Mastering
Azure API
Management

A Practical Approach to Designing and
Implementing an API-Centric
Enterprise Architecture

Sven Malvik

Apress:

Mastering Azure
APl Management

A Practical Approach to Designing
and Implementing an API-Centric
Enterprise Architecture

Sven Malvik

Apress’

Mastering Azure API Management: A Practical Approach to Designing and
Implementing an API-Centric Enterprise Architecture

Sven Malvik
Fjerdingby, Norway

ISBN-13 (pbk): 978-1-4842-8010-2 ISBN-13 (electronic): 978-1-4842-8011-9
https://doi.org/10.1007/978-1-4842-8011-9

Copyright © 2022 by Sven Malvik

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-8011-9

Hi boys, Even and Emil.

Table of Contents

About the AUROFccciiemmisnmmissnsmmsssnsssssnssssssssssansesssnsesssnsesssnnesssnnesssnnesssnnsessnnssss Xiii
About the Technical REVIEWETcceussesrssssssssssnsssssnsssssnssssansssssnsssssnsssssnsssssnnssssnnssssns XV
AcknNoWIedgmentsccccuuieenmmmssssnnnmsssssnnnmssssssnnmsssssnnnssssssnnnssssssnnnsssssnnnnssssnnnnssssnnns Xvii
FOr@WOIdcocourmisannmssannmssannmsssnsmssansessansessansesssnsesssnnesssnsesssnnssssnnesssnnesssnnnsssnnssssnnssns Xix
INtroductioncocieeriisennmssnnmsssnnmsssnnesssnnesssnnesssnnesssnnesssnnesssnnesssnnnsssnnenssnnssssnnssssnnnsns Xxi
Part I: Getting Started...........cccciimnninnemmmmnnmnnsesmmmmssssns s ————————— 1
Chapter 1: Quick Start........cccciviininnseemmmnmssss s ——————— 3
Create an AZUre ACCOUNT........ccvcvierere e e e s bt e e nne s 3
Provision Azure APl Managementcccvvriereninninienennsensese s ses s e s s sessessesasssssessessessssessessees 4

T o L OOV 7
TEST AP ... e e R R e e Renr e e e nneas 9
APl Management POMal..........ccccivvrrnenerirsie s ceres e s s s s se s s s s sessnesaesae s s n e snesae s 9
(0] 0 P2 T T T OSSPSR 11

11T 1117 SRS R 11
Chapter 2: OVErVIEW ...ccccceeeeesssrrssssssssssssnssssssssssssssssnsssssssssssssssnnnsssssssssssssnnnnnnssssssssns 13
Unlocking Digital ASSets With APIS........cccueorecrrerreser s 13

e 1 11T 11T 14

12T T Ty T (0 T T 14
AUTOMOTIVE ... e e s b e e s b e e s b e e nnn 15
Understanding the Basics 0f WED APISc.cccvrerrenernsmsnsesese s ssssesenns 16
3 P 16
3 P 18
HTTP Clients for Testing RESTIUl WED APIS..........ccovirereerrerereser e 21

TABLE OF CONTENTS

Enterprise APl Platform in ESSENCE........ccucvvrveririirsen e sessss s s s e sss s s ssnsssesnesansnens 22
Consistent DOCUMENTALIONccecrinineine s 23
Comprehensible Capabilitiesccovverrererririerereserse e sa e s sresassessesnens 23
Common DeSigN GUIdEINES.......ccvveerrrerererersereseses s ssesessessessesessessessessessssessessessssensessens 24
APLUSEI ONDO0AIAING......cccrerreieriererresenserersesssseressessessssessessessssessessesssssssessesssssssessessessssessesses 24
LT T 1013 T o S 24
g Lo L1101y (0 3T RS 25
Governance and COMPIIANCEcvvverrerernrerserse s ses s e e ses s ssessssessessessesesesaesaesassensessens 25
Versioning and REVISIONINGccvcevererrerierenssersesessssessessessessssessessesssssssessesssssssessessessssessesaes 25
Scalability and RESIlIENCYcccieverrrrerererirrere s s s e s se e ssesaesressssesaesaes 26
RS 1111 RS 26
D0 R 26
PITOIMANCE......ccc it 27
SEADIITY ..vovvececrerresrsrer s e 27

Introducing Azure APl ManagemeENt.........cccvrerererseriereressersesessssessessessesessessessessssssessessessssensesses 27
AZUPE PO ... e 29
(DT[] o Te gl o0 o | S SO 31
APL GALEWAY......ceruerrerteerieressesessesse e ssssessessesss e ssessesaesesesaesaesa s e ssesaess e e saesaessesessessessesssnenseaes 32

£ 11114 7 33

Part Il: Key Conceptscccueemmmmmmmmsnsmnmmmmssssssnmmmmssssssnmmsssssssssnsssssssssssnsessss 39

Chapter 3: APIs and Products.........cccccunsmmmmmmsssnnnmmssssssnmsssssssnssssssssnssssssnsssssssssnnsnsss 37
L 38
Create Blank APl with AZUre CLI........ccocviieinerrcce e s 39
Manage APIs with Azure POWEISREL..........ccccviiiiesrnse s 44
Create API from AZUre RESOUICESc.ueevrverrreserrssesrsesssssesss e sessesssss s s sssssssssssnssssessssessns 46
PrOTUCES ...t 49
Creale APIS ..o 50
Create ProdUCTS.......cocuiiiiiise s s 52

Add APIS 0 ProdUCTScccriiriniirs s s s s 53

£ 11114 7R 54

TABLE OF CONTENTS

Chapter 4: Users and GroUPScuueessesssssssssssssnssssssssssssssssssssssssssnssssssssnsnssssssnnnsssss 55
€011 L OSSR 56
SYSTEM GIOUPS ..ecviueirrieriresire st e e s e e s e e e a e et e b e b et 57
(6T T (011 o OO RS 57
Associate Groups t0 ProAUCTES..........ccvvveriererenniniere s s sesse e s ssessessesssssssessesssssssessesees 58
S]] 59
(T e - 60
Deactivate and Reactivate @ USEr.........ocoreerrrerererererc e 61

Add @ USEI 10 @ GrOUD.....cceuerreirrererresssrse s ssssese s e sre e s e sre s s e s se st se s s re e s s sre s s e nnennes 61
SUIMIMANY....eeeeeeecre s e s se e e e e e e e Re e s e e se e e e nRn e s ea e nen e e nrnnnns 62
Chapter 5: Versions and ReViSiONSccuucemmmusssmnnmmsssssssmssssssssmssssssssssssssssnssssssnnssnss 63
L] (0] R 64
VErSiON SCREME......c.ocececcer s sr e nan e 65

Add @ NEW VEISION......ccirierrierrnesessesesrssesessess s s sssse s s e ssssesssssssssssessssessssssssssnsssssssssssnees 66
RBVISIONS....viviuiuiiisisssssise s 67
Add @ NEW REVISION.......ccciiireriirisisese s s s s 68
Make ReviSion CUITENT ... s 69

£ 11114 R 69
Chapter 6: SUDSCHPLIONS ...cccceerriiisennrinisssnnsrssssss s s ssna s e nn s e e s nnnnennss 71
Creating @ SUDSCHIPLION......c..ccc o e 73
Revealing Subscription KEYS........ccuiiiiinininnsnse s ss s s se s s sss s e snas 74
Calling APl with SUDSCHIPEION K@Yccovveerereeresere e 75
SUMIMANY ...ttt e s e ne R e e e e e R e e e R e e e nRe e e Re e Ra e nrn e nnnrn e 76
Chapter 7: Policies and Named Valuesccuseemmmssssnnnmsssssnsnsmsssssssssssssssnsssssssnssnsss 77
POHICIES. ...ceiereccci iR 78
L1 0L L= I 0] OO 79

£ 1104 T 82
Calculating EffeCtive POLICYcccovvvreriereninsinsenie s sesse s e ssssesse s ssssessessessessssensessens 85

(0] (1T 0] 3N 86

vii

TABLE OF CONTENTS

NAMEA VAIUBS ... s 90
PIAINTEXL......ceiticerce e e e 90

R T= 1 (-] TP 93
Secrets from AzZUre KEY VaUILccvceverererierieresesserese e sessessessesessessessessssssessessessssessessens 94
6 111 0] 99
ValIdALONS ...t 99
Canary BACKENT APIS.........cccvvererererrerersessesessessessessssessessessssessessesssssssessesassssssssessesssssssessees 103
SUMIMANY ..t e e e R e e e e R e R e e e e e R e R e e e e e Re e Re R e e e e e Re e R e e e e e aenns 105
Chapter 8: Developer Portal........cccooinmemmmmmmnnnmnmsssssssssmmmmmmmssssssssssssseessssssssssssns 107
LT ST 107
(B3 (0] 412 L0 OSSOSO 113
R3] 41711 OSSPSR 114
Notifications and TEMPIATEScccuvrvririnnin - 115

BT L 110 E] (1o R 117
Running the Developer Portal LOCAIlY..........ccccvverernnininenesensesse s sessessesessessessesees 117

£ 11134 7R 120

Part 11l: WOrkflOW.....uueeeeeeesssssssssnmssssssssssssnssssssssssssnnnssssssssssnnnnnssssssnsnnnnnnnsssns 12 1

Chapter 9: API Development in Gontext........ccurmmmmmnssnnnnmmssssnnnmmsssssssessssssssesssssnnns 123
Centralized APl REPOSITONYccceerrreereresereeresesese e s e ses e s ses e s 124
INTErNAl REPOSIIOTYeeveceeceree e 124
EXTErnal REPOSIIOIYcccovecrercereree e 125
Application REPOSITOMIESccccereriiririireierr e st nne s 127
Product Deployment with AZure PIipeline.........ccccvvrieriininieninninsinsese s s e sessessesaens 129

£ 1§14 RS 132

viil

TABLE OF CONTENTS

Chapter 10: Developing POlICIES .uuuveeerrrssssnssrsssssnnsssssssnssssssssnnsssssssnnsssssssnnssssssnnnnss 133
DL o 2 | P 133
Visual Studio Code EXTENSION.ccceveeerererereerescresese e se e sesse s sessesennenens 136

TSy 10 o O 136
Developing @ POLICYcccvnienisinsene s s 139
TESHNG AN APL......e e 141
Debugging @ POIICYcccuereiirirere e s e e 143
£ 146

Chapter 11: Deploying APIScccuuumsssnmssnmmmmmmmmsssnnnnnsssess 147
D T R TeT] o] T OSSOSO 147
BiC B ..t ———————————————————————— 154
RESTetttctristse et AR R R R R R e 156
=T U0 TR 160
SUMIMANY ..ttt s s R e e e e R e b e e e e R e R e e e e e Re e Re R e e e e e Re R e e e e e Renrs 162

Chapter 12: POWEr APPS ..cceeeerrrrrmmmssssssssssnnmmmsssssssssssssssssssssssssssssssnsssssssssssssnnnnnnsness 165
Creating @ CONNECTION........ccvceerererrserese s nr s 166
Creating @ POWET APD....coc i ses sttt s st st st st 169
BT 11134 RS 172

Part IV: Enterprise Integration.........ccccccemmmmmnnnnimsmmnsssssssssssssmmnmnnnmmssssssnssnnes 173

Chapter 13: Networking........cucussesmsssssssssssassssnsssansssassssnsssansssassssssssassssansssnsssansssans 175
Internal Virtual NetWOrk (VNET).......ccoeiiirirernsir s ss s sss e s s sssssssesnens 176
=] 3 LI = 179
NO VNET ...ttt bbb b e e et 180
Backend Integration With AKS..........c.ccvnnennr s sessesenns 182
£ 11134 RS 186

ix

TABLE OF CONTENTS

Chapter 14: Self-hosted APl GateWay........cccrssssnnrssssssnssmsssssnnsssssssnsssssssssnsssssssnnnss 187
Creating a Self-hosted APl GALEWAYcccerrverererere s 189
Deploying a Self-hosted APl GALEBWAYcccoerrerererrcrerrerere e 191

CONFIGUIALION ... e s s bbb e s 191
DEPIOYMENT ...t e e e e nn 194
Updating the Self-hosted APl GALEWAYccovererrrrmrennererese s 195
B30T 111 T o SRS 195

Part V: Maintenancecccouuemmmssmmmssesssssnsmssssssssnssssssssssnssssnsssssnsnssnnsnsannns 197

Chapter 15: SeCUNtY .uuuimmmmmrrnnrnrsssssssssnsnsssssssssssssssnsnsssssssssssssnsnssnsssssssssssnnnnnnnnsnnss 199
AUENENTICALION........ceicercr e ——————— 199

HTTP Basic Authentication to Backend Web Services.........c.counnnnnnnencnnesnssnssenenens 199
Authentication With QAULN 2.0........cccoriiiirr e 202
Other SECUNTY ASPECES....eirirrrrerrererererserere s sere s e s rse s sa e s saesae e sessesresa e e s e saesaesa s e naesaes 214
T8 L0 (0] 1 O 215
Protecting Against Path Traversal Attacks.........ccccocvvrvrveniniensn s sesses e sessenenns 216
SUMIMANY ..ttt s e R e e e e R e e e e e e e R e R e e e e e Re e Re R e e e e e Re R e e e e e Renrs 218

Chapter 16: Logging and Monitoring........cccccummmsssssssmmmmmsmssssssssssssssssssssssssssssssssnnss 219

Logging Via EVENt HUD ..o 220
Deploy an Azure EVent HUD...........cccoierrcnrceer s 221
Set Event Hub Logger to Azure APl Management...........ccocveernnernnenessnesnsesessenessesesesesenns 222
Add Event Hub Logger t0 POIICY........cccuourererernereresere s see e sessesesnenens 223
Observing Logs With VS COUE..........covrererrenernseresesese s s sessssessenes 224

Logging 10 AZure Log ANAIYEICSucevrveerenerrneesrese s ses e ses e sesse s s s ss e ssssssessssenns 226

Azure Application INSIGNTS.......ccviirinirr s e 228

L1134 R 231

TABLE OF CONTENTS

Chapter 17: Administrationccccccmrnnnemnmmnssnmmmsssnnss s ————————————— 233
High AVaIlADITITY.......ccceeeceeceeee e 233
SCaliNG iN REJIONScieieiiecerirerir et 234
Preparing for a Disaster with Backup and Restoreccccocvvvvrinncncnnnssnscsesesessenenen 236
Configuring External Caching.........cocuvvnininnnnnne s ses s snes 239
Adding CusStom DOMAINS.........cceveerrrererenerrese s s e n e nre e srens 242
Monetizing Your APIS With USEr REPOISccoerrermrrnnernennsesessse s se s sessesenns 246
AZUrE AUTOMALION.....c.ciirrireccre e 249
Creating an Azure Automation ACCOUNTcoveevrerenesernse s 250
Connecting to Azure APl Managementcoucvvennnnennsesnnesensse s s ssssessnnes 253
AZUIE LOGIC APPS.1ueruerserrersrsersessersessssessessessssssssssessessessssessessesssssssessessssssssssessesssssssessessessssessessens 255
£ 1134 7R 260

.} |

xi

About the Author

Sven Malvik is an experienced Azure expert. He specializes
in compliancy and digital transformation, most recently

in the financial industry. He has decades of experience in
software development, DevOps, and cloud engineering.
Sven is a Microsoft MVP in Azure and a speaker, presenting
sessions and tutorials at a number of global conferences,
user group meetings, and international companies.

xiii

About the Technical Reviewer

Martin Ehrnst is a speaker and technical writer within
Azure and surrounding Microsoft-related technologies.
With 15 years of experience in the IT industry, he has

gained significant competency from working with countless
customers and technical implementations around the globe.
He believes sharing knowledge is key to success internally
and for the broader community. A recognized Microsoft
MVP in Azure since 2019, he holds several technology
certifications.

Acknowledgments

Thank you so much Nina, my awesome wife and friend for over 26 years. When I first
asked you whether I should sign the contract for this book, you said “You should sign,”
and I signed. You never doubted that I would write this book. When I hadn’t written for
some days, you carefully reminded me without putting any pressure on me, so I never
felt any pressure. Many evenings when I was behind my desk writing this book being
selfish in a way, you took care of our boys, made dinner, and walked our dog. I love you!

I want to also thank Vipps AS, my employer, for being so supportive of this endeavor
and especially my manager Kristian Skonberg Lovik. You started all this when you
first asked me if I would like to speak at Microsoft Build and talk about our journey
with Azure API Management. You made this book happen in the first place and always
supported me on the way.

Finally, I thank all who I have been working together with. You helped me to get
where I am today: Helge Tesdal, Evgeny Borzenin, Per Reidar Behler, Maxim Salnikov,
and Miao Jiang.

xvii

Foreword

Over the course of my technical career, and as a full-stack developer, I have dedicated
many years to building web applications. I learned that when we developers manage
multiple parts of a solution, the need for a well-architected, precisely implemented,
tested, and documented API is crucial. It is the "glue" for the application components or
even for the multiple heterogeneous applications. I recognized that the closer you get

to the launch date, you have to have solutions for API security, performance, scalability,
reliability, and monitoring. Multiply it by the number of APIs in the project, add support
for the cloud and on-premise target environments, onboard new developer teams
(sometimes external, with limited access) - and the need for a solid API management
solution becomes crystal clear. I learned to understand and respect API layer complexity
far beyond the requirement for having a well-architected “communication” protocol.

I met Sven Malvik, the author of this book, for the first time a few years ago at a
developer community meetup I hosted at the Microsoft office in Norway. We got talking
and I was shocked when he mentioned how many APIs he and his team support and add
on monthly basis to Vipps (Norway’s largest mobile payment provider, and an ecosystem
where Sven leads Cloud Platform). Knowing that Vipps runs on Azure, I immediately
thought, this level of knowledge and expertise with Azure API Management service
should be shared with the developer community! And now my hopes have been realized.
Sven is a natural-born technical communicator, trainer, and community organizer who
is extremely passionate about sharing his Azure cloud experience with the developers.
He was a guest (presenting on Azure API Management) on my video show “Cloud Stories
from Norway,” and with great pleasure, I nominated and guided Sven on his way to
becoming a Microsoft MVP.

Fast-forward to today. After our countless joint events and collaborations focused
on the technical audience, Sven kindly invited me to write the foreword to his book,
Mastering Azure API Management. It is a culmination of his aspirations to share proven
knowledge and expertise with the goal of teaching developers how to efficiently build
great solutions.

Xix

FOREWORD

From the very first chapter, you dive deep into the technical demos, examples, and
expert how-to guidance. And it's reassuring to know that everything you learn from this
book is based on Sven's experience with building the enormous scale ecosystem reliably
serving millions of the users in Nordics every day. All of his findings, recommendations,
and insights about Azure API Management are 100% real world!

Skills in Azure API Management service provide a strong foundation for cloud
developers. It allows them to build projects faster and better, use fewer resources on
management after the proper initial setup, and be ready for future innovations in cloud
technologies. I recommend you read this book and keep it on your desk. You will revisit
particular chapters during the building of your API management strategy for your
current and future projects.

Enjoy reading and learning from Sven!

Maxim Salnikov

Azure Developer Engagement Lead at Microsoft

Technical Communities Organizer

Keynote Speaker

December 2021

Introduction

Have you ever tried to program in two languages at the same time? When I started
working with Azure API Management, I learned about the concept of policies,
which happens to be XML files with C# code statements. Many API developers
and administrators struggle with policies because of that but also because of its
€Nnormous power.

Many engineers that I helped to understand Azure API Management in
conversations and during workshops experience this Azure service as a smarter reverse
proxy compared to other services such as Azure Application Gateway and Azure Front
Door. However, they find it somehow hard to grasp the details of it such as how products
and subscriptions fit into APIs or when, where, and how to develop policies. Others look
for ways to integrate Azure API Management into an existing architecture, be it hybrid
or cloud native, and want to ensure secure end-to-end communication between API
consumers and API backend web services.

This book will help you to understand why Azure API Management is more than
a reverse proxy but a service for managing an API-centric enterprise architecture. You
will learn about its core concepts and how you can work with them in a productive way
such as publishing APIs, creating API versions, and developing policies. You will also
dive into setting up a developer portal for your users, the API consumers, that they can
use to learn about your APIs and subscribe to them so they can call an API while the
API backend web service is protected in a secure way. If you are an administrator or
architect, this book will teach you different networking modes so you can integrate Azure
API Management into your hybrid or cloud native architecture. You will then learn how
to log and monitor the traffic that is going through Azure API Management besides other
typical administration tasks such as automatic backups and caching.

I have worked with Azure API Management since 2018. As I was the responsible
engineer for Azure API Management in the company I work for, I made API deployments
simpler for our developers than they often are described in blog posts. Microsoft liked
the approach and invited me to Microsoft Build to talk about our journey. I have written
this book to teach you Azure API Management in detail and everything that’s important
to integrate it into your architecture, so you won’t need to read endless blog posts and
spend hundreds of hours in testing everything out. Have fun!

xxi

PART |

Getting Started

CHAPTER 1

Quick Start

Let’s get right down to business and have some fun in the meantime. In this first chapter,
we will focus on getting you onboard and up to speed with Azure API Management as
quickly as possible, so that you can get the most out of it.

In this chapter, you will learn how to provision API Management from the
Azure portal and then add a first API that you will try out directly from the API
Management portal.

In order to get started, you will need an Azure account. If you already have an Azure
account and a subscription that you can create resources in, then great! Feel free to
skip the following section and head directly to the section on provisioning Azure API
Management.

Create an Azure Account

If you are new to Azure or just want to have your own Azure account other than the one
you may use at work, this section will help you to get started. If you already have an
Azure account, feel free to skip this section and sign in to the Azure portal directly.

Azure provides students with a credit for creating a free Azure for Students account.
The amount of the credit may vary from country to country. You find all details on the
following website: https://azure.microsoft.com/en-us/free/students/.

Please visit the Azure website https://azure.microsoft.com/en-us/free/ and sign
in with your Microsoft credentials. In case you don’t have a Microsoft account yet, follow
the instructions for creating one. A Microsoft account is free of charge.

Once you have signed in with your Microsoft credentials, you will be presented with
a form for creating an Azure account. Besides your name and email address, Microsoft
will ask you to identify yourself by phone and by card. There is no charge involved.
Microsoft just wants to verify your identity.

© Sven Malvik 2022
S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_1

https://doi.org/10.1007/978-1-4842-8011-9_1#DOI
https://azure.microsoft.com/en-us/free/students/
https://azure.microsoft.com/en-us/free/

CHAPTER 1 QUICK START

After having signed up for an Azure account, you can sign in to the Azure portal
where you can find a pay-as-you-go subscription. An Azure subscription logically
associates your user account and the resources that you will create.

Once you have an Azure account, you can start using its services. New Azure
accounts start with 12 months of some free services. You will find more information on
the Azure website.

Note You started a 12-month free trial of Azure. However, Azure API Management
is not free of charge and you will still be paying for this service depending on the
pricing tier.

You might be discouraged now knowing that you can’t try Azure API Management
without spending money. Let me assure you that there is a pricing tier that will work
without spending money. We will discuss this in more detail in the next section.

Provision Azure APl Management

Now let’s provision an API Management resource. You have plenty of options and
technologies to choose from when it comes to managing Azure resources, including
Azure Bicep, Azure PowerShell, and Azure CLI, just to name a few. We will work in the
Azure portal which, in my opinion, is the simplest way to get started to learn Azure API
Management.

Before we begin though, I want to briefly mention costs before you actually create
an Azure resource so you won't be surprised later, but also understand when you might
have to pay for Azure API Management. In the previous section, we created a free
Azure account. However, Azure API Management is not a free service, which means
that at some point you will have to choose the optimal pricing tier in order to minimize
costs. Fortunately, there is one pricing tier called Consumption that has some free
calls per month before users get charged. This can of course change over time, and so I
recommend checking the documentation about API Management pricing.

If you have skipped the previous section about creating an Azure account and
haven’t signed into the Azure portal yet, please do so by visiting the following address:
https://portal.azure.com/.

https://portal.azure.com/
https://azure.microsoft.com/en-us/pricing/details/api-management/
https://portal.azure.com/

CHAPTER 1 QUICK START

Figure 1-1 shows how to create an API Management resource from the Azure portal.
Click “Create a resource” on the left side, and search in the list of all Azure resources for
“API Management.” Once the service appears in the result list, select it, and you will be
presented the API Management resource. Click now on “Create” for configuring your API
Management resource.

R Search resources, services, and docs (G+/) T 0]

&«

Home > Create a resource >

+ Create a resource API Management ﬁ)

ﬁ Home

BT Dashboard Create an Azure API

e Management resource J AP Management o as raoites
= All services

% FAVORITES W

* 3.8 (181 Azure ratings)

555 All resources

[4) Resource groups P "
Click Qreate and start
K3 virtual machines configuring your resource.

4> Virtual networks

@ Moniter

3 Help + support

Overview Plans Usage Information + Support Reviews

Create an AP| gateway and developer portal in minutes.

Subscriptions Turnkey solution for publishing APIs to external and internal consumers. Quickly create consistent and m

Figure 1-1. Creating an API Management resource

We will now configure our first API Management resource. The configuration of
API Management is split into multiple tabs, “Basics,” “Monitoring,” “Scale,” “Managed
Identity,” “Virtual network,” “Protocol settings,” and “Tags.” If you are not familiar with
Azure yet, you might find this overwhelming. Be assured that we will discuss every
corner of API Management throughout this book. In this chapter, we will focus on the
first tab of the configuration, “Basics.”

The first four fields of the basic configuration of an API Management resource are
common for almost all resources in Azure. That is the subscription this resource shall
be associated with in case you got more than one. If you are not familiar with Azure
subscriptions, please read the previous section where we created a new Azure account.
The seconds field describes the resource group that you want to put this resource in. It
serves as a logical container for all resources that may share the same lifecycle. In the
third field, you will set the region where you want this resource to be provisioned in. I set
it to “West Europe” where I live, so API calls would have a shorter distance to travel and

CHAPTER 1 QUICK START

probably be quicker than if I had chosen the United States or Asia. The last field is the
resource name. The name of an API Management resource must be unique and can’t be
changed later as it serves as part of the domain that you will need to access the service.

Figure 1-2 shows the basic configuration of an API Management resource where
you can see the four configurations that are common for almost all Azure resources.
Additionally, there are three more fields that we need to look at and that are special to
API Management. The “Organization name” is used in several places, including the title
of the developer portal and the sender of notification emails. The “Administrator email”
is the email address to which all notification emails will be sent. Finally, we set the
“Pricing tier” I have already mentioned that we will use the “Consumption” pricing tier
in this chapter as it gives us some free calls. It also suits our purpose of getting quickly a
high-level overview of API Management.

£ Search resources, services, and docs (G+/) l

b

Home > APl Management services >

T Create API Management
L.
B . . <—/-/The subscription you
e [Pay-As-You-Go - Will be charge under.
o Resource group * (O I mastering-apim-rg - v
* Create new
[“; Instance details

) R *Q West E
e] Gk [t irops The name must be
B Resource name * | mastering-apim {_ unique 35: itis pad of

. the public domain.

&) Organization name * O I private
a

Administrator email * O | sven@malvik.de
This pricing tier gives
Pricing tier | Consumption (99.95% SLA) you some free calls
> A

. Sl [et Woriing>

Figure 1-2. Configuring the basics

We will skip the remaining configuration tabs for now, so click directly on “Review
+ create” at the bottom. This step will verify all your input fields. In case you forgot to
set a field, it will be highlighted with an error message. Once all fields are set correctly,
you can continue by clicking “Create.” The process of provisioning API Management
with the “Consumption” pricing tier takes about 2 minutes. Once the deployment is

CHAPTER 1 QUICK START

complete, please click the “Go to resource” button for visiting the overview dashboard
of API Management. You will also find your newly created resource inside the deployed

resource group.

Add API

Now that we have an API Management resource up and running, we will continue and
add a first API. If you haven’t navigated to your API Management resource yet, please
do so now. You can also search for the resource name in the upper search bar in the
Azure portal.

Your API Management resource will look similar to mine that is shown in Figure 1-3.
It shows the overview of the resource with all of the essentials that we provided during
the basic configuration in the previous section about creating an API Management
resource. Click in the menu on the left side on “APIs” for adding a new API.

H -ani & - *
i
2 Search (Ctri+/) [Delete [Openin mobile

3 Overview : Essentials JSON View

Resource group (Move)

E Activity log X
mastering-apim-rg

P Access control (LAM)
¢ Tags
£2 Diagnese and solve problems

© Events (preview)

Settings

Il Properties
Click "APIs" to
add a new API.

a Locks
APls

<> APls
W0 Products

Subscriptions

Status
Online

Lacation
West Europe

se Subscription

0-492-858a-36d2a98748b8

Tags {Edit)
Click here to add tags

Properties Get started Learn more

W Pricing tier
Pricing tier Censumption

SLA Yes

Tier

Consumption

Recommendations (0)

' Identities

|dentities

Figure 1-3. Overview of API Management dashboard

Figure 1-4 shows multiple options of adding an API. We will discuss all of them in

detail in the following chapter. For now, we will focus on the OpenAPI specification,

formerly known as Swagger specification. It is an API description format for REST APIs.
Click “OpenAPI” for adding a REST API.

CHAPTER 1 QUICK START

,O Search APls

Y Fiter by tags - Add a new API
[Group by tag
o .
All APIs
) Blank API OpenAPL WADL WsDL
No APIs to dispiay. Create an empty AP Standard, language-agnostic Standard XML representation of Standard Xr
interface to REST APIs your RESTful APL your SOAP &
.‘*
Logic App App Service Function App
Scalable hybrid integrations and API hosted on App Service. Serverless, event driven
workflows. experience on App Service.

Figure 1-4. Adding new API

We won't create an API from scratch here as it is not the focus of this book. Instead,
we will add an existing backend API to API Management by importing the public
available “Demo Conference API,” which is provided by Microsoft and hosted in Azure.
This API Management API will become a facade for the backend API.

Figure 1-5 shows the configuration for creating an API from an OpenAPI
specification, where we can set the URL of the Demo Conference API. The following two
fields, “Display name” and “Name,” will be automatically extracted from the specification
once the URL is set. The only remaining information we will need is the context path
under which we want to make this API available for the users. In this example, I set
the field “API URL suffix” to “conferenceapi,” so the base URL of this API will become
https://mastering-api-management.azure-api.net/conferenceapi. You should now
be able to click “Create” for adding API to your API Management resource.

https://conferenceapi.azurewebsites.net/?format=json
https://mastering-api-management.azure-api.net/conferenceapi

CHAPTER 1 QUICK START

Create from OpenAPI specification Copy URL into the OpenAPI
s specification field.
sic | Full
,

ol (e———
* OpenAPl https://c pi i t=jso | or | Selectafile
specification (maximum size 4 MiB)

* Display name | Demo Conference APT

* Name | demo-conference-api

API URL suffix Iconfereﬂceapl‘ll i .
=y

Base URL = -
[http(s)://mastering-api-management.azure-api.ne

Figure 1-5. Create API from OpenAPI specification

Congratulations! You have just added your first API to API Management. You should
see “Demo Conference API” in the list of all APIs on the left side of Figure 1-4. In the next
section, we will test one endpoint from the API Management portal and from the local
machine using cURL.

Test API

We are finally ready to test the new API. There are several options to choose from: the
local machine using cURL, PowerShell, Postman or Visual Studio Code plugin, and from
the API Management portal directly. To get you onboarded and to bring you up to speed
as quickly as possible, I suggest continuing in the API Management portal and call our
new API directly from there.

APl Management Portal

Figure 1-6 shows the three steps we will go through to test the “Demo Conference AP1”
I will first mention all three steps before I will go into the details and explain what we see
on the right side.

CHAPTER 1 QUICK START

1. Click “Test” in the top menu of the “Demo Conference API” for
opening the test tab. have marked the step with number 1.

2. Select the “GetSpeakers” endpoint in the list of all API endpoints.
This endpoint doesn’t require any parameters and is easy to test.

3. Click “Send” for calling the API backend of the Demo
Conference API.

Let’s discuss each step in more detail. In the “Test” tab, we create a call by setting
headers, parameters, and body, in case we would send a POST http request. The request
URL is set automatically based on the service name, the context path, and the endpoint
you selected in step 2. In our case, the request URL is set to https://mastering-api-
management.azure-api.net/conferenceapi/speakers.

You might have noticed that there are already set two headers in the request, Ocp-
Apim-Subscription-Key and Ocp-Apim-Trace. In case you want to try to send a request
from outside the API Management portal, that is, with cURL, you will need the first
header which is a subscription key. We will discuss API Management subscriptions and
subscription keys in a later chapter.

Design Settings Test Revisions Change log

R Search operations Demo Conference APT > GetSpeakers > Console /* The unique service nameD

?G::::V;Z?S Request URL as part of the domain.
https://mastering-api-management.azure-api.net/conferenceapi/speakers

GET (GetSession —— (Makes the SIU_bSCFiptiiD

GET GetSessions key visible

GET https://mastering-api-management,azure-api.net/conferenceapi/speakers HTTP/1.1 o &
Host: mastering-api-management.azure-api.net

GET GetSessionTopics ., < A

DEp-ApiM-SubsCription-Key: sessssssssssssssassnssnnsnnsnnss

Ocp-Apim-Trace: true The master
GET GetSpeaker subscription key.

HTTP response
GET GetSpeakers e P Response code
Message Trace 200 was a success Generate definition

GET GetSpeakerSessi.. ...

HTTP/1.1 200 OK
GET GetSpeakerTopics ... cache-control: no-cache
content-length: 486086

content-type: application/vnd.collection+json
GET GetTopic date: Mon, @8 Mar 2821 28:85:15 GMT
1

o eiencs &: | Bypass CORS proxy ©

Figure 1-6. Testing Demo Conference API

10

https://mastering-api-management.azure-api.net/conferenceapi/speakers
https://mastering-api-management.azure-api.net/conferenceapi/speakers

CHAPTER 1 QUICK START

We have seen how we can use the API Management portal to test an API in its
simplest way. It’s a good way of quickly checking whether an API works or not.

Command Line

Another option for testing an API quickly is by sending the request from the command
line by using cURL. We have seen in our example that we need a subscription key to
access this API. Click the eye icon you can see in Figure 1-6 and copy the entire header
Ocp-Apim-Subscription-Key: <SUBSCRIPTION KEY>.

Listing 1-1 shows the cURL command for accessing the same endpoint as in our
previous example. Remember that the service name is unique. You will have created
your service with a different service name, so please make sure to replace both the
subscription key and the service name.

Listing 1-1. Calling an API Management endpoint with cURL

curl -H "Ocp-Apim-Subscription-Key: <SUBSCRIPTION KEY>" -X GET \
https://<SERVICE NAME>.azure-api.net/conferenceapi/speakers

Summary

In this chapter, you learned about a core element of Azure API Management.
Congratulations, you now understand how to add an API and then call it directly from
the API Management portal and from your local machine using cURL. In the next
chapter, we will discuss what it is that makes API Management so powerful by discussing
today’s challenges and how API Management addresses them.

11

CHAPTER 2

Overview

Before we dive into the details of Azure API Management and learn how to integrate this
service into an organization, let’s take a step back and talk about the value of having an
enterprise API platform. A typical use case of Azure API Management in organizations
is to make digital assets available that otherwise would be hidden in legacy systems.
Another example of why you would want to use Azure API Management in your
organization is the possibility to create new products by bundling APIs from different
systems into one common accessible unit.

In the first part of this chapter, I want to briefly highlight why APIs are the biggest
differentiator for success and give you some examples. Once you understand what
makes APIs so powerful, we will discuss them in more detail and learn the basics of web
APIs. Finally, you will learn how to manage web APIs with an enterprise API platform
and take a look at Azure API Management by discussing its core components.

Unlocking Digital Assets with APls

In the 2021 Connectivity Benchmark Report published by MuleSoft, 800 global IT leaders
were asked about the state of connectivity and digital transformation. It states that an
average enterprise has about 900 applications, whereas only a third of those applications
are integrated together, making it very difficult for organizations to deliver a connected
experience. Digital assets are locked in hundreds of systems making organizations slow
to innovate and being agile.

The demand from business for integration projects is increasing. The ability to
unlock, analyze, and act on data has become foundational to growth.

IT leaders report that integration via APIs is critical to their digital transformation
strategy. Well-designed APIs add new possibilities like controlling access to digital assets,
combining legacy applications with new applications, and empowering professional
developers and citizen developers to experiment, innovate, and react to changing
customer needs.

13
© Sven Malvik 2022

S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_2

https://doi.org/10.1007/978-1-4842-8011-9_2#DOI
https://www.mulesoft.com/lp/reports/connectivity-benchmark

CHAPTER 2 OVERVIEW

APIs let developers access and combine systems, even if those systems were never
intended to interoperate. One developer may use an API to look up customer data for a
new application, while another developer is using the same API for adding a new feature
to another application. Connectivity via APIs is not only a critical enabler of digital
transformation but also the biggest differentiator of success. Let me illustrate through the
following three examples from three different industries.

Payments

Vipps is a Norwegian payment service that provides an app to its four million users for
ordering items online, making purchases in stores, and splitting up lunch checks with
friends. It lets users pay invoices across almost every bank in Norway directly in the
Vipps app. Considering Norway’s population of about 5.3 million, this app is used by
three out of four people and makes Vipps a critical part of the financial infrastructure
in Norway.

Norwegian'’s love Vipps because it simplifies the way they do payments. Especially
during the pandemic, partners and merchants can easily adopt Vipps and let their
customers do financial transactions in a very convenient way. It follows an API strategy
that lets partners, merchants, and its own developers easily use Vipps’ services.

Initially, it migrated its application infrastructure directly to virtual machines
in Azure. To upgrade its data structure and get the most out of Azure services, it
also migrated from Oracle to Azure SQL Database. It then began using Azure API
Management to publish Vipps microservices to internal developers along with partners
and merchants. Today, Vipps builds new services using these APIs in API Management,
like the Vipps “Mobilapponnement,” which is a cell phone plan which Vipps’ users can
order directly in the app. This new product was built in a very short amount of time and
has become a great success. That’s the power of APIs.

Manufacturing

ZEISS is a German manufacturer and international leader in the fields of optical systems
and optoelectronics. ZEISS maintained a 20-year-old back-end system with hard-coded
business rules. Its developers couldn’t easily update, reroute, or track orders without
reconfiguring the system. Changes were very costly and time-consuming. ZEISS needed
a more agile order management and processing system. They started to follow an API-
strategy and started to decouple front-end interfaces from back-end systems. They also

14

CHAPTER2 OVERVIEW

wanted to go global and distribute the order-processing environment across multiple
Azure datacenters to provide faster service to customers around the world. Azure API
Management serves as the gateway to the regional resources, giving ZEISS a single place
for efficiently managing its APIs hosted on-premises and on Azure.

ZEISS customers benefit today from faster order fulfillment and timely notifications
of progress, something the existing system couldn’t do.

You can read the full technical story about Carl Zeiss AG on https://customers.
microsoft.com/en-us/story/1336089737047375040-zeiss-accelerates-cloud-
first-development-on-azure-and-streamlines-order-processing. Thanks for
sharing Microsoft.

Automotive

Mercedes-Benz is a German automotive marque that has built over two million luxury
and commercial passenger cars. The research and development teams jokingly call
these passenger cars “Container-driven cars,” as its microservices-based architecture
relies on containers for updating the head unit computer in a car’s dashboard. The head
unit computer runs the infotainment system, navigation system, steering wheel audio
control, handsfree calling system, parking system, and other apps. Until recently, this
unit was designed as a monolith. Changes were time-consuming to implement as apps
were developed by several development teams in North America and Germany.

The way they solved these challenges was to break the monolith into a microservice-
based platform that is based on Azure Kubernetes Service (AKS). They use APIs for
connecting apps, data, and back-end services, thus, decoupling back-end APIs from the
microservices.

Microservices that one team is implementing can already be used by another team
and vendors using APIs and by mocking back-end services that are being implemented.
This approach enables all teams and vendors to build products together and
simultaneously by sharing their APIs.

Thanks so much to Microsoft and Mercedes-Benz Research & Development
North America for sharing this story. You can read the full technical story on https://
customers.microsoft.com/ja-jp/story/784791-mercedes-benz-r-and-d-creates-
container-driven-cars-powered-by-microsoft-azure

15

https://customers.microsoft.com/en-us/story/1336089737047375040-zeiss-accelerates-cloud-first-development-on-azure-and-streamlines-order-processing
https://customers.microsoft.com/en-us/story/1336089737047375040-zeiss-accelerates-cloud-first-development-on-azure-and-streamlines-order-processing
https://customers.microsoft.com/en-us/story/1336089737047375040-zeiss-accelerates-cloud-first-development-on-azure-and-streamlines-order-processing
https://mbrdna.com/
https://mbrdna.com/
https://customers.microsoft.com/ja-jp/story/784791-mercedes-benz-r-and-d-creates-container-driven-cars-powered-by-microsoft-azure
https://customers.microsoft.com/ja-jp/story/784791-mercedes-benz-r-and-d-creates-container-driven-cars-powered-by-microsoft-azure
https://customers.microsoft.com/ja-jp/story/784791-mercedes-benz-r-and-d-creates-container-driven-cars-powered-by-microsoft-azure

CHAPTER 2 OVERVIEW

Understanding the Basics of web APIs

Throughout this book, we will learn how to manage an API-centric enterprise using
Azure API Management as our enterprise API platform. Before we dive into the details of
Azure API Management, we need to understand APIs.

APT is the acronym for Application Programming Interface which let applications
communicate with each other by abstracting the underlying implementation and
provide access to digital assets such as documents, pictures, or other digital content and
to interact with logic such as turning on the lights in a smart home. A web API is an API
over the Internet using the HTTP(S) protocol. As Azure API Management only supports
HTTP(S), we will focus on web APIs in this book.

Web APIs can receive requests from web browsers, mobile applications, desktop
applications, IoT, and also from back-end services that run in the cloud or on-premises.
Some publicly available and popular web APIs are Google Map APIs, YouTube APIs, and
Twitter APIs. Access to web APIs can also be restricted to internal systems only. Other
web APIs are available also for partners.

A web API exposes endpoints that are digital locations to digital assets and logic.

In Azure API Management, an API endpoint is represented by an API operation. When
working with web APIs in the context of this book, there are two terms that are essential,
SOAP and REST. Both describe how to access a web service and what operations they
perform. Let us discuss them briefly in the following sections as they are both supported
by Azure API Management.

SOAP

SOAP is an acronym and stands for Simple Object Access Protocol. It is an XML-based
messaging protocol for exchanging information among computers over the Internet
and is widely used by older APIs. SOAP enables client applications to connect to remote
services and invoke remote methods. It is platform and operating system independent,
so client and server applications that want to communicate with each other can be
implemented in different programming languages and with different technologies
using SOAP as an intermediate language. For example, a .NET application running

on one computer can invoke a method in a Java application that is running on a
different computer using the SOAP messaging protocol making it very lightweight to
communicate. The functionality of a SOAP-based web service is described in a WSDL
document.

16

CHAPTER2 OVERVIEW

WSDL

WSDL is also an acronym and stands for Web Services Description Language. It
describes the contract between a web service and a client in XML-format. A client that
connects to a web service will read its WSDL document to determine what functionality
it exposes.

Listing 2-1 shows a fraction of a simple example of a WSDL document which is taken
from the WSDL document specification. We see three main elements in this example.
The first element <message> defines the data for an operation being communicated
and is used to describe the data being exchanged between a web service and the client
application. We see two messages, an input message for the request and an output
message for the response. The second element, <portType>, defines a complete
operation that is exposed by a web service and the messages that it involves. The third
element, <binding>, defines the protocol and data format for each port type.

Listing 2-1. A simple WSDL document

<message name="getTermRequest">
<part name="term" type="xs:string"/>
</message>

<message name="getTermResponse">
<part name="value" type="xs:string"/>
</message>

<portType name="glossaryTerms">
<operation name="getTerm">
<input message="getTermRequest"/>
<output message="getTermResponse"/>
</operation>
</portType>

<binding type="glossaryTerms" name="b1">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />

17

https://www.w3schools.com/xml/xml_wsdl.asp

CHAPTER 2 OVERVIEW

<operation>
<soap:operation soapAction="http://example.com/getTerm"/>
<input><soap:body use="literal"/></input>
<output><soap:body use="literal"/></output>
</operation>
</binding>

SOAP with WSDL is centered around passing documents. Requests and responses
are typically very well structured, which makes it a great candidate for two parties that
would need a very strict contract such as inter-bank communication. The downside of
SOAP is its very verbose XML structure. However, SOAP was widely used some years ago
and you will find it for older APIs. Today, most APIs use a RESTful approach that we will
discuss in the following section.

REST

It was his call to defend the design choices to engineers from all over the world. Dr. Roy
Thomas Fielding, an American computer scientist, had worked on the foundation of the
World Wide Web, HTTP 1.1. Input came from distinguished engineers with decades of
experience, and every detail had to be explained to them. It was a very important and
challenging process. The result of many discussions was a model that led to some core
principles that we now call REST (REpresentational State Transfer). The principles of
REST are as follows:

o Client-server architecture: Client and server are decoupled from
each other and live in their own bounded contexts.

o Statelessness: The client is responsible for providing all information
in all requests so that a server can understand the context as it
doesn’t store state.

o Catchability: The data in a response is required to be implicitly
or explicitly labeled as cacheable or non-cacheable, so a client
eventually reuses the data.

o Layered system: A request might go through other systems, such
as a security system or load-balancing system, before it reaches the
responding web service.

18

CHAPTER2 OVERVIEW

o Code on demand: A client’s functionality can be extended to
download and execute code from the server.

o Uniform interface: As all components follow the same constraints, it
simplifies and decouples the interactions between them.

You might have noticed that REST is a software architectural style, not an
implementation. It defines how web standards, such as HTTP and URI, are supposed
to be used. We call web services that follow this architectural style as RESTful. Azure
API Management supports two formats that describe RESTful web services, WADL and
OpenAPI

WADL

WADL means Web Application Description Language and describes a web service to its
requesting clients. It defines a contract between a client and a server. A contract might
not always be necessary. Development teams who work closely together and who can
communicate clearly how a web service needs to be called and a response be interpreted
might find introducing a contract with WADL as an unnecessary overhead. On the other
hand, there might be one or many development teams who integrate complex enterprise
systems with each other. It might also be the case that you need to integrate with a legacy
system that is not actively maintained anymore. A strict contract makes it in such a case
easier for all parties to communicate and integrate their systems with each other.

The WADL contract is an XML document that describes the resources of a web
service that can be accessed by a client. Listing 2-2 shows a simple example of a WADL
document which represents a resource for listing and adding books.

Listing 2-2. A simple WADL document

<application xmlns="http://wadl.dev.java.net/2009/02">
<resources base="http://example.com/api">
<resource path="books">
<method name="GET"/>
<method name="POST"/>
</resource>
</resources>
</application>

19

CHAPTER 2 OVERVIEW

A WADL document is often used to create client-side code and it appeals therefore to
developers that have a strong SOAP background where it is common to generate client-
side code from a WSDL document.

It is not a widely adopted description language, as it is very time-consuming to
describe a web service manually using this format. A simpler and more adopted format
in the developer community is the OpenAPI specification that we will discuss in the
following section.

OpenAPI

If you have developed and used RESTful APIs during your IT career, chances are that
you already are familiar with the term “Swagger.” Today, Swagger is a set of tools for
implementing the OpenAPI specification. The name “OpenAPI” was actually donated in
2015. Before that, we called today’s OpenAPI specification the Swagger specification. It
is a very popular specification and open source format for describing and documenting
modern RESTful APIs. While description languages such as WSDL and WADL describe
web services in the XML format, OpenAPI documents are represented in either YAML or
JSON, which makes these documents less verbose and more human-readable.

Listing 2-3 shows a simple OpenAPI document in the YAML format for listing cars.
You may notice that this document includes descriptions which allow us to generate API
documentations. It is very convenient for a developer to immediately know what this API
and the endpoints are doing. It simplifies how we can integrate our systems with each other.

Listing 2-3. A simple OpenAPI document in the YAML format

openapi: 3.0.0
info:
version: 1.0.0
title: Simple car API
description: A simple API for listing cars
paths:
/cars:
get:
description: Returns a list of cars
responses:
'200':
description: Successful response

20

CHAPTER2 OVERVIEW

Throughout the book, we generally use examples that are based on OpenAPI
documents as these are the most common in today’s organizations. However, there are
scenarios where we have to integrate to older web APIs that are described in WSDL or
WADL. The behavior of Azure API Management is the same, as we will see in a later
chapter when we will import various web APIs.

HTTP Clients for Testing RESTful web APIs

We send a lot of requests to Azure API Management and we can test APIs directly from
the Azure portal. However, this is not always practical when we develop our APIs on our
local machine. We would need to switch back and forth from our local machine to the
Azure portal whenever we want to test a change. There are two HTTP clients that I like
very much and that I will use throughout this book, cURL and Postman.

cURL

cURL is an open source command-line tool that is well suited for sending HTTP
requests. We have seen it in action in the example (Listing 1-1) where we called an API
endpoint for listing all speakers of a demo conference API. It can be downloaded for
almost any operating system and architecture. You can either download the sources
and binary directly from the curl website, or you can follow the instructions for installing
cURL on Linux, Windows, or Mac from the curl documentation pages.

