4),
(3) implies (5), and (4) implies (5) are immediate. Finally, (5) implies
(1) follows from the Soundness Theorem (Theorem 5.8.54). �

Example 5.8.72. In this example, we make the point that stan-
dardization is essential in the definition of resolvent of two clauses
because resolution would not be complete without it. Indeed, consider
the set of clauses C = {{R(x)}, {(¬R(f(x)))}}. Note that the unifica-
tion algorithm applied to the atomic formulas R(x) and R(f(x)) fails
because the occurrence check fails (since x occurs in the term f(x)).
Therefore, to resolve {R(x)} and {(¬R(f(x)))} to �, we rename
{R(x)} to {R(y)} with y �= x and then unify {R(y), R(f(x))} with
the substitution syf(x).

A resolution step involves, in general, unifying several literals of
the clauses involved in this process. If we limit the number of literals
to one per clause, the resulting “binary” resolution is not complete
when the most general unifier requirement is maintained. However,
if this requirement is dropped, then binary resolution is complete.

Definition 5.8.73. Let Res2L and Resmgu2 be the analogues of ResL
and Resmgu when the usual resolution is replaced by binary resolu-
tion. If R is either of these functions, we use the notations Rn and
R∗ with their obvious meanings.

1020 Logical Foundations of Computer Science — Volume 2

The formal system FRES2L is

FRES2L = (Pfin(LITL), ∅, {R2}),

where the set of objects Pfin(LITL) consists of finite sets of literals of
L (L-clauses) and the rule R2 consists of all pairs ((C,D), E) where
E is a binary L-resolvent of C and D.

Let R2mgu be the analogue of Rmgu obtained by replacing reso-
lution by binary resolution and let FRES2Lmgu be the corresponding
resolution formal system.

Example 5.8.74. Let L be a first-order language without equality
that contains a relation symbol R of positive arity. We claim that
FRES2Lmgu is not complete in the sense of Theorem 5.8.70.

We discuss the case when R is a unary relation symbol. The argu-
ment can easily be extended by the reader to the n-ary case. Let
C = {{R(x0), R(x1)}, {(¬R(x2)), (¬R(x3))}}. It is clear the � can
be obtained from C by a single (nonbinary) mgu-resolution, hence C
has no model.

We claim that if C ∈ (Resmgu2)n(C), then C has one of the forms

{R(y0), R(y1)}, {R(y0), (¬R(y1))}, {(¬R(y0)), (¬R(y1))},

where y0, y1 are two distinct variables. The argument is by induction
on n. The basis step, n = 0, is immediate. Suppose that the statement
holds for n and let C ∈ (Resmgu2)n+1(C). If C ∈ (Resmgu2)n(C), the
property holds. Otherwise, C is a resolvent of two clauses D and
E in (Resmgu2)n(C). By inductive hypothesis, D and E have one of
the prescribed forms. Note that to apply resolution to D and E,
D must contain a positive literal and E must contain a negative
literal. Therefore, we have four essentially different cases. Suppose,
for example, that D = {R(y0), R(y1)} and E = {R(z0), (¬R(z1))},
where y0 �= y1 and z0 �= z1. By the definition of resolution, there is
a standardization (s0, s1) of (D,E), where s0(D) = {R(y′0), R(y′1)}
and s1(E) = {R(z′0), (¬R(z′1))}. Observe that y′0, y′1 and z′0, z′1 remain
distinct because s0 and s1 are renamings. Also, {y′0, y′1} and {z′0, z′1}
are disjoint because (s0, s1) is a standardization. Let �0, �1 be the
positive and negative literals involved in the binary resolution. The
literal �1 must be (¬R(z′1)) while �0 can be either R(y′0) or R(y′1).
The resolvent C has the form {R(s(z)), R(s(z′))} where s is an mgu

First-Order Logic–Formal Systems 1021

of {�0, �1} and z, z′ are distinct variables that do not occur in {�0, �1}.
By Supplement 80 of Chapter 1, s(z) and s(z′) are distinct variables,
so C has one of the prescribed forms. We leave the other cases to the
reader.

Lemma 5.8.75. Let C0, C1 be two L-clauses, where L is a first-
order language. If R is an L-resolvent of C0, C1 obtained using an
idempotent unifier, then R ∈ Res∗2L({C0, C1}).

Proof. By definition of resolvent, there are a standardization
(s0, s1) of (C0, C1), a nonempty set of positive literals L ⊆ s̄0(C0),
L = {�0, . . . , �p−1}, a nonempty set of negative literals K ⊆ s̄1(C1),
K = {(¬k0), . . . , (¬kr−1)} and an idempotent L-unifier s of L ∪ K
such that

R = s̄ ((s̄0(C0)− L) ∪ (s̄1(C1)−K)) .

Since s̄ is a unifier of L∪K, there is a literal � such that s̄(L∪K) =
{�}. Because s̄ is idempotent, we also have s̄(�) = � and s̄(l) = l, for
every l ∈ R.

We consider four cases.
Case 1: p = 1 and r = 1. In this case, there is nothing to prove

because the resolution is binary.
Case 2: p > 1 and r > 1. Since �0 ∈ s̄0(C0), (¬k0) ∈ s̄1(C1)

and s is an L-unifier (although not necessarily a most general unifier)
of {�0, k0}, we have the binary L-resolvent

R′ = s̄(s̄0(C0)− {�0}) ∪ s̄(s̄1(C1)− {(¬k0)}).

We claim that R′ = R∪{�, (¬�)}. It is clear that R ⊆ R′. In addition,
� = s̄(�1) ∈ R′ because p > 1; also, (¬�) = (¬s̄(k1)) ∈ R′ because
k > 1. Thus, R′ ⊇ R ∪ {�, (¬�)}. To prove the converse inclusion, let
l ∈ s̄(s̄0(C0) − {�0}). If l ∈ s̄(s̄0(C0) − {�0, . . . , �p−1}), then l ∈ R.
Otherwise, l = s̄(�i) = �, for some i, 1 ≤ i ≤ p−1, so l ∈ R∪{�, (¬�)}.
The case when l ∈ s̄(s̄0(C1) − {(¬k0)}) is similar, which proves the
converse inclusion.

We now consider two subcases.
Case 2.1: � �∈ R. We now apply weak binary L-resolution to R′

and C1, by using the identity renaming ι for R′ and the renaming s1

1022 Logical Foundations of Computer Science — Volume 2

for C1. We have � ∈ R′ and (¬k1) ∈ s̄1(C1) and due to the idempo-
tency of s̄, we have that s is an L-unifier of {�, k1}, so we can apply
weak binary L-resolution to obtain

R′′ = s̄(R′ − {�}) ∪ s̄(s̄1(C1)− {(¬k1)})
= s̄((R ∪ {�, (¬�)}) − {�}) ∪ s̄(s̄1(C1)− {(¬k1)})
= s̄(R ∪ {(¬�)}) ∪ s̄(s̄1(C1)− {(¬k1)})
= R ∪ {(¬�)} ∪ s̄(s̄1(C1)− {(¬k1)})

We claim that R′′ = R ∪ {(¬�)}. To justify this claim, we need to
show only that

R ∪ {(¬�)} ⊇ s̄(s̄1(C1)− {(¬k1)}).

Let l ∈ s̄(s̄1(C1)− {(¬k1)}), say l = s̄(l′). If l′ �∈ {(¬k0), . . . , (¬kr)},
then l ∈ R. Otherwise, l′ = (¬�). Note that by Lemma 5.8.38, R′′
can be obtained from R′ and C1 by binary L-resolution.

If (¬�) ∈ R, we have R′′ = R and we are done. Otherwise, we
apply weak binary L-resolution to C0 and R′, by using the identity
renaming ι for R′ and the renaming s0 for C0. We have (¬�) ∈ R′
and �1 ∈ s̄0(C0) and due to the idempotency of s̄, we have that s is
an L-unifier of {�, �1}, so we can apply weak binary L-resolution to
obtain

R′′′ = s̄(R′ − {(¬�)}) ∪ s̄(s̄0(C0)− {�1})
= s̄((R ∪ {�, (¬�)}) − {(¬�)}) ∪ s̄(s̄0(C0)− {�1})
= s̄(R ∪ {�}) ∪ s̄(s̄0(C0)− {�1})
= R ∪ {�} ∪ s̄(s̄0(C0)− {�1})

We claim that R′′′ = R ∪ {�}. To justify this claim, we need to show
only that

R ∪ {�} ⊇ s̄(s̄0(C0)− {�1}).

Let l ∈ s̄(s̄0(C0)−{�1}), say l = s̄(l′). If l′ �∈ {�0, . . . , �p}, then l ∈ R.
Otherwise, l′ = �. Again, by Lemma 5.8.38, R′′′ can be obtained from
C0 and R′ by binary L-resolution.

First-Order Logic–Formal Systems 1023

Since � �∈ R and (¬�) �∈ R, a final weak binary L-resolution step
involving R′′′ and R′′ yields R. A final application of Lemma 5.8.38
shows that R is a binary L-resolvent of R′′′ and R′′.

Case 2.2: � ∈ R. If (¬�) ∈ R, then R′ = R and we are finished.
If (¬�) �∈ R, then we obtain R′′′ = R ∪ {�} as in Case 2.1 and since
� ∈ R, R′′′ = R.

Case 3: p = 1 and r > 1. Since �0 ∈ s̄0(C0), (¬k0) ∈ s̄1(C1)
and s is an L-unifier (although not necessarily a most general unifier)
of {�0, k0}, we have the binary L-resolvent

R′ = s̄(s̄0(C0)− {�0}) ∪ s̄(s̄1(C1)− {(¬k0)}).

By an argument similar to the one used in Case 2, we have R′ =
R ∪ {(¬�)}. If (¬�) ∈ R, we have R′ = R and we are done.

Suppose (¬�) �∈ R. We apply weak binary L-resolution to C0 and
R′, by using the identity renaming ι for R′ and the renaming s0 for
C0. We have (¬�) ∈ R′ and �0 ∈ s̄0(C0) and due to the idempotency
of s̄, we have that s is an L-unifier of {�, �0}, so we can apply weak
binary L-resolution to obtain

R′′ = s̄(R′ − {(¬�)}) ∪ s̄(s̄0(C0)− {�0})
= s̄((R ∪ {(¬�)}) − {(¬�)}) ∪ s̄(s̄0(C0)− {�0})
= s̄(R) ∪ s̄(s̄0(C0)− {�0})
= R ∪ s̄(s̄0(C0)− {�0}).

We have R′′ = R because s̄(s̄0(C0) − {�0}) ⊆ R. By Lemma 5.8.38,
R′′ = R is a binary L-resolvent of C0 and R′.

Case 4: p > 1 and r = 1. This last case is similar to case 3 and
is left to the reader. �

Lemma 5.8.76. Let L be a first-order language and C be a set of
L-clauses. If there is an L-resolution proof of C over C that uses
idempotent unifiers at every resolution step, then C ∈ Res∗2L(C).

Proof. We are going to show that if there is an L-resolution proof
of C over C of length n that uses idempotent unifiers at every reso-
lution step, then C ∈ Res∗2L(C).

We use course-of-values induction on the length n of the proof.
Suppose the result is true for all m with 1 ≤ m < n and let C be a

1024 Logical Foundations of Computer Science — Volume 2

clause that is obtained by a proof over C using idempotent unifiers
and having length n. If C ∈ C, the result is immediate. Otherwise, C
is obtained as an L-resolvent of C ′, C ′′ which have proofs of length
less than n using idempotent unifiers. By the inductive hypothesis,
C ′, C ′′ ∈ Res∗2L(C), and by Lemma 5.8.75, C ∈ Res∗2L({C ′, C ′′}).
Thus, C ∈ Res∗2L(C). �

The previous lemma is a preliminary for a completeness result for
binary resolution.

Theorem 5.8.77. Let L be a first-order language without equality
and C be a set of L-clauses. If C has no model, then � ∈ Res∗2L(C).

Proof. By the proof of Theorem 5.8.70, since C has no model,
� ∈ Res∗L(C) by a proof using idempotent unifiers at every step. By
Lemma 5.8.76, � ∈ Res∗2L(C). �

5.9 Variations of First-Order Resolution

We now examine restrictions on clauses and on proof formats similar
to the ones considered in propositional logic (see Section 3.9) and
examine their completeness.

Definition 5.9.1. Let L be a first-order language and C be a set of
L-clauses.

• A positive L-resolution proof (negative L-resolution proof) over C
is an L-resolution proof over C such that for every resolution step,
there is a pair of premises such that one of the premises is positive
(negative).

• A linear L-resolution proof is an L-resolution proof (C0, . . . , Cn−1)
over C, such that for some k, 0 ≤ k ≤ n−1, C0, . . . , Ck belong to C
and for every j such that k < j ≤ n, Cj is obtained as a resolvent
of two predecessors one of which is Cj−1.
If for each j such that k < j ≤ n− 1, Cj is a resolvent of Cj−1 and
some Ch with 0 ≤ h ≤ k, then (C0, . . . , Cn) is an input L-resolution
proof over C.

First-Order Logic–Formal Systems 1025

Next we consider several other variations of first-order resolu-
tion which correspond to previously considered resolution methods
of propositional logic.

Definition 5.9.2. Let L be a first-order language and C be a set of
L-clauses.

• Let A be an L-structure. An A-semantic L-resolution proof over
C is an L-resolution proof over C such that if i is a resolution step,
then there are premises Cj , Ck for step i such that A �|= Cj or
A �|= Ck.

• A subset D of C is a set-of-support for C if C−D has a model. A D-
set-of-support L-resolution proof over C is an L-resolution proof
over C such that for every resolution step of the proof there is a
pair of premises at least one of which does not belong to C − D.

Next we discuss a sharpening of the First Lifting Lemma
(Lemma 5.8.61).

Lemma 5.9.3. Let L be a first-order language and let s be an injec-
tive, atomic L-inter-substitution.

If (C0, . . . , Cn−1) is a positive (negative, linear, input) proposi-
tional resolution proof over a set of propositional clauses C, then
(s(C0), . . . , s(Cn−1)) is an L-resolution proof over s(C) of the same
type. Further, i is an input step of the proof (C0, . . . , Cn−1) if and
only if it is an input step of the proof (s(C0), . . . , s(Cn−1)), for
0 ≤ i ≤ n− 1.

Proof. Lemma 5.8.61 implies that (s(C0), . . . , s(Cn−1)) is an
L-resolution proof over s(C) preserving input steps and by
Lemma 5.8.60, if 0 ≤ i, j < k ≤ n − 1 and Ck is a resolvent of
Ci and Cj , then s(Ck) is a resolvent of s(Ci) and s(Cj) which implies
that the type of the lifted proof is the same as the type of the original
propositional proof. �

Yet another lifting result is the following.

Lemma 5.9.4. Let L be a first-order language, A be an L-structure,
C be a set of propositional clauses and let s be an injective, atomic

1026 Logical Foundations of Computer Science — Volume 2

L-inter-substitution. Define a truth assignment v as

v(p) =

{
T if A |= s(p),

F if A �|= s(p).

If s(C0), . . . , s(Cn−1) are all ground clauses and (C0, . . . , Cn−1) is a
v-semantic resolution proof over C, then

(s(C0), . . . , s(Cn−1))

is an A-semantic L-resolution proof over s(C).

Proof. By Lemma 5.8.61, (s(C0), . . . , s(Cn−1)) is an L-resolution
proof over s(C). To verify that the lifted proof (s(C0), . . . , s(Cn−1))
is A-semantic, let σ ∈ ASSIGNA and let v′ be the truth assignment
defined as

v′(p) =

{
T if (A, σ) |= s(p),

F if (A, σ) �|= s(p).

If a variable p occurs in a propositional clause Ci, then s(p) is
a ground atomic formula because s(Ci) is a ground clause. Thus,
v′(p) = v(p) for every variable in Ci. Therefore, we have the follow-
ing equivalent statements:

(1) v satisfies Ci;
(2) v′ satisfies Ci;
(3) (A, σ) |= s(Ci) (by Lemma 5.8.57);
(4) A |= s(Ci) (because s(Ci) is a ground clause).

The result follows immediately. �

The sharpening of the Completeness of Resolution for Ground
Clauses and Languages without Equality (Theorem 5.8.63) is dis-
cussed next.

Theorem 5.9.5. Let L be a first-order language without equality and
let C be a set of ground L-clauses that has no model. The following
statements hold:

• There is a positive (negative, linear) L-resolution proof of � over C.
• If C consists of Horn clauses, then there is an input L-resolution

proof of � over C.

First-Order Logic–Formal Systems 1027

• For each L-structure A, there is an A-semantic L-resolution proof
of � over C.

Proof. The argument proceeds as in Theorem 5.8.63. As we have
shown, there is a fundamental propositional form C0 for C by Theo-
rem 5.8.7. Let s be an injective atomic L-intersubstitution such that
s(C0) = C. Since C consists of ground clauses and has no model, it
follows from Corollary 5.8.14 that C is unsatisfiable. This in turn
implies that C0 is unsatisfiable, by Theorem 5.8.59.

By Corollary 3.9.3, there is a positive (negative) propositional
resolution proof of � over C0. By Lemma 5.9.3, the image of this
proof under s is a positive (negative) L-resolution proof of � over
s(C0) = C.

For the linear L-resolution proof, the argument is similar except
for the use of Corollary 3.9.14 in place of Corollary 3.9.3.

For the second part of the theorem, note that if C consists of
Horn clauses, then so does C0. The statement follows by the previous
argument by using Corollary 3.9.19.

For the third part of the theorem, let A be an L-structure and
define a truth assignment v as

v(p) =

{
T if A |= s(p),

F if A �|= s(p).

By Corollary 3.9.22 there is a v-semantic resolution proof of �
over C0. By Lemma 5.9.4, the image of this proof under s is an
A-semantic L-resolution proof of � over C. �

Theorem 5.9.6. Let L be a first-order language, C be a set of
L-clauses and let A be an L-structure. If � has a positive (nega-
tive, linear, input, A-semantic) L-resolution proof over GINSTL(C),
then � has a positive (negative, linear, input, A-semantic) full, most
general resolution proof over C.

Proof. In the case of positive (negative, linear, input) L-resolution
proofs, the statement follows from Theorem 5.8.68. The case
of A-semantic L-resolution proofs follows from Theorems 5.8.68
and 5.8.23. �

Theorem 5.9.7. Let L be a first-order language without equality, C
be a set of L-clauses that has no model and A be an L-structure. Then

1028 Logical Foundations of Computer Science — Volume 2

there is a positive (negative, linear, A-semantic) full most general
resolution proof of � over C.

If C consists of Horn clauses, then there is an input full most
general resolution proof of � over C.

Proof. Our argument follows the same lines as the proof of Theo-
rem 5.8.70. If � ∈ C, the conclusion is immediate. Therefore, suppose
that � �∈ C. As before we denote the Herbrand extension of L by L′.
Let A′ be an arbitrary expansion of A to L′.

We can conclude that GINSTL′(C) has no model. By The-
orem 5.9.5, there is a positive (negative, linear, A′-semantic)
L′-resolution proof of � over GINSTL′(C). If C consists of Horn
clauses, then the ground instances of C are also Horn clauses and
hence there is an input L′-resolution of � over GINSTL′(C).

The result now follows from Theorem 5.9.6, noting that A and
A′ agree on all symbols occurring in a most general resolution proof
over a set of L-clauses. �

Theorem 5.9.8. Let L be a first-order language without equality, C
be a set of L-clauses and D ⊆ C be a set of support for C. If C has no
model, then there is a D-set-of-support full most general resolution
proof of � over C.

Proof. Since D is a set-of-support for C, C −D has a model. Thus,
there exists an L-structure A such that A is a model of C − D. By
Theorem 5.9.7, there exists an A-semantic full most general resolu-
tion proof of � over C. Note that in every resolution step of this
proof, there is a premise C such that A is not a model for C, that is,
a clause not from C − D. Therefore, this proof is a full most general
D-set-of-support proof of � over C. �

We introduce now the notion of hyperresolution which is similar
to the corresponding notion from propositional logic.

Definition 5.9.9. Let L be a first-order language. A positive
L-clause C is an L-hyperresolvent (full L-hyperresolvent, most gen-
eral L-hyperresolvent) of a sequence of L-clauses C1, . . . , Cn,D, where
n ≥ 1 and C1, . . . , Cn are positive, if there is a sequence of L-clauses
E0, . . . , En such that the following conditions are satisfied:

(1) E0 = C and En = D;

First-Order Logic–Formal Systems 1029

. . .

. . .

E0 = C

C1

C2

Cn−1

Cn

E1

En−2

En−1

En = D

positive clauses

Fig. 5.40. Construction of an L-hyperresolvent of a sequence of L-clauses.

(2) for 0 ≤ i ≤ n − 1, Ei is an L-resolvent (full L-resolvent. most
general resolvent) of Ci+1 and Ei+1.

Figure 5.40 shows the construction of an L-hyperresolvent of a
sequence of L-clauses.

Let C be a set of L-clauses. An L-hyperresolution proof over C is
a finite sequence (C0, C1, . . . , Cn−1) of L-clauses such that n ≥ 1 and
for each step i, 0 ≤ i ≤ n− 1 either Ci ∈ C or else Ci �∈ C and there
is a sequence j0, . . . , jp−1 < i such that Ci is an L-hyperresolvent of
Cj0 , . . . , Cjp−1 . In the first case, i is an input step of the proof; in the
second case, i is a hyperresolution step.

If at each hyperresolution step, the clause Ci is a full (most gen-
eral) L-hyperresolvent, then the sequence (C0, C1, . . . , Cn−1) is a full
L-hyperresolution proof over C (most general L-hyperresolution proof
over C).

An L-hyperresolution proof of a clause C over C is an
L-hyperresolution proof over C whose last entry is C.

Lemma 5.9.10. Let L,L′ be first-order languages and let
C1, . . . , Cn,D be L ∩ L′-clauses. Then C is a most general
L-hyperresolvent of C1, . . . , Cn,D if and only if C is a most general
L′-hyperresolvent of the same clauses.

1030 Logical Foundations of Computer Science — Volume 2

Proof. Suppose that C is a most general L-hyperresolvent of
C1, . . . , Cn,D. By the definition of hyperresolvent, we have L-clauses

C = E0, E1, . . . , En = D

such that for 0 ≤ i ≤ n − 1, Ei is a most general L-resolvent of
Ci+1 and Ei+1. We prove by induction on k with 1 ≤ k ≤ n, that
En−k is a an L′-clause. Since Cn and En = D are L′-clauses, by
Corollary 5.8.35, En−1 is a most general L′-resolvent of Cn and En
and hence is an L′-clause.

Suppose now that the result holds for k < n. Since En−k is
an L′-clause, it follows again from Corollary 5.8.35 that En−k−1

is a most general L′-resolvent of Cn−k and En−k and hence is
an L′-clause. We can conclude that C is a most general L′-
hyperresolvent of C1, . . . , Cn,D. The argument for the reverse inclu-
sion can be obtained by swapping L and L′. �

In view of Lemma 5.9.10, we can refer to a clause C as being a
most general hyperresolvent of a sequence of clauses without refer-
ence to a language.

Theorem 5.9.11. Let L,L′ be two first-order languages and let C be
a set of L ∩ L′-clauses. Then, a sequence of clauses (C0, . . . , Cn−1)
is a most general L-hyperresolution proof over C if and only if it is
a most general L′-hyperresolution proof over C.

Proof. Suppose that (C0, . . . , Cn−1) is a most general
L-hyperesolution proof over C. We show by course-of-values induc-
tion that each Ci is also an L′-clause and therefore the same sequence
(C0, . . . , Cn−1) is a most general L′-hyperresolution proof over C.

Suppose that for 0 ≤ j < i ≤ n − 1, each clause Cj is an
L′-clause. If Ci ∈ C, then by hypothesis, Ci is an L′-clause. If Ci is a
most general hyperresolvent of Cj0 , . . . , Cjp−1 with j0, . . . , jp−1 < i,
then, by inductive hypothesis, Cj0 , . . . , Cjp−1 are all L′-clauses, so by
Lemma 5.9.10, Ci is an L′-clause. �

In view of Theorem 5.9.11, if C is an admissible set of clauses,
we can refer to a most general hyperresolution proof over C without
reference to a specific language.

Lemma 5.9.12. Let L be a first-order language and let P and
R be two relation symbols of equal arity such that P ∈ L and

First-Order Logic–Formal Systems 1031

. . .
. . .

. . .
. . .

E0 = C sP
R(E0) = sP

R(C)

C1 sP
R(C1)

C2 sP
R(C2)

Cn−1 sP
R(Cn−1)

Cn sP
R(Cn)

E1 sP
R(E1)

En−2 sP
R(En−2)

En−1 sP
R(En−1)

En = D sP
R(En) = sP

R(D)
L L = (L − {P}) ∪ {R}

Fig. 5.41. Preservation of hyperresolvents under relation symbol substitution.

R �∈ L. Define the first-order language L′ = (L − {P}) ∪ {R}. Let
C1, . . . , Cn,D be L-clauses and C be an L-hyperresolvent (full L-
hyperresolvent, most general hyperresolvent) of C1, . . . , Cn,D. Then,
sPR(C) is an L′-hyperresolvent (full L′-hyperresolvent, most general
hyperresolvent) of the sequence

(sPR(C1), . . . , s
P
R(Cn))

and sPR(D) (see Figure 5.41).

Proof. First note that sPR(C1), . . . , s
P
R(Cn), s

P
R(C) are positive since

the clauses C1, . . . , Cn, C are positive.
Further, there are L-clauses E0, . . . , En with E0 = C, En = D

and Ei−1 is an L-resolvent (full L-resolvent, most general resolvent)
of Ci and Ei for 1 ≤ i ≤ n. Then, sPR(Ei) is an L′-clause for 0 ≤ i ≤ n,
sPR(E0) = sPR(C), sPR(En) = sPR(D), and by Lemma 5.8.49, sPR(Ei−1) is
a (full, most general) L′-resolvent of sPR(Ci) and sPR(Ei) for 1 ≤ i ≤ n.

�

Theorem 5.9.13. Let C be a set of L-clauses and let P and R be two
relation symbols of equal arity such that P ∈ L and R �∈ L. Define
the first-order language L′ = (L − {P}) ∪ {R}. If (C0, . . . , Cn−1)
is an L-hyperresolution (full L-hyperresolution, most general hyper-
resolution) proof of C over C, then (sPR(C0), . . . , s

P
R(Cn−1)) is an

L′-hyperresolution (full L′-hyperresolution, most general hyperreso-
lution) proof of sPR(C) over sPR(C).

Proof. The argument is based on Lemma 5.9.12 and it is entirely
similar to the proof of Theorem 5.8.50. �

1032 Logical Foundations of Computer Science — Volume 2

Corollary 5.9.14. Let C be a set of L-clauses, C be an L-clause, and
let P and R be two relation symbols of equal arity such that P ∈ L
and R �∈ L. Define the first-order language L′ = (L − {P}) ∪ {R}.
There is a (full, most general) L-hyperresolution proof of C over C
if and only if there is a (full, most general) L′-hyperresolution proof
of sPR(C) over sPR(C).

Proof. This follows directly from Theorem 5.9.13. �

Lemma 5.9.15. Let L be a first-order language and let C0, C1, C be
L-clauses such that C is an L-resolvent (a full L-resolvent, a most
general resolvent) of C0, C1. If s0, s1 are renamings of C0, C1, respec-
tively, and C ′

i = si(Ci) for i ∈ {0, 1}, then C is an L-resolvent (a full
L-resolvent, a most general resolvent) of C ′

0, C
′
1.

Proof. By the definition of resolvent, we have a standardization
(s′0, s′1) of (C0, C1), a set of positive literals L ⊆ s′0(C0), and a set of
negative literals K ⊆ s′1(C1) with C = s(s′0(C0) − L) ∪ s(s′1(C1) −
K), where s is an L-unifier of L ∪ K. By Theorem 5.8.22, Ci is a
renaming of si(Ci) for i ∈ {0, 1} and by the same theorem, s′i(Ci)
is a renaming of si(Ci), for i ∈ {0, 1}. Denote by s′′i a renaming
of si(Ci) with s′′i (si(Ci)) = s′i(Ci) for i ∈ {0, 1}, and observe that
(s′′0 , s

′′
1) is a standardization of (s0(C0), s1(C1)), because (s′0, s

′
1) is a

standardization of (C0, C1). This shows that C is also an L-resolvent
of s0(C0) and s1(C1).

The same argument works for full resolvents and most general
resolvents. �

Theorem 5.9.16. Let L be a first-order language and let
C,C1, . . . , Cn,D be L-clauses such that C is an L-hyperresolvent
(a full L-hyperresolvent, a most general hyperresolvent) of
C1, . . . , Cn,D. If s1, . . . , sn, z are renamings of C1, . . . , Cn,D, respec-
tively, C ′

i = si(Ci) for 1 ≤ i ≤ n and D′ = z(D), then C is an
L-hyperresolvent (a full L-hyperresolvent, a most general hyperresol-
vent) of C ′

1, . . . , C
′
n,D

′.

Proof. The result follows from the definition of hyperresolvent and
repeated application of Lemma 5.9.15. �

We aim now to prove the soundness and completeness of hyper-
resolution for first-order logic.

First-Order Logic–Formal Systems 1033

Lemma 5.9.17. Let L be a first-order language and let
C1, . . . , Cn,D be L-clauses. If E is an L-hyperresolvent of
(C1, . . . , Cn,D), then there is an L-resolution proof of E over
{C1, . . . , Cn,D}.

Proof. The proof is virtually the same as the proof of
Lemma 3.9.27. �

Lemma 5.9.18. Let L be a first-order language. If there is an
L-hyperresolution proof of an L-clause C over a set of L-clauses C,
then there is an L-resolution proof of C over C.

Proof. Again, the proof is similar to the proof of Lemma 3.9.28.
�

Theorem 5.9.19 (Soundness of First-Order Hyperresolu-
tion). If C is a set of L-clauses and there is an L-hyperresolution
proof of � over C, then C is unsatisfiable.

Proof. By Lemma 5.9.18, if there is an L-hyperresolution proof of
� over C, then, there is an L-resolution proof of � over C, which
implies that C is unsatisfiable, by Theorem 5.8.54. �

We now prepare the ground for proving the completeness of first-
order hyperresolution.

Lemma 5.9.20. Let L be a first-order language, C1, . . . , Cn−1 be
positive propositional logic clauses, D be a propositional logic clause,
and R be a hyperresolvent of C1, . . . , Cn,D.

If s is an injective, atomic L-inter-substitution, then R′ = s(R) is
an L-hyperresolvent of the first-order clauses C ′

1 = s(C1), . . . , C
′
n =

s(Cn),D
′ = s(D).

Proof. It is immediate that the clauses C ′
1, . . . , C

′
n are positive. By

the definition of propositional hyperresolvent, there is a sequence of
clauses E0, . . . , En such that the following conditions are satisfied:

(1) E0 = R and En = D;
(2) for 0 ≤ i ≤ n− 1, Ei is a resolvent of Ci+1 and Ei+1.

We then have the sequence of L-clauses E′
0 = s(E0), . . . , E

′
n = s(En),

with E′
0 = s(E0) = s(R) = R′ and E′

n = s(En) = s(D) = D′. By
Lemma 5.8.60, for 0 ≤ i ≤ n − 1, E′

i = s(Ei) is an L-resolvent of

1034 Logical Foundations of Computer Science — Volume 2

C ′
i+1 = s(Ci+1) and E

′
i+1 = s(Ei+1). Thus, R

′ is an L-hyperresolvent
of C ′

0, . . . , C
′
n−1 and D′. �

An analogue of the First Lifting Lemma (Lemma 5.8.61) for
hyperresolution is given next.

Lemma 5.9.21 (First Hyperresolution Lifting Lemma). Let
L be a first-order language and let s be an injective, atomic L-
inter-substitution. If (C0, . . . , Cn−1) is a propositional hyperresolu-
tion proof over a set of clauses C, then (s(C0), . . . , s(Cn−1)) is an
L-hyperresolution proof over s(C). Further, for 0 ≤ i ≤ n − 1, i is
an input step of the proof (C0, . . . , Cn−1) if and only if it is an input
step of the proof (s(C0), . . . , s(Cn−1)).

Proof. Let 0 ≤ i ≤ n− 1. If Ci ∈ C, then s(Ci) ∈ s(C). Otherwise,
Ci �∈ C and there is a sequence j0, . . . , jp−1 < i such Ci is a hyper-
resolvent of Cj0 , . . . , Cjp−1 . By Theorem 4.8.5, s(Ci) �∈ s(C) and by
Lemma 5.9.20, s(Ci) is a hyperresolvent of s(Cj0), . . . , s(Cjp−1). �

Theorem 5.9.22. Let L be a first-order language, C be a set of
L-clauses, C0 be a fundamental propositional form for C and let s
be a prime, injective inter-substitution with s(C0) = C. If C is a
propositional clause that has a hyperresolution proof over C0, then
s(C) has an L-hyperresolution proof over C.

Proof. The argument is analogous with that of Theorem 5.8.62
using Lemma 5.9.21. �

Theorem 5.9.23 (Completeness of Hyperresolution for
Ground Clauses and Languages without Equality). Let L be
a first-order language without equality and let C be a set of ground
L-clauses. If C has no model, then there is a hyperresolution proof of
� over C.

Proof. The argument is similar to the proof of Theorem 5.8.63,
but using the completeness of propositional hyperresolution (Theo-
rem 3.9.32) in place of Theorem 3.8.32. �

A counterpart for hyperresolution of Lemma 5.8.66 is given next.

Lemma 5.9.24. Let L be a first-order language, C1, . . . , Cn,D
be ground L-clauses such that R is an L-hyperresolvent of
C1, . . . , Cn,D. Suppose that C ′

1, . . . , C
′
n,D

′ are L-clauses whose sets

First-Order Logic–Formal Systems 1035

of variables are pairwise disjoint and s1, . . . , sn, z are L-substitutions
such that si(C

′
i) = Ci for 1 ≤ i ≤ n and z(D′) = D. Then, there is a

full most general hyperresolvent R′ of C ′
1, . . . , C

′
n,D

′ and a substitu-
tion s such that s(R′) = R.

Proof. Note that since Ci is positive for 1 ≤ i ≤ n, the clauses C ′
i

must also be positive because each of the clauses Ci is obtained from
C ′
i by the substitution si. By definition of hyperresolvent, there is a

sequence of L-clauses E0, . . . , En such that the following conditions
are satisfied:

(1) E0 = R and En = D;
(2) for 0 ≤ i ≤ n− 1, Ei is a resolvent of Ci+1 and Ei+1.

It is easy to see by induction on k, where 0 ≤ k ≤ n, that En−k is a
ground clause because a resolvent of two ground clauses must be a
ground clause.

We demonstrate the existence of L-clauses E′
0, . . . , E

′
n and of sub-

stitutions s′0, . . . , s′n such that for 0 ≤ k ≤ n, we have

(1) s′n−k(E
′
n−k) = En−k;

(2) if k ≥ 1, E′
n−k is a resolvent of C ′

n−k+1 and E′
n−k+1;

(3) V(E′
n−k) ⊆ V(C ′

n−k+1) ∪ · · · ∪ V(C ′
n) ∪ V(D′).

The argument is by induction on k. For k = 0, we set E′
n = D′

and s′n = z and the conditions are clearly satisfied. Suppose the
statements hold for k < n. By inductive hypothesis, s′n−k(E

′
n−k) =

En−k and V(C ′
n−k) ∩ V(E′

n−k) = ∅ because V(E′
n−k) ⊆ V(C ′

n−k+1) ∪
· · · ∪ V(C ′

n) ∪ V(D′) and the sets of variables

V(C ′
n−k), . . . , V(C

′
n), V(D

′)

are pairwise disjoint. We further have sn−k(C ′
n−k) = Cn−k and

En−k−1 is a resolvent of Cn−k and En−k. By the Second Disjoint
Lifting Lemma (Lemma 5.8.66), there are an L-clause E′

n−k−1 which
is a simple full most general resolvent of C ′

n−k and E′
n−k and a sub-

stitution s′n−k−1 with

s′n−k−1(E
′
n−k−1) = En−k−1.

Because E′
n−k−1 is a simple resolvent, we have V(E′

n−k−1) ⊆
V(C ′

n−k) ∪ V(E′
n−k) ⊆ V(C ′

n−k) ∪ V(C ′
n−k+1) ∪ · · · ∪ V(C ′

n) ∪ V(D′),
which concludes the inductive argument.

1036 Logical Foundations of Computer Science — Volume 2

Finally, we set R′ = E′
0 and s = s′0 to obtain the desired full most

general hyperresolvent with s(R′) = R. (Note that the last equality
implies that R′ is positive by the positivity of R.) �

Lemma 5.9.25 (Second Hyperresolution Lifting Lemma). Let
L be a first-order language, C be a set of L-clauses, and let C be an
L-clause that has an L-hyperresolution proof over GINSTL(C). Then,
there is an L-clause C ′ that has a full most general hyperresolution
proof over C and a substitution s′ such that s′(C ′) = C.

Proof. We prove by course-of-values induction on n, the length of
the L-hyperresolution proof of C that there is a clause C ′ that has a
most general hyperresolution proof over C and a substitution s′ such
that s′(C ′) = C. Suppose that n ≥ 1 and the result holds for all m
with 1 ≤ m < n.

If C has an L-hyperresolution proof over GINSTL(C) of length
n, there are two cases to consider. If C ∈ GINSTL(C), the result
is immediate. Else, there are C1, . . . , Cp,D with L-hyperresolution
proofs over GINSTL(C) of length less than n such that C is an
L-hyperresolvent of C1, . . . , Cp,D. By the inductive hypothesis, there
exist L-clauses C ′

1, . . . , C
′
p,D

′ with full most general hyperresolu-
tion proofs over C and substitutions s1, . . . , sp, z with si(C

′
i) = Ci,

for 1 ≤ i ≤ p and z(D′) = D. Let s′1, . . . , s
′
p, z

′ be renamings
of C ′

1, . . . , C
′
p,D

′, respectively, such that the sets of variables of
s′1(C ′

1), . . . , s
′
p(C

′
p), z

′(D′) are pairwise disjoint. By Theorem 5.8.22,
there are renamings s′′i of s′i(C

′
i) for 1 ≤ i ≤ p, and a renaming

z′′ of z′(D′) with s′′i (s
′
i(C

′
i)) = C ′

i and z′′(z′(D′)) = D′. Thus, for
1 ≤ i ≤ p, we have (si ∗ s′′i)(s′i(C ′

i)) = Ci and (z ∗ z′′)(z′(D′)) = D.
By Lemma 5.9.24, there is a full most general hyperresolvent C ′
of s′1(C ′

1), . . . , s
′
p(C

′
p), z

′(D′) and a substitution s with s(C ′) = C.
By Theorem 5.9.16, C ′ is also a most general hyperresolvent of
C ′
1, . . . , C

′
p,D

′ and thus C ′ has a full most general hyperresolution
proof over C.

(See Figure 5.42.) �

Theorem 5.9.26. Let L be a first-order language and let C be a
set of L-clauses such that � has an L-hyperresolution proof over
GINSTL(C). Then, � has a full most general hyperresolution proof
over C.
Proof. This is an immediate consequence of Lemma 5.9.25. �

First-Order Logic–Formal Systems 1037

· · ·

· · ·

· · ·

C

C

C1

s1(C1)

Cp

CpC1

sp(Cp)

D

D

z (D)

s1

sp

z

s

s1
sp

s1
sp z

z

Fig. 5.42. Inductive step in the proof.

Theorem 5.9.27 (Hyperresolution Completeness for Lan-
guages without Equality). Let L be a first-order language without
equality and let C be a set of L-clauses. If C has no model, then there
is a full most-general hyperresolution proof of � over C.

Proof. The proof follows the same course as the proof of Theo-
rem 5.8.70. �

Corollary 5.9.28. Let L be a first-order language without equality
and let C be a set of L-clauses. The following three statements are
equivalent.

(1) C has no model;
(2) there is a full most general hyperresolution proof of � over C;
(3) there is an L-hyperresolution proof of � over C.

Proof. (1) implies (2): This follows from the Completeness Theo-
rem (Theorem 5.9.27).

(2) implies (3): This implication is immediate.
(3) implies (1): This follows from the soundness of hyperresolution.

�

5.10 First-Order Resolution with Equality

5.10.1 Equality Axioms and Resolution

The presence of equality in the language poses special problems for
the completeness proofs, as we saw with other formal systems.

1038 Logical Foundations of Computer Science — Volume 2

Recall that MEq†=,L is the set of matrices of the equality axioms
for the language L, in conjunctive normal form as given in Defi-
nition 4.5.64. The next theorem makes use of the set of clauses
CMEq†

=,L
which consists of:

• {x0 = x0};
• {x0 �= x1, x1 = x0};
• {x0 �= x1, x1 �= x2, x0 = x2};
• for every n-ary function symbol f ∈ L with n > 0,

{x0 �= xn, . . . , xn−1 �= x2n−1, f(x0, . . . , xn−1) = f(xn, . . . , x2n−1)};

• for every n-ary relation symbol P ∈ L which is not a relational
constant and is distinct from =,

{x0 �= xn, . . . , xn−1 �= x2n−1, (¬P (x0, . . . , xn−1)), P (xn, . . . , x2n−1)}

and

{x0 �= xn, . . . , xn−1 �= x2n−1, (¬P (xn, . . . , x2n−1)), P (x0, . . . , xn−1)}.

To simplify notation, we will denote the set of clauses CMEq†
=,L

by

C=,L.

Theorem 5.10.1 (Soundness and Completeness of Resolu-
tion for Languages with Equality). Let L be a first-order lan-
guage with equality and let C be a set of L-clauses. If R is one of
Res,Resmgu, fRes or fResmgu, then C has no model if and only if
� ∈ R∗

L(C ∪ C=,L).

Proof. We may assume that � �∈ C, for if � ∈ C, the conclusion
follows immediately.

Let R be a binary relation symbol not in L and let L′ be the
language (L − {=}) ∪ {R}.

We will prove the theorem by showing that the following state-
ments are equivalent.

(1) C has no model;
(2) ΓC has no model;
(3) s=R(ΓC) ∪ EqR,L′ has no model;

(4) s=R(ΓC) ∪MEq†R,L′ has no model;

First-Order Logic–Formal Systems 1039

(5) Cs=R(ΓC) ∪ CMEq†
R,L′

has no model;

(6) s=R(C) ∪ CMEq†
R,L′

has no model;

(7) � ∈ R∗
L′(s=R(C) ∪ CMEq†

R,L′
);

(8) � ∈ R∗
L(C ∪ C=,L).

Statement (1) is equivalent to (2) by Corollary 5.8.13. Next, (2)
is equivalent to (3) by Corollary 4.10.37.

The equivalence of (3) and (4) follows from the equivalence of the
first and third statements of Theorem 4.5.65.

Statement (4) is equivalent to (5) by Corollary 5.8.13. Next, (5)
is equivalent to (6) by Supplement 80.

The equivalence between (6) and (7) follows by Corollary 5.8.71.
Finally, (7) is equivalent to (8). Indeed, observe that

s=R(C=,L) = s=R(CMEq†
=,L

) = C
s=R(MEq†

=,L)
= CMEq†

R,L′
. (5.8)

The equivalence now follows from Corollary 5.8.51. �

Example 5.10.2. We show that the formula

ϕ = (∀x0)(∀x1)(((∀x2)(f(x0, x2) = x2)

∧(∀x3)(f(x3, x1) = x3))→ (x0 = x1)),

introduced in Example 5.8.17 is logically valid by applying The-
orem 5.10.1 to the set of clauses C given in the example men-
tioned above. The resolution tree shown in Figure 5.43 shows � ∈
Res∗L(C ∪ C=,L). In this figure, we denote substitutions of the form
s
y0···yk−1
t0···tk−1

by a list of the form y0 �→ t0, . . . , yk−1 �→ tk−1.

We give now a soundness and completeness result for hyperreso-
lution involving clauses over languages with equality.

Theorem 5.10.3 (Soundness and Completeness of Hyperres-
olution for Languages with Equality). Let L be a first-order
language with equality and let C be a set of L-clauses. Then, C has
no model if and only if there is an L-hyperresolution proof of � over
C ∪ C=,L.

Proof. Our argument is a modification of the proof of Theo-
rem 5.10.1. Let R be a binary relation symbol not in L and let L′ be
the language (L − {=}) ∪ {R}.

1040 Logical Foundations of Computer Science — Volume 2

{c0 = c1}

{f(x3, c1) = x2, x3 = x2}

{x3 = f(x3, c1) x0 = x1, x1 = x2, x0 = x2}

{f(x3, c1) = x3

} {

} {x0 = x1, x1 = x0}

{f(c0, x4) == x4}

{f(c0, x2) == x2}

x3 c0, x4 c1, x2 c1

x0 x3, x1 f(x3, c1)

x0 f(x3, c1), x1 x3

{¬(c0 = c1)}

Fig. 5.43. Resolution tree of � for the set of clauses defined in Example 5.8.17.

We will prove the theorem by showing that the following state-
ments are equivalent.

(1) C has no model;
(2) s=R(C) ∪ CMEq†

R,L′
has no model;

(3) there is an L′-hyperresolution proof of � over s=R(C)∪CMEq†
R,L′

;

(4) there is an L-hyperresolution proof of � over C ∪ C=,L.

The equivalence of (1) and (2) was shown in the proof of Theo-
rem 5.10.1.

The equivalence between (2) and (3) follows from the Complete-
ness of First-Order Hyperresolution for languages without equality
as stated in Theorem 5.9.27.

The equivalence of (3) and (4) can be shown in a similar manner to
the equivalence between (7) and (8) in the proof of Theorem 5.10.1,
using Corollary 5.9.14 instead of Corollary 5.8.51. �

Theorem 5.10.4 (Soundness and Completeness of Full
MGU-hyperresolution for Languages with Equality). Let L
be a first-order language with equality and let C be a set of L-clauses.
Then, C has no model if and only if there is a full most general
hyperresolution proof of � over C ∪ C=,L.

First-Order Logic–Formal Systems 1041

Proof. The argument is similar to the one used in Theorem 5.10.3
except that we use now the completeness of full most general hyper-
resolution for languages without equality. �

5.10.2 Brand’s Modification Method
and Resolution

At this point, we have dealt with presence of equality by adding
a large number of special new equality clauses. Resolution proofs
involving equality are usually lengthy and difficult to put together
because of the large search space of axioms. The method we are
about to discuss adapts Brand’s technique discussed in Section 4.11
to clauses and transforms a set of clauses such that only the reflex-
ivity clause has to be added to the modified set of clauses.

Theorem 5.10.5. Let L be a first-order language with equality and
let C be a finite set of L-clauses that does not contain �. If Γ has the
form CF=((ΓC)〈=〉), then the following three statements are equiva-
lent:

(1) C has no model;
(2) � ∈ Res∗L(CΓ ∪ {x = x});
(3) � ∈ (fResmguL)∗(CΓ ∪ {x = x}).

Proof. We prove only the equivalence of the first two statements.
The equivalence between the first and third statements is proven
similarly. Let R be a binary relation symbol not in L and let L′ be
the first-order language (L − {=}) ∪ {R}.

By Theorem 4.11.12, there is an R-flattening, (s=R(ΓC))〈R〉 of

s=R(ΓC) such that sR=(s
=
R(ΓC)〈R〉) = Γ

〈=〉
C . Let Γ′ =

⋃
{CFR(ϕ) | ϕ ∈

(s=R(ΓC))〈R〉} ∪ {R(x, x)}
We claim that the following statements are equivalent:

(1) the set of L-clauses C has no model;
(2) the set of L-formulas ΓC has no model;
(3) s=R(ΓC) ∪ EqR,L′ has no model;

(4) s=R(ΓC) has no model A with RA a congruence;

(5) (s=R(ΓC))〈R〉 has no model A′ where RA′
is an equivalence

relation;

1042 Logical Foundations of Computer Science — Volume 2

(6) PEEXPR((s
=
R(ΓC))〈R〉), has no model B where RB is a reflexive

relation;

(7)
⋃
{CFR(ϕ) | ϕ ∈ (s=R(ΓC))〈R〉} has no model Ã with RÃ reflex-

ive;
(8) Γ′ has no model;
(9) the set of L′-clauses CΓ′ has no model;

(10) � ∈ Res∗L′ (CΓ′);
(11) � ∈ Res∗L

(
sR= (CΓ′)

)
;

(12) � ∈ Res∗L
(
CsR=(Γ′)

)
;

(13) � ∈ Res∗L(CΓ ∪ {x = x}).

As we saw in the proof of Theorem 5.10.1, statement (1) is equiv-
alent to (2) by Corollary 5.8.13. Similarly, statement (2) is equivalent
to (3) by Corollary 4.10.37. The equivalence of statements (3) and
(4) follows from Theorem 4.5.63.

Note
that the set s=R(ΓC) consists of quantifier-free formulas. Therefore
the equivalence of (4) and (5) follows from Theorem 4.11.10. The
equivalence of (5) and (6) follows from Theorem 4.11.23 because the
formulas of the set (s=R(ΓC))〈R〉 do not contain ↔. The equivalence of
(6) and (7) follows from the correctness of Algorithm 4.11.26 because
the formulas in (s=R(ΓC))〈R〉 are clausal. The equivalence of (7) and
(8) is immediate.

The equivalence of (8) and (9) follows from Corollary 5.8.13 and
the fact that � �∈ Γ′. Statements (9) and (10) are equivalent due to
Theorem 5.8.70. Corollary 5.8.51 implies the equivalence of State-
ments (10) and (11). The equivalence of (11) and (12) follows from
the immediate observation that sR= (CΓ′) is the same as CsR=(Γ′).

Finally, to prove the equivalence of (12) and (13) it will suffice to
show that sR= (Γ′) = Γ ∪ {x = x}. Indeed, we can write

sR=(Γ
′) = sR=(

⋃
{CFR(ϕ) | ϕ ∈ (s=R(ΓC))〈R〉} ∪ {R(x, x)})

=
⋃
{sR=(CFR(ϕ)) | ϕ ∈ (s=R(ΓC))〈R〉} ∪ {(x = x)}

=
⋃
{CF=(sR=(ϕ))) | ϕ ∈ (s=R(ΓC))〈R〉} ∪ {(x = x)}

(by Theorem 4.11.30)

First-Order Logic–Formal Systems 1043

=
⋃
{CF=(ϕ) | ϕ ∈ Γ

〈=〉
C } ∪ {(x = x)}

(by the choice of the R-flattening)

= Γ ∪ {(x = x)} �

Example 5.10.6. We reprove the logical validity of the formula

ϕ = (∀x0)(∀x1)(((∀x2)(f(x0, x2) = x2)

∧(∀x3)(f(x3, x1) = x3))→ (x0 = x1)),

which we already proved in Example 5.10.2. This time, the argument
is based on Theorem 5.10.5. As before, we prove that the correspond-
ing set of clauses obtained in Example 5.8.17,

C = {{(f(c0, x2) = x2)}, {(f(x3, c1) = x3)}, {(¬(c0 = c1))}},
has no model. The set of formulas ΓC is:

ΓC = {(f(c0, x2) = x2), (f(x3, c1) = x3), (¬(c0 = c1))}.
Assuming that y0, y1 are new variables, an =-flattening of ΓC is

(ΓC)〈=〉 = {((f(y0, x2) = x2) ∨ (¬(y0 = c0))),

((f(x3, y1) = x3) ∨ (¬(y1 = c1))), (¬(c0 = c1))}.
Let w0, w1 be the first variables that do not occur in (ΓC)〈=〉. The

set of clausal formulas Γ = CF=((ΓC)〈=〉) is:

Γ = {((¬(f(y0, x2) = w0)) ∨ (x2 = w0) ∨ (¬(y0 = c0))),

((f(y0, x2) = w0) ∨ (¬(x2 = w0)) ∨ (¬(y0 = c0))),

((¬(f(x3, y1) = w1)) ∨ (x3 = w1) ∨ (¬(y1 = c1))),

((f(x3, y1) = w1) ∨ (¬(x3 = w1)) ∨ (¬(y1 = c1))), (¬(c0 = c1))}.
Now, CΓ ∪ {x = x} is
CΓ ∪ {x = x} = {{(¬(f(y0, x2) = w0)), (x2 = w0), (¬(y0 = c0))},

{(f(y0, x2) = w0), (¬(x2 = w0)), (¬(y0 = c0))},
{(¬(f(x3, y1) = w1)), (x3 = w1), (¬(y1 = c1))},
{(f(x3, y1) = w1), (¬(x3 = w1)), (¬(y1 = c1))),

(¬(c0 = c1)}, {(x = x)}}.

1044 Logical Foundations of Computer Science — Volume 2

{c0 = c1} {(¬(c0 = c1))}

{x = x} {c0 = y1, (¬(y1 = c1))}

{f(c0, w0) == w0}
{(¬(f(x3, y1) = w1)), x3 = w1, (¬(y1 = c1))}

{x = x}

{x = x}

{f(y0, w0) = w0, (¬(y0 = c0))}

{f(y0, x2) = w0, (¬(x2 = w0)), (¬(y0 = c0))}

x c1

y1 c1

x3 c0

w0 y1

w1 y1

x c0

y0 c0

x w0

x2 w0

Fig. 5.44. Resolution tree for CΓ ∪ {x = x}.

The resolution tree shown in Figure 5.44 shows that � ∈ Res∗(CΓ ∪
{x = x}). Note that the resolution tree only makes use of the reflex-
ivity of equality while the proof in Example 5.10.2 uses both transi-
tivity and symmetry.

5.10.3 Paramodulation

An alternative approach to handling equality in resolution adds a new
rule, called paramodulation, producing shorter and simpler proofs.

Theorem 5.10.7. Let L be a first-order language, � be an L-literal
and ζ = (t, i) be an occurrence of an L-term t in �.

If � is a positive literal R(t0, . . . , tn−1), then ζ is part of one of

the occurrences of the form (ti, 2 + i+
∑i−1

j=0 |tj|).
If � is a negative literal (¬R(t0, . . . , tn−1)), then ζ is part of one

of the occurrences of the form (ti, 4 + i+
∑i−1

j=0 |tj |).

Proof. When � is a positive literal, by regarding � as a term in the
extended signature SextL and taking account that t must be a proper
subterm of �, the result follows by Theorem 1.5.27.

First-Order Logic–Formal Systems 1045

Let now � = (¬R(t0, . . . , tn−1)) be a negative literal. Observe that
for ζ = (t, i), we have i ≥ 4, because t cannot start with (, ¬, or R.
Furthermore, t cannot start with a comma, so ζ starts inside some
term tj , at the same position where a subterm t′ of tj begins (by Sup-
plement 50 of Chapter 1). Since no term can be a proper prefix of
another term, it follows that t = t′, which establishes the result.

�

Corollary 5.10.8. Let L be a first-order language, � be an L-literal,
ζ = (t, i) be an occurrence of an L-term t in � and let w be an L-term.
Then, replace (�, ζ, w) is an L-literal of the same nature (positive
or negative) as �.

Proof. This statement follows from Theorems 5.10.7 and 1.5.30.
�

Definition 5.10.9. Let L be a first-order language. An L-clause P
is an L-paramodulant of two L-clauses C0, C1, if there are:

• a standardization (s0, s1) of (C0, C1);
• a nonempty subset L of s̄0(C0) consisting of positive equality

literals;
• a nonempty subset K of s̄1(C1);
• an L-unifier s′ of L such that s′(L) = {u = v};
• an L-unifier s′′ of K such that s′′(K) = {�};
• an occurrence ζ = (t, i) ∈ OCCt(�) of a term t in �,

and one of the following two situations occur:

(1) there exists an L-unifier s of {u, t} such that

P = s
(
s′(s0(C0)− L) ∪ s′′(s1(C1)−K) ∪ {replace (�, ζ, v)}

)
.

(2) there exists an L-unifier s of {v, t} such that

P = s
(
s′(s0(C0)− L) ∪ s′′(s1(C1)−K) ∪ {replace (�, ζ, u)}

)
.

If one of the two previous cases holds, we say that P was obtained
from C0 and C1 by paramodulating the equality (u = v) into the term
occurrence (t, i). The first case of the above definition is represented
in Figure 5.45.

If s′, s′′ are most general unifiers of L and K, respectively, and
s is a most general unifier of {u, t} in the first case or of {v, t} in

1046 Logical Foundations of Computer Science — Volume 2

{. . . , u = v, . . .}

{. . . , , . . .}

{. . . , t , . . .}

{. . . , v , . . .}

s̄()

s s

C0 C1

s0 s1

L ⊆ s0(C0) K ⊆ s1(C1)

Fig. 5.45. The construction of a paramodulant.

the second, then we say that P is a most general paramodulant of C0

and C1.
If s0, s1 are both the identity map on their respective domains,

then we say that P is a simple L-paramodulant of C0 and C1.
If we have both s′(s0(C0) − L) ∩ s′(L) = ∅ and s′′(s1(C1) −

K) ∩ s′′(K) = ∅, then we say that P is a full L-paramodulant of
C0 and C1.

In either of the cases mentioned in Definition 5.10.9, P is a clause
due to Corollary 5.10.8. The construction shown in Figure 5.45 rep-
resents a full paramodulant.

Example 5.10.10. Let C0 = {(f(x3, c1) = x3)} and C1 =
{(f(c0, x2) = x2)}. The clause {c0 = c1} is a paramodulant of C0

and C1 obtained by choosing s0 and s1 to be the identity substitu-
tions, the set of equality literals L as {f(x3, c1) = x3}, the set of
literals K as {(f(c0, x2) = x2)}, the unifiers s′, s′′ as the identity
substitution, and the occurrence ζ as (f(c0, x2), 2)

2. The unifier s of
f(x3, c1) and f(c0, x2) maps the variables x3 and x2 into c0 and c1,
respectively, so the paramodulant equals

s(replace (f(c0, x2) = x2, (f(c0, x2), 2), x3)),

which equals {c0 = c1}.

2Observe that the formula (f(c0, x2) = x2) is actually = (f(c0, x2), x2) which
means that f is the third symbol of this formula.

First-Order Logic–Formal Systems 1047

Note that if P is an L-paramodulant of two ground clauses C0

and C1, and the first of the two alternatives in the definition of
paramodulant holds, then there is an equality (u = v) in C0, a literal
� in C1, and an occurrence (u, i) of u in � such that

P = (C0 − {(u = v)}) ∪ (C1 − {�}) ∪ {replace (�, (u, i), v)}

and similarly if the second alternative holds. Also, P is a full, most
general paramodulant of C0 and C1.

Theorem 5.10.11. Let L be a first-order language and let C0, C1 be
two L-clauses. If P is an L-paramodulant of C0 and C1 and A is an
L-structure, then A |= C0 and A |= C1 implies A |= P .

Proof. Let s0, s1, L,K, s
′, s′′, u, v, �, ζ, s be as in the definition of

paramodulant, so we have either

(1) there exists a unifier s of {u, t} such that

P = s
(
s′(s0(C0)− L) ∪ s′′(s1(C1)−K) ∪ {replace (�, ζ, v)}

)
= s

(
s′(s0(C0)− L)

)
∪ s
(
s′′(s1(C1)−K)

)
∪s ({replace (�, ζ, v)})

or
(2) there exists a unifier s of {v, t} such that

P = s
(
s′(s0(C0)− L) ∪ s′′(s1(C1)−K) ∪ {replace (�, ζ, u)}

)
.

We will treat the first case only. Since A |= C0 and A |= C1, by Corol-
lary 5.8.24, A |= s0(C0) and A |= s1(C1). Then, by Theorem 5.8.23,
we have A |= s(s′(s0(C0))) and A |= s(s′′(s1(C1))).

Suppose σ ∈ ASSIGNA. To prove that (A, σ) |= P , we
may assume that (A, σ) �|= s

(
s′(s0(C0)− L)

)
and (A, σ) �|=

s
(
s′′(s1(C1)−K)

)
and prove that (A, σ) |= s ({replace (�, ζ, v)}).

Since (A, σ) |= s(s′(s0(C0))) and (A, σ) |= s(s′′(s1(C1))), it follows
that

(A, σ) |= s(u = v) (5.9)

(A, σ) |= s(�). (5.10)

1048 Logical Foundations of Computer Science — Volume 2

Assume now that � = R(t0, . . . , tn−1). We have

s̄(replace (�, ζ, v))

= replace (s̄(�), ζ ′, s̄(v))

(by Theorem 1.2.13, where ζ ′ is an occurrence of s̄(t))

= replace (R(s̄(t0), . . . , s̄(tn−1)), ζ
′, s̄(v))

= R(s̄(t0), . . . , replace (s̄(tj), ζ
′′, s̄(v)), . . . , s̄(tn−1))

(by Theorem 5.10.7, where ζ ′′ is an occurrence of s̄(t) in tj).

Thus, (A, σ) |= s̄(replace (�, ζ, v)) if and only if

(σA(s̄(t0)), . . . , σA(replace (s̄(tj), ζ ′′, s̄(v))), . . . , σA(s̄(tn−1))) ∈ RA

By (5.10), we have

(σA(s̄(t0)), . . . , σA(s̄(tn−1))) ∈ RA. (5.11)

By (5.9), we have σA(s̄(u)) = σA(s̄(v)). Taking into account that
s̄(u) = s̄(t), we have σA(s̄(t)) = σA(s̄(v)). Thus, by Supplement 50
of Chapter 4, we have

σA(replace (s̄(tj), ζ ′′, s̄(v))) = σA(s̄(tj)).

This equality, together with (5.11) establishes the result.
The case when � is a negative literal can be treated similarly. �

Corollary 5.10.12. Let L be a first-order language, C be a set of
L-clauses and let P be an L-paramodulant of two clauses in C. Then,
for every L-structure A, A |= C if and only if A |= C ∪ {P}.

Proof. The proof is similar to that of Corollary 5.8.41. �

First-Order Logic–Formal Systems 1049

Definition 5.10.13. Let C be a set of L-clauses, where L is a
first-order language with equality. Then we define

ResparL(C)
= C ∪ {R | R is an L-resolvent of two clauses in C}
∪{P | P is an L-paramodulant of two clauses in C},

and

ResparmguL (C)
= C ∪ {R | R is a most general L-resolvent of two clauses in C}
∪{P | P is a most general L-paramodulant of two clauses in C}.

The mappings fResparL and fResparmguL are defined similarly
using full resolvents and paramodulants.

The results of applying the mappings ResparmguL and fResparmguL
to sets of L-clauses do not depend on L, so we may use the notations
Resparmgu and fResparmgu, when convenient.

Theorem 5.10.14. Let L be a first-order language with equality, C
and D be a sets of L-clauses and let A be an L-structure. Then, if
R is Respar, Resparmgu, fRespar, or fResparmgu we have:

(1) C ⊆ RL(C);
(2) if C ⊆ D, then RL(C) ⊆ RL(D); and
(3) A |= RL(C) if and only if A |= C.

Proof. The proof is similar to that of Theorem 5.8.43. Observe
that to prove the third part, in addition to Theorem 5.8.40, we have
to use Theorem 5.10.11. �

Let L be a first-order language with equality and let SL be the
set of all L-clauses. Then, ResparL : P(SL) −→ P(SL), so we can
consider its iterations ResparnL for n ∈ N, following the standard
definition:

Respar0L(C) = C,
Resparn+1

L (C) = ResparL(Respar
n
L(C))

for every set of clauses C ∈ P(SL).

1050 Logical Foundations of Computer Science — Volume 2

Note that, as a consequence of Part (1) of Theorem 5.10.14, we
have the increasing chain of sets

C = Respar0L(C) ⊆ Respar1L(C) ⊆ · · · ⊆ ResparnL(C) ⊆ · · · . (5.12)

Definition 5.10.15. Let C be a set of L-clauses, where L is a first-
order language with equality. The set Respar∗L(C), the resolution-
paramodulation closure of C, is defined by

Respar∗L(C) =
⋃
n≥0

ResparnL(C).

The mappings

(ResparmguL)n, (ResparmguL)∗,
fResparnL, fRespar

∗
L,

(fResparmguL)n, (fResparmguL)∗

are defined similarly.

Theorem 5.10.16. Let C and D be sets of L-clauses and let A be
an L-structure, where L is a first-order language with equality. If R
is Respar, Resparmgu, fRespar, or fResparmgu we have:

(1) C ⊆ RnL(C) for all n ∈N and C ⊆ R∗
L(C);

(2) for all n ∈ N, A |= RnL(C) if and only if A |= C;
(3) A |= R∗

L(C) if and only if A |= C;
(4) C has a model if and only if R∗

L(C) has a model; and
(5) if C ⊆ D, then RnL(C) ⊆ RnL(D) for all n ∈ N and R∗

L(C) ⊆
R∗

L(D).

Proof. The proof is similar to that of Theorem 5.8.45. �

Definition 5.10.17. Let C be a set of L-clauses, where L is a first-
order language with equality. An L-resolution-paramodulation proof
over C is a finite sequence (C0, C1, . . . , Cn−1) of L-clauses such that
n ≥ 1 and for each i, 0 ≤ i ≤ n− 1 one of the following cases occurs:

(1) Ci ∈ C;
(2) Ci �∈ C and there are j, k < i such Ci is an L-resolvent of Cj and

Ck;

First-Order Logic–Formal Systems 1051

(3) neither of the above cases holds and there are j, k < i such Ci is
an L-paramodulant of Cj and Ck.

In the first case, i is an input step of the proof; in the second, i is a
resolution step, and in the third case, i is a paramodulation step.

An L-resolution-paramodulation proof of a clause C over C,
where L is a first-order language with equality is an L-resolution-
paramodulation proof over C whose last entry is C.

If at each resolution step i, Ci is a full L-resolvent (most gen-
eral resolvent) and at each paramodulation step i, Ci is a full
L-paramodulant (most general paramodulant), then the sequence
(C0, C1, . . . , Cn−1) is a full L-resolution-paramodulation proof (most
general L-resolution-paramodulation proof).

Note that if C is a set of L-clauses, then the notion of most general
L-resolution-paramodulation proof is independent of L and therefore
L may be omitted.

Theorem 5.10.18. Let C be a set of L-clauses, where L is a
first-order language with equality. Then, Respar∗L(C) is the set
of clauses which have L-resolution-paramodulation proofs over C,
(ResparmguL)∗ is the set of clauses which have most general resolution-
paramodulation proofs over C, fRespar∗L is the set of clauses
which have full L-resolution-paramodulation proofs over C, and
(fResparmguL)∗ is the set of clauses which have full most general
resolution-paramodulation proofs over C.

Proof. The argument is similar to the proof of Theorem 5.8.47. �

The notion of L-resolution-paramodulation proof can be viewed
in the framework of the formal system introduced next.

Definition 5.10.19. Let L be a first-order language with equality.
The formal system FRESPARL is

FRESPARL = (Pfin(LITL), ∅, {R,P}),

where the set of objects Pfin(LITL) consists of finite sets of literals
of L (L-clauses), the binary rule R consists of all pairs ((C,D), E)
where E is an L-resolvent of C and D, and the binary rule P consists
of all pairs ((C,D), E) where E is an L-paramodulant of C and D.

1052 Logical Foundations of Computer Science — Volume 2

If rules R and P are replaced by the rules Rf consisting of all
pairs ((C,D), E) where E is a full L-resolvent of C and D and Pf

consisting of all pairs ((C,D), E) where E is a full L-paramodulant
of C and D , we obtain the formal system FFRESPARL.

If the rule R is replaced by the rule Rmgu that consists of all
pairs ((C,D), E), where E is a most general resolvent of C and D
and the rule P is replaced by the rule Pmgu that consists of similar
pairs, where E is a most general paramodulant of C and D, the
corresponding formal system FRESPARL

mgu will be referred to as
the most general L-resolution-paramodulation formal system.

The formal system FFRESPARL
mgu is obtained by replacing the

rules Rmgu,Pmgu with Rfmgu and Pfmgu using full most general resol-
vents and full most general paramodulants, respectively.

Note that if C is a set of L-clauses, then an L-resolution-
paramodulation proof (most general resolution-paramodulation
proof) over C is the same thing as a proof in the formal sys-
tem FRESPARL

C ((FRESPARL
mgu)C). Thus, Theorem 5.10.18

amounts to saying that Thm(FRESPARL
C) = Respar∗L(C) and

Thm((FRESPARL
mgu)C) = (ResparmguL)∗(C).

Similar comments work for FFRESPARL and
FFRESPARL

mgu.
The introduction of a formal system allows us to make use of the

idea of proof tree.

Definition 5.10.20. Let C be a set of L-clauses, where L is a first-
order language with equality. An L-resolution-paramodulation tree
over C is an FRESPARL

C -proof tree.

In other words, an L-resolution-paramodulation tree over C is a
lot such that its leaves are labeled with clauses from C and each
interior node is labeled with a clause that is an L-resolvent or an
L-paramodulant of the clauses which are labels of its two immediate
descendents. Theorem 1.8.23 and our previous discussion allow us to
conclude that a clause C is in Respar∗L(C) if and only if there is an
L-resolution-paramodulation tree over C such that C is the label of
its root.

Theorem 5.10.21 (Soundness of Resolution-Paramodu-
lation). Let C be a set of L-clauses, where L is a first-order lan-
guage with equality. If � ∈ Respar∗L(C), then C has no model.

First-Order Logic–Formal Systems 1053

{¬(c0 = c1)}

{c0 = c1}

C0 : {f(x3, c1) = x3} C1 : {f(c0, x2) = x2}

s
x2 c1, x3 c0

Fig. 5.46. Resolution-paramodulation tree.

Proof. By the third part of Theorem 5.10.16, any model of C would
be a model of Respar∗L(C). Since� ∈ Respar∗L(C), it follows that there
is no model for Respar∗L(C), and, therefore, there is no model for C.

�

In terms of the formal system FRESPARL
C Theorem 5.10.21

amounts to saying that if � is a theorem of FRESPARL
C , then C

has no model.

Example 5.10.22. Consider again the set of clauses

C = {{(f(c0, x2) = x2)}, {(f(x3, c1) = x3)}, {(¬(c0 = c1))}}

introduced in Example 5.8.17. Figure 5.46 contains a resolution-
paramodulation tree showing that � ∈ Respar∗L(C) and hence, by
Theorem 5.10.21, C has no model. Note that the paramodulation
step is represented by dashed lines. This tree contains a paramodu-
lation step involving the clauses

C0 : {f(x3, c1) = x3}, C1 : {f(c0, x2) = x2}

which results in the clause {c0 = c1}. This step was justified in
Example 5.10.10. The resolvent of the clauses {c0 = c1} and {(¬c0 =
c1)} is �.

Note that the current proof of � using paramodulation involves
only two steps, whereas the previous proof given in Example 5.10.2
involves four steps.

1054 Logical Foundations of Computer Science — Volume 2

5.10.4 Semantic Trees for Languages
with Equality

We begin by discussing an ordering of ground terms and ground
atomic formulas in order to define semantic trees for first-order lan-
guages with equality. This will be useful in presenting Peterson’s3

approach to proving the completeness of paramodulation.

Definition 5.10.23. Let L be a first-order language. A ground
L-word is a sequence that is either a ground L-term or a ground
L-atomic formula. The set of ground L-words is denoted by
GWORDL.

Finally, the set GWORDNEL is GWORDL if L does not contain
the equality symbol and is GWORDL − GEQL if L contains the
equality symbol.

Let L be a first-order language. For each symbol s ∈ L−{=}, let
s� be a unique code number in P. In other words the function which
maps s into s� is injective.

Define recursively the function GL : GTERML −→ P by

• GL(c) = 2(c
�) if c is a constant symbol of L;

• GL(f(t0, . . . , tn−1)) = 2(f
�)
∏n−1
i=0 p

GL(ti)
i+1 , if f is an n-ary function

symbol in L with n > 0, where p0 < p1 < · · · is the sequence of
prime numbers.

We extend the function GL to GAFORMNEL when L is not an
algebraic language by:

• GL(R) = 2(R
�) if R is a 0-ary relation symbol of L;

• GL(R(t0, . . . , tn−1)) = 2(R
�)
∏n−1
i=0 p

GL(ti)
i+1 , where R is an n-ary rela-

tion symbol of L − {=} and n > 0.

The next statement presents essential properties of the function
GL.