Postman

The Postman app is another HTTP client that is a great tool for interacting with web APIs.
It’s an especially great tool for an author, as it makes it possible for me to share all the
requests that I perform throughout the book with you. You can simply use the import
feature, as highlighted in Figure 2-1.

Figure 2-1 demonstrates how to send a request with Postman to the same API
operation as in the first chapter when testing the Demo Conference API. I set the
URL for the API operation and the subscription key that I got from the Azure portal.
As mentioned earlier, Postman allows for sharing of requests with its parameters and
headers in the form of collections.

21

https://curl.se/
https://everything.curl.dev/get

CHAPTER2 OVERVIEW

Collections can B AP operation for
be shared B |isting all speakers

o Bulk Edit Presets
Importing a collection Master
of requests _ subscription key

Response code
200 was a success

Figure 2-1. Sending a simple request from Postman

Enterprise API Platform in Essence

The center of an enterprise API platform is its consumable APIs. You might be already
familiar with the API-first approach which talks about creating an API first before its
implementation to ensure that its consumers get the best possible experience. Similar to
this approach is the API as a product strategy which takes this one step further.

An API as a product strategy is a customer-oriented strategy that focuses on the
demand of solving a digital problem rather than the supply of a digital asset. While it is
true that a company’s developers and partners benefit from having convenient access to
digital assets, an enterprise API platform looks beyond.

As companies unlock their digital assets and make them accessible through
web APIs, it is important to look at the overall experience across all web APIs from a
developer’s perspective for achieving the best possible adoption. A good developer
experience is influenced by many factors such as consistent documentations,
comprehensible capabilities, and common design guidelines. As these are important
factors for creating successful API products, there are other important factors that need

22

CHAPTER2 OVERVIEW

to be taken into account and that otherwise might lead to a bad experience. Among
these factors are developer onboarding, user management, cost management, API
security and governance, versioning and revisioning, performance, stability, scalability
and resiliency, health monitoring, and a great DevOps experience.

We have briefly discussed the benefits of following an API as a product strategy and
how an enterprise API platform takes this one step further. However, the following parts
go into more detail and explain the main aspects of an enterprise API platform that are
useful for understanding Azure API Management.

Consistent Documentation

One major success factor of an API is its documentation. Great APT documentation

can create a great developer experience. While this is an important ingredient for a
successful API, it does not guarantee the success of an enterprise API platform. Such
platforms host usually many different APIs that were developed by many different teams
and many different people. Some of the APIs might even be several years old and either
lack documentation completely or be inconsistent in their appearance and functionality
because they were out of sync with the latest changes. A successful enterprise API
platform delivers consistent documentations across all its hosted web APIs.

Comprehensible Capabilities

Comprehensible API capabilities that do not overlap are another important ingredient
of a successful enterprise API platform. As an example, it might easily happen that

two teams in an organization build each a web service that require user information

as part of their services. As there is no user information web service available yet, one
team decides to create a new user information web service along with the actual web
service. The second team builds only one web service and integrated user information
capabilities into it which they also exposed in the web API. There exist now three new
web APIs where two of them expose the same user information capabilities. An API user
who needs to access user information might find it difficult to choose between one of
these two web APIs.

23

CHAPTER 2 OVERVIEW

Common Design Guidelines

API design involves many aspects such as API governance, developer experience,
performance, and, most important, a value proposition, to name a few. There are many
constraints to take into account when designing an API. While all these aspects are
important, an API user cares first and foremost about solving a problem that might
require using several APIs. An enterprise API platform supports an API user by providing
common design guidelines across all APIs it hosts. These users benefit from such an API
platform as they do not have to learn and understand different API styles and instead
experience an API platform that supports common design guidelines.

API User Onboarding

The main purpose of an enterprise API platform is to serve its API users with information
and capabilities. To get API users to this point of using an API product and providing
value to them, there are important steps to take first such as registering, finding the
documentation, getting API keys, but also understanding code examples. A good way to
help API users is to allow them to register instantly via a self-service and also providing
them with everything necessary in one place so they do not need to search for what they
need. An enterprise API platform such as Azure API Management provides a developer
portal for this purpose, making it very simple for its API users to get started immediately
and providing them with value.

User Management

Users of any platform must be managed. Resetting a password is just one example. In
case of an enterprise API platform, there are additional examples and use cases such as
reactivating or deactivating a user. A certain user might not work for a partner anymore,
so this user does not have the same relation to your organization at this point. Another
use case is where you might want to withdraw an API subscription key because a certain
user might not be eligible to use a particular API product anymore. This can be the case
when an API user did not pay its bill, which might be based on a monthly usage report
that you generated through the API platform.

24

CHAPTER2 OVERVIEW

Health Monitoring

When a backend service is not responding in the same way as it is intended to, we must
know about it quickly, so we can respond and mitigate a possible incident. An enterprise
API platform is a facade to backend services and a great place to monitor the health of
the backend services that are behind this facade. Response codes, response times, but
also API'’s usage are all important measures that should be considered for monitoring.
These data help not only to mitigate a problem more quickly, but also to learn from
them, so improvements can be made before something unforeseen happens.

Governance and Compliance

APIs are the doors to capabilities and assets through web services. As these doors

are supposed to be open for some developers and closed to others, APIs can expose
considerable risk to an enterprise where it is undocumented or somehow unclear

who, when, where, and how often APIs can be accessed. Many enterprises follow
internal or external governance and compliance regulations such as the Payment

Card dustry Data Security Standard (PCI DSS), which is a set of security standards
designed to ensure that all companies that accept, process, store, or transmit credit card
information maintain a secure environment. Enterprises that have to comply with such
aregulation are required to document the techniques and practices used to secure the
access, execution, and the management of these APIs and services in the form of rules,
policies, and reports. An enterprise API platform that supports this can apply them on a
companywide level and thus, contribute to be compliant to regulations.

Versioning and Revisioning

We build this great web API, expose it to the world to be used by our API users, and then
realize that we made a mistake and need to introduce a breaking change in the web
API. As this scenario might be rare, changes in APIs are not. Not all changes are major
breaking changes and require a new version, many changes in web APIs are of a minor
nature, where a new revision just needs to be tested before being officially published.
The goal behind versions is to decouple API producers from API consumers. An
enterprise API platform that supports versions and revisions helps API developers to let
APIs evolve in a backward compatible way.

25

CHAPTER 2 OVERVIEW

Scalability and Resiliency

When a user base grows and a company’s web APIs receive more traffic than ever, there
will be a point where limits are reached, and resources exhausted. While there is a
number of techniques that should be considered for increasing the number of requests
that can be handled such as caching and throttling, scaling the web API facade itself is
one of them. When there is no other option than increasing the limits of requests that
can be handled by one unit, a good enterprise API platform should be easily scalable.
This is also important the other way around. Two different instances of an enterprise
API platform, one in the test environment and one in production, will handle different
traffic volumes. The test instance might only need to be scaled to a minimum while the
production instance requires some more units.

Security

Companies that expose APIs are vulnerable to exploitation as they provide access to
web services. While it is important to monitor and analyze the traffic, it is also necessary
to shift the focus toward API security management and ensuring that capabilities and
digital assets are protected against potential security challenges that might disrupt a
business or even compromise an entire architecture. API security is a wide term and
there are many strategies that a successful enterprise API platform should support

such as backend authentication, excessive usage prevention, and watching abnormal
activities.

DevOps

A great developer experience is an important ingredient for success. This is likewise true
for API users and for API developers. As API developers, we expect short feedback loops
to be able to work efficiently and for being productive which further helps us to deliver
faster but also to stay motivated. As an example, as I expect a CI/CD pipeline for my
RESTful web service, I expect the same automation for my web API and without the need
to switch context. An enterprise API platform that supports API developers through an
agile strategy for developing and operating APIs will contribute positively to the success
of API products.

26

CHAPTER2 OVERVIEW

Performance

As an enterprise attracts more API users, the number of requests that web services

must handle will probably increase as well. Depending on the capabilities, some APIs
might return very individual and specific information such as user information. Those
responses can be well stored on the client side if necessary and improve the performance
by leveraging a client cache. Other requests may expect information that are the same for
many clients such as the weather forecast for a specific location. It is advisable that those
kinds of responses that are sent many times to many clients during a period of time are
being cached on the server site and thus, improve the overall performance on the client’s
site and decrease the traffic on the server site.

Stability

An enterprise API platform decouples the APIs from the backend services. This opens for
a couple of use cases in the context of API stability such as throttling and load balancing.
As an example, when we understand the throughput of our traffic, we can easily throttle
the throughput to a backend service by introducing rate limiting that is based on

certain criteria such as an IP address from where we receive an unusually high number
of requests. Another use case where a decoupled API might be useful is balancing

high load between multiple backend services and thus, ensuring a stable web API. In
both examples, an enterprise API platform helps to reduce the likelihood of eventual
disturbances and increase the overall stability of a web API.

Introducing Azure APl Management

Azure API Management is an enterprise API platform that helps to unlock digital assets
and capabilities to its API consumers by routing incoming traffic to backend services

no matter where they are resided, on-premises, in Azure, or at another cloud provider.
Azure API Management creates an API facade for web services and serves as a front door
and a single point of ingress.

Figure 2-2 shows Azure API Management as the API facade to its API consumers.
The clients can be smartphone apps, desktop applications, developers, partners, or
systems running on other cloud solutions. The API fagade routes the incoming traffic
from the clients to internal backend services such as Azure Virtual Machines, Azure

27

CHAPTER 2 OVERVIEW

Functions Apps, Azure Kubernetes Service (AKS), but also to external services no matter
if those services run on-premises or at another cloud provider. As long as Azure API
Management has connectivity to the backend services, it can route the traffic. The other
way around is of course also possible. Internal services running on AKS or other Azure
runtime environments such as Azure Function Apps can send requests to Azure API
Management if the connection allows it. We will discuss networking and how to integrate
Azure API Management into different IT architectures in a later chapter.

Clients D & ﬁ .

Other
I Azure AP| Management cloud providers
O & &
Backend W
Azure Azure Azure External
Virtual Machine Functions App Kubernetes service partners

- 1 <

Azure Azure
SQL Database Cosmos DB

Databases

Figure 2-2. Azure API Management as API facade

Since all the traffic goes through Azure API Management, the scope of applications
goes beyond the aspects we discussed in the previous section where we talked about the
essence of enterprise API platforms. Here are some examples of what we can configure:
Telemetry can be collected so requests can be traced to meter the usage, XML bodies
can be transformed into JSON before being sent back to the clients, and APIs can be
monetized for certain API consumers. We will discuss all these examples and more in
detail throughout this book as they are important to learn for mastering this service.

Before we dive into these details, we will take a look at Azure API Management
from a higher level and learn about its three main components, Azure portal,
developer portal, and API gateway. It is these components that we use for configuring,
administrating, managing, onboarding, security, networking, monitoring, etc., and
that at the end make the traffic between API consumers and API producers flow in a
predetermined and secure way.

28

CHAPTER2 OVERVIEW

Azure Portal

The Azure portal is an administrative web interface for provisioning and configuring
Azure resources such as Azure API Management. You used the Azure portal already

in the first chapter and also added your first web API. Furthermore, the Azure portal

lets you manage users, APIs, and API products. We can configure the right level of

API security or monitor the usage of your APIs. Most importantly, we can change the
behavior of API endpoints by implementing policies. A behavior can be altering a
request and response by adding a new header, setting the URL for the backend service,
or validating a Json Web Token (JWT) for securely transmitting information between two
parties. We will cover everything in detail throughout this book.

Interacting with Azure APl Management

While the Azure portal is a great interface for getting started, checking values and doing
minor changes, many companies automated their environments using Azure API
Management’s comprehensive REST API. Interactions with Azure APT Management

can be done in various ways and with many different tools and technologies such as the
Azure CLI, PowerShell cmdlets, Azure Resource Manager (ARM) templates, Bicep, or
the Visual Studio Code extension for Azure API Management. I will perform most of the
examples in this book from the Azure Cloud Shell with PowerShell and the Azure CLI as
they provide a great level of abstraction over the REST API. However, some examples will
use some of the other tools and technologies depending on the use case. For example, as
an API developer, the Visual Studio Code extension might be better suited for validating
and testing code changes because we can do everything in the same IDE.

Before I continue and introduce the developer portal, I want to show you how to use
the Azure CLI to provision a new instance of Azure API Management. Instead of using
the consumption pricing tier that we have chosen the last time when we provisioned an
instance directly from the Azure poral, we will this time use the developer pricing tier, as
this allows us to use the developer portal.

Note The developer pricing tier comes with a fixed cost per month. It is therefore
recommended to delete the resource when it is not in use anymore. We will cover
APl Management pricing in a later chapter.

29

CHAPTER2 OVERVIEW

Figure 2-3 shows how to access the Azure Cloud Shell which is a browser-accessible
shell for managing Azure resources and comes with various preinstalled tools and
languages which makes it very convenient to work with from anywhere. I selected the
PowerShell mode as this allows using the Azure CLI and the PowerShell cmdlets at the
same time.

Microsoft Azure R Search resources, services, and docs (G+/)

Azure services

Click to open the
Azure Cloud Shel

AP ‘e All resources Menitc

The Azure CLI| can Management..
be used in Bash and

PowerShell mode

PowerShell 0]

Cloud Shell.Succeeded.

Bash Erminal...

MOTD: To provide feedback about Azure PowerShell, take a quick survey: https://aka.ms/azpssurvey?Q CHL=SHELL

VERBOSE: Authenticating to Azure ...
VERBOSE: Building your Azure drive ...
PS /home/sven> D

Figure 2-3. Opening the Azure Cloud Shell in PowerShell mode

We created already a resource group in the first chapter that we named mastering-
azure-api-management-rg. I will reuse this resource group and deploy the new instance
in this group.

Listing 2-4 shows the Azure CLI command az apim create for provisioning Azure
API Management. The sku-name parameter is set to “developer” which is also the default
value for the pricing tier in case you did not set it. The following parameter no-wait
will, as the name suggests, not wait for long-running operations as it is the case in this
example. Provisioning with the developer pricing tier can take up to one hour. Besides
other parameters such as publisher-name and publisher-email, which both are
mandatory, I also explicitly set the subscription parameter to ensure the right one in

case you have more than one, like I have.

30

CHAPTER2 OVERVIEW
Listing 2-4. Provisioning Azure API Management with the Azure CLI

az apim create \
--name "mastering-apim" \
--resource-group "azure-api-management-rg" \
--subscription "Pay-As-You-Go" \
--no-wait \
--sku-name "developer" \
--publisher-name "Sven Malvik" \
--publisher-email "sven@malvik.de" \

After about an hour, your instance will be up and running. We will use this instance
when learning about the developer portal.

Developer Portal

One success criterion for an enterprise API platform such as Azure API Management
is how it onboards its API consumers. Ideally, they sign up, select the APIs they need
for solving their problems, and are then ready to go. What they typically need in the
beginning when using an API for the first time is a good documentation and some
examples that explain how to use an API, so they do not spend too much time figuring
everything out on their own. Azure API Management supports the API consumers by
providing everything an API consumer needs to know in one place and in a consistent
way across all APIs.

Figure 2-4 shows the start page of the Azure API Management developer portal
when visiting it the first time as an administrator. It shows that the look and feel of
the developer portal can be customized, which makes it possible to style it according
to a corporate brand. In this figure, I highlighted the menu so you can see one way of
changing the content and style of the developer portal. Almost everything can be re-
styled either in this “What You See Is What You Get” (WYSIWYG) editor or by changing
the templates and stylesheets directly.

31

CHAPTER 2 OVERVIEW

contoso

Menu

Root navigation item
Welcome to Contoso!

Shew page headings
We provide industry-leading APls. =

Layout

Appearance

Visible to

99.95% availability 25 million API calls daily 1 million active users

Our APIs can be used for mission-critical

Our APIs define the industry's standards. Millions of people trust us.

Figure 2-4. Customizing the developer portal

The developer portal is a website that is shipped with Azure API Management and
needs to be published explicitly.

Note The developer portal is not available in the consumption pricing tier.

Besides customizing the look and feel of the developer portal, it is also possible to
add new functionality in the form of widgets. We will deep dive into the developer portal
in a later chapter and learn how to administrate and customize it.

APl Gateway

Azure API Management is an enterprise API platform that supports cloud-native, multi-
cloud and hybrid API management. Its API gateway can be placed almost anywhere with
the benefit of optimizing the API traffic flow, but also to address security and compliancy
requirements. As an example, there are cases where regulations require traffic between
two services to not leave the country as it could be the case where an Azure region does
not exist.

32

CHAPTER2 OVERVIEW

Figure 2-5 shows Azure API Management and its three main components including
the managed API gateway. This managed API gateway is located close to the Azure API
Management instance which is not always an ideal place because of several possible
reasons. Therefore, APIs can be deployed anywhere as containers making it possible to

have direct communication between two services.

(; > Azure APl Management

Azure Portal Developer Portal

[ELETED
AP| Gateway

& &

Figure 2-5. Managed and self-hosted API gateways

Wherever a self-hosted API gateway might be deployed, connectivity to the Azure
API Management instance is still required as matrices will be uploaded and possible API
changes will be applied. We will discuss how this works in detail in a later chapter.

Summary

I hope this chapter gave you a good overview of why Azure API Management can add
value to your organization. This chapter started by introducing three companies and
how they benefit from an enterprise API platform by making their web APIs easily
consumable. You learned then the basics of web APIs, especially about SOAP and
REST, as they are both supported in Azure API Management, but also because both are
widely used in the industry. However, making web APIs just consumable is often not
enough. Today’s developers and API consumers often look at the overall experience of

33

CHAPTER 2 OVERVIEW

web APIs and want to use them right away and be productive instead of spending hours
understanding them first, one by one. That'’s really the essence of an enterprise API
platform, to create a consistent experience across many web APIs, which this chapter
covered in detail. Finally, this chapter provided you with a basic introduction of Azure

API Management by introducing its core components.

34

PART I

Key Concepts

CHAPTER 3

APls and Products

In this chapter you will learn how to manage APIs and products so you can get started
building your own API-centric organization with Azure API Management. Furthermore,
you will learn how both APIs and products relate to each other as this explains how API
consumers will experience your API-powered digital ecosystem from the outside.

Before we dive into each of them, APIs and products, let me briefly introduce the
term “Product” in the context of Azure API Management to you. A product bundles
related APIs together in the sense that an API consumer can solve a problem by using
a product. As an example, a bank’s payments service product may contain APIs that
feature digital payments assets and capabilities such as “account balance,” “money
transfer,” and “refund charge.” A retailer may have a shop service which contains a
Catalog API, an Order API, and a Cart API.

Figure 3-1 shows the relationship between products and APIs in Azure API
Management. A product can be associated with many APIs as both examples
demonstrated. APIs on the other side can also be associated with many products.
Assume a bank that has two products, a domestic payments service and a foreign
payments service. Both payments services contain the Bank API as both services need
details such as the bank’s name and unique identification number (BIC/SWIFT). We
will discuss this in greater detail and how to set up a relation between APIs and products
throughout this chapter.

A

Product ‘{*"“f "’* {API }

Figure 3-1. Relation between products and APIs

We start by discussing APIs and how to manage them from the Azure portal and from
the Cloud shell with Azure CLI and Azure PowerShell before we dive into products. As
the Azure CLI and Azure PowerShell for Azure API Management are based on the REST

37
© Sven Malvik 2022

S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_3

https://doi.org/10.1007/978-1-4842-8011-9_3#DOI

CHAPTER 3 APIS AND PRODUCTS

API of Azure API Management, it may happen that those abstractions fall behind and are
missing features such as tagging APIs. In those cases, we will use the REST API directly.

Other ways of managing APIs are by defining Bicep or ARM templates. ARM
templates are often challenging for the web service developers who create the backend
APIs. Ideally, it is those developers that deploy their own APIs to Azure API Management.
Using ARM templates, they would need to write those ARM templates which is often not
their main technical domain and therefore harder to implement. However, we will cover
deploying APIs with ARM templates when discussing policies in a later chapter.

In comparison, Bicep templates are easier to implement and maintain by most
developers as they abstract away many of the more cumbersome concepts of ARM
templates. Bicep is also where Microsoft puts its effort and has become quite popular
among cloud engineers who define Azure infrastructure as code.

You remember from the previous chapters that we already provisioned two instances
of Azure API Management, one with the consumption pricing tier and the other with
the developer pricing tier. Both are identical when it comes to managing APIs and
products. The same is true for all the other pricing tiers. However, the following chapters
build upon the APIs and products we will create in this chapter where the consumption
pricing tier is not always sufficient. The developer portal is one example that we will
discuss in a later chapter where we can’t use the consumption pricing tier. For that
reason, [will use the developer pricing tier in this chapter. In case you would like to
go with the consumption pricing tier, remember that you will need to recreate some
products and APIs in a later chapter.

APIs

In the first chapter, you already created the Conference API by importing an OpenAPI
definition file to gain some first experience. Before we dive deeper into how we

can create and configure APIs, let me briefly explain what other options of creating
APIs exist:

o Blank API: This is an empty API that does not reflect any backend
API. It can be useful for scenarios where a backend API is not in place
yet and need to be mocked.

¢ OpenAPI: This is for modern RESTful backend APIs that are defined
by this specification either in YAML or JSON format.

38

CHAPTER 3 APIS AND PRODUCTS

o WADL: An XML representation of a contract between a client and
a server.

e WSDL: This is an XML description format for SOAP-based web
services used primarily by older APIs.

e Logic App: An Azure resource type for defining interactions and
workflows.

e App Service: This is a web-hosted service for building RESTful web
services.

o Function App: Azure’s serverless solution for building various types
of applications such as web APIs.

In the following sections, we will learn to manage APIs. We start by creating a blank
APIwith the Azure CLI and discuss all details. From there, we will learn how to manage
APIs with PowerShell. Finally, we will see how to create APIs from backend Azure
resources such as Logic App, App Service, and Function App.

Create Blank APl with Azure CLI

In this section, we will use the Azure CLI from the Azure Cloud Shell to create a blank
API and then add operations to it that map endpoints to a backend API. As we don’t
have a backend API yet, we will use this API later when we talk about policies to mock a
backend web service.

We start by repeating the steps from the first chapter where we logged into the
Azure Cloud Shell. Alternatively, you can install the Azure CLI on your local machine by
following the steps in the Azure documentation. As we are using the Azure CLI for now,
you can either select the “Bash” or “PowerShell” mode, both will work in the same way.

Listing 3-1 shows how to ensure that you are using the current subscription that
contains the provisioned Azure API Management instance that you want to use. If you
just created an account, you won’t have more than the “Pay-As-You-Go” subscription, so
you might skip this step. Otherwise, you will need to set the correct subscription. Verify
at the end that your Azure API Management instance does exist by running the az apim
list command.

39

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

CHAPTER 3 APIS AND PRODUCTS

Listing 3-1. Verify and set the correct subscription

Verify the current subscription
az account show

Set the correct subscription
az account set -subscription <YOUR_SUBSCRIPTION_ ID>

List the name of all instances in the current subscription
az apim list --query [].name

Now that you are in the correct subscription and have verified that your Azure API
Management instance exists, you are able to create a new API by using the az apim api
create command.

Listing 3-2 uses this command with some main parameters for creating an API. We
will discuss the remaining optional parameters in later chapters, where we will learn

about different aspects such as subscriptions and security.

e The service-name parameter is the name of the Azure API
Management instance. You retrieved it from the previous command

where you listed all instances.
o Theresource-group is the container that holds your instance.

e You can set the api-id by yourself. It is a unique API identifier across
an Azure APl Management instance.

o Thedisplay-name is what the API consumer will see in the developer
portal for an API.

o Thedescription tells the API consumers what this API is about and
makes it an important part of an API. As this will be displayed in the
developer portal, it supports HTML tags.

o The path parameter is the context-path that follows a URIL.

¢ You used the master subscription key in the first chapter. Now, we set
the subscription-key-required parameter to false so we can access
it directly.

40

CHAPTER 3 APIS AND PRODUCTS

Listing 3-2. Create APIwith Azure CLI

az apim api create °
--service-name mastering-apim °
--resource-group mastering-apim-rg °
--api-id my-demo-api °
--display-name "My Demo API" °
--description "This is an API for testing" °
--path "demo" °
--subscription-key-required false

As aresult, you will get a JSON object with all settings that confirms a successful
operation. This newly created API does, of course, nothing yet as we have not added any
operation to it that we could use for mocking a backend API endpoint. We will change
that now and add a simple GET operation with the az apim api operation create
command.

Add API Operation

Listing 3-3 uses this command with the parameters necessary for creating an operation
that we will then use for mocking a backend API endpoint. We have already discussed
some parameters in the previous example where we created an API. The following
parameters are special for creating an operation:

e The api-id that the operation will be added to.

e You can set the operation-id by yourself. It is a unique identifier
across an Azure APl Management instance.

e Thedisplay-name is what the API consumer will see in the developer
portal for this operation.

o Thedescription tells the API consumers what this operation is
about and makes it an important part of an operation. As this will be
displayed in the developer portal, it supports HTML tags.

o Theurl-template parameter is part of the URL and can contain
parameters in curly braces.

« In case you set parameters in the “url-template” parameter, you must
set the params parameter and with the same name and the type.

41

CHAPTER 3 APIS AND PRODUCTS

Listing 3-3. Create an operation with Azure CLI

az apim api operation create °
--method GET ~
--service-name mastering-apim °
--resource-group mastering-apim-rg °
--api-id my-demo-api °
--operation-id my-demo-operation °
--display-name "My Demo Operation" °
--description "This is a Operation for testing" °
--url-template "/demo-operation/{pname}/{pvalue}" "
--params name=pname description="Test1" type=paramType °
--params name=pvalue description="Test 2" type=string

Even though we were able to add an operation to the API, we won't be able to use
ityet as it does not process requests in any way. We will change this by adding a mock
response for this operation and by defining a simple policy. Policies will be discussed in
detail in a separate chapter, so we won'’t go into the details here.

Figure 3-2 shows an easy way of adding a mock response for an API operation by
selecting the newly added operation “My Demo Operation” and clicking “+ Add policy”
in the “Inbound processing” section within the Azure portal.

42

CHAPTER 3 APIS AND PRODUCTS

ye |ESEEETER CREATED fpr 12, 2021, 9:17:14 PM
| Search APIs
|7 Fitter by tags Design Settings Test Revisions Change log
[] Group by tag
&2 Search operations
e T Filter by tags Frontend VARV Inbound processing Bacl
Graup by tag GET /demo-operation/{param-name}/{para... Modify the request before it Is sent to the HTTI
. backend service.
- Add operation Template parameters
Echo APL [Pofickes ®
asa . Palic
All operations param-name * paraaType
My Demo APL param-value * string it e
GET My Demo Operat.. .. bas

+ Add policy

Click to add a
policy for
incoming traffic

The newly

added Dperation Outbound processing

Modify the response before it is sent to the
client.

& Policies b -

-+ Add palicy

Operations Definitions

Figure 3-2. Adding a policy to an API operation

You will now be presented a list of options for changing the behavior of incoming
traffic through policies for this API operation only. Select the option mock-response and
confirm the setting “API Management response” with the value “200 OK, application/
json” by clicking the “Save” button. All incoming traffic for this API operation will now
return an HTTP status code 200. As mentioned previously, we will discuss policies
in great detail in a later chapter. Try to access the API operation now by sending the
following request, remember to change the service-name “mastering-apim” to yours:

curl -i https://mastering-apim.azure-api.net/demo/demo-operation/testkey/
testvalue

If you have done everything right, you will retrieve aHTTP/1.1 200 OK response
back, which means you have done everything right.

Update API Operation

You may have noticed in the previous example that we have not included headers
or query parameters. We will do this in the next example, where we will update the
API operation that we already created by using the az apim api operation update
command. This command works exactly the same way as if we would create an API

43

CHAPTER 3 APIS AND PRODUCTS

operation with one exception. It provides the - -add parameter which allows for adding a
path and a key-value pair, where a value can be either a string or JSON object.

Listing 3-4 shows how to add a header and query parameter. As we already have
discussed most parameters in the previous example, I will only cover the new add
parameter. It expects a path and a key-value pair. A path can be request.headers or
request.queryParameters.

Listing 3-4. Update API operation with headers and query parameters

az apim api operation update °
--service-name mastering-apim °
--resource-group mastering-apim-rg °
--api-id my-demo-api °
--operation-id my-demo-operation °
--add request.headers name="my-header" type="string" °
--add request.queryParameters name="qparam" type="string"

Updating an API operation lets you add and change properties as we have seen but
also change the other settings such as description, display-name, method, and the url-
template.

Manage APIs with Azure PowerShell

Now that you have gained some experience with the az apim api command, I want
to briefly introduce you to the Azure PowerShell module. Azure PowerShell is already
preinstalled in the Azure Cloud Shell, so you can start immediately using it. In case you
prefer to work from your local machine, follow the instructions to install the Azure Az
PowerShell module.

When performing a change on an instance of Azure API Management with Azure
PowerShell, you will need to provide a context. A context is saying where and on
what instance you want to perform a change. You might have already set the correct
subscription with the az command in the previous examples; however, the Azure
PowerShell module has its own context. If you have only one subscription because you
just created a new Azure account, you might skip this step. Otherwise, you need to get
the right subscription first and then loading into a variable:

$context = Get-AzSubscription -SubscriptionId <SUBSCRIPTION_ID>

44

https://docs.microsoft.com/en-us/powershell/azure/install-az-ps?view=azps-5.7.0
https://docs.microsoft.com/en-us/powershell/azure/install-az-ps?view=azps-5.7.0

CHAPTER 3 APIS AND PRODUCTS
You can then set the context as follows:
Set-AzContext $context

Finally, you will use the New-AzApiManagementContext cmdlet to set the context for
working on the correct instance.

Listing 3-5 shows the complete example of setting the context for an instance of
Azure API Management. After executing both cmdlets, Get-AzSubscription and Set-
AzContext, you set the context for your Azure API Management instance by loading it
into a variable. You will need this context variable whenever you run a cmdlet on your
Azure API Management instance. As you already have set the correct subscription,
you need to set the resource group (-ResourceGroupName) and the service name
(-ServiceName) as parameters. Remember to change both variables to your values.

Listing 3-5. Setting the context of your Azure API Management instance

Get subscription
$context = Get-AzSubscription -SubscriptionId <SUBSCRIPTION_ID>

Set subscription by setting the context
Set-AzContext $context

Set context for Azure API Management instance

$apimContext = New-AzApiManagementContext °
-ResourceGroupName mastering-apim-rg °
-ServiceName mastering-apim

Itis now time to perform changes on this context. You might remember the Demo
Conference API that we imported in the first chapter. The PowerShell cmdlet for this
operation is Import-AzApiManagementApi. The parameters are the same as you have set
in the Azure portal.

e The Context which tells what Azure API Management instance to
perform changes on.

o TheApildisaunique identifier across this instance. If not set, Azure
API Management will assign a random string.

45

CHAPTER 3 APIS AND PRODUCTS

o The specification format (SpecificationFormat) accepts “Swagger,’
“WADL, “WSDL,” “OpenApi,” and “OpenApiJson.” As the Conference
Demo API is in JSON format, I set it to “OpenApiJson.”

e The Path is the context path of the URL. In this example, I set it
to “conf,” which results in this URL: https://conferenceapi.
azurewebsites.net/conf

Import-AzApiManagementApi ~
-Context $apimContext °
-Apild conf-api °
-SpecificationFormat "OpenApiJson" ~
-SpecificationUrl "https://conferenceapi.azurewebsites.net/?format=json" ~
-Path "conf"

Running this API import cmdlet will add the Demo Conference API to your instance
the same way as you did from the Azure portal. Even though it is a convenient way to
perform changes from the Azure portal, PowerShell enables to automate repetitive tasks
such as import and delete. We will cover this topic in detail in a later topic.

Let us now clean up and delete this API by executing the following Remove-
AzApiManagementApi cmdlet. It requires two parameters, the context (Context) and the
API identifier (Apild):

Remove-AzApiManagementApi ~
-Context $apimContext °
-Apild conf-api

The Azure PowerShell module provides many more cmdlets. Many of them will be
covered throughout this book in detailed chapters. For now, we have covered the basics
of managing APIs with PowerShell.

Create API from Azure Resources

You have learned how to define an API from the Azure portal and how to create an API
from a definition file such as OpenAPI. Another way of creating an API is by creating

a link to an existing Azure resource that exposes a web API. Azure API Management
provides three resource types for that purpose that can be linked directly from the Azure

46

https://conferenceapi.azurewebsites.net/conf
https://conferenceapi.azurewebsites.net/conf

CHAPTER 3 APIS AND PRODUCTS

portal, Logic App, Function App, and App Service. The way you create an API from an
existing Azure resource is the same for all three resource types.

In the following section, you will learn how to create an API from an Azure
App Service web application. Furthermore, you will learn why there are additional
configurations necessary to ensure that incoming traffic to your web application is
coming from your Azure API Management instance and from anywhere else.

Create Web Application in Azure App Service

Before you create an API from an Azure resource in the Azure portal, let us create a
basic Azure App Service web application in three simple steps by using the Azure CLI
again from the Azure Cloud shell. An Azure App Service plan defines a set of compute
resources for a web application to run. You will use the free pricing tier as you will use it
only for the purpose of this example.

Listing 3-6 shows the complete example of creating an Azure App Service web
application. You will first create a resource group by using the az group create
command with the location and name as parameters. Secondly, you will need an App
Service plan which can be created with az appservice plan create. The command
requires a name, the resource group, and the pricing tier, SKU, which you can set to
“FREE! Finally, you will create the web application itself by executing the az webapp
create command. Additional to the name and resource group, it requires the App
Service plan. In this example, I called the App Service plan “mywebappplan” and the
web application “mywebapp.”

Listing 3-6. Creating an Azure App Service web application

Create a resource group
az group create --location westeurope --name mywebapp-rg

Create an App Service plan in FREE tier
az appservice plan create --name mywebappplan --resource-group
mywebapp-rg --sku FREE

Create a web app
az webapp create --name mywebapp0815 --resource-group mywebapp-rg --plan
mywebappplan

47

CHAPTER 3 APIS AND PRODUCTS

The web application that is created by default comes with a static website and a web
API. You can now test your web application in a browser by using the URL <WEBAPP _
NAME>.azurewebsites.net, as shown in Figure 3-3.

@ mywebapp0815.azurewebsites.nat

af Microsoft Azure

Hey, App Service developers!

L
Your app service is up and running. A
Time to take the next step and deploy your 5,
code. r

nede

Have your code ready? Don't have your code yet? I
Use deployment center to get Follow our quickstart guide .
code published from your client and you'll have a full app -~ Jﬁ
or setup continuous deployment. ready in 5 minutes or less.

Deployment Center Quickstart

Figure 3-3. Publicly accessible web application

If you created successfully a web application with Azure App Service,
congratulations. Otherwise, you can create a web app by follow the steps in the official
documentation.

Create API from Azure App Service Web Application

Now that you have an App Service web application in place, let us create an API directly
from the Azure portal. Repeat the steps from the first chapter where you imported an
API from an OpenAPI definition file. This time, you will select the “App Service” option
instead of the “OpenAPI” option.

The last time when you imported the OpenAPI file, you set the URL of the Demo
Conference API definition file. This time, you will click the browse button and select an
Azure resource, your web application. The display-name and name will be automatically
set. As API URL suffix, set the context-path for this API as you have done with the Demo
Conference API.

48

https://azure.microsoft.com/en-us/get-started/web-app/

CHAPTER 3 APIS AND PRODUCTS

Figure 3-4 shows a successfully created API for the Azure App Service web
application. The default web application comes already with some API operations.
Click on “All operations” to see the policy for it. As mentioned earlier, policies will be
discussed in detail in a later chapter. I just wanted to show how the API and the web
application are linked with each other.

m CREATED Apr 17, 2021, B:25:14 PM ./

Design Settings Test Revisions Change log

L Search operations

S Fiter by tags Frontend 7~ Inbound processing Backend
e din iy the before t | h
(References the App w Azure AzureResource .
+ Add operation Service web application :
PP " Policies T s
All operations s &

:IJZISI‘_'

| set-backend-service . base]

pEL mywebapp0BIS ... | |
GET mywebapp0B15_... _

HEAD mywebapplB15 ... _ |
Outbound processing

OPT mywebapp0B15_. ,,, Modify the response before it is sent to the

chient.
PATCH mywebapp0B15_... .
&= Policies & &
POST mywebapp0BIS_ .. -
| base
PUT mywebappDBIS_... |
<+ Add policy

Operations Definitions

Figure 3-4. An API policy is linking to an Azure resource

Another way of creating an API from an Azure resource is by defining a Bicep or ARM
template. We will discuss the topic of deploying APIs with Bicep and ARM templates in
a later chapter, where you will learn about API development in the context of Azure API
Management.

Products

In the beginning of this chapter, we discussed briefly the term “product” in the context of
Azure API Management. In this section, we will discuss them in greater detail and learn
how to manage them and how to add related APIs to a product that API consumers then
can subscribe to.

49

CHAPTER 3 APIS AND PRODUCTS

Note A product bundles a set of APIs that APl consumers can gain access to
through subscriptions.

Before we dive into technical discussions, let us briefly repeat how APIs and products
relate to each other by looking at an example. Figure 3-5 shows a fictive web store that
has three APIs. The Cart API contains the product items a user has selected and wants
to buy, the Products API gives details about a product item and the Sales API gives
information about how many products have been sold. The users of the fictive store
may only access the Cart API and the Products API through the web store. The store
administrators of the web store may only access the Products API and the Sales API. To
make this work in Azure API Management, we create two products, one that we call
“Shopping Service,” and which includes the Cart API and the Products API, and another
that we call “Administration Service,” which contains the Products API and the Sales API.

{ Cart API } { Products API } { Sales API }

Figure 3-5. Example of a products to APIs relation

API consumers such as the website of the web store and the administrators of the
web store will subscribe to either the Shopping Service or the Administrator Service. We
will use the following three subsections to demonstrate how to implement the example
of Figure 3-5.

Create APIs

Before we look into how to create products and add APIs, we need to create those APIs.
You can do this in the same way as you did with the “My Demo API,” where you used
theaz apim api create command with the Azure CLI. Run this command three times

50

CHAPTER 3 APIS AND PRODUCTS

for each API. Alternatively, you can use Azure PowerShell, as the example in Listing 3-7

shows. Before you can run the example from the Azure Cloud Shell, execute the code

from Listing 3-5 for setting the context for Azure API Management.

Listing 3-7 shows how to use Azure PowerShell for creating the three APIs in a

Foreach loop with the New-AzApiManagementApi cmdlet. The cmdlet for creating an API

uses the following parameters:

The Context parameter informs the cmdlet what Azure API
Management instance to use. Follow the code example of Listing 3-5
for how to set the context.

Apild is a unique API identifier across an Azure API Management
instance.

The Name and the Description is what an API consumer will be
displayed in the developer portal.

The Path parameter is the context path of the URL.

The ServiceUrl tells where a request to route to. It is the URL of the
backend web service. As this is just an example for learning about
products, you can set this to a random URL for now.

As protocols, you can set http or https.

Listing 3-7. Creating three APIs with Azure PowerShell

$apis

“cart", "products", "sales"

Foreach ($currentApi in $apis) {

New-AzApiManagementApi ~

-Context $apimContext °

-Apild $currentApi-api °

-Name $currentApi °

-Description "$currentApi API for testing" ~
-Path "$currentApi" °

-ServiceUrl "http://$currentApi.xyz/backend" °
-Protocols @("http", "https")

51

CHAPTER 3 APIS AND PRODUCTS

” u

You should see three new APIs, “cart-api,” “products-api,” and “sales-api.” Verify this
by running the Get-AzApiManagementApi cmdlet and then pipe the output for filtering
the Apild, as the following code shows:

Get-AzApiManagementApi -Context $apimContext | Select-Object Apild

Now that you have all three APIs, we can continue and create the products so we can
add the APIs to them.

Create Products

The next step in implementing Figure 3-5 is to create two products, “Shopping
Service” and “Administrator Service.” You can do this in almost the same way as you
did when you created the APIs. This time, you will use the PowerShell cmdlet New-
AzApiManagementProduct surrounded by a Foreach loop for both products.

Listing 3-8 shows how to use the Foreach loop for creating two products in Azure API
Management with Azure PowerShell. The example reuses the Context parameter from
Listing 3-5. This cmdlet requires the Title and Description parameters for displaying
in the developer portal. It also sets the unique identifier for the product, ProductId. The
last parameter, State, indicates whether the product is discoverable in the developer
portal or just visible for an administrator.

Listing 3-8. Creating two products with Azure PowerShell

$products = "shopping”, "administrator"
Foreach ($currentProduct in $products) {
New-AzApiManagementProduct -Context $apimContext °
-Title "$currentProduct service" °
-Description "This is the $currentProduct service" °
-ProductId $currentProduct-service °
-State published

You might want to verify if both products were created by executing the

following code:

Get-AzApiManagementProduct -Context $apimContext | Select-Object ProductId

52

CHAPTER 3 APIS AND PRODUCTS

You might have expected two new products. Instead, the response listed two
additional products: “Starter” and “Unlimited.” Both products are built in and shall
help to get started. Both products also have subscriptions that are associated. As
we have not yet discussed subscriptions, you can delete them as well by running
the Remove-AzApiManagementProduct cmdlet with the parameters “Productld” and
“DeleteSubscriptions,” as shown in the following:

Deletes the product: Unlimited
Remove-AzApiManagementProduct -Context $apimContext °
-ProductId Unlimited °
-DeleteSubscriptions

Deletes the product: Starter
Remove-AzApiManagementProduct -Context $apimContext °
-ProductId Starter -
-DeleteSubscriptions

Executing the Get-AzApiManagementProduct cmdlet again should now result in only
the two products that you created by yourself.

Add APIs to Products

As products bundle APIs, the final step for implementing Figure 3-5 is to add the right
APIs to the right products. We do this by using the Add-AzApiManagementApiToProduct
cmdlet of Azure PowerShell. The cmdlet requires three parameters: “Context,” “Apild,”’
and “Productld”

¢ You set the Context of the current Azure API Management instance
by following the example of Listing 3-5.

o TheApild of the APIto be added to the product.
e The ProductId of the product that you want to add the API to.

Listing 3-9 shows an example of implementing the relations between APIs and
products, as shown in Figure 3-5. The example defines two Foreach loops, one for each
product, and iterates through $apis which in case of the Shopping Service are the Cart
APT and Products APL. It then calls the mentioned cmdlet for adding the current API to
the product.

53

CHAPTER 3 APIS AND PRODUCTS

Listing 3-9. Example of adding APIs to products

Add APIs to Shopping Service
$product = "shopping-service"
$apis = "cart-api", "products-api"

Foreach ($currentApi in $apis) { °
Add-AzApiManagementApiToProduct -Context $apimContext °
-Apild $currentApi °
-ProductId $product
}

Add APIs to Administrator Service
$product = "administrator-service"
$apis = "products-api", "sales-api"

Foreach ($currentApi in $apis) { °
Add-AzApiManagementApiToProduct -Context $apimContext °
-Apild $currentApi °
-ProductId $product

Summary

Congratulations, you have learned how to manage APIs and products in the context of
Azure API Management. You have also learned how to create a relation between them
so API consumers can access only the APIs that are added to the products they have
subscribed to. Even though you have not learned about the concept of subscriptions
yet, you have already seen parts of it. Some Azure PowerShell cmdlets such as
Remove-AzApiManagementProduct require subscription-related information such as
DeleteSubscriptions. You will learn about subscriptions in a later chapter when you
learn how to manage users and groups.

54

CHAPTER 4

Users and Groups

We have talked about APIs and products and how to manage them in the previous
chapter. In this chapter, you will learn how to manage the consumers of the APIs, the
users. You will learn to group the users so you can simplify the access to APIs and how
the users and groups relate to the products and APIs. As you have already learned the
relation between APIs and products in the previous chapter, we will skip this discussion.

Users relate to groups like APIs to products. As products bundle related APIs together
in the sense that an API consumer can solve a problem by using a product, groups
bundle related users together in the sense that the users of a group can access the same
APIs within products.

As an example, users that belong to the same partner organization could reside in
one group. As you have many partner organizations that want to use your APIs, you
will have many groups. Products that can be accessed by certain groups will then be
associated with these groups.

Figure 1-4 shows the relation between users, groups, products, and APIs in more
detail. A user can be part of many groups that can be associated to many products. Users
that are within a group can see only those products in the developer portal and subscribe
to them that have associated accessible groups to them. You will learn everything about
subscriptions and the developer portal in separate chapters.

55
© Sven Malvik 2022

S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_4

https://doi.org/10.1007/978-1-4842-8011-9_4#DOI

CHAPTER 4 USERS AND GROUPS

~ & can view and subscribe to

is part of | 1-9K

accessed by access to

* *

i;partof includ;s {API }

Figure 4-1. Relation between groups, users, products, and APIs

As you now understand the relation between users, groups, products, and APIs, we
will use the following two sections to learn how to manage users and groups and how
to associate them to products. You will use Azure PowerShell from within the Azure
Cloud Shell.

Note Users and groups are not part of the Consumption pricing tier.

Follow the steps in Listing 3-5 to set the context of your Azure API Management
instance that you want to use. Remember that you will need an Azure API Management
instance with one of the other pricing tiers and not the consumption pricing tier. In
Listing 2-4, you learned how to provision Azure API Management with the developer
pricing tier by using the Azure CLIL

Groups

In Azure API Management, groups are used to manage the visibility of products in the
developer portal. Users who are in a group that is associated to a certain product can

see and subscribe to this product. There exist already three immutable system groups,
administrators, developers, and guests. You can also create custom groups such as
groups for partner organizations or groups for your internal developers who need access
to an internal Azure API Management product. Furthermore, groups can also be created
from an external identity provider like Azure Active Directory.

56

CHAPTER 4 USERS AND GROUPS

System Groups

System groups are immutable. They can neither be changed nor deleted, and users get
added and removed automatically by the system. Listing 4-1 shows how to list all groups
by running the Azure PowerShell cmdlet Get-AzApiManagementGroup.

Listing 4-1. List all groups
Get-AzApiManagementGroup -Context $apimContext | Select-Object GroupId,Type

As we have not created a custom group yet, the result of Get-AzApiManagementGroup
lists three groups, administrators, developers, and guests. These groups are of type
“System.”

¢ Administrators include the Azure subscription owners.

e Developers include all users that have signed up in the developer
portal or have been invited.

o Guests include unauthenticated users. Products that are associated
to this group should either not require a subscription or the products
associated to it will serve as documentation only.

Create a Group

A group can be created by using the Azure PowerShell cmdlet New-
AzApiManagementGroup. As mentioned at the beginning of this section (“Groups”), there
are three different types of groups, system, custom, and external. A custom group is a
type of group that has no dependencies to other Azure resources or systems and can be
created by setting the parameter “type” to “Custom.”

Listing 4-2 shows how to create a custom group. The cmdlet uses the following
parameters:

e The Context which tells what Azure API Management instance to
perform changes on.

e The GrouplId is a unique identifier across this instance. If not set,
Azure API Management will assign a random string.

57

CHAPTER 4 USERS AND GROUPS

o The Name and the description are what a user will be displayed in
the developer portal.

o The Type can either be “Custom” or “External.”

Listing 4-2. Create a custom group

New-AzApiManagementGroup ~
-Context $apimContext °
-GroupId internal °
-Name Internal ~
-Description "Internal developers" °
-Type Custom

You can see your new custom group in the Azure portal or by running the code of
Listing 4-1. It lists all group identifiers and their types. If you have followed this book, you
should see three system groups and one custom group.

External groups can be created by setting the parameter “Type” to “External” and the
parameter “Externalld” to the identifier of the group from the external identity provider.
An external identity provider can be added with the Azure PowerShell cmdlet New-AzA
piManagementIdentityProvider. As of writing of this book, Azure Active Directory is
the only external provider that should be used. Other external identity providers such
as Facebook, Twitter, Google, and Microsoft are deprecated and might disappear in the
near future. We will not use Azure Active Directory as an identity provider and will use
system and custom groups throughout this book.

Associate Groups to Products

Even though we have created groups and products, the users within the groups can’t
see any of the products in the developer portal yet, so they can’t use them yet. We can
change that by associating groups to products. A group that has access to a product can
be seen by the users in the developer portal, so they can subscribe to the product. You
will learn about the developer portal and subscriptions in a later chapter.

The Azure PowerShell cmdlet Add-AzApiManagementProductToGroup adds a group
to a product by using the “groupld” and the “productld” parameters. Listing 4-3 shows
an example of adding the product “shopping-service” to the system group “guests” in
the Azure API Management instance that is provided by the “Context” parameter from
Listing 3-5.

58

CHAPTER 4 USERS AND GROUPS

Listing 4-3. Associating a group to a product

Add-AzApiManagementProductToGroup -
-Context $apimContext °
-GroupId guests °
-ProductId shopping-service

Only unauthenticated users will be able to see the shopping-service with its APIs in
the developer portal. In case an API within this product requires a subscription for using,
a user must sign in first. As authenticated users are not guests anymore, users will not
see this product anymore which means that at least a second group, “Developers,” needs
to be added.

Try also to add your new internal group to the product “Administrator Service”
by running the same code from Listing 4-3 with a different GroupId and ProductId

parameter.

Add-AzApiManagementProductToGroup ~
-Context $apimContext °
-GroupId internal °
-ProductId administrator-service

We will use this association in the next section where we will discuss users.

Users

Users are the consumers of the APIs. Some APIs might not require a subscription and
can be accessed directly by authenticated and unauthenticated users. In this section,
you will learn how to create users with Azure PowerShell. Furthermore, you will learn

to deactivate and reactivate a user account. Lastly, you will add a user to a group, so
products can be made visible to them in the developer portal. The developer portal is
also the place where users normally would sign up or reset their password. You will learn
about the developer portal in a later chapter.

Before we start and create a new user, let us see what users already exist by using the
Azure PowerShell cmdlet Get-AzApiManagementUser. As you will list all users, the only
parameter that is necessary is the context parameter.

Listing 4-4 pipes the result to the Select-0Object cmdlet to print out the first name,
email, user identifier, and the state of the user.

59

CHAPTER 4 USERS AND GROUPS

Listing 4-4. Listing all users

Get-AzApiManagementUser -Context $apimContext | Select-Object FirstName,Email,
UserId,State

If you have not yet created any user either from the Azure portal or
programmatically, the result lists only one user, the Administrator, with the email
address and the UserlId of 1. The administrator is by default an active user who is already
in the “Administrator” group.

Create a User

You will now create a new user with Azure PowerShell. As previously mentioned, the
self-service of the developer portal lets API users create users by themselves where they
fill out a form and then confirm an email they will receive to the address they provided
in the form. This is different with Azure PowerShell. By using the latest version of Azure
PowerShell, a user won’t receive an email. However, this can be achieved by using the
Azure REST API for Azure API Management.

Listing 4-5 shows how to create a user with the Azure PowerShell cndlet
New-AzApiManagementUser. Besides the parameters such as a unique “Userld” which
is optional, “FirstName,” “LastName,” “Email,” and the “Context” (see Listing 3-5), this
cmdlet requires a secure password. A password can be secured by reading text from the

console with the cmdlet Read-Host and setting the parameter AsSecureString.

Listing 4-5. Creating a user
$securePassword = Read-Host -AsSecureString

New-AzApiManagementUser °
-Context $apimContext °
-UserId jon-falk-0815 °
-FirstName Jon ~
-LastName Falk °
-Email mastering-apim@malvik.de °
-Password $securePassword

60

CHAPTER 4 USERS AND GROUPS

After you have successfully executed the code of Listing 4-5, run the
Get-AzApiManagementUser of Listing 4-4 once again. Even though we have not set the
state of this new user, it is active by default. This is different to the developer portal where

a new user will first be in state “Pending” until a confirmation mail was confirmed.

Deactivate and Reactivate a User

Let us now assume that this user has not paid the bill for the last month and you want
to block the user for now. This can be achieved by changing the state of this user from
Active to Blocked by using the Azure PowerShell cmdlet Set-AzApiManagementUser.

Set-AzApiManagementUser ~
-Context $apimContext °
-UserId jon-falk-0815 °
-State Blocked

After executing this cmdlet, the user will neither be able to access the developer
portal nor call any API. Once the user has started paying bills again, you would execute
the same code with the state Active. The user can now use the developer portal again
and call the APIs the user has access to.

Add a User to a Group

You learned previously that products are made visible to groups in the developer portal.
It is therefore necessary to add a user to one or several groups, so that a user is able to
subscribe to a product. We will discuss subscriptions and the developer portal in later
chapters.

The following code shows how to add a user to a group by using the
Add-AzApiManagementUserToGroup cmdlet of Azure PowerShell. Run the code from
Listing 3-5 first for setting the context of the Azure API Management instance you will
use. The cmdlet requires, in addition to the context, also the GroupId and the UserId
parameters as shown in the following:

61

CHAPTER 4 USERS AND GROUPS

Add-AzApiManagementUserToGroup ~
-Context $apimContext °
-GroupId internal °
-UserId jon-falk-0815

The user “Jon Falk” is now in the internal group that is associated to the product
“Administrator Service.” Jon Falk can now see the product and its APIs in the developer
portal and is able to subscribe to it, which we will discuss in detail in later chapters.

Summary

In this chapter, you learned not only how to manage users and groups with Azure
PowerShell but also how they relate to products and APIs in Azure API Management.

62

CHAPTER 5

Versions and Revisions

As we change and improve our backend applications over time, add new features and
remove some others, we might come to a point where we have to make changes to the
backend APIs as well. Some of them might be breaking changes and require an API
consumer to change code on the client side, while other changes are non-breaking
changes where API consumers can decide whether they want to change the client side
and eventually use a new feature or not.

Azure API Management supports both breaking and non-breaking changes by using
the concepts of versions and revisions. Versions can be used for breaking changes while
revisions can be used for non-breaking changes.

In this chapter, we will learn the concepts of both in the context of Azure API
Management and how to create and use them. Before we delve into each of them, let us
look at how they relate to each other.

Figure 5-1 shows three entities, Versions Set, Version, and Revision. A version set is
arepresentation of a set of versions for a single API, in this example, API vl and API v2.
A version set defines how a version can be requested. A version on the other side is its
own API with its own API identifier. Each version has at least one revision, the current
revision with the identifier of 1 that is shown as r1 in this example. Other revisions can be
requested by appending ; rev=<ID> at the end of the URL.

63
© Sven Malvik 2022

S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_5

https://doi.org/10.1007/978-1-4842-8011-9_5#DOI

CHAPTER 5 VERSIONS AND REVISIONS

Versions Revisions

current

{ APIv1 } {APIvlrl}

Version Set

{APIv2rl}

{APIv2r2}

Figure 5-1. Relation between API versions and API revisions

In the following sections, we will delve into both of them, versions and revisions, and
learn how to create them with Azure PowerShell and how to request them individually.

Versions

Versions can be used for communicating breaking changes to the API consumers. An
example of a breaking change could be as simple as changing an endpoints URI from
/getcustomer/<ID> to /customer/<ID>. Clients that still call the old URI would receive
the HTTP status code 404, resource not found. There are at least two options of attacking
a breaking change:

1. Leverage the power of policies in Azure API Management and
rewrite a request to the new URI of the backend API.

2. Introduce a new version in Azure API Management with the
changed URI and communicate it to the API consumers.

The first option is saying that an API consumer won'’t notice any change because the
API facade did not change. Instead, Azure API Management would rewrite the request
and call the backend API with the new URI. This approach increases the complexity
because a policy needs to be implemented that makes this rewrite happen. We will
discuss Azure API Management policies in detail in a later chapter and focus in this
chapter on API versions, option 2.

64

CHAPTER 5 VERSIONS AND REVISIONS

In option 2, an API consumer would choose between different API versions where
each version is a new API that has its own unique identifier.

Version Scheme

Before we create a new version of an API, let us discuss how to call a new version. Azure
API Management offers three different version schemes for that matter:

1. Path-based where the version is part of the URL
2. Header-based where the version is set as a header

3. Query-based where the version is set as a query parameter
in the URL

Listing 5-1 shows how to define a version scheme by creating a Version Set with the
Azure PowerShell cmdlet New-AzApiManagementApiVersionSet. A version set represents
a set of API versions for a single logical API like the Demo Conference API. Besides the
parameters such as the context of Azure API Management and a name, Listing 5-1 sets
the mandatory version scheme Scheme and an optional identifier ApiVersionSetId. I set
the version scheme to Segment, which means that I went for the path-based scheme.
The other options would be Header for header-based scheme and Query for query-
based scheme.

Listing 5-1. Creating a version set

New-AzApiManagementApiVersionSet ~
-Context $apimContext °
-Name "Demo Conference API" °
-Scheme Segment ~
-ApiVersionSetId conf-api-vs

An API that we want to be represented by this version set requires the
ApiVersionSetId. Let us see how to do this when adding the Demo Conference API as a

version.

65

CHAPTER 5 VERSIONS AND REVISIONS

Add a New Version

A prerequisite for creating an API version is a version set, as Listing 5-1 showed. As
mentioned at the beginning of this section (“Versions”), a version is a unique API

with its own unique identifier. You can therefore create a version in the same way

as you did when you created an API, by using the Azure PowerShell cmdlet Import-
AzApiManagementApi. The difference now is that you must add the ApiVersionSetId
parameters from Listing 5-1 and a version number, ApiVersion that you choose yourself.

Note When adding a new API version in the Azure portal, a version set is added
automatically.

Before you create a new version, let us re-import the Demo Conference API from
Chapter 3 and add this API to your version set, as the following example demonstrates:

Import-AzApiManagementApi ~
-Context $apimContext °
-Apild conf-api °
-SpecificationFormat "OpenApiJson” ~
-SpecificationUrl "https://conferenceapi.azurewebsites.
net/?format=json" °
-Path "conf" ~
-ApiVersionSetId conf-api-vs

The way you would call this API has not changed in any way as it is still your
original API. Let us now add a new version v1 by creating a copy of this API with the
Azure PowerShell cmdlet New-AzApiManagementApi. There are two parameters that
are interesting: SourceApild which is the API identifier of the API that you want to
copy from, and ApiVersion that I set to v1. Notice that the parameter Path is still the
same, conf.

New-AzApiManagementApi °
-Context $apimContext °
-Apild conf-api-v1 °
-Name "Demo Conference API" °
-ServiceUrl http://YOUR_NEW BACKEND API °
-Path conf °

66

CHAPTER 5 VERSIONS AND REVISIONS

-Protocols @("http", "https") °
-ApiVersionSetld conf-api-vs °
-SourceApild conf-api °
-ApiVersion vi

The URL of this new path-based version (/v1) has changed to http(s):
// mastering-apim.azure-api.net/conf/vi/topics.

Note Calling this endpoint will respond with an HTTP status code 401 as it
requires a subscription key. We will discuss subscriptions in the following chapter.

As every new version has its own unique API identifier (ApiId), it can be added to
products in the same way as un-versioned APIs by using the Azure PowerShell cmdlet
AzApiManagementApiToProduct, as Listing 3-9 shows.

Revisions

Revisions are a way of communicating non-breaking changes to API consumers. Adding
an endpoint to an existing version would, for example, not require a client side to change
its code because no existing endpoint has changed. As Figure 5-1 shows, every API and
every version has at least one revision with the ApiRevision of 1.

Listing 5-2 uses the Azure PowerShell cmdlet Get-AzApiManagementApiRevision to
demonstrate this. It uses the new version of the Demo Conference API conf-api-vi.

Listing 5-2. Get all revisions of an API.

Get-AzApiManagementApiRevision ~
-Context $apimContext °
-Apild conf-api-vi

Let us now create a new revision and see how we can call it.

67

CHAPTER 5 VERSIONS AND REVISIONS

Add a New Revision

Revisions share the same API identifier (ApiId) in the sense that you provide the same
identifier for all revisions as a parameter. As you will see after you have created a new
revision, the API identifier has slightly changed. In the following example, you will
use the Azure PowerShell cmdlet New-AzApiManagementApiRevision to create a new

revision. It has four parameters:
o Context for identifying the instance of Azure API Management.
o Apildwhich identifies the API that you will create a new revision of.
o ApiRevision which can be a numeric value or a string.

e SourceApiRevision which identifies the revision you want to copy
from. Without this parameter, you would get a revision without any

operations.

New-AzApiManagementApiRevision ~
-Context $apimContext °
-Apild conf-api-v1 °
-ApiRevision 2 °
-SourceApiRevision 1

After you have executed this cmdlet, you will have two revisions that can be
individually changed and tested in any way. An API consumer would still hit revision 1
unless it is called by adding the following string to the URL ;rev=2. The complete URL
would like this: https://mastering-apim.azure-api.net/conf/vi;rev=2/topics. As
mentioned previously, the API identifier has changed slightly. Running the cmdlet of
Listing 5-2 will return two revisions, one with the API identifier conf-api-v1 and the
other conf-api-vi;rev=2.

In the following section, you will learn how to make revision 2 as the current revision
where an API consumer won't need to add the revision number ;rev=2.

68

https://mastering-apim.azure-api.net/conf/v1;rev=2/topics

CHAPTER 5 VERSIONS AND REVISIONS

Make Revision Current

At some point, when you have developed and tested a new revision, you want
your API consumers to call it without being specific in the URL. You can do this
by making a revision as current. The Azure PowerShell cmdlet for this is New-
AzApiManagementApiRelease. It requires the context, Apild, and ApiRevision

parameters.

New-AzApiManagementApiRelease ~
-Context $apimContext °
-Apild conf-api-v1 °
-ApiRevision 2

Now that revision is flagged as current, it can be called without specifying the
revision number, as this URL demonstrates: https://mastering-apim.azure-api.net/
conf/vi1/topics.

Summary

In this chapter, you learned how to use API versions and revisions in the context of
Azure API Management. This concept is often overseen by developers who simply

want to deploy their APIs to Azure API Management. They end up creating a new API
with a slightly different path using a suffix such as -v2. The new path of the not-so-new
API - same API but a new version - is /conf-v2, which results then in the URL https://
mastering-apim.azure-api.net/conf-v2/topics.

A good practice of using the concept of versions and revisions in Azure API
Management is by including it as part of an API deployment pipeline or routine that you
as the Azure API Management engineer or administrator provide to the developers, so
they don’t have to know these details of Azure API Management.

69

https://mastering-apim.azure-api.net/conf/v1/topics
https://mastering-apim.azure-api.net/conf/v1/topics
https://mastering-apim.azure-api.net/conf-v2/topics
https://mastering-apim.azure-api.net/conf-v2/topics

CHAPTER 6

Subscriptions

An important part of managing APIs in Azure API Management is to govern their usage.
In some cases, an API will be open for the public and can be called by anyone and from
any client without any restrictions, like the original Demo Conference API that you
imported early on. In other cases, you might want to be specific about who can call what
API. This is where subscriptions come into play.

Subscriptions describe the APIs that a user can call by including a subscription key
in the request. Furthermore, subscription keys can be used within policies to restrict or
change the behavior of APIs. In this chapter, you will learn how to manage subscriptions
with Azure PowerShell and understand how subscriptions fit into the context of API
security. Before we start, let us first take a look at how subscriptions fit into the bigger
picture of Azure API Management.

Figure 6-1 shows how subscriptions relate to users, products, and APIs. Both,
products and APIs, can be configured in a way that they require a caller to include a
subscription key to the request. As users might want to call many APIs across many
products, many subscriptions might be associated to a single user. Products on the other
side can also be associated to many subscriptions because many users might want to use
the same product. Compared to APIs, products allow for an upper limit of subscriptions.
Since Azure API Management introduced the consumption pricing tier, a subscription
can also be associated with either one or all APIs, which means a product is not a
requirement for using subscriptions.

71
© Sven Malvik 2022

S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_6

https://doi.org/10.1007/978-1-4842-8011-9_6#DOI

CHAPTER6 SUBSCRIPTIONS

subscribes to
-

-

-

-
-—

-

Figure 6-1. Relation between users, products, APIs, and subscriptions

Let us look at what subscriptions already exist in your Azure API Management
instance by using the Azure PowerShell cmdlet Get-AzApiManagementSubscription
and then piping the result for printing some of the attributes. Obtain the context of your
Azure API Management instance from Listing 3-5.

Get-AzApiManagementSubscription -Context $apimContext | °
Select-Object SubscriptionId,Name,ProductId,UserId

If you have followed the examples in this book, you will get a list of three
subscriptions, as shown in Table 6-1. The Master subscription is the only subscription
that can’t be deleted. As its name suggests, it is a built-in all-access subscription
that you should never share. It was introduced to simplify API testing. The other two
subscriptions are each associated with a product and the administrator user. They were
automatically created when you created the products.

Table 6-1. Example list of subscriptions

Subscriptionld Name Productid Userld
Master Built-in all-access subscription

607d4035d61389004497801b shopping-service 1
607d4036d61389004497801d administrator-service 1

72

CHAPTER6 SUBSCRIPTIONS

Before we continue and use one of the subscriptions in a request, let us create one
subscription in the following section.

Creating a Subscription

You saw in Figure 6-1 that you do not need to associate a user to a subscription. However,
you might want to know what user is calling what API. Maybe it is important to you for
statistical reasons or because you intend to monetize your APIs. Whatever your reason
is, it can be a good idea to have user-specific subscriptions, so you are able to suspend
specific users if you must.

You create a subscription with the Azure PowerShell cmdlet New-
AzApiManagementSubscription. Besides the context of your Azure API Management
instance that you want to use (see Listing 3-5), I set the following parameters:

e SubscriptionlId is an identifier that you can choose yourself.

o Name is displayed in the developer portal and often the same as the
Subscriptionld.

e Productldisthe product a user can use by this subscription.

e Userldisthe user thatis identified in a request.

” u

e State can be “Suspended,” “Active,” “Expired,” “Submitted,”’
“Rejected,” “Cancelled.”

New-AzApiManagementSubscription ~
-Context $apimContext °
-SubscriptionId jon-falk-0815_ shopping-service °
-Name jon-falk-0815 shopping-service °
-ProductId shopping-service °
-UserId jon-falk-0815 °
-State Active

When you execute this cmdlet, you will add a new subscription that user Jon Falk can
use to call APIs that are associated with the Shopping Service. Let us see how we can do
this in the following section.

73

CHAPTER6 SUBSCRIPTIONS

Revealing Subscription Keys

You will now send a request by using the subscription that you just created. Before you
do this, I want to briefly talk about subscription keys that come with a subscription.

Subscriptions come always with two keys, a primary key and a secondary key. Both
keys work in the same way, and you can use either of them. The reason there are two of
them is in case you must regenerate a key. A user or a client application can simply try
the other key.

Listing 6-1 shows how to reveal the subscription keys that you created for Jon Falk by
using the Azure PowerShell cmdlet Get-AzApiManagementSubscriptionKey. This cmdlet
expects at least two parameters, the context (see Listing 3-5) and the identifier of the
subscription.

Listing 6-1. Reveal subscription keys.

Get-AzApiManagementSubscriptionKey ~
-Context $apimContext °
-SubscriptionId jon-falk-0815 shopping-service

If you have followed the examples in this book, you won’t have an API in the
shopping service that you can call. Import therefore the Petstore API and add it to the
shopping-service product as shown in the following:

#Import API
Import-AzApiManagementApi °
-Context $apimContext °
-Apild petstore-api °
-SpecificationFormat "OpenApiJson" ~
-SpecificationUrl "https://petstore.swagger.io/v2/swagger.json" ~
-Path "petstore"

Add API to product
Add-AzApiManagementApiToProduct ~
-Context $apimContext °

-Apild petstore-api °
-ProductId shopping-service

74

CHAPTER6 SUBSCRIPTIONS

As a last step, | recommend renaming the subscription key that you will send in
the header, so it is not obvious to others what API management tool you are using. The
default key for a header is Ocp-Apim-Subscription-Key and for a query parameter
subscription-key. Execute the Azure PowerShell cmdlet Set-AzApiManagementApi to
rename the subscription header key to ApiKey.

Set-AzApiManagementApi ~
-Context $apimContext °
-Apild petstore-api °
-SubscriptionKeyHeaderName ApiKey

Calling API with Subscription Key

As you have all the necessary entities such as user, product, API, and subscription set up,
let us look at Figure 6-2 and see how they relate to each other in detail. The Petstore API
is associated to the Shopping Service product that the user Jon Falk has subscribed to.
He can now use one of the subscription keys to call an operation of the Petstore API.

subscribes to *

-
-"‘
-
-

Subscription

jon-falk-0815_shopping-service

Calls with API key
{ Petstore API }

Figure 6-2. User Jon Falk subscribes to Shopping Service product to call Petstore
API with the ApiKey

Use the following cURL command to call the /petstore/store/inventory operation
within the Petstore API. Use the primary key that you revealed in Listing 6-1 and replace
it with <PrimaryKey>.

curl -iH "ApiKey: <PrimaryKey>" https://mastering-api-management.azure-api.
net/petstore/store/inventory

If everything went well, you should get an HTTP status code 200.

75

CHAPTER6 SUBSCRIPTIONS

Summary

In this chapter, you have learned about the concept of subscriptions in Azure API
Management. You understand now how they relate to users, products, and APIs, but also
how you create and manage them with Azure PowerShell.

You might assume that subscription keys contribute to the overall security of the
backend APIs as users can get individual subscription keys that only they know about.
This is partly true and partly wrong.

Firstly, subscription keys are sent in plaintext, which makes them vulnerable to
man-in-the-middle attacks. Secondly, in many organizations that I have seen, Azure
API Management is a shared instance. Developers across many different teams and
units have access to the same instance and can reveal all subscription keys. As many
cyberattacks come from the inside, subscription keys might easily be accessible. They
are also observable in logs to those that have access.

Treat subscription keys to govern what API consumers can access what APIs, but
not to secure your backend web services. Those should ideally have their own security
concepts implemented.

76

CHAPTER 7

Policies and Named
Values

In the previous chapters, we focused on how to manage APIs, products, users, groups,
and subscriptions. While all these entities are necessary for describing who can call what
API, we have not talked about how Azure API Management can help to alter the behavior
of an API. Let me give you three examples of why this might be interesting for you:

o API migration: Instead of sending all petstore requests to the same
legacy petstore backend API, you might want to send the requests
of one operation to a new and modern Azure Function App that you
have created.

e XML to JSON: You have a legacy web service that sends XML
responses, and you use Azure API Management to convert those XML
responses to JSON before returning them to the API consumer.

e Logging to Event Hub: You want to log all API calls to Azure Event
Hub so that you are more flexible in terms of the consumers of
the logs.

As policies are very flexible, and you will learn why in the following sections, the use
cases are endless. I like to say that policies are the heart of Azure API Management. It
is where you can change the behavior of one operation, an entire API, a product that is
affecting many APIs, or all of them.

Named Values in comparison are the properties of the policies and being used
within. They are managed independently because they can be used in all policies.

In this chapter, you will learn how to change the behavior of your APIs. We will start
by discussing policies from a high level before we make some minor changes to an

77
© Sven Malvik 2022

S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_7

https://doi.org/10.1007/978-1-4842-8011-9_7#DOI

CHAPTER 7 POLICIES AND NAMED VALUES

API. You will then learn how to scope a policy to a certain API operation, API, product, or
all APIs. Finally, we will look at some policy examples, some are more common; others
are more interesting.

Policies

With Azure API Management policies, we can change the behavior of any API. Instead of
just accepting an incoming request and routing it to the right backend web service, we
can validate the request first and check whether it has the correct headers, we can reply
with an alternative response message in case a backend web service does not work as
expected, or we can return a result from a cache; the possibilities are endless. The reason
for this flexibility is policy expressions that we can apply on a request and the response
by using a subset of .NET Framework types which we express in the C# language. Azure
API Management provides already many predefined policy statements such as validating
the content, setting usage quota, or rewriting URLs. Those predefined policy statements
are expressed in XML. Before we dive into a policy and implement a behavioral change
in an AP], let us first understand the inner working of a policy.

You might ask yourself, why should I want to code in C# within XML. The simple
answer is: “You don’t”” Microsoft bought this service with this concept already in place
and as of now, there are no plans to change this. Obviously, this is a drawback of Azure
API Management. However, there are utilities that help you to implement policies that
you will learn about.

Figure 7-1 shows an API consumer (Client) that sends a request to an API with
a policy. The policy describes four sections. Behavioral changes that you will make
on an incoming request goes into the inbound section. You might remember when
you mocked an API operation (see Figure 3-2), you did this in the inbound section of
the policy.

Changes can also be made right before a request is being forwarded to the backend
web service. Later in this chapter, you will learn how to change the backend web service
of an API operation in the backend section of a policy.

Before you send a response back to the client, you might want to make a behavioral
change there as well. As an example, you might need to add a certain header to all
responses across all APIs. Maybe you want to transform an XML response from a certain
legacy web service into JSON. You do this in the outbound section of a policy.

78

CHAPTER 7 POLICIES AND NAMED VALUES

Finally, whenever an error occurs, like a timeout from a backend web service, you
can catch this in the on-error section and add a good and consistent error message
across all APIs to the response.

Policy

B roons B cers B
Backend
Coubond

On error

Figure 7-1. Policy statements and expressions flow

What you have seen now is how one policy works from a high-level perspective.
What you have not seen and learned yet is how to implement a policy and how to scope
a policy to what operation, API, or product you want. Before we discuss each of these
questions, let us look at a default policy from the inside, the XML code.

Simple Policy

In this section, I will show you a policy from the inside, talk about the XML code, and
implement a minor behavioral change; limiting the rate that an API can be called. Before
you continue and implement this, let us look at a default policy by navigating to the
policy editor in the Azure portal for one API operation, as shown in Figure 7-2.

79

CHAPTER 7 POLICIES AND NAMED VALUES

m CREATED May 8, 2021, 11:14:01 AM .~

Design Settings Test Revisions Change log

GET GetSpeaker .
Frontend &L Inbound processing Backend

GET GetSpeakers GET /topics Modify the request before it is HTTP(s) endpoint Vi

sent to the backend service.
b 4 b 4

GET GetSpeakerSessi.. ., Query parameters s://conferenceapi.azurewebsit...
Policies <> ﬂ

GET GetSpeakerTopics ., dayno integer ’_ Policies <<
base |

GET GetTopic - Responses base
Qutbound processing
GET GetTopics h m

Modify the response before it is

sent to the client.

GET GetTopicSessions i Definitions (— I (—
Policies LH

GET GetTopicSpeakers
base |

POST SubmitSession

Operations Definitions

Figure 7-2. Navigating to the policy editor

You will now see the policy editor for the GetTopics endpoint. Listing 7-1 shows the
default policy that describes the implementation of Figure 7-1. It shows the four sections,
inbound, backend, outbound, and on-error. Within these sections, you find the <base />
definition which inserts a policy that is scoped one level above. We will discuss scoping
in the following section. For now, pretend that it is not there, as we will only deal with
one policy in this section.

Listing 7-1. Default policy

<policies>
<inbound>
<base />
</inbound>
<backend>
<base />
</backend>
<outbound>
<base />
</outbound>

80

CHAPTER 7 POLICIES AND NAMED VALUES

<on-error>

<base />

</on-error>
</policies>

The default policy does not change behavior in any way. We will change this now by
adding the predefined policy statement <rate-limit-by-key> to the inbound section
as Listing 7-2 shows. The attributes tell that we can call the GetTopics operation five
times (calls) within one minute (renewal-period). The numbers are based on a key
(counter-key) which is an IP address that is stored in context.Request.IpAddress. We
will dive into the syntax and expressions in a later section.

Listing 7-2. Limiting the number of calls per IP address

<inbound>
<base />
<rate-limit-by-key calls="5" renewal-period="60" counter-key="@
(context.Request.IpAddress)" />

</inbound>

After clicking Save, you can test this policy by calling the GetTopics operation six
times. I used a simple for-loop in Bash and printed only the HTTP status code separated

with a comma.

for i in $(seq 1 6); do
curl -s -o /dev/null -w "%{http _code}," -H "ApiKey: <YOUR_SUBSCRIPTION
KEY>" https://mastering-apim.azure-api.net/conf/topics

done

The result is as expected; it went well five times before we received the HTTP status
code 429 (Too many requests). Remember that the policy is based on the IP address.
Clients with other IP addresses can still call this operation and receive an HTTP status
code 200 (OK).

200,200,200, 200,200,429

You have learned how to change a policy on API operation level by making a simple
change in the policy editor of the Azure portal. In the following section, you will learn
how to scope policies for operations, APIs, products, and all APIs.

81

CHAPTER 7 POLICIES AND NAMED VALUES

Scoping

Policies can be scoped on different levels, global, product, API, and operation. They can
be mixed or stand-alone. In the previous section, you implemented a change in a policy
of one operation. You noticed the policy statement <base />. It tells where an upper-
level policy will be inserted. Before we will implement an example to demonstrate this,
let us look at how policies depend on each other

Figure 7-3 shows a global policy at the top that can be inserted in all policies in the
levels that are below. I say “can” because it depends on whether you set <base /> or not,
and so, will be inserted in a policy below or not. The same is true for all other policies.
At the end, you will have an effective policy that might include a combination of policies
from each level. I marked policies on each level with a star to highlight those that would
be part of an effective policy.

SEssEEREREERERENY Policies

Operation @& Operation @ Operation @ Operation gligolll¢[3

Effective Effective Effective Effective
Policy O Policy Policy Policy

Figure 7-3. Policy scoping

You learned where to implement a policy for an operation. As there is a policy on
each level, I want to show you where to access the other policies in the Azure portal.

82

CHAPTER 7 POLICIES AND NAMED VALUES

Figure 7-4 shows where to click in the Azure portal to access the policy editor for
each level despite the product level policy. You find the policy editor for products by
selecting a product in the Azure portal and then clicking Policies. We will deploy policies
in a different way in a later chapter.

- W CREATED May 8, 2021, 11:14:00 AM ~°
~ Search APIs
Design

7 Filter by tags Settings Test Revisions Change log

L Group by tag

Global

+ Add operation

ronten v nooun rocessin CKEN:
policy Frontend Inbound p g Backend
+ Add A1 All aperations h et
GET [topics e request eitis
= L ; int
i A ‘ 3 Open form-based editor FNRTREST g HTTP(s) endpol
Query prrsmetors / fconferenceapi
a pi.azur
Demo Conference APT =3 Policies T w
dayno integer . Policies
Echo API base .
s [rate-yf
(" Policy editor
GET GetSpeaker o Cy ed to
GET GetSpeakers
Definitions

Outbound processing

GET GetSpeakerSessl.. . . o
Modify the response before it is
sent to the cient.

GET GetSpeakerTopics |

Operation

policy [Folc ¢ s
GET GetTopic
base
GET GetTopics h
+ Add policy
Operations Definitions

Figure 7-4. Policies in different scopes

You will now implement a policy on the global level and prevent the use of the
master subscription key “Built-in-all-access subscription” for all calls no matter what
product, API, or operation is called. This can be useful to prevent calls that accidentally
have been shared with your API consumers as this key allows access to all operations in
Azure API Management.

Click on All APIs and then open the policy editor as shown in Figure 7-4. Replace
then the inbound section of this global policy with the code from Listing 7-3. The
implementation uses a control flow policy that is expressed with <choose/>. We will
discuss syntax and expressions in the following section. Inside the <choose/> element,
you must put at least one <when/> element with a condition. In this example, we check
whether the subscription is set and its Id equal’s “master”. If both evaluations are true,
we create a new response by setting the HTTP status code to 400 (Bad Request), the
Content-Type header to json, and the body with a message saying “Access denied.”

83

CHAPTER 7 POLICIES AND NAMED VALUES

Listing 7-3. Deny policy for the master subscription key

<inbound>
<choose>
<when condition="@(context.Subscription != null 8& context.
Subscription.Id == "master")">
<return-response>
<set-status code="403" reason="Forbidden" />
<set-header name="Content-Type" exists-action="override">
<value>application/json;charset=UTF-8</value>
</set-header>
<set-body>
{"message": "Access denied."}
</set-body>
</return-response>
</when>
</choose>
</inbound>

Test this policy by sending the following request with the master subscription key, as
Listing 7-4 demonstrates.

Listing 7-4. Calling an API with the master subscription key

curl -iH "ApiKey: <MASTER_SUBSCRIPTION KEY>" https://mastering-apim.azure-
api.net/conf/topics

If everything went well, you should receive the following response:

HTTP/1.1 403 Forbidden

Content-Length: 75

Content-Type: application/json;charset=UTF-8
Date: Sat, 08 May 2021 16:12:25 GMT
{"message": "Access denied."}

You have implemented two policies, one on the operational level for GetTopics and one
on the global level. The response was an Access denied message. What happens if we send
the same request six times? You remember that the policy of the GetTopics operation will
return an HTTP status code 429. The answer to this question is in the following section.

84

CHAPTER 7 POLICIES AND NAMED VALUES

Calculating Effective Policy

As you implement policies on different levels, you might lose track of what an effective
policy would look like. An effective policy is a complete policy that includes policies from
all levels, global, product, API, and operation. In Listings 7-2 and 7-3, you implemented
two policies, one for an operation and then the global policy.

Figure 7-5 shows how to calculate the effective policy for an operation that a request
would call. Click Calculate effective policy. A list with all available products will appear.
As you can implement policies on product level as well, you will select the product that
the user you want to test with would use.

m CREATED May 8, 2021, 11:14:01 AM .~

Design Settings Test Revisions Change log

. E > i “ Show sni 52 Expand
. ions Demo Conference APl > GetTopics > Policies ppets , Expa

3 = Policy elements can appear only within the <inbound=, <outbound>, <backend> section elements.]
GET G ssionTopics 4 To apply a policy to the lnrolrilng request (before lt. s forwarded to the backend service), place

5 = To apply a policy to the outgoing response (before it is sent back to the caller), place a corred

G = To add a policy, place the cursor at the desired insertion point and select a policy from the sic
7 - To remove a policy, delete the corresponding policy statement from the policy document.
8 - Position the <base> element within a section element to inherit all policies from the correspond:
9 - Remove the <base> element to prevent inheriting policies from the corresponding section element I

GET (GetSpeaker

GET GetSpeakers s 18 - Policies are applied in the order of their appearance, from the top down.
11 = Comments within policy elements are not supported and may disappear. Place your comments betwesn
12 -3
GET GetSpeakerSessl.. .. 13 <policies>
14 <inbound=
15 <hase />
GET GetSpeakerTopics .. 16 <rate-limit-by-key calls="5" renewal-period="68" counter—key="@(context.Request.IpAddress)" />
17 </ inbound=>
18 <backends>
GET GetTopic e 19 <base />
20 </backend=>
21 <outbound=
GET GetTopics cen 22 <base />
23 </outhound>
24 <ON=error>
GET GetTopicSessions e e mam He

Operations Definitions “ Discard Reset to default Calculate effective policy

Figure 7-5. Calculate effective policy

As a result of the calculation, an effective policy will appear as Listing 7-5 shows.
I show only the inbound section of the effective policy here because we have not
changed any other section (backend, outbound, on-error) yet. The policy shows that
the global policy got inserted before the operation policy. Sending the same request
(see Listing 7-4) six times will always return HTTP status code 400, never 429. You
can change this by changing the sequence and setting <rate-1imit-by-key> before
<base/> of Listing 7-2. As mentioned earlier, <base/> inserts the upper-level policy
(see Figure 7-3). If you remove <base/>, the upper-level policy won’t be inserted at all.

85

CHAPTER 7 POLICIES AND NAMED VALUES
Listing 7-5. Effective policy

<inbound>
<!-- base: Begin Api scope -->
<!-- base: Begin Product scope -->
<!-- base: Begin Global scope -->

<choose>
<when condition="@(context.Subscription != null 8& context.
Subscription.Id == "master")">

<return-response>
<set-status code="400" reason="Bad Request" />
<set-header name="Content-Type" exists-action="override">
<value>application/json;charset=UTF-8</value>
</set-header>
<set-body>{"message": "Access denied."}</set-body>
</return-response>
</when>
</choose>
<!-- base: End Global scope -->
<!-- base: End Product scope -->
<!-- base: End Api scope -->
<rate-limit-by-key calls="5" renewal-period="60" counter-key=
"@(context.Request.IpAddress)" />
</inbound>

You have now learned how policies on different levels depend on each other and
how to calculate an effective policy. Even though that you have implemented just a few
lines of code in two policies, the effective policy has many lines, and it might get harder
to maintain policies without tools that can help us to manage them. Imagine how an
effective policy would look like if you had implemented a policy with several expressions
on each level. We will dive into how to work with policies in a later chapter.

Expressions

An expression within a policy is well-formed C# code that has access to the implicitly
provided context variable and a subset of .NET Framework types. Before we look at

86

CHAPTER 7 POLICIES AND NAMED VALUES

the context variable and the .NET Framework types, I want to show you how to write
expressions in Azure API Management policies.

There are two types of statement expressions, single statement expressions and
multi-statement expressions. Let us discuss each of them in the following two sections
by using some examples.

Single Statement Expressions

Single statement expressions are enclosed in @(expression). You have already seen
some examples like in the example with rate-1imit-by-key from Listing 7-2, where we
read the requester’s IP address.

<rate-limit-by-key calls="5" renewal-period="60" counter-key="@(context.
Request.IpAddress)" />.

Another example of a single statement expression is assigning a value to a variable
with set-value. Let us assume that we need a certain value like the requester’s IP
address at several places within an effective policy, meaning that we need the IP
address across several policy scopes, as shown in Figure 7-3. We can set the IP address
in the inbound section of GetTopics of the Demo Conference API as a single statement
expression.

<set-variable name="ip" value="@(context.Request.IpAddress)" />

Values are bound to the context variable. This means that we have access to them
across all scopes of policies. Let us try this out by setting a new header in the outbound
section of the global policy - which is a different scope - with the value of the ip variable
that we just have set.

<outbound>
<set-header name="X-IP" exists-action="override">
<value>@((string)context.Variables["ip"])</value>
</set-header>
<base />
</outbound>

The effective policy will look as is shown in Listing 7-6.

87

CHAPTER 7 POLICIES AND NAMED VALUES
Listing 7-6. Variables in policies

<policies>
<inbound>
<!-- base: Begin Api scope -->
<!-- base: Begin Product scope -->
<!-- base: Begin Global scope -->

<choose>
<when condition="@(context.Subscription != null && context.
Subscription.Id == "master")">

<return-response>
<set-status code="400" reason="Bad Request" />
<set-header name="Content-Type" exists-
action="override">
<value>application/json;charset=UTF-8</value>
</set-header>
<set-body>{"message": "Access denied."}</set-body>
</return-response>
</when>
</choose>
<!-- base: End Global scope -->
<!-- base: End Product scope -->
<!-- base: End Api scope -->
<set-variable name="ip" value="@(context.Request.IpAddress)" />
<rate-limit-by-key calls="5" renewal-period="60" counter-key=
"@((string)context.Variables["ip"])" />
</inbound>
<backend>
<!-- base: Begin Api scope -->
<!-- base: Begin Product scope -->
<!-- base: Begin Global scope -->
<forward-request />
<!-- base: End Global scope -->
<!-- base: End Product scope -->
<!-- base: End Api scope -->
</backend>

88

CHAPTER 7 POLICIES AND NAMED VALUES

<outbound>
<!-- base: Begin Api scope -->
<set-header name="X-IP" exists-action="override">

<value>@((string)context.Variables["ip"])</value>

</set-header>
<!-- base: End Api scope -->

</outbound>

<on-error />

</policies>

You can now send a request with cURL and print out only the headers to verify that it
contains the X-IP header.

curl -I -X GET -H "ApiKey: <MASTER SUBSCRIPTION KEY>" https://mastering-
apim.azure-api.net/conf/topics

Multi-Statement Expressions

Multi-statement expressions are enclosed in @{expressions}. They must end with a
return statement where return null; is a valid statement.

In Listing 7-7, added a multi-statement expression to the inbound section of the
“Add a new pet to the store” POST operation of the petstore API from Chapter 6. The
operation expects a JSON body with a name of the new pet. The example reads the name
and returns it as plaintext. We will use the return-response definition and set the pet’s
name in the body with set-body.

Listing 7-7. Multi-statement expression

<inbound>
<return-response>
<set-body>@{
JObject body = context.Request.Body.As<JObject>();
return (string)body["name"];
}</set-body>
</return-response>
<base />
</inbound>

89

CHAPTER 7 POLICIES AND NAMED VALUES

You can test it by sending a POST request with a JSON string, as Listing 7-8
demonstrates.

Listing 7-8. Calling POST operation

curl -X POST \
-d "{\"name\": \"Sina the dog}]}" \
-iH "ApiKey: <MASTER_SUBSCRIPTION KEY>" \
-H "Content-Type: application/json" \
https://mastering-apim.azure-api.net/petstore/pet

The response will be Sina.

HTTP/1.1 200 OK

Content-Length: 4

Date: Sat, 15 May 2021 13:17:21 GMT
Sina

This example demonstrated how you can implement policies over multiple lines. Be
aware that multi-statement expressions lead to larger effective policies. Implementing
larger policies on different scope levels can become harder to maintain over time,
especially if you have many API developers that work within the same instance of
Azure API Management. I have seen effective policies over many hundreds of lines.
Maintaining those can become very challenging. Luckily, there are tools that can help us
and that give us debugging capabilities. We will discuss this in a later chapter.

Named Values

Named values are key/value pairs that are used in policies. Instead of using hard coded
values in policies that might change over time, we can set placeholders (named values)
that can be changed independently from policies. There are three different types of
them, plaintext, secrets, and Azure Key Vault secrets.

Plaintext

Until now, we have routed our requests to the original backend APIs. In case of the
petstore API, our requests were routed to https://petstore.swagger.io/v2. Let us

90

https://petstore.swagger.io/v2

CHAPTER 7 POLICIES AND NAMED VALUES

now assume that we forked and changed the petstore backend API. Instead of calling

the old backend API at petstore.swagger.io, we will route all petstore requests to a new
URL https://petstore.azurecloud.no, as shown in Listing 7-9. We can do this by using
set-backend-service in the inbound section of the API policy.

Listing 7-9. Route request to backend API

<inbound>

<base />

<set-backend-service base-url="https://petstore.azurecloud.no” />
</inbound>

Let us also assume that we are working on a new implementation of the petstore API
and we want to change the URL in the API policy. In such a case you use named values.

Figure 7-6 visualizes the use case that we are going to implement in Azure
API Management. All clients call the petstore API by using the URL of Azure API
Management https://mastering-apim.azure-api.net/petstore. The API policy of
the petstore API changes from https://petstore.swagger.ioto https://petstore.
azurecloud.no, as shown in Listing 7-9. We also know that we will change the URL
again, to a new backend API https://store.azurecloud.no.

Clients Petstore API Backend API

Original petstore API

P 3) o B

Figure 7-6. Routing to different backend APIs

91

https://petstore.azurecloud.no
https://mastering-apim.azure-api.net/petstore
https://petstore.swagger.io
https://petstore.azurecloud.no.as
https://petstore.azurecloud.no.as
https://store.azurecloud.no

CHAPTER 7 POLICIES AND NAMED VALUES

Instead of hard coding the URL of our forked petstore API https://petstore.
azurecloud.no in the API policy, we will use a named value that we can change
independently from policies, which simplifies the process of changing the backend URL
to a future petstore API.

You can use a named value by replacing the URL with the key “petstoreUr]” inside
two curly brackets.

<set-backend-service base-url="{{petstoreUrl}} " />

Ifyou click Save, it will fail. The reason is that the petstoreUrl named value
does not exist yet. Create a new named value with the Azure PowerShell cmdlet
New-AzApiManagementNamedValue. Remember to set the $apimContext variable first by
executing the code from Listing 3-5.

New-AzApiManagementNamedValue ~
-Context $apimContext °
-Name petstoreUrl °
-NamedValueld petstoreUrl °
-Value https://petstore.azurecloud.no

Once the future petstore API is implemented and you want to route all calls, you can
simply update the value of “petstoreUrl” by using Set-AzApiManagementNamedValue.

Set-AzApiManagementNamedValue °
-Context $apimContext °
-NamedValueld petstoreUrl °
-Value https://store.azurecloud.no

As mentioned, a named value is replaced by the value of it. A value does not need to
be a string or a number; it can contain policy expressions, code, as well. I created a new
named value code that has the value 100+100 as the following example shows.

Get-AzApiManagementNamedValue °
-Context $apimContext °
-NamedValueld code | Select-Object Value

100+100

92

https://petstore.azurecloud.no
https://petstore.azurecloud.no

CHAPTER 7 POLICIES AND NAMED VALUES

In Listing 7-10, I replaced the inbound section of the “Add a new pet to the store”
policy, where I set a variable calculatedValue with the value of {{code}}. Sending the
same request of Listing 7-8 will result in 200.

Listing 7-10. Code as Named Value

<return-response>
<set-body>@{
int calculatedvValue = {{code}};
return calculatedValue.ToString();
}</set-body>
</return-response>

Setting the value of a named value to C# code is possible. However, it is something
that you should avoid doing as maintaining such a policy can get difficult.

Secrets

We have worked with plaintext values in the previous section. In this section, we will work
with secrets, encrypted values. Secrets are managed in a slightly different way than plaintext
values. Let us first create a secret by executing the New-AzApiManagementNamedValue
cmdlet once again. This time, we add a new parameter -Secret which tells Azure API
Management to encrypt this value.

New-AzApiManagementNamedValue ~
-Context $apimContext °
-Name mysecret °
-NamedValueId mysecret °
-Value "TOP SECRET" °
-Secret

As secrets are encrypted named values, they must be accessed with a different
PowerShell cmdlet, Get-AzApiManagementNamedValueSecretValue. Executing the
following cmdlet will decrypt the value.

Get-AzApiManagementNamedValueSecretValue °
-Context $apimContext °
-NamedValueId mysecret | Select-Object Value

93

CHAPTER 7 POLICIES AND NAMED VALUES

TOP SECRET

Listing 7-11 shows a modified example of Listing 7-10 of the inbound section where
we return the secret.

Listing 7-11. Secret in policy

<return-response>
<set-body>@{
return "{{mysecret}}";
}</set-body>
</return-response>

Sending the same POST request from Listing 7-8 will result in TOP SECRET.

curl -X POST \
-d "{\"name\": \"Sina the dog}]}" \
-iH "ApiKey: <SUBSCRIPTION_KEY>" \
-H "Content-Type: application/json" \
https://mastering-apim.azure-api.net/petstore/pet

Another example where secrets are used is by importing an Azure Logic App and
using Azure API Management as the API gateway. In such a case, the shared access
signature of the Logic App is stored as a secret and used in a rewrite-uri policy
definition of the operation.

Secrets from Azure Key Vault

Many teams in many organizations share an instance of Azure API Management. This

is necessary to bundle APIs to products. The challenge for some organizations might

be to protect certain named values such as secrets from developers that have access to
the shared instance of Azure API Management but who should not be eligible to access
certain secrets. As an example, one team works on a web service and makes it accessible
for customers that are already using some other APIs. To protect the web service from
being accessed from other channels than Azure API Management, they implemented
basic authentication which requires credentials in the header of a request. It’s therefore
common practice to store secrets not as named values but in an Azure Key Vault.

94

CHAPTER 7 POLICIES AND NAMED VALUES

Figure 7-7 shows how to enable Azure API Management to read secrets from Azure
Key Vault by using its managed service identity.

v’

Azure APl Management Managed Identity Azure Key Vault

Figure 7-7. Azure API Management uses its identity to access Azure Key Vault

Let us look at an example by using Azure Key Vault for storing a secret that we will
use in the policy of Listing 7-11.

Enable Managed System Identity in Azure APl Management

In Azure, a managed system identity can be assigned to a managed resource such as
an Azure Function, App Service, and also an instance of Azure APl Management. A
resource with an identity has the capabilities to work with other resources that leverage
Azure Active Directory for authentication. We can enable a managed system identity
(MSI) in Azure API management either manually in the Azure portal or by using the
Azure PowerShell cmdlet Set-AzApiManagement as the following example shows. The
cmdlet requires two parameters in our case, an input object and the flag that is saying
that you want to enable a system managed identity. The input object is not the context
from Listing 3-5 that we have used throughout this book. Instead, it is the name of your
instance and the resource group. You can either set both values directly with Get-
AzApiManagement or read them from the context variable $apimContext as shown:

$apim = Get-AzApiManagement °
-Name $apimContext.ServiceName °
-ResourceGroupName $apimContext.ResourceGroupName

Set-AzApiManagement °
-InputObject $apim °
-SystemAssignedIdentity
What happens when you enable a system managed identity is that a representation
of the Azure API Management instance in the form of an application gets created in

Azure Active Directory. It is the application ID, or client ID, that you will need to tell
Azure Key Vault to allow access from there, as Figure 7-7 describes.

95

CHAPTER 7 POLICIES AND NAMED VALUES

Figure 7-8 shows how to get the application (client) ID of your Azure API
Management instance. Navigate to the left-hand menu or to the search field at the top
in the Azure portal to Azure Active Directory. Choose App registration or search for the
service name, in my case master-apim. Copy the value of Application (client) ID; you
will need this ID in the next section. If you want to learn how MSI works in detail, visit
Managed identities for Azure resources | Microsoft Docs.

gz Default Directory | App registrations # - X
s
Azure Active Directory sffjmmmem—
i ~+ Mew registration @ Endpoints ﬁ Troubleshooting f) Refresh L Download [Preview features
Manage
& Users *
6 Starting June 30th, 2020 we will no longer add any new features to Azure Active Directory Authentication Library (ADAL) and
8 Groups Azure AD Graph. We will continue to provide technical support and security updates but we will no longer provide feature

updates. Applications will need to be upgraded to Micresoft Authentication Library (MSAL) and Microscft Graph, Learn more

BEO External Identities

&. Roles and administrators All applications ~ Owned applications Deleted applications Applications from personal account

& Administrative units

_— 2 master-apim X Application (client) ID starts with > +V Add filters
iR Enterprise applications

CH Devices
1 1 applications found

B App registrations _ Display name T Application (client) I Created on T, Certificates & secrets

) Identity Governance n master-apim o — b27c1ee0-6a76-406f-98... | 2021-04-24 @ Current

B} Application proxy

i

Figure 7-8. Obtain the application (client) ID of Azure API Management

You have now prepared Azure API Management for accessing Azure Key Vault. Let us
in the next section create first an Azure Key Vault, and then set the right access policy for
Azure API Management.