3Gerald E. Peterson was born on August 9, 1938 and died on October 12, 1999 in
St. Louis. He was a graduate of the University of Utah where he received a PhD
in 1965. Peterson taught mathematics and computer science at the University
of Utah, Brigham Young University, University of Missouri at St. Louis, and
University of Illinois-Edwardsville and worked as a research engineer at Boeing.

First-Order Logic–Formal Systems 1055

Theorem 5.10.24. Let L be a first-order language. The function
GL : GWORDNEL −→ P satisfies the following properties:

G1. If w ∈ GWORDNEL, w = s(t0, . . . , tn−1) where t0, . . . , tn−1

belong to GTERML, then GL(ti) < GL(w), for 0 ≤ i ≤ n− 1.
G2. The function GL is one-to-one on GWORDNEL.
G3. If w ∈ GWORDNEL and t ∈ GTERML occurs in w, then

GL(t) ≤ GL(w). (Note that by G2, if t �= w, then GL(t) <
GL(w).)

G4. If w ∈ GWORDNEL, t, u ∈ GTERML, (t, i) ∈ OCCt(w), and we
have GL(u) < GL(t), then

GL(w[(t, i) → u]) < GL(w).

Proof.

• Proof of G1: For 0 ≤ i ≤ n−1, we have GL(ti) < p
GL(ti)
i+1 < GL(w).

• Proof of G2: We show by course-of-values induction on n that if
w,w′ ∈ GWORDNEL and GL(w) = GL(w′) = n, then w = w′.
Suppose that the result is true for all n′ < n and GL(w) =
GL(w′) = n. If m is the largest number such that 2m divides
n, then m is the code number of the first symbol of w and w′,
so both w and w′ begin with the same symbol s. If s is 0-ary,
then w = s = w′. If s is n-ary with n > 0, then for some
t0, . . . , tn−1, t

′
0, . . . , t

′
n−1 ∈ GTERML, we have w = s(t0, . . . , tn−1)

and w′ = s(t′0, . . . , t′n−1). For 0 ≤ i ≤ n − 1, if mi is the largest
number such that pmii+1 divides n, then GL(ti) = mi = GL(t′i), and
mi < n, so by the inductive hypothesis, ti = t′i. Thus, w = w′.

• Proof of G3: We first show the result for w ∈ GTERML by induc-
tion. If t = w, the result is immediate. If w is a constant symbol,
then t = w.
Suppose that w = f(t0, . . . , tn−1), where n > 0. If t is different
from w, then t occurs in one of the terms ti and by the inductive
hypothesis, GL(t) ≤ GL(ti) < GL(w) due to (G1).
Now suppose that w = R(t0, . . . , tn−1), where R is an n-ary rela-
tion symbol other than =. Then t occurs in one of the terms ti, so
by the above, GL(t) ≤ GL(ti) < GL(w) by (G1).

• Proof of G4: We begin by showing the result for w ∈ GTERML by
induction on w.
If t = w, then w[(t, i)→ u] = u and the result is immediate. If w is
a constant symbol, then t = w. Suppose that w = f(t0, . . . , tn−1),

1056 Logical Foundations of Computer Science — Volume 2

where n > 0 and the result is true for each ti. If t �= w, then
t occurs in some tj, say (t, i′) is the corresponding occurrence in
tj , and by the inductive hypothesis, GL(tj [(t, i′) → u]) < GL(tj),
which allows us to write:

GL(w[(t, i)→ u]) = GL(f(t0, . . . , tj[(t, i′)→ u], . . . , tn−1)

= 2f
#
p
GL(t0)
1 · · · pGL(tj [(t,i′)→u])

j+1 · · · pGL(tn−1)
n

< 2f
#
p
GL(t0)
1 · · · pGL(tj)

j+1 · · · pGL(tn−1)
n = GL(w).

Now suppose that w = R(t0, . . . , tn−1), where R is an n-ary rela-
tion symbol of L − {=}. Then, t occurs in one of the terms tj,
say (tj , i

′) is the corresponding occurrence in tj . As just shown
GL(tj [(t, i′)→ u]) < GL(tj). Then, GL(w[(t, i) → u]) < GL(w) as
above (replacing f by R).

�

Definition 5.10.25. Let L be a first-order language. The relation
≺L on GWORDNEL is given by w0 ≺L w1 if GL(w0) < GL(w1).

Theorem 5.10.26. The relation ≺L has the following properties:

W1. The relation ≺L is a linear order on GWORDNEL.
W2. Each w ∈ GWORDNEL has a finite number of predecessors

under ≺L.
W3. If w ∈ GWORDNEL and t ∈ GTERML occurs in w, then

t �L w. Thus, if t �= w, then t ≺L w.
W4. If w ∈ GWORDNEL, t, u ∈ GTERML, (t, i) ∈ OCCt(w), and

u ≺L t, then w[(t, i) → u] ≺L w.

Proof.

• Proof of W1: Since GL(w) �< GL(w), we have w �≺L w, for w ∈
GWORDNEL.
If w0 ≺L w1 ≺L w2, then GL(w0) < GL(w1) < GL(w2), so
GL(w0) < GL(w2) and hence w0 ≺L w2.
If w �= w′ taking into account the injectivity of GL we have either
GL(w) < GL(w′) or GL(w′) < GL(w), so either w ≺L w′ or
w′ ≺L w.

First-Order Logic–Formal Systems 1057

• Proof of W2: For w ∈ GWORDNEL we have

{w′ ∈ GWORDNEL | w′ ≺L w}
= {w′ ∈ GWORDNEL | GL(w′) < GL(w)}.

Since GL is injective, the last set is finite.
• Proofs of W3 and W4: These statements follow from G3 and G4

of Theorem 5.10.24, respectively.
�

When L contains the equality symbol, we extend the linear order
≺L introduced above to all of GWORDL as follows.

For t = u ∈ GEQL, define

max(t = u) =

{
t if u �L t

u if t ≺L u

min(t = u) =

{
t if t �L u

u if u ≺L t.

Note that max(t = t) = min(t = t) = t.
For w ∈ GWORDNEL, t, u ∈ GTERML, define

(t = u) ≺ w if max(t = u) � w
w ≺ (t = u) if w ≺ max(t = u).

For t0, t1, u0, u1 ∈ GTERML define (t0 = u0) ≺ (t1 = u1) if one of
the following conditions is satisfied:

(1) max(t0 = u0) ≺L max(t1 = u1),
(2) max(t0 = u0) = max(t1 = u1) and min(t0 = u0) ≺L min

(t1 = u1),
(3) max(t0 = u0) = max(t1 = u1), min(t0 = u0) = min(t1 = u1),

and t1 ≺L t0.

The following theorem contains the basic properties of the partial
order ≺L on GWORDL.

To prove the theorem, we need the following preliminary result.

1058 Logical Foundations of Computer Science — Volume 2

Lemma 5.10.27. Let L be a first-order language with equality and
let � : GWORDL −→ GWORDNEL be the function defined by

�(w) = w if w ∈ GWORDNEL,

�(t = u) = max(t = u) if t, u ∈ GTERML.

The following properties hold for w,w′ ∈ GWORDL:

L1. If w ≺L w′, then �(w) �L �(w′).
L2. If w ≺L w′ and �(w) = �(w′), then w ∈ GEQL.
L3. If �(w) ≺L �(w′), then w ≺L w′.

Proof. These properties follow immediately from the definition of
the relation ≺L. �

Theorem 5.10.28. Let L be a first-order language with equality.
The following statements hold:

O1. ≺L is a linear order on GWORDL.
O2. Each element of GWORDL has only finitely many predecessors

under ≺L.
O3. If t ∈ GTERML, w ∈ GWORDNEL and t occurs in w, then

t �L w.
O4. If w ∈ GWORDL, t, u ∈ GTERML, (t, i) ∈ OCCt(w) and u ≺L t,

then w[(t, i)→ u] ≺L w.
O5. If t, u ∈ GTERML and u ≺L t, then (t = u) and (u = t) are

adjacent in ≺L and (t = u) ≺L (u = t).
O6. If w ∈ GWORDL, t, u ∈ GTERML, u �L t, t occurs in w, and

w has neither of the forms w = (t = t′) nor w = (t′ = t) with
t′ ∈ GTERML and t′ �L u, then (u = t) ≺L w.

Proof.

• Proof of O1: If w ∈ GWORDNEL, then by W1, w �≺L w. If w =
(t = u) ∈ GEQL and w ≺L w, then by the definition of ≺L one of
the following would hold:

max(t = u) ≺L max(t = u),

min(t = u) ≺L min(t = u), or

t ≺L t.

None of the above cases is possible by the irreflexivity of ≺L on
GWORDNEL.

First-Order Logic–Formal Systems 1059

Suppose that w0 ≺L w1 and w1 ≺L w2. Then, by L1, �(w0) �L
�(w1) and �(w1) �L �(w2). If either of these inequalities is strict,
then using the transitivity of ≺L on GWORDNEL, we have
�(w0) ≺L �(w2) so w0 ≺L w2 by L3.
If �(w0) = �(w1) = �(w2), then by L2 w0 and w1 are equalities, say
w0 = (t0 = u0) and w1 = (t1 = u1). If w2 ∈ GWORDNEL, then
max(w0) = max(w1) = w2, so w0 ≺L w2. Suppose that w2 = (t2 =
u2). Then,

max(t0 = u0) = max(t1 = u1) = max(t2 = u2).

Let t be this common value. We have

min(t0 = u0) �L min(t1 = u1) �L min(t2 = u2).

If either inequality is strict, then using transitivity of ≺L on the
set GWORDNEL, we have min(t0 = u0) ≺L min(t2 = u2), so
w0 ≺L w2.
If

min(t0 = u0) = min(t1 = u1) = min(t2 = u2) = u,

say, then t2 ≺L t1 ≺L t0. Since each of w0, w1, w2 belongs to
{(t = u), (u = t)}, at least two of the values t0, t1, t2 are the same.
If t0 = t1 or t1 = t2, then this contradicts the irreflexivity of ≺L.
If t0 = t2 then by transitivity of ≺L on GWORDNEL, we obtain
t0 = t2 ≺L t0 which violates irreflexivity.
Next we show that ≺L is a total order on GWORDL. If w,w′ ∈
GWORDNEL and w′ �= w, then either w ≺L w′ or w′ ≺L w by
W1. If w ∈ GWORDNEL and w′ = (t′ = u′), then by W1 either
w ≺L max(t′ = u′) or max(t′ = u′) �L w. Thus, either w ≺L w′ or
w′ ≺L w.
If w = (t = u) and w′ = (t′ = u′), w �= w′, then by W1,
max(w) and max(w′) are comparable and min(w) and min(w′)
are comparable. If max(w) �= max(w′), or max(w) = max(w′) and
min(w) �= min(w′), then w,w′ are comparable.
If max(w) = max(w′) and min(w) = min(w′) then, we have t �= t′
because w �= w′. By W1, either t ≺L t′ or t′ ≺L t, so w and w′ are
comparable.

1060 Logical Foundations of Computer Science — Volume 2

• Proof of O2: If w0 ≺L w1, then �(w0) �L �(w1) by L1. By
W2, �(w1) has only finitely many predecessors in GWORDNEL.
Therefore, if we show that for each w ∈ GWORDNEL there are
only finitely many w′ ∈ GWORDL with �(w′) = w, O2 will follow.
If w ∈ GAFORMNEL, then �−1(w) = {w}. If w ∈ GTERML, then

�−1(w) = {w} ∪ {e ∈ GEQL | max(e) = w}
= {w} ∪ {(w = u) | u �L w} ∪ {(u = w) | u �L w}.

By W2, �−1(w) is finite.
• Proof of O3: O3 coincides with W3.
• Proof of O4: If w ∈ GWORDNEL, then O4 follows from W4.

Therefore, suppose that w = (t0 = t1). Without loss of generality,
suppose that (t, i) is part of t0 and correspondingly (t, i′) is the
occurrence in t0. By W4, t0[(t, i

′)→ u] ≺L t0. We need to consider
two cases.
If t1 ≺L t0, then

max(t0[(t, i
′)→ u] = t1) ≺L t0 = max(t0 = t1).

Therefore, (t0 = t1)[(t, i)→ u] ≺L (t0 = t1).
If t0 �L t1, then

max(t0[(t, i
′)→ u] = t1) = t1 = max(t0 = t1)

and

min(t0[(t, i
′)→ u] = t1) = t0[(t, i

′)→ u] ≺L t0 = min(t0 = t1).

Thus, (t0 = t1)[(t, i)→ u] ≺L (t0 = t1).
• Proof of O5: Suppose that t, u ∈ GTERML and u ≺L t. We have

max(t = u) = max(u = t), min(t = u) = min(u = t) and u ≺L t,
so (t = u) ≺L (u = t). Suppose that there is w ∈ GWORDL such
that (t = u) ≺L w ≺L (u = t). We consider two cases.
In the first case, suppose that w ∈ GWORDNEL. Then,

max(t = u) �L w ≺L max(u = t) = max(t = u).

This leads to max(t = u) ≺L max(t = u) which is a contradiction.

First-Order Logic–Formal Systems 1061

In the second case, w ∈ GEQL, say w = (t0 = u0). Then

max(t = u) �L max(t0 = u0) �L max(u = t) = max(t = u),

so

max(t = u) = max(t0 = u0) = max(u = t),

and therefore

min(t = u) �L min(t0 = u0) �L min(u = t) = min(t = u).

It follows that

min(t = u) = min(t0 = u0) = min(u = t),

so u ≺L t0 ≺L t. However, t0 is either min(t = u) = u or max(t =
u) = t, which contradicts the irreflexivity of ≺L.

• Proof of O6: Suppose that w ∈ GWORDL, t, u ∈ GTERML, u �L
t, t occurs in w and w has neither of the forms w = (t = t′) nor
w = (t′ = t) with t′ ∈ GTERML and t′ �L u. We need to consider
two cases.

Case 1: Suppose that w ∈ GWORDNEL. Then, by O3,
max(u = t) = t �L w, so (u = t) ≺L w.

Case 2: Suppose that w ∈ GEQL, say w = (t0 = t1). There
are several subcases to consider:

Case 2.1: Assume that t is a proper subterm of either t0 or t1.
Without loss of generality, we may assume that t is a
proper subterm of t0. Then, by O3, we have

max(u = t) = t ≺L t0 �L max(t0 = t1),

so (u = t) ≺L (t0 = t1).
Case 2.2: Assume that either t = t0 or t = t1. Without loss of

generality, let t = t0. Since w has neither of the forms
w = (t = t′) nor w = (t′ = t) with t′ ∈ GTERML and
t′ �L u and by O1, we have u ≺L t1. This case has
two further subcases:

Case 2.2.1: This occurs when t ≺L t1. Then,

max(u = t) = t ≺L t1 = max(t = t1),

so (u = t) ≺L (t = t1) = w.

1062 Logical Foundations of Computer Science — Volume 2

Case 2.2.2: This sub-
case occurs when t1 �L t. We have max(u = t) =
t = max(t = t1) and min(u = t) = u ≺L t1 = min(t =
t1), so (u = t) ≺L (t = t1) = w. �

E-interpretations are special LH-interpretations suitable for first-
order languages with equality. (Recall that LH-interpretation was
introduced immediately before Exercise 86.)

Definition 5.10.29. Let L be a first-order language with equality
that contains at least one constant symbol and let Γ ⊆ GAFORML.
An E-interpretation on Γ is an LH-interpretation I on Γ that satisfies
the following conditions:

E1. I(t = t) = T if (t = t) ∈ Γ;
E2. I(t = u) = I(u = t) if (t = u), (u = t) ∈ Γ;
E3. If α ∈ GAFORML, (t, i) ∈ OCCt(α) for some term t ∈ GTERML,

(t = u), α, α[(t, i) → u] ∈ Γ and I(t = u) = T, then I(α) =
I(α[(t, i)→ u]).

An L-E-interpretation is an E-interpretation on GAFORML.

Theorem 5.10.30. Let L be a first-order language with equality that
contains at least one constant symbol. If an L-interpretation satisfies
E1 and E3, then it satisfies E2. In other words, an L-interpretation
that satisfies E1 and E3 is an L-E-interpretation.

Proof. Let t, u ∈ GTERML and suppose that I(t = u) = T. By
E1, I(t = t) = T, so by E3, T = I(t = t) = I(u = t). Similarly, if
I(u = t) = T, then I(t = u) = T, so I(t = u) = I(u = t). �

Theorem 5.10.31. Let L be a first-order language with equality that
contains at least one constant symbol and let I be an E-interpretation
on Γ, where Γ ⊆ GAFORML. If (t = u), (u = z), (t = z) ∈ Γ and
I(t = u) = I(u = z) = T, then I(t = z) = T, where t, u, z ∈
GTERML.

Proof.
Since I(u = z) = T, by E3, we have T = I(t = u) = I(t = z).

�

Definition 5.10.32. Let L be a first-order language with equality
that contains at least one constant symbol and let Γ be a set of

First-Order Logic–Formal Systems 1063

closed quantifier-free L-formulas. An L-E-model for Γ is an L-E-
interpretation I such that I(ϕ) = T for all ϕ ∈ Γ (that is, I |= Γ).

Theorem 5.10.33. Let L be a first-order language with equality that
contains at least one constant symbol and let Γ be a set of closed
quantifier-free L-formulas. Then, Γ has a model if and only if Γ has
an L-E-model.

Proof. Suppose that the L-structure A is a model of Γ. We define
an L-interpretation I by

I(α) =

{
T if A |= α,

F if A �|= α

for α ∈ GAFORML. By Theorem 4.5.16, for all closed quantifier-
free L-formulas ϕ, I(ϕ) = T if and only if A |= ϕ. Since A is a
model of Γ, I(ϕ) = T for all ϕ ∈ Γ. We need to show that I is an
L-E-interpretation.

To show that E1 holds, let t ∈ GTERML. We have (tA, tA) ∈ =A,
so A |= (t = t) and therefore I(t = t) = T.

To prove E3, let α ∈ GAFORML, t, u ∈ GTERML, (t, i) ∈
OCCt(α) and I(t = u) = T, that is A |= (t = u). Thus, tA = uA
and t ≡A u. By Theorem 4.6.17, α ≡A α[(t, i)→ u], so A |= α if and
only if A |= α[(t, i) → u]. This implies that I(α) = T if and only if
I(α[(t, i)→ u]) = T, so I(α) = I(α[(t, i)→ u]).

As noted previously, E2 follows from E1 and E3.
Conversely, suppose that I is an L-E-model of Γ. Define the rela-

tion ρ on GTERML by tρu if and only if I(t = u) = T. We begin by
verifying that ρ is an equivalence on GTERML.

ρ is reflexive because for all t ∈ GTERML, I(t = t) = T by E1.
ρ is symmetric because for all t, u ∈ GTERML, if tρu, then I(t =

u) = T. By E2, I(u = t) = I(t = u) = T, so we have uρt.
ρ is transitive. Indeed, suppose that t, u, z ∈ GTERML, tρu,

and uρz, that is I(t = u) = T = I(u = z). By Theorem 5.10.31,
I(t = z) = T, so tρz.

Let f ∈ L be an n-ary function symbol with n > 0 and let
tiρui for 0 ≤ i ≤ n − 1, where t0, . . . , tn−1, u0, . . . , un−1 are terms
in GTERML. For 0 ≤ i ≤ n − 1, I(ti = ui) = T because
tiρui. By E1, I(f(t0, . . . , tn−1) = f(t0, . . . , tn−1)) = T. By E3,

1064 Logical Foundations of Computer Science — Volume 2

I(f(t0, . . . , tn−1) = f(u0, . . . , tn−1)) = T. Another application of
E3 yields I(f(t0, t1, . . . , tn−1) = f(u0, u1, . . . , tn−1)) = T, etc.
Finally, by another application of E3, we have I(f(t0, . . . , tn−1) =
f(u0, . . . , un−1)) = T. Thus, f(t0, . . . , tn−1)ρf(u0, . . . , un−1).

Now let R ∈ L − {=} be an n-ary relation symbol with posi-
tive arity, t0, . . . , tn−1, u0, . . . , un−1 ∈ GTERML and tiρui for 0 ≤
i ≤ n− 1. Then by repeated application of E3, I(R(t0, . . . , tn−1)) =
I(R(u0, . . . , un−1)) and therefore R(t0, . . . , tn−1)ρR(u0, . . . , un−1).

Let S = {α ∈ GAFORMNEL | I(α) = T} and define B =
STRL(S) as in Definition 4.10.5. If α ∈ GAFORMNEL, then, by
Lemma 4.10.11,

B |= α if and only if α ∈ S if and only if I(α) = T.

We saw that ρ is an equivalence on |B| = GTERML. We will show
that ρ is in fact a congruence on B, that is, it is compatible with the
functions and the relations defined on B.

If f is an n-ary function symbol of L with n > 0 and
t0ρu0, . . . tn−1ρun−1, where t0, . . . , tn−1, u0, . . . , un−1 ∈ GTERML,
then as shown

f(t0, . . . , tn−1)ρf(u0, . . . , un−1),

that is, fB(t0, . . . , tn−1)ρf
B(u0, . . . , un−1).

If R ∈ L − {=} is an n-ary relation symbol of L with n > 0 and
tiρui for 0 ≤ i ≤ n− 1, then

(t0, . . . , tn−1) ∈ RB

if and only if R(t0, . . . , tn−1) ∈ S
(by the definition of STRL(S))

if and only if I(R(t0, . . . , tn−1)) = T

(by the definition of S)

if and only if I(R(u0, . . . , un−1)) = T

if and only if R(u0, . . . , un−1) ∈ S
if and only if (u0, . . . , un−1) ∈ RB.

Thus, ρ is a congruence on B. Let A = B/ρ and let h be the canonical
homomorphism defined by h(t) = [t]ρ for t ∈ GTERML.

First-Order Logic–Formal Systems 1065

If α ∈ GAFORMNEL, by Theorem 4.5.68, we have

A |= α if and only if B |= α if and only if I(α) = T.

If t, u ∈ GTERML, we have the following equivalent statements:

A |= (t = u)

tA = uA

(by Theorem 4.5.16)

h(tB) = h(uB)
(by Theorem 4.5.6)

h(t) = h(u)

(by Corollary 4.10.9)

[t]ρ = [u]ρ

tρu

I(t = u) = T.

Thus, for all α ∈ GAFORML, we have A |= α if and only if
I(α) = T. By a simple induction argument, we can prove that A |= ϕ
if and only if I(ϕ) = T for all closed quantifier-free L-formulas ϕ.
Since I is an L-E-model of Γ, A is a model of Γ. �

Theorem 5.10.34. Let L be a first-order language with equality that
contains at least one constant symbol and let Γ be a set of closed L-
formulas in conjunction normal form. Then, Γ has an L-E-model if
and only if CΓ has an L-E-model.

Proof. This is a direct consequence of Part (a) of Exercise 86. �

Theorem 5.10.35. Let L be a first-order language with equality that
contains at least one constant symbol and let C be a set of L-clauses.
Then, C has a model if and only if GINSTL(C) has an L-E-model.

Proof. If � ∈ C, then � ∈ GINSTL(C), so C has no model and
GINSTL(C) has no L-E-model.

1066 Logical Foundations of Computer Science — Volume 2

If � �∈ C, the following statements are equivalent:

C has a model

ΓC has a model

(by Corollary 5.8.13)

(ΓC)∀ has a model

(by Corollary 4.5.60)

GINSTL((ΓC)∀) has a model

(by Theorem 4.10.41)

GINSTL((ΓC)∀) has an L-E-model

(by Theorem 5.10.33)

CGINSTL((ΓC)∀) has an L-E-model

(by Theorem 5.10.34)

GINSTL(C) has an L-E-model

(by Theorem 5.8.65).
�

Let L be a first-order language with equality that contains at
least one constant symbol. By O1 and O2, (GAFORML,�L) is a
linearly ordered set and every element of GAFORML has only finitely
many predecessors under �L. By Theorems 1.9.10 and 1.9.11, this
poset is isomorphic either to a finite poset ({0, . . . , n − 1},≤) or to
(N,≤), so the elements of GAFORML can be listed in order by �L
as {α0, α1, . . .}, a finite or infinite list depending on L. If 0 ≤ k ≤
|GAFORML| for k ∈ N (we consider k < |GAFORML| to be true for
all k ∈ N if GAFORML is infinite), we define ΓL

k as {α0, . . . , αk−1}.
A subset Γ of GAFORML is left segment of GAFORML if Γ = ΓL

k
for some k ∈ N, 0 ≤ k ≤ |GAFORML| or Γ = GAFORML.

Theorem 5.10.36. Let L be a first-order language with equality that
contains at least one constant symbol and let I : GAFORML −→
Bool. Then, I is an L-E-interpretation if and only if I |̀ΓL

k is an
E-interpretation on ΓL

k for all k, 0 ≤ k ≤ |GAFORML|.

Proof. The argument is immediate and it is left to the reader. �

Definition 5.10.37. Let L be a first-order language with equal-
ity that contains at least one constant symbol and let I be an

First-Order Logic–Formal Systems 1067

interpretation on a left segment Γ of GAFORML. The function
fI : GWORDL −→ P(GWORDL) is given by recursion as follows.

Suppose that w ∈ GWORDL and fI(v) is defined for all v ≺L w.
Let fI(w) be the set of all v ∈ GWORDL satisfying either F1 or F2
where:

F1. w is (u = t), u ≺L t, fI(t = u) = ∅ and v is (t = u).4

F2. There is an occurrence (t, i) ∈ OCCt(w) and a ground L-term u,
where u ≺L t, with (t = u) ≺L w, (t = u) ∈ Γ, I(t = u) = T,
fI(t = u) = ∅ and v = w[(t, i) → u]. In this case we say that
v ∈ fI(w) via F2 using (t = u).

The relation →I on GWORDL is the set of pairs {(w, v) | v ∈
fI(w)}. We say that w I-reduces to v if w→I v, and w is I-irreducible
if fI(w) = ∅.

If v ∈ fI(w) via F2 using (t = u), we write w→I v using (t = u).

Note that if v ∈ fI(w) via F1, then v ≺L w by O5 and if v ∈ fI(w)
via F2, then v ≺L w by O4. Hence, if w →I v, then v ≺L w. Thus,
there is no infinite sequence v0, v1, . . . with v0 →I v1 →I · · · . In other
words, the poset (GWORDL,→I) is well-founded. In particular, →I

is irreflexive.

Theorem 5.10.38. Let L be a first-order language with equal-
ity that contains at least one constant symbol. Suppose that I
is an H-interpretation on a left segment Γ of GAFORML, α =
R(u0, . . . , un−1) is a ground atomic L-formula, and α I-reduces to
β via F2 using (t = u). Then, there is an i, 0 ≤ i ≤ n − 1 and
a term u′i such that ui I-reduces to u′i via F2 using (t = u) and
β = R(u0, . . . , ui−1, u

′
i, ui+1, . . . , un−1).

Proof. By the definition of F2, for some j, we have:

• (t, j) ∈ OCCt(α);
• u ≺L t;
• (t = u) ≺L α;
• (t = u) ∈ Γ;
• I(t = u) = T;

4Note that (t = u) ≺L (u = t) by O5 so fI(t = u) is defined.

1068 Logical Foundations of Computer Science — Volume 2

• fI(t = u) = ∅.

The occurrence (t, j) in α must be part of one of the uis and if the
corresponding occurrence of t in ui is (t, j

′) and u′i = ui[(t, j
′)→ u],

then β = R(u0, . . . , ui−1, u
′
i, ui+1, . . . , un−1). By O6, we have (u = t)

≺L ui. Since (t = u) ≺L (u = t) by O5, we have (t = u) ≺L ui, so
ui →I u

′
i by F2 using (t = u). �

Corollary 5.10.39. Let L be a first-order language with equality
that contains at least one constant symbol. Suppose that I is an H-
interpretation on a left segment Γ of GAFORML, and α is a ground
atomic L-formula R(u0, . . . , un−1). If each ui, 0 ≤ i ≤ n − 1, is
I-irreducible, then α is not I-reducible via F2.

Proof. This follows immediately from Theorem 5.10.38. �

Theorem 5.10.40. Let L be a first-order language with equal-
ity that contains at least one constant symbol. Suppose that
I is an H-interpretation on a left segment Γ of GAFORML,
α = R(u0, . . . , un−1) is a ground atomic L-formula, and β =
R(u0, . . . , ui−1, u

′
i, ui+1, . . . , un−1), where 0 ≤ i ≤ n−1 and ui →I u

′
i.

Then, if the following condition:

the reduction ui →I u
′
i uses (t = u), ui = t and either

α = (t′ = t) with t′ ≺L u or α = (t = t′) with t′ �L u

does not hold, we have α→I β.

Proof. Suppose that ui →I u
′
i using (t = u). Then, for some j we

have:

• (t, j) ∈ OCCt(ui);
• u ≺L t;
• (t = u) ≺L ui;
• (t = u) ∈ Γ;
• I(t = u) = T;
• fI(t = u) = ∅;
• u′i = ui[(t, j)→ u].

Let (t, j′) be the occurrence of t in α corresponding to the occurrence
(t, j) of t in ui. Then, β = α[(t, j′)→ u]. To show that α→I β using
(t = u) it suffices to show that (t = u) ≺L α.

First-Order Logic–Formal Systems 1069

If α is not an equality, or t is a proper subterm of ui, or t = ui
and α is (t = t′) or (t′ = t) with u ≺L t′, then, by O6, we have
(u = t) ≺L α, so by O5, (t = u) ≺L (u = t) ≺L α. Since the
condition shown in the box does not hold, the only remaining case is
α = (u = t) and then (t = u) ≺L (u = t) = α, by O5. �

Theorem 5.10.41. Let L be a first-order language with equality
that contains at least one constant symbol. Suppose that I is an
H-interpretation on a left segment Γ of GAFORML. Let u0, u1 be
ground L-terms with u0 �L u1 and assume that u0 →I u′0 for
some ground L-term u′0. Then, (u0 = u1) →I (u′0 = u1) and
(u1 = u0)→I (u1 = u′0).

Proof. Suppose u0 →I u
′
0 using (t = u). Then, u ≺L t, while t �L

u0 by O3, so u ≺L u0 �L u1. The result follows by Theorem 5.10.40
because the boxed condition does not hold. �

Theorem 5.10.42. Let L be a first-order language with equality
that contains at least one constant symbol. Suppose that I is an E-
interpretation on a left segment Γ of GAFORML, α ∈ Γ and α→I β.
Then, I(α) = I(β).

Proof. As noted previously, α→I β implies β ≺L α, so β ∈ Γ and
I(β) is defined.

If α→I β via F1, then for some ground L-terms t and u, we have
α = (t = u) and β = (u = t), so by E2, I(α) = I(β).

If α →I β via F2 using (t = u), say β = α[(t, i) → u], then, by
F2, (t = u) ∈ Γ and I(t = u) = T, so I(α) = I(β) by E3. �

Theorem 5.10.43. Let L be a first-order language with equality
that contains at least one constant symbol. Suppose that I ′ is an
H-interpretation on a left segment ΓL

k for some k < |GAFORML|,
I is an H-interpretation on Γ where either Γ = ΓL

r for some r,
k < r ≤ |GAFORML| or Γ = GAFORML and I ′ = I |̀ΓL

k . Then, we
have:

a. for all β ∈ ΓL
k+1, fI′(β) = fI(β);

b. for all β ∈ GAFORML, if γ ∈ fI′(β) via F2 using (t = u), then
γ ∈ fI(β) via F2 using (t = u);

c. for all β ∈ GAFORML, if γ ∈ fI(β) via F1, then γ ∈ fI′(β) via
F1.

1070 Logical Foundations of Computer Science — Volume 2

Proof. (a:) Suppose that β ∈ ΓL
k+1 and the result holds for all β′

with β′ ≺L β. For any ground L-equality (t = u) with (t = u) ≺L β,
we have (t = u) ∈ ΓL

k ⊆ Γ and I ′(t = u) = I(t = u). Further,
fI′(t = u) = fI(t = u) by inductive hypothesis. It follows from the
definitions of F1 and F2 that fI′(β) = fI(β).

(b:) Suppose that γ ∈ fI′(β) via F2 using (t = u). Then, (t =
u) ∈ ΓL

k ⊆ Γ, I(t = u) = I ′(t = u) = T and by Part (a), fI′(t = u) =
fI(t = u) = ∅. Thus, γ ∈ fI(β) via F2 using (t = u).

(c:) Suppose that γ ∈ fI(β) via F1. Then, for some ground L-
terms t and u with u ≺L t, β = (u = t), fI(t = u) = ∅ and γ = (t =
u). Since (t = u) cannot be reduced via F1, it follows from Part (b)
that fI′(t = u) ⊆ fI(t = u) = ∅, hence γ ∈ fI′(β) via F1. �

Theorem 5.10.44. Let L be a first-order language with equality
that contains at least one constant symbol. Suppose that I is an E-
interpretation on a left segment ΓL

k for some k < |GAFORML|, and
αk →I β0 and αk →I β1. Then, we have I(β0) = I(β1).

Proof. Note that αk →I β0 and αk →I β1 imply β0, β1 ≺L αk, so
β0, β1 ∈ ΓL

k and I(β0) and I(β1) are defined. We may assume that
β0 �= β1.

Suppose that one of β0 or β1 is placed into fI(αk) via F1, say β0.
Then, for some ground L-terms t, u we have:

• αk = (u = t);
• u ≺L t;
• fI(t = u) = ∅;
• β0 = (t = u) = αk−1 (by O5).

Since only one element can be put into fI(αk) via F1, β1 must be
placed into fI(αk) via F2, so for some ground L-terms t′, u′ and some
index i′, we have:

• (t′, i′) ∈ OCCt′(u = t);
• u′ ≺L t′;
• (t′ = u′) ≺L αk = (u = t);
• I(t′ = u′) = T;
• fI(t′ = u′) = ∅;
• β1 = (u = t)[(t′, i)→ u′].

First-Order Logic–Formal Systems 1071

If (t′ = u′) ≺L (t = u), then (t = u) would be I-reducible via
F2 using (t′ = u′), contradicting fI(t = u) = ∅, so (t = u) �L
(t′ = u′) ≺L (u = t). By O5, this implies (t′ = u′) = (t = u), so
I(β0) = I(t = u) = I(t′ = u′) = T. Since u ≺L t, t cannot occur in u
by O3, so the only occurrence of t in (u = t) is the one at the right
of the = symbol, and β1 = (u = t)[(t, i′) → u] = (u = u). Since I is
an E-interpretation on ΓL

k , we have I(β1) = I(u = u) = T = I(β0).
Now suppose that β0 and β1 are both placed into fI(αk) via F2.

Then, for some ground L-terms t0, u0, t1, u1 and some indices i0, i1,
we have for j ∈ {0, 1}:

• (tj , ij) ∈ OCCtj (αk);
• uj ≺L tj;
• (tj = uj) ∈ ΓL

k ;
• I(tj = uj) = T;
• fI(tj = uj) = ∅;
• βj = αk[(tj , ij)→ uj].

First suppose that the occurrences (t0, i0) and (t1, i1) do not overlap.
Without loss of generality, we may assume that i0 < i1. Then, making
repeated use of E3, we have for an appropriate value of i′1:

I(β1) = I(αk[(t1, i1)→ u1])

= I(αk[(t1, i1)→ u1][(t0, i0)→ u0])

= I(αk[(t0, i0)→ u0][(t1, i
′
1)→ u1])

= I(αk[(t0, i0)→ u0] = I(β0).

Consider now the case when the occurrences (t0, i0) and (t1, i1)
overlap. Since no proper prefix of a term is a suffix of another term
by Exercise 53 of Chapter 1, one occurrence is part of the other, say
(t1, i1) is part of (t0, i0). We claim that t1 = t0, so i1 = i0. Suppose
that this is not the case, that is t1 is a proper subterm of t0. By O3,
u1 ≺L t1 ≺L t0, so by O6, (u1 = t1) ≺L (t0 = u0) and therefore by
O5

(t1 = u1) ≺L (u1 = t1) ≺L (t0 = u0).

Thus, (t0 = u0) is I-reducible via F2 using (t1 = u1). This contradicts
fI(t0 = u0) = ∅. We have established that t1 = t0 and i1 = i0 and,

1072 Logical Foundations of Computer Science — Volume 2

without loss of generality, we may assume that u0 ≺L u1. Thus we
have:

β1 = αk[(t1, i1)→ u1]

= αk[(t0, i0)→ u1]

= αk[(t0, i0)→ u0][(u0, i0)→ u1]

= β0[(u0, i0)→ u1].

We have u0 ≺L u1 ≺L t1, so by O6, (u0 = u1) ≺L (t1 = u1) and
hence (u0 = u1) ∈ ΓL

k . Since I(t1 = u0) = I(t0 = u0) = T, by E3,
I(u0 = u1) = I(t1 = u1) = T. Again, by E3, I(β1) = I(β0[(u0, i0)→
u1]) = I(β0). �

Theorem 5.10.45. Let L be a first-order language with equality
that contains at least one constant symbol. Suppose that 0 ≤ k <
|GAFORML|. I ′ is an E-interpretation on ΓL

k and I is an H-
interpretation on ΓL

k+1 such that I |̀ΓL
k = I ′. Then, I is an E-

interpretation on ΓL
k+1 if and only if one of the following conditions

holds:

1. αk is I ′-reducible and for all β such that αk →I′ β, I(αk) = I(β);
2. αk is I ′-irreducible and of the form (t = t) and I(t = t) = T;
3. αk is I ′-irreducible and not of the form (t = t).

Proof. Suppose that (1), (2) and (3) are all false. If αk is I ′-
irreducible, then, since (3) is false, αk = (t = t) for some ground
L-term t. Since (2) is false, I(t = t) = F. Thus, I is not an E-
interpretation on ΓL

k+1 because E1 is violated.
If αk is I ′-reducible, then, since (1) is false, there is a formula β

with αk →I′ β and I(αk) �= I(β). Since by Theorem 5.10.43 αk →I β,
I is not an E-interpretation on ΓL

k+1, by Theorem 5.10.42.
Conversely, suppose that one of the conditions (1), (2) or (3) is

true. To show that I is an E-interpretation on ΓL
k+1, we must show

the following five statements hold:

P1. If αk = (t = t) for some ground L-term t, then I(t = t) = T.
P2. If αk = (u = t) for some ground L-terms t and u with u ≺L t,

then I(αk) = I(t = u).
P3. If αk = (t = u) for some ground L-terms t, u, β �L αk, (t, i) ∈

OCCt(β), β[(t, i) → u] �L αk, and I(t = u) = T, then I(β) =
I(β[(t, i)→ u]).

First-Order Logic–Formal Systems 1073

P4. If for the ground L-terms t and u, (t, i) ∈ OCCt(αk), (t = u) ≺L
αk, αk[(t, i) → u] � αk, and I(t = u) = T, then I(αk) =
I(αk[(t, i)→ u]).

P5. If for the ground L-terms t and u and β ≺L αk, (t, i) ∈ OCCt(β),
(t = u) ≺L αk, αk = β[(t, i) → u], and I(t = u) = T, then
I(αk) = I(β).

Proof of P1: Suppose that αk = (t = t) for some ground L-term
t. If αk is I ′-irreducible, then (1) and (3) are false, so (2) is true and
I(t = t) = T.

Suppose that αk is I ′-reducible, say αk →I′ β. Then, (1) must be
true and I(αk) = I(β) = I ′(β), since β ≺L αk. Because αk cannot
be reduced via F1, the reduction must be via F2, so for some ground
L-terms t′, u′ and index i, we have:

• (t′, i) ∈ OCCt′(t = t);
• u′ ≺L t′;
• (t′ = u′) ≺L (t = t);
• I ′(t′ = u′) = T;
• β = (t = t)[(t′, i)→ u′].

Let t′′ be the result of replacing the occurrence of t′ in t by u′. We
assume that this occurrence is to the left of the equality symbol.
so β = (t′′ = t). (A similar argument applies if the occurrence is
located to the right of the equality symbol.) By O4, t′′ ≺L t, so by
O6, (t′′ = t′′) ≺L (t′′ = t) = β. We have:

I(t = t) = I ′(β)

= I ′(t′′ = t′′) (by E3, since I ′ is an E-interpretation on ΓL
k)

= T (by E1).

Proof of P2: Suppose that αk = (u = t) for the ground L-terms
t, u with u ≺L t. If (t = u) is I ′-irreducible, then (u = t)→I′ (t = u)
via F1 and since (1) must be true, I(u = t) = I(t = u).

Suppose that (t = u) is I ′-reducible. The reduction must be via
F2, say (t = u) →I′ (t′ = u′) via F2 using (t′′ = u′′). Since (t′′ =
u′′) ≺L (t = u) ≺L (u = t), we have (u = t) →I′ (u

′ = t′) via F2

1074 Logical Foundations of Computer Science — Volume 2

using (t′′ = u′′). Thus (1) must hold and we have:

I(u = t) = I(u′ = t′) (by (1))

= I ′(u′ = t′) (since (u′ = t′) ∈ ΓL
k)

= I ′(t′ = u′) (by E2 since (t′ = u′) ∈ ΓL
k and

I ′ is an E-interpretation on ΓL
k)

= I ′(t = u) (by Theorem 5.10.42 since (t = u) ∈ ΓL
k)

= I(t = u).

Proof of P3: Suppose that αk = (t = u) for some ground L-terms t
and u, β �L αk, (t, i) ∈ OCCt(β), β[(t, i)→ u] �L αk and I(t = u) =
T. We must show that I(β) = I(β[(t, i)→ u]).

We consider cases based on the relationship between t and u.
Case 1: t = u. Then, β[(t, i)→ u] = β and the result is immediate.
Case 2: t ≺L u. Then, (u = t) ∈ ΓL

k and by P2, I ′(u = t) = I(u =
t) = I(t = u) = T. We have three subcases:

Case 2.1: We have both β ≺L αk and β[(t, i) → u] ≺L αk. Since
I ′ is an E-interpretation on ΓL

k , we have:

I(β[(t, i)→ u]) = I ′(β[(t, i)→ u])

= I ′(β[(t, i)→ u][(u, i) → t]) by E3

= I ′(β) = I(β).

Case 2.2: β = αk. Then, by O4, we have

αk = β = β[(t, i)→ u][(u, i)→ t] ≺L β[(t, i)→ u],

thus contradicting β[(t, i)→ u] �L αk. Hence, this case cannot occur.
Case 2.3: β[(t, i) → u] = αk = (t = u). Then, β must have the

form (t′ = u′). If the replacement of t with u within β to produce
(t = u) took place to the left of the =, then t would have u as a
subterm, which is impossible by O3 since we are assuming t ≺L u.
Thus, β = (t = t). Since β �L αk and β �= αk, we must have β ∈ ΓL

k .
Using E1, we have

I(β) = I(t = t) = I ′(t = t) = T = I(αk) = I(β[(t, i)→ u]).

Case 3: u ≺L t. We have β �L αk = (t = u) �L (u = t) and
t occurs in β. Since u ≺L t, by O6, β must have one of the forms

First-Order Logic–Formal Systems 1075

(t = t′) or (t′ = t) with t′ �L u. Note that if β has the form (t′ = t),
then in fact t′ ≺L u since β ≺L (u = t). Based on the I ′-reducibility
of αk we have two subcases:

Case 3.1: αk is I ′-irreducible. Depending on the form of β, we
have three subsubcases.

Case 3.1.1: β = (t′ = t) with t′ ≺L u. Let
∗→I′ denote the reflexive,

transitive closure of→I′ . Since→I′ is well-founded, there is a ground

L-term t′′ such that t′ ∗→I′ t
′′ and t′′ is I ′-irreducible. We have t′ ≺L

u ≺L t, so by repeated use of Theorem 5.10.41, β = (t′ = t)
∗→I′

(t′′ = t).
We claim that (t = t′′) is I ′-irreducible. Suppose that this is not

the case, that is, (t = t′′) is I ′-reducible. Since t′′ �L t′ ≺L t, (t = t′′)
is not I ′-reducible via F1, so (t = t′′) must be I ′-reducible via F2,
say using (t0 = u0). Since t

′′ is I ′-irreducible, by Theorem 5.10.38, t
is I ′-reducible via F2 using (t0 = u0). In particular, t0 occurs in t.
We have u0 ≺L t0, (t0 = u0) ≺L (t = t′′) ≺L (t′′ = t) ≺L (t = u),
where the latter inequality holds by O6 because t′′ �L t′ ≺L u,
I ′(t0 = u0) = T, and fI′(t0 = u0) = ∅. Thus, αk = (t = u) is I ′-
reducible via F2 using (t0 = u0) contradicting the case assumption.
This establishes that (t = t′′) is I ′-irreducible, so (t′′ = t)→I′ (t = t′′)
via F1 and therefore, β

∗→I′ (t = t′′). Since β �= (t = u) = αk,
β ∈ ΓL

k so by repeated use of Theorem 5.10.42, I ′(β) = I ′(t = t′′).
If I ′(t = t′′) = T, then we have t′′ ≺L t, (t = t′′) ≺L (t = u), and
(t = t′′) is I ′-irreducible, so αk = (t = u) would be I ′-reducible by
F2 using (t = t′′), contradicting the case assumption. Thus, I ′(β) =
I ′(t = t′′) = F.

By a similar argument, we will show that I ′(β[(t, i) → u]) = F,
giving I(β) = I(β[(t, i) → u]). Note that since t′ ≺L t, by O3, t
cannot occur in t′, so β[(t, i) → u] = (t′ = t)[(t, i) → u] = (t′ = u).

Again, letting t′′ be an I ′-irreducible ground term with t′ ∗→I′ t
′′, we

reach the following conclusions:

• (t′ = u)
∗→I′ (t

′′ = u) by Theorem 5.10.41 since t′ ≺L u;
• (u = t′′) is I ′-irreducible because else αk = (t = u) would be
I ′-reducible;

• β[(t, i)→ u] = (t′ = u)
∗→I′ (u = t′′);

• I ′(β[(t, i)→ u]) = I ′(u = t′′);
• I ′(u = t′′) = F because else αk would be I ′-reducible;

1076 Logical Foundations of Computer Science — Volume 2

• I ′(β[(t, i)→ u]) = F.

Case 3.1.2: β = (t = u). Since u ≺L t, t cannot occur in u by
O3, so β[(t, i) → u] = (u = u). Since β[(t, i) → u] ≺L β = αk,
(u = u) ∈ ΓL

k . Therefore, by E1 we have:

I(β[(t, i)→ u]) = I ′(u = u) = T = I(t = u) = I(β).

Case 3.1.3: β = (t = t′) with t′ ≺L u. The argument is similar to
that of Case 3.1.1.

Case 3.2: αk = (t = u) is I ′-reducible. Then, Condition (1) of the
theorem must hold. Since u ≺L t, αk cannot be I ′-reduced via F1,
so αk is I ′-reducible via F2 say by using (t0 = u0). Then, u0 ≺L t0,
(t0 = u0) ≺L αk, I

′(t0 = u0) = T and t0 occurs in αk = (t = u).
Based on the form of β we have three subsubcases:

Case 3.2.1: β = (t′ = t) with t′ ≺L u. Since t′ ≺L u ≺L t, t cannot
occur in t′, so β[(t, i) → u] = (t′ = t)[(t, i) → u] = (t′ = u). Now we
encounter the following situations:

Case 3.2.1.1: the occurrence of t0 reduced in αk is to the left of
=, say (t0, j) is the occurrence in t. Let t′′ = t[(t0, j) → u0]. Then,
αk = (t = u) →I′ (t′′ = u) and by Condition (1), T = I(αk) =
I(t′′ = u) = I ′(t′′ = u). We have:

I(β) = I ′(t′ = t)

= I ′(t′ = t′′) (by E3 since I ′(t0 = u0) = T)

= I ′(t′ = u) (by E3 since I ′(t′′ = u) = T)

= I ′(β[(t, i)→ u]) = I(β[(t, i)→ u]).

Case 3.2.1.2: The occurrence of t0 reduced in αk is to the right of
=, say (t0, j) is the occurrence in u. Let u′′ = u[(t0, j) → u0]. Then,
αk = (t = u)→I′ (t = u′′) and by Condition (1), T = I(αk) = I(t =
u′′) = I ′(t = u′′). We have:

I(β) = I ′(t′ = t)

= I ′(t′ = u′′) (by E3 since I ′(t = u′′) = T)

= I ′(t′ = u) (by E3 since I ′(t0 = u0) = T)

= I ′(β[(t, i)→ u]) = I(β[(t, i)→ u]).

Case 3.2.2: β = (t = u). The argument of Case 3.1.2 does not
depend on the I ′-reducibility of αk so it applies in this case as well.

First-Order Logic–Formal Systems 1077

Case 3.2.3: β = (t = t′) with t′ ≺L u. The argument of Case 3.2.1
can be easily modified to apply in this case.

Proof of P4: Suppose that t and u are ground L-terms, (t, i) ∈
OCCt(αk), (t = u) ≺L αk, αk[(t, i)→ u] �L αk and I(t = u) = T. We
must show that I(αk) = I(αk[(t, i)→ u]).

Case 1: αk = αk[(t, i)→ u]. The result is immediate.
Case 2: αk[(t, i)→ u] ≺L αk. Then, by O4, u ≺L t. We distinguish

two subcases based on the I ′-reducibility of t.
Case 2.1: t is I ′-irreducible. Let u′ be a ground L-term such that

u
∗→I′ u

′ and u′ is I ′-irreducible. Since u ≺L t, by Theorem 5.10.41

(t = u)
∗→I′ (t = u′), so we have:

T = I(t = u)

= I ′(t = u)

= I ′(t = u′) (by Theorem 5.10.42 because (t = u) ≺L αk)

= I ′(u = u′) (by E3 since I ′(t = u) = T).

By Theorem 5.10.38, (t = u′) is not I ′-reducible via F2 and, since
u′ �L u ≺L t, (t = u′) is not I ′-reducible via F1. Therefore (t = u′)
is I ′-irreducible and I ′(t = u′) = T. Thus, αk →I′ αk[(t, i)→ u′] via
F2, so αk is I ′-reducible and Condition (1) holds. We have:

I(αk) = I(αk[(t, i)→ u′]) (by Condition (1))

= I ′(αk[(t, i)→ u′])

= I ′(αk[(t, i)→ u′][(u′, i)→ u]) (by E3 since I ′(u = u′) = T)

= I ′(αk[(t, i)→ u]) = I(αk[(t, i)→ u]).

Case 2.2: t is I ′-reducible. Then, for some ground L-terms t0, u0
and index j, (t0, j) ∈ OCCt0(t), u0 ≺L t0, (t0 = u0) ≺L t, (t0 =
u0) ∈ ΓL

k , I
′(t0 = u0) = T and fI′(t0 = u0) = ∅. Let (t0, j

′) be the
corresponding occurrence of t0 in αk, that is, j

′ = i+ j. Then, by E3,

T = I ′(t = u) = I ′(t[(t0, j)→ u0] = u).

1078 Logical Foundations of Computer Science — Volume 2

We have αk →I′ αk[(t0, j
′) → u0] via F2, so αk is I ′-reducible and

Condition (1) holds. Furthermore,

I(αk) = I(αk[(t0, j
′)→ u0]) (by Condition (1))

= I ′(αk[(t0, j′)→ u0])

= I ′(αk[(t, i)→ t[(t0, j)→ u0]])

= I ′(αk[(t, i)→ t[(t0, j)→ u0]][(t[(t0, j)→ u0], i)→ u])

(by E3 because I ′(t[(t0, j)→ u0] = u) = T)

= I ′(αk[(t, i)→ u]) = I(αk[(t, i)→ u]).

Proof of P5: Suppose that for the ground L-terms t and u, and
β �L αk, we have (t, i) ∈ OCCt(β), (t = u) ≺L αk, αk = β[(t, i)→ u],
and I(t = u) = T. We must show that I(αk) = I(β).

If β = αk, the result is immediate, so we can assume that β ≺L αk.
Then, by O4, we must have t ≺L u and by O5, (u = t) ≺L (t = u) ≺L
αk. By E2, we have I ′(u = t) = I ′(t = u) = T. By P4,

I(αk) = I(αk[(u, i)→ t])

= I(β[(t, i)→ u][(u, i)→ t]) = I(β). �

Definition 5.10.46. Let L be a first-order language with equality
that contains at least one constant symbol. An LH-interpretation
tree is a lot T such that

• q ∈ Dom(T) implies that |q| ≤ |GAFORML| and T(q) is an H-
interpretation on ΓL

|q| denoted by ITq ;

• if qi ∈ Dom(T) for i ∈ {0, 1}, then ITqi |̀ΓL
|q| = ITq .

If B is a branch of an LH-interpretation tree T, we denote
⋃
q∈B I

T
q

by ITB .
An LH-interpretation tree T is an L-semantic tree if the following

conditions hold for every q ∈ Dom(T) with k = |q| < |GAFORML|:
• T1. If αk is ITq -reducible, then for some β with αk →ITq

β, q has

one immediate descendant q0 in T and ITq0(αk) = ITq (β). Note that

β ≺L αk so ITq (β) is defined.

• T2. If αk is ITq -irreducible and has the form (t = t), then q has one

immediate descendant q0 in T and ITq0(αk) = T.

First-Order Logic–Formal Systems 1079

• T3. If αk is ITq irreducible and not of the form (t = t), then q

has two immediate descendants q0 and q1 in T, ITq0(αk) = F and

ITq1(αk) = T.

Note that if T is an L-semantic tree and |GAFORML| = n, then
every branch of T has length n, and if GAFORML is infinite, then
every branch of T is infinite.

Theorem 5.10.47. Let L be a first-order language with equality that
contains at least one constant symbol and let T be an L-semantic tree.
Then, for all q ∈ Dom(T), ITq is an E-interpretation on ΓL

|q|.

Proof. The argument is by induction on |q|. For the basis step,
q = λ, ΓL

|q| = ΓL
0 = ∅ and ITλ is the empty function which is vacuously

an E-interpretation on ∅.
For the inductive step, suppose that |q| < |GAFORML| and ITq is

an E-interpretation on ΓL
k where k = |q|. We must show that ITq0 and

ITq1, if defined, are E-interpretations on ΓL
k+1. We need to consider

three cases.

• Case 1: If αk is ITq -reducible, then by T1, ITq0(αk) = ITq (β) for

some β such that αk →ITq
β and q1 �∈ Dom(T). Since ITq is an

E-interpretation on ΓL
k , by Theorem 5.10.44, ITq0(αk) = ITq (β

′) for
all β′ such that αk →ITq

β′. By Theorem 5.10.45, ITq0 is an E-

interpretation on ΓL
k+1.

• Case 2: αk is ITq -irreducible and of the form (t = t). Then, by T2,

ITq0(αk) = T and q1 �∈ Dom(T). By Theorem 5.10.45, ITq0 is an

E-interpretation on ΓL
k+1.

• Case 3: αk is ITq -irreducible and not of the form (t = t). Then, by

Theorem 5.10.45, any extension of ITq to Γ
L
k+1 is an E-interpretation

on ΓL
k+1, so I

T
q0 and ITq1 are E-interpretations.

�

Theorem 5.10.48. Let L be a first-order language with equality that
contains at least one constant symbol. If T0 and T1 are L-semantic
trees, then T0 = T1.

1080 Logical Foundations of Computer Science — Volume 2

Proof. Let T0 and T1 be L-semantic trees. To show that T0 = T1,
we prove that for q ∈ {0, 1}∗, q ∈ Dom(T0) if and only if q ∈ Dom(T1),
and if q ∈ Dom(T0), then I

T0
q = IT1q . The proof is by induction on |q|.

For the basis step, q = λ, hence q ∈ Dom(T0) ∩Dom(T1) and I
T0
q

and IT1q are both the empty function.
For the inductive step, suppose that the result holds for q with

|q| = k. If q �∈ Dom(T0). then, by inductive hypothesis, q �∈ Dom(T1)
and therefore q0 and q1 do not belong to Dom(T0) ∪Dom(T1).

If q ∈ Dom(T0) and |q| = |GAFORML|, then q0, q1 do not belong
to Dom(T0) ∪Dom(T1).

Suppose q ∈ Dom(T0) and |q| < |GAFORML|. Then, q ∈ Dom(T1)
and IT0q = IT1q . We denote this common value by Iq. We need to
consider the following cases:

• Case 1: αk is Iq-reducible. We have q0 ∈ Dom(T0) ∩ Dom(T1)
and q1 �∈ Dom(T0) ∪ Dom(T1). For some β0, β1 with αk →Iq β0,

αk →Iq β1, we have IT0q0 (αk) = Iq(β0) and IT1q0 (αk) = Iq(β1). By

Theorem, 5.10.47, Iq is an E-interpretation on ΓL
k , so by The-

orem 5.10.44, Iq(β0) = Iq(β1), hence I
T0
q0 (αk) = IT1q0 (αk), which

implies IT0q0 = IT1q0 .
• Case 2: αk is Iq-irreducible and of the form (t = t). Now we

have q0 ∈ Dom(T0) ∩ Dom(T1) and q1 �∈ Dom(T0) ∪ Dom(T1) and
IT0q0 (αk) = T = IT1q0 (αk), so I

T0
q0 = IT1q0 .

• Case 3: αk is Iq-irreducible and not of the form (t = t). In this
case, we have q0, q1 ∈ Dom(T0)∩Dom(T1), I

T0
q0 (αk) = F = IT1q0 (αk),

IT0q1 (αk) = T = IT1q1 (αk), so I
T0
q0 = IT1q0 and IT0q1 = IT1q1 .

�

The uniqueness result of the previous theorem applies once an
ordering of GWORDL satisfying O1 to O6 is fixed. We write SL for
the unique L-semantic tree.

Theorem 5.10.49. Let L be a first-order language with equality that
contains at least one constant symbol. The following statements hold:

a. If B is a branch of SL, then ISLB is an L-E-interpretation.
b. If I is an L-E-interpretation, then there is a branch B of SL with

ISLB = I.

First-Order Logic–Formal Systems 1081

Proof. For Part (a), let B be a branch of SL. If B is finite, then
ISLB = ISLq for a leaf q of SL. Thus, by Theorem 5.10.47, ISLB is an

E-interpretation on ΓL
|q| = GAFORML.

If B is infinite, then for each k ≥ 0, ISLB |̀ΓL
k = ISLq where

q is the element of B of length k. By Theorem 5.10.47, ISLq is

an E-interpretation on ΓL
k so by Theorem 5.10.36, ISLB is an L-E-

interpretation.
For Part (b), let I be an L-E-interpretation. We define the strings

qk for 0 ≤ k ≤ |GAFORML| such that |qk| = k and B = {q0, q1, . . .} is
a branch of SL with ISLqk = I |̀ΓL

k for all k. This implies that ISLB = I.
We set q0 = λ. Given k with 0 ≤ k < |GAFORML| and qk with

|qk| = k, and ISLqk = I |̀ΓL
k , by Theorem 5.10.45 one of the following

cases holds:

• Case 1: αk is ISLqk -reducible and for all β such that αk →I
SL
qk

β,

I(αk) = I(β). By Part (T1) of Definition 5.10.46, for some β such
that αk →I

SL
qk

β, we have:

ISLqk0(αk) = ISLqk (β) = I(β) = I(αk).

Setting qk+1 = qk0, we have ISLqk+1
= I |̀ΓL

k+1.

• Case 2: αk is ISLqk -irreducible and of the form (t = t) and I(αk) =

T. By Part (T2) of Definition 5.10.46, ISLq0 (αk) = T so setting

qk+1 = qk0 we have ISLqk+1
= I |̀ΓL

k+1.

• Case 3: αk is I
SL
qk

-irreducible and not of the form (t = t). If I(αk) =

F then by Part (T3) of the same definition, ISLqk0(αk) = F, so we let

qk+1 = qk0. If I(αk) = T then by the same Part (T3), ISLqk1(αk) = T
so we let qk+1 = qk1. �

Definition 5.10.50. Let L be a first-order language with equality
that contains at least one constant symbol and let C be a set of
ground L-clauses. A node q of SL is a failure node for C if there is a
clause C ∈ C with ISLq (C) = F.

Theorem 5.10.51. Let L be a first-order language with equality that
contains at least one constant symbol and let C be a set of ground L-
clauses. Then, C has an L-E-model if and only if there is a branch B

of SL such that B does not contain a failure node for C.

1082 Logical Foundations of Computer Science — Volume 2

Proof. Suppose that C has an L-E-model I. By Theorem 5.10.49
there is a branch B of SL with ISLB = I. If B contained a failure node
q for C, then for some C ∈ C, I(C) = ISLB (C) = ISLq (C) = F, which
contradicts the fact that I is an L-E-model of C.

Conversely, suppose that B is a branch of SL that does not contain
a failure node for C. Then, ISLB (C) = T for every C ∈ C. By Theo-
rem 5.10.49, ISLB is an L-E-interpretation, so C has an L-E-model.�

Definition 5.10.52. Let L be a first-order language with equality
that contains at least one constant symbol and let C be a set of
ground L-clauses. The sublot of SL with domain

{q ∈ Dom(SL) | no proper prefix of q is a failure node of C}
is denoted by S∗L,C.

Theorem 5.10.53. Let L be a first-order language with equality that
contains at least one constant symbol and let C, C′ be two sets of
ground L-clauses. If C ⊆ C′, then S∗L,C′ is a sublot of S∗L,C.

Proof. This result follows directly from the definitions. �

Theorem 5.10.54. Let L be a first-order language with equality that
contains at least one constant symbol, C be a set of ground L-clauses,
and let q be a node in Dom(SL) that is not a failure node for C and
|q| = k. If C ∈ C is such that ISLqi (C) = F, the following statements
hold:

a. if ISLqi (αk) = T, then (¬αk) ∈ C and ISLq (C − {(¬αk)}) = F;

b. if ISLqi (αk) = F, then αk ∈ C and ISLq (C − {αk}) = F.

Proof. Let C ∈ C be such that ISLqi (C) = F. Since ISLqi (C) is

defined, for all i such that either αi ∈ C or (¬αi) ∈ C, we must
have i ≤ k. If i < k for all such i, then ISLq (C) = ISLqi (C) = F, con-
tradicting the assumption that q is not a failure node for C. Thus,
either αk ∈ C or (¬αk) ∈ C. If ISLqi (αk) = T, then since ISLqi (C) = F,

we must have αk �∈ C and (¬αk) ∈ C, and ISLq (C −{(¬αk)}) = F. If

ISLqi (αk) = F, then (¬αk) �∈ C, so αk ∈ C, and ISLq (C − {αk}) = F.
�

Theorem 5.10.55. Let L be a first-order language with equality that
contains at least one constant symbol and let C be a set of ground L-
clauses that has no L-E-model. Then we have:

First-Order Logic–Formal Systems 1083

a. S∗L,C is a finite lot;
b. every leaf of S∗L,C is a failure node for C.
Proof. The argument follows the outline of Supplement 92. �

5.10.5 Completeness of Paramodulation

Lemma 5.10.56 (Disjoint Paramodulation Lifting). Let L be
a first-order language with equality, C0, C1 be two ground L-clauses
and let P be an L-paramodulant of C0, C1 obtained by paramodulating
an equality (u = v) ∈ C0 into a term occurrence (t, i) in a literal �
in C1. Suppose that C ′

0, C
′
1 are two L-clauses whose sets of variables

are disjoint and s0, s1 are L-substitutions such that s0(C
′
0) = C0 and

s1(C
′
1) = C1. If there is a literal �1 ∈ s−1

1 (�) ∩ C1 such that the
occurrence (t, i) in � is visible in �1, then there is simple, full, most
general paramodulant P ′ of C ′

0 and C ′
1 and an L-substitution s such

that s(P ′) = P .

Proof. We assume that t = u. The case t = v is similar. Since
C0, C1 are ground clauses, we have

P = (C0 − {(u = v)}) ∪ (C1 − {�}) ∪ {�[(u, i) → v]}.
Since V(C ′

0) ∩ V (C ′
1) = ∅, we can let s′ be an L-substitution with

s′ |̀ V(C ′
0) = s0 |̀ V(C ′

0) and s′ |̀ V(C ′
1) = s1 |̀ V(C ′

1). Let L = s−1
0 (u =

v) ∩ C ′
0 and K = s−1

1 (�) ∩ C ′
1. Then L and K are nonempty and

s′(L) = s0(L) = {(u = v)}, s′(K) = s1(K) = {�},
so L and K are unifiable, say sm0 is a most general unifier of L
and sm1 is a most general unifier of K. By using most general uni-
fiers produced by the unification algorithm, we can assume that
V(sm0 (C ′

0)) ⊆ V(C ′
0) and V(sm1 (C ′

1)) ⊆ V(C ′
1). Since s

′ unifies both
L and K, there are L-substitutions s′0 and s′1 with s′ = s′0 ∗ sm0 and
s′ = s′1∗sm1 . Since V(C ′

0)∩V(C ′
1) = ∅, we can let ŝ be an L-substitution

that agrees with s′0 on V(C ′
0) and with s′1 on V(C ′

1). Since

V(sm0 (C ′
0)) ⊆ V(C ′

0) and V(sm1 (C ′
1)) ⊆ V(C ′

1),

we have

ŝ ∗ sm0 (C ′
0) = ŝ(sm0 (C ′

0)) = s′0(sm0 (C ′
0)) =

s′0 ∗ sm0 (C ′
0) = s′(C ′

0) = s0(C
′
0) = C0,

and similarly ŝ ∗ sm1 (C ′
1) = C1.

1084 Logical Foundations of Computer Science — Volume 2

Let sm0 (L) = {(u′ = v′)} and sm1 (K) = {�′}. The occurrence
(t, i) = (u, i) in � is visible in �1 ∈ s−1

1 (�)∩C1 = K, and s′1 ∗sm1 (�1) =
s1(�1) = �, so by Theorem 4.3.62, (u, i) is visible in sm1 (�1) ∈ sm1 (K) =
{�′}, say (t′, i′) is an occurrence of a term t′ in �′ with �′ = q′0t′q′1,
where |q′0| = i′, � = q0uq1, where |q0| = i, and

ŝ(q′0) = s′1(q
′
0) = q0,

ŝ(t′) = s′1(t
′) = u,

ŝ(q′1) = s′1(q
′
1) = q1.

Since

ŝ(u′ = v′) = ŝ(sm0 (L) = s′0(s
m
0 (L))

= s′0 ∗ sm0 (L) = s′(L) = s0(L) = {(u = v)},

we have ŝ(v′) = v and ŝ(u′) = u = ŝ(t′), so {u′, t′} is unifiable. Let
sm01 be a most general unifier of u′ and t′. Then,

P ′ = sm01(s
m
0 (C ′

0 − L) ∪ sm1 (C ′
1 −K) ∪ {�′[(t′, i′)→ v′]})

is a simple most general paramodulant of C ′
0 and C ′

1. Suppose that
sm0 (C ′

0 − L) ∩ sm0 (L) �= ∅, say sm0 (�0) = sm0 (�′0) with �0 ∈ C ′
0 − L and

�′0 ∈ L. Then,

s0(�0) = s′(�0) = s′0 ∗ sm0 (�0) = s′0(s
m
0 (�0))

= s′0(s
m
0 (�′0)) = s0(�

′
0) = (u = v)

since �′0 ∈ L ⊆ s−1
0 (u = v). Thus, �0 ∈ s−1

0 ((u = v)) ∩ C ′
0 = L,

contradicting hypothesis, so sm0 (C ′
0 − L) ∩ sm0 (L) = ∅. Similarly,

sm1 (C ′
1 − K) ∩ sm1 (K) = ∅, and P ′ is a full L-paramodulant of C0

and C1.
Since ŝ unifies {u′, t′}, there is an L-substitution s with ŝ = s∗sm01.

We claim that s(P ′) = P which will finish the proof.

First-Order Logic–Formal Systems 1085

First note that �′[(t′, i′)→ v′] = q′0v
′q′1, so

ŝ(�′[(t′, i′)→ v′] = ŝ(q′0)ŝ(v
′)ŝ(q′1) = q0vq1 = �[(u, i)→ v].

Thus we can write:

s(P ′) = s(sm01(s
m
0 (C ′

0 − L) ∪ sm1 (C ′
1 −K) ∪ {�′[(t′, i′)→ v′]})

= s ∗ sm01(sm0 (C ′
0 − L) ∪ sm1 (C ′

1 −K) ∪ {�′[(t′, i′)→ v′]})
= ŝ(sm0 (C ′

0 − L) ∪ sm1 (C ′
1 −K) ∪ {�′[(t′, i′)→ v′]})

= ŝ ∗ sm0 (C ′
0 − L) ∪ ŝ ∗ sm1 (C ′

1 −K) ∪ {ŝ(�′[(t′, i′)→ v′])}
= s0(C

′
0 − L) ∪ s1(C ′

1 −K) ∪ {�[(u, i)→ v]}
= (s0(C

′
0)− s0(L)) ∪ (s1(C

′
1)− s1(K)) ∪ {�[(u, i)→ v]}

(by Equality (5.7))

= (C0 − {(u = v)}) ∪ (C1 − {�}) ∪ {�[(u, i) → v]} = P.
�

Lemma 5.10.57 (Paramodulation Lifting). Let L be a first-
order language with equality, C0, C1 be two ground L-clauses and
let P be an L-paramodulant of C0, C1 obtained by paramodulating
an equality (u = v) ∈ C0 into a term occurrence (t, i) in a literal
� in C1. Suppose that C ′

0, C
′
1 are two L-clauses and s0, s1 are L-

substitutions such that s0(C
′
0) = C0 and s1(C

′
1) = C1. If there is a

literal �1 ∈ s−1
1 (�) ∩ C1 such that the occurrence (t, i) in � is visible

in �1, then there is a full, most general paramodulant P ′ of C ′
0 and

C ′
1 and an L-substitution s such that s(P ′) = P .

Proof. Let (s′′0, s
′′
1) be a standardization of (C ′

0, C
′
1) and let C ′′

0 =
s′′0(C ′

0), C
′′
1 = s′′1(C ′

1). By the injectivity of s′′0 and s′′1 on V (C ′
0), V (C ′

1),
respectively, we may let s′0, s′1 be L-substitutions such that for x ∈
V (C ′

0), s
′
0(s

′′
0(x)) = x and for x ∈ V (C ′

1), s
′
1(s

′′
1(x)) = x. We then

have s0 ∗ s′0(C ′′
0) = s0(C

′
0) = C0 and s1 ∗ s′1(C ′′

1) = s1(C
′
1) = C1 and

also s′1 ∗ s′′1 |̀V (C ′
1) = ι |̀V (C ′

1), where ι is the identity substitution.
Since the occurrence (t, i) in � is visible in �1 ∈ C ′

1, there is an
occurrence of a term (t′, i′) in �1 such that if � = q0tq1 with |q0| = i
and �1 = q′0t′q′1 with |q′0| = i′, we have s1(q

′
0) = q0. Then, s

′′
1(�1) =

s′′1(q′0)s′′1(t′)s′′1(q′1) is a literal in C ′′
1 , (s

′′
1(t

′), |s′′1(q′0)|) is an occurrence
of a term in s′′1(�1) and s1∗s′1(s′′1(q′0)) = s1∗(s′1∗s′′1(q′0)) = s1(q

′
0) = q0.

1086 Logical Foundations of Computer Science — Volume 2

Also, we have s1∗s′1(s′′1(�1)) = s1(s
′
1∗s′′1(�1)) = s1(�1) = �. Therefore,

s′′1(�1) ∈ (s1 ∗ s′1)−1(�) and (t, i) is visible in s′′1(�1).
Since V (C ′′

0) ∩ V (C ′′
1) = ∅, by Lemma 5.10.56, there is a simple,

most general paramodulant P ′ of C ′′
0 and C ′′

1 and an L-substitution s
such that s(P ′) = P . Since (C ′′

0 , C
′′
1) is obtained by a standardization

of (C ′
0, C

′
1) and P ′ is a simple paramodulant of C ′′

0 and C ′′
1 , P

′ is a
paramodulant of C ′

0 and C ′
1. �

Definition 5.10.58. Let L be a first-order language with equal-
ity containing at least one constant symbol and let I be an H-
interpretation on a left segment Γ of GAFORML. The binary relation
�I on the set of ground L-substitutions is defined by s�I s

′ if there
is a variable x such that s(x)→I s

′(x) and s′(y) = s(y) for all y �= x.
We denote the reflexive and transitive closure of �I by �∗

I .

Theorem 5.10.59. Let L be a first-order language with equality con-
taining at least one constant symbol, let I be an E-interpretation on a
left segment Γ of GAFORML, and let s, s′ be ground L-substitutions
with s �∗

I s
′. If C is an L-clause such that I(s(C)) is defined (that

is, every atomic formula that appears in s(C) belongs to Γ), then
I(s′(C)) is defined and I(s(C)) = I(s′(C)).

Proof. It suffices to show the result when s �I s′, so suppose
that s(x) →I s

′(x) and s′(y) = s(y) for y �= x. Let α be an atomic
formula that appears in C. Since s(x) →I s

′(x), we have s′(x) �L
s(x) and since s′(α) is obtained from s(α) by replacing zero or more
occurrences of s(x) by s′(x), by O4, s′(α) �L s(α), so s′(α) ∈ Γ and
I(s′(α)) is defined. We will show that I(s′(α)) = I(s(α)). Since this
is true for all atomic formulas that appear in C, this will establish
that I(s′(C)) is defined and equal to I(s(C)).

If x does not occur in α, then s′(α) = s(α) and the result is
immediate, so suppose that x does occur in α. Let s(x) = t and
s′(x) = t′ and say that t →I t

′ via t0 = u0. We consider two cases
based on the relationship between t0 and t.

• Case 1: t0 = t. Then, t′ = u0. By F2, I(t = t′) = I(t0 = u0) =
T. Since s′(α) is obtained from s(α) by replacing one or more
occurrences of t by t′, I(t = t′) = T and I is an E-interpretation
on Γ, I(s′(α)) = I(s(α)) by E3.

• Case 2: t0 �= t. We consider three subcases based on the form of
s(α).

First-Order Logic–Formal Systems 1087

− Case 2.1: s(α) does not have the form (t = u′) or (u′ = t)
with u′ �L t′. Then, since t occurs in s(α) and t′ ≺L t, by O6,
(t′ = t) ≺L s(α), so (t′ = t) ∈ Γ. By O5, (t = t′) ≺L (t′ = t), so
(t = t′) ∈ Γ.
Since t →I t

′ via (t0 = u0) and t0 is a proper subtern of t, the
boxed condition of Theorem 5.10.40 does not hold when α in
that condition is replaced by (t′ = t) and therefore, (t′ = t)→I

(t′ = t′). By E2, Theorem 5.10.42 and E1, I(t = t′) = I(t′ =
t) = I(t′ = t′) = T. As in Case 1, we obtain I(s′(α)) = I(s(α))
by E3.

− Case 2.2: s(α) = (t = u′) with u′ �L t′. Since u′ �L t′ ≺L t,
t cannot occur in u′, so s′(α) = (t′ = u′). Since t →I t

′ via
(t0 = u0) and t0 is a proper subterm of t, the boxed condition of
Theorem 5.10.40 does not apply when α is replaced by (t = u′)
and thus (t = u′)→I (t

′ = u′). By Theorem 5.10.42, I(s(α)) =
I(t = u′) = I(t′ = u′) = I(s′(α)).

− Case 2.3: s(α) = (u′ = t) with u′ �L t′. This case is handled
similarly to Case 2.2. �

Definition 5.10.60. Let L be a first-order language with equality
containing at least one constant symbol, let I be an E-interpretation
on a left segment Γ of GAFORML, and C be an L-clause. An L-
substitution s is I-irreducible on C if s(x) is an I-irreducible term
for all x ∈ V(C).

Corollary 5.10.61. Let L be a first-order language with equality
containing at least one constant symbol, let I be an E-interpretation
on a left segment Γ of GAFORML, s be a ground L-substitution
and C be an L-clause such that I(s(C)) is defined. Then, there is a
ground L-substitution s′ such that s′ is I-irreducible on C, I(s′(C))
is defined and I(s′(C)) = I(s(C)).

Proof. Since →I is well-founded, there is a ground L-substitution
s′ such that s�∗

I s
′ and s′ is I-irreducible on C. By Theorem 5.10.59,

I(s′(C)) is defined and I(s′(C)) = I(s(C)). �

Definition 5.10.62. Let L be a first-order language with equality
that contains at least one constant symbol and let C be a set of
ground L-clauses. A node q of S∗L,C is a resolution inference node if
the following conditions are satisfied:

1088 Logical Foundations of Computer Science — Volume 2

(1) q has depth 1 in S∗L,C ;

(2) α|q| is I
S∗L,C
q -irreducible.

A node q of S∗L,C is a paramodulation inference node if the following
conditions are satisfied:

(1) q has depth 1 in S∗L,C ;

(2) α|q| is I
S∗L,C
q -reducible;

(3) if r1 is a prefix of q, then r0 is a failure node for C.

Theorem 5.10.63. Let L be a first-order language with equality that
contains at least one constant symbol and let C be a set of ground L-
clauses. If C has no L-E-model and � �∈ C, then S∗L,C contains either
a resolution inference node or a paramodulation inference node.

Proof. Suppose that S∗L,C does not contain a resolution inference
node. This means that for all nodes q with depth 1 in S∗L,C, α|q|
is I

S∗L,C
q -reducible. We define a path (q0, q1, . . .) of S∗L,C ending in a

paramodulation inference node q. Since � �∈ C, λ is an interior node
of S∗L,C. Define q0 = λ. If qi is defined and has depth 1, halt with
q = qi. If qi is defined and has depth greater than 1, define qi+1 as
follows. If qi has one immediate descendant in S∗L,C, define qi+1 = qi0.
If qi has two immediate descendants, define

qi+1 =

{
qi0 if qi0 is not a leaf of S∗L,C,

qi1 otherwise.

By Theorem 5.10.55, S∗L,C is finite, so the construction halts with a
node q of depth 1. Since there is no resolution inference node, α|q| is

I
S∗L,C
q -reducible and by construction, if r1 is a prefix of q then r0 is a
leaf of S∗L,C and hence, by Theorem 5.10.55, r0 is failure node for C.
Thus, q is a paramodulation inference node of S∗L,C. �

For a set of L-clauses C, we use the notation SGL,C for S∗L,GINSTL(C).

Theorem 5.10.64. Let L be a first-order language with equality that
contains at least one constant symbol and let C be a set of L-clauses
that has no model. If SGL,C contains a resolution inference node q,

First-Order Logic–Formal Systems 1089

then there is a full mgu resolvent R of two clauses in C ∪ {(x = x)}
such that

Dom(SGL,C∪{R}) ⊂ Dom(SGL,C).

Proof. Since C has no model, by Theorem 5.10.35, GINSTL(C) has
no L-E-model. By Theorem 5.10.55, every leaf of SGL,C is a failure
node for GINSTL(C). We consider two cases depending on how many
immediate descendants the resolution inference node q has. We let
k = |q|.

• Case 1: q has two immediate descendants in SGL,C. Since q0 and
q1 are leaves of SGL,C, they are failure nodes for GINSTL(C), so,
by Theorem 5.10.54, there are clauses Cq0, Cq1 ∈ C and ground L-
substitutions sq0, sq1 such that αk ∈ sq0(Cq0) and (¬αk) ∈ sq1(Cq1)
and

ISLq ((sq0(Cq0)− {αk}) ∪ (sq1(Cq1)− {(¬αk)})) = F.

Letting R′ = (sq0(Cq0) − {αk}) ∪ (sq1(Cq1) − {(¬αk)}), we have
that R′ is a resolvent of sq0(Cq0) and sq1(Cq1) and ISLq (R′) = F.
By Lemma 5.8.67, there is a full, most general resolvent R of Cq0
and Cq1 and a ground L-substitution sq with sq(R) = R′. Since q
is a failure node for GINSTL(C ∪ {R}), q0, q1 �∈ Dom(SGL,C∪{R}).
Together with Theorem 5.10.53, this implies Dom(SGL,C∪{R}) ⊂
Dom(SGL,C).

• Case 2: q has one immediate descendant in SGL,C. Since αk is I
SGL,C
q -

irreducible but q has only one immediate descendant in SGL,C, αk
must be (t = t) for some ground L-term t and I

SGL,C
q0 (αk) = T.

By Theorem 5.10.54, there is clause Cq0 ∈ C and a ground L-
substitution sq0 such that (¬(t = t)) ∈ sq0(Cq0) and

ISLq (sq0(Cq0)− {(¬(t = t))}) = F.

The clause R′ = sq0(Cq0)−{(¬(t = t))} is a resolvent of sq0(Cq0))
and {(t = t)}. Since {(t = t)} is a ground instance of {(x = x)},
by Lemma 5.8.67, there is full most general resolvent R of Cq0
and {(x = x)} and a ground L-substitution sq with sq(R) = R′.
Since ISLq (R) = F, q0 �∈ Dom(SGL,C∪{R}), so Dom(SGL,C∪{R}) ⊂
Dom(SGL,C). �

1090 Logical Foundations of Computer Science — Volume 2

Theorem 5.10.65. Let L be a first-order language with equality that
contains at least one constant symbol and let C be a set of L-clauses
that has no model. If SGL,C contains a paramodulation inference node,
then there is a full, most general paramodulant P of two clauses in
C ∪ {(x = x)} such that

Dom(SGL,C∪{P}) ⊂ Dom(SGL,C).

Proof. Since C has no model, by Theorem 5.10.35, GINSTL(C)
has no L-E-model. By Theorem 5.10.55, every leaf of SGL,C is a fail-
ure node for GINSTL(C). Let q be a paramodulation inference node
of SGL,C and let k = |q|. By definition, αk is ISLq -reducible because

I
SGL,C
q = ISLq , so q has only one immediate descendant q0 in SGL,C.
Since q0 is a failure node for GINSTL(C), there is a clause Cq0 ∈ C
and a ground L-substitution sq0 with ISLq0 (sq0(Cq0)) = F. By Corol-

lary 5.10.61, we may assume that sq0 is ISLq0 -irreducible on Cq0. Let

� =

{
αk if ISLq0 (αk) = F,

(¬αk) if ISLq0 (αk) = T.

By Theorem 5.10.54, � ∈ sq0(Cq0) and ISLq (sq0(Cq0) − {�}) = F. We

consider two cases depending on how αk is ISLq -reducible.

• Case 1: αk is ISLq -reducible by F2.

• Case 2: αk is ISLq -reducible by F1 but not by F2.

In Case 1, let �′ be any literal in Cq0 with sq0(�
′) = � and define α′

to be the atomic L-formula appearing in �′, so sq0(α′) = αk. Let αk
be ISLq -reducible via (t = u). Then, we have:

∗ there is an occurrence (t, i) in αk;
∗ u ≺L t;
∗ (t = u) ≺L αk;
∗ ISLq (t = u) = T;

∗ (t = u) is ISLq -irreducible.

Using the notation of Theorem 4.3.64, let

α′ = q0y0q1y1 · · · qn−1yn−1qn

and αk = sq0(α
′) = q0u0q1u1 · · · qn−1un−1qn, where sq0(yi) = ui for

0 ≤ i ≤ n−1. If (t, i) begins in one of the ujs, say uk0 , then, since by

First-Order Logic–Formal Systems 1091

Exercise 53 of Chapter 1, no proper prefix of an L-term is a suffix of
an L-term, (t, i) ends in uk0 . Thus, by O5 and O6,

(t = u) ≺L (u = t) ≺L uk0 .

Since ISLq0 extends ISLq , we have

ISLq0 (t = u) = ISLq (t = u) = T,

and by Part (a) of Theorem 5.10.43 the ISLq -irreducibility of (t = u)

implies that (t = u) is ISLq0 -irreducible. It follows that uk0 is ISLq0 -
reducible by F2 via (t = u). This contradicts the assumption that
sq0 is ISLq0 -irreducible on Cq0. Thus, the occurrence (t, i) in αk starts

in one of the qjs, so by Theorem 4.3.64, (t, i) is visible in α′.
It follows that if (t, i′) is the occurrence in � corresponding to the

occurrence (t, i) in αk (that is, either (t, i) or (t, i+2)), then (t, i′) is
visible in any literal �′ ∈ s−1

q0 (�).
Since (t = u) ≺L αk, we have (t = u) = αj for some j < k. Let

r be the prefix of q of length j. Since (t = u) is ISLq -irreducible, by

Theorem 5.10.43, (t = u) is ISLr -irreducible, so r has two immediate
descendants in SL with ISLr0 (t = u) = F and ISLr1 (t = u) = T. Since
ISLq (t = u) = T, r1 is a prefix of q and hence, since q is a paramodula-
tion inference node of SGL,C, r0 is a failure node for GINSTL(C). This
means that there is a clause Cr0 ∈ C and a ground L-substitution sr0
such that ISLr0 (sr0(Cr0)) = F. By Theorem 5.10.54, (t = u) ∈ sr0(Cr0)
and ISLr (sr0(Cr0)− {(t = u)}) = F.

Thus,

P ′ = (sr0(Cr0)− {(t = u)}) ∪ (sq0(Cq0)− {�}) ∪ {�[(t, i′)→ u]}

is a paramodulant of sr0(Cr0) and sq0(Cq0). Since (t, i′) is visi-
ble in any �′ ∈ s−1

q0 (�), by the Paramodulation Lifting Lemma
(Lemma 5.10.57), there is a full, most general paramodulant P of
Cr0 and Cq0 and a ground L-substitution s with s(P) = P ′.

We claim that ISLq (P ′) = F. We prove this by showing in turn

that ISLq falsifies each of the three sets of literals whose union is P ′.
First, we have

ISLq (sr0(Cr0)− {(t = u)}) = ISLr (sr0(Cr0)− {(t = u)}) = F.

Second, ISLq (sq0(Cq0)− {�}) = F has already been established.

1092 Logical Foundations of Computer Science — Volume 2

Finally, to show that ISLq (�[(t, i′) → u]) = F, we begin by noting

that αk[(t, i)→ u] ≺L αk by O4, so ISLq (αk[(t, i)→ u]) is defined and

equal to ISLq0 (αk[(t, i) → u]). By Part (a) of Theorem 5.10.43, since

(t = u) ∈ ΓL
k and is ISLq -irreducible, (t = u) is ISLq0 -irreducible and we

also have ISLq0 (t = u) = ISLq (t = u) = T. Thus, αk →I
SL
q0
αk[(t, i)→ u]

and by Theorem 5.10.42, ISLq0 (αk) = ISLq0 (αk[(t, i)→ u]), so

ISLq (αk[(t, i)→ u]) = ISLq0 (αk).

It follows that ISLq (�[(t, i′)→ u]) = ISLq0 (�) = F, as desired.
Thus, q is a failure node for GINSTL(C ∪ {P}), so q0 �∈

Dom(SGL,C∪{P}) and Dom(SGL,C∪{P}) ⊂ Dom(SGL,C).
Now we tackle Case 2 which occurs when αk is ISLq -reducible by

F1 but not by F2. Then, αk = (u = t) for some ground L-terms u and
t with u ≺L t and αk−1 = (t = u) is ISLq -irreducible. Suppose that

(¬(u = t)) ∈ sq0(Cq0). Then, because I
SL
q0 (sq0(Cq0)) = F, ISLq0 (u =

t) = T, and since ISLq0 is an E-interpretation on ΓL
k+1, I

SL
q (t = u) =

ISLq0 (t = u) = ISLq0 (u = t) = T. The fact that (t = u) is ISLq -irreducible

and (t = u) ≺L (u = t) implies that αk = (u = t) is ISLq -reducible by
F2 via (t = u) contradicting the case assumption. Thus, (u = t) ∈
sq0(Cq0), I

SL
q (sq0(Cq0)− {(u = t)}) = F and ISLq0 (u = t) = F, so

ISLq (t = u) = ISLq0 (t = u) = ISLq0 (u = t) = F.

Let P ′ be the paramodulant

(sq0(Cq0)− {(u = t)}) ∪ ({(u = u)} − {(u = u)}) ∪ {(t = u)}
= (sq0(Cq0)− {(u = t)}) ∪ {(t = u)}

of sq0(Cq0) and {(u = u)}. Then, ISLq (P ′) = F. The clause {(u = u)}
is obtained from the L-clause {(x = x)} by a ground L-substitution
and the paramodulated occurrence of u in (u = u)} is visible in
{(x = x)}. By the Paramodulation Lifting Lemma, there is a full,
most general paramodulant P of Cq0 and {(x = x)} and a ground
L-substitution s with s(P) = P ′. Then, q is a failure node for
GINSTL(C ∪ {P}), so q0 �∈ Dom(SGL,C∪{P}) and Dom(SGL,C∪{P}) ⊂
Dom(SGL,C). �

First-Order Logic–Formal Systems 1093

Theorem 5.10.66. Let L be first-order language with equality
and let C be a set of L-clauses. If C has no model, then � ∈
(fResparmgu)∗(C ∪ {(x = x)}).

Proof. Let L′ = H(L) be the Herbrand extension of L. We will
prove by strong induction on n ≥ 1 that if C is a set of L′-clauses that
has no model and |Dom(SGL′,C)| = n, then � ∈ (fResparmgu)∗(C ∪
{(x = x)}. This suffices to prove the theorem because if C is a set of
L-clauses that does not have a model, then it is a set of L′-clauses that
has no model, so by Theorem 5.10.35, GINSTL′(C) does not have an
L′-E-model, and hence by Theorem 5.10.55, SGL′,C = S∗L′,GINSTL′(C)
is finite.

For the basis step, suppose that |Dom(SGL′,C)| = 1. Therefore,
� ∈ GINSTL′(C), so � ∈ C ⊆ (fResparmgu)∗(C ∪ {(x = x)}).

For the inductive step, suppose that C has no model,
|Dom(SGL′,C)| = n > 1 and the result is true for all n′ < n. Since
|Dom(SGL′,C)| > 1, � �∈ GINSTL′(C) and so by Theorem 5.10.63,
since GINSTL′(C) has no L′-E-model, SGL′,C contains either a reso-
lution inference node or a paramodulation inference node.

If SGL′,C contains a resolution inference node, then by Theo-
rem 5.10.64, there is a full, most general resolvent R of two clauses
in C ∪ {(x = x)} such that |Dom(SGL′,C∪{R})| < |Dom(SGL′,C)| = n.
Since C has no model, C∪{R} has no model, so by inductive hypoth-
esis,

� ∈ (fResparmgu)∗(C ∪ {R} ∪ {(x = x)})
= (fResparmgu)∗(C ∪ {(x = x)}).

If SGL′,C contains a paramodulation inference node, then we reach
the desired conclusion by a similar argument using Theorem 5.10.65
instead of Theorem 5.10.64. �

5.11 Exercises and Supplements

A Hilbert/Frege-Style Formal System for First-Order Logic

(1) Verify that the formulas of the groups 1–18 of the formal system
HFL are first-order tautologies.

1094 Logical Foundations of Computer Science — Volume 2

(2) Let L and L′ be first-order languages and let Γ ⊆ FORML ∩
FORML′ . Prove that Γ is L-consistent if and only if Γ is L′-
consistent.
Hint. This follows from Corollary 5.2.40.

(3) Prove that the following statements:

(a) the Soundness Theorem;
(b) for a first-order language L, if a set of L-formulas Γ is satisfi-

able, then Γ is L-consistent,
can be directly derived from each other.
Hint. The argument is similar to the one of Supplement 6 of
Chapter 3.

(4) Prove that the following statements:

(a) the Completeness Theorem;
(b) for a first-order language L, if a set of formulas Γ is consis-

tent, then Γ is satisfiable,

can be directly derived from each other.
Hint. The argument is similar to the one of Supplement 7 of
Chapter 3.

(5) Without using the Completeness Theorem, prove that for every
L-formula ϕ, we have �HFL (∃x)(ϕ → (∀x)ϕ) and �HFL
((∃x)(∀y)ϕ→ (∀y)(∃x)ϕ).
Again, without using the Completeness Theorem, prove that
there is an L-formula ϕ such that �HFL ((∀x)(∃y)ϕ →
(∃y)(∀x)ϕ) does not hold.

(6) Without using the Completeness Theorem, show that the follow-
ing pairs of formulas are provably equivalent in HFL:

(a) (¬(∀x)ϕ), (∃x)(¬ϕ) and (¬(∃x)ϕ), (∀x)(¬ϕ);
(b) ((∃x)ϕ∨ψ), (∃x)(ϕ∨ψ) and ((∀x)ϕ∨ψ), (∀x)(ϕ∨ψ), where

x �∈ FV(ψ);
(c) (ϕ∨ (∃x)ψ), (∃x)(ϕ∨ψ) and (ϕ∨ (∀x)ψ), (∀x)(ϕ∨ψ), where

x �∈ FV(ϕ);
(d) ((∃x)ϕ∧ψ), (∃x)(ϕ∧ψ) and ((∀x)ϕ∧ψ), (∀x)(ϕ∧ψ), where

x �∈ FV(ψ);
(e) (ϕ∧ (∃x)ψ), (∃x)(ϕ∧ψ) and (ϕ∧ (∀x)ψ), (∀x)(ϕ∧ψ), where

x �∈ FV(ϕ);
(f) ((∃x)ϕ → ψ), (∀x)(ϕ → ψ) and ((∀x)ϕ → ψ), (∃x)(ϕ → ψ),

where x �∈ FV(ψ);

First-Order Logic–Formal Systems 1095

(g) (ϕ → (∃x)ψ), (∃x)(ϕ → ψ) and (ϕ → (∀x)ψ), (∀x)(ϕ → ψ),
where x �∈ FV(ϕ).

(7) Using Theorems 5.2.43, 5.2.49, and 5.2.51, and Exercise 6, give
a syntactic argument that for every L-formula ϕ there is an L-
formula ϕ′ in prenex normal form such that ϕ and ϕ′ are provably
equivalent in HFL.

(8) Let L be a first-order language. The formal system HF ′L is
defined starting from the formal system HFL by replacing the
first 18 formula groups with the formula groups obtained from
the axioms of the propositional formal system HF ′ (defined in
Exercise 5 of Chapter 3) by substituting L-formulas for α, β, γ.
Prove that for any set of L-formulas Γ and L-formula ϕ, we have
Γ |= ϕ if and only if Γ �HF ′L ϕ.

Hint. The argument parallels that of Section 5.2 for HFL. The
analogue of Theorem 5.2.3 follows from Exercise 5 of Chapter 3.

First-Order Tableaux

(9) Prove that if bϕ is a signed formula that occurs in a node of a
(Δ,L, V)-tableau, then FV(bϕ) ⊆ V .

(10) Let Δ be a set of signed propositional formulas and s be an
atomic L-substitution, where L is a first-order language with-
out equality. Prove that for every (s(Δ),L, V)-tableau T′ with-
out cut, there is a Δ-tableau T (of propositional logic) such that
T′ = s◦T. Further, prove that for an injective inter-substitution
s, if T′ is closed, then so is T.
Hint. Use Exercise 152 of Chapter 4. For the second part, use
Exercise 107 of Chapter 4.

(11) Let Δ be a set of signed (L, V)-formulas, where V is an L-
suitable set of variables. Suppose that Δ consists of formulas
of the form Tϕ,Tψ,Fα, where ϕ is a Π1-formula and ψ,α are
Π0-formulas, that is, quantifier-free formulas. Prove that if T is
a (Δ,L, V)-tableau, then there are no δ-formulas in any node
of T.
Hint. Use induction on the length of the path that joins a
node to the root of the tableau.

(12) Let L be a first-order language that contains an infinite set
of constant symbols, V be an L-suitable set of variables and

1096 Logical Foundations of Computer Science — Volume 2

Δ be a finite set of signed (L, V)-formulas. Prove that Δ is

unsatisfiable if and only if it is a theorem of F tabl,cons
L,V .

(13) Show that the analogue of Exercise 12 of Chapter 3 for first-
order tableaux is false.
Hint. Consider the tableau shown in Figure 5.7.

(14) Recall that the notion of inconsistency property was intro-
duced in Definition 4.12.22. Let L be a first-order language
and V be a set of variables.

(a) Prove that the collection I of all sets of signed (Lc, V)-
formulas Δ such that either Δ contains infinitely many
constant symbols of Lc−L or Δ contains only finitely many
constant symbols of Lc − L and there is a finite closed
(Δ,Lc, V)-tableau is an (Lc, V)-inconsistency property.

(b) Prove that the collection Is of all sets of signed (Lc, V)-
formulas Δ such that either Δ contains infinitely many
constant symbols of Lc−L or Δ contains only finitely many
constant symbols of Lc − L and there is a strongly closed
(Δ,Lc, V)-tableau is an (Lc, V)-inconsistency property.

(c) Use the first part to give an alternative proof of the Com-
pleteness Theorem for Tableaux of First-Order Logic. Use
the second part to give an alternative proof of the Strong
Completeness Theorem for Tableaux of First-Order Logic.

(15) Let Δ be an unsatisfiable set of (L, V)-formulas. Using a finite
conservative closed (Δ,Lc, V)-tableau, give an explicit nonre-
cursive construction of a finite unsatisfiable subset of Δ.
Hint. See Supplement 24 of Chapter 3.

(16) Reprove Exercise 169 of Chapter 4 using tableaux.
(17) Let L be a first-order language, V be an L-suitable set of vari-

ables and Γ be a set of (L, V)-formulas. Prove an analogue of
Supplement 26 of Chapter 3 by giving a construction whose
input is a strongly closed unsigned (Γ,L, V)-tableau T and
whose output is a strongly closed (s(Γ),L, V)-tableau T′.
Solution: The case when T is a one-node tree is identical to
the corresponding case in Supplement 26 of Chapter 3.
Consider now the case when T has more than one node. If we
used variantization at the root, that is T(λ) = Γ and there is
a finite-to-one function f : T(0) −→ T(λ) such that for every
formula ϕ ∈ T(0), ϕ is a variant of f(ϕ), apply the construction

First-Order Logic–Formal Systems 1097

recursively to T[0] to produce a strongly closed (s(T(0)),L, V)-
tableau T′0 and return T′ = (T′0; s(Γ)). Note that if we define
f ′ : s(T(0)) −→ s(Γ) by f ′(s(ϕ)) = s(f(ϕ)), then f ′ is well-
defined and finite-to-one because s is one-to-one and f is finite-
to-one, and for all s(ϕ) ∈ s(T(0)), s(ϕ) is a variant of f ′(s(ϕ)),
so T′ is an (s(Γ),L, V)-tableau using variantization at the root.
If propositional expansion is used at the root of T, the con-
struction is the same as in Supplement 26 of Chapter 3.
Suppose that γ-expansion is used at the root of T. If Γ =
T(λ) = Γ′∪{(∀x)ψ} and T(0) = Γ′∪{(∀x)ψ, (ψ′)x:=t}, where ψ′

is a variant of the positive formula ψ such that t is substitutable
for x in ψ′, then we apply the construction to T[0] to obtain T′0,
an (s(Γ′) ∪ {T(∀x)ψ,T(ψ′)x:=t})-tableau. Return (T′0; s(Γ)).
If

Γ = T(λ) = Γ′ ∪ {(∀x)(¬ψ)}, and
T(0) = Γ′ ∪ {(∀x)(¬ψ), ((¬ψ′))x:=t},

where ψ′ is a variant of the formula ψ such that t is substi-
tutable for x in ψ′, then we apply the construction to T[0] to

obtain T′0, an (s(Γ′)∪{T(∀x)(¬ψ),F(ψ′)x:=t})-tableau. Return

((T′0; s(Γ
′) ∪ {T(∀x)(¬ψ),T((¬ψ′))x:=t}); s(Γ)).

We leave the remaining γ-expansion cases, as well as the δ-
expansion and equality expansion cases to the reader.

(18) Let L be a first-order language, V be an L-suitable set of vari-
ables and Γ be a set of (L, V)-formulas. Prove that for every
node q of a (Γ,L, V)-tableau T, we have

T(q) ⊆
{
W ∗

L,V (Γ) if = �∈ L
W ∗

L,V (Γ ∪ INSTL,V (Eq=,L)) if =∈ L.

(19) Formulate and prove analogues of Theorem 5.3.14, Corollar-
ies 5.3.15 and 5.3.16, Theorem 5.3.18, and Theorem 5.3.19 for
unsigned tableaux.

(20) Let L be a first-order language, V be an L-suitable set of vari-
ables and Γ be a set of (L, V)-formulas.

(a) Let P be a path of a conservative (Γ,L, V)-tableau T ending
in the node q. Prove that:

1098 Logical Foundations of Computer Science — Volume 2

i. If ϕ ∈ T(P) is a γ-formula then ϕ ∈ T(q).
ii. If ϕ ∈ T(P)− T(q), then there is an (L, V)-constituent K

of ϕ such that K ⊆ T(P).

(b) Use a reformulated Definition 5.3.24 to give a construction
of a completed (Γ,Lc, V)-tableau.

(21) Let L be a first-order language, V be a set of variables and Γ
be a set of (L, V)-formulas.

(a) Prove that if Γ is unsatisfiable, then there exists a finite,
conservative, closed (Γ,Lc, V)-tableau. (This is the Com-
pleteness Theorem for Unsigned Tableaux of First-Order
Logic.)

(b) Prove that the following statements are equivalent:

i. Γ is unsatisfiable.
ii. There exists a finite conservative, closed (Γ,Lc, V)-

tableau.
iii. There is a conservative, closed (Γ,Lc, V)-tableau.

(22) Use Part (b) of Exercise 20 to reprove Exercise 154 of Chap-
ter 4.

(23) Let L be a first-order language, V be a set of variables and Γ
be a set of (L, V)-formulas.

(a) Prove constructively that if Γ is unsatisfiable, then there is
a conservative, strongly closed (Γ,Lc, V)-tableaux. (This is
the Strong Completeness Theorem for Unsigned Tableaux
of First-Order Logic.)

(b) Show that any of the statements included in Part b of
Exercise 21 is equivalent to the existence of a conservative,
strongly closed (Γ,Lc, V)-tableau.

(24) Use Exercise 23 to obtain an another proof of the Compactness
Theorem for First-Order Logic.

(25) Construct an analogue of the formal system F tabl
L,V for unsigned

formulas, and prove its soundness and partial completeness.

(26) Construct an analogue of the formal system F tabl,cons
L,V for

unsigned formulas, and prove its soundness and partial com-
pleteness.

(27) State and prove an analogue of Exercise 14 for sets of unsigned
formulas.

First-Order Logic–Formal Systems 1099

(28) In Supplement 66 of Chapter 4 we proved that the set of signed
formulas Δn is unsatisfiable. Show that every closed (Δn,Lc)-
tableau has at least 22

n
nodes. (Thus, by Exercise 9 of Chap-

ter 4, the number of nodes of any closed (Δn,Lc)-tableau is
exponential in the size of Δn.)
Solution: Let T be a closed (Δn,Lc)-tableau. We introduce

the Lc-structure A0 by |A0| = P, LA0 = P, cA0
1 = 1, dA0(n) =

2n, sA0(n,m) = n + m, for n,m ∈ P, and letting cA0 be
arbitrary positive number for c a constant symbol different
from c1. A positive number i is T-instanced if there is an Lc-
ground term t such that i = tA0 and the formula T(L(t) →
L(s(t, c1))) occurs in T.
Define the Lc-structure AT by

LAT = {i ∈ P | j is T-instanced for all positive j < i}.

The remaining symbols of Lc have the same interpretation in
AT as in A0.
We claim that if a formula T(L(t) → L(s(t, c1))) occurs in
a node of T, then AT |= T(L(t) → L(s(t, c1))). Suppose that
T(L(t) → L(s(t, c1))) occurs in T and that AT |= L(t). We
must show that AT |= L(s(t, c1)). Since AT |= L(t), we have
tAT ∈ LAT . Therefore, for all j < tAT , j is T-instanced. Since
tAT = tA0 and the signed formula T(L(t)→ L(s(t, c1))) occurs
in a node of T, it follows that tAT is T-instanced. So, every j <
tAT + 1 = s(t, c1)

AT is T-instanced. Consequently, s(t, c1)
AT ∈

LAT , that is AT |= L(s(t, c1)), as desired.
Now we show that every number less than 22

n
is T-instanced.

Suppose that i < 22
n
were not T-instanced.

Let Δ′ = {Tθ′ | Tθ′ is a variant of Tβ}. We claim that there
is a branch B in T such that AT |= T(B)−Δ′. We verify first that
AT |= T(λ)−Δ′ = T(λ)−{Tβ}, where T(λ) = Δn. Since s

AT is
an associative binary operation on P, it is clear that AT |= Tϕ.
We have A |= Tψ because of the definitions of dAT and sAT .
Also, AT |= TL(c1) because there are no positive integers less
than 1. Finally, AT is a model of Fθn because

(d(· · · d︸ ︷︷ ︸
2n

(c1) · · ·))AT = 22
n

1100 Logical Foundations of Computer Science — Volume 2

and because of our assumption that there is an i < 22
n
that is

not T-instanced.
Now suppose that q is an interior node of T and that AT |=
T(q)−Δ′. We wish to prove that there is an immediate descen-
dant q′ of q such that AT |= T(q′) − Δ′. We need to consider
three cases depending on the type of expansion used at q:

(a) If equality expansion was used, then there is only one
immediate descendant q′ = q0 of q and T(q′) is obtained
from T(q) by adding a logically valid formula. Thus, by the
inductive hypothesis, AT |= T(q′)−Δ′.

(b) If regular expansion was used at q, it does not involve a δ-
formula because no such formula exists in T by Exercise 11.
Suppose initially that the formula expanded at q is not in
Δ′. Then, by Theorem 4.12.48, there is a constituent Ki

of the expanded formula such that AT |= Ki and therefore
AT |= T(qi) − Δ′. If the formula expanded at q is in Δ′,
then q has only one immediate descendant q′ = q0, T(q′) =
T(q) ∪ {T(L(t) → L(s(t, c1)))} for some Lc-ground term t
and AT |= T(q′) − Δ′ because of the inductive hypothesis
and the fact that AT |= T(L(t)→ L(s(t, c1))).

(c) If variantizing was used at q, then q has one immediate
descendant q0 in T and if bθ′ ∈ T(q0) − Δ′, then bθ′ is
variant of a formula bθ ∈ T(q). We claim that bθ �∈ Δ′.
Indeed, if bθ ∈ Δ′, this would imply that bθ′ would also
belong to Δ′ because a variant of a variant of Tβ is again
a variant of Tβ. Thus, bθ ∈ T(q) −Δ′, so AT |= bθ. Since
variants are logically equivalent to each other, it follows
that AT |= bθ′. Thus, AT |= T(q0)−Δ′.

Thus, we have proved that there is a branch B in T such that
AT |= T(B)−Δ′, which implies that there is no formula γ which
is not a variant of β such that both Tγ and Fγ are in T(B).
Since T is a closed (Δ,Lc)-tableau, T(B) must be closed, so it
must contain Fβ′ for some variant β′ of β. However, Fβ′ is a
δ-formula and T contains no such formulas. This contradiction
shows that every number less than 22

n
must be T-instanced.

We leave it to the reader to prove by induction on |q| that for
every node q of T, the formulas that occur in q have one of the
following forms

First-Order Logic–Formal Systems 1101

1. bϕ, where ϕ does not contain the relation symbol L;
2. Tβ′, where β′ is a variant of β;
3. T(L(t)→ L(s(t, c1))) for some Lc-ground term t;
4. T((t = s) → (L(t) ↔ L(s))) for some Lc-ground terms t

and s;
5. T(L(t)↔ L(s)) for some Lc-ground terms t and s;
6. bL(t) for some Lc-ground term t,

and if q is an immediate descendant of q′, then there is at most
one formula of the third type in T(q) − T(q′). Since the root
contains no formula of type three, there are more nodes in T

than there are formulas of type three. Since every i < 22
n
is

T-instanced, T must have at least 22
n
nodes.

Cut Rule for First-Order Tableaux

(29) Let Δ be a finite set of signed L-sentences, where L is a first-
order language with infinitely many constant symbols. Suppose
that U is a strongly closed (Δ ∪ {T(∃x)ϕ},L)-tableau and V is
a strongly closed (Δ ∪ {F(ϕ)x:=t},L)-tableau, where t is an L-
ground term. Give an effective, syntactic transformation that
produces a strongly closed (Δ,L)-tableau.
Hint. Modify the argument of Example 5.4.14.

(30) Let Δ be a finite set of signed L-sentences, where L is a first-
order language with infinitely many constant symbols, ϕ be an
L-sentence and c be a constant symbol in L that does not occur
in either Δ or ϕ.

(a) Suppose that U is a strongly-closed (Δ ∪ {F(∃x)ϕ},L)-
tableau and V is a strongly-closed (Δ ∪ {T(ϕ)x:=c},L)-
tableau. Give an effective, syntactic transformation that
produces a strongly closed (Δ,L)-tableau.

(b) Suppose that U is a strongly-closed (Δ ∪ {T(∀x)ϕ},L)-
tableau and V is a strongly-closed (Δ ∪ {F(ϕ)x:=c},L)-
tableau. Give an effective, syntactic transformation that
produces a strongly closed (Δ,L)-tableau.

(31) Let Δ be a finite set of L-sentences, where L is a first-order
language with infinitely many constant symbols. Further, let bϕ
be a signed formula, where ϕ is either a δ formula, a formula
of the form (¬α), or a formula of the form (αCβ) with C a
binary connective symbol. Suppose that K is an L-constituent

1102 Logical Foundations of Computer Science — Volume 2

of bϕ, and T is a strongly closed (Δ ∪ {bϕ},L)-tableau. Using
cut elimination, give an effective, syntactic way of constructing
a strongly closed (Δ ∪K,L)-tableau.
Solution: We discuss only the case of δ-formulas. The remain-
ing cases are similar and we refer the reader to Supplement 45
of Chapter 3.
Let bϕ = b(Qx)ψ be a δ-formula and let K = {b(ψ)x:=t} be
one of its (L, ∅)-constituents. Define U = T � K, which is a
strongly closed (Δ ∪ K ∪ {bϕ},L)-tableau. Define the tableau
V, where Dom(V) = {λ, 0}, V(λ) = Δ ∪K ∪ {bϕ}, and V(0) =
Δ ∪ K ∪ {bϕ, b(ϕ)x:=t}. It is easy to see that V is a strongly
closed (Δ∪K∪{bϕ})-tableau. The desired tableau is produced
by cut elimination from the tableaux U and V.

(32) Let Δ be a finite set of L-sentences, where L is a first-order
language with infinitely many constant symbols, ϕ be an L-
formula such that FV(ϕ) ⊆ {x} and t be a ground term of L.
Prove that if T is a strongly closed (Δ ∪ {T((∀x)ϕ →
(ϕ)x:=t)},L)-tableau or a strongly closed (Δ ∪ {T((ϕ)x:=t) →
(∃x)ϕ)},L)-tableau, then there is an effective syntactic con-
struction of a strongly closed (Δ,L)-tableau starting from T.
Solution: Suppose that T is a strongly closed (Δ∪{T((∀x)ϕ→
(ϕ)x:=t)},L)-tableau. By Supplement 31, we can construct
effectively a strongly closed (Δ ∪ {F(∀x)ϕ},L)-tableau and a
strongly closed (Δ∪{T(ϕ)x:=t},L)-tableau. The desired (Δ,L)-
tableau is obtained by applying the construction in Exam-
ple 5.4.14.
The argument for the other case is similar, but uses Part (a) of
Supplement 29 in place of Example 5.4.14.

(33) Let Δ be a finite set of L-sentences, where L is a first-order
language with infinitely many constant symbols, ϕ be an L-
formula such that FV(ϕ) ⊆ {x} and c be a constant symbol of
L that does not occur in Δ or in ϕ.
Prove that if T is a strongly closed (Δ ∪ {T((∃x)ϕ →
(ϕ)x:=c)},L)-tableau or a strongly closed (Δ ∪ {T((ϕ)x:=c) →
(∀x)ϕ)},L)-tableau, then there is an effective syntactic con-
struction of a strongly closed (Δ,L)-tableau starting from T.

(34) Let L be a first-order language, V be a set of variables, Δ be a
set of signed propositional formulas and s be an FORML(V)-
inter-substitution. Prove that if T is a propositional Δ-tableau

First-Order Logic–Formal Systems 1103

(with cut), then s◦T is an (s(Δ),L, V)-tableau (with cut). Fur-
thermore, if T is (strongly) closed, then so is s ◦ T.

(35) Give an example of a first-order language L and a sequence of
unsatisfiable sets of signed L-sentences (Δ′

1,Δ
′
2, . . .) with the

following two properties:

• for every sequence (T′1, T
′
2, . . .) such that T′n is a closed

(Δ′
n,L)-tableau (without cut) for n ≥ 1, we have size(T′n) is

super-polynomial in size(Δ′
n);

• there is a sequence (T†1, T
†
2, . . .) such that T

†
n is a closed

(Δ′
n,L)-tableau with cut and size(T†n) is polynomial in

size(Δ′
n).

Hint. Take L to be the language introduced in the hint of Exer-
cise 108 of Chapter 4 and s be the inter-substitution defined
there. Then take Δ′

n = s(Δn) for n ≥ 1, where Δn is the set of
formulas introduced in Supplement 40 of Chapter 3. Use Sup-
plements 40 and 47 of Chapter 3, and Exercises 10 and 34 to
complete the argument.

(36) Prove that if K is an (L, V)-constituent of a signed (L, V)-
formula ϕ with ϕ = (αCβ), for some binary connective symbol
C, or ϕ = (¬α), then using the cut rule, there is an effective way
of constructing a (strongly) closed (Δ ∪K,L, V)-tableau with
cut from a (strongly) closed (Δ ∪ {bϕ},L, V)-tableau with cut.
Hint. The argument is identical to the one provided in Supple-
ment 45 of Chapter 3.

(37) In Exercise 67 of Chapter 4, we proved that the set of signed
formulas

Δ̂ = {Tϕ,Tψ,T(γ)y:=a,F(γ)y:=d(a))}

is unsatisfiable, where

ϕ = (∀x)(∀y)(∀z)(s(x, s(y, z)) = s(s(x, y), z))

ψ = (∀x)(d(x) = s(x, x))

γ = (L(y) ∧ (∀x)(L(x)→ L(s(x, y)))).

Also, the set Δn and the language L were defined in Exercise 9
of Chapter 4.

1104 Logical Foundations of Computer Science — Volume 2

(a) Prove that there is a strongly closed (Δ̂,Lc)-tableau T̂ with
no more than 46 nodes which never uses in a δ-expansion
either a or c1, where c1 is the constant symbol introduced in
the definition of Δn.

(b) Using the first part, prove that there is a sequence of
tableaux T̂0, . . . , T̂n, . . . such that each T̂i is a strongly
closed (Δ̂i,Lc)-tableau, where Δ̂i = {Tϕ,Tψ,T(γ)y:=a,
F(γ)

y:=d2i (a)
}, neither a nor c1 is used in a δ-expansion in

T̂i, and size(T̂i) = O((2i)
2
). Here dk(a) is the term obtained

by applying k times the function symbol d to a.

Solution: We leave the construction of the tableau required by
the first part to the reader.
Define T̂0 = T̂. Suppose that we have obtained T̂i, a strongly
closed (Δ̂i,Lc)-tableau that never uses in a δ-expansion either

a or c1. Since the single constant symbol in the term d2
i
(a) is a,

by Theorem 5.4.8, we obtain the strongly closed (Δ′
i,L)-tableau

T′i = sa
d2i (a)

(T̂i), where

Δ′
i = {Tϕ,Tψ,T(γ)

y:=d2i (a)
,F(γ)

y:=d2
i+1(a)}.

This allows us to define the tableaux:

T
†
i = T̂i � F(γ)

y:=d2i+1 (a)

T�i = T′i �T(γ)y:=a,

where T
†
i is a strongly closed (Δ†

i ,L)-tableau, T�i is a strongly
closed (Δ�

i ,L)-tableau, and

Δ†
i = {Tϕ,Tψ,T(γ)y:=a,F(γ)y:=d2i (a),F(γ)y:=d2i+1 (a)

},

Δ�
i = {Tϕ,Tψ,T(γ)y:=a,T(γ)

y:=d2i (a)
,F(γ)

y:=d2i+1 (a)
}.

Applying the cut rule to the tableaux T�i and T
†
i yields the

strongly closed (Δ̂i+1,L)-tableau

T̂i+1 = (T�i , T
†
i ; {Tϕ,Tψ,T(γ)y:=a,F(γ)y:=d2i+1 (a)

}).

Observe that for the number of nodes |T̂i| of T̂i, we have the
recurrence |T̂i+1| = 2|T̂i|+ 3, which implies that |T̂i| = Θ(2i).

First-Order Logic–Formal Systems 1105

Let Ai be the number of occurrences of the constant symbol a

in the labels of the nodes of T̂i. The definitions of T†i and T�i
imply that the symbol a occurs in the labels of each of these
tableaux Ai + 6 times. Therefore, we have Ai+1 = 2Ai + 16,
which yields Ai = Θ(2i).

The definition of T†i implies that

size(T†i) = size(T̂i) + size(Δ†
i)

= size(T̂i) + Θ(2i).

Since T′i = sa
d2i (a)

(T̂i), we have

size(T′i) = size(T̂i) +Ai ·Θ(2i)

= size(T̂i) + Θ(2i) ·Θ(2i)

= size(T̂i) + Θ(22i).

In turn, this implies

size(T�i) = size(T′i) + size(Δ�
i)

= size(T̂i) + Θ(22i) + Θ(2i)

= size(T̂i) + Θ(22i).

Thus,

size(T̂i+1) = size(T�i) + size(T†i) + Θ(2i)

= size(T̂i) + Θ(22i) + size(T̂i) + Θ(2i) + Θ(2i)

= 2size(T̂i) + Θ(22i).

It is easy to verify from this inequality that size(T̂i) = Θ(22i).

The next supplement demonstrates again the power of the cut rule.
In Supplement 28, we saw that any closed (Δn,Lc)-tableau has a
number of nodes that is exponential in the size of Δn. Therefore, any
such tableau is of size exponential in the size of Δn. By contrast, we
prove that the use of the cut rule allows the construction of strongly
closed tableaux with cut for Δn whose size is polynomial in the size
of Δn.

1106 Logical Foundations of Computer Science — Volume 2

(38) The set Δn and the language L were defined in Exercise 9 of
Chapter 4. Show that there are tableaux with cut T0, T1, . . . such
that Tn is a strongly closed (Δn,Lc)-tableau and size(Tn) =
O(size(Δn)

2).

Solution: Let T̂n be the strongly closed (Δ̂n,Lc)-tableau from
Supplement 37 of size Θ((2n)2). Define the tableau T̃n = sac1(T̂n);

this is a strongly closed (Δ̃n,Lc)-tableau with cut of the same
asymptotic size as T̂n, where

Δ̃n = sac1(Δ̂n)

= {Tϕ,Tψ,T(α ∧ β),F(θn ∧ β)}.

(We are using here the notations introduced in Exercise 9
of Chapter 4.) By Exercise 36, we can construct a

strongly closed (Δ‡
n,Lc)-tableau with cut T

‡
n, where Δ‡

n =
{Tϕ,Tψ,Tα,Tβ,F(θn ∧ β)}, from T̃n. We leave to the reader

to show that size(T‡n) = Θ((2n)2). By applying again the same

construction to T‡n, we obtain a strongly closed (Δn,Lc)-tableau
with cut Tn of size Θ((2n)2) = Θ(size(Δn)

2).

Let L be a first-order language, V be an L-suitable set of variables
and Γ be a set of (L, V)-formulas. A (Γ,L, V)-tableau with cut is an
unsigned tableau T that satisfies the following conditions:

• The root of T is labeled by Γ, i.e., T(λ) = Γ.
• If q is an interior node of T, then one of the following cases occurs:

(1) regular expansion is used at q, or
(2) variantizing is used at q, or
(3) =∈ L and equality expansion is used at q, or
(4) q has two immediate descendants and there is an (L, V)-

formula ϕ such that T(q0) = T(q) ∪ {ϕ} and T(q1) = T(q) ∪
{(¬ϕ)}.

(39) Let L be a first-order language, V be an L-suitable set of
variables, Γ be a set of (L, V)-formulas and T be a completed
(Γ,L, V)-tableau with cut. Prove that:

(a) If T is conservative, then Γ is satisfiable if and only if T is
not closed.

First-Order Logic–Formal Systems 1107

(b) If T is strongly completed, then Γ is satisfiable if and only if
T is not closed.

Hint. Modify the proof of Theorem 5.4.2 using the analogues
for unsigned tableaux with cut of the results asked for in Exer-
cise 19.

(40) Let L be a first-order language, V be an L-suitable set
of variables, Γ be a set of (L, V)-formulas. Prove that Γ
is unsatisfiable if and only if there exists a strongly closed
(Γ,Lc, V)-tableau with cut.
Hint. The proof parallels the one developed in Corollary 5.4.3.

(41) Let L be a first-order language and V be an L-suitable set of
variables.
Give a construction that starts with a strongly closed (Δ,L, V)-
tableau with cut T and yields a strongly closed unsigned
(u(Δ),L, V)-tableau with cut.
Hint. The construction proceeds along the lines of the con-
struction for the propositional case given in Supplement 51 of
Chapter 3.

(42) Let L be a first-order language and V be an L-suitable set of
variables. Give a construction that starts with a strongly closed
unsigned (Γ,L, V)-tableau with cut T and produces a strongly
closed (signed) (s(Γ),L, V)-tableau with cut.
Hint. The construction is similar to the construction discussed
in Supplement 52 of Chapter 3.

(43) Let L be a first-order language and V be an L-suitable set of
variables. Give a construction that starts with a strongly closed
unsigned (Γ,L, V)-tableau with cut T and produces a strongly
closed unsigned (Γ,L, V)-tableau (without cut).
Hint. Apply the method of Supplement 53 of Chapter 3.

First-Order Sequents

(44) Let L,L′ be two first-order languages and κ be both an (L, V)-
sequent and an (L′, V)-sequent. Prove that κ is satisfiable
(valid) as an (L, V)-sequent if and only if it is satisfiable (valid)
as an (L′, V)-sequent.

(45) Let x, y be two variables, L be a first-order language and let α
be an L-formula such that y is substitutable for x in α and y
does not occur free in α.

1108 Logical Foundations of Computer Science — Volume 2

((ϕ)x:=c ∨ α0 ∨ · · ·αn−1)
((∀x)ϕ ∨ α0 ∨ · · ·αn−1)

R∀,p,)

where c does not occur in ϕ, α0, . . . , αn−1 and x ∈ FV(ϕ).

(ϕ ∨ α0 ∨ · · ·αn−1)
((∀x)ϕ ∨ α0 ∨ · · ·αn−1)

R∀,p,

where x FV(ϕ).

((¬(∀x)ϕ) ∨ (¬(ϕ)x:=t) ∨ α0 ∨ · · ·αn−1)
((¬(∀x)ϕ) ∨ α0 ∨ · · ·αn−1)

R∀,n

where ϕ is a variant of ϕ such that t is substitutable for x in ϕ .

((∃x)ϕ ∨ (ϕ)x:=t ∨ α0 ∨ · · ·αn−1)
((∃x)ϕ ∨ α0 ∨ · · ·αn−1)

R∃,p

where ϕ is a variant of ϕ such that t is substitutable for x in ϕ .

((¬(ϕ)x:=c) ∨ α0 ∨ · · ·αn−1)
((¬(∃x)ϕ) ∨ α0 ∨ · · ·αn−1)

R∃,n,)

where c does not occur in ϕ, α0, . . . , αn−1 and x ∈ FV(ϕ).

((¬ϕ) ∨ α0 ∨ · · ·αn−1)
((¬(∃x)ϕ) ∨ α0 ∨ · · ·αn−1)

R∃,n,

where x FV(ϕ).

If is in L, include the rule
((¬α) ∨ α0 ∨ · · ·αn−1)
(α0 ∨ · · ·αn−1)

R

where n > 0 and α INST ,V (Eq ,).

Fig. 5.47. Set of Additional Rules of the Formal System HGL,V .

Give proofs in the formal system F seq,cons
Lc,VAR for the sequents:

(a) (∀y)(α)x:=y ⇒ (∀x)α;
(b) (∃x)α⇒ (∃y)(α)x:=y.

Let L be a first-order language and V be an L-suitable set of vari-
ables. We introduce the formal system HGL,V as a first-order ana-
logue of the formal system HG defined in propositional logic. The
set of objects of this new system is FORML(V). Its set of axioms is
{(ϕ∨ (¬ϕ)) | ϕ ∈ FORML(V)}, and the set of rules is obtained from
the set of rules of HG given in Figure 3.37, excluding the rule Rmp′ ,
by replacing the propositional formulas with FORML(V) formulas.
In addition, we include the rules shown in Figure 5.47.

First-Order Logic–Formal Systems 1109

(46) Let L be a first-order language and let V be an L-suitable set
of variables. Show that the following structural rule

(ϕ0 ∨ · · · ∨ ϕn−1)
(ψ0 ∨ · · · ∨ ψm−1)

Rstruc

where {ϕ0, . . . , ϕn−1} ⊆ {ψ0, . . . , ψm−1}, is a derived rule of
HGL,V .

(47) Show that there is a first-order language L and an L-
suitable set of variables V such that Γ �HGL,V ϕ but Γ �|= ϕ,

for some set of (L, V) formulas Γ and (L, V)-formula ϕ.
Solution: Consider L = {R, c}, where R is a unary rela-
tion symbol and c is a constant symbol, V = ∅, Γ = {R(c)}
and ϕ = (∀x)R(x). Observe that R(c) �HGL,V

(∀x)R(x) by

R∀,p,(nondegenerate). However, R(c) �|= (∀x)R(x).
(48) Show that in spite of the previous supplement, the following

limited version of soundness holds: if �HGL,V
ϕ, then |= ϕ.

Solution: It is clear that the axioms of HGL,V are logically
valid, so it suffices to show that if the hypotheses of an instance
of a rule of HGL,V are logically valid, then so is the conclusion.
For the rules inherited from the propositional formal system
HG, the argument of Supplement 60 of Chapter 3 carries over
to show the stronger result that the hypotheses of an instance
of a rule logically imply the conclusion of that instance. Thus,
we need to consider only the quantifier and the equality rules.
Let

((ϕ)x:=c ∨ α0 ∨ · · ·αn−1)
(∀x)ϕ ∨ α0 ∨ · · ·αn−1)

be an instance of R∀,p,(nondegenerate). Proceeding by contraposi-
tive, assume that the formula ((∀x)ϕ∨α0∨ · · ·αn−1) is not log-
ically valid. By Theorem 4.5.55, (¬((∀x)ϕ∨α0 ∨ · · · ∨αn−1)) ≡
((¬(∀x)ϕ) ∧ (¬α0) ∧ · · · ∧ (¬αn−1)) is satisfiable and hence the
set

{(¬α0), . . . , (¬αn−1)} ∪ {(¬(∀x)ϕ)}

is satisfiable. Since c does not occur in {α0, · · · , αn−1, ϕ}, by
Part 2 of Theorem 4.6.12, {(¬α0), . . . , (¬αn−1)} ∪ {(¬(ϕ)x:=c)}

1110 Logical Foundations of Computer Science — Volume 2

is satisfiable, which means that (¬((ϕ)x:=c∨α0 ∨ · · · ∨αn−1)) is
satisfiable, hence ((ϕ)x:=c ∨α0 ∨ · · ·αn−1) is not logically valid.
Let

(ϕ ∨ α0 ∨ · · ·αn−1)
((∀x)ϕ ∨ α0 ∨ · · ·αn−1)

be an instance of R∀,p,(degenerate).
Since x �∈ FV(ϕ), by Corollary 4.5.46, we have the logical equiv-
alence (∀x)ϕ ≡ ϕ, so the hypothesis of the instance logically
implies the conclusion.
Let

((¬(∀x)ϕ) ∨ (¬(ϕ′)x:=t) ∨ α0 ∨ · · ·αn−1)
(¬(∀x)ϕ) ∨ α0 ∨ · · ·αn−1)

be an instance of R∀,n, where ϕ′ is a variant of ϕ such that t
is substitutable for x in ϕ′. By Supplement 93 of Chapter 4,
(∀x)ϕ |= (ϕ′)x:=t, hence (¬(ϕ′)x:=t) |= (¬(∀x)ϕ). It follows that
the hypothesis of the instance logically implies the conclusion.
We leave to the reader to treat the case of rules involving the
existential quantifier.
If = is in L, let

((¬α) ∨ α0 ∨ · · ·αn−1)
(α0 ∨ · · ·αn−1)

be an instance of R=, where n > 0 and α ∈ INSTL,V (Eq=,L).
By Corollary 4.6.10, α is logically valid, so the hypothesis of
the instance logically implies the conclusion.

(49) Let L be a first-order language and V be an L-suitable
set of variables. Consider the mapping ΛL,V : SQTL,V −→
P(FORML(V)) defined by

ΛL,V (κ) = u(sfL,V (κ))

for every κ ∈ SQTL,V . In other words, we have

ΛL,V (Γ⇒ Γ′) = {(¬ϕ) | ϕ ∈ Γ} ∪ Γ′.

Show, by induction on the definition of proof trees, that for
every proof tree T ∈ PT F seq,cons

L,V
, if T(λ) = κ, then there exist

First-Order Logic–Formal Systems 1111

α0, . . . , αn−1 ∈ ΛL,V (κ) with n > 0 such that

�HGL,V (α0 ∨ · · · ∨ αn−1)

Solution: The case when T is a one-node proof tree is straight-
forward. Let T0, . . . , Tn−1 be F seq,cons

L,V -proof trees that satisfy

the condition and let ((T0(λ), . . . , Tn−1(λ)), κ) be an instance of
a rule of F seq,cons

L,V for some sequent κ. We intend to show that

the proof tree T = (T0, . . . , Tn−1;κ) also satisfies the condition.
If ((T0(λ), . . . , Tn−1(λ)), κ) is an instance of a propositional rule,
the proof of Supplement 61 of Chapter 3 carries over. Suppose
that

((T0(λ), . . . , Tn−1(λ)), κ)

is an instance of R∀,l. Then, n = 1, T0(λ) is Γ, (∀x)ϕ, (ϕ′)x:=t ⇒
Γ′, where ϕ′ is a variant of ϕ with t substitutable for x in ϕ′,
and κ is the sequent Γ, (∀x)ϕ ⇒ Γ′. Applying the inductive
hypothesis and the structural rule, we have �HGL,V ((¬(∀x)ϕ)∨
(¬(ϕ′)x:=t)∨α0∨· · ·∨αn−1) for some α0, . . . , αn−1 in ΛL,V (Γ⇒
Γ′) . By Rule R∀,n, we have

�HGL,V ((¬(∀x)ϕ) ∨ α0 ∨ · · · ∨ αn−1),

where {(¬(∀x)ϕ), α0, . . . , αn−1} ⊆ ΛL,V (κ).
The remaining rules are left to the reader.

(50) Let L be a first-order language and V be an L-suitable set of
variables. Prove that if ϕ ∈ FORML(V) is logically valid, then
�HGLc,V ϕ.
Solution: Since ϕ is logically valid, the (L, V) sequent ⇒ ϕ
is valid, so has an F seq,cons

Lc,V -proof tree by Theorem 5.5.20. By
Supplement 49, we have

�HGLc,V (ϕ ∨ · · · ∨ ϕ︸ ︷︷ ︸
n≥1

).

If n > 1, by the structural rule, we obtain �HGLc,V ϕ.

First-Order Natural Deduction

(51) Let L be a first-order language and ϕ,ψ be two L-formulas such
that the variable x does not occur free in ψ.

1112 Logical Foundations of Computer Science — Volume 2

((∀x)ϕ ∨ (¬(∀x)ϕ))

((∀x)ϕ ∨ ψ)
5

((∀x)ϕ ∨ ψ)

(∀x)ϕ
5

((∀x)ϕ ∨ ψ)
4

((∀x)ϕ ∨ ψ)

ψ
3

ψ ψ
3

(ϕ ∨ ψ)(∃x)(¬ϕ)
2

(∀x)ϕ

ϕ
1

(¬(∃x)(¬ϕ))
2

(¬ϕ)
1

(¬ϕ)
4

(∀x)(ϕ ∨ ψ) ϕ
3

(¬(∀x)ϕ)
5

(∃x)(¬ϕ)

R∃I

R¬E

R∀I

R¬E

R∨E

R∨
R∃E

R∨Ir

R∨E

R∀E

R¬E

Fig. 5.48. Natural Deduction Tree Showing (∀x)(ϕ ∨ ψ) •fondL ((∀x)ϕ ∨ ψ).

(a) Show that (∀x)(ϕ ∨ ψ) •�fondL ((∀x)ϕ ∨ ψ).
(b) Show that (∃x)(ϕ ∨ ψ) •�fondL ((∃x)ϕ ∨ ψ).

Solution: The required tree for Part (a) is given in Figure 5.48.
Note that we make use of the natural deduction tree for ((∀x)ϕ∨
(¬(∀x)ϕ)) obtained in Example 5.6.6. We leave the construction
of the tree for Part (b) to the reader.

(52) Let L be a first-order language, α0, . . . , αn−1 be L-formulas (for
n ≥ 1) and let � be such that 0 ≤ � ≤ n − 1. Prove that

First-Order Logic–Formal Systems 1113

α

(α0 ∧ · · · ∧ α)

(α0 ∧ · · · ∧ αn−2)

(α0 ∧ · · · ∧ αn−1)

R∧Er

R∧El

R∧El

...

Fig. 5.49. Natural deduction tree to prove that (α0 ∧ · · · ∧ αn−1)
•fondL αi.

(t0 = t0)

α = (t0 = t0)

Fig. 5.50. Natural deduction tree for (t0 = t0).

there is an effective construction of an L-natural deduction tree
T = (T,M) with UNC(T) = {(α0∧· · ·∧αn−1)} and T(λ) = α�.
Solution: The desired natural deduction tree is given in
Figure 5.49.

(53) Let L be a first-order language with equality. For each L-
instance α of an L-equality axiom, construct a natural deduc-
tion tree T = (T,M) for L with UNC(T) = ∅ and T(λ) = α,

thus showing that ∅ •�fondL α.
Solution: If α is an instance (t0 = t0) of the reflexivity axiom,
the natural deduction tree is shown in Figure 5.50.
To prove the instance ((t0 = t1) → (t1 = t0)) of the symmetry
axiom, we use the natural deduction tree from Figure 5.51.
The instance (((t0 = t1) ∧ (t1 = t2)) → (t0 = t2)) of the
transitivity axiom is proven by the natural deduction tree from
Figure 5.52.
An instance of the function compatibility axiom for the function
symbol f is proven as shown in Figure 5.53.

1114 Logical Foundations of Computer Science — Volume 2

Fig. 5.51. Natural deduction tree for ((t0 = t1) → (t1 = t0)).

Fig. 5.52. Proof in natural deduction of an instance of the transitivity axiom of
equality.

A relation symbol compatibility instance for a relation symbol
R is proven by the first-order natural deduction tree shown in
Figure 5.54.

(54) Let L be a first-order language. Give a constructive proof show-
ing that for any L-formulas α and β and for any set of L-
formulas Γ, if Γ

•�fondL α, then Γ ∪ {((¬α) ∨ β)} •�fondL β.
Solution: Let T = (T,M) be an L-natural deduction tree with
UNC(T) ⊆ Γ and T(λ) = α. Then, we obtain an L-natural

First-Order Logic–Formal Systems 1115

(t0 = tn) (tn−1 = t2n−1)· · ·
Rf

α0
1

α0
1

α1

(f(t0, . . . , tn−1) == f(tn, . . . , t2n−1))

R→,I

Fig. 5.53. First-order natural deduction tree for an instance of the function
compatibility axiom for the function symbol f .

deduction tree T ′ = (T′,M ′) with UNC(T ′) ⊆ Γ∪{((¬α)∨ β)}
and T′(λ) = β as shown in Figure 5.55.

(55) Let L be a first-order language, α be an instance of an equality
axiom for L and β be an L-formula. Prove that there is an
effective construction of a first-order natural deduction tree T =
(T,M) such that UNC(T) = {((¬α) ∨ β)} and T(λ) = β.
Hint. Use Supplements 53 and 54.

(56) Let T0, . . . ,Tn−1 be marked FL
fond-deduction trees, where L is

a first-order language, θ be an L-formula, and r be a node of
Ti. Show that for T = (T0, . . . ,Tn−1; θ), we have UNC(T[ir]) =
UNC((Ti)[r]).
Hint. Use Exercise 94 of Chapter 1.

(57) Let L be a first-order language, T ,T ′ be marked FL
fond-

deduction trees, and r be a node of T . Prove that

UNC(T [r → T ′]) ⊆ UNC(T) ∪ UNC(T ′).

(58) Let L be a first-order language, T be a marked FL
fond-deduction

tree, r be a node of T , and let ϕ be an L-formula. Prove that

UNC((Lϕ(T))[r]) = UNC(T[r])− {ϕ}.

(59) Let L be a first-order language and let T = (T,M) and T ′ =
(T′,M ′) be two natural deduction trees of L and r be a node of

1116 Logical Foundations of Computer Science — Volume 2

(t0 = tn)

(t0 = tn)

(tn = t0)

(tn−1 = t2n−1)

(tn−1 = t2n−1)

(t2n−1 = tn−1)

α0
2

α0
2

α0
2

α0
2

R(t0, . . . , tn−1)1

R(tn, . . . , t2n−1)1

R(tn, . . . , t2n−1) RR

· · ·

· · ·

Rsym Rsym

· · ·

(R(t0, . . . , tn−1) ↔ R(tn, . . . , t2n−1)) 1

α
2

R→I

R↔I R(t0, . . . , tn−1)

· · ·

Fig. 5.54. First-order natural deduction tree that proves an instance of the rela-
tion compatibility axiom for R.

T such that T(r) = T′(λ) and FV(UNC(T ′)) ⊆ FV(UNC(T[r])).
Show that one can effectively find a marked lot T ′′ that is at
least as marked as T ′ such that T [r → T ′′] ∈ FONDTL.
Solution: If r = λ, then T [r → T ′′] = T ′′, so we can take
T ′′ = T ′.
We proceed by induction on T . The basis step follows immedi-
ately from the previous observation.
Suppose that R∀,I was used at the root of T , so T =
(T0; (∀x)ϕ), where T0 = (T0,M0), T0(λ) = ϕ, and x �∈
FV(UNC(T0)). The case when r = λ is covered by the ini-
tial observation, so we may suppose that r = 0r′. We have
T0(r

′) = T(0r′) = T(r) = T′(λ) and UNC((T0)[r′]) = UNC(T[r])

First-Order Logic–Formal Systems 1117

β
1

β

β
1

α (¬α)
1

((¬α) ∨ β)

Γ

R¬E

R∨E

T

Fig. 5.55. First-order natural deduction tree T ′.

by Exercise 56. Therefore,

FV(UNC(T ′)) ⊆ FV(UNC(T[r])) = FV(UNC((T0)[r′])).

By inductive hypothesis, there is a marked lot T ′′ at least as
marked as T ′ such that T0[r′ → T ′′] is in FONDTL. Note that
by Exercise 102 of Chapter 1, we have T [r → T ′′] = (T0[r′ →
T ′′]; (∀x)ϕ).
By Exercise 57, we have

UNC(T0[r′ → T ′′]) ⊆ UNC(T0) ∪ UNC(T ′′)

⊆ UNC(T0) ∪ UNC(T ′).

Therefore,

FV(UNC(T0[r′ → T ′′])) ⊆ FV(UNC(T0)) ∪ FV(UNC(T ′))

⊆ FV(UNC(T0)) ∪ FV(UNC(T[r]))
= FV(UNC(T0)) ∪ FV(UNC((T0)[r′]))
= FV(UNC(T0)).

Thus, x �∈ UNC(T0[r′ → T ′′]), so T [r → T ′′] ∈ FONDTL.
Suppose now that R∃E is used at the root T , so T =
(T0, Lϕ(T1);ψ), where T0 = (T0,M0), T1 = (T1,M1), T0(λ) =
(∃x)ϕ, T1(λ) = ψ, x �∈ FV(ψ), and x �∈ FV(UNC(T1)− {ϕ}). We
assume that r �= λ. We deal with two cases: r = 0r′ and r = 1r′.

1118 Logical Foundations of Computer Science — Volume 2

In the first case, r = 0r′, we have T0(r′) = T(0r′) = T(r) = T′(λ)
and UNC((T0)[r′]) = UNC(T[r]), so

FV(UNC(T ′)) ⊆ FV(UNC(T[r])) = FV(UNC((T0)[r′])).

By inductive hypothesis, there a marked lot T ′′ at least as
marked as T ′ such that T0[r′ → T ′′] ∈ FONDTL. We have
T [r → T ′′] = (T0[r′ → T ′′], Lϕ(T1);ψ). Since T0[r

′ → T′′](λ) =
(∃x)ϕ, we have T [r → T ′′] ∈ FONDTL.
In the second case, r = 1r′, we have T1(r

′) = T(1r′) = T(r) =
T′(λ). Also,

UNC(T[r]) = UNC((Lϕ(T1))[r′])
= UNC((T1)[r′])− {ϕ}

(by Exercise 58)

⊆ UNC((T1)[r′]).

Therefore, FV(UNC(T ′)) ⊆ FV(UNC(T[r])) ⊆
FV(UNC((T1)[r′])).
By inductive hypothesis, there is a marked lot T ′′′ = (T′′′,M ′′′)
at least as marked as T ′ such that T1[r′ → T ′′′] ∈ FONDTL.
Let T ′′ = Lϕ(T ′′′). Then, T ′′ is at least as marked as T ′ and
we have

T [r → T ′′] = (T0, Lϕ(T1)[r′ → T ′′];ψ)

= (T0, Lϕ(T1)[r′ → Lϕ(T ′′′)];ψ)

= (T0, Lϕ(T1[r′ → T ′′′]);ψ)

(by Exercise 101 of Chapter 1).

Additionally T1[r
′ → T′′′](λ) = ψ because T ′′′(λ) = T′(λ), and

UNC(T1[r′ → T ′′′])− {ϕ} ⊆ (UNC(T1) ∪ UNC(T ′′′))− {ϕ}
⊆ (UNC(T1) ∪ UNC(T ′))− {ϕ}
⊆ (UNC(T1)− {ϕ}) ∪ UNC(T ′).

Thus, we have

FV(UNC(T1[r′ → T ′′′])− {ϕ})
⊆ FV(UNC(T1)− {ϕ}) ∪ FV(UNC(T ′)).

First-Order Logic–Formal Systems 1119

We also have

FV(UNC(T ′)) ⊆ FV(UNC(T[r]))
= FV(UNC((Lϕ(T1))[r′]))
= FV(UNC((T1)[r′])− {ϕ})
⊆ FV(UNC(T1)− {ϕ}).

Since x �∈ FV(UNC(T1) − {ϕ}), it follows that x �∈
FV(UNC(T1[r′ → T ′′′])− {ϕ}), so T [r → T ′′] ∈ FONDTL.
We leave the other cases to the reader.

(60) Let L be a first-order language and let T = (T,M) and T ′ =
(T′,M ′) be two natural deduction trees of L and r be a node
of T such that T(r) = T′(λ) and FV(UNC(T ′)) = ∅. Prove that
T [r → T ′] ∈ FONDTL.

(61) Let L be a first-order language and let ϕ,ψ and θ be L-formulas

such that ϕ
•�fondL ψ, ψ

•�fondL θ and FV(ϕ) ⊆ FV(ψ). Prove syn-

tactically that ϕ
•�fondL θ.

Hint. Use Supplement 59.

Let L be a first-order language and let FONDT
′L be the subset of

FONDTL obtained by removing the ¬-introduction rule. For a set
of L-formulas Γ and L-formula ϕ, we write Γ

•�
fond

′L ϕ if there is a

natural deduction tree (T,M) ∈ FONDT
′L such that T(λ) = ϕ and

UNC(T,M) ⊆ Γ.

(62) Show that Supplement 59 remains valid when the natu-
ral deduction trees mentioned in the statement belong to
FONDT

′L.
(63) Let L be a first-order language. Prove that for any set of L-

formulas Γ and L-formula we have Γ
•�fondL ϕ if and only if

Γ
•�
fond

′L ϕ.
Hint. The argument is similar to the one given in Supple-
ment 70 of Chapter 3.