Preparing Azure Key Vault

Until now, we have not yet created an Azure Key Vault. You can do this either by
searching for it in the Azure portal or by creating it with Azure PowerShell. As the focus
of this book is Azure API Management, we will use the simplest way and use the Azure
PowerShell cmdlet New-AzKeyVault. The cmdlet requires a name, the location, and the
resource group to deploy to, as the following example shows:

New-AzKeyVault ~
-Name MasteringApimKeyVault ~
-Location WestEurope °
-ResourceGroupName mastering-apim-rg

96

https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview

CHAPTER 7 POLICIES AND NAMED VALUES

You will now have a new Azure Key Vault. Figure 7-9 demonstrates how to add a new
secret mykvsecret. Click Generate/import to create a new secret with a value of your
choice; I set it to “TOP SECRET FROM KEY VAULT".

[l MasteringApimKeyVault | Secrets - X
Key vault
J Search (Ctri+/) & -+ Generate/Import ij Refresh T Restore Backup &“ Manage deleted secrets
Settings
Name Type Status Expiration date

Keys
L Secrets o —
& Certificates mykvsecre! o m— ~ Enabled

Figure 7-9. Create secret in Azure Key Vault

The next step is to authorize Azure API Management to get secrets from this
Azure Key Vault. You will do this by setting an access policy for the managed
identity you created in the previous section. We will use the Azure PowerShell
cmdlet Set-AzKeyVaultAccessPolicy. The cmdlet requires the name of your Azure
Key Vault and the resource group it is deployed to. Furthermore, you will set the
ServicePrincipalName to the Application (client) ID from Figure 7-8 which represents
your Azure API Management instance. Lastly, you will set the access policy to at least get
and list, as the following example demonstrates:

Set-AzKeyVaultAccessPolicy ~
-VaultName MasteringApimKeyVault °
-ResourceGroupName mastering-apim-rg °
-ServicePrincipalName <Application (client) ID> °
-PermissionsToSecrets get,list

Once executed, Azure APl Management is authorized to read secrets from your
Azure Key Vault.

Using Secret from Azure Key Vault in Policies

The setup of Figure 7-8 is now in place and it is time to use secrets in policies. In
comparison to encrypted values that are stored in Azure API Management, secret values
from Azure Key Vault are stored as references in Azure API Management.

97

CHAPTER 7 POLICIES AND NAMED VALUES

Figure 7-10 shows how to add reference to a secret from Azure Key Vault in Azure API
Management. Open Named Values in the left-hand menu of Azure API Management
and click Add to create a new named value pair. Give it a name and select the type Key
Vault. A new plane opens where you will select your Azure Key Vault and the secret you
want to reference.

Home > mastering-apim > Select secret from Azure KEY e X
Add named value
APl Management service
Subseription *
Mame * (© Visual Studio Enterprise Subscription W
mykvsecret Key vault *
Display name * O MasteringApimKeyVault o |
mykvsecret Create new key vault
= Secret ™
ags
mykusecret o |
W Create new
Type ©
Key vault '
Flain
Secret
Key vault sffm—
System assigned identity R

Figure 7-10. Adding a secret from Azure Key Vault

Referencing a secret from Azure Key Vault is only possible because you gave it
permission by adding an access policy for the managed system identity of your Azure
API Management instance.

From here, you can proceed as you did in Listing 7-11. In the following inbound
section of the “Add a new pet to the store” policy, I changed only the named value to
{{mykvsecret}}, as the following example shows:

<return-response>
<set-body>@{
return "{{mykvsecret}}";
}</set-body>
</return-response>

98

CHAPTER 7 POLICIES AND NAMED VALUES

Save your change and call this operation by using the following cURL command that
you have used before:

curl -X POST \
-d "{\"name\": \"Sina the dog}]}" \
-iH "ApiKey: <SUBSCRIPTION KEY>" \
-H "Content-Type: application/json" \
https://mastering-apim.azure-api.net/petstore/pet

The response of this call will be your secret value, presented in plaintext. In my case,
itis TOP SECRET FROM KEY VAULT.

Examples

You have learned the essentials of policies in Azure API Management. You also got the
tools to create and maintain these policies. In this section, we will look at two interesting
use cases and discuss how to implement them in policies.

Validations

We have not discussed security in Azure API Management yet - we will so in a later
chapter - however, I want to give you a brief overview and introduce validation policies.
Even though validation policies are part of API security, they are not a replacement for
a Web Application Firewall (WAF), but they can help to mitigate possible attacks on
web APIs.

There are four different validation policies available in Azure API Management,
validate-content, validate-parameters, validate-headers, and validate-status-
code. I will demonstrate the first two in this section as the next two are very similar to
implement.

Note Validation policies may affect API throughput and it is recommended
to perform load tests before using them in production. More details about
performance implications.

99

CHAPTER 7 POLICIES AND NAMED VALUES

Whatever you will validate, headers, query, or path parameters, there are three
different actions to choose from, ignore, prevent, and detect.

Content Validation

The content validation policy validate-content does one thing; it checks the size of
the content against the attribute max-size. In the following inbound section of our
well-known “Add a new pet to the store” policy, I set the max size to 25 bytes, one byte
less than the payload I am going to send “Sina the dog,” the name of my dog. Payload
that exceeds 25 bytes will result in an HTTP status code 400 (Bad Request) through
setting size-exceeded-action to prevent. Setting an action as prevent will result in an
HTTP status code 400 (Bad Request) and not be forwarded to the backend web service.
Furthermore, I set unspecified-content-type-action to detect, which will log this
event; we will discuss logging in detail in a later chapter.

<inbound>
<validate-content
max-size="25"
size-exceeded-action="prevent"
unspecified-content-type-action="detect"
errors-variable-name="err" />
<base />
</inbound>

You can try this content validation policy by sending more than 25 bytes in the
payload as I did with “Sina the dog.”

curl -X POST \
-d "{\"name\": \"Sina the dog}]}" \
-iH "ApiKey: <SUBSCRIPTION KEY>" \
-H "Content-Type: application/json" \
https://mastering-apim.azure-api.net/petstore/pet

The response is an HTTP status code 400 (Bad Request) and a detailed message
about this error.

{ "statusCode": 400, "message": "Request’s body is 25 bytes long and it
exceeds the configured limit of 24 bytes." }

100

CHAPTER 7 POLICIES AND NAMED VALUES

Parameter Validation

Another validation policy is parameter validation validate-parameters. This policy
validates incoming header, query, and path parameters. Before we make any change
in the policy itself, I want to show you how to change the API specification in the Azure
portal instead of re-importing the API. We will need this to demonstrate the following
example.

Figure 7-11 shows where you can change the API specification. In this case, I added
several request headers that I expect to receive in any call to this API operation “Add a
new pet to the store”

m CREATED May 15, 2021, Z14:34 PM
Design Settings Test Revisions Chang 3
Frontend ﬁp Inbound processing Backend
POST /pet 1 are it is sent to HTTP(s) endpoint 7
1 Add cperation Headers - - iofv2
htipsy//petstore.swaggerio/v
SR & psi/fpetstore.swagger.io/v2
All aperations Content-Length string Palicies >
Content-Type string : ke
POST Add & new pet to the store .
POST Create user Host ing -
User-Agent string Qutbound processing

Figure 7-11. Adding headers to the API specification

In the following example, I block all requests that contain unspecified headers.
Remember that I specified several headers in Figure 7-11. I will ignore these headers
by defining specified-parameter-action="ignore" in both validate-parameters
and headers. As a note, child definitions overwrite parent definitions which we will
do in the next policy definition unspecified-parameter-action, which I have set to
prevent. It means that all headers that are not specified will result in an HTTP status code
400 (Bad Request). The petstore API requires a subscription key so we must allow the
ApiKey header. I have set a parameter policy inside the headers policy with the name
of the header ApiKey and the action ignore. We could have added ApiKey to the API
specification itself. However, this approach would have tightly coupled the web API to
Azure API Management.

<inbound>
<validate-parameters
specified-parameter-action="ignore"

101

CHAPTER 7 POLICIES AND NAMED VALUES

unspecified-parameter-action="ignore"

errors-variable-name="err ">
<headers
specified-parameter-action="ignore"
unspecified-parameter-action="prevent">

<parameter name="ApiKey" action="ignore" />

</headers>

</validate-parameters>

<base />

</inbound>
Let us test this policy by adding an unspecified header X-BAD-HEADER to the request.

curl -X POST \
-d "{\"name\": \"Sina the dog\"}]}" \
-H "ApiKey: <SUBSCRIPTION KEY>" \
-H "X-BAD-HEADER: malicious info" \
-H "Content-Type: application/json" \
https://mastering-apim.azure-api.net/petstore/pet

The result is as expected, an HTTP status code 400 (Bad Request) with a message
saying that there is an unspecified header.

{ "statusCode": 400, "message": "Unspecified header X-BAD-HEADER is not
allowed." }

Let us take a quick look at the other two validation policies in the next section.

Other Validations

Even though we have learned how to validate headers, these were for incoming calls
only, meaning that they were scoped to the inbound section of all policies. There is a
separate validation policy for responses that can be defined in the outbound and on-
error section for headers validate-headers.

The fourth and last validation policy is the validate-status-code policy which can
also be used in the outbound and on-error section of all policies. This policy may be
used to prevent leakage of backend errors, which can contain stack traces.

102

CHAPTER 7 POLICIES AND NAMED VALUES

Canary Backend APIs

The following example might not be a common scenario that we can find in many
organizations; however, I think it is an important scenario especially for mission-critical
workload that is running on Aure Kubernetes Service (AKS) and where Azure API
Management really can show its power.

The AKS documentation says it is a highly available, secure, and fully managed
Kubernetes service for deploying and managing containerized applications more easily.

While this might be true for the applications running on AKS themselves, upgrading
AKS can put your applications in jeopardy though. There are at least three options you
can choose from to upgrade your AKS cluster. In theory, all three options work fine. In
practice, we have seen problems with the first option. Let me explain these options in
short before we discuss how to use Azure API Management to mitigate eventual risks:

o Upgrade AKS by running the Azure CLI command az aks upgrade,
which will drain all nodes one by one and upgrade them.

e Usenode pools in AKS and upgrade them individually by running the
Azure CLI command az aks nodepool upgrade.

e Provision a new AKS cluster and migrate your workload.

As this book is about Azure APT Management, I will not discuss the challenges of
each AKS upgrade option. Instead, I want to mention that upgrades in general can and
will fail, and you must keep in mind that an upgrade can and will lead to downtime of
the workload running there, partially or completely. If you accept this risk, the first two
options are good alternatives as they are cheapest and let you use existing Azure CLI
commands.

Figure 7-12 shows how to use Azure API Management to support the third option
of upgrading an AKS cluster. In this case, Azure API Management acts as an API facade
in front of both AKS clusters, the current active (old) cluster that I highlighted in blue
and the new cluster that we want to switch to. Even though a new AKS cluster should
go through a regression test, we can use Azure API Management to gradually route the
traffic over to the new cluster - in this case 90%/10% - and monitor it and follow the logs
for eventual error messages. We call the technique of introducing a new AKS cluster and
slowly rolling out the change to a small subset of users before rolling it out to the entire
infrastructure and making it available to everybody as canary release.

103

CHAPTER 7 POLICIES AND NAMED VALUES

Azure APl Management ﬁ p
90% 10%
Azure Kubernetes Service Azure Kubernetes Service
http(s)://aks-blue.azurecloud.no http(s)://aks-green.azurecloud.no

Figure 7-12. Canary release of Azure Kubernetes Service (AKS)

In this example, we will focus on steps 3 and 4, testing the workload and switching
the traffic from the old, blue AKS cluster over to the new, green AKS cluster. We can do
this by implementing a canary release policy in the global policy, so all API calls can use
it. The other change we will make is in the API policies where we set the backend URL for
the AKS cluster.

Listing 7-12 shows the global policy for a canary release in the inbound section. This
policy sets a variable aksUr1 for the URL of the AKS cluster - blue or green - which is
based on a percentage value canaryPercentage that is stored as a named value. It can be
gradually changed from 0 to 100 depending on how confident you are with the new AKS
cluster. Depending on this value, a variable current-slot is set to either blue or green.
This “slot” is then part of the URL http://aks-(blue|green).azurecloud.no.

Listing 7-12. Global policy for canary release

<inbound>
<choose>
<when condition="@(new Random().Next(100) < {{canaryPercentage}})">
<set-variable name="currentSlot" value="{{canarySlot}}" />
</when>
<otherwise>
<set-variable name="currentSlot" value="{{activeSlot}}" />
</otherwise>
</choose>

104

CHAPTER 7 POLICIES AND NAMED VALUES

<set-variable name="aksUrl" value="@("http://aks-" + context.
Variables.GetValueOrDefault<string>("currentSlot"”, "{{activeSlot}}") +
".azurecloud.no")" />

</inbound>

The one task we do in the global policy for the canary release of AKS is setting the
URL for AKS as a variable aksUrl. What is missing is setting the URL as the backend
service for an operation or an entire API.

Listing 7-13 shows the API policy of petstore that we have used throughout this book.
It uses the set-backend-service policy of Azure API Management and requires a URL
for the base-url attribute. As you can see, variables are stored in the context object.

I use the GetValueOrDefault method where I can ensure backward compatibility to a
default cluster defaultAKS and then concatenate the context path /petstore.

Listing 7-13. API policy for canary release

<set-backend-service base-url="@(context.Variables.
GetValueOrDefault("aksUrl", "{{defaultAKSurl}}") + "/petstore")" />

Summary

I hope this chapter gave you a great overview of managing policies in Azure API
Management. You learned first the basics of policies and how they are scoped across

an operation, an API, products, and all APIs. You saw then how to calculate an effective
policy that contains all scopes for a certain operation. You learned then to implement
more complex policies by using single- and multi-statement expressions. You embedded
placeholders Named Values in your policies that you can use across multiple policies.
Those Named Values can be in plaintext, secrets, or come from an Azure Key Vault; you
tried all three options. Finally, we discussed some examples; some of them are very
common, while one of them is not widely used but very interesting as it shows how
powerful policies in Azure API Management can be.

As you might have already realized, policies provide almost endless opportunities.
This is because we can use a subset of .NET Framework types using C#. However, the
drawback is that we must embed our C# code within XML which many developers
struggle with and complain about. My advice to this is the following: Keep policies short
and simple and implement only what is necessary.

105

CHAPTER 8

Developer Portal

Throughout this book, we have mostly discussed Azure API Management from the
perspective of an administrator and API developer. In this chapter, we will begin by
focusing on the API consumers and learn how the default onboarding process works. Of
course, the default setup is not necessarily what you want for the organization you will
use Azure API Management in. Especially when it comes to corporate branding, you will
want to customize the design, texts, and maybe add some more functionality. After we
have discussed these topics, you will learn why you might want to host the developer
portal yourself instead of letting Azure manage it for you, followed by how you can
achieve this.

Overview

Before API consumers can access the developer portal, you must first publish it. You can
do this by navigating to https://<SERVICE_NAME>.developer.azure-api.net/; in my
case, the URL for the developer portal is https://mastering-apim.developer.azure-
api.net/.

Note The developer portal is not included in the Consumption tier.

It might take some seconds before you will be presented by the administrator view of
the developer portal where you can use the WYSIWYG editor - there are other options -
to change the design and text. We will customize the developer portal in a later section of
this chapter.

Figure 8-1 shows how to publish the developer portal by clicking Publish website.
This process can take up to 30 seconds.

107
© Sven Malvik 2022

S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_8

https://doi.org/10.1007/978-1-4842-8011-9_8#DOI
https://mastering-apim.developer.azure-api.net/
https://mastering-apim.developer.azure-api.net/

CHAPTER 8 DEVELOPER PORTAL
contoso

Operations (3

£ Publish website +fj ee—

elcome to Contoso!

We provide industry-leading APIs.

Figure 8-1. Publishing the developer portal

Irecommend to either log out of Azure or to open a new window in Incognito mode
and visit the same IP address again, so you will experience the developer portal from the
perspective of a guest API consumer. You might want to navigate around first and find
products and APIs that are accessible for the Guests user group only as you learned in
Chapter 4.

Click Sign Up in the upper menu to start the onboarding process by filling out a form
with your name, email, and password. This and all following forms can be changed, and
we will look at it later in this chapter.

Once you have submitted the Sign Up form, you will receive a confirmation
email that looks similar to the one shown in Figure 8-2. In the background, Azure API
Management will create a new user that is in the Pending state.

108

CHAPTER 8 DEVELOPER PORTAL

Please confirm your new private AP| account

E4 private <apimgmt-noreply@mail windowsazure.com= g3prM [
To sma@azurecloud.no

Quick reply Replyall Forward Delete =
Dear Azure Cloud,

Thank you for joining the private APl program! We host a growing number of cool APls and strive to provide an awesome
experience for API developers.

First order of business is to activate your account and get you going. To that end, please click on the following link:

https://mastering-apim.developer.azure-api.net/confirm-v2/identities/basic/signup?
userid=60b53a25370337133006a2ce8lidentity=sma%40azurecloud.no8ticketid=60b53a26370337133006a2d0&ticket=
f45d81bee0a94b84b15ca8a24ec9dbbf

If clicking the link does not work, please copy-and-paste or re-type it into your browser's address bar and hit “Enter”.
Thank you,

private APl Team

mastering-apim.developer.azure-api.net

Figure 8-2. Confirmation email for a private API account

Click the link in the email for confirmation. This process will change the state of your
user account from Pending to Active and you are ready to subscribe to products.

Figure 8-3 shows the Conferences Services product that I created in a previous
chapter. It contains one API, the Demo Conference API. You remember that you had to
use a subscription key that we called ApiKey to call an API. To obtain this key, we must
subscribe to the product. Previously, we, as the administrator, have done this directly
in the Azure portal. This time, the API consumers themselves can do this by choosing a
name and clicking Subscribe.

109

CHAPTER 8 DEVELOPER PORTAL

Your subscriptions

You don't have subscriptions yet.

Your new product subscription name Subscribe

APIs in the product

L Search APls

Name Description

Demo Conference API A sample APl with information related to a technical conference. The available
resources include Speakers, Sessions and Topics. A single write operation is
available to provide feedback on a session.

Figure 8-3. Subscribing to the Conferences Services product

The user administration page opens where an API consumer can change its
name, password, or even close the account. An API consumer can also reveal the API
subscription key. Figure 8-4 shows both keys, the primary subscription key and the
secondary subscription key. Make one of them visible by clicking Show.

Account details

Email sma@azurecloud.no
First name Azure
Last name Cloud
Registration date 05/31/2021
Change name Change password ‘ ‘ Close account

Subscriptions

Subscription details Product State Action
Name azurecloud-conf-services Rename Conferences Submitted Cancel
Requested on Services

05/31/2021

Primary key 3158d34facbbd7e8bc5b5977cd@deetb Hide | Regenerate

Secondary key OO0 Show | Regenerate

Figure 8-4. Self-service for the API consumers

110

CHAPTER 8 DEVELOPER PORTAL

An API consumer can use its API subscription key to call the APIs that are part of the
subscribed product. For each product an API consumer wants to subscribe to, a new pair
of keys is generated.

Figure 8-5 shows the documentation of the Demo Conference API that the API
consumer has subscribed. All information you see on this page was extracted from the
OpenAPI specification that we imported previously. You may try and learn to use this
API directly from this documentation by clicking Try on the right side. You will then
see the same information and fields that you see when you tested this AP in the Azure
portal. I wrote “may try” as this will not work yet.

Demo Conference AP Demo Conference API

Group by tag A sample AP| wath information related to a technical conference, The available resources include Speakers, Sessions and Topics. A single write operation is available to

provide feedback on a session,
oIt GetSession

o Gersessions En

GetSession

Retreive a representation of a single session by id

o7 GetSessionTopics
oET GetSpeaker

BT GetSpeakirs
Request

1 https://mastering-apin.azure-api.net/conf/session/{id)

ST GetSpeakerSessions

o GetSpeakerTopics

st GetTopic
Request parameters
afr GetTopics
ot GerTopicsessions Name n Required Type Description
GET GetTopicSpeakers id template true integer Format - int3z.

rost SubmitSession

Response: 200 OK
oK

Figure 8-5. Demo Conference API documentation

As an example, try the getTopics operation and use your API subscription key to
gain access to it. The response you will get back is “Since the browser initiates the request,
it requires Cross-Origin Resource Sharing (CORS) enabled on the server.” Let us fix this by
adding a CORS policy to the global policy.

Figure 8-6 presents a shortcut to enable CORS for all APIs. In case you want to enable
CORS for only some APIs or products, I reccommend enabling CORS manually.

111

CHAPTER 8 DEVELOPER PORTAL

v— mastering-apim | Portal overview - X
¥ API Management service
2 Search (Ctrl+/) «] Developer portal ' Deprecated developer portal
Developer portal
Enable CORS for APIs
4= Portal overview wifm—

Enabling CORS will apply a CORS policy for domain https://mastering-apim1.developer.azure-api.net on the global level
8 users — for all APls.

Identities A\ CORS isn't configured for hittps./ ing-apim1.developer azure-api net origin. Visitors, who access the portal through this
domain, can’t use the interactive console.

Qauth 2.0 + OpenlD Connect Enable CORS —

&
]
21 Delegation
9
E Issues (deprecated) Manually apply it on the glabal level

Figure 8-6. Enabling CORS for all APIs

Once you enable CORS for all APIs, a cors policy is added to the inbound section of
the global policy as the following code shows:

<inbound>
<cors allow-credentials="true">
<allowed-origins>
<origin>https://mastering-apim.developer.azure-api.net</origin>
</allowed-origins>
<allowed-methods preflight-result-max-age="300">
<method>*</method>
</allowed-methods>
<allowed-headers>
<header>*</header>
</allowed-headers>
<expose-headers>
<header>*</header>
</expose-headers>
</cors>
</inbound>

In case you want to enable CORS only for some APIs or products, you have two other
options. You can either move this code into an API or product policy, or you can enable a
CORS proxy for an individual API operation.

112

CHAPTER 8 DEVELOPER PORTAL

Figure 8-7 shows how to enable a CORS proxy for one API operation only. This will
route the API calls through the Azure portal’s backend in your Azure API Management
service and will not need the CORS policy in place.

Group by tag A sample APl with informi . . 2 sle resources include Speakers, Sessions
operation is available top Operation: Details

Getsession - I 9
GetSessions (=) Operation console W

GetSessionTopics GetTOpl cs Enable APl conscle
GetSpeaker
ﬁ O Use CORS proxy

GetSpeakers Req uest
GetSpeakerSessions GET https://masteri
GetspeakerTopics (=) Miscellaneous
GetTopic Request paramete Automatically scroll to operation name
GetTopics s Default schema view

Name R - Description
GetTopicSessions Table ™

dayno = Format - int32.

GetTopicSpeakers

rSuhmitCaccinn

&

Response: 200 OK
Figure 8-7. Enable CORS proxy for an individual API operation

In the following section, we will focus on making the developer portal our own by
customizing its style.

Customization

In this section, you will learn how to customize the developer portal and to make it your
own by changing the default style to something unique like a corporate design. There are
two ways of customizing the developer portal, by using the built-in WYSIWYG editor or
by changing the code of the developer portal templates. In this section, we will focus on
the WYSIWYG editor as this is a simple approach that does not require any additional
steps. A more complex approach is to change the code of the developer portal templates.
This approach requires to host the developer portal by yourself. We will discuss this
approach in the following section.

113

CHAPTER 8 DEVELOPER PORTAL

Styling

To customize the developer portal, click Developer portal in the upper menu of the
Overview page of your Azure API Management instance. This opens a new tab and
opens the developer portal at https://<SERVICE_NAME>.developer.azure-api.net/, in
my case https://mastering-apim.developer.azure-api.net/.

I will not go into the details of redesigning the developer portal as this is a very
intuitive and straightforward approach. Instead, I want to show you the first page and
how you can change and remove widgets.

Figure 8-8 shows the WYSIWYG editor of the developer portal. You can change all
texts, pages, images, fonts, and a lot more. Just click on the item you want to change, and
a pen appears. When you click on a pen, a configuration box appears where you can
change the text, image, or what it is that you clicked on. I suggest that you click around at
first. The trash can will remove an item.

= 4 11 |
contoso
= E I

+
Welcome to Contoso!

We provide industry-leading APls.

|

Figure 8-8. Styling the developer portal in the WYSIWYG editor

To change other pages, click on the link of the page you want to visit while holding
the Control key at the same time. Once you are finished, click the save icon below before
you publish the changes, as Figure 8-1 demonstrated.

The developer portal is fully managed by Azure, which means that you do not need
to care about updates.

114

https://mastering-apim.developer.azure-api.net/

CHAPTER 8 DEVELOPER PORTAL

Note Customizing the managed developer portal templates is only possible in the
WYSIWYG editor.

In the section about hosting, you will learn another approach of customizing
the developer portal where you get full flexibility. Before we dive into the code of the
developer portal templates and make changes, let us look at how to change email texts
and how to notify important stakeholders by email.

Notifications and Templates

In some cases, it is important to get notified about certain events. Subscription requests
that you need to approve is one example; users do not want to wait too long. An email
that notifies you as soon as a new subscription request is created will help you to act
immediately if necessary. Another example is to get notified when a user closes its
account, and you need to do some additional tasks.

Figure 8-9 shows how to add email recipients for different notifications such as for
new subscriptions, blind copies, or when a new issue or comment is submitted, which is
a feature of the developer portal.

mastering-apim’ | Notifications ; Motifications -

Figure 8-9. Add email recipients for notifications

When we created a new API consumer in the developer portal, we received a
confirmation email, as shown in Figure 8-2. The sender’s email address was apimgmt-
noreply@mail.windowsazure.com. Figure 8-10 shows how to change this email address
by clicking E-mail setting under Notification templates. You can also change the name of
your organization that appears in the emails.

115

apimgmt-noreply@mail.windowsazure.com
apimgmt-noreply@mail.windowsazure.com

CHAPTER 8 DEVELOPER PORTAL

Home > mastering-apim General e-mail SEttingS x
= mastering-apim | Notification templates - M et
AP1 Management service

Administrator email *
2 Search (Cul+/) « == Columns [E-mail settings s e
Deployment + infrastructure =

Template Description Organization name *
W Fricing tier private
o . Application gallery submission approved Developers wha submitted their application for publicati
Locations
. Originating e-mail *
. Developer farewell letter Developers receive this farewell email after they close the 9 9
& Gateways apimgmt-nareply@mail windowsazure.com
- Developer quota limit approaching notificati.. Developers receive this email to alert them when they ar
B Extemal cache
e 7 Developer welcome letter Developers receive this “welcome” email after they confi
B Custom domains
Email change confirmation Developers receive this email to confirm a new e-mail ac
5 Virtual netwerk
. Inwite user An e-mail imvitation to create an account, sent on reques
» Metwork connectivity status
. New cemment added to an issue Developers recetve this email when someone comments
L Motifications
MNew foper account confirmation Developers receive this email to confirm their e-mail ade
=1 Notification templates fjmm—
New issue received This email is sent to developers after they create a new t

& Management API

Figure 8-10. Change the sender’s email address

Compared to the templates of the managed developer portal, where we must use the
WYSIWYG editor - not everyone’s favorite editor - we can change the template code of
the email notifications directly in the Azure portal, as Figure 8-11 shows. What you see is
HTML code, where you can use some variables that will appear on the right-hand side.

=2 Columns = E-mail settings

Template

Application gallery submission approved @ Developers recewve this “wekome” email after they confirm their new account.
Developer farewell letter

Developer quata limit approaching notific Sulbject *

Developer welcome letter h

| Welcome 1o the $OrganizationName API!

Email change confirmation 1 K!DOCTYPE heml 3
2 <html»
Invvite user 3 <head>
a cmeta charsat="UTE-8" /3
o e Y 5 ctitlesletter</titles
[</head>
Mew developer account confirmation 5 Casa
Mew issue recaived 8 <hl style="color:#@@8585;font-size: 18pt;font-family: 'Segoe UI' ">
9 Welcome to $0rganizationName API!</hl>
New subscription activated 1@ <p styles"font-size:12pt;font-family: 'Segoe UIL'">Dear $DevFirstName $DeviastName,</p>
Password change confirmation 11 <p Ltyl.e?"v’a?:-ﬂ:::.'lzpt;fgnt-#.?m%ly:'selglne UI'">Your SCrganizationName API program registration iz compl
12 <table width="10eX" styles"margin:2épx ">
Subsaiption request declined 13 st
14 #if (SIdentityProvider == "Basic")
Subscription request received 3 15 <td width="50%" style="height:4@px;vertical-align:top;font-family: Segoe UI';font-size:i2pt">

Figure 8-11. Customizing notification email templates

Another approach of making changes in the code of a notification email template
is by cloning and committing changes to the Git repository. You will learn how to work
with the Git repository of your Azure API Management instance in a later chapter as
there are some side effects that need to be discussed. Also, changes in the code of the Git
repository do not apply to the developer portal templates. In such cases, you must host
the developer portal yourself, which we will discuss in the following section.

116

CHAPTER 8 DEVELOPER PORTAL

Self-hosting

There are scenarios where you want to make changes in the developer portal that cannot
be done in the WYSIWYG editor. It might be the case that you need a custom widget in
the developer portal and that is integrated with an internal system of your organization.
It might also be the case that you must change the structure of the websites within the
developer portal where you need to change the HTML templates. All these changes
cannot be done in the WYSIWYG editor or the portalTemplates HTML files that you can
find in the Git repository of your Azure API Management instance. We will dive into the
Git repository in the next chapter.

In this section, you will learn how to host the developer portal in your own
environment and make some minor changes. As the developer portal is open source and
available on GitHub, it opens the possibility of making changes you need. On the flip
side, this comes with the responsibility of hosting, securing, and managing the developer
portal on your own.

Running the Developer Portal Locally

Azure provides a detailed step-by-step guide on how to run the developer portal locally.

This section will briefly show you how to get started. You will first need a running

instance of Azure API Management so the developer portal can connect to it. As the

developer portal is a Node.js application, you will need Node.js and the package manager

npm. Download and install Node.js and npm by following the online documentation.
You can find the developer portal on GitHub. Clone the repository with

git clone https://github.com/Azure/api-management-developer-portal.git
Once you have the repository on your machine, change the directory by running
cd api-management-developer-portal

Change now from the master branch to the latest release tag of the developer portal.
In my case, it is 2.9.0.

git checkout 2.9.0
Install to download all project dependencies with

npm install

117

https://docs.npmjs.com/downloading-and-installing-node-js-and-npm
https://github.com/Azure/api-management-developer-portal
https://github.com/Azure/api-management-developer-portal/releases

CHAPTER 8 DEVELOPER PORTAL

This will take a while. In the meantime, you can open the project in an IDE like
Visual Studio Code and configure it so it can connect to your Azure API Management
instance.

There are three files you must configure, config.design.json, config.publish.
json, and config.runtime.json. Change <service-name> in all three files with
the name of your Azure API Management instance, in my case “mastering-apim.”
Furthermore, change “SharedAccessSignature ..” with your access token that you can get
from the Azure portal, as shown in Figure 8-12. Navigate to Management API and click
on Enable Management REST API. Then, click Generate to get an access token that you
can copy and replace.

§ ’Ta‘sterlngaplm | Management APl - X

Secondary key

[o28+ h (Ctrl+/)
aisdia bala « QpschVOalSIw2UbWHiwS +UMSTF1chNOPUOCARw3LLIPEMIMBBwoOHDEREwvaXkvhcUcD/alc+.. [| [

Deployment + infrastructure
e Access token

A Pricing tier
Q Locations 0 Maximum supported expiry time is 30 days from the time access token is generated.
@ Gateways
. Management APl URL
External cache z
https://mastering-apim? g it.azure-api.net (3]

B Custom domains

Expiry
4 Virtual network 2022-01-04 & 19:24:51
“» MNetwork connectivity status

Secret key
L Natifications Primary key

= Natification templates

Access token

Management AP| s SharedAccessSignature integration&202201041824&pCdeDQkD 1HEMDpBSIKmfdgQ4DTETXNKKKVES... [

Figure 8-12. Creating an access token

To run the developer portal locally, you execute npm start. Before we do this, let
us make a quick change to see an actual change. I opened the signup.html file src\
components\users\signup\ko\runtime\signup.html and added a personal string at the
beginning of the file.

After I have executed npm start, I can access the developer portal on http://
localhost:8080 and navigate to Sign Up. As Figure 8-13 shows, it contains a new string
“HHEELLOO.

118

CHAPTER 8 DEVELOPER PORTAL

Sign up

Already a member? Sign in.

5o rom wrc|

FHEELLOO ff— o

Email *

e.g. name@example.com

Password *

|

Confirm password *

|

First name *

e.g. John

Last name *

I e.g. Doe

Signup
Figure 8-13. Minor change in the sign-up form

Hosting the developer portal by yourself gives you full flexibility. As the developer
portal will generate a static web app, you get some options for hosting it. Run the
following command to generate the complete static web app of the developer portal:

npm publish

This will create a new folder . /dist within your project. One option of hosting a
static web app is Azure Static Web Apps, which can be integrated with your own GitHub
repository of your own version of the developer portal. Another option for hosting a
static web app is by using an Azure Storage account and uploading the folder . /dist/
website to a blob. We will not dive further into static web apps as it is not contributing to
get a better understanding of Azure API Management.

119

https://azure.microsoft.com/en-us/services/app-service/static/

CHAPTER 8 DEVELOPER PORTAL

Summary

In this chapter, you learned to administrate the developer portal of Azure API
Management but also how you can change the look and feel of it. As the managed
developer portal is not fully customizable, you learned then how you can host it yourself,
so you are free to fully change its design templates.

120

PART Il

Workflow

CHAPTER 9

APl Development
in Context

When I joined the Norwegian payment service Vipps AS three years ago, we were
about 30 developers that deployed our web services to Azure Kubernetes Service,
AKS. We used already Azure API Management as our API gateway. As we were just a
few developers, the number of API changes in a week were just a few. One developer
that knew Azure API Management well enough at that time was responsible for
maintaining and administrating our two instances, one in the test and one in the
production environment. This developer was deploying APIs, creating products, adding
named values, and did everything related to these two instances. This worked well
three years ago. As the company grew and more developers created more APIs, this
developer became a bottleneck. One day, I had worked there for about three months,
this developer suddenly left the company. As Azure API Management was a black box for
me and most of my co-workers, this was a challenge. As I was eager to learn Azure API
Management, I said Yes, not to become the next bottleneck but to remove it, somehow.
This chapter describes our journey from treating an API gateway as a monolith to
the state where developers were empowered to perform all API-related changes by
themselves. In the first section, you will learn about two options of a centralized API
repository and their advantages and their challenges. In the second section, you will
learn how to empower developers by utilizing what you have learned throughout this
book. In the third and last section, I will demonstrate how to use Azure DevOps to fully
automate an Azure API Management product deployment.

123
© Sven Malvik 2022

S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_9

https://doi.org/10.1007/978-1-4842-8011-9_9#DOI

CHAPTER9 API DEVELOPMENT IN CONTEXT

Centralized API Repository

There exist at least two options of how to manage a centralized Git repository for APIs
that are deployed to an Azure API Management instance. The first option is by using
the internal Git repository of your instance while the other option uses an external Git
repository such as GitHub or Azure DevOps.

Internal Repository

Before we discuss the consequences of using the internal Git repository for your APIs,
let us look at how you can clone it, make changes, but also how to keep it in sync with
eventual changes that are made in the Azure portal directly.

Figure 9-1 describes the steps for getting the repository’s URL, username, and
password. You can set the expiry date for the password to less than 30 days. To get the
password, click Generate of the password field.

© mastering-apim | Repository « © Access credentials - *

P Managemend serv

4 Savetarepository

ed passaord. You can generate a5 many passwords a5 you need. Every passward will emsin valid unti the expiny time.

@ Masimum supported expiy time ks 30 days from the time password ks gererated.

n 2022-01-08] 21320

Secret key

Hetifications 5

] Primary ey |

=) Motification templites

Last config change Password
& Management A% | 12s5/2020, 7-28:42 Pd (] GBI D603 A KA Tral v tveWRH Dk CrsnRF D TR mnar P By glSHon) « Mmeny Xez Cormwrogtmansoars. 0 |
& eposivory Wi— ;

Credentials for generating password
Security ait L4
Maraged ientities Pritmary kiy
\QbY9e5 NS 2 2 - P NyA+ JpaANGan n

& Cenifizates LG ad 3mKFMpA + paAbC: n m
@ Frotocals « ciphers Secendary loey

L MBGUESUFSH/DRi24PABRZZL) kDSeIh7 DalpESKRD3L 5L b ey = = (Al Generate
Automation

Figure 9-1. Azure API Management Git repository

Rungit clone <REPOSITORY_URL> from your terminal. You will be asked
for your username and password. Alternatively, run git clone https://
USERNAME : PASSWORD@<REPOSITORY_URL> directly. In some cases, you might get an error
which means that you might URL encode your password first.

124

CHAPTER9 API DEVELOPMENT IN CONTEXT

The repository contains the following folders:

o apis contains all APIs and operations in JSON format. Furthermore, it
stores descriptions that are shown in the developer portal.

o backends contains references and descriptions of Azure backend
resources. For example, it is possible to import an Azure Function
App into Azure API Management.

e groups contains system and custom groups with their descriptions.

o policies contains all policies, global, product, API, and operation in
XML format.

o portalStyles contains the stylesheets for the developer portal.

o portalTemplates contains all developer portal templates. Changes
in this folder will not have any effect, as discussed in the previous
chapter.

o products contains all products as JSON files with their descriptions.

o tags contains tags as folders that stores JSON files with references to
operations.

o templates contains the email templates that are sent to API

consumers.

Changes that you commit and push to the repository will not take effectimmediately.
You need to deploy the entire repository first by clicking Deploy to API Management,
shown in Figure 9-1.

The built-in Git repository is useful in cases where you need to make multiple
changes at the same time as changing the default subscription key header for all APIs.
However, as this repository does not contain everything; subscriptions, named values,
etc. are missing; and neither are APIs stored in their original format, you might look at
alternate options for keeping configurations and APIs under version control.

External Repository

If you work for an organization with just a few API developers that manage just a
few APIs, you might consider keeping APIs, products, named values, and everything
you need under version control in one centralized repository. As I mentioned in

125

CHAPTER9 API DEVELOPMENT IN CONTEXT

the beginning of this chapter, this worked great in my company. We treated API
management as a monolith in a sense that whenever there was a change, we deployed
the entire repository to our Azure API Management instances. However, this might come
with a challenge. Those organizations that have not fully automated their deployments
yet - like us at that time - and tend to make changes in the Azure portal directly need to
reflect those changes in the repository as well, something which is not always done.

When our Azure API Management developer left the company and we had to add
a new operation (endpoint) to an existing API, we knew that we had to deploy the
entire repository. The challenge was that the repository was not in sync with what was
deployed. There were many minor differences that we did not understand. What we
later realized was that some changes were just not deployed yet, while other changes
were forgotten to be reflected in the codebase of the repository and vice versa. For us,
deploying the entire codebase was a great risk.

Figure 9-2 shows the workflow of an API deployment using a central API repository.
As APIs are deployed from a central API repository to Azure API Management, it is
neseccary to ensure integrity through automation. Both, an application repository and
the central API repository, must have the same API changes. Otherwise, you might, in a
failure situation, debug a web service that behaves differently from what is deployed.

Petstore Repository

{ Petstore API }

{ Application }

Central API Repository

{ Petstore API }
Conference Repository ®

{ Conference API } Azure AP| Management
{ Application }
{ Conference API }

Figure 9-2. API deploying workflow with centralized API repository

126

CHAPTER9 API DEVELOPMENT IN CONTEXT

As we were growing, more API developers changed the codebase which led to
more deployments and more risk. Furthermore, we used Azure Resource Management
(ARM) templates to deploy our APIs and products because it is the native platform for
infrastructure as code in Azure. The challenge with ARM templates is that it is harder to
master, especially for developers that work most of their working hours with languages
such as Java, C#, or Go and that use ARM templates only for a couple of hours a month.
We will look at API deployments with ARM in a later chapter.

A centralized API repository works great for small development units where you can
gain experience with Azure API Management. For larger organizations with many API
developers, I learned that even if you maintain one Azure API Management instance in
each environment only, it is the API developers who should be responsible for the entire
API lifecycle. As you have learned throughout this book, it is possible to deploy APIs,
products, and named values individually, so there is no reason to introduce a bottleneck
other than access restrictions. You will learn how to secure your Azure API Management
instance in a later chapter.

Application Repositories

In the previous section, we discussed two approaches of using centralized Git
repositories for your APIs. In this section, we will discuss a decentralized approach
where your APIs are kept close to the web services. Instead of copying an API from the
application repository to the central API repository before it gets deployed to Azure
API Management, this approach lets you deploy an API directly from the application
repository to Azure API Management, as Figure 9-3 shows.

127

https://cloud.netapp.com/blog/save-time-and-headaches-with-infrastructure-as-code-on-azure-cvo-blg
https://cloud.netapp.com/blog/save-time-and-headaches-with-infrastructure-as-code-on-azure-cvo-blg

CHAPTER9 API DEVELOPMENT IN CONTEXT

Petstore Repository

{ Petstore API }

{ Application }

Conference Repository @

Azure APl Management

{ Application }

{ Conference API }

Figure 9-3. APIs are deployed from the application repository

Deploying directly from the application repository gives development teams strong
ownership of the entire deployment workflow. Instead of doing a hand-over to the team
that administrates the central API repository, the development teams themselves can
deploy and thus be responsible.

When my company moved from a central API repository to a setup where the
development teams got full ownership of the API lifecycles, we immediately removed a
bottleneck. Development teams could deploy their APIs when they were ready, and they
did not need to wait for the administration team anymore, which was a huge relief for
all of us.

However, this approach where development teams can use their own CI/CD
pipelines to deploy APIs to Azure API Management might require some preparation.
Not every single team in the same organization should create its own API deployment
process. Having ten development teams might result in ten different solutions, or ten
times the same solutions; both are bad, as they require more developers to implement
the same. You might also end up in a situation where developers create for your
standard’s unsecure deployment workflows. Instead, a platform team might want to
create tooling that is easy to use for the developers. You have already learned throughout
this book how to deploy APIs. You can do the same for products and named values and
create easy to use pipelines or tools.

128

CHAPTER9 API DEVELOPMENT IN CONTEXT

Product Deployment with Azure Pipeline

In this chapter, we talked about ownership and how to theoretically deploy an API
by creating easy-to-use tooling for the developers. While API ownership can often be
mapped to individual teams, products might include APIs that are owned by several
teams, thus there is no clear ownership of a product. This should be avoided if possible.
However, as this might be a challenge, it is even more important to have an automated
deployment workflow in place. In this section, I will therefore show you how to create a
CI/CD workflow for a product with Azure pipeline with YAML syntax in Azure DevOps.
Listing 9-1 shows a JSON file that describes a single Azure API Management product
and its APIs. I named the product “Demo Services,” and it contains two APIs, petstore-
apiand conference-api, that you remember from previous chapters.

Listing 9-1. Single product configuration (demo_services.json)

{

"Demo-Services": {
"id": "demo-services",
"title": "Demo Services",
"description”: "Demo product",
"apis": [
"petstore-api",
"conference-api"

To deploy this product and to add those two APIs, I will use the PowerShell
cmdlets that you have seen in Chapter 3 - APIs and Products, so we will not discuss the
deployment process itself, but instead focus on the Azure pipeline with YAML syntax.
Listing 9-2 shows a specific product-Demo Services-pipeline with YAML syntax that
uses a template that is responsible for deploying any product. This template resides in
a different repository (mycompany/apim-tools) that a platform team might own, so all
development teams can use this template. Development teams need “simply” pass all
required parameters such as the product configuration file and the product id to this
template. You will find detailed information about Azure pipelines with YAML syntax in
Microsoft Azure's documentation.

129

https://docs.microsoft.com/en-us/azure/devops/pipelines/get-started/pipelines-get-started?view=azure-devops#define-pipelines-using-yaml-syntax

CHAPTER9 API DEVELOPMENT IN CONTEXT
Listing 9-2. Azure pipeline for Azure API Management product deployment

trigger:
- main

pool:
vmImage: 'windows-2019'

name: $(Build.SourceBranchName)-$(Date:yyyyMMdd)-$(Build.BuildId)

resources:
repositories:
- repository: apim-tools
type: git
name: mycompany/apim-tools
ref: refs/heads/master

variables:
productId: demo-services

steps:

- checkout: self

- checkout: apim-tools

- template: apim-product-template.yaml@apim-tools

parameters:

ENVIRONMENT: 'test'
APIM SERVICE CONNECTION: test-sc
PRODUCT_CONFIGPATH: .\demo-services.json
PRODUCT_ID: '$(productId)’
APIM TOOLS ARTIFACTNAME: apim-tools

Listing 9-3 shows the product deployment template. It requires five parameters:

o ENVIRONMENT references the Azure API Management instance. In case
you have several instances per environment, this needs to be more
specific.

e APIM SERVICE_ CONNECTION defines the name of a service connection

in Azure DevOps. You will find detailed information about service
connections in Azure DevOps on Microsoft Azure’s documentation.

130

https://docs.microsoft.com/en-us/azure/devops/pipelines/library/service-endpoints?view=azure-devops&tabs=yaml
https://docs.microsoft.com/en-us/azure/devops/pipelines/library/service-endpoints?view=azure-devops&tabs=yaml

CHAPTER9 API DEVELOPMENT IN CONTEXT

e PRODUCT_ID specifies the product within the product configuration
file. You might want to define more than one.

o PRODUCT_CONFIGPATH defines the path of the product
configuration file.

o APIM TOOLS ARTIFACTNAME defines the name of the repository name
that is defined in Listing 9-2.

The template contains one step that executes a PowerShell script and passes the
required parameters.

Listing 9-3. Product deployment template (apim-product-template.yaml)

parameters:

- name: ENVIRONMENT
type: string

- name: APIM_SERVICE_CONNECTION
type: string

- name: PRODUCT ID
type: string

- name: PRODUCT_CONFIGPATH
type: string

- name: APIM_TOOLS_ARTIFACTNAME
type: string

steps:
- task: AzurePowerShell@s
displayName: 'Deploy ${{ parameters.PRODUCT ID }} product’
inputs:
azureSubscription: ${{ parameters.APIM SERVICE_CONNECTION }}
scriptType: 'FilePath’
ScriptPath: ./${{ parameters.APIM TOOLS ARTIFACTNAME }}/apim-scripts/
APIM Product.ps1
ScriptArguments: '-Environment "${{ parameters.ENVIRONMENT }}"
-ProductConfigPath ${{ parameters.PRODUCT CONFIGPATH }} -ProductId "${{
parameters.PRODUCT ID }}"'
preferredAzurePowerShellVersion: 3.5.0

131

CHAPTER9 API DEVELOPMENT IN CONTEXT

This example shall give you an idea of how you might want to set up a code-based
workflow that deploys to Azure API Management.

Summary

I hope this chapter helped you to understand the pros and cons of having a centralized
API repository and what options Azure API Management provides you. However, storing
APIs and products in repositories is one part of the equation. The other part is how to
deploy them. I gave you an example of a product deployment that you can adapt for API
deployments as well by referencing a script APIM_API.ps1 - that you will implement -
instead of a script for product deployments APIM Product.psi, as in this example. We
used Azure Pipelines for this as this is YAML code which can live side-by-side with your
application in the same repository.

132

CHAPTER 10

Developing Policies

Policies are the heart of Azure API Management, where you change the behavior of
APIs such as transforming backend responses from XML to JSON, routing traffic to new
backend web services, or validating headers. As developing policies in XML and C# is
not a trivial task - combining two languages in the same file is hard - it is even more
important to use tools that support you.

This chapter teaches you to be most effective in developing policies in Azure API
Management. You know already where to implement policies in the Azure portal.
However, there are a few utilities that I have not mentioned yet and that you learn about
in the first section. In the second section, you will use Visual Studio Code and install an
Azure API Management extension which improves your productivity and development
experience compared to the Azure portal. In the last section, I will show how you can test
policies with the Pester testing framework for PowerShell.

Azure Portal

Developing policies in the Azure portal is a good way to try out ideas, but a dangerous
way to do serious coding with. Changes that you apply from the Azure portal in an Azure
API Management instance are not in any codebase, nor are they under version control
unless you apply them manually. However, the Azure portal provides ready-to-use code
snippets that can help you to get started quickly.

Figure 10-1 shows how to get started with ready-to-use policies in the Azure portal.
Navigate to an API, a product, or the global policy as shown in the figure and click
Add policy.