(64) Let L be a first-order language. Give a recursive definition of a
partial function ΩL

0 from the set

FONDTL × Seq(FORML)× FORML × FORML ×N×N

to FONDTL such that ΩL
0 ((T,M), �γ, δ, α,m, i) is defined if

and only if �γ = (γ0, . . . , γm−1), 0 ≤ i ≤ m, UNC(T,M)

1120 Logical Foundations of Computer Science — Volume 2

⊆ {γ0, . . . , γm−1} and T(λ) = δ, and, when defined,
ΩL
0 ((T,M), �γ, δ, α,m, i) = (T′,M ′), where UNC(T′,M ′) ⊆
{(γ0 ∨ α), . . . , (γi−1 ∨ α), γi, . . . , γm−1} and T′(λ) = (δ ∨ α).
Hint. The definition is virtually the same as in Supplement 71
of Chapter 3.

(65) Let L be a first-order language. Using the partial function ΩL
0

from Supplement 64, give a recursive definition of a partial func-
tion ΩL

1 from the set

FONDTL × Seq(FORML)× FORML × Seq(FORML)×N×N

to FONDTL such that ΩL
1 ((T,M),�θ, δ, �α,m, n) is defined if

and only if we have �θ = (θ0, . . . , θm−1), �α = (α0, . . . , αn−1),
UNC(T,M) ⊆ {θ0, . . . , θm−1} and T(λ) = δ, (so that

{θ0, . . . , θm−1}
•�fondL δ). If defined, ΩL

1 ((T,M),�θ, δ, �α,m, n) =
(T′,M ′), where

UNC(T′,M ′) ⊆ {(θ0 ∨ α0 ∨ · · · ∨ αn−1), . . . , (θm−1 ∨ α0 ∨ · · · ∨ αn−1)}

and T′(λ) = (δ∨α0∨· · ·∨αn−1) (which means that {(θ0∨α0∨
· · · ∨ αn−1), . . . , (θm−1 ∨ α0 ∨ · · · ∨ αn−1)}

•�fondL (δ ∨ α0 ∨ · · · ∨
αn−1)).
Hint. The solution is similar to the one of Supplement 72 of
Chapter 3.

(66) Let L be a first-order language, T = (T,M) ∈ FONDTL, c be a
constant symbol in L and y be a variable that does not occur in
T. Define a marked lot T ′ = scy(T) as (T′,M), where T′ = scy ◦ T.
Show that scy(T) is an L-natural deduction tree.
Solution: The argument is by induction on T . If T consists of
one node, the statement obviously holds.
Suppose now that the natural deduction tree T is obtained by
applying the rule R∧I to the trees T0 = (T0,M0) with T(λ) = ϕ
and T1 = (T1,M1) with T1(λ) = ψ and the result holds for T0
and T1. Since T = (T0,T1; (ϕ ∧ ψ)), we have

scy(T) = (scy(T0), scy(T1); (scy(ϕ) ∧ scy(ψ))).

The new natural deduction tree is obtained by applying again
R∧I to the natural deduction trees scy(T0) and scy(T1).
The cases when T is obtained by applying R∧El, R∧Er, R∨Il,
R∨Ir, R→E , R↔El or R↔Er at the root are similar.

First-Order Logic–Formal Systems 1121

If R∀E or R∃I is applied at the root, the argument is still similar
to the previous case, but takes into account Corollary 4.6.55
which applies because y does not occur in T.
Suppose R∀I is used at the root of T , say T(0) = ϕ, T(λ) = (∀x)
ϕ, where x �∈ FV(UNC(T[0])). Recall that scy(T) is T ′ = (T′,M),
so T ′ = (scy(T[0]); (∀x)scy(ϕ)). Then, we have T′(0) = scy(ϕ),
T′(λ) = (∀x)scy(ϕ). Since x occurs in T, y is different from x,
so x �∈ FV(UNC(scy(T[0])). By the inductive hypothesis, T ′ is a
natural deduction tree with R∀I used at the root.
Suppose now that R∨E is used at the root of T , say

T = (T0, Lϕ(T1), Lψ(T2); θ),

where T0(λ) = (ϕ ∨ ψ), T1(λ) = T2(λ) = θ. Then, T′(0) =
(scy(ϕ) ∨ scy(ψ)), T

′(1) = T′(2) = T′(λ) = scy(θ) and

T ′ = (scy(T0), scy(Lϕ(T1)), scy(Lψ(T2)); s
c
y(θ)).

Since y does not occur in T , it does not occur in LEAVES(T1)∪
{ϕ}, so by Supplement 11 of Chapter 1, scy is injective
on this set, which by Supplement 97 of the same chapter
implies scy(Lϕ(T1)) = Lscy(ϕ)(s

c
y(T1)). Similarly, scy(Lψ(T2)) =

Lscy(ψ)(s
c
y(T2)). Thus,

T ′ = (scy(T0), Lscy(ϕ)(s
c
y(T1)), Lscy(ψ)(s

c
y(T2)); scy(θ)),

and by the inductive hypothesis, T ′ is a first-order natural
deduction tree with R∨E applied at the root.
The arguments for R→I , R↔I , R¬I and R¬E are similar. The
argument for R∃E combines techniques from R∀I and R∨E .

(67) Let L be a first-order language, Γ be a set of L-formulas and ϕ

be an L-formula. Prove constructively that if Γ
•�fondLc ϕ, then

Γ
•�fondL ϕ.

Hint. Make repeated use of Supplement 66.

Let ϕ,ψ be two L-formulas. We use the notation ϕ ≡L
nd ψ to mean

that ϕ
•�fondL ψ and ψ

•�fondL ϕ.

(68) Prove that ϕ ≡L
nd ψ if and only if

•�fondL (ϕ↔ ψ).

1122 Logical Foundations of Computer Science — Volume 2

(69) Let L be a first-order language. Suppose that ϕ ≡L
nd ϕ

′ and
ψ ≡L

nd ψ
′. Prove that

(a) (¬ϕ) ≡L
nd (¬ϕ′);

(b) (ϕCψ) ≡L
nd (ϕ

′Cψ) and (ϕCψ) ≡L
nd (ϕCψ

′), where C is one
of the binary connective symbols ∨,∧,→,↔;

(c) (Qx)ϕ ≡L
nd (Qx)ϕ

′, whereQ is one of the quantifier symbols
∀,∃ and x is a variable.

Solution: By symmetry, it suffices to show just one of the two
natural deduction proofs involved in each case.
For Part (a), the proof of (¬ϕ) •�fondL (¬ϕ′) is achieved by the
first-order natural deduction tree shown in Figure 5.56.
For Part (b), we discuss only the case when C is→. Figures 5.57
and 5.58 give natural deduction trees showing that

(ϕ→ ψ)
•�fondL (ϕ′ −→ ψ) and (ϕ→ ψ)

•�fondL (ϕ −→ ψ′).

(ϕ)
1

(¬ϕ)

ϕ

R¬I

ϕ
1

Fig. 5.56. Natural deduction tree for Part (a) of Supplement 69.

(ϕ ψ)
1

ψ

ϕ (ϕ → ψ)

ϕ
1

R→E

R→I

Fig. 5.57. Natural deduction tree for (ϕ→ ψ)
•fondL (ϕ′ −→ ψ).

First-Order Logic–Formal Systems 1123

ψ (¬ψ)
1

ψ
2

(ϕ ψ)
3

ϕ
3 (ϕ → ψ) ψ (¬ψ)

2

ψ
1

R→E R¬I

R¬E

R→I

Fig. 5.58. Natural deduction tree for (ϕ→ ψ)
•fondL (ϕ −→ ψ′).

(∃x)ϕ (∃x)ϕ

R∃E

ϕ

R∃I

ϕ
1

(x)ϕ 1

Fig. 5.59. Natural deduction tree for (∃x)ϕ •fondL (∃x)ϕ′.

(ϕ ψ)1

ψ

ψ

ϕ
1 (ϕ → ψ)

R→E

Fig. 5.60. Incorrect tree for (ϕ→ ψ)
•fondL (ϕ −→ ψ′).

For the last part, we discuss the case when Q is ∃. Figure 5.59
gives a natural deduction tree showing that (∃x)ϕ •�fondL (∃x)ϕ′.

(70) Why is the following tree shown in Figure 5.60 not usable to

prove that (ϕ → ψ)
•�fondL (ϕ −→ ψ′) in the previous supple-

ment?
Solution: Supplement 59 may not apply because we may not
have FV({ϕ, (ϕ→ ψ)}) ⊆ FV(ψ).

1124 Logical Foundations of Computer Science — Volume 2

(71) Let L be a first-order language and α, β be two L-formulas.
Prove that if α ≡L

nd β and the L-formula ψ is obtained from
the L-formula ϕ by replacing an occurrence of α by β, then
ϕ ≡L

nd ψ.
Hint. Use induction on ϕ and Supplement 69.

(72) Let L be a first-order language and ϕ,ψ be two L-formulas
such that ψ is an immediate variant of ϕ. Prove that ϕ ≡L

nd ψ
and show that natural deduction trees establishing this can be
effectively constructed.
Solution: The formula ψ is obtained from the formula ϕ
by replacing an occurrence of a subformula (Qx)α of ϕ by
(Qy)(α)x:=y, where y is substitutable for x in α and does not
occur free in α. If x = y, then ψ = ϕ and the result is imme-
diate, so we assume that x �= y. By Exercise 71, it suffices to
show that (Qx)α ≡L

nd (Qy)(α)x:=y.
Suppose initially that Q is ∀. In Figure 5.61, we show that

(∀x)α •�fondL (∀y)(α)x:=y.

By Corollary 4.3.84, x �∈ FV((α)x:=y) and by Corollary 4.3.78,
x is substitutable for y in (α)x:=y, so by the same argument,

(∀y)(α)x:=y
•�fondL (∀x)((α)x:=y)y:=x = (∀x)α

where the last equality follows from Corollary 4.3.87.
In the case that Q is ∃, in Figure 5.62, we show that

(∃x)α •�fondL (∃y)(α)x:=y.

The argument for the reverse direction is virtually the same as
the argument for ∀.

(y)(α)x:=y (since y FV((x)α))

α x:=y = (α)x:=y (since y is substitutable

for x in α)

(∀x)α

R∀I

R∀E

Fig. 5.61. Natural deduction tree for (∀x)α •fondL (∀y)(α)x:=y.

First-Order Logic–Formal Systems 1125

(∃y)(α)x:=y

(∃y)(α)x:=y

α = ((α)x:=y)y:=x (by Corollary 4.3.87)
= (α)x:=y y:=x (by Corollary 4.3.78)

(∃x)α

R∃E

R∃I

(since x FV((∃y)(α)x:=y) by
Corollary 4.3.84)

Fig. 5.62. Natural deduction tree for (∃x)α •fondL (∃y)(α)x:=y.

(73) Let L be a first-order language and ϕ,ψ be two L-formulas
such that ψ is a variant of ϕ. Prove that ϕ ≡L

nd ψ and show
that a natural deduction tree establishing this can be effectively
constructed.
Solution: By the definition of variant, there is a sequence ϕ =
ϕ0, ϕ1, . . . , ϕn−1 = ψ such that for 0 ≤ i ≤ n − 2, ϕi+1 is an
immediate variant of ϕi, so by Supplement 72, ϕi ≡L

nd ϕi+1. By
Theorem 4.6.22, all formulas ϕi share same free variables, so by
repeated use of Exercise 61, we have ϕ ≡L

nd ψ.

The set of objects and the axioms of the formal system FOND′L

are the same as for FONDL.
The rules for introducing connective symbols remain the same as

the rules of the propositional logic natural deduction formal system
ND′ where propositional logic objects (sets of formulas and formulas)
are replaced by their first-order logic counterparts.

The rules for introducing and eliminating quantifier symbols as
well as the expansion rule in FOND′L are the same as the rules in
FONDL.

1126 Logical Foundations of Computer Science — Volume 2

In addition, if =∈ L, then we include in FOND′L the following
equality rules:

(Γ, t0 = t1)

(Γ, t1 = t0)

symmetry
of equality

(Γ, t0 = t1), (Γ, t1 = t2)

(Γ, t0 = t2)

transitivity
of equality

(Γ, t0 = tn), . . . , (Γ, tn−1 = t2n−1)

(Γ, f(t0, . . . , tn−1) = f(tn, . . . , t2n−1))
f -congru-
ence rule

(Γ, t0 = tn), . . . , (Γ, tn−1 = t2n−1), (Γ, R(t0, . . . , tn−1))

(Γ, R(tn, . . . , t2n−1)
R-congru-
ence rule

for every function symbol f of positive arity and every relation sym-
bol R of positive arity.

(74) Prove that the theorems of FOND′L and FONDL are the
same.

Transformations Between Formal Systems for
First-Order Logic

(75) Formulate and prove an analogue of Theorem 5.7.11 for HF ′L.
Hint. Follow the devlopments in Section 5.7.1 with HFL
replaced by HF ′L. The analogue of Lemma 5.7.3 follows by an
argument similar to that used in Supplement 76 of Chapter 3.

The formal system HGL,V AR will be denoted by HGL.

(76) Let L be a first-order language and let ϕ be an L-formula. Prove

that if �HGL ϕ, then
•�fondL ϕ.

Solution: The argument consists of showing that we can effec-
tively convert an HGL-proof tree T for ϕ into a natural deduc-

tion tree T̂ = (T̂, M̂) for ϕ. We proceed by induction on T.
For the basis step, T is the one-node tree labelled with ϕ =
(θ ∨ (¬θ)), for some L-formula θ. By Example 5.6.6,

•�fondL ϕ.
For the inductive steps when a rule mimics a propositional logic
rule, we proceed as in Supplement 78 of Chapter 3.

First-Order Logic–Formal Systems 1127

Suppose that R∀,p,(nondegenerate) is used at the root of T, say

T(0) = ((ϕ)x:=c ∨ α0 ∨ · · · ∨ αn−1)

T(λ) = ((∀x)ϕ ∨ α0 ∨ · · · ∨ αn−1),

where c does not occur in ϕ or in α0, . . . , αn−1. Let T̂0 be
the result of applying the algorithm to the subtree T[0], so

UNC(T̂0) = ∅ and T̂0(λ) = ((ϕ)x:=c ∨ α0 ∨ · · · ∨ αn−1). Let
y be a variable that does not occur in T̂0 and is different from
x and let T ′ = scy(T̂0). By Supplement 66, T ′ ∈ FONDTL with
UNC(T ′) = ∅ and

T′(λ) = scy(((ϕ)x:=c ∨ α0 ∨ · · · ∨ αn−1))

= (scy((ϕ)x:=c) ∨ α0 ∨ · · · ∨ αn−1)

(since c does not occur in α0, . . . , αn−1)

= ((ϕ)x:=y ∨ α0 ∨ · · · ∨ αn−1)

(as we argued in Theorem 5.2.22).

Since y �∈ FV(UNC(T ′)), we can apply R∀I to obtain

Tn = (T ′; (∀y)((ϕ)x:=y ∨ α0 ∨ · · · ∨ αn−1))

in FONDTL with UNC(Tn) = ∅ and Tn(λ) = (∀y)((ϕ)x:=y ∨
α0 ∨ · · · ∨ αn−1).
Suppose we have Tk where 0 < k ≤ n in FONDTL with
UNC(Tk) = ∅ and Tk(λ) = ((∀y)((ϕ)x:=y ∨ α0 ∨ · · · ∨ αk−1) ∨
αk∨· · ·∨αn−1). Since y does not occur in T̂0, it follows that y �∈
FV(αk−1), so by Supplement 51 there is a tree T ′

k−1 ∈ FONDTL
such that UNC(T ′

k−1) = {(∀y)((ϕ)x:=y ∨ α0 ∨ · · · ∨ αk−1)} and
T′k−1(λ) = ((∀y)((ϕ)x:=y ∨ α0 ∨ · · · ∨ αk−2) ∨ αk−1).

Using the function ΩL
1 of Exercise 65, we define

T ′′
k−1 = ΩL

1 (T ′
k−1, ((∀y)((ϕ)x:=y ∨ α0 ∨ · · · ∨ αk−1)),

((∀y)((ϕ)x:=y ∨ α0 ∨ · · · ∨ αk−2) ∨ αk−1),

(αk, . . . , αn−1), 1, n − k),

so

UNC(T ′′
k−1) ⊆ {((∀y)((ϕ)x:=y∨α0∨· · ·∨αk−1)∨αk∨· · ·∨αn−1)},

1128 Logical Foundations of Computer Science — Volume 2

(x)ϕ

((ϕ)x:=y)y:=x = ϕ

(∀y)(ϕ)x:=y

R∀E

R∀I

Fig. 5.63. Natural deduction tree T ∗.

and

T′′k−1(λ) = ((∀y)((ϕ)x:=y ∨α0 ∨ · · · ∨αk−2)∨αk−1 ∨ · · · ∨αn−1).

Obtain Tk−1 from T ′′
k−1 by replacing each uncancelled leaf of

T ′′
k−1 with Tk. By Exercise 60, Tk−1 ∈ FONDTL and we have
UNC(Tk−1) = ∅ and Tk−1(λ) = ((∀y)((ϕ)x:=y∨α0∨· · ·∨αk−2)∨
αk−1 ∨ · · · ∨ αn−1).
The end result of this process is a natural deduction tree T0
with UNC(T0) = ∅ and T0(λ) = ((∀y)(ϕ)x:=y ∨α0 ∨ · · · ∨αn−1).
Since y does not occur in ϕ, x is substitutable for y in (ϕ)x:=y
and ((ϕ)x:=y)y:=x = ϕ by Corollaries 4.3.78 and 4.3.87. Thus,
we have the natural deduction tree T ∗ given in Figure 5.63.
Define T ∗∗ as

ΩL
1 (T ∗, ((∀y)(ϕ)x:=y), (∀x)ϕ, (α0, . . . , αn−1), 1, n).

Then, T ∗∗ ∈ FONDTL, UNC(T ∗∗) ⊆ {((∀y)(ϕ)x:=y ∨ α0 ∨
· · ·αn−1)} and T∗∗(λ) = ((∀x)ϕ ∨ α0 ∨ · · · ∨ αn−1). Finally, we

obtain T̂ from T ∗∗ by replacing all uncancelled leaves by T0.
Then, UNC(T̂) = ∅ and T̂(λ) = ((∀x)ϕ ∨ α0 ∨ · · · ∨ αn−1).
Suppose that R∀,p,(degenerate) is used at the root of T, say

T(0) = (ϕ ∨ α0 ∨ · · · ∨ αn−1)

T(λ) = ((∀x)ϕ ∨ α0 ∨ · · · ∨ αn−1),

where x �∈ FV(ϕ).

Let T̂0 be the result of applying the algorithm to T[0], so

UNC(T̂0) = ∅ and T̂0(λ) = (ϕ ∨ α0 ∨ · · · ∨ αn−1).

Since x �∈ FV(ϕ), we have T ∗ ∈ FONDTL shown in Figure 5.64.

First-Order Logic–Formal Systems 1129

(x)ϕ

ϕ

R∀I

Fig. 5.64. Natural deduction tree T ∗.

Let T ∗∗ = ΩL
1 (T ∗, (ϕ), (∀x)ϕ, (α0, . . . , αn−1), 1, n). Then, it fol-

lows that we have T ∗∗ ∈ FONDTL,

UNC(T ∗∗) ⊆ {(ϕ ∨ α0 ∨ · · · ∨ αn−1)},

and

T∗∗(λ) = ((∀x)ϕ ∨ α0 ∨ · · · ∨ αn−1).

The natural deduction tree T̂ is obtained by replacing each
uncancelled leaf of T ∗∗ with T̂0.
Suppose that R∀,n was used at the root of T , say

T(0) = ((¬(∀x)ϕ) ∨ (¬(ϕ′)x:=t) ∨ α0 ∨ · · · ∨ αn−1)

T(λ) = ((¬(∀x)ϕ) ∨ α0 ∨ · · · ∨ αn−1),

where ϕ′ is a variant of ϕ such that t is substitutable for x in ϕ.
Let T̂0 be the result of applying the algorithm recursively to
T[0], so UNC(T̂0) = ∅ and

T̂0(λ) = ((¬(∀x)ϕ) ∨ (¬(ϕ′)x:=t) ∨ α0 ∨ · · · ∨ αn−1).

Let T ′ be the natural deduction tree shown in Figure 5.65.
By definition, we have 〈ϕ〉x:=t = (variant(ϕ, x, t))x:=t. Both
formulas variant(ϕ, x, t) and ϕ′ are variants of ϕ such that
t is substitutable for x in the variant. By Supplement 83
of Chapter 4, the formulas 〈ϕ〉x:=t and (ϕ′)x:=t are variants
of each other, so the formulas ((¬(∀x)ϕ) ∨ (¬〈ϕ〉x:=t)) and
((¬(∀x)ϕ) ∨ (¬(ϕ′)x:=t)) are variants of each other. By Sup-
plement 73, we can find T ′′ ∈ FONDTL with UNC(T ′′) =
((¬(∀x)ϕ) ∨ (¬(ϕ′)x:=t)) and T′′(λ) = ((¬(∀x)ϕ) ∨ (¬〈ϕ〉x:=t)).
Let T ′′′ be the natural deduction tree T ′[0 → T ′′], so
UNC(T ′′′) = {((¬(∀x)ϕ)∨ (¬(ϕ′)x:=t))} and T′′(λ) = (¬(∀x)ϕ).

1130 Logical Foundations of Computer Science — Volume 2

((¬(∀x)ϕ) ∨ (ϕ x:=t)) (¬(∀x)ϕ)
2

(∀x)ϕ
1

(¬(∀x)ϕ)
2

ϕ x:=t (ϕ x:=t)2

(¬(∀x)ϕ)
1

R∨E

R¬I

R∀E

Fig. 5.65. Natural deduction tree T ′.

Let

T ∗ = ΩL
1 (T ′′′, (((¬(∀x)ϕ) ∨ (¬(ϕ′)x:=t))),

(¬(∀x)ϕ), (α0, . . . , αn−1), 1, n).

Then T̂ is obtained from T ∗ by replacing all uncancelled leaves
by T̂0.
If one of the rules involving the existential quantifier is used
at the root of T, then the arguments are similar to the
ones for the universal quantifier: the treatments of the rules
R∃,p, R∃,n(nondegenerate) and R∃,n,(degenerate) match the treat-
ments of R∀,n, R∀,p(nondegenerate) and R∀,p,(degenerate). However,
in the case of R∃,n,(nondegenerate), the role of the natural deduc-
tion tree T ∗ is played by the tree shown in Figure 5.66.
Suppose that L contains the equality symbol = and the rule
R= was used at the root of T, say

T(0) = ((¬α) ∨ α0 ∨ · · · ∨ αn−1),

T(λ) = (α0 ∨ · · · ∨ αn−1),

where n > 0 and α ∈ INSTL,V (Eq=,L). Apply the algorithm

recursively to T[0] to obtain T̂0 ∈ FONDTL with UNC(T̂0) = ∅
and T̂0(λ) = ((¬α)∨α0 ∨ · · · ∨αn−1). By Exercise 55, there is a
natural deduction tree T ′ with UNC(T ′) ⊆ {((¬α) ∨ α0)} and

First-Order Logic–Formal Systems 1131

((x)ϕ)
1

((¬(ϕ)x:=y))y:=x

= (¬((ϕ)x:=y)y:=x)
= (¬ϕ)

ϕ

(∃x)ϕ
1

(∀y)(¬(ϕ)x:=y)

R∃E

R¬I

R∀E

Fig. 5.66. Natural deduction tree T ∗.

T′(λ) = α0. Let

T ∗ = ΩL
1 (T ′, (((¬α) ∨ α0)), α0, (α1, . . . , αn−1), 1, n − 1),

so UNC(T ∗) = {((¬α) ∨ α0 ∨ · · · ∨ αn−1)} and T∗(λ) = α0 ∨
· · ·∨αn−1. Obtain T̂ from T ∗ by replacing all uncancelled leaves

with T̂0.

The goal of the next supplement is to give an alternative proof of
completeness of natural deduction using the previous result, com-
pleteness of the formal system HGL and the Compactness Theorem
for first-order logic.Note that usually we prove compactness starting
from completeness. Here we offer an inverse approach which initially
produces a somewhat weaker result because it involves the extension
Lc of the first-order language L.

(77) Let L be a first-order language, ϕ be an L-formula and Γ be a
set of L-formulas. Use Supplements 50 and 76, and the Com-
pactness Theorem to prove that if Γ |= ϕ, then Γ

•�fondLc ϕ.
Solution: Suppose that Γ |= ϕ. Then, by compactness, there
is a finite subset Γ0 = {ψ0, . . . , ψn−1} of Γ with Γ0 |= ϕ.
By repeated use of Part (3) of Theorem 4.5.52, we have |=
(ψ0 → (ψ1 → · · · → (ψn−1 → ϕ) · · ·). By Supplement 50,
�HGLc (ψ0 → (ψ1 → · · · → (ψn−1 → ϕ) · · ·). By Supple-

ment 76,
•�fondLc (ψ0 → (ψ1 → · · · → (ψn−1 → ϕ) · · ·). Thus,

we have the natural deduction tree T shown in Figure 5.67 with
UNC(T) = {ψ0, . . . , ψn−1} and T(λ) = ϕ. Thus, Γ

•�fondLc ϕ.

1132 Logical Foundations of Computer Science — Volume 2

ϕ

ψn−1

ψ1

ψ0

(ψn−1 → ϕ)

R→E

...

R→E

(ψ1 → · · · → (ψn−1 → ϕ) · · ·)

(ψ0 → (ψ1 → · · · → (ψn−1 → ϕ) · · ·)

Fig. 5.67. Natural deduction tree T .

(78) Let L be a first-order language, ϕ be an L-formula and Γ be a
set of L-formulas. Use Supplements 77 and 67, to prove that if
Γ |= ϕ, then Γ

•�fondL ϕ.

First-Order Resolution

(79) Let C be a clause, s be a renaming of C, s′ be a variable-pure
bijective extension of s to VAR, and L be a subset of s(C) that
consists of positive literals (negative literals). If z is an mgu of
L (L), prove that z ∗s′ is an mgu of {� ∈ C | s(�) ∈ L} (an mgu

of {� ∈ C | s(�) ∈ L}).
Solution: We discuss only the case when L consists of posi-
tive literals. The case for negative literals is similar. Let H =
{� ∈ C | s(�) ∈ L}. Since s′(H) = L, we have |z ∗ s′(H)| =
|z(s′(H))| = |z(L)| = 1, so z ∗ s′ is a unifier of H. Now let z1 be
an arbitrary unifier of H. Observe that z1 ∗ (s′)−1(L) = z1(H),
so z1 ∗ (s′)−1 is a unifier of L. This implies that there is a sub-
stitution z2 with z1 ∗ (s′)−1 = z2 ∗ z, which in turn implies that
z1 = (z2 ∗ z) ∗ s′ = z2 ∗ (z ∗ s′). Thus, z ∗ s′ is an mgu of H.

(80) Let P,R be two relation symbols of the same arity and C be a
set of clauses that does not contain �. Prove that:

(a) sPR(ΓC) = ΓsPR(C).
(b) sPR(C) = CsPR(ΓC).

Solution: We leave the first part to the reader. For the second
part, note that CsPR(ΓC) = CΓ

sP
R

(C) by the first part. Applying

Equality (5.4), we obtain the second equality.

First-Order Logic–Formal Systems 1133

(81) Let P,P ′ be two unary relation symbols and let C0 and C1 be
the clauses C0 = {P (x), P ′(y)}, C1 = {(¬P (x)), P ′(z)}, where
x, y, z are distinct variables. Show that the clause R = {P ′(z)}
is a weak most general resolvent of C0 and C1 and a resolvent of
the same clauses, but not a most general resolvent of C0 and C1.

Let L be a first-order language and C be an L-clause. An L-clause
C ′ is an L-factor of C if there is a subset D of C with at least two
elements such that one of the following cases occurs:

(1) D consists of positive literals and there is a L-unifier s of D
such that C ′ = s(C);

(2) D consists of negative literals and there is a L-unifier s of D
such that C ′ = s(c).

C ′ is an mgu-factor of C if s is an mgu of D or D, for the previous
two cases, respectively. We will say that C ′ is obtained from C by
factoring (mgu factoring), respectively.

Recall that binary resolution with arbitrary unifiers was shown
to be complete in Theorem 5.8.77, while binary resolution with most
general unifiers is not complete as we saw in Example 5.8.74. Next we
are going to show that binary resolution supplemented by factoring
is complete when most general unifiers are applied. Supplement 82
is a step in this direction.

(82) Let L be a first-order language and let C0, C1 be two L-clauses.
If R is a full mgu resolvent of C0 and C1, then R can be
obtained from C0, C1 by binary mgu resolution and mgu fac-
toring.
Solution: By Definition 5.8.36, there are a standardization
(s0, s1) of (C0, C1), a nonempty set of positive literals L ⊆
s̄0(C0), a nonempty set of negative literals K ⊆ s̄1(C1) and a
most general unifier s of L ∪K such that

R = s̄ ((s̄0(C0)− L) ∪ (s̄1(C1)−K)) .

By Theorem 5.8.39, we can assume that s is finite.
If both L and K consist of one literal, then R is a binary mgu
resolvent of C0, C1. Suppose that |L|, |K| > 1. Since L ∪K is
unifiable, both L and K are unifiable. Let z0 be an mgu of L
and z1 be an mgu of K such that they are finite and intro-
duce no new variables when unifying L and K respectively.

1134 Logical Foundations of Computer Science — Volume 2

(Note that such mgus exist because the unification algorithm
produces mgus having these properties.)
We claim that z0(L) ∪ z1(K) is unifiable. Since s is a unifier
of L, we have s = z′0 ∗ z0, for some z′0; similarly, since s is a
unifier of K, we have s = z′1 ∗z1, for some z′1. Since V(s0(C0))∩
V(s1(C1)) = ∅, we can define

z(x) =

⎧⎪⎪⎨
⎪⎪⎩
z′0(x) if x ∈ V(s0(C0))

z′1(x) if x ∈ V(s1(C1))

x otherwise.

Then,

|z(z0(L) ∪ z1(K))| = |z ∗ z0(L) ∪ z ∗ z1(K)|
= |z′0 ∗ z0(L) ∪ z′1 ∗ z1(K)| = |s(L) ∪ s(K)|
= |s(L ∪K)| = 1.

Let ẑ be a finite mgu of z0(L) ∪ z1(K) and let

z̃(x) =

⎧⎪⎪⎨
⎪⎪⎩
z0(x) if x ∈ V(s0(C0))

z1(x) if x ∈ V(s1(C1))

x otherwise.

By Supplement 84 of Chapter 1, ŝ = ẑ ∗ z̃ is a most general
unifier of L ∪K and ŝ is finite. By Theorem 1.6.6, ŝ ≡ s. By
Part (f) of Supplement 68 of Chapter 1, we have s = s̃ ∗ ŝ, for
some variable-pure finite bijection s̃, and s̃ ∗ ẑ is also an mgu
of z0(L) ∪ z1(K).

Let L̂ = s−1
0 (L) and K̂ = s−1

1 (K). Since |L|, |K| > 1,

we have |L̂|, |K̂| > 1. Also, let s′0, s′1 be variable-pure bijec-
tive extensions of s0, s1, respectively, to VAR. By Supple-
ment 79, z0 ∗ s′0 is an mgu of L̂ and z1 ∗ s′1 is an mgu of

K̂. Therefore, z0 ∗ s0(C0) = z0 ∗ s′0(C0) is an mgu-factor of
C0 and z1 ∗ s1(C1) = z1 ∗ s′1(C1) is an mgu-factor of C1. We
have, z0(L) ⊆ z0 ∗ s0(C0), z1(K) ⊆ z1 ∗ s1(C1), |z0(L)| = 1
and |z1(K)| = 1. Since s̃ ∗ ẑ is an mgu of z0(L) ∪ z1(K),
R′ = s̃ ∗ ẑ(z0 ∗ s0(C0) − z0(L)) ∪ s̃ ∗ ẑ(z1 ∗ s1(C1) − z1(K))

First-Order Logic–Formal Systems 1135

is a binary mgu resolvent of z0 ∗ s0(C0) and z1 ∗ s1(C1). We
claim the R′ = R.
We will prove both R′ ⊆ R and R ⊆ R′. For the first inclusion,
suppose that �′ ∈ R′. Without loss of generality, we have �′ =
s̃ ∗ ẑ(z0 ∗ s0(�0)) for some �0 ∈ C0 with z0 ∗ s0(�0) �∈ z0(L),
which implies that s0(�0) �∈ L. Since z0 and z̃ agree on the
variables of s0(C0), the literal �′ can be written as

�′ = s̃ ∗ ẑ(z̃ ∗ s0(�0))
= s̃(ẑ ∗ z̃(s0(�0)))
= s̃(ŝ(s0(�0)))

= s̃ ∗ ŝ(s0(�0))
= s(s0(�0)).

Since s0(�0) �∈ L, it follows that �′ ∈ s(s0(C0)− L) ⊆ R.
For the second inclusion, let � ∈ R. Again, without loss of
generality, we can write � = s(s0(�0)), where �0 ∈ C0 and
s0(�0) �∈ L. Then,

� = s(s0(�0))

= s̃ ∗ ŝ(s0(�0))
= s̃ ∗ ẑ ∗ z̃(s0(�0))
= s̃ ∗ ẑ(z̃(s0(�0)))
= s̃ ∗ ẑ(z0(s0(�0)))

(since z̃ agrees with z0 on V(s0(C0))

= s̃ ∗ ẑ(z0 ∗ s0(�0)).
Now, if z0 ∗ s0(�0) ∈ z0(L), we would have

s(s0(�0)) = z′0 ∗ z0(s0(�0))
= z′0(z0 ∗ s0(�0))
∈ z′0(z0(L))
= z′0 ∗ z0(L) = s(L).

Since s0(�0) �∈ L, this would imply

s(s0(C0)− L) ∩ s(L) �= ∅

1136 Logical Foundations of Computer Science — Volume 2

which contradicts the assumption that R is a full resol-
vent. Thus, z0 ∗ s0(�0) ∈ z0 ∗ s0(C0) − z0(L) and � ∈
s̃ ∗ ẑ(z0 ∗ s0(C0)− z0(L)) ⊆ R.
We leave to the reader the cases when only one of the sets L,K
consists of more than one literal.

(83) Let L be a first-order language and let C0, C1 be two L-
clauses. If R is a full mgu resolvent of C0 and C1, then R
can be obtained from C0, C1 by full binary mgu resolution and
mgu factoring. (Note that this statement generalizes Supple-
ment 82.)
Solution: We use the same notation as in Supplement 82. We
need to prove that s̃ ∗ ẑ(z0 ∗ s0(C0)− z0(L))∩ s̃ ∗ ẑ(z0(L)) = ∅
and a similar equality for z1, s1 and K.
Suppose that � ∈ s̃∗ ẑ(z0 ∗s0(C0)−z0(L))∩ s̃∗ ẑ(z0(L)). Then,
� = s̃ ∗ ẑ(�0) for some �0 ∈ z0 ∗ s0(C0)− z0(L) and � = s̃ ∗ ẑ(�1)
for some �1 ∈ z0(L). We have

�0 = z0(�
′
0) for some �′0 ∈ s0(C0)− L,

and

�1 = z0(�
′
1) for some �′1 ∈ L.

Then, we have:

s(�′0) = s̃ ∗ ŝ(�′0) = s̃ ∗ ẑ ∗ z̃(�′0)
= s̃ ∗ ẑ ∗ z0(�′0) = s̃ ∗ ẑ(�0)
= s̃ ∗ ẑ(�1) = s̃ ∗ ẑ ∗ z0(�′1)
= s̃ ∗ ẑ ∗ z̃(�′1) = s̃ ∗ ŝ(�′1) = s(�′1).

This contradicts the assumption that R is a full resolvent of
C0 and C1.

Let C be a set of L-clauses, where L is a first-order language. Then
we define

fResmgu2,fact L(C) = C ∪ {R | R is a full most general binary resolvent

of two clauses in C} ∪ {F | F is an mgu factor

of a clause in C}.
We also define (fResmgu2,fact L(C))n and (fResmgu2,fact L(C))∗ in the usual
way.

First-Order Logic–Formal Systems 1137

(84) Let L be a first-order language without equality and C be a set
of L-clauses. Prove that C has no model if and only if

� ∈ (fResmgu2,fact L)
∗(C).

Hint. Use Theorems 5.8.23, 5.8.40, 5.8.70 and Supplement 83.
(85) Let L be a first-order language with equality and C be a set of

L-clauses. Prove that C has no model if and only if

� ∈ (fResmgu2,fact L)
∗(C ∪ C=,L).

Hint. Use Theorems 5.8.23 and 5.8.40 to prove that if

� ∈ (fResmgu2,fact L)
∗(C ∪ C=,L),

then C ∪ C=,L has no model, and therefore C has no model. Use
Theorem 5.10.1 and Supplement 83 to show the converse.

Let L be a first-order language that contains a constant symbol.
An LH-interpretation (a partial LH-interpretation) is a (partial)
function from GAFORML to {T,F}. (Note that the letter H is
suggested by the relationship between these interpretations and Her-
brand structures.)

If Γ ⊆ GAFORML, a partial LH-interpretation with domain Γ is
called an H-interpretation on Γ.

If I is a partial LH-interpretation, define ΣI to be the set of all
closed, quantifier-free L-formulas ϕ such that every atomic formula
that appears in ϕ is in Dom(I). We extend I to ΣI by

I((¬ψ)) = f¬(I(ψ)),

I((ψ0Cψ1)) = fC(I(ψ0), I(ψ1)),

where C is a binary connective symbol.
If ϕ ∈ ΣI and I(ϕ) = T, we write I |= ϕ; if Γ ⊆ ΣI , we write

I |= Γ if I |= ϕ for all ϕ ∈ Γ.
If K is ground L-clause and every atomic formula appearing in

K belongs to Dom(I), define

I(K) =

{
T if I(�) = T for some � ∈ K,
F if I(�) = F for all � ∈ K.

If I(K) = T, we write I |= K. If K is a set of ground L-clauses such
that every atomic formula that appears in K is in Dom(I), then we
write I |= K if I |= K for every K ∈ K.

1138 Logical Foundations of Computer Science — Volume 2

(86) Let L be a first-order language that contains at least one con-
stant symbol and let I be a partial LH-interpretation.
(a) Prove that if Γ ⊆ ΣI is a set of formulas in conjunctive

normal form, then I |= Γ if and only if I |= CΓ.
(b) Prove that if C is a set of ground L-clauses such that � �∈ C

and every atomic formula that appears in any clause in C
is in Dom(I), then I |= C if and only if I |= ΓC .

Let L be a first-order language that does not contain = but contains
at least one constant symbol.

The set of ground atomic L-formulas GAFORML = {α0, α1, . . .}
may be finite or infinite depending on L. The L-semantic tree TsemL
is the lot with domain {0, 1}∗ if GAFORML is infinite, or {0, 1}≤n
if |GAFORML| = n and for q ∈ Dom(TsemL), TsemL (q) = Iq, where
Iq : {α0, . . . , α|q|−1} −→ {T,F} is given by

Iq(αi) =

{
T if q(i) = 1,

F if q(i) = 0.

If r is a prefix of q ∈ Dom(TsemL), then Ir ⊆ Iq, so if B is a branch of
TsemL , define

IB =
⋃
q∈B

Iq.

For a branch B of TsemL , define

SB = {α ∈ GAFORML | IB(α) = T},

and let AB be the L-Herbrand structure STRL(SB) (using the nota-
tion from Definition 4.10.5).

(87) Let L be a first-order language without equality which con-
tains a constant symbol. Prove that an L-structure A is an
L-Herbrand structure if and only if there is a branch B of TsemL
such that A = AB.

(88) Let L be a first-order language without equality which contains
a constant symbol. Prove that if B is a branch of TsemL then
for every ground L-clause C, we have AB |= C if and only if
IB(C) = T.

First-Order Logic–Formal Systems 1139

Let L be a first-order language without equality which contains a
constant symbol and let C be a set of ground L-clauses. A node q of
TsemL is a failure node for C if there is a clause C ∈ C with Iq(C) = F.

(89) Let L be a first-order language without equality which contains
a constant symbol. Prove that a set of ground L-clauses C has
an L-Herbrand model if and only if there is a branch B of TsemL
that does not contain a failure node for C.

Let L be a first-order language without equality which contains a
constant symbol and C be a set of ground L-clauses. Define T∗L,C to
be the sublot of TsemL with domain

{q ∈ Dom(TsemL) | no proper prefix of q is a failure node of C}.

(90) Let L be a first-order language without equality which contains
a constant symbol and let C, C′ be two sets of ground L-clauses.
Prove that:

(a) if C ⊆ C′, then T∗L,C′ is a sublot of T∗L,C;
(b) every interior node of T∗L,C has two immediate descendants.

(91) Let L be a first-order language without equality which contains
a constant symbol, C be a set of ground L-clauses and let q be
a node in Dom(TsemL) that is not a failure node for C such that
|q| = k. Prove that:

(a) if q0 is a failure node of C, then C contains a clause C such
that αk ∈ C and Iq(C − {αk}) = F;

(b) if q1 is a failure node of C, then C contains a clause C such
that (¬αk) ∈ C and Iq(C − {(¬αk)}) = F.

(92) Let L be a first-order language without equality which contains
a constant symbol and C be a set of ground L-clauses that has
no L-Herbrand model. Prove that:

(a) T∗L,C is a finite lot;

(b) every leaf of T∗L,C is failure node for C.
Solution: For Part (a), suppose that T∗L,C is infinite. By König’s
Lemma, T∗L,C has an infinite branch B which is also a branch of
TsemL . By the definition of T∗L,C, B does not contain a failure node
for C, so by Exercise 89 C has an L-Herbrand model, which is
a contradiction.

1140 Logical Foundations of Computer Science — Volume 2

For Part (b), suppose that q is a leaf of T∗L,C that is not a failure
node for C. By the definition of T∗L,C, no proper prefix of q is a
failure node for C. If q is not a leaf of TsemL , then q0 and q1 are
nodes of T∗L,C contradicting the assumption that q is a leaf of
T∗L,C. If q is a leaf of TsemL , then the branch of TsemL ending in q
contains no failure node, so by Exercise 89 C has an L-Herbrand
model, which again is a contradiction.

(93) Let L be a first-order language without equality. Prove that if C
is a set of L-clauses that has no model, then � ∈ (fResmgu)∗(C).
Solution: Let L′ = H(L), the Herbrand extension of L. As
shown in the proof of Theorem 5.8.70, GINSTL′(C) has no
model, if � �∈ C, and clearly the same holds if � ∈ C. In partic-
ular no L′-Herbrand model exists for this set, so T∗L′,GINSTL′(C)
is finite by Supplement 92.
We proceed by induction on n = |T∗L′,GINSTL′(C)| to prove that

� ∈ (fResmgu)∗(C).
The basis step, n = 1 is immediate because � ∈ GINSTL′(C),
so � ∈ C.
For the inductive step, suppose that n > 1 and the result holds
for all n′ < n. Let q be a node of depth 1 of T∗L′,GINSTL′(C) and
|q| = k. Then by Supplement 92, the leaves q0 and q1 are both
failure nodes for C and q is not, so there are clauses C0, C1 ∈
C and ground L′-substitutions s0, s1 such that αk ∈ s0(C0),
(¬αk) ∈ s1(C1) and

Iq((s0(C0)− {αk}) ∪ (s1(C1)− {(¬αk)})) = F.

Note that q has two immediate descendants by Exercise 90.
The existence of the clauses and substitutions mentioned above
follows from Exercise 91.
Let R′ = (s0(C0) − {αk}) ∪ (s1(C1) − {(¬αk)}). Then,
R′ is a resolvent of s0(C0) and s1(C1) and Iq(R

′) = F.
By Lemma 5.8.67, there is a full mgu resolvent R of C0 and
C1 and a ground L′-substitution s such that R′ = s(R). Since
GINSTL′(C) ⊆ GINSTL′(C∪{R}), by Exercise 90 T∗L′,C∪{R} is a
sublot of T∗L′,C. SinceR

′ = s(R), q is a failure node for C∪{R}, so
q0, q1 �∈ Dom(T∗L′,GINSTL′(C∪{R})) and |T∗L′,GINSTL′(C∪{R})| < n.

By inductive hypothesis,

� ∈ (fResmgu)∗(C ∪ {R}) = (fResmgu)∗(C).

First-Order Logic–Formal Systems 1141

Variations of First-Order Resolution

(94) Let C be a set of L-clauses and let P and R be two rela-
tion symbols of equal arity such that P ∈ L and R �∈ L.
Define the first-order language L′ = (L − {P}) ∪ {R}. Prove
that if (C0, . . . , Cn−1) is a positive (negative, linear, input)
L-resolution (most general L-resolution, full L-resolution,
full most general L-resolution) proof of C over C, then
(sPR(C0), . . . , s

P
R(Cn−1)) is the same type of proof of sPR(C) over

sPR(C) with L replaced by L′.
Hint. Use the proof of Theorem 5.8.50.

(95) Let C be a set of L-clauses and let P and R be two relation
symbols of equal arity such that P ∈ L and R �∈ L. Let A be
an L-structure and assume that if R is = then PA = {(a, a) |
a ∈ |A|}. Define the first-order language L′ = (L − {P}) ∪
{R}. Prove that if (C0, . . . , Cn−1) is an A-semantic L-resolution
(most general L-resolution, full L-resolution, full most general
L-resolution) proof of C over C, then (sPR(C0), . . . , s

P
R(Cn−1)) is

an A(P→R)-semantic resolution proof of the same type of sPR(C)

over sPR(C) with L replaced by L′.
Hint. Use the proof of Theorem 5.8.50 and a clausal version of
Theorem 4.6.1.

First-Order Resolution with Equality
Here we extend the Soundness and Completeness of Resolution

for Languages with Equality (Theorem 5.10.1) to include positive,
negative, and linear resolution proofs.

(96) Let L be a first-order language with equality and let C be a
set of L-clauses. Prove that if R is one of Res,Resmgu, fRes or
fResmgu, then C has no model if and only if the membership
� ∈ R∗

L(C ∪C=,L) can be established using a positive (negative,
linear) resolution proof.
Solution: We may assume that � �∈ C, for if � ∈ C, the con-
clusion follows immediately.
Let R be a binary relation symbol not in L and let L′ be the
language (L − {=}) ∪ {R}.
The chain of equivalent statements 1 to 6 established in the
proof of Theorem 5.10.1 remains the same. Statement 6 is equiv-
alent to

1142 Logical Foundations of Computer Science — Volume 2

7′. there exists a positive (negative, linear) resolution proof
showing � ∈ R∗

L′(s=R(C) ∪ CMEq†
R,L′

),

by soundness and by Theorem 5.9.6. In turn, statement 7′
is equivalent to

8′. there exists a positive (negative, linear) resolution proof
showing that � ∈ R∗

L(C ∪ C=,L),
by Exercise 94 and the Equalities (5.8).

(97) Let L be a first-order language with equality and let C be a set
of Horn L-clauses. Prove that if R is one of Res,Resmgu, fRes
or fResmgu, then C has no model if and only if the membership
� ∈ R∗

L(C ∪ C=,L) can be established using an input resolution
proof.
Hint. Apply the previous proof noting that s=R(C) ∪ CMEq†

R,L′
consists of Horn clauses.

(98) Let L be a first-order language with equality, C be a set of L-
clauses, and A be an L-structure. Prove that if R is one of
Res,Resmgu, fRes or fResmgu, then C has no model if and only
if the membership � ∈ R∗

L(C ∪ C=,L) can be established using
an A-semantic resolution proof.
Solution: Begin by observing that (A=→R)R→= = A. The
statement

7′′ there exists an A(=→R)-semantic resolution proof showing
� ∈ R∗

L′(s=R(C) ∪ CMEq†
R,L′

),

is equivalent to Statement 6 of Theorem 5.10.1 by soundness
and by Theorem 5.9.6. In turn, statement 7′′ is equivalent to

8′′ there exists an A-semantic resolution proof showing that � ∈
R∗

L(C ∪ C=,L),
by Exercise 95, the initial observation, and the Equalities (5.8).

Let L be a language with equality and C be an L-clause. An L-clause
D is obtained from C by L-irreflexivity removal if there is a nonempty
set L ⊆ C of inequalities, L = {(¬(ti = ui)) | 0 ≤ i ≤ n − 1} and an
L-unifier s of {ti | 0 ≤ i ≤ n − 1} ∪ {ui | 0 ≤ i ≤ n − 1} such that
D = s(C−L). If s(C−L)∩s(L) = ∅, we say that D is obtained from
C by full L-irreflexivity removal, and if s is a most general unifier of

First-Order Logic–Formal Systems 1143

{ti | 0 ≤ i ≤ n − 1} ∪ {ui | 0 ≤ i ≤ n − 1}, then we say that D is
obtained from C by most general irreflexivity removal.

(99) Let L be a first-order language with equality and C be an L-
clause. If D is obtained from C by L-irreflexivity removal and
A is an L-structure, then prove that A |= C implies A |= D.
Solution: Let D = s(C−L), where L is as above. Since A |=
C, by Theorem 5.8.23, we have A |= s(C). Let σ ∈ ASSIGNA.
Since A |= s(C), for some �′ ∈ C, (A, σ) |= � where � = s(�′).
If �′ ∈ L, then � = s(�′) has the form (¬(t = t)) and (A, σ) |= �
is impossible, so �′ ∈ C − L and � = s(�′) ∈ s(C − L) = D.
Thus, (C, σ) |= D. Since this is true for all σ ∈ ASSIGNA, it
follows that A |= D.

(100) Let L be a first-order language with equality, C0 be a ground
L-clause and D be obtained from C0 by L-inequality removal.
Suppose that C ′

0 is an L-clause and s0 is a ground L-
substitution with s0(C

′
0) = C0. Prove that there is an L′-

clause D′ obtained from C ′
0 by full, most general irreflexivitiy

removal and a ground L-substitution s such that s(D′) = D.
Solution: Since C0 is a ground clause, there is a ground L-
term t with (¬(t = t)) ∈ C0 and D = C0 − {(¬(t = t))}.
Let L = s−1

0 (¬(t = t)) ∩ C ′
0. Then, L is a nonempty set of

L-inequalities L = {(¬(ti = ui)) | 0 ≤ i ≤ n − 1} for some
n > 0, and s0 is an L-unifier of

{ti | 0 ≤ i ≤ n− 1} ∪ {ui | 0 ≤ i ≤ n− 1}.
Let sm0 be a most general unifier of this set. There is an L-
substitution s with s0 = s∗sm0 . LetD′ = sm0 (C ′

0−L). Then,D′
is obtained from C ′

0 by most general irreflexivity removal. If
sm0 (�0) = sm0 (�1) with �0 ∈ C ′

0 − L and �1 ∈ L, then we have

s0(�0) = s ∗ sm0 (�0) = s ∗ sm0 (�1) = s0(�1) = (¬(t = t)),

contradicting the fact that �0 �∈ L. Thus, D′ is obtained by
full, most general irreflexivity removal from C ′

0. Finally, we
have

s(D′) = s(sm0 (C ′
0 − L)) = s0(C

′
0 − L)

= s0(C
′
0)− s0(L) = C0 − {(¬(t = t))} = D,

where the third equality is implied by (5.7).

1144 Logical Foundations of Computer Science — Volume 2

Let L be a first-order language with equality and let C be an L-clause.
An L-clause D is obtained from C by equality reversal if there is an
equality (t = u) ∈ C and D = (C − {(t = u)}) ∪ {(u = t)}.
(101) Let L be a first-order language with equality and C be an L-

clause. If D is obtained from C by equality reversal and A is
an L-structure, prove that A |= C implies A |= D.

(102) Let L be a first-order language with equality, C0 be a ground L-
clause and let D be obtained from C by equality reversal. Sup-
pose that C ′

0 is an L-clause and s0 is a ground L-substitution
with s0(C

′
0) = C0. Prove that there is clause D

′ obtained from
C ′
0 by one or more applications of equality reversal such that

s0(D
′) = D.

Solution: Let D = (C0 − {(t = u)}) ∪ {(u = t)} and L =
s−1
0 (t = u)∩C ′

0. Then, L is a set of one or more equalities and
D′ = (C ′

0−L)∪ {(u′ = t′) | (t′ = u′) ∈ L} is obtained from C ′
0

by one or more equality reversals. We have

s0(D
′) = (s0(C

′
0)− s0(L)) ∪ s0({(u′ = t′) | (t′ = u′) ∈ L})

= (C0 − {(t = u)}) ∪ {(u = t)} = D.

Let L be a first-order language with equality and let C be a set of
L-clauses. Define

fRespar-ir-ermgu(C)
= fResparmgu(C) ∪ {D | D is obtained by full, most general

irreflexivity removal from some clause C ∈ C} ∪ {D | D is

obtained by equality reversal from some clause C ∈ C}.

Define (fRespar-ir-ermgu)n(C) and (fRespar-ir-ermgu)∗(C) as usual,
that is similarly to (fResparmgu)n(C) and (fResparmgu)∗(C).
(103) Let L be a first-order language with equality. Define a formal

system FRESPAR− IRERL
mgu and prove that for a set of

L-clauses C, we have:

(fRespar-ir-ermgu)∗(C) = Thm(fRespar-ir-ermguC).

(104) Let L be a first-order language with equality and let C be a
set of L-clauses. Prove that if D ∈ (fRespar-ir-ermgu)∗(C) and
A |= C for some L-structure A, then A |= D.

First-Order Logic–Formal Systems 1145

Furthermore, prove that if � ∈ (fRespar-ir-ermgu)∗(C), then C
has no model.

(105) Let L be a first-order language with equality and let C be a
set of L-clauses. Prove that if C has no model, then

� ∈ (fRespar-ir-ermgu)∗(C).

Hint. Examine the proofs of Theorems 5.10.64 and 5.10.65
and verify that the uses of the clause {(x = x)} can be replaced
by applications of the full, most general irreflexivity removal
and equality reversal.

(106) Let L be a first-order language and C0, C
′
0, C1, C

′
1 be ground

L-clauses with C0 ⊆ C ′
0 and C1 ⊆ C ′

1. Prove that:

(a) if R is a resolvent of C0 and C1, then there is a resolvent
R′ of C ′

0 and C ′
1 such that R ⊆ R′ and R′ − R ⊆ (C ′

0 −
C0) ∪ (C ′

1 − C1);
(b) if L is a language with equality and P is a paramodulant

of C0 and C1, then there is a paramodulant P ′ of C ′
0 and

C ′
1 such that P ⊆ P ′ and P ′−P ⊆ (C ′

0−C0)∪ (C ′
1−C1).

(107) Let L be a first-order language with equality and C be a set of
ground L-clauses. We say that C is RP-refutation consistent if
� �∈ Respar∗L(C).
Note that since Respar∗L(C) = (fResparmgu)∗(C), when C is a
set of ground clauses, RP-refutation consistency is language
independent.
Prove that:

(a) RP-refutation consistency is a property of finite character
of the subsets of the set of ground L-clauses GCLAUSESL;

(b) if C is a maximal RP-refutation consistent subet of
GCLAUSESL and C ∈ Respar∗L(C), then C ∈ C (i.e.,
Respar∗L(C) = C).

(108) Let L be a first-order language with equality and let C be
a maximal RP-refutation consistent subset of GCLAUSESL.
Prove that for every C ∈ C, there is a literal � ∈ C such that
{�} ∈ C.
Solution: Suppose for a contradiction that there is a clause
C ∈ C such that for no �′ ∈ C do we have {�′} ∈ C. Let C
be such a clause of minimal size. Then, no proper subset of C

1146 Logical Foundations of Computer Science — Volume 2

can belong to C. Since C is RP-refutation consistent, C �= �,
so there is a literal � ∈ C and by the previous assumption,
{�} �∈ C. Thus, C ⊂ C ∪{�} and by the maximality of C, C ∪{�}
is not RP-refution consistent, so � ∈ Respar∗L(C ∪ {�}). Thus,
there is a sequence (C0, . . . , Cn−1) which is an L-resolution
paramodulation proof over C ∪ {�} of �. We define recursively
a resolution paramodulation proof (C ′

0, . . . , C
′
n−1) over C with

these two properties:

• Ci ⊆ C ′
i,

• C ′
i − Ci ⊆ C − {�}

for 0 ≤ i ≤ n− 1.
Suppose that 0 ≤ k ≤ n − 1 and Ck′ is defined for 0 ≤ k′ ≤
k with the desired properties specified above. Define C ′

k as
follows:

• If Ck ∈ C, define C ′
k = Ck. In this case, the two properties

clearly hold.
• If Ck = {�}, define C ′

k = C. Again, the two properties
hold.

• If neither of the previous two cases holds, there are i, j <
k such that Ck is either a resolvent or a paramodulant
of Ci and Cj . By Exercise 106, there is a resolvent or a
paramodulant C ′

k of C ′
i and C ′

j with Ck ⊆ C ′
k and C ′

k −
Ck ⊆ (C ′

i − Ci) ∪ (C ′
j − Cj) ⊆ C − {�}.

Since C ′
n−1 ∈ Respar∗L(C), by Exercise 107, C ′

n−1 ∈ C. Since
Cn−1 = �, C ′

n−1 ⊆ C − {�}, C ′
n−1 is a proper subset of C,

which is a contradiction. Thus, C does not exist.
(109) Let L be a first-order language with equality that contains

at least one constant symbol and let C be a maximal RP-
refutation consistent subset of GCLAUSESL that contains
{{(t = t)} | t ∈ GTERML}. Prove that C has an L-E-model.
Solution: Define an LH-interpretation I by

I(α) =

{
T if {α} ∈ C,
F if {α} �∈ C,

for α ∈ GAFORML. If C ∈ C, then by Supplement 108, there
is a literal � such that {�} ∈ C. If � is positive, then I(�) = T, so

First-Order Logic–Formal Systems 1147

I |= C. If � is negative, then since C is RP-refutation consistent
{�̄} �∈ C, so I(�̄) = F, hence I(�) = T and I |= C. Thus, I |= C.
E1 holds because {(t = t)} ∈ C for all t ∈ GTERML. To
see that E3 holds, let α ∈ GAFORML, (t, i) ∈ OCCt(α), and
I(t = u) = T, that is, (t = u) ∈ C. If I(α) = T, then {α} ∈ C
and paramodulating (t = u) into α, we obtain {α[(t, i) →
u]} ∈ ResparL(C) = C, so I(α[(t, i) → u]) = T = I(α). Sim-
ilarly, if I(α[(t, i) → u]) = T, that is {α[(t, i) → u]} ∈ C,
we paramodulate (t = u) into {α[(t, i) → u]} in reverse,
replacing u with t, and obtain {α} ∈ ResparL(C) = C, so
I(α) = T = I(α[(t, i) → u]). Thus, by Theorem 5.10.30, I is
an L-E-interpretation and hence an L-E-model of C.

(110) Let L be a first-order language with equality that contains at
least one constant symbol and let C ⊆ GCLAUSESL be such
that C has no L-E-model and {{(t = t)} | t ∈ GTERML} ⊆ C.
Prove that � ∈ Respar∗L(C).
Solution: To prove the contrapositive, suppose that � �∈
Respar∗L(C), that is, C is RP-refutation consistent. By The-
orem 1.3.3, there is a maximal RP-refutation consistent sub-
set C′ of GCLAUSESL with C ⊆ C′ and thus {{(t = t)} | t ∈
GTERML} ⊆ C′. By Supplement 109, C′ has an L-E-model,
so C has an L-E-model.

Let L be a first-order language with equality. Define

FEQL = {{(a = a)} | a is a constant symbol of L}
∪{{(f(x0, . . . , xn−1) = f(x0, . . . , xn−1))}
| f is a function symbol of L with positive arity n}.

(111) Let L be a first-order language with equality. Prove that {{(t =
t)} | t ∈ GTERML} ⊆ (fResparmgu)∗(FEQL).
Solution: The argument is by induction on t. If t is a con-
stant symbol, then {(t = t)} ∈ FEQL ⊆ (fResparmgu)∗(FEQL).
Suppose that t = f(t0, . . . , tn−1) and by the inductive hypoth-
esis, {(ti = ti)} ∈ (fResparmgu)∗(FEQL) for 0 ≤ i ≤
n − 1. We have {(f(x0, . . . , xn−1) = f(x0, . . . , xn−1))} ∈
FEQL and {(t0 = t0)} ∈ (fResparmgu)∗(FEQL). Map-
ping x0 to t0 is an mgu of the set {x0, t}. Paramodu-
lating (t0 = t0) into (f(x0, . . . xn−1) = f(x0, . . . , xn−1)),

1148 Logical Foundations of Computer Science — Volume 2

we obtain {(f(t0, x1, . . . , xn−1) = f(t0, x1, . . . , xn−1))} as
a full, most general paramodulant of the two clauses. We
now paramodulate (t1 = t1) into {(f(t0, x1, . . . , xn−1) =
f(t0, x1, . . . , xn−1))} and continue until we obtain {(t = t)} ∈
(fResparmgu)∗(FEQL).

(112) Let L be a first-order language with equality and let C be a
set of L-clauses. Prove that GINSTL(C) ⊆ (fResparmgu)∗(C ∪
FEQL).
Solution: Let C ∈ C and let C ′ be a ground instance of
C, say C ′ = s

x0···xn−1
t0···tn−1

(C), where each xi occurs in some

literal in C. By Supplement 111, we have {(ti = ti)} ∈
(fResparmgu)∗(C ∪ FEQL) for 0 ≤ i ≤ n − 1. If n = 0, then
C ′ = C ∈ (fResparmgu)∗(C ∪ FEQL) . If n > 0, then we
paramodulate (t0 = t0) into some occurrence of x0 in a lit-
eral of C, obtaining sx0t0 (C) as a full, mgu paramodulant of C
and {(t0 = t0)}. Continuing in the same manner, we obtain
C ′ ∈ (fResparmgu)∗(C ∪ FEQL).

(113) Let L be a first-order language with equality that contains at
least one constant symbol and let C be a set of L-clauses that
has no model. Then, � ∈ (fResparmgu)∗(C ∪ FEQL).
Solution: Let D = GINSTL(C) ∪ {{(t = t)} | t ∈
GTERML}. By the previous two supplements, we have D ⊆
(fResparmgu)∗(C ∪ FEQL) and hence

Respar∗L(D)= (fResparmgu)∗(D) ⊆ (fResparmgu)∗(C ∪FEQL).
(5.13)

By Theorem 5.10.35, GINSTL(C) has no L-E-model, so D has
no L-E-model. By Supplement 110, � ∈ Respar∗L(D). This fact
combined with (5.13) leads to the desired conclusion.

5.12 Bibliographical Comments

As mentioned in Chapter 3, the initial reference for tableaux is
E. W. Beth [4] continued by the work of Raymond Smullyan [31].

For sequents see Gentzen in [16] and for natural deduction, the
initial reference is [17] where the cut rule and cut elimination were
also introduced.

First-Order Logic–Formal Systems 1149

First-order resolution was introduced by Robinson in [27]. Hyper-
resolution was also introduced by Robinson in [26]. Paramodulation
appears first in [2] where they proved the completeness result of Sup-
plement 113. The alternative proof presented in this supplement is
due to [28]. The other completeness result of Theorem 5.10.66 was
first proven by Brand as outlined in [6]. Our proof of this stronger
completeness result follows Peterson’s approach in [24].

The results of Supplement 28 were obtained in [5].

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

Chapter 6

Program Verification

6.1 Introduction

In this chapter we present an introduction to the area of program
verification, an area of intersection between Computer Science and
Logic that originates in the works of Floyd [15]1 and Hoare [20].2

Computer Science and Logic have a common tradition of rigorous
and separate presentation of syntax and semantics of the realms they
investigate. This chapter presents a class of programs and studies its
properties in this spirit.

1Robert W. Floyd (1936–2001) was born on June 8, 1936 in New York. Floyd
obtained two bachelor’s degrees from the University of Chicago, in 1953 and
1958, and taught at Carnegie-Mellon and Stanford Universities. Floyd pioneered
systematic methods of program verification and had a strong influence on Hoare’s
work. Floyd won the 1978 ACM Turing Award, the highest honor in Computer
Science “for having a clear influence on methodologies for the creation of efficient
and reliable software, and for helping to found the following important subfields of
computer science: the theory of parsing, the semantics of programming languages,
automatic program verification, automatic program synthesis, and analysis of
algorithms”. He died on September 25, 2001.
2Sir Charles Anthony Richard Hoare was born on January 11, 1934. C.A.R.
Hoare is Professor Emeritus at Oxford University, the winner of the 1980 Turing
Award of the Association for Computing Machinery, and is currently a Princi-
pal Researcher with the Microsoft Research Center in the United Kingdom. His
main contributions are in the area of structured programming, formal methods
for program verification and communicating sequential processes.

1151

1152 Logical Foundations of Computer Science — Volume 2

We define inductively a class of programs known as L-programs
and then we proceed to redefine the same class of programs using a
definition that satisfies the unique readability condition. This later
definition is essential because in the subsequent text we use numerous
inductive definitions of functions on programs.

Next, in Section 6.3, we introduce the semantics of L-programs
by using the notion of A-state. The semantics of a L-program p
is defined with the help of two functions SprA (p) and Sat prA (p) that
are partial transformations on the set of states STATESA. In the
same section we prove two technically important results: the state
agreement theorem and the time agreement theorem for programs.

The use of L-programs to compute functions over L-structures is
discussed in Section 6.4. This section has mostly a technical character
and is a prelude for the rest of the chapter.

Section 6.5 introduces partial and total correctness Hoare triples,
which are composite objects formed by two special formulas called
assertions and an L-program. The intuitive notions of partial and
total correctness in an L-structure are captured by the satisfaction
of a triple by a pair (A, σ), where A is an L-structure and σ is an
A-state. We argue that total correctness is not a first-order property,
that is, total correctness depends not only on the theory of a struc-
ture, but on the structure itself. In contrast, partial correctness is
shown to be a first-order property. This is proven using the notion of
weakest liberal precondition which was introduced by Dijkstra3 [12].

Section 6.6 is dedicated to the study of the sets of partial and
total correctness triples that are valid in an L-structure A and we
show that the set of all partial correctness triples that are valid in
arithmetic is not semidecidable and, thus, it is undecidable. In this

3Edsger Wybe Dijkstra (1930–2002) was born on May 11, 1930 in Rotterdam,
Netherlands. Dijkstra studied theoretical physics at the University of Leiden and
obtained his Ph.D. in Mathematics from the University of Amsterdam in 1959. He
worked as a programmer at the Mathematisch Centrum in Amsterdam between
1952 and 1962, was a professor of Mathematics at the Eindhoven University
of Technology and taught at the University of Texas at Austin between 1984
and 1999. Dijkstra was the 1972 recipient of the ACM Turing Award. He high-
lighted the deep links between mathematical logic and program development, and
made fundamental contributions in algorithms and operating systems. He was the
author of the first ALGOL compiler. Dijkstra died on August 6, 2002 in Neuen,
the Netherlands.

Program Verification 1153

section we introduce the notion of expressive structure and we prove
that for these structures the decidability of their theories implies
the decidability of their partial correctness theories. We show the
expressiveness of finite structures and, also, the expressiveness of
arithmetic. In the last part of this section we prove that the Hoare
partial correctness of Pressburger Arithmetic is not semidecidable.

The last section of the chapter presents a formal system for Hoare
triples. After arguing that the introduction of a complete formal sys-
tem that would prove Hoare triples is not possible we introduce a
formal system that is sound and, in a limited sense, complete for
expressive structures. Special notations for proofs in the formal sys-
tem referred to as annotated programs are also introduced and we
demonstrate the role of loop invariants in constructing annotated
programs.

6.2 The WHILEL Programming Language — Syntax

Let L be a first-order language. The syntactic components of the
WHILEL programming language that we are about to introduce are
at the core of many programming languages. We assume that VAR is
partitioned into two infinite sets PVAR and SVAR, referred to as the
set of program variables and the set of specification variables, respec-
tively. Further, we assume that we have a fixed bijection between
PVAR and SVAR; if y ∈ PVAR, we denote its image under this
bijection as y�.

We use several program symbols that we denote (using multi-letter
words for readability) as

while do endwhile if then else endif ; ←

The set of basic symbols consists of the program variables, pro-
gram symbols and punctuation signs.

Definition 6.2.1. Let L be a first-order language. The programming
language WHILEL consists of the set of sequences of basic symbols and
symbols of L defined recursively as follows:

(1) A sequence of the form v←t, where v is a program variable and t
is an (L,PVAR)-term belongs to WHILEL and is called an assign-
ment statement of L.

1154 Logical Foundations of Computer Science — Volume 2

(2) If β is a quantifier-free (L,PVAR)-formula and p ∈ WHILEL, then

while β do p endwhile

is in WHILEL.
(3) If β is a quantifier-free (L,PVAR)-formula, and p, p′ ∈ WHILEL,

then

if β then p else p′ endif

belongs to WHILEL.
(4) If p, p′ ∈ WHILEL, then p; p′ belongs to WHILEL.

We refer to members of WHILEL as L-programs.
If p0 is the program while β do p endwhile, then we refer to

p as the body of p0.
If a string of symbols is an L-program for some first-order lan-

guage L, then we say that string is a program. We denote the set of
all programs as WHILE.

Theorem 6.2.2. WHILE equals the set W given by the following
inductive definition:

(1) A sequence of the form v←t, where v is a program variable and
t is a term of first-order logic with V(t) ⊆ PVAR belongs to W .

(2) If β is a quantifier-free formula of first-order logic whose vari-
ables are included in PVAR and p ∈W, then

while β do p endwhile

is in W .
(3) If β is a quantifier-free formula whose variables belong to PVAR,

and p, p′ ∈W, then

if β then p else p′ endif

belongs to W .
(4) If p, p′ ∈W , then p; p′ belongs to W .

Proof. The proof is similar to previous results concerning terms
and formulas. (See Theorem 4.3.6 and Theorem 4.3.15.) �

Program Verification 1155

Note that Definition 6.2.1 is not uniquely readable. For example,
if p, p′, p′′ are L-programs, then we can build the program p; p′; p′′
either by concatenating program p; p′ with p′′ or by concatenating the
program p with the program p′; p′′. This lack of unique readability
can create difficulties for functions defined inductively on WHILEL.

An equivalent definition that has the unique readability property
involves the simultaneous introduction of the set of atomic programs
and the set of programs. This definition is given next:

Definition 6.2.3. Let L be a first-order language. We define induc-
tively the sets WHILEatL and WHILE′L of sequences of basic symbols and
symbols of L as follows:

(1) Any assignment statement of the form v←t, where v is a program
variable and t is an (L,PVAR)-term belongs to WHILEatL .

(2) If β is a quantifier-free (L,PVAR)-formula and p is in WHILE′L,
then

while β do p endwhile

belongs to WHILEatL .
(3) If β is a quantifier-free (L,PVAR)-formula, and p, p′ ∈ WHILE′L,

then

if β then p else p′ endif

belongs to WHILEatL .
(4) Every sequence in WHILEatL belongs to WHILE′L.
(5) If p ∈ WHILEatL and p′ ∈ WHILE′L, then p; p′ belongs to WHILE′L.

A member of WHILEatL is called an atomic program of L. or atomic
L-program

To prove the equivalence of Definitions 6.2.1 and 6.2.3 we prove
the following technical statement:

Lemma 6.2.4. Let L be a first-order language. If p, p′ ∈ WHILE′L,
then p; p′ ∈ WHILE′L.

Proof. The argument is by induction on p. For the basis step sup-
pose that p is an atomic program of L. Then, p; p′ belongs to WHILE′L
by Rule 5 of Definition 6.2.3.

1156 Logical Foundations of Computer Science — Volume 2

For the inductive step let p be a sequence in WHILE′L that has the
form p = p0; p1, where p0 ∈ WHILEatL and p1 is a sequence in WHILE′L
such that the above statement holds. We have p; p′ = p0; p1; p

′. By the
inductive hypothesis, p1; p

′ ∈ WHILE′L, so p0; p1; p
′ belongs to WHILE′L

by Rule 5 of Definition 6.2.3. �

Theorem 6.2.5. We have WHILEL = WHILE′L for every first-order
language L.

Proof. It is easy to prove by simultaneous induction on the defini-
tions of the sets WHILEatL and WHILE′L that they are both included
in WHILEL. Thus, we need to prove only the reverse inclusion,
WHILEL ⊆ WHILE′L.

Let p be a sequence in WHILEL. The argument is by induction
on p.

If p is an assignment statement of L, then p is an atomic program
of L by Rule 1 of Definition 6.2.3 and therefore it belongs to WHILE′L
by Rule 4 of the same definition.

If p was put in WHILEL by Rule 2 of Definition 6.2.1, then

p = while β do p̂ endwhile,

where p̂ ∈ WHILE′L by the inductive hypothesis. Then, p ∈ WHILEatL
by Rule 2 of Definition 6.2.3, so it belongs to WHILE′L by Rule 4 of
the same definition.

The case when p is put in WHILEL by Rule 3 of Definition 6.2.1 is
similar and is left to the reader.

If p belongs to WHILEL by Rule 4 of Definition 6.2.1, then
p = p′; p′′, where p′, p′′ ∈ WHILE′L by the inductive hypothesis. By
Lemma 6.2.4 we have p ∈ WHILE′L. �

To prepare for the proof of the unique readability of Defini-
tion 6.2.3, we need the following definition.

Definition 6.2.6. Let L be a first-order language and let p ∈
WHILEL. If (s, i) is an occurrence of a symbol s in p, then the level of
(s, i) in p is

levp(s, i) = |q|while − |q|endwhile + |q|if − |q|endif,

where q = pref(p, i).

Program Verification 1157

Lemma 6.2.7. Let L be a first-order language. For every program
p ∈ WHILEL, we have |p|while = |p|endwhile and |p|if = |p|then =
|p|else = |p|endif.

Proof. The argument is by induction based on Definition 6.2.1 and
is left to the reader. �

Lemma 6.2.8. Let L be a first-order language and p be a L-program.
For any occurrence of a semicolon in p, the level of the occurrence
is nonnegative. Further, if p is an atomic program, the level of any
occurrence of a semicolon in p is positive.

Proof. We prove simultaneously both statements of the lemma by
induction based on Definition 6.2.3. The basis step is vacuous because
there are no semicolons in an assignment statement.

Now suppose that p0 is while β do p endwhile, where the level
of every occurrence of a semicolon in p is nonnegative. Then, clearly
the level of the corresponding occurrence in p0 is larger by one than
the level in p, so is positive. Since the only semicolon occurrences in
p0 are the ones in p, we obtain the desired statement for the atomic
program p0.

Let now p0 be if β then p else p′ endif, where every occur-
rence of a semicolon in p or p′ has a nonnegative level. There are
two types of occurrences of semicolons in p0: those corresponding to
occurrences in p and those corresponding to occurrences in p′. In the
first case, the level in p0 is larger by one than the level in p and so
it is positive. In the second case, the same property holds because of
Lemma 6.2.7 applied to p.

For programs that enter WHILEL by Rule 4 of Definition 6.2.3,
the positivity of the levels of occurrences of semicolons in atomic
programs implies the nonnegativity of the levels of occurrences of
semicolons in the same program considered as a member of WHILEL.

Finally, let p0 = p; p′, where p is an atomic program such that
every occurrence of a semicolon has positive level and p′ is a pro-
gram such that every occurrence of a semicolon has nonnegative
level. The occurrences of semicolons in p0 which are the same as
occurrences of semicolons in p have the same level in both programs
and therefore have positive levels. The occurrence (; , |p|) has level 0
by Lemma 6.2.7. The occurrences of semicolons in p0 that correspond
to occurrences in p′ have the same level in both programs because of

1158 Logical Foundations of Computer Science — Volume 2

Lemma 6.2.7, which allows us to conclude that any occurrence of a
semicolon in p0 has nonnegative level. �

Lemma 6.2.9. Let L be a first-order language and let p ∈ WHILEL.
The level of any occurrence of else in p is positive.

Proof. The argument is by induction on Definition 6.2.1 and it is
left to the reader. �

Theorem 6.2.10. Definition 6.2.3 meets the unique readability con-
dition.

Proof. We need to prove:

• Every atomic program is put in the set WHILEatL by only one of
Rules 1-3 of the definition.

• If an atomic program enters WHILEatL by either Rule 2 or 3, then p,
or p and p′, respectively, are uniquely determined.

• Every program is put in the set WHILEL by only one of Rules 4
and 5 of the definition.

• If a program enters WHILEL by Rule 5, then the atomic program p
and the program p′ are uniquely determined.

Note that in principle a uniqueness condition has to be proved for
Rule 4. However, this condition is trivially satisfied.

If p0 is an atomic program, its first symbol (a variable, while, or
if) determines the rule that was applied.

If p0 = while β do p endwhile, then p is the subsequence of p0
located between the first do and the last endwhile. (In addition,
note that β is also uniquely determined as the subsequence between
the first while and the first do.)

If p0 = if β then p else p′ endif, then p0 contains exactly one
occurrence of else at level 1. Indeed, note that any occurrence of
else within p or p′ is at least at level 2 due to Lemma 6.2.9 and to
the presence of the initial if symbol. Therefore, p is the subsequence
of p0 located between the first then and the level one occurrence
of else and p′ is the subsequence of p0 located between the level
one occurrence of else and the last occurrence of endif.

Let p1 be a program. If p1 was put in WHILEL by Rule 4, then
by Lemma 6.2.8, p1 contains no occurrence of a semicolon at level 0.
Otherwise, that is if p1 was put in by Rule 5, then it contains an

Program Verification 1159

occurrence of a semicolon at level 0 by Lemma 6.2.7. Thus, p1 is put
in WHILEL by only one rule.

If p1 = p; p′, where p ∈ WHILEatL and p′ ∈ WHILEL, then p is the
prefix of p1 which ends just before the first level zero occurrence of
a semicolon, while p′ is the suffix of p1 that follows this occurrence.

�
For a program p of L, we denote by PVAR(p) the set of program

variables that occur in p.

Example 6.2.11. Let L = {+,−}, where +,− are binary function
symbols. We write terms +(t0, t1) as t0 + t1 and similarly for −. The
sequence p, given by

x←x+ y; y←x− y; x←x− y
is a program in WHILEL. This can be justified by observing that
x←x + y, y←x − y, and x←x − y are assignment statements and
therefore are programs and then by a double application of the last
rule of Definition 6.2.1, p ∈ WHILEL. To increase readability, we will
write this program as

x←x+ y;

y←x− y;
x←x− y

and we will continue to apply this method of displaying programs
from now on. Note that PVAR(p) = {x, y}.

Example 6.2.12. Let L = {0,−,=, >}, where 0 is a constant sym-
bol, − is a binary function symbol, and > is a binary relation symbol.
The following sequence is in WHILEL:

while (x �= 0 ∧ y �= 0)
do if x > y

then x←x− y
else y←y − x

endif
endwhile;
if x = 0

then z←y
else z←x

endif

1160 Logical Foundations of Computer Science — Volume 2

We wrote, as usual, x− y in place of −(x, y).

Example 6.2.13. Let

L = {0, 1, 2,mod,div, ∗,=}

be a first-order language, where 0, 1, 2 are constant symbols, and
mod,div, ∗ are binary function symbols. The following sequence is in
WHILEL:

z←1;
while (y �= 0)

do d←y mod 2;
y←y div 2
if d �= 0

then z←z ∗ x
else z←z

endif
x←x ∗ x

endwhile

Theorem 6.2.14. Let L,L′ be two first-order languages such that
L ⊆ L′. Then, WHILEL ⊆ WHILEL′.

Proof. An easy induction argument on programs in WHILEL shows
that every such program is a program of WHILEL′ . �

The definition of WHILE given previously (in Theorem 6.2.2) does
meet the unique readability condition. Now we are aiming to provide
an alternative definition of this set which meets this condition. Our
approach is similar to the definition of WHILEL that meets unique
readability.

Definition 6.2.15. We define inductively the sets WHILEat and
WHILE′ of sequences of basic symbols and symbols of first-order logic
as follows:

(1) Any assignment statement of the form v←t, where v is a pro-
gram variable and t is a term such that V(t) ⊆ PVAR belongs to
WHILEat.

Program Verification 1161

(2) If β is a quantifier-free formula whose variables are included in
PVAR and p is in WHILE′, then

while β do p endwhile

belongs to WHILEat.
(3) If β is a quantifier-free formula whose variables are included in

PVAR, and p, p′ ∈ WHILE′, then

if β then p else p′ endif

belongs to WHILEat.
(4) Every sequence in WHILEat belongs to WHILE′.
(5) If p ∈ WHILEat and p′ ∈ WHILE′, then p; p′ belongs to WHILE′.

Theorem 6.2.16. We have WHILE = WHILE′.

Proof. The proof is similar to that of Theorem 6.2.5. �

Theorem 6.2.17. Definition 6.2.15 meets the unique readability
condition.

Proof. The proof follows the same pattern as the proof of Theo-
rem 6.2.10. �

6.3 The WHILEL Programming Language — Semantics

We want to describe the semantics of running an L-program p in an
L-structure A. To this end, we need to follow the evolution of the
program state, that is, the evolution of the values assigned to vari-
ables as the program executes. Recall that in Section 4.5, we defined
an assignment over A to be a function from VAR to |A|, and there-
fore, we can use the notion of assignment as a formal counterpart of
the notion of state of a program. This justifies the next definition.

Definition 6.3.1. Let A = (A,I) be a L-structure. An A-state is
an assignment σ in ASSIGNA. We will denote the set of A-states by
STATESA.

1162 Logical Foundations of Computer Science — Volume 2

To assign meaning or semantics to L-programs in L-structures,
we need to re-examine the meaning of terms and formulas, since
they are basic constituents of programs. We can regard the meaning
of an L-term in a L-structure A as a function from states to |A|.
We can denote this meaning for a term t by StermA (t), where StermA :
TERML(PVAR) −→ (STATESA −→ A) is given by StermA (t)(σ) =
σA(t).

In Definition 4.5.9, we defined the meaning of an L-formula ϕ in
an L-structure A as a function SA(ϕ) from A-states to Bool. In this

context, we will denote the meaning function SA as S forA .
We will now define the meaning of an L-program p in an L-

structure A as a partial transformation SprA (p) of the set of A-states
into itself. The intention is that for an initial state σ0, SprA (p)(σ0) is
defined if and only if p halts eventually when started in state σ0. If it
halts, then SprA (p)(σ0) is the state reached when the program halts.

We remind the reader that the composition of two partial func-
tions f, g : M � M is again a partial function f ◦ g : M � M .
Note that f ◦g(x) is defined if and only if g(x) is defined and f(g(x))
is defined. Further, we introduce the iterations of a partial function
f :M �M as being the functions f (k) for k ∈ N, defined inductively
as follows:

f (0) = 1M (the identity function on M)

f (k+1) = f ◦ f (k),
for k ∈ N.

To define the function SprA , we cannot use Definition 6.2.1 because
it does not satisfy the unique readability condition. Thus, we use Def-
inition 6.2.3, which requires us to define simultaneously two partial
functions Sat prA and SprA , which give the formal semantics for atomic
L-programs and for L-programs, respectively.

Definition 6.3.2. Let L be a first-order language and let A be an
L-structure. The functions

Sat prA : WHILEL −→ (STATESA � STATESA)

and

SprA : WHILEL −→ (STATESA � STATESA).

are given by:

Program Verification 1163

(1) For assignment statements of L we have

Sat prA (v←t)(σ) = [v → σA(t)]σ.

(2) If p0 = if β then p else p′ endif, where p, p′ are L-programs
and β is a quantifier-free (L,PVAR)-formula, then

Sat prA (p0)(σ) =

{
SprA (p)(σ) if S forA (β)(σ) = T

SprA (p′)(σ) if S forA (β)(σ) = F.

(3) If p0 = while β do p endwhile, where p is an L-program, β is
a quantifier-free (L,PVAR)-formula, and σ ∈ STATESA, let
k ∈ N be the least number such that there is a state σk =(
SprA (p)

)(k)
(σ) and S forA (β)(σk) = F, if such a number exists.

When the number k exists, Sat prA (p0)(σ) = σk; otherwise,

Sat prA (p0)(σ) is undefined.
(4) For every atomic L-program p we have:

SprA (p) = Sat prA (p).

(5) If p is an atomic L-program and p′ is an L-program, then

SprA (p; p′) = SprA (p′) ◦ Sat prA (p).

If SprA (p)(σ) is defined, then we say that program p halts when
started in A-state σ.

For an atomic program p0 = while β do p endwhile,
Sat prA (p0)(σ) may be undefined for two reasons: either σk =(
Sat prA (p)

)(k)
(σ) is defined and S forA (β)(σk) = T for all k, or there

is a least k such that
(
Sat prA (p)

)(k)
(σ) is undefined and for all i < k,

if σi =
(
Sat prA (p)

)(i)
(σ), then S forA (β)(σi) = T. In the first case, the

infinite looping is caused by the topmost while loop in p0; in the
second case, the infinite looping is due to infinite looping that occurs
in p.

Theorem 6.3.3. Let L be a first-order language and let p, p′ be L-
programs. Then, SprA (p; p′) = SprA (p′) ◦ SprA (p).

1164 Logical Foundations of Computer Science — Volume 2

Proof. The argument is by induction on the L-program p using
Definition 6.2.3. The basis step when p is atomic, follows immediately
from the last two parts of Definition 6.3.2.

Suppose that p = p1; p
′′ where p1 is atomic and the statement

holds for p′′. Then,
SprA (p; p′) = SprA (p1; p

′′; p′)

= SprA (p′′; p′) ◦ Sat prA (p1)

= (SprA (p′) ◦ SprA (p′′)) ◦ Sat prA (p1)

= SprA (p′) ◦ (SprA (p′′) ◦ Sat prA (p1))

= SprA (p′) ◦ SprA (p1; p
′′)

= SprA (p′) ◦ SprA (p),

which completes the argument. �

Corollary 6.3.4. Let L be a first-order language and let
p0, p1, . . . , pn−1 be L-programs, for n ≥ 1. Then,

SprA (p0; p1; · · · ; pn−1) = SprA (pn−1) ◦ · · · ◦ SprA (p1) ◦ SprA (p0).

Proof. The corollary can be proven immediately by induction
on n. �

Theorem 6.3.5. Let L be a first-order language and let p be an
L-program. If x is a variable such that x �∈ PVAR(p), A is an L-
structure, and σ, σ′ ∈ STATESA are such that σ′ = SprA (p)(σ), then
σ′(x) = σ(x).

Proof. The argument is by induction on L-programs and is left to
the reader. �

Corollary 6.3.6. Let L be a first-order language and let p be a L-
program. If x is a specification variable, A is an L-structure, and
σ, σ′ ∈ STATESA are such that σ′ = SprA (p)(σ), then σ′(x) = σ(x).

Proof. This is a direct consequence of Theorem 6.3.5. �
From a semantical point of view, two states that agree on all the

variables that occur in a program can be considered indiscernible.
This is justified by the following theorem.

Theorem 6.3.7 (State Agreement Theorem for Programs).
Let L be a first-order language and let p0 be an L-program. If σ, σ′ ∈

Program Verification 1165

STATESA and σ(x) = σ′(x) for all x ∈ PVAR(p0), then p0 halts
when started in state σ if and only if it halts when started in state
σ′ and if p0 halts when started in these states, then SprA (p0)(σ)(x) =
SprA (p0)(σ

′)(x) for all variables x such that σ(x) = σ′(x).

Proof. The argument is by induction on the program p0 using Def-
inition 6.2.3. In all steps, we assume that σ, σ′ are as in the statement
and that x is a variable such that σ(x) = σ′(x).

For the basis step, let p0 be the assignment statement v←t, where
v is a program variable and t is an (L,PVAR)-term. Since p0 halts
when started in any state, the first part of the statement is imme-
diate. Note that σA(t) = σ′A(t) by Theorem 4.5.3. Thus, we can
write

SprA (p0)(σ)(x) = ([v → σA(t)]σ)A(x)

=

{
σ(x) if x �= v

σA(t) if x = v

=

{
σ′(x) if x �= v

σ′A(t) if x = v

= ([v → σ′A(t)]σ′)A(x)

= SprA (p0)(σ
′)(x).

There are three inductive steps. For the first one, let

p0 = if β then p1 else p2 endif

where the statement holds for the programs p1 and p2. There are two

subcases to consider. For the first subcase, suppose that S forA (β)(σ) =

T. Then, S forA (β)(σ′) = T because σ, σ′ agree on all the variables of β.
Thus, by the definition of SprA , we have SprA (p0)(σ) = SprA (p1)(σ) and
SprA (p0)(σ

′) = SprA (p1)(σ
′). The states σ and σ′ agree on all variables

of PVAR(p1) because they agree on all variables in PVAR(p0). By
inductive hypothesis, p0 halts when started in state σ if and only if
it halts when started in σ′. Moreover, if the program halts, by the

1166 Logical Foundations of Computer Science — Volume 2

same hypothesis, we have

SprA (p0)(σ)(x) = SprA (p1)(σ)(x) = SprA (p1)(σ
′)(x) = SprA (p0)(σ

′)(x).

The second subcase, when S forA (β)(σ) = F is similar and left to the
reader.

Suppose now that p0 = while β do p endwhile, where the
statement holds for p. By induction on k ∈ N, one can easily
prove that for all σ, σ′ ∈ STATESA such that σ(x) = σ′(x) for
x ∈ PVAR(p), (SprA (p))(k)(σ) is defined if and only if (SprA (p))(k)(σ′)
is defined and, if defined these states agree on all variables on which
σ and σ′ agree.

Suppose that SprA (p0)(σ) is defined. Let k be the least number

such that σk = (SprA (p))(k)(σ) is defined and S forA (β)(σk) = F. Then,

by the previous paragraph, σ′k = (SprA (p))(k)(σ′) is defined and σk, σ
′
k

agree on all variables on which σ, σ′ agree and those include all vari-
ables of β. Therefore, by the Agreement Theorem for First-Order

Logic (Theorem 4.5.12), S forA (β)(σ′k) = F. Note that if � < k,

then σ� = (SprA (p))(�)(σ) is defined and S forA (β)(σ�) = T. So for

� < k, σ′� = (SprA (p))(�)(σ′) is defined and S forA (β)(σ′�) = T. Thus,
SprA (p0)(σ

′) = σ′k and σk, σ
′
k agree on all variables on which σ, σ′

agree. Similarly, if SprA (p0)(σ
′) is defined, the corresponding conclu-

sion follows for SprA (p0)(σ).
We leave to the reader the case when p0 = p1; p2, where the

statement holds for p1, p2. �

Theorem 6.3.8. Let L,L′ be two first-order languages such that
L ⊆ L′, let p be an L-program, and let A′ be an L′-structure. If
A is the reduct of A′ to L, then SprA (p) = SprA′(p).

Proof. The argument is by induction on L-programs and makes
use of Theorem 4.5.24. �

A companion to the semantics of programs is the running time
function timeprA : WHILEL −→ (STATESA � N), where timeprA (p)(σ)
is the running time of the program ℘ when started in the state σ ∈
STATESA. This function is defined by induction on programs.

Definition 6.3.9. Let L be a first-order language and let A be an
L-structure. The functions timeat prA and timeprA are given by:

Program Verification 1167

(1) For assignment statements of L, we have:

timeat prA (v←t)(σ) = 1.

(2) If p0 = if β then p else p′ endif, where p, p′ are L-programs,
then

timeat prA (p0)(σ) =

{
1 + timeprA (p)(σ) if S forA (β)(σ) = T

1 + timeprA (p′)(σ) if S forA (β)(σ) = F.

(3) Let p0 = while β do p endwhile, where p is an L-program,
β is a quantifier-free (L,PVAR)-formula, and σ ∈ STATESA.
Let k ∈ N be the least number such that there is a state
σk =

(
SprA (p)

)(k)
(σ) and S forA (β)(σk) = F, if such a number

exists. When the number k exists, timeat prA (p0)(σ) = k + 1 +∑k−1
i=0 timeprA (p)(σi); otherwise, timeat prA (p0)(σ) is undefined.

(4) For every atomic L-program p we have:

timeprA (p) = timeat prA (p).

(5) If p is an atomic L-program and p′ is an L-program, then

timeprA (p; p′)(σ) = timeat prA (p)(σ) + timeprA (p′)(Sat prA (p)(σ)).

Theorem 6.3.10. Let L be a first-order language and A be an L-
structure. For all atomic L-programs p, L-programs q and states σ,
the functions timeat prA (p)(σ) and timeprA (q)(σ) are defined if and only

if Sat prA (p)(σ) and SprA (q)(σ) are defined, respectively.

Proof. The argument is by induction on programs and is left to
the reader. �

Theorem 6.3.11 (Time Agreement Theorem for Programs).
Let L be a first-order language and let p0 be an L-program. If
σ, σ′ ∈ STATESA and σ(x) = σ′(x) for all x ∈ PVAR(p0), then
timeprA (p0)(σ) is defined if and only if timeprA (p0)(σ

′) is defined and if
both are defined, they are equal.

1168 Logical Foundations of Computer Science — Volume 2

Proof. The fact that timeprA (p0)(σ) is defined if and only if
timeprA (p0)(σ

′) is defined follows from Theorems 6.3.7 and 6.3.10. The
equality

timeprA (p0)(σ) = timeprA (p0)(σ
′)

can be shown by induction on p0 and is similar to the argument of
Theorem 6.3.7. �

Example 6.3.12. Let L = {+,−} be the first-order language
introduced in Example 6.2.11 and let A be the L-structure where
|A| = Z and +A,−A are the addition and subtraction functions on
Z. Consider the program p mentioned in the same example and let
σ ∈ STATESA be such that σ(x) = m and σ(y) = n.

By Corollary 6.3.4,

SprA (p)(σ) = Sat prA (x←x− y)(Sat prA (y←x− y)(Sat prA (x←x+ y)(σ)))

Consider the states

σ1 = Sat prA (x←x+ y)(σ) = [x→ σA(x+ y)]σ,

σ2 = Sat prA (y←x− y)(σ1) = [y → σA1 (x− y)]σ1,
σ3 = Sat prA (x←x− y)(σ2) = [x→ σA2 (x− y)]σ2.

Since σ1 = [x → m + n]σ, we have σ1(x) = m + n and σ1(y) = n.
Further, we have σ2 = [y → m]σ1 and this gives σ2(x) = m+ n and
σ2(y) = m. Finally, we have σ3 = [x→ n]σ2, which implies σ3(x) = n
and σ3(y) = m. This shows that the effect of the program is to swap
the values of the variables x and y.

For the time function, we have timeprA (p)(σ) = 3, for every state
σ, as the reader can easily verify.

Example 6.3.13. Let L be the first-order language introduced in
Example 6.2.12 and let p be the program introduced in the same
example. We can write p = p0; p1, where p0 is the program:

while (x �= 0 ∧ y �= 0)
do if x > y

then x←x− y
else y←y − x

endif
endwhile

Program Verification 1169

and p1 is the program:

if x = 0
then z←y
else z←x

endif

Consider the structure A, where |A| = Z, 0A = 0, −A is the
subtraction operation on Z and >A is the “greater than” relation on
Z. If p′ is if x > y then x←x− y else y←y − x endif, then

SprA (p′)(σ) =

{
[x→ σ(x)− σ(y)]σ if σ(x) > σ(y)

[y → σ(y)− σ(x)]σ if σ(x) ≤ σ(y).

Let σk =
(
SprA (p′)

)(k)
(σ) for k ≥ 0. If, say, σ(x) = 6 and σ(y) = 8,

then p0 goes through the states shown in the next table.

k σk(x) σk(y) S forA (x �= 0 ∧ y �= 0)(σk)

0 6 8 T

1 6 2 T

2 4 2 T

3 2 2 T

4 2 0 F

Therefore, we have σ4 = SprA (p0)(σ). At completion, the program
p reaches the state

σ′ = SprA (p)(σ) = SprA (p1)(SprA (p0)(σ)) = SprA (p1)(σ4).

Since S forA (x = 0)(σ4) = F, we have

σ′(z) = σ4(x) = 2

σ′(x) = σ4(x) = 2

σ′(y) = σ4(y) = 0.

Suppose now that σ̄ is an A-state such that σ̄(x) = 4
and σ̄(y) = −2. It is easy to verify that in this case

σ̄k(x) = 4 + 2k and σ̄k(y) = −2, where σ̄k =
(
SprA (p′)

)(k)
(σ̄).

1170 Logical Foundations of Computer Science — Volume 2

Therefore, S forA (x �= 0 ∧ y �= 0)(σ̄k) = T for k ∈ N so SprA (p0)(σ̄)
is undefined, which means that SprA (p)(σ̄) is undefined.

Informally, the program p, when run in the structure A with the
initial values of x and y limited to natural numbers, is a “slow”
implementation of Euclid’s Algorithm for finding the greatest com-
mon divisor of two natural numbers when defined (that is, when they
are not both equal to 0). The basic idea is that at each execution of
the body of the while loop the greatest common divisor of x and y
remains the same and the sum of x and y decreases. Thus, when the
smaller of the two numbers reaches 0 (and one can prove that this
happens eventually), the larger equals the greatest common divisor.

For the running time, function, we can write

timeprA (p0; p1)(σ) = timeat prA (p0)(σ) + timeprA (p1)(Sat prA (p0)(σ)).

The running time for the program p0 and the state σ is given by

timeat prA (p0)(σ) = 5 +
3∑

k=0

timeprA (p′)(σk).

By the third part of Definition 6.3.9, timeprA (p′)(σk) = 2, for 0 ≤
k ≤ 3, so timeat prA (p0)(σ) = 13. Further, for the same reason,

timeat prA (p1)(σ4) = 2, so timeprA (p)(σ) = 15.

Example 6.3.14. Let L be the first-order language introduced in
Example 6.2.13. The program p introduced in that example can be
written as p = z←1; p1, where p1 is

while (y �= 0)
do d←y mod 2;

y←y div 2
if d �= 0

then z←z ∗ x
else z←z

endif
x←x ∗ x

endwhile

Program Verification 1171

Define the L-structure A by |A| = N, 0A = 0, 1A = 1, 2A = 2,

m divA n =

{⌊
m
n

⌋
if n > 0

0 otherwise,

m modA n = m− (m divA n) · n

and ∗A is the usual multiplication of natural numbers.
Suppose that p starts with a state σ where σ(x) = 3 and σ(y) = 6

and let σ0 = SprA (z←1)(σ) = [z → 1]σ. Let p′ be the body of p1.

Define σk =
(
SprA (p′)

)(k)
(σ0) for k ≥ 1. The successive σk are shown

below.

k σk(x) σk(y) σk(z) σk(d) S forA (y �= 0)(σk)

0 3 6 1 σ(d) T

1 9 3 1 0 T

2 81 1 9 1 T

3 6561 0 729 1 F

Therefore, we have σ3 = SprA (p)(σ), where σ3(z) = 729 = 36.
Informally, suppose that a = σ(x) and b = σ(y). Let dn · · · d1d0

be the binary expansion of b, that is b = 2ndn + · · · 21d1 + d0. This

allows us to write ab =
(
a2

n)dn · · · · · (a21)d1 · ad0 , so only those

a2
j
where dj = 1 contribute to ab. Note also that a2

j+1
= (a2

j
)2.

Thus the successive values of x contain the numbers a, a2, . . . , a2
j
,

Those a2
j
for which dj = 1 are multiplied into z, so z will contain

eventually ab.

6.4 Functions Computable by Programs

Programs in WHILEL can be used to compute functions over L-
structures.

Definition 6.4.1. Let A be an L-structure.
A partial function g : |A|n � |A| is computable by an L-

program p with the sequence of distinct variables (y0, . . . , yn) if for
every state σ ∈ STATESA, SprA (p)(σ) is defined if and only if

1172 Logical Foundations of Computer Science — Volume 2

g(σ(y0), . . . , σ(yn−1)) is defined and when SprA (p)(σ) is defined, we
have

g(σ(y0), . . . , σ(yn−1)) = SprA (p)(σ)(yn).

If in addition when SprA (p)(σ) is defined we have

SprA (p)(σ)(yi) = σ(yi)

for 0 ≤ i ≤ n− 1, then we say that p computes g preserving inputs.

Example 6.4.2. Let L = {0, 1, 2,mod,div, ∗,=} be the first-order
language introduced in Example 6.2.13 and let A be the L-structure
introduced in Example 6.3.14. The L-program introduced in the first
example, together with the sequence of variables (x, y, z) computes
the function g : N2 −→ N given by g(m,n) = mn, as we will show
in Example 6.5.8.

Example 6.4.3. Let Lpra = {=, <, 0, s,+} be the first-order lan-
guage of Presburger arithmetic. The Lpra-program p is defined as

z←0;
w←0;
while (w �= y)

do z←z + x;
w←s(w)

endwhile

We will show that p and the sequence of variables (x, y, z) computes
the multiplication function h : N2 −→ N given by h(m,n) = mn.

Let σ be an Apra-state, σ′ = SprApra(z←0)(σ), and σ′′ =

SprApra(w←0)(σ′). Also, denote by p0 the program z←z + x;w←s(w)
and by p1 the program while (w �= y) do p0 endwhile. The states
σk = (SprApra(p0))

(k)(σ′′) are defined for all k ∈ N. Observe that

σ′ = [z → 0]σ and σ′′ = [w → 0][z → 0]σ. We claim that for all

Program Verification 1173

k ∈ N, we have

σk(z) = kσ(x)

σk(w) = k

σk(x) = σ(x)

σk(y) = σ(y).

The proof is by induction on k. The basis step, k = 0, is imme-
diate because σ0 = σ′′. For the inductive step, suppose that these

statements hold for k. If σ′k+1 = [z → σ
Apra
k (z + x)]σk, then, by

inductive hypothesis, we have σ′k+1 = [z → σk(z) + σk(x)]σk = [z →
(k + 1)σk(x)]σk = [z → (k + 1)σ(x)]σk. Further,

σk+1 = [w → σ
′Apra
k+1 (s(w))]σ′k+1

= [w → s(σ′k+1(w))][z → (k + 1)σ(x)]σk

= [w → k + 1][z → (k + 1)σ(x)]σk,

which shows that the above equalities hold for σk+1.
It follows that the least number k such that (Apra, σk) �|= (w �= y)

is the number k = σ(y) and thus SprApra(p1)(σ
′′) = σσ(y). Now, the

final state of the program will be

SprApra(p1)(S
pr
Apra(w←0)(SprApra(z←0)(σ)))

= SprApra(p1)(S
pr
Apra(w←0)(σ′))

= SprApra(p1)(σ
′′)

= σσ(y).

Thus SprApra(p)(σ)(z) = σσ(y)(z) = σ(y)σ(z), as desired.

Example 6.4.4. Let Lar = {=, <, 0, s,+, ·} be the first-order lan-
guage of arithmetic. The Lar-program

z←s(0);
w←0;
while (w �= y)

do z←z · x;
w←s(w)

endwhile

1174 Logical Foundations of Computer Science — Volume 2

and the sequence of variables (x, y, z) computes the same function
g as the one in Example 6.4.2, as the reader can easily verify. This
latest way of computing is less efficient than the one of Example 6.4.2,
but it is easier to justify.

Example 6.4.5. Let b : N3 −→ N be the function given by
b(c, d, i) = r if c = r mod ((i + 1)d + 1); in other words, we have
b(c, d, i) = r if and only if (c, d, i, r) ∈ B, where B is the Gödel
relation introduced in Theorem 4.7.7.

The following Lar-program

z←s(s(xi) · xd);
w←0;
while (s(w) · z ≤ xc)

do w←s(w)
endwhile;
xr←0;
while (w · z + xr < xc)

do xr←s(xr)
endwhile

computes the function b with the sequence of variables (xc, xd, xi, xr),
as the reader can easily verify.

We want to show that if a program p computes an n-ary function
g with a sequence of variables (y0, . . . , yn), then the program s(p),
where s is an appropriate substitution which renames the program
variables, computes the same function with the sequence of variables
(s(y0), . . . , s(yn)). To be more specific about the type of substitution
we are interested in, we give the following definition.

Definition 6.4.6. Let L be a first-order language. An L-program
substitution is an injective L-substitution s such that s(VAR) ⊆ VAR
and s(PVAR) ⊆ PVAR.

Note that if σ is an A-state and s is an L-program substitution,
then σs is also an A-state. Also, we have σs = σAs, because the
range of s consists of variables.

Theorem 6.4.7. If p is an L-program and s is a L-program
substitution, then s(p) is also an L-program.

Program Verification 1175

Proof. The proof is by induction on programs, and we leave it to
the reader. �

To justify formally the claim made before Definition 6.4.6, we
need to prove the following result.

Theorem 6.4.8. Let L be a first-order language, p be an L-program,
and s be an L-program substitution. For every L-structure A and A-
state σ, we have

SprA (p)(σs) = (SprA (s(p))(σ))s.

Proof. The argument is by induction on programs. For the basis
step, suppose that p is v←t. By Definition 6.3.2, we have

Sat prA (p)(σs) = [v → (σs)A(t)](σs)

(Sat prA (s(p))(σ))s = ([s(v)→ σA(s(t))]σ)s

= ([s(v)→ σA(s(t))]σ)s.

By Lemma 4.6.2, we have σAs = (σAs)A. Since s is an L-program
substitution, we have σAs = σs, when we regard s as a transforma-
tion of variables. Thus, σAs(t) = (σs)A(t) and we denote their com-
mon value by a. We need to show that [v → a](σs) = ([s(v)→ a]σ)s.
If w is a variable distinct from v, then [v → a](σs)(w) = σ(s(w))
and ([s(v)→ a]σ)s(w) = σ(s(w)) because s(v) �= s(w). On the other
hand, [v → a](σs)(v) = a and (([s(v)→ a]σ)s)(v) = a.

We discuss only the inductive step when p is while β do
q endwhile, where the inductive hypothesis holds for q. In other
words, we have

SprA (q)(σs) = (SprA (s(q))(σ))s, (6.1)

for all A-states σ. We have s(p) = while s(β) do s(q) endwhile.
We claim first that for all k ≥ 0, (SprA (q))(k)(σs) is defined if and

only if (SprA (s(q)))(k)(σ) is defined and, if both are defined, then

(SprA (q))(k)(σs) = ((SprA (s(q)))(k)(σ))s. We show this by induction
on k. The basis step, k = 0 is immediate.

1176 Logical Foundations of Computer Science — Volume 2

Suppose that (SprA (q))(k+1)(σs) is defined. We have

(SprA (q))(k+1)(σs) = SprA (q)((SprA (q))(k)(σs))

= SprA (q)(((SprA (s(q)))(k)(σ))s)

(by inductive hypothesis on k)

= (SprA (s(q))((SprA (s(q)))(k)(σ)))s

(by Equality (6.1))

= ((SprA (s(q)))(k+1)(σ))s,

which shows that SprA (s(q)))(k+1)(σ) is defined and the desired equal-
ity holds for k + 1.

The same equality can be reached assuming that (SprA (s(q)))(k+1)

(σ) is defined and in the process of proving the equality, the defined-
ness of (SprA (q))(k+1)(σs) would follow.

We need to justify a second claim, namely, that if (SprA (q))(k)(σs)

and (SprA (s(q)))(k)(σ) are defined, then (A, (SprA (q))(k)(σs)) |= β if

and only if (A, (SprA (s(q)))(k)(σ)) |= s(β).
The following four statements are equivalent:

(i) (A, (SprA (q))(k)(σs)) |= β;

(ii) (A, ((SprA (s(q)))(k)(σ))s) |= β;

(iii) (A, ((SprA (s(q)))(k)(σ))As) |= β;

(iv) (A, (SprA (s(q)))(k)(σ)) |= s(β).

The equivalence between (i) and (ii) follows from the first claim of
this proof. The equivalence between (ii) and (iii) is a consequence of
the fact that the range of s is a set of variables. Finally, the equiva-
lence between (iii) and (iv) follows from Corollary 4.6.5 and from the
fact that FVSubst(s, β) = s(β) because β is a quantifier-free formula.

Suppose that SprA (p)(σs) is defined. Let k0 be the least number k

such that σk = (SprA (q))(k)(σs) is defined and (A, σk) �|= β, in other
words, SprA (p)(σs) = σk0 . By the previous claims, k0 is also the least

number k such that σ′k = (SprA (s(q)))(k)(σ) is defined and (A, σ′k) �|=
s(β). Thus, SprA (s(p))(σ) is defined and equals σ′k0 . By the first claim,
we have σk0 = σ′k0s, which is the desired conclusion. Notice that
the same conclusion can be reached in reverse if we assume that
SprA (s(p))(σ) is defined. �

Program Verification 1177

Corollary 6.4.9. If the L-program p computes the n-ary function g
on an L-structure A with the sequence of variables (y0, . . . , yn) and s
is an L-program substitution, then s(p) computes the same function
g with the sequence of variables (s(y0), . . . , s(yn)).

Proof. Since p computes g in A, we have

SprA (p)(σ)(yn) = g(σ(y0), . . . , σ(yn−1)) (6.2)

for every A-state σ. By Theorem 6.4.8, we have
SprA (s(p))(σ)(s(yn)) = SprA (p)(σs)(yn). Replacing σ with σs in
Equality (6.2), we have

SprA (p)(σs)(yn) = g(σ(s(y0)), . . . , σ(s(yn−1)))

which gives the desired result. �

The next corollary shows that for a function computable in a
structure, we can specify the sequence of variables involved.

Corollary 6.4.10. Let g be an n-ary function on an L-structure A
that is computable by an L-program with some sequence of variables.
For any sequence of distinct program variables z = (z0, . . . , zn−1, zn),
there is an L-program pz that computes g with the sequence z.

Proof. Let p be an L-program that computes g with the sequence
of variables (y0, . . . , yn−1, yn). Consider an L-program substitution
s such that s(yi) = zi for 0 ≤ i ≤ n. Such a substitution exists
because the members of the sequence z are pairwise distinct program
variables. Then, by Corollary 6.4.9, the program pz = s(p) computes
the function g with z. �

A stronger version of Corollary 6.4.10 is given next.

Corollary 6.4.11. Let g be an n-ary function on an L-structure A
that is computable by an L-program with some sequence of variables.
For any sequence of distinct program variables z = (z0, . . . , zn−1, zn),
there is an L-program pz that computes g with the sequence z pre-
serving inputs.

Proof. By Corollary 6.4.10, there is an L-program pz
′ that com-

putes g with the sequence z. If n = 0, then pz
′ computes g with inputs

preserved because there are no inputs, so we may assume that n > 0.

1178 Logical Foundations of Computer Science — Volume 2

Consider a program substitution s such s(x) �∈ {z0, . . . , zn−1} for
x ∈ PVAR(pz

′)∪{z0, . . . , zn−1}. By Corollary 6.4.9, s(pz
′) computes

the same function g with the sequence of variables (s(z0), . . . , s(zn)).
Define the program pz as

s(z0)←z0; · · · ; s(zn−1)←zn−1; s(pz
′); zn←s(zn)

Let σ ∈ ASSIGNA and

σ1 = SprA (s(z0)←z0; · · · ; s(zn−1)←zn−1)(σ).

Since {z0, . . . , zn−1} ∩ {s(z0), . . . , s(zn−1)} = ∅, we have

(σ1(s(z0)), . . . , σ1(s(zn−1))) = (σ(z0), . . . , σ(zn−1)).

If g(σ(z0), . . . , σ(zn−1)) is defined, then SprA (s(pz
′))(σ1) = σ2 is

defined, because s(pz
′) computes g with (s(z0), . . . , s(zn−1)), and

σ2(s(zn)) = g(σ1(s(z0)), . . . , σ1(s(zn−1))) = g(σ(z0), . . . , σ(zn−1)).

Thus,

σ3 = SprA (zn←s(zn))(σ2) = SprA (s(pz))(σ)

is defined and σ3(zn) = σ2(s(zn)) = g(σ(z0), . . . , σ(zn−1)).
If g(σ(z0), . . . , σ(zn−1)) = g(σ1(s(z0)), . . . , σ1(s(zn−1))) is unde-

fined, it follows that SprA (s(pz
′))(σ1) is undefined, so SprA (s(pz))(σ) is

undefined. Thus, pz defines g with (z0, . . . , zn).
Note that pz is input preserving. Indeed, observe that for 0 ≤

i ≤ n − 1, zi �∈ {s(z0), . . . , s(zn−1), zn}. Also, zi does not appear in
s(pz

′) and hence, by Theorem 6.3.5, if SprA (pz)(σ) is defined, then
SprA (pz)(σ)(zi) = σ(zi). �

Let L be a first-order language and let A be an L-structure. Once
we have shown that a (total) n-ary function g : |A|n −→ |A| can
be computed by an L-program rg with a sequence (y0, . . . , yn), we
can use the function as a “macro”. This is done by adding an n-ary
function symbol fg to L and then using fg to write programs in this
expanded language. Moreover, we can translate effectively programs
in the expanded language into programs in the original language
by using a technique that emulates macro expansion in standard
programming languages.

Program Verification 1179

Let L′ = L∪ {fg} be the first-order language obtained by adding
fg to L. Define A′ to be the expansion of A to L′ defined by

fA′
g = g. For an L′-program p, let S be a finite set of variables
such that PVAR(p) ⊆ S. We seek to define an L-program q(p, S)
such that for every σ ∈ STATESA, SprA′(p)(σ) is defined if and only if
SprA (q(p, S))(σ) is defined and if both are defined, then these states
agree on all the variables of S. In the remainder of this section, we
use the notations introduced in this paragraph.

Theorem 6.4.12. Let t be an (L′,PVAR)-term, S be a finite set of
program variables such that VAR(t) ⊆ S and let v be a program vari-
able not in S. Then, one can construct effectively an L-program pt,S,v
such that for every σ ∈ STATESA, σ1 = SprA (pt,S,v)(σ) is defined,

σ1(v) = σA′
(t), and σ1(x) = σ(x) for every x ∈ S.

Proof. The argument is by induction on (L′,PVAR)-terms. For
the basis step, let t be the program variable y. The program pt,S,v
is v←y. It is clear by Definition 6.3.2 that this program satisfies the
conditions of the theorem.

For the inductive step, suppose that t begins with them-ary func-
tion symbol f , that is, t = f if m = 0 and t = f(t0, . . . , tm−1) if
m > 0. For the latter case, assume that the statement holds for
t0, . . . , tm−1.

Initially, suppose that m > 0. Since S is a finite set of variables,
we can select m program variables v0, . . . , vm−1 not in S and distinct
from v. The set S∪{v0, . . . , vi−1} is denoted by Si for 0 ≤ i ≤ m−1.
By the inductive hypothesis, there are programs pti,Si,vi for 0 ≤ i ≤
m − 1 that satisfy the conditions of the statement. Let rt,S be the
program

pt0,S0,v0 ;

pt1,S1,v1 ;

...

ptm−1,Sm−1,vm−1

By Corollary 6.3.4, we can write

SprA (rt,S) = SprA (ptm−1,Sm−1,vm−1) ◦ · · · ◦ S
pr
A (pt0,S0,v0).

1180 Logical Foundations of Computer Science — Volume 2

Let τi be the A-state given by

τi = SprA (pti,Si,vi)(· · · S
pr
A (pt0,S0,v0)(σ) · · ·)

for 0 ≤ i ≤ m − 1. By the inductive hypothesis, the states τi are
defined. Further, we can show by induction on i, left to the reader,
that we have τi(vj) = σA′

(tj) for 0 ≤ j ≤ i ≤ m−1 and τi(x) = σ(x)

for x ∈ S. In particular, we have τm−1(vj) = σA′
(tj) for 0 ≤ j ≤ m−1

and τm−1(x) = σ(x) for x ∈ S. Also recall that τm−1 = SprA (rt,S)(σ).
We now continue the argument for all values of m including m =

0. First, let us assume that f �= fg. The program pt,S,v can be defined
as rt,S ; v←f(v0, . . . , vm−1), if m > 0 and as v←f , if m = 0. The
desired conclusion is obvious when m = 0. Suppose now that m > 0.
When we start with the state σ, the state which is obtained after the
execution of the program is σ1 = [v → τAm−1(f(v0, . . . , vm−1))]τm−1.
Since

τAm−1(f(v0, . . . , vm−1)) = fA(τm−1(v0), . . . , τm−1(vm−1))

= fA(σA′
(t0), . . . , σ

A′
(tm−1))

= σA′
(f(t0, . . . , tm−1))

= σA′
(t),

we obtain σ1 = [v → σA′
(t)]τm−1. The state σ1 meets the require-

ments of the theorem in view of the properties of τm−1 that we have
shown above.

Now assume that f = fg, so m = n. Recall that we assumed
that the function g is computed by the program rg with the sequence
(y0, . . . , yn). Consider a program substitution s such that s(yi) = vi
for 0 ≤ i ≤ n−1, s(yn) = v, and for all x ∈ PVAR(rg), s(x) �∈ S. The
program pt,S,v is defined as rt,S ; s(rg), when m = n > 0 and as s(rg),
if m = n = 0. As before, when m = n > 0, let τm−1 = SprA (rt,S)(σ).
By Corollary 6.4.9, the program s(rg) computes the function g with
(s(y0), . . . , s(yn−1), s(yn)) = (v0, . . . , vn−1, v). Since g is a total func-
tion, σ1 = SprA (s(rg))(τm−1) is defined. This is the state that the
program pt,S,v ends in when started with the state σ. Therefore, we

Program Verification 1181

have

σ1(v) = g(τm−1(v0), . . . , τm−1(vn−1))

= g(σA′
(t0), . . . , σ

A′
(tm−1))

= σA′
(fg(t0, . . . , tm−1))

= σA′
(t).

Also, we have σ1(x) = σ(x) for all x ∈ S due to Theorem 6.3.5 and
the fact that τm−1(x) = σ(x) as we proved above.

If m = n = 0, again, let σ1 be the state that the program
pt,S,v ends in when started with the state σ. Now we have σ1 =

SprA (s(rg))(σ), hence, σ1(v) = g() = σA′
(fg) = σA′

(t). Theorem 6.3.5
allows us again to conclude that σ1(x) = σ(x) for all x ∈ S. �

Using the notations introduced before Theorem 6.4.12, we have
the following statement.

Theorem 6.4.13. Let β be a quantifier-free (L′,PVAR)-formula and
S be a finite set of program variables such that FV(β) ⊆ S. We
can effectively construct an L-program pβ,S and a quantifier-free

(L,PVAR)-formula γ(β, S) such that for every state σ ∈ STATESA,
the state σ1 = SprA (pβ,S)(σ) is defined, σ1(x) = σ(x) for every x ∈ S,
and (A′, σ) |= β if and only if (A, σ1) |= γ(β, S).

Proof. The proof is by induction on the formula β. Suppose that
β is R, where R is a 0-ary relation symbol. Since fg does not appear
in β, we can define γ(β, S) = β and pβ,S to be v←v for some

variable v, that is, a do-nothing program. If β is an atomic for-
mula R(t0, . . . , tn−1) with n > 0, then let v0, . . . , vn−1 be n dis-
tinct program variables that do not belong to S and let γ(β, S) =
R(v0, . . . , vn−1). The program pβ,S consists of the sequence of pro-
grams

pt0,S0,v0 ;

pt1,S1,v1 ;

...

ptn−1,Sn−1,vn−1

Here, Si = S ∪ {v0, . . . , vi−1}, for 0 ≤ i ≤ n − 1 and pti,Si,vi is the
program defined in Theorem 6.4.12. As in the proof of that theorem,

1182 Logical Foundations of Computer Science — Volume 2

the state σ1 is always defined, σ1(x) = σ(x) for x ∈ S and σ1(vi) =
σA′

(ti) for 0 ≤ i ≤ n − 1. Further, the following statements are
equivalent:

(1) (A, σ1) |= R(v0, . . . , vn−1) = γ(β, S);
(2) (σ1(v0), . . . , σ1(vn−1)) ∈ RA;
(3) (σA′

(t0), . . . , σ
A′
(tn−1)) ∈ RA′

;
(4) (A′, σ) |= R(t0, . . . , tn−1) = β.

We discuss here only one of the inductive steps, namely, when
β = (β0Cβ1) for some binary connective symbol C, and the conclu-
sion holds for β0 and β1. If FV(β) ⊆ S, then we have FV(β0) ⊆ S,
so we obtain by the inductive hypothesis, a program pβ0,S and
a quantifier-free formula γ(β0, S). Letting S′ = S ∪ FV(γ(β0, S)),
we have FV(β1) ⊆ S′, so by applying the inductive hypothesis we
obtain the existence of a program pβ1,S′ and a quantifier-free for-
mula γ(β1, S

′).
Define the program pβ,S = pβ1,S′ ; pβ0,S and the quantifier-free

formula γ(β, S) = (γ(β0, S)Cγ(β1, S
′)). By Theorem 6.3.3 and

the inductive hypothesis, SprA (pβ,S)(σ) is defined for σ. For σ ∈
STATESA, let σ′1 = SprA (pβ0,S)(σ) and σ1 = SprA (pβ1,S′)(σ′1) =
SprA (pβ,S)(σ). By inductive hypothesis, for all x ∈ S, we have
σ1(x) = σ′1(x) = σ(x), so in particular, σ′1 and σ agree on FV(β1).
Also by inductive hypothesis, σ1 and σ′1 agree on FV(γ(β0, S)).

For any σ ∈ STATESA, we have (A′, σ) |= β0 if and only if
(A, σ′1) |= γ(β0, S) (by inductive hypothesis) which is equivalent to
(A, σ1) |= γ(β0, S) (by Theorem 4.5.12). Also, (A′, σ) |= β1 if and
only if (A′, σ′1) |= β1 which is equivalent to (A, σ1) |= γ(β1, S

′). It
follows that (A′, σ) |= β = (β0Cβ1) if and only if (A, σ1) |= γ(β, S) =
(γ(β0, S)Cγ(β1, S)).

We leave the remaining inductive step to the reader. �

Theorem 6.4.14. Let p be an L′-program and S be a finite set of
variables that contains PVAR(p). There is an effective construction
that yields an L-program q(p, S) such that for all σ, τ ∈ STATESA
with σ(x) = τ(x) for every x ∈ S, SprA′(p)(σ) is defined if and only
if SprA (q(p, S))(τ) is defined and if both are defined, then these states
agree on all the variables of S.

Program Verification 1183

Proof. The proof is by simultaneous induction on atomic L′-
programs and on L′-programs. We will prove the existence of two
functions qat and q such that q is an extension of qat.

Suppose that p is the atomic L′-program v←t, where {v} ∪
VAR(t) ⊆ S. Then, the program qat(p, S) is pt,S,v′ ; v←v′, where pt,S,v′
is the L-program introduced in Theorem 6.4.12 and v′ is a variable
not in S. Note that SprA′(p)(σ) is defined if and only if SprA (qat(p, S))(τ)
is defined because those states always exist. Further, if z ∈ S, then,
because σ and τ agree on S and therefore on VAR(t), the value of
z in both these states is σA′

(t) if z = v. If z �= v, then the value is
σ(z).

For the first inductive step, suppose that

p = while β do p0 endwhile,

where the statement holds for q(p0, S). Define qat(p, S) as

pβ,S ; while γ(β, S) do q(p0, S); pβ ,S endwhile.

In the above program, pβ,S and γ(β, S) are the program and the for-

mula defined in Theorem 6.4.13. Assume that Sat prA′ (p)(σ) is defined,

that is there exists k ∈ N such that σj = (SprA′(p0))
(j)(σ) exists for

j ≤ k, (A′, σj) |= β for j < k, and (A′, σk) �|= β. Notice that the state
τ0 = SprA (pβ,S)(τ) exists by Theorem 6.4.13.

We prove by induction on j that for every j ≤ k,

τj = (SprA (q(p0, S); pβ ,S))
(j)(τ0)

is defined, τj(x) = σj(x) for all x ∈ S, and (A′, σj) |= β if and
only if (A, τj) |= γ(β, S). The basis step, j = 0, follows immediately
from Theorem 6.4.13. Suppose that the claim holds for j < k. The
state ξj = SprA (q(p0, S))(τj) is defined and ξj(x) = σj+1(x) for all
x ∈ S by inductive hypothesis, because σj(x) = τj(x) for x ∈ S
and σj+1 is defined. Further, τj+1 = SprA (pβ,S)(ξj) is defined and

τj+1(x) = ξj(x) = σj+1(x) for x ∈ S, by Theorem 6.4.13. Note
that the following three statements are equivalent: (i) (A′, σj+1) |=
β, (ii) (A′, ξj) |= β, and (iii) (A, τj+1) |= γ(β, S). The equivalence
between (i) and (ii) follows form the fact that σj+1 and ξj agree on
the variables of S and these variables include FV(β), the variables of

1184 Logical Foundations of Computer Science — Volume 2

the quantifier-free formula β. The equivalence between the last two
statements is a consequence of Theorem 6.4.13.

The previous argument shows that τk = SprA (qat(p, S))(τ) and
that τk(x) = σk(x) = SprA′(p)(σ)(x) for every x ∈ S.

The converse statement, namely that the definedness of
SprA (qat(p, S))(τ) implies that SprA′(p)(σ) is defined and the two states
agree on the variables of S has a similar proof which is left to the
reader.

For the second inductive step, let p = if β then p0
else p1 endif, where the inductive hypothesis holds for p0 and p1.
Define qat(p, S) as

pβ,S; if γ(β, S) then q(p0, S) else q(p1, S) endif.

Suppose that (A′, σ) |= β. Then, Sat prA′ (p)(σ) = SprA′(p0)(σ). Let ξ =
SprA (pβ,S)(τ). Since σ(x) = τ(x) for every x ∈ S and the variables of

β are included in S, it follows that (A′, τ) |= β. By Theorem 6.4.13,
we have (A, ξ) |= γ(β, S) and ξ(x) = σ(x) for all x ∈ S. Further,

Sat prA (qat(p, S))(τ) = SprA (q(p0, S))(ξ).

The inductive hypothesis applied to p0 and the states σ and ξ gives
the desired result. We leave to the reader the entirely similar case
when (A′, σ) �|= β.

For an atomic program p, we define q(p, S) = qat(p, S). Finally,
let p = p′; p0, where p′ is atomic. We leave to the reader to prove
that the program q(p, S) defined as qat(p′, S); q(p0, S) satisfies the
conditions of the theorem. �

Theorem 6.4.15. Let p be an L′-program and S be a finite set of
variables that contains PVAR(p). There is an effective construction
that yields an L-program q(p, S) such that for all σ ∈ STATESA,
SprA′(p)(σ) is defined if and only if SprA (q(p, S))(σ) is defined and if
both are defined, then these states agree on all the variables of S.

Proof. The statement follows from Theorem 6.4.14 by taking
τ = σ. �

Theorem 6.4.16. Let p be an L′-program. There is an effective con-
struction yielding an L-program q(p) such that for all σ ∈ STATESA,
SprA′(p)(σ) is defined if and only if SprA (q(p))(σ) is defined and if both

Program Verification 1185

are defined, then these states agree on all the variables that occur
in p.

Proof. The statement can be obtained from Theorem 6.4.15 by
choosing q(p) = q(p,PVAR(p)). �

6.5 Hoare Triples

Having established the syntax and semantics of a programming lan-
guage (in our case WHILEL), we now want to discuss formally program
correctness. Before a program can be proven to be correct, we need
to specify what the program is to accomplish. Intuitively, a specifica-
tion is a statement called a postcondition of what should be true after
the program halts. In many cases, we don’t expect the postcondition
to hold in every circumstance but just in case a certain statement
called a precondition holds before the program is run. In general, we
will use formulas of first-order logic to express pre- and postcondi-
tions because these formulas are well-understood yet are sufficiently
expressive.

We consider two notions of correctness for programs. Total cor-
rectness in the context of a specification means that if the program is
started in a state in which the precondition is true, then the program
halts in a state in which the postcondition is true. Partial correctness
means that if the program is started in a state in which the precondi-
tion is true and if the program halts, then the state in which it halts
satisfies the postcondition. Total correctness corresponds to the intu-
itive meaning of correctness. Because a program that always goes into
an infinite loop is partially correct with respect to any specification,
it may seem that partial correctness is not a very helpful notion.
However, a program is totally correct for a specification if and only
if it is partially correct for the specification and it halts when started
in any state that satisfies the precondition of the specification. Thus,
total correctness can be shown by proving partial correctness and ter-
mination separately, and this approach has proven to be productive.
We will see a natural formal system for showing partial correctness.
Termination is usually shown using ad-hoc methods. Attempts to
strengthen formal systems to prove total correctness yield less than
satisfactory results.

1186 Logical Foundations of Computer Science — Volume 2

To formalize the notion of specification, we need the following
definition:

Definition 6.5.1. A formula ϕ is an assertion if BV(ϕ) ⊆ SVAR. An
L-assertion is an assertion which is also an L-formula.

The set of assertions is denoted by ASSERT, while the set of
L-assertions is denoted by ASSERTL.

Starting from an L-formula ϕ, we define an L-assertion ϕ� such
that ϕ� is a variant of ϕ. The definition of ϕ� is done inductively on
the formula ϕ as follows.

• If ϕ is an atomic formula, then ϕ� = ϕ.
• If ϕ = (¬α), then ϕ� = (¬α�).
• If ϕ = (αCβ), then ϕ� = (α�Cβ�), where C is a binary connective

symbol.
• When ϕ = (Qx)α, then ϕ� = (Qy)(α�)x:=y, where y is the first

specification variable that does not occur in (Qx)α�.

The reader can easily verify that ϕ� is a variant of ϕ and an L-
assertion.

There are two types of syntactic objects used to give specifications
for programs. They are introduced next.

Definition 6.5.2. Let L be a first-order language. An L-partial cor-
rectness Hoare triple is a string of symbols of the form H = {ϕ}p{ψ}
and an L-total correctness Hoare triple is a string of symbols of the
form H′ = [ϕ]p[ψ], where ϕ,ψ are L-assertions and p is a L-program.
We will also refer to L-partial correctness Hoare triples simply as
L-Hoare triples or just Hoare triples when L is understood from the
context.

The set of all L-partial correctness Hoare triples is denoted by
HPTL; the set of all L-total correctness Hoare triples is denoted
by HTTL. The special subset of HPTL that consists of all L-partial
correctness triples of the form {trueL� }p{falseL� } will be denoted by

HPT↑
L. Recall that trueL and falseL were defined prior to Theo-

rem 4.3.15.
Symbols in L that do not occur in p are called specification symbols

for the triples H,H′.

Program Verification 1187

A string of symbols that is an L-partial (L-total) correctness
Hoare triple for some first-order language L is called a partial cor-
rectness Hoare triple, respectively a total correctness Hoare triple.

The set of all partial correctness Hoare triples will be denoted by
HPT and the set of total correctness Hoare triples will be denoted
by HTT.

The next definition reflects our intuitive descriptions of partial
and total correctness.

Definition 6.5.3. Let L be a first-order language, A be an L-
structure and σ be an A-state. The pair (A, σ) satisfies the triple
{ϕ}p{ψ} ∈ HPTL if one of the following cases occurs:

(1) (A, σ) �|= ϕ;
(2) SprA (p)(σ) is undefined;
(3) σ′ = SprA (p)(σ) is defined and (A, σ′) |= ψ.

If this is the case, we write (A, σ) |= {ϕ}p{ψ}.
The pair (A, σ) satisfies the triple [ϕ]p[ψ] ∈ HTTL if one of the

following cases occurs:

(1) (A, σ) �|= ϕ;
(2) σ′ = SprA (p)(σ) is defined and (A, σ′) |= ψ.

If this is the case, we write (A, σ) |= [ϕ]p[ψ].
The L-structure A is a model of the L-partial correctness Hoare

triple H = {ϕ}p{ψ} if (A, σ) |= H for all A-states σ; we also say
in this case that H is valid in A. H is valid if it is valid in every
L-structure.
A is a model of the L-total correctness Hoare triple H′ = [ϕ]p[ψ]

if (A, σ) |= H′ for all A-states σ; we also say in this case that H′ is
valid in A. As above, H′ is valid if it is valid in every L-structure.

If A is a model of H, where H is a total or partial correctness
triple, then we write A |= H. If H is valid, we write |= H.

The previous discussion about the interplay between partial and
total correctness is formalized in the next theorem.

Theorem 6.5.4. Let L be a first-order language, A be an L-
structure, ϕ, ψ be L-assertions, and p be an L-program. Then, A |=
[ϕ]p[ψ] if and only if A |= {ϕ}p{ψ} and SprA (p)(σ) is defined for all
states σ such that (A, σ) |= ϕ.

1188 Logical Foundations of Computer Science — Volume 2

Proof. This follows immediately from Definition 6.5.3. �

Theorem 6.5.5. Let L be a first-order language, A be an L-
structure, ϕ, ϕ′, ψ, ψ′ be L-assertions, and p be an L-program such
that A |= (ϕ′ → ϕ) and A |= (ψ → ψ′). If A |= {ϕ}p{ψ}
(A |= [ϕ]p[ψ]), then A |= {ϕ′}p{ψ′} (A |= [ϕ′]p[ψ′]).

Proof. This statement follows directly from Definition 6.5.3. �

Example 6.5.6. The program p introduced in Example 6.2.11 is
intended to swap the values of its variables x and y when run in
the L-structure A considered in Example 6.3.12. To formulate the
specification that the program is intended to meet, we need to refer in
the postcondition to the initial values assumed by the variables x and
y. Thus, we will consider two specification variables x� and y� which
would allow us to state the precondition ϕ and the postcondition ψ
as the L-formulas

ϕ = ((x = x�) ∧ (y = y�))

ψ = ((x = y�) ∧ (y = x�)).

By Corollary 6.3.6, if σ′ = SprA (p)(σ) and (A, σ) |= ϕ, then σ′(x�) =
σ(x�) = σ(x) and, similarly, σ′(y�) = σ(y�) = σ(y), so in the post-
condition, x� and y� denote the initial values of x and y.

Thus, the total correctness Hoare triple H = [ϕ]p[ψ] expresses our
intentions for the program p.

Example 6.3.12 establishes that for every state σ ∈ STATESA
such that (A, σ) |= ϕ, σ′ = SprA (p)(σ) is defined and that σ′(x) =
σ(y) = σ′(y�) and σ′(y) = σ(x) = σ′(x�), so A |= H.

Example 6.5.7. Let L′ be the first-order language defined by L′ =
L∪{gcd}, where L is the language introduced in Example 6.2.12 and
gcd is a binary function symbol. We denote the formula ((t > u)∨(t =
u)) by t ≥ u, for all t, u ∈ TERML′ . Consider the L′-structure A′
obtained by extending the structure A of Example 6.3.13 with the
definition

gcdA
′
(m,n) =

⎧⎪⎪⎨
⎪⎪⎩
the greatest common divisor if m �= 0 or n �= 0

of m and n

0 otherwise.

Program Verification 1189

The specification symbol gcd was added to the language L in
order to allow us to specify the intended purpose of the program
p introduced in Example 6.2.12, namely, to compute the greatest
common divisor of two natural numbers. Of course, in the wider
language L′, we could write z← gcd(x, y) as an L′-program p′ which
will compute the function gcd. However, such a program would not
tell us anything about an actual algorithm for computing the greatest
common divisor of two numbers, and thus it would be uninformative.

The total correctness Hoare triple

H = [((x ≥ 0) ∧ (y ≥ 0) ∧ (x = x�) ∧ (y = y�))]p[z = gcd(x�, y�)]

expresses our specification of the behavior of the program: when p
is started with nonnegative values in the variables x, y, then it halts
and produces in the variable z the greatest common divisor of its two
initial arguments.

To show that A′ |= H, by Theorem 6.5.4, it suffices to show that
A′ |= H0, where

H0 = {((x ≥ 0) ∧ (y ≥ 0) ∧ (x = x�) ∧ (y = y�))}p{z = gcd(x�, y�)}

and that SprA (p)(σ) is defined for all states σ such that σ(x) ≥
0, σ(y) ≥ 0, σ(x) = σ(x�) and σ(y) = σ(y�).

Towards showing A′ |= H0, we note that for any two integers a, b,

gcdA
′
(a, b) = gcdA

′
(a − b, b) = gcdA

′
(a, b − a), and that if a, b ≥ 0,

gcdA
′
(a, 0) = a and gcdA

′
(0, b) = b.

Recall that in Example 6.3.13 we wrote the program p as p0; p1.
Let q be the L-program defined by

p0 = while (x �= 0 ∧ y �= 0) do q endwhile.

In other words, q = if x > y then x←x− y else y←y − x endif.
Note that for any state τ , τ ′ = SprA′(q)(τ) is defined and by the
previously mentioned properties of the greatest common divisor,
gcdA

′
(τ(x), τ(y)) = gcdA

′
(τ ′(x), τ ′(y)). Furthermore, if τ(x), τ(y) ≥

0, then τ ′(x), τ ′(y) ≥ 0.
Consider a state σ such that (A′, σ) |= (x ≥ 0 ∧ y ≥ 0 ∧ x =

x� ∧ y = y�). For j ∈ N, let σj =
(
SprA′(q)

)(j)
(σ). An argument

by induction on j (left to the reader) shows that for all j ∈ N,

gcdA
′
(σj(x), σj(y)) = gcdA

′
(σ(x�), σ(y�)) and that σj(x), σj(y) ≥ 0.

1190 Logical Foundations of Computer Science — Volume 2

To show that (A′, σ) |= H0, suppose that the state ρ = SprA′(p)(σ)
is defined. Then, ρ can be written as SprA′(p1)(σ

′), where σ′ =
SprA′(p0)(σ). Since σ

′ is defined, σ′ = σk, where k is the least number
j such that

(A′, σj) �|= (x �= 0 ∧ y �= 0).

This is equivalent to saying that at least one of σ′(x), σ′(y) is 0.

Since they are both nonnegative numbers, gcdA
′
(σ′(x), σ′(y)) is

the larger of these numbers, that is, ρ(z) = gcdA
′
(σ′(x), σ′(y)) =

gcdA
′
(σ(x�), σ(y�)). Note also that ρ(x�) = σ(x�) and ρ(y�) = σ(y�)

by Corollary 6.3.6, so (A′, ρ) |= z = gcd(x�, y�), which shows that
A′ |= H0.

To show termination, consider a state σ such that (A′, σ) |= (x ≥
0 ∧ y ≥ 0 ∧ x = x� ∧ y = y�) and let σj be defined as above, σj =(
SprA′(q)

)(j)
(σ) for j ∈ N. We already know that σj(x)+σj(y) ≥ 0 for

all j. Further, if (A′, σj) |= (x �= 0∧y �= 0), then σj+1(x)+σj+1(y) <
σj(x)+σj(y), as the reader can easily verify. Suppose that SprA′(p0)(σ)
is undefined. This means that for all j ∈ N, (A′, σj) |= (x �= 0 ∧ y
�= 0), and thus we have the infinite descending chain of numbers
σ0(x) + σ0(y) > σ1(x) + σ1(y) > · · · each of which is nonnegative.
Since this is impossible, σ′ = SprA′(p0)(σ) is defined. It follows that p
halts when started in state σ.

Example 6.5.8. Let p = z←1; p1 be the L-program, where L and p
were introduced in Example 6.2.13 and discussed further in Exam-
ple 6.3.14. Define L′ = L ∪ {exp}, where exp is a binary function
symbol used as a specification symbol for the program p. We denote
the term exp(u, v) by uv, where u, v are two L′-terms. Consider the
extension A′ of the structure A defined in Example 6.3.14 where
expA′

is the exponentiation function on N. (We assume here that
expA′

(m, 0) = 1 for m ∈ N.)
The specification for the desired behavior of the program is the

total correctness triple

H = [(x = x� ∧ y = y�)]p[z = xy��].

We begin the argument that A′ |= H by showing that A′ |= H0,
where

H0 = {(x = x� ∧ y = y�)}p{z = xy�� }.

Program Verification 1191

Let σ be an A′-state such that (A′, σ) |= (x = x� ∧ y = y�), that
is, σ(x) = σ(x�) and σ(y) = σ(y�). Let p

′ be, as in Example 6.3.14,
the body of the while loop and let σ0 = [z → 1]σ and σk =
(SprA′(p′))(k)(σ0) for k ≥ 1.

Let θ = (∃�)(x = x2
�

� ∧ y = y� div 2
� ∧ z = xy� mod 2�

�). We claim
that if (A′, σ) |= θ, then σ′ = SprA′(p′)(σ) is defined and (A′, σ′) |= θ.
Since (A′, σ) |= θ, there is an r ∈ N, σ(x) = m2r , σ(y) = �n/2r� and
σ(z) = m(n−�n/2r�·2r), where σ(x�) = m and σ(y�) = n. We have

σ′(x) = (σ(x))2

σ′(y) = �σ(y)/2�

σ′(z) =

{
σ(z) · σ(x) if σ(y) is odd

σ(z) if σ(y) is even.

This implies immediately σ′(x) = m2r+1
. For σ′(y) we have

σ′(y) = ��n/2r�/2� = �n/2r+1�

because of the elementary identity ��p�/2� = �p/2� which is left to
the reader for verification. Finally, for σ′(z) we can write

σ′(z) =

{
mn−�n/2r�·2r+2r if �n/2r� is odd
mn−�n/2r�·2r if �n/2r� is even.

When �n/2r� is odd, we have �n/2r+1� = ��n/2r�/2� = �n/2r�/2 −
1/2, so n−�n/2r�·2r+2r = n−�n/2r+1�·2r+1. In the alternative case,
when �n/2r� is even, we have �n/2r+1� = ��n/2r�/2� = �n/2r�/2,
which allows us to conclude that n − �n/2r� · 2r = n − �n/2r+1� ·
2r+1. So, in either case σ′(z) = mn−�n/2r+1�·2r+1

. This establishes
that (A′, σ′) |= θ.

An easy induction argument on k shows σk is defined and
(A′, σk) |= θ. The basis follows from the fact that z is distinct from
x and y and that (A′, σ) |= (x = x� ∧ y = y�). The inductive step
follows from the previous claim.

Suppose that ρ = SprA′(p)(σ) is defined. Then ρ = σk, where k is
the least number such that σk(y) = 0. Since (A′, σk) |= θ, σk(y�) <

2σk(�), so σk(y�)modA
′
2σk(�) = σk(y�) which implies (A′, σk) |= z =

xy�� . This concludes the argument for partial correctness.

1192 Logical Foundations of Computer Science — Volume 2

To prove termination, note that if σ(y) > 0, then SprA′(p′)(σ)(y) <
σ(y). Suppose p does not terminate when started in a state σ ∈
STATESA′ . Using the previous notation σk, this implies σk(y) �= 0,
which is equivalent to σk(y) > 0, for k ∈ N since |A′| = N. By the
previous observation, we thus have the infinite descending sequence
of natural numbers σ0(y) > σ1(y) > · · · which is a contradiction.

Theorem 6.5.9. Let L be a first-order language, v be program
variable, t be an (L,PVAR)-term and ϕ be an L-assertion. Then,
|= {(ϕ)v:=t}v←t{ϕ}.

Proof. Suppose that for an L-structure A and σ ∈ STATESA,
we have (A, σ) |= (ϕ)v:=t. Since the program v←t always halts, we
need to show that (A,SprA (v←t)(σ)) |= ϕ. By Definition 6.3.2, this
amounts to (A, [v → σA(t)]σ) |= ϕ, which holds by Corollary 4.6.6
and the fact that t is substitutable for v in ϕ because all bound
variables in ϕ are specification variables which do not appear in t.

�

Theorem 6.5.10. Let L be a first-order language, A be an
L-structure, p0, p1 be L-programs, ϕ, ψ be L-assertions and
let β be a quantifier-free (L,PVAR)-formula. Then, A |=
{ϕ} if β then p0 else p1 endif {ψ} if and only if A |= {(ϕ ∧
β)}p0{ψ} and A |= {(ϕ ∧ (¬β))}p1{ψ}.

Proof. The proof is a direct application of Definitions 6.3.2
and 6.5.3 and is left to the reader. �

Theorem 6.5.11. Let L be a first-order language, A be an
L-structure, p be an L-program, ϕ, ψ be L-assertions, and
let β be a quantifier-free (L,PVAR)-formula. Then, A |=
{ϕ} while β do p endwhile{ψ} if and only if the following two
conditions are satisfied:

(1) A |= ((ϕ ∧ (¬β))→ ψ);
(2) A |= {(ϕ ∧ β)}p; while β do p endwhile{ψ}.