133
© Sven Malvik 2022

S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_10

https://doi.org/10.1007/978-1-4842-8011-9_10#DOI

CHAPTER 10 DEVELOPING POLICIES

m CREATED May 23, 2021, £00:48 PM .~

Design Semtings Test Rewisions Change log
Frontend £~ Madify the request before it is sent to the Backend
- PSS E backend service,
O Group by tag
HTTP(s) endpaint
Policies <>
Add aperation
+ perath -> = httpsy/conferenceapi.azurewebsites.net
base
All operations Policies
+ Add poicy i —
GET GetSession Py
-
GET GetSessions
Qutbound processing
GET GetSessionTopin. ...
Maodify the response before it is sent to
the client,
GET GetSpeaker
- “~
Policies <&
GET GetSpeakers
base
GET GetSpeakerSes.. ., =
Operations Definitions Lo nbic. =

Figure 10-1. Adding ready-to-use policies

You see a list of inbound policies that you can choose from as Figure 10-2 shows.
When you click on one of them, you can configure it. For example, when you click on
Limit call rate, you can configure this policy by setting the numbers of calls, renewal
period, counter key, and an increment condition. Whatever ready-to-use policy you

choose, you can configure it by filling setting values in the configuration form.

m CREATED May 23, 2021, 4:00:48 PM .~

Design Settings

2 search operations
5 Fil 005

O Group by tag

-+ Add aperation

All operations

addresses. backend service. samples. rather than by calling the backend serdce.
GET GetSession Bckand sepacs.
Learn more Learn more Learn more
Leam mare
GET GetSessions
GET GetSessionTopi... e
e Set headers Allow cross-origin Cache responses. Set usage quota by key
:I resource sharing (CORS)
set-header Ldthu-ﬁuuku:."a{orul quota-by-key
GET GetSpeaker by-kay

GET GerSpeakers

Test

GET GelSpeskerSes. ...

Operations

Definitions

Revisions

Change log

Add inbound policy

Filter IP addresses

ip-filter

Set Bitering of incoming requests
based on alicwed or blocked IP

Sat policy to add. remave or
‘change headers that are passed to
the backend service.

Learn more

Limit call rate

Mack responses

| rate-limit-by-key |

[

Set rate fimit pokicy 1o contred the
numbor of requests reaching the

| cors

Set CORS policy o allow cross-
doman cals from b

Set mocking policy 1o return a
response based on the defined

Set query parameters

set-query-parameter

Add. remave or change the query
parameters that are passed to the

Set response caching policies to
recuce AP Iatency, bandwidth
d web service

clients.

lead.

Enforces a renewable or fatime
call volume and/or bandwidth
quota, on a per key basis.

Learn more

Discard

Figure 10-2. List of ready-to-use policies

134

CHAPTER 10 DEVELOPING POLICIES

Figure 10-3 shows the configuration form of the Set query parameter policy where
you can set the name, value, and action of one or many query parameters.

Inbound processing

Modify the request before it is sent to the backend service.

Set query parameters
Add, remove or change the query parameters that are passed to the backend service.
Learn more about "set-query-parameter” policy.

NAME VALUE ACTION

[city sf— | [osto fm— | [overide | @

—~+ Add parameter

Figure 10-3. Setting query parameters

What happens after you saved the new policy configuration is that it is added to the
inbound section of the policy. Instead of coding a policy yourself, you used predefined
code snippets that you can change further directly within the policy editor as the
following code demonstrates:

<inbound>
<base />
<set-query-parameter name="city" exists-action="override">
<value>Oslo</value>
</set-query-parameter>
</inbound>

Another way where you can use predefined code snippets is when you click Show
snippets from within the policy editor, as shown in Figure 10-4. The list of policies to
choose from is larger than what you have seen before. When you click on a snippet, the
code for it will be inserted where you have positioned the curser. That means that you
can add code snippets in all four policy sections, </inbound>, </backend>, </outbound>,
and </on-error>.

135

CHAPTER 10 DEVELOPING POLICIES

Design Settings Test Revisions Change log

w CREATED May 23, 2021, 40048 PM .~

Demo Conference APl = All operations > Policies Hide snippets o3 Expand
= 1 <l-- -~ cry- 2 vy .
1 Group by tag 2 TMPORTANT : Clicking on the pelicy will insert it at the position of your cursor in the code editor
O Group by : :
3 Policy elements can appear only withii
4 To apply a policy to the incoming reqi | Authentication policies Transtormation policies
add aperation 5 To apply a policy to the outgoing res) |
+ Add operation p To add a policy, place the SEir At Authenticate with Basic @ Find and replace string in body @
7 - To remove a policy, delete the corres) | ™) ® 2 = o
AV escions g Pocition the <baces olement within s { Authenticate with client cerificare @ Convert ISON 1o XML @
o - Remove the <base» element to prevent |

14ed " gt Mask URL tent
18 - Policies are applied in the order of * Caching policies 0L In chanent

GET GetSession s 11 Comments within policy elements are me Rewrite URL ©
12 > Get from cache @
13 <policies> !
o E Set backend service @
GET GetSessions e 14 <inbound» Gat valse from cache @
15 <base /> Setbody O
. 2 ’ 16 </ inbound> Remove value from cache ©
GET GetSessionTopi.. ... 17 <backend» 561 HTTP header @
18 <base /» Store to cache @
19 </backend> St e
GetSpeake Se1 request method @
GET GelSpeaker 0 <outbounds Store value in cache @
21 <base /> Set query string parameter ©
o 22 «/outbound> _n o
GET GetSpeakers .. - Access restriction policies
23 <on-errors Setstatus code O
24 <base />

Check HTTP header @

Discard Reset to default Calculate effective policy

Figure 10-4. Policy code snippets

Most of the code snippets require parameters that you must set manually after you
have selected and inserted a code snippet.

The policy editor might be a good choice for trying out policy changes without
setting up a development environment first. I use it sometimes for exactly that, making
quick changes that I do not want to have under version control yet.

Visual Studio Code Extension

When it comes to APIs and policies that are under development and that I have under
version control, I use Visual Studio Code (VS Code); it is free of charge and available for
all major operating systems. It comes with a marketplace where you can choose from
hundreds of extensions such as those for Azure and API Management. Download and
install VS Code by following the documentation.

Installation

Select the extensions icon on the left-hand side or navigate to “View/Extensions” from
the top menu as Figure 10-5 shows. Type “Azure API Management” in the extensions
search field to find the extension and click on it. On the right-hand side, you find an
Install button; click on it.

136

https://code.visualstudio.com/
https://code.visualstudio.com/download
https://code.visualstudio.com/download

b

File Edit Selection View Go Run Terminal Help

TUS -

S: MARKETPLACE

Azure APl Management s mmem—m——

Azure APl Management 102

Visual Stu

4P| Managemen!

Azure Account (53 DM k25
A common Sign-In and Subscription management extension f.

Microsoft

#™ Azure App Service 022 CDESIK 4
e An Azure App Service management extension for Visual Studi

(&

Microzoft [irstan |
Azure Functions 140 D9k K4
45> An Azure Functions extension for Visual Studio Code
Microsoft [reston |
™ Azure loT Hub 2754 IS K5
'% This extension is now a part of Azure loT Tools extension pack.
L5 Microsoft instai |
- Azure Databases (.1 H548K K 35
v Create, browse, and update globally distributed, multi-model
Microsoft
Azure Resource Manager (ARM) Tools 015 0K dr 45

&%)

Language server, editing tools and snippets for Azure Resour

Microsoft [st |
Azure Storage 012 458K K 35

Manage your Azure Storage accounts including Blob Contain..

CHAPTER 10 DEVELOPING POLICIES

Extension: Azure AP| Management - git - Visual Studio Code - a x

Extension: Azure APl Management X mm .-
Azu re API M ana g ement ms-azuretoolsvscode

Microsoft | < 101,874 %k ok A Repository | Lice

An Azure APl Management extension for Visual Studic Code.

m! unimull £ This extension

Details Feature Contributions CIngc!og Dependencies

o Azure Pipelines succeeded

Visual Studio Marketplace [¥1.0.2 | installs '101.88K

license "MIT

Azure APl Management Extension for Visual
Studio Code

Use the Azure APl Management extension to perform common management operations on your

Azure APl Management service instances without switching away from Visual Studio Code.

Azure APl Management is a fully managed service that helps customers to securely expose thejr
APls to external and internal consumers. APl Management serves as a facade and a front dﬁ

the APl implementations and enables their frictionless consumption by developers. Visit this 8¢

Figure 10-5. Install Azure API Management extension for VS Code

Before we can use the Azure API Management, we need some additional extensions

that are required. Search for the following extensions in the same way as you did for the

Azure API Management extension and install them:

e Azure Account to sign in to your account and filter your

subscriptions.

o C# for syntax highlighting and IntelliSense.

o REST Client for sending test requests.

Congratulations, the installation was successful. To get an overview of all available

commands that this extension provides, open the command palette and search for

“Azure API Management.” Click Ctrl+Shift+P if you use a Windows computer and Cmd-

Shift+P if you are using a Mac computer. Figure 10-6 shows how the command palette

looks like. As the name suggests, it accepts all kinds of commands. Many of them have a

prefix followed by a colon that indicates the extension it belongs to.

137

https://marketplace.visualstudio.com/items?itemName=ms-vscode.azure-account
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=humao.rest-client

CHAPTER 10 DEVELOPING POLICIES

. >Azure APl Management _
Azure APl Management: Add APl to Gateway £3% _

Azure APl Management: Add API to Product
Azure APl Management: APl Revisions

Azure APl Management: Copy Docker Run Command
Azure APl Management: Copy Subscription Key

Azure APl Management: Create APl Management in Azure
Azure APl Management: Create Named value

Azure APl Management: Delete API

Azure APl Management: Delete APl Management

Azure APl Management: Delete Named value

Figure 10-6. Check if the extension is installed

Most of the commands that you see in Figure 10-6 are already familiar to you
as PowerShell cmdlets. This extension provides a simpler way to work with Azure
API Management without first setting the context of your instance and then writing
PowerShell cmdlets. This is especially helpful when developing policies.

You installed another extension, Azure Account. You need this extension to sign in to
your Azure account. Search for Azure Sign In and click on it, as Figure 10-7 demonstrates.
Follow the instructions to sign in to your account with your running instance of Azure
API Management.

138

CHAPTER 10 DEVELOPING POLICIES

ﬂ File Edit Selection WView Go Run Terminal Help Extension: Azure Account - git - Visual Studio Code = (m] X
EXTENSIONS . >Azure Sign In| | a -
T el Azure: Sign In recently used £
Azure: Sign In with Device Code scode.azure-account
> INSTALLED Azure: Sign In to Azure Cloud .
= * % ¥ 7 Reposit:
Azure Acvount uss e2Em WoED
A common Sign-In and Subscription m... A common Sign-In and Subscription management extensi...
Microsoft &
mﬁu v mﬁl B 3 This extension is enabled globally.
Azure APl Mana... 102 101K % 45 . .
C.p An Azure APl Management extension f...
Mi: ft 3 o . "
o e @ Details Feature Contributions Changelog
B:] Azure Pipelines 1.125.1 D 423K Hr 25
Syntax highlighting, IntelliSense, and m
Microsoft *
Azure Account and Sign-In
azure Theme 005 104K dr 45
azure Theme ported from the azure Tex...
gerane 53 The Azure Account extension provides a single Azure sign-in and subscription filtering
* C# 12312 DIIM %35 experience for all other Azure extensions. It makes Azure's Cloud Shell service available
1 @ C# for Visual Studio Code (powered by ... in VS Code's integrated terminal.
Microsoft {D:? °
4%, GitHub Pull Req... 0271 2sM %35 Commands
> RECOMMENDED 8

Figure 10-7. Sign in to your Azure account

Now that you are signed in to your Azure account, you can use extensions such as the
Azure API Management extension.

Developing a Policy

Developing policies with the Azure API Management extension for VS Code helps
API developers to be more productive as it provides IntelliSense features such as code
completion for policy expressions.
The following example demonstrates a policy that sets a correlation ID to each
request. We will use this example to demonstrate the debugger of this extension.
Select Azure in the left-hand menu as Figure 10-8 demonstrates. You need to be
signed in in order to proceed. After a few seconds, all subscriptions that are connected
to your account appear and list your Azure APl Management instances. In my case,
I selected my Visual Studio Enterprise Subscription which has one instance with the
name mastering-apim. Open the global policy. In the inbound section, start then typing
set- without the leading < character that you would usually use in XML code. A sorted
list of policy expressions appears. Select set-variable to insert the complete policy
expression.

139

CHAPTER 10 DEVELOPING POLICIES

#] File Edit Selection View Go Run Terminal Help « mastering-apim-tempFile.policy.cshtml - git - Visual Studio Code
AZURE: APl MANAGEMENT [v] mastering-apim-tempFile.policy.cshtm| @
> Pay-As-You-Go C: > Users > SvenMalvik > AppData > Roaming » Code > User > globalStorage > ms-azuretools.vscoc
w Visual Studio Enterprise Subscripti... 1 <policies>
- ; ; <inbound>
~ Cgb mastering-apim
S Select your w—p sct|
5 = e subscription </inbou[7] set-backend-service set-backend-service
i |;|' <backen [] set-body set-body
r'_. Globatollcy <outbou [] set-header set-header
> = Named values Open the <on-err | | set-method set-method
> E= Products global policy J8 </policies>[7] set-query-parameter set-query-paraneter
[] set-status set-status
ﬁ []set-variable set-variable
[] send-request send-request
[] send-one-way-request send-one-way-request
Select Azure [] cache-store cache-store
[] cache-store-value cache-store-value
[l validate-status-code validate-status-code

Figure 10-8. IntelliSense for policies

Repeat the same with set-header and set the value to corrId as Figure 10-9 shows.
The figure also shows four arrows which mark the next cursor positions when typing tab.
When you are on an attribute where only certain values are valid like in case of exists-
action, alist with valid attribute values appears.

1 policies>

2 <inbound>

3 <set-variable name="corrId" value="@(context.RequestId.ToString())" />
4 <set-header name="correlationId" exists—action="hverride“)

5 I <value></value> =° override

: Wi e |
7 </inbound> = append

8 <backend /> =~ delete

9 <outbound />

10 <on-error />

11 /policies>

Figure 10-9. Editing a policy in VS Code

Listing 10-1 shows the complete code for this example. It adds the identifier
of a request generated by Azure API Management to each request as the header
correlationId. There are other options to create a correlation ID that might fit your use
case better.

140

CHAPTER 10 DEVELOPING POLICIES

Listing 10-1. Policy for adding a simple correlation ID to the request

<policies>
<inbound>
<set-variable name="corrId" value="@(context.RequestId.
ToString())" />
<set-header name="correlationId" exists-action="skip">
<value>@(context.Variables.GetValueOrDefault<string>("corr
Id"))</value>
</set-header>
</inbound>
<backend />
<outbound />
<on-error />
</policies>

The preceding example could be simplified by setting @(context.RequestId.
ToString()) of corrId directly as the value of the header. However, we will later modify
corrld, so let us stick to it for now.

Testing an API

In this section, you will test a policy by using the Test Operation feature of this
extension. As we know from other languages such as Java and C#, the possibility to easily
test our code is an elementary part in software development. The extension for Azure
API Management provides partly this possibility. Partly because this feature does not
automatically validate the response as we know from unit tests. Testing in the context of
this extension means sending a request to an API operation.

Figure 10-10 shows how to create a request for testing an API operation. Select
one operation such as GetTopics and right-click on it. Click Test Operation to create a
request.

141

CHAPTER 10 DEVELOPING POLICIES

®) File Edit Selection View Go Run Terminal Help git - Visual Studio Code

AZURE: AP| MANAGEMENT o)

> Pay-As-You-Go
o Visual Studio Enterprise Subscript... SeleCt.yQur
subscription
~ @b mastering-apim

~ = APls
~ =} Demo Conference API
~ i= Operations
> o [GET] GetSession
> o* [GET] GetSessions
> & [GET] GetSessionTopics
> ¢ [GET] GetSpeaker

qakers
kerSessions
akerTopics

> & |GET] GetTopic
> o [GET] GetTopics
> &® [GET] GetTopicSession Test Operation
> o [GET] GetTopicSpeakel Delete Operation
> % [POST] SubmitSession
= Policy Start Policy Debugging
> #% Fcho API Start Debuaaina ©F5

Figure 10-10. Create a request in VS Code

In the editor on the right-hand side in VS Code appears the configuration for a
request, as shown in Figure 10-9. The configuration describes the request method
GET, the endpoint URL https://mastering-apim.azure-api.net/conf/topics, and
two headers. Take notice of the subscription-key header as you might have changed it
previously to ApiKey. You must now replace {{azure-api-management-subscription-
key}} with your actual key. When you have done this, click Send Request, as shown in
Figure 10-11.

Send Request
GET https://mastering-apim.azure-api.net/conf/topics HTTP/1.1

[Ocp—Apim—Subscription—Keyl: {{azure-api-management-subscription-key}}
Ocp-Apim-Trace: true t

g FE WK

Figure 10-11. Sending a request from VS Code

A second tab in the VS Code editor appears in a split window with the response of
your request showing the HTTP status, date, and headers, as Figure 10-12 shows. The
Ocp-Apim-Trace-Location header points to a Json file which contains details you might
need to trace a request and response in case of an error.

142

https://mastering-apim.azure-api.net/conf/topics

W0 EwWN

=
(o]

Send Request

GET https://mastering-apim.azure-ag
Ocp-Apim-Subscription-Key: 9b72a901
Ocp-Apim-Trace: true

//A subscription key is required tc
//You can get the all-access subsc:
//You can also set an environment \
//see https://code.visualstudio.con

Figure 10-12. Responsein VS Code

w3 o 0=

CHAPTER 10 DEVELOPING POLICIES

HTTP/1.1 200 OK

Content-Length: ©
Ocp-Apim-Trace-Location: https://api
mstxg86wrbmjrqjjzSxep.blob.core.wind
ows.net/apiinspectorcontainer/GJ8YZe
uh__R3_LgFoArBcg2-14?sv=2019-07-07&s
r=b&sig=zuS%2BW8w1%2BfjixDocEftdYYPE
21Awg64bYpCU5ipa0Aw%3D&se=2021-07-05
T16%3A33%3A3U7&sp=r&traceld=68fba5b3
38f141f0b35U0ed804U68e5
Ocp-Apim-Apild: demo-conference-api
Ocp-Apim-OperationId: GetTopics
Ocp-Apim-SubscriptionId: master
Date: Sun, 04 Jul 2021 16:33:34 GMT
Connection: close

Sending requests with this extension might be a convenient way for many to develop

and test their API policies from the same IDE. However, API developers often use tools

such as Postman to create and collect requests that they use to develop APIs. For those

developers, it might be easier to stick to these existing request collections instead of

creating new requests in VS Code.

Debugging a Policy

You will now create a debugging session that connects to your remote Azure API

Management gateway. Right-click on the API operation that you want to debug. In

my case, I stick to GetTopics. As Figure 10-13 shows, you start a debugging session by

selecting Start Policy Debugging.

143

CHAPTER 10 DEVELOPING POLICIES

®J File Edit Selection View Go Run Terminal Help mastering-apim-tempFile policy.cshiml - git - Visual Studic Code = C
AZURE: API MANAGEMENT [v] mastering-apim-tempFile policy.cshtml X oe
> Pay-As-You-Go * Users » SvenMalvik > AppData > Roaming > Code » User > globalStorage > i de-ap Ger
~ Visual Studio Enterprise Subscript. 1 <policies>
v b mastering-apim 2 <inbound>

o = apl 3 <set-variable name="corrId" value="@(context.RequestId.ToString())" />
4 <set-header name="correlationId" exists-action="skip"=>
= ‘?’_DP'M Conference APl 5 <value>@{context.Variables.GetValueOrDefault<string>("corrId"))</val
~ iZ Operations 6 </set-header>
> o [GET] GetSession 7 </inbound=>
> o [GET] GetSessions 8 <backend />
> ¢ [GET] GetSessionTopics 9 <outbound />
> o [GET] GetSpeaker 1e gun-error /g
> o |GET| GetSpeakers 2 sypoliciess
> &% |GET] GetSpeakerSessions
> ¢ |GET] GetSpeakerTopics
/s > ¢ [GET] GetTopic
> of [GET| GetTopic- **
> & [GET] GetTopit Test Operation
> & [GET) GetTopic Delete Operation
> ¢ [POST] Submit

> =¥ Echa API

Figure 10-13. Starting a policy debugging session

A new tab for the request appears as you have seen when you tested an API

operation. Click Send Request

to send a call. A new tab appears that looks like the

one shown in Figure 10-14. The debugger stops at the first policy expression of the

effective policy.

Remember The effective policy includes policies from all scopes.

In this example, the curser has first stopped at line 3 of the global policy as it is

the first policy expression of the effective policy. Click the Step Over icon to get to the

second policy expression. On the left-hand side of the editor, you see a list of available

variables, context and corrId.

144

CHAPTER 10 DEVELOPING POLICIES

) File Edit Selection View Go Run Terminal Help tenant - git - Visual Studio Code = (w] x
RUNAN. [> NoConfigurat~ {8 =+ ing-apim-tempFilepolicy.cshiml @ mastering-apim-demo-conference-api-GetTopics x 08 @

v VARIABLES =1 licies> ip @+ T o0
LastError: null <inbound>

<set-variable name="corrId" value="@(context.RequestId.ToString())" />

[=set-header correlationId” exists-action="skip">

ontext.Variables.GetValueOrDefault<stringigt; ("corrld"))=

2 Deployment

> Variables
Tracing: True

» ProxyTimeCounter

0 -0t E W

iceTimeCounter

ackend />
<outbound />
<gn-error />

solicies>

P AMINAL DEBUG CONSOLE comelationld Shewing 1of43. = ~ X

“ CALL STACK PAUSED ON STEP
set-header ftenant 43
base
base /apis/demo-conference-a

* BREAKPOINTS »

Figure 10-14. Debugging a policy

You have learned to step through an effective policy by using a simple example
with two policy expressions. Imagine a policy where you define expressions in different
policies and at different scopes. Finding an error becomes very hard as the following
example will demonstrate.

Listing 10-2 defines a policy expression for setting the users email address in a
variable userEmail.

Listing 10-2. Policy expression in the GetTopics API operation

<inbound>
<set-variable name="userEmail" value="@(context.User.Email)" />
<base />

</inbound>

What happens when we initiate a debugging session and send a request without
signing in first is getting an error, as Figure 10-15 shows. The user does not exist, thus the
object reference for User is null.

145

CHAPTER 10 DEVELOPING POLICIES

13 <policies>

14 <inbound>
C 15 [<set-variable name="userEmail" value="@(context.User.Email)" />
.

Exception has occurred. x

ExpressionValueEvaluationException: Expression evaluation failed. Object reference
not set to an instance of an object.

Figure 10-15. Policy exception in debugging session

Those kinds of errors might be hard to find, especially when you have many policy
expressions at multiple scopes. Even though debugging helps to develop more robust
policies, try to minimize the amount of policy expressions. As an example, debugging
multiline C# policy expressions is not possible with this extension. Consider therefore
if the code you are implementing makes more sense as part of the backend web service
itself. This might improve the developer experience as most API developers are more
familiar with the tools they use when developing a backend web service itself.

Summary

In this chapter, you learned two ways of developing policies in Azure API Management.
First, you used the policy editor within the Azure portal for APT Management where you
can insert policy expressions by using policy snippets. This built-in editor is a great way
to make quick changes when you only have your browser available. The second way of
developing policies is by using the Azure API Management extension for VS Code. This
extension has IntelliSense features such as code completion that help to create policies
faster than relying on documentation only. It also helps to build more robust policies as
we can start debugging sessions and follow a request through an effective policy.

146

CHAPTER 11

Deploying APls

APIs can be deployed in many ways, with the Azure CLI, PowerShell, ARM templates,
Azure Bicep, Terraform, and many other tools and technologies that are available. When
I started working in a project that involved Azure API Management, the APIs and their
policies were deployed with ARM templates. Deploying Azure resources with ARM is
a common way to manage resources in Azure and to deploy infrastructure. This does
not mean that ARM templates are a great fit when it comes to deploying APIs to Azure
API Management. I think the opposite is the case and the Azure CLI and PowerShell are
better suited where developers are involved.

This chapter will discuss several options of deploying APIs and policies to Azure API
Management and then discuss the pros and cons of each of them, so you can decide for
yourself what is the best option for you and your technology eco system.

ARM Templates

Infrastructure as code is a common practice to automate deployments. Azure
provides the Azure Resource Manager templates (ARM templates), where you define
infrastructure as JSON-like files. Those engineers that define and deploy infrastructure
and services such as networking, storage, or Azure API Management are often not the
same as those that develop the web services and the APIs.

ARM templates are not limited to networking and services; you can also use them to
deploy APIs, products, and policies to Azure API Management. The deployment includes
three files:

e The ARM template demo-conference.json describes what Azure API
Management instance to deploy to and the location of the API and
policy files.

o The API demo-conference-api.json is a simplified OpenAPI
specification of the Demo Conference API with only one operation.

147
© Sven Malvik 2022

S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_11

https://doi.org/10.1007/978-1-4842-8011-9_11#DOI

CHAPTER 11 DEPLOYING APIS

o The API policy demo-conference-api.policy.json sets an
outbound header.

Figure 11-1 illustrates how to deploy the Demo Conference API and its API policy.
In this example, I keep the ARM template on my local machine for demonstration
purposes. However, this is not a requirement; you can store your ARM template together
with your other files at a downloadable location such as an Azure Storage Account.
When referencing files such as the API and policy, the value of the URIs can't be local
files. The Azure Resource Manager must be able to access them. You must therefore
provide a URI value where the files are downloadable as HTTP or HTTPS.

Locally Azure
Initiate deployment Execute deployment
om—
Azure Storage Account: masteringapimsa
L —

Container: apis

e — s
- demo-conference-api.json
demo-conference.json -

demo-conference-api.policy.json

Figure 11-1. API deployment with ARM

Listing 11-1 shows a simplified version of the Demo Conference API that I
downloaded to my local machine and named demo-conference.json. The API describes
one operation, GetTopics. You can use the full version of this API that is available at
http://conferenceapi.azurewebsites.net/?format=json.

Listing 11-1. Simplified Demo Conference API
{

"swagger": "2.0",

"info": {
"title": "Demo Conference API",
"description”: "Demo API",

148

http://conferenceapi.azurewebsites.net/?format=json

CHAPTER 11

"version": "2.0.0"
1
"host": "conferenceapi.azurewebsites.net",
"schemes": [
"http",
"https”
])

"securityDefinitions": {
"apiKeyHeader": {
"type": "apiKey",
"name": "Ocp-Apim-Subscription-Key",

in": "header"

1
"apiKeyQuery": {
lltypell: IlapiKeyll,

"name": "subscription-key",
llinll : Ilqueryll
}
}s
"security": [
{
"apiKeyHeader": []
b
{
"apiKeyQuery": []
}
1,
"paths": {
"/topics": {

"get": {
"operationId": "GetTopics",
"responses": {
"200": {
"description”: "OK"

DEPLOYING APIS

149

CHAPTER 11 DEPLOYING APIS

1

"produces": [
"application/vnd.collection+json”

]
}
}
}
}
Listing 11-2 describes the API policy that I also have on my local machine. It sets one
outbound header.

Listing 11-2. Demo Conference API policy

<policies>
<inbound>
<base />
</inbound>
<backend>
<base />
</backend>
<outbound>
<set-header name="X-myHeader" exists-action="override">
<value>My header</value>
</set-header>
<base />
</outbound>
<on-error>
<base />
</on-error>
</policies>

I have two files, the API specification itself and the API policy, both are on my local
machine. In order to be available to the Azure Resource Manager, both files must be
downloadable which is not the case now.

As illustrated in Figure 11-1, we need an Azure Storage Account masteringapimsa
and a container where we can store both files. Listing 11-3 describes how to create an

150

CHAPTER 11 DEPLOQYING APIS

Azure Storage Account with PowerShell. Set first the context and define the subscription
you are using. To create a new Azure Storage Account, use the Azure PowerShell cmdlet
New-AzStorageAccount.For the purpose of this demonstration, I set SkuName to the
cheapest option LRS (Local Redundancy Storage).

Listing 11-3. Creating Azure Storage Account

Set the correct context

$context = Get-AzSubscription -SubscriptionId "b0e68700-2b10-4f92-858a-36d2
a98748b8"

Set-AzContext $context

Create storage account

$storageAccount = New-AzStorageAccount °
-ResourceGroupName "mastering-apim-rg" °
-Name "masteringapimsa" °
-Location "West Europe" °
-SkuName "Standard LRS"

We store our files in a container of our Azure Storage Account. I name the container
apis. By default, the container and any blobs in it can be accessed only by the owner
of the storage account. To provide full read access to anonymous users, we set the
permission to Container. In a production environment, you would delegate access to
containers with shared access signatures (SAS). To focus on deploying an API and its
policy with ARM, I create a container with full read access as Listing 11-4 shows.

Listing 11-4. Creating container in Azure Storage Account

Create a container
New-AzStorageContainer -Name "apis" -Context $storageAccount.Context -Permission
Container

Upload both files, demo-conference-api.json and demo-conference-api.policy.
xml into the container apis. Both files should be publicly available via https://
masteringapimsa.blob.core.windows.net/arm/demo-conference-api.jsonand
https://masteringapimsa.blob.core.windows.net/arm/demo-conference-api.
policy.xml.

151

https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview
https://masteringapimsa.blob.core.windows.net/arm/demo-conference-api.json
https://masteringapimsa.blob.core.windows.net/arm/demo-conference-api.json
https://masteringapimsa.blob.core.windows.net/arm/demo-conference-api.policy.xml
https://masteringapimsa.blob.core.windows.net/arm/demo-conference-api.policy.xml

CHAPTER 11 DEPLOYING APIS

What is missing is the ARM template that describes to the Azure Resource Manager
what to deploy. Listing 11-5 shows the ARM template for deploying our Demo
Conference API and its policy. Our ARM template has four sections:

o In parameters, we define the name of the Azure API Management
instance and the location of the Azure Storage Account.

« Invariables, we define the API name that is used twice later in the
ARM template and the resource location within the storage account.

o Inresources, we define the resources that we are deploying, the API
and its policy.

e In outputs, we do not define anything as we do not have following
steps that would require input from this deployment.

I'want to highlight the two resources of this ARM template. They define both a type,
name, and two properties. For APIs, the type is Microsoft.ApiManagement/service/
apis; for API policies Microsoft.ApiManagement/service/apis/policies. We can
concatenate the resource name of both resources with apiName and resourcelocation
variable. The policy resource gets policy at the end of the name. The properties for the
API and its policy have a contentFormat thatI set to swagger-1link-json for the API and
xml-1ink for the policy. The contentValue of both properties is the downloadable URL
of the API and the policy that are stored in the storage account.

Listing 11-5. ARM template
{

"$schema”: "https://schema.management.azure.com/schemas/2019-04-01/
deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"parameters": {
"apiManagementServiceName": {
"type": "string",
"defaultValue": "mastering-apim"
b
" artifactslocation": {
"type": "string",
"defaultValue": "https://masteringapimsa.blob.core.windows.net"

152

CHAPTER 11 DEPLOQYING APIS

}
b

"variables": {
"apiName": "demo-conference-api",

"resourcelocation": "[concat(parameters(' artifactsLocation'), '/
apis/*)]"

b

"resources": |
{

"apiVersion": "2018-01-01",
"type": "Microsoft.ApiManagement/service/apis”,
"name": "[concat(parameters('apiManagementServiceName'), '/',
variables('apiName'))]",
"properties": {
"contentFormat": "swagger-link-json",

"contentValue": "[concat(variables('resourcelocation'),
variables('apiName'), '.json')]",
"path": "conf"
}
}’

{
"apiVersion": "2018-01-01",
"type": "Microsoft.ApiManagement/service/apis/policies",
"name": "[concat(parameters('apiManagementServiceName'), '/',
variables('apiName'), '/', 'policy')]",
"dependsOn”: [
"[concat('Microsoft.ApiManagement/service/', parameters('apiManag
ementServiceName'), '/apis/', variables('apiName'))]"
]’
"properties": {
"contentFormat": "xml-link",
"policyContent": "[concat(variables('resourcelocation'),
variables('apiName'), '.policy.xml')]"
}
}

153

CHAPTER 11 DEPLOYING APIS

1,
"outputs": {
}

}

You can keep the ARM template locally or store it side-by-side with your API and
policy. To deploy both resources with ARM, I use the Azure CLI command az deployment
group create, asshown in Listing 11-6. The command requires two parameters, the
resource group --resource-group and the ARM template --template-file. You can
provide an URI for the ARM template instead of the local file with - -template-uri.

Listing 11-6. Deploying an ARM template with Azure CLI

az deployment group create °
--resource-group mastering-apim-rg °
--template-file demo-conference.json

If you are not familiar with ARM templates, do not worry, there are other options
for deploying APIs and policies to Azure API Management. In fact, many developers of
web services that deploy APIs and policies occasionally find it hard to work with ARM
templates. If you are a developer that focuses primarily on writing application code, you
should consider either creating a tool that can generate ARM templates or choosing one
of the other deployment options. The reason for that is that ARM templates are often
hard to implement for developers as Azure is not their primary domain.

Bicep

Azure Bicep is a new domain specific language (DSL) and is developed by Microsoft.
It aims to simplify the authoring experience with a cleaner syntax, improved type
safety, and better support for modularity and code reuse. Azure Bicep is a transparent
abstraction over ARM and ARM templates, which means anything that can be done in an
ARM template can be done in Bicep.

If you have already an ARM template, you can convert it to Bicep code with the Azure
CLI command az bicep decompile, as Listing 11-7 shows.

154

CHAPTER 11 DEPLOQYING APIS
Listing 11-7. Convert an ARM template to Bicep
az bicep decompile --file demo-conference.json

The output of this command is a Bicep file demo-conference.bicep, as Listing 11-8
shows.

Listing 11-8. Bicep code of an API deployment

param apiManagementServiceName string = 'mastering-apim’
param artifactslLocation string = 'https://masteringapimsa.blob.core.
windows.net'

var apiName = 'demo-conference-api'
var resourcelocation = '${artifactslLocation}/arm/'

resource apiManagementServiceName apiName 'Microsoft.ApiManagement/service/
apis@2018-01-01' = {
name: '${apiManagementServiceName}/${apiName}’
properties: {
contentFormat: 'swagger-link-json'
contentValue: '${resourcelLocation}${apiName}.json’
path: 'conf'

}
}

resource apiManagementServiceName apiName policy 'Microsoft.ApiManagement/
service/apis/policies@2018-01-01" = {
parent: apiManagementServiceName_apiName
name: 'policy’
properties: {
contentFormat: 'xml-link'
policyContent: '${resourcelLocation}${apiName}.policy.xml’
}
}

The Bicep code describes the same as the equivalent ARM template. Compared
to the ARM template with 44 lines of code, the Bicep code has only 23 lines of code, a
reduction by almost 50%.

155

CHAPTER 11 DEPLOYING APIS

To deploy the Bicep file, you execute the same command as you did with the ARM
template; this time with the demo-conference.bicep file.

az deployment group create °
--resource-group mastering-apim-rg °
--template-file demo-conference.bicep

What happens when you deploy a Bicep file is that it gets compiled to an ARM
template and uses this as an intermediate format to deploy Azure resources. It means
that if you already have an ARM template, you do not need to decompile it to a Bicep
file. However, from the perspective of a developer, Bicep files are better readable
and therefore easier to maintain. If you are starting out with Azure deployments, I
recommend starting with Bicep over ARM templates. This is where Microsoft has its
focus and is the de facto standard going forward. You get more information about Azure
Bicep in the official documentation.

REST

Another option for deploying Azure resources is by using the Azure REST API. It provides
a very flexible way of managing resources in Azure as it can be used almost anywhere,
high-level languages such as Java and C#, PowerShell, or tools like Postman and
cURL. However, using REST might add some additional complexity as you as a developer
need to manage dependencies between Azure resources yourself, something that ARM
and Bicep can manage for you.

This section demonstrates how to use cURL to deploy the Demo Conference API and
its policy. Listing 11-9 shows four variables:

o SERVICE defines the name of the Azure API Management instance.

 RESOURCE_GROUP and SUBSCRIPTION_ID define what the name
suggests for the service.

o URL defines the Azure REST endpoint for deploying an API.

Listing 11-9. Defining variables for a REST API call

SERVICE="mastering-apim"
RESOURCE_GROUP="mastering-apim-rg"

156

https://docs.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview

CHAPTER 11 DEPLOQYING APIS

SUBSCRIPTION ID="b0e68700-2b10-4f92-858a-36d2a98748b8"
URL=https://mastering-apim.management.azure-api.net/
subscriptions/$SUBSCRIPTION ID/resourceGroups/$RESOURCE_GROUP/providers/
Microsoft.ApiManagement/service/$SERVICE

To access the endpoint URL, a user needs a valid shared access signature (SAS) token.
One way of getting a SAS token is by navigating to your Azure API Management instance
in the Azure portal and selecting the Management API pane from the left-hand menu,
as shown in Figure 11-2. Scroll down to Access token and click Generate. By default, the
SAS token is valid for 30 days.

& mastering-apim | Management APl - X

APl Management service

22 Search (Ctrl+/) %
e " Access token
& External cache

2 . 0 Maximum supported expiry time is 30 days from the time access token is generated
&= Custom domains

4> Virtual network
R Management AP| URL

“* Network connectivity status hitps://mastering-apim.management.azure-apinet a}

0 WNotifications Expiry

= Notification templates 2021-08-08 1) 15:09:41
& Management AP h Secret key
€& Repository Primary key A

Copy the SAS token
Security Access token
i Generate

SharedAccessSignature integration&2021080813098Z17sGUOSXDGZBMReTRsazKjv10Ad)ihSTAA+hbf... [Dy
Managed identities

Figure 11-2. Copy Shared Access Signature (SAS) token

Copy the SAS token and set the value as shown in the following; we need to construct
the cURL command:

SAS="YOUR_SAS TOKEN"

The cURL command that we create expects values of the API that we set as JSON
payload. Listing 11-10 shows a minimal request payload for deploying an API.

e The value ofid is the reference to this API resource.
o Thevalue of type is the same for all API deployments.

o Isetthe name of this API to demo-conference-api.

157

CHAPTER 11 DEPLOYING APIS

o In properties, we set an array with required parameters such as the
URL to our API, format, and the path. I added some more attributes to
be consistent with the previous examples in this chapter.

Listing 11-10. Request payload for deploying an API
{

"id": "/subscriptions/$sid/resourceGroups/$rg/providers/Microsoft.
ApiManagement/service/$service/apis/demo-conference-api”,
"type": "Microsoft.ApiManagement/service/apis”,
"name": "demo-conference-api”,
"properties": {
"displayName": "Demo Conference API",
"value": "http://conferenceapi.azurewebsites.net/?format=json",
“format": "swagger-link-json",
"description”: "This is the Demo Conference API",
"subscriptionRequired": true,
"path": "conf"

Store the JSON payload in a file ./api-data.json and execute the cURL command with
the HTTP request method PUT and the payload --data @api-data.json, as shownin
Listing 11-11. This will deploy the API to your Azure API Management instance.

Listing 11-11. Deploying API with cURL

curl -X PUT -H "Authorization: $SAS" -H "Content-Type: application/json"
--data @api-data.json $URL/apis/demo-conference-api?api-version=2019-12-01

To request the deployed API, run the same command with the HTTP method GET
and without the payload, as shown in the following:

curl -X GET -H "Authorization: $sas" -H "Content-Type: application/json"
$url/apis/demo-conference-api?api-version=2019-12-01

To deploy a policy with the Azure REST API, you have two options; you can either
host the policy on an HTTP endpoint accessible from the API Management service or
you can define the policy as payload as shown in Listing 11-12. I store the payload in a

158

CHAPTER 11 DEPLOQYING APIS

file ./apipolicy-data.json that defines a properties object with two members, format
and value. As I want to define the policy as payload, the format is xml and the value the
policy itself.

Listing 11-12. Simple API policy
{

"properties": {

"format": "xml",

"value": "<policies>

<inbound>
<base />

</inbound>

<backend>
<base />

</backend>

<outbound>
<set-header name=\"X-myHeader\" exists-action=\"override\">

<value>My header</value>

</set-header>
<base />

</outbound>

<on-error>
<base />

</on-error>

</policies>

Execute the cURL command shown in Listing 11-13 for deploying the API policy.

Listing 11-13. Deploying API policy with Azure REST API

curl -X PUT -H "Authorization: $sas" -H "Content-Type: application/
json" --data @apipolicy-data.json $url/apis/demo-conference-api/policies/
policy?api-version=2019-12-01

159

CHAPTER 11 DEPLOYING APIS

You have learned to deploy an API and its policy by using the Azure REST
API. Compared to ARM templates and Azure Bicep, this approach is more flexible as
it can be integrated into existing source code that supports HTTP. Furthermore, many
developers are already familiar with other REST APIs. From my experience, learning the
Azure REST API is not seen as a challenge by most developers and might therefore be a
great choice for those developers that want to work with their language of choice.

Terraform

Terraform is an open source tool to manage infrastructure in Azure and other cloud
providers. In fact, its great advantage over other infrastructure as code (IaC) tools is that
itis cloud agnostic, which makes it a very popular tool in the cloud community.

The following Terraform file deploys the Demo Conference API and its policy to
Azure API Management. It is split into three parts; part 1 sets the provider for interacting
with Azure, part 2 defines the API, and part 3 defines the API policy.

Listing 11-14 shows how to set the Azure provider azurerm. You get the latest version
of azurerm at the main directory of publicly available Terraform providers https://
registry.terratorm.io/providers/hashicorp/azurerm/latest.

Listing 11-14. Part 1 of the Terraform file for setting the Azure provider

terraform {
required providers {
azurerm = {

source = "hashicorp/azurerm”
version = "=2.67.0"
}
}
}
provider "azurerm" {
}

160

https://registry.terraform.io/providers/hashicorp/azurerm/latest
https://registry.terraform.io/providers/hashicorp/azurerm/latest

CHAPTER 11 DEPLOQYING APIS

Listing 11-15 shows how to define an API resource. In Terraform, a resource is the
most important element. A resource block describes one or more infrastructure objects,
in our case, an API. The type of this resource element is azurerm_api management_api;
its local name api. The resource type and the local name together serve as the identifier
that we can use to reference it.

Listing 11-15. Part 2 of the Terraform file defines an API

resource "azurerm api management api" "api" {
name = "demo-conference-api"
resource_group_name = "mastering-apim-rg"
api_management name = "mastering-apim"

revision = "1"

display name = "Demo Conference API"
path = "conf"

protocols = ["https"]

import {

content_format = "swagger-link-json"

content_value

}
}

In Listing 11-16, we define the API policy resource element. The features reference

"http://conferenceapi.azurewebsites.net/?format=json"

the apiresource element to get their values. To define the policy, it supports two options,
xml_content for defining the policy code and xml_link which expects a URL to a
publicly available policy file.

Listing 11-16. Part 3 of the Terraform file defines an API policy

resource "azurerm_api_management api policy
api_name

api policy" {
azurerm_api management api.api.name

api_management_name

azurerm api_management api.api.api_management_name

resource_group name = azurerm api management api.api.resource group name

xml_content = <<XML
<policies>
<inbound>

161

CHAPTER 11 DEPLOYING APIS

<find-and-replace from="xyz" to="abc" />
</inbound>
</policies>
XML
}

To initialize a Terraform project, create a working directory where you place your
Terraform file and run the following command within the same directory:

terraform init

To see what Terraform will deploy or remove before it performs any change in

Azure, run:
terraform plan

Terraform will describe in detail what happens before applying your Terraform file.
Once you are ready to deploy your API and its policy, run:

terraform apply

You have now successfully deployed the Demo Conference API and its policy with
Terraform.

Terraform has many providers such as for Amazon Web Service (AWS), Google Cloud
Platform (GCP), Azure, and many more. It makes it a great IaC tool for organizations that
manage resources in different cloud providers. My experience with managing Azure API
Management with Terraform is that it does not support new features immediately. In
fact, it took several months before the Consumption SKU was implemented. However,
Terraform is a great choice as it is easy to get started with because of its detailed
documentation and great user adoption.

Summary

You have learned to deploy APIs and policies in many ways, with the Azure CLI, Azure
PowerShell module, ARM templates, Azure Bicep, Azure REST API, and the Azure
provider in Terraform. You have also learned that there is no best way. A best way can
only be one that fits your people and your ecosystem. You must decide what technology
or tool works best for you, your team, or your organization. I know from my experience

162

CHAPTER 11 DEPLOQYING APIS

working in a cloud platform team - we were responsible for Azure API Management -
that ARM templates did not work well for our application developers because they spend
most of their day with high-level languages such as Java and C#. ARM is a technology
they touch occasionally, so those developers required a lot of support from us. We
were developing most of their ARM templates, which meant that those developers did
not feel real ownership for their APIs. API ownership is something that we took very
seriously, so we decided to create PowerShell scripts that everyone could use to deploy
their APIs, policies, and products, accessible as tasks and task groups in Azure DevOps.
We empowered our application developers to deploy to Azure API Management even
though it was a black box for many of them. However, the future of infrastructure as code
in Azure is not ARM templates anymore, it is Bicep where Microsoft puts in its effort.
Other teams in our organization were already deploying their databases and
other Azure services with Terraform. Deploying APIs with the same tool might be an
obvious choice.

163

CHAPTER 12

Power Apps

Power Apps allow citizen developers to build mobile-friendly apps quickly and without
the need to implement traditional pro-code. While this low-code approach makes it easy
to create custom apps quickly, a citizen developer might still need some support from
you to connect the data from a web service and surface that data in a Power App.

Note Power Apps are part of a different pricing model, not related to Azure API
Management. Read the documentation about Power Apps pricing.

In this chapter, you will learn to connect Azure API Management to the Power
Platform. You will create a simple Power App from scratch and visualize a JSON response
from an API that is hosted in Azure API Management. Figure 12-1 illustrates how a
backend web service API can be altered on each level and so, create an API in Power
Apps that is best suitable for your citizen developers.

[7\ , {1 API
cmm (AP} T\ {API}) {API}
Backend Web Service Azure APl Management Power Apps Phone/Tablet

Figure 12-1. APIs from the perspective of a citizen developer

For example, an API in Power Apps might only contain a subset of all available
endpoints that the connected API in Azure API Management exposes to simplify the use
of it and to make the API more useable.

I created a simple Book API in Azure API Management with one operation Book.
Listing 12-1 demonstrates the inbound policy of this operation. To keep it simple for this
demonstration, the operation returns a JSON object with only one key/value pair.

165
© Sven Malvik 2022

S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_12

https://doi.org/10.1007/978-1-4842-8011-9_12#DOI
https://powerapps.microsoft.com/pricing/

CHAPTER 12 POWER APPS
Listing 12-1. API policy for the book operation

<inbound>
<base />
<return-response>
<set-header name="Content-Type" exists-action="override">
<value>application/json</value>
</set-header>
<set-body>
{"Book" : "Mastering Azure API Management"}
</set-body>
</return-response>
</inbound>

Creating a Connection

To connect an API that is hosted in Azure API Management on the Power Platform can
be achieved directly from the API in Azure APT Management as Figure 12-2 illustrates.
Click on the three dots on the right-hand side of the API you want to connect and select
Create Power Connector. A new dialog opens where you name your new connector.
Select a Power Apps environment that you want to use and give your API eventually a
different display name in Power Apps; this makes sense in case where there is already a
connector with the same name. Click now “Create” to create the new API connector in
Power Apps.

166

2 Search (Cirl+/)
¥ Cvendew
B Activity log
Ho Access control (LAM)
¢ Tags
2 Diagnose and solve problems
Settings
Il Properties
i Locks
APls
D APl o —
0 Products
Subseriptions
O Mamed values

& Backends

«

O Search APIs
Y Filte
O Group by tag
-} Add API
All APls l
bockap
Clone
A dialog for Add revision
oediing 4 Add version
connector
opens. Import
Export

Delete

Define a ne

™ Create Power Connector

CHAPTER 12

POWER APPS

Blank APl

Craate an emoty AP

i

R

& e 3

(=}

Create a connector
AP
Select an API to connect to the Power Platform.

AL

bookapi

PowerApps

Select a PowerApps emironment to publish your API to and create a name for your

connectorn to display in the Power Platform.

PowerApps environment to publish to* (0

API display name * (0

bookapi

EER

Figure 12-2. Creating a connector to Power Apps

Switch over to your Power Apps environment https://make.powerapps.com/ to

see your new connector; it is located under Custom Connectors that you find in the

left-hand menu. Figure 12-3 shows a list of all custom connectors in your Power Apps

environment. In this example, there is only one connector, “bookapi.” To see all available

operations of this connector, click the pen icon.

Choices
Dataflows
Azure Synapse Link

Connections

Custom connectors

con MName

—+ New custom connector

Actions

bookapi
Sven Malvik

v
3

I Custom Connectors s

Gateways
o Flows

G Chatbots

Figure 12-3. List of custom connectors in Power Apps

The pen icon opens an editor where you can adjust the API in Power Apps that is

fronting your API in Azure API Management. Like policies in Azure API Management,

you can add or remove operations, add default parameters to requests, or re-route calls.

167

https://make.powerapps.com/

CHAPTER 12 POWER APPS

To see if this API behaves the way you expect it to, select Test from the top menu to
execute a test operation, as Figure 12-4 shows. It helps you to understand the response
that we will parse when we create a Power App.

[Leam € Connector Name bookapi
B Apps 1.General » 2.Security > 3.Definition > 4.Code > ®) swaggerEditor +/ Update connector X Close
+ Create
~ Actions (1) General
o P
B Dty Actions determine the
operations that users can Summary Learn more
Tables perform. Actions can be
used to read, create, update Eook
Chaices or delete resources in the
underlying connector. Description Learn mose
Dataflows
o Book sffm— | ook

Azure Synapse Link -+ | New action

Cperation 1D *

Connections 2
This is the unique string used to identify the operation.