Proof. Let q be the program while β do p endwhile and sup-
pose that A |= {ϕ}q{ψ}. To prove the first statement, suppose that
(A, σ) |= (ϕ ∧ (¬β)). Since (A, σ) �|= β, it follows that SprA (q)(σ) = σ
and therefore (A, σ) |= ψ, because A |= {ϕ}q{ψ}. This allows us to
conclude that A |= ((ϕ ∧ (¬β))→ ψ).

Program Verification 1193

To show the second part, we have to prove that if (A, σ) |=
(ϕ ∧ β) and σ′ = SprA (p; q)(σ) is defined, then (A, σ′) |= ψ. Let
τ = SprA (p)(σ). By Theorem 6.3.3, there is a number k ∈ N

such that σ′ = (SprA (p))(k)(τ). Further, (A, (SprA (p))(k)(τ)) �|= β and

(A, (SprA (p))(j)(τ)) |= β for j < k. The definition of τ implies that

(A, (SprA (p))(k+1)(σ)) �|= β and (A, (SprA (p))(j)(σ)) |= β for 1 ≤ j ≤ k.
In addition, since (A, σ) |= β, we have (A, (SprA (p))(j)(σ) |= β for
0 ≤ j ≤ k. Thus, SprA (q)(σ) = σ′ and we may conclude that
(A, σ′) |= ψ because (A, σ) |= ϕ and A |= {ϕ}q{ψ}.

The argument for the reverse implication is left to the reader. �

Definition 6.5.12. Let Γ be a set of L-formulas and H be an L-
partial correctness Hoare triple or an L-total correctness Hoare triple.
We write Γ≈| H and say that Γ entails H if every model of Γ is also
a model of H.

Total correctness depends not only of the theory of a structure,
but also on the actual structure. In this sense, total correctness is not
a first-order property of structures, as defined in Definition 4.13.14.
We prove this formally in the next theorem.

Theorem 6.5.13. There is a first-order language L and a triple
H = [ϕ]p[ψ] ∈ HPTL such that the class of all L-structures A that
model H is not a first-order property.

Proof. Let H = [trueLar�]p[trueLar�] be the Lar-total correctness
Hoare triple, where p is the Lar-program:

x←0;
while (x �= y)

do x←s(x)
endwhile

By Exercise 172 of Chapter 4, it suffices to show that we have two
Lar-structures A and B such that ThLar(A) = ThLar(B), A |= H and
B �|= H. We claim that we can choose A = Aar, the standard model
of arithmetic, and B be a nonstandard model of arithmetic as shown
to exist in Theorem 4.13.11. The fact that Aar |= H follows from
the fact that a sufficient number of increments by 1 of 0 allows us to
reach any natural number y. On the other hand, if the initial value
of y is a nonstandard element of B (see Definition 4.13.13), then

1194 Logical Foundations of Computer Science — Volume 2

y is unreachable from 0 which means that the program will never
terminate. Thus B �|= H. �

In contrast to the previous theorem, we will prove that partial
correctness is a first-order property. To show this, we will need the
concept of “weakest liberal precondition”.

Definition 6.5.14. Let L be a first-order language, A be an L-
structure, p be an L-program and ψ be an L-assertion. The weakest
liberal precondition set is the set WLPA(p, ψ) that consists of the
states σ in STATESA such that one of the following two conditions
is satisfied:

(1) SprA (p)(σ) is undefined;
(2) SprA (p)(σ) is defined and (A,SprA (p)(σ)) |= ψ.

Let n be a positive natural number. The n-limited weakest liberal
precondition is the set WLPnA(p, ψ) that consists of the states σ ∈
STATESA such that one of the following three conditions is satisfied:

(1) timeprA (p)(σ) is undefined (and therefore, SprA (p)(σ) is undefined);
(2) timeprA (p)(σ) > n;
(3) timeprA (p)(σ) ≤ n and (A,SprA (p)(σ)) |= ψ.

Theorem 6.5.15. Let L be a first-order language, A be an L-
structure, p be an L-program and ψ be an L-assertion. We have

WLPA(p, ψ) =
⋂
n≥1

WLPnA(p, ψ).

Proof. We leave this argument to the reader. �

Definition 6.5.16. Let L be a first-order language and let A be an
L-structure. A set of L-formulas Γ expresses a set S of A-states if
S = {σ ∈ STATESA | (A, σ) |= ϕ for every ϕ ∈ Γ}.

An L-formula ϕ expresses a set of A-states S if {ϕ} expresses S.

Lemma 6.5.17. Suppose that q is an L-program and for all L-
assertions ϕ and positive numbers n ∈ N, we have a formula ωn(q, ϕ)
that expresses WLPnA(q, ϕ) in every L-structure A.

Program Verification 1195

For l ≥ 2 and n0, . . . , nl−1 positive numbers, define ω(q, ϕ)n0, . . . ,
nl−1 recursively as

ωn0,...,nl−2(q, ωnl−1(q, ϕ)).

Then, for every L-structure A, the formula ωn0,...,nl−1(q, ϕ)
expresses the set of A-states σ such that if (SprA (q))(l)(σ) is defined
and

timeprA (q)((SprA (q))(i)(σ)) ≤ ni, for all i, 0 ≤ i ≤ l − 1,

then (A, (SprA (q))(l)(σ)) |= ϕ.

Proof. The proof is by induction on the length of the sequence
n0, . . . , nl−1. The basis step, l = 1, follows immediately from the
assumption of the lemma.

Suppose now that the statement is true for sequences of length l
and consider the sequence n0, . . . , nl. If ψ = ωnl(q, ϕ), then

ωn0,...,nl(q, ϕ) = ωn0,...,nl−1(q, ψ).

Thus, for an L-structure A and a state σ ∈ STATESA, we have
the following three equivalent statements:

(1) (A, σ) |= ωn0,...,nl(q, ϕ);
(2) (A, σ) |= ωn0,...,nl−1(q, ψ);
(3) if (SprA (q))(l)(σ) is defined and timeprA (q)((SprA (q))(i)(σ)) ≤ ni, for

all i, 0 ≤ i ≤ l − 1, then (A, (SprA (q))(l)(σ)) |= ψ.

The equivalence between the second and the third statements follows
from the inductive hypothesis.

By the assumption of the lemma, the third statement above is
equivalent to the statement:

if (Spr
A (q))(l)(σ) is defined and timeprA (q)((Spr

A (q))(i)(σ)) ≤ ni,
for all i, 0 ≤ i ≤ l − 1, then (Spr

A (q))(l)(σ) ∈ WLPnlA (q, ϕ).

This in turn is equivalent to

if (Spr
A (q))(l)(σ) is defined and timeprA (q)((Spr

A (q))(i)(σ)) ≤ ni,
for all i, 0 ≤ i ≤ l − 1, then, if timeprA (q)((Spr

A (q))(l)(σ)) ≤ nl,
then (A, (Spr

A (q))(l+1)(σ)) |= ϕ,

1196 Logical Foundations of Computer Science — Volume 2

which is equivalent to the statement needed for the inductive
step. �

Theorem 6.5.18. There is an algorithm that, for each program p,
assertion ψ, and positive number n ∈ N, produces a formula ωn(p, ψ)
such that for every first-order language L and L-structure A, if p is
an L-program and ψ is an L-assertion, then ωn(p, ψ) is an L-formula
that expresses WLPn

A(p, ψ).

Proof. As usual, we define two functions ωn,at(p, ψ) and ωn(r, ψ);
the first is applicable to atomic programs, while the second is appli-
cable to all programs. The definition is by recursion on programs and
it is applicable to all assertions ψ and positive natural numbers n.

If p is the atomic program v←t, we define ωn,at(p, ψ) = (ψ)v:=t
for every n ≥ 1.

If p is the atomic program if β then q else r endif, then

ωn,at(p, ψ) =

{
((β → ωn−1(q, ψ)) ∧ ((¬β)→ ωn−1(r, ψ)) if n > 1,

true
Lψ
� if n = 1.

For the last atomic case, suppose that p is while β do q
endwhile. For n ≥ 1, define the set of nonnull sequences of posi-
tive natural numbers Dn as

Dn =

{
(n0, . . . , nl−1)

∣∣∣n ≥ l + 1 +

l−1∑
i=0

ni

}
.

Note that D1 = D2 = ∅, D3 = {(1)}, D4 = D3 ∪ {(2)}, D5 =
D4 ∪ {(3), (1, 1)}.

For (n0, . . . , nl−1) ∈ Dn, define the formula εn0,...,nl−1(q, β, ψ) as

((β ∧ ωn0(q, β) ∧ ωn0,n1(q, β)∧
· · · ∧ ωn0,...,nl−2(q, β) ∧ ωn0,...,nl−1(q, (¬β)))
→ ωn0,...,nl−1(q, ψ)),

where ωn0,...,nk−1(q, ϕ) is as introduced in Lemma 6.5.17.

Program Verification 1197

The formula ωn,at(p, ψ) for n ≥ 3 is

(((¬β)→ ψ) ∧
∧
{εn0,...,nl−1(q, β, ψ) | (n0, . . . , nl−1) ∈ Dn}).

For n ∈ {1, 2}, ωn,at(p, ψ) is ((¬β) −→ ψ). For any atomic program
p, ωn(p, ψ) = ωn,at(p, ψ). If r = p′; p′′, where p′ is atomic, then

ωn(r, ψ) =

{∧
{ωk′

(p′, ωk′′
(p′′, ψ)) | k′, k′′ ≥ 1 and k′ + k′′ ≤ n} if n > 1

true
Lψ
� if n = 1.

Let L be a first-order language. A straightforward inductive argu-
ment shows that ωn(p, ψ) is an L-formula for all L-programs p and
L-assertions ψ.

We now prove by simultaneous induction on the definition of
atomic L-programs p and L-programs r that the formulas ωn,at(p, ψ)
and ωn(r, ψ) express the sets of states WLPnA(p, ψ) and WLPnA(r, ψ),
respectively, for all L-structures A, L-assertions ψ and n ≥ 1.

If p is the atomic program v←t, the running time of p is 1 for any
state. Thus we have the following four equivalent statements:

(1) σ ∈WLPnA(p, ψ);
(2) (A,SprA (v←t)(σ)) |= ψ;
(3) (A, [v → σA(t)]σ) |= ψ;
(4) (A, σ) |= (ψ)v:=t.

The equivalence of (1) and (2) follows from the definition of the
weakest liberal precondition. The second statement is equivalent to
(3) because of the definition of SprA . Finally, the equivalence of (3)
and (4) follows from the substitutability of t for v in the L-assertion
ψ and from Corollary 4.6.6.

Let now p be the atomic program if β then q else r endif and
assume that the statement holds for q and r for every n and ψ. We
need to prove that (A, σ) |= ωn(p, ψ) if and only if timeat prA (p)(σ) ≤ n
implies (A,Sat prA (p)(σ)) |= ψ for every L-structure A, A-state σ, L-
assertion ψ and number n ≥ 1.

Suppose that (A, σ) |= ωn(p, ψ) and timeat prA (p)(σ) ≤ n. Observe
that we must have n > 1 because the running time of p cannot
be 1. We first consider the case when (A, σ) |= β and, therefore,
(A, σ) |= ωn−1(q, ψ). In addition, because timeat prA (p)(σ) ≤ n, we

have timeat prA (q)(σ) ≤ n − 1. By the inductive hypothesis, we have

1198 Logical Foundations of Computer Science — Volume 2

(A,SprA (q)(σ)) |= ψ and, in this case, since SprA (q)(σ) = Sat prA (p)(σ),
we obtain the desired conclusion. The case when (A, σ) |= (¬β) is
similar.

Conversely, suppose that timeat prA (p)(σ) ≤ n implies

(A,Sat prA (p)(σ)) |= ψ. We have to show that (A, σ) |= ωn(p, ψ).
The case when n = 1 is immediate. Therefore, suppose that n > 1.
Suppose that (A, σ) |= β. The conclusion follows if we can show
(A, σ) |= ωn−1(q, ψ). By the inductive hypothesis, this amounts
to showing that timeprA (q)(σ) ≤ n − 1 implies (A,SprA (q)(σ)) |= ψ.
Assume, therefore, that timeprA (q)(σ) ≤ n − 1, which means that

timeat prA (p)(σ) ≤ n. By the initial supposition of this paragraph,

(A,Sat prA (p)(σ)) |= ψ, which gives the desired conclusion because

Sat prA (p)(σ) = SprA (q)(σ). The alternative, (A, σ) |= (¬β) is similar.
Suppose now that p is the atomic program while β do q

endwhile and that the statement holds for q and every n and ψ.
We prove first that if (A, σ) |= ωn,at(p, ψ) and timeat prA (p)(σ) ≤ n,

then (A,Sat prA (p)(σ)) |= ψ, for all L-structures A, A-states σ, n ≥ 1
and L-assertions ψ.

Let l be the least number such that (A, (Sat prA (q))(l)(σ)) |= (¬β).
If l = 0, this means that (A, σ) |= (¬β) so (A, σ) |= ψ because

of the definition of the formula ωn,at(p, ψ). Since, in this case, σ =
Sat prA (p)(σ), we have the desired conclusion.

Let now l > 0 and for i such that 0 ≤ i ≤ l − 1, define

ni = timeat prA (q)((Sat prA (q))(i)(σ)).

The execution time is therefore l+1+
∑l−1

i=0 ni = timeat prA (p)(σ) ≤ n,
which implies that (n0, . . . , nl−1) ∈ Dn. Consequently, by the defi-
nition of ωn,at(A, ψ), (A, σ) |= εn0,...,nl−1(q, β, ψ). By the minimality
of l, we have (A, (Sat prA (q))(i)(σ)) |= β, for 0 ≤ i ≤ l − 1, so, by
the inductive hypothesis and Lemma 6.5.17, the hypotheses of the
implication εn0,...,nl−1(q, β, ψ) are satisfied by (A, σ), which means
that (A, σ) |= ωn0,...,nl−1(q, ψ). Again, by the inductive hypothesis
and Lemma 6.5.17, we have (A, (SprA (q))(l)(σ)) |= ψ. Since, in this

case, (SprA (q))(l)(σ) = Sat prA (p)(σ), we have the desired conclusion.
In the reverse direction, assume that

timeat prA (p)(σ) ≤ n implies (A,Sat prA (p)(σ)) |= ψ

Program Verification 1199

for an L-structure A, an A-state σ, n > 0 and L-assertion ψ. We
need to prove that (A, σ) |= ωn,at(p, ψ).

We show first that (A, σ) |= ((¬β) → ψ). If (A, σ) |= (¬β),
then timeat prA (p)(σ) = 1 ≤ n and the conclusion follows from the

assumption and the fact that σ = Sat prA (p)(σ). This shows that
(A, σ) |= ωn,at(p, ψ) if n ∈ {1, 2}.

For n ≥ 3, let (n0, . . . , nl−1) ∈ Dn. We need to show that

(A, σ) |= εn0,...,nl−1(q, β, ψ).

Taking into account the definition of εn0,...,nl−1(q, β, ψ), suppose that

(A, σ) |= β (6.3)

(A, σ) |= ωn0(q, β)

...

(A, σ) |= ωn0,...,nl−2(q, β)

(A, σ) |= ωn0,...,nl−1(q, (¬β)).

We will be done if we show that (A, σ) |= ωn0,...,nl−1(q, ψ). By the
inductive hypothesis and Lemma 6.5.17, this amounts to proving that
the set of inequalities

timeat prA (q)((Sat prA (q))(i)(σ)) ≤ ni (6.4)

for 0 ≤ i ≤ l − 1 implies (A, (Sat prA (q))(l)(σ)) |= ψ. By repeatedly
using the inductive hypothesis, Lemma 6.5.17 and (6.3) and (6.4),
it follows that for 0 ≤ i ≤ l − 1, we have (A, (SprA (q))(i)(σ)) |=
β and (A, (SprA (q))(l)(σ)) |= (¬β). This means that the running

time timeat prA (p)(σ) ≤ n, so, by the hypothesis, we obtain

(A,Sat prA (p)(σ)) |= ψ which implies that

(A, (SprA (q))(l)(σ)) |= ψ.

Let now r = p′; p′′, where p′ is atomic and the statement holds
for p′ and p′′. Suppose that (A, σ) |= ωn(r, ψ) and timeprA (r)(σ) ≤ n.
We want to prove that (A,SprA (r)(σ)) |= ψ. Note that n > 1 because
r cannot run in fewer than two steps. There are k′, k′′ such that
timeat prA (p′)(σ) = k′, timeprA (p′′)(Sat prA (p′)(σ)) = k′′, and k′+k′′ ≤ n.

1200 Logical Foundations of Computer Science — Volume 2

By the definition of ωn(r, ψ), we have (A, σ) |= ωk
′
(p′, ωk′′(p′′, ψ)). By

the inductive hypothesis, applied to p′, we have (A,Sat prA (p′)(σ)) |=
ωk

′′
(p′′, ψ). A new application of the inductive hypothesis to p′′ yields

(A,SprA (p′′)(Sat prA (p′)(σ))) |= ψ. This gives the desired conclusion

because SprA (p′′)(Sat prA (p′)(σ)) = SprA (r)(σ).
Conversely, assume that timeprA (r)(σ) ≤ n implies (A,SprA (r)(σ))

|= ψ. We must show that (A, σ) |= ωn(r, β).
The case when n = 1 is immediate, by the definition of ω1(r, β).

Suppose therefore that n > 1 and fix k′, k′′ ≥ 1 such that k′ +
k′′ ≤ n. We must show that (A, σ) |= ωk

′
(p′, ωk′′(p′′, ψ)). By the

inductive hypothesis, it suffices to assume that timeat prA (p′)(σ) ≤
k′ and to show that (A,Sat prA (p′)(σ)) |= ωk

′′
(p′′, ψ). In turn,

by another application of the inductive hypothesis, it suffices to
assume that timeprA (p′′)(Sat prA (p′)(σ)) ≤ k′′ and to show that

(A,SprA (p′′)(Sat prA (p′)(σ))) |= ψ. By the two previous temporal
assumptions just made on p′ and p′′, we have timeprA (r)(σ) ≤ k′+k′′ ≤
n, and so, by the initial assumption, we obtain (A,SprA (r)(σ)) |= ψ.

�

Corollary 6.5.19. Let L be a first-order language, p be an L-
program and ψ be an L-assertion. There is a set of L-formulas
Ω(p, ψ) such that for all L-structures A the set of formulas expresses
WLPA(p, ψ).

Proof. Define Ω(p, ψ) = {ωn(p, ψ) | n ≥ 1}. The statement follows
from Theorems 6.5.15 and 6.5.18. �

Theorem 6.5.20. There is an algorithm that, for each partial cor-
rectness Hoare triple H, produces a set of sentences ΣH such that for
every first-order language L and L-structure A, if H is an L-partial
correctness Hoare triple, then ΣH is a set of L-sentences and we have
A |= H if and only if A |= ΣH.

Proof. Let H = {ϕ}p{ψ} be a partial correctness triple and let

ΣH = {(ϕ→ ωn(p, ψ))∀ | n ≥ 1},

where ωn(p, ψ) is the formula defined in Theorem 6.5.18.
Suppose L is a first-order language, H is an L-partial correct-

ness triple, and A is an L-structure. By Theorem 6.5.18, each of the
formulas ωn(p, ψ) is an L-formula, so ΣH is a set of L-sentences.

Program Verification 1201

Assume that A |= H. To show that A |= ΣH, it suffices to show,
by Theorem 4.5.58, that A |= (ϕ→ ωn(p, ψ)) for all n ≥ 1. Suppose
(A, σ) |= ϕ. If timeprA (p)(σ) ≤ n, SprA (p)(σ) is defined and, because
A |= H, we have (A,SprA (p)(σ)) |= ψ, which allows us to conclude
A |= (ϕ→ ωn(p, ψ)).

Now, suppose that A |= ΣH. To show that A |= H, assume that
(A, σ) |= ϕ and SprA (p)(σ) is defined. Then, timeprA (p)(σ) = n for some

n ≥ 1. SinceA |= (ϕ→ ωn(p, ψ))∀, by Theorem 4.5.58, it follows that
A |= (ϕ→ ωn(p, ψ)), so (A, σ) |= ωn(p, ψ). Thus, (A,SprA (p)(σ)) |= ψ
because the program p runs in time n when started in σ. This yields
the desired conclusion. �

Theorem 6.5.20 shows that for every L-partial correctness Hoare
triple H, the collection of L-structures {A | A |= H} is a first-order
property. Informally, we say that partial correctness is a first-order
property.

The effectiveness of the construction of the formulas ωn(p, ψ)
proven in Theorem 6.5.18 shows that given a partial correctness
Hoare triple H, we can list effectively the set ΣH whose existence
was established in Theorem 6.5.20.

Corollary 6.5.21. Let A be a L-structure and let H be an L-partial
correctness Hoare triple. We have A |= H if and only if ThL(A)≈| H.

Proof. Suppose A |= H. Then, by Theorem 6.5.20, we have ΣH ⊆
ThL(A). Let B be a model of ThL(A). Then B |= ΣH, so B |= H.
Thus, ThL(A)≈| H.

The converse implication follows immediately from the fact that
A is a model of ThL(A). �

We now embark on proving a series of results about the weakest
liberal precondition some of which will be useful in obtaining a lim-
ited completeness result for a formal system that deals with partial
correctness Hoare triples.

Theorem 6.5.22. Let v be a program variable, t be an (L,PVAR)-
term and ψ be an L-assertion. Then, the formula (ψ)v:=t expresses
WLPA(v←t, ψ) for every L-structure A.

Proof. We have shown in the proof of Theorem 6.5.18 that
the formula (ψ)v:=t expresses WLPnA(v←t, ψ) for every n ≥ 1.

1202 Logical Foundations of Computer Science — Volume 2

Since WLPnA(v←t, ψ) = WLPA(v←t, ψ) for every n ≥ 1, the state-
ment of the theorem follows immediately. �

Theorem 6.5.23. Let β be a quantifier-free (L,PVAR)-formula, A
be an L-structure, ψ be an L-assertion and p0, p1 be two L-programs.

If γ expresses WLPA(p0, ψ) and δ expresses WLPA(p1, ψ), then
θ = ((β → γ) ∧ ((¬β)→ δ)) expresses WLPA(p, ψ), where

p = if β then p0 else p1 endif .

Proof. We need to prove that (A, σ) |= θ if and only if either
SprA (p)(σ) is undefined, or σ′ = SprA (p)(σ) is defined and (A, σ′) |= ψ.

Suppose that (A, σ) |= θ and that σ′ = SprA (p)(σ) is defined. We
have both that (A, σ) |= (β → γ) and (A, σ) |= ((¬β) → δ). If
(A, σ) |= β, it follows that (A, σ) |= γ and SprA (p0)(σ) is defined
and equals σ′. This implies that (A, σ′) |= ψ because γ expresses
WLPA(p0, ψ). If (A, σ) �|= β, then (A, σ) |= (¬β) and a similar argu-
ment applies.

To prove the converse implication, suppose that either SprA (p)(σ)
is undefined, or σ′ = SprA (p)(σ) is defined and (A, σ′) |= ψ.

If (A, σ) |= β, we have either SprA (p0)(σ) is undefined, or σ′ =
SprA (p0)(σ) is defined and (A, σ′) |= ψ. Then, σ ∈ WLPA(p0, ψ), so
(A, σ) |= γ. Thus, (A, σ) |= (β → γ). Further, (A, σ) |= ((¬β) → δ),
because (A, σ) |= β. Thus, (A, σ) |= θ.

The case when (A, σ) |= (¬β) is similar and is left to the reader.
�

Theorem 6.5.24. Let L be a first-order language, A be an L-
structure, α, γ, ϕ, ψ be L-assertions and let p0, p1 be L-programs. Sup-
pose that γ expresses WLPA(p1, ψ). Then, we have:

(1) A |= {ϕ}p0; p1{ψ} if and only if A |= {ϕ}p0{γ}.
(2) If α expresses WLPA(p0, γ), then α expresses WLPA(p0; p1, ψ).

Proof. To prove the first part, we first suppose that

A |= {ϕ}p0; p1{ψ} (6.5)

and show that A |= {ϕ}p0{γ}. To this end, suppose that (A, σ) |=
ϕ and the state σ′ = SprA (p0)(σ) is defined. We consider two
cases. If SprA (p1)(σ

′) is not defined, then σ′ ∈ WLPA(p1, ψ), so
(A, σ′) |= γ. Suppose now that σ′′ = SprA (p1)(σ

′) = SprA (p0; p1)(σ)

Program Verification 1203

is defined. This implies (A, σ′′) |= ψ, because of (6.5), which means
that σ′ ∈WLPA(p0, ψ), which, as above, means that (A, σ′) |= γ.

Conversely, suppose that

A |= {ϕ}p0{γ}, (6.6)

(A, σ) |= ϕ and σ′′ = SprA (p0; p1)(σ) is defined. This implies that the
state σ′ = SprA (p0)(σ) is defined and therefore (A, σ′) |= γ, because
of (6.6). Thus, σ′ ∈ WLPA(p1, ψ). Since SprA (p1)(σ

′) is defined (and
equal to σ′′), it follows that (A, σ′′) |= ψ.

To prove the second part, assuming that γ expressesWLPA(p1, ψ),
suppose that the formula α expresses WLPA(p0, γ). To show that α
expresses WLPA(p0; p1, ψ), we need to demonstrate that (A, σ) |= α
if and only if SprA (p0; p1)(σ) is undefined or (A,SprA (p0; p1)(σ)) |= ψ.

Suppose that (A, σ) |= α. By the hypothesis on α, SprA (p0)(σ) is
undefined or (A,SprA (p0)(σ)) |= γ. In the first case, SprA (p0; p1)(σ)
is undefined, which gives the needed conclusion. The second case
has two subcases. In the first subcase, SprA (p1)(SprA (p0)(σ)) is unde-
fined, which gives the desired conclusion. In the second subcase,
(A,SprA (p1)(SprA (p0)(σ))) |= ψ, which concludes this implication.

To prove the reverse implication, suppose that SprA (p0; p1)(σ) is
undefined, or (A,SprA (p0; p1)(σ)) |= ψ. This supposition breaks up
into three cases.

If SprA (p0)(σ) is undefined, then σ ∈ WLPA(p0, γ), which implies
(A, σ) |= α.

In the second case, SprA (p0)(σ) is defined, but SprA (p1)(SprA (p0)(σ))
is undefined. This implies that SprA (p0)(σ) ∈ WLPA(p1, ψ) which in
turn implies (A,SprA (p0)(σ)) |= γ. This allows us to conclude that
(A, σ) |= α.

Finally, suppose that (A,SprA (p0; p1)(σ)) |= ψ, that is,

(A,SprA (p0)(SprA (p1)(σ))) |= ψ.

This implies that SprA (p0)(σ) ∈ WLPA(p1, ψ) hence, (A,SprA (p0)(σ))
|= γ. Consequently, SprA (p0)(σ) ∈ WLPA(p0, γ) which again implies
(A, σ) |= α. �

Using Theorems 6.5.22 through 6.5.24, it is possible to give an
algorithm which, starting from a program p that does not contain any
while , and a postcondition ψ, produces a formula ϕ that expresses

1204 Logical Foundations of Computer Science — Volume 2

WLPA(p, ψ) in all L-structures A. We will produce such an algo-
rithm in the context of annotated programs which we introduce in
Section 6.7.

6.6 Hoare Theories

In this section, we investigate the decidability of the set of partial
Hoare triples which are valid in a structure.

Definition 6.6.1. The set of L-partial correctness Hoare triples {H |
A |= H}, that is the Hoare partial correctness theory of A, will be
denoted by HPTL(A) and the corresponding set of L-total correctness
triples, that is the Hoare total correctness theory of A, will be denoted
by HTTL(A).

We will denote the fragment HPTL(A) ∩ HPT↑
L by HPT↑

L(A).

Theorem 6.6.2. Let A be an L-structure, where L is a first-order
language. For any L-sentence ϕ, we have ϕ ∈ ThL(A) if and only if

{trueLϕ� }x0←x0{ϕ�} ∈ HPTL(A).

Proof. By Theorem 4.6.23, ϕ ≡ ϕ� and trueLϕ ≡ true
Lϕ
� , because

ψ� is a variant of ψ. Suppose first that ϕ ∈ ThL(A). Then, A |=
{θ}p{ϕ�} for any θ, p. which in particular shows that ϕ ∈ ThL(A)
implies

{trueLϕ� }x0←x0{ϕ�} ∈ HPTL(A).

Conversely, suppose that {trueLϕ� }x0←x0{ϕ�} ∈ HPTL(A). Let σ
be an A-state assumed to be the state before the program x0←x0
begins. Since (A, σ) |= true

Lϕ
� and the state at the completion of the

program x0←x0 is still σ, we have (A, σ) |= ϕ�, which means that
(A, σ) |= ϕ, that is, ϕ ∈ ThL(A) because ϕ is a sentence. �

Corollary 6.6.3. Let L be a first-order language and A be an L-
structure. Then, ThL(A) ≤m HPTL(A).

Proof. In the sense of Definition 1.4.8, we take the universal set of
ThL(A) to be SENT and the universal set for HPTL(A) to be HPT.

Program Verification 1205

The many-to-one reduction function f : SENT −→ HPT is given by

f(ϕ) = {trueLϕ� }x0←x0{ϕ�}.

If ϕ ∈ SENT − SENTL, then f(ϕ) �∈ HPTL, while if ϕ ∈ SENTL,
then, by Theorem 6.6.2, ϕ ∈ ThL(A) if and only if f(ϕ) ∈ HPTL(A).

�

Corollary 6.6.4. If L is a decidable first-order language and ThL(A)
is undecidable, then HPTL(A) is not semidecidable (and thus is
undecidable).

Proof. This statement follows directly from Corollaries 4.13.22
and 6.6.3, and Theorem 1.4.9. �

Corollary 6.6.5. The set HPTLar(Aar) is not semidecidable (and
thus is undecidable).

Proof. This statement follows from Corollaries 4.14.16 and 6.6.4.
�

There are structures for which a reverse reduction is possible:
namely, it is possible to show that HPTL(A) ≤m ThL(A). A sufficient
condition under which the reverse reduction is possible is formalized
in the next definition.

Definition 6.6.6. Let L be a first-order language. An L-structure
A is expressive if for all L-programs p and all L-assertions ψ, the set
WLPA(p, ψ) is expressible by a single formula ωA(p, ψ).
A is effectively expressive if there is an effective way of construct-

ing the formula ωA(p, ψ) given p and ψ.

More precisely, A is effectively expressive if there is an effectively
computable function ωA : WHILE × ASSERT −→ FORM such that
when p ∈ WHILEL and ψ ∈ ASSERTL, the formula ωA(p, ψ) expresses
WLPA(p, ψ).

In the previous definition, one could assume that γ = ωA(p, ψ) is
an assertion by replacing it with the assertion γ�.

The next theorem shows that in effectively expressive structures,
the reverse reduction mentioned above is possible.

Theorem 6.6.7. Let L be a first-order language, A be an L-structure
and H = {ϕ}p{ψ} be a Hoare partial correctness triple. Assume that

1206 Logical Foundations of Computer Science — Volume 2

the L-formula ωA(p, ψ) expresses WLPA(p, ψ). Then, the following
conditions are equivalent:

(1) H ∈ HPTL(A);
(2) A |= (ϕ→ ωA(p, ψ));
(3) (ϕ→ ωA(p, ψ))∀ ∈ ThL(A).

Proof. We leave to the reader the proof of the equivalence between
(1) and (2), which is a mere application of the relevant definitions;
the equivalence between (2) and (3) is a consequence of the second
part of Theorem 4.5.58 and the definition of ThL(A). �

Corollary 6.6.8. Let L be a decidable first-order language and A be
an effectively expressive L-structure. Then, HPTL(A) ≤m ThL(A).

Proof. The reduction function f : HPT −→ SENT is given by

f({ϕ}p{ψ}) =
{
(ϕ→ ωA(p, ψ))∀ if {ϕ}p{ψ} ∈ HPTL,

α0 otherwise,

where ωA(p, ψ) is as in the definition of effectively expressive L-
structure and α0 is a fixed element of SENT−SENTL. The decidabil-
ity of L implies that HPTL is decidable and hence f is computable.
The statement follows from Theorem 6.6.7. �

Corollary 6.6.9. Let L be a decidable first-order language, A be
an effectively expressive L-structure. If ThL(A) is decidable, then
HPTL(A) is decidable.

Proof. This follows from Corollary 6.6.8 and Theorem 1.4.9. �
We now explore the expressiveness of specific structures. We begin

by proving the existence of an upper bound on the running time of
programs in finite structures.

Theorem 6.6.10. There is an effectively computable function

Bpr : WHILE ×P −→ N

(where P is the set of positive natural numbers) such that for all first-
order languages L and finite L-structures A, if p is an L-program,
|A| contains n elements, and σ ∈ STATESA is such that timeprA (p)(σ)
is defined, we have timeprA (p)(σ) ≤ Bpr(p, n).

Program Verification 1207

Proof. We will define Bpr recursively on the definition of programs.
This kind of definition requires that we construct simultaneously two
functions Bpr and Bat pr, where the first function will be defined
for programs in general and the second will be defined for atomic
programs.

If p is v←t, we have Bat pr(p, n) = 1 for all n.
If p is the atomic program if β then q else r endif, then

Bat pr(p, n) = 1 +max{Bpr(q, n),Bpr(r, n)}.

Suppose now that p is the atomic program while β do q
endwhile. Let m be the number of variables that occur in p and
let s = nm. Define Bat pr(p, n) = sBpr(q, n)+ s+ 1.

For an atomic program p, define Bpr(p, n) = Bat pr(p, n) for all n.
Finally, if p = p′; p′′, where p′ is an atomic program and p′′ is a

program, define Bpr(p, n) = Bat pr(p′, n)+ Bpr(p′′, n).
Let A be a finite L-structure such that |A| contains n ele-

ments. The proof of the inequality timeprA (p)(σ) ≤ Bpr(p, n) when
timeprA (p)(σ) is defined is by induction on programs. Actually, we

need to show that timeat prA (p)(σ) ≤ Bat pr(p, n) for all atomic

programs p when timeat prA (p)(σ) is defined, and timeprA (p)(σ) ≤
Bpr(p, n) for all programs p when timeprA (p)(σ) is defined. We dis-
cuss only one inductive step, namely when p is the atomic program
while β do q endwhile.

Assume that timeat prA (p)(σ) is defined for a state σ, but

timeat prA (p)(σ) > Bat pr(p, n) = sBpr(q, n) + s + 1. Let σi =(
Sat prA (q)

)(i)
(σ) and let k be the least integer such that (A, σk) |=

(¬β). We claim that under this assumption, k > s. Indeed, if k were
less than or equal to s we would have

timeat prA (p)(σ) = k + 1 +

k−1∑
i=0

timeprA (q)(σi)

≤ k + 1 + kBpr(q, n)

≤ s+ 1 + sBpr(q, n),

which contradicts our initial assumption. Note that s is the number
of distinct ways of assigning values in |A| to the variables that occur

1208 Logical Foundations of Computer Science — Volume 2

in the program. Since k > s, there are i, j, 0 ≤ i < j < k, such
that σi(v) = σj(v) for every variable v that occurs in the program p.
Actually, σi = σj, by Theorem 6.3.5, which means that the program
p will cycle indefinitely between these states. Specifically, there is an
l such that i ≤ l < j and σl = σk, and, because (A, σl) |= β, this
contradicts the definition of k. �

Corollary 6.6.11. For any finite L-structure A with |A| containing
n elements, L-assertion ψ and L-program p, we have

WLPA(p, ψ) = WLP
Bpr(p,n)
A (p, ψ).

Proof. The statement follows from Theorem 6.6.10 and Defini-
tion 6.5.14. �

Theorem 6.6.12. Every finite L-structure A is effectively expres-
sive.

Proof. The effectiveness of the construction of Bpr established in
Theorem 6.6.10 combined with the effectiveness of the construction
of the formulas ωn(p, ψ) shown in Theorem 6.5.18 shows that we

can construct effectively the formula ωBpr(p,n)(p, ψ), which expresses

WLP
Bpr(p,n)
A (p, ψ). By Corollary 6.6.11 this formula also expresses

the set WLPA(p, ψ), which concludes the argument. �

Corollary 6.6.13. Let L be a finite language and A be a finite L-
structure. Then the Hoare partial correctness theory of A is decidable.

Proof. This statement is a consequence of Corollary 6.6.9, Theo-
rem 6.6.12 and Theorem 4.14.3. �

We now turn to proving the effective expressiveness of arith-
metic. This will require the introduction of some notations and
preliminary results. Recall that in Section 4.5.2 we introduced the
notation [a → b] for [a → b]∅. Thus, when a0, . . . , an−1 are dis-
tinct, [a0 → b0] · · · [an−1 → bn−1] denotes the function f defined
on the set {a0, . . . , an−1} with f(ai) = bi for 0 ≤ i ≤ n − 1.
In a further simplification, the same function will be denoted by
[a0, . . . , an−1 → b0, . . . , bn−1].

Definition 6.6.14. Let A = (A,I) be a L-structure. An (A, V)-
partial state is a partial assignment σ : V � |A| with domain V . We
will denote the set of (A, V)-states by PSTATESA(V).

Program Verification 1209

The State Agreement Theorem allows us to define the semantics
of programs in terms of transformations of partial states.

Definition 6.6.15. Let L be a first-order language, A be an L-
structure, and let p be an L-program. The restricted semantics
function

RSprA (p) : PSTATESA(PVAR(p))� PSTATESA(PVAR(p))

is the partial function defined by RSprA (p)(σ) = SprA (p)(σ′)
|̀PVAR(p), where σ′ is some A-state such that σ′ |̀PVAR(p) = σ,
whenever SprA (p)(σ′) is defined. Otherwise, RSprA (p) is not defined
for σ.

Observe that by the State Agreement Theorem, if σ′, σ′′ are two
A-states that extend the partial A-state σ, then SprA (p)(σ′) is defined
if and only if SprA (p)(σ′′) is defined and if these states are defined,
their restrictions to PVAR(p) coincide. This shows that the function
RSprA (p) is well-defined.

Lemma 6.6.16. Let L be a first-order language with equality, A
be an L-structure, and let p be an L-program, where PVAR(p) =
{v0, . . . , vn−1}.

Let y0, . . . , yn−1, z0, . . . , zn−1, z
′
0, . . . , z

′
n−1 be distinct program

variables that do not occur in p. Suppose that the formula α expresses
the weakest liberal precondition WLPA(p, ψ), where ψ is

(¬(v0 = z0 ∧ · · · ∧ vn−1 = zn−1 ∧ y0 = z′0 ∧ · · · ∧ yn−1 = z′n−1)).

Define the formulas β, θ as

β = (∃v0) · · · (∃vn−1)(∃y0) · · · (∃yn−1)(v0 = y0 ∧ · · ·
∧vn−1 = yn−1 ∧ (¬α))

θ = 〈β〉z0,...,zn−1,z′0,...,z
′
n−1:=v0,...,vn−1,y0,...,yn−1

,

Then, for all A-states σ, (A, σ) |= θ if and only if

RSprA (p)([v0, . . . , vn−1 → σ(y0), . . . , σ(yn−1)]) = σ |̀PVAR(p).

Proof. We will show first the equivalence of the following state-
ments:

1210 Logical Foundations of Computer Science — Volume 2

(1) (A, σ) |= θ.
(2) (A, σ′) |= β, where σ′ is

[z0, . . . , zn−1, z
′
0, . . . , z

′
n−1

→ σ(v0), . . . , σ(vn−1), σ(y0), . . . , σ(yn−1)]σ.

(3) There are a0, . . . , an−1 in |A| such that for σ′′ given by

[v0, . . . , vn−1, y0, . . . , yn−1 → a0, . . . , an−1, a0, . . . , an−1]σ
′

and σ′ given by

[z0, . . . , zn−1, z
′
0, . . . , z

′
n−1

→ σ(v0), . . . , σ(vn−1), σ(y0), . . . , σ(yn−1)]σ.

we have (A, σ′′) |= (¬α).
(4) There are a0, . . . , an−1 in |A| such that σ′′′ = SprA (p)(σ′′) is

defined and we have

(A, σ′′′) |= (v0 = z0∧· · ·∧vn−1 = zn−1∧y0 = z′0∧· · ·∧yn−1 = z′n−1),

where σ′′ is

[v0, . . . , vn−1, y0, . . . , yn−1 → a0, . . . , an−1, a0, . . . , an−1]σ
′

and σ′ is

[z0, . . . , zn−1, z
′
0, . . . , z

′
n−1

→ σ(v0), . . . , σ(vn−1), σ(y0), . . . , σ(yn−1)]σ.

The equivalence of (1) and (2) follows from Supplement 90 of Chap-
ter 4. The equivalence of (2) and (3) follows from Tarski’s definition
of truth applied to the formula β. Finally, the equivalence between
(3) and (4) follows from the fact that α expresses the weakest liberal
precondition corresponding to the formula ψ and p.

Thus, it suffices to show that (4) is equivalent to

RSprA (p)([v0, . . . , vn−1 → σ(y0), . . . , σ(yn−1)]) = σ |̀PVAR(p).

Suppose that (4) holds. Observe that σ′(zi) = σ(vi), σ
′(z′i) =

σ(yi), σ
′′(vi) = σ′′(yi) = ai, σ

′′(zi) = σ′(zi), σ′′(z′i) = σ′(z′i), σ
′′′(vi) =

σ′′′(zi), and σ′′′(yi) = σ′′′(z′i). Moreover, since yi, zi, z
′
i do not occur

Program Verification 1211

σ σ σ σ

zi

zi

yi

vi

Fig. 6.1. Diagram representing equalities.

in p, we also have σ′′′(yi) = σ′′(yi), σ′′′(zi) = σ′′(zi) and σ′′′(z′i) =
σ′′(z′i). The equalities inferred above are summarized in Figure 6.1.
An inspection of this figure shows immediately that σ′′(vi) =
σ(yi) and σ′′′(vi) = σ(vi), for 0 ≤ i ≤ n − 1. Note
that σ′′ |̀PVAR(p) = [v0, . . . , vn−1 → σ(y0), . . . , σ(yn−1)] and
σ′′′ |̀PVAR(p) = σ |̀PVAR(p). Since

RSprA (p)(σ′′ |̀PVAR(p)) = σ′′′ |̀PVAR(p),
we obtain the desired result.

Conversely, suppose that

RSprA ([v0, . . . , vn−1 → σ(y0), . . . , σ(yn−1)]) = σ |̀PVAR(p).
Define ai = σ(yi) for 0 ≤ i ≤ n− 1,

σ′ = [z0, . . . , zn−1, z
′
0, . . . , z

′
n−1 → σ(v0), . . . , σ(vn−1),

σ(y0), . . . , σ(yn−1)]σ.

and

σ′′ = [v0, . . . , vn−1, y0, . . . , yn−1 → a0, . . . , an−1, a0, . . . , an−1]σ
′.

Observe that σ′′ |̀PVAR(p) = [v0, . . . , vn−1 → σ(y0), . . . , σ(yn−1)]
and, therefore, by hypothesis, σ′′′ = SprA (p)(σ′′) is defined and

1212 Logical Foundations of Computer Science — Volume 2

σ′′′ |̀PVAR(p) = σ |̀PVAR(p). Note now that we have the following
two chains of equalities:

σ′′′(vi) = σ(vi) = σ′(zi) = σ′′(zi) = σ′′′(zi),
σ′′′(yi) = σ′′(yi) = ai = σ(yi) = σ′(z′i) = σ′′(z′i) = σ′′′(z′i),

which shows that

(A, σ′′′) |= (v0 = z0∧· · ·∧vn−1 = zn−1∧y0 = z′0∧· · ·∧yn−1 = z′n−1).
�

Let Lar,fb be the language obtained from Lar by adding a ternary
function symbol fb and let Aar,fb be the expansion of Aar obtained

by defining f
Aar,fb
b = b, where b is the Gödel function defined on

page 583. We denote the formula

(w0 = fb(vc, vd, vk · sn(0)) ∧ w1 = fb(vc, vd, vk · sn(0) + s(0)) ∧ · · ·
∧wn−1 = fb(vc, vd, vk · sn(0) + sn−1(0)))

by �w = seqvc,vd,vk ,n, where vc, vd, vk, w0, . . . , wn−1 are variables.
Then, we have (Aar,b, σ) |= �w = seqvc,vd,vk,n if and only if for every i,
0 ≤ i ≤ n− 1, we have σ(wi) = b(σ(vc), σ(vd), nσ(vk) + i). This cor-
responds to dividing the sequence coded by (σ(vc), σ(vd)) into blocks
of length n and asserting that the values in the (k + 1)st block are
in the variables w0, . . . , wn−1, where k = σ(vk).

Similarly, we denote

(v0 = fb(vc, vd, 0) ∧ v1 = fb(vc, vd, s(0)) ∧ · · ·
∧vn−1 = fb(vc, vd, s

n−1(0)))

by �v = initseqvc,vd,n, where vc, vd, v0, . . . , vn−1 are distinct variables.

Lemma 6.6.17. Let Lar be the language of arithmetic, and let p
be an Lar-program, where PVAR(p) = {v0, . . . , vn−1}. Further, sup-
pose that the formula α expresses the weakest liberal precondition
WLPAar(p, ψ

′), where ψ′ is:

(¬(v0 = z0 ∧ · · · ∧ vn−1 = zn−1 ∧ y0 = z′0 ∧ · · · ∧ yn−1 = z′n−1)),

and y0, . . . , yn−1, z0, . . . , zn−1, z
′
0, . . . , z

′
n−1 are distinct program vari-

ables that do not occur in p.

Program Verification 1213

Then, there is an effective construction which, given an Lar-
assertion ψ, produces an Lar-assertion ωAar(q, ψ) that expresses the
weakest liberal precondition of the program

q = while β do p endwhile

and the assertion ψ, where β is a quantifier-free (Lar,PVAR)-
formula.

Proof. We will first construct an Lar,fb-formula precond starting
from the following five subformulas:

• The formula initvc,vd is given by �v = initseqvc,vd,n. Clearly, we have
(Aar,fb , σ) |= initvc,vd if and only if σ(v0), . . . , σ(vn−1) are the first
n components of the sequence encoded by the pair (σ(vc), σ(vd)).

• The formula stepvc,vd,vm is given by

(∀w0) · · · (∀wn−1)(∀w′
0) · · · (∀w′

n−1)(∀vk)((vk < vm ∧
�w = seqvc,vd,vk ∧ �w′ = seqvc,vd,vk+s(0))→ 〈θ〉�v,�y:= �w′, �w),

where w0, . . . , wn−1, w
′
0, . . . , w

′
n−1, vk are pairwise distinct vari-

ables that are also distinct from vc, vd, vm and θ is the formula
introduced in Lemma 6.6.16.
Let σ be an Aar-state. Now, we have (Aar,fb , σ) |= �w = seqvc,vd,vk if
and only if σ(w0), . . . , σ(wn−1) is the (k+1)st block of length n of
the sequence encoded by (σ(vc), σ(vd)), where k = σ(vk). Likewise,

(Aar,fb , σ) |= �w′ = seqvc,vd,vk+s(0) if and only if σ(w′
0), . . . , σ(w

′
n−1)

is the (k + 2)nd block of length n of the same sequence. Finally,
we have (Aar,fb , σ) |= 〈θ〉�v,�y:= �w′, �w if and only if

(Aar,fb , [�v, �y → σ(�w′), σ(�w)]σ) |= θ.

This is equivalent to

RSprAar,fb (p)([v0, . . . , vn−1 → σ(w0), . . . , σ(wn−1)])

= [v0, . . . , vn−1 → σ(w′
0), . . . , σ(w

′
n−1)],

by Lemma 6.6.16.
This allows us to conclude that (Aar,fb , σ) |= stepvc,vd,vm if and
only if for the first σ(vm) + 1 blocks of length n of the sequence

1214 Logical Foundations of Computer Science — Volume 2

encoded by (σ(vc), σ(vd)), the (k+1)st block represents the values
of the program variables of p when p is started with the values in
the kth block. This latter condition is equivalent to saying that for
any state τ with τ(vj) = b(σ(vc), σ(vd), j) for 0 ≤ j ≤ n − 1, the

state τi = (SprAar(p))
(i)(τ) is defined for 0 ≤ i < σ(vm) and τi(vj)

is the jth value in the (i + 1)st block of length n of the sequence
encoded by the pair (σ(vc), σ(vd)).

• The formula continuationvc,vd,vm is

(∀w0) · · · (∀wn−1)(∀vk)((vk < vm ∧ �w = seqvc,vd,vk)→ (β)�v:=�w).

We have (Aar,fb , σ) |= continuationvc,vd,vm if and only if for the first
σ(vm) blocks of length n of the sequence encoded by (σ(vc), σ(vd)),
we have (Aar,fb , [v0, . . . , vn−1 → a0, . . . , an−1]σ) |= β, where
a0, . . . , an−1 are the entries of the block.

• The formula terminationvc,vd,vm is

(∀w0) · · · (∀wn−1)(�w = seqvc,vd,vm → 〈(¬β)〉�v:=�w).

Now, we have (Aar,fb , σ) |= terminationvc,vd,vm if and only if

(Aar,fb , [v0, . . . , vn−1 → a0, . . . , an−1]σ) |= (¬β),

where a0, . . . , an−1 are the entries of the (σ(vm)+1)st block of the
sequence encoded by the pair (σ(vc), σ(vd)).

• The formula verificationvc,vd,vm is

(∀w0) · · · (∀wn−1)(�w = seqvc,vd,vm → 〈ψ〉�v:=�w).

We have (Aar,fb , σ) |= verificationvc,vd,vm if and only if

(Aar,fb , [v0, . . . , vn−1 → a0, . . . , an−1]σ) |= ψ,

where the entries of the (σ(vm)+1)st block of the sequence encoded
by the pair (σ(vc), σ(vd)) are a0, . . . , an−1.

Thus, the formula precond we are seeking is

(∀vc)(∀vd)(∀vm)((initvc,vd ∧ stepvc,vd,vm ∧ continuationvc,vd,vm∧
terminationvc,vd,vm)→ verificationvc,vd,vm),

where vc, vd, vm are variables distinct from the variables v0, . . . , vn−1

and from the bound variables w0, . . . , wn−1, w
′
0, . . . , w

′
n−1 and do not

appear in β or in ψ.

Program Verification 1215

We prove that (Aar,fb , σ) |= precond if and only if σ ∈
WLPAar,fb (q, ψ). To this end, we denote the formula

(initvc,vd ∧ stepvc,vd,vm ∧ continuationvc,vd,vm ∧ terminationvc,vd,vm)

by hypvc,vd,vm . We begin by showing that (Aar,fb , [vc, vd, vm →
c, d,m]σ) |= hypvc,vd,vm if and only if the following statements hold:

(1) For all i ≤ m, the state σi = (SprAar(p))
(i)(σ) is defined.

(2) For all i ≤ m, the (i + 1)st block of the sequence encoded by
(c, d) contains σi(v0), . . . , σi(vn−1).

(3) For i < m, (Aar,fb , σi) |= β.
(4) (Aar,fb , σm) |= (¬β).
First, suppose that (Aar,fb , [vc, vd, vm → c, d,m]σ) |= hypvc,vd,vm .
Since σ0 = σ, the first block of the sequence encoded by (c, d) con-
tains the elements σ0(v0), . . . , σ0(vn−1) because (Aar,fb , [vc, vd, vm →
c, d,m]σ) |= initvc,vd . This shows that the first two statements hold
for i = 0. It now follows that these statements hold for all i ≤ m
since (Aar,fb , [vc, vd, vm → c, d,m]σ) |= stepvc,vd,vm .

Since (Aar,fb , [vc, vd, vm → c, d,m]σ) |= continuationvc,vd,vm , it fol-
lows that for i < m if ai0, . . . , a

i
n−1 are the entries of the (i + 1)st

block of length n of the sequence encoded by (c, d), we have

(Aar,fb , [v0, . . . , vn−1 → ai0, . . . , a
i
n−1][vc, vd, vm → c, d,m]σ) |= β.

Note that by the second statement, aij = σi(vj) for 0 ≤ j ≤ n−1. Let
σ̂i = [v0, . . . , vn−1 → ai0, . . . , a

i
n−1][vc, vd, vm → c, d,m]σ. We claim

that σ̂i(z) = σi(z) for every variable z that occurs in β. This is clear
if z ∈ {v0, . . . , vn−1}. Otherwise, σ̂i(z) = σ(z), since vc, vd, vm do not
occur in β and by Theorem 6.3.5, σi(z) = σ(z) since z does not occur
in p. This allows us to conclude that for i < m, (Aar,fb , σi) |= β.

A similar argument, using the fact that (Aar,fb , σ) |=
terminationvc,vd,vm shows that (Aar, σm) |= (¬β).

We leave to the reader to prove that conditions (1) to (4) imply

(Aar,fb , [vc, vd, vm → c, d,m]σ) |= hypvc,vd,vm .

Suppose that (Aar,fb , σ) |= precond. To show that σ ∈
WLPAar(q, ψ), we assume that σ′ = SprAar(q)(σ) is defined. We prove

that (Aar, σ′) |= ψ. Define σi = (SprAar(p))
(i)(σ) and let m be least

1216 Logical Foundations of Computer Science — Volume 2

number such that (Aar, σm) |= (¬β). Clearly, σ0 = σ, σm = σ′, and
(Aar, σi) |= β for 0 ≤ i < m. By Theorem 4.7.7, there is a pair (c, d)
that encodes the sequence

(σ0(v0), . . ., σ0(vn−1), σ1(v0), . . ., σ1(vn−1), . . . , σm(v0), . . . , σm(vn−1)).

The properties (1) to (4) mentioned above hold and therefore,

(Aar,fb , [vc, vd, vm → c, d,m]σ) |= hypvc,vd,vm .

Since (Aar,fb , σ) |= precond, it follows that

(Aar,fb , [vc, vd, vm → c, d,m]σ) |= verificationvc,vd,vm .

Thus,

(Aar, [v0, . . . , vn−1 → σm(v0), . . . , σm(vn−1)][vc, vd, vm → c, d,m]σ) |= ψ.

By an argument similar to one given earlier in the proof, it follows
that (Aar, σ′) |= ψ.

Conversely, suppose that σ ∈ WLPAar(q, ψ). We need to prove
that (Aar,fb , σ) |= precond. In other words, we need to show that for
all c, d,m ∈ N, if

(Aar,fb , [vc, vd, vm → c, d,m]σ) |= hypvc,vd,vm ,

then

(Aar,fb , [vc, vd, vm → c, d,m]σ) |= verificationvc,vd,vm .

By the assumption made above, conditions (1) to (4) are satisfied and
so the state σm is SprAar(q)(σ). Since σ ∈ WLPAar(q, ψ), (Aar, σm) |=
ψ, so (Aar,fb , [vc, vd, vm → c, d,m]σ) |= verificationvc,vd,vm .

We have shown that the formula precond expresses the set of Aar-
states WLPAar(q, ψ).

Next, we obtain an Lar formula precond′ from the Lar,fb-formula
precond by applying the effective method of Supplement 101 of Chap-
ter 4 and using the fact that the Gödel function b is definable in Aar
as shown in Example 4.7.8.

Consequently, the desired assertion ωAar(q, ψ) is precond′� because
this latest formula is a variant of precond′ and, therefore, it expresses
the same set of A-states.

Observe that the argument of the proof provides an effective con-
struction of the assertion ωAar(q, ψ). �

Program Verification 1217

Theorem 6.6.18. The structure Aar is effectively expressive.

Proof. We will prove that there is an effective construction that for
every Lar-program p and for every Lar-assertion ψ, generates an Lar-
assertion ωAar(p, ψ) that expresses WLPAar(p, ψ). This suffices to
show that Aar is effectively expressive (see Exercise 49). The function
ωAar is defined recursively. Since this requires unique readability, we
need to formulate this definition separately for atomic programs and
programs in general.

For the initial step, suppose that p is v←t and let ψ be an asser-
tion. In this case, by Theorem 6.5.22, we can define ωat,Aar(p, ψ) as
(ψ)v:=t, because (ψ)v:=t is an assertion (since ψ is one).

For the first recursive step, let p be the program

if β then p0 else p1 endif

and define ωat,Aar(p, ψ) as the assertion

((β → ωAar(p0, ψ)) ∧ ((¬β)→ ωAar(p1, ψ))).

For the next recursive step, suppose that p is while β do
q endwhile and ψ is an assertion. Let PVAR(q) = {v0, . . . , vn−1}
and let ψ′ be

(¬(v0 = z0 ∧ · · · ∧ vn−1 = zn−1 ∧ y0 = z′0 ∧ · · · ∧ yn−1 = z′n−1)),

where y0, . . . , yn−1, z0, . . . , zn−1, z
′
0, . . . , z

′
n−1 are distinct program

variables that do not occur in q. Let α = ωAar(q, ψ′). By
Lemma 6.6.17, we obtain the assertion ωat,Aar(p, ψ).

For an atomic program p, we define ωAar(p, ψ) = ωat,Aar(p, ψ).
For the last recursive step, let p = p0; p1, where p0 is an atomic

program and, again, let ψ be an assertion. Define ωAar(p, ψ) as

ωat,Aar (p0, ωAar(p1, ψ)),

which is the needed assertion by Theorem 6.5.24.
Since the constructions in the preliminary steps described by the

theorems and the lemma quoted in this proof are effective, it follows
that the construction of the assertion ωAar(p, ψ) is effective. �

Our goal now is to show the undecidability of the Hoare partial
correctness theory of Presburger arithmetic. In fact, we will show

1218 Logical Foundations of Computer Science — Volume 2

the stronger result that this set is not even semidecidable. As we
have shown in Exercise 185 of Chapter 4, the first-order theory of
Presburger arithmetic is decidable, which makes this case especially
interesting in that it provides an example where the membership
problem of the Hoare partial correctness theory is strictly more dif-
ficult that the membership problem of the first-order theory of the
corresponding structure. The underlying reason for the greater dif-
ficulty of the membership problem of the Hoare partial correctness
theory is that certain operations can be defined by programs in a
structure but not by first-order formulas. In particular, multiplica-
tion can be defined through Lpra-programs, as we will show, but it
cannot be defined by first-order formulas in Apra.

We will prove that a special fragment of the Hoare partial cor-

rectness theory of Presburger arithmetic, namely, HPT↑
Lpra(Apra), is

undecidable. This is achieved by reducing the Post Correspondence
Problem to this fragment. In order to construct this reduction, we
will introduce a numerical encoding for words over finite alphabets.

Definition 6.6.19. Let V = {a0, . . . , an−1} be an alphabet. The
coding function is the mapping kV : V ∗ −→ N defined by

kV (ail−1
· · · ai0) = (il−1 + 1)nl−1 + · · ·+ (i1 + 1)n + (i0 + 1).

Note that kV (λ) = 0. The value of kV (w) depends on the order
chosen for the symbols of the alphabet V .

Example 6.6.20. Let V be the three-symbol alphabet V =
{a0, a1, a2}. We have kV (a2a2a0a1) = 3 · 33 + 3 · 32 + 1 · 3 + 2 = 113.

Note that for w,w′ ∈ V ∗, we have

kV (ww
′) = kV (w)n

|w′| + kV (w
′). (6.7)

Theorem 6.6.21. The mapping kV introduced in Definition 6.6.19
is a bijection.

Proof. We show by strong induction on m that there is at most
one word w ∈ V ∗ such that m = kV (w). Let trim(w) = w′ and
last(w) = a if w = w′a for some a ∈ V and trim(λ) = last(λ) = λ.

Program Verification 1219

Note that kV (w) = nkV (trim(w)) + kV (last(w)) and if w �= λ, then
kV (trim(w)) < kV (w).

For the basis step, m = 0, the statement is immediate because
w �= λ implies kV (w) ≥ 1. Suppose the statement is true for numbers
less than m > 0 and that m = kV (w0) = kV (w1). Since m > 0, we
have w0, w1 �= λ. By a previous observation, we have

nkV (trim(w0)) + kV (last(w0)) = nkV (trim(w1)) + kV (last(w1)),

which implies

|kV (last(w0))− kV (last(w1))| = n|kV (trim(w1))− kV (trim(w0))|.

Therefore, kV (last(w0)) = kV (last(w1)) since otherwise we would
have a number between 1 and n−1 in the left side of the last equality
which cannot be a multiple of n. Thus, w0 and w1 have the same
last symbols and we have kV (trim(w0)) = kV (trim(w1)) < m. By
the inductive hypothesis, trim(w0) = trim(w1) and this allows us to
conclude that w0 = w1.

To prove the surjectivity of kV , we show by strong induction on
m, that there is a word w ∈ V ∗ such that kV (w) = m. The basis step,
m = 0 is immediate. Suppose the statement holds for numbers less
than m. There are two numbers q, k ∈ N such that 0 ≤ q < m and
1 ≤ k ≤ n such that m = nq + k. By the inductive hypothesis, there
is a word w′ such that kV (w

′) = q. Therefore, kV (w
′ak−1) = m.

�

Example 6.6.22. The function lenV : N −→ N given by lenV (p) =
q if p = kV (w) and q = |w| for some w ∈ V ∗ is computable in the
structure Aar by the Lar-program plen and the sequence of variables
(x, y), where plen is:

y←0;
s←s(0);
t←s(0);
while (s ≤ x)

do t←t · sn(0);
s←s+ t;
y←s(y)

endwhile

1220 Logical Foundations of Computer Science — Volume 2

The program is based on the idea that the length of the word
whose code is x is the least number k such that 1+n+ · · ·+nk > x.

Example 6.6.23. The function concV : N2 −→ N, where
concV (p, p

′) = q if p = kV (w), p
′ = kV (w

′), and kV (ww
′) = q, is

computable in AarxlV by the program pconc and the variables x, x′, y,
where pconc is the LarxlV -program:

y←exp(sn(0), lenV (x
′)) · x+ x′

Here LarxlV is the language Lar ∪{exp, lenV } and AarxlV is the
expansion of Aar to LarxlV , where the function symbols exp and lenV
have the interpretations of exponentiation and lenV , respectively.

In the sequel, we will use the following sequence of six first-order
languages, whose definitions are included here for convenience:

Lpra = {=, <, 0, s,+}
Lar = Lpra ∪ {·}
Larx = Lar ∪ {exp}
LarxlV = Larx ∪ {lenV }
LarxlV cV = LarxlV ∪ {concV }
LarxlV cV b = LarxlV cV ∪ {fb}.

Also, we will use the structures Apra,Aar,Aarx,AarxlV , AarxlV cV ,
and AarxlV cV b. Here, the last five structures are extensions of Apra
to the first-order languages with the same index, respectively. For
AarxlV cV ,

conc
AarxlV cV
V (p, p′) = concV (p, p

′).

Also, in the last structure,

f
AarxlV cV b

b = b,

where b is the Gödel function.

Program Verification 1221

We will use

for k = t to u do
p

endfor

as an abbreviation for

k = t
while k ≤ u do

p;
k←s(k)

endwhile

Theorem 6.6.24. Let V be the alphabet {a, b}. For every V -instance
� of the PCP, an LarxlV cV b-program p	 can be constructed effectively
from � such that � has a solution if and only if

AarxlV cV b �|= {true
LarxlV cV b
� }p	{false

LarxlV cV b
� }.

Proof. Let � = (V, (q0, . . . , qn−1), (r0, . . . , rn−1)) be a V -instance
of the PCP. The idea of the program p	, shown in Figure 6.2, is
to check the subsequence consisting of those entries of the finite
sequence of indices (b(c, d, 0), . . . , b(c, d, k − 1)) which are less than
n, to see if it is a solution to �. Note that the Gödel function b is
being used to encode finite sequences. This is made possible by The-
orem 4.7.7 which says that every finite sequence can be obtained in
this way for appropriate values of c, d, k.

The variable top gives the code kV (qh0 · · · qhp−1), while bottom
contains the code kV (rh0 · · · rhp−1), where the pair (c, d) defines the
sequence of subscripts (i0, . . . , ik−1) via the Gödel function b; in other
words, b(c, d, j) = ij for 0 ≤ j < k and (h0, . . . , hp−1) is the subse-
quence of the sequence (i0, . . . , ik−1) which contains those entries less
than n.

Suppose that � has a solution, (i0, . . . , ik−1). By Theorem 4.7.7,
there are c, d ∈ N such that for every j, 0 ≤ j < k, b(c, d, j) = ij .
Note that when p	 is run in an input state where c, d and k are
initialized to these values, it halts, while if � has no solution, then
no matter what the input state is, p	 does not halt when started in
that state. �

1222 Logical Foundations of Computer Science — Volume 2

top ←0;
bottom ←0;
for i = 0 to k do

if (fb(c, d, i) == 0)
then top ←concV (top, skV (q0)(0));

bottom ←concV (bottom, skV (r0)(0))
else if(fb(c, d, i) == 1)

then top ←concV (top, skV (q1)(0));
bottom ←concV (bottom, skV (r1)(0))

else . . .
...

else if(fb(c, d, i) == n − 1)
then top ←concV (top, skV (qn−1)(0));

bottom ←concV (bottom, skV (rn−1)(0))
else top ←top;

bottom ←bottom
endif

...

endif
endif

endfor;
if ((top = bottom) ∨ (top = 0))

then while trueLpra do
top ←top

endwhile
else top ←top

endif

Fig. 6.2. The program p�.

Theorem 6.6.25. The set of triples HPT↑
LarxlV cV b

(AarxlV cV b), which

is a subset of the partial-correctness Hoare theory of the structure
AarxlV cV b is undecidable. Further, the full partial-correctness Hoare
theory of the same structure is undecidable.

Proof. By Theorem 6.6.24, the decidability of the subset men-
tioned in the theorem would entail the decidability of the PCP for
the alphabet {a, b}, which contradicts Theorem 4.14.10. The second
part of the statement follows immediately. �

Theorem 6.6.26. Let L be a decidable first-order language, A be an
L-structure and let g : |A|n −→ |A| be computable by an L-program
rg with a sequence (y0, . . . , yn). Let fg be an n-ary function symbol

Program Verification 1223

not in L and define L′ = L ∪ {fg}. Define the expansion A′ of A to

L′ by fA′
g = g.

The fragment HPT↑
L′(A′) is m-reducible to HPT↑

L(A), i.e.,

HPT↑
L′(A′) ≤m HPT↑

L(A).

Proof. The computability of the function q : WHILEL′ −→ WHILEL
shown in Theorem 6.4.16 implies that the function F : HPTL′ −→
HPTL given by F ({trueL′

� }p{falseL
′

� }) = {trueL� }q(p){falseL� } is com-
putable. This function is the needed m-reduction. �

Theorem 6.6.27. The fragment HPT↑
Lpra(Apra) of the partial-

correctness Hoare theory of Presburger arithmetic is undecidable.

Proof. This result follows from a sequence of reductions which we
outline below. In Example 6.4.5, we have shown that the function b
is computable in the structure Aar and therefore is computable in
AarxlV cV . By Theorem 6.6.26, we have

HPT↑
LarxlV cV b

(AarxlV cV b) ≤m HPT↑
LarxlV cV (AarxlV cV).

Next, the function concV is computable in the structure AarxlV as
we have shown in Example 6.6.23. This implies the reduction

HPT↑
LarxlV cV (AarxlV cV) ≤m HPT↑

LarxlV (AarxlV).

To obtain the next reduction, recall that the function lenV is com-
putable in the structure Aar as we established in Example 6.6.22 and
therefore in the structure Aarx. This gives us the reduction

HPT↑
LarxlV

(AarxlV) ≤m HPT↑
Larx(Aarx).

The exponentiation function is computable in Aar as shown

in Example 6.4.4, so HPT↑
Aarx(Aarx) ≤m HPT↑

Lar(Aar).
Finally, the computability of multiplication in the struc-
ture Apra shown in Example 6.4.3 gives the last reduction

HPT↑
Lar(Aar) ≤m HPT↑

Lpra(Apra). Putting together these reductions

yields HPT↑
LarxlV cV b

(AarxlV cV b) ≤m HPT↑
Lpra(Apra). The undecid-

ability of HPT↑
LarxlV cV b

(AarxlV cV b) shown in Theorem 6.6.25 together

with Theorem 1.4.9, gives the desired conclusion. �

1224 Logical Foundations of Computer Science — Volume 2

Corollary 6.6.28. The partial-correctness theory of Presburger
arithmetic HPTLpra(Apra) is undecidable.

Proof. This follows from Theorem 6.6.27. �

Theorem 6.6.29. Let L be a first-order language and A be an L-
structure, If ThL(A) is decidable, then the complement of HPTL(A)
is semidecidable.

Proof. By Theorem 6.5.20, we have A �|= H if and only if A �|= ΣH.
For a given H, let θ0, . . . , θn, . . . be a listing of the formulas of ΣH. As
noted after Theorem 6.5.20, such a listing can be effectively obtained
given H. To determine if H �∈ HPTL(A), we seek to find an index
i such that θi �∈ ThL(A). The membership of θi in ThL(A) can be
tested effectively under the hypotheses of the theorem. If such an i
can be found, we may conclude that H �∈ HPTL(A), which shows
that the complement of HPTL(A) is semidecidable. �

Corollary 6.6.30. The Lpra-partial correctness theory of Presburger
arithmetic, HPTLpra(Apra) is not semidecidable.

Proof. We know that HPTLpra(Apra) is undecidable (Corol-

lary 6.6.28). By Exercise 185 of Chapter 4, ThLpra(Apra) is decid-
able and therefore, Theorem 6.6.29 implies that the complement of
HPTLpra(Apra) is semidecidable. By Theorem 1.4.6, HPTLpra(Apra)
is not semidecidable. �

6.7 A Formal System for Hoare Triples

It would be desirable to have a sound, complete, effectively specified
formal system for Hoare triples. Namely, we would like to have, for
each first-order language L, a formal system FL such that for every
set of L-formulas Γ and L-partial correctness Hoare triple H, Γ≈| H
if and only if Γ �FL H. We would even settle for the existence of such
a formal system for the case when Γ would be a theory of the form
ThL(A) for an L-structure A. Unfortunately, as we show, there are
structures for which this is unachievable by any formal system.

Theorem 6.7.1. There is no effectively specified formal system
F whose set of objects consists of first-order Lpra-formulas and

Program Verification 1225

Lpra-partial correctness Hoare triples such that for all Lpra-partial
correctness triples H, we have ThLpra(Apra)≈| H if and only if

ThLpra(Apra) �F H.
Proof. Suppose that a formal system F with the properties spec-
ified in the theorem exists. Then, by Exercise 185 of Chapter 4 and
Corollary 1.8.30, the set of objects inferrable in F from ThLpra(Apra)
is semidecidable. Consequently, by Exercise 38 of Chapter 1, the set
{H | ThLpra(Apra) �F H} is semidecidable. By our assumption, this

would imply that the set {H | ThLpra(Apra)≈| H} is semidecidable.
Since this is HPTLpra(Apra) by Corollary 6.5.21, we contradict Corol-
lary 6.6.30. �

In view of the previous negative result, the introduction of a for-
mal system that proves Hoare triples may seem futile. However, we
will exhibit a sound system that is effectively specified and complete
in the sense of Theorem 6.7.1 for certain structures.

Definition 6.7.2. Let L be a first-order language. The Hilbert/
Hoare formal system HHL consists of:

• FORML ∪ HPTL as set of objects.
• The rule RL

mp inherited from the Hilbert/Frege formal system, sup-

plemented by four rules RL
if , R

L
while, R

L
comp and RL

imp, which are
given by:

◦ the if rule:

{(β ∧ ϕ)}p{ψ}, {((¬β) ∧ ϕ)}p′{ψ}
{ϕ} if β then p else p′ endif{ψ} RL

if

◦ the while rule:

{(ϕ ∧ β)}p{ϕ}
{ϕ} while β do p endwhile{(ϕ ∧ (¬β))} RL

while

◦ the composition rule:

{ϕ}p{θ}, {θ}p′{ψ}
{ϕ}p; p′{ψ} RL

comp

◦ the implication rule:

(ϕ→ ϕ′), {ϕ′}p{ψ′}, (ψ′ → ψ)

{ϕ}p{ψ} RL
imp

1226 Logical Foundations of Computer Science — Volume 2

for ϕ,ψ, β, θ, ϕ′, ψ′ ∈ ASSERTL and p, p′ ∈ WHILEL.
• The axiom set consists of all axioms of the Hilbert/Frege system
HFL supplemented by the assignment axiom set consisting of the
L-partial correctness Hoare triples of the form {(ϕ)v:=t}v←t{ϕ}
for ϕ ∈ ASSERTL, v ∈ PVAR and t ∈ TERML(PVAR).