“ References (0)

Custom Connectors Bosk
References are reusable s
Gateways parameters used by both
actions and triggers.
Visibility Leam mare
o Flows i A . .
(®) none () advanced {_) internal () important
b4 il
@ Chatbots v Policies (0)

Policies are used to chance

Figure 12-4. Editing a custom connector

When you execute a test operation for the first time, you might get asked to create
a connection. If not, click Connections and then Create a connection as shown in
Figure 12-5. This will open a dialog where you put in your API subscription key if
required.

B Apps -+ New connection A Search

+ Create . 3
Connections in

B Data i
& Canvas

Tables

Choices @

Dataflows
You haven't created any connections yet.

Azure Synapse Link
A Connecticns provide a link between your data and Power Apps. Leam more

I Connections i ee—m
—

Custom Connectors

Figure 12-5. Creating a connection

168

CHAPTER 12 POWER APPS

You create a connection from a connector. There are already plenty of connectors for
many services available, such as for SharePoint, DropBox, and many more. Figure 12-6
shows where you search for your custom connector by using the search field. Then click
+ on the right-hand side of your custom connector, in my case “bookapi,” and click
Create in the following dialog.

& Apps
+ Create 5
Connections > i o .
New connection arci s s
B Data o~
Tables Name Type
Choices d FreshBooks (preview)
Microsoft | _________ = Standard +
Dataflows
bookapi
Azure Synapse Link Sven Mg\-ik Custom — —I—

Connections “iie———

Custom Connectors

Figure 12-6. Available connections

Great, you have now a connection from your Power Apps environment to your API in
Azure API Management, ready to use.

Creating a Power App

In this section, I want to show you to create a Power App and print out the value from the
API response by using the connection that you created.

Click Create in the left-hand menu to create a Canvas app from blank. A dialog
opens where you set an App name and a format. I selected Tablet, but it does not matter
as we just want to print a value from an API. Click Create to open the Power App editor as
shown in Figure 12-7.

169

CHAPTER 12 POWER APPS

Three ways to make an app

m Home
M Learn Start from blank @ Appneme;
| mybookapp ffim—
B Apps Format
Opens a dialog . Choose a
I 1 Create for creating the (@) Tablet format
Power App /a_ () Phone
& Data ~ I
=y
Tables Canvas app from blank ———Nodel-driven app from Blank T
Canvas app 2 Model-driven app
Choices

Figure 12-7. Creating a Power App

In the editor for creating a Power App, we connect to our data at first by either
clicking on connect to data in the canvas of your Power App, or by clicking in the data
source icon in the left-hand menu. As shown in Figure 12-8, a dialog with possible data
sources opens. Select your “bookapi” connection.

File Home Insert \iew Action Settings mybookapp ‘{? '? Q‘ -3 /Q, ?
) Mew screen ~ & e L3
v = | fxv white Ev
= | Data X <
o] w
8 2
—+ Add data z
+

o There (B SO

Add an ite om the | to data
—
u See oll tables 1

' Connectors 3 bockapi

¢ bookapi

T Premium

Figure 12-8. Connecting the Power App with the API

Your data is now accessible for your Power App. Add a label to the canvas of your
Power App. We want to display the value from the Book API there. To read the value from
the response of the Book API, you must create a formula.

170

CHAPTER 12 POWER APPS

In order to access this operation, you set the following formula for the label that you
created:

bookapi.Book() .Book

The first part of the formula bookap1i is your connection which represents the Book
API. The second part Book () represents the operation that we want to call, and the last
part Book represents the key of the key/value pair of the JSON response. Remember, this
is the response we have set in the policy for the Book operation:

{"Book" : "Mastering Azure API Management"}

Figure 12-9 demonstrates all steps for calling the Book API and displaying the
response of the Book API on the canvas of your Power App.

File Home Insert View Action Settings

C] New screen ~ & Label [® Button | B Text~ 5 Input~ @4 Gallery~ BEE Datatable [% Form
T2 vii= ﬁ&'v bookapi.Book().Book
X o - O o)
@ ‘ ,O Search "
S Mastering Azure APl |
g C
e o Management
|©
S =
%

Figure 12-9. Writing a formula for reading a value from the API

Congratulations, you have created a Power App that displays data from an API by

connecting to your Azure API Management instance.

171

CHAPTER 12 POWER APPS

Summary

In this chapter, you learned how to expose an API in Power Apps by connecting an API
in Azure API Management to your Power Apps environment. You created then a simple
Power App and used this API to display a value from a response.

Imagine if you would expose many of your APIs in Power Apps together with other
sources such as Azure AD, SharePoint, or Excel, to mention just a few. It enables citizen
developers to truly create powerful applications by combining data from across your
entire organization.

172

PART IV

Enterprise Integration

CHAPTER 13

Networking

When you deploy Azure APT Management with the default configuration for virtual
networking, your instance will not be deployed into a virtual network (VNET), and thus
be fully accessible from the Internet. This is a great way to share your public APIs with
the world.

There are other use cases where you might not want to or can expose your APIs
publicly and where you need to share your APIs with external partners or internal users
only. You might have web APIs on-premises and want to expose them in Azure API
Management in a hybrid cloud scenario where a secure connection with other vendors
or datacenters is required. To achieve any of these use cases, you can deploy Azure API
Management into a VNET.

There are three types of VNETSs, none, internal, and external. None is the default
configuration, as shown in Figure 13-1. Once deployed, you can switch from internal to
external and vice versa later.

Home > Create a resource > APl Management >

Create APl Management

Basics Monitoring Scale Managed identity | Virtual network | Protocol settings Tags Review + create

0 Securely access resources available in or through your Azure Virtual Network.

Type * (®) None

£y
() External

Y
() Internal

Figure 13-1. VNET types

175
© Sven Malvik 2022

S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_13

https://doi.org/10.1007/978-1-4842-8011-9_13#DOI

CHAPTER 13 NETWORKING

In this chapter, you will learn to secure Azure API Management without a VNET but
also, when you should deploy Azure API Management into an infternal or external VNET,
so you understand how APIs will be exposed to your API consumers.

Note VNET integration is only available in the Developer and Premium tier.

We will also look at how to integrate backend web services into Azure API
Management as a load balancer for a multi-AKS-cluster that runs mission critical
workload where you simply can’t rely on one AKS cluster only.

Internal Virtual Network (VNET)

When you deploy Azure API Management into an internal VNET, by default, your APIs
are inaccessible from outside this VNET because the API gateway does not have a public
facing IP address. However, when you deploy Azure API Management into an internal
VNET, you will get a public IP address. You can see this IP address in the Overview of
your instance of Azure API Management as shown in Figure 13-2. This public IP address
is only used for control plane traffic to the management endpoint which, that is, the
Azure Resource Manager uses to manage configuration. You can lock this IP address
down to the ApiManagement service tag.

¢, apim-intern # - X
ol i _

APl Management service
B Search (Ctrl+/) @ i Developer portal E pelete [Open in mobile
o Overview 3 # Essentials JSON View
i Activity log Resource group (change) Developer portal URL

apim-internal-rg https://apim-intern.developer.azure-apinet

P Access control (LAM) Status Gateway URL
¢ Tags Online https://apim-intern.azure-api.net

_ Location Tier
}‘ Diagnose and solve problems West Europe Developer (No SLA)

Subscription (change) Virtual IP (VIP) addresses

Settings =
9 Visual Studio Enterprise Subscription public: 20.86.188.210,|private: 10.0.1.69

Figure 13-2. Public IP address in internal VNET

To sum it up, we have a public IP address for managing configuration and we
have a private IP address for accessing the API gateway, developer portal, Git, and the
management endpoint. However, when you call an API in Azure API Management from
a virtual machine that is inside the same VNET or in a peered VNET by using the private

176

CHAPTER 13 NETWORKING

IP address, you receive a HTTP status code 503, service unavailable. This is because your
API Management service does not listen to requests coming from IP addresses. It only
responds to requests to the hostname configured on its service endpoints as shown in
Figure 13-3.

i
| gy e | B e R ———
! n (vM1) | leteering o TR vm2) |
. IR 'Q-)js;':n B
| svenet A Pioiswbner
| P | :

curl https://apim-intern.azure-api.net/conf/topics

Figure 13-3. Calling Azure API Management in internal VNET mode

At this point, the virtual machine (VM1) does not recognize the hostname apim-
intern.azure-api, so calling an API fails at this point as Azure does not manage DNS
for an internal VNET. To resolve this, you can map the host file. I created a virtual
machine (VM1) with Ubuntu where the host file is located at /etc/hosts and added the
following entry which contains the target IP address (the private IP address of Azure API
Management) and the hostname for the API gateway:

10.0.1.69 apim-intern.azure-api.net

Another option for resolving the hostname is by configuring an Azure private DNS
zone and linking it to the VNET where your Azure APT Management instance is deployed
described in the Azure documentation for private DNS.

The question you might ask is, how can I expose APIs together with the developer
portal to my external API consumers. The short answer is by sending requests via a
gateway. Azure Application Gateway is such a gateway that is commonly used in front
of Azure API Management. It is a layer-7 load balancer and acts as a reverse proxy
which has a public IP address, of course, and a built-in Web Application Firewall
(WAF); Azure API Management does not provide WAF. In a nutshell, if you run mission
critical web services that can be accessed via Azure API Management and you decide
to lock down your instance into an internal VNET, using Azure Application Gateway is a
recommended PaaS service to protect your infrastructure from malicious requests.

177

https://docs.microsoft.com/en-us/azure/dns/private-dns-getstarted-portal

CHAPTER 13 NETWORKING

Figure 13-4 illustrates how to protect Azure API Management in an internal VNET
with Azure Application Gateway in front. As Azure API Management does not provide
a public IP address for the API gateway, external API consumers send requests to the
external endpoint of Azure Application Gateway. Depending on the URL format you
set up, Azure Application Gateway sends the requests to your Azure API Management
instance or eventually to a different backend that you have in place such as an Azure App
Service where you run a landing website that does not need the overhead that comes
with Azure API Management such as subscriptions and API policies.

I 1
1 1
| - H _ oxmm Backend
! TEm i - OB corvices
£ | . AT T i B ' Public i
xterna ' ‘&} Azure | 1 Azure API ' external
APl consumers | WAF' ™ Application E ! Management._é_,,_--_-.\\ ! endéoint
@ 1 Gateway ! Iy Management
i —)
ah : P! (I)-)l ' endpoint
Public X H ' Private !
external ! | subnet; !subnet internal g
Internal

@ APl consumers

1
1
i
I " T 1
endpoint endpoint | .
1
external APls internal APls |
1
1
1

Internal virtual network

Figure 13-4. Azure API Management in an internal VNET

Internal API consumers can access the internal endpoint directly if those requests
come from a VNET that is peered with the VNET where Azure API Management is
deployed in because Azure API Management deployed in internal mode provides only a
private IP address for the API gateway.

Note API Management service does not listen to requests coming from IP
addresses. It only responds to requests to the hostname configured on its service
endpoints.

When you deploy Azure API Management into an existing subnet of a VNET, make
sure that your Network Security Group (NSG) - if you have one associated with the
subnet - opens for some necessary ports that Azure API Management needs. You find a
list of all required ports in the documentation for common network configuration issues.

178

https://docs.microsoft.com/en-us/azure/api-management/api-management-using-with-vnet?tabs=stv2#-common-network-configuration-issues

CHAPTER 13 NETWORKING

External VNET

When you deploy Azure API Management into an external VNET, by default, your APIs
are exposed on the Internet as the API gateway provides a public facing IP address as
Figure 13-5 shows.

/o apim-ext 2 - X
& ap
APl Management service
A Search (Ctrl+/) @ ' Developer portal [E\I Delete I_l Open in mobile
o Overview # Essentials JSON View
B Activity log Resource group (change) Developer portal URL
apim-external-rg https://apim-ext.developer.azure-api.net
A Access control (1AM) Status Gateway URL
Cnline https://apim-ext.azure-apinet
@ Tags
Location Tier
& Diagnose and solve problems West Europe Developer (No SLA)
. Subscription (change) Virtual IP (VIP) addresses
Settings (chang * (ViF) add
Visual Studio Enterprise Subscription public: 13.69.25.79

Figure 13-5. Public IP address in external VNET

However, even though your APIs are publicly exposed on the Internet, you can still
restrict incoming traffic by associating a Network Security Group to the subnet of your
Azure API Management instance as shown in Figure 13-6.

APl consumers

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

- —_— i Azure API |
| Management | o p—
! I . oxmm Backend
Management _’.] i T IR cryices
endpoint Public ! | I
! Subnet :

external 1
= endpoint """ "TTTTTTTT777"
1

External virtual network

Figure 13-6. Azure API Management in an external VNET

For example, instead of using Azure Application Gateway in front of Azure API
Management as suggested for the internal mode, using the global Azure Front Door
gateway as a layer-7 load balancer which has near real-time failover requires a

179

CHAPTER 13 NETWORKING

backend - in this case Azure API Management - to provide a public IP address. With
Azure API Management in external mode, you have a public IP address where you can
configure NSG rules to restrict incoming traffic to Azure Front Door only.

No VNET

Deploying Azure APT Management without VNET integration is a less expensive

option as you can choose other pricing tiers such as consumption, basic, or standard.
However, seen from a security perspective, you are more vulnerable to cyberattacks as
your instance is publicly exposed to the Internet and can therefore not be protected

in the same way as inside a VNET/subnet with network security rules (NSGs) in place.
Fortunately, there is another option where you can restrict incoming traffic to your
instance by using Azure Front Door as a gateway. Azure Front Door is a global layer-7
load balancer and comes with a Web Application Firewall (WAF), so your Azure API
Management instance is better protected against cyber-attacks from the public Internet
than without.

Figure 13-7 illustrates how you can restrict the public endpoint of Azure API
Management without VNET integration. The idea is to implement a policy that restricts
the incoming traffic from your Azure Front Door instance by checking the identifier and
by filtering IP address ranges.

Azure API

Management
Azure Front Door IP/ID _ Man § IREME

= \
. restrictions | J \
Clients —>.—-n @ — :)
N)

-
S e /t'

-~ - — e o
-~ - —

Ss o Public -7

~ -
~ external -
endpoint

Figure 13-7. Azure Front Door as the gateway for Azure API Management

Microsoft Azure updates weekly its IP address ranges for Azure, its regions, as well
as several Azure services such as Azure Logic Apps and Azure Front Door. You can
download the JSON file and extract all IP ranges for Azure Front Door that you find in
the section with the name AzureFrontDoor.Backend. You know when there has been a

180

https://www.microsoft.com/en-us/download/details.aspx?id=56519

CHAPTER 13 NETWORKING

change in IP address ranges by watching the property changeNumber, as shown in the
following:

{

"name": "AzureFrontDoor.Backend",
"id": "AzureFrontDoor.Backend",
"properties": {

"changeNumber": 7,

"region": "",

"regionId": o,

"platform": "Azure",

"systemService": "",

"addressPrefixes": [

"13.73.248.16/29",

"20.21.37.40/29",

The JSON file defines IP address ranges as addressPrefixes, so you must convert
them to address ranges first in order to use them in Azure API Management policies. As
an example, the address prefix 13.73.248.16/29 converts into the address range from
13.73.248.17t013.73.248.22.

A policy for IP address ranges looks like the following example that you can place in
the global policy of Azure API Management, so all APIs can inherit it:

<inbound>
<ip-filter action="allow">
<address-range from="13.73.248.17" to="13.73.248.22" />
<address-range from="20.21.37.41" to="20.21.37.46" />
<address-range from="..." to="..." />
</ip-filter>
</inbound>

The second part of restricting incoming traffic to your Azure API Management
instance is by checking the identifier (ID) of your Azure Front Door instance. You can

181

CHAPTER 13 NETWORKING

find the Front Door ID in the overview of your Azure Front Door instance, as shown in

Figure 13-8.

¢ mastering-apim 2 -

Front Doer

];) Eearch (Cirl+/) | « [i] Delete () Refresh
@ Overview Essentials JSON View
E Activity log Rescurce group (change) Frontend host
mastering-apim-rg https://mastering-apim.azurefd.net
S, Access control (1AM) Status Front Door ID
& Tags Enabled b2f29fcf-a68b-4800-a667-2bdce015597d

Operational state

Subscripti t
studio Enterprise Subscription Enabled

Settings
. Lo Subscription 1D Total backend pools
i+ Front Door designer 1

Total routing rules

@& Web application firewall
1

£ Rules engine configuration

Figure 13-8. Azure Front Door ID

Azure Front Door sets a header X-Azure-FDID in all requests that you can check by
using the check-header policy and setting the Front Door ID as the value, as shown in

the following:

<inbound>
<check-header name="X-Azure-FDID" failed-check-httpcode="403"

failed-check-error-message="access denied" ignore-case="false">
<value>{FRONTDOOR ID}</value>
</check-header>
</inbound>

Set the value as a named value in Azure API Management, so you can easily change it
later if you should switch to another Azure Front Door instance.

You can use Azure Front Door as a gateway toward Azure API Management also in
case where you have your instance in external mode and want to restrict the traffic.

Backend Integration with AKS

We use Azure API Management as a facade toward our backend web services that can
come in different technologies, locations, and requirements. Some backend web services
run as containers inside an Azure Kubernetes Service (AKS); others need to be combined

182

CHAPTER 13 NETWORKING

in order to form a meaningful API; and some backend web services even run outside our
Azure tenant, on-premises.

Kubernetes is an open source platform for container orchestration. Azure
Kubernetes Service (AKS) is designed for organizations that want to build scalable
applications with Docker and Kubernetes while using the Azure architecture. It helps to
manage a lot of cluster management such as reducing the complexity of deployment and
management tasks, but also upgrading Kubernetes itself which you can do by executing
the following command:

az aks upgrade \
--resource-group myResourceGroup \
--name myAKScluster \
--kubernetes-version KUBERNETES_ VERSION

As simple as it seems, it comes with a risk. In my organization, we experienced
problems multiple times during an upgrade of AKS itself, where we had to involve
Microsoft’s support team to help us out with nodes that began to hang, one by one.
Depending on your support level, solving a problem may take some time where your
Kubernetes cluster might not process requests as it happened to us. To reduce risks
like this, you may consider deploying applications in multiple AKS clusters to improve
availability, isolation, and scalability. I want to discuss one approach of running multiple
AKS clusters behind Azure API Management that we successfully use.

Policy-managed load balancing is where a policy in Azure API Management decides
to what AKS cluster to send requests to. This approach does not introduce additional
Azure services and seems therefore to be less complex and easy to manage. However, a
policy is code that you write and maintain which adds complexity to the overall system
that you manage which itself adds risk.

Figure 13-9 illustrates Azure API Management as a load balancer in front of two AKS
clusters. The idea is to weight the amount of traffic sent to one or another AKS cluster.
Imagine that you want to upgrade the upper blue AKS cluster. To verify that the upgrade
was successful, you start routing just a small amount of traffic to the newly upgraded
AKS cluster and observe its behavior by analyzing the logs and looking for abnormal
behavior. If everything looks normal, you increase the amount of traffic until it reaches
the value that is suitable for this AKS cluster depending on the number and type of its
underlying VMs, in this case 40%.

183

https://searchitoperations.techtarget.com/definition/Docker

CHAPTER 13 NETWORKING

V2D — ,

1 n

1)

1 D. "

S — 1 ;

: ! : DD 1l

' "

: . : ! Azure Kubernetes Service

' S\ | y A :

API call ; {)j : :‘o> \

! I

I D T TR

: API M i :/ :

! anagement | : DD "

1 .]

e : S :

: Do :

1]

1)

1 "

Figure 13-9. Azure API Management as a load balancer

An implementation of the weights of participating AKS clusters looks like shown in
Listing 13-1. A named value clusters defines a list of clusters where each element has at
least two values, an identifier, in this case a color, and a percentage value.

Listing 13-1. Weighted AKS clusters as named value in Azure API Management
{ {Ilbluell’ll4oll}’ {Ilgreen"’lllooll} }

The first element in the list that has the identifier blue receives 40% of the traffic
while the second element green receives 60%, value of element[i-1] - value of
element[i]. This allows for additional clusters by adding more elements to the list
without changing the implementation of a policy that uses those values.

Listing 13-2 shows an example of the global policy for weighted load balancing
between multiple AKS clusters that uses the named value {{clusters}}. The policy does
two things; it sets a variable aksBackendUrl in the inbound section and it forwards the
request to the backend.

Remember An effective policy is the result of the policies of all scopes,
operation, API, product, and global.

The policy sets a random number between 0 and 100. The idea with this number is
to match the number with an element in the list to send a request to. As an example, the
number 70 matches the second element green as it is between the two values 40 and 100.
To find this element, I iterate through the list using a linear search and check whether

184

CHAPTER 13 NETWORKING

the random value is between the previous and the current element; the first iteration is
a bit special as it does not have a previous element. Once I have found a match, I return
it by creating the URL of AKS using this identifier of the matched element and store it in
aksBackendUr1l.

Listing 13-2. Global policy for weighted load balancing

<policies>
<inbound>
<set-variable name="aksBackendUrl" value="@{
int rnd = new Random().Next(100);
string[,] clusters = {{clusters}};

for (int i = 0; i <= servers.GetUpperBound(0); i++) {
if (i ==0) {
if (rnd <= Int16.Parse(clusters[i,1])) {
return "http://aks-" + clusters[i,0] +
".azurecloud.no";
}
} else if (rnd > Int16.Parse(clusters[i-1,1]) && rnd <=
Int16.Parse(clusters[i,1])) {
return "http://aks-" + clusters[i,0] +
azurecloud.no";

} else {
// tnd is not withing the range for this cluster
}

}

// Return primary clusters
return "http://aks-" + clusters[0,0] + ". azurecloud.no";
/>
</inbound>
<backend>
<forward-request />
</backend>
<outbound />
<on-error />
</policies>

185

CHAPTER 13 NETWORKING

I use the variable aksBackendUrl in API policies to set the backend service URL. As
you can see in Listing 13-3, put <base /> in the beginning of the inbound section to
insert upper scoped policies such as the global policy where I set this variable.

Listing 13-3. API policy

<inbound>
<base />
<set-backend-service base-url="@(context.Variables.GetValueOrDefault
("aksBackendUrl", "{{AKSBackendUrl}}") + context.Api.Path)" />
</inbound>

Let us assume that the code of the global policy does not work as intended
and aksBackendUrl is not set. In this case, I return a default value which I set as an
ordinary named value by using this context.Variables.GetValueOrDefault (VALUE,
DEVAULT VALUE).

Summary

In this chapter, you learned to integrate Azure API Management into a VNET. We
discussed when it makes sense to use what VNET mode, internal or external, and that
it depends on your use case. Not all use cases require a VNET integration. You might
want to expose your APIs publicly on the Internet, so all developers can subscribe to
them without any restrictions. Other uses cases may require a highly secured Azure API
Management instance where an internal VNET integration is the only option. As you
have learned in this chapter, publicly exposed APIs can be secured.

I hope that I could give you enough insight into Azure API Management and VNET
integration, so you can make good architectural decisions in the future.

186

CHAPTER 14

Self-hosted APl Gateway

When you call an API in Azure APT Management, the request is handled by the managed
API gateway component of your instance, which then forwards the requests to a backend
web service. In cases where a backend web service is hosted nearby and the traffic is
going via the Azure backbone, this is fine because latency is kept to a minimum and
security to a maximum. However, there are other cases where backend web services
are hosted outside of your Azure tenant and where the traffic to backend web services
goes via the public Internet and not via the Azure backbone. Those cases can not only
be challenging security-wise as data is sent out of the network but might also break
compliance policies of an organization where traffic must stay local.

Figure 14-1 illustrates the connectivity between API consumers and backend web
services using the managed API gateway of an Azure API Management instance. The
managed API gateway is hosted at the same location as your Azure API Management
instance. All traffic goes through this centralized component no matter where backend
web services are hosted, on-premise and far away from your Azure API Management
instance or hosted at another cloud provider where you might legally not be able to
send out requests from. If your backend web services are hosted near your Azure API
Management instance, this should be fine. For example, I worked in a project where
we hosted Azure API Management and Azure Kubernetes Service - we ran all backend
web services there - in the same VNET. A managed API gateway is everything we
needed. Latency was kept to a minimum as both services were deployed at the same
location; security was strengthened through network security rules of the subnets; and
compliancy was ensured as compliance rules were the same.

187
© Sven Malvik 2022

S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_14

https://doi.org/10.1007/978-1-4842-8011-9_14#DOI

CHAPTER 14 SELF-HOSTED API GATEWAY

AP| Consumers D & ﬂ .

Azure Portal

i 960 4
il {60 0
0 406 %5

¢ ‘.Iq Backend iy s s s
- services Backend services

Other cloud providers

On-premises Your Azure tenant

Figure 14-1. Managed API gateway

In a hybrid world where backend web services run in different locations, Azure,
on-premises, or other cloud providers, a managed API gateway might not always be a
good solution. Luckily, Azure API Management lets you run the API gateway near your
backend web services using a self-hosted API gateway.

API consumers call APIs of a self-hosted gateway instead of the managed API
gateway. Technically, this means that an API consumer can descide whether to call an
API in a self-hosted or the managed API gateway; both work at the same time.

Figure 14-2 illustrates the connectivity between API consumers and backend web
services using both, self-hosted API gateways and the managed API gateway of an Azure
API Management instance. Compared to the managed API gateway, traffic from an
API consumer to a backend web service that is hosted outside your Azure tenant can
travel directly to the backend services, which results in lower latency. The illustration
also shows two dashed lines between Azure API Management and the self-hosted API
gateways. A self-hosted API gateway uses this connection over port 443 to communicate
its status, sends request logs and metrics to Azure Monitor, but also applies configuration

updates such as adding or deleting an API to or from a self-hosted API gateway. If the

connection is broken, the self-hosted API gateway can’t start.

188

CHAPTER 14 SELF-HOSTED API GATEWAY

API Consumers D ; ﬁ ‘

|

7\, Self-hosted 4
(*))API atewa |
g Y Managed

_ wmsmsmssss 7y Self-hosted
APl gateway

Backend

services

On-premises Your Azure tenant Other cloud providers

Figure 14-2. Self-hosted API gateway

Note Self-hosted API gateways are only available in the Developer and Premium
pricing tiers.

A self-hosted API gateway needs a container orchestration solution such as Docker
or Kubernetes to run, as self-hosted API gateways are Linux-based Docker containers.

Creating a Self-hosted APl Gateway

You can create multiple self-hosted API gateways which are useful for different backend
web services. You might have legacy backend web services running on-premises that
cover a certain domain or speaking in Azure API Management terms, product. In this
case, you might want to create an API gateway that includes only APIs that are within this
product. Once you eventually migrate a certain backend web service to another runtime
environment, you can remove this API from the self-hosted API gateway and add it
to another self-hosted API gateway where the migrated backend web services run, all
without redeploying the self-hosted API gateways.

Before we create an API gateway from an Azure API Management instance, we need
to create a $apimContext variable that describes the instance, as Listing 14-1 describes.

189

CHAPTER 14 SELF-HOSTED API GATEWAY

Listing 14-1. Create the context for your Azure API Management instance.

Get subscription
$context = Get-AzSubscription -SubscriptionId <SUBSCRIPTION_ ID>

Set subscription by setting the context
Set-AzContext $context

Set context for Azure API Management instance

$apimContext = New-AzApiManagementContext °
-ResourceGroupName mastering-apim-rg °
-ServiceName mastering-apim

You create a self-hosted API gateway with the Azure PowerShell cndlet
New-AzApiManagementGateway. It requires metadata pertaining to the resource
geographic location. The cmdlet does not really need any data, a name is the only
requirement, as the following code shows:

$location = New-AzApiManagementResourcelocationObject -Name loc

Listing 14-2 lists two PowerShell cmdlets for creating a functional self-hosted
API gateway, New-AzApiManagementGateway for creating the API gateway and
Add-AzApiManagementApiToGateway for adding an API to it using the ApiIld parameter.
Both cmdlets require the $apimContext variable.

Listing 14-2. Creating a self-hosted API gateway with Azure PowerShell

Creates a new self-hosted API gateway
New-AzApiManagementGateway -Context $apimContext -GatewayId
myGateway -LocationData $location

Adds an API to the gateway
Add-AzApiManagementApiToGateway -Context $apimContext -GatewayId
myGateway -Apild ConferenceApi

You can run Add-AzApiManagementApiToGateway as many times as you have APIs
in Azure API Management. Once your self-hosted API gateway includes your APIs, it is
available from the Microsoft Container Registry. To check this, you could list all available
self-hosted API gateways by running the Get-AzApiManagementGateway cmdlet.

Get-AzApiManagementGateway -Context $apimContext -GatewayId myGateway

190

CHAPTER 14 SELF-HOSTED API GATEWAY

As you created only one self-hosted API gateway for now, you see one entry with the
gateway identifier (Gatewayld) myGateway.

Deploying a Self-hosted APl Gateway

You learned from the previous section that a self-hosted API gateway comes as a Docker
image mcr.microsoft.com/azure-api-management/gateway:latest. To successfully
deploy the image as a container, it depends on two configurations, the service
endpoint, and an authorization token. In this section, I will demonstrate how you can
retrieve both values and then deploy your self-hosted API gateway to a local Ubuntu
environment that has Docker already preinstalled.

Configuration

There are at least two options for getting the configurations, manually from the Azure
portal or programmatically by using PowerShell. If you want to run the self-hosted API
gateway in a production environment, you should choose the latter as the authorization
token has a maximum lifetime of 30 days, so you need to repeat the steps after
approximately one month.

Service Endpoint

Start off by creating a context variable $apimContext, as Listing 14-1 describes. You
might still have it in memory, so you might want to skip this. You can use the context
variable to create the first part of the first configuration, the service ID by running the
following code:

$serviceld = Get-AzApiManagement | select -expand id

Alternatively, you can set the service ID manually; it will not change later. As you
can see, it contains only static values, the subscription ID, and the service name of your
Azure API Management instance.

$serviceld = "/subscriptions/<SUBSCRIPTION_ID>/resourceGroups/mastering-
apim-rg/providers/Microsoft.ApiManagement/service/<SERVICE_NAME>"

191

http://mcr.microsoft.com/azure-api-management/gateway:latest

CHAPTER 14 SELF-HOSTED API GATEWAY

The second part is the service endpoint itself. Create it by introducing a $SERVICE _
ENDPOINT variable and store its value, as shown in the following:

$SERVICE_ENDPOINT = °
"https://mastering-apim.management.azure-api.net" + °
$serviceld + ~
"?api-version=2021-01-01-preview"

Authorization Token

The second configuration is the authorization token for the self-hosted API gateway. You
generate this token by sending a POST request generateToken of the gateway resource;
it is represented by its resource identifier. You can read the resource identifier $id of the
self-hosted API gateway either by using Azure PowerShell or by setting it manually. As
itis a static value, that will never change, both approaches are fine. To get the gateway
ID, use the Azure PowerShell cmdlet Get-AzApiManagementGateway together with the
context from Listing 14-1 and the gateway name myGateway. Filter the result with

select -expand to retrieve the gateway ID.

$id = Get-AzApiManagementGateway °
-Context $apimContext °
-GatewayId myGateway °
| select -expand id

The gateway ID is a static string containing your subscription ID, the service name,
and the name of the self-hosted API gateway.

/subscriptions/<SUBSCRIPTION ID>/resourceGroups/mastering-apim-rg/
providers/Microsoft.ApiManagement/service/mastering-apim/
gateways/<GATEWAY NAME>

Use the gateway ID to create the URL for generating an authorization token and store
itin a value $url, as shown in the following:

$url = "https://management.azure.com/" + $id + "/generateToken/?
api-version=2019-12-01"

192

CHAPTER 14 SELF-HOSTED API GATEWAY

Asyou are sending a POST request to $url, you need a payload in JSON format
which defines the key type, and an expiring date. A token cannot be valid for more than
30 days before it must be regenerated. That is why there are two key types, primary or
secondary. A self-hosted API gateway uses the secondary key when the primary key
changes after 30 days; the same is true when the secondary key must be regenerated. Set
$expiry to 30 days from now using the following code example:

$expiryDate = (Get-date).AddDays(30)
$expiry = Get-Date $expiryDate -Format s

Once $expiry contains a value like mine, 2021-10-06T09:13:59, you can set the
following JSON object to $bodyToken.

$bodyToken="{
"keyType': 'primary',
"expiry': '$expiry’

pr

Note Set the key type to primary or secondary depending on which key
expires first.

It is time to request the authorization token by using the Azure CLI command az
rest, as demonstrated in the following. The response of this call is in JSON format. I use
the popular command-line JSON processor jq to extract the actual token from it.

$TOKEN = az rest °
--method POST °
--uri "$url" °
--body $bodyToken ~
| jq .value

Listing 14-3 shows the content of env. conf. This file contains both configurations,
the service endpoint and the authorization token. Make sure to place the file on the
same host on which you want to run your self-hosted API gateway.

193

CHAPTER 14 SELF-HOSTED API GATEWAY

Listing 14-3. The env.conf file contains two configurations.

config.service.endpoint=<paste SERVICE_ENDPOINT here>
config.service.auth=CGatewayKey <paste TOKEN here>

For the purpose of this demonstration, I created env.conf on an Ubuntu VM.

Deployment

The final step for running a self-hosted API gateway is by creating a Docker container
myGateway of the image mcr.microsoft.com/azure-api-management/gateway:latest.
It requires two ports, 80 for accessing the APIs that are hosted by this gateway, and 443
as the configuration management channel where the self-hosted API gateway gets its
updates and sends metrics over. You also give it the configuration file env.conf. If you
prefer to set the configuration directly as parameters, you can do so using the
parameter - -env twice of each configuration instead of --env-file.

docker run \
--detach \
--name myGateway \
--publish 80:8080 \
--publish 443:8081 \
--env-file env.conf \
mcr.microsoft.com/azure-api-management/gateway:latest

Once you have executed the command, check if the container started successfully
using docker ps to list all running containers and look for your container myGateway.

Until now, you have sent request to the managed API gateway using the following
URL: https://mastering-apim.azure-api.net/conf/topics. By using the self-hosted
API gateway from your machine, you can replace this with either localhost or the IP
address of your machine, as demonstrated here:

curl localhost/conf/topics

This request gives you the usual response from the Demo Conference API.

194

http://mcr.microsoft.com/azure-api-management/gateway:latest
https://mastering-apim.azure-api.net/conf/topics

CHAPTER 14 SELF-HOSTED API GATEWAY

Updating the Self-hosted APl Gateway

As the development of our backend web services continues and the APIs change, we
want to keep our self-hosted API gateways in sync. To ensure that our self-hosted APIs
are in sync with the managed API gateway, Azure API Management requires a proper
connection to the service instance over port 443, the configuration management
channel. In case you deployed Azure API Management in internal VNET mode, you must
ensure that this port is open in the outbound directions so APIs can be added, deleted,
or updated. As an example, delete the Demo Conference API ConferenceApi from the
self-hosted API gateway myGateway by using the Azure PowerShell cmdlet Delete-
AzApiManagementApiToGateway as shown in the following:

Delete-AzApiManagementApiToGateway °
-Context $apimContext °
-GatewayId myGateway °
-ApiIld ConferenceApi

This change removes an API immediately from your self-hosted API gateway and
can’t be called by API consumers anymore.

Summary

In this chapter, we discussed self-hosted API gateways. You learned that even though
you manage self-hosted API gateways by yourself, there are certain use cases where they
are a preferred option. For example, if your APIs are consumed by internal users only,
keeping the traffic internally within the same network makes sense for several reasons:
reduced latency, minimal bandwidth costs, and improved security.

You learned then to create a self-hosted API gateway programmatically by using
Azure PowerShell. This is the preferable option in a production environment as the
authorization token that is used to gain access to your Azure AP Management instance
is time limited to a maximum of 30 days. To renew this token, you should automate the
process of generating this token using the code in this chapter.

At the end of this chapter, you deployed a Docker container for the self-hosted API
gateway on a local machine, in this case an Ubuntu VM.

195

PART V

Maintenance

CHAPTER 15

Security

You have learned many of the most important security aspects of Azure API
Management already. However, there is at least one aspect remaining that you need to
understand, authentication. In this chapter, you will learn to authenticate a client with

a backend web service using both HTTP basic authentication and OAuth 2.0. At the end
of this chapter, you will learn about two additional security aspects that are important to
understand when working with Azure API Management.

Authentication

In this section, you will learn two ways of authenticating a client with a backend, HTTP
basic authentication and OAuth 2.0.

HTTP Basic Authentication to Backend Web Services

HTTP basic authentication is the simplest technique for enforcing access controls to
your backend web services as it does not require session identifiers or cookies. Instead,
HTTP basic authentication uses the Authorization HTTP header field with username
and password in plaintext, as shown in the following:

curl -H 'Authorization: Basic $(echo -n <YOUR_USERNAME>:<YOUR_PASSWORD> |
base64)' <YOUR WEBSITE>

Username and password are base64 encoded, which can easily be decoded by an
attacker in the same way the credentials are encoded. It makes this authentication
method vulnerable in a couple of ways such as man-in-the-middle attacks and larger
attack windows as this header must be included in all requests.

Figure 15-1 illustrates an end-to-end request with Azure API Management between
an API consumer and a backend web service with HTTP basic authentication enabled.

199
© Sven Malvik 2022

S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_15

https://doi.org/10.1007/978-1-4842-8011-9_15#DOI

CHAPTER 15 SECURITY

An API consumer calls an Azure API Management hosted API - in this case, Basic

API - with its subscription key to verify if the API consumer is allowed to access this
API. The API then adds an Authorization header to the request in its policy before it gets
forwarded to the backend web service, in this example, an Nginx website that is hosted
on an Ubuntu virtual machine (VM) in Azure.

& Subscription Key > &.);) Basic auth header N n NG imx

APl consumers Azure APl Management Default website
{ Basic API }

Figure 15-1. HTTP basic authentication

Let us start from the right site of Figure 15-1 and configure an Nginx web server with
HTTP basic authentication enabled. If you have not installed an Nginx web server yet but
would like to, you can follow the instructions in the official Nginx documentation.

Open your Nginx configuration file of your Nginx service /etc/nginx/sites-
available/default. We want all pages from root to be secured; define this in the location
/ section, as Listing 15-1 shows. To enable basic authentication, add two directives, auth
basic and auth_basic_user_ file. The first directive auth_basic sets the name for a dialog
window which is shown in a browser if an Authorization header is missing in the request.
The second directive auth_basic_user_ file defines the path to the user/password file. All
users in this file will have access to the defined location, in this case, all pages.

Listing 15-1. Nginx with HTTP basic authentication

location / {
try files $uri $uri/ =404;
auth_basic "Restricted content";
auth_basic_user file /etc/nginx/.htpasswd;

Restart your Nginx service and try to access it from a browser to verify that a dialog
window with the name “Restricted content” is shown.

Create a new API with an operation that you point to your Nginx web server; I named
this API Basic API and the operation fest, as shown in Figure 15-2. Set the context path
API URL suffix to /basicapi. You can either disable the subscription key under Settings
or make sure that your user has access to one.

200

http://nginx.org/en/docs/install.html

CHAPTER 15

- mastering-apim | APls

APl Management service

2 Search (Ctrl+/) @

* Events (preview)

Settings
1! Properties

B Locks

APls
-} APls
WY Products

Subseriptions

i m CREATED Oct 19, 2021, 10:04:04 AM ™.

| P Basic |
v Filter by tags] Design Settings Test Revisions Change log
[Group by tag
P searct
4 g Y Filter by tag Frontend
U Group by tag GET /[test
All APIs
-+ Add operation
Basic APl siffjm—

All operations

GET test h

Figure 15-2. HTTP basic authentication API demo

SECURITY

Open the API policy and add the code from Listing 15-2. It defines the inbound
section where you set the IP address - or URL if you have - in your Nginx web server. Set
the address as a named value so you can change it easily later. All request to this API will
now be forwarded to the Nginx web server. What is missing is the authorization header
with the credentials. Use the predefined authentication-basic policy for this purpose

and set both a username and a password.

Listing 15-2. Inbound API policy for basic authentication

<inbound>

<set-backend-service base-url="{{backendUrl}}" />
<authentication-basic username="{{basicUser}}"
password="{{basicPassword}}" />

<base />
</inbound>

As all requests will be using the same credentials, you might consider adding a
technical user to your Nginx web server that is shared across all requests.

Remember Your users are still identified by their individual subscription keys, so
a shared technical user for a backend web service won’t change this.

201

CHAPTER 15 SECURITY

To dive a bit more into Azure API Management policies, I created a new page /
mypage.html to the Nginx web server. To access this page from the new operation, open
the policy test and add the code from Listing 15-3 to the inbound section. It contains
the predefined policy rewrite-uri where you set the path to the endpoint in Nginx.

Listing 15-3. Inbound operation policy for basic authentication

<inbound>
<rewrite-uri template="/mypage.html" />
<base />

</inbound>

Now that you have created a new API in Azure API Management which forwards
requests to your Nginx web server with basic authentication enabled, you might
want to try it out. You do so by sending a cURL request to the endpoint in Azure API
Management with your subscription key as you would normally do:

curl -H "Apikey: <YOUR_SUBSCRIPTION KEY>" https://mastering-apim.azure-api.
net/basicapi/test

When a request is processed in the effective policy, an authorization header with
your base64-encoded username/password is added and forwarded to Nginx. The result
is the content of mypage . html.

Authentication with OAuth 2.0

In the official documentation for OAuth 2.0, the following is stated: “The OAuth 2.0
authorization framework is a protocol that allows a user to grant a third-party web site
or application access to the user’s protected resources, without necessarily revealing their
long-term credentials or even their identity.”

Azure API Management supports authentication with OAuth 2.0. Its protected
resources are the backend web applications that a third-party client application, such as
the developer portal in Azure API Management, wants to access through APIs.

The developer portal - or any other third-party client application - requests an
access token from the Azure Active Directory (Azure AD) using an App registration client
id and a client secret. A user signs in with their credentials. Azure AD will then issue an
access token that the user must add to an API call before an Azure API Management
policy validates it.

202

https://auth0.com/docs/authorization/protocols/protocol-oauth2

CHAPTER 15 SECURITY

Figure 15-3 illustrates a high-level view on how Azure AD relates to its registered
applications and APIs in Azure API Management. There are three parts involved in this
process, client, backend, and authentication server. The client - in this example, the
developer portal in Azure API Management - is represented by a registered Client App in
Azure AD. An API in Azure API Management is represented by a registered Backend App
in Azure AD. To call an API from the developer portal, the client app needs to be granted
permission to the backend app. Furthermore, the client app needs a secret so it can sign
an access token that a request must contain.

@ Call with access token
f et —

Developer Portal API

”~ ""{“\

&

Azure APl Management

>

Azure Active Directory

ill . 1]
Grant permissions to call

= L — HEN

HE < HE <

Client App Backend App

Figure 15-3. Azure Active Directory App registrations

I have divided the section in three parts for configuring Azure API Management with
OAuth 2.0, Backend App, Client App, and Azure API Management.

Backend App

An APl is represented as a Backend App in Azure AD. Search for Azure Active Directory
in the Azure portal and click App registrations, as shown in Figure 15-4. Continue by
clicking New registration to register a new application and name it backend-app. You
are prompted to specify an Application ID URI like https://azurecloud.no/api
which must be globally unique. If you don'’t set this value, a default value in the form
api://<application-client-id> is provided.

203

https://azurecloud.no/api

CHAPTER 15 SECURITY

Depending on your environment, you may want to let user accounts from other
directories access the backend. In this example, I only support user accounts that are
within this directory. After you clicked Register, the new application gets an Application
(client) id. You will need this client id later when you implement an API policy to verify
the callers access token.

Home » Default Directory Home » Default Directory

g2 Default Directory | App registrations # Register an application

& + MNewregistration & Endpoints £® Troubleshooting () Refre « oo
Mantge I The user-facing display name for this apphcation ithis can be changed Later)
& Users @ 1ty ol the new App registrations search preview: Click to enable the pre [backend-apg]

& Groups

85 External Identities
st Anun SUpported account types
nger

& Roles and administrators

Who can use this application or access this API?
& Adrinistraty

e units . d .
® | Accounts in this organizational directary only (Default Directery only - Single tenant)
B Enterprise applications All applications Ownied applications Deleted applications () Accounts in any crganizational directory (Any Azure AD directory - Multitenant)

O Devices () Accounts in any ciganizational directory (Any Azure AD directory - Multitenant) and

£ backend-app
B, App registrations -
@) Idantity Gow : (Let the redirect URI empty.
&) Identity Governance Display name Application (client) ID Redirect URI (optional) (pty
" ication proxy We'll retusn the authentication response to this URI afte essiully authenticating the user
Aphextion prowy E backend-app 2514ec3-9871-4a11-a2f4-743902eabfty Z’ i
-

() Personal Microsaft accounts only

changed later, but a value is required for m fson scenarios.

s Licenses
vp :‘IO:E::;:,:M (The result is a client ID. 7 ‘_
Figure 15-4. Registering the Backend App in Azure AD

Add now a scope with a name. The Scope name is included in the access token of a
request that an API policy can verify and eventually accept or reject. A common scope
naming convention is resource.operation.constraint, so you may name the scope
like Users.Read.All; I named mine apis.full, as shown in Figure 15-5. Make sure that
you set an easy-to-understand description as users that sign in will be prompted with a
consent dialog.

204

Home > Default Directory

& |backend-app|| Expose an APl »

o

Search |

Manage

=
D

Branding

Authentication

T Centificates & secrets

2>
&
B
&
&

| Token configuration

APl permissions

Expose an AP h
App roles

Chumers

Raoles and administrators |
Preview

Manifest

Suppert + Troubleshooting

2

Troubleshooting

Figure 15-5.

g | Add a2 scope

backend-app

« 7 Got feedback?

Application 1D URI api//c2514ec3-987f-4a11-a24-743190¢

Scopes defined by this API

Define custom scopes to restrict access to data and functionalit
APl can request that a user or admin consent to one or more of

Adding a scope here creates only delegated permissions. If you
application type. Go to App r

Authorization

default scope.
Scopes Who ¢

api/fc2514ec3 9871 -4a11-a2f4- 743f902eabfb-- Admin

Authorized client applications

Authorizing a client application indicates that this API trusts the
this APL.

CHAPTER 15

Add a scope

Wheo can consent? (D

Admins only

Scope name * (D

SECURITY

[apisful s

api//c2514ecd-9871-da11-2214- T390 2 eabibyapis. ful

Admin consent display name * (O

| Access AP

4

Admin consent description * ()

Allows the app to access APls

User consent display name (D

Access APls

Statl

G Disavied)

Setting the scope of the backend app

The version of the access token for the backend-app is currently set to 1. Change the

value of accessTokenAcceptedVersion to 2 as you want to use OAuth 2.0. Click Manifest

in the left-hand menu to open the manifest of the Azure AD backend app and search for

the term, as shown in Figure 15-6.

Home > Default Directory > backend-app

ol backend-app|| Manifest #

P Search (Ctri+/)

Manage

=
D

i
-

"

&
&

Branding
Authentication
Certificates & secrets
Token configuration
API permissions
Expose an APl

App roles

Owners

Roles and administrators |

Preview

Marnifes! <jm—

@ save X Discard T Upload

4 Download

P Got feedback?

The editor below allows you to update this application by directly modifying its JSON representation. For more details, see:
Understanding the Azure Active Directory application manifest.

1

2 "id": "19bcefe5-c3b3-4bd9-8755-325F771e9fba",

3 "acceptMappedClaims™: null,

4 "accessTokenAcceptedversion”: 2[, _
5 "addIns": [],

] "allowPublicClient": null,

7 "appIld": "c2514ec3-987f-4all-a2f4-743f982eabfb",
8 "appReles™: [],

9 "oauth2AllowUrlPathMatching": false,
10 "createdDateTime": "2021-18-19T10:12:12Z",
11 “certification”: null,
12 "disabledByMicrosoftStatus”: null,
13 "groupMembershipClaims™: null,
14 "identifierUris": [
15 “api://c2514ec3-9871-4all-a2f4-743f202eabfb”

b 16 L

Figure 15-6. Manifest of backend-app in Azure AD

205

CHAPTER 15 SECURITY

You have now created a representation of an API in the form of an application in
Azure AD.

Client App

The developer portal, or any other client application that calls an API in Azure API
Management, is represented as a Client App in Azure AD. Register a new application
with the name client-app as shown in Figure 15-7. Depending on the context, you
select the right option of the supported account types.

Home > Default Directory

Heme > Default Directory

g2 Default Directory | App registrations = -

Agure Active Directory

Register an application

il - New regisuation & endpoints /2 Troubleshooting () Refresh & L.y
Manage

The user-facing display name for this application (this can be changed later).

Users
@ Ty out the new App registrations search preview! Click to enable the preview. — | client-app l
Groups

B3 External Identities

]

@ Starting June 30th, 2020 we will na langer add any new features ta Azure Active Dir SUpported account types

sk Roles and administrators to provide technical sup spdates but we will no langer provide fea
Authentication Library (MSAL) and Microsoft Graph. Learm mare Wha can use this application or access this AFI?
A& Admenistrative units 4
() Accounts in this crganizational directary only (Default Directary only - Si
8. Entarpcisa spplications All applications Owned applications Deleted applications Applicar (&) Accounts in any organizational directory (Any Azwe AD directery - Mult
Ol Devices () Accounts in any organizational directory (Any Azure AD directory - Mult
B App registrations i I P () Persanal Mi ft accounts only
&) Identity Governance . R, Redirect URI (op Let the redirect URI empty.
Display name Application {client) ID A b s bR R R e N
£ Apgplication proxy e

n backend-app c2514ec3-987f-4a11-2214-7431902¢ablb

e T o e

bbcSdbb- 3ef-4042-8181-4bb37d68%e4

m Licenses 2 Wy ~ g
client-app
B Azure AD Connect By proceeding, you agree to the Micresoft Platform Policies o
: The result is a client ID.

Figure 15-7. Registering the Client App in Azure AD

In the next step, you create a Client Secret which is used to authenticate the client’s
identity. When the developer portal requests an access token from Azure AD, it passes
an authorization code along with authentication details, including the client secret, to an
API token endpoint. The access token is a Json Web Token (JWT) with a signature hash.

Create a new client secret by navigating to Certificates & secrets in your client app
client-app and click New client secret. Give it a name and set an expiration date. Click
Add to create the client secret and secret value, as shown in Figure 15-8.

206

CHAPTER 15 SECURITY

Home > Default Directory > client-app Add a c|jent secret *
+| client-app || Certificates & secrets # -
: Description [(ctent-secret-ap]]
£ Search (Ctrl+/) D6 ck? —
£ Search (Ctr+/) « S Got feedback Expires Recommended: & months v
Manage o = ’
HTTPS scheme). For a higher level of assurance, we recommend
B Branding
3 Authentication Certificates
rtifi
S EL R h Certificates can be used as secrets 1o prove the application’s idy

Il Token configuration

X i,
2 AP permissions T Upload certificate

& Expose an APl Thumbprint
B8 App roles Mo certificates have been added for this application.

& Cwmers Client secrets

8. Roles and administrators — y .
A secret string that the application uses to prove its identity w

Preview The result is a
& Maifect) secret key value.
+ MNew client secret _
Support + Troubleshooting Description Expires Value

&2 Troubleshooting cient-secret-api 2022-04-19 ybQ7Q-zyhUcMWSTH m#

Figure 15-8. Creating a client secret

Grant the client app permission to call the backend app for signed-in users by
following the steps shown in Figure 15-9. Navigate to API permissions on the left-hand side
of your client app and click Add a permission. Select your backend app backend-app from
the list of My APIs and mark the right permission. As you only created one permission, the
list only contains apis.full. The permission is part of the access token that you send along
with an API request from the developer portal, so it can be verified in a policy.

Home > Default Directory > client-app

o client-appl|| API permissions # -

Request API permissions

< All APIs
Search [Ctrl+/f) Refresh Gat feedback? Ao oo
S f | # O Refres @ : What type of permissions does your application reguire?
B Overview : lanls) e v seati " if they "
A vou are editing permission(s) to your application, users will have to consent even if this've a Delegated permissions
& Quickstart Your application needs to access the AP| as the signed-in user.
Integration assistant
@ The “Admin consent required” column shows the default value for an organization. However | o s stion

column may not reflect the vahse in your organization, or in ceganizations where this app wil e
Manage Select permissions
B Branding Configured permissions 2 Start typing a permission to filter these results
D Authentication Applications ffre autherized to call APIs when they are granted permissions by users/admins
should includg all the permissions the application needs. Learn more about permissions and @) The “Admin consent required” cotumn shows the delault value fo &
permission. user, or apg. This column may not reflect the value in yo

U Certificates & secrets

Il Token configuration { Add a permission " Grant admin consent for Default Directory i

& AP permissions _ AP f Permissions name Type Description Permission

@ Expose an API “wbackend-app (1)

& i " apis (1}

HE App roles apisfull Delegated Access APls —

» , apisfull &

&2 Owners > Microsolt Graph (1) a Access APls —
&, Roles and administrators |

P — T o |

Figure 15-9. Granting permissions to allow client-app to call backend-app

207

CHAPTER 15 SECURITY

You are not done with configuring the client-app yet. There is one setting missing
that you get from your Azure API Management instance.

Azure APl Management Instance Settings

In this section, you will enable user authorization with the OAuth 2.0 service in Azure
API Management from the Azure portal. Navigate to App registration in Azure AD and
click Endpoints. There are two endpoints that interest us, OAuth 2.0 authorization
endpoint (v2) and OAuth 2.0 token endpoint (v2); both are marked in Figure 15-10. Copy
both URLs and paste them into your favorite text editor, so you have them at hand. We
don’t need the other URLS, so you can just ignore them.

Home » Default Directary End pOintS %
gzx Default Directory | App registi

Azure Active Directary

Céwuth 2.0 autherization endpoint {v2)
+ Mew & | & hitpsi/oginmicroseftonline o f85a3e-bTh7-dab1-8a07-ff29dafbe77 /cauth2/v2 O/authorize D i

Qdwth 2.0 token endpoint (v2)
@ Ty cut the new App registrations search preview! CB https/floginumicrosoftonline.comy/eef83ade-b7h7-4ab1-8a07 - ff29dafb3e 77 /cauth2 /w2 Oytoken () |

Qdwith 2.0 authorization endpoint (1)

tps; irLmi i -b7h7-4ab-8al7- T i
@ Starting June 30th, 2020 we will nolonger add any i https:/floginmicrosoftonline com/eefi5ade b?l: by . 2a i‘.l'oa.l’athonze D]
updates but we will no longer provide feature updats] S SuFR BT R e e
Cawth 2.0 token endpoint (vi)
https:/loginmicrosaftonline com/eefiiSaie-bTh7-4ab1-8a07-if29dafhde 7T eauth2 ftoken Ty |
All applications Owned applications Delete.
e PRReatiar OpenlD Connect metadata document
£ -app floginmi line.c fa5a3e-bTbT-dab1-8a07-ff29dafble 772 0/ well-known/openid-configuration [} |
Microsoft Graph AP endpaint
Display name Application {elient) IL https:/fgraph.micresoft.com (4 |
n backend-app c2514ec3-987i-4a11- Federation metadata document
n client-app bicsdbb. Mefdnda. | Ntipsloginmicrosofionli b7b7-4ab1-8a07-ff29dafbae77 federati 12007-08/federati TR |
WS-Federation sign-on endpoint
https:/floginumicrosoftonline. com/eef83a3e-bTh7-4ab1-8a07-f29dafb3e 77 /wsfed (1] |

Figure 15-10. OAuth 2.0 endpoints

I named the OAuth 2.0 service that you will configure as apim-oauth-service.
Navigate to your Azure API Management instance and click OAuth 2.0 + OpenID Connect
in the left-hand menu followed by Add as you want to configure an OAuth 2.0 service. A
new configuration window “Add OAuth 2 service” pops up on the right side, as shown in
Figure 15-11.

I selected Authorization code as the authorization grant type. The authorization code
is obtained by using the authorization server - that you are configuring right now - as
an intermediary between the client - the developer portal - and backend-app that you
created previously. The client directs the backend-app then to the authorization server,

208

CHAPTER 15 SECURITY

which in turn directs the backend-app back to the client with an authorization code. The
authorization endpoint URL-field is for the OAuth 2.0 authorization endpoint (v2) that
you copied into your favorite text editor together with the OAuth 2.0 token endpoint (v2);
paste the second value (token) into the Token endpoint URL-field.

As the default scope, you set the Authorization scope of your backend-app from
Figure 15-5. This value will be part of the JWT token which is included in an API request.

As the last step in Figure 15-11 for configuring the OAuth2 service, take the
application ID of the client-app from Figure 15-7 and the client secret from Figure 15-8
and set both values accordingly.

Your OAuth 2.0 service is now configured. However, you are not done yet. Copy the
Authorization code grant flow URL; you will need it in the next step where we head back
to your client-app.

Home » mastering-apim1 i -
o Add _OAUthz service (Authorization scope of your backend-app) x
e mastermg aplm I OAuth 2.0 + C API Management service
AP Management service Authorization grant types Default scope //
& | Authonzation code . . . [api/fc231dec3-98Ti-4a11-a204- 7430 2eabibyapisfull]
[Search wcxi+n] « \ o - The application id
b OQAuth 2.0 pe [imlicit of your client-app Client credentials
Developer portal Client ID *
= Portal overview s+ Add == Col || Resource owmer |] bbcSdbbo-34ef-a04a 8181 4bb07d580aed -]
Search to filteri —
2 sers Pseerchiofliert 7 o genias ((The secretkey value Y\ e
. of your client-app]
& Groups Set the QAuth 2.0 Authorization endpeint UR]
U Identities authorization ! https:/fogin.micresoftonline.com/eef85ale-bTb7-4ab1-8a0... | Shase
) endpoint (v2) URL
2] Delegation ‘ P v2) Support state parameter Redirect URl Redirect URI (deprecated portal)

© Oauth 20 + OpeniD Connect Authorization request method Authonzatlcn code 9“‘""' flowr

[Issues [deprecated) v ttps:/ per.azure-api. i |
Copy the redirect
Menitaring Set the OAuth 2.0 token [] post URL for the client- app Imglicit grant flow
)) endpoint (v2) URL | https:ts loper.azure-apinet/signin-o.. B |

i Analytics Token endpoint URL *

@ Application Insights https:floginmicresoftenline.com/eefB5ale-bTh7-dabi-8a0... | ueale

Figure 15-11. Configuring an OAuth 2.0 service

Finally, you set a callback URL in your client-app that you copied in the previous
step of Figure 15-10. The Authorization code grant flow URL is called after a user is
successfully signed in.

Navigate back to your client-app in Azure AD and select Authentication from the left-
hand menu and click Add a platform to add the Authorization code grant flow redirect
URL; then click Configure as shown in Figure 15-12.

209

CHAPTER 15 SECURITY

% Def irectory ¥ client- 4
Home » Default Directory > client-app Conflgure Web W
3 client-app|| Authentication » -
< all platforms Set the redirect URL &
£ Search (Ctrl+f) « B save X Discard | P Got feedback? "authorization code grant flow"
Manage - * Redirect URIs ;
= Brandi Platform configurations The URIs we will accept as destinations when returning wcation responses (tokens)
randing after successfully authenticating or signing cut users. eferred to as reply URLs. Learn
L Depending on the platform or device this application is ¢ mere about Redirect URIs and their restrictions
D Authentication h redirect URs, specific authentication settings, or fields specifict]
Centificates & secrets hitps: ing-apim.developer.azure-api.netsignin-oauth/code/callback/apim ...
: ﬁ-i— Add a platform
" -
i} Token configuration Front-channel logout URL
& APl permissions This is where we send a request to have the application clear the user's session data, This is
@ Espose an AP Su ppo rted account types required for single sign-cut to work comectly.
ttps:/fex flog
B App roles Who can use this application or access this API? &g itps//example.com/logout

o Accounts in this erganizational directory only {Default Dire

& Ovmers = Implicit grant and hybrid flows
- (@) Accounts in any crganizational directory (Any Azure AD dir
i, Roles and administrators | Request a token directly from the authorization endpeint. If the application has a single-
Preview el e decide page architecture (SPA) and doesn’t use the authorization code flow, or if itinvokes 2 web
. elp e APl via JavaScript, select both access tokens and ID tokens. For ASP.NET Core web apps
M Manifest and otfier web apps that use hybrid authentication, select enly 1D tokens. Learmn more
about fkens.
Support + Troubleshooti
peer ™ A Due 1o temporary differences in supported functionality, we «
" o accounts fior an existing registration. If you need to enable pe
& Troubleshaating wditor. Learn move about these restrictions. Cancel

Figure 15-12. Add a platform in your client-app

Before making calls to an AP, the developer portal needs to obtain an access token
from Azure AD via your OAuth 2.0 authorization server on behalf of a user. To enable
OAuth 2.0 user authorization for your API, navigate to it in Azure API Management
and click the Settings tab; then select OAuth 2.0. Select the OAuth 2.0 server that you
previously configured; I called mine apim-oauth-service, as shown in Figure 15-13.

m CREATED Oct 7, 2021, 8:34:47 AM \/
£ Demo Conference AP| J

X Filter by tags | Design Settings Test Revisions Change log

O Group by tag
Security

-+ Add API .
User authorization (O None @ OAuth2.0 (O OpenID connect

All APIs OAuth 2.0 server apim-oauth-service Wi —

Demo Conference API U Override scope

s

Figure 15-13. Setting OAuth 2.0 server for an API

210

CHAPTER 15 SECURITY

If you have not tried out the developer portal before, make sure to enable
Cross-Origin-Resource-Sharing (CORS) for the developer portal by adding the following
code to the global policy in Azure API Management. It permits loading resources also
from other origins than its own, in this case https://mastering-apim.developer.
azure-api.net.

<inbound>
<cors allow-credentials="true">
<allowed-origins>
<origin>https://mastering-apim.developer.azure-api.net</origin>
</allowed-origins>
<allowed-methods preflight-result-max-age="300">
<method>*</method>
</allowed-methods>
<allowed-headers>
<header>*</header>
</allowed-headers>
<expose-headers>
<header>*</header>
</expose-headers>
</cors>
</inbound>

Test and Validate

Before we take the last and final step in this section about authentication with OAuth
2.0, Iwant you to test the API that you enable OAuth 2.0 for from the developer portal.
Navigate to the developer portal and try out an API endpoint; in this example, I selected
the GetTopics endpoint of the Demo Conference API, as shown in Figure 15-14. On

the right-hand side, you select authorization_code for the authorization method.

A Microsoft sign-in window appears where you must provide your user credentials.
After successful sign-in, an authorization header is added to the request, with a base64

encoded access token from Azure AD.

211

https://mastering-apim.developer.azure-api.net
https://mastering-apim.developer.azure-api.net

CHAPTER 15 SECURITY

Js0 P / GetTopics Y
Permissions requested
dlient-app
usreriiod B Microsoft
nference AP s Pick an account
o H e — Authorization
dperations " [Sven Malvik apim-sauth- autherization_code v| e
’ | 8 sedmabicde e service —
= - Signed in
S a o
e ™ v A bearer token was
GetSession added automatically.
GetSessions ey Headers
GetSessionTa — T — | Remove
- [Cache-Control l no-cache !
GerSpeaker .
Getspeakers ; | Authorization] bearer eyJBeXAiOLINVIQILCY | PEMOME
GetTopics ° ar https://mastering-apim.azure-api.net/conf/topics| Mayno]

Figure 15-14. Testing an OAuth 2.0-enabled API

I mentioned briefly that an access token is a base64 encoded Json Web Token
(JWT). If you are not familiar with JWTs or want to learn about it, please visit https://
jwt.io/ for a detailed documentation. In a nutshell, JWTs are credentials which can
grant access to resources. They consist of three parts, header, payload, and signature,
and have the following format: HEADER . PAYLOAD.SIGNATURE. The first part, the header,
contains information about the algorithm and token type being used; the third and last
part, the signature, which is used for verifying the integrity of the token and to verify that
the sender of the JWT is who it says it is. Let’s discuss the second part, the payload, in
more detail.

The payload contains claims. They are statements about an entity such as a user and
some additional data. In the example of Listing 15-4, I want to demonstrate to you the
payload of my user that is signed in and authorized against the Demo Conference API.

Listing 15-4. JWT payload example

{
"aud": "c2514ec3-987f-4a11-a2f4-743f902eabfb",
"azp": "b6c5dbb9-34ef-404a-8181-4bb97d689ae4",
"name": "Sven Malvik",
"preferred username": "sven@malvik.de",
"oid": "810b562a-e63b-4603-2a999-758e550506c1",
"scp": "apis.full"

}

212

https://jwt.io/
https://jwt.io/

CHAPTER 15 SECURITY

This payload shows not a complete list of all claims but a list of important claims to
use in API policies for validating requests.

o aud represents the application ID of your backend-app.

o azprepresents the application ID of your client-app.

e name represents the signed-in user.

o preferred_username represents the username for signing in user.
o oid represents the object ID of the user being signed in.

o scp represents the name of the scope of your backend-app.

You might ask yourself why you would want to validate access tokens in a request at
all. What if a client calls an API with an invalid access token or without an access token
at all? If a request does not have an authorization header, the call would still go through
because there is nothing in Azure API Management that validates an access token by
default. An authorization header with an access token would simply be passed through
Azure API Management to the backend web service and nothing would prevent such
invalid and eventual insecure requests from reaching the backend.

This is where API policies come in. You can pre-authorize requests in Azure API
Management with the Validate JWT policy by validating the access tokens of each
request. If a request does not have a valid access token and claims, your policy can
simply block the request.

Your inbound policy requires an Open ID Connect Discovery endpoint, which is
defined in an openid-config element; usually this endpoint has the following format:
https://login.microsoftonline.com/<APIM_SERVICE_NAME>.onmicrosoft.com/
v2.0/.well-known/openid-configuration. API Management will browse this endpoint
when evaluating the policy, including the URLs which are in the response that are used
to validate incoming JWTs. As you can see in Listing 15-5, I defined a required-claim
element inside openid-config where I specified one claim, aud for audience. If the claim
does not match the value defined in the policy, an error message is returned saying that
the access token is invalid.

213

https://openid.net/specs/openid-connect-discovery-1_0.html
https://login.microsoftonline.com/<APIM_SERVICE_NAME>.onmicrosoft.com/v2.0/.well-known/openid-configuration
https://login.microsoftonline.com/<APIM_SERVICE_NAME>.onmicrosoft.com/v2.0/.well-known/openid-configuration

CHAPTER 15 SECURITY
Listing 15-5. API policy for validating JWTs

<inbound>
<base />
<validate-jwt header-name="Authorization" failed-validation-
httpcode="401" failed-validation-error-message="Unauthorized. Access
token is missing or invalid.">
<openid-config url="https://login.microsoftonline.com/svenmalvik.
onmicrosoft.com/v2.0/.well-known/openid-configuration” />
<required-claims>
<claim name="aud">
<value>c2514ec3-987f-4a11-a2f4-743f902eabfb</value>
</claim>
</required-claims>
</validate-jwt>
<set-backend-service base-url="https://conferenceapi.
azurewebsites.net" />
</inbound>

Caution Policies are great for pre-authorizing requests. However, backend
web services should have their own implementation of access token validation
as requests might come from other sources than your Azure APl Management
instance.

Depending on your use case, you can add more claims that you can verify against an
access token.

Other Security Aspects

In this section, you will learn about some important security aspects of Azure API
Management. You might already be familiar with some of them. However, I want to give
you some more details that might not be known to you yet. Furthermore, you will learn
about one security aspect you should implement in your global policy that you have not
read about in this book.

214

CHAPTER 15 SECURITY

Subscriptions

Subscriptions offer a way to secure access to APIs using subscription keys. API
consumers that are in possession of a subscription key that is tied to a certain product

or API may not be able to access other products and APIs, at least not by using the same
subscription key. However, I see subscriptions more as a first line of defense, not as
security per se, as subscription keys do not tell anything about what backend web service
a client shall have access to. Neither do subscription keys identify users, just clients that
might be represented by a group of users.

A second line of defense where you obtain an API consumer’s identity itself is an
excellent way of building an even more secure API layer. As requests may go other ways
than via Azure API Management, I recommend implementing a way to authorize a client
using JWTs. However, never rely on an external service only, such as your Azure API
Management instance, when it comes to security. Instead, rely on your own security
mechanism within your backend web services themselves, as requests may come from
other sources than Azure API Management as well. Figure 15-15 illustrates the four lines
of defense you might consider using.

4. line of defense: Backend security

2. line of defense: Authentication

1. line of defense: Subscription key

Figure 15-15. Lines of defense

215

CHAPTER 15 SECURITY

Subscription keys offer a way to control API access for your customers. However,
they are not a security barrier against cyberattacks. In that regard, I strongly recommend
adding multiple layers of defense such as JWTs.

Protecting Against Path Traversal Attacks

A path traversal attack aims to access files and directories that are stored outside the web
root folder. In case of web services such as API backend web services, it would mean that
an API attacker accesses a web service it has access to with a manipulated request query
parameter to gain access to a web service it has no access to. In other words, an API
attacker exploits the path traversal vulnerability.

Imagine an attacker accessing a public API endpoint like /conf/speaker/{id}. Instead
of setting a valid parameter such as the integer 1, the attacker uses the URL encoded path
traversal string of /../../petstore/pet/inventory. The URL encoded version of this path
would be /conf/speaker%2f..%2f. . %2fpetstorek2fpeth2finventory where %27 is the
URL encoded character of /.

Figure 15-16 illustrates such a path traversal attack where an attacker has access to the
Demo Conference API via Azure API Management which, in this case, does not require a
subscription key, it is publicly available. The GetSession operation of this API requires the
id parameter which the attacker replaces with %2f. .%2f. .%2fpetstore¥%2fpet¥%2finven
tory. The Nginx ingress interprets thisas /. ./../petstore/pet/inventory, which gives
the attacker access to the Pet store API. Apparently, Azure API Management treats almost
any query parameter input as a valid parameter. Neither does the Nginx ingress prevent
such an attack from happening as illustrated in this example.

216

CHAPTER 15 SECURITY

/conf/ses sion?ézf. .%2f . . %2fpetstorek2fpet%2finventory

u/) Azure APl Management
: Has no path traversal attack
equalsthe l prevention by default

query parameter

that Nginx interprets ‘ NG:MX

/conf/session/{id} ..==**"" ~— /petstore/store/inventory
4..--""- *
Demo conference API G G Pet store API

Figure 15-16. Path traversal attack

There are at least two options to protect backend web services from path traversal
attacks:

1. Use Azure Application Gateway in front of Azure API Management
with Web Application Firewall (WAF) enabled.

2. Block requests that include double dots, . ., or %2e.

Listing 15-6 shows a global inbound policy that returns the status code 400 if the
path of a request contains either . . or %2e%2e.

Listing 15-6. Global inbound policy for path traversal attack protection

<inbound>
<choose>
<when condition="@(context.Request.OriginalUrl.Path.Contains("..")
|| context.Request.OriginalUrl.Path.Contains("%2e%2e"))">
<return-response>
<set-status code="400" reason="Bad Request" />

217

CHAPTER 15 SECURITY

<set-header name="Content-Type" exists-action="override">
<value>application/json;charset=UTF-8</value>

</set-header>

<set-body>{"message": "Access denied."}</set-body>

</return-response>
</when>
</choose>
</inbound>

A correct configured Nginx ingress will block path traversal attacks. However, as your
organization might use Azure API Management to unlock digital assets that are hidden
in legacy systems, you might not be sure about how these systems are configured. A
policy that prevents such an attack will protect any of your digital assets no matter how
an ingress or proxy might be configured.

Summary

This chapter focused on security aspects of Azure API Management that you have not
learned about in previous chapters, such as HTTP basic authentication and OAuth 2.0.
Furthermore, you learned why and how you can use Azure API Management policies to
prevent path traversal attacks. Lastly, you learned that subscription keys are not enough
as the only security barrier and what other lines of defense you should implement.

218

CHAPTER 16

Logging and Monitoring

Until now, you have sent requests to APIs in Azure API Management and then received
aresponse. Hopefully you were lucky, and all requests were successfully right from the
beginning. However, as luck is not a concept we can rely on, we need to know exactly
what happens with our requests. This is not only true for failing requests but also for
those that were successful and return HTTP code 200 (OK), as you might have non-
functional requirements such as tight response times that you must verify.

You might already have noticed in the Azure portal for Azure API Management that
you get tracing information when you send a test request. The HTTP response shows two
parts, Message and Trace. The tracing information shows an API inspector for all policy
sections with detailed information, as Figure 16-1 shows.

Demo Conference APl > GetTopics > Console

HTTP response

Message Trace h Generate definition

Jump to: | Inbound Backend Outbound On error] Response latency: 661.956 ms

Figure 16-1. Tracing information for an API request

To get the same tracing information when sending a request with cURL or Postman,
you must add the Ocp-Apim-Trace header to a request and set the value to true. The
response will contain the Ocp-Apim-Trace-Location header with an Azure Storage
Account blob location where you find the same tracing information.

In this chapter, you will first learn how to log custom data to an Azure Event Hub
that other services can consume. You will then learn about Azure Log Analytics which
provides you with insights ranging from timeline to requests and how you can run
predefined and custom Kusto queries on all the available telemetry that Azure API

219
© Sven Malvik 2022

S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_16

https://doi.org/10.1007/978-1-4842-8011-9_16#DOI
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/concepts/

CHAPTER 16 LOGGING AND MONITORING

Management generates. Lastly, you will create an Azure Application Insights resource to
analyze requests for anomalies.

Logging via Event Hub

Logging from Azure API Management to Azure Event Hub is useful for several reasons.
Logs can be consumed by other services, they can be analyzed with Azure Stream
Analytics, and they can be useful when developing Azure API Management policies. I
use them often to “debug” policies I develop in conjunction with VS Code as this section
will demonstrate.

In this section, you will log data from the Demo Conference API in Azure API
Management as events to Azure Event Hub, as Figure 16-2 illustrates. From there, events
can be consumed by other systems and services, such as Splunk, Azure Stream Analytics,

or others.
o Splu nk>
3 ﬁ .".‘
r‘g }) > = : I LTI T T T > « Az:re "
. * —rt ream Analytics
H ’...
Azure APl Management Azure Event Hub “»._
{ Conference API } ",
“ Others

Figure 16-2. Streaming logs to Azure Event Hub

Azure Event Hubs is an event ingestion service and data streaming platform
managed by Microsoft Azure. You can read more about Azure Event Hub on Microsoft’s
official documentation.

As always, when you work with Azure PowerShell toward an Azure API Management
instance, you must set the right context, in this case for mastering-apim, as Listing 16-1
shows.

220

https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-about
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-about

CHAPTER 16 LOGGING AND MONITORING

Listing 16-1. Set the context for your Azure API Management instance

Get subscription
$context = Get-AzSubscription -SubscriptionId <SUBSCRIPTION_ ID>

Set subscription by setting the context
Set-AzContext $context

Set context for Azure API Management instance

$apimContext = New-AzApiManagementContext °
-ResourceGroupName mastering-apim-rg °
-ServiceName mastering-apim

Deploy an Azure Event Hub

Ifyou are already familiar with Azure Event Hubs, you know that you need a namespace
to scope events in a container. Create a namespace in the same resource group as your
Azure API Management instance and name it mastering-apim-eh-ns.

As Listing 16-2 shows, I chose the basic pricing tier SkuName with the lowest capacity
SkuCapacity for the event hub throughput, which works fine for this example. In a
production environment, you might consider the standard or premium tier which gives
you longer event retention and more features.

Listing 16-2. Create a new Event Hub namespace

Create Event Hub namespace
New-AzEventHubNamespace °
-ResourceGroupName "mastering-apim-rg" °
-Name "mastering-apim-eh-ns" °
-Location "West Europe" °
-SkuName "Basic" ~
-SkuCapacity 1

The next step is to create an Azure Event Hub for those events that come from Azure
API Management. Use the Azure PowerShell cmdlet New-AzEventHub, as Listing 16-3
shows, and give it the name mastering-apim-eh.

221

CHAPTER 16 LOGGING AND MONITORING

Listing 16-3. Deploy an Azure Event Hub

Create Event Hub

New-AzEventHub ~
-ResourceGroupName "mastering-apim-rg" °
-NamespaceName "mastering-apim-eh-ns" °
-Name "mastering-apim-eh"

You have now deployed an Azure Event Hub that you can use to send logs to from
your Azure API Management instance.

Set Event Hub Logger to Azure APl Management

The Azure PowerShell module is a great way to automate infrastructure across
environments. Alternatively, you can create an Azure Event Hub namespace and an
Event Hub manually from the Azure portal. This is not the case for the Event Hub logger
that Azure API Management needs to log to your Azure Event Hub. Here, you must use
either the Azure REST API or Azure PowerShell.

To create a logger in Azure API Management for an Azure Event Hub, you need
a connection string from your Event Hub, which is configured with one or more
authorization rules, listen, send, and manage.

Listing 16-4 shows how to create an authorization rule for your specific Event
Hub namespace mastering-apim-eh-ns using the Azure PowerShell cmdlet New-
AzEventHubAuthorizationRule.Iset Rights to listen and send as Azure API
Management does not need to manage the namespace.

Listing 16-4. Add EventHub logger

Add Access to Event Hubs namespace
New-AzEventHubAuthorizationRule ~
-ResourceGroupName "mastering-apim-rg" °
-NamespaceName "mastering-apim-eh-ns" °
-AuthorizationRuleName "mastering-apim-eh-auth-rule
-Rights @("Listen", "Send")

n ~

222

CHAPTER 16 LOGGING AND MONITORING

Use Get-AzEventHubKey to read either the primary or secondary connection string
for your Event Hub and store the value in a variable $ehConnection, as Listing 16-5
shows. Set the authorization rule mastering-apim-eh-auth-rule of Listing 16-4 for the
parameter AuthorizationRuleName

Listing 16-5. Set the connection string for the Event Hub

Get the connectionString to the Event Hubs namespace
$ehConnection = (Get-AzEventHubKey °
-ResourceGroupName "mastering-apim-rg" °
-NamespaceName "mastering-apim-eh-ns" °
-AuthorizationRuleName "mastering-apim-eh-auth-rule")
.PrimaryConnectionString

Now that you have a valid connection string for your Event Hub, you can create
the Azure API Management logger by using the Azure PowerShell cmdlet New-
AzApiManagementLogger. Set the connections string for the ConnectionString parameter
by concatenating your connection string $ehConnection with ;EntityPath=mastering-
apim-eh, as Listing 16-6 shows. The entity path is the name of your Event Hub.

Listing 16-6. Create Event Hub logger

Create Azure API Management Event Hub logger
New-AzApiManagementLogger °

-Context $apimCtx °

-LoggerId "mastering-apim-logger" °

-Name "mastering-apim-logger" °

-ConnectionString "$ehConnection;EntityPath=mastering-apim-eh"

It is a good practice to set a name - in this case, mastering-apim-logger - shown
in Listing 16-6, so you do not get a generated name which might be hard to know the
purpose of in the future.

Add Event Hub Logger to Policy

You can create multiple loggers in Azure API Management and use them in different
scenarios or for different products, APIs, and operations. In the example in Listing 16-7,
you add the logger mastering-apim-logger to the Demo Conference API policy by using

223

CHAPTER 16 LOGGING AND MONITORING

the log-to-eventhub policy. The value is a concatenated string containing DateTime,
service name, Requestld, IP address, and the operation name. You can also log a JSON
string or other strings in other formats.

Listing 16-7. Policy for Event Hub logger

<inbound>
<!-- Create API policy and add Event Hub logger to API -->
<log-to-eventhub logger-id ='mastering-apim-logger'>
@(string.Join(",", DateTime.UtcNow, context.Deployment.ServiceName,
context.RequestId, context.Request.IpAddress, context.Operation.Name))
</log-to-eventhub>

</inbound>

All incoming requests will now log to the Azure Event Hub mastering-apim-eh and
can be consumed by other services.

Observing Logs with VS Code

After logging in to your Event Hub, you might ask yourself, how you can see the logs.
The answer is by using the VS Code extension Azure Event Hub Explorer. Figure 16-3
demonstrates how to find the extension and then install it.

)Q File Edit Selection View Go Run Terminal Help Extension: Azure Event Hub Explorer - Visual Studio Code

EXTENSIONS: MARKETPLACE Y O = - Extension: Azure Event Hub Explorer X

Azure Event Hub h
== Azure Event Hub Explorer w1

Azure Account)
Summer Sun © 26,809 1 8. 8.8 =4C)

A common Sign-in and Subscription ...

Microsoft & Manage Azure Event Hub and Messages with Visual Studic Code.

E Azure Event Hub Explo... 26K %4 m &
Manage Azure Event Hub and Messa... H
Summer Sun Install
; "1 Azure loT Hub RS Details Feature C:Jntrrutions Changelog Dependencies
This extension is now a part of Azure...
[Microsoft Install
ol Mourefuncions @i yscode-azure-event-hub-explorer
An Azure Functions extension for Vis...
Microsoft [Install |
I, 1 Azure Resources 755K This is a vscode extension to send message to or monitor messages in Azure Event Hub.
-l An rabancinn farsiadnn and manaai

Figure 16-3. Install VC Code extension Azure Event Hub Explorer

224

CHAPTER 16 LOGGING AND MONITORING

To observe your requests in VS Code, you need to configure the extension by
selecting your Azure Event Hub. Start the configuration process by choosing Select
Event Hub (shown in Figure 16-4) and follow the steps which will navigate you to set
your Even Hub mastering-apim-eh. You get asked to sign in to your Azure account,
select your subscription, Event Hub namespace, and finally your Event Hub.

>Event|—iuti ‘

EventHub: Send Message To Event Hub recently used

EventHub: Start Monitoring Event Hub Message

EventHub: Select Event Hub £33

EventHub: Stop Monitoring Event Hub Message other commands
Figure 16-4. Set Event Hub in VS Code

After you have successfully set your Event Hub, select Start Monitoring Event Hub
Message to start observing incoming events.

Listing 16-8 shows an example of how the extension prints log messages. As you can
see, it prints the date and time, service name, request id, IP address, and the name of the

operation that I called.

Listing 16-8. Log messages from the Azure Event Hub Explorer extension

Azure Event Hub Explorer > Start monitoring event hub

Azure Event Hub Explorer > Created partition receiver [1] for consumerGroup
[$Default]

Azure Event Hub Explorer > Created partition receiver [0] for consumerGroup
[$Default]

Azure Event Hub Explorer > Message Received:

"4/8/2020 5:33:09 PM,mastering-apim.azure-api.net,00a166ad-beb4-4b1a-bc56-
8faf699ecabe,51.175.196.188,GetTopics"

Azure Event Hub Explorer > Stop monitoring event hub

Congratulations if you have successfully followed all steps. You can stop observing
your Event Hub by selecting Stop Monitoring Event Hub Message.

225

CHAPTER 16 LOGGING AND MONITORING

Logging to Azure Log Analytics

A ready-to-use monitor capability of Azure API Management is Log Analytics. Azure Log
Analytics provides you with insights ranging from timeline to requests where you can
run predefined and custom Kusto queries on all the available telemetry that Azure API
Management generates. Kusto is a language that is used to query read-only request to
process data and return results in Azure log databases.

In order to send logs to Azure Log Analytics, you must create a Diagnostic settings in
your Azure API Management instance, as Figure 16-5 shows.

] mastering-apim | Diagnostic settings =

AP| Management service

| £ search (Ctrl+)) | « () Refresh P Feedback
#1 Analytics -
Diagnostic settings are used to configure streaming export of platform logs and metri
@ Application Insights five different diagnostic settings to send different logs and metrics to independent de
R Alerts Diagnostic settings
44 Metrics Name Storage account Event hub
& Diagnostic settings h No diagnostic settings defined
D Logs d t+ Add diagnostic setting
@ Workbooks Click ‘Add Diagnostic setting” above to configure the collection of the following data:

Figure 16-5. Add diagnostic settings

In the following example, I selected GatewayLogs to send those logs to a Log
Analytics workspace, as Figure 16-6 shows. Select Resource specific as the destination
table where data is written to individual tables for each category of the resource instead
of one AzureDiagnostic table.

226

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/concepts/

CHAPTER 16 LOGGING AND MONITORING

Diagnostic setting

Save X Discard [i] Delete Q) Feedback

A diagnostic setting specifies a list of categories of platform logs and/or metrics that you want to cellect from a resource, and one or more
destinations that you would stream them to. Normal usage charges for the destination will occur. Learn more about the different log
categeries and contents of those logs

Diagnostic setting name * qgwlogs o
Category details Destination details
log H Send to Log Analytics workspace
B Gatewaylogs Subscription
Visual Studic Enterprise Subscription ks
D WebSocketConnectionLogs
Log Analytics workspace
metric DefaultWorkspace-b0e68700-2b10-4f92-858a-36d2a98748b8-WEU (West... v
[aiMetrics Destination table ©

_.Azure diag.r.ostics
Figure 16-6. Configuring diagnostic settings

All traffic that goes through an API gateway is now logged to your Azure Log

Analytics workspace. Send a few requests with cURL from your local terminal or the

Developer portal of your Azure API Management instance and click Analytics in the left-

hand menu.
Analytics shows these calls in a timeline, as Figure 16-7 shows, where nine calls
succeeded and two calls failed; I forgot to set the subscription key for those failed

requests.
i mastering-apim | Analytics X
I gt Management service
= Search (Ctrl+/) s Time range
5] Delegation - Last 15 minutes Today Yesterday Llast7days Llast30days Last90days | Start | 2021-09-18 o] [0@‘1503
@ Oduth 20 + OpenlD Connect
+
[issues (deprecated) v 9 successful
| Timeline Geography APls Operations Products Subscrptions Users Requests calls
Menitoring
il Analytics o m—
@ Application Insights Requf“s TOTAL BEQUESTS
[10 2 failed calls where | n
Jert: : SUCCRSS
ik _ forgot to set the coboion
il Metrics i subscription key FALED RECUESTS
s 0
B Diagnostic settings ‘ UNAUTHORIZID REQUL...
Logt E OTHER REQUESTS
@ Workbocks 1

Figure 16-7. Incoming traffic

227

CHAPTER 16 LOGGING AND MONITORING

There is more information that might be useful and that are more specific depending
on your use case. You can click through the other tabs such as APIs, Products, or Users.

A programmatic way of retrieving gateway logs is by using KQL (Kusto query
language) in Log Analytics where you use queries. Log Analytics provides a set of
predefined queries such as Number of requests, Last 100 failed requests, or Overall
latency.

Figure 16-8 shows an example query with KQL for reading the number of requests.

<D masterlng-aplm I LDgS : x
-, ol Service
£ Search (CY | « > New Query 14 + Q7 Feedback BT Queries C# Queryeplorer | & [~
@ OAuth 20 = OpeniD Connect - p_— =
» m Time range . Set in query &l Save ~ 1= Share v - New alert rule ¥ Export
O tsues (deprecated) 1 // Number of calls by APIs i
2 the number of calls per API in the last 24 hours.
Menitering 11s by API ID
4 anagementGatewayLogs]
fid Analytics 5 | where TimeGenerated > ago(id)
& | susmarize gount(CorrelationId) by Apild
¥ Application Insights
ER plerts
. Results Chart 00 Celumns (] Group columns
i Metrics c
E Diagnostic settings Completed @ 00005 [2records ¥
@ logs o — 2
]
ll Workbeoks 3 3 951
a
E] v a
Deplayment + infrastructure a demo-conference-...
A Pricing tier T Apild demo-conference-api
@ Locations count_Correlationld 9

Figure 16-8. A simple Kusto query in Azure Log Analytics

To learn more about log queries, I recommend reading the official documentation
athttps://docs.microsoft.com/en-us/azure/azure-monitor/logs/get-
started-queries.

Azure Application Insights

Use Azure Application Insights to analyze requests for performance anomalies or to
verify to which backend your requests are forwarded to. This is very helpful when you are
new to Azure API Management and what to find the root cause of an error.

Create an Azure Application Insights resource in the Azure portal resource, as shown
in Figure 16-9. Set your Azure subscription, resource group, and a name. As the resource
mode, select Workspace-based, as Classic is deprecated. If you have not created a Log
Analytics Workspace earlier, Azure will automatically create one. In my case, Azure
created a Log Analytics Workspace in the region West US which is not my preferred

228

https://docs.microsoft.com/en-us/azure/azure-monitor/logs/get-started-queries
https://docs.microsoft.com/en-us/azure/azure-monitor/logs/get-started-queries

CHAPTER 16 LOGGING AND MONITORING

region, so I created a Log Analytics Workspace resource separately in the Azure portal
and selected that one instead.

Application Insights

Monitor web app performance and usage

Select a subscription to manage deployed resources and costs. Use resource groups like folders to organize and manage all
your resources.

Subscription * @ [Visual Studio Enterprise Subscription Vv

Resource Group * (O [mastering-apim-rg e
Create new

INSTANCE DETAILS

Name * © [mastering-apim-appinsights \/;

Region * (O [(Europe) West Europe ~

Resource Mode * O f [«@PESI \Workspace-based

WORKSPACE DETAILS

Subscription * © Visual Studio Enterprise Subscription v
*Log Analytics Workspace O l DefaultWorkspace-b0e68700-2b10-4f92-858a-36d2a98748b8-WEU [West...

Figure 16-9. Create Azure Application Insights resource in Azure portal

Navigate to your Azure API Management instance and choose Application Insight
from the left-hand menu and click Add to select your Azure Application Insights
resource. As Figure 16-10 shows, I added my newly created Application Insights resource
mastering-apim-appinsights.

mastering-apim | Application Insights

APl Management service

O Search (Ctrl+/) « -+ Add == cColumns () Refresh

@ QAuth 2.0 + OpenlD Connect B
APl Management easily integrates with Azure Application Insights - an extensil

[Issues (deprecated) and managing apps on multiple platforms. Learn more

Monitoring | O Search to filter items...

4 Analytics Name Description
@ Application Insights ffsm— | mastering-apim-appinsights |

Figure 16-10. Adding Application Insights to Azure API Management

229

CHAPTER 16 LOGGING AND MONITORING

Requests are not automatically logged to Application Insights. Instead, you must
enable Application Insights for your APIs first. Figure 16-11 shows how to enable
Application Insights for an individual API. Click All APIs to set this globally. There is one
very important setting, Sampling. It is a value between 0 and 100% and determines how
much you want to log.

_ m CREATED Sep 18 2021. %5%:21 AM .~
O search aPis
7 Filter by tags | “ Settings Test Revisions Change log
O Group by ta iz :
p by tag ﬁ Application Insights Azure Monitor
- Add APl
g Ensbls =
All APIs Destination mastering -apim-appinsights v
Manage
Customers AP1 % a
g h Sampling (%) O 100

For high traffic APls, please read this documentaticn te understand performance implications

Demo Conference API «

and log sampling.

Echo API
Always log errors @

Swagger Petstore
Log client IP address
Verbosity [verbose m Error
Correlation protocol @ (None [Legacy] wsc"_-
Additional settings @ O Frontend Request

Figure 16-11. Enabling Application Insights for an API

Send a few requests to one of the APIs for which you enabled Application Insights
and navigate to this Application Insights resource.

Figure 16-12 shows the Transaction search where all requests are listed. Click on one
request to get details such as response time, called operation, and the called backend

service.

230

CHAPTER 16 LOGGING AND MONITORING

() mastering-apim-appinsights | Transaction search # - b

fewinlogt [[) Copylink () Feedback w (3 Help

& g Lecal Time: L nistes (Automaticl Event types = Request | | 'y

1"

Moritaring Results Grouped results (2) Sort by time Okdest frst

Fetponde code: 200 REfponge tme: 206.61 me

=
con
P Logs URL: hitps/apimmestup azure-spineyconttogics Resporde codes 200 Responge time: 26657 me

Figure 16-12. Transaction search in Application Insights

Warning Logging all events has serious performance implications. Based

on internal load tests from Microsoft, logging to Application Insights caused a
40%-50% reduction in throughput when request rate exceeded 1000 requests
per second.

A good compromise in a production environment is to log from Azure API
Management to Application Insights only if there is a strong need as in an ongoing
incident where you need to rely on as much information as possible. When it comes to
the test environment where performance is not always an issue, you might want to set the
sampling rate to 100%, so developers have all necessary information to build great APIs.

Summary

In this chapter, you learned how to log custom data but also how to monitor API traffic.
When logging to Azure Event Hub through policies rather than using diagnostic settings
with Azure Event Hub as destination, you have the advantage of logging custom data.
However, when logging custom data to Azure Event Hub, be careful and do not put too
much logic into policies. Policies in Azure APl Management can be expensive as they are
often hard shared across multiple teams and therefore hard to maintain; this is especially

231

CHAPTER 16 LOGGING AND MONITORING

true for product policies and the global policy. If you do not need to log custom data,
I recommend enabling diagnostic settings with Azure Event Hub, at least in your test
environment. For the production environment, you must be aware of a decrease in

performance. That is also the reason why you can set a sample rate from 0% to 100%

logging.

232

CHAPTER 17

Administration

In this chapter, you will learn about Azure API Management’s capabilities of high
availability by scaling it and deploying API gateways to multiple regions. Furthermore,
you will learn to prepare your Azure API Management instance for an event of a disaster
by taking backups that can be restored in another instance of Azure APT Management.
As high availability often comes together with the non-functional requirement of
great performance, caching might be a preferable and suitable solution. Azure API
Management has, for that reason, a built-in cache which does not necessarily work
together with high availability. You will learn why this is the case and how to configure
an external cache for your Azure API Management instance.

Until this chapter, you, as an API consumer, have accessed Azure API Management
by using the default domain <SERVICE_NAME>.azure-api.net. As this is not always a
preferred domain, you will learn how to configure a custom domain with TLS/SSL.

I'will also teach you to generate API usage reports. These are especially important
when you want to monetize your APIs, but also to find out what digital assets are
accessed the most.

Furthermore, you learn to use Azure Automation to make changes in your Azure
API Management instance in an automatic way. This is very useful when working with
repetitive tasks such as taking backups.

Finally, you will learn how to combine multiple Azure Logic Apps into one API and
why you would want this.

High Availability

High availability can be achieved by using several different features in Azure API
Management such as scaling your instance depending on traffic volume, failover all
traffic to another region in case of a regional outage, and taking backups that can be

restored in another instance when necessary.

233
© Sven Malvik 2022

S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_17

https://doi.org/10.1007/978-1-4842-8011-9_17#DOI

CHAPTER 17 ADMINISTRATION

In this section, you will first learn to scale your Azure API Management instance
based on the Capacity metric. We will then discuss multi-region deployments and
availability zones for the managed API gateway. Furthermore, you will learn to take a

backup of an instance and restore it in another instance.

Scaling in Regions

When you deploy Azure API Management with the Consumption pricing tier, you do not
need to worry about high traffic volume as your instance automatically scales. This is not
true for all the other pricing tiers, especially not the Developer pricing tier, which can’t be
scaled; its default is one unit.
A unit has no fixed number of requests that it can handle as this depends on the size
of the requests, all involved policies, the system operations such as TLS handshakes
on new connections that are executed, but also the load on the developer portal. To
determine whether you need to scale up to serve an increased amount of traffic volume
or to scale down to save costs in low traffic volume times, you use the Capacity metric.
Figure 17-1 shows the capacity of the Azure APl Management instance that I use in
this book for the last 30 days.

i mastering-apim | Metrics .
L o) Mansgement servies

£ Search (Ctrl+/) » b Mewchart () Rafresh 1€ Share v (Z) Feedback { Local Time: Last 30 days [Automatic - 6 houss))
T Uelegabon
Avg Capacity for mastering-apim &
Q' Ofuth 20 + OpenlD Connect

3 Issues (deprecated %o Add metric *p Add fiker %5 Apply spliting |&= Line chart » [, Drillinto Logs [0 New alest nde < Pin to dashboard -«
Monitoring 3 mastering-apim, Capacity, Avg @
il Analytics
¥ Application Insights
R Alerts i
fidl Metrics h { 5
B Disgnostic settings
W Logs
B Worknooks e Sep 12 Sep 19 cop 26 Der0d UTC0200
Capaciy
Deployment + infrastructure mastErng-apm
3.0891

@ Fricing tier

Figure 17-1. Capacity metric in Azure API Management

The capacity reached almost 50% on the 30" of September. In preparation of a Black-
Friday event where you eventually expect high volume traffic, you might want to increase
the number of units the day before as the scaling process takes at least 20 minutes up to
45 minutes.

234

CHAPTER 17 ADMINISTRATION

One option to scale the number of units is from within the Azure portal. Figure 17-2
shows how to change the number of units in Azure API Management by clicking
Locations in the left-hand menu and selecting your region.

West Europe (Primary)
t Add

. YIOTRDGORS % Units
Scale your B availability zones and locations to impro & w
Deployment + infrastructure Add a region
A Pricing tier Location Capacity 0 os its across av zones to opt ur
e, in this loc: ded cosl ®
o West Europe (Prirnary) S units
€ Locations h P Y

@ Gateways Availability zones O

@ External cache [Zone 1, Zone 2 v

B Custom domains

Ak ch I quration will re b
> Virtual network ’ and private IP ad ur serdce. L
Choose up to 3 availability

43 Network connectivity status zones to protect your APls Network
Q Notifications from data center failures. Subnet *

A
B3 Motification templates
& Management AP Management public IP address (3

e
€ Repository
Security x

Figure 17-2. Scaling Azure API Management

In this example, I have Azure API Management instance deployed in one region only,
West Europe. API consumers that send requests from other parts of the world would
naturally experience higher latency and the API experience would suffer. Luckily, you
can add additional, secondary regions that are closer to those API consumers. However,
secondary regions have only the managed API gateway deployed, not the developer
portal or service management component.

In case the primary region is inaccessible, all API consumers will be routed to the
closest secondary location unless you already use an Azure service such as Azure Traffic
Manager that sends API consumers to the closest API gateway locations.

Be aware that requests are routed to the same backend web services as before. An
incoming request in a secondary region West US will still forward the request to the
primary region West Europe unless you change the global policy and set a different URL
to a different backend as the following code demonstrates:

<inbound>
<base />
<choose>
<when condition="@("West US".Equals(context.Deployment.Region,
StringComparison.OrdinalIgnoreCase))">

235

CHAPTER 17 ADMINISTRATION

<set-backend-service base-url="<WEST US URL>" />
</when>
<otherwise>
<set-backend-service base-url="WEST EUROPE_URL" />
</otherwise>
</choose>
</inbound>

Another option to achieve high availability of your APIs is by enabling zone
redundancy using Availability zones.