Lemma 6.7.3. Let L be a first-order language. If the L-structure A
is a model of the hypotheses of an instance of the rule RL

if , then A
is a model of the conclusion of this instance.

Proof. Let

{(β ∧ ϕ)}p{ψ}, {((¬β) ∧ ϕ)}p′{ψ}
{ϕ} if β then p else p′ endif {ψ}

be an instance of the rule RL
if . Assume that (A, σ) |= ϕ, and that

SprA (if β then p else p′ endif)(σ)

is defined. We have either (A, σ) |= β or (A, σ) |= (¬β).
In the first case, we have (A, σ) |= (β ∧ ϕ) and

SprA (if β then p else p′ endif)(σ) = SprA (p)(σ),

so SprA (p)(σ) is defined and (A,SprA (p)(σ)) |= ψ because A |= {(β ∧
ϕ)}p{ψ}. Thus, we have shown that (A, σ) satisfies the conclusion of
the rule.

The second case is similar and is left to the reader. Since the above
statements hold for every σ, we may conclude that A is a model of
the conclusion of this instance. �

Lemma 6.7.4. Let L be a first-order language. If the L-structure A
is a model of the hypotheses of an instance of the rule RL

while, then
A is a model of the conclusion of this instance.

Proof. Consider an instance of the rule RL
while:

{(ϕ ∧ β)}p{ϕ}
{ϕ} while β do p endwhile{(ϕ ∧ (¬β))}

Suppose that (A, σ) |= ϕ and σ′ = SprA (q)(σ) is defined, where q =

while β do p endwhile. Let σj denote the state (SprA (p))(j)(σ),

Program Verification 1227

whenever this state is defined and let k be the least number such
that (A, σj) |= β for 0 ≤ j < k and (A, σk) |= (¬β). Note that
σ′ = σk.

We show by induction on j that (A, σj) |= ϕ for 0 ≤ j ≤ k. The
basis step is immediate by the hypothesis made above. Suppose the
statement holds for i < k. Then, (A, σi) |= (ϕ ∧ β) and therefore
(A, σi+1) |= ϕ because σi+1 = SprA (p)(σi) and the fact that A is
a model of the hypothesis of the rule. Thus, we can conclude that
(A, σ′) |= (ϕ ∧ (¬β)) because, as we stated above, σ′ = σk. �

Lemma 6.7.5. Let L be a first-order language. If the L-structure A
is a model of the hypotheses of an instance of the rule RL

comp, then A
is a model of the conclusion of this instance.

Proof. Let

{ϕ}p{θ}, {θ}p′{ψ}
{ϕ}p; p′{ψ}

be an instance of the RL
comp rule.

Let A be an L-structure such that A |= {ϕ}p{θ} and A |=
{θ}p′{ψ}. Suppose that (A, σ) |= ϕ and that σ′ = SprA (p; p′)(σ)
is defined. This means that σ1 = SprA (p)(σ) is defined and σ′ =
SprA (p′)(σ1). The first part of the hypothesis of the lemma implies
that (A, σ1) |= θ and therefore, by the second part of the hypothesis,
(A, σ′) |= ψ. �

Lemma 6.7.6. Let L be a first-order language. If the L-structure A
is a model of the hypotheses of an instance of the rule RL

imp, then A
is a model of the conclusion of this instance.

Proof. Consider an instance

(ϕ→ ϕ′), {ϕ′}p{ψ′}, (ψ′ → ψ)

{ϕ}p{ψ}

of the RL
imp rule.

Let A be an L-structure such that A |= (ϕ→ ϕ′), A |= {ϕ′}p{ψ′}
and A |= (ψ′ → ψ). Suppose that (A, σ) |= ϕ and σ′ = SprA (p)(σ) is
defined. Clearly, we have (A, σ) |= ϕ′ and, therefore, (A, σ′) |= ψ′,
which allows us to conclude that (A, σ′) |= ψ. �

1228 Logical Foundations of Computer Science — Volume 2

Theorem 6.7.7 (Soundness of HHL). Let L be a first-order lan-
guage and let Γ be a set of L-formulas. If Γ �HHL θ, then Γ≈| θ.

Proof. The argument is by induction on the theorems of HHL
Γ . If

θ is a formula of Γ, the conclusion is immediate. If θ is an axiom of
HFL, the conclusion follows from the logical validity of θ established
in the proof of Theorem 5.2.2. If θ is an assignment axiom, then the
result follows from Theorem 6.5.9.

To prove the inductive steps, assume that Γ≈| θi for 0 ≤ i ≤ n−1,
where

θ0, . . . , θn−1

θ R

is an instance of a rule R of HHL
Γ . Then, if R is not RL

mp, by Lem-
mas 6.7.3 to 6.7.6, Γ≈| θ. We leave to the reader the case when R is
RL
mp. �

Theorem 6.7.8. Let L be a first-order language. The rule given by:

{ϕ0}p0{ψ}, {ϕ1}p1{ψ}
{((β → ϕ0) ∧ ((¬β)→ ϕ1))} if β then p0 else p1 endif{ψ} R

call
altif

is a derived rule of the Hilbert/Hoare formal system HHL, for
ϕ0, ϕ1, ψ ∈ ASSERTL and p0, p1 ∈ WHILEL.

Proof. Let ϕ′ = ((β → ϕ0) ∧ ((¬β)→ ϕ1)). Since ((ϕ′ ∧ β)→ ϕ0)
and ((ϕ′ ∧ (¬β)) → ϕ1) are tautologies, by the completeness of the
Hilbert/Frege formal system, they are theorems of the system, and,
therefore, they are theorems of the Hilbert/Hoare system. By two
applications of the implication rule, we obtain the Hoare triples {(ϕ′∧
β)}p0{ψ} and {(ϕ′ ∧ (¬β))}p1{ψ}. Finally, by an application of the
if rule, we obtain the triple {ϕ′} if β then p0 else p1 endif{ψ},
which concludes the argument. �

Theorem 6.7.9. Let A be an L-structure and let θ be an object of the
formal system HHL. The following three statements are equivalent:

(1) A |= θ;
(2) ThL(A) |= θ;
(3) ThL(A)≈| θ.

Program Verification 1229

Proof. We proved the equivalence of the statements for θ ∈
FORML in Theorem 4.13.28. Therefore, we can assume that θ is
a L-partial correctness triple H. We shall prove the implications
(1)⇒ (3)⇒ (2)⇒ (1).

(1) ⇒ (3): Suppose that A |= H. By Theorem 6.5.20, A |= ΣH,
which implies that ΣH ⊆ ThL(A). Let B be a model of ThL(A). We
have B |= ΣH, which implies B |= H, again by Theorem 6.5.20. Thus,
(3) holds.

(3) ⇒ (2): Suppose that ThL(A)≈| H. If (B, σ) |= ThL(A), then
B |= ThL(A) because ThL(A) consists of sentences. By (3), B |= H,
so (B, σ) |= H. Thus, (2) holds.

(2) ⇒ (1): Suppose that ThL(A) |= H. For every A-state σ, we
have (A, σ) |= ThL(A), which implies (A, σ) |= H. Therefore, we
obtain statement (1), that is A |= H. �

Theorem 6.7.10 (Relative Completeness of HHL). Let L
be a first-order language. If A is an expressive L-structure and
ThL(A)≈| θ, then ThL(A) �HHL θ, for every object θ of HHL.

Proof. Suppose θ ∈ FORML. Then, by Theorem 4.13.28,
ThL(A) |= θ. By the completeness of the Hilbert/Frege system,
we have ThL(A) �HFL θ. Since the axioms and inference rules

of HFL exist also in the Hilbert/Hoare system, it follows that
ThL(A) �HHL θ.

Now suppose that θ = {ϕ}p{ψ}. The argument is by induction
on the L-program p.

For the basis step, suppose that p = v←t. By Corollary 6.5.21,
we have A |= {ϕ}p{ψ}. By Theorem 6.5.22, (ψ)v:=t expresses
WLPA(v←t, ψ) and thus, by Theorem 6.6.7, A |= (ϕ → (ψ)v:=t).
Another application of Theorem 4.13.28 yields ThL(A) |= (ϕ →
(ψ)v:=t). Consequently, ThL(A) �HHL (ϕ → (ψ)v:=t). Since

{(ψ)v:=t}v←t{ψ} is an assignment axiom of HHL, an application
of the implication rule RL

imp shows that ThL(A) �HHL {ϕ}v←t{ψ}.
The first inductive step involves programs of the form

p = if β then p0 else p1 endif,

where the inductive hypothesis holds for p0 and p1. Note that
A |= θ by Corollary 6.5.21. Then, by Theorem 6.5.10, we have
A |= {(β ∧ ϕ)}p0{ψ} and A |= {((¬β) ∧ ϕ)}p1{ψ}. As a result, we

1230 Logical Foundations of Computer Science — Volume 2

obtain ThL(A)≈| {(β ∧ ϕ)}p0{ψ} and ThL(A)≈| {((¬β) ∧ ϕ)}p1{ψ}
by Corollary 6.5.21. By the inductive hypothesis, we have

ThL(A) �HHL {(β ∧ ϕ)}p0{ψ}
ThL(A) �HHL {((¬β) ∧ ϕ)}p1{ψ}.

Finally, an application of rule RL
if yields the desired conclusion.

For the second inductive step, let p = while β do q endwhile,
where the inductive hypothesis holds for the program q. As above,
by Corollary 6.5.21, we have A |= θ. Since A is expressive, there is an
assertion γ that expresses WLPA(p, ψ). By Theorem 6.6.7, we have

A |= {γ} while β do q endwhile{ψ}.

By the second part of Theorem 6.5.11, we obtain

A |= {(γ ∧ β)}q; while β do q endwhile{ψ}.

Then, by the first part of Theorem 6.5.24, we have A |=
{(γ ∧ β)}q{γ}, which implies ThL(A)≈| {(γ ∧ β)}q{γ} by Corol-
lary 6.5.21. By inductive hypothesis, we obtain ThL(A) �HHL {(γ ∧
β)}q{γ}. An application of the rule RL

while gives ThL(A) �HHL
{γ} while β do q endwhile{(γ ∧ (¬β))}. By Theorem 6.6.7, we
have A |= (ϕ → γ), which yields ThL(A) �HHL (ϕ → γ), by an
argument already made above using Theorem 4.13.28. By the first
part of Theorem 6.5.11, we have A |= ((γ∧(¬β))→ ψ) which implies
ThL(A) �HHL ((γ ∧ (¬β)) → ψ). An application of the rule RL

imp
gives the needed result.

Finally, for the third inductive step, let p be a program of the form
p0; p1, where the statement holds for p0, p1. As above, A |= θ and the
expressiveness of A shows that there is a formula γ that expresses
WLPA(p1, ψ). By Part (1) of Theorem 6.5.24, we haveA |= {ϕ}p0{γ}.
Also, by Theorem 6.6.7, A |= {γ}p1{ψ}, which, in turn, show that

ThL(A)≈| {ϕ}p0{γ}
ThL(A)≈| {γ}p1{ψ}.

The inductive hypothesis implies that

ThL(A) �HHL {ϕ}p0{γ}
ThL(A) �HHL {γ}p1{ψ},

Program Verification 1231

which implies ThL(A) �HHL θ through an application of the rule
RL
comp. �

To facilitate obtaining proofs in the Hilbert/Hoare formal sys-
tem, we introduce below a special notation for these proofs called
annotated program.

Definition 6.7.11. A L-bracketed assertion is a string of the form
{ϕ}, where ϕ is an L-assertion. When the language L is clear from the
context, we will refer to L-bracketed assertions simply as bracketed
assertions.

Theorem 6.7.12. Let q be a string of basic symbols, {, }, and sym-
bols from a first-order language L. If ({ϕ}, i)and ({ψ}, j) are two
distinct occurrences of bracketed assertions in q, then these occur-
rences do not overlap.

Proof. This statement follows immediately from the observation
that no formula may contain an occurrence of { or }. �

Note that by Theorem 6.7.12, a string q that begins with a brack-
eted assertion determines uniquely this assertion, and the same is
true for the last bracketed assertion.

Definition 6.7.13. Let L be a first-order language. We define induc-
tively the sets APatL and APL called the set of atomic annotated L-
programs and the set of annotated L-programs, respectively. These
sets consist of sequences of basic symbols, specification variables,
symbols of L, and the symbols { and }.

(1) {(ϕ)v:=t}
v←t
{ϕ}

is an atomic annotated L-program, where ϕ is an L-assertion, v is
a program variable, and t is an L-term containing only program
variables.

(2) If a is an annotated L-program that begins with {(β ∧ ϕ)} and
ends with {ψ} and b is an annotated L-program that begins with
{((¬β) ∧ ϕ)} and ends with {ψ}, then

1232 Logical Foundations of Computer Science — Volume 2

{ϕ}
if β

then
a
else
b
endif

{ψ}
is an atomic annotated L-program. Here β is a quantifier-free
L-formula.

(3) If a is an annotated L-program that begins with {(β ∧ ϕ)} and
ends with {ϕ}, then
{ϕ}
while β do
a

endwhile
{((¬β) ∧ ϕ)}

is an atomic annotated L-program, where β is a quantifier-free
L-formula.

(4) If a is an annotated L-program and ϕ′, ψ′ are L-assertions, then
{ϕ′}
a
{ψ′}

is an atomic annotated L-program.
(5) Every atomic annotated L-program is an annotated L-program.
(6) If a0 is an atomic annotated L-program and a1 is an annotated
L-program, then a0; a1 is an annotated L-program.

To prove the unique readability of the definition of annotated
program, we need to introduce the notions of opening and closing
assertion and to prove several related technical results.

Definition 6.7.14. An occurrence of a bracketed assertion in an
annotated program a is closing if either the suffix of a following the
occurrence consists only of bracketed assertions or the first symbol
following the occurrence that is not part of a bracketed assertion is
among the symbols

endwhile else endif ;

Any occurrence which is not closing is opening.

Program Verification 1233

Example 6.7.15. By Part 1 of Definition 6.7.13, the following
sequences

a0: {(((x + y)− ((x+ y)− y)) = y� ∧ ((x+ y)− y) = x�)}
x←x+ y

{((x − (x− y)) = y� ∧ (x− y) = x�)}

a1: {((x − (x− y)) = y� ∧ (x− y) = x�)}
y←x− y

{((x − y) = y� ∧ y = x�)}

a2: {((x − y) = y� ∧ y = x�)}
x←x− y

{(x = y� ∧ y = x�}
are atomic annotated programs. Then, by Part 5 of the definition,
a2 is an annotated program and, therefore, by Part 6, a1; a2 is an
annotated program.

Next, by Part 6, a0; a1; a2 is an annotated program Finally, by
Part 4 followed by Part 5, the sequence

{(x = x� ∧ y = y�)}a0; a1; a2{(x = y� ∧ y = x�)},

that is,
0) {(x = x� ∧ y = y�)}
1) {(((x + y)− ((x+ y)− y)) = y� ∧ ((x+ y)− y) = x�)}
2) x←x+ y
3) {((x − (x− y)) = y� ∧ (x− y) = x�)};
4) {((x − (x− y)) = y� ∧ (x− y) = x�)}
5) y←x− y
6) {((x − y) = y� ∧ y = x�)};
7) {((x − y) = y� ∧ y = x�)}
8) x←x− y
9) {(x = y� ∧ y = x�)}
10) {(x = y� ∧ y = x�)}

is an annotated program. (We numbered the lines for easy reference;
the line numbers are not part of the annotated program.) The brack-
eted assertions on lines 3, 6, 9, and 10 are closing occurrences. The
remaining occurrences are opening.

1234 Logical Foundations of Computer Science — Volume 2

Theorem 6.7.16. Let L be a first-order language and let ai be anno-
tated L-programs for 0 ≤ i ≤ 3 and a be an atomic annotated L-
program, where

• a1 begins with {(β ∧ ϕ)} and ends with {ϕ};
• a2 begins with {(β ∧ ϕ)} and ends with {ψ};
• a3 begins with {((¬β) ∧ ϕ)} and ends with {ψ}.

Consider the annotated programs:
b0: {ϕ′}a0{ψ′}
b1: {ϕ} while β do a1 endwhile{((¬β) ∧ ϕ)}
b2: {ϕ} if β then a2 else a3 endif{β}
b4: a; a0

(1) An occurrence of a bracketed assertion in a0 is closing if and
only if the corresponding occurrence in b0 is closing.

(2) An occurrence of a bracketed assertion in a1 is closing if and
only if the corresponding occurrence in b1 is closing.

(3) An occurrence of a bracketed assertion in a2 or a3 is closing if
and only if the corresponding occurrence in b2 is closing.

(4) An occurrence of a bracketed assertion in a or a0 is closing if
and only if the corresponding occurrence in b3 is closing.

Proof. We prove only the second part of the theorem, since the
other parts have similar arguments. Let o be an occurrence of a
bracketed assertion in a1 and o′ be the corresponding occurrence in
b1. Suppose that o is closing in a1. If the suffix of a1 following o
consists of bracketed assertions, then the first symbol in b1 following
o′ that is not contained in a bracketed assertion is endwhile, so o′
is closing in b1. On the other hand, if the first symbol in a1 following
o that is not part of a bracketed assertion is among the symbols
endwhile, else, endif, ;, then the same is true for the first symbol
which follows o′ in b1 and is not a part of a braketed assertion. Again,
we conclude that o′ is closing in b1.

Conversely, suppose that o′ is closing in b1. In this case, the first
symbol in b1 that occurs outside of a bracketed assertion is one of
the symbols endwhile, else, endif, ;. If this symbol occurs inside
a1, then o is clearly closing in a1. Otherwise, this occurrence is the
endwhile that follows a1, which implies that o is followed in a1 only
by bracketed assertions and so is closing. �

Program Verification 1235

Theorem 6.7.17. Every annotated program begins with an opening
occurrence of a bracketed assertion and ends with a closing occurrence
of a bracketed assertion.

Proof. The argument for the opening occurrence is by induction
on annotated programs. If the annotated program is
{(ϕ)v:=t}
v←t
{ϕ}

then the occurrence ({(ϕ)v:=t}, 0) is clearly opening.
Similarly, the initial occurrence ({ϕ}, 0) in the annotated pro-

grams introduced by Parts 2 and 3 of Definition 6.7.13 are opening.
Suppose now that b is the annotated program
{ϕ′}
a
{ψ′}

where the statement holds for a. The beginning occurrence of a brack-
eted assertion in a is opening and therefore, the first symbol that fol-
lows this occurrence in a and is not included in a bracketed assertion
is not one of the special symbols identified above. This implies that
the same thing is true for the initial occurrence ({ϕ′}, 0) of b, so this
occurrence is opening. We leave to the reader the treatment of the
last case of Definition 6.7.13.

It is easy to show by induction that every annotated program ends
with an occurrence of a bracketed assertion and this is necessarily
closing. �

Theorem 6.7.18. Every annotated program has equal numbers of
opening and closing occurrences of bracketed assertions.

Proof. The argument is by induction on annotated programs using
Theorems 6.7.16 and 6.7.17 and is left to the reader. �

Definition 6.7.19. Let a be an annotated program and let (s, i) be
an occurrence of a symbol s in a. The level, leva(s, i), is the number
of complete occurrences of opening assertions, while s, and if s
located to the left of the occurrence minus the number of complete
occurrences of closing assertions, endwhiles, and endifs located
to the left of the occurrence.

1236 Logical Foundations of Computer Science — Volume 2

For annotated programs, we have a result similar to Lemma 6.2.7:

Lemma 6.7.20. Let L be a first-order language. For every annotated
program a ∈ APL, we have |a|while = |a|endwhile and |a|if = |a|endif.

Proof. The argument is by induction based on Definition 6.7.13
and is left to the reader. �

Further, we have a lemma that is the analog of Lemmas 6.2.8
and 6.2.9:

Lemma 6.7.21. Let L be a first-order language and a be an anno-
tated L-program. For any occurrence of a semicolon in a, the level of
the occurrence is nonnegative. Further, if a is an atomic annotated
program, the level of any occurrence of a semicolon in a is positive.
Also, the level of any occurrence of else in a is positive.

Proof. The proof is by induction on annotated programs and par-
allels the arguments of Lemma 6.2.8 and 6.2.9. �

Theorem 6.7.22. Definition 6.7.13 meets the unique readability
condition.

Proof. We need to prove:

• Every atomic annotated program is put in the set APatL by only one
of Rules (1)–(4) of the definition.

• If an atomic annotated program enters APatL by Rule (2), (3) or (4),
then a (and b for Rule (2)), are uniquely determined.

• Every annotated program is put in the set APL by only one of
Rules (5) and (6) of the definition.

• If an annotated program enters APL by Rule (6), then the atomic
annotated program a0 and the annotated program a1 are uniquely
determined.

Note that in principle a uniqueness condition has to be proved for
Rule (5). However, this condition is trivially satisfied.

If c is an atomic annotated program, we need to examine the
first symbol following the initial bracketed assertion. If this symbol
is a variable, then c entered APatL due to Rule (1). Otherwise, if this
symbol is if, while or {, then c entered APatL due to Rules (2), (3),
or (4), respectively.

Program Verification 1237

If c = {ϕ} if β then a else b endif{ψ}, then c contains exactly
one occurrence of else at level 2. Indeed, note that any occurrence
of else in a or b is at least at level 1 within these annotated pro-
grams and each such occurrence is preceded by an opening occurrence
of a bracketed assertion and by an if in c, which guarantees that
such occurrences would be at least level 3. Therefore, a is the infix of
c located between the first occurrence of then and the occurrence
of else at level 2, and b is the infix located between this occurrence
of else and the last occurrence of endif.

If c = {ϕ} while β do a endwhile{((¬β) ∧ ϕ)}, then a is the
infix of c located between the initial do and final endwhile.

When c = {ϕ′}a{ψ′}, then a is the infix between the first brack-
eted assertion and the last bracketed assertion.

An annotated program enters APL by Rule (6) if and only if it
contains an occurrence of a semicolon at level 0, since every semicolon
that occurs in an atomic annotated program is at positive level by
Lemma 6.7.21. If the program was put in by Rule (6), then the atomic
annotated program a0 is the prefix of c that ends just before the first
level 0 semicolon, and a1 is the suffix of c that follows this semicolon
occurrence. �

For each annotated L-program a, we will define an L-program
prog(a) and a set formulas VC(a) called the set of verification con-
ditions for a in Definitions 6.7.23 and 6.7.24. The idea is that a is
an attempted argument to show that H = {ϕ}prog(a){ψ} holds in
an L-structure A, where {ϕ} is the initial bracketed assertion in a
and {ψ} is the final bracketed assertion in a. The set of formulas
VC(a) will be defined such that if A |= VC(a), then ThL(A) �HHL H
and thus, by the soundness of HHL, A |= H. We will refer to the
L-partial correctness triple H as the target of a.

Since Definition 6.7.13 satisfies the unique readability condition,
the definitions of prog and VC can be given recursively.

Definition 6.7.23. Let L be a first-order language. We define two
functions progatL : APatL −→ WHILEL and progL : APL −→ WHILEL by:

(1) If c is the atomic annotated L-program
{(ϕ)v:=t}
v←t
{ϕ}

then progatL (c) = v←t.

1238 Logical Foundations of Computer Science — Volume 2

(2) Let a be an annotated L-program that begins with {(β ∧ ϕ)}
and ends with {ψ}. Also, let b be an annotated L-program that
begins with {((¬β)∧ϕ)} and ends with {ψ}. If c is the annotated
L-program
{ϕ}
if β

then
a
else
b
endif

{ψ}
then

progatL (c) = if β then progL(a) else progL(b) endif.

(3) Let a be an annotated L-program that begins with {(β∧ϕ)} and
ends with {ϕ}. If c is the atomic annotated L-program:
{ϕ}
while β do
a

endwhile
{((¬β) ∧ ϕ)}

then

progatL (c) = while β do progL(a) endwhile.

(4) Let a be an annotated L-program and let c be the atomic anno-
tated L-program
{ϕ′}
a
{ψ′}

Then, progatL (c) = progL(a).
(5) If c is an atomic annotated L-program, then progL(c) = progatL (c).
(6) Let a0 be an atomic annotated L-program and a1 be an anno-

tated L-program. For the annotated L-program c = a0; a1 we
have progL(c) = progatL (a0); progL(a1).

The L-partial correctness Hoare triple {ϕ}progL(c){ψ}, where {ϕ}
is the initial bracketed assertion of c and {ψ} is the final bracketed

Program Verification 1239

assertion of c is called the target of c and is denoted by targetL(c).
Also, we say that c is an annotated program for the triple targetL(c).

Definition 6.7.24. Let L be a first-order language. We define
two functions VCatL : APatL −→ P(FORML) and VCL : APL −→
P(FORML) by:

(1) If c is the atomic annotated L-program
{(ϕ)v:=t}
v←t
{ϕ}

then VCatL (c) = ∅.
(2) If a is an annotated L-program that begins with {(β ∧ ϕ)} and

ends with {ψ} and b is an annotated L-program that begins with
{((¬β) ∧ ϕ)} and ends with {ψ}, and c is the atomic annotated
L-program
{ϕ}
if β

then
a
else
b
endif

{ψ}
then VCatL (c) = VCL(a) ∪ VCL(b).

(3) If a is an annotated L-program that begins with {(β ∧ ϕ)} and
ends with {ϕ} and c is the atomic annotated L-program
{ϕ}
while β do
a

endwhile
{((¬β) ∧ ϕ)}

then VCatL (c) = VCL(a).
(4) If a is an annotated L-program and c is the atomic annotated
L-program
{ϕ′}
a
{ψ′}

1240 Logical Foundations of Computer Science — Volume 2

then VCatL (c) = VCL(a) ∪ {(ϕ′ → ϕ), (ψ → ψ′)}, where {ϕ} is
the initial bracketed assertion of a and {ψ} is the final bracketed
assertion of a.

(5) If c is an atomic annotated L-program, then VCL(c) = VCatL (c).
(6) If a0 is an atomic annotated L-program that ends with the brack-

eted assertion {ψ0}, a1 is an annotated L-program that begins
with the bracketed assertion {ϕ1}, and c is the annotated pro-
gram a0; a1, then VCL(c) = VCatL (a0) ∪ VCL(a1) ∪ {(ψ0 → ϕ1)}.
When there is no risk of confusion, we will drop the subscript L

and write simply VCat(c) and VC(c). We refer to the set VC(c) as the
set of verification conditions for c.

Theorem 6.7.25. Let L be a first-order language, A be an L-
structure, and let c be an annotated L-program. If A |= VCL(c), then
ThL(A) �HHL targetL(c).

Proof. The argument is by induction on annotated programs. The
basis step, when c is the annotated program
{(ϕ)v:=t}
v←t
{ϕ}

is immediate because target(c) = c is an assignment axiom of
HHL.

We need to consider several inductive steps. Suppose that c is the
annotated program
{ϕ}
while β do
a

endwhile
{((¬β) ∧ ϕ)}

and the statement holds for the annotated program a that begins
with {(β ∧ ϕ)} and ends with {ϕ}.

Since A |= VC(c) = VC(a), by the inductive hypothesis, we have

ThL(A) �HHL target(a) = {(β ∧ ϕ)}prog(a){ϕ}.

By applying the rule RL
while, we obtain

ThL(A) �HHL {ϕ} while β do prog(a) endwhile{((¬β) ∧ ϕ)}
= target(c).

Program Verification 1241

The case when c is of the form {ϕ} if β · · · {ψ} is similar and is left
to the reader.

Suppose now that c is the atomic annotated program
{ϕ′}
a
{ψ′}

where the statement holds for the annotated program a that begins
with {ϕ} and ends with {ψ}. Since A |= VC(c) = VC(a) ∪
{(ϕ′ → ϕ), (ψ → ψ′)}, it follows by the inductive hypothesis, that
ThL(A) �HHL target(a) = {ϕ}prog(a){ψ} = {ϕ}prog(c){ψ}. By

Theorem 4.13.28, we have ThL(A) |= (ϕ′ → ϕ) and ThL(A) |= (ψ →
ψ′). By the completeness of HFL, we have ThL(A) �HFL (ϕ′ → ϕ)

and ThL(A) �HFL (ψ → ψ′) and the same inferences can be made

in HHL. Therefore, by applying the implication rule, we obtain
ThL(A) �HHL {ϕ′}prog(c){ψ′} = target(c).

Let c be the annotated program a0; a1, where a0 is an atomic anno-
tated program ending with {ψ0}, a1 is an annotated program begin-
ning with {ϕ1}, and the statement holds for a0 and a1. Since A |=
VC(c) = VC(a0) ∪ VC(a1) ∪ {(ψ0 → ϕ1)}, it follows from the induc-
tive hypothesis that ThL(A) �HHL target(a0) = {ϕ0}prog(a0){ψ0}
and ThL(A) �HHL target(a1) = {ϕ1}prog(a1){ψ1}, where {ϕ0} is
the initial bracketed assertion of a0 and {ψ1} is the final bracketed
assertion of a1. Since A |= (ψ0 → ϕ1), by an argument similar to the
one in the previous paragraph, we have ThL(A) �HHL (ψ0 → ϕ1),

and clearly, ThL(A) �HHL (ϕ0 → ϕ0). By applying RL
imp, we obtain

ThL(A) �HHL {ϕ0}prog(a0){ϕ1}. Finally, an application of the com-
position rule yields

ThL(A) �HHL {ϕ0}prog(a0); prog(a1){ψ1}
= {ϕ0}prog(c){ψ1} = target(c).

�

Corollary 6.7.26. Let L be a first-order language, A be an L-
structure, and let c be an annotated L-program. If A |= VCL(c), then
A |= targetL(c).

Proof. Suppose that A |= VCL(c). By the previous theorem and
by the Soundness of HHL, we have ThL(A)≈| targetL(c). Therefore,
by Theorem 6.7.9, we have A |= targetL(c). �

1242 Logical Foundations of Computer Science — Volume 2

Example 6.7.27. For the atomic annotated programs a0, a1, a2 of
Example 6.7.15, we have

prog(a0) = x←x+ y

prog(a1) = y←x− y
prog(a2) = x←x− y.

Therefore, prog(a1; a2) = y←x − y; x←x − y and thus,
prog(a0; a1; a2) = x←x+ y; y←x− y;x←x− y. Consequently, if

c = {(x = x� ∧ y = y�)}a0; a1; a2{(x = y� ∧ y = x�)},

then prog(c) = x←x+ y; y←x− y;x←x− y, so the target of c is the
Hoare triple H1 given by:

{(x = x� ∧ y = y�)}x←x+ y; y←x− y;x←x− y{(x = y� ∧ y = x�)},

which is the partial correctness version of the total correctness Hoare
triple H of Example 6.5.6.

For the initial atomic annotated programs a0, a1, a2, we have
VC(ai) = ∅, for 0 ≤ i ≤ 2. Then, VC(a1; a2) = {θ12}, where
θ12 = (((x − y) = y� ∧ y = x�) → ((x − y) = y� ∧ y = x�)). Fur-
ther, VC(a0; a1; a2) = {θ12, θ0,12}, where θ0,12 = (((x − (x − y)) =
y� ∧ (x − y) = x�) → ((x − (x − y)) = y� ∧ (x − y) = x�)).
Finally, VC(c) = {θ12, θ0,12, θ, θ′}, where θ = ((x = x� ∧ y =
y�) → (((x + y) − ((x + y) − y)) = y� ∧ ((x + y) − y) = x�)) and
θ′ = ((x = y� ∧ y = x�)→ (x = y� ∧ y = x�)).

If A is the structure introduced in Example 6.3.12, then it is clear
that A |= {θ12, θ0,12, θ′} because all these formulas are tautologies,
and it is easy to see that A |= θ. Therefore, by Corollary 6.7.26,
A |= targetL(c). Indeed, we have shown the stronger total correctness
of H in A in Example 6.5.6. The purpose of this example was to prove
the partial correctness using the Hilbert/Hoare formal system HHL.

Definition 6.7.28. Let a0, a1 be two annotated programs such that
the initial bracketed assertion of ai is {ϕi} for i = 0, 1 and the closing
bracketed assertion of both a0 and a1 is {ψ}. Also, let ϕ′ be the
formula ((β → ϕ0) ∧ ((¬β)→ ϕ1). Then, the sequence

Program Verification 1243

{ϕ′}
if β

then
a0
else
a1
endif

{ψ}
is an abbreviation of the following annotated program:
{ϕ′}
if β

then
{(β ∧ ϕ′)}
a0
{ψ}
else
{((¬β) ∧ ϕ′)}
a1
{ψ}
endif

{ψ}

Theorem 6.7.29. Let a0, a1 be two annotated programs such that
the initial bracketed assertion of ai is {ϕi} for i = 0, 1 and the clos-
ing bracketed assertion of both a0 and a1 is {ψ}. Also, let ϕ′ be the
formula ((β → ϕ0)∧((¬β)→ ϕ1). For the annotated program c given
by:
{ϕ′}
if β

then
a0
else
a1
endif

{ψ}
we have:

prog(c) = if β then prog(a0) else prog(a1) endif

1244 Logical Foundations of Computer Science — Volume 2

target(c) = {ϕ′}prog(c){ψ}
VC(c) = VC(a0) ∪ VC(a1) ∪

{((β ∧ ϕ′)→ ϕ0), (ψ → ψ), (((¬β) ∧ ϕ′)→ ϕ1)}

Proof. This follows directly from the application of the definitions.
�

Note that all verification conditions of the program c of the pre-
vious theorem that do not belong to VC(a0)∪VC(a1) are tautologies.

Example 6.7.30. We construct an annotated program a for the
triple

H = {(x ≥ 0 ∧ y ≥ 0 ∧ x = x� ∧ y = y�)}p{z = gcd(x�, y�)},

where p is the program

while (x �= 0 ∧ y �= 0)
do if x > y

then x←x− y
else y←y − x

endif
endwhile;
if x = 0

then z←y
else z←x

endif

of Example 6.2.12, which can be written as p0; p1, where p0 is

while (x �= 0 ∧ y �= 0)
do if x > y

then x←x− y
else y←y − x

endif
endwhile

and p1 is the rest of p.
The process of constructing a involves “pulling up” the postcon-

dition ψ which is the assertion z = gcd(x�, y�).

Program Verification 1245

We begin by pulling up the postcondition through the assignment
statements z←y and z←x of p1 to obtain the annotated programs:

{y = gcd(x�, y�)}
z←y
{z = gcd(x�, y�)}

and

{x = gcd(x�, y�)}
z←x
{z = gcd(x�, y�)}

Starting from these two annotated programs, we obtain the anno-
tated program d1

{((x = 0→ y = gcd(x�, y�)) ∧ ((¬(x = 0))→ x = gcd(x�, y�)))}
if x = 0

then

{y = gcd(x�, y�)}
z←y
{z = gcd(x�, y�)}
else

{x = gcd(x�, y�)}
z←x
{z = gcd(x�, y�)}
endif

{z = gcd(x�, y�)}

The target of d1 is the triple

{((x = 0→ y = gcd(x�, y�)) ∧ ((¬(x = 0))→ x = gcd(x�, y�)))}
p1

{z = gcd(x�, y�)}

and the non-tautologous part of VC(d1) is empty. Now we have
reached a while loop while β · · · and we have to produce a new

1246 Logical Foundations of Computer Science — Volume 2

postcondition of the form ((¬β)∧θ), where θ is a loop invariant such
that

A′ |= (((¬β) ∧ θ)→ ϕ

where ϕ = ((x = 0 → y = gcd(x�, y�)) ∧ ((¬(x = 0)) → x =
gcd(x�, y�))) is the precondition of d1 and A′ is the structure intro-
duced in Example 6.5.7. We choose θ = (x ≥ 0 ∧ y ≥ 0∧ gcd(x, y) =
gcd(x�, y�)). In building the annotated program d0, we will also use
the formulas:

(θ)y:=y−x = (x ≥ 0 ∧ y − x ≥ 0 ∧ gcd(x, y − x) = gcd(x�, y�))

(θ)x:=x−y = (x− y ≥ 0 ∧ y ≥ 0 ∧ gcd(x− y, y) = gcd(x�, y�)).

Pulling θ through the assignment statements x←x− y and y←y− x
gives the annotated programs:

{(θ)x:=x−y}
x←x− y
{θ}

and

{(θ)y:=y−x}
y←y − x
{θ}

which give us the annotated program

{((x > y → (θ)x:=x−y) ∧ ((¬(x > y))→ (θ)y:=y−x))}
if x > y
then

{(θ)x:=x−y}
x←x− y
{θ}
else

{(θ)y:=y−x}
y←y − x
{θ}
endif

{θ}

Program Verification 1247

whose set of non-tautologous verification conditions is empty. Next,
since we need the conjunction of the while condition and the loop
invariant at the top of the annotated program inside the while
loop, we construct the annotated program e:

{(x �= 0 ∧ y �= 0 ∧ θ)}
{((x > y → (θ)x:=x−y) ∧ ((¬(x > y))→ (θ)y:=y−x))}
if x > y

then

{(θ)x:=x−y}
x←x− y
{θ}
else

{(θ)y:=y−x}
y←y − x
{θ}
endif

{θ}
{θ}

For this annotated program, we have

VC(e) = {((x �= 0 ∧ y �= 0 ∧ θ)→ ((x > y → (θ)x:=x−y) ∧
((¬(x > y))→ (θ)y:=y−x))), (θ → θ)}.

The final step in obtaining d0 is shown in Figure 6.3, where VC(d0) =
VC(e).

The annotated programs d0, d1 are now concatenated and
VC(d0; d1) = VC(d0) ∪ VC(d1) ∪ {(((¬(x �= 0 ∧ y �= 0)) ∧ θ) → ((x =
0→ y = gcd(x�, y�)) ∧ ((¬(x = 0))→ x = gcd(x�, y�))))}.

Finally, a is the annotated program

{(x ≥ 0 ∧ y ≥ 0 ∧ x = x� ∧ y = y�)}
d0;

d1

{z = gcd(x�, y�)}

1248 Logical Foundations of Computer Science — Volume 2

{θ}
while (x = 0 ∧ y = 0) do
{(x = 0 ∧ y = 0 ∧ θ)}
{((x > y → (θ)x:=x−y) ∧ ((¬(x > y)) → (θ)y:=y−x))}
if x > y

then
{(θ)x:=x−y}

x←x − y

{θ}
else
{(θ)y:=y−x}

y←y − x

{θ}
endif

{θ}
{θ}

endwhile
((¬(x = 0 ∧ y = 0)) ∧ θ)

Fig. 6.3. Annotated program d0.

which is shown in full in Figure 6.4, and VC(a) consists of the follow-
ing formulas:

((x �= 0 ∧ y �= 0 ∧ θ)→ ((x > y → (θ)x:=x−y)∧
((¬(x > y))→ (θ)y:=y−x))),

(θ → θ),

(((¬(x �= 0 ∧ y �= 0)) ∧ θ)→ ((x = 0→ y = gcd(x�, y�))∧
((¬(x = 0))→ x = gcd(x�, y�)))),

((x ≥ 0 ∧ y ≥ 0 ∧ x = x� ∧ y = y�)→ θ),

(z = gcd(x�, y�)→ z = gcd(x�, y�)).

The nontautological verification conditions from the list above are:

((x �= 0 ∧ y �= 0 ∧ (x ≥ 0 ∧ y ≥ 0 ∧ gcd(x, y) = gcd(x�, y�)))→
((x > y → (x− y ≥ 0 ∧ y ≥ 0 ∧ gcd(x− y, y) = gcd(x�, y�)))∧
((¬(x > y))→ (x ≥ 0 ∧ y − x ≥ 0 ∧ gcd(x, y − x) = gcd(x�, y�))))),

(((¬(x �= 0 ∧ y �= 0)) ∧ (x ≥ 0 ∧ y ≥ 0 ∧ gcd(x, y) = gcd(x�, y�)))→
((x = 0→ y = gcd(x�, y�))∧
((¬(x = 0))→ x = gcd(x�, y�)))),

((x ≥ 0 ∧ y ≥ 0 ∧ x = x� ∧ y = y�)→
(x ≥ 0 ∧ y ≥ 0 ∧ gcd(x, y) = gcd(x�, y�))).

Program Verification 1249

{(x ≥ 0 ∧ y ≥ 0 ∧ x = x ∧ y = y)}
{θ}
while (x = 0 ∧ y = 0) do
{(x = 0 ∧ y = 0 ∧ θ)}
{((x > y → (θ)x:=x−y) ∧ ((¬(x > y)) → (θ)y:=y−x))}
if x > y

then
{(θ)x:=x−y}

x←x − y

{θ}
else
{(θ)y:=y−x}

y←y − x

{θ}
endif

{θ}
{θ}

endwhile
{(¬(x = 0 ∧ y = 0) ∧ θ)};
{((x = 0 → y = gcd(x , y)) ∧ (¬(x = 0) → x = gcd(x , y)))}
if x = 0

then
{y = gcd(x , y)}

z y

{z = gcd(x , y)}
else
{x = gcd(x , y)}

z←

←

x

{z = gcd(x , y)}
endif

{z = gcd(x , y)}
z = gcd(x , y)

Fig. 6.4. Annotated program a.

The argument that these formulas are valid in A′ has been essen-
tially made in Example 6.5.7 and therefore, by Theorem 6.7.25, we
have another argument that ThL

′
(A′) �HHL′ H, and therefore, by

soundness of HHL′
, A′ |= H.

To increase readability of annotated programs, we will replace sys-
tematically subsequences of the form {α}{α} or {α}; {α} with {α}
and ; {α}, respectively. Since such subsequences yield only tautolog-
ical verification conditions of the form (α→ α), we will ignore these
associated verification conditions. With this notational convention,
the previous annotated program is given in Figure 6.5.

1250 Logical Foundations of Computer Science — Volume 2

{(x ≥ 0 ∧ y ≥ 0 ∧ x = x ∧ y = y)}
{θ}
while (x = 0 ∧ y = 0) do
{(x = 0 ∧ y = 0 ∧ θ)}
{((x > y → (θ)x:=x−y) ∧ ((¬(x > y)) → (θ)y:=y−x))}
if x > y

then
{(θ)x:=x−y}

x←x − y

{θ}
else
{(θ)y:=y−x}

y←y − x

{θ}
endif

{θ}
endwhile

{(¬(x = 0 ∧ y = 0) ∧ θ)};
{((x = 0 → y = gcd(x , y)) ∧ (¬(x = 0) → x = gcd(x , y)))}
if x = 0

then
{y = gcd(x , y)}

z←y

{z = gcd(x , y)}
else
{x = gcd(x , y)}

z←x

{z = gcd(x , y)}
endif
z = gcd(x , y)

Fig. 6.5. Simplified annotated program a.

Example 6.7.31. We wish to build an annotated program whose
target is the triple

H0 = {(x = x� ∧ y = y�)}p{z = xy�� },

where p is the program discussed in Examples 6.2.13, 6.3.14,
and 6.5.8. We begin by choosing the formula

θ = (∃�)(x = x2
�

� ∧ y = y� div 2
� ∧ z = xy� mod 2�

�)

as an invariant for the while loop. Pulling up this invariant
through the body of the while loop gives the annotated program of
Figure 6.6.

Next, we preface this annotated program with {(y �= 0 ∧ θ)} and
place the newly obtained annotated program inside the while loop
to obtain the annotated program shown in Figure 6.7.

Program Verification 1251

{(((d = 0 → (θ)x:=x∗x,z:=z∗x)∧
((¬(d = 0)) → (θ)x:=x∗x,z:=z)))y:=y div 2,d:=y mod 2}
d←y mod 2;
{(((d = 0 → (θ)x:=x∗x,z:=z∗x)∧
((¬(d = 0)) → (θ)x:=x∗x,z:=z)))y:=y div 2}

y←y div 2;
{((d = 0 → (θ)x:=x∗x,z:=z∗x) ∧ ((¬(d = 0)) → (θ)x:=x∗x,z:=z))}
if d = 0

then
{(θ)x:=x∗x,z:=z∗x}

z←z ∗ x

{(θ)x:=x∗x}
else
{(θ)x:=x∗x,z:=z}

z←z

{(θ)x:=x∗x}
endif;

{(θ)x:=x∗x}
x←x ∗ x

θ

Fig. 6.6. Initial annotated program for H0.

{θ}
while y = 0 do
{(y = 0 ∧ θ)}
{(((d = 0 → (θ)x:=x∗x,z:=z∗x)∧
((¬(d = 0)) → (θ)x:=x∗x,z:=z)))y:=y div 2,d:=y mod 2}

d←y mod 2;
{(((d = 0 → (θ)x:=x∗x,z:=z∗x)∧
((¬(d = 0)) → (θ)x:=x∗x,z:=z)))y:=y div 2}

y←y div 2;
{((d = 0 → (θ)x:=x∗x,z:=z∗x) ∧ ((¬(d = 0)) → (θ)x:=x∗x,z:=z))}
if d = 0

then
{(θ)x:=x∗x,z:=z∗x}

z←z ∗ x

{(θ)x:=x∗x}
else

{(θ)x:=x∗x,z:=z}
z←z

{(θ)x:=x∗x}
endif;

{(θ)x:=x∗x}
x←x ∗ x

{θ}
endwhile
(((y = 0)) θ)

Fig. 6.7. Intermediate annotated program for H0.

1252 Logical Foundations of Computer Science — Volume 2

{(x = x ∧ y = y)}
{(θ)z:=1}

z←1;
{θ}
while y = 0 do
{(y = 0 ∧ θ)}
{(((d = 0 → (θ)x:=x∗x,z:=z∗x)∧
((¬(d = 0)) → (θ)x:=x∗x,z:=z)))y:=y div 2,d:=y mod 2}

d←y mod 2;
{(((d = 0 → (θ)x:=x∗x,z:=z∗x)∧
((¬(d = 0)) → (θ)x:=x∗x,z:=z)))y:=y div 2}

y←y div 2;
{((d = 0 → (θ)x:=x∗x,z:=z∗x) ∧ ((¬(d = 0)) → (θ)x:=x∗x,z:=z))}
if d = 0

then
{(θ)x:=x∗x,z:=z∗x}

z←z ∗ x

{(θ)x:=x∗x}
else

{(θ)x:=x∗x,z:=z}
z←z

{(θ)x:=x∗x}
endif;

{(θ)x:=x∗x}
x←x ∗ x

{θ}
endwhile

{((¬(y = 0)) ∧ θ)}
z = xy

Fig. 6.8. Final annotated program for H0.

Finally, we pull θ through z←1 and we add the pre- and postcon-
ditions to get the annotated program of Figure 6.8. The nontrivial
verification conditions for this annotated program are:

((x = x� ∧ y = y�)→ (θ)z:=1)

((y �= 0 ∧ θ)→ (((d �= 0→ (θ)x:=x∗x,z:=z∗x)∧
((¬(d �= 0))→ (θ)x:=x∗x,z:=z)))y:=y div 2,d:=y mod 2)

(((¬(y �= 0)) ∧ θ)→ z = xy��).

Program Verification 1253

Applying now the necessary substitutions, these verification
conditions become:

((x = x� ∧ y = y�)→ (∃�)(x = x2
�

� ∧ y = y� div 2
� ∧ 1 = xy�mod 2�

�)

((y �= 0 ∧ (∃�)(x = x2
�

� ∧ y = y� div 2
� ∧ z = xy�mod 2�

�))→
((ymod2 �= 0→

(∃�)(x ∗ x = x2
�

� ∧ y div 2 = y� div 2
� ∧ z ∗ x = xy�mod 2�

�))∧
((¬(ymod2 �= 0))→

(∃�)(x ∗ x = x2
�

� ∧ y div 2 = y� div 2
� ∧ z = xy�mod 2�

�))

(((¬(y �= 0)) ∧ (∃�)(x = x2
�

� ∧ y = y� div 2
� ∧ z = xy�mod 2�

�))→
z = xy��).

The validity of these formulas in the structure A′ introduced in
Example 6.5.8 has been discussed in that example. Thus, we have
another proof that A′ |= H0.

The “pulling up” process we applied in Examples 6.7.27 to 6.7.31
involves at times “creative” steps, namely, when we have to deal with
while loop fragments. In such cases, we devised loop invariants and
used these invariants to produce nontrivial verification conditions.

In Figure 6.9, we review succinctly the pulling up technique. In
Figure 6.9(a), the process has reached the end of the while loop.
At stage (b), we invent the loop invariant ϕ and introduce the brack-
eted assertion {((¬β) ∧ ϕ)}, which yields the nontrivial verification
condition (((¬β)∧ϕ)→ θ). At stage (c), the invariant is placed below
the body p of the while loop. Next, at stage (d), the invariant has
been pulled through p to yield the bracketed assertion {α} and we
introduce the bracketed assertion {(β ∧ ϕ)}. This creates another
nontrivial verification condition ((β ∧ ϕ) → α). Finally, we obtain
the annotated program shown in Figure 6.9(e).

The previous discussion points out two ways of obtaining non-
trivial verification conditions linked to a while loop. The third
way of generating such a verification condition of an annotated pro-
gram for a triple {ϕ}p{ψ} is to pull the postcondition ψ through the

1254 Logical Foundations of Computer Science — Volume 2

while β do
p

endwhile;
{θ}
q

{ψ}

while β do
p

endwhile
{((¬β) ∧ ϕ)};
{θ}
q

{ψ}

while β do
p

{ϕ}
endwhile
{((¬β) ∧ ϕ)};
{θ}
q

{ψ}

while β do
{(β ∧ ϕ)}
{α}
p

{ϕ}
endwhile
{((¬β) ∧ ϕ)};
{θ}
q

{ψ}

{ϕ}
while β do
{(β ∧ ϕ)}
{α}
p

{{ϕ}
endwhile
{((¬β) ∧ ϕ)};
{θ}
q

{ψ}

(a) (c)

(d)

(b)

(e)

Fig. 6.9. Step-by-step construction of an annotated program.

program p to obtain the annotated program

{ψ′}
...
{ψ}

and prepending it with the bracketed assertion {ϕ}. This creates the
verification condition (ϕ→ ψ′).

6.8 Exercises and Supplements

The WHILEL Programming Language–Syntax

(1) If q is a prefix of an L-program, prove that

|q|if ≥ |q|then ≥ |q|else ≥ |q|endif
|q|while ≥ |q|endwhile.

Program Verification 1255

Conclude, using Lemma 6.2.7 that if r is a suffix of an L-program,
then

|r|if ≤ |r|then ≤ |r|else ≤ |r|endif
|r|while ≤ |r|endwhile.

(2) Prove that if (s, i) is an occurrence of a symbol s in an L-
program p, then levp(s, i) ≥ 0.

(3) Prove that for every occurrence (if,i) in an L-program p, we
have levp(if , i) ≥ 0 ; similarly, for every occurrence (while, i),
we have levp(while, i) ≥ 0. Further, show that if p is an atomic
program, the level of an occurrence of either if or while is
greater than 0 unless the occurrence is the first symbol of the
program, in which case the level is equal to 0.

(4) Prove that for every occurrence (endif, i) in an L-program
p, we have levp(endif, i) ≥ 1; similarly, for every occurrence
(endwhile, i), we have levp(endwhile, i) ≥ 1. Further, show
that if p is an atomic program, the level of an occurrence of
either endif or endwhile is greater than 1 unless the occur-
rence is the last symbol of the program, in which case the level
is equal to 1.

(5) Prove that no proper prefix (proper suffix) of an atomic L-
program q that is not a single variable is a suffix (prefix) of an
L-program p.
Infer that no proper prefix (proper suffix) of an atomic L-
program is an L-program.
Solution: We provide the solution for proper prefixes, that is,
we prove that no proper prefix of an atomic L-program that is
distinct from a single variable can be a suffix of an L-program.
The argument is by induction on the program p.
For the basis step, we have p = v←t, where v is a variable and t
is an (L,PVAR)-term. Let q be a suffix of p that is not a single
variable and suppose that q is a proper prefix of an atomic
L-program q. Since q does not contain if or while, q must
have the form v′←t′. Because q is not a single variable, we have
q = v′←q′, where q′ = λ or q′ is a proper prefix of t′. Since q is
a suffix of v←t, and t does not contain ←, we must v′ = v and
q′ = t. But then, either t = λ which is impossible, or t = q′,
where q′ is proper prefix of t′. This violates Lemma 1.5.11.

1256 Logical Foundations of Computer Science — Volume 2

There are several inductive steps depending on the nature of
p. Suppose initially that

p = while β do p0 endwhile

where the statement holds for p0. Let q be a suffix of p that
is a proper prefix of an atomic program q. There are several
subcases to consider:

• If q = λ, then q is not a proper prefix of q.
• If q = endwhile, then q starts with endwhile, which is

impossible.
• If q = q′ endwhile where q′ is a nonnull suffix of p0, then q

′ is
a proper prefix of q, which violates the inductive hypothesis,
unless q′ is a single variable. In the latter case, the second
symbol of q would be endwhile, which is impossible.

• If q = do p0 endwhile, then q starts with do, which is
impossible.

• Suppose q = q′ do p0 endwhile, where q′ is a nonnull suffix of
β. Then, since β does not contain either if orwhile, q must be
an assignment statement, but also contains endwhile, which
is impossible.

• Finally, suppose that q = p. Then, the level of the final
endwhile of p is the same in both p and q. This violates the
conclusion of Exercise 4 because the level of this endwhile in
p is 1 and the level of the same is greater than 1 in q.

The case when p is an if-statement is similar to the previous
case.
Consider now the case when p = p0; p1, where the assumption
holds for p0 and p1. Let q be a suffix of p that is not a single
variable and is a proper prefix of an atomic program q. There
are again several subcases to consider:

• If q is a suffix of p1, this would violate the inductive hypothesis.
• If q is ; p1, we obtain a contradiction because no atomic pro-

gram begins with a semicolon.
• Suppose that q = q′; p1, where q′ is a nonnull suffix of p0.

If q′ is not a single variable, then this violates the inductive
hypothesis because q′ is a proper prefix of q and a suffix of p0.
If q′ is a single variable, then the second symbol of q is “;”,
which is impossible.

Program Verification 1257

We leave the similar result involving proper suffixes of an
atomic program to the reader.

(6) Prove that if (; , i) is an occurrence at level 0 in an L-program
p, then p can be written as p = p0; p1, where |p0| = i and p0, p1
are L-programs.

(7) Prove that if an L-program r is a proper suffix of an L-program
p, then there is an L-program q such that p = q; r.
Also, prove that if an L-program r is a proper prefix of an
L-program p, then there is an L-program q such that p = r; q.
Solution: For the first part, we use induction on p. If p is
atomic, by Supplement 5, no proper suffix of p is a program,
so the result is vacuously true.
Suppose that p = p′; p′′, where p′, p′′ are L-programs for which
the inductive hypothesis holds. If r is a proper suffix of p′′,
then by inductive hypothesis, there is an L-program q′ with
p′′ = q′; r. Defining q = p′; q′, it follows that q is an L-program
and q; r = p′; q′; r = p′; p′′ = p.
If r = p′′, then let q = p′. In this case, we have q; r = p′; p′′ = p.
If p′′ is a proper suffix of r, say r = r′; p′′, we will show that
the level in r of the semicolon following r′ is 0. Observe that
by Lemma 6.2.7

|p′′|if = |p′′|endif, |p′′|while = |p′′|endwhile,

|r|if = |r|endif, |r|while = |r|endwhile,

so we have

|r′|if = |r′|endif, |r′|while = |r′|endwhile.

Thus, the level in r of the semicolon following r′ is 0. By Exer-
cise 6, r′ is an L-program. Since r′ is a proper suffix of p′, by
inductive hypothesis, there is an L-program q with p′ = q; r′.
We have q; r = q; r′; p′′ = p′; p′′ = p, as desired.
The argument for the second part is left to the reader.

(8) Prove that if we replace endwhile and endif in Defini-
tion 6.2.3 by end, then the new definition of WHILEatL and
WHILEL still has the unique readability property.

(9) Prove the following analog for programs of the Occurrence The-
orem for first-order formulas:
Let p, q, r be three programs in WHILEL and let β be an L-
formula.

1258 Logical Foundations of Computer Science — Volume 2

If p is an assignment statement and r �= p, then r does not
occur in p.
If r is distinct from p0 = if β then p else q endif, then
every occurrence of r in p0 is part of either p or q. (More
exactly, each occurrence of r in p0 is either part of the occur-
rence (p, 2 + |β|) or part of the occurrence (q, 3 + |β|+ |p|).)
If r is distinct from while β do p endwhile, then every
occurrence of r in while β do p endwhile is part of p. (More
exactly, each occurrence of r in while β do p endwhile is
part of the occurrence (p, 2 + |β|).
If r �= p; q, then every occurrence (r, i) in p; q falls under one
of the following two cases:

(a) (r, i) is part of either p or q. (More exactly, each occurrence
of r in p; q is either part of the occurrence (p, 0) or part of
the occurrence (q, 1 + |p|).)

(b) There are L-programs s, s′ such that p; q = s; r; s′ and i =
|s|+ 1, or p; q = s; r and i = |s|+ 1, or p; q = r; s′ and i = 0.

Solution: If p is the assignment statement v←t and r occurs
in p, then r must be an assignment statement v′←t′, since p
does not contain if,while or ;. Thus the two occurrences of ←
have to match and this implies that v′ = v and t′ is a prefix
of t. Since no proper prefix of a term is a term, it follows that
t′ = t and r = p.
If r occurs in p0 = if β then p else q endif, we consider
several cases:

• If r begins with the initial if, then since r �= p0, a proper
prefix of an atomic program is a program and this violates
Supplement 5.

• If r begins within β, it must extend beyond β because every
program contains an occurrence of ←. Therefore, r contains
an occurrence of then without a preceding occurrence of if,
which is impossible.

• It is impossible for r to start with then, else, or endif.
• If r starts in p, then r must end in p because otherwise r has

a prefix that consists of a suffix of p and else. This is impos-
sible because by the second part Exercise 1, the number of
occurrences of else in the prefix is more than the number of
occurrences of if, which violates the first part of Exercise 1.

Program Verification 1259

• If r starts in q, then it ends in q by an argument similar to
the one used in the previous part.

When r occurs in while β do p endwhile, the argument is
similar to the previous one.
Suppose r occurs in p; q. If r occurs in either p or q, then we
are done, so suppose that r starts in p and ends in q, say,
r = r0; r1, where r0 is a suffix of p and r1 is a prefix of q. Since
r0 is a prefix of r, by Exercise 1 |r0|if ≥ |r0|endif and |r0|while ≥
|r0|endwhile. Since r0 is also a suffix of p, by the same exercise,
|r0|if ≤ |r0|endif and |r0|while ≤ |r0|endwhile, which allows us to
conclude that |r0|if = |r0|endif and |r0|while = |r0|endwhile and
levr(; , |r0|) = 0. By Exercise 6, r = r′0; r′1, where r′0 and r′1 are
L-programs and |r′0| = |r0|, which implies that r0 and r1 are
L-programs.
If r0 = p and r1 = q, then r = r0; r1 = p; q. If r0 = p and
r1 is a proper prefix of q, then, by Supplement 7, there is an
L-program s′ with q = r1; s

′, so p; q = r0; r1; s
′ = r; s′.

If r0 is a proper suffix of p and r1 = q, then by the same
Supplement 7, there is an L-program s with p = s; r0, so p; q =
s; r0; r1 = s; r.
Finally, if r0 is a proper suffix of p and r1 is a proper prefix of
q, then, as above, p = s; r0, q = r1; s

′ and p; q = s; r; s′.
(10) Let p, q, r be L-programs. Prove that if (q, i) is an occurrence

of q in p, then replace (p, (q, i), r) is an L-program.
(11) Prove that every L-program p can be written uniquely as

p = r0; · · · ; rm−1

where m ≥ 1 and r0, . . . , rm−1 are atomic L-programs.
Solution: The existence of a decomposition p = r0; · · · ; rm−1

is easily shown by induction on programs. We prove next the
uniqueness of this decomposition by induction on m. For the
basis step, m = 1, suppose that we also have p = r′0; · · · ; r′�−1,
where r′j is an atomic L-program for 0 ≤ j ≤ � − 1. If � > 1,

then r′0 is a proper prefix of the atomic program r0 which is
impossible by Supplement 5. Thus, � = 1 and r′0 = p = r0.
For the inductive step, assume that m > 1, the result is true
for m− 1, and let p = r0; · · · ; rm−1. Suppose that we also have
p = r′0; · · · ; r′�−1, where r′0, . . . , r

′
�−1 are atomic L-programs.

Since no atomic program can be a proper prefix of another

1260 Logical Foundations of Computer Science — Volume 2

atomic program, by Supplement 5, we must have r0 = r′0 and
hence r1; · · · ; rm−1 = r′1; · · · ; r′�−1. By inductive hypothesis, we
have � = m and rh = r′h for 1 ≤ h ≤ m− 1.

(12) Prove that if (r, i) is an occurrence of an L-program r in an
L-program p = p0; · · · ; pm−1, where m ≥ 1 and pi is an atomic
L-program for 0 ≤ i ≤ m − 1, then either the occurrence of r
is part of one the pi or there are 0 ≤ j < k ≤ m− 1 such that
r = pj ; · · · ; pk.
Solution: If the occurrence of r is part of one of the atomic pro-
grams pi, we are done. Otherwise, since a program can neither
start nor end with “;”, there are j, k with 0 ≤ j < k ≤ m− 1
such that the occurrence of r starts in pj and ends in pk.
If the occurrence of r does not start with the first symbol of pj ,
then a proper suffix of pj is a prefix of r. If the proper suffix is
not a single variable, this contradicts Supplement 5 and if the
suffix is a single variable, then the second symbol of r would
be a semicolon, which is impossible. Thus, the occurrence of r
starts with the first symbol of pj .
By a similar argument, the end of the occurrence of r is the
last symbol of pk. Thus, r = pj ; · · · ; pk.

(13) Let L be a first-order language and repeat, until, and
endrepeat be three new program symbols. Define inductively
the set R-WHILEL by replacing WHILEL with R-WHILEL in the
rules of Definition 6.2.1 and by adding the following rule:

If p belongs to R-WHILEL, and β is an (L,PVAR)-formula
that is quantifier-free, then

repeatp until β endrepeat

belongs to R-WHILEL.

Prove that any sequence in R-WHILEL has the same number of
occurrences of the symbols repeat, until and endrepeat.

(14) Let L be a first-order language. Define the sets of sequences
R-WHILEatL and R-WHILE′L by replacing WHILEatL by R-WHILEatL
and WHILE′L by R-WHILE′L in Definition 6.2.3 and by adding
the rule:

If p belongs to R-WHILE′
L and β is an (L,PVAR)-formula

that is quantifier-free, then

repeatp until β endrepeat

belongs to R-WHILEat
L .

Program Verification 1261

(a) Show that if p, p′ ∈ R-WHILE′L, then p; p′ ∈ R-WHILE′L.
(b) Prove that R-WHILE′L = R-WHILEL.

(15) Extend the definition of the level of an occurrence (s, i) of a
symbol s in a program p ∈ R-WHILEL by

levp(s, i) = |q|while − |q|endwhile + |q|if − |q|endif + |q|repeat

− |q|endrepeat,

where q = PREF(p, i). Prove that

(a) the level of any occurrence of a semicolon in p is nonnega-
tive;

(b) if p is atomic, the level of any occurrence of a semicolon in
p is positive;

(c) the level of any occurrence of else in p is positive.

(16) Prove that the definition of the sets R-WHILEatL and R-WHILE′L =
R-WHILEL given in Exercise 14 meets the unique readability
condition.

(17) Show that if (repeat, i) is an occurrence in a program p ∈
R-WHILEL, then there is a program q ∈ R-WHILEL which is a
repeat-statement such that (q, i) is an occurrence in p. For-
mulate and prove similar statements involving the symbols if
and while.

(18) Reformulate Exercises 1 to 12 for R-WHILEL-programs.

The WHILEL Programming Language–Semantics
Two programs p, q ∈ WHILEL are A-equivalent if SprA (p) = SprA (q).

The programs p, q are equivalent if they are A-equivalent for every
L-structure A.

(19) Give an example of two programs p, q and a structure A such
that the programs are A-equivalent but not equivalent.

(20) Replacing an occurrence of a program p in another program
q with an equivalent program p′ does not change the meaning
of q. This analog of the Replacement Theorem for formulas is
formally stated next.
Let q be an L-program. Prove that if p, p′ are A-equivalent
programs and (p, i) is an occurrence of p in q, then
replace (q, (p, i), p′) is A-equivalent to q.

1262 Logical Foundations of Computer Science — Volume 2

Conclude that if p, p′ are equivalent programs and (p, i) is an
occurrence of p in q, then replace (q, (p, i), p′) is equivalent to q.

(21) Prove for R-WHILEL-programs an analog of the Replacement
Theorem for WHILEL-programs given in Exercise 20.

(22) Let β be a quantifier-free (L,PVAR)-formula and let p be an
L-program. Define the programs

q0 = while β do p endwhile

q1 = if β then p; while β do p endwhile else

v←v endif

where v is a fixed program variable. Prove that for all L-
structures A, SprA (q0) = SprA (q1).

(23) Let ppred be the WHILELpra-program:

z←0;

while (s(z) < x)

do z←s(z)
endwhile

(a) Verify that if σ ∈ STATESApra is a state such that σ(x) = 5,
then σ′ = SprApra(ppred)(σ) is defined and σ′(z) = 4.

(b) Justify that ppred always halts in a state σ′ when started in
an Apra-state σ and that the value of σ′(z) is σ(x) − 1, if
σ(x) > 0 and σ′(z) = 0 if σ(x) = 0.

(c) Evaluate timeprApra(ppred)(σ) in terms of σ(x).

(24) Let pdiv be the WHILELar -program

if y = 0

then z←0

else z←0;

while y · s(z) ≤ x
do z←s(z)

endwhile

endif

Program Verification 1263

(a) Verify that if σ ∈ STATESAar is a state such that σ(x) =
7 and σ(y) = 2, then σ′ = SprAar(pdiv)(σ) is defined and
σ′(z) = 3.

(b) Justify that pdiv always halts in a state σ′ when started in
an Aar-state σ and that the value of σ′(z) is �σ(x)/σ(y)� if
σ(y) > 0, and σ′(z) = 0 if σ(y) = 0.

(c) Evaluate timeprApra(pdiv)(σ) in terms of σ(x) and σ(y).

(25) Let psqrt be the WHILELpra-program

z←0;

w←s(0);
u←s(0);
while u ≤ x

do w←s(s(w));
z←s(z);
u←u+ w

endwhile

(a) Verify that if σ ∈ STATESApra is a state such that σ(x) =
10, then σ′ = SprApra(psqrt)(σ) is defined and σ′(z) = 3.

(b) Justify that psqrt always halts in a state σ′ when started in

an Apra-state σ and that the value of σ′(z) is �
√
σ(x)�.

(c) Evaluate timeprApra(psqrt)(σ) in terms of σ(x).

(26) Let L be a first-order language and let A be a L-structure.
We extend the semantics of WHILEL-programs to accommodate
the repeat construct introduced in Exercise 13 by adding the
following item to Definition 6.3.2:

If p0 is the program repeatp until β endrepeat,
where β is a quantifier-free formula, p is in R-WHILEL, and
σ ∈ STATESA, let k ∈ N be the least number at least

equal to 1 such that there is a state σk =
(Spr

A (p)
)(k)

(σ)

and S for
A (β)(σk) = T, if such a number exists. When

the number k exists, Sat pr
A (p0)(σ) = σk; otherwise,

Sat pr
A (p0)(σ) is undefined.

This definition captures the intuitive semantics of the repeat
construct: the program p is executed at least once and its exe-
cution is repeated until β is true.

1264 Logical Foundations of Computer Science — Volume 2

Let p1 ∈ R-WHILEL be p; while (¬β) do p endwhile. Prove
that SprA (p0) = SprA (p1).

(27) Prove that Theorems 6.3.3 through 6.3.8 remain valid when
instead of WHILEL-programs we consider R-WHILEL-programs.

(28) Show that R-WHILEL-programs can be effectively transformed
into equivalent WHILEL-programs.
Hint. Proceed by induction on the number of occurrences of
the symbol repeat, using each time the rightmost occurrence
of this symbol. (See also Exercises 17, 26, and 21.)

(29) Definition 6.3.9 is extended to R-WHILEL-programs by adding
the following item:

Let p0 = repeatp until β endrepeat, where β is
a quantifier-free formula, p ∈ R-WHILEL, and σ ∈
STATESA. Let k ∈ N be the least positive number

such that there is a state σk =
(Spr

A (p)
)(k)

(σ) and

S for
A (β)(σk) = T, if such a number exists. When the num-

ber k exists,

timeat prA (p0)(σ) = k +
k−1∑
i=0

timeprA (p)(σi);

otherwise, timeat prA (p0)(σ) is undefined.

Prove that Theorems 6.3.10 and 6.3.11 remain valid when
WHILEL-programs are replaced by R-WHILEL-programs.

Functions Computable by Programs

(30) Let pred : N −→ N, be the function defined by

pred(n) =

{
0 if n = 0

n− 1 otherwise.

Prove that the function pred is computed by the program ppred
given in Exercise 23 with the sequence of variables (x, z).

Program Verification 1265

(31) Let div : N2 −→ N, be the function defined by

div(n, p) =

{
0 if p = 0

�n/p� otherwise.

Prove that the function div is computed by the program pdiv
given in Exercise 24 with the sequence of variables (x, y, z).

(32) Let sqrt : N −→ N, be the function defined by

sqrt(n) = �
√
n�.

Prove that the function sqrt is computed by the program psqrt
given in Exercise 25 with the sequence of variables (x, z).

(33) Let L be a first-order language, A be an L-structure, and let
n, i ∈ N be such that 0 ≤ i ≤ n − 1. The ith projection
is the function pAn,i given by pAn,i(a0, . . . , an−1) = ai for all
a0, . . . , an−1 ∈ |A|.
Prove that every projection is computable in A by an L-
program with a suitable sequence of variables.

Let L be a first-order language, A be an L-structure, and let h :
|A|n � |A|, gi : |A|m � |A| be partial functions on |A| for 0 ≤ i ≤
n− 1, where n,m ∈ N. Define the function � : |A|m � |A| by

�(a0, . . . , am−1) = h(g0(a0, . . . , am−1), . . . , gn−1(a0, . . . , am−1))

for a0, . . . , am−1 ∈ |A|. Of course, for �(a0, . . . , am−1) to be defined,
all values in the right side of the above equality must be defined. We
refer to the function � as the composition of h, g0, . . . , gn−1 and we
denote � by h(g0, . . . , gn−1).

(34) Prove that if h, g0, . . . , gn−1 are partial functions computable in
an L-structure A with suitable sequences of variables, then the
partial function � = h(g0, . . . , gn−1) is computable in A with a
suitable sequence of variables.
Solution: Let y0, . . . , ym−1, zn be distinct program variables.
If n = 0, by Corollary 6.4.10, there is an L-program q that com-
putes h with (z0). Then, q computes � with (y0, . . . , ym−1, z0).
Suppose now that n > 0. Let zn−1 be a program variable dis-
tinct from y0, . . . , ym−1, zn. By Corollary 6.4.11, we may assume

1266 Logical Foundations of Computer Science — Volume 2

that the function gn−1 is computed by pn−1 with the sequence
of variables (y0, . . . , ym−1, zn−1) preserving inputs. Again, using
the same corollary, we may assume that gn−2 is computed by
pn−2 with the sequence of variables (y0, . . . , ym−1, zn−2) pre-
serving inputs, where zn−2 is a program variable that does not
occur in pn−1 and is distinct from y0, . . . , ym−1, zn−1, zn.
In general, we may assume that gn−i is computed by pn−i with
the sequence of variables (y0, . . . , ym−1, zn−i) preserving inputs,
where zn−i does not occur in the programs pn−i+1, . . . , pn−1 and
is distinct from y0, . . . , ym−1, zn−i+1, . . . , zn. In this manner, we
construct a sequence (z0, . . . , zn−1) of distinct program vari-
ables and we may assume now that the function h is computed
by q with the sequence (z0, . . . , zn−1, zn). Then, the following
program computes the function � with the sequence of variables
(y0, . . . , ym−1, zn):

p0;

...

pn−1;

q

Let m be a natural number and suppose that g : Nm � N and
h : Nm+2 � N. Then, there is a unique function � : Nm+1 � N that
satisfies

�(a0, . . . , am−1, 0) = g(a0, . . . , am−1) for all a0, . . . , am−1 in N,

�(a0, . . . , am−1, n+ 1) = h(a0, . . . , am−1, n, �(a0, . . . , am−1, n))

for all a0, . . . , am−1, n in N,

where the recursion equations are taken to mean that

(1) for all a0, . . . , am−1 in N, �(a0, . . . , am−1, 0) is defined if and
only if g(a0, . . . , am−1) is defined, and if �(a0, . . . , am−1, 0) is
defined, then the given equality holds, and

(2) for all a0, . . . , am−1, n in N, �(a0, . . . , am−1, n + 1) is
defined if and only if �(a0, . . . , am−1, n) and h(a0, . . . ,
am−1, n, �(a0, . . . , am−1, n)) are both defined,
and if �(a0, . . . , am−1, n + 1) is defined, then the given equal-
ity holds.

Program Verification 1267

We say that � is defined by primitive recursion from g and h.

(35) Recall that we introduced the Ls-structure As as the reduct of
the Aar to the language Ls = {=, 0, s}. Prove that the set of
functions computable in As is closed under primitive recursion.
Solution: Let x0, . . . , xm−1, w, z, v be distinct program vari-
ables. By Corollary 6.4.11 we can assume that the program pg
computes g with (x0, . . . , xm−1, z) preserving inputs and that
ph computes h with (x0, . . . , xm−1, w, z, v) preserving inputs.
Let y be a program variable distinct from x0, . . . , xm−1, w, z
that does not occur in pg or ph. Then, the following program
computes � with (x0, . . . , xm−1, y, z):

pg;

w←0;

while w �= y

do ph;

z←v;
w←s(w)

endwhile

Let n ∈ N and g : Nn+1 � N. Then, recall that the function
obtained from g by minimization is the function μg : Nn � N
defined by setting μg(x0, . . . , xn−1) to be the least natural number
y such that (x0, . . . , xn−1, y

′) is in the domain of g for all y′ with
0 ≤ y′ ≤ y and g(x0, . . . , xn−1, y) = 0, if such a y exists, and to be
undefined otherwise.

To indicate that � = μg, we sometimes write

�(x0, . . . , xn−1) = μy[g(x0, . . . , xn−1, y) = 0]

and read μy as “the least y.”

(36) Prove that the set of functions computable in As, where As
is the structure mentioned in Supplement 35, is closed under
minimization.
Solution: Let x0, . . . , xn−1, y, z be distinct program variables.
By Corollary 6.4.11, we may assume that the program pg com-
putes g with (x0, . . . , xn−1, y, z) in As preserving inputs. Then,

1268 Logical Foundations of Computer Science — Volume 2

the following program computes � with the sequence of variables
(x0, . . . , xn−1, y):

y←0;

pg;

while z �= 0

do y←s(y);
pg

endwhile

The initial functions are the following functions:

(1) the zero function Z : N0 → N given by Z() = 0;
(2) the projection functions pn,i : N

n → N;
(3) the successor function s(x) = x+ 1.

The partial recursive functions are defined as follows:

(1) every initial function is partial recursive;
(2) if h and g0, . . . , gn−1 are all partial recursive, and � is obtained

from these functions by composition, then � is partial recursive;
(3) if g and h are partial recursive and � is obtained from g and h

by primitive recursion, then � is partial recursive;
(4) If g is partial recursive and � is obtained from g by minimiza-

tion, then � is partial recursive.

(37) Prove that every partial recursive function is computable by a
program in the structure As.
Hint. The statement follows immediately from Supple-
ments 33 to 36.

For a program p ∈ WHILE, denote by L̂p the set of function and
relation symbols contained in p.

(38) Prove the following extension of Theorem 6.4.16 which uses the
same notations as the theorem. There is an effectively com-
putable function q : WHILE −→ WHILE such that

• for all p ∈ WHILE

L̂p − {fg} ⊆ L̂q(p) ⊆ (L̂p − {fg}) ∪ L;

Program Verification 1269

• for all p ∈ WHILEL′ and σ ∈ STATESA, SprA′(p)(σ) is defined
if and only if SprA (q(p))(σ) is defined and if both are defined,
then these states agree on all the variables that occur in p.

Hint. Begin by proving suitably modified versions of Theo-
rems 6.4.12 through 6.4.15.

Hoare Triples

(39) Let L be the extension of Lar obtained by adding the binary
function symbol div and the unary function symbols pred and
sqrt and let A be the expansion of Aar obtained by defining
predA = pred, divA = div, and sqrtA = sqrt, where the functions
pred, div, sqrt were introduced in Exercises 30 to 32.
Prove that

A |= [x = x�]ppred[z = pred(x�)],

A |= [(x = x� ∧ y = y�)]pdiv [z = div(x�, y�)],

A |= [x = x�]psqrt[z = sqrt(x�)],

where ppred, pdiv , psqrt are the programs introduced in Exer-
cises 23 to 25.

(40) Let L and A be as in Exercise 39. Prove that

A |= {(x = x� ∧ y = y�)}p{z = div(x�, y�)},

where p is the program

z←0;

while y · s(z) ≤ x
do z←s(z)

endwhile

Also, show that A �|= [(x = x� ∧ y = y�)]p[z = div(x�, y�)].
(41) Let L be a first-order language, ϕ,ψ ∈ ASSERTL, and let p ∈

WHILEL. Prove that if A is an L-structure and σ ∈ STATESA,
then we have:

(a) (A, σ) |= [ϕ]p[ψ] if and only if one of the following holds:

• (A, σ) �|= {trueL� }x0←x0{ϕ}, or
• (A, σ) |= {ϕ}p{ψ} and (A, σ) �|= {trueL� }p{falseL� }.

1270 Logical Foundations of Computer Science — Volume 2

(b) (A, σ) |= {ϕ}p{ψ} if and only if one of the following holds:

• (A, σ) |= [ϕ]p[ψ], or
• (A, σ) �|= [trueL�]p[trueL�].

(42) Prove the following stronger variant of Theorem 6.5.10: Let L be
a first-order language, A be an L-structure, and σ ∈ STATESA.
Then, (A, σ) |= {ϕ} if β then p0 else p1 endif{ψ} if and
only if (A, σ) |= {(ϕ ∧ β)}p0{ψ} and (A, σ) |= {(ϕ ∧
(¬β))}p1{ψ}.

(43) Show that Theorem 6.5.10 holds if we replace WHILEL-programs
with R-WHILEL-programs.

(44) Show that Theorem 6.5.11 holds if we replace the WHILEL-
program p with an R-WHILEL-program.

(45) Show that Thereof 6.5.18 holds if programs are replaced with
repeat programs.

(46) Show that Theorem 6.5.20 and Corollary 6.5.21 hold if the par-
tial correctness triple H involves R-WHILEL-programs.

(47) Show that Theorem 6.5.24 holds if we replace WHILEL-programs
with R-WHILEL-programs.

Hoare Theories

(48) Let L be a decidable first-order language. Prove that HPTL and
HTTL are decidable subsets of HPT and HTT, respectively.

(49) Let L be a decidable first-order language and A be an L-
structure. Prove that A is effectively expressive if and only
if there is an effectively computable function ωA : WHILEL ×
ASSERTL −→ FORML such that for p ∈ WHILEL and ψ ∈
ASSERTL, the formula ωA(p, ψ) expresses WLPA(p, ψ).

(50) Let A be an L-structure, where L is a first-order language.
Prove that for any L-sentence ϕ, we have ϕ ∈ ThL(A) if and

only if [true
Lϕ
�]x0←x0[ϕ�] ∈ HTTL(A).

Conclude that ThL(A) ≤m HTTL(A).
(51) Use Exercise 50 to show that HTTLar(Aar) is undecidable.
(52) Let L be a first-order language with no 0-ary relation symbols

and let A be an effectively expressive L-structure. Prove that
HPTL(A) ≤m ThL(A).
Solution: Let ωA : WHILE × ASSERT −→ FORM be as given
following Definition 6.6.6. Define ω̂A : WHILE × ASSERT −→

Program Verification 1271

FORM by

ω̂A(p, ψ) =

⎧⎪⎨
⎪⎩
ωA(p, ψ) ∧ θp,ψ if p or ψ contains a relation symbol

of positive arity,

α0 otherwise,

where θp,ψ is a logically valid formula containing all the function
and relation symbols in p and ψ and no others and α0 is a fixed

formula in SENT− SENTL. Note that θp,ψ can be chosen such
that ω̂A is effectively computable.
Define the effectively computable function f : HPT −→ SENT
by

f({ϕ}p{ψ}) = (ϕ→ ω̂A(p, ψ))∀.

If {ϕ}p{ψ} ∈ HPTL, then ψ contains a relation symbol of
positive arity (since L has no 0-ary relation symbols), so

ω̂A(p, ψ) = ωA(p, ψ) ∧ θp,ψ ≡ ωA(p, ψ) and f({ϕ}p{ψ}) ≡
(ϕ→ ωA(p, ψ))∀. By Theorem 6.6.7, {ϕ}p{ψ} ∈ HPTL(A) if
and only if f({ϕ}p{ψ}) ∈ ThL(A). If {ϕ}p{ψ} �∈ HPTL(A),
then f({ϕ}p{ψ}) �∈ SENTL.

The notion of weakest liberal precondition introduced in Defini-
tion 6.5.14 can be extended to R-WHILEL-programs by replacing the
term “WHILEL-program” with “R-WHILEL-program”.

The notions of r-expressive structure and effectively r-expressive
structure are introduced by replacing “WHILEL-program” in Defini-
tion 6.6.6 with “R-WHILEL-program”.

(53) Show that Theorem 6.6.7 remains true if if the partial correct-
ness triple H involves R-WHILEL-programs.

(54) Prove that an L-structure A is (effectively) r-expressive if and
only if it is (effectively) expressive.
Hint. Use Exercise 28.

Let L be a first-order language, A be an L-structure, ϕ be an L-
assertion, and p ∈ WHILEL. The strongest postcondition of ϕ and p is
the set

STPA(ϕ, p) = {σ′ ∈ STATESA | there is σ ∈ STATESA such that

(A, σ) |= ϕ and SprA (p)(σ) = σ′}.

1272 Logical Foundations of Computer Science — Volume 2

(55) Let θ be an L-formula that expresses the set of states
STPA(ϕ, p), where A is an L-structure, ϕ is an L-assertion, and
p ∈ WHILEL. Prove that the following statements are equivalent
for any L-assertion ψ:
(a) A |= {ϕ}p{ψ};
(b) A |= (θ → ψ);

(c) (θ → ψ)∀ ∈ ThL(A).
(56) Let L be a first-order language with equality, p ∈ WHILEL, and

ϕ ∈ FORML and let v0, . . . , vn−1 be the variables that occur in
p or ϕ. Assume that y0, . . . , yn−1 are variables that occur neither
in p nor in ϕ and let �v = (v0, . . . , vn−1) and �y = (y0, . . . , yn−1).
Prove that if the formula θ expresses WLPA(p, (¬(v0 = y0∧· · ·∧
vn−1 = yn−1))), then the formula

γ = 〈(∃v0) · · · (∃vn−1)(ϕ ∧ (¬θ))〉�y:=�v

expresses STPA(ϕ, p).
Solution: We begin by observing that the following four state-
ments are equivalent:

(i) (A, σ′) |= γ;
(ii) (A, [�y → σ′(�v)]σ′) |= (∃v0) · · · (∃vn−1)(ϕ ∧ (¬θ)), where

σ′(�v) = (σ′(v0), . . . , σ′(vn−1));
(iii) there is �a = (a0, . . . , an−1) ∈ |A|n such that

(A, [�v→ �a][�y → σ′(�v)]σ′) |= (ϕ ∧ (¬θ));
(iv) there is �a = (a0, . . . , an−1) ∈ |A|n such that

(A, [�v→ �a][�y → σ′(�v)]σ′) |= ϕ, the state

σ1 = SprA (p)([�v → �a][�y → σ′(�v)]σ′)

exists and σ1(v0) = σ1(y0), . . . , σ1(vn−1) = σ1(yn−1).

Suppose that (A, σ′) |= γ, so the fourth statement in the list
holds. Define σ = [v0, . . . , vn−1 → a0, . . . , an−1]σ

′. Since σ coin-
cides with the state [�v → �a][�y → σ′(�v)]σ′ on the variables which
appear in ϕ and p, it follows that (A, σ) |= ϕ and the state σ̂ =
SprA (p)(σ) is defined. Further, σ̂(vi) = σ1(vi) = σ1(yi) = σ′(vi)
and if z �∈ {v0, . . . , vn−1}, then σ̂(z) = σ(z) = σ′(z). Thus,
σ̂ = σ′ and we have shown that SprA (p)(σ) = σ′. Consequently,
σ′ ∈ STPA(ϕ, p).

Program Verification 1273

Conversely, suppose that σ′ ∈ STPA(ϕ, p), that is for some state
σ such that (A, σ) |= ϕ, we have SprA (p)(σ) = σ′. Let ai = σ(vi)
for 0 ≤ i ≤ n − 1. Let σ̃ be the state [�v → �a][�y → σ′(�v)]σ′.
The state σ̃ coincides with σ on the variables that occur in
the program p and the formula ϕ. Thus, (A, σ̃) |= ϕ, σ1 =
SprA (p)(σ̃) exists and σ1(vi) = σ′(vi) = σ̃(yi) = σ1(yi) for 0 ≤
i ≤ n − 1, which shows that the fourth condition holds and
hence (A, σ)|= γ.

(57) Let L be a first-order language with equality, p ∈ WHILEL, and
ψ ∈ FORML and let v0, . . . , vn−1 be the variables that occur in
p or ϕ. Assume that y0, . . . , yn−1 are variables that occur neither
in p nor in ψ and let �v = (v0, . . . , vn−1) and �y = (y0, . . . , yn−1).
Prove that if the formula θ expresses STPA(p, (v0 = y0 ∧ · · · ∧
vn−1 = yn−1)), then the formula

γ = 〈(∀v0) · · · (∀vn−1)(θ → ψ)〉�y:=�v
expresses WLPA(ψ, p).
Solution: Note that the following four statements are
equivalent:

(i) (A, σ) |= γ;
(ii) (A, [�y → σ(�v)]σ) |= (∀v0) · · · (∀vn−1)(θ → ψ);
(iii) for all �a ∈ |A|n, if (A, [�v → �a][�y → σ(�v)]σ) |= θ, then

(A, [�v → �a][�y → σ(�v)]σ) |= ψ;
(iv) for all �a ∈ |A|n, if there is σ′ ∈ STATESA such that

σ′(vi) = σ′(yi) for 0 ≤ i ≤ n − 1 and SprA (p)(σ′) = [�v →
�a][�y → σ(�v)]σ, then (A, [�v → �a][�y → σ(�v)]σ) |= ψ.

Suppose that (A, σ) |= γ, so the fourth condition above holds.
We must show that σ ∈WLPA(ψ, p). Assume that SprA (p)(σ) =
σ1 exists. We need to prove that (A, σ1) |= ψ. Let σ′ = [�y →
σ(�v)]σ. Observe that σ′ and σ agree on all variables of p, that is
σ′(vi) = σ(vi), for 0 ≤ i ≤ n−1. Thus, the state SprA (p)(σ′) = σ̂
exists and, furthermore, σ̂(z) = σ1(z) for every variable z �∈
{y0, . . . , yn−1}. Let �a = σ̂(�v). Note that σ′(vi) = σ(vi) = σ′(yi).
Let σ̃ be the state [�v → �a][�y → σ(�v)]σ.
We claim that σ̂ = σ̃. Observe first that σ̂(vi) = ai = σ̃(vi).
Next, we have σ̂(yi) = σ′(yi) = σ(vi) = σ̃(yi). Finally, if z
is distinct from v0, . . . , vn−1, y0, . . . , yn−1, then σ̂(z) = σ′(z) =
σ(z) = σ̃(z).

1274 Logical Foundations of Computer Science — Volume 2

By the fourth condition, we have (A, σ̃) |= ψ. Note that σ̃(vi) =
ai = σ̂(vi) = SprA (p)(σ′)(vi) = SprA (p)(σ)(vi) = σ1(vi), for 0 ≤
i ≤ n− 1. Therefore, (A, σ1) |= ψ.
Conversely, suppose that σ ∈ WLPA(p, ψ). We will show that
the fourth condition holds, and, therefore, (A, σ) |= γ. Let �a ∈
|A|n and suppose that there is a state σ′ such that σ′(vi) =
σ′(yi), for 0 ≤ i ≤ n − 1 and SprA (p)(σ′) = [�v → �a][�y → σ(�v)]σ.
Denote [�v → �a][�y → σ(�v)]σ as σ̃. To prove the fourth condition,
we need to show that (A, σ̃) |= ψ.
Observe that σ′(vi) = σ′(yi) = σ̃(yi) = σ(vi), so σ and σ′
agree on all variables of p. Therefore, SprA (p)(σ) = σ1 exists and
σ1(vi) = σ̃(vi) for 0 ≤ i ≤ n − 1. Since σ ∈ WLPA(p, ψ) it
follows that (A, σ1) |= ψ, so (A, σ̃) |= ψ.

We call an L-structure A dually expressive if for all WHILEL-programs
p and L-assertions ϕ, the set of states STPA(ϕ, p) is expressible by
a single formula. If this formula can be effectively constructed given
p and ϕ, we say that A is effectively dually expressive.

(58) Prove that if L is a language with equality, then an L-structure
is (effectively) dually expressive if and only if it is (effectively)
expressive.
Hint. Use Supplements 56 and 57.

Let L be a first-order language, A be an L-structure, p be an L-
program and ψ be an L-assertion. The weakest precondition set is
the set WPA(p, ψ) that consists of all states σ ∈ STATESA such that
SprA (p)(σ) is defined and (A,SprA (p)(σ)) |= ψ.

(59) Let L be a first-order language, A be an L-structure and
H = [ϕ]p[ψ] be a Hoare total correctness triple. Assume that
the L-formula ω̂ expresses WPA(p, ψ). Prove that the following
conditions are equivalent:

(a) H ∈ HTTL(A);
(b) A |= (ϕ→ ω̂);

(c) (ϕ→ ω̂)∀ ∈ ThL(A).

(60) Let L be a first-order language, A be an L-structure, p be an
L-program, ψ be an L-assertion, and let σ ∈ STATESA. Prove
that:

Program Verification 1275

(a) σ ∈WPA(p, ψ) if and only if

σ ∈WLPA(p, ψ) and σ �∈WLPA(p, falseL�).

(b) σ ∈WLPA(p, ψ) if and only if

σ ∈WPA(p, ψ) or σ �∈WPA(p, trueL�).

Let L be a first-order language. An L-structure A is expressive
for total correctness if for all L-programs p and L-assertions ψ,
WPA(p, ψ) is expressible by a single L-formula ω̂A(p, ψ).
A is effectively expressive for total correctness if ω̂A(p, ψ) can be

found effectively given p and ψ.

(61) Prove that an L-structure A is (effectively) expressive if and
only if A is (effectively) expressive for total correctness.

(62) Let L be a decidable first-order language. Prove that if an L-
structure A is effectively expressive for total correctness, then
HTTL(A) ≤m ThL(A).

(63) Let L be a decidable first-order language and let A be an effec-
tively expressive L-structure. Prove that

ThL(A) ≡m HPTL(A) ≡m HTTL(A).

Hint. Use Corollaries 6.6.3 and 6.6.8, and Exercises 50, 61
and 62.

(64) Let V be the alphabet {a, b}. Prove that for every V -instance
� of the PCP, there is an LarxlV cV b-program p	 constructed
effectively from � such that � has a solution if and only if

AarxlV cV b |= [true
LarxlV cV b
�]p	[true

LarxlV cV b
�].

Conclude that HTTLarxlV cV b
(AarxlV cV b) is undecidable.

Hint. Construct a program p	 which ignores its input and
searches systematically for a solution to � such that if a solu-
tion is found, p	 halts and if none is found the program cycles
indefinitely. Use techniques similar to the ones applied in the
proof of Theorem 6.6.24.

(65) Let L be a decidable first-order language, A be an L-structure
and let g : |A|n −→ |A| be computable by an L-program rg with
a sequence (y0, . . . , yn). Let fg be an n-ary function symbol not
in L and define L′ = L∪ {fg}. Define the expansion A′ of A to

L′ by fA′
g = g.

1276 Logical Foundations of Computer Science — Volume 2

Prove that HTTL′(A′) is m-reducible to HTTL(A), i.e.,

HTTL′(A′) ≤m HTTL(A).

Hint. Use techniques similar to the ones applied in the proof
of Theorem 6.6.26.

(66) Prove that HTTLpra(Apra) is undecidable.
Hint. Use Exercises 64 and 65.

(67) Show that Theorem 6.6.26 holds for any first-order language L.
Solution: We regard HPT↑

L′(A′) and HPT↑
L(A) as subsets of

HPT and define F : HPT −→ HPT as

F ({ϕ}p{ψ}) =
{
H0 if ϕ �= trueL

′
or ψ �= falseL

′
,

{trueL}q(p){falseL} otherwise,

where H0 is a fixed arbitrary element of HPT −HPT↑
L(A) and

q is as in Exercise 38.

A Formal System for Hoare Triples

(68) Let L be a first-order language, A be an L-structure, and let
σ ∈ STATESA. Prove that if (A, σ) satisfies the hypotheses of
an instance of the rule RL

if , then (A, σ) satisfies the conclusion
of this instance.

(69) Let L be the first-order language and let A be the L-structure
introduced in Exercise 39. Construct an annotated program for
the triple {x = x�}ppred{z = pred(x�)}, where ppred is the pro-
gram introduced in Exercise 23 and prove that A is a model
of the verification conditions generated by this annotated pro-
gram, thereby showing that the triple is valid in A.
Hint. Use the formula ((((x = 0)∧(z = 0))∨(s(z) ≤ x))∧(x =
x�)) as a loop invariant.

(70) As in Exercise 69, let L be the first-order language and let
A be the L-structure introduced in Exercise 39. Construct an
annotated program for the triple {(x = x� ∧ y = y�)}pdiv{z =
div(x�, y�)}, where pdiv is the program introduced in Exercise 24
and prove that A is a model of the verification conditions gen-
erated by this annotated program, thereby showing that the
triple is valid in A.
Hint. Use the formula ((y · z ≤ x) ∧ (x = x�) ∧ (y = y�)) as a
loop invariant.

Program Verification 1277

(71) As in Exercise 69, let L be the first-order language and let
A be the L-structure introduced in Exercise 39. Construct an
annotated program for the triple {x = x�}psqrt{z = sqrt(x�)},
where psqrt is the program introduced in Exercise 25 and prove
that A is a model of the verification conditions generated by
this annotated program, thereby showing that the triple is valid
in A.
Hint. Use the formula ((w = s(z+z))∧(u = s(z)·s(z))∧(z ·z ≤
x) ∧ (x = x�)) as a loop invariant.

The notions of L-partial correctness Hoare triple, satisfaction of a
Hoare triple by a pair (A, σ), model of a Hoare triple, and entailment
introduced in Definitions 6.5.2, 6.5.3, and 6.5.12 can be extended nat-
urally to involve R-WHILEL-programs rather than WHILEL-programs.
We shall use the term L-partial correctness Hoare r-triple to refer to
a triple of the form {ϕ}p{ψ}, when p is an R-WHILEL-program. The
set of all L-partial correctness Hoare r-triples is denoted by R-HPTL.

We define a new formal system R−HHL that has as its set of
objects FORML∪R-HPTL. The rules of the new system are obtained
by extending the applicability of the rules of HHL to the new set of
objects and by adding the new rule

{ϕ}p{ψ}, {(ψ ∧ (¬β))}p{ψ}
{ϕ} repeatp until β endrepeat{(ψ ∧ β)} RL

repeat

for ϕ,ψ, β,∈ FORML and p ∈ WHILEL. We refer to this rule as the
repeat rule.

(72) Prove the soundness of the formal system R−HHL, that is,
prove that if Γ is a set of L-formulas, θ ∈ FORML ∪ R-HPTL
and Γ �R−HHL θ, then Γ≈| θ.

(73) Prove the relative completeness of the formal systemR−HHL,
that is, prove that if A is an expressive L-structure, θ ∈
FORML ∪ R-HPTL and ThL(A)≈| θ, then ThL(A) �R−HHL θ.
Solution: The proof is similar to the proof of the relative com-
pleteness of the formal system HHL (using Exercises 43–53),
with the addition of the following inductive step.
Assume that θ = {ϕ} repeatq until β endrepeat{ψ} and
the inductive hypothesis holds for q. By Exercise 46,
A |= θ. By Exercise 26, we also have A |= {ϕ}q;

1278 Logical Foundations of Computer Science — Volume 2

while (¬β) do q endwhile{ψ}. By Exercise 54, since A
is expressive, there is an assertion γ that expresses
WLPA(while (¬β) do q endwhile, ψ). Further, by Exer-
cise 47, we have A |= {ϕ}q{γ}. By inductive hypothesis, it
follows that ThL(A) �R−HHL {ϕ}q{γ}.
By Exercise 53, we have A |= {γ} while (¬β) do q
endwhile{ψ}. By Exercise 44, we have

A |= {(γ ∧ (¬β))}q; while (¬β) do q endwhile{ψ}

and also A |= ((γ ∧ (¬(¬β))) → ψ), which is equivalent
to A |= ((γ ∧ β) → ψ). Applying again Exercise 47, we
obtain A |= {(γ ∧ (¬β))}q{γ}. By the inductive hypothesis,
ThL(A) �R−HHL {(γ ∧ (¬β))}q{γ}. Thus, by applying the rule

RL
repeat, we obtain

ThL(A) �R−HHL {ϕ} repeatq until β endrepeat{(γ ∧ β)}.

A final application of the rule RL
imp yields ThL(A) |= θ.

6.9 Bibliographical Comments

Basic references for this chapter are the books by Loeckx and
Sieber [22] and Dijkstra [12]. The chapter by Cousot [11] in Vol-
ume B of Handbook of Theoretical Computer Science should also be
consulted.

The field was initiated by R. W. Floyd and C. A. R. Hoare in the
fundamental papers [15] and [20]. The notions of expressive structure
and relative completeness are due to S. A. Cook [10].

The series of papers by Lipton [21], Clarke [8], and Clarke,
German, Halpern [9] investigates the existence of sound and rela-
tively complete Hoare logics for increasingly complex programming
languages.

The paper [3] by K. R. Apt is an excellent survey of the first ten
years of Hoare logic.

Bibliography

[1] (1967). From frege to gödel: A source book in mathematical logic
1879–1931, (Harvard University Press, Cambridge).

[2] (1969). Paramodulation and theorem-proving in first-order theories
with equality, in D. Michie and R. Melzer (eds.),Machine Intelligence,
Vol. 4 (Edinburg University Press), pp. 135–150.

[3] Apt, K. R. (1981). Ten years of Hoare’s logic: a survey, ACM Trans-
actions on Programming Languages and Systems 3, pp. 431–483.

[4] Beth, E. W. (1955). Semantic entailment and formal derivability,
Mededelingen van de Koninklijke Nederlandse Akademie van Weten-
schappen, Afdeling Letterkunde 18, pp. 309–342.

[5] Boolos, G. (1984). Don’t eliminate cut, Journal of Philosophical Logic
13, pp. 373–378.

[6] Brand, D. (1975). Proving theorems with the modification method,
SIAM Journal on Computing 4, pp. 412–430.

[7] Church, A. (1936). A note on the entscheidungsproblem, Journal of
Symbolic Logic 1, pp. 40–41.

[8] Clarke, E. M. (1979). Programming language constructs for which it
is impossible to obtain good Hoare-like axioms, Journal of ACM 26,
pp. 129–147.

[9] Clarke, E. M., German, S. M. and Halpern, J. Y. (1983). On effective
axiomatizations of Hoare logics, Journal of the ACM 30, pp. 612–636.

[10] Cook, S. A. (1978). Soundness and completeness of an axiom system
for program verification, SIAM Journal on Computing 7, pp. 70–90.

[11] Cousot, P. (1990). Methods and logics for proving programs, in J. van
Leeuwen (ed.), Handbook of Theoretical Computer Science, Vol. B:
Formal Models and Semantics (Elsevier), pp. 841–994.

[12] Dijskstra, D. W. (1976). A Discipline of Programming (Prentice Hall,
Englewood Cliffs, NJ).

1279

1280 Logical Foundations of Computer Science — Volume 2

[13] Enderton, H. B. (1972). A Mathematical Introduction to Logic (Aca-
demic Press, New York).

[14] Fejer, P. A. and Simovici, D. A. (1991). Mathematical Founda-
tions of Computer Science. Volume I: Sets, Relations, and Induction
(Springer, New York).

[15] Floyd, R. W. (1967). Assigning meanings to programs, in Mathemat-
ical Aspects of Computer Science, Vol. 19, pp. 19–32.

[16] Gentzen, G. (1932). Über die existenz unabhängiger axiomensys-
teme zu unedlichen satzsystemen, Mathematische Annalen 107,
pp. 329–350.

[17] Gentzen, G. (1935). Untersuchungen über das logische schliessen,
Mathematische Zeitschrift 39, pp. 176–210, 405–431.

[18] Gilmore, P. C. (1960). A proof method for quantification theory: Its
justification and realization, IBM journal of research and develop-
ment 4, pp. 28–35.

[19] Herbrand, J. (1930). Recherches sur la theorie de la demonstration,
Travaux de la Societé des Sciences at des Lettres de Varsovie, Classe
III, Science Mathématique et Physique 33.

[20] Hoare, C. A. R. (1969). An axiomatic basis for computer program-
ming, Communications of ACM 12, pp. 576–583.

[21] Lipton, R. J. (1977). A necessary and sufficient condition for the
existence of Hoare logics, in Proceedings of the 18th IEEE Symposium
on Foundations of Computer Science, pp. 1–6.

[22] Loeckx, J. and Sieber, K. (1987). The Foundations of Program Veri-
fication, 2nd edn., Wiley-Teubner Series in Computer Science (John
Wiley and B. G. Teubner, Chichester, West Anglia and Stuttgart).

[23] Löwenheim, L. (1915). Uber möglichkeiten im relativkalkül, Mathe-
matische Annalen 76, pp. 447–470.

[24] Peterson, G. E. (1983). A technique for establishing completeness
results in theorem proving with equality, SIAM J. on Computing 12,
pp. 82–100.

[25] Presburger, M. (1929). Über die Vollständigkeit eines gewissen Sys-
tems der Arithmetik ganzer Zahlen, in welchem die Addition als
einzige Operation hervortritt, Comptes Rendus du I congrès de
Mathématiciens des Pays Slaves, pp. 92–101.

[26] Robinson, J. A. (1965a). Automatic deduction with hyper-resolution,
International Journal of Computational Mathematics 1, pp. 227–234.

[27] Robinson, J. A. (1965b). A machine-oriented logic based on the res-
olution principle, Journal of the ACM 12, pp. 23–41.

[28] Sági, G. (2010). A short proof for the completeness of paramodula-
tion, Bulletin of the Section of Logic 39, pp. 147–152.

Bibliography 1281

[29] Skolem, T. (1920). Logisch-kombinatorische untersuchungen über
die erfülbarkeit oder beweisbarkeit mathematischer sätze nebst
einem theoreme über dichte menge, Videnskapsselskapets skrifter, I.
Matematisk-naturvidenskabelig klasse Klasse 6, pp. 1–36.

[30] Skolem, T. (1934). Über die Nicht-charakterisierbarkeit der Zahlen-
reihe mittels endlich oder abzählbar unendlich vieler Aussagen
mit ausschliesslich Zahlenvariablen, Fundamenta Mathematicae 23,
pp. 150–161.

[31] Smullyan, R. M. (1995). First-Order Logic (Dover Publications, New
York).

[32] Tarski, A. (1936). Der Wahrheitsbegriff in den Formalisierten
Sprachen, Studia Philosophica 1, pp. 261–405.

[33] Tarski, A. (1951a). A Decision Method for Elementary Algebra and
Geometry, 2nd edn. (University of California Press, Berkeley).

[34] Tarski, A. (1951b). A Decision Method for Elementary Algebra and
Geometry: Prepared for Publication with the Assistance of J.C.C.
McKinsey (RAND Corporation, Santa Monica, CA).

[35] Tarski, A. (1956). Logic, Semantics, Metamathematics (Oxford at the
Clarendon Press, Oxford).

[36] Treinen, R. (1992). A new method for undecidability proofs of first
order theories, J. Symbolic Computation 14, pp. 437–457.

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

List of Notations

FL the set of function symbols of a first-order language L, 535
Lar the language of arithmetic, 536
Lpra the language of Presburger arithmetic, 536
code the encoding substitution of symbols of first-order logic, 537
TERML(V) the set of (L, V)-terms, 538
sn(t) term obtained by iterating n times the application of the suc-
cessor, 538
GTERML the set of ground terms of the first-order languageL, 539
GTERM the set of ground terms of first-order logic, 539
AFORML set of atomic formulas of L, 540
FORML the set of formulas of a first-order language L, 540
AFORML(V) the set of atomic formulas of L such that all variables
that occur in the formula belong to V , 541
LITL the set of literals of the first-order language L, 541
LITL(V) the set of literals of L such that all variables that occur in
the formula belong to V , 541
LIT set of all literals, 541
LIT(V) set of literals using the variables of V , 541
GAFORMNEL, 541
GAFORML the set of ground atomic formulas of L, 541
GEQL, 541
ϕ complement of a first-order formula ϕ, 542
falseL abbreviation for the L-formula (ϕ0 ∧ (¬ϕ0)), 544
size(ϕ) the size of a first-order formula ϕ, 544
trueL abbreviation for the L-formula (ϕ0 ∨ (¬ϕ0)), 544

1283

1284 Logical Foundations of Computer Science — Volume 2

Lϕ the first-order language that contains the function and relation
symbols that occur in ϕ, 545
C(ϕ) set of constant symbols that occur in the formula ϕ, 549
‖ ϕ ‖ the norm of the formula ϕ, 549
ABO(ϕ) the set of active bound occurrences of variables in ϕ, 554
BV(ϕ) the set of bound variables of ϕ, 554
FORML(V) the set of L-formulas whose free variables are included
in V , 554
FV(ϕ) the set of free variables of ϕ, 554
PBO(ϕ) the set of passive bound occurrences of variables in ϕ, 554
SENTL the set of sentences of the first-order language L, 555
SENT set of all sentences, 555
ϕ∃ existential closure of ϕ, 558
ϕ∀ universal closure of ϕ, 558
Γ∀ universal closure of the set of first-order formulas Γ, 558
Γ∃ existential closure of the set of first-order formulas Γ, 559
‖bϕ‖ norm of the signed formula bϕ, 560
SFORML(V) the set of signed (L, V)-formulas, 560
size(bϕ) size of the signed formula bϕ of first-order logic, 560
FVSubst(s, bϕ) sequence obtained by applying a substitution s to
the free occurrences of variables of a signed formula bϕ, 562
INSTL,V (Γ) the set of (L, V)-instances of the formulas of Γ, 564
a
ts the substitution obtained from the substitution s by replacing the
constant symbol a by the term t in every term s(x), 569
AG structure associated with the directed graph G, 581
sA the interpretation of the symbol s in the structure A, 581
limnAn the limit of a sequence of structures, 583
AR→R′ the structure obtained from A by replacing R by R′, 583
h(A) the substructure determined by a morphism, 589
A/ρ the quotient of the structure A by the congruence ρ, 590
REDL(B) reduct of B to L, 593
tA the “value” of a ground term in a structure A, 595
SA semantics of formulas in the structure A, 597
(A, σ) |= ϕ (A, σ) satisfies ϕ, 598
(A, σ) |= Γ (A, σ) satisfies Γ, 598
A |= ϕ formula ϕ is valid in the structure A, 602
A |= Γ A is a model of Γ, 602
ϕA the truth value of the closed formula ϕ in the structure A, 602
|= ϕ ϕ is a logically valid formula, 602

List of Notations 1285

ϕ ≡ ψ ϕ is logically equivalent to ψ, 608
ϕ ≡A ψ ϕ is A-equivalent to ψ, 608
ϕ |= ψ ϕ logically impliesψ, 608
ϕ |=A ψ ϕ A-implies ψ, 608
Γ |= ϕ the set Γ of first-order formulas logically implies the first-order
formula ϕ, 608
Γ≈| ϕ weak logical implication of ϕ by Γ, 609
MEq R,L set of matrices of congruence axioms for relation symbol R
and first-order language L, 618
EqR,L the set of (R,L)-congruence axioms, 619

MEq†R,L set of conjunctive normal form matrices of congruence
axioms for relation symbol R and first-order language L, 619
(A, σ) |= Δ satisfaction of Δ by the structure A and assignment σ,
623
(A, σ) |= bϕ (A, σ) satisfies bϕ, 623
Δ |= bϕ set Δ of signed first-order formulas logically implies the
signed formula bϕ, 623
variant(ϕ, x, t) the variant of formula ϕ in which the term t is sub-
stitutable for the variable x, 649
〈ϕ〉x:=t the result of substituting x by t in variant(ϕ, x, t), 650
(A, [y0 → a0, . . . , yn−1 → an−1]) |= ϕ (A, σ) |= ϕ for all σ ∈
ASSIGNA such that σ(yi) = ai, 662
m = n mod p n is the remainder when m is divided by p, 664
m ≡ n (mod p) p divides m− n, 664
≡p equivalence modulo p, 665
B the Gödel relation, 667
ρ[i0, . . . , ik−1] the projection of ρ on (i0, . . . , ik−1), 669
ρ×ρ′ product of the relations ρ and ρ′, 670
selρ′,i(ρ) (ρ

′, i)-selection of ρ, 670
AFL,V (A) the set of non-equality (L, V)-atomic formulas defined by
an (L, V)-Herbrand structure A, 694
STRL,V (S) (L, V)-Herbrand structure defined by a set of non-
equality (L, V)-atomic formulas S, 694
STRL(S) L-Herbrand structure defined by a set of non-equality
ground L-atomic formulas S, 694
dL,V (ϕ) the sequence of (L, V)-constituents of a formula ϕ, 744
DL,V (ϕ) the set of (L, V)-constituents of ϕ, 744
dL(ϕ) the sequence of L-constituents of ϕ, 744

1286 Logical Foundations of Computer Science — Volume 2

DL(ϕ) the set of L-constituents of ϕ, 744
U(Γ) the set of proper subformulas or negated proper subformulas
of formulas of Γ ⊆ FORM, 745
PRSUBF(Γ) the set of proper subformulas of formulas of Γ ⊆
FORM, 745
Apra the structure of Presburger arithmetic, 771
Lpra the first-order language for Presburger arithmetic, 771
CnL(Σ) L-theory generated by the set of L-sentences Σ, 771
ThL(A) the theory of the structure A, 771
ThL(Ak) the L-theory of the collection of L-structures A, 771
Thar the theory of arithmetic, 772
ModL(Σ) the set of L-structures that are models of the set of L-
sentences Σ, 774
A ≡ B elementary equivalence of the L-structures A and B, 777
size(Ω) size of a set Ω of (signed) formulas of first-order logic, 788
t ≡A u A-equivalence between t and u, 797
〈ϕ〉s the result of applying the substitution s to variant(ϕ, s), 813
〈ϕ〉y0,...,yn−1:=t0,...,tn−1 parallel substitution in a variant of ϕ, 814

HFL Hilbert/Frege-style system for first-order logic, 858
TCL

n n-ary tautological consequence rule for L, 860
TCL tautological consequence rule, 861
T(P) the set of signed formulas that occur in the path P of the (L, V)-
tableau T, 881
T�Δ (L, V)-tableau obtained from T by adding a new root labelled
by T(λ) ∪Δ, 881

F tabl,cons
L,V the tableau formal system of sets of signed (L, V)-formulas,

904
SCTCONS(L, V) the set of conservative, strongly closed (T(λ),L, V)-
tableau T, 905
SCTCONS(L, V) the set of strongly closed (T(λ),L, V)-tableau T,
906
VARIANT(T, U) tableau obtained from T by variantizing with respect
to the set of variables U , 914

F tabl,cut
L,V the tableau formal system with cut of sets of signed (L, V)-

formulas, 915
SCTCONSCUT(L, V) the set of strongly closed (T(λ),L, V)-tableau
with cut T, 916

List of Notations 1287

SCTCUT(L, V) the set of strongly closed (T(λ),L, V)-tableau with
cut T, 916
sat (T) the tableau obtained from the tableau T by substituting the
constant symbol a by t in every formula that occurs in a node of the
tableau, 917
(Δ)x:=t the set of signed formulas obtained from Δ by replacing the
variable x by the term t, 933
(Γ)x:=t the set of formulas obtained from Γ by replacing the variable
x by the term t, 933
SQTL,V set of all (L, V)-sequents, 936
SQTL, 936
SQTfinL,V set of all finite (L, V)-sequents, 936
κ0 ∪ κ1 the union of the (L, V)-sequents κ0, κ1, 937
sfL,V (κ) the set of signed (L, V)-formulas that corresponds to an
(L, V)-sequent κ, 937
sqtL,V (Δ) the sequent that corresponds to a set of signed (L, V)-
formulas Δ, 937
F seq,cut
L,V the formal system obtained from F seq

L,V by adding the cut
rule, 950
FL
fond primary system for first-order natural deduction, 954

FONDTL the set of natural deduction trees of the first-order lan-
guage L, 956
Γ

•�fondL ϕ ϕ is fond-derivable from Γ, 959
CLAUSESL set of all L-clauses, 988
LIT(C) set of literals which appear in some clause of C, 989
V(C) set of statement variables in clauses of C, 989
V(C) set of variables in clause C, 989
ϕC disjunctive normal form formula that represents a clause C, 992
ΓC set of formulas in disjunctive normal form that represents a set
of clauses C, 992
ResL(C) C augmented by the set of L-resolvents of C, 1004
R∗

L(C) first-order R-resolution closure of C, 1005
ResmguL (C) C augmented by the set of most general resolvents of C,
1005
FRESL L-resolution formal system, 1009
FFRESL full L-resolution formal system, 1010
FRESLmgu most general L-resolution formal system, 1010

FRES2L binary L-resolution formal system, 1020

1288 Logical Foundations of Computer Science — Volume 2

ResparL(C) C augmented by the set of L-resolvents of C and of L-
paramodulants of C, 1049
ResparmguL (C) C augmented by the set of most general L-resolvents
of C and by the set of most general L-paramodulants of C, 1049
Respar∗L(C) first-order resolution-paramodulation closure of C, 1050
FRESPARL L-resolution-paramodulation formal system, 1051
FFRESPARL full L-resolution-paramodulation formal system,
1052
FRESPARL

mgu most general L-resolution-paramodulation formal
system, 1052
GWORDL set of ground L-words, 1054
SGL,C denotes S∗L,GINSTL(C), 1088
unsigned (Γ,L, V)-tableau with cut, 1106
PVAR the set of program variables, 1153
SVAR the set of specification variables, 1153
WHILEatL the set of atomic programs of WHILEL, 1155
PVAR(p) the set of program variables that occur in the program p,
1159
WHILEat the set of atomic programs of WHILE, 1160
STATESA set of A-states, 1161
Sat prA the semantics of atomic L-programs relative to a L-structure
A, 1162
SprA the semantics of L-programs relative to a L-structure A, 1162
timeat prA running time function of atomic programs, 1166
ASSERTL set of L-assertions, 1186
ASSERT set of assertions, 1186
ϕ� the L-assertion that corresponds to a L-formula ϕ, 1186
HPTL set of all L-partial correctness Hoare triples, 1186

HPT↑
L the set of L-partial correctness triples of the form

{trueL}p{falseL}, 1186
HTTL set of all L-total correctness Hoare triples, 1186
A |= H A is a model of the Hoare triple H, 1187
|= H valid Hoare triple, 1187
HPT set of partial correctness Hoare triples, 1187
HTT set of total correctness Hoare triples, 1187
Γ≈| H Γ entails H, 1193
WLPA(p, ψ) the weakest liberal precondition of the program p rela-
tive to the assertion ψ, 1194

List of Notations 1289

HPT↑
L(A) the fragment of HPTL(A) that consists of triple of the

form {trueL� }p{falseL�}, 1204
HPTL(A) the Hoare L-partial correctness theory of A, 1204
HPTL(A) the Hoare L-total correctness theory of A, 1204
PSTATESA(V) set of partial A-states with domain V , 1208
HHL Hilbert/Hoare-style system for partial correctness Hoare
triples, 1225
targetL(c) target of the annotated program c, 1239
VC(c) set of verification conditions for the annotated program c, 1240
pAn,i projection in the structure A, 1265
R-HPTL set of all L-partial correctness Hoare r-triples, 1277

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

List of Results

Agreement Theorem for First-Order Logic, 600
Compactness Theorem for First-Order Sequents, 947
Compactness Theorem for Signed Formulas of First-Order Logic,904
Compactness Theorem of First-Order Logic, 713
Completeness Theorem for First-Order Natural Deduction, 966
Completeness Theorem for Tableaux of First-Order Logic, 899
Completeness Theorem of HFL

Γ , 875
Cut Elimination Theorem for First-Order Sequents, 952
Deduction Theorem for HFL, 864
Generalization Theorem, 863
Herbrand’s Theorem, 704
Herbrand’s Theorem for First-Order Logic with Equality, 719
Löwenheim-Skolem Theorem for First-Order Logic without Equality,
708
Occurrence Theorem for First-Order Logic, 550
Partial Completeness Theorem of F seq,cons

L,V , 946

Partial Completeness Theorem of F seq,cut
L,V , 952

Partial Completeness Theorem of F tabl,cons,cut
Lc,V , 916

Partial Completeness Theorem of F tabl,cons
Lc,V , 906

Replacement Lemma for First-Order Logic, 634
Replacement Theorem for First-Order Logic, 635
Skolemization Algorithm, 689
Soundness Theorem for First-Order Natural Deduction, 963
Soundness Theorem for Tableaux of First-Order Logic, 894
Soundness Theorem of F seq,cut

L,V , 951

1291

1292 Logical Foundations of Computer Science — Volume 2

Soundness Theorem of F seq
L,V , 945

Soundness Theorem of F tabl,cut
L,V , 916

Soundness Theorem of F tabl
L,V , 906

Soundness Theorem of HFL
Γ , 859

State Agreement Theorem for Programs, 1164
Strong Completeness Theorem for Tableaux of First-Order Logic,
901
The Compactness Theorem for Quantifier-Free Formulas without
Equality, 698
The Compactness Theorem of First-Order Logic without Equality,
702
The Löwenheim-Skolem Theorem, 720
The Morphism Theorem, 621
The Substitution Corollary, 630
Time Agreement Theorem for Programs, 1167

Index

A

A-equivalence of terms, 596
A-equivalent formulas, 608
A-equivalent programs, 1261
A-equivalent terms, 797
A-implication between first-order

formulas, 608
A-state, 1161
(A, V)-partial state, 1208
active bound occurrence of a variable,

553
algebraic first-order language, 583
analyticity of constituents of

first-order formulas, 746
annotated L-programs, 1231
annotated program for a triple, 1239
antecedent of a sequent, 936
application of tautological

consequence, 861
arithmetic, 582
assertion, 1186
assignment axiom set of HHL, 1226
assignment over a structure, 594
assignment satisfying a first-order

clause, 990
assignment satisfying a set of

first-order clauses, 990
assignment statement of L, 1153
atomic annotated L-programs, 1231
atomic formula, 544

atomic formulas of a first-order
language, 540

atomic inter-substitution, 671

atomic program of L, 1155
atomic substitution, 671

automorphism of an L-structure, 584

B

basic symbols, 1153

binary L-resolvent of two L-clauses,
1000

body of a while loop, 1154

bound occurrence of a variable in a
formula, 553

C

cancelled leaves of an FL
fond-deduction

tree, 954

canonical morphism of a congruence,
591

certificate of inconsistency, 976

clausal formula, 678

clause set associated with a formula
of propositional logic in CNF, 992

closed (L, V)-tableau, 881

closed branch of an (L, V)-tableau,
881

closed formula, 555

closed node of an (L, V)-tableau, 881

1293

1294 Logical Foundations of Computer Science — Volume 2

closed set of signed formulas, 560
closing occurrence of a bracketed

assertion, 1232

coding function for an alphabet, 1218
complement of a first-order formula,

542
complete branch of an (L, V)-tableau,

881
completed (L, V)-tableau, 881

composition, 1265
composition rule of the Hilbert/Hoare

formal system,
1225

conclusion of an FL
fond-deduction tree,

954
congruence of a structure, 589

conjunction of a sequence of
first-order formulas, 548

conjunction of two first-order
formulas, 541

conjunctive normal form for
first-order logic, 678

conservative first-order tableau, 883

conservative unsigned tableau, 910
construction sequence for an instance

of the PCP, 780

contraposition, 864
countable structure, 581

countably infinite structure, 581

cut rule for first-order tableaux, 914
cut rule for sequents, 951

D

decidable theory, 838
degenerate δ-expansion, 883

disjunction of a sequence of
first-order formulas, 548

disjunction of two first-order
formulas, 541

disjunctive normal form for first-order
logic, 678

disjunctive normal form formula that
represents a clause, 992

domain of a structure, 580
dually expressive structure, 1274

E

δ-expansion in an (Δ,L, V)-tableau,
882

γ expansion in an (Δ,L, V)-tableau,
882

e-expansion of a formula by a binary
relation symbol, 733

E-interpretation, 1062
effectively dually expressive structure,

1274
effectively expressive structure, 1205
effectively r-expressive structure, 1271
eigenconstant of a tableau, 883
elementary equivalence of two

structures, 777
elimination rules for first-order

natural deduction, 954
embedding of L-structures, 584
endomorphism of a structure, 584
entailment of a Hoare triple by a set

of formulas, 1193
epimorphism of structure, 584
equality expansion in an

(Δ,L, V)-tableau, 883
equality expansion in an unsigned

(L, V)-tableau, 910
equality rule of F seq

L,V , 940

equality rules in FOND′L, 1126
equality rules in FONDL, 973
equisatisfiable pair of of first-order

formulas, 608
equivalent programs, 1261
existential closure of a formula, 558
existential closure of a set of

formulas, 559
existential formula of a first-order

language, 541
expanded signed formula removed at

a node of a (Δ,L, V)-tableau, 884
expanded signed formula retained at

a node of a (Δ,L, V)-tableau, 884
expansion of a structure with respect

to a first-order language, 593
expansion rule in FONDL, 973
expressive structure, 1205

Index 1295

extended signature of a first-order
language, 998

extended signature of first-order
logic, 998

extension by constants of a first-order
language, 537

extension of a first-order language,
536

F

fA-compatibility, 590

γ-formula, 542

δ-formula, 542, 560

factoring, 1133

finished F seq,cut
L,V -deduction tree, 952

finished F seq
L,V -deduction tree, 947

finished branch of a general F seq
L,V

deduction tree, 947

finite extension of a first-order
language, 536

finite sequent, 936

finite structure, 581

finitely satisfiable set of first-order
formulas, 608

first-order clause, 988

first-order conjunct of a formula in
conjunctive normal form, 678

first-order definable relation, 663

first-order disjunct of a formula in
disjunctive normal form, 678

first-order Horn clause, 989

first-order Horn formula, 678

first-order language with equality, 535

first-order natural deduction tree, 956

first-order negative clause, 989

first-order positive clause, 989

first-order resolution-paramodulation
closure of a set of clauses, 1050

first-order tableau locally consistent
at a node, 883

first-order tautologous clause, 989

first-order unit clause, 989

formula

(L, V)-atomic, 541

formula obtained by e-expansion of a
formula by a binary relation
symbol, 733

formula satisfiable in a structure, 608
formula valid in a structure, 602

formulas provably equivalent in HFL,
861

free occurrence of a variable in a
formula, 553

full L-hyperresolution proof, 1029
full L-hyperresolvent, 1028
full L-irreflexivity removal, 1142
full L-paramodulant of two clauses,

1046
full L-resolution proof, 1006

full L-resolution-paramodulation
proof, 1051

full most general resolution proof,
1006

function
kernel of a, 591

function computed by a program and
a sequence of variables, 1171

with preservation of inputs, 1172
function constructed by

minimization, 1267
function definable by a formula and

by a sequence of variables, 663
fundamental propositional form for a

first-order formula, 672
fundamental propositional form for a

set of first-order clauses, 990

fundamental propositional form for a
set of formulas of first-order logic,
672

G

GAFORML
left segment of, 1066

Gödel function, 667
Gödel relation, 667

generalization of a formula, 542

ground atomic formula, 544
ground atomic formulas of a

first-order language, 541

1296 Logical Foundations of Computer Science — Volume 2

ground clause, 988
ground instance, 564
ground instance of a clause, 1014
ground terms of a first-order

language, 539
ground word, 1054
ground-term of first-order logic,

539
groupoid, 605

H

Herbrand extension of a first-order
language, 692

Herbrand structure for L, 693
Hoare partial correctness theory of a

structure, 1204
homomorphism of L-structures, 584
hyperresolution step of an

L-hyperresolution proof, 1029
hypotheses of an FL

fond-deduction
tree, 954

I

ith axiom group of HFL, 859
ith formula group of HFL, 859
I-irreducibility, 1067
I-reduces relation on the ground

words of L, 1067
if rule of the Hilbert/Hoare formal

system, 1225
immediate variant of a formula, 637
implication rule of the Hilbert/Hoare

formal system, 1225
infinite structure, 581
initial functions, 1268
input L-resolution proof, 1024
input step of an L-resolution proof,

1006
input step of an

L-resolution-paramodulation proof,
1051

input step of an Lhyperresolution
proof, 1029

instance of a rule of F seq
L,V with

removal, 944

instance of a universal formula, 564
instance of rule of F seq

L,V with
retention, 944

instance of the Post Correspondence
Problem, 780

instantiation, 564
inter-substitution, 671
interpretation

L-, 1137
partial L-, 1137

interpretation of a structure, 580
introduction rules for first-order

natural deduction, 954
isomorphism of L-structures, 584

L

L-E-interpretation, 1062
L-Henkin set of formulas, 872
L-Herbrand model for a set of

formulas, 693
L-Herbrand structure defined by a set

of non-equality ground L-atomic
formulas S, 694

L-algebras, 583
L-assertion, 1186
L-atomic formula

non-equality, 540
L-bracketed assertion, 1231
L-clause, 988
L-complete set of sentences, 775
L-consistent set of formulas, 869
L-constituent, 744
L-equality, 540
L-equality axioms, 620
L-factor of a clause, 1133

L-first-order property, 774
L-hyperresolution proof of a clause,

1029
L-hyperresolution proof of a sequence

of clauses, 1029
L-hyperresolvent, 1028
L-inconsistent set of formulas, 869
L-instance of a universal formula, 564
L-inter-substitution, 671
L-irreflexivity removal, 1142

Index 1297

L-most general unifier, 998

L-negative formula of first-order
logic, 541

L-paramodulant of two L-clauses,
1045

L-partial correctness Hoare r-triple,
1277

L-partial correctness Hoare triple,
1186

L-positive formula of first-order logic,
541

L-program
atomic, 1155

L-program substitution, 1174

L-programs, 1154

L-resolution proof, 1006

L-resolution proof of a clause, 1006

L-resolution tree over a set of clauses,
1010

L-resolution-paramodulation proof,
1050

L-resolution-paramodulation proof of
a clause, 1051

L-resolution-paramodulation tree
over a set of clauses, 1052

L-resolvent
full, 1001

L-resolvent of two L-clauses, 1000
L-semantically consistent set of

sentences, 775

L-sequent, 936
L-substitution, 561
L-suitable set of variables, 538

L-theory, 770
L-total correctness Hoare triple, 1186

L-truth set, 762

L-unifier of a finite set of atomic
L-formulas, 998

(L, V) instance of a clause, 1014

(L, V)-Herbrand model of a set of
formulas, 693

(L, V)-Herbrand structure defined by
a set of non-equality (L, V)-atomic
formulas S, 694

(L, V)-Hintikka set, 750

(L, V)-Hintikka set of signed
formulas, 768

(L, V)-analytic universe of a set of
formulas of first-order logic, 745

(L, V)-consistency property, 754

(L, V)-consistency property of signed
formulas, 836

(L, V)-constituent of a
(L, V)-sequent, 947

(L, V)-constituent of a formula of
first-order logic, 744

(L, V)-constituent of a signed
formula, 766

(L, V)-constituent sequence, 744

(L, V)-constituent sequence of a
signed formula, 766

(L, V)-constituent set, 744, 766

(L, V)-formula, 554

(L, V)-inconsistency property, 754,
836

(L, V)-instance of a universal
formula, 564

(L, V)-maximally satisfiable, 834

(L, V)-maximally satisfiable set of
formulas, 762

(L, V)-saturated set of formulas, 832

(L, V)-saturated set of signed
formulas, 835

(L, V)-sequent, 936

(L, V)-tableau, 881

(L, V)-term, 538

(L, V)-truth set, 762

language of arithmetic, 536

language of Presburger arithmetic,
536

level of an occurrence of a symbol in
a program in WHILEL, 1156

level of an occurrence of a symbol in
an annotated program, 1235

limit of an infinite sequence of
structures, 583

linear L-resolution proof of a clause,
1024

literal, 544

literals of a first-order language, 541

1298 Logical Foundations of Computer Science — Volume 2

locally conservative unsigned tableau,
910

logical implication between first-order
formulas, 608

logical implication between signed
first-order formulas, 623

logical implication of a first-order
formula by a set of first-order
formulas, 608

logically equivalent first-order
formulas, 608

logically valid formula, 602

M

marked FL
fond-deduction tree, 954

matrix of a formula in prenex normal
form, 679

mgu factoring, 1133
mgu resolvent, 1000

model

L-E-, 1063
model of a formula, 602

model of a partial correctness Hoare
triple, 1187

model of a set of formulas, 602

model of a total correctness Hoare
triple, 1187

modus ponens rule for L, 858
monomorphism of L-structures, 584
morphism of L-structures, 584
mortality problem for a set of

matrices, 855

most general L-hyperresolution proof,
1029

most general L-hyperresolvent, 1028
most general

L-resolution-paramodulation
formal system, 1052

most general irreflexivity removal,
1143

most general paramodulant, 1046
most general resolution proof, 1006

most general
resolution-paramodulation proof,
1051

most general resolvent, 1000, 1001
most general unifier for a finite set of

atomic formulas, 997

N

n-ary tautological consequence rule,
860

n-limited weakest liberal
precondition, 1194

named structure, 747
natural deduction tree for a

first-order formula, 959
negative L-resolution proof, 1024
negative e-expansion of a formula by

a relation symbol, 733
negative formula, 544
non-equality rules of F seq

L,V , 940
nonstandard element, 774
nonstandard model of arithmetic, 772
nontrivial substructure of a structure,

588
norm of a first-order formula, 549
norm of a signed formula, 560

O

occurrence of a quantifier symbol
using a variable, 553

occurrence of a term
visible, 565

occurrence of a variable in the scope
of an occurrence of a quantifier
symbol, 553

opening occurrence of a bracketed
assertion, 1232

P

p-downward (L, V)-closed set of
formula, 832

paramodulating two clauses, 1045
paramodulation inference node, 1088
paramodulation step of an

L-resolution-paramodulation proof,
1051

partial assignment over a structure,
778

Index 1299

partial correctness Hoare triple, 1187
partial correctness of a program, 1185
partial correctness triple valid in a

structure, 1187
partial recursive function, 1268
passive bound occurrence of a

variable, 554
passive bound occurrence of a

variable associated to an active
bound occurrence, 555

PCP Post Correspondence Problem,
780

PCP-reduction scheme for a
structure, 848

positive L-resolution proof, 1024
positive e-expansion of a formula be a

relation symbol, 733
postcondition of a program, 1185
precondition of a program, 1185
premises of a resolvent, 1000
prenex normal form for a formula, 683
prenex normal form formula, 679
Presburger arithmetic, 772
prime formula, 544
prime formulas of a first-order

language, 541
prime inter-substitution, 671
prime substitution, 671
principal formula of an instance of a

rule of F seq
L,V , 944

product of two relations, 670
program, 1154
program symbols, 1153
program that halts when started in a

state, 1163
program variables, 1153
projection in an L-structure, 1265
projection of a relation, 669
proof by contraposition, 864
propositional expansion in an

(Δ,L, V)-tableau, 882
propositional form for a first-order

formula, 672
propositional from for a set of

formulas of first-order logic, 672
propositional rules of F seq

L,V , 943

Q

quantifier-free formula, 541, 544

quotient of a structure by a
congruence, 590

R

γ-rules of F seq
L,V , 943

δ-rules of F seq
L,V , 943

V[ϕ, i0 → y0, . . . , ik−1 → yk−1]
renaming for a formula ϕ, 641

(R,L)-congruence axioms, 619

R-flattening of a finite set of
quantifier-free formulas, 732

RA-compatibility, 590

r-expressive structure, 1271

reduct of a structure with respect to
a first-order language, 593

reductio ad absurdum, 870

regular expansion in an
(Δ,L, V)-tableau, 882

regular expansion in an unsigned
(L, V)-tableau, 910

relation definable by a first-order
formula, 663

renaming for a clause, 996

renaming for a set of clauses, 996

renaming function for a formula, 640

renaming of a set of clauses, 996

repeat rule, 1277

resolution inference node, 1087

resolution step of an L-resolution
proof, 1006

resolution step of an
L-resolution-paramodulation proof,
1051

restricted semantics function for
L-programs, 1209

rigid structure, 586

rules for eliminating connective
symbols in FONDL , 972

rules for eliminating quantifier
symbols in FONDL, 973

rules for introducing connective
symbols in FONDL, 972

1300 Logical Foundations of Computer Science — Volume 2

rules for introducing quantifier
symbols in FONDL, 972

rules in FOND′L, 1125
running time function, 1166

S

γ-signed formula, 560

(ρ′, i)-selection of ρ, 670

s-left rule of the formal system F seq
L,V ,

940

s-right rule of the formal system
F seq

L,V , 940

satisfaction of a formula by a
structure-assignment pair,
598

satisfaction of a partial correctness
Hoare triple, 1187

satisfaction of a set of formulas by a
structure-assignment pair, 598

satisfaction of a set of signed formulas
by a structure and assignment, 623

satisfaction of a signed formula by a
structure and assignment, 623

satisfaction of a total correctness
Hoare triple, 1187

satisfiable clause, 990

satisfiable formula, 608
satisfiable set of clauses, 990

satisfiable set of first-order formulas,
608

satisfiable set of signed formulas, 623

scope of an occurrence of a quantifier
symbol, 553

semantic L-resolution proof over a set
of clauses, 1025

sentence, 555
sentential L-sequent, 936
sequence obtained by applying a

substitution to the free occurrences
of variables of a formula, 562

set of bound variables of a formula,
554

set of clauses

admissible, 988
failure node for, 1081

RP-refutation consistent, 1145
set of first-order formulas satisfiable a

structure, 608
set of formulas obtained by

e-expansion, 734
set of formulas obtained by negative

e-expansion, 734
set of formulas obtained by positive

e-expansion, 734
set of formulas of a first-order

language, 540
set of formulas that expresses a set of

A-states, 1194
set of formulas with limited constant

symbols, 537
set of free variables of a formula, 554
set of non-equality (L, V)-atomic

formulas defined by an
(L, V)-Herbrand structure A, 694

set of pairs the require attention at a
node of a general F seq

L,V -deduction
tree, 948

set of pairs the require attention at a
node of a tableau, 897

set of pairs the require attention on a
path of a general F seq

L,V -deduction
tree, 948

set of pairs the require attention on a
path of a tableau, 896

set of support, 1025
set of verification conditions for an

annotated program, 1240
signature of a first-order language,

536
signature of first-order logic, 535
signed (L, V)-tableau, 881
signed formula of first-order logic, 560
simple L-paramodulant, 1046
simple L-resolvent, 1000
size of a signed formula of first-order

logic, 560
Skolem normal form, 690
Skolemization, 688
Skolemization of set of formulas, 690
solution of an instance of the Post

Correspondence Problem, 780

Index 1301

source in a graph, 664

specification symbols for (partial or
total correctness) Hoare triples,
1186

specification variables, 1153

standard element, 774

standard model of arithmetic, 582

standard order on the set of signed
first-order formulas, 560

standard ordering of
SFORML(V)× TERML(V), 896

standard ordering of terms, 544

standard ordering of the formulas of
first-order logic, 544

standard part of a model of
arithmetic, 774

standardization of a pair of clauses,
1000

strongest postcondition of an
assertion and a program, 1271

strongly closed (L, V)-tableau, 881

strongly closed branch of a tableau,
881

strongly completed (L, V)-tableau,
881

strongly connected directed graph,
715

structural rule of HGL,V , 1109

structure, 580

effectively expressive for total
correctness, 1275

expressive for total correctness,
1275

structure and assignment satisfying a
sequent, 936

subformula of a formula, 549

substitution

I-irreducible on a clause, 1087

substitution admissible for a formula,
572

substitution instance, 672

substructure of a structure,
587

succedent of a sequent, 936

successor function on N, 772

T

T-downward (L, V)-closed set of
signed formulas, 835

(Δ,L)-tableau, 883
(Δ,L, V)-tableau with cut, 914

(Δ,L, V)-tableau with removal,
884

(Δ,L, V)-tableau with retention,
884

(Γ,L, V)-tableau, 909

(Δ,L, V)-tableau, 882

tableau locally conservative at an
interior node, 883

target of an annotated program,
1237, 1239

Tarski’s definition of truth, 597

tautology of first-order logic, 672

term of first-order logic, 539

term substitutable for a free
occurrence, 572

terms of a first-order language, 538

theory of a collection of L-structures,
771

theory of an L-structure, 771
theory of arithmetic, 772

theory that admits an effective
elimination of quantifiers, 838

theory that admits elimination of
quantifiers, 837

thinning for sequents, 940

thinning in an unsigned tableau, 910

thinning in first-order tableaux, 883

total correctness Hoare triple, 1187

total correctness of a program, 1185

total correctness triple valid in a
structure, 1187

transitivity of variants, 637

tree

L-semantic, 1078

LH-interpretation, 1078

trivial substructure of a structure,
588

truth assignment falsifying a sequent,
936

1302 Logical Foundations of Computer Science — Volume 2

U

uncancelled hypotheses of a marked
FL

fond-deduction tree, 955
unifier of a finite set of atomic

formulas, 997
unit renaming, 641
universal closure of a formula, 558
universal closure of a set of formulas,

558
universal formula of a first-order

language, 541
universe of a structure, 580
unsatisfiable first-order formula, 608
unsatisfiable set of first-order

formulas, 608
unsigned (L, V)-tableau, 909
unsigned (Γ,L, V)-tableau with

removal, 910
unsigned (Γ,L, V)-tableau with

retention, 910

V

V instance of the PCP, 781
V -Herbrand structure, 692

V -named pair, 747
valid L-partial correctness Hoare

triple, 1187
valid L-total correctness Hoare triple,

1187
valid first-order sequent, 936
variant, 637
variant rule for L, 880
variant rule for sequents, 940
variantizing in an unsigned

(L, V)-tableau, 910
variantizing in first-order tableaux,

883
verification conditions for an

annotated program, 1237

W

weak L-resolvent, 1000
weak logical implication, 609
weakest liberal precondition,

1194
weakest precondition set, 1274
while rule of the Hilbert/Hoare

formal system, 1225

	Volume 1 : Propositional Logic
	Contents
	Preface
	About the Authors
	Volume 1. Propositional Logic
	1. Preliminaries
	1.1 Introduction
	1.2 Sequences, Occurrences, and Substitutions
	1.3 Collections of Sets
	1.4 Decidable and Semidecidable Sets
	1.5 Signatures and Terms
	1.6 Term Unification
	1.7 Labeled Ordered Trees
	1.8 Formal Systems
	1.9 Linear Orders
	1.10 Exercises and Supplements
	1.11 Bibliographical Comments

	2. Propositional Logic–Syntax and Semantics
	2.1 Introduction
	2.2 Formulas
	2.3 Truth Assignments
	2.4 The Compactness Theorem
	2.5 Normal Forms for Formulas
	2.6 Substitutions and Formulas
	2.7 Truth Sets and Hintikka Sets
	2.8 Truth Functions
	2.9 Clones and Functional Completeness
	2.10 Complete Sets of Connectives
	2.11 Circuits and Truth Functions
	2.12 Exercises and Supplements
	2.13 Bibliographical Comments

	3. Propositional Logic–Formal Systems
	3.1 Introduction
	3.2 A Hilbert/Frege-Style Formal System
	3.3 Tableaux
	3.4 The Cut Rule for Tableaux
	3.5 Sequents
	3.6 Natural Deduction
	3.7 Translations between Formal Systems
	3.7.1 From Unsigned Tableaux to Hilbert–Frege Proofs
	3.7.2 From Natural Deduction Trees to Sequent Proofs
	3.7.3 Closing the Circle

	3.8 Resolution
	3.9 Variations of Resolution
	3.10 Cutting Planes
	3.11 Exercises and Supplements
	3.12 Bibliographical Comments

	Bibliography
	List of Notations
	List of Results
	Index

	Volume 2 : Predicate Logic
	Contents
	Preface
	About the Authors
	Volume 2. Predicate Logic
	4. First-Order Logic–Syntax and Semantics
	4.1 Introduction
	4.2 First-Order Languages
	4.3 Terms and Formulas
	4.3.1 Terms of First-Order Logic
	4.3.2 Formulas of First-Order Logic
	4.3.3 Occurrences in Formulas
	4.3.4 Signed Formulas
	4.3.5 Substitutions and Formulas
	4.3.6 Substitutability of Terms

	4.4 Structures
	4.5 Semantics of First-Order Logic
	4.5.1 Assignments in Structures
	4.5.2 Tarski’s Definition of Truth
	4.5.3 Validity
	4.5.4 Specification of Congruences
	4.5.5 The Morphism Theorem
	4.5.6 Semantics of Signed Formulas

	4.6 Semantics of Substitutions and Replacements
	4.6.1 The Substitution Theorem
	4.6.2 The Replacement Theorem
	4.6.3 Variants of Formulas

	4.7 Definability in Str
	4.8 Propositional Forms and Tautologies
	4.9 Normal Forms for Formulas
	4.10 Reduction of First-Order Logic to Propositional Logic
	4.11 Brand’s Modification Method
	4.12 Hintikka Sets and Truth Sets
	4.12.1 Constituents
	4.12.2 Hintikka Sets of Unsigned Formulas
	4.12.3 Truth Sets
	4.12.4 Hintikka Sets of Signed Formulas

	4.13 Theories
	4.14 Decidability and Undecidability in First-Order Logic
	4.15 Exercises and Supplements
	4.16 Bibliographical Comments

	5. First-Order Logic–Formal Systems
	5.1 Introduction
	5.2 A Hilbert/Frege-Style Formal System
	5.2.1 Completeness of HFL
	5.2.2 Building Proofs in HFL

	5.3 First-Order Tableaux
	5.4 Cut Rule for First-Order Tableaux
	5.5 First-Order Sequents
	5.6 First-Order Natural Deduction
	5.7 Transformations Between Formal Systems
	5.7.1 From Unsigned Tableaux to Hilbert-Frege Proofs
	5.7.2 From Natural Deduction Trees to Sequent Proofs
	5.7.3 Closing the Circle

	5.8 First-Order Resolution
	5.9 Variations of First-Order Resolution
	5.10 First-Order Resolution with Equality
	5.10.1 Equality Axioms and Resolution
	5.10.2 Brand’s Modification Method and Resolution
	5.10.3 Paramodulation
	5.10.4 Semantic Trees for Languages with Equality
	5.10.5 Completeness of Paramodulation

	5.11 Exercises and Supplements
	5.12 Bibliographical Comments

	6. Program Verification
	6.1 Introduction
	6.2 The WHILEL Programming Language — Syntax
	6.3 The WHILEL Programming Language — Semantics
	6.4 Functions Computable by Programs
	6.5 Hoare Triples
	6.6 Hoare Theories
	6.7 A Formal System for Hoare Triples
	6.8 Exercises and Supplements
	6.9 Bibliographical Comments

	Bibliography
	List of Notations
	List of Results
	Index