Note Availability zones and multi-region deployments are only available in the
Premium and Standard pricing tiers of Azure API Management.

Availability Zones are unique physical locations within an Azure region. It protects
your APIs in case of a failure within the data center your Azure API Management
instance is deployed to. For high availability, it makes sense to deploy your instance to at
least two availability zones, as Figure 17-2 shows.

Preparing for a Disaster with Backup and Restore

Hopefully, a serious disaster to the region where your Azure API Management instance
is located, and where all your data such as APIs, users, and subscriptions are deployed
to, will never occur. However, it is a possibility that you might want to prepare for. One
option to prepare for such an unlikely event of a disaster where you must recover fast in
separate Azure API Management instance is by taking regular backups of your primary
Azure API Management instance and restore the latest backup, if necessary, in the
secondary, target instance.

In a project I worked in, we had another use case where we emphasized immutable
infrastructure. We wanted to reduce the risk of potential traffic failures due to changes in
the infrastructure. Instead of upgrading central infrastructure components such as Azure
Kubernetes Service or routing certain traffic through a new Azure Application Gateway,
we deployed a new infrastructure cluster with all its components and changes before
we tested everything there. This includes Azure API Management. Taking backups from

236

CHAPTER 17 ADMINISTRATION

the active Azure API Management instance and then restoring the backup in the new
instance was part of it.

In this section, you will learn how to take a backup from your primary Azure API
Management instance and restore it in your secondary instance, so everything works
as before. You might already have a primary instance of Azure API Management with
some APIs, users, and subscriptions. Before you begin to take a backup from it, create a
secondary instance with the same pricing tier.

Note The Consumption pricing tier is not supported.

The following Azure PowerShell cmdlet New-AzApiManagement creates a new
instance mastering-apim-dest in the North Europe region, as my primary instance is
running in the West Europe region. If you do not define the Sku parameter, the instance
will set it to the Developer tier.

New-AzApiManagement ~
-ResourceGroupName "mastering-apim-rg" °
-Name "mastering-apim-dest” °
-Location "North Europe" °
-Organization "myOrg" °
-AdminEmail "sven@malvik.de"

Create an Azure storage account and container close to the secondary Azure API
Management instance in North Europe to store your Azure API Management backups, as
the code example of Listing 17-1 shows.

Listing 17-1. Create Azure Storage for Azure API Management backups.

$storageAccount = New-AzStorageAccount °
-ResourceGroupName "mastering-apim-rg" °
-Name "masteringapimsa" °
-SkuName Standard LRS °
-Location "North Europe"

New-AzStorageContainer °
-Name "mastering-apim-backups" °
-Context $storageAccount.Context °
-Permission blob
237

CHAPTER 17 ADMINISTRATION

To take a backup of your Azure API Management instance mastering-apim, use the
Azure PowerShell cmdlet Backup-AzApiManagement. The cmdlet requires the storage
account for the StorageContext parameter and the name of the container for the
TargetContainerName parameter. You created both in Listing 17-1. Choose then a name
of your backup and set it for the TargetBlobName parameter; mine is mastering-apim-
backup, but you might consider appending a timestamp to the name as you ideally will
take daily backups using an Azure Automation account.

Backup-AzApiManagement ~
-ResourceGroupName "mastering-apim-rg" °
-Name "mastering-apim" °
-StorageContext $storageAccount.Context ~
-TargetContainerName "mastering-apim-backups” °
-TargetBlobName "mastering-apim-backup"

The complementary cmdlet to a backup operation is Restore-AzApiManagement.
It requires almost the same parameters. Instead of target parameters, it expects source
parameters for the storage account of the backup.

Restore-AzApiManagement ~
-ResourceGroupName "mastering-apim-rg" °
-Name "mastering-apim-dest" °
-StorageContext $storageAccount.Context °
-SourceContainerName "mastering-apim-backups” ~
-SourceBlobName "mastering-apim-src-backup”

Restoring a backup will not change any values that are specific to the secondary
target Azure API Management instance. Keep both instances as alike as possible, so you
avoid doing as few post operations as possible.

Doing a backup/restore operation can take some time depending on the number
of APIs, users, subscriptions, etc., that you have deployed. In some cases where we
wanted to switch all traffic to the new infrastructure cluster, the restore operation hung.
It became such a problem for us that we excluded Azure API Management from the list
of Azure components to be redeployed to the new infrastructure cluster, so we were
not dependent on it anymore. Still, we take regular backups, so we are prepared for an
eventual disaster.

238

CHAPTER 17 ADMINISTRATION

Configuring External Caching

Caching is a way of speeding up your web service performance. Instead of forwarding all
requests to backend web services and waiting for the responses, responses that are not
expected to change over a specific time interval might be candidates for storing in a data
store with fast read access and that is closer to the API gateway. Azure APl Management
provides therefore an internal cache where you control the data that goes into the cache
by using the cache-1lookup policy.

Figure 17-3 demonstrates a basic example of a caching policy. Responses are cached
by the two headers, Accept and Accept-Charset. Requests with matching headers will
have the cached response returned, until the cache duration interval of ten seconds has
expired using the cache-store policy. Both, cache-1lookup in the inbound section and
cache-store in the outbound section go hand in hand and must be defined together.

T Filn Design t
O Group by tag '
All operations i ——" Demo Conference API = All operations > Policies Show snippets &3 Expand
Add API 1 cpolicies»
i GET GetSession 1 <inbound>
15 <base />
All APIs . 2t 16w <cache-lookup vary-by-developer="false” vary-by-developer-groups="false" downst
GET GetSessions 17 <vary-by-header>Accapte/vary-by-header>
18 <vary-by-header>Accept-Charsets/vary-oy-headers]
Demo Conference APl < apmmm 19 </cache-Llookup> N
GET 15 i 28 <set-backend-service base-url="https://conferenceapi.azurewebsites.net" /»
1 </inbound>
Echo AP — B 22 <backend>
GET GelSpeaker chaas /5
</backend:
swagger Petstore e N " 25 <outibound>
tSneake:
F- | epeinent 26 <cache-store durations"18" />
<hase (>
& fou nd>
- tSpeakerS foutboun

<on=error:

28
SpeakerSes.. . e
it v Calculate effactive polic
Opévations Definitions “ Discard Reset to default Calculate effective policy

Figure 17-3. Simple caching policy

Note The internal cache is not available in the Consumption pricing tier. Instead,
use an external cache.

An external cache is not only a must when using the Consumption pricing tier
but also when your Azure API Management instance supports multiple regions as the
internal cache uses a shared per-tenant data cache. As you scale up to multiple units, you
get access to the cached data within the same region. Caching across regions depends on
an external cache such as Azure Cache for Redis.

239

CHAPTER 17 ADMINISTRATION

Search for Azure Cache for Redis in the Azure portal and click Create, as
Figure 17-4 shows.

Azure Cache for Redis x

Microsoft

Azure CaChe fOI‘ Redis Q Add to Favorites

Microsoft

% 2.0 (1 Azure ratings)

Figure 17-4. Creating an Azure Cache for Redis

The great advantage of using an external cache is the ability of being in better control
of the cache configuration. You can find the documentation of Azure Cache for Redis at
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/.

Once you have created and configured your external cache, navigate to Access keys,
and copy one of the two connection strings, Primary connection string or Secondary
connection string, as Figure 17-5 shows.

mastering-apim | Access keys - X
Azure Cache for Redis
R Search (Ctrl+/) @ © Regenerate Primary {0 Regenerate Secondary
Settings
Primary GRPEKCVRTMQzOR086NTZqOqWO0 +0VWrsLEmn2wU1)58= E}
Access keys o m—
= Advanced settings Secondary SA+HgAnBtjtovDOB38jtGtewUsOTiHmIcy29mixdvia=

4 Scale Primary connection string sl | Mastering-apim.redis.cache windows.net:6380, password = GRPBKCVRTMOZORD. .. Ik}

o (StackExchange Redis)
B Cluster size °

& Data persistence Secandary cannection string mastering-apim.redis.cache.windows.net:6380 password = 5A+HgAnbtjtcvDOB... Ej

(StackExchange Redis)

Figure 17-5. Getting the connection string

The connections string for the cache is required by your Azure API Management
instance, so this external cache can be used instead of the internal cache.

240

https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/

CHAPTER 17 ADMINISTRATION

Navigate to your Azure API Management instance and click External cache and Add
your external cache. Figure 17-6 demonstrates how to add your Azure Cache for Redis
resource as the external cache for the Azure API Management instance mastering-apim
that is currently running in the West Europe region. Paste the connection string from
Figure 17-5 into the corresponding field and click Save.

g Mastering-apim | External cache - External cache
APl Management service APl Management service
2 Search {Ctrl+/) « + aAdd () Refresh B save
A Pricing tier i ; s g I i
ard — . dic. cach .
& ache responses in an external is-compatible cache to have Cache instance
Locations
mastering-apim i—
@ Gateways Used from Description Id
-~ Cache instance location
External cache ‘West Europe mastering-apim.redis... /subscriptio
h v urop ing-apir i Jsubscripti r\l"v'ésl Europe
B Custom domains
Use from *
* Virtual network West Europe (managed) i
* Network connectivity status
Description

o

Motificati
oRfications mastering-apim.redis.cache.windows.net

[

Motification templates
& Management API l
& Connection string (StackExchange.Redis) *

Repositery
| mastering-apim.redis.cache.windows.net:6380,password=GR

Figure 17-6. Adding the external cache to Azure API Management

To verify that responses are stored in this external cache, send a few requests to an
API such as the Demo Conference API as shown in the following:

curl -i https://mastering-apim.azure-api.net/conf/topics

Navigate then to your external cache in the Azure portal and select Metrics where
you filter for Cache Hits in the last 30 days. As you can see in Figure 17-7, I send several
requests where 24 responses came from the external cache instead of the backend web
service.

241

CHAPTER 17 ADMINISTRATION

~, mastering-apim | Metrics - P
ml S
Azure Cache for Redis

£ Search (Ctrl+/) & t Mew chart () Refresh |4 Share » () Feedback \ s (Local Time: Last 30 minutes (Automatic - 1 minu...
Monitoring

%+ Add metric *yp Add filter |&£ Line chart v [3, Drill into Logs ~s (] New alert rule
@ Insights

Y2 Apply splitting 57 Pinto dashboard .-
R Alerts
0 Metrics h & mastering-apim, Cache Hits, Sum @ |« me——
E Diagnostic settings
& Advisor recommencdations _
a Workbooks < b,
Automation
g y s M UTE-0200
1 Tasks (preview)

Cache Hits (Sum)
o

¥ Exporttemplate r2“4mﬂpm

Figure 17-7. Observing cache hits in Azure Cache for Redis

This section showed you how to use an external cache for Azure API Management
and when this is a preferred option instead of using the internal cache for pricing tiers
other than Consumption.

Adding Custom Domains

To this chapter, API consumers used the default subdomains <SERVICE_NAME>.azure-
api.net to access the API gateway and <SERVICE_NAME>.developer.azure-api.net to
access the developer portal. You can change these subdomains and the subdomains for
managing your Azure API Management instance and accessing SCM by configuring one
or more custom domains. This might be useful regarding your corporate identity.

In this section, you will learn to set a custom domain for the developer portal.
Instead of accessing the developer portal at mastering-apim.developer.azure-api.
net, I will show you how to change this subdomain to another subdomain, in this
example, to dev.svenmalvik.com.

A first step to achieve this is by creating a CNAME record on your DNS server. A
CNAME record (alias record) maps one domain or subdomain to a canonical name.

In the following example, the alias dev.svenmalvik.com maps to the canonical name
mastering-apim.developer.azure-api.net.

Alias: dev.svenmalvik.com
Canonical name: mastering-apim.developer.azure-api.net

242

CHAPTER 17 ADMINISTRATION

To enable your Azure API Management instance to securely expose URLs with
HTTPS over TLS/SSL, you need a certificate where the subject matches the CNAME,
in this case dev.svenmalvik.com. You can either bring your own certificate or create
one in Azure Key Vault, either a self-signed certificate or one that is issued by a
certificate authority. I recommend using Azure Key Vault, as certificates can be renewed
automatically.

Figure 17-8 shows the Azure Key Vault MasteringApimKeyVault that you created in
Chapter 7 (section “Secrets from Azure Key Vault”). Navigate to your Azure Key Vault and
select Certificates from the left-hand menu and click Generate/Import to create a new
certificate.

= MasteringApimKeyVaul{]| Certificates - X
Key vault
Lo ch (Ctri+/) ﬁ Generate/import () Refresh F k 22 Manage deleted certificates [Certificate Contacts
ey i
Keys Name Thumbprint Status Expiration date
2 secrets Completed
k=l Certificates _ ~ Enabled 2022-10-04
Access policies ~ Enabled 2022-10-04

Figure 17-8. Generate SSL certificate in Azure Key Vault

If you have not created an Azure Key Vault yet, make sure to create one that Azure
API Management can access by enabling managed system identity (MSI) in your
instance. Give the new created principal ID the permissions list and get for certificates
on this Azure Key Vault, so your Azure API Management instance can list and get your
certificate.

In Figure 17-9, I created a self-signed certificate. In a production environment,
you might consider creating one that is issued by a public certificate authority, so this
certificate is automatically trusted by your clients. Alternatively, you can install your
certificate at your clients. Set the Subject parameter to CN=<YOUR_CNAME>. I chose to
automatically renew the certificate. The process of creating a certificate takes up to 15
minutes.

243

CHAPTER 17 ADMINISTRATION

Create a certificate DNS Names X
Create a certificate

r DNS N

Certificate Name * O dev-svenmalvik-com /]_ B
l dev.svenmalvik.com \/‘ [i] ==+
Type of Certificate Authority (CA) © Self-signed certificate wyp v
-~ , |
Subject* CN=dev.svenmalvik.com \\/
DNS Names
N Choose between

Validity Period (in months) 12 7 sglf-mgned anc!

- : certificate authority
Content Type PKCS #12 JEY
Lifetime Action Type | Automatically renew at a given percentage lifetime
Percentage Lifetime Q 80
Advanced Policy Configuration Not configured
Tags 0 tags

ECE
Figure 17-9. Configure new SSL certificate

Navigate to your Azure API Management instance and select Custom domains from
the left-hand menu; then click Add and set your CNAME in the Hostname field. Also
select your certificate from your Azure Key Vault, as shown in Figure 17-10.

mastering-apim | Custom domains - ¢ Developer portal

APl Management service API Management service

£ Search (Ctri+/) oy |- Add [T save D Discard () Refresh == Type
- Developer portal

- iy v

By default, your APl Management service instance is avai

) ! i Hoctrane®
@ Locations apinet). You can also expose the service through your ov — .
| dev svenrmalyik corm| h

i Gateways

& = Certificate

n T Hostnam . rtifi
& External cache Endpolrt onmme ¥ D custom

: Gatewa mastering-apim.azur...

& Custom domains ¥ gz Certificate key vau't id *
3 Virtual network https:/fmasteringapimkeyvault.vault azure net/secrets/dev-masteringapim-ce

: Negotate chent certificate

=
3

©» Network connectivity status
Notifications B Default SSL binding
Naotification templates

Management API

¢ w @ o

Repository

mem

Figure 17-10. Add new custom domain in Azure API Management

244

CHAPTER 17 ADMINISTRATION

The result of custom domains for this exercise are shown in Figure 17-11. It shows
the default domain and two custom domains that I created, dev.svenmalvik.comand
api.svenmalvik.com.

Endpaoint + Hostname T4 Certificate T4 Nego..m DI Certificate key vault id T4
Developer portal dev.svenmalvik.com Expiry: 2022-10-04, thumbprint: F5342... https://masteringapimkeyvaultvaultaz... ***
Galeway n"aster-ng-apl'n.azura-apl.net

Gateway api.svenmalvik.com Expiry: 2022-10-04, thumbpnnt: 7DBEA... v https.//masteringapimkeyvaultvaultaz... ***

Figure 17-11. List of custom domains

When you access the developer portal in your browser and navigate to your custom
domain, you will probably get a warning Noft secure, as you can see in Figure 17-12. This
happens because you created a self-signed certificate that is not in the browsers list of
trusted certificate authorities. You can solve this issue by either installing this certificate
on all known clients such as your internal API consumers, or by issuing a certificate from
a publicly trusted certificate authority.

https://dev.svenmalvik.com
Products Signin Signup

Warning:
Not secure

Welcome to Contoso!

We provide industry-leading APls.

Figure 17-12. Accessing developer portal with custom domain

245

CHAPTER 17 ADMINISTRATION

Monetizing Your APIs with User Reports

Azure API Management is an ideal service to monetize your digital assets as it can
provide you with detailed insights about the usage of products, APIs, operations,
subscriptions, and more.

In the following example, you will retrieve user reports. As Azure API Management
reports are currently not available through Azure PowerShell, you will use the REST API
to retrieve reports from your API Management instance. The data that you retrieve is in
JSON format.

Start by opening the Azure portal and navigating to your Azure API Management
instance. Click Management API in the left-hand menu and enable the management
REST AP], as Figure 17-13 shows.

kY mastering-apim | Management API
APl Management service

2 Search (Ctrl+/) .
ki Direct management APl Management APl settings

ificati
Q' Netifications You can programmatically manage your APl Management service through Azure Resource Manager [ARM). Enable direct

s o management REST API to use SAS token authentication and bypass ARM's limitations. Leamn more
E Netification templates

Management API k- Enable Management REST API No e

Figure 17-13. Enabling the management REST API
Switch to your Azure Cloud shell in Bash mode and set the following variables that

identify your Azure API Management instance.

SERVICE="mastering-apim"
RESOURCE_GROUP="mastering-apim-rg"
SUBSCRIPTION ID="YOUR SUBSCRIPTION ID"

To interact with your instance, set the subscription of where your Azure API
Management instance is deployed to by using the Azure CLI and the SUBSCRIPTION ID
variable that you declared.

az account set -s $SUBSCRIPTION ID$

Also, set the management URL for your Azure API Management instance. This is the
base URL for managing your Azure API Management instance.

246

CHAPTER 17 ADMINISTRATION

URL=https://$SERVICE.management.azure-api.net/subscriptions/$SUBSCRIPTION
ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.ApiManagement/
service/$SERVICE

The Azure API Management REST API provides several reports operations. The
following example retrieves a report for all users /byUser. Other operations are /byApi, /
byGeo, /byOperation, /byProduct, /byRequest, /bySubscription, and /byTime.

REPORT="/reports/byUser"

Nobody can access your reports yet as you have not authorized yourself with a
Shared Access Signature (SAS) token. The simplest way of getting a SAS token is from the
Azure portal, as Figure 17-14 shows.

Y mastering-apim | Management APl - X
API Management service
T —
& Search (Cirl+) «
- eAuSa vane . Access token

B Custom domains

[o Maximum supperted expiry time is 30 days from the time access tcken is generated.
* Virtual network

43 Network connectivity status Management AP| URL
Q1 WNotifications https://mastering-apim.management.azure-api.net 0
B Motification templates Expiry
& Management APl s 2021-11- 8| 162354
€ Repository Secret key Copy your
[=]
Security Primary key SAS token W
Managed identities Access toker
SharedAccessSignature integration&202111011523&V0ICuUxNIoCeTITKEpuZINGBUBjkIzQ25+uED2R... [y Generate

»= Certificates

Figure 17-14. Generating a SAS token

Click Generate to create your SAS token and copy it. You authenticate yourself by
setting an authentication header to every request using the SAS token. Create a new
variable AUTH_HEADER in your Bash session and set your SAS token as the value, as shown
in the following:

AUTH_HEADER="Authorization: <YOUR_SAS TOKEN>"

Note Your SAS token is valid for a maximum of 30 days before you must
regenerate it.

247

CHAPTER 17 ADMINISTRATION

You are almost done creating a request. As you can potentially get many data
from your Azure API Management instance, all reports operations want to know from
what date and time you are requesting data. You do this by setting a filter as a query
parameter. The filter parameter is called $filter which means that you must escape the
dollar character using %24 instead. The same is true for other special characters such as
spaces and tickers as the following example demonstrates:

$filter=timestamp ge datetime'2021-06-01T00:00:00" xx

The preceding filter defines a timeframe from a specific date and time until now
using the operator greater equal ge.

FILTER="%24filter=timestamp%20ge%20datetime%272021-06-01T00:00:00%27"

You can add an upper timestamp boundary by using the lower equal 1e operator. The
lower equal operator is not a requirement. What is a requirement is a lower bound for
the timestamp as the following error message says when not setting the filter parameter
with greater equal.

“At least lower bound for timestamp field should be specified.”

The complete cURL command is a GET request -X GET containing the authentication
header -H "$AUTH_HEADER", and the full URL URLREPORT?$FILTER"&api-version=
2020-12-01", which is a concatenation of the management interface of your Azure API
Management instance, the reports operation, the filter, and the API version.

curl -X GET -H "$AUTH_HEADER" URLREPORT?$FILTER"&api-version=
2020-12-01" | jq

I piped the response to jq, a popular JSON command-line processor that makes the
JSON response more readable.

The following JSON object represents the user Max Vax of the response containing
all users:

{

"name": "Max Vax",
"userId": "/users/maxvax",
"callCountSuccess": 10,
"callCountBlocked": o,
"callCountFailed": 0,

248

CHAPTER 17 ADMINISTRATION

"callCountOther": o,
"callCountTotal": 10,
"bandwidth": 250,
"cacheHitCount": 0,
"cacheMissCount": 0,
"valueCacheHitCount": 0,
"valueCacheMissCount": 0,
"apiTimeAvg": 323.81811000000005,
"a piTimeMin ": 0.23670000000000002,
"apiTimeMax": 3234.5856000000003,
"serviceTimeAvg": 0,
"serviceTimeMin": 0,
"serviceTimeMax": 0

Based on this report, you not only know how many digital assets a user has requested
but also how the overall experience was by analyzing the number of failed requests and
the average response time.

Azure Automation

Azure Automation allows - as the name suggests - to perform actions in your (non)-
Azure environment such as automatically shutting down a VM every night at 10

pm, installing weekly updates to VMs, or triggering other necessary operations at a
predefined time.

As an example, we used Azure Automation to take a backup of an Azure API
Management instance once a day. Even though it is possible to deploy the API gateway
in different regions and protect your APIs, products, etc. from loss because of an unlikely
disaster, this feature is only available in the premium tier of Azure API Management.
Having a backup of your Azure API Management inventory might be a good idea if you
run only with one instance.

In this chapter, you will learn to connect an Azure Automation account to
change a certain named value frequently in Azure API Management. Whenever we
deployed an entirely new Azure Kubernetes Service (AKS) cluster for our backend web

249

CHAPTER 17 ADMINISTRATION

services - that is how we updated AKS - we had to re-route the traffic that was going to
Azure API Management from the old AKS cluster to the new AKS cluster. We did this by
changing the backend service URL in the global policy, which was dynamically set as

a named value in Azure API Management. The change was performed automatically
by a PowerShell runbook in Azure Automation. When the URL of AKS changed in our
source code repository, the runbook in the Azure Automation account was triggered. It
then changed the URL of the AKS cluster, which was set as a named value in Azure API
Management.

Creating an Azure Automation Account

We start by creating an Azure Automation account from the Azure portal. An Azure
Automation account serves as a container for runbooks and other assets to execute a job.

Click “Create a new resource” from the start page and search for Automation, then
click “Create,” as shown in Figure 17-15. Choose a name, subscription, resource group,
and location. Furthermore, select “Yes” in the field for creating an “Azure Run As”
account. This creates a service principal with the contributor role on the subscription
level which gives you full access to all Azure resources within the same subscription.
Read more about service principal in the Azure documentation.

250

https://docs.microsoft.com/en-us/azure/active-directory/develop/app-objects-and-service-principals#service-principal-object

Automation

Microsoft

Search for
"Automation"

Automation 2 Add to Favorites
Microsoft

* & % K i 4.0 (424 ratings)

kO,

Create

Click
"Create”

Click "Create"

_—

CHAPTER 17 ADMINISTRATION

Add Automation Account

Name * @O

l mastering-apim-aa v

Subscription *

l Visual Studio Enterprise Subscription ~

Resource group *

I mastering-apim-rg N
Create new
Location *
| West Europe '

Create Azure Run As account * @

f b
‘(P: NO)

This will create Azure Run As
account in the Automation account
which are useful for authenticating
with Azure to manage Azure
resources from Automation
runbooks. Note that the creation of
Azure Run As account may affect
the securitv of the

Cteate

Figure 17-15. Creating an Azure Automation account from the Azure portal

To connect to your Azure account and to use the Azure PowerShell module for Azure

API Management, you need to import two modules, Az.Account and Az.ApiManagement.

You can do this under the Modules section in the left-hand menu of your Azure

Automation account, as Figure 17-16 shows. Click “Browse gallery” and search for both

modules to import them.

251

CHAPTER 17 ADMINISTRATION

=1 mastering-apim-aa | Modules =

Automation Account
2 Search (Ctri+/)
@ Hybrid worker groups

2 Watcher tasks

Shared Resources

Schedules

Modules i

Modules gallery

EH e

» o

Python packages
Credentials
;9 Connections

Certificates

o

fx variables

& ~+ Add a module

2 search modules
MName

AuditPolicyDsc

CJ Update Azure modules

AT ACCOUnS

Az.ApiManagemen

t

Azure
Azure.Storage
AzureRM.Automati
AzureRM.Compute

AzureRM.Profile

on

AzureRM Resources

Last modified

2021-06-21 19:19
2021-07-1909:30
2021-07-19 09:32
2021-07-19 08:21
2021-07-19 09:21
2021-07-19 08:21
2021-07-19 09:21
2021-07-19 09:19

2021-07-19 09:21

Figure 17-16. Importing two Azure modules

|_,7' Learn about module updates

Status
Available
Available
Available
Failed
Available
Available
Available
Available

Available

£ Browse gallery () Refresh

Version
1.1.00
251

2.20

461
6.1.2
582
584

6.74

Create an empty runbook by clicking “Create a runbook” in the Runbook pane, as

Figure 17-17 shows. Give it a name - I chose mastering-apim-rb - and a description.
There are six types of runbooks: PowerShell, Python 2, Python 3, Graphical, PowerShell
Workflow, and Graphical PowerShell Workflow. Select PowerShell as your runbook

type as you already have the necessary skills to understand the PowerShell cmdlets for

interacting with Azure API Management and click “Create.”

Home > Resource groups > mastering-apim-rg » mastering-apim-aa

2 mastering-apim-aa | Runbooks = -

omation Account

£ Search {Ctrl+/)
i Overview

B Activity log

By Access control (LAM)

® Tags

4 Diagnose and schve problems
Canfiguration Management

B Iwventory

= Change tracking

B state configuration (DSC)
Update management

B Update management

Process Automation

& Runbooks ffmm—

AzureAutomationTutoria
AuredutomationTutorialPyt .

AzureAutomationTutorialSeri..

1| Impart a runbook

Authoring status

O Browse gallery

& Leammare () Refresh

Runbook type Last modific

~ Published i Graphical Runbook 2021-07-19
~* Pubilished @ Python 2 Runbook 2021-07-19
~ Published 2 PowerShell Runbook 2021-07-19

Figure 17-17. Creating an empty PowerShell runbook

252

2 Create a runbook

Name *)

rastering-apim-rb

Runbook type * O

PowerShell e

Description

This runbook manages a named valve in -
Azure AP Management

CHAPTER 17 ADMINISTRATION

An editor for your PowerShell runbook opens where you will put your code for
connecting to your Azure API Management instance. As Figure 17-18 shows, there is
already listed your Azure resources connection with the name AzureRunAsConnection.

> Edit PowerShell Runbook*

mastering-apim-rb
E save @ Publish >< Revert to published @ Test pane & Feedback

CMDLETS 3 |
- &% RUNBOOKS
v Al

Your code will get

AzureAutomationTutorial in here.

AzureAutomationTutorialScript ---

mastering-apim-rb h
“& ASSETS The connection to your Azure
> Variables resources was created.

~ Connections

AzureRunAsConnection

> Credentials

» Certificates

Figure 17-18. PowerShell runbook editor

Connecting to Azure APl Management

Create a function setupConnection where you put your code for establishing a
connection to your Azure account. Listing 17-2 demonstrates step by step how to
implement this by using the internal PowerShell cmdlet Get-AutomationConnection.
The cmdlet expects the name of your connection as the only parameter. It returns the
service principal that was automatically created when you created an Automation
account. The following Azure PowerShell cmdlet Connect-AzAccount connects to your
Azure account as the name suggests. It requires three parameters that you get from your
service principal, TenantId, ApplicationId, and CertificateThumbprint.Ihave put the
code into a try-catch construct to make sure you get a proper error message in case your
code does not work as expected. Finally, call your function setupConnection.

253

CHAPTER 17 ADMINISTRATION

Listing 17-2. PowerShell function to connect to Azure API Management

function setupConnection {

$connectionName = "AzureRunAsConnection"
try {
$connection = Get-AutomationConnection -Name $connectionName

Connect-AzAccount ~
-ServicePrincipal ~
-TenantId $connection.TenantId °
-ApplicationId $connection.ApplicationId ~
-CertificateThumbprint $connection.CertificateThumbprint
} catch {
if (!'$connection) {
$ErrorMessage = "Connection $connectionName not found."
throw $ErrorMessage
} else{
Write-Error -Message $.Exception
throw $_.Exception

}

Call the function to establish a connection
setupConnection

From here on, you can manage all your Azure resources within the same
subscription. To demonstrate this, Listing 17-3 adds a new named value “test” to your
Azure API Management instance. You understand the code already from previous
chapters.

Listing 17-3. Creating a new named value from a runbook

$apimSubscriptionId = "b0e68700-2b10-4192-858a-36d2a98748b8"
$apimServiceName = "mastering-apim"
$rg = "mastering-apim-rg"

254

CHAPTER 17 ADMINISTRATION

Set-AzContext -Subscription $apimSubscriptionId
$context = New-AzApiManagementContext -ResourceGroupName $rg -ServiceName
$apimServiceName

New-AzApiManagementNamedValue -Context $context -NamedValueld "test" -Name
"test" -Value "value"

I hard coded the value for the named value at this point to simplify the example for
you. In a production environment, you might want to get the value from the payload of a
trigger. As mentioned before, when we change a property file for Azure API Management
where we store all named values, the runbook gets automatically triggered. This
happens because we synchronize the property file with an Azure App Configuration
Service. Azure App Configuration is another Azure service for storing key/value pairs in
plain text, almost like Azure Key Vault for encrypted values. Whenever a value changes
in Azure App Configuration, an event is sent which the Azure Automation runbook
listens to.

You learned in this section to use Azure Automation to perform actions in Azure
API Management by connecting to your Azure account with an auto-generated service
principal. To get a detailed introduction to Azure Automation, visit https://docs.
microsoft.com/en-us/azure/automation/automation-intro.

Azure Logic Apps

With Azure Logic Apps, you create and run automated workflows that integrate backend
services, data, but also on-premises systems. Logic Apps simplify the way that you can
connect legacy and modern services no matter where they are located or with what
technology they come.

A simple Logic App that I created some time ago is triggered by an HTTP request
(step 1 in the workflow), reads a CSV file from a co-located drive (step 2), extracts all
email addresses from this file (step3), and finally sends an invitation email to each email
address (step 4). What I built was essentially a simple email distribution service by using
Azure Logic Apps.

A more professional Logic App might include steps where several web APIs are called
which run at different places and with different technologies, as Figure 17-19 shows.

255

https://docs.microsoft.com/en-us/azure/automation/automation-intro
https://docs.microsoft.com/en-us/azure/automation/automation-intro
https://azure.microsoft.com/services/logic-apps
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-overview#workflow

CHAPTER 17 ADMINISTRATION

’F
—(®
Azure Resource Group " .
{ ittt Azure App Service
| |
| N\ |
. | ' i | M
a0 ~ F g
: | i
I I
APl consumers Azure APl Management Azure Logic Apps Azure Kubernetes Service
H {composite APIs} }
e e e e e e e e e e e e e e e = ———]

On-premises

Figure 17-19. Azure Logic Apps integrated with different technology stacks

I was involved in a project where we developed several Azure Logic Apps that
manage different aspects of managing incidents, creating Jira tickets, informing
stakeholders, etc. We had one Logic App that was listening to events that were pushed
from a monitoring system, in this case Dynatrace, and that orchestrated all steps in the
chain of managing an ongoing incident; we called the Logic app MASTER_INCIDENT _
HANDLER. It created a Jira ticket where we kept the current status and actions being
taken. The Logic App also created a Confluence page where all communication we
had in a Slack channel was stored. It then posted the links of the pages to the Slack
channel that we used as our main communication platform. Another Azure Logic App
was triggered which was watching the Slack channel and stored all communication in a
database but also updates the Confluence page at the same time. Both Azure Logic Apps
used several web APIs such as the Dynatrace API, Confluence AP], Jira API, and Slack
API. Azure Logic Apps is a great PaaS$ service for orchestrating workflows.

In the following example, we combine two Azure Logic Apps into one APIin Azure
API Management. Both Logic Apps have an HTTP endpoint. The first Logic App lists
customers, while the second Logic App creates new customers. We call the API for
Customer API, as illustrated in Figure 17-20.

256

CHAPTER 17 ADMINISTRATION

e

Azure Logic App

. (ListCostumers)
(N g
API consumers Azure APl Management
{ Customer API }

Azure Logic App
(CreateCostumer)

Figure 17-20. Two Azure Logic Apps combined as one API

When you can create an API from an Azure resource in the Azure portal such as
from an Azure Logic App, it automatically suggests the name of the resource, in this
case ListCustomers. You can change this directly in the form for creating the API as
Figure 17-21 shows, or you can change the name later in the settings tab of the API. In
this example, I changed the suggested Display name from ListCustomers to Customer API
and set the context path (API URL suffix) to customers.

Create from Logic App
D o) JV

* Logic App ListCostumers | Browse
* Display name Customer AP h
* Name customer-api

AP| URL suffix customers h

Base URL

[https://mastering-apim.azure-api.net/customers

Figure 17-21. Creating an API from an Azure Logic App

257

CHAPTER 17 ADMINISTRATION

The new Customer API has one API operation, the endpoint of the ListCustomers
Azure Logic App. As you can see in Figure 17-22, some values such as the display name

for the operation must be changed. You can do this by clicking the pencil in the
upper-right corner.

- Add API |Y Filter by tags | Frontend ﬂ %

U Group by tag

POST /manual/paths/invoke
All APIs

—+ Add operation Responses

All operations m

POST manual-invoke

Demo Conference API

e

Echo API

Customer API h."

Figure 17-22. API operation of Azure Logic App

Definitions

As you see in Figure 17-23, the API operation name is manual-invoke and might
be different from what we would expect. Change this to ListCustomers by changing the
Display name. Also change the HTTP method from POST to GET, as well as the context-
path from /manual/path/invoke to /customers.

}3 Search operations Customers APl > manual-invoke > Frontend <> OpenAPl specification View
S Filter by tags |
U Group by tag Frontend
|- Add operation Display name ListCustomers
* MName

manual-invoke
All operations

“ URL | [GeT Jeustomers |

POST manual-invoke o S r errreer
| Description This GET endpoint lists customers

Tags customers

Operations Definitions Discard

Figure 17-23. Setting correct values for an API operation

258

CHAPTER 17 ADMINISTRATION

As you already have the Customer API created with ListCustomers as its first API
operation, you must add the second Azure Logic App CreateCustomers by creating a
blank API operation. Open the Frontend dialog and set the right values accordingly:

o Display name: CreateCustomers
e Name: creatcustomers
o URL: POST as the HTTP method and customers as the context path

This API operation does not yet forward requests to the CreateCustomers Azure Logic
App. To do this, click the pencil in the Backend section for the HTTP(s) endpoint, as
shown in Figure 17-24.

Design Settings Test Revisions Change log

Frontend &7 Inbound processing Backend

POST fcustomers Modify the request before it is 2
M sentto the backend sewvice g HETRG) endpalnt . 4

All APls

Customer AP Policies &y

All operations

ﬁ PoOST CreateCustomers n
Outbound processing

GET ListCustomers ity Modify the response before it
= sant to the client L Change this to
your Azure Logic
App

Policies <>

Operations Definitions

Figure 17-24. Changing the backend URL for the Azure Logic App

This opens a dialog where you can select an Azure resource. Browse to your Azure
Logic App and click Save. The address that you see beneath the HTTP(s) endpoint
changes to the Azure resource that you selected.

You can change most settings for an API and API operation also with the Azure CLI,
PowerShell, or REST. However, importing an Azure Logic App is only possible from
the Azure portal. To automate the process of updating the API, you need to create an
open API definition file for the targeted Azure Logic apps that you can import with the
PowerShell cmdlet Import-AzApiManagementApi.

259

CHAPTER 17 ADMINISTRATION

Summary

In this chapter, you learned to set up and configure Azure API Management for some
typical tasks that administrators of Azure API Management often are responsible for. You
learned what you can do to set up and configure your instance for high availability but
also to improve the overall performance so you can improve the experience of requesting
digital assets. You learned also to generate reports that you can use to monetize your
APIs. Finally, I taught you to connect Azure API Management and Azure Logic Apps.

260

Index

A development portal, 31, 32
drawback, 78

gateway, 32, 33

Microsoft credentials, 3
networking, 28
PowerShell, 30

provision, 4-6

Add-AzApiManagementApiToProduct
cmdlet, 53

Amazon Web Service (AWS), 162

Application Insights, 228-231

Application repositories, 127, 128

ARM templates, 29, 38, 127, 147, 154,

API
160, 162 test P
Azure Kubernetes Service (AKS), 103 command line,
icati portal, 9, 10
Authentication - o
HTTP, 199, 200 udio coae,
URL, 91

API demo, 201

Azure Automation, 249
inbound operation, 202

connect API, 253, 254

S te, 250-252
i A CreaB'e} A_PI depl t, 154-156
APJ, 210 zure bicep, eployment, 154-

Azure Kubernetes Service (AKS), 15, 28,
123, 182-185, 249
Azure portal
developing policies, 133
inbound policies, 134
policy code snippets, 135, 136
policy configuration, 135
policy editor, 136
query parameters, 135
ready-to-use policies, 133, 134
Azure PowerShell, 44, 220-223, 238
Azure Resource Manager templates

Backend App, 203-205
Client App, 206, 207
configuration, 209
endpoints, 208
JWT, 212-214
test and validate, 212
az apim api command, 44
az apim api operation update
command, 43
az group create command, 47
Azure API management

account, 3

add API, 7-9 (ARM templates), 147
Azure portal, 29 ifllliecpgy?l;lm’ 148

CLL 29)

definition, 27 Azure Storage Account, 151

261
© Sven Malvik 2022

S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9

https://doi.org/10.1007/978-1-4842-8011-9#DOI

INDEX

Azure Resource Manager templates
(ARM templates) (cont.)
demo conference, 150
sections, 152
az webapp create command, 47

B

Bank’s name and unique identification
number (BIC/SWIFT), 37

Bicep templates, 38

Book operation, 166

C

Caching, 233, 239
Canary backend APIs
AKS, 103, 104
global policy, 104
options, 103
petstore, 105
Centralized API repository
external repository, 125-127
internal repository, 124, 125
Citizen developer, 13, 165, 172
Context parameter, 51, 52, 238
Cross-Origin-Resource-Sharing (CORS),
111,211
cURL command, 75, 99, 157, 159, 248

D

Developer portal
API consumers, 110
Conferences Services
product, 109, 110
CORS, 111-113
customization

262

notifications, 115, 116

styling, 114, 115

templates, 115, 116

WYSIWYG editor, 113
Demo Conference API, 111
getTopics operation, 81, 84, 111
global policy, 82, 83, 85, 104, 105,

111, 112

portalTemplates, 117, 125
private API account, 108, 109
publishing, 107, 108
self-hosting

access token, 118

directory, 117

files, 118

folders, 119

Node.js/npm, 117

npm start, 118

project dependencies, 117

Sign Up form, 118

static web app, 119

Visual Studio Code, 118
Sign Up, 108
WYSIWYG editor, 107, 117

Digital assets, APIs

unlocking

automotive, 15

developer access, 14

payments, 14

Domain specific language (DSL), 154

E,F

Enterprise API platform
comprehensible capabilities, 23
definition, 22
design guidelines, 24
DevOps, 26

documentation, 23
governance/compliance, 25
health monitoring, 25
performance, 27
scalability/resiliency, 26
security, 26
stability, 27
user management, 24
user onboarding, 24
versioning/revisioning, 25
web APIs, 22

Event Hub
add logger, 222
API Management, 222
connection string, 223
deploy, 221
logs, 220
policy for logger, 224
VS Code, 224

External cache, 233, 239, 240

G

Get-AzApiManagementApi cmdlet, 52
Google Cloud Platform (GCP), 162
Groups

associate groups to products, 58

creating, 57

custom, 56

system, 57

H

High availability, 233
adding custom domains, 242, 243, 245
backup/restore, 236-238
configuring external caching, 239-242
scaling, 234-236
user reports, 246, 248

INDEX

Identifier (ID), 181, 184
Infrastructure as code (IaC), 38, 127,
147, 160

J,K

Json Web Token (JWT), 29, 206, 212

L

Local Redundancy Storage (LRS), 151
Log analytics, 226-228

Logging, 219, 220, 224

Logic App, 255, 256, 258, 259

Managed API gateway, 33, 187,
195, 234

Managed system
identity (MSI), 95, 243

N

Named values, 77

Azure Key Vault
access, 95
creation, 96, 97
managed system identity, 95, 96
secrets, 97-99

definition, 90

plaintext
code, 92, 93
creation, 92
petstore API, 92
petstoreUrl, 92
routing, 91

263

INDEX

Named values (cont.)
set-backend-service, 91
set-backend-service, 91

secrets, 93, 94
Network security rules (NSGs), 180, 187

O

OpenAPI definition file
Azure resources, 46-49
blank API, CLI
add operations, 41, 43
Cloud Shell, 39
Power Shell, 44-46
subscriptions and security, 40, 41
update API operations, 43
create/configure, 38

P,Q

Payment Card Industry Data Security
Standard (PCI DSS), 25
Path traversal attack, 216-218
Policies, 77
calls, IP address, 81
default policy, 80, 81
effective policy, 85, 86
expressions, 86
multi-statement, 89, 90
single statement, 87, 89
expressions flow, 78, 79
flexibility, 78
HTTP status codes, 81
policy editor, 79, 80
scoping, 83
All APIs, 83
global policy, 82
implementation, 83
levels, 82

264

master subscription key, 83, 84
message, 84
response, 84
sections, 78
statements, 78, 79
testing, 81
validation (see Validation policies)
Power Apps, 165
available connections, 169
Book API, 171
connect with API, 170
create, 169, 170
create connection, 168
create connector, 167, 168
PowerShell runbook, 250, 252, 253
Product deployment
Azure pipeline, 129, 130
Demo Services, 129
parameters, 130
PowerShell cmdlets, 129
template, 131
Products
add APIs to products, 53
create APIs, 50, 52
create parameters, 52, 53
definition, 49
example, 50

R

Remove-AzApiManagementApi
cmdlet, 46
REpresentational State Transfer
(REST), 18
REST API, 156
cURL, 158
deploy, 157
deploy API policy, 159

policy, 159
variables, 156
Revisions
API identifier, 68
definition, 67
make revision current, 69

S

Simple Object Access
Protocol (SOAP), 16
Self-hosted API gateway, 188, 189
create, 189, 190
deploy
authorization token, 192, 193
configuration, 191
service endpoint, 191
deployment, 194
update, 195
Shared access signature (SAS), 94, 157
Subscriptions, 215, 216
APIs, 71
calling API, 75
creating, 73
definition, 71
example, 72
parameters, 73
revealing keys, 74, 75

T

Terraform, 160
API, 161
Azure provider, 160

U

url-template parameter, 41
Users

INDEX

add user to group, 61, 62
creating, 60
deactivate/reactivate, 61
definition, 55, 59

\'

Validation policies
content validation, 100
parameter validation, 101, 102
validate-headers, 102
validate-status-code, 102
Versions
add new version, 66
definition, 64
scheme, 65
set, 63
Virtual network (VNET), 175
external, 179
internal, 176-178
types, 175
Visual Studio (VS) code extension
installation
additional extensions, 137
Azure account, 138, 139
Azure API Management, 136, 137
command palette, 137, 138
PowerShell cmdlets, 138
policies
debugging, 143-146
development, 139-141
test operation, 141-143

W XY,Z
Web APIs
HTTP(S) protocol, 16
REST, 18
definition, 18

265

INDEX

Web APIs (cont.)
HTTP clients, 21, 22
OpenAP], 20, 21
principles, 18
WADL, 19, 20
SOAP, 16
WSDL, 18

266

Web Application Description
Language (WADL), 19

Web Application Firewall (WAF),
99,177,180, 217

Web service, 94, 217, 235

Web Services Description
Language (WSDL), 17

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Foreword
	Introduction
	Part I: Getting Started
	Chapter 1: Quick Start
	Create an Azure Account
	Provision Azure API Management
	Add API
	Test API
	API Management Portal
	Command Line

	Summary

	Chapter 2: Overview
	Unlocking Digital Assets with APIs
	Payments
	Manufacturing
	Automotive

	Understanding the Basics of web APIs
	SOAP
	WSDL

	REST
	WADL
	OpenAPI

	HTTP Clients for Testing RESTful web APIs
	cURL
	Postman

	Enterprise API Platform in Essence
	Consistent Documentation
	Comprehensible Capabilities
	Common Design Guidelines
	API User Onboarding
	User Management
	Health Monitoring
	Governance and Compliance
	Versioning and Revisioning
	Scalability and Resiliency
	Security
	DevOps
	Performance
	Stability

	Introducing Azure API Management
	Azure Portal
	Interacting with Azure API Management

	Developer Portal
	API Gateway

	Summary

	Part II: Key Concepts
	Chapter 3: APIs and Products
	APIs
	Create Blank API with Azure CLI
	Add API Operation
	Update API Operation

	Manage APIs with Azure PowerShell
	Create API from Azure Resources
	Create Web Application in Azure App Service
	Create API from Azure App Service Web Application

	Products
	Create APIs
	Create Products
	Add APIs to Products

	Summary

	Chapter 4: Users and Groups
	Groups
	System Groups
	Create a Group
	Associate Groups to Products

	Users
	Create a User
	Deactivate and Reactivate a User
	Add a User to a Group

	Summary

	Chapter 5: Versions and Revisions
	Versions
	Version Scheme
	Add a New Version

	Revisions
	Add a New Revision
	Make Revision Current

	Summary

	Chapter 6: Subscriptions
	Creating a Subscription
	Revealing Subscription Keys
	Calling API with Subscription Key
	Summary

	Chapter 7: Policies and Named Values
	Policies
	Simple Policy
	Scoping
	Calculating Effective Policy
	Expressions
	Single Statement Expressions
	Multi-Statement Expressions

	Named Values
	Plaintext
	Secrets
	Secrets from Azure Key Vault
	Enable Managed System Identity in Azure API Management
	Preparing Azure Key Vault
	Using Secret from Azure Key Vault in Policies

	Examples
	Validations
	Content Validation
	Parameter Validation
	Other Validations

	Canary Backend APIs

	Summary

	Chapter 8: Developer Portal
	Overview
	Customization
	Styling
	Notifications and Templates

	Self-hosting
	Running the Developer Portal Locally

	Summary

	Part III: Workflow
	Chapter 9: API Development in Context
	Centralized API Repository
	Internal Repository
	External Repository

	Application Repositories
	Product Deployment with Azure Pipeline
	Summary

	Chapter 10: Developing Policies
	Azure Portal
	Visual Studio Code Extension
	Installation
	Developing a Policy
	Testing an API
	Debugging a Policy

	Summary

	Chapter 11: Deploying APIs
	ARM Templates
	Bicep
	REST
	Terraform
	Summary

	Chapter 12: Power Apps
	Creating a Connection
	Creating a Power App
	Summary

	Part IV: Enterprise Integration
	Chapter 13: Networking
	Internal Virtual Network (VNET)
	External VNET
	No VNET
	Backend Integration with AKS
	Summary

	Chapter 14: Self-hosted API Gateway
	Creating a Self-hosted API Gateway
	Deploying a Self-hosted API Gateway
	Configuration
	Service Endpoint
	Authorization Token

	Deployment

	Updating the Self-hosted API Gateway
	Summary

	Part V: Maintenance
	Chapter 15: Security
	Authentication
	HTTP Basic Authentication to Backend Web Services
	Authentication with OAuth 2.0
	Backend App
	Client App
	Azure API Management Instance Settings
	Test and Validate

	Other Security Aspects
	Subscriptions
	Protecting Against Path Traversal Attacks

	Summary

	Chapter 16: Logging and Monitoring
	Logging via Event Hub
	Deploy an Azure Event Hub
	Set Event Hub Logger to Azure API Management
	Add Event Hub Logger to Policy
	Observing Logs with VS Code

	Logging to Azure Log Analytics
	Azure Application Insights
	Summary

	Chapter 17: Administration
	High Availability
	Scaling in Regions
	Preparing for a Disaster with Backup and Restore

	Configuring External Caching
	Adding Custom Domains
	Monetizing Your APIs with User Reports
	Azure Automation
	Creating an Azure Automation Account
	Connecting to Azure API Management

	Azure Logic Apps
	Summary

	Index

